1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "misc.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "print-tree.h" 18 #include "compression.h" 19 20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 21 sizeof(struct btrfs_item) * 2) / \ 22 size) - 1)) 23 24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 25 PAGE_SIZE)) 26 27 /** 28 * Set inode's size according to filesystem options 29 * 30 * @inode: inode we want to update the disk_i_size for 31 * @new_i_size: i_size we want to set to, 0 if we use i_size 32 * 33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 34 * returns as it is perfectly fine with a file that has holes without hole file 35 * extent items. 36 * 37 * However without NO_HOLES we need to only return the area that is contiguous 38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 39 * to an extent that has a gap in between. 40 * 41 * Finally new_i_size should only be set in the case of truncate where we're not 42 * ready to use i_size_read() as the limiter yet. 43 */ 44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 45 { 46 struct btrfs_fs_info *fs_info = inode->root->fs_info; 47 u64 start, end, i_size; 48 int ret; 49 50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 52 inode->disk_i_size = i_size; 53 return; 54 } 55 56 spin_lock(&inode->lock); 57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 58 &end, EXTENT_DIRTY); 59 if (!ret && start == 0) 60 i_size = min(i_size, end + 1); 61 else 62 i_size = 0; 63 inode->disk_i_size = i_size; 64 spin_unlock(&inode->lock); 65 } 66 67 /** 68 * Mark range within a file as having a new extent inserted 69 * 70 * @inode: inode being modified 71 * @start: start file offset of the file extent we've inserted 72 * @len: logical length of the file extent item 73 * 74 * Call when we are inserting a new file extent where there was none before. 75 * Does not need to call this in the case where we're replacing an existing file 76 * extent, however if not sure it's fine to call this multiple times. 77 * 78 * The start and len must match the file extent item, so thus must be sectorsize 79 * aligned. 80 */ 81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 82 u64 len) 83 { 84 if (len == 0) 85 return 0; 86 87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 88 89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 90 return 0; 91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 92 EXTENT_DIRTY); 93 } 94 95 /** 96 * Marks an inode range as not having a backing extent 97 * 98 * @inode: inode being modified 99 * @start: start file offset of the file extent we've inserted 100 * @len: logical length of the file extent item 101 * 102 * Called when we drop a file extent, for example when we truncate. Doesn't 103 * need to be called for cases where we're replacing a file extent, like when 104 * we've COWed a file extent. 105 * 106 * The start and len must match the file extent item, so thus must be sectorsize 107 * aligned. 108 */ 109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 110 u64 len) 111 { 112 if (len == 0) 113 return 0; 114 115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 116 len == (u64)-1); 117 118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 119 return 0; 120 return clear_extent_bit(&inode->file_extent_tree, start, 121 start + len - 1, EXTENT_DIRTY, 0, 0, NULL); 122 } 123 124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 125 u16 csum_size) 126 { 127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 128 129 return ncsums * fs_info->sectorsize; 130 } 131 132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 u64 objectid, u64 pos, 135 u64 disk_offset, u64 disk_num_bytes, 136 u64 num_bytes, u64 offset, u64 ram_bytes, 137 u8 compression, u8 encryption, u16 other_encoding) 138 { 139 int ret = 0; 140 struct btrfs_file_extent_item *item; 141 struct btrfs_key file_key; 142 struct btrfs_path *path; 143 struct extent_buffer *leaf; 144 145 path = btrfs_alloc_path(); 146 if (!path) 147 return -ENOMEM; 148 file_key.objectid = objectid; 149 file_key.offset = pos; 150 file_key.type = BTRFS_EXTENT_DATA_KEY; 151 152 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 153 sizeof(*item)); 154 if (ret < 0) 155 goto out; 156 BUG_ON(ret); /* Can't happen */ 157 leaf = path->nodes[0]; 158 item = btrfs_item_ptr(leaf, path->slots[0], 159 struct btrfs_file_extent_item); 160 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); 161 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); 162 btrfs_set_file_extent_offset(leaf, item, offset); 163 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 164 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); 165 btrfs_set_file_extent_generation(leaf, item, trans->transid); 166 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 167 btrfs_set_file_extent_compression(leaf, item, compression); 168 btrfs_set_file_extent_encryption(leaf, item, encryption); 169 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); 170 171 btrfs_mark_buffer_dirty(leaf); 172 out: 173 btrfs_free_path(path); 174 return ret; 175 } 176 177 static struct btrfs_csum_item * 178 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct btrfs_path *path, 181 u64 bytenr, int cow) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 int ret; 185 struct btrfs_key file_key; 186 struct btrfs_key found_key; 187 struct btrfs_csum_item *item; 188 struct extent_buffer *leaf; 189 u64 csum_offset = 0; 190 const u32 csum_size = fs_info->csum_size; 191 int csums_in_item; 192 193 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 194 file_key.offset = bytenr; 195 file_key.type = BTRFS_EXTENT_CSUM_KEY; 196 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 197 if (ret < 0) 198 goto fail; 199 leaf = path->nodes[0]; 200 if (ret > 0) { 201 ret = 1; 202 if (path->slots[0] == 0) 203 goto fail; 204 path->slots[0]--; 205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 206 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 207 goto fail; 208 209 csum_offset = (bytenr - found_key.offset) >> 210 fs_info->sectorsize_bits; 211 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); 212 csums_in_item /= csum_size; 213 214 if (csum_offset == csums_in_item) { 215 ret = -EFBIG; 216 goto fail; 217 } else if (csum_offset > csums_in_item) { 218 goto fail; 219 } 220 } 221 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 222 item = (struct btrfs_csum_item *)((unsigned char *)item + 223 csum_offset * csum_size); 224 return item; 225 fail: 226 if (ret > 0) 227 ret = -ENOENT; 228 return ERR_PTR(ret); 229 } 230 231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 232 struct btrfs_root *root, 233 struct btrfs_path *path, u64 objectid, 234 u64 offset, int mod) 235 { 236 struct btrfs_key file_key; 237 int ins_len = mod < 0 ? -1 : 0; 238 int cow = mod != 0; 239 240 file_key.objectid = objectid; 241 file_key.offset = offset; 242 file_key.type = BTRFS_EXTENT_DATA_KEY; 243 244 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 245 } 246 247 /* 248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 249 * estore the result to @dst. 250 * 251 * Return >0 for the number of sectors we found. 252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 253 * for it. Caller may want to try next sector until one range is hit. 254 * Return <0 for fatal error. 255 */ 256 static int search_csum_tree(struct btrfs_fs_info *fs_info, 257 struct btrfs_path *path, u64 disk_bytenr, 258 u64 len, u8 *dst) 259 { 260 struct btrfs_csum_item *item = NULL; 261 struct btrfs_key key; 262 const u32 sectorsize = fs_info->sectorsize; 263 const u32 csum_size = fs_info->csum_size; 264 u32 itemsize; 265 int ret; 266 u64 csum_start; 267 u64 csum_len; 268 269 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 270 IS_ALIGNED(len, sectorsize)); 271 272 /* Check if the current csum item covers disk_bytenr */ 273 if (path->nodes[0]) { 274 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 275 struct btrfs_csum_item); 276 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 277 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 278 279 csum_start = key.offset; 280 csum_len = (itemsize / csum_size) * sectorsize; 281 282 if (in_range(disk_bytenr, csum_start, csum_len)) 283 goto found; 284 } 285 286 /* Current item doesn't contain the desired range, search again */ 287 btrfs_release_path(path); 288 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0); 289 if (IS_ERR(item)) { 290 ret = PTR_ERR(item); 291 goto out; 292 } 293 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 294 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 295 296 csum_start = key.offset; 297 csum_len = (itemsize / csum_size) * sectorsize; 298 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 299 300 found: 301 ret = (min(csum_start + csum_len, disk_bytenr + len) - 302 disk_bytenr) >> fs_info->sectorsize_bits; 303 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 304 ret * csum_size); 305 out: 306 if (ret == -ENOENT) 307 ret = 0; 308 return ret; 309 } 310 311 /* 312 * Locate the file_offset of @cur_disk_bytenr of a @bio. 313 * 314 * Bio of btrfs represents read range of 315 * [bi_sector << 9, bi_sector << 9 + bi_size). 316 * Knowing this, we can iterate through each bvec to locate the page belong to 317 * @cur_disk_bytenr and get the file offset. 318 * 319 * @inode is used to determine if the bvec page really belongs to @inode. 320 * 321 * Return 0 if we can't find the file offset 322 * Return >0 if we find the file offset and restore it to @file_offset_ret 323 */ 324 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, 325 u64 disk_bytenr, u64 *file_offset_ret) 326 { 327 struct bvec_iter iter; 328 struct bio_vec bvec; 329 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; 330 int ret = 0; 331 332 bio_for_each_segment(bvec, bio, iter) { 333 struct page *page = bvec.bv_page; 334 335 if (cur > disk_bytenr) 336 break; 337 if (cur + bvec.bv_len <= disk_bytenr) { 338 cur += bvec.bv_len; 339 continue; 340 } 341 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); 342 if (page->mapping && page->mapping->host && 343 page->mapping->host == inode) { 344 ret = 1; 345 *file_offset_ret = page_offset(page) + bvec.bv_offset + 346 disk_bytenr - cur; 347 break; 348 } 349 } 350 return ret; 351 } 352 353 /** 354 * Lookup the checksum for the read bio in csum tree. 355 * 356 * @inode: inode that the bio is for. 357 * @bio: bio to look up. 358 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return 359 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If 360 * NULL, the checksum buffer is allocated and returned in 361 * btrfs_bio(bio)->csum instead. 362 * 363 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 364 */ 365 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst) 366 { 367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 368 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 369 struct btrfs_path *path; 370 const u32 sectorsize = fs_info->sectorsize; 371 const u32 csum_size = fs_info->csum_size; 372 u32 orig_len = bio->bi_iter.bi_size; 373 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 374 u64 cur_disk_bytenr; 375 u8 *csum; 376 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 377 int count = 0; 378 379 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 380 return BLK_STS_OK; 381 382 /* 383 * This function is only called for read bio. 384 * 385 * This means two things: 386 * - All our csums should only be in csum tree 387 * No ordered extents csums, as ordered extents are only for write 388 * path. 389 * - No need to bother any other info from bvec 390 * Since we're looking up csums, the only important info is the 391 * disk_bytenr and the length, which can be extracted from bi_iter 392 * directly. 393 */ 394 ASSERT(bio_op(bio) == REQ_OP_READ); 395 path = btrfs_alloc_path(); 396 if (!path) 397 return BLK_STS_RESOURCE; 398 399 if (!dst) { 400 struct btrfs_bio *bbio = btrfs_bio(bio); 401 402 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 403 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 404 if (!bbio->csum) { 405 btrfs_free_path(path); 406 return BLK_STS_RESOURCE; 407 } 408 } else { 409 bbio->csum = bbio->csum_inline; 410 } 411 csum = bbio->csum; 412 } else { 413 csum = dst; 414 } 415 416 /* 417 * If requested number of sectors is larger than one leaf can contain, 418 * kick the readahead for csum tree. 419 */ 420 if (nblocks > fs_info->csums_per_leaf) 421 path->reada = READA_FORWARD; 422 423 /* 424 * the free space stuff is only read when it hasn't been 425 * updated in the current transaction. So, we can safely 426 * read from the commit root and sidestep a nasty deadlock 427 * between reading the free space cache and updating the csum tree. 428 */ 429 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 430 path->search_commit_root = 1; 431 path->skip_locking = 1; 432 } 433 434 for (cur_disk_bytenr = orig_disk_bytenr; 435 cur_disk_bytenr < orig_disk_bytenr + orig_len; 436 cur_disk_bytenr += (count * sectorsize)) { 437 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; 438 unsigned int sector_offset; 439 u8 *csum_dst; 440 441 /* 442 * Although both cur_disk_bytenr and orig_disk_bytenr is u64, 443 * we're calculating the offset to the bio start. 444 * 445 * Bio size is limited to UINT_MAX, thus unsigned int is large 446 * enough to contain the raw result, not to mention the right 447 * shifted result. 448 */ 449 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); 450 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> 451 fs_info->sectorsize_bits; 452 csum_dst = csum + sector_offset * csum_size; 453 454 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 455 search_len, csum_dst); 456 if (count <= 0) { 457 /* 458 * Either we hit a critical error or we didn't find 459 * the csum. 460 * Either way, we put zero into the csums dst, and skip 461 * to the next sector. 462 */ 463 memset(csum_dst, 0, csum_size); 464 count = 1; 465 466 /* 467 * For data reloc inode, we need to mark the range 468 * NODATASUM so that balance won't report false csum 469 * error. 470 */ 471 if (BTRFS_I(inode)->root->root_key.objectid == 472 BTRFS_DATA_RELOC_TREE_OBJECTID) { 473 u64 file_offset; 474 int ret; 475 476 ret = search_file_offset_in_bio(bio, inode, 477 cur_disk_bytenr, &file_offset); 478 if (ret) 479 set_extent_bits(io_tree, file_offset, 480 file_offset + sectorsize - 1, 481 EXTENT_NODATASUM); 482 } else { 483 btrfs_warn_rl(fs_info, 484 "csum hole found for disk bytenr range [%llu, %llu)", 485 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 486 } 487 } 488 } 489 490 btrfs_free_path(path); 491 return BLK_STS_OK; 492 } 493 494 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 495 struct list_head *list, int search_commit) 496 { 497 struct btrfs_fs_info *fs_info = root->fs_info; 498 struct btrfs_key key; 499 struct btrfs_path *path; 500 struct extent_buffer *leaf; 501 struct btrfs_ordered_sum *sums; 502 struct btrfs_csum_item *item; 503 LIST_HEAD(tmplist); 504 unsigned long offset; 505 int ret; 506 size_t size; 507 u64 csum_end; 508 const u32 csum_size = fs_info->csum_size; 509 510 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 511 IS_ALIGNED(end + 1, fs_info->sectorsize)); 512 513 path = btrfs_alloc_path(); 514 if (!path) 515 return -ENOMEM; 516 517 if (search_commit) { 518 path->skip_locking = 1; 519 path->reada = READA_FORWARD; 520 path->search_commit_root = 1; 521 } 522 523 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 524 key.offset = start; 525 key.type = BTRFS_EXTENT_CSUM_KEY; 526 527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 528 if (ret < 0) 529 goto fail; 530 if (ret > 0 && path->slots[0] > 0) { 531 leaf = path->nodes[0]; 532 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 533 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 534 key.type == BTRFS_EXTENT_CSUM_KEY) { 535 offset = (start - key.offset) >> fs_info->sectorsize_bits; 536 if (offset * csum_size < 537 btrfs_item_size_nr(leaf, path->slots[0] - 1)) 538 path->slots[0]--; 539 } 540 } 541 542 while (start <= end) { 543 leaf = path->nodes[0]; 544 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 545 ret = btrfs_next_leaf(root, path); 546 if (ret < 0) 547 goto fail; 548 if (ret > 0) 549 break; 550 leaf = path->nodes[0]; 551 } 552 553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 554 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 555 key.type != BTRFS_EXTENT_CSUM_KEY || 556 key.offset > end) 557 break; 558 559 if (key.offset > start) 560 start = key.offset; 561 562 size = btrfs_item_size_nr(leaf, path->slots[0]); 563 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 564 if (csum_end <= start) { 565 path->slots[0]++; 566 continue; 567 } 568 569 csum_end = min(csum_end, end + 1); 570 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 571 struct btrfs_csum_item); 572 while (start < csum_end) { 573 size = min_t(size_t, csum_end - start, 574 max_ordered_sum_bytes(fs_info, csum_size)); 575 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 576 GFP_NOFS); 577 if (!sums) { 578 ret = -ENOMEM; 579 goto fail; 580 } 581 582 sums->bytenr = start; 583 sums->len = (int)size; 584 585 offset = (start - key.offset) >> fs_info->sectorsize_bits; 586 offset *= csum_size; 587 size >>= fs_info->sectorsize_bits; 588 589 read_extent_buffer(path->nodes[0], 590 sums->sums, 591 ((unsigned long)item) + offset, 592 csum_size * size); 593 594 start += fs_info->sectorsize * size; 595 list_add_tail(&sums->list, &tmplist); 596 } 597 path->slots[0]++; 598 } 599 ret = 0; 600 fail: 601 while (ret < 0 && !list_empty(&tmplist)) { 602 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 603 list_del(&sums->list); 604 kfree(sums); 605 } 606 list_splice_tail(&tmplist, list); 607 608 btrfs_free_path(path); 609 return ret; 610 } 611 612 /* 613 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio 614 * @inode: Owner of the data inside the bio 615 * @bio: Contains the data to be checksummed 616 * @file_start: offset in file this bio begins to describe 617 * @contig: Boolean. If true/1 means all bio vecs in this bio are 618 * contiguous and they begin at @file_start in the file. False/0 619 * means this bio can contain potentially discontiguous bio vecs 620 * so the logical offset of each should be calculated separately. 621 */ 622 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 623 u64 file_start, int contig) 624 { 625 struct btrfs_fs_info *fs_info = inode->root->fs_info; 626 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 627 struct btrfs_ordered_sum *sums; 628 struct btrfs_ordered_extent *ordered = NULL; 629 char *data; 630 struct bvec_iter iter; 631 struct bio_vec bvec; 632 int index; 633 int nr_sectors; 634 unsigned long total_bytes = 0; 635 unsigned long this_sum_bytes = 0; 636 int i; 637 u64 offset; 638 unsigned nofs_flag; 639 640 nofs_flag = memalloc_nofs_save(); 641 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 642 GFP_KERNEL); 643 memalloc_nofs_restore(nofs_flag); 644 645 if (!sums) 646 return BLK_STS_RESOURCE; 647 648 sums->len = bio->bi_iter.bi_size; 649 INIT_LIST_HEAD(&sums->list); 650 651 if (contig) 652 offset = file_start; 653 else 654 offset = 0; /* shut up gcc */ 655 656 sums->bytenr = bio->bi_iter.bi_sector << 9; 657 index = 0; 658 659 shash->tfm = fs_info->csum_shash; 660 661 bio_for_each_segment(bvec, bio, iter) { 662 if (!contig) 663 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 664 665 if (!ordered) { 666 ordered = btrfs_lookup_ordered_extent(inode, offset); 667 /* 668 * The bio range is not covered by any ordered extent, 669 * must be a code logic error. 670 */ 671 if (unlikely(!ordered)) { 672 WARN(1, KERN_WARNING 673 "no ordered extent for root %llu ino %llu offset %llu\n", 674 inode->root->root_key.objectid, 675 btrfs_ino(inode), offset); 676 kvfree(sums); 677 return BLK_STS_IOERR; 678 } 679 } 680 681 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, 682 bvec.bv_len + fs_info->sectorsize 683 - 1); 684 685 for (i = 0; i < nr_sectors; i++) { 686 if (offset >= ordered->file_offset + ordered->num_bytes || 687 offset < ordered->file_offset) { 688 unsigned long bytes_left; 689 690 sums->len = this_sum_bytes; 691 this_sum_bytes = 0; 692 btrfs_add_ordered_sum(ordered, sums); 693 btrfs_put_ordered_extent(ordered); 694 695 bytes_left = bio->bi_iter.bi_size - total_bytes; 696 697 nofs_flag = memalloc_nofs_save(); 698 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 699 bytes_left), GFP_KERNEL); 700 memalloc_nofs_restore(nofs_flag); 701 BUG_ON(!sums); /* -ENOMEM */ 702 sums->len = bytes_left; 703 ordered = btrfs_lookup_ordered_extent(inode, 704 offset); 705 ASSERT(ordered); /* Logic error */ 706 sums->bytenr = (bio->bi_iter.bi_sector << 9) 707 + total_bytes; 708 index = 0; 709 } 710 711 data = bvec_kmap_local(&bvec); 712 crypto_shash_digest(shash, 713 data + (i * fs_info->sectorsize), 714 fs_info->sectorsize, 715 sums->sums + index); 716 kunmap_local(data); 717 index += fs_info->csum_size; 718 offset += fs_info->sectorsize; 719 this_sum_bytes += fs_info->sectorsize; 720 total_bytes += fs_info->sectorsize; 721 } 722 723 } 724 this_sum_bytes = 0; 725 btrfs_add_ordered_sum(ordered, sums); 726 btrfs_put_ordered_extent(ordered); 727 return 0; 728 } 729 730 /* 731 * helper function for csum removal, this expects the 732 * key to describe the csum pointed to by the path, and it expects 733 * the csum to overlap the range [bytenr, len] 734 * 735 * The csum should not be entirely contained in the range and the 736 * range should not be entirely contained in the csum. 737 * 738 * This calls btrfs_truncate_item with the correct args based on the 739 * overlap, and fixes up the key as required. 740 */ 741 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 742 struct btrfs_path *path, 743 struct btrfs_key *key, 744 u64 bytenr, u64 len) 745 { 746 struct extent_buffer *leaf; 747 const u32 csum_size = fs_info->csum_size; 748 u64 csum_end; 749 u64 end_byte = bytenr + len; 750 u32 blocksize_bits = fs_info->sectorsize_bits; 751 752 leaf = path->nodes[0]; 753 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 754 csum_end <<= blocksize_bits; 755 csum_end += key->offset; 756 757 if (key->offset < bytenr && csum_end <= end_byte) { 758 /* 759 * [ bytenr - len ] 760 * [ ] 761 * [csum ] 762 * A simple truncate off the end of the item 763 */ 764 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 765 new_size *= csum_size; 766 btrfs_truncate_item(path, new_size, 1); 767 } else if (key->offset >= bytenr && csum_end > end_byte && 768 end_byte > key->offset) { 769 /* 770 * [ bytenr - len ] 771 * [ ] 772 * [csum ] 773 * we need to truncate from the beginning of the csum 774 */ 775 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 776 new_size *= csum_size; 777 778 btrfs_truncate_item(path, new_size, 0); 779 780 key->offset = end_byte; 781 btrfs_set_item_key_safe(fs_info, path, key); 782 } else { 783 BUG(); 784 } 785 } 786 787 /* 788 * deletes the csum items from the csum tree for a given 789 * range of bytes. 790 */ 791 int btrfs_del_csums(struct btrfs_trans_handle *trans, 792 struct btrfs_root *root, u64 bytenr, u64 len) 793 { 794 struct btrfs_fs_info *fs_info = trans->fs_info; 795 struct btrfs_path *path; 796 struct btrfs_key key; 797 u64 end_byte = bytenr + len; 798 u64 csum_end; 799 struct extent_buffer *leaf; 800 int ret = 0; 801 const u32 csum_size = fs_info->csum_size; 802 u32 blocksize_bits = fs_info->sectorsize_bits; 803 804 ASSERT(root == fs_info->csum_root || 805 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 806 807 path = btrfs_alloc_path(); 808 if (!path) 809 return -ENOMEM; 810 811 while (1) { 812 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 813 key.offset = end_byte - 1; 814 key.type = BTRFS_EXTENT_CSUM_KEY; 815 816 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 817 if (ret > 0) { 818 ret = 0; 819 if (path->slots[0] == 0) 820 break; 821 path->slots[0]--; 822 } else if (ret < 0) { 823 break; 824 } 825 826 leaf = path->nodes[0]; 827 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 828 829 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 830 key.type != BTRFS_EXTENT_CSUM_KEY) { 831 break; 832 } 833 834 if (key.offset >= end_byte) 835 break; 836 837 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 838 csum_end <<= blocksize_bits; 839 csum_end += key.offset; 840 841 /* this csum ends before we start, we're done */ 842 if (csum_end <= bytenr) 843 break; 844 845 /* delete the entire item, it is inside our range */ 846 if (key.offset >= bytenr && csum_end <= end_byte) { 847 int del_nr = 1; 848 849 /* 850 * Check how many csum items preceding this one in this 851 * leaf correspond to our range and then delete them all 852 * at once. 853 */ 854 if (key.offset > bytenr && path->slots[0] > 0) { 855 int slot = path->slots[0] - 1; 856 857 while (slot >= 0) { 858 struct btrfs_key pk; 859 860 btrfs_item_key_to_cpu(leaf, &pk, slot); 861 if (pk.offset < bytenr || 862 pk.type != BTRFS_EXTENT_CSUM_KEY || 863 pk.objectid != 864 BTRFS_EXTENT_CSUM_OBJECTID) 865 break; 866 path->slots[0] = slot; 867 del_nr++; 868 key.offset = pk.offset; 869 slot--; 870 } 871 } 872 ret = btrfs_del_items(trans, root, path, 873 path->slots[0], del_nr); 874 if (ret) 875 break; 876 if (key.offset == bytenr) 877 break; 878 } else if (key.offset < bytenr && csum_end > end_byte) { 879 unsigned long offset; 880 unsigned long shift_len; 881 unsigned long item_offset; 882 /* 883 * [ bytenr - len ] 884 * [csum ] 885 * 886 * Our bytes are in the middle of the csum, 887 * we need to split this item and insert a new one. 888 * 889 * But we can't drop the path because the 890 * csum could change, get removed, extended etc. 891 * 892 * The trick here is the max size of a csum item leaves 893 * enough room in the tree block for a single 894 * item header. So, we split the item in place, 895 * adding a new header pointing to the existing 896 * bytes. Then we loop around again and we have 897 * a nicely formed csum item that we can neatly 898 * truncate. 899 */ 900 offset = (bytenr - key.offset) >> blocksize_bits; 901 offset *= csum_size; 902 903 shift_len = (len >> blocksize_bits) * csum_size; 904 905 item_offset = btrfs_item_ptr_offset(leaf, 906 path->slots[0]); 907 908 memzero_extent_buffer(leaf, item_offset + offset, 909 shift_len); 910 key.offset = bytenr; 911 912 /* 913 * btrfs_split_item returns -EAGAIN when the 914 * item changed size or key 915 */ 916 ret = btrfs_split_item(trans, root, path, &key, offset); 917 if (ret && ret != -EAGAIN) { 918 btrfs_abort_transaction(trans, ret); 919 break; 920 } 921 ret = 0; 922 923 key.offset = end_byte - 1; 924 } else { 925 truncate_one_csum(fs_info, path, &key, bytenr, len); 926 if (key.offset < bytenr) 927 break; 928 } 929 btrfs_release_path(path); 930 } 931 btrfs_free_path(path); 932 return ret; 933 } 934 935 static int find_next_csum_offset(struct btrfs_root *root, 936 struct btrfs_path *path, 937 u64 *next_offset) 938 { 939 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 940 struct btrfs_key found_key; 941 int slot = path->slots[0] + 1; 942 int ret; 943 944 if (nritems == 0 || slot >= nritems) { 945 ret = btrfs_next_leaf(root, path); 946 if (ret < 0) { 947 return ret; 948 } else if (ret > 0) { 949 *next_offset = (u64)-1; 950 return 0; 951 } 952 slot = path->slots[0]; 953 } 954 955 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 956 957 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 958 found_key.type != BTRFS_EXTENT_CSUM_KEY) 959 *next_offset = (u64)-1; 960 else 961 *next_offset = found_key.offset; 962 963 return 0; 964 } 965 966 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 967 struct btrfs_root *root, 968 struct btrfs_ordered_sum *sums) 969 { 970 struct btrfs_fs_info *fs_info = root->fs_info; 971 struct btrfs_key file_key; 972 struct btrfs_key found_key; 973 struct btrfs_path *path; 974 struct btrfs_csum_item *item; 975 struct btrfs_csum_item *item_end; 976 struct extent_buffer *leaf = NULL; 977 u64 next_offset; 978 u64 total_bytes = 0; 979 u64 csum_offset; 980 u64 bytenr; 981 u32 ins_size; 982 int index = 0; 983 int found_next; 984 int ret; 985 const u32 csum_size = fs_info->csum_size; 986 987 path = btrfs_alloc_path(); 988 if (!path) 989 return -ENOMEM; 990 again: 991 next_offset = (u64)-1; 992 found_next = 0; 993 bytenr = sums->bytenr + total_bytes; 994 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 995 file_key.offset = bytenr; 996 file_key.type = BTRFS_EXTENT_CSUM_KEY; 997 998 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 999 if (!IS_ERR(item)) { 1000 ret = 0; 1001 leaf = path->nodes[0]; 1002 item_end = btrfs_item_ptr(leaf, path->slots[0], 1003 struct btrfs_csum_item); 1004 item_end = (struct btrfs_csum_item *)((char *)item_end + 1005 btrfs_item_size_nr(leaf, path->slots[0])); 1006 goto found; 1007 } 1008 ret = PTR_ERR(item); 1009 if (ret != -EFBIG && ret != -ENOENT) 1010 goto out; 1011 1012 if (ret == -EFBIG) { 1013 u32 item_size; 1014 /* we found one, but it isn't big enough yet */ 1015 leaf = path->nodes[0]; 1016 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1017 if ((item_size / csum_size) >= 1018 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1019 /* already at max size, make a new one */ 1020 goto insert; 1021 } 1022 } else { 1023 /* We didn't find a csum item, insert one. */ 1024 ret = find_next_csum_offset(root, path, &next_offset); 1025 if (ret < 0) 1026 goto out; 1027 found_next = 1; 1028 goto insert; 1029 } 1030 1031 /* 1032 * At this point, we know the tree has a checksum item that ends at an 1033 * offset matching the start of the checksum range we want to insert. 1034 * We try to extend that item as much as possible and then add as many 1035 * checksums to it as they fit. 1036 * 1037 * First check if the leaf has enough free space for at least one 1038 * checksum. If it has go directly to the item extension code, otherwise 1039 * release the path and do a search for insertion before the extension. 1040 */ 1041 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1042 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1043 csum_offset = (bytenr - found_key.offset) >> 1044 fs_info->sectorsize_bits; 1045 goto extend_csum; 1046 } 1047 1048 btrfs_release_path(path); 1049 path->search_for_extension = 1; 1050 ret = btrfs_search_slot(trans, root, &file_key, path, 1051 csum_size, 1); 1052 path->search_for_extension = 0; 1053 if (ret < 0) 1054 goto out; 1055 1056 if (ret > 0) { 1057 if (path->slots[0] == 0) 1058 goto insert; 1059 path->slots[0]--; 1060 } 1061 1062 leaf = path->nodes[0]; 1063 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1064 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1065 1066 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1067 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1068 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1069 goto insert; 1070 } 1071 1072 extend_csum: 1073 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) / 1074 csum_size) { 1075 int extend_nr; 1076 u64 tmp; 1077 u32 diff; 1078 1079 tmp = sums->len - total_bytes; 1080 tmp >>= fs_info->sectorsize_bits; 1081 WARN_ON(tmp < 1); 1082 extend_nr = max_t(int, 1, tmp); 1083 1084 /* 1085 * A log tree can already have checksum items with a subset of 1086 * the checksums we are trying to log. This can happen after 1087 * doing a sequence of partial writes into prealloc extents and 1088 * fsyncs in between, with a full fsync logging a larger subrange 1089 * of an extent for which a previous fast fsync logged a smaller 1090 * subrange. And this happens in particular due to merging file 1091 * extent items when we complete an ordered extent for a range 1092 * covered by a prealloc extent - this is done at 1093 * btrfs_mark_extent_written(). 1094 * 1095 * So if we try to extend the previous checksum item, which has 1096 * a range that ends at the start of the range we want to insert, 1097 * make sure we don't extend beyond the start offset of the next 1098 * checksum item. If we are at the last item in the leaf, then 1099 * forget the optimization of extending and add a new checksum 1100 * item - it is not worth the complexity of releasing the path, 1101 * getting the first key for the next leaf, repeat the btree 1102 * search, etc, because log trees are temporary anyway and it 1103 * would only save a few bytes of leaf space. 1104 */ 1105 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1106 if (path->slots[0] + 1 >= 1107 btrfs_header_nritems(path->nodes[0])) { 1108 ret = find_next_csum_offset(root, path, &next_offset); 1109 if (ret < 0) 1110 goto out; 1111 found_next = 1; 1112 goto insert; 1113 } 1114 1115 ret = find_next_csum_offset(root, path, &next_offset); 1116 if (ret < 0) 1117 goto out; 1118 1119 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1120 if (tmp <= INT_MAX) 1121 extend_nr = min_t(int, extend_nr, tmp); 1122 } 1123 1124 diff = (csum_offset + extend_nr) * csum_size; 1125 diff = min(diff, 1126 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1127 1128 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); 1129 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1130 diff /= csum_size; 1131 diff *= csum_size; 1132 1133 btrfs_extend_item(path, diff); 1134 ret = 0; 1135 goto csum; 1136 } 1137 1138 insert: 1139 btrfs_release_path(path); 1140 csum_offset = 0; 1141 if (found_next) { 1142 u64 tmp; 1143 1144 tmp = sums->len - total_bytes; 1145 tmp >>= fs_info->sectorsize_bits; 1146 tmp = min(tmp, (next_offset - file_key.offset) >> 1147 fs_info->sectorsize_bits); 1148 1149 tmp = max_t(u64, 1, tmp); 1150 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1151 ins_size = csum_size * tmp; 1152 } else { 1153 ins_size = csum_size; 1154 } 1155 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1156 ins_size); 1157 if (ret < 0) 1158 goto out; 1159 if (WARN_ON(ret != 0)) 1160 goto out; 1161 leaf = path->nodes[0]; 1162 csum: 1163 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1164 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1165 btrfs_item_size_nr(leaf, path->slots[0])); 1166 item = (struct btrfs_csum_item *)((unsigned char *)item + 1167 csum_offset * csum_size); 1168 found: 1169 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1170 ins_size *= csum_size; 1171 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1172 ins_size); 1173 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1174 ins_size); 1175 1176 index += ins_size; 1177 ins_size /= csum_size; 1178 total_bytes += ins_size * fs_info->sectorsize; 1179 1180 btrfs_mark_buffer_dirty(path->nodes[0]); 1181 if (total_bytes < sums->len) { 1182 btrfs_release_path(path); 1183 cond_resched(); 1184 goto again; 1185 } 1186 out: 1187 btrfs_free_path(path); 1188 return ret; 1189 } 1190 1191 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1192 const struct btrfs_path *path, 1193 struct btrfs_file_extent_item *fi, 1194 const bool new_inline, 1195 struct extent_map *em) 1196 { 1197 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1198 struct btrfs_root *root = inode->root; 1199 struct extent_buffer *leaf = path->nodes[0]; 1200 const int slot = path->slots[0]; 1201 struct btrfs_key key; 1202 u64 extent_start, extent_end; 1203 u64 bytenr; 1204 u8 type = btrfs_file_extent_type(leaf, fi); 1205 int compress_type = btrfs_file_extent_compression(leaf, fi); 1206 1207 btrfs_item_key_to_cpu(leaf, &key, slot); 1208 extent_start = key.offset; 1209 extent_end = btrfs_file_extent_end(path); 1210 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1211 if (type == BTRFS_FILE_EXTENT_REG || 1212 type == BTRFS_FILE_EXTENT_PREALLOC) { 1213 em->start = extent_start; 1214 em->len = extent_end - extent_start; 1215 em->orig_start = extent_start - 1216 btrfs_file_extent_offset(leaf, fi); 1217 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1218 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1219 if (bytenr == 0) { 1220 em->block_start = EXTENT_MAP_HOLE; 1221 return; 1222 } 1223 if (compress_type != BTRFS_COMPRESS_NONE) { 1224 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1225 em->compress_type = compress_type; 1226 em->block_start = bytenr; 1227 em->block_len = em->orig_block_len; 1228 } else { 1229 bytenr += btrfs_file_extent_offset(leaf, fi); 1230 em->block_start = bytenr; 1231 em->block_len = em->len; 1232 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1233 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1234 } 1235 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1236 em->block_start = EXTENT_MAP_INLINE; 1237 em->start = extent_start; 1238 em->len = extent_end - extent_start; 1239 /* 1240 * Initialize orig_start and block_len with the same values 1241 * as in inode.c:btrfs_get_extent(). 1242 */ 1243 em->orig_start = EXTENT_MAP_HOLE; 1244 em->block_len = (u64)-1; 1245 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1246 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1247 em->compress_type = compress_type; 1248 } 1249 } else { 1250 btrfs_err(fs_info, 1251 "unknown file extent item type %d, inode %llu, offset %llu, " 1252 "root %llu", type, btrfs_ino(inode), extent_start, 1253 root->root_key.objectid); 1254 } 1255 } 1256 1257 /* 1258 * Returns the end offset (non inclusive) of the file extent item the given path 1259 * points to. If it points to an inline extent, the returned offset is rounded 1260 * up to the sector size. 1261 */ 1262 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1263 { 1264 const struct extent_buffer *leaf = path->nodes[0]; 1265 const int slot = path->slots[0]; 1266 struct btrfs_file_extent_item *fi; 1267 struct btrfs_key key; 1268 u64 end; 1269 1270 btrfs_item_key_to_cpu(leaf, &key, slot); 1271 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1272 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1273 1274 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1275 end = btrfs_file_extent_ram_bytes(leaf, fi); 1276 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1277 } else { 1278 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1279 } 1280 1281 return end; 1282 } 1283