1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "misc.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "print-tree.h" 18 #include "compression.h" 19 20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 21 sizeof(struct btrfs_item) * 2) / \ 22 size) - 1)) 23 24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 25 PAGE_SIZE)) 26 27 /** 28 * Set inode's size according to filesystem options 29 * 30 * @inode: inode we want to update the disk_i_size for 31 * @new_i_size: i_size we want to set to, 0 if we use i_size 32 * 33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 34 * returns as it is perfectly fine with a file that has holes without hole file 35 * extent items. 36 * 37 * However without NO_HOLES we need to only return the area that is contiguous 38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 39 * to an extent that has a gap in between. 40 * 41 * Finally new_i_size should only be set in the case of truncate where we're not 42 * ready to use i_size_read() as the limiter yet. 43 */ 44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 45 { 46 struct btrfs_fs_info *fs_info = inode->root->fs_info; 47 u64 start, end, i_size; 48 int ret; 49 50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 52 inode->disk_i_size = i_size; 53 return; 54 } 55 56 spin_lock(&inode->lock); 57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 58 &end, EXTENT_DIRTY); 59 if (!ret && start == 0) 60 i_size = min(i_size, end + 1); 61 else 62 i_size = 0; 63 inode->disk_i_size = i_size; 64 spin_unlock(&inode->lock); 65 } 66 67 /** 68 * Mark range within a file as having a new extent inserted 69 * 70 * @inode: inode being modified 71 * @start: start file offset of the file extent we've inserted 72 * @len: logical length of the file extent item 73 * 74 * Call when we are inserting a new file extent where there was none before. 75 * Does not need to call this in the case where we're replacing an existing file 76 * extent, however if not sure it's fine to call this multiple times. 77 * 78 * The start and len must match the file extent item, so thus must be sectorsize 79 * aligned. 80 */ 81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 82 u64 len) 83 { 84 if (len == 0) 85 return 0; 86 87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 88 89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 90 return 0; 91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 92 EXTENT_DIRTY); 93 } 94 95 /** 96 * Marks an inode range as not having a backing extent 97 * 98 * @inode: inode being modified 99 * @start: start file offset of the file extent we've inserted 100 * @len: logical length of the file extent item 101 * 102 * Called when we drop a file extent, for example when we truncate. Doesn't 103 * need to be called for cases where we're replacing a file extent, like when 104 * we've COWed a file extent. 105 * 106 * The start and len must match the file extent item, so thus must be sectorsize 107 * aligned. 108 */ 109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 110 u64 len) 111 { 112 if (len == 0) 113 return 0; 114 115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 116 len == (u64)-1); 117 118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 119 return 0; 120 return clear_extent_bit(&inode->file_extent_tree, start, 121 start + len - 1, EXTENT_DIRTY, 0, 0, NULL); 122 } 123 124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 125 u16 csum_size) 126 { 127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 128 129 return ncsums * fs_info->sectorsize; 130 } 131 132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 u64 objectid, u64 pos, 135 u64 disk_offset, u64 disk_num_bytes, 136 u64 num_bytes, u64 offset, u64 ram_bytes, 137 u8 compression, u8 encryption, u16 other_encoding) 138 { 139 int ret = 0; 140 struct btrfs_file_extent_item *item; 141 struct btrfs_key file_key; 142 struct btrfs_path *path; 143 struct extent_buffer *leaf; 144 145 path = btrfs_alloc_path(); 146 if (!path) 147 return -ENOMEM; 148 file_key.objectid = objectid; 149 file_key.offset = pos; 150 file_key.type = BTRFS_EXTENT_DATA_KEY; 151 152 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 153 sizeof(*item)); 154 if (ret < 0) 155 goto out; 156 BUG_ON(ret); /* Can't happen */ 157 leaf = path->nodes[0]; 158 item = btrfs_item_ptr(leaf, path->slots[0], 159 struct btrfs_file_extent_item); 160 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); 161 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); 162 btrfs_set_file_extent_offset(leaf, item, offset); 163 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 164 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); 165 btrfs_set_file_extent_generation(leaf, item, trans->transid); 166 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 167 btrfs_set_file_extent_compression(leaf, item, compression); 168 btrfs_set_file_extent_encryption(leaf, item, encryption); 169 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); 170 171 btrfs_mark_buffer_dirty(leaf); 172 out: 173 btrfs_free_path(path); 174 return ret; 175 } 176 177 static struct btrfs_csum_item * 178 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct btrfs_path *path, 181 u64 bytenr, int cow) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 int ret; 185 struct btrfs_key file_key; 186 struct btrfs_key found_key; 187 struct btrfs_csum_item *item; 188 struct extent_buffer *leaf; 189 u64 csum_offset = 0; 190 const u32 csum_size = fs_info->csum_size; 191 int csums_in_item; 192 193 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 194 file_key.offset = bytenr; 195 file_key.type = BTRFS_EXTENT_CSUM_KEY; 196 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 197 if (ret < 0) 198 goto fail; 199 leaf = path->nodes[0]; 200 if (ret > 0) { 201 ret = 1; 202 if (path->slots[0] == 0) 203 goto fail; 204 path->slots[0]--; 205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 206 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 207 goto fail; 208 209 csum_offset = (bytenr - found_key.offset) >> 210 fs_info->sectorsize_bits; 211 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); 212 csums_in_item /= csum_size; 213 214 if (csum_offset == csums_in_item) { 215 ret = -EFBIG; 216 goto fail; 217 } else if (csum_offset > csums_in_item) { 218 goto fail; 219 } 220 } 221 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 222 item = (struct btrfs_csum_item *)((unsigned char *)item + 223 csum_offset * csum_size); 224 return item; 225 fail: 226 if (ret > 0) 227 ret = -ENOENT; 228 return ERR_PTR(ret); 229 } 230 231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 232 struct btrfs_root *root, 233 struct btrfs_path *path, u64 objectid, 234 u64 offset, int mod) 235 { 236 struct btrfs_key file_key; 237 int ins_len = mod < 0 ? -1 : 0; 238 int cow = mod != 0; 239 240 file_key.objectid = objectid; 241 file_key.offset = offset; 242 file_key.type = BTRFS_EXTENT_DATA_KEY; 243 244 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 245 } 246 247 /* 248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 249 * estore the result to @dst. 250 * 251 * Return >0 for the number of sectors we found. 252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 253 * for it. Caller may want to try next sector until one range is hit. 254 * Return <0 for fatal error. 255 */ 256 static int search_csum_tree(struct btrfs_fs_info *fs_info, 257 struct btrfs_path *path, u64 disk_bytenr, 258 u64 len, u8 *dst) 259 { 260 struct btrfs_csum_item *item = NULL; 261 struct btrfs_key key; 262 const u32 sectorsize = fs_info->sectorsize; 263 const u32 csum_size = fs_info->csum_size; 264 u32 itemsize; 265 int ret; 266 u64 csum_start; 267 u64 csum_len; 268 269 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 270 IS_ALIGNED(len, sectorsize)); 271 272 /* Check if the current csum item covers disk_bytenr */ 273 if (path->nodes[0]) { 274 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 275 struct btrfs_csum_item); 276 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 277 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 278 279 csum_start = key.offset; 280 csum_len = (itemsize / csum_size) * sectorsize; 281 282 if (in_range(disk_bytenr, csum_start, csum_len)) 283 goto found; 284 } 285 286 /* Current item doesn't contain the desired range, search again */ 287 btrfs_release_path(path); 288 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0); 289 if (IS_ERR(item)) { 290 ret = PTR_ERR(item); 291 goto out; 292 } 293 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 294 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 295 296 csum_start = key.offset; 297 csum_len = (itemsize / csum_size) * sectorsize; 298 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 299 300 found: 301 ret = (min(csum_start + csum_len, disk_bytenr + len) - 302 disk_bytenr) >> fs_info->sectorsize_bits; 303 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 304 ret * csum_size); 305 out: 306 if (ret == -ENOENT) 307 ret = 0; 308 return ret; 309 } 310 311 /* 312 * Locate the file_offset of @cur_disk_bytenr of a @bio. 313 * 314 * Bio of btrfs represents read range of 315 * [bi_sector << 9, bi_sector << 9 + bi_size). 316 * Knowing this, we can iterate through each bvec to locate the page belong to 317 * @cur_disk_bytenr and get the file offset. 318 * 319 * @inode is used to determine if the bvec page really belongs to @inode. 320 * 321 * Return 0 if we can't find the file offset 322 * Return >0 if we find the file offset and restore it to @file_offset_ret 323 */ 324 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, 325 u64 disk_bytenr, u64 *file_offset_ret) 326 { 327 struct bvec_iter iter; 328 struct bio_vec bvec; 329 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; 330 int ret = 0; 331 332 bio_for_each_segment(bvec, bio, iter) { 333 struct page *page = bvec.bv_page; 334 335 if (cur > disk_bytenr) 336 break; 337 if (cur + bvec.bv_len <= disk_bytenr) { 338 cur += bvec.bv_len; 339 continue; 340 } 341 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); 342 if (page->mapping && page->mapping->host && 343 page->mapping->host == inode) { 344 ret = 1; 345 *file_offset_ret = page_offset(page) + bvec.bv_offset + 346 disk_bytenr - cur; 347 break; 348 } 349 } 350 return ret; 351 } 352 353 /** 354 * Lookup the checksum for the read bio in csum tree. 355 * 356 * @inode: inode that the bio is for. 357 * @bio: bio to look up. 358 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return 359 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If 360 * NULL, the checksum buffer is allocated and returned in 361 * btrfs_io_bio(bio)->csum instead. 362 * 363 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 364 */ 365 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst) 366 { 367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 368 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 369 struct btrfs_path *path; 370 const u32 sectorsize = fs_info->sectorsize; 371 const u32 csum_size = fs_info->csum_size; 372 u32 orig_len = bio->bi_iter.bi_size; 373 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 374 u64 cur_disk_bytenr; 375 u8 *csum; 376 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 377 int count = 0; 378 379 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 380 return BLK_STS_OK; 381 382 /* 383 * This function is only called for read bio. 384 * 385 * This means two things: 386 * - All our csums should only be in csum tree 387 * No ordered extents csums, as ordered extents are only for write 388 * path. 389 * - No need to bother any other info from bvec 390 * Since we're looking up csums, the only important info is the 391 * disk_bytenr and the length, which can be extracted from bi_iter 392 * directly. 393 */ 394 ASSERT(bio_op(bio) == REQ_OP_READ); 395 path = btrfs_alloc_path(); 396 if (!path) 397 return BLK_STS_RESOURCE; 398 399 if (!dst) { 400 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio); 401 402 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 403 btrfs_bio->csum = kmalloc_array(nblocks, csum_size, 404 GFP_NOFS); 405 if (!btrfs_bio->csum) { 406 btrfs_free_path(path); 407 return BLK_STS_RESOURCE; 408 } 409 } else { 410 btrfs_bio->csum = btrfs_bio->csum_inline; 411 } 412 csum = btrfs_bio->csum; 413 } else { 414 csum = dst; 415 } 416 417 /* 418 * If requested number of sectors is larger than one leaf can contain, 419 * kick the readahead for csum tree. 420 */ 421 if (nblocks > fs_info->csums_per_leaf) 422 path->reada = READA_FORWARD; 423 424 /* 425 * the free space stuff is only read when it hasn't been 426 * updated in the current transaction. So, we can safely 427 * read from the commit root and sidestep a nasty deadlock 428 * between reading the free space cache and updating the csum tree. 429 */ 430 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 431 path->search_commit_root = 1; 432 path->skip_locking = 1; 433 } 434 435 for (cur_disk_bytenr = orig_disk_bytenr; 436 cur_disk_bytenr < orig_disk_bytenr + orig_len; 437 cur_disk_bytenr += (count * sectorsize)) { 438 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; 439 unsigned int sector_offset; 440 u8 *csum_dst; 441 442 /* 443 * Although both cur_disk_bytenr and orig_disk_bytenr is u64, 444 * we're calculating the offset to the bio start. 445 * 446 * Bio size is limited to UINT_MAX, thus unsigned int is large 447 * enough to contain the raw result, not to mention the right 448 * shifted result. 449 */ 450 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); 451 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> 452 fs_info->sectorsize_bits; 453 csum_dst = csum + sector_offset * csum_size; 454 455 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 456 search_len, csum_dst); 457 if (count <= 0) { 458 /* 459 * Either we hit a critical error or we didn't find 460 * the csum. 461 * Either way, we put zero into the csums dst, and skip 462 * to the next sector. 463 */ 464 memset(csum_dst, 0, csum_size); 465 count = 1; 466 467 /* 468 * For data reloc inode, we need to mark the range 469 * NODATASUM so that balance won't report false csum 470 * error. 471 */ 472 if (BTRFS_I(inode)->root->root_key.objectid == 473 BTRFS_DATA_RELOC_TREE_OBJECTID) { 474 u64 file_offset; 475 int ret; 476 477 ret = search_file_offset_in_bio(bio, inode, 478 cur_disk_bytenr, &file_offset); 479 if (ret) 480 set_extent_bits(io_tree, file_offset, 481 file_offset + sectorsize - 1, 482 EXTENT_NODATASUM); 483 } else { 484 btrfs_warn_rl(fs_info, 485 "csum hole found for disk bytenr range [%llu, %llu)", 486 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 487 } 488 } 489 } 490 491 btrfs_free_path(path); 492 return BLK_STS_OK; 493 } 494 495 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 496 struct list_head *list, int search_commit) 497 { 498 struct btrfs_fs_info *fs_info = root->fs_info; 499 struct btrfs_key key; 500 struct btrfs_path *path; 501 struct extent_buffer *leaf; 502 struct btrfs_ordered_sum *sums; 503 struct btrfs_csum_item *item; 504 LIST_HEAD(tmplist); 505 unsigned long offset; 506 int ret; 507 size_t size; 508 u64 csum_end; 509 const u32 csum_size = fs_info->csum_size; 510 511 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 512 IS_ALIGNED(end + 1, fs_info->sectorsize)); 513 514 path = btrfs_alloc_path(); 515 if (!path) 516 return -ENOMEM; 517 518 if (search_commit) { 519 path->skip_locking = 1; 520 path->reada = READA_FORWARD; 521 path->search_commit_root = 1; 522 } 523 524 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 525 key.offset = start; 526 key.type = BTRFS_EXTENT_CSUM_KEY; 527 528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 529 if (ret < 0) 530 goto fail; 531 if (ret > 0 && path->slots[0] > 0) { 532 leaf = path->nodes[0]; 533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 534 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 535 key.type == BTRFS_EXTENT_CSUM_KEY) { 536 offset = (start - key.offset) >> fs_info->sectorsize_bits; 537 if (offset * csum_size < 538 btrfs_item_size_nr(leaf, path->slots[0] - 1)) 539 path->slots[0]--; 540 } 541 } 542 543 while (start <= end) { 544 leaf = path->nodes[0]; 545 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 546 ret = btrfs_next_leaf(root, path); 547 if (ret < 0) 548 goto fail; 549 if (ret > 0) 550 break; 551 leaf = path->nodes[0]; 552 } 553 554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 555 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 556 key.type != BTRFS_EXTENT_CSUM_KEY || 557 key.offset > end) 558 break; 559 560 if (key.offset > start) 561 start = key.offset; 562 563 size = btrfs_item_size_nr(leaf, path->slots[0]); 564 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 565 if (csum_end <= start) { 566 path->slots[0]++; 567 continue; 568 } 569 570 csum_end = min(csum_end, end + 1); 571 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 572 struct btrfs_csum_item); 573 while (start < csum_end) { 574 size = min_t(size_t, csum_end - start, 575 max_ordered_sum_bytes(fs_info, csum_size)); 576 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 577 GFP_NOFS); 578 if (!sums) { 579 ret = -ENOMEM; 580 goto fail; 581 } 582 583 sums->bytenr = start; 584 sums->len = (int)size; 585 586 offset = (start - key.offset) >> fs_info->sectorsize_bits; 587 offset *= csum_size; 588 size >>= fs_info->sectorsize_bits; 589 590 read_extent_buffer(path->nodes[0], 591 sums->sums, 592 ((unsigned long)item) + offset, 593 csum_size * size); 594 595 start += fs_info->sectorsize * size; 596 list_add_tail(&sums->list, &tmplist); 597 } 598 path->slots[0]++; 599 } 600 ret = 0; 601 fail: 602 while (ret < 0 && !list_empty(&tmplist)) { 603 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 604 list_del(&sums->list); 605 kfree(sums); 606 } 607 list_splice_tail(&tmplist, list); 608 609 btrfs_free_path(path); 610 return ret; 611 } 612 613 /* 614 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio 615 * @inode: Owner of the data inside the bio 616 * @bio: Contains the data to be checksummed 617 * @file_start: offset in file this bio begins to describe 618 * @contig: Boolean. If true/1 means all bio vecs in this bio are 619 * contiguous and they begin at @file_start in the file. False/0 620 * means this bio can contain potentially discontiguous bio vecs 621 * so the logical offset of each should be calculated separately. 622 */ 623 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 624 u64 file_start, int contig) 625 { 626 struct btrfs_fs_info *fs_info = inode->root->fs_info; 627 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 628 struct btrfs_ordered_sum *sums; 629 struct btrfs_ordered_extent *ordered = NULL; 630 char *data; 631 struct bvec_iter iter; 632 struct bio_vec bvec; 633 int index; 634 int nr_sectors; 635 unsigned long total_bytes = 0; 636 unsigned long this_sum_bytes = 0; 637 int i; 638 u64 offset; 639 unsigned nofs_flag; 640 641 nofs_flag = memalloc_nofs_save(); 642 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 643 GFP_KERNEL); 644 memalloc_nofs_restore(nofs_flag); 645 646 if (!sums) 647 return BLK_STS_RESOURCE; 648 649 sums->len = bio->bi_iter.bi_size; 650 INIT_LIST_HEAD(&sums->list); 651 652 if (contig) 653 offset = file_start; 654 else 655 offset = 0; /* shut up gcc */ 656 657 sums->bytenr = bio->bi_iter.bi_sector << 9; 658 index = 0; 659 660 shash->tfm = fs_info->csum_shash; 661 662 bio_for_each_segment(bvec, bio, iter) { 663 if (!contig) 664 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 665 666 if (!ordered) { 667 ordered = btrfs_lookup_ordered_extent(inode, offset); 668 /* 669 * The bio range is not covered by any ordered extent, 670 * must be a code logic error. 671 */ 672 if (unlikely(!ordered)) { 673 WARN(1, KERN_WARNING 674 "no ordered extent for root %llu ino %llu offset %llu\n", 675 inode->root->root_key.objectid, 676 btrfs_ino(inode), offset); 677 kvfree(sums); 678 return BLK_STS_IOERR; 679 } 680 } 681 682 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, 683 bvec.bv_len + fs_info->sectorsize 684 - 1); 685 686 for (i = 0; i < nr_sectors; i++) { 687 if (offset >= ordered->file_offset + ordered->num_bytes || 688 offset < ordered->file_offset) { 689 unsigned long bytes_left; 690 691 sums->len = this_sum_bytes; 692 this_sum_bytes = 0; 693 btrfs_add_ordered_sum(ordered, sums); 694 btrfs_put_ordered_extent(ordered); 695 696 bytes_left = bio->bi_iter.bi_size - total_bytes; 697 698 nofs_flag = memalloc_nofs_save(); 699 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 700 bytes_left), GFP_KERNEL); 701 memalloc_nofs_restore(nofs_flag); 702 BUG_ON(!sums); /* -ENOMEM */ 703 sums->len = bytes_left; 704 ordered = btrfs_lookup_ordered_extent(inode, 705 offset); 706 ASSERT(ordered); /* Logic error */ 707 sums->bytenr = (bio->bi_iter.bi_sector << 9) 708 + total_bytes; 709 index = 0; 710 } 711 712 data = kmap_atomic(bvec.bv_page); 713 crypto_shash_digest(shash, data + bvec.bv_offset 714 + (i * fs_info->sectorsize), 715 fs_info->sectorsize, 716 sums->sums + index); 717 kunmap_atomic(data); 718 index += fs_info->csum_size; 719 offset += fs_info->sectorsize; 720 this_sum_bytes += fs_info->sectorsize; 721 total_bytes += fs_info->sectorsize; 722 } 723 724 } 725 this_sum_bytes = 0; 726 btrfs_add_ordered_sum(ordered, sums); 727 btrfs_put_ordered_extent(ordered); 728 return 0; 729 } 730 731 /* 732 * helper function for csum removal, this expects the 733 * key to describe the csum pointed to by the path, and it expects 734 * the csum to overlap the range [bytenr, len] 735 * 736 * The csum should not be entirely contained in the range and the 737 * range should not be entirely contained in the csum. 738 * 739 * This calls btrfs_truncate_item with the correct args based on the 740 * overlap, and fixes up the key as required. 741 */ 742 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 743 struct btrfs_path *path, 744 struct btrfs_key *key, 745 u64 bytenr, u64 len) 746 { 747 struct extent_buffer *leaf; 748 const u32 csum_size = fs_info->csum_size; 749 u64 csum_end; 750 u64 end_byte = bytenr + len; 751 u32 blocksize_bits = fs_info->sectorsize_bits; 752 753 leaf = path->nodes[0]; 754 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 755 csum_end <<= blocksize_bits; 756 csum_end += key->offset; 757 758 if (key->offset < bytenr && csum_end <= end_byte) { 759 /* 760 * [ bytenr - len ] 761 * [ ] 762 * [csum ] 763 * A simple truncate off the end of the item 764 */ 765 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 766 new_size *= csum_size; 767 btrfs_truncate_item(path, new_size, 1); 768 } else if (key->offset >= bytenr && csum_end > end_byte && 769 end_byte > key->offset) { 770 /* 771 * [ bytenr - len ] 772 * [ ] 773 * [csum ] 774 * we need to truncate from the beginning of the csum 775 */ 776 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 777 new_size *= csum_size; 778 779 btrfs_truncate_item(path, new_size, 0); 780 781 key->offset = end_byte; 782 btrfs_set_item_key_safe(fs_info, path, key); 783 } else { 784 BUG(); 785 } 786 } 787 788 /* 789 * deletes the csum items from the csum tree for a given 790 * range of bytes. 791 */ 792 int btrfs_del_csums(struct btrfs_trans_handle *trans, 793 struct btrfs_root *root, u64 bytenr, u64 len) 794 { 795 struct btrfs_fs_info *fs_info = trans->fs_info; 796 struct btrfs_path *path; 797 struct btrfs_key key; 798 u64 end_byte = bytenr + len; 799 u64 csum_end; 800 struct extent_buffer *leaf; 801 int ret = 0; 802 const u32 csum_size = fs_info->csum_size; 803 u32 blocksize_bits = fs_info->sectorsize_bits; 804 805 ASSERT(root == fs_info->csum_root || 806 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 807 808 path = btrfs_alloc_path(); 809 if (!path) 810 return -ENOMEM; 811 812 while (1) { 813 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 814 key.offset = end_byte - 1; 815 key.type = BTRFS_EXTENT_CSUM_KEY; 816 817 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 818 if (ret > 0) { 819 ret = 0; 820 if (path->slots[0] == 0) 821 break; 822 path->slots[0]--; 823 } else if (ret < 0) { 824 break; 825 } 826 827 leaf = path->nodes[0]; 828 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 829 830 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 831 key.type != BTRFS_EXTENT_CSUM_KEY) { 832 break; 833 } 834 835 if (key.offset >= end_byte) 836 break; 837 838 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 839 csum_end <<= blocksize_bits; 840 csum_end += key.offset; 841 842 /* this csum ends before we start, we're done */ 843 if (csum_end <= bytenr) 844 break; 845 846 /* delete the entire item, it is inside our range */ 847 if (key.offset >= bytenr && csum_end <= end_byte) { 848 int del_nr = 1; 849 850 /* 851 * Check how many csum items preceding this one in this 852 * leaf correspond to our range and then delete them all 853 * at once. 854 */ 855 if (key.offset > bytenr && path->slots[0] > 0) { 856 int slot = path->slots[0] - 1; 857 858 while (slot >= 0) { 859 struct btrfs_key pk; 860 861 btrfs_item_key_to_cpu(leaf, &pk, slot); 862 if (pk.offset < bytenr || 863 pk.type != BTRFS_EXTENT_CSUM_KEY || 864 pk.objectid != 865 BTRFS_EXTENT_CSUM_OBJECTID) 866 break; 867 path->slots[0] = slot; 868 del_nr++; 869 key.offset = pk.offset; 870 slot--; 871 } 872 } 873 ret = btrfs_del_items(trans, root, path, 874 path->slots[0], del_nr); 875 if (ret) 876 break; 877 if (key.offset == bytenr) 878 break; 879 } else if (key.offset < bytenr && csum_end > end_byte) { 880 unsigned long offset; 881 unsigned long shift_len; 882 unsigned long item_offset; 883 /* 884 * [ bytenr - len ] 885 * [csum ] 886 * 887 * Our bytes are in the middle of the csum, 888 * we need to split this item and insert a new one. 889 * 890 * But we can't drop the path because the 891 * csum could change, get removed, extended etc. 892 * 893 * The trick here is the max size of a csum item leaves 894 * enough room in the tree block for a single 895 * item header. So, we split the item in place, 896 * adding a new header pointing to the existing 897 * bytes. Then we loop around again and we have 898 * a nicely formed csum item that we can neatly 899 * truncate. 900 */ 901 offset = (bytenr - key.offset) >> blocksize_bits; 902 offset *= csum_size; 903 904 shift_len = (len >> blocksize_bits) * csum_size; 905 906 item_offset = btrfs_item_ptr_offset(leaf, 907 path->slots[0]); 908 909 memzero_extent_buffer(leaf, item_offset + offset, 910 shift_len); 911 key.offset = bytenr; 912 913 /* 914 * btrfs_split_item returns -EAGAIN when the 915 * item changed size or key 916 */ 917 ret = btrfs_split_item(trans, root, path, &key, offset); 918 if (ret && ret != -EAGAIN) { 919 btrfs_abort_transaction(trans, ret); 920 break; 921 } 922 ret = 0; 923 924 key.offset = end_byte - 1; 925 } else { 926 truncate_one_csum(fs_info, path, &key, bytenr, len); 927 if (key.offset < bytenr) 928 break; 929 } 930 btrfs_release_path(path); 931 } 932 btrfs_free_path(path); 933 return ret; 934 } 935 936 static int find_next_csum_offset(struct btrfs_root *root, 937 struct btrfs_path *path, 938 u64 *next_offset) 939 { 940 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 941 struct btrfs_key found_key; 942 int slot = path->slots[0] + 1; 943 int ret; 944 945 if (nritems == 0 || slot >= nritems) { 946 ret = btrfs_next_leaf(root, path); 947 if (ret < 0) { 948 return ret; 949 } else if (ret > 0) { 950 *next_offset = (u64)-1; 951 return 0; 952 } 953 slot = path->slots[0]; 954 } 955 956 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 957 958 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 959 found_key.type != BTRFS_EXTENT_CSUM_KEY) 960 *next_offset = (u64)-1; 961 else 962 *next_offset = found_key.offset; 963 964 return 0; 965 } 966 967 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 968 struct btrfs_root *root, 969 struct btrfs_ordered_sum *sums) 970 { 971 struct btrfs_fs_info *fs_info = root->fs_info; 972 struct btrfs_key file_key; 973 struct btrfs_key found_key; 974 struct btrfs_path *path; 975 struct btrfs_csum_item *item; 976 struct btrfs_csum_item *item_end; 977 struct extent_buffer *leaf = NULL; 978 u64 next_offset; 979 u64 total_bytes = 0; 980 u64 csum_offset; 981 u64 bytenr; 982 u32 ins_size; 983 int index = 0; 984 int found_next; 985 int ret; 986 const u32 csum_size = fs_info->csum_size; 987 988 path = btrfs_alloc_path(); 989 if (!path) 990 return -ENOMEM; 991 again: 992 next_offset = (u64)-1; 993 found_next = 0; 994 bytenr = sums->bytenr + total_bytes; 995 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 996 file_key.offset = bytenr; 997 file_key.type = BTRFS_EXTENT_CSUM_KEY; 998 999 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1000 if (!IS_ERR(item)) { 1001 ret = 0; 1002 leaf = path->nodes[0]; 1003 item_end = btrfs_item_ptr(leaf, path->slots[0], 1004 struct btrfs_csum_item); 1005 item_end = (struct btrfs_csum_item *)((char *)item_end + 1006 btrfs_item_size_nr(leaf, path->slots[0])); 1007 goto found; 1008 } 1009 ret = PTR_ERR(item); 1010 if (ret != -EFBIG && ret != -ENOENT) 1011 goto out; 1012 1013 if (ret == -EFBIG) { 1014 u32 item_size; 1015 /* we found one, but it isn't big enough yet */ 1016 leaf = path->nodes[0]; 1017 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1018 if ((item_size / csum_size) >= 1019 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1020 /* already at max size, make a new one */ 1021 goto insert; 1022 } 1023 } else { 1024 /* We didn't find a csum item, insert one. */ 1025 ret = find_next_csum_offset(root, path, &next_offset); 1026 if (ret < 0) 1027 goto out; 1028 found_next = 1; 1029 goto insert; 1030 } 1031 1032 /* 1033 * At this point, we know the tree has a checksum item that ends at an 1034 * offset matching the start of the checksum range we want to insert. 1035 * We try to extend that item as much as possible and then add as many 1036 * checksums to it as they fit. 1037 * 1038 * First check if the leaf has enough free space for at least one 1039 * checksum. If it has go directly to the item extension code, otherwise 1040 * release the path and do a search for insertion before the extension. 1041 */ 1042 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1044 csum_offset = (bytenr - found_key.offset) >> 1045 fs_info->sectorsize_bits; 1046 goto extend_csum; 1047 } 1048 1049 btrfs_release_path(path); 1050 path->search_for_extension = 1; 1051 ret = btrfs_search_slot(trans, root, &file_key, path, 1052 csum_size, 1); 1053 path->search_for_extension = 0; 1054 if (ret < 0) 1055 goto out; 1056 1057 if (ret > 0) { 1058 if (path->slots[0] == 0) 1059 goto insert; 1060 path->slots[0]--; 1061 } 1062 1063 leaf = path->nodes[0]; 1064 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1065 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1066 1067 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1068 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1069 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1070 goto insert; 1071 } 1072 1073 extend_csum: 1074 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) / 1075 csum_size) { 1076 int extend_nr; 1077 u64 tmp; 1078 u32 diff; 1079 1080 tmp = sums->len - total_bytes; 1081 tmp >>= fs_info->sectorsize_bits; 1082 WARN_ON(tmp < 1); 1083 extend_nr = max_t(int, 1, tmp); 1084 1085 /* 1086 * A log tree can already have checksum items with a subset of 1087 * the checksums we are trying to log. This can happen after 1088 * doing a sequence of partial writes into prealloc extents and 1089 * fsyncs in between, with a full fsync logging a larger subrange 1090 * of an extent for which a previous fast fsync logged a smaller 1091 * subrange. And this happens in particular due to merging file 1092 * extent items when we complete an ordered extent for a range 1093 * covered by a prealloc extent - this is done at 1094 * btrfs_mark_extent_written(). 1095 * 1096 * So if we try to extend the previous checksum item, which has 1097 * a range that ends at the start of the range we want to insert, 1098 * make sure we don't extend beyond the start offset of the next 1099 * checksum item. If we are at the last item in the leaf, then 1100 * forget the optimization of extending and add a new checksum 1101 * item - it is not worth the complexity of releasing the path, 1102 * getting the first key for the next leaf, repeat the btree 1103 * search, etc, because log trees are temporary anyway and it 1104 * would only save a few bytes of leaf space. 1105 */ 1106 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1107 if (path->slots[0] + 1 >= 1108 btrfs_header_nritems(path->nodes[0])) { 1109 ret = find_next_csum_offset(root, path, &next_offset); 1110 if (ret < 0) 1111 goto out; 1112 found_next = 1; 1113 goto insert; 1114 } 1115 1116 ret = find_next_csum_offset(root, path, &next_offset); 1117 if (ret < 0) 1118 goto out; 1119 1120 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1121 if (tmp <= INT_MAX) 1122 extend_nr = min_t(int, extend_nr, tmp); 1123 } 1124 1125 diff = (csum_offset + extend_nr) * csum_size; 1126 diff = min(diff, 1127 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1128 1129 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); 1130 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1131 diff /= csum_size; 1132 diff *= csum_size; 1133 1134 btrfs_extend_item(path, diff); 1135 ret = 0; 1136 goto csum; 1137 } 1138 1139 insert: 1140 btrfs_release_path(path); 1141 csum_offset = 0; 1142 if (found_next) { 1143 u64 tmp; 1144 1145 tmp = sums->len - total_bytes; 1146 tmp >>= fs_info->sectorsize_bits; 1147 tmp = min(tmp, (next_offset - file_key.offset) >> 1148 fs_info->sectorsize_bits); 1149 1150 tmp = max_t(u64, 1, tmp); 1151 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1152 ins_size = csum_size * tmp; 1153 } else { 1154 ins_size = csum_size; 1155 } 1156 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1157 ins_size); 1158 if (ret < 0) 1159 goto out; 1160 if (WARN_ON(ret != 0)) 1161 goto out; 1162 leaf = path->nodes[0]; 1163 csum: 1164 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1165 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1166 btrfs_item_size_nr(leaf, path->slots[0])); 1167 item = (struct btrfs_csum_item *)((unsigned char *)item + 1168 csum_offset * csum_size); 1169 found: 1170 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1171 ins_size *= csum_size; 1172 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1173 ins_size); 1174 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1175 ins_size); 1176 1177 index += ins_size; 1178 ins_size /= csum_size; 1179 total_bytes += ins_size * fs_info->sectorsize; 1180 1181 btrfs_mark_buffer_dirty(path->nodes[0]); 1182 if (total_bytes < sums->len) { 1183 btrfs_release_path(path); 1184 cond_resched(); 1185 goto again; 1186 } 1187 out: 1188 btrfs_free_path(path); 1189 return ret; 1190 } 1191 1192 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1193 const struct btrfs_path *path, 1194 struct btrfs_file_extent_item *fi, 1195 const bool new_inline, 1196 struct extent_map *em) 1197 { 1198 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1199 struct btrfs_root *root = inode->root; 1200 struct extent_buffer *leaf = path->nodes[0]; 1201 const int slot = path->slots[0]; 1202 struct btrfs_key key; 1203 u64 extent_start, extent_end; 1204 u64 bytenr; 1205 u8 type = btrfs_file_extent_type(leaf, fi); 1206 int compress_type = btrfs_file_extent_compression(leaf, fi); 1207 1208 btrfs_item_key_to_cpu(leaf, &key, slot); 1209 extent_start = key.offset; 1210 extent_end = btrfs_file_extent_end(path); 1211 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1212 if (type == BTRFS_FILE_EXTENT_REG || 1213 type == BTRFS_FILE_EXTENT_PREALLOC) { 1214 em->start = extent_start; 1215 em->len = extent_end - extent_start; 1216 em->orig_start = extent_start - 1217 btrfs_file_extent_offset(leaf, fi); 1218 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1219 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1220 if (bytenr == 0) { 1221 em->block_start = EXTENT_MAP_HOLE; 1222 return; 1223 } 1224 if (compress_type != BTRFS_COMPRESS_NONE) { 1225 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1226 em->compress_type = compress_type; 1227 em->block_start = bytenr; 1228 em->block_len = em->orig_block_len; 1229 } else { 1230 bytenr += btrfs_file_extent_offset(leaf, fi); 1231 em->block_start = bytenr; 1232 em->block_len = em->len; 1233 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1234 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1235 } 1236 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1237 em->block_start = EXTENT_MAP_INLINE; 1238 em->start = extent_start; 1239 em->len = extent_end - extent_start; 1240 /* 1241 * Initialize orig_start and block_len with the same values 1242 * as in inode.c:btrfs_get_extent(). 1243 */ 1244 em->orig_start = EXTENT_MAP_HOLE; 1245 em->block_len = (u64)-1; 1246 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1247 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1248 em->compress_type = compress_type; 1249 } 1250 } else { 1251 btrfs_err(fs_info, 1252 "unknown file extent item type %d, inode %llu, offset %llu, " 1253 "root %llu", type, btrfs_ino(inode), extent_start, 1254 root->root_key.objectid); 1255 } 1256 } 1257 1258 /* 1259 * Returns the end offset (non inclusive) of the file extent item the given path 1260 * points to. If it points to an inline extent, the returned offset is rounded 1261 * up to the sector size. 1262 */ 1263 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1264 { 1265 const struct extent_buffer *leaf = path->nodes[0]; 1266 const int slot = path->slots[0]; 1267 struct btrfs_file_extent_item *fi; 1268 struct btrfs_key key; 1269 u64 end; 1270 1271 btrfs_item_key_to_cpu(leaf, &key, slot); 1272 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1273 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1274 1275 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1276 end = btrfs_file_extent_ram_bytes(leaf, fi); 1277 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1278 } else { 1279 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1280 } 1281 1282 return end; 1283 } 1284