xref: /openbmc/linux/fs/btrfs/extent_map.c (revision f510cfec)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include "extent_map.h"
12 
13 /* temporary define until extent_map moves out of btrfs */
14 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
15 				       unsigned long extra_flags,
16 				       void (*ctor)(void *, struct kmem_cache *,
17 						    unsigned long));
18 
19 static struct kmem_cache *extent_map_cache;
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22 
23 static LIST_HEAD(extent_buffers);
24 static LIST_HEAD(buffers);
25 static LIST_HEAD(states);
26 
27 static spinlock_t extent_buffers_lock;
28 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
29 static int nr_extent_buffers;
30 #define MAX_EXTENT_BUFFER_CACHE 128
31 
32 struct tree_entry {
33 	u64 start;
34 	u64 end;
35 	int in_tree;
36 	struct rb_node rb_node;
37 };
38 
39 void __init extent_map_init(void)
40 {
41 	extent_map_cache = btrfs_cache_create("extent_map",
42 					    sizeof(struct extent_map), 0,
43 					    NULL);
44 	extent_state_cache = btrfs_cache_create("extent_state",
45 					    sizeof(struct extent_state), 0,
46 					    NULL);
47 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
48 					    sizeof(struct extent_buffer), 0,
49 					    NULL);
50 	spin_lock_init(&extent_buffers_lock);
51 }
52 
53 void __exit extent_map_exit(void)
54 {
55 	struct extent_buffer *eb;
56 	struct extent_state *state;
57 
58 	while (!list_empty(&extent_buffers)) {
59 		eb = list_entry(extent_buffers.next,
60 				struct extent_buffer, list);
61 		list_del(&eb->list);
62 		kmem_cache_free(extent_buffer_cache, eb);
63 	}
64 	while (!list_empty(&states)) {
65 		state = list_entry(states.next, struct extent_state, list);
66 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
67 		list_del(&state->list);
68 		kmem_cache_free(extent_state_cache, state);
69 
70 	}
71 	while (!list_empty(&buffers)) {
72 		eb = list_entry(buffers.next,
73 				struct extent_buffer, leak_list);
74 		printk("buffer leak start %Lu len %lu return %lX\n", eb->start, eb->len, eb->alloc_addr);
75 		list_del(&eb->leak_list);
76 		kmem_cache_free(extent_buffer_cache, eb);
77 	}
78 
79 
80 	if (extent_map_cache)
81 		kmem_cache_destroy(extent_map_cache);
82 	if (extent_state_cache)
83 		kmem_cache_destroy(extent_state_cache);
84 	if (extent_buffer_cache)
85 		kmem_cache_destroy(extent_buffer_cache);
86 }
87 
88 void extent_map_tree_init(struct extent_map_tree *tree,
89 			  struct address_space *mapping, gfp_t mask)
90 {
91 	tree->map.rb_node = NULL;
92 	tree->state.rb_node = NULL;
93 	tree->ops = NULL;
94 	rwlock_init(&tree->lock);
95 	tree->mapping = mapping;
96 }
97 EXPORT_SYMBOL(extent_map_tree_init);
98 
99 struct extent_map *alloc_extent_map(gfp_t mask)
100 {
101 	struct extent_map *em;
102 	em = kmem_cache_alloc(extent_map_cache, mask);
103 	if (!em || IS_ERR(em))
104 		return em;
105 	em->in_tree = 0;
106 	atomic_set(&em->refs, 1);
107 	return em;
108 }
109 EXPORT_SYMBOL(alloc_extent_map);
110 
111 void free_extent_map(struct extent_map *em)
112 {
113 	if (!em)
114 		return;
115 	if (atomic_dec_and_test(&em->refs)) {
116 		WARN_ON(em->in_tree);
117 		kmem_cache_free(extent_map_cache, em);
118 	}
119 }
120 EXPORT_SYMBOL(free_extent_map);
121 
122 
123 struct extent_state *alloc_extent_state(gfp_t mask)
124 {
125 	struct extent_state *state;
126 	unsigned long flags;
127 
128 	state = kmem_cache_alloc(extent_state_cache, mask);
129 	if (!state || IS_ERR(state))
130 		return state;
131 	state->state = 0;
132 	state->in_tree = 0;
133 	state->private = 0;
134 
135 	spin_lock_irqsave(&state_lock, flags);
136 	list_add(&state->list, &states);
137 	spin_unlock_irqrestore(&state_lock, flags);
138 
139 	atomic_set(&state->refs, 1);
140 	init_waitqueue_head(&state->wq);
141 	return state;
142 }
143 EXPORT_SYMBOL(alloc_extent_state);
144 
145 void free_extent_state(struct extent_state *state)
146 {
147 	unsigned long flags;
148 	if (!state)
149 		return;
150 	if (atomic_dec_and_test(&state->refs)) {
151 		WARN_ON(state->in_tree);
152 		spin_lock_irqsave(&state_lock, flags);
153 		list_del(&state->list);
154 		spin_unlock_irqrestore(&state_lock, flags);
155 		kmem_cache_free(extent_state_cache, state);
156 	}
157 }
158 EXPORT_SYMBOL(free_extent_state);
159 
160 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
161 				   struct rb_node *node)
162 {
163 	struct rb_node ** p = &root->rb_node;
164 	struct rb_node * parent = NULL;
165 	struct tree_entry *entry;
166 
167 	while(*p) {
168 		parent = *p;
169 		entry = rb_entry(parent, struct tree_entry, rb_node);
170 
171 		if (offset < entry->start)
172 			p = &(*p)->rb_left;
173 		else if (offset > entry->end)
174 			p = &(*p)->rb_right;
175 		else
176 			return parent;
177 	}
178 
179 	entry = rb_entry(node, struct tree_entry, rb_node);
180 	entry->in_tree = 1;
181 	rb_link_node(node, parent, p);
182 	rb_insert_color(node, root);
183 	return NULL;
184 }
185 
186 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
187 				   struct rb_node **prev_ret)
188 {
189 	struct rb_node * n = root->rb_node;
190 	struct rb_node *prev = NULL;
191 	struct tree_entry *entry;
192 	struct tree_entry *prev_entry = NULL;
193 
194 	while(n) {
195 		entry = rb_entry(n, struct tree_entry, rb_node);
196 		prev = n;
197 		prev_entry = entry;
198 
199 		if (offset < entry->start)
200 			n = n->rb_left;
201 		else if (offset > entry->end)
202 			n = n->rb_right;
203 		else
204 			return n;
205 	}
206 	if (!prev_ret)
207 		return NULL;
208 	while(prev && offset > prev_entry->end) {
209 		prev = rb_next(prev);
210 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 	}
212 	*prev_ret = prev;
213 	return NULL;
214 }
215 
216 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
217 {
218 	struct rb_node *prev;
219 	struct rb_node *ret;
220 	ret = __tree_search(root, offset, &prev);
221 	if (!ret)
222 		return prev;
223 	return ret;
224 }
225 
226 static int tree_delete(struct rb_root *root, u64 offset)
227 {
228 	struct rb_node *node;
229 	struct tree_entry *entry;
230 
231 	node = __tree_search(root, offset, NULL);
232 	if (!node)
233 		return -ENOENT;
234 	entry = rb_entry(node, struct tree_entry, rb_node);
235 	entry->in_tree = 0;
236 	rb_erase(node, root);
237 	return 0;
238 }
239 
240 /*
241  * add_extent_mapping tries a simple backward merge with existing
242  * mappings.  The extent_map struct passed in will be inserted into
243  * the tree directly (no copies made, just a reference taken).
244  */
245 int add_extent_mapping(struct extent_map_tree *tree,
246 		       struct extent_map *em)
247 {
248 	int ret = 0;
249 	struct extent_map *prev = NULL;
250 	struct rb_node *rb;
251 
252 	write_lock_irq(&tree->lock);
253 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
254 	if (rb) {
255 		prev = rb_entry(rb, struct extent_map, rb_node);
256 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
257 		ret = -EEXIST;
258 		goto out;
259 	}
260 	atomic_inc(&em->refs);
261 	if (em->start != 0) {
262 		rb = rb_prev(&em->rb_node);
263 		if (rb)
264 			prev = rb_entry(rb, struct extent_map, rb_node);
265 		if (prev && prev->end + 1 == em->start &&
266 		    ((em->block_start == EXTENT_MAP_HOLE &&
267 		      prev->block_start == EXTENT_MAP_HOLE) ||
268 			     (em->block_start == prev->block_end + 1))) {
269 			em->start = prev->start;
270 			em->block_start = prev->block_start;
271 			rb_erase(&prev->rb_node, &tree->map);
272 			prev->in_tree = 0;
273 			free_extent_map(prev);
274 		}
275 	 }
276 out:
277 	write_unlock_irq(&tree->lock);
278 	return ret;
279 }
280 EXPORT_SYMBOL(add_extent_mapping);
281 
282 /*
283  * lookup_extent_mapping returns the first extent_map struct in the
284  * tree that intersects the [start, end] (inclusive) range.  There may
285  * be additional objects in the tree that intersect, so check the object
286  * returned carefully to make sure you don't need additional lookups.
287  */
288 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
289 					 u64 start, u64 end)
290 {
291 	struct extent_map *em;
292 	struct rb_node *rb_node;
293 
294 	read_lock_irq(&tree->lock);
295 	rb_node = tree_search(&tree->map, start);
296 	if (!rb_node) {
297 		em = NULL;
298 		goto out;
299 	}
300 	if (IS_ERR(rb_node)) {
301 		em = ERR_PTR(PTR_ERR(rb_node));
302 		goto out;
303 	}
304 	em = rb_entry(rb_node, struct extent_map, rb_node);
305 	if (em->end < start || em->start > end) {
306 		em = NULL;
307 		goto out;
308 	}
309 	atomic_inc(&em->refs);
310 out:
311 	read_unlock_irq(&tree->lock);
312 	return em;
313 }
314 EXPORT_SYMBOL(lookup_extent_mapping);
315 
316 /*
317  * removes an extent_map struct from the tree.  No reference counts are
318  * dropped, and no checks are done to  see if the range is in use
319  */
320 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
321 {
322 	int ret;
323 
324 	write_lock_irq(&tree->lock);
325 	ret = tree_delete(&tree->map, em->end);
326 	write_unlock_irq(&tree->lock);
327 	return ret;
328 }
329 EXPORT_SYMBOL(remove_extent_mapping);
330 
331 /*
332  * utility function to look for merge candidates inside a given range.
333  * Any extents with matching state are merged together into a single
334  * extent in the tree.  Extents with EXTENT_IO in their state field
335  * are not merged because the end_io handlers need to be able to do
336  * operations on them without sleeping (or doing allocations/splits).
337  *
338  * This should be called with the tree lock held.
339  */
340 static int merge_state(struct extent_map_tree *tree,
341 		       struct extent_state *state)
342 {
343 	struct extent_state *other;
344 	struct rb_node *other_node;
345 
346 	if (state->state & EXTENT_IOBITS)
347 		return 0;
348 
349 	other_node = rb_prev(&state->rb_node);
350 	if (other_node) {
351 		other = rb_entry(other_node, struct extent_state, rb_node);
352 		if (other->end == state->start - 1 &&
353 		    other->state == state->state) {
354 			state->start = other->start;
355 			other->in_tree = 0;
356 			rb_erase(&other->rb_node, &tree->state);
357 			free_extent_state(other);
358 		}
359 	}
360 	other_node = rb_next(&state->rb_node);
361 	if (other_node) {
362 		other = rb_entry(other_node, struct extent_state, rb_node);
363 		if (other->start == state->end + 1 &&
364 		    other->state == state->state) {
365 			other->start = state->start;
366 			state->in_tree = 0;
367 			rb_erase(&state->rb_node, &tree->state);
368 			free_extent_state(state);
369 		}
370 	}
371 	return 0;
372 }
373 
374 /*
375  * insert an extent_state struct into the tree.  'bits' are set on the
376  * struct before it is inserted.
377  *
378  * This may return -EEXIST if the extent is already there, in which case the
379  * state struct is freed.
380  *
381  * The tree lock is not taken internally.  This is a utility function and
382  * probably isn't what you want to call (see set/clear_extent_bit).
383  */
384 static int insert_state(struct extent_map_tree *tree,
385 			struct extent_state *state, u64 start, u64 end,
386 			int bits)
387 {
388 	struct rb_node *node;
389 
390 	if (end < start) {
391 		printk("end < start %Lu %Lu\n", end, start);
392 		WARN_ON(1);
393 	}
394 	state->state |= bits;
395 	state->start = start;
396 	state->end = end;
397 	node = tree_insert(&tree->state, end, &state->rb_node);
398 	if (node) {
399 		struct extent_state *found;
400 		found = rb_entry(node, struct extent_state, rb_node);
401 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
402 		free_extent_state(state);
403 		return -EEXIST;
404 	}
405 	merge_state(tree, state);
406 	return 0;
407 }
408 
409 /*
410  * split a given extent state struct in two, inserting the preallocated
411  * struct 'prealloc' as the newly created second half.  'split' indicates an
412  * offset inside 'orig' where it should be split.
413  *
414  * Before calling,
415  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
416  * are two extent state structs in the tree:
417  * prealloc: [orig->start, split - 1]
418  * orig: [ split, orig->end ]
419  *
420  * The tree locks are not taken by this function. They need to be held
421  * by the caller.
422  */
423 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
424 		       struct extent_state *prealloc, u64 split)
425 {
426 	struct rb_node *node;
427 	prealloc->start = orig->start;
428 	prealloc->end = split - 1;
429 	prealloc->state = orig->state;
430 	orig->start = split;
431 
432 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
433 	if (node) {
434 		struct extent_state *found;
435 		found = rb_entry(node, struct extent_state, rb_node);
436 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
437 		free_extent_state(prealloc);
438 		return -EEXIST;
439 	}
440 	return 0;
441 }
442 
443 /*
444  * utility function to clear some bits in an extent state struct.
445  * it will optionally wake up any one waiting on this state (wake == 1), or
446  * forcibly remove the state from the tree (delete == 1).
447  *
448  * If no bits are set on the state struct after clearing things, the
449  * struct is freed and removed from the tree
450  */
451 static int clear_state_bit(struct extent_map_tree *tree,
452 			    struct extent_state *state, int bits, int wake,
453 			    int delete)
454 {
455 	int ret = state->state & bits;
456 	state->state &= ~bits;
457 	if (wake)
458 		wake_up(&state->wq);
459 	if (delete || state->state == 0) {
460 		if (state->in_tree) {
461 			rb_erase(&state->rb_node, &tree->state);
462 			state->in_tree = 0;
463 			free_extent_state(state);
464 		} else {
465 			WARN_ON(1);
466 		}
467 	} else {
468 		merge_state(tree, state);
469 	}
470 	return ret;
471 }
472 
473 /*
474  * clear some bits on a range in the tree.  This may require splitting
475  * or inserting elements in the tree, so the gfp mask is used to
476  * indicate which allocations or sleeping are allowed.
477  *
478  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
479  * the given range from the tree regardless of state (ie for truncate).
480  *
481  * the range [start, end] is inclusive.
482  *
483  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
484  * bits were already set, or zero if none of the bits were already set.
485  */
486 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
487 		     int bits, int wake, int delete, gfp_t mask)
488 {
489 	struct extent_state *state;
490 	struct extent_state *prealloc = NULL;
491 	struct rb_node *node;
492 	unsigned long flags;
493 	int err;
494 	int set = 0;
495 
496 again:
497 	if (!prealloc && (mask & __GFP_WAIT)) {
498 		prealloc = alloc_extent_state(mask);
499 		if (!prealloc)
500 			return -ENOMEM;
501 	}
502 
503 	write_lock_irqsave(&tree->lock, flags);
504 	/*
505 	 * this search will find the extents that end after
506 	 * our range starts
507 	 */
508 	node = tree_search(&tree->state, start);
509 	if (!node)
510 		goto out;
511 	state = rb_entry(node, struct extent_state, rb_node);
512 	if (state->start > end)
513 		goto out;
514 	WARN_ON(state->end < start);
515 
516 	/*
517 	 *     | ---- desired range ---- |
518 	 *  | state | or
519 	 *  | ------------- state -------------- |
520 	 *
521 	 * We need to split the extent we found, and may flip
522 	 * bits on second half.
523 	 *
524 	 * If the extent we found extends past our range, we
525 	 * just split and search again.  It'll get split again
526 	 * the next time though.
527 	 *
528 	 * If the extent we found is inside our range, we clear
529 	 * the desired bit on it.
530 	 */
531 
532 	if (state->start < start) {
533 		err = split_state(tree, state, prealloc, start);
534 		BUG_ON(err == -EEXIST);
535 		prealloc = NULL;
536 		if (err)
537 			goto out;
538 		if (state->end <= end) {
539 			start = state->end + 1;
540 			set |= clear_state_bit(tree, state, bits,
541 					wake, delete);
542 		} else {
543 			start = state->start;
544 		}
545 		goto search_again;
546 	}
547 	/*
548 	 * | ---- desired range ---- |
549 	 *                        | state |
550 	 * We need to split the extent, and clear the bit
551 	 * on the first half
552 	 */
553 	if (state->start <= end && state->end > end) {
554 		err = split_state(tree, state, prealloc, end + 1);
555 		BUG_ON(err == -EEXIST);
556 
557 		if (wake)
558 			wake_up(&state->wq);
559 		set |= clear_state_bit(tree, prealloc, bits,
560 				       wake, delete);
561 		prealloc = NULL;
562 		goto out;
563 	}
564 
565 	start = state->end + 1;
566 	set |= clear_state_bit(tree, state, bits, wake, delete);
567 	goto search_again;
568 
569 out:
570 	write_unlock_irqrestore(&tree->lock, flags);
571 	if (prealloc)
572 		free_extent_state(prealloc);
573 
574 	return set;
575 
576 search_again:
577 	if (start >= end)
578 		goto out;
579 	write_unlock_irqrestore(&tree->lock, flags);
580 	if (mask & __GFP_WAIT)
581 		cond_resched();
582 	goto again;
583 }
584 EXPORT_SYMBOL(clear_extent_bit);
585 
586 static int wait_on_state(struct extent_map_tree *tree,
587 			 struct extent_state *state)
588 {
589 	DEFINE_WAIT(wait);
590 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
591 	read_unlock_irq(&tree->lock);
592 	schedule();
593 	read_lock_irq(&tree->lock);
594 	finish_wait(&state->wq, &wait);
595 	return 0;
596 }
597 
598 /*
599  * waits for one or more bits to clear on a range in the state tree.
600  * The range [start, end] is inclusive.
601  * The tree lock is taken by this function
602  */
603 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
604 {
605 	struct extent_state *state;
606 	struct rb_node *node;
607 
608 	read_lock_irq(&tree->lock);
609 again:
610 	while (1) {
611 		/*
612 		 * this search will find all the extents that end after
613 		 * our range starts
614 		 */
615 		node = tree_search(&tree->state, start);
616 		if (!node)
617 			break;
618 
619 		state = rb_entry(node, struct extent_state, rb_node);
620 
621 		if (state->start > end)
622 			goto out;
623 
624 		if (state->state & bits) {
625 			start = state->start;
626 			atomic_inc(&state->refs);
627 			wait_on_state(tree, state);
628 			free_extent_state(state);
629 			goto again;
630 		}
631 		start = state->end + 1;
632 
633 		if (start > end)
634 			break;
635 
636 		if (need_resched()) {
637 			read_unlock_irq(&tree->lock);
638 			cond_resched();
639 			read_lock_irq(&tree->lock);
640 		}
641 	}
642 out:
643 	read_unlock_irq(&tree->lock);
644 	return 0;
645 }
646 EXPORT_SYMBOL(wait_extent_bit);
647 
648 /*
649  * set some bits on a range in the tree.  This may require allocations
650  * or sleeping, so the gfp mask is used to indicate what is allowed.
651  *
652  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
653  * range already has the desired bits set.  The start of the existing
654  * range is returned in failed_start in this case.
655  *
656  * [start, end] is inclusive
657  * This takes the tree lock.
658  */
659 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
660 		   int exclusive, u64 *failed_start, gfp_t mask)
661 {
662 	struct extent_state *state;
663 	struct extent_state *prealloc = NULL;
664 	struct rb_node *node;
665 	unsigned long flags;
666 	int err = 0;
667 	int set;
668 	u64 last_start;
669 	u64 last_end;
670 again:
671 	if (!prealloc && (mask & __GFP_WAIT)) {
672 		prealloc = alloc_extent_state(mask);
673 		if (!prealloc)
674 			return -ENOMEM;
675 	}
676 
677 	write_lock_irqsave(&tree->lock, flags);
678 	/*
679 	 * this search will find all the extents that end after
680 	 * our range starts.
681 	 */
682 	node = tree_search(&tree->state, start);
683 	if (!node) {
684 		err = insert_state(tree, prealloc, start, end, bits);
685 		prealloc = NULL;
686 		BUG_ON(err == -EEXIST);
687 		goto out;
688 	}
689 
690 	state = rb_entry(node, struct extent_state, rb_node);
691 	last_start = state->start;
692 	last_end = state->end;
693 
694 	/*
695 	 * | ---- desired range ---- |
696 	 * | state |
697 	 *
698 	 * Just lock what we found and keep going
699 	 */
700 	if (state->start == start && state->end <= end) {
701 		set = state->state & bits;
702 		if (set && exclusive) {
703 			*failed_start = state->start;
704 			err = -EEXIST;
705 			goto out;
706 		}
707 		state->state |= bits;
708 		start = state->end + 1;
709 		merge_state(tree, state);
710 		goto search_again;
711 	}
712 
713 	/*
714 	 *     | ---- desired range ---- |
715 	 * | state |
716 	 *   or
717 	 * | ------------- state -------------- |
718 	 *
719 	 * We need to split the extent we found, and may flip bits on
720 	 * second half.
721 	 *
722 	 * If the extent we found extends past our
723 	 * range, we just split and search again.  It'll get split
724 	 * again the next time though.
725 	 *
726 	 * If the extent we found is inside our range, we set the
727 	 * desired bit on it.
728 	 */
729 	if (state->start < start) {
730 		set = state->state & bits;
731 		if (exclusive && set) {
732 			*failed_start = start;
733 			err = -EEXIST;
734 			goto out;
735 		}
736 		err = split_state(tree, state, prealloc, start);
737 		BUG_ON(err == -EEXIST);
738 		prealloc = NULL;
739 		if (err)
740 			goto out;
741 		if (state->end <= end) {
742 			state->state |= bits;
743 			start = state->end + 1;
744 			merge_state(tree, state);
745 		} else {
746 			start = state->start;
747 		}
748 		goto search_again;
749 	}
750 	/*
751 	 * | ---- desired range ---- |
752 	 *     | state | or               | state |
753 	 *
754 	 * There's a hole, we need to insert something in it and
755 	 * ignore the extent we found.
756 	 */
757 	if (state->start > start) {
758 		u64 this_end;
759 		if (end < last_start)
760 			this_end = end;
761 		else
762 			this_end = last_start -1;
763 		err = insert_state(tree, prealloc, start, this_end,
764 				   bits);
765 		prealloc = NULL;
766 		BUG_ON(err == -EEXIST);
767 		if (err)
768 			goto out;
769 		start = this_end + 1;
770 		goto search_again;
771 	}
772 	/*
773 	 * | ---- desired range ---- |
774 	 *                        | state |
775 	 * We need to split the extent, and set the bit
776 	 * on the first half
777 	 */
778 	if (state->start <= end && state->end > end) {
779 		set = state->state & bits;
780 		if (exclusive && set) {
781 			*failed_start = start;
782 			err = -EEXIST;
783 			goto out;
784 		}
785 		err = split_state(tree, state, prealloc, end + 1);
786 		BUG_ON(err == -EEXIST);
787 
788 		prealloc->state |= bits;
789 		merge_state(tree, prealloc);
790 		prealloc = NULL;
791 		goto out;
792 	}
793 
794 	goto search_again;
795 
796 out:
797 	write_unlock_irqrestore(&tree->lock, flags);
798 	if (prealloc)
799 		free_extent_state(prealloc);
800 
801 	return err;
802 
803 search_again:
804 	if (start > end)
805 		goto out;
806 	write_unlock_irqrestore(&tree->lock, flags);
807 	if (mask & __GFP_WAIT)
808 		cond_resched();
809 	goto again;
810 }
811 EXPORT_SYMBOL(set_extent_bit);
812 
813 /* wrappers around set/clear extent bit */
814 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
815 		     gfp_t mask)
816 {
817 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
818 			      mask);
819 }
820 EXPORT_SYMBOL(set_extent_dirty);
821 
822 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
823 		     gfp_t mask)
824 {
825 	return set_extent_bit(tree, start, end,
826 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
827 			      mask);
828 }
829 EXPORT_SYMBOL(set_extent_delalloc);
830 
831 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
832 		       gfp_t mask)
833 {
834 	return clear_extent_bit(tree, start, end,
835 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
836 }
837 EXPORT_SYMBOL(clear_extent_dirty);
838 
839 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
840 		     gfp_t mask)
841 {
842 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
843 			      mask);
844 }
845 EXPORT_SYMBOL(set_extent_new);
846 
847 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
848 		       gfp_t mask)
849 {
850 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
851 }
852 EXPORT_SYMBOL(clear_extent_new);
853 
854 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
855 			gfp_t mask)
856 {
857 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
858 			      mask);
859 }
860 EXPORT_SYMBOL(set_extent_uptodate);
861 
862 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
863 			  gfp_t mask)
864 {
865 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
866 }
867 EXPORT_SYMBOL(clear_extent_uptodate);
868 
869 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
870 			 gfp_t mask)
871 {
872 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
873 			      0, NULL, mask);
874 }
875 EXPORT_SYMBOL(set_extent_writeback);
876 
877 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
878 			   gfp_t mask)
879 {
880 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
881 }
882 EXPORT_SYMBOL(clear_extent_writeback);
883 
884 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
885 {
886 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
887 }
888 EXPORT_SYMBOL(wait_on_extent_writeback);
889 
890 /*
891  * locks a range in ascending order, waiting for any locked regions
892  * it hits on the way.  [start,end] are inclusive, and this will sleep.
893  */
894 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
895 {
896 	int err;
897 	u64 failed_start;
898 	while (1) {
899 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
900 				     &failed_start, mask);
901 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
902 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
903 			start = failed_start;
904 		} else {
905 			break;
906 		}
907 		WARN_ON(start > end);
908 	}
909 	return err;
910 }
911 EXPORT_SYMBOL(lock_extent);
912 
913 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
914 		  gfp_t mask)
915 {
916 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
917 }
918 EXPORT_SYMBOL(unlock_extent);
919 
920 /*
921  * helper function to set pages and extents in the tree dirty
922  */
923 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
924 {
925 	unsigned long index = start >> PAGE_CACHE_SHIFT;
926 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
927 	struct page *page;
928 
929 	while (index <= end_index) {
930 		page = find_get_page(tree->mapping, index);
931 		BUG_ON(!page);
932 		__set_page_dirty_nobuffers(page);
933 		page_cache_release(page);
934 		index++;
935 	}
936 	set_extent_dirty(tree, start, end, GFP_NOFS);
937 	return 0;
938 }
939 EXPORT_SYMBOL(set_range_dirty);
940 
941 /*
942  * helper function to set both pages and extents in the tree writeback
943  */
944 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
945 {
946 	unsigned long index = start >> PAGE_CACHE_SHIFT;
947 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
948 	struct page *page;
949 
950 	while (index <= end_index) {
951 		page = find_get_page(tree->mapping, index);
952 		BUG_ON(!page);
953 		set_page_writeback(page);
954 		page_cache_release(page);
955 		index++;
956 	}
957 	set_extent_writeback(tree, start, end, GFP_NOFS);
958 	return 0;
959 }
960 EXPORT_SYMBOL(set_range_writeback);
961 
962 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
963 			  u64 *start_ret, u64 *end_ret, int bits)
964 {
965 	struct rb_node *node;
966 	struct extent_state *state;
967 	int ret = 1;
968 
969 	write_lock_irq(&tree->lock);
970 	/*
971 	 * this search will find all the extents that end after
972 	 * our range starts.
973 	 */
974 	node = tree_search(&tree->state, start);
975 	if (!node || IS_ERR(node)) {
976 		goto out;
977 	}
978 
979 	while(1) {
980 		state = rb_entry(node, struct extent_state, rb_node);
981 		if (state->state & bits) {
982 			*start_ret = state->start;
983 			*end_ret = state->end;
984 			ret = 0;
985 			break;
986 		}
987 		node = rb_next(node);
988 		if (!node)
989 			break;
990 	}
991 out:
992 	write_unlock_irq(&tree->lock);
993 	return ret;
994 }
995 EXPORT_SYMBOL(find_first_extent_bit);
996 
997 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
998 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
999 {
1000 	struct rb_node *node;
1001 	struct extent_state *state;
1002 	u64 cur_start = start;
1003 	u64 found = 0;
1004 	u64 total_bytes = 0;
1005 
1006 	write_lock_irq(&tree->lock);
1007 	/*
1008 	 * this search will find all the extents that end after
1009 	 * our range starts.
1010 	 */
1011 search_again:
1012 	node = tree_search(&tree->state, cur_start);
1013 	if (!node || IS_ERR(node)) {
1014 		goto out;
1015 	}
1016 
1017 	while(1) {
1018 		state = rb_entry(node, struct extent_state, rb_node);
1019 		if (state->start != cur_start) {
1020 			goto out;
1021 		}
1022 		if (!(state->state & EXTENT_DELALLOC)) {
1023 			goto out;
1024 		}
1025 		if (state->start >= lock_start) {
1026 			if (state->state & EXTENT_LOCKED) {
1027 				DEFINE_WAIT(wait);
1028 				atomic_inc(&state->refs);
1029 				write_unlock_irq(&tree->lock);
1030 				schedule();
1031 				write_lock_irq(&tree->lock);
1032 				finish_wait(&state->wq, &wait);
1033 				free_extent_state(state);
1034 				goto search_again;
1035 			}
1036 			state->state |= EXTENT_LOCKED;
1037 		}
1038 		found++;
1039 		*end = state->end;
1040 		cur_start = state->end + 1;
1041 		node = rb_next(node);
1042 		if (!node)
1043 			break;
1044 		total_bytes = state->end - state->start + 1;
1045 		if (total_bytes >= max_bytes)
1046 			break;
1047 	}
1048 out:
1049 	write_unlock_irq(&tree->lock);
1050 	return found;
1051 }
1052 
1053 /*
1054  * helper function to lock both pages and extents in the tree.
1055  * pages must be locked first.
1056  */
1057 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1058 {
1059 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1060 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1061 	struct page *page;
1062 	int err;
1063 
1064 	while (index <= end_index) {
1065 		page = grab_cache_page(tree->mapping, index);
1066 		if (!page) {
1067 			err = -ENOMEM;
1068 			goto failed;
1069 		}
1070 		if (IS_ERR(page)) {
1071 			err = PTR_ERR(page);
1072 			goto failed;
1073 		}
1074 		index++;
1075 	}
1076 	lock_extent(tree, start, end, GFP_NOFS);
1077 	return 0;
1078 
1079 failed:
1080 	/*
1081 	 * we failed above in getting the page at 'index', so we undo here
1082 	 * up to but not including the page at 'index'
1083 	 */
1084 	end_index = index;
1085 	index = start >> PAGE_CACHE_SHIFT;
1086 	while (index < end_index) {
1087 		page = find_get_page(tree->mapping, index);
1088 		unlock_page(page);
1089 		page_cache_release(page);
1090 		index++;
1091 	}
1092 	return err;
1093 }
1094 EXPORT_SYMBOL(lock_range);
1095 
1096 /*
1097  * helper function to unlock both pages and extents in the tree.
1098  */
1099 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1100 {
1101 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1102 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1103 	struct page *page;
1104 
1105 	while (index <= end_index) {
1106 		page = find_get_page(tree->mapping, index);
1107 		unlock_page(page);
1108 		page_cache_release(page);
1109 		index++;
1110 	}
1111 	unlock_extent(tree, start, end, GFP_NOFS);
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL(unlock_range);
1115 
1116 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1117 {
1118 	struct rb_node *node;
1119 	struct extent_state *state;
1120 	int ret = 0;
1121 
1122 	write_lock_irq(&tree->lock);
1123 	/*
1124 	 * this search will find all the extents that end after
1125 	 * our range starts.
1126 	 */
1127 	node = tree_search(&tree->state, start);
1128 	if (!node || IS_ERR(node)) {
1129 		ret = -ENOENT;
1130 		goto out;
1131 	}
1132 	state = rb_entry(node, struct extent_state, rb_node);
1133 	if (state->start != start) {
1134 		ret = -ENOENT;
1135 		goto out;
1136 	}
1137 	state->private = private;
1138 out:
1139 	write_unlock_irq(&tree->lock);
1140 	return ret;
1141 
1142 }
1143 
1144 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1145 {
1146 	struct rb_node *node;
1147 	struct extent_state *state;
1148 	int ret = 0;
1149 
1150 	read_lock_irq(&tree->lock);
1151 	/*
1152 	 * this search will find all the extents that end after
1153 	 * our range starts.
1154 	 */
1155 	node = tree_search(&tree->state, start);
1156 	if (!node || IS_ERR(node)) {
1157 		ret = -ENOENT;
1158 		goto out;
1159 	}
1160 	state = rb_entry(node, struct extent_state, rb_node);
1161 	if (state->start != start) {
1162 		ret = -ENOENT;
1163 		goto out;
1164 	}
1165 	*private = state->private;
1166 out:
1167 	read_unlock_irq(&tree->lock);
1168 	return ret;
1169 }
1170 
1171 /*
1172  * searches a range in the state tree for a given mask.
1173  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1174  * has the bits set.  Otherwise, 1 is returned if any bit in the
1175  * range is found set.
1176  */
1177 static int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1178 			  int bits, int filled)
1179 {
1180 	struct extent_state *state = NULL;
1181 	struct rb_node *node;
1182 	int bitset = 0;
1183 
1184 	read_lock_irq(&tree->lock);
1185 	node = tree_search(&tree->state, start);
1186 	while (node && start <= end) {
1187 		state = rb_entry(node, struct extent_state, rb_node);
1188 		if (state->start > end)
1189 			break;
1190 
1191 		if (filled && state->start > start) {
1192 			bitset = 0;
1193 			break;
1194 		}
1195 		if (state->state & bits) {
1196 			bitset = 1;
1197 			if (!filled)
1198 				break;
1199 		} else if (filled) {
1200 			bitset = 0;
1201 			break;
1202 		}
1203 		start = state->end + 1;
1204 		if (start > end)
1205 			break;
1206 		node = rb_next(node);
1207 	}
1208 	read_unlock_irq(&tree->lock);
1209 	return bitset;
1210 }
1211 
1212 /*
1213  * helper function to set a given page up to date if all the
1214  * extents in the tree for that page are up to date
1215  */
1216 static int check_page_uptodate(struct extent_map_tree *tree,
1217 			       struct page *page)
1218 {
1219 	u64 start = page->index << PAGE_CACHE_SHIFT;
1220 	u64 end = start + PAGE_CACHE_SIZE - 1;
1221 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1222 		SetPageUptodate(page);
1223 	return 0;
1224 }
1225 
1226 /*
1227  * helper function to unlock a page if all the extents in the tree
1228  * for that page are unlocked
1229  */
1230 static int check_page_locked(struct extent_map_tree *tree,
1231 			     struct page *page)
1232 {
1233 	u64 start = page->index << PAGE_CACHE_SHIFT;
1234 	u64 end = start + PAGE_CACHE_SIZE - 1;
1235 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1236 		unlock_page(page);
1237 	return 0;
1238 }
1239 
1240 /*
1241  * helper function to end page writeback if all the extents
1242  * in the tree for that page are done with writeback
1243  */
1244 static int check_page_writeback(struct extent_map_tree *tree,
1245 			     struct page *page)
1246 {
1247 	u64 start = page->index << PAGE_CACHE_SHIFT;
1248 	u64 end = start + PAGE_CACHE_SIZE - 1;
1249 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1250 		end_page_writeback(page);
1251 	return 0;
1252 }
1253 
1254 /* lots and lots of room for performance fixes in the end_bio funcs */
1255 
1256 /*
1257  * after a writepage IO is done, we need to:
1258  * clear the uptodate bits on error
1259  * clear the writeback bits in the extent tree for this IO
1260  * end_page_writeback if the page has no more pending IO
1261  *
1262  * Scheduling is not allowed, so the extent state tree is expected
1263  * to have one and only one object corresponding to this IO.
1264  */
1265 static int end_bio_extent_writepage(struct bio *bio,
1266 				   unsigned int bytes_done, int err)
1267 {
1268 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1269 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1270 	struct extent_map_tree *tree = bio->bi_private;
1271 	u64 start;
1272 	u64 end;
1273 	int whole_page;
1274 
1275 	if (bio->bi_size)
1276 		return 1;
1277 
1278 	do {
1279 		struct page *page = bvec->bv_page;
1280 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1281 		end = start + bvec->bv_len - 1;
1282 
1283 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1284 			whole_page = 1;
1285 		else
1286 			whole_page = 0;
1287 
1288 		if (--bvec >= bio->bi_io_vec)
1289 			prefetchw(&bvec->bv_page->flags);
1290 
1291 		if (!uptodate) {
1292 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1293 			ClearPageUptodate(page);
1294 			SetPageError(page);
1295 		}
1296 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1297 
1298 		if (whole_page)
1299 			end_page_writeback(page);
1300 		else
1301 			check_page_writeback(tree, page);
1302 		if (tree->ops && tree->ops->writepage_end_io_hook)
1303 			tree->ops->writepage_end_io_hook(page, start, end);
1304 	} while (bvec >= bio->bi_io_vec);
1305 
1306 	bio_put(bio);
1307 	return 0;
1308 }
1309 
1310 /*
1311  * after a readpage IO is done, we need to:
1312  * clear the uptodate bits on error
1313  * set the uptodate bits if things worked
1314  * set the page up to date if all extents in the tree are uptodate
1315  * clear the lock bit in the extent tree
1316  * unlock the page if there are no other extents locked for it
1317  *
1318  * Scheduling is not allowed, so the extent state tree is expected
1319  * to have one and only one object corresponding to this IO.
1320  */
1321 static int end_bio_extent_readpage(struct bio *bio,
1322 				   unsigned int bytes_done, int err)
1323 {
1324 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1325 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1326 	struct extent_map_tree *tree = bio->bi_private;
1327 	u64 start;
1328 	u64 end;
1329 	int whole_page;
1330 	int ret;
1331 
1332 	if (bio->bi_size)
1333 		return 1;
1334 
1335 	do {
1336 		struct page *page = bvec->bv_page;
1337 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1338 		end = start + bvec->bv_len - 1;
1339 
1340 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1341 			whole_page = 1;
1342 		else
1343 			whole_page = 0;
1344 
1345 		if (--bvec >= bio->bi_io_vec)
1346 			prefetchw(&bvec->bv_page->flags);
1347 
1348 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1349 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1350 			if (ret)
1351 				uptodate = 0;
1352 		}
1353 		if (uptodate) {
1354 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1355 			if (whole_page)
1356 				SetPageUptodate(page);
1357 			else
1358 				check_page_uptodate(tree, page);
1359 		} else {
1360 			ClearPageUptodate(page);
1361 			SetPageError(page);
1362 		}
1363 
1364 		unlock_extent(tree, start, end, GFP_ATOMIC);
1365 
1366 		if (whole_page)
1367 			unlock_page(page);
1368 		else
1369 			check_page_locked(tree, page);
1370 	} while (bvec >= bio->bi_io_vec);
1371 
1372 	bio_put(bio);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * IO done from prepare_write is pretty simple, we just unlock
1378  * the structs in the extent tree when done, and set the uptodate bits
1379  * as appropriate.
1380  */
1381 static int end_bio_extent_preparewrite(struct bio *bio,
1382 				       unsigned int bytes_done, int err)
1383 {
1384 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1385 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1386 	struct extent_map_tree *tree = bio->bi_private;
1387 	u64 start;
1388 	u64 end;
1389 
1390 	if (bio->bi_size)
1391 		return 1;
1392 
1393 	do {
1394 		struct page *page = bvec->bv_page;
1395 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1396 		end = start + bvec->bv_len - 1;
1397 
1398 		if (--bvec >= bio->bi_io_vec)
1399 			prefetchw(&bvec->bv_page->flags);
1400 
1401 		if (uptodate) {
1402 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1403 		} else {
1404 			ClearPageUptodate(page);
1405 			SetPageError(page);
1406 		}
1407 
1408 		unlock_extent(tree, start, end, GFP_ATOMIC);
1409 
1410 	} while (bvec >= bio->bi_io_vec);
1411 
1412 	bio_put(bio);
1413 	return 0;
1414 }
1415 
1416 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1417 			      struct page *page, sector_t sector,
1418 			      size_t size, unsigned long offset,
1419 			      struct block_device *bdev,
1420 			      bio_end_io_t end_io_func)
1421 {
1422 	struct bio *bio;
1423 	int ret = 0;
1424 
1425 	bio = bio_alloc(GFP_NOIO, 1);
1426 
1427 	bio->bi_sector = sector;
1428 	bio->bi_bdev = bdev;
1429 	bio->bi_io_vec[0].bv_page = page;
1430 	bio->bi_io_vec[0].bv_len = size;
1431 	bio->bi_io_vec[0].bv_offset = offset;
1432 
1433 	bio->bi_vcnt = 1;
1434 	bio->bi_idx = 0;
1435 	bio->bi_size = size;
1436 
1437 	bio->bi_end_io = end_io_func;
1438 	bio->bi_private = tree;
1439 
1440 	bio_get(bio);
1441 	submit_bio(rw, bio);
1442 
1443 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1444 		ret = -EOPNOTSUPP;
1445 
1446 	bio_put(bio);
1447 	return ret;
1448 }
1449 
1450 void set_page_extent_mapped(struct page *page)
1451 {
1452 	if (!PagePrivate(page)) {
1453 		SetPagePrivate(page);
1454 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1455 		set_page_private(page, 1);
1456 		page_cache_get(page);
1457 	}
1458 }
1459 
1460 /*
1461  * basic readpage implementation.  Locked extent state structs are inserted
1462  * into the tree that are removed when the IO is done (by the end_io
1463  * handlers)
1464  */
1465 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1466 			  get_extent_t *get_extent)
1467 {
1468 	struct inode *inode = page->mapping->host;
1469 	u64 start = page->index << PAGE_CACHE_SHIFT;
1470 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1471 	u64 end;
1472 	u64 cur = start;
1473 	u64 extent_offset;
1474 	u64 last_byte = i_size_read(inode);
1475 	u64 block_start;
1476 	u64 cur_end;
1477 	sector_t sector;
1478 	struct extent_map *em;
1479 	struct block_device *bdev;
1480 	int ret;
1481 	int nr = 0;
1482 	size_t page_offset = 0;
1483 	size_t iosize;
1484 	size_t blocksize = inode->i_sb->s_blocksize;
1485 
1486 	set_page_extent_mapped(page);
1487 
1488 	end = page_end;
1489 	lock_extent(tree, start, end, GFP_NOFS);
1490 
1491 	while (cur <= end) {
1492 		if (cur >= last_byte) {
1493 			iosize = PAGE_CACHE_SIZE - page_offset;
1494 			zero_user_page(page, page_offset, iosize, KM_USER0);
1495 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1496 					    GFP_NOFS);
1497 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1498 			break;
1499 		}
1500 		em = get_extent(inode, page, page_offset, cur, end, 0);
1501 		if (IS_ERR(em) || !em) {
1502 			SetPageError(page);
1503 			unlock_extent(tree, cur, end, GFP_NOFS);
1504 			break;
1505 		}
1506 
1507 		extent_offset = cur - em->start;
1508 		BUG_ON(em->end < cur);
1509 		BUG_ON(end < cur);
1510 
1511 		iosize = min(em->end - cur, end - cur) + 1;
1512 		cur_end = min(em->end, end);
1513 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1514 		sector = (em->block_start + extent_offset) >> 9;
1515 		bdev = em->bdev;
1516 		block_start = em->block_start;
1517 		free_extent_map(em);
1518 		em = NULL;
1519 
1520 		/* we've found a hole, just zero and go on */
1521 		if (block_start == EXTENT_MAP_HOLE) {
1522 			zero_user_page(page, page_offset, iosize, KM_USER0);
1523 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1524 					    GFP_NOFS);
1525 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1526 			cur = cur + iosize;
1527 			page_offset += iosize;
1528 			continue;
1529 		}
1530 		/* the get_extent function already copied into the page */
1531 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1532 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1533 			cur = cur + iosize;
1534 			page_offset += iosize;
1535 			continue;
1536 		}
1537 
1538 		ret = 0;
1539 		if (tree->ops && tree->ops->readpage_io_hook) {
1540 			ret = tree->ops->readpage_io_hook(page, cur,
1541 							  cur + iosize - 1);
1542 		}
1543 		if (!ret) {
1544 			ret = submit_extent_page(READ, tree, page,
1545 						 sector, iosize, page_offset,
1546 						 bdev, end_bio_extent_readpage);
1547 		}
1548 		if (ret)
1549 			SetPageError(page);
1550 		cur = cur + iosize;
1551 		page_offset += iosize;
1552 		nr++;
1553 	}
1554 	if (!nr) {
1555 		if (!PageError(page))
1556 			SetPageUptodate(page);
1557 		unlock_page(page);
1558 	}
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL(extent_read_full_page);
1562 
1563 /*
1564  * the writepage semantics are similar to regular writepage.  extent
1565  * records are inserted to lock ranges in the tree, and as dirty areas
1566  * are found, they are marked writeback.  Then the lock bits are removed
1567  * and the end_io handler clears the writeback ranges
1568  */
1569 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1570 			  get_extent_t *get_extent,
1571 			  struct writeback_control *wbc)
1572 {
1573 	struct inode *inode = page->mapping->host;
1574 	u64 start = page->index << PAGE_CACHE_SHIFT;
1575 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1576 	u64 end;
1577 	u64 cur = start;
1578 	u64 extent_offset;
1579 	u64 last_byte = i_size_read(inode);
1580 	u64 block_start;
1581 	sector_t sector;
1582 	struct extent_map *em;
1583 	struct block_device *bdev;
1584 	int ret;
1585 	int nr = 0;
1586 	size_t page_offset = 0;
1587 	size_t iosize;
1588 	size_t blocksize;
1589 	loff_t i_size = i_size_read(inode);
1590 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1591 	u64 nr_delalloc;
1592 	u64 delalloc_end;
1593 
1594 	WARN_ON(!PageLocked(page));
1595 	if (page->index > end_index) {
1596 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1597 		unlock_page(page);
1598 		return 0;
1599 	}
1600 
1601 	if (page->index == end_index) {
1602 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1603 		zero_user_page(page, offset,
1604 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1605 	}
1606 
1607 	set_page_extent_mapped(page);
1608 
1609 	lock_extent(tree, start, page_end, GFP_NOFS);
1610 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1611 					       &delalloc_end,
1612 					       128 * 1024 * 1024);
1613 	if (nr_delalloc) {
1614 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1615 		if (delalloc_end >= page_end + 1) {
1616 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1617 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1618 					 1, 0, GFP_NOFS);
1619 		}
1620 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1621 				 0, 0, GFP_NOFS);
1622 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1623 			printk("found delalloc bits after clear extent_bit\n");
1624 		}
1625 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1626 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1627 	}
1628 
1629 	end = page_end;
1630 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1631 		printk("found delalloc bits after lock_extent\n");
1632 	}
1633 
1634 	if (last_byte <= start) {
1635 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1636 		goto done;
1637 	}
1638 
1639 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1640 	blocksize = inode->i_sb->s_blocksize;
1641 
1642 	while (cur <= end) {
1643 		if (cur >= last_byte) {
1644 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1645 			break;
1646 		}
1647 		em = get_extent(inode, page, page_offset, cur, end, 0);
1648 		if (IS_ERR(em) || !em) {
1649 			SetPageError(page);
1650 			break;
1651 		}
1652 
1653 		extent_offset = cur - em->start;
1654 		BUG_ON(em->end < cur);
1655 		BUG_ON(end < cur);
1656 		iosize = min(em->end - cur, end - cur) + 1;
1657 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1658 		sector = (em->block_start + extent_offset) >> 9;
1659 		bdev = em->bdev;
1660 		block_start = em->block_start;
1661 		free_extent_map(em);
1662 		em = NULL;
1663 
1664 		if (block_start == EXTENT_MAP_HOLE ||
1665 		    block_start == EXTENT_MAP_INLINE) {
1666 			clear_extent_dirty(tree, cur,
1667 					   cur + iosize - 1, GFP_NOFS);
1668 			cur = cur + iosize;
1669 			page_offset += iosize;
1670 			continue;
1671 		}
1672 
1673 		/* leave this out until we have a page_mkwrite call */
1674 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1675 				   EXTENT_DIRTY, 0)) {
1676 			cur = cur + iosize;
1677 			page_offset += iosize;
1678 			continue;
1679 		}
1680 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1681 		if (tree->ops && tree->ops->writepage_io_hook) {
1682 			ret = tree->ops->writepage_io_hook(page, cur,
1683 						cur + iosize - 1);
1684 		} else {
1685 			ret = 0;
1686 		}
1687 		if (ret)
1688 			SetPageError(page);
1689 		else {
1690 			set_range_writeback(tree, cur, cur + iosize - 1);
1691 			ret = submit_extent_page(WRITE, tree, page, sector,
1692 						 iosize, page_offset, bdev,
1693 						 end_bio_extent_writepage);
1694 			if (ret)
1695 				SetPageError(page);
1696 		}
1697 		cur = cur + iosize;
1698 		page_offset += iosize;
1699 		nr++;
1700 	}
1701 done:
1702 	unlock_extent(tree, start, page_end, GFP_NOFS);
1703 	unlock_page(page);
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL(extent_write_full_page);
1707 
1708 /*
1709  * basic invalidatepage code, this waits on any locked or writeback
1710  * ranges corresponding to the page, and then deletes any extent state
1711  * records from the tree
1712  */
1713 int extent_invalidatepage(struct extent_map_tree *tree,
1714 			  struct page *page, unsigned long offset)
1715 {
1716 	u64 start = (page->index << PAGE_CACHE_SHIFT);
1717 	u64 end = start + PAGE_CACHE_SIZE - 1;
1718 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1719 
1720 	start += (offset + blocksize -1) & ~(blocksize - 1);
1721 	if (start > end)
1722 		return 0;
1723 
1724 	lock_extent(tree, start, end, GFP_NOFS);
1725 	wait_on_extent_writeback(tree, start, end);
1726 	clear_extent_bit(tree, start, end,
1727 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1728 			 1, 1, GFP_NOFS);
1729 	return 0;
1730 }
1731 EXPORT_SYMBOL(extent_invalidatepage);
1732 
1733 /*
1734  * simple commit_write call, set_range_dirty is used to mark both
1735  * the pages and the extent records as dirty
1736  */
1737 int extent_commit_write(struct extent_map_tree *tree,
1738 			struct inode *inode, struct page *page,
1739 			unsigned from, unsigned to)
1740 {
1741 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1742 
1743 	set_page_extent_mapped(page);
1744 	set_page_dirty(page);
1745 
1746 	if (pos > inode->i_size) {
1747 		i_size_write(inode, pos);
1748 		mark_inode_dirty(inode);
1749 	}
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL(extent_commit_write);
1753 
1754 int extent_prepare_write(struct extent_map_tree *tree,
1755 			 struct inode *inode, struct page *page,
1756 			 unsigned from, unsigned to, get_extent_t *get_extent)
1757 {
1758 	u64 page_start = page->index << PAGE_CACHE_SHIFT;
1759 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1760 	u64 block_start;
1761 	u64 orig_block_start;
1762 	u64 block_end;
1763 	u64 cur_end;
1764 	struct extent_map *em;
1765 	unsigned blocksize = 1 << inode->i_blkbits;
1766 	size_t page_offset = 0;
1767 	size_t block_off_start;
1768 	size_t block_off_end;
1769 	int err = 0;
1770 	int iocount = 0;
1771 	int ret = 0;
1772 	int isnew;
1773 
1774 	set_page_extent_mapped(page);
1775 
1776 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1777 	block_end = (page_start + to - 1) | (blocksize - 1);
1778 	orig_block_start = block_start;
1779 
1780 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1781 	while(block_start <= block_end) {
1782 		em = get_extent(inode, page, page_offset, block_start,
1783 				block_end, 1);
1784 		if (IS_ERR(em) || !em) {
1785 			goto err;
1786 		}
1787 		cur_end = min(block_end, em->end);
1788 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1789 		block_off_end = block_off_start + blocksize;
1790 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1791 
1792 		if (!PageUptodate(page) && isnew &&
1793 		    (block_off_end > to || block_off_start < from)) {
1794 			void *kaddr;
1795 
1796 			kaddr = kmap_atomic(page, KM_USER0);
1797 			if (block_off_end > to)
1798 				memset(kaddr + to, 0, block_off_end - to);
1799 			if (block_off_start < from)
1800 				memset(kaddr + block_off_start, 0,
1801 				       from - block_off_start);
1802 			flush_dcache_page(page);
1803 			kunmap_atomic(kaddr, KM_USER0);
1804 		}
1805 		if (!isnew && !PageUptodate(page) &&
1806 		    (block_off_end > to || block_off_start < from) &&
1807 		    !test_range_bit(tree, block_start, cur_end,
1808 				    EXTENT_UPTODATE, 1)) {
1809 			u64 sector;
1810 			u64 extent_offset = block_start - em->start;
1811 			size_t iosize;
1812 			sector = (em->block_start + extent_offset) >> 9;
1813 			iosize = (cur_end - block_start + blocksize - 1) &
1814 				~((u64)blocksize - 1);
1815 			/*
1816 			 * we've already got the extent locked, but we
1817 			 * need to split the state such that our end_bio
1818 			 * handler can clear the lock.
1819 			 */
1820 			set_extent_bit(tree, block_start,
1821 				       block_start + iosize - 1,
1822 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1823 			ret = submit_extent_page(READ, tree, page,
1824 					 sector, iosize, page_offset, em->bdev,
1825 					 end_bio_extent_preparewrite);
1826 			iocount++;
1827 			block_start = block_start + iosize;
1828 		} else {
1829 			set_extent_uptodate(tree, block_start, cur_end,
1830 					    GFP_NOFS);
1831 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1832 			block_start = cur_end + 1;
1833 		}
1834 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1835 		free_extent_map(em);
1836 	}
1837 	if (iocount) {
1838 		wait_extent_bit(tree, orig_block_start,
1839 				block_end, EXTENT_LOCKED);
1840 	}
1841 	check_page_uptodate(tree, page);
1842 err:
1843 	/* FIXME, zero out newly allocated blocks on error */
1844 	return err;
1845 }
1846 EXPORT_SYMBOL(extent_prepare_write);
1847 
1848 /*
1849  * a helper for releasepage.  As long as there are no locked extents
1850  * in the range corresponding to the page, both state records and extent
1851  * map records are removed
1852  */
1853 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1854 {
1855 	struct extent_map *em;
1856 	u64 start = page->index << PAGE_CACHE_SHIFT;
1857 	u64 end = start + PAGE_CACHE_SIZE - 1;
1858 	u64 orig_start = start;
1859 	int ret = 1;
1860 
1861 	while (start <= end) {
1862 		em = lookup_extent_mapping(tree, start, end);
1863 		if (!em || IS_ERR(em))
1864 			break;
1865 		if (!test_range_bit(tree, em->start, em->end,
1866 				    EXTENT_LOCKED, 0)) {
1867 			remove_extent_mapping(tree, em);
1868 			/* once for the rb tree */
1869 			free_extent_map(em);
1870 		}
1871 		start = em->end + 1;
1872 		/* once for us */
1873 		free_extent_map(em);
1874 	}
1875 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1876 		ret = 0;
1877 	else
1878 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1879 				 1, 1, GFP_NOFS);
1880 	return ret;
1881 }
1882 EXPORT_SYMBOL(try_release_extent_mapping);
1883 
1884 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1885 		get_extent_t *get_extent)
1886 {
1887 	struct inode *inode = mapping->host;
1888 	u64 start = iblock << inode->i_blkbits;
1889 	u64 end = start + (1 << inode->i_blkbits) - 1;
1890 	struct extent_map *em;
1891 
1892 	em = get_extent(inode, NULL, 0, start, end, 0);
1893 	if (!em || IS_ERR(em))
1894 		return 0;
1895 
1896 	if (em->block_start == EXTENT_MAP_INLINE ||
1897 	    em->block_start == EXTENT_MAP_HOLE)
1898 		return 0;
1899 
1900 	return (em->block_start + start - em->start) >> inode->i_blkbits;
1901 }
1902 
1903 static struct extent_buffer *__alloc_extent_buffer(gfp_t mask)
1904 {
1905 	struct extent_buffer *eb = NULL;
1906 
1907 	spin_lock(&extent_buffers_lock);
1908 	if (!list_empty(&extent_buffers)) {
1909 		eb = list_entry(extent_buffers.next, struct extent_buffer,
1910 				list);
1911 		list_del(&eb->list);
1912 		WARN_ON(nr_extent_buffers == 0);
1913 		nr_extent_buffers--;
1914 	}
1915 	spin_unlock(&extent_buffers_lock);
1916 
1917 	if (eb) {
1918 		memset(eb, 0, sizeof(*eb));
1919 	} else {
1920 		eb = kmem_cache_zalloc(extent_buffer_cache, mask);
1921 	}
1922 	spin_lock(&extent_buffers_lock);
1923 	list_add(&eb->leak_list, &buffers);
1924 	spin_unlock(&extent_buffers_lock);
1925 
1926 	return eb;
1927 }
1928 
1929 static void __free_extent_buffer(struct extent_buffer *eb)
1930 {
1931 
1932 	spin_lock(&extent_buffers_lock);
1933 	list_del_init(&eb->leak_list);
1934 	spin_unlock(&extent_buffers_lock);
1935 
1936 	if (nr_extent_buffers >= MAX_EXTENT_BUFFER_CACHE) {
1937 		kmem_cache_free(extent_buffer_cache, eb);
1938 	} else {
1939 		spin_lock(&extent_buffers_lock);
1940 		list_add(&eb->list, &extent_buffers);
1941 		nr_extent_buffers++;
1942 		spin_unlock(&extent_buffers_lock);
1943 	}
1944 }
1945 
1946 static inline struct page *extent_buffer_page(struct extent_buffer *eb, int i)
1947 {
1948 	struct page *p;
1949 	if (i == 0)
1950 		return eb->first_page;
1951 	i += eb->start >> PAGE_CACHE_SHIFT;
1952 	p = find_get_page(eb->first_page->mapping, i);
1953 	page_cache_release(p);
1954 	return p;
1955 }
1956 
1957 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
1958 					  u64 start, unsigned long len,
1959 					  gfp_t mask)
1960 {
1961 	unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
1962 				  (start >> PAGE_CACHE_SHIFT) + 1;
1963 	unsigned long i;
1964 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1965 	struct extent_buffer *eb;
1966 	struct page *p;
1967 	struct address_space *mapping = tree->mapping;
1968 	int uptodate = 0;
1969 
1970 	eb = __alloc_extent_buffer(mask);
1971 	if (!eb || IS_ERR(eb))
1972 		return NULL;
1973 
1974 	eb->alloc_addr = __builtin_return_address(0);
1975 	eb->start = start;
1976 	eb->len = len;
1977 	atomic_set(&eb->refs, 1);
1978 
1979 	for (i = 0; i < num_pages; i++, index++) {
1980 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
1981 		if (!p) {
1982 			/* make sure the free only frees the pages we've
1983 			 * grabbed a reference on
1984 			 */
1985 			eb->len = i << PAGE_CACHE_SHIFT;
1986 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
1987 			goto fail;
1988 		}
1989 		set_page_extent_mapped(p);
1990 		if (i == 0)
1991 			eb->first_page = p;
1992 		if (!PageUptodate(p))
1993 			uptodate = 0;
1994 		unlock_page(p);
1995 	}
1996 	if (uptodate)
1997 		eb->flags |= EXTENT_UPTODATE;
1998 	return eb;
1999 fail:
2000 	free_extent_buffer(eb);
2001 	return NULL;
2002 }
2003 EXPORT_SYMBOL(alloc_extent_buffer);
2004 
2005 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2006 					 u64 start, unsigned long len,
2007 					  gfp_t mask)
2008 {
2009 	unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
2010 				  (start >> PAGE_CACHE_SHIFT) + 1;
2011 	unsigned long i;
2012 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2013 	struct extent_buffer *eb;
2014 	struct page *p;
2015 	struct address_space *mapping = tree->mapping;
2016 
2017 	eb = __alloc_extent_buffer(mask);
2018 	if (!eb || IS_ERR(eb))
2019 		return NULL;
2020 
2021 	eb->alloc_addr = __builtin_return_address(0);
2022 	eb->start = start;
2023 	eb->len = len;
2024 	atomic_set(&eb->refs, 1);
2025 
2026 	for (i = 0; i < num_pages; i++, index++) {
2027 		p = find_get_page(mapping, index);
2028 		if (!p) {
2029 			/* make sure the free only frees the pages we've
2030 			 * grabbed a reference on
2031 			 */
2032 			eb->len = i << PAGE_CACHE_SHIFT;
2033 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2034 			goto fail;
2035 		}
2036 		set_page_extent_mapped(p);
2037 		if (i == 0)
2038 			eb->first_page = p;
2039 	}
2040 	return eb;
2041 fail:
2042 	free_extent_buffer(eb);
2043 	return NULL;
2044 }
2045 EXPORT_SYMBOL(find_extent_buffer);
2046 
2047 void free_extent_buffer(struct extent_buffer *eb)
2048 {
2049 	unsigned long i;
2050 	unsigned long num_pages;
2051 
2052 	if (!eb)
2053 		return;
2054 
2055 	if (!atomic_dec_and_test(&eb->refs))
2056 		return;
2057 
2058 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2059 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2060 
2061 	if (eb->first_page)
2062 		page_cache_release(eb->first_page);
2063 	for (i = 1; i < num_pages; i++) {
2064 		page_cache_release(extent_buffer_page(eb, i));
2065 	}
2066 	__free_extent_buffer(eb);
2067 }
2068 EXPORT_SYMBOL(free_extent_buffer);
2069 
2070 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2071 			      struct extent_buffer *eb)
2072 {
2073 	int set;
2074 	unsigned long i;
2075 	unsigned long num_pages;
2076 	struct page *page;
2077 
2078 	u64 start = eb->start;
2079 	u64 end = start + eb->len - 1;
2080 
2081 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2082 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2083 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2084 
2085 	for (i = 0; i < num_pages; i++) {
2086 		page = extent_buffer_page(eb, i);
2087 		lock_page(page);
2088 		/*
2089 		 * if we're on the last page or the first page and the
2090 		 * block isn't aligned on a page boundary, do extra checks
2091 		 * to make sure we don't clean page that is partially dirty
2092 		 */
2093 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2094 		    ((i == num_pages - 1) &&
2095 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2096 			start = page->index << PAGE_CACHE_SHIFT;
2097 			end  = start + PAGE_CACHE_SIZE - 1;
2098 			if (test_range_bit(tree, start, end,
2099 					   EXTENT_DIRTY, 0)) {
2100 				unlock_page(page);
2101 				continue;
2102 			}
2103 		}
2104 		clear_page_dirty_for_io(page);
2105 		unlock_page(page);
2106 	}
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2110 
2111 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2112 				    struct extent_buffer *eb)
2113 {
2114 	return wait_on_extent_writeback(tree, eb->start,
2115 					eb->start + eb->len - 1);
2116 }
2117 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2118 
2119 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2120 			     struct extent_buffer *eb)
2121 {
2122 	return set_range_dirty(tree, eb->start, eb->start + eb->len - 1);
2123 }
2124 EXPORT_SYMBOL(set_extent_buffer_dirty);
2125 
2126 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2127 				struct extent_buffer *eb)
2128 {
2129 	unsigned long i;
2130 	struct page *page;
2131 	unsigned long num_pages;
2132 
2133 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2134 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2135 
2136 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2137 			    GFP_NOFS);
2138 	for (i = 0; i < num_pages; i++) {
2139 		page = extent_buffer_page(eb, i);
2140 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2141 		    ((i == num_pages - 1) &&
2142 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2143 			check_page_uptodate(tree, page);
2144 			continue;
2145 		}
2146 		SetPageUptodate(page);
2147 	}
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2151 
2152 int extent_buffer_uptodate(struct extent_map_tree *tree,
2153 			     struct extent_buffer *eb)
2154 {
2155 	if (eb->flags & EXTENT_UPTODATE)
2156 		return 1;
2157 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2158 			   EXTENT_UPTODATE, 1);
2159 }
2160 EXPORT_SYMBOL(extent_buffer_uptodate);
2161 
2162 int read_extent_buffer_pages(struct extent_map_tree *tree,
2163 			     struct extent_buffer *eb, int wait)
2164 {
2165 	unsigned long i;
2166 	struct page *page;
2167 	int err;
2168 	int ret = 0;
2169 	unsigned long num_pages;
2170 
2171 	if (eb->flags & EXTENT_UPTODATE)
2172 		return 0;
2173 
2174 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2175 			   EXTENT_UPTODATE, 1)) {
2176 		return 0;
2177 	}
2178 
2179 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2180 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2181 	for (i = 0; i < num_pages; i++) {
2182 		page = extent_buffer_page(eb, i);
2183 		if (PageUptodate(page)) {
2184 			continue;
2185 		}
2186 		if (!wait) {
2187 			if (TestSetPageLocked(page)) {
2188 				continue;
2189 			}
2190 		} else {
2191 			lock_page(page);
2192 		}
2193 		if (!PageUptodate(page)) {
2194 			err = page->mapping->a_ops->readpage(NULL, page);
2195 			if (err) {
2196 				ret = err;
2197 			}
2198 		} else {
2199 			unlock_page(page);
2200 		}
2201 	}
2202 
2203 	if (ret || !wait) {
2204 		return ret;
2205 	}
2206 
2207 	for (i = 0; i < num_pages; i++) {
2208 		page = extent_buffer_page(eb, i);
2209 		wait_on_page_locked(page);
2210 		if (!PageUptodate(page)) {
2211 			ret = -EIO;
2212 		}
2213 	}
2214 	eb->flags |= EXTENT_UPTODATE;
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL(read_extent_buffer_pages);
2218 
2219 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2220 			unsigned long start,
2221 			unsigned long len)
2222 {
2223 	size_t cur;
2224 	size_t offset;
2225 	struct page *page;
2226 	char *kaddr;
2227 	char *dst = (char *)dstv;
2228 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2229 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2230 
2231 	WARN_ON(start > eb->len);
2232 	WARN_ON(start + len > eb->start + eb->len);
2233 
2234 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2235 	if (i == 0)
2236 		offset += start_offset;
2237 
2238 	while(len > 0) {
2239 		page = extent_buffer_page(eb, i);
2240 		WARN_ON(!PageUptodate(page));
2241 
2242 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2243 		kaddr = kmap_atomic(page, KM_USER0);
2244 		memcpy(dst, kaddr + offset, cur);
2245 		kunmap_atomic(kaddr, KM_USER0);
2246 
2247 		dst += cur;
2248 		len -= cur;
2249 		offset = 0;
2250 		i++;
2251 	}
2252 }
2253 EXPORT_SYMBOL(read_extent_buffer);
2254 
2255 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2256 		      unsigned long min_len,
2257 		      char **token, char **map,
2258 		      unsigned long *map_start,
2259 		      unsigned long *map_len, int km)
2260 {
2261 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2262 	char *kaddr;
2263 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2264 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2265 	unsigned long end_i = (start_offset + start + min_len) >>
2266 				PAGE_CACHE_SHIFT;
2267 
2268 	if (i != end_i)
2269 		return -EINVAL;
2270 
2271 	WARN_ON(start > eb->len);
2272 
2273 	if (i == 0) {
2274 		offset = start_offset;
2275 		*map_start = 0;
2276 	} else {
2277 		*map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2278 	}
2279 
2280 	kaddr = kmap_atomic(extent_buffer_page(eb, i), km);
2281 	*token = kaddr;
2282 	*map = kaddr + offset;
2283 	*map_len = PAGE_CACHE_SIZE - offset;
2284 	return 0;
2285 }
2286 EXPORT_SYMBOL(map_extent_buffer);
2287 
2288 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2289 {
2290 	kunmap_atomic(token, km);
2291 }
2292 EXPORT_SYMBOL(unmap_extent_buffer);
2293 
2294 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2295 			  unsigned long start,
2296 			  unsigned long len)
2297 {
2298 	size_t cur;
2299 	size_t offset;
2300 	struct page *page;
2301 	char *kaddr;
2302 	char *ptr = (char *)ptrv;
2303 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2304 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2305 	int ret = 0;
2306 
2307 	WARN_ON(start > eb->len);
2308 	WARN_ON(start + len > eb->start + eb->len);
2309 
2310 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2311 	if (i == 0)
2312 		offset += start_offset;
2313 
2314 	while(len > 0) {
2315 		page = extent_buffer_page(eb, i);
2316 		WARN_ON(!PageUptodate(page));
2317 
2318 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2319 
2320 		kaddr = kmap_atomic(page, KM_USER0);
2321 		ret = memcmp(ptr, kaddr + offset, cur);
2322 		kunmap_atomic(kaddr, KM_USER0);
2323 		if (ret)
2324 			break;
2325 
2326 		ptr += cur;
2327 		len -= cur;
2328 		offset = 0;
2329 		i++;
2330 	}
2331 	return ret;
2332 }
2333 EXPORT_SYMBOL(memcmp_extent_buffer);
2334 
2335 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2336 			 unsigned long start, unsigned long len)
2337 {
2338 	size_t cur;
2339 	size_t offset;
2340 	struct page *page;
2341 	char *kaddr;
2342 	char *src = (char *)srcv;
2343 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2344 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2345 
2346 	WARN_ON(start > eb->len);
2347 	WARN_ON(start + len > eb->start + eb->len);
2348 
2349 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2350 	if (i == 0)
2351 		offset += start_offset;
2352 
2353 	while(len > 0) {
2354 		page = extent_buffer_page(eb, i);
2355 		WARN_ON(!PageUptodate(page));
2356 
2357 		cur = min(len, PAGE_CACHE_SIZE - offset);
2358 		kaddr = kmap_atomic(page, KM_USER0);
2359 		memcpy(kaddr + offset, src, cur);
2360 		kunmap_atomic(kaddr, KM_USER0);
2361 
2362 		src += cur;
2363 		len -= cur;
2364 		offset = 0;
2365 		i++;
2366 	}
2367 }
2368 EXPORT_SYMBOL(write_extent_buffer);
2369 
2370 void memset_extent_buffer(struct extent_buffer *eb, char c,
2371 			  unsigned long start, unsigned long len)
2372 {
2373 	size_t cur;
2374 	size_t offset;
2375 	struct page *page;
2376 	char *kaddr;
2377 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2378 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2379 
2380 	WARN_ON(start > eb->len);
2381 	WARN_ON(start + len > eb->start + eb->len);
2382 
2383 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2384 	if (i == 0)
2385 		offset += start_offset;
2386 
2387 	while(len > 0) {
2388 		page = extent_buffer_page(eb, i);
2389 		WARN_ON(!PageUptodate(page));
2390 
2391 		cur = min(len, PAGE_CACHE_SIZE - offset);
2392 		kaddr = kmap_atomic(page, KM_USER0);
2393 		memset(kaddr + offset, c, cur);
2394 		kunmap_atomic(kaddr, KM_USER0);
2395 
2396 		len -= cur;
2397 		offset = 0;
2398 		i++;
2399 	}
2400 }
2401 EXPORT_SYMBOL(memset_extent_buffer);
2402 
2403 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2404 			unsigned long dst_offset, unsigned long src_offset,
2405 			unsigned long len)
2406 {
2407 	u64 dst_len = dst->len;
2408 	size_t cur;
2409 	size_t offset;
2410 	struct page *page;
2411 	char *kaddr;
2412 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2413 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2414 
2415 	WARN_ON(src->len != dst_len);
2416 
2417 	offset = dst_offset & ((unsigned long)PAGE_CACHE_SIZE - 1);
2418 	if (i == 0)
2419 		offset += start_offset;
2420 
2421 	while(len > 0) {
2422 		page = extent_buffer_page(dst, i);
2423 		WARN_ON(!PageUptodate(page));
2424 
2425 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2426 
2427 		kaddr = kmap_atomic(page, KM_USER1);
2428 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2429 		kunmap_atomic(kaddr, KM_USER1);
2430 
2431 		src_offset += cur;
2432 		len -= cur;
2433 		offset = 0;
2434 		i++;
2435 	}
2436 }
2437 EXPORT_SYMBOL(copy_extent_buffer);
2438 
2439 static void move_pages(struct page *dst_page, struct page *src_page,
2440 		       unsigned long dst_off, unsigned long src_off,
2441 		       unsigned long len)
2442 {
2443 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2444 	if (dst_page == src_page) {
2445 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2446 	} else {
2447 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2448 		char *p = dst_kaddr + dst_off + len;
2449 		char *s = src_kaddr + src_off + len;
2450 
2451 		while (len--)
2452 			*--p = *--s;
2453 
2454 		kunmap_atomic(src_kaddr, KM_USER1);
2455 	}
2456 	kunmap_atomic(dst_kaddr, KM_USER0);
2457 }
2458 
2459 static void copy_pages(struct page *dst_page, struct page *src_page,
2460 		       unsigned long dst_off, unsigned long src_off,
2461 		       unsigned long len)
2462 {
2463 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2464 	char *src_kaddr;
2465 
2466 	if (dst_page != src_page)
2467 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2468 	else
2469 		src_kaddr = dst_kaddr;
2470 
2471 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2472 	kunmap_atomic(dst_kaddr, KM_USER0);
2473 	if (dst_page != src_page)
2474 		kunmap_atomic(src_kaddr, KM_USER1);
2475 }
2476 
2477 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2478 			   unsigned long src_offset, unsigned long len)
2479 {
2480 	size_t cur;
2481 	size_t dst_off_in_page;
2482 	size_t src_off_in_page;
2483 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2484 	unsigned long dst_i;
2485 	unsigned long src_i;
2486 
2487 	if (src_offset + len > dst->len) {
2488 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2489 		       src_offset, len, dst->len);
2490 		BUG_ON(1);
2491 	}
2492 	if (dst_offset + len > dst->len) {
2493 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2494 		       dst_offset, len, dst->len);
2495 		BUG_ON(1);
2496 	}
2497 
2498 	while(len > 0) {
2499 		dst_off_in_page = dst_offset &
2500 			((unsigned long)PAGE_CACHE_SIZE - 1);
2501 		src_off_in_page = src_offset &
2502 			((unsigned long)PAGE_CACHE_SIZE - 1);
2503 
2504 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2505 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2506 
2507 		if (src_i == 0)
2508 			src_off_in_page += start_offset;
2509 		if (dst_i == 0)
2510 			dst_off_in_page += start_offset;
2511 
2512 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2513 					       src_off_in_page));
2514 		cur = min(cur, (unsigned long)(PAGE_CACHE_SIZE -
2515 					       dst_off_in_page));
2516 
2517 		copy_pages(extent_buffer_page(dst, dst_i),
2518 			   extent_buffer_page(dst, src_i),
2519 			   dst_off_in_page, src_off_in_page, cur);
2520 
2521 		src_offset += cur;
2522 		dst_offset += cur;
2523 		len -= cur;
2524 	}
2525 }
2526 EXPORT_SYMBOL(memcpy_extent_buffer);
2527 
2528 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2529 			   unsigned long src_offset, unsigned long len)
2530 {
2531 	size_t cur;
2532 	size_t dst_off_in_page;
2533 	size_t src_off_in_page;
2534 	unsigned long dst_end = dst_offset + len - 1;
2535 	unsigned long src_end = src_offset + len - 1;
2536 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2537 	unsigned long dst_i;
2538 	unsigned long src_i;
2539 
2540 	if (src_offset + len > dst->len) {
2541 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2542 		       src_offset, len, dst->len);
2543 		BUG_ON(1);
2544 	}
2545 	if (dst_offset + len > dst->len) {
2546 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2547 		       dst_offset, len, dst->len);
2548 		BUG_ON(1);
2549 	}
2550 	if (dst_offset < src_offset) {
2551 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2552 		return;
2553 	}
2554 	while(len > 0) {
2555 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2556 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2557 
2558 		dst_off_in_page = dst_end &
2559 			((unsigned long)PAGE_CACHE_SIZE - 1);
2560 		src_off_in_page = src_end &
2561 			((unsigned long)PAGE_CACHE_SIZE - 1);
2562 
2563 		if (src_i == 0)
2564 			src_off_in_page += start_offset;
2565 		if (dst_i == 0)
2566 			dst_off_in_page += start_offset;
2567 
2568 		cur = min(len, src_off_in_page + 1);
2569 		cur = min(cur, dst_off_in_page + 1);
2570 
2571 		move_pages(extent_buffer_page(dst, dst_i),
2572 			   extent_buffer_page(dst, src_i),
2573 			   dst_off_in_page - cur + 1,
2574 			   src_off_in_page - cur + 1, cur);
2575 
2576 		dst_end -= cur - 1;
2577 		src_end -= cur - 1;
2578 		len -= cur;
2579 	}
2580 }
2581 EXPORT_SYMBOL(memmove_extent_buffer);
2582