xref: /openbmc/linux/fs/btrfs/extent_map.c (revision ff79f819)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include "extent_map.h"
13 
14 /* temporary define until extent_map moves out of btrfs */
15 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
16 				       unsigned long extra_flags,
17 				       void (*ctor)(void *, struct kmem_cache *,
18 						    unsigned long));
19 
20 static struct kmem_cache *extent_map_cache;
21 static struct kmem_cache *extent_state_cache;
22 static struct kmem_cache *extent_buffer_cache;
23 
24 static LIST_HEAD(buffers);
25 static LIST_HEAD(states);
26 
27 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
28 #define BUFFER_LRU_MAX 64
29 
30 struct tree_entry {
31 	u64 start;
32 	u64 end;
33 	int in_tree;
34 	struct rb_node rb_node;
35 };
36 
37 void __init extent_map_init(void)
38 {
39 	extent_map_cache = btrfs_cache_create("extent_map",
40 					    sizeof(struct extent_map), 0,
41 					    NULL);
42 	extent_state_cache = btrfs_cache_create("extent_state",
43 					    sizeof(struct extent_state), 0,
44 					    NULL);
45 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
46 					    sizeof(struct extent_buffer), 0,
47 					    NULL);
48 }
49 
50 void __exit extent_map_exit(void)
51 {
52 	struct extent_state *state;
53 
54 	while (!list_empty(&states)) {
55 		state = list_entry(states.next, struct extent_state, list);
56 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
57 		list_del(&state->list);
58 		kmem_cache_free(extent_state_cache, state);
59 
60 	}
61 
62 	if (extent_map_cache)
63 		kmem_cache_destroy(extent_map_cache);
64 	if (extent_state_cache)
65 		kmem_cache_destroy(extent_state_cache);
66 	if (extent_buffer_cache)
67 		kmem_cache_destroy(extent_buffer_cache);
68 }
69 
70 void extent_map_tree_init(struct extent_map_tree *tree,
71 			  struct address_space *mapping, gfp_t mask)
72 {
73 	tree->map.rb_node = NULL;
74 	tree->state.rb_node = NULL;
75 	tree->ops = NULL;
76 	rwlock_init(&tree->lock);
77 	spin_lock_init(&tree->lru_lock);
78 	tree->mapping = mapping;
79 	INIT_LIST_HEAD(&tree->buffer_lru);
80 	tree->lru_size = 0;
81 }
82 EXPORT_SYMBOL(extent_map_tree_init);
83 
84 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
85 {
86 	struct extent_buffer *eb;
87 	while(!list_empty(&tree->buffer_lru)) {
88 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
89 				lru);
90 		list_del(&eb->lru);
91 		free_extent_buffer(eb);
92 	}
93 }
94 EXPORT_SYMBOL(extent_map_tree_empty_lru);
95 
96 struct extent_map *alloc_extent_map(gfp_t mask)
97 {
98 	struct extent_map *em;
99 	em = kmem_cache_alloc(extent_map_cache, mask);
100 	if (!em || IS_ERR(em))
101 		return em;
102 	em->in_tree = 0;
103 	atomic_set(&em->refs, 1);
104 	return em;
105 }
106 EXPORT_SYMBOL(alloc_extent_map);
107 
108 void free_extent_map(struct extent_map *em)
109 {
110 	if (!em)
111 		return;
112 	if (atomic_dec_and_test(&em->refs)) {
113 		WARN_ON(em->in_tree);
114 		kmem_cache_free(extent_map_cache, em);
115 	}
116 }
117 EXPORT_SYMBOL(free_extent_map);
118 
119 
120 struct extent_state *alloc_extent_state(gfp_t mask)
121 {
122 	struct extent_state *state;
123 	unsigned long flags;
124 
125 	state = kmem_cache_alloc(extent_state_cache, mask);
126 	if (!state || IS_ERR(state))
127 		return state;
128 	state->state = 0;
129 	state->in_tree = 0;
130 	state->private = 0;
131 
132 	spin_lock_irqsave(&state_lock, flags);
133 	list_add(&state->list, &states);
134 	spin_unlock_irqrestore(&state_lock, flags);
135 
136 	atomic_set(&state->refs, 1);
137 	init_waitqueue_head(&state->wq);
138 	return state;
139 }
140 EXPORT_SYMBOL(alloc_extent_state);
141 
142 void free_extent_state(struct extent_state *state)
143 {
144 	unsigned long flags;
145 	if (!state)
146 		return;
147 	if (atomic_dec_and_test(&state->refs)) {
148 		WARN_ON(state->in_tree);
149 		spin_lock_irqsave(&state_lock, flags);
150 		list_del(&state->list);
151 		spin_unlock_irqrestore(&state_lock, flags);
152 		kmem_cache_free(extent_state_cache, state);
153 	}
154 }
155 EXPORT_SYMBOL(free_extent_state);
156 
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 				   struct rb_node *node)
159 {
160 	struct rb_node ** p = &root->rb_node;
161 	struct rb_node * parent = NULL;
162 	struct tree_entry *entry;
163 
164 	while(*p) {
165 		parent = *p;
166 		entry = rb_entry(parent, struct tree_entry, rb_node);
167 
168 		if (offset < entry->start)
169 			p = &(*p)->rb_left;
170 		else if (offset > entry->end)
171 			p = &(*p)->rb_right;
172 		else
173 			return parent;
174 	}
175 
176 	entry = rb_entry(node, struct tree_entry, rb_node);
177 	entry->in_tree = 1;
178 	rb_link_node(node, parent, p);
179 	rb_insert_color(node, root);
180 	return NULL;
181 }
182 
183 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
184 				   struct rb_node **prev_ret)
185 {
186 	struct rb_node * n = root->rb_node;
187 	struct rb_node *prev = NULL;
188 	struct tree_entry *entry;
189 	struct tree_entry *prev_entry = NULL;
190 
191 	while(n) {
192 		entry = rb_entry(n, struct tree_entry, rb_node);
193 		prev = n;
194 		prev_entry = entry;
195 
196 		if (offset < entry->start)
197 			n = n->rb_left;
198 		else if (offset > entry->end)
199 			n = n->rb_right;
200 		else
201 			return n;
202 	}
203 	if (!prev_ret)
204 		return NULL;
205 	while(prev && offset > prev_entry->end) {
206 		prev = rb_next(prev);
207 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
208 	}
209 	*prev_ret = prev;
210 	return NULL;
211 }
212 
213 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
214 {
215 	struct rb_node *prev;
216 	struct rb_node *ret;
217 	ret = __tree_search(root, offset, &prev);
218 	if (!ret)
219 		return prev;
220 	return ret;
221 }
222 
223 static int tree_delete(struct rb_root *root, u64 offset)
224 {
225 	struct rb_node *node;
226 	struct tree_entry *entry;
227 
228 	node = __tree_search(root, offset, NULL);
229 	if (!node)
230 		return -ENOENT;
231 	entry = rb_entry(node, struct tree_entry, rb_node);
232 	entry->in_tree = 0;
233 	rb_erase(node, root);
234 	return 0;
235 }
236 
237 /*
238  * add_extent_mapping tries a simple backward merge with existing
239  * mappings.  The extent_map struct passed in will be inserted into
240  * the tree directly (no copies made, just a reference taken).
241  */
242 int add_extent_mapping(struct extent_map_tree *tree,
243 		       struct extent_map *em)
244 {
245 	int ret = 0;
246 	struct extent_map *prev = NULL;
247 	struct rb_node *rb;
248 
249 	write_lock_irq(&tree->lock);
250 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
251 	if (rb) {
252 		prev = rb_entry(rb, struct extent_map, rb_node);
253 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
254 		ret = -EEXIST;
255 		goto out;
256 	}
257 	atomic_inc(&em->refs);
258 	if (em->start != 0) {
259 		rb = rb_prev(&em->rb_node);
260 		if (rb)
261 			prev = rb_entry(rb, struct extent_map, rb_node);
262 		if (prev && prev->end + 1 == em->start &&
263 		    ((em->block_start == EXTENT_MAP_HOLE &&
264 		      prev->block_start == EXTENT_MAP_HOLE) ||
265 			     (em->block_start == prev->block_end + 1))) {
266 			em->start = prev->start;
267 			em->block_start = prev->block_start;
268 			rb_erase(&prev->rb_node, &tree->map);
269 			prev->in_tree = 0;
270 			free_extent_map(prev);
271 		}
272 	 }
273 out:
274 	write_unlock_irq(&tree->lock);
275 	return ret;
276 }
277 EXPORT_SYMBOL(add_extent_mapping);
278 
279 /*
280  * lookup_extent_mapping returns the first extent_map struct in the
281  * tree that intersects the [start, end] (inclusive) range.  There may
282  * be additional objects in the tree that intersect, so check the object
283  * returned carefully to make sure you don't need additional lookups.
284  */
285 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
286 					 u64 start, u64 end)
287 {
288 	struct extent_map *em;
289 	struct rb_node *rb_node;
290 
291 	read_lock_irq(&tree->lock);
292 	rb_node = tree_search(&tree->map, start);
293 	if (!rb_node) {
294 		em = NULL;
295 		goto out;
296 	}
297 	if (IS_ERR(rb_node)) {
298 		em = ERR_PTR(PTR_ERR(rb_node));
299 		goto out;
300 	}
301 	em = rb_entry(rb_node, struct extent_map, rb_node);
302 	if (em->end < start || em->start > end) {
303 		em = NULL;
304 		goto out;
305 	}
306 	atomic_inc(&em->refs);
307 out:
308 	read_unlock_irq(&tree->lock);
309 	return em;
310 }
311 EXPORT_SYMBOL(lookup_extent_mapping);
312 
313 /*
314  * removes an extent_map struct from the tree.  No reference counts are
315  * dropped, and no checks are done to  see if the range is in use
316  */
317 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
318 {
319 	int ret;
320 
321 	write_lock_irq(&tree->lock);
322 	ret = tree_delete(&tree->map, em->end);
323 	write_unlock_irq(&tree->lock);
324 	return ret;
325 }
326 EXPORT_SYMBOL(remove_extent_mapping);
327 
328 /*
329  * utility function to look for merge candidates inside a given range.
330  * Any extents with matching state are merged together into a single
331  * extent in the tree.  Extents with EXTENT_IO in their state field
332  * are not merged because the end_io handlers need to be able to do
333  * operations on them without sleeping (or doing allocations/splits).
334  *
335  * This should be called with the tree lock held.
336  */
337 static int merge_state(struct extent_map_tree *tree,
338 		       struct extent_state *state)
339 {
340 	struct extent_state *other;
341 	struct rb_node *other_node;
342 
343 	if (state->state & EXTENT_IOBITS)
344 		return 0;
345 
346 	other_node = rb_prev(&state->rb_node);
347 	if (other_node) {
348 		other = rb_entry(other_node, struct extent_state, rb_node);
349 		if (other->end == state->start - 1 &&
350 		    other->state == state->state) {
351 			state->start = other->start;
352 			other->in_tree = 0;
353 			rb_erase(&other->rb_node, &tree->state);
354 			free_extent_state(other);
355 		}
356 	}
357 	other_node = rb_next(&state->rb_node);
358 	if (other_node) {
359 		other = rb_entry(other_node, struct extent_state, rb_node);
360 		if (other->start == state->end + 1 &&
361 		    other->state == state->state) {
362 			other->start = state->start;
363 			state->in_tree = 0;
364 			rb_erase(&state->rb_node, &tree->state);
365 			free_extent_state(state);
366 		}
367 	}
368 	return 0;
369 }
370 
371 /*
372  * insert an extent_state struct into the tree.  'bits' are set on the
373  * struct before it is inserted.
374  *
375  * This may return -EEXIST if the extent is already there, in which case the
376  * state struct is freed.
377  *
378  * The tree lock is not taken internally.  This is a utility function and
379  * probably isn't what you want to call (see set/clear_extent_bit).
380  */
381 static int insert_state(struct extent_map_tree *tree,
382 			struct extent_state *state, u64 start, u64 end,
383 			int bits)
384 {
385 	struct rb_node *node;
386 
387 	if (end < start) {
388 		printk("end < start %Lu %Lu\n", end, start);
389 		WARN_ON(1);
390 	}
391 	state->state |= bits;
392 	state->start = start;
393 	state->end = end;
394 	node = tree_insert(&tree->state, end, &state->rb_node);
395 	if (node) {
396 		struct extent_state *found;
397 		found = rb_entry(node, struct extent_state, rb_node);
398 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
399 		free_extent_state(state);
400 		return -EEXIST;
401 	}
402 	merge_state(tree, state);
403 	return 0;
404 }
405 
406 /*
407  * split a given extent state struct in two, inserting the preallocated
408  * struct 'prealloc' as the newly created second half.  'split' indicates an
409  * offset inside 'orig' where it should be split.
410  *
411  * Before calling,
412  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
413  * are two extent state structs in the tree:
414  * prealloc: [orig->start, split - 1]
415  * orig: [ split, orig->end ]
416  *
417  * The tree locks are not taken by this function. They need to be held
418  * by the caller.
419  */
420 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
421 		       struct extent_state *prealloc, u64 split)
422 {
423 	struct rb_node *node;
424 	prealloc->start = orig->start;
425 	prealloc->end = split - 1;
426 	prealloc->state = orig->state;
427 	orig->start = split;
428 
429 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
430 	if (node) {
431 		struct extent_state *found;
432 		found = rb_entry(node, struct extent_state, rb_node);
433 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
434 		free_extent_state(prealloc);
435 		return -EEXIST;
436 	}
437 	return 0;
438 }
439 
440 /*
441  * utility function to clear some bits in an extent state struct.
442  * it will optionally wake up any one waiting on this state (wake == 1), or
443  * forcibly remove the state from the tree (delete == 1).
444  *
445  * If no bits are set on the state struct after clearing things, the
446  * struct is freed and removed from the tree
447  */
448 static int clear_state_bit(struct extent_map_tree *tree,
449 			    struct extent_state *state, int bits, int wake,
450 			    int delete)
451 {
452 	int ret = state->state & bits;
453 	state->state &= ~bits;
454 	if (wake)
455 		wake_up(&state->wq);
456 	if (delete || state->state == 0) {
457 		if (state->in_tree) {
458 			rb_erase(&state->rb_node, &tree->state);
459 			state->in_tree = 0;
460 			free_extent_state(state);
461 		} else {
462 			WARN_ON(1);
463 		}
464 	} else {
465 		merge_state(tree, state);
466 	}
467 	return ret;
468 }
469 
470 /*
471  * clear some bits on a range in the tree.  This may require splitting
472  * or inserting elements in the tree, so the gfp mask is used to
473  * indicate which allocations or sleeping are allowed.
474  *
475  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
476  * the given range from the tree regardless of state (ie for truncate).
477  *
478  * the range [start, end] is inclusive.
479  *
480  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
481  * bits were already set, or zero if none of the bits were already set.
482  */
483 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
484 		     int bits, int wake, int delete, gfp_t mask)
485 {
486 	struct extent_state *state;
487 	struct extent_state *prealloc = NULL;
488 	struct rb_node *node;
489 	unsigned long flags;
490 	int err;
491 	int set = 0;
492 
493 again:
494 	if (!prealloc && (mask & __GFP_WAIT)) {
495 		prealloc = alloc_extent_state(mask);
496 		if (!prealloc)
497 			return -ENOMEM;
498 	}
499 
500 	write_lock_irqsave(&tree->lock, flags);
501 	/*
502 	 * this search will find the extents that end after
503 	 * our range starts
504 	 */
505 	node = tree_search(&tree->state, start);
506 	if (!node)
507 		goto out;
508 	state = rb_entry(node, struct extent_state, rb_node);
509 	if (state->start > end)
510 		goto out;
511 	WARN_ON(state->end < start);
512 
513 	/*
514 	 *     | ---- desired range ---- |
515 	 *  | state | or
516 	 *  | ------------- state -------------- |
517 	 *
518 	 * We need to split the extent we found, and may flip
519 	 * bits on second half.
520 	 *
521 	 * If the extent we found extends past our range, we
522 	 * just split and search again.  It'll get split again
523 	 * the next time though.
524 	 *
525 	 * If the extent we found is inside our range, we clear
526 	 * the desired bit on it.
527 	 */
528 
529 	if (state->start < start) {
530 		err = split_state(tree, state, prealloc, start);
531 		BUG_ON(err == -EEXIST);
532 		prealloc = NULL;
533 		if (err)
534 			goto out;
535 		if (state->end <= end) {
536 			start = state->end + 1;
537 			set |= clear_state_bit(tree, state, bits,
538 					wake, delete);
539 		} else {
540 			start = state->start;
541 		}
542 		goto search_again;
543 	}
544 	/*
545 	 * | ---- desired range ---- |
546 	 *                        | state |
547 	 * We need to split the extent, and clear the bit
548 	 * on the first half
549 	 */
550 	if (state->start <= end && state->end > end) {
551 		err = split_state(tree, state, prealloc, end + 1);
552 		BUG_ON(err == -EEXIST);
553 
554 		if (wake)
555 			wake_up(&state->wq);
556 		set |= clear_state_bit(tree, prealloc, bits,
557 				       wake, delete);
558 		prealloc = NULL;
559 		goto out;
560 	}
561 
562 	start = state->end + 1;
563 	set |= clear_state_bit(tree, state, bits, wake, delete);
564 	goto search_again;
565 
566 out:
567 	write_unlock_irqrestore(&tree->lock, flags);
568 	if (prealloc)
569 		free_extent_state(prealloc);
570 
571 	return set;
572 
573 search_again:
574 	if (start > end)
575 		goto out;
576 	write_unlock_irqrestore(&tree->lock, flags);
577 	if (mask & __GFP_WAIT)
578 		cond_resched();
579 	goto again;
580 }
581 EXPORT_SYMBOL(clear_extent_bit);
582 
583 static int wait_on_state(struct extent_map_tree *tree,
584 			 struct extent_state *state)
585 {
586 	DEFINE_WAIT(wait);
587 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
588 	read_unlock_irq(&tree->lock);
589 	schedule();
590 	read_lock_irq(&tree->lock);
591 	finish_wait(&state->wq, &wait);
592 	return 0;
593 }
594 
595 /*
596  * waits for one or more bits to clear on a range in the state tree.
597  * The range [start, end] is inclusive.
598  * The tree lock is taken by this function
599  */
600 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
601 {
602 	struct extent_state *state;
603 	struct rb_node *node;
604 
605 	read_lock_irq(&tree->lock);
606 again:
607 	while (1) {
608 		/*
609 		 * this search will find all the extents that end after
610 		 * our range starts
611 		 */
612 		node = tree_search(&tree->state, start);
613 		if (!node)
614 			break;
615 
616 		state = rb_entry(node, struct extent_state, rb_node);
617 
618 		if (state->start > end)
619 			goto out;
620 
621 		if (state->state & bits) {
622 			start = state->start;
623 			atomic_inc(&state->refs);
624 			wait_on_state(tree, state);
625 			free_extent_state(state);
626 			goto again;
627 		}
628 		start = state->end + 1;
629 
630 		if (start > end)
631 			break;
632 
633 		if (need_resched()) {
634 			read_unlock_irq(&tree->lock);
635 			cond_resched();
636 			read_lock_irq(&tree->lock);
637 		}
638 	}
639 out:
640 	read_unlock_irq(&tree->lock);
641 	return 0;
642 }
643 EXPORT_SYMBOL(wait_extent_bit);
644 
645 /*
646  * set some bits on a range in the tree.  This may require allocations
647  * or sleeping, so the gfp mask is used to indicate what is allowed.
648  *
649  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
650  * range already has the desired bits set.  The start of the existing
651  * range is returned in failed_start in this case.
652  *
653  * [start, end] is inclusive
654  * This takes the tree lock.
655  */
656 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
657 		   int exclusive, u64 *failed_start, gfp_t mask)
658 {
659 	struct extent_state *state;
660 	struct extent_state *prealloc = NULL;
661 	struct rb_node *node;
662 	unsigned long flags;
663 	int err = 0;
664 	int set;
665 	u64 last_start;
666 	u64 last_end;
667 again:
668 	if (!prealloc && (mask & __GFP_WAIT)) {
669 		prealloc = alloc_extent_state(mask);
670 		if (!prealloc)
671 			return -ENOMEM;
672 	}
673 
674 	write_lock_irqsave(&tree->lock, flags);
675 	/*
676 	 * this search will find all the extents that end after
677 	 * our range starts.
678 	 */
679 	node = tree_search(&tree->state, start);
680 	if (!node) {
681 		err = insert_state(tree, prealloc, start, end, bits);
682 		prealloc = NULL;
683 		BUG_ON(err == -EEXIST);
684 		goto out;
685 	}
686 
687 	state = rb_entry(node, struct extent_state, rb_node);
688 	last_start = state->start;
689 	last_end = state->end;
690 
691 	/*
692 	 * | ---- desired range ---- |
693 	 * | state |
694 	 *
695 	 * Just lock what we found and keep going
696 	 */
697 	if (state->start == start && state->end <= end) {
698 		set = state->state & bits;
699 		if (set && exclusive) {
700 			*failed_start = state->start;
701 			err = -EEXIST;
702 			goto out;
703 		}
704 		state->state |= bits;
705 		start = state->end + 1;
706 		merge_state(tree, state);
707 		goto search_again;
708 	}
709 
710 	/*
711 	 *     | ---- desired range ---- |
712 	 * | state |
713 	 *   or
714 	 * | ------------- state -------------- |
715 	 *
716 	 * We need to split the extent we found, and may flip bits on
717 	 * second half.
718 	 *
719 	 * If the extent we found extends past our
720 	 * range, we just split and search again.  It'll get split
721 	 * again the next time though.
722 	 *
723 	 * If the extent we found is inside our range, we set the
724 	 * desired bit on it.
725 	 */
726 	if (state->start < start) {
727 		set = state->state & bits;
728 		if (exclusive && set) {
729 			*failed_start = start;
730 			err = -EEXIST;
731 			goto out;
732 		}
733 		err = split_state(tree, state, prealloc, start);
734 		BUG_ON(err == -EEXIST);
735 		prealloc = NULL;
736 		if (err)
737 			goto out;
738 		if (state->end <= end) {
739 			state->state |= bits;
740 			start = state->end + 1;
741 			merge_state(tree, state);
742 		} else {
743 			start = state->start;
744 		}
745 		goto search_again;
746 	}
747 	/*
748 	 * | ---- desired range ---- |
749 	 *     | state | or               | state |
750 	 *
751 	 * There's a hole, we need to insert something in it and
752 	 * ignore the extent we found.
753 	 */
754 	if (state->start > start) {
755 		u64 this_end;
756 		if (end < last_start)
757 			this_end = end;
758 		else
759 			this_end = last_start -1;
760 		err = insert_state(tree, prealloc, start, this_end,
761 				   bits);
762 		prealloc = NULL;
763 		BUG_ON(err == -EEXIST);
764 		if (err)
765 			goto out;
766 		start = this_end + 1;
767 		goto search_again;
768 	}
769 	/*
770 	 * | ---- desired range ---- |
771 	 *                        | state |
772 	 * We need to split the extent, and set the bit
773 	 * on the first half
774 	 */
775 	if (state->start <= end && state->end > end) {
776 		set = state->state & bits;
777 		if (exclusive && set) {
778 			*failed_start = start;
779 			err = -EEXIST;
780 			goto out;
781 		}
782 		err = split_state(tree, state, prealloc, end + 1);
783 		BUG_ON(err == -EEXIST);
784 
785 		prealloc->state |= bits;
786 		merge_state(tree, prealloc);
787 		prealloc = NULL;
788 		goto out;
789 	}
790 
791 	goto search_again;
792 
793 out:
794 	write_unlock_irqrestore(&tree->lock, flags);
795 	if (prealloc)
796 		free_extent_state(prealloc);
797 
798 	return err;
799 
800 search_again:
801 	if (start > end)
802 		goto out;
803 	write_unlock_irqrestore(&tree->lock, flags);
804 	if (mask & __GFP_WAIT)
805 		cond_resched();
806 	goto again;
807 }
808 EXPORT_SYMBOL(set_extent_bit);
809 
810 /* wrappers around set/clear extent bit */
811 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
812 		     gfp_t mask)
813 {
814 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
815 			      mask);
816 }
817 EXPORT_SYMBOL(set_extent_dirty);
818 
819 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
820 		    int bits, gfp_t mask)
821 {
822 	return set_extent_bit(tree, start, end, bits, 0, NULL,
823 			      mask);
824 }
825 EXPORT_SYMBOL(set_extent_bits);
826 
827 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
828 		      int bits, gfp_t mask)
829 {
830 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
831 }
832 EXPORT_SYMBOL(clear_extent_bits);
833 
834 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
835 		     gfp_t mask)
836 {
837 	return set_extent_bit(tree, start, end,
838 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
839 			      mask);
840 }
841 EXPORT_SYMBOL(set_extent_delalloc);
842 
843 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
844 		       gfp_t mask)
845 {
846 	return clear_extent_bit(tree, start, end,
847 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
848 }
849 EXPORT_SYMBOL(clear_extent_dirty);
850 
851 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
852 		     gfp_t mask)
853 {
854 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
855 			      mask);
856 }
857 EXPORT_SYMBOL(set_extent_new);
858 
859 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
860 		       gfp_t mask)
861 {
862 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
863 }
864 EXPORT_SYMBOL(clear_extent_new);
865 
866 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
867 			gfp_t mask)
868 {
869 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
870 			      mask);
871 }
872 EXPORT_SYMBOL(set_extent_uptodate);
873 
874 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
875 			  gfp_t mask)
876 {
877 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
878 }
879 EXPORT_SYMBOL(clear_extent_uptodate);
880 
881 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
882 			 gfp_t mask)
883 {
884 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
885 			      0, NULL, mask);
886 }
887 EXPORT_SYMBOL(set_extent_writeback);
888 
889 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
890 			   gfp_t mask)
891 {
892 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
893 }
894 EXPORT_SYMBOL(clear_extent_writeback);
895 
896 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
897 {
898 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
899 }
900 EXPORT_SYMBOL(wait_on_extent_writeback);
901 
902 /*
903  * locks a range in ascending order, waiting for any locked regions
904  * it hits on the way.  [start,end] are inclusive, and this will sleep.
905  */
906 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
907 {
908 	int err;
909 	u64 failed_start;
910 	while (1) {
911 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
912 				     &failed_start, mask);
913 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
914 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
915 			start = failed_start;
916 		} else {
917 			break;
918 		}
919 		WARN_ON(start > end);
920 	}
921 	return err;
922 }
923 EXPORT_SYMBOL(lock_extent);
924 
925 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
926 		  gfp_t mask)
927 {
928 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
929 }
930 EXPORT_SYMBOL(unlock_extent);
931 
932 /*
933  * helper function to set pages and extents in the tree dirty
934  */
935 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
936 {
937 	unsigned long index = start >> PAGE_CACHE_SHIFT;
938 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
939 	struct page *page;
940 
941 	while (index <= end_index) {
942 		page = find_get_page(tree->mapping, index);
943 		BUG_ON(!page);
944 		__set_page_dirty_nobuffers(page);
945 		page_cache_release(page);
946 		index++;
947 	}
948 	set_extent_dirty(tree, start, end, GFP_NOFS);
949 	return 0;
950 }
951 EXPORT_SYMBOL(set_range_dirty);
952 
953 /*
954  * helper function to set both pages and extents in the tree writeback
955  */
956 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
957 {
958 	unsigned long index = start >> PAGE_CACHE_SHIFT;
959 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
960 	struct page *page;
961 
962 	while (index <= end_index) {
963 		page = find_get_page(tree->mapping, index);
964 		BUG_ON(!page);
965 		set_page_writeback(page);
966 		page_cache_release(page);
967 		index++;
968 	}
969 	set_extent_writeback(tree, start, end, GFP_NOFS);
970 	return 0;
971 }
972 EXPORT_SYMBOL(set_range_writeback);
973 
974 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
975 			  u64 *start_ret, u64 *end_ret, int bits)
976 {
977 	struct rb_node *node;
978 	struct extent_state *state;
979 	int ret = 1;
980 
981 	read_lock_irq(&tree->lock);
982 	/*
983 	 * this search will find all the extents that end after
984 	 * our range starts.
985 	 */
986 	node = tree_search(&tree->state, start);
987 	if (!node || IS_ERR(node)) {
988 		goto out;
989 	}
990 
991 	while(1) {
992 		state = rb_entry(node, struct extent_state, rb_node);
993 		if (state->end >= start && (state->state & bits)) {
994 			*start_ret = state->start;
995 			*end_ret = state->end;
996 			ret = 0;
997 			break;
998 		}
999 		node = rb_next(node);
1000 		if (!node)
1001 			break;
1002 	}
1003 out:
1004 	read_unlock_irq(&tree->lock);
1005 	return ret;
1006 }
1007 EXPORT_SYMBOL(find_first_extent_bit);
1008 
1009 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1010 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1011 {
1012 	struct rb_node *node;
1013 	struct extent_state *state;
1014 	u64 cur_start = start;
1015 	u64 found = 0;
1016 	u64 total_bytes = 0;
1017 
1018 	write_lock_irq(&tree->lock);
1019 	/*
1020 	 * this search will find all the extents that end after
1021 	 * our range starts.
1022 	 */
1023 search_again:
1024 	node = tree_search(&tree->state, cur_start);
1025 	if (!node || IS_ERR(node)) {
1026 		goto out;
1027 	}
1028 
1029 	while(1) {
1030 		state = rb_entry(node, struct extent_state, rb_node);
1031 		if (state->start != cur_start) {
1032 			goto out;
1033 		}
1034 		if (!(state->state & EXTENT_DELALLOC)) {
1035 			goto out;
1036 		}
1037 		if (state->start >= lock_start) {
1038 			if (state->state & EXTENT_LOCKED) {
1039 				DEFINE_WAIT(wait);
1040 				atomic_inc(&state->refs);
1041 				write_unlock_irq(&tree->lock);
1042 				schedule();
1043 				write_lock_irq(&tree->lock);
1044 				finish_wait(&state->wq, &wait);
1045 				free_extent_state(state);
1046 				goto search_again;
1047 			}
1048 			state->state |= EXTENT_LOCKED;
1049 		}
1050 		found++;
1051 		*end = state->end;
1052 		cur_start = state->end + 1;
1053 		node = rb_next(node);
1054 		if (!node)
1055 			break;
1056 		total_bytes = state->end - state->start + 1;
1057 		if (total_bytes >= max_bytes)
1058 			break;
1059 	}
1060 out:
1061 	write_unlock_irq(&tree->lock);
1062 	return found;
1063 }
1064 
1065 /*
1066  * helper function to lock both pages and extents in the tree.
1067  * pages must be locked first.
1068  */
1069 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1070 {
1071 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1072 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1073 	struct page *page;
1074 	int err;
1075 
1076 	while (index <= end_index) {
1077 		page = grab_cache_page(tree->mapping, index);
1078 		if (!page) {
1079 			err = -ENOMEM;
1080 			goto failed;
1081 		}
1082 		if (IS_ERR(page)) {
1083 			err = PTR_ERR(page);
1084 			goto failed;
1085 		}
1086 		index++;
1087 	}
1088 	lock_extent(tree, start, end, GFP_NOFS);
1089 	return 0;
1090 
1091 failed:
1092 	/*
1093 	 * we failed above in getting the page at 'index', so we undo here
1094 	 * up to but not including the page at 'index'
1095 	 */
1096 	end_index = index;
1097 	index = start >> PAGE_CACHE_SHIFT;
1098 	while (index < end_index) {
1099 		page = find_get_page(tree->mapping, index);
1100 		unlock_page(page);
1101 		page_cache_release(page);
1102 		index++;
1103 	}
1104 	return err;
1105 }
1106 EXPORT_SYMBOL(lock_range);
1107 
1108 /*
1109  * helper function to unlock both pages and extents in the tree.
1110  */
1111 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1112 {
1113 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1114 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1115 	struct page *page;
1116 
1117 	while (index <= end_index) {
1118 		page = find_get_page(tree->mapping, index);
1119 		unlock_page(page);
1120 		page_cache_release(page);
1121 		index++;
1122 	}
1123 	unlock_extent(tree, start, end, GFP_NOFS);
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL(unlock_range);
1127 
1128 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1129 {
1130 	struct rb_node *node;
1131 	struct extent_state *state;
1132 	int ret = 0;
1133 
1134 	write_lock_irq(&tree->lock);
1135 	/*
1136 	 * this search will find all the extents that end after
1137 	 * our range starts.
1138 	 */
1139 	node = tree_search(&tree->state, start);
1140 	if (!node || IS_ERR(node)) {
1141 		ret = -ENOENT;
1142 		goto out;
1143 	}
1144 	state = rb_entry(node, struct extent_state, rb_node);
1145 	if (state->start != start) {
1146 		ret = -ENOENT;
1147 		goto out;
1148 	}
1149 	state->private = private;
1150 out:
1151 	write_unlock_irq(&tree->lock);
1152 	return ret;
1153 }
1154 
1155 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1156 {
1157 	struct rb_node *node;
1158 	struct extent_state *state;
1159 	int ret = 0;
1160 
1161 	read_lock_irq(&tree->lock);
1162 	/*
1163 	 * this search will find all the extents that end after
1164 	 * our range starts.
1165 	 */
1166 	node = tree_search(&tree->state, start);
1167 	if (!node || IS_ERR(node)) {
1168 		ret = -ENOENT;
1169 		goto out;
1170 	}
1171 	state = rb_entry(node, struct extent_state, rb_node);
1172 	if (state->start != start) {
1173 		ret = -ENOENT;
1174 		goto out;
1175 	}
1176 	*private = state->private;
1177 out:
1178 	read_unlock_irq(&tree->lock);
1179 	return ret;
1180 }
1181 
1182 /*
1183  * searches a range in the state tree for a given mask.
1184  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1185  * has the bits set.  Otherwise, 1 is returned if any bit in the
1186  * range is found set.
1187  */
1188 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1189 		   int bits, int filled)
1190 {
1191 	struct extent_state *state = NULL;
1192 	struct rb_node *node;
1193 	int bitset = 0;
1194 
1195 	read_lock_irq(&tree->lock);
1196 	node = tree_search(&tree->state, start);
1197 	while (node && start <= end) {
1198 		state = rb_entry(node, struct extent_state, rb_node);
1199 		if (state->start > end)
1200 			break;
1201 
1202 		if (filled && state->start > start) {
1203 			bitset = 0;
1204 			break;
1205 		}
1206 		if (state->state & bits) {
1207 			bitset = 1;
1208 			if (!filled)
1209 				break;
1210 		} else if (filled) {
1211 			bitset = 0;
1212 			break;
1213 		}
1214 		start = state->end + 1;
1215 		if (start > end)
1216 			break;
1217 		node = rb_next(node);
1218 	}
1219 	read_unlock_irq(&tree->lock);
1220 	return bitset;
1221 }
1222 EXPORT_SYMBOL(test_range_bit);
1223 
1224 /*
1225  * helper function to set a given page up to date if all the
1226  * extents in the tree for that page are up to date
1227  */
1228 static int check_page_uptodate(struct extent_map_tree *tree,
1229 			       struct page *page)
1230 {
1231 	u64 start = page->index << PAGE_CACHE_SHIFT;
1232 	u64 end = start + PAGE_CACHE_SIZE - 1;
1233 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1234 		SetPageUptodate(page);
1235 	return 0;
1236 }
1237 
1238 /*
1239  * helper function to unlock a page if all the extents in the tree
1240  * for that page are unlocked
1241  */
1242 static int check_page_locked(struct extent_map_tree *tree,
1243 			     struct page *page)
1244 {
1245 	u64 start = page->index << PAGE_CACHE_SHIFT;
1246 	u64 end = start + PAGE_CACHE_SIZE - 1;
1247 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1248 		unlock_page(page);
1249 	return 0;
1250 }
1251 
1252 /*
1253  * helper function to end page writeback if all the extents
1254  * in the tree for that page are done with writeback
1255  */
1256 static int check_page_writeback(struct extent_map_tree *tree,
1257 			     struct page *page)
1258 {
1259 	u64 start = page->index << PAGE_CACHE_SHIFT;
1260 	u64 end = start + PAGE_CACHE_SIZE - 1;
1261 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1262 		end_page_writeback(page);
1263 	return 0;
1264 }
1265 
1266 /* lots and lots of room for performance fixes in the end_bio funcs */
1267 
1268 /*
1269  * after a writepage IO is done, we need to:
1270  * clear the uptodate bits on error
1271  * clear the writeback bits in the extent tree for this IO
1272  * end_page_writeback if the page has no more pending IO
1273  *
1274  * Scheduling is not allowed, so the extent state tree is expected
1275  * to have one and only one object corresponding to this IO.
1276  */
1277 static int end_bio_extent_writepage(struct bio *bio,
1278 				   unsigned int bytes_done, int err)
1279 {
1280 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1281 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1282 	struct extent_map_tree *tree = bio->bi_private;
1283 	u64 start;
1284 	u64 end;
1285 	int whole_page;
1286 
1287 	if (bio->bi_size)
1288 		return 1;
1289 
1290 	do {
1291 		struct page *page = bvec->bv_page;
1292 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1293 		end = start + bvec->bv_len - 1;
1294 
1295 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1296 			whole_page = 1;
1297 		else
1298 			whole_page = 0;
1299 
1300 		if (--bvec >= bio->bi_io_vec)
1301 			prefetchw(&bvec->bv_page->flags);
1302 
1303 		if (!uptodate) {
1304 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1305 			ClearPageUptodate(page);
1306 			SetPageError(page);
1307 		}
1308 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1309 
1310 		if (whole_page)
1311 			end_page_writeback(page);
1312 		else
1313 			check_page_writeback(tree, page);
1314 		if (tree->ops && tree->ops->writepage_end_io_hook)
1315 			tree->ops->writepage_end_io_hook(page, start, end);
1316 	} while (bvec >= bio->bi_io_vec);
1317 
1318 	bio_put(bio);
1319 	return 0;
1320 }
1321 
1322 /*
1323  * after a readpage IO is done, we need to:
1324  * clear the uptodate bits on error
1325  * set the uptodate bits if things worked
1326  * set the page up to date if all extents in the tree are uptodate
1327  * clear the lock bit in the extent tree
1328  * unlock the page if there are no other extents locked for it
1329  *
1330  * Scheduling is not allowed, so the extent state tree is expected
1331  * to have one and only one object corresponding to this IO.
1332  */
1333 static int end_bio_extent_readpage(struct bio *bio,
1334 				   unsigned int bytes_done, int err)
1335 {
1336 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1337 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1338 	struct extent_map_tree *tree = bio->bi_private;
1339 	u64 start;
1340 	u64 end;
1341 	int whole_page;
1342 	int ret;
1343 
1344 	if (bio->bi_size)
1345 		return 1;
1346 
1347 	do {
1348 		struct page *page = bvec->bv_page;
1349 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1350 		end = start + bvec->bv_len - 1;
1351 
1352 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1353 			whole_page = 1;
1354 		else
1355 			whole_page = 0;
1356 
1357 		if (--bvec >= bio->bi_io_vec)
1358 			prefetchw(&bvec->bv_page->flags);
1359 
1360 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1361 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1362 			if (ret)
1363 				uptodate = 0;
1364 		}
1365 		if (uptodate) {
1366 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1367 			if (whole_page)
1368 				SetPageUptodate(page);
1369 			else
1370 				check_page_uptodate(tree, page);
1371 		} else {
1372 			ClearPageUptodate(page);
1373 			SetPageError(page);
1374 		}
1375 
1376 		unlock_extent(tree, start, end, GFP_ATOMIC);
1377 
1378 		if (whole_page)
1379 			unlock_page(page);
1380 		else
1381 			check_page_locked(tree, page);
1382 	} while (bvec >= bio->bi_io_vec);
1383 
1384 	bio_put(bio);
1385 	return 0;
1386 }
1387 
1388 /*
1389  * IO done from prepare_write is pretty simple, we just unlock
1390  * the structs in the extent tree when done, and set the uptodate bits
1391  * as appropriate.
1392  */
1393 static int end_bio_extent_preparewrite(struct bio *bio,
1394 				       unsigned int bytes_done, int err)
1395 {
1396 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1397 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1398 	struct extent_map_tree *tree = bio->bi_private;
1399 	u64 start;
1400 	u64 end;
1401 
1402 	if (bio->bi_size)
1403 		return 1;
1404 
1405 	do {
1406 		struct page *page = bvec->bv_page;
1407 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1408 		end = start + bvec->bv_len - 1;
1409 
1410 		if (--bvec >= bio->bi_io_vec)
1411 			prefetchw(&bvec->bv_page->flags);
1412 
1413 		if (uptodate) {
1414 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1415 		} else {
1416 			ClearPageUptodate(page);
1417 			SetPageError(page);
1418 		}
1419 
1420 		unlock_extent(tree, start, end, GFP_ATOMIC);
1421 
1422 	} while (bvec >= bio->bi_io_vec);
1423 
1424 	bio_put(bio);
1425 	return 0;
1426 }
1427 
1428 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1429 			      struct page *page, sector_t sector,
1430 			      size_t size, unsigned long offset,
1431 			      struct block_device *bdev,
1432 			      bio_end_io_t end_io_func)
1433 {
1434 	struct bio *bio;
1435 	int ret = 0;
1436 
1437 	bio = bio_alloc(GFP_NOIO, 1);
1438 
1439 	bio->bi_sector = sector;
1440 	bio->bi_bdev = bdev;
1441 	bio->bi_io_vec[0].bv_page = page;
1442 	bio->bi_io_vec[0].bv_len = size;
1443 	bio->bi_io_vec[0].bv_offset = offset;
1444 
1445 	bio->bi_vcnt = 1;
1446 	bio->bi_idx = 0;
1447 	bio->bi_size = size;
1448 
1449 	bio->bi_end_io = end_io_func;
1450 	bio->bi_private = tree;
1451 
1452 	bio_get(bio);
1453 	submit_bio(rw, bio);
1454 
1455 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1456 		ret = -EOPNOTSUPP;
1457 
1458 	bio_put(bio);
1459 	return ret;
1460 }
1461 
1462 void set_page_extent_mapped(struct page *page)
1463 {
1464 	if (!PagePrivate(page)) {
1465 		SetPagePrivate(page);
1466 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1467 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1468 		page_cache_get(page);
1469 	}
1470 }
1471 
1472 /*
1473  * basic readpage implementation.  Locked extent state structs are inserted
1474  * into the tree that are removed when the IO is done (by the end_io
1475  * handlers)
1476  */
1477 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1478 			  get_extent_t *get_extent)
1479 {
1480 	struct inode *inode = page->mapping->host;
1481 	u64 start = page->index << PAGE_CACHE_SHIFT;
1482 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1483 	u64 end;
1484 	u64 cur = start;
1485 	u64 extent_offset;
1486 	u64 last_byte = i_size_read(inode);
1487 	u64 block_start;
1488 	u64 cur_end;
1489 	sector_t sector;
1490 	struct extent_map *em;
1491 	struct block_device *bdev;
1492 	int ret;
1493 	int nr = 0;
1494 	size_t page_offset = 0;
1495 	size_t iosize;
1496 	size_t blocksize = inode->i_sb->s_blocksize;
1497 
1498 	set_page_extent_mapped(page);
1499 
1500 	end = page_end;
1501 	lock_extent(tree, start, end, GFP_NOFS);
1502 
1503 	while (cur <= end) {
1504 		if (cur >= last_byte) {
1505 			iosize = PAGE_CACHE_SIZE - page_offset;
1506 			zero_user_page(page, page_offset, iosize, KM_USER0);
1507 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1508 					    GFP_NOFS);
1509 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1510 			break;
1511 		}
1512 		em = get_extent(inode, page, page_offset, cur, end, 0);
1513 		if (IS_ERR(em) || !em) {
1514 			SetPageError(page);
1515 			unlock_extent(tree, cur, end, GFP_NOFS);
1516 			break;
1517 		}
1518 
1519 		extent_offset = cur - em->start;
1520 		BUG_ON(em->end < cur);
1521 		BUG_ON(end < cur);
1522 
1523 		iosize = min(em->end - cur, end - cur) + 1;
1524 		cur_end = min(em->end, end);
1525 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1526 		sector = (em->block_start + extent_offset) >> 9;
1527 		bdev = em->bdev;
1528 		block_start = em->block_start;
1529 		free_extent_map(em);
1530 		em = NULL;
1531 
1532 		/* we've found a hole, just zero and go on */
1533 		if (block_start == EXTENT_MAP_HOLE) {
1534 			zero_user_page(page, page_offset, iosize, KM_USER0);
1535 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1536 					    GFP_NOFS);
1537 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1538 			cur = cur + iosize;
1539 			page_offset += iosize;
1540 			continue;
1541 		}
1542 		/* the get_extent function already copied into the page */
1543 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1544 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1545 			cur = cur + iosize;
1546 			page_offset += iosize;
1547 			continue;
1548 		}
1549 
1550 		ret = 0;
1551 		if (tree->ops && tree->ops->readpage_io_hook) {
1552 			ret = tree->ops->readpage_io_hook(page, cur,
1553 							  cur + iosize - 1);
1554 		}
1555 		if (!ret) {
1556 			ret = submit_extent_page(READ, tree, page,
1557 						 sector, iosize, page_offset,
1558 						 bdev, end_bio_extent_readpage);
1559 		}
1560 		if (ret)
1561 			SetPageError(page);
1562 		cur = cur + iosize;
1563 		page_offset += iosize;
1564 		nr++;
1565 	}
1566 	if (!nr) {
1567 		if (!PageError(page))
1568 			SetPageUptodate(page);
1569 		unlock_page(page);
1570 	}
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL(extent_read_full_page);
1574 
1575 /*
1576  * the writepage semantics are similar to regular writepage.  extent
1577  * records are inserted to lock ranges in the tree, and as dirty areas
1578  * are found, they are marked writeback.  Then the lock bits are removed
1579  * and the end_io handler clears the writeback ranges
1580  */
1581 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1582 			  get_extent_t *get_extent,
1583 			  struct writeback_control *wbc)
1584 {
1585 	struct inode *inode = page->mapping->host;
1586 	u64 start = page->index << PAGE_CACHE_SHIFT;
1587 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1588 	u64 end;
1589 	u64 cur = start;
1590 	u64 extent_offset;
1591 	u64 last_byte = i_size_read(inode);
1592 	u64 block_start;
1593 	sector_t sector;
1594 	struct extent_map *em;
1595 	struct block_device *bdev;
1596 	int ret;
1597 	int nr = 0;
1598 	size_t page_offset = 0;
1599 	size_t iosize;
1600 	size_t blocksize;
1601 	loff_t i_size = i_size_read(inode);
1602 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1603 	u64 nr_delalloc;
1604 	u64 delalloc_end;
1605 
1606 	WARN_ON(!PageLocked(page));
1607 	if (page->index > end_index) {
1608 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1609 		unlock_page(page);
1610 		return 0;
1611 	}
1612 
1613 	if (page->index == end_index) {
1614 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1615 		zero_user_page(page, offset,
1616 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1617 	}
1618 
1619 	set_page_extent_mapped(page);
1620 
1621 	lock_extent(tree, start, page_end, GFP_NOFS);
1622 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1623 					       &delalloc_end,
1624 					       128 * 1024 * 1024);
1625 	if (nr_delalloc) {
1626 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1627 		if (delalloc_end >= page_end + 1) {
1628 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1629 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1630 					 1, 0, GFP_NOFS);
1631 		}
1632 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1633 				 0, 0, GFP_NOFS);
1634 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1635 			printk("found delalloc bits after clear extent_bit\n");
1636 		}
1637 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1638 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1639 	}
1640 
1641 	end = page_end;
1642 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1643 		printk("found delalloc bits after lock_extent\n");
1644 	}
1645 
1646 	if (last_byte <= start) {
1647 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1648 		goto done;
1649 	}
1650 
1651 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1652 	blocksize = inode->i_sb->s_blocksize;
1653 
1654 	while (cur <= end) {
1655 		if (cur >= last_byte) {
1656 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1657 			break;
1658 		}
1659 		em = get_extent(inode, page, page_offset, cur, end, 0);
1660 		if (IS_ERR(em) || !em) {
1661 			SetPageError(page);
1662 			break;
1663 		}
1664 
1665 		extent_offset = cur - em->start;
1666 		BUG_ON(em->end < cur);
1667 		BUG_ON(end < cur);
1668 		iosize = min(em->end - cur, end - cur) + 1;
1669 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1670 		sector = (em->block_start + extent_offset) >> 9;
1671 		bdev = em->bdev;
1672 		block_start = em->block_start;
1673 		free_extent_map(em);
1674 		em = NULL;
1675 
1676 		if (block_start == EXTENT_MAP_HOLE ||
1677 		    block_start == EXTENT_MAP_INLINE) {
1678 			clear_extent_dirty(tree, cur,
1679 					   cur + iosize - 1, GFP_NOFS);
1680 			cur = cur + iosize;
1681 			page_offset += iosize;
1682 			continue;
1683 		}
1684 
1685 		/* leave this out until we have a page_mkwrite call */
1686 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1687 				   EXTENT_DIRTY, 0)) {
1688 			cur = cur + iosize;
1689 			page_offset += iosize;
1690 			continue;
1691 		}
1692 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1693 		if (tree->ops && tree->ops->writepage_io_hook) {
1694 			ret = tree->ops->writepage_io_hook(page, cur,
1695 						cur + iosize - 1);
1696 		} else {
1697 			ret = 0;
1698 		}
1699 		if (ret)
1700 			SetPageError(page);
1701 		else {
1702 			set_range_writeback(tree, cur, cur + iosize - 1);
1703 			ret = submit_extent_page(WRITE, tree, page, sector,
1704 						 iosize, page_offset, bdev,
1705 						 end_bio_extent_writepage);
1706 			if (ret)
1707 				SetPageError(page);
1708 		}
1709 		cur = cur + iosize;
1710 		page_offset += iosize;
1711 		nr++;
1712 	}
1713 done:
1714 	unlock_extent(tree, start, page_end, GFP_NOFS);
1715 	unlock_page(page);
1716 	return 0;
1717 }
1718 EXPORT_SYMBOL(extent_write_full_page);
1719 
1720 /*
1721  * basic invalidatepage code, this waits on any locked or writeback
1722  * ranges corresponding to the page, and then deletes any extent state
1723  * records from the tree
1724  */
1725 int extent_invalidatepage(struct extent_map_tree *tree,
1726 			  struct page *page, unsigned long offset)
1727 {
1728 	u64 start = (page->index << PAGE_CACHE_SHIFT);
1729 	u64 end = start + PAGE_CACHE_SIZE - 1;
1730 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1731 
1732 	start += (offset + blocksize -1) & ~(blocksize - 1);
1733 	if (start > end)
1734 		return 0;
1735 
1736 	lock_extent(tree, start, end, GFP_NOFS);
1737 	wait_on_extent_writeback(tree, start, end);
1738 	clear_extent_bit(tree, start, end,
1739 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1740 			 1, 1, GFP_NOFS);
1741 	return 0;
1742 }
1743 EXPORT_SYMBOL(extent_invalidatepage);
1744 
1745 /*
1746  * simple commit_write call, set_range_dirty is used to mark both
1747  * the pages and the extent records as dirty
1748  */
1749 int extent_commit_write(struct extent_map_tree *tree,
1750 			struct inode *inode, struct page *page,
1751 			unsigned from, unsigned to)
1752 {
1753 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1754 
1755 	set_page_extent_mapped(page);
1756 	set_page_dirty(page);
1757 
1758 	if (pos > inode->i_size) {
1759 		i_size_write(inode, pos);
1760 		mark_inode_dirty(inode);
1761 	}
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL(extent_commit_write);
1765 
1766 int extent_prepare_write(struct extent_map_tree *tree,
1767 			 struct inode *inode, struct page *page,
1768 			 unsigned from, unsigned to, get_extent_t *get_extent)
1769 {
1770 	u64 page_start = page->index << PAGE_CACHE_SHIFT;
1771 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1772 	u64 block_start;
1773 	u64 orig_block_start;
1774 	u64 block_end;
1775 	u64 cur_end;
1776 	struct extent_map *em;
1777 	unsigned blocksize = 1 << inode->i_blkbits;
1778 	size_t page_offset = 0;
1779 	size_t block_off_start;
1780 	size_t block_off_end;
1781 	int err = 0;
1782 	int iocount = 0;
1783 	int ret = 0;
1784 	int isnew;
1785 
1786 	set_page_extent_mapped(page);
1787 
1788 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1789 	block_end = (page_start + to - 1) | (blocksize - 1);
1790 	orig_block_start = block_start;
1791 
1792 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1793 	while(block_start <= block_end) {
1794 		em = get_extent(inode, page, page_offset, block_start,
1795 				block_end, 1);
1796 		if (IS_ERR(em) || !em) {
1797 			goto err;
1798 		}
1799 		cur_end = min(block_end, em->end);
1800 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1801 		block_off_end = block_off_start + blocksize;
1802 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1803 
1804 		if (!PageUptodate(page) && isnew &&
1805 		    (block_off_end > to || block_off_start < from)) {
1806 			void *kaddr;
1807 
1808 			kaddr = kmap_atomic(page, KM_USER0);
1809 			if (block_off_end > to)
1810 				memset(kaddr + to, 0, block_off_end - to);
1811 			if (block_off_start < from)
1812 				memset(kaddr + block_off_start, 0,
1813 				       from - block_off_start);
1814 			flush_dcache_page(page);
1815 			kunmap_atomic(kaddr, KM_USER0);
1816 		}
1817 		if (!isnew && !PageUptodate(page) &&
1818 		    (block_off_end > to || block_off_start < from) &&
1819 		    !test_range_bit(tree, block_start, cur_end,
1820 				    EXTENT_UPTODATE, 1)) {
1821 			u64 sector;
1822 			u64 extent_offset = block_start - em->start;
1823 			size_t iosize;
1824 			sector = (em->block_start + extent_offset) >> 9;
1825 			iosize = (cur_end - block_start + blocksize - 1) &
1826 				~((u64)blocksize - 1);
1827 			/*
1828 			 * we've already got the extent locked, but we
1829 			 * need to split the state such that our end_bio
1830 			 * handler can clear the lock.
1831 			 */
1832 			set_extent_bit(tree, block_start,
1833 				       block_start + iosize - 1,
1834 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1835 			ret = submit_extent_page(READ, tree, page,
1836 					 sector, iosize, page_offset, em->bdev,
1837 					 end_bio_extent_preparewrite);
1838 			iocount++;
1839 			block_start = block_start + iosize;
1840 		} else {
1841 			set_extent_uptodate(tree, block_start, cur_end,
1842 					    GFP_NOFS);
1843 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1844 			block_start = cur_end + 1;
1845 		}
1846 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1847 		free_extent_map(em);
1848 	}
1849 	if (iocount) {
1850 		wait_extent_bit(tree, orig_block_start,
1851 				block_end, EXTENT_LOCKED);
1852 	}
1853 	check_page_uptodate(tree, page);
1854 err:
1855 	/* FIXME, zero out newly allocated blocks on error */
1856 	return err;
1857 }
1858 EXPORT_SYMBOL(extent_prepare_write);
1859 
1860 /*
1861  * a helper for releasepage.  As long as there are no locked extents
1862  * in the range corresponding to the page, both state records and extent
1863  * map records are removed
1864  */
1865 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1866 {
1867 	struct extent_map *em;
1868 	u64 start = page->index << PAGE_CACHE_SHIFT;
1869 	u64 end = start + PAGE_CACHE_SIZE - 1;
1870 	u64 orig_start = start;
1871 	int ret = 1;
1872 
1873 	while (start <= end) {
1874 		em = lookup_extent_mapping(tree, start, end);
1875 		if (!em || IS_ERR(em))
1876 			break;
1877 		if (!test_range_bit(tree, em->start, em->end,
1878 				    EXTENT_LOCKED, 0)) {
1879 			remove_extent_mapping(tree, em);
1880 			/* once for the rb tree */
1881 			free_extent_map(em);
1882 		}
1883 		start = em->end + 1;
1884 		/* once for us */
1885 		free_extent_map(em);
1886 	}
1887 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1888 		ret = 0;
1889 	else
1890 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1891 				 1, 1, GFP_NOFS);
1892 	return ret;
1893 }
1894 EXPORT_SYMBOL(try_release_extent_mapping);
1895 
1896 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1897 		get_extent_t *get_extent)
1898 {
1899 	struct inode *inode = mapping->host;
1900 	u64 start = iblock << inode->i_blkbits;
1901 	u64 end = start + (1 << inode->i_blkbits) - 1;
1902 	struct extent_map *em;
1903 
1904 	em = get_extent(inode, NULL, 0, start, end, 0);
1905 	if (!em || IS_ERR(em))
1906 		return 0;
1907 
1908 	if (em->block_start == EXTENT_MAP_INLINE ||
1909 	    em->block_start == EXTENT_MAP_HOLE)
1910 		return 0;
1911 
1912 	return (em->block_start + start - em->start) >> inode->i_blkbits;
1913 }
1914 
1915 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
1916 {
1917 	if (list_empty(&eb->lru)) {
1918 		extent_buffer_get(eb);
1919 		list_add(&eb->lru, &tree->buffer_lru);
1920 		tree->lru_size++;
1921 		if (tree->lru_size >= BUFFER_LRU_MAX) {
1922 			struct extent_buffer *rm;
1923 			rm = list_entry(tree->buffer_lru.prev,
1924 					struct extent_buffer, lru);
1925 			tree->lru_size--;
1926 			list_del(&rm->lru);
1927 			free_extent_buffer(rm);
1928 		}
1929 	} else
1930 		list_move(&eb->lru, &tree->buffer_lru);
1931 	return 0;
1932 }
1933 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
1934 				      u64 start, unsigned long len)
1935 {
1936 	struct list_head *lru = &tree->buffer_lru;
1937 	struct list_head *cur = lru->next;
1938 	struct extent_buffer *eb;
1939 
1940 	if (list_empty(lru))
1941 		return NULL;
1942 
1943 	do {
1944 		eb = list_entry(cur, struct extent_buffer, lru);
1945 		if (eb->start == start && eb->len == len) {
1946 			extent_buffer_get(eb);
1947 			return eb;
1948 		}
1949 		cur = cur->next;
1950 	} while (cur != lru);
1951 	return NULL;
1952 }
1953 
1954 static inline unsigned long num_extent_pages(u64 start, u64 len)
1955 {
1956 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
1957 		(start >> PAGE_CACHE_SHIFT);
1958 }
1959 
1960 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
1961 					      unsigned long i)
1962 {
1963 	struct page *p;
1964 
1965 	if (i == 0)
1966 		return eb->first_page;
1967 	i += eb->start >> PAGE_CACHE_SHIFT;
1968 	p = find_get_page(eb->first_page->mapping, i);
1969 	page_cache_release(p);
1970 	return p;
1971 }
1972 
1973 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
1974 						   u64 start,
1975 						   unsigned long len,
1976 						   gfp_t mask)
1977 {
1978 	struct extent_buffer *eb = NULL;
1979 
1980 	spin_lock(&tree->lru_lock);
1981 	eb = find_lru(tree, start, len);
1982 	if (eb) {
1983 		goto lru_add;
1984 	}
1985 	spin_unlock(&tree->lru_lock);
1986 
1987 	if (eb) {
1988 		memset(eb, 0, sizeof(*eb));
1989 	} else {
1990 		eb = kmem_cache_zalloc(extent_buffer_cache, mask);
1991 	}
1992 	INIT_LIST_HEAD(&eb->lru);
1993 	eb->start = start;
1994 	eb->len = len;
1995 	atomic_set(&eb->refs, 1);
1996 
1997 	spin_lock(&tree->lru_lock);
1998 lru_add:
1999 	add_lru(tree, eb);
2000 	spin_unlock(&tree->lru_lock);
2001 	return eb;
2002 }
2003 
2004 static void __free_extent_buffer(struct extent_buffer *eb)
2005 {
2006 	kmem_cache_free(extent_buffer_cache, eb);
2007 }
2008 
2009 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2010 					  u64 start, unsigned long len,
2011 					  struct page *page0,
2012 					  gfp_t mask)
2013 {
2014 	unsigned long num_pages = num_extent_pages(start, len);
2015 	unsigned long i;
2016 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2017 	struct extent_buffer *eb;
2018 	struct page *p;
2019 	struct address_space *mapping = tree->mapping;
2020 	int uptodate = 0;
2021 
2022 	eb = __alloc_extent_buffer(tree, start, len, mask);
2023 	if (!eb || IS_ERR(eb))
2024 		return NULL;
2025 
2026 	if (eb->flags & EXTENT_BUFFER_FILLED)
2027 		return eb;
2028 
2029 	if (page0) {
2030 		eb->first_page = page0;
2031 		i = 1;
2032 		index++;
2033 		page_cache_get(page0);
2034 		mark_page_accessed(page0);
2035 		set_page_extent_mapped(page0);
2036 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2037 				 len << 2);
2038 	} else {
2039 		i = 0;
2040 	}
2041 	for (; i < num_pages; i++, index++) {
2042 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2043 		if (!p) {
2044 			WARN_ON(1);
2045 			/* make sure the free only frees the pages we've
2046 			 * grabbed a reference on
2047 			 */
2048 			eb->len = i << PAGE_CACHE_SHIFT;
2049 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2050 			goto fail;
2051 		}
2052 		set_page_extent_mapped(p);
2053 		mark_page_accessed(p);
2054 		if (i == 0) {
2055 			eb->first_page = p;
2056 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2057 					 len << 2);
2058 		} else {
2059 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2060 		}
2061 		if (!PageUptodate(p))
2062 			uptodate = 0;
2063 		unlock_page(p);
2064 	}
2065 	if (uptodate)
2066 		eb->flags |= EXTENT_UPTODATE;
2067 	eb->flags |= EXTENT_BUFFER_FILLED;
2068 	return eb;
2069 fail:
2070 	free_extent_buffer(eb);
2071 	return NULL;
2072 }
2073 EXPORT_SYMBOL(alloc_extent_buffer);
2074 
2075 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2076 					 u64 start, unsigned long len,
2077 					  gfp_t mask)
2078 {
2079 	unsigned long num_pages = num_extent_pages(start, len);
2080 	unsigned long i; unsigned long index = start >> PAGE_CACHE_SHIFT;
2081 	struct extent_buffer *eb;
2082 	struct page *p;
2083 	struct address_space *mapping = tree->mapping;
2084 	int uptodate = 1;
2085 
2086 	eb = __alloc_extent_buffer(tree, start, len, mask);
2087 	if (!eb || IS_ERR(eb))
2088 		return NULL;
2089 
2090 	if (eb->flags & EXTENT_BUFFER_FILLED)
2091 		return eb;
2092 
2093 	for (i = 0; i < num_pages; i++, index++) {
2094 		p = find_lock_page(mapping, index);
2095 		if (!p) {
2096 			/* make sure the free only frees the pages we've
2097 			 * grabbed a reference on
2098 			 */
2099 			eb->len = i << PAGE_CACHE_SHIFT;
2100 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2101 			goto fail;
2102 		}
2103 		set_page_extent_mapped(p);
2104 		mark_page_accessed(p);
2105 
2106 		if (i == 0) {
2107 			eb->first_page = p;
2108 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2109 					 len << 2);
2110 		} else {
2111 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2112 		}
2113 
2114 		if (!PageUptodate(p))
2115 			uptodate = 0;
2116 		unlock_page(p);
2117 	}
2118 	if (uptodate)
2119 		eb->flags |= EXTENT_UPTODATE;
2120 	eb->flags |= EXTENT_BUFFER_FILLED;
2121 	return eb;
2122 fail:
2123 	free_extent_buffer(eb);
2124 	return NULL;
2125 }
2126 EXPORT_SYMBOL(find_extent_buffer);
2127 
2128 void free_extent_buffer(struct extent_buffer *eb)
2129 {
2130 	unsigned long i;
2131 	unsigned long num_pages;
2132 
2133 	if (!eb)
2134 		return;
2135 
2136 	if (!atomic_dec_and_test(&eb->refs))
2137 		return;
2138 
2139 	num_pages = num_extent_pages(eb->start, eb->len);
2140 
2141 	for (i = 0; i < num_pages; i++) {
2142 		page_cache_release(extent_buffer_page(eb, i));
2143 	}
2144 	__free_extent_buffer(eb);
2145 }
2146 EXPORT_SYMBOL(free_extent_buffer);
2147 
2148 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2149 			      struct extent_buffer *eb)
2150 {
2151 	int set;
2152 	unsigned long i;
2153 	unsigned long num_pages;
2154 	struct page *page;
2155 
2156 	u64 start = eb->start;
2157 	u64 end = start + eb->len - 1;
2158 
2159 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2160 	num_pages = num_extent_pages(eb->start, eb->len);
2161 
2162 	for (i = 0; i < num_pages; i++) {
2163 		page = extent_buffer_page(eb, i);
2164 		lock_page(page);
2165 		/*
2166 		 * if we're on the last page or the first page and the
2167 		 * block isn't aligned on a page boundary, do extra checks
2168 		 * to make sure we don't clean page that is partially dirty
2169 		 */
2170 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2171 		    ((i == num_pages - 1) &&
2172 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2173 			start = page->index << PAGE_CACHE_SHIFT;
2174 			end  = start + PAGE_CACHE_SIZE - 1;
2175 			if (test_range_bit(tree, start, end,
2176 					   EXTENT_DIRTY, 0)) {
2177 				unlock_page(page);
2178 				continue;
2179 			}
2180 		}
2181 		clear_page_dirty_for_io(page);
2182 		unlock_page(page);
2183 	}
2184 	return 0;
2185 }
2186 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2187 
2188 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2189 				    struct extent_buffer *eb)
2190 {
2191 	return wait_on_extent_writeback(tree, eb->start,
2192 					eb->start + eb->len - 1);
2193 }
2194 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2195 
2196 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2197 			     struct extent_buffer *eb)
2198 {
2199 	unsigned long i;
2200 	unsigned long num_pages;
2201 
2202 	num_pages = num_extent_pages(eb->start, eb->len);
2203 	for (i = 0; i < num_pages; i++) {
2204 		struct page *page = extent_buffer_page(eb, i);
2205 		/* writepage may need to do something special for the
2206 		 * first page, we have to make sure page->private is
2207 		 * properly set.  releasepage may drop page->private
2208 		 * on us if the page isn't already dirty.
2209 		 */
2210 		if (i == 0) {
2211 			lock_page(page);
2212 			set_page_private(page,
2213 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2214 					 eb->len << 2);
2215 		}
2216 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2217 		if (i == 0)
2218 			unlock_page(page);
2219 	}
2220 	return set_extent_dirty(tree, eb->start,
2221 				eb->start + eb->len - 1, GFP_NOFS);
2222 }
2223 EXPORT_SYMBOL(set_extent_buffer_dirty);
2224 
2225 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2226 				struct extent_buffer *eb)
2227 {
2228 	unsigned long i;
2229 	struct page *page;
2230 	unsigned long num_pages;
2231 
2232 	num_pages = num_extent_pages(eb->start, eb->len);
2233 
2234 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2235 			    GFP_NOFS);
2236 	for (i = 0; i < num_pages; i++) {
2237 		page = extent_buffer_page(eb, i);
2238 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2239 		    ((i == num_pages - 1) &&
2240 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2241 			check_page_uptodate(tree, page);
2242 			continue;
2243 		}
2244 		SetPageUptodate(page);
2245 	}
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2249 
2250 int extent_buffer_uptodate(struct extent_map_tree *tree,
2251 			     struct extent_buffer *eb)
2252 {
2253 	if (eb->flags & EXTENT_UPTODATE)
2254 		return 1;
2255 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2256 			   EXTENT_UPTODATE, 1);
2257 }
2258 EXPORT_SYMBOL(extent_buffer_uptodate);
2259 
2260 int read_extent_buffer_pages(struct extent_map_tree *tree,
2261 			     struct extent_buffer *eb,
2262 			     u64 start,
2263 			     int wait)
2264 {
2265 	unsigned long i;
2266 	unsigned long start_i;
2267 	struct page *page;
2268 	int err;
2269 	int ret = 0;
2270 	unsigned long num_pages;
2271 
2272 	if (eb->flags & EXTENT_UPTODATE)
2273 		return 0;
2274 
2275 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2276 			   EXTENT_UPTODATE, 1)) {
2277 		return 0;
2278 	}
2279 	if (start) {
2280 		WARN_ON(start < eb->start);
2281 		start_i = (start >> PAGE_CACHE_SHIFT) -
2282 			(eb->start >> PAGE_CACHE_SHIFT);
2283 	} else {
2284 		start_i = 0;
2285 	}
2286 
2287 	num_pages = num_extent_pages(eb->start, eb->len);
2288 	for (i = start_i; i < num_pages; i++) {
2289 		page = extent_buffer_page(eb, i);
2290 		if (PageUptodate(page)) {
2291 			continue;
2292 		}
2293 		if (!wait) {
2294 			if (TestSetPageLocked(page)) {
2295 				continue;
2296 			}
2297 		} else {
2298 			lock_page(page);
2299 		}
2300 		if (!PageUptodate(page)) {
2301 			err = page->mapping->a_ops->readpage(NULL, page);
2302 			if (err) {
2303 				ret = err;
2304 			}
2305 		} else {
2306 			unlock_page(page);
2307 		}
2308 	}
2309 
2310 	if (ret || !wait) {
2311 		return ret;
2312 	}
2313 
2314 	for (i = start_i; i < num_pages; i++) {
2315 		page = extent_buffer_page(eb, i);
2316 		wait_on_page_locked(page);
2317 		if (!PageUptodate(page)) {
2318 			ret = -EIO;
2319 		}
2320 	}
2321 	if (!ret)
2322 		eb->flags |= EXTENT_UPTODATE;
2323 	return ret;
2324 }
2325 EXPORT_SYMBOL(read_extent_buffer_pages);
2326 
2327 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2328 			unsigned long start,
2329 			unsigned long len)
2330 {
2331 	size_t cur;
2332 	size_t offset;
2333 	struct page *page;
2334 	char *kaddr;
2335 	char *dst = (char *)dstv;
2336 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2337 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2338 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2339 
2340 	WARN_ON(start > eb->len);
2341 	WARN_ON(start + len > eb->start + eb->len);
2342 
2343 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2344 	if (i == 0)
2345 		offset += start_offset;
2346 
2347 	while(len > 0) {
2348 		page = extent_buffer_page(eb, i);
2349 		if (!PageUptodate(page)) {
2350 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2351 			WARN_ON(1);
2352 		}
2353 		WARN_ON(!PageUptodate(page));
2354 
2355 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2356 		kaddr = kmap_atomic(page, KM_USER0);
2357 		memcpy(dst, kaddr + offset, cur);
2358 		kunmap_atomic(kaddr, KM_USER0);
2359 
2360 		dst += cur;
2361 		len -= cur;
2362 		offset = 0;
2363 		i++;
2364 	}
2365 }
2366 EXPORT_SYMBOL(read_extent_buffer);
2367 
2368 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2369 			       unsigned long min_len, char **token, char **map,
2370 			       unsigned long *map_start,
2371 			       unsigned long *map_len, int km)
2372 {
2373 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2374 	char *kaddr;
2375 	struct page *p;
2376 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2377 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2378 	unsigned long end_i = (start_offset + start + min_len) >>
2379 		PAGE_CACHE_SHIFT;
2380 
2381 	if (i != end_i)
2382 		return -EINVAL;
2383 
2384 	if (i == 0) {
2385 		offset = start_offset;
2386 		*map_start = 0;
2387 	} else {
2388 		offset = 0;
2389 		*map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2390 	}
2391 	if (start + min_len >= eb->len) {
2392 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2393 		WARN_ON(1);
2394 	}
2395 
2396 	p = extent_buffer_page(eb, i);
2397 	WARN_ON(!PageUptodate(p));
2398 	kaddr = kmap_atomic(p, km);
2399 	*token = kaddr;
2400 	*map = kaddr + offset;
2401 	*map_len = PAGE_CACHE_SIZE - offset;
2402 	return 0;
2403 }
2404 EXPORT_SYMBOL(map_private_extent_buffer);
2405 
2406 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2407 		      unsigned long min_len,
2408 		      char **token, char **map,
2409 		      unsigned long *map_start,
2410 		      unsigned long *map_len, int km)
2411 {
2412 	int err;
2413 	int save = 0;
2414 	if (eb->map_token) {
2415 		unmap_extent_buffer(eb, eb->map_token, km);
2416 		eb->map_token = NULL;
2417 		save = 1;
2418 	}
2419 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2420 				       map_start, map_len, km);
2421 	if (!err && save) {
2422 		eb->map_token = *token;
2423 		eb->kaddr = *map;
2424 		eb->map_start = *map_start;
2425 		eb->map_len = *map_len;
2426 	}
2427 	return err;
2428 }
2429 EXPORT_SYMBOL(map_extent_buffer);
2430 
2431 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2432 {
2433 	kunmap_atomic(token, km);
2434 }
2435 EXPORT_SYMBOL(unmap_extent_buffer);
2436 
2437 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2438 			  unsigned long start,
2439 			  unsigned long len)
2440 {
2441 	size_t cur;
2442 	size_t offset;
2443 	struct page *page;
2444 	char *kaddr;
2445 	char *ptr = (char *)ptrv;
2446 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2447 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2448 	int ret = 0;
2449 
2450 	WARN_ON(start > eb->len);
2451 	WARN_ON(start + len > eb->start + eb->len);
2452 
2453 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2454 	if (i == 0)
2455 		offset += start_offset;
2456 
2457 	while(len > 0) {
2458 		page = extent_buffer_page(eb, i);
2459 		WARN_ON(!PageUptodate(page));
2460 
2461 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2462 
2463 		kaddr = kmap_atomic(page, KM_USER0);
2464 		ret = memcmp(ptr, kaddr + offset, cur);
2465 		kunmap_atomic(kaddr, KM_USER0);
2466 		if (ret)
2467 			break;
2468 
2469 		ptr += cur;
2470 		len -= cur;
2471 		offset = 0;
2472 		i++;
2473 	}
2474 	return ret;
2475 }
2476 EXPORT_SYMBOL(memcmp_extent_buffer);
2477 
2478 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2479 			 unsigned long start, unsigned long len)
2480 {
2481 	size_t cur;
2482 	size_t offset;
2483 	struct page *page;
2484 	char *kaddr;
2485 	char *src = (char *)srcv;
2486 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2487 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2488 
2489 	WARN_ON(start > eb->len);
2490 	WARN_ON(start + len > eb->start + eb->len);
2491 
2492 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2493 	if (i == 0)
2494 		offset += start_offset;
2495 
2496 	while(len > 0) {
2497 		page = extent_buffer_page(eb, i);
2498 		WARN_ON(!PageUptodate(page));
2499 
2500 		cur = min(len, PAGE_CACHE_SIZE - offset);
2501 		kaddr = kmap_atomic(page, KM_USER0);
2502 		memcpy(kaddr + offset, src, cur);
2503 		kunmap_atomic(kaddr, KM_USER0);
2504 
2505 		src += cur;
2506 		len -= cur;
2507 		offset = 0;
2508 		i++;
2509 	}
2510 }
2511 EXPORT_SYMBOL(write_extent_buffer);
2512 
2513 void memset_extent_buffer(struct extent_buffer *eb, char c,
2514 			  unsigned long start, unsigned long len)
2515 {
2516 	size_t cur;
2517 	size_t offset;
2518 	struct page *page;
2519 	char *kaddr;
2520 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2521 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2522 
2523 	WARN_ON(start > eb->len);
2524 	WARN_ON(start + len > eb->start + eb->len);
2525 
2526 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2527 	if (i == 0)
2528 		offset += start_offset;
2529 
2530 	while(len > 0) {
2531 		page = extent_buffer_page(eb, i);
2532 		WARN_ON(!PageUptodate(page));
2533 
2534 		cur = min(len, PAGE_CACHE_SIZE - offset);
2535 		kaddr = kmap_atomic(page, KM_USER0);
2536 		memset(kaddr + offset, c, cur);
2537 		kunmap_atomic(kaddr, KM_USER0);
2538 
2539 		len -= cur;
2540 		offset = 0;
2541 		i++;
2542 	}
2543 }
2544 EXPORT_SYMBOL(memset_extent_buffer);
2545 
2546 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2547 			unsigned long dst_offset, unsigned long src_offset,
2548 			unsigned long len)
2549 {
2550 	u64 dst_len = dst->len;
2551 	size_t cur;
2552 	size_t offset;
2553 	struct page *page;
2554 	char *kaddr;
2555 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2556 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2557 
2558 	WARN_ON(src->len != dst_len);
2559 
2560 	offset = dst_offset & ((unsigned long)PAGE_CACHE_SIZE - 1);
2561 	if (i == 0)
2562 		offset += start_offset;
2563 
2564 	while(len > 0) {
2565 		page = extent_buffer_page(dst, i);
2566 		WARN_ON(!PageUptodate(page));
2567 
2568 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2569 
2570 		kaddr = kmap_atomic(page, KM_USER1);
2571 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2572 		kunmap_atomic(kaddr, KM_USER1);
2573 
2574 		src_offset += cur;
2575 		len -= cur;
2576 		offset = 0;
2577 		i++;
2578 	}
2579 }
2580 EXPORT_SYMBOL(copy_extent_buffer);
2581 
2582 static void move_pages(struct page *dst_page, struct page *src_page,
2583 		       unsigned long dst_off, unsigned long src_off,
2584 		       unsigned long len)
2585 {
2586 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2587 	if (dst_page == src_page) {
2588 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2589 	} else {
2590 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2591 		char *p = dst_kaddr + dst_off + len;
2592 		char *s = src_kaddr + src_off + len;
2593 
2594 		while (len--)
2595 			*--p = *--s;
2596 
2597 		kunmap_atomic(src_kaddr, KM_USER1);
2598 	}
2599 	kunmap_atomic(dst_kaddr, KM_USER0);
2600 }
2601 
2602 static void copy_pages(struct page *dst_page, struct page *src_page,
2603 		       unsigned long dst_off, unsigned long src_off,
2604 		       unsigned long len)
2605 {
2606 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2607 	char *src_kaddr;
2608 
2609 	if (dst_page != src_page)
2610 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2611 	else
2612 		src_kaddr = dst_kaddr;
2613 
2614 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2615 	kunmap_atomic(dst_kaddr, KM_USER0);
2616 	if (dst_page != src_page)
2617 		kunmap_atomic(src_kaddr, KM_USER1);
2618 }
2619 
2620 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2621 			   unsigned long src_offset, unsigned long len)
2622 {
2623 	size_t cur;
2624 	size_t dst_off_in_page;
2625 	size_t src_off_in_page;
2626 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2627 	unsigned long dst_i;
2628 	unsigned long src_i;
2629 
2630 	if (src_offset + len > dst->len) {
2631 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2632 		       src_offset, len, dst->len);
2633 		BUG_ON(1);
2634 	}
2635 	if (dst_offset + len > dst->len) {
2636 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2637 		       dst_offset, len, dst->len);
2638 		BUG_ON(1);
2639 	}
2640 
2641 	while(len > 0) {
2642 		dst_off_in_page = dst_offset &
2643 			((unsigned long)PAGE_CACHE_SIZE - 1);
2644 		src_off_in_page = src_offset &
2645 			((unsigned long)PAGE_CACHE_SIZE - 1);
2646 
2647 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2648 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2649 
2650 		if (src_i == 0)
2651 			src_off_in_page += start_offset;
2652 		if (dst_i == 0)
2653 			dst_off_in_page += start_offset;
2654 
2655 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2656 					       src_off_in_page));
2657 		cur = min(cur, (unsigned long)(PAGE_CACHE_SIZE -
2658 					       dst_off_in_page));
2659 
2660 		copy_pages(extent_buffer_page(dst, dst_i),
2661 			   extent_buffer_page(dst, src_i),
2662 			   dst_off_in_page, src_off_in_page, cur);
2663 
2664 		src_offset += cur;
2665 		dst_offset += cur;
2666 		len -= cur;
2667 	}
2668 }
2669 EXPORT_SYMBOL(memcpy_extent_buffer);
2670 
2671 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2672 			   unsigned long src_offset, unsigned long len)
2673 {
2674 	size_t cur;
2675 	size_t dst_off_in_page;
2676 	size_t src_off_in_page;
2677 	unsigned long dst_end = dst_offset + len - 1;
2678 	unsigned long src_end = src_offset + len - 1;
2679 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2680 	unsigned long dst_i;
2681 	unsigned long src_i;
2682 
2683 	if (src_offset + len > dst->len) {
2684 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2685 		       src_offset, len, dst->len);
2686 		BUG_ON(1);
2687 	}
2688 	if (dst_offset + len > dst->len) {
2689 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2690 		       dst_offset, len, dst->len);
2691 		BUG_ON(1);
2692 	}
2693 	if (dst_offset < src_offset) {
2694 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2695 		return;
2696 	}
2697 	while(len > 0) {
2698 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2699 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2700 
2701 		dst_off_in_page = dst_end &
2702 			((unsigned long)PAGE_CACHE_SIZE - 1);
2703 		src_off_in_page = src_end &
2704 			((unsigned long)PAGE_CACHE_SIZE - 1);
2705 		if (src_i == 0)
2706 			src_off_in_page += start_offset;
2707 		if (dst_i == 0)
2708 			dst_off_in_page += start_offset;
2709 
2710 		cur = min(len, src_off_in_page + 1);
2711 		cur = min(cur, dst_off_in_page + 1);
2712 		move_pages(extent_buffer_page(dst, dst_i),
2713 			   extent_buffer_page(dst, src_i),
2714 			   dst_off_in_page - cur + 1,
2715 			   src_off_in_page - cur + 1, cur);
2716 
2717 		dst_end -= cur;
2718 		src_end -= cur;
2719 		len -= cur;
2720 	}
2721 }
2722 EXPORT_SYMBOL(memmove_extent_buffer);
2723