xref: /openbmc/linux/fs/btrfs/extent_map.c (revision f0c5da14)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 
46 int __init extent_map_init(void)
47 {
48 	extent_map_cache = btrfs_cache_create("extent_map",
49 					    sizeof(struct extent_map), 0,
50 					    NULL);
51 	if (!extent_map_cache)
52 		return -ENOMEM;
53 	extent_state_cache = btrfs_cache_create("extent_state",
54 					    sizeof(struct extent_state), 0,
55 					    NULL);
56 	if (!extent_state_cache)
57 		goto free_map_cache;
58 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 					    sizeof(struct extent_buffer), 0,
60 					    NULL);
61 	if (!extent_buffer_cache)
62 		goto free_state_cache;
63 	return 0;
64 
65 free_state_cache:
66 	kmem_cache_destroy(extent_state_cache);
67 free_map_cache:
68 	kmem_cache_destroy(extent_map_cache);
69 	return -ENOMEM;
70 }
71 
72 void extent_map_exit(void)
73 {
74 	struct extent_state *state;
75 
76 	while (!list_empty(&states)) {
77 		state = list_entry(states.next, struct extent_state, list);
78 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 		list_del(&state->list);
80 		kmem_cache_free(extent_state_cache, state);
81 
82 	}
83 
84 	if (extent_map_cache)
85 		kmem_cache_destroy(extent_map_cache);
86 	if (extent_state_cache)
87 		kmem_cache_destroy(extent_state_cache);
88 	if (extent_buffer_cache)
89 		kmem_cache_destroy(extent_buffer_cache);
90 }
91 
92 void extent_map_tree_init(struct extent_map_tree *tree,
93 			  struct address_space *mapping, gfp_t mask)
94 {
95 	tree->map.rb_node = NULL;
96 	tree->state.rb_node = NULL;
97 	tree->ops = NULL;
98 	tree->dirty_bytes = 0;
99 	rwlock_init(&tree->lock);
100 	spin_lock_init(&tree->lru_lock);
101 	tree->mapping = mapping;
102 	INIT_LIST_HEAD(&tree->buffer_lru);
103 	tree->lru_size = 0;
104 }
105 EXPORT_SYMBOL(extent_map_tree_init);
106 
107 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108 {
109 	struct extent_buffer *eb;
110 	while(!list_empty(&tree->buffer_lru)) {
111 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 				lru);
113 		list_del_init(&eb->lru);
114 		free_extent_buffer(eb);
115 	}
116 }
117 EXPORT_SYMBOL(extent_map_tree_empty_lru);
118 
119 struct extent_map *alloc_extent_map(gfp_t mask)
120 {
121 	struct extent_map *em;
122 	em = kmem_cache_alloc(extent_map_cache, mask);
123 	if (!em || IS_ERR(em))
124 		return em;
125 	em->in_tree = 0;
126 	atomic_set(&em->refs, 1);
127 	return em;
128 }
129 EXPORT_SYMBOL(alloc_extent_map);
130 
131 void free_extent_map(struct extent_map *em)
132 {
133 	if (!em)
134 		return;
135 	if (atomic_dec_and_test(&em->refs)) {
136 		WARN_ON(em->in_tree);
137 		kmem_cache_free(extent_map_cache, em);
138 	}
139 }
140 EXPORT_SYMBOL(free_extent_map);
141 
142 
143 struct extent_state *alloc_extent_state(gfp_t mask)
144 {
145 	struct extent_state *state;
146 	unsigned long flags;
147 
148 	state = kmem_cache_alloc(extent_state_cache, mask);
149 	if (!state || IS_ERR(state))
150 		return state;
151 	state->state = 0;
152 	state->in_tree = 0;
153 	state->private = 0;
154 
155 	spin_lock_irqsave(&state_lock, flags);
156 	list_add(&state->list, &states);
157 	spin_unlock_irqrestore(&state_lock, flags);
158 
159 	atomic_set(&state->refs, 1);
160 	init_waitqueue_head(&state->wq);
161 	return state;
162 }
163 EXPORT_SYMBOL(alloc_extent_state);
164 
165 void free_extent_state(struct extent_state *state)
166 {
167 	unsigned long flags;
168 	if (!state)
169 		return;
170 	if (atomic_dec_and_test(&state->refs)) {
171 		WARN_ON(state->in_tree);
172 		spin_lock_irqsave(&state_lock, flags);
173 		list_del(&state->list);
174 		spin_unlock_irqrestore(&state_lock, flags);
175 		kmem_cache_free(extent_state_cache, state);
176 	}
177 }
178 EXPORT_SYMBOL(free_extent_state);
179 
180 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 				   struct rb_node *node)
182 {
183 	struct rb_node ** p = &root->rb_node;
184 	struct rb_node * parent = NULL;
185 	struct tree_entry *entry;
186 
187 	while(*p) {
188 		parent = *p;
189 		entry = rb_entry(parent, struct tree_entry, rb_node);
190 
191 		if (offset < entry->start)
192 			p = &(*p)->rb_left;
193 		else if (offset > entry->end)
194 			p = &(*p)->rb_right;
195 		else
196 			return parent;
197 	}
198 
199 	entry = rb_entry(node, struct tree_entry, rb_node);
200 	entry->in_tree = 1;
201 	rb_link_node(node, parent, p);
202 	rb_insert_color(node, root);
203 	return NULL;
204 }
205 
206 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
207 				   struct rb_node **prev_ret)
208 {
209 	struct rb_node * n = root->rb_node;
210 	struct rb_node *prev = NULL;
211 	struct tree_entry *entry;
212 	struct tree_entry *prev_entry = NULL;
213 
214 	while(n) {
215 		entry = rb_entry(n, struct tree_entry, rb_node);
216 		prev = n;
217 		prev_entry = entry;
218 
219 		if (offset < entry->start)
220 			n = n->rb_left;
221 		else if (offset > entry->end)
222 			n = n->rb_right;
223 		else
224 			return n;
225 	}
226 	if (!prev_ret)
227 		return NULL;
228 	while(prev && offset > prev_entry->end) {
229 		prev = rb_next(prev);
230 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 	}
232 	*prev_ret = prev;
233 	return NULL;
234 }
235 
236 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
237 {
238 	struct rb_node *prev;
239 	struct rb_node *ret;
240 	ret = __tree_search(root, offset, &prev);
241 	if (!ret)
242 		return prev;
243 	return ret;
244 }
245 
246 static int tree_delete(struct rb_root *root, u64 offset)
247 {
248 	struct rb_node *node;
249 	struct tree_entry *entry;
250 
251 	node = __tree_search(root, offset, NULL);
252 	if (!node)
253 		return -ENOENT;
254 	entry = rb_entry(node, struct tree_entry, rb_node);
255 	entry->in_tree = 0;
256 	rb_erase(node, root);
257 	return 0;
258 }
259 
260 /*
261  * add_extent_mapping tries a simple backward merge with existing
262  * mappings.  The extent_map struct passed in will be inserted into
263  * the tree directly (no copies made, just a reference taken).
264  */
265 int add_extent_mapping(struct extent_map_tree *tree,
266 		       struct extent_map *em)
267 {
268 	int ret = 0;
269 	struct extent_map *prev = NULL;
270 	struct rb_node *rb;
271 
272 	write_lock_irq(&tree->lock);
273 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
274 	if (rb) {
275 		prev = rb_entry(rb, struct extent_map, rb_node);
276 		ret = -EEXIST;
277 		goto out;
278 	}
279 	atomic_inc(&em->refs);
280 	if (em->start != 0) {
281 		rb = rb_prev(&em->rb_node);
282 		if (rb)
283 			prev = rb_entry(rb, struct extent_map, rb_node);
284 		if (prev && prev->end + 1 == em->start &&
285 		    ((em->block_start == EXTENT_MAP_HOLE &&
286 		      prev->block_start == EXTENT_MAP_HOLE) ||
287 		     (em->block_start == EXTENT_MAP_INLINE &&
288 		      prev->block_start == EXTENT_MAP_INLINE) ||
289 		     (em->block_start == EXTENT_MAP_DELALLOC &&
290 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
291 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
292 		      em->block_start == prev->block_end + 1))) {
293 			em->start = prev->start;
294 			em->block_start = prev->block_start;
295 			rb_erase(&prev->rb_node, &tree->map);
296 			prev->in_tree = 0;
297 			free_extent_map(prev);
298 		}
299 	 }
300 out:
301 	write_unlock_irq(&tree->lock);
302 	return ret;
303 }
304 EXPORT_SYMBOL(add_extent_mapping);
305 
306 /*
307  * lookup_extent_mapping returns the first extent_map struct in the
308  * tree that intersects the [start, end] (inclusive) range.  There may
309  * be additional objects in the tree that intersect, so check the object
310  * returned carefully to make sure you don't need additional lookups.
311  */
312 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
313 					 u64 start, u64 end)
314 {
315 	struct extent_map *em;
316 	struct rb_node *rb_node;
317 
318 	read_lock_irq(&tree->lock);
319 	rb_node = tree_search(&tree->map, start);
320 	if (!rb_node) {
321 		em = NULL;
322 		goto out;
323 	}
324 	if (IS_ERR(rb_node)) {
325 		em = ERR_PTR(PTR_ERR(rb_node));
326 		goto out;
327 	}
328 	em = rb_entry(rb_node, struct extent_map, rb_node);
329 	if (em->end < start || em->start > end) {
330 		em = NULL;
331 		goto out;
332 	}
333 	atomic_inc(&em->refs);
334 out:
335 	read_unlock_irq(&tree->lock);
336 	return em;
337 }
338 EXPORT_SYMBOL(lookup_extent_mapping);
339 
340 /*
341  * removes an extent_map struct from the tree.  No reference counts are
342  * dropped, and no checks are done to  see if the range is in use
343  */
344 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
345 {
346 	int ret;
347 
348 	write_lock_irq(&tree->lock);
349 	ret = tree_delete(&tree->map, em->end);
350 	write_unlock_irq(&tree->lock);
351 	return ret;
352 }
353 EXPORT_SYMBOL(remove_extent_mapping);
354 
355 /*
356  * utility function to look for merge candidates inside a given range.
357  * Any extents with matching state are merged together into a single
358  * extent in the tree.  Extents with EXTENT_IO in their state field
359  * are not merged because the end_io handlers need to be able to do
360  * operations on them without sleeping (or doing allocations/splits).
361  *
362  * This should be called with the tree lock held.
363  */
364 static int merge_state(struct extent_map_tree *tree,
365 		       struct extent_state *state)
366 {
367 	struct extent_state *other;
368 	struct rb_node *other_node;
369 
370 	if (state->state & EXTENT_IOBITS)
371 		return 0;
372 
373 	other_node = rb_prev(&state->rb_node);
374 	if (other_node) {
375 		other = rb_entry(other_node, struct extent_state, rb_node);
376 		if (other->end == state->start - 1 &&
377 		    other->state == state->state) {
378 			state->start = other->start;
379 			other->in_tree = 0;
380 			rb_erase(&other->rb_node, &tree->state);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			other->start = state->start;
390 			state->in_tree = 0;
391 			rb_erase(&state->rb_node, &tree->state);
392 			free_extent_state(state);
393 		}
394 	}
395 	return 0;
396 }
397 
398 /*
399  * insert an extent_state struct into the tree.  'bits' are set on the
400  * struct before it is inserted.
401  *
402  * This may return -EEXIST if the extent is already there, in which case the
403  * state struct is freed.
404  *
405  * The tree lock is not taken internally.  This is a utility function and
406  * probably isn't what you want to call (see set/clear_extent_bit).
407  */
408 static int insert_state(struct extent_map_tree *tree,
409 			struct extent_state *state, u64 start, u64 end,
410 			int bits)
411 {
412 	struct rb_node *node;
413 
414 	if (end < start) {
415 		printk("end < start %Lu %Lu\n", end, start);
416 		WARN_ON(1);
417 	}
418 	if (bits & EXTENT_DIRTY)
419 		tree->dirty_bytes += end - start + 1;
420 	state->state |= bits;
421 	state->start = start;
422 	state->end = end;
423 	node = tree_insert(&tree->state, end, &state->rb_node);
424 	if (node) {
425 		struct extent_state *found;
426 		found = rb_entry(node, struct extent_state, rb_node);
427 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
428 		free_extent_state(state);
429 		return -EEXIST;
430 	}
431 	merge_state(tree, state);
432 	return 0;
433 }
434 
435 /*
436  * split a given extent state struct in two, inserting the preallocated
437  * struct 'prealloc' as the newly created second half.  'split' indicates an
438  * offset inside 'orig' where it should be split.
439  *
440  * Before calling,
441  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
442  * are two extent state structs in the tree:
443  * prealloc: [orig->start, split - 1]
444  * orig: [ split, orig->end ]
445  *
446  * The tree locks are not taken by this function. They need to be held
447  * by the caller.
448  */
449 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
450 		       struct extent_state *prealloc, u64 split)
451 {
452 	struct rb_node *node;
453 	prealloc->start = orig->start;
454 	prealloc->end = split - 1;
455 	prealloc->state = orig->state;
456 	orig->start = split;
457 
458 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
459 	if (node) {
460 		struct extent_state *found;
461 		found = rb_entry(node, struct extent_state, rb_node);
462 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
463 		free_extent_state(prealloc);
464 		return -EEXIST;
465 	}
466 	return 0;
467 }
468 
469 /*
470  * utility function to clear some bits in an extent state struct.
471  * it will optionally wake up any one waiting on this state (wake == 1), or
472  * forcibly remove the state from the tree (delete == 1).
473  *
474  * If no bits are set on the state struct after clearing things, the
475  * struct is freed and removed from the tree
476  */
477 static int clear_state_bit(struct extent_map_tree *tree,
478 			    struct extent_state *state, int bits, int wake,
479 			    int delete)
480 {
481 	int ret = state->state & bits;
482 
483 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
484 		u64 range = state->end - state->start + 1;
485 		WARN_ON(range > tree->dirty_bytes);
486 		tree->dirty_bytes -= range;
487 	}
488 	state->state &= ~bits;
489 	if (wake)
490 		wake_up(&state->wq);
491 	if (delete || state->state == 0) {
492 		if (state->in_tree) {
493 			rb_erase(&state->rb_node, &tree->state);
494 			state->in_tree = 0;
495 			free_extent_state(state);
496 		} else {
497 			WARN_ON(1);
498 		}
499 	} else {
500 		merge_state(tree, state);
501 	}
502 	return ret;
503 }
504 
505 /*
506  * clear some bits on a range in the tree.  This may require splitting
507  * or inserting elements in the tree, so the gfp mask is used to
508  * indicate which allocations or sleeping are allowed.
509  *
510  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
511  * the given range from the tree regardless of state (ie for truncate).
512  *
513  * the range [start, end] is inclusive.
514  *
515  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
516  * bits were already set, or zero if none of the bits were already set.
517  */
518 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
519 		     int bits, int wake, int delete, gfp_t mask)
520 {
521 	struct extent_state *state;
522 	struct extent_state *prealloc = NULL;
523 	struct rb_node *node;
524 	unsigned long flags;
525 	int err;
526 	int set = 0;
527 
528 again:
529 	if (!prealloc && (mask & __GFP_WAIT)) {
530 		prealloc = alloc_extent_state(mask);
531 		if (!prealloc)
532 			return -ENOMEM;
533 	}
534 
535 	write_lock_irqsave(&tree->lock, flags);
536 	/*
537 	 * this search will find the extents that end after
538 	 * our range starts
539 	 */
540 	node = tree_search(&tree->state, start);
541 	if (!node)
542 		goto out;
543 	state = rb_entry(node, struct extent_state, rb_node);
544 	if (state->start > end)
545 		goto out;
546 	WARN_ON(state->end < start);
547 
548 	/*
549 	 *     | ---- desired range ---- |
550 	 *  | state | or
551 	 *  | ------------- state -------------- |
552 	 *
553 	 * We need to split the extent we found, and may flip
554 	 * bits on second half.
555 	 *
556 	 * If the extent we found extends past our range, we
557 	 * just split and search again.  It'll get split again
558 	 * the next time though.
559 	 *
560 	 * If the extent we found is inside our range, we clear
561 	 * the desired bit on it.
562 	 */
563 
564 	if (state->start < start) {
565 		err = split_state(tree, state, prealloc, start);
566 		BUG_ON(err == -EEXIST);
567 		prealloc = NULL;
568 		if (err)
569 			goto out;
570 		if (state->end <= end) {
571 			start = state->end + 1;
572 			set |= clear_state_bit(tree, state, bits,
573 					wake, delete);
574 		} else {
575 			start = state->start;
576 		}
577 		goto search_again;
578 	}
579 	/*
580 	 * | ---- desired range ---- |
581 	 *                        | state |
582 	 * We need to split the extent, and clear the bit
583 	 * on the first half
584 	 */
585 	if (state->start <= end && state->end > end) {
586 		err = split_state(tree, state, prealloc, end + 1);
587 		BUG_ON(err == -EEXIST);
588 
589 		if (wake)
590 			wake_up(&state->wq);
591 		set |= clear_state_bit(tree, prealloc, bits,
592 				       wake, delete);
593 		prealloc = NULL;
594 		goto out;
595 	}
596 
597 	start = state->end + 1;
598 	set |= clear_state_bit(tree, state, bits, wake, delete);
599 	goto search_again;
600 
601 out:
602 	write_unlock_irqrestore(&tree->lock, flags);
603 	if (prealloc)
604 		free_extent_state(prealloc);
605 
606 	return set;
607 
608 search_again:
609 	if (start > end)
610 		goto out;
611 	write_unlock_irqrestore(&tree->lock, flags);
612 	if (mask & __GFP_WAIT)
613 		cond_resched();
614 	goto again;
615 }
616 EXPORT_SYMBOL(clear_extent_bit);
617 
618 static int wait_on_state(struct extent_map_tree *tree,
619 			 struct extent_state *state)
620 {
621 	DEFINE_WAIT(wait);
622 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
623 	read_unlock_irq(&tree->lock);
624 	schedule();
625 	read_lock_irq(&tree->lock);
626 	finish_wait(&state->wq, &wait);
627 	return 0;
628 }
629 
630 /*
631  * waits for one or more bits to clear on a range in the state tree.
632  * The range [start, end] is inclusive.
633  * The tree lock is taken by this function
634  */
635 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
636 {
637 	struct extent_state *state;
638 	struct rb_node *node;
639 
640 	read_lock_irq(&tree->lock);
641 again:
642 	while (1) {
643 		/*
644 		 * this search will find all the extents that end after
645 		 * our range starts
646 		 */
647 		node = tree_search(&tree->state, start);
648 		if (!node)
649 			break;
650 
651 		state = rb_entry(node, struct extent_state, rb_node);
652 
653 		if (state->start > end)
654 			goto out;
655 
656 		if (state->state & bits) {
657 			start = state->start;
658 			atomic_inc(&state->refs);
659 			wait_on_state(tree, state);
660 			free_extent_state(state);
661 			goto again;
662 		}
663 		start = state->end + 1;
664 
665 		if (start > end)
666 			break;
667 
668 		if (need_resched()) {
669 			read_unlock_irq(&tree->lock);
670 			cond_resched();
671 			read_lock_irq(&tree->lock);
672 		}
673 	}
674 out:
675 	read_unlock_irq(&tree->lock);
676 	return 0;
677 }
678 EXPORT_SYMBOL(wait_extent_bit);
679 
680 static void set_state_bits(struct extent_map_tree *tree,
681 			   struct extent_state *state,
682 			   int bits)
683 {
684 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
685 		u64 range = state->end - state->start + 1;
686 		tree->dirty_bytes += range;
687 	}
688 	state->state |= bits;
689 }
690 
691 /*
692  * set some bits on a range in the tree.  This may require allocations
693  * or sleeping, so the gfp mask is used to indicate what is allowed.
694  *
695  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
696  * range already has the desired bits set.  The start of the existing
697  * range is returned in failed_start in this case.
698  *
699  * [start, end] is inclusive
700  * This takes the tree lock.
701  */
702 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
703 		   int exclusive, u64 *failed_start, gfp_t mask)
704 {
705 	struct extent_state *state;
706 	struct extent_state *prealloc = NULL;
707 	struct rb_node *node;
708 	unsigned long flags;
709 	int err = 0;
710 	int set;
711 	u64 last_start;
712 	u64 last_end;
713 again:
714 	if (!prealloc && (mask & __GFP_WAIT)) {
715 		prealloc = alloc_extent_state(mask);
716 		if (!prealloc)
717 			return -ENOMEM;
718 	}
719 
720 	write_lock_irqsave(&tree->lock, flags);
721 	/*
722 	 * this search will find all the extents that end after
723 	 * our range starts.
724 	 */
725 	node = tree_search(&tree->state, start);
726 	if (!node) {
727 		err = insert_state(tree, prealloc, start, end, bits);
728 		prealloc = NULL;
729 		BUG_ON(err == -EEXIST);
730 		goto out;
731 	}
732 
733 	state = rb_entry(node, struct extent_state, rb_node);
734 	last_start = state->start;
735 	last_end = state->end;
736 
737 	/*
738 	 * | ---- desired range ---- |
739 	 * | state |
740 	 *
741 	 * Just lock what we found and keep going
742 	 */
743 	if (state->start == start && state->end <= end) {
744 		set = state->state & bits;
745 		if (set && exclusive) {
746 			*failed_start = state->start;
747 			err = -EEXIST;
748 			goto out;
749 		}
750 		set_state_bits(tree, state, bits);
751 		start = state->end + 1;
752 		merge_state(tree, state);
753 		goto search_again;
754 	}
755 
756 	/*
757 	 *     | ---- desired range ---- |
758 	 * | state |
759 	 *   or
760 	 * | ------------- state -------------- |
761 	 *
762 	 * We need to split the extent we found, and may flip bits on
763 	 * second half.
764 	 *
765 	 * If the extent we found extends past our
766 	 * range, we just split and search again.  It'll get split
767 	 * again the next time though.
768 	 *
769 	 * If the extent we found is inside our range, we set the
770 	 * desired bit on it.
771 	 */
772 	if (state->start < start) {
773 		set = state->state & bits;
774 		if (exclusive && set) {
775 			*failed_start = start;
776 			err = -EEXIST;
777 			goto out;
778 		}
779 		err = split_state(tree, state, prealloc, start);
780 		BUG_ON(err == -EEXIST);
781 		prealloc = NULL;
782 		if (err)
783 			goto out;
784 		if (state->end <= end) {
785 			set_state_bits(tree, state, bits);
786 			start = state->end + 1;
787 			merge_state(tree, state);
788 		} else {
789 			start = state->start;
790 		}
791 		goto search_again;
792 	}
793 	/*
794 	 * | ---- desired range ---- |
795 	 *     | state | or               | state |
796 	 *
797 	 * There's a hole, we need to insert something in it and
798 	 * ignore the extent we found.
799 	 */
800 	if (state->start > start) {
801 		u64 this_end;
802 		if (end < last_start)
803 			this_end = end;
804 		else
805 			this_end = last_start -1;
806 		err = insert_state(tree, prealloc, start, this_end,
807 				   bits);
808 		prealloc = NULL;
809 		BUG_ON(err == -EEXIST);
810 		if (err)
811 			goto out;
812 		start = this_end + 1;
813 		goto search_again;
814 	}
815 	/*
816 	 * | ---- desired range ---- |
817 	 *                        | state |
818 	 * We need to split the extent, and set the bit
819 	 * on the first half
820 	 */
821 	if (state->start <= end && state->end > end) {
822 		set = state->state & bits;
823 		if (exclusive && set) {
824 			*failed_start = start;
825 			err = -EEXIST;
826 			goto out;
827 		}
828 		err = split_state(tree, state, prealloc, end + 1);
829 		BUG_ON(err == -EEXIST);
830 
831 		set_state_bits(tree, prealloc, bits);
832 		merge_state(tree, prealloc);
833 		prealloc = NULL;
834 		goto out;
835 	}
836 
837 	goto search_again;
838 
839 out:
840 	write_unlock_irqrestore(&tree->lock, flags);
841 	if (prealloc)
842 		free_extent_state(prealloc);
843 
844 	return err;
845 
846 search_again:
847 	if (start > end)
848 		goto out;
849 	write_unlock_irqrestore(&tree->lock, flags);
850 	if (mask & __GFP_WAIT)
851 		cond_resched();
852 	goto again;
853 }
854 EXPORT_SYMBOL(set_extent_bit);
855 
856 /* wrappers around set/clear extent bit */
857 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
858 		     gfp_t mask)
859 {
860 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
861 			      mask);
862 }
863 EXPORT_SYMBOL(set_extent_dirty);
864 
865 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
866 		    int bits, gfp_t mask)
867 {
868 	return set_extent_bit(tree, start, end, bits, 0, NULL,
869 			      mask);
870 }
871 EXPORT_SYMBOL(set_extent_bits);
872 
873 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
874 		      int bits, gfp_t mask)
875 {
876 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
877 }
878 EXPORT_SYMBOL(clear_extent_bits);
879 
880 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
881 		     gfp_t mask)
882 {
883 	return set_extent_bit(tree, start, end,
884 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
885 			      mask);
886 }
887 EXPORT_SYMBOL(set_extent_delalloc);
888 
889 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
890 		       gfp_t mask)
891 {
892 	return clear_extent_bit(tree, start, end,
893 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
894 }
895 EXPORT_SYMBOL(clear_extent_dirty);
896 
897 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
898 		     gfp_t mask)
899 {
900 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
901 			      mask);
902 }
903 EXPORT_SYMBOL(set_extent_new);
904 
905 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
906 		       gfp_t mask)
907 {
908 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
909 }
910 EXPORT_SYMBOL(clear_extent_new);
911 
912 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
913 			gfp_t mask)
914 {
915 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
916 			      mask);
917 }
918 EXPORT_SYMBOL(set_extent_uptodate);
919 
920 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
921 			  gfp_t mask)
922 {
923 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
924 }
925 EXPORT_SYMBOL(clear_extent_uptodate);
926 
927 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
928 			 gfp_t mask)
929 {
930 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
931 			      0, NULL, mask);
932 }
933 EXPORT_SYMBOL(set_extent_writeback);
934 
935 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
936 			   gfp_t mask)
937 {
938 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
939 }
940 EXPORT_SYMBOL(clear_extent_writeback);
941 
942 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
943 {
944 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
945 }
946 EXPORT_SYMBOL(wait_on_extent_writeback);
947 
948 /*
949  * locks a range in ascending order, waiting for any locked regions
950  * it hits on the way.  [start,end] are inclusive, and this will sleep.
951  */
952 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
953 {
954 	int err;
955 	u64 failed_start;
956 	while (1) {
957 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
958 				     &failed_start, mask);
959 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
960 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
961 			start = failed_start;
962 		} else {
963 			break;
964 		}
965 		WARN_ON(start > end);
966 	}
967 	return err;
968 }
969 EXPORT_SYMBOL(lock_extent);
970 
971 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
972 		  gfp_t mask)
973 {
974 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
975 }
976 EXPORT_SYMBOL(unlock_extent);
977 
978 /*
979  * helper function to set pages and extents in the tree dirty
980  */
981 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
982 {
983 	unsigned long index = start >> PAGE_CACHE_SHIFT;
984 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
985 	struct page *page;
986 
987 	while (index <= end_index) {
988 		page = find_get_page(tree->mapping, index);
989 		BUG_ON(!page);
990 		__set_page_dirty_nobuffers(page);
991 		page_cache_release(page);
992 		index++;
993 	}
994 	set_extent_dirty(tree, start, end, GFP_NOFS);
995 	return 0;
996 }
997 EXPORT_SYMBOL(set_range_dirty);
998 
999 /*
1000  * helper function to set both pages and extents in the tree writeback
1001  */
1002 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1003 {
1004 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1005 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1006 	struct page *page;
1007 
1008 	while (index <= end_index) {
1009 		page = find_get_page(tree->mapping, index);
1010 		BUG_ON(!page);
1011 		set_page_writeback(page);
1012 		page_cache_release(page);
1013 		index++;
1014 	}
1015 	set_extent_writeback(tree, start, end, GFP_NOFS);
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL(set_range_writeback);
1019 
1020 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1021 			  u64 *start_ret, u64 *end_ret, int bits)
1022 {
1023 	struct rb_node *node;
1024 	struct extent_state *state;
1025 	int ret = 1;
1026 
1027 	read_lock_irq(&tree->lock);
1028 	/*
1029 	 * this search will find all the extents that end after
1030 	 * our range starts.
1031 	 */
1032 	node = tree_search(&tree->state, start);
1033 	if (!node || IS_ERR(node)) {
1034 		goto out;
1035 	}
1036 
1037 	while(1) {
1038 		state = rb_entry(node, struct extent_state, rb_node);
1039 		if (state->end >= start && (state->state & bits)) {
1040 			*start_ret = state->start;
1041 			*end_ret = state->end;
1042 			ret = 0;
1043 			break;
1044 		}
1045 		node = rb_next(node);
1046 		if (!node)
1047 			break;
1048 	}
1049 out:
1050 	read_unlock_irq(&tree->lock);
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL(find_first_extent_bit);
1054 
1055 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1056 			     u64 *start, u64 *end, u64 max_bytes)
1057 {
1058 	struct rb_node *node;
1059 	struct extent_state *state;
1060 	u64 cur_start = *start;
1061 	u64 found = 0;
1062 	u64 total_bytes = 0;
1063 
1064 	write_lock_irq(&tree->lock);
1065 	/*
1066 	 * this search will find all the extents that end after
1067 	 * our range starts.
1068 	 */
1069 search_again:
1070 	node = tree_search(&tree->state, cur_start);
1071 	if (!node || IS_ERR(node)) {
1072 		*end = (u64)-1;
1073 		goto out;
1074 	}
1075 
1076 	while(1) {
1077 		state = rb_entry(node, struct extent_state, rb_node);
1078 		if (found && state->start != cur_start) {
1079 			goto out;
1080 		}
1081 		if (!(state->state & EXTENT_DELALLOC)) {
1082 			if (!found)
1083 				*end = state->end;
1084 			goto out;
1085 		}
1086 		if (!found) {
1087 			struct extent_state *prev_state;
1088 			struct rb_node *prev_node = node;
1089 			while(1) {
1090 				prev_node = rb_prev(prev_node);
1091 				if (!prev_node)
1092 					break;
1093 				prev_state = rb_entry(prev_node,
1094 						      struct extent_state,
1095 						      rb_node);
1096 				if (!(prev_state->state & EXTENT_DELALLOC))
1097 					break;
1098 				state = prev_state;
1099 				node = prev_node;
1100 			}
1101 		}
1102 		if (state->state & EXTENT_LOCKED) {
1103 			DEFINE_WAIT(wait);
1104 			atomic_inc(&state->refs);
1105 			prepare_to_wait(&state->wq, &wait,
1106 					TASK_UNINTERRUPTIBLE);
1107 			write_unlock_irq(&tree->lock);
1108 			schedule();
1109 			write_lock_irq(&tree->lock);
1110 			finish_wait(&state->wq, &wait);
1111 			free_extent_state(state);
1112 			goto search_again;
1113 		}
1114 		state->state |= EXTENT_LOCKED;
1115 		if (!found)
1116 			*start = state->start;
1117 		found++;
1118 		*end = state->end;
1119 		cur_start = state->end + 1;
1120 		node = rb_next(node);
1121 		if (!node)
1122 			break;
1123 		total_bytes += state->end - state->start + 1;
1124 		if (total_bytes >= max_bytes)
1125 			break;
1126 	}
1127 out:
1128 	write_unlock_irq(&tree->lock);
1129 	return found;
1130 }
1131 
1132 u64 count_range_bits(struct extent_map_tree *tree,
1133 		     u64 *start, u64 search_end, u64 max_bytes,
1134 		     unsigned long bits)
1135 {
1136 	struct rb_node *node;
1137 	struct extent_state *state;
1138 	u64 cur_start = *start;
1139 	u64 total_bytes = 0;
1140 	int found = 0;
1141 
1142 	if (search_end <= cur_start) {
1143 		printk("search_end %Lu start %Lu\n", search_end, cur_start);
1144 		WARN_ON(1);
1145 		return 0;
1146 	}
1147 
1148 	write_lock_irq(&tree->lock);
1149 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1150 		total_bytes = tree->dirty_bytes;
1151 		goto out;
1152 	}
1153 	/*
1154 	 * this search will find all the extents that end after
1155 	 * our range starts.
1156 	 */
1157 	node = tree_search(&tree->state, cur_start);
1158 	if (!node || IS_ERR(node)) {
1159 		goto out;
1160 	}
1161 
1162 	while(1) {
1163 		state = rb_entry(node, struct extent_state, rb_node);
1164 		if (state->start > search_end)
1165 			break;
1166 		if (state->end >= cur_start && (state->state & bits)) {
1167 			total_bytes += min(search_end, state->end) + 1 -
1168 				       max(cur_start, state->start);
1169 			if (total_bytes >= max_bytes)
1170 				break;
1171 			if (!found) {
1172 				*start = state->start;
1173 				found = 1;
1174 			}
1175 		}
1176 		node = rb_next(node);
1177 		if (!node)
1178 			break;
1179 	}
1180 out:
1181 	write_unlock_irq(&tree->lock);
1182 	return total_bytes;
1183 }
1184 /*
1185  * helper function to lock both pages and extents in the tree.
1186  * pages must be locked first.
1187  */
1188 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1189 {
1190 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1191 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1192 	struct page *page;
1193 	int err;
1194 
1195 	while (index <= end_index) {
1196 		page = grab_cache_page(tree->mapping, index);
1197 		if (!page) {
1198 			err = -ENOMEM;
1199 			goto failed;
1200 		}
1201 		if (IS_ERR(page)) {
1202 			err = PTR_ERR(page);
1203 			goto failed;
1204 		}
1205 		index++;
1206 	}
1207 	lock_extent(tree, start, end, GFP_NOFS);
1208 	return 0;
1209 
1210 failed:
1211 	/*
1212 	 * we failed above in getting the page at 'index', so we undo here
1213 	 * up to but not including the page at 'index'
1214 	 */
1215 	end_index = index;
1216 	index = start >> PAGE_CACHE_SHIFT;
1217 	while (index < end_index) {
1218 		page = find_get_page(tree->mapping, index);
1219 		unlock_page(page);
1220 		page_cache_release(page);
1221 		index++;
1222 	}
1223 	return err;
1224 }
1225 EXPORT_SYMBOL(lock_range);
1226 
1227 /*
1228  * helper function to unlock both pages and extents in the tree.
1229  */
1230 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1231 {
1232 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1233 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1234 	struct page *page;
1235 
1236 	while (index <= end_index) {
1237 		page = find_get_page(tree->mapping, index);
1238 		unlock_page(page);
1239 		page_cache_release(page);
1240 		index++;
1241 	}
1242 	unlock_extent(tree, start, end, GFP_NOFS);
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(unlock_range);
1246 
1247 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1248 {
1249 	struct rb_node *node;
1250 	struct extent_state *state;
1251 	int ret = 0;
1252 
1253 	write_lock_irq(&tree->lock);
1254 	/*
1255 	 * this search will find all the extents that end after
1256 	 * our range starts.
1257 	 */
1258 	node = tree_search(&tree->state, start);
1259 	if (!node || IS_ERR(node)) {
1260 		ret = -ENOENT;
1261 		goto out;
1262 	}
1263 	state = rb_entry(node, struct extent_state, rb_node);
1264 	if (state->start != start) {
1265 		ret = -ENOENT;
1266 		goto out;
1267 	}
1268 	state->private = private;
1269 out:
1270 	write_unlock_irq(&tree->lock);
1271 	return ret;
1272 }
1273 
1274 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1275 {
1276 	struct rb_node *node;
1277 	struct extent_state *state;
1278 	int ret = 0;
1279 
1280 	read_lock_irq(&tree->lock);
1281 	/*
1282 	 * this search will find all the extents that end after
1283 	 * our range starts.
1284 	 */
1285 	node = tree_search(&tree->state, start);
1286 	if (!node || IS_ERR(node)) {
1287 		ret = -ENOENT;
1288 		goto out;
1289 	}
1290 	state = rb_entry(node, struct extent_state, rb_node);
1291 	if (state->start != start) {
1292 		ret = -ENOENT;
1293 		goto out;
1294 	}
1295 	*private = state->private;
1296 out:
1297 	read_unlock_irq(&tree->lock);
1298 	return ret;
1299 }
1300 
1301 /*
1302  * searches a range in the state tree for a given mask.
1303  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1304  * has the bits set.  Otherwise, 1 is returned if any bit in the
1305  * range is found set.
1306  */
1307 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1308 		   int bits, int filled)
1309 {
1310 	struct extent_state *state = NULL;
1311 	struct rb_node *node;
1312 	int bitset = 0;
1313 
1314 	read_lock_irq(&tree->lock);
1315 	node = tree_search(&tree->state, start);
1316 	while (node && start <= end) {
1317 		state = rb_entry(node, struct extent_state, rb_node);
1318 
1319 		if (filled && state->start > start) {
1320 			bitset = 0;
1321 			break;
1322 		}
1323 
1324 		if (state->start > end)
1325 			break;
1326 
1327 		if (state->state & bits) {
1328 			bitset = 1;
1329 			if (!filled)
1330 				break;
1331 		} else if (filled) {
1332 			bitset = 0;
1333 			break;
1334 		}
1335 		start = state->end + 1;
1336 		if (start > end)
1337 			break;
1338 		node = rb_next(node);
1339 		if (!node) {
1340 			if (filled)
1341 				bitset = 0;
1342 			break;
1343 		}
1344 	}
1345 	read_unlock_irq(&tree->lock);
1346 	return bitset;
1347 }
1348 EXPORT_SYMBOL(test_range_bit);
1349 
1350 /*
1351  * helper function to set a given page up to date if all the
1352  * extents in the tree for that page are up to date
1353  */
1354 static int check_page_uptodate(struct extent_map_tree *tree,
1355 			       struct page *page)
1356 {
1357 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1358 	u64 end = start + PAGE_CACHE_SIZE - 1;
1359 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1360 		SetPageUptodate(page);
1361 	return 0;
1362 }
1363 
1364 /*
1365  * helper function to unlock a page if all the extents in the tree
1366  * for that page are unlocked
1367  */
1368 static int check_page_locked(struct extent_map_tree *tree,
1369 			     struct page *page)
1370 {
1371 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1372 	u64 end = start + PAGE_CACHE_SIZE - 1;
1373 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1374 		unlock_page(page);
1375 	return 0;
1376 }
1377 
1378 /*
1379  * helper function to end page writeback if all the extents
1380  * in the tree for that page are done with writeback
1381  */
1382 static int check_page_writeback(struct extent_map_tree *tree,
1383 			     struct page *page)
1384 {
1385 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1386 	u64 end = start + PAGE_CACHE_SIZE - 1;
1387 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1388 		end_page_writeback(page);
1389 	return 0;
1390 }
1391 
1392 /* lots and lots of room for performance fixes in the end_bio funcs */
1393 
1394 /*
1395  * after a writepage IO is done, we need to:
1396  * clear the uptodate bits on error
1397  * clear the writeback bits in the extent tree for this IO
1398  * end_page_writeback if the page has no more pending IO
1399  *
1400  * Scheduling is not allowed, so the extent state tree is expected
1401  * to have one and only one object corresponding to this IO.
1402  */
1403 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1404 static void end_bio_extent_writepage(struct bio *bio, int err)
1405 #else
1406 static int end_bio_extent_writepage(struct bio *bio,
1407 				   unsigned int bytes_done, int err)
1408 #endif
1409 {
1410 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1411 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1412 	struct extent_map_tree *tree = bio->bi_private;
1413 	u64 start;
1414 	u64 end;
1415 	int whole_page;
1416 
1417 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1418 	if (bio->bi_size)
1419 		return 1;
1420 #endif
1421 
1422 	do {
1423 		struct page *page = bvec->bv_page;
1424 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1425 			 bvec->bv_offset;
1426 		end = start + bvec->bv_len - 1;
1427 
1428 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1429 			whole_page = 1;
1430 		else
1431 			whole_page = 0;
1432 
1433 		if (--bvec >= bio->bi_io_vec)
1434 			prefetchw(&bvec->bv_page->flags);
1435 
1436 		if (!uptodate) {
1437 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1438 			ClearPageUptodate(page);
1439 			SetPageError(page);
1440 		}
1441 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1442 
1443 		if (whole_page)
1444 			end_page_writeback(page);
1445 		else
1446 			check_page_writeback(tree, page);
1447 		if (tree->ops && tree->ops->writepage_end_io_hook)
1448 			tree->ops->writepage_end_io_hook(page, start, end);
1449 	} while (bvec >= bio->bi_io_vec);
1450 
1451 	bio_put(bio);
1452 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1453 	return 0;
1454 #endif
1455 }
1456 
1457 /*
1458  * after a readpage IO is done, we need to:
1459  * clear the uptodate bits on error
1460  * set the uptodate bits if things worked
1461  * set the page up to date if all extents in the tree are uptodate
1462  * clear the lock bit in the extent tree
1463  * unlock the page if there are no other extents locked for it
1464  *
1465  * Scheduling is not allowed, so the extent state tree is expected
1466  * to have one and only one object corresponding to this IO.
1467  */
1468 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1469 static void end_bio_extent_readpage(struct bio *bio, int err)
1470 #else
1471 static int end_bio_extent_readpage(struct bio *bio,
1472 				   unsigned int bytes_done, int err)
1473 #endif
1474 {
1475 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1476 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1477 	struct extent_map_tree *tree = bio->bi_private;
1478 	u64 start;
1479 	u64 end;
1480 	int whole_page;
1481 	int ret;
1482 
1483 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1484 	if (bio->bi_size)
1485 		return 1;
1486 #endif
1487 
1488 	do {
1489 		struct page *page = bvec->bv_page;
1490 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1491 			bvec->bv_offset;
1492 		end = start + bvec->bv_len - 1;
1493 
1494 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1495 			whole_page = 1;
1496 		else
1497 			whole_page = 0;
1498 
1499 		if (--bvec >= bio->bi_io_vec)
1500 			prefetchw(&bvec->bv_page->flags);
1501 
1502 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1503 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1504 			if (ret)
1505 				uptodate = 0;
1506 		}
1507 		if (uptodate) {
1508 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1509 			if (whole_page)
1510 				SetPageUptodate(page);
1511 			else
1512 				check_page_uptodate(tree, page);
1513 		} else {
1514 			ClearPageUptodate(page);
1515 			SetPageError(page);
1516 		}
1517 
1518 		unlock_extent(tree, start, end, GFP_ATOMIC);
1519 
1520 		if (whole_page)
1521 			unlock_page(page);
1522 		else
1523 			check_page_locked(tree, page);
1524 	} while (bvec >= bio->bi_io_vec);
1525 
1526 	bio_put(bio);
1527 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1528 	return 0;
1529 #endif
1530 }
1531 
1532 /*
1533  * IO done from prepare_write is pretty simple, we just unlock
1534  * the structs in the extent tree when done, and set the uptodate bits
1535  * as appropriate.
1536  */
1537 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1538 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1539 #else
1540 static int end_bio_extent_preparewrite(struct bio *bio,
1541 				       unsigned int bytes_done, int err)
1542 #endif
1543 {
1544 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1545 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1546 	struct extent_map_tree *tree = bio->bi_private;
1547 	u64 start;
1548 	u64 end;
1549 
1550 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1551 	if (bio->bi_size)
1552 		return 1;
1553 #endif
1554 
1555 	do {
1556 		struct page *page = bvec->bv_page;
1557 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1558 			bvec->bv_offset;
1559 		end = start + bvec->bv_len - 1;
1560 
1561 		if (--bvec >= bio->bi_io_vec)
1562 			prefetchw(&bvec->bv_page->flags);
1563 
1564 		if (uptodate) {
1565 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1566 		} else {
1567 			ClearPageUptodate(page);
1568 			SetPageError(page);
1569 		}
1570 
1571 		unlock_extent(tree, start, end, GFP_ATOMIC);
1572 
1573 	} while (bvec >= bio->bi_io_vec);
1574 
1575 	bio_put(bio);
1576 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1577 	return 0;
1578 #endif
1579 }
1580 
1581 static struct bio *
1582 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1583 		 gfp_t gfp_flags)
1584 {
1585 	struct bio *bio;
1586 
1587 	bio = bio_alloc(gfp_flags, nr_vecs);
1588 
1589 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1590 		while (!bio && (nr_vecs /= 2))
1591 			bio = bio_alloc(gfp_flags, nr_vecs);
1592 	}
1593 
1594 	if (bio) {
1595 		bio->bi_bdev = bdev;
1596 		bio->bi_sector = first_sector;
1597 	}
1598 	return bio;
1599 }
1600 
1601 static int submit_one_bio(int rw, struct bio *bio)
1602 {
1603 	u64 maxsector;
1604 	int ret = 0;
1605 
1606 	bio_get(bio);
1607 
1608         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1609 	if (maxsector < bio->bi_sector) {
1610 		printk("sector too large max %Lu got %llu\n", maxsector,
1611 			(unsigned long long)bio->bi_sector);
1612 		WARN_ON(1);
1613 	}
1614 
1615 	submit_bio(rw, bio);
1616 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1617 		ret = -EOPNOTSUPP;
1618 	bio_put(bio);
1619 	return ret;
1620 }
1621 
1622 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1623 			      struct page *page, sector_t sector,
1624 			      size_t size, unsigned long offset,
1625 			      struct block_device *bdev,
1626 			      struct bio **bio_ret,
1627 			      unsigned long max_pages,
1628 			      bio_end_io_t end_io_func)
1629 {
1630 	int ret = 0;
1631 	struct bio *bio;
1632 	int nr;
1633 
1634 	if (bio_ret && *bio_ret) {
1635 		bio = *bio_ret;
1636 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1637 		    bio_add_page(bio, page, size, offset) < size) {
1638 			ret = submit_one_bio(rw, bio);
1639 			bio = NULL;
1640 		} else {
1641 			return 0;
1642 		}
1643 	}
1644 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1645 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1646 	if (!bio) {
1647 		printk("failed to allocate bio nr %d\n", nr);
1648 	}
1649 	bio_add_page(bio, page, size, offset);
1650 	bio->bi_end_io = end_io_func;
1651 	bio->bi_private = tree;
1652 	if (bio_ret) {
1653 		*bio_ret = bio;
1654 	} else {
1655 		ret = submit_one_bio(rw, bio);
1656 	}
1657 
1658 	return ret;
1659 }
1660 
1661 void set_page_extent_mapped(struct page *page)
1662 {
1663 	if (!PagePrivate(page)) {
1664 		SetPagePrivate(page);
1665 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1666 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1667 		page_cache_get(page);
1668 	}
1669 }
1670 
1671 void set_page_extent_head(struct page *page, unsigned long len)
1672 {
1673 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1674 }
1675 
1676 /*
1677  * basic readpage implementation.  Locked extent state structs are inserted
1678  * into the tree that are removed when the IO is done (by the end_io
1679  * handlers)
1680  */
1681 static int __extent_read_full_page(struct extent_map_tree *tree,
1682 				   struct page *page,
1683 				   get_extent_t *get_extent,
1684 				   struct bio **bio)
1685 {
1686 	struct inode *inode = page->mapping->host;
1687 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1688 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1689 	u64 end;
1690 	u64 cur = start;
1691 	u64 extent_offset;
1692 	u64 last_byte = i_size_read(inode);
1693 	u64 block_start;
1694 	u64 cur_end;
1695 	sector_t sector;
1696 	struct extent_map *em;
1697 	struct block_device *bdev;
1698 	int ret;
1699 	int nr = 0;
1700 	size_t page_offset = 0;
1701 	size_t iosize;
1702 	size_t blocksize = inode->i_sb->s_blocksize;
1703 
1704 	set_page_extent_mapped(page);
1705 
1706 	end = page_end;
1707 	lock_extent(tree, start, end, GFP_NOFS);
1708 
1709 	while (cur <= end) {
1710 		if (cur >= last_byte) {
1711 			char *userpage;
1712 			iosize = PAGE_CACHE_SIZE - page_offset;
1713 			userpage = kmap_atomic(page, KM_USER0);
1714 			memset(userpage + page_offset, 0, iosize);
1715 			flush_dcache_page(page);
1716 			kunmap_atomic(userpage, KM_USER0);
1717 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1718 					    GFP_NOFS);
1719 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1720 			break;
1721 		}
1722 		em = get_extent(inode, page, page_offset, cur, end, 0);
1723 		if (IS_ERR(em) || !em) {
1724 			SetPageError(page);
1725 			unlock_extent(tree, cur, end, GFP_NOFS);
1726 			break;
1727 		}
1728 
1729 		extent_offset = cur - em->start;
1730 		BUG_ON(em->end < cur);
1731 		BUG_ON(end < cur);
1732 
1733 		iosize = min(em->end - cur, end - cur) + 1;
1734 		cur_end = min(em->end, end);
1735 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1736 		sector = (em->block_start + extent_offset) >> 9;
1737 		bdev = em->bdev;
1738 		block_start = em->block_start;
1739 		free_extent_map(em);
1740 		em = NULL;
1741 
1742 		/* we've found a hole, just zero and go on */
1743 		if (block_start == EXTENT_MAP_HOLE) {
1744 			char *userpage;
1745 			userpage = kmap_atomic(page, KM_USER0);
1746 			memset(userpage + page_offset, 0, iosize);
1747 			flush_dcache_page(page);
1748 			kunmap_atomic(userpage, KM_USER0);
1749 
1750 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1751 					    GFP_NOFS);
1752 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1753 			cur = cur + iosize;
1754 			page_offset += iosize;
1755 			continue;
1756 		}
1757 		/* the get_extent function already copied into the page */
1758 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1759 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1760 			cur = cur + iosize;
1761 			page_offset += iosize;
1762 			continue;
1763 		}
1764 
1765 		ret = 0;
1766 		if (tree->ops && tree->ops->readpage_io_hook) {
1767 			ret = tree->ops->readpage_io_hook(page, cur,
1768 							  cur + iosize - 1);
1769 		}
1770 		if (!ret) {
1771 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1772 			nr -= page->index;
1773 			ret = submit_extent_page(READ, tree, page,
1774 					 sector, iosize, page_offset,
1775 					 bdev, bio, nr,
1776 					 end_bio_extent_readpage);
1777 		}
1778 		if (ret)
1779 			SetPageError(page);
1780 		cur = cur + iosize;
1781 		page_offset += iosize;
1782 		nr++;
1783 	}
1784 	if (!nr) {
1785 		if (!PageError(page))
1786 			SetPageUptodate(page);
1787 		unlock_page(page);
1788 	}
1789 	return 0;
1790 }
1791 
1792 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1793 			    get_extent_t *get_extent)
1794 {
1795 	struct bio *bio = NULL;
1796 	int ret;
1797 
1798 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1799 	if (bio)
1800 		submit_one_bio(READ, bio);
1801 	return ret;
1802 }
1803 EXPORT_SYMBOL(extent_read_full_page);
1804 
1805 /*
1806  * the writepage semantics are similar to regular writepage.  extent
1807  * records are inserted to lock ranges in the tree, and as dirty areas
1808  * are found, they are marked writeback.  Then the lock bits are removed
1809  * and the end_io handler clears the writeback ranges
1810  */
1811 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1812 			      void *data)
1813 {
1814 	struct inode *inode = page->mapping->host;
1815 	struct extent_page_data *epd = data;
1816 	struct extent_map_tree *tree = epd->tree;
1817 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1818 	u64 delalloc_start;
1819 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1820 	u64 end;
1821 	u64 cur = start;
1822 	u64 extent_offset;
1823 	u64 last_byte = i_size_read(inode);
1824 	u64 block_start;
1825 	u64 iosize;
1826 	sector_t sector;
1827 	struct extent_map *em;
1828 	struct block_device *bdev;
1829 	int ret;
1830 	int nr = 0;
1831 	size_t page_offset = 0;
1832 	size_t blocksize;
1833 	loff_t i_size = i_size_read(inode);
1834 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1835 	u64 nr_delalloc;
1836 	u64 delalloc_end;
1837 
1838 	WARN_ON(!PageLocked(page));
1839 	if (page->index > end_index) {
1840 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1841 		unlock_page(page);
1842 		return 0;
1843 	}
1844 
1845 	if (page->index == end_index) {
1846 		char *userpage;
1847 
1848 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1849 
1850 		userpage = kmap_atomic(page, KM_USER0);
1851 		memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1852 		flush_dcache_page(page);
1853 		kunmap_atomic(userpage, KM_USER0);
1854 	}
1855 
1856 	set_page_extent_mapped(page);
1857 
1858 	delalloc_start = start;
1859 	delalloc_end = 0;
1860 	while(delalloc_end < page_end) {
1861 		nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1862 						       &delalloc_end,
1863 						       128 * 1024 * 1024);
1864 		if (nr_delalloc == 0) {
1865 			delalloc_start = delalloc_end + 1;
1866 			continue;
1867 		}
1868 		tree->ops->fill_delalloc(inode, delalloc_start,
1869 					 delalloc_end);
1870 		clear_extent_bit(tree, delalloc_start,
1871 				 delalloc_end,
1872 				 EXTENT_LOCKED | EXTENT_DELALLOC,
1873 				 1, 0, GFP_NOFS);
1874 		delalloc_start = delalloc_end + 1;
1875 	}
1876 	lock_extent(tree, start, page_end, GFP_NOFS);
1877 
1878 	end = page_end;
1879 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1880 		printk("found delalloc bits after lock_extent\n");
1881 	}
1882 
1883 	if (last_byte <= start) {
1884 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1885 		goto done;
1886 	}
1887 
1888 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1889 	blocksize = inode->i_sb->s_blocksize;
1890 
1891 	while (cur <= end) {
1892 		if (cur >= last_byte) {
1893 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1894 			break;
1895 		}
1896 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1897 		if (IS_ERR(em) || !em) {
1898 			SetPageError(page);
1899 			break;
1900 		}
1901 
1902 		extent_offset = cur - em->start;
1903 		BUG_ON(em->end < cur);
1904 		BUG_ON(end < cur);
1905 		iosize = min(em->end - cur, end - cur) + 1;
1906 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1907 		sector = (em->block_start + extent_offset) >> 9;
1908 		bdev = em->bdev;
1909 		block_start = em->block_start;
1910 		free_extent_map(em);
1911 		em = NULL;
1912 
1913 		if (block_start == EXTENT_MAP_HOLE ||
1914 		    block_start == EXTENT_MAP_INLINE) {
1915 			clear_extent_dirty(tree, cur,
1916 					   cur + iosize - 1, GFP_NOFS);
1917 			cur = cur + iosize;
1918 			page_offset += iosize;
1919 			continue;
1920 		}
1921 
1922 		/* leave this out until we have a page_mkwrite call */
1923 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1924 				   EXTENT_DIRTY, 0)) {
1925 			cur = cur + iosize;
1926 			page_offset += iosize;
1927 			continue;
1928 		}
1929 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1930 		if (tree->ops && tree->ops->writepage_io_hook) {
1931 			ret = tree->ops->writepage_io_hook(page, cur,
1932 						cur + iosize - 1);
1933 		} else {
1934 			ret = 0;
1935 		}
1936 		if (ret)
1937 			SetPageError(page);
1938 		else {
1939 			unsigned long max_nr = end_index + 1;
1940 			set_range_writeback(tree, cur, cur + iosize - 1);
1941 			if (!PageWriteback(page)) {
1942 				printk("warning page %lu not writeback, "
1943 				       "cur %llu end %llu\n", page->index,
1944 				       (unsigned long long)cur,
1945 				       (unsigned long long)end);
1946 			}
1947 
1948 			ret = submit_extent_page(WRITE, tree, page, sector,
1949 						 iosize, page_offset, bdev,
1950 						 &epd->bio, max_nr,
1951 						 end_bio_extent_writepage);
1952 			if (ret)
1953 				SetPageError(page);
1954 		}
1955 		cur = cur + iosize;
1956 		page_offset += iosize;
1957 		nr++;
1958 	}
1959 done:
1960 	if (nr == 0) {
1961 		/* make sure the mapping tag for page dirty gets cleared */
1962 		set_page_writeback(page);
1963 		end_page_writeback(page);
1964 	}
1965 	unlock_extent(tree, start, page_end, GFP_NOFS);
1966 	unlock_page(page);
1967 	return 0;
1968 }
1969 
1970 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1971 
1972 /* Taken directly from 2.6.23 for 2.6.18 back port */
1973 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
1974                                 void *data);
1975 
1976 /**
1977  * write_cache_pages - walk the list of dirty pages of the given address space
1978  * and write all of them.
1979  * @mapping: address space structure to write
1980  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1981  * @writepage: function called for each page
1982  * @data: data passed to writepage function
1983  *
1984  * If a page is already under I/O, write_cache_pages() skips it, even
1985  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1986  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1987  * and msync() need to guarantee that all the data which was dirty at the time
1988  * the call was made get new I/O started against them.  If wbc->sync_mode is
1989  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1990  * existing IO to complete.
1991  */
1992 static int write_cache_pages(struct address_space *mapping,
1993 		      struct writeback_control *wbc, writepage_t writepage,
1994 		      void *data)
1995 {
1996 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1997 	int ret = 0;
1998 	int done = 0;
1999 	struct pagevec pvec;
2000 	int nr_pages;
2001 	pgoff_t index;
2002 	pgoff_t end;		/* Inclusive */
2003 	int scanned = 0;
2004 	int range_whole = 0;
2005 
2006 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
2007 		wbc->encountered_congestion = 1;
2008 		return 0;
2009 	}
2010 
2011 	pagevec_init(&pvec, 0);
2012 	if (wbc->range_cyclic) {
2013 		index = mapping->writeback_index; /* Start from prev offset */
2014 		end = -1;
2015 	} else {
2016 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2017 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2018 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2019 			range_whole = 1;
2020 		scanned = 1;
2021 	}
2022 retry:
2023 	while (!done && (index <= end) &&
2024 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2025 					      PAGECACHE_TAG_DIRTY,
2026 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2027 		unsigned i;
2028 
2029 		scanned = 1;
2030 		for (i = 0; i < nr_pages; i++) {
2031 			struct page *page = pvec.pages[i];
2032 
2033 			/*
2034 			 * At this point we hold neither mapping->tree_lock nor
2035 			 * lock on the page itself: the page may be truncated or
2036 			 * invalidated (changing page->mapping to NULL), or even
2037 			 * swizzled back from swapper_space to tmpfs file
2038 			 * mapping
2039 			 */
2040 			lock_page(page);
2041 
2042 			if (unlikely(page->mapping != mapping)) {
2043 				unlock_page(page);
2044 				continue;
2045 			}
2046 
2047 			if (!wbc->range_cyclic && page->index > end) {
2048 				done = 1;
2049 				unlock_page(page);
2050 				continue;
2051 			}
2052 
2053 			if (wbc->sync_mode != WB_SYNC_NONE)
2054 				wait_on_page_writeback(page);
2055 
2056 			if (PageWriteback(page) ||
2057 			    !clear_page_dirty_for_io(page)) {
2058 				unlock_page(page);
2059 				continue;
2060 			}
2061 
2062 			ret = (*writepage)(page, wbc, data);
2063 
2064 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2065 				unlock_page(page);
2066 				ret = 0;
2067 			}
2068 			if (ret || (--(wbc->nr_to_write) <= 0))
2069 				done = 1;
2070 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
2071 				wbc->encountered_congestion = 1;
2072 				done = 1;
2073 			}
2074 		}
2075 		pagevec_release(&pvec);
2076 		cond_resched();
2077 	}
2078 	if (!scanned && !done) {
2079 		/*
2080 		 * We hit the last page and there is more work to be done: wrap
2081 		 * back to the start of the file
2082 		 */
2083 		scanned = 1;
2084 		index = 0;
2085 		goto retry;
2086 	}
2087 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2088 		mapping->writeback_index = index;
2089 	return ret;
2090 }
2091 #endif
2092 
2093 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
2094 			  get_extent_t *get_extent,
2095 			  struct writeback_control *wbc)
2096 {
2097 	int ret;
2098 	struct address_space *mapping = page->mapping;
2099 	struct extent_page_data epd = {
2100 		.bio = NULL,
2101 		.tree = tree,
2102 		.get_extent = get_extent,
2103 	};
2104 	struct writeback_control wbc_writepages = {
2105 		.bdi		= wbc->bdi,
2106 		.sync_mode	= WB_SYNC_NONE,
2107 		.older_than_this = NULL,
2108 		.nr_to_write	= 64,
2109 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2110 		.range_end	= (loff_t)-1,
2111 	};
2112 
2113 
2114 	ret = __extent_writepage(page, wbc, &epd);
2115 
2116 	write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2117 	if (epd.bio) {
2118 		submit_one_bio(WRITE, epd.bio);
2119 	}
2120 	return ret;
2121 }
2122 EXPORT_SYMBOL(extent_write_full_page);
2123 
2124 
2125 int extent_writepages(struct extent_map_tree *tree,
2126 		      struct address_space *mapping,
2127 		      get_extent_t *get_extent,
2128 		      struct writeback_control *wbc)
2129 {
2130 	int ret = 0;
2131 	struct extent_page_data epd = {
2132 		.bio = NULL,
2133 		.tree = tree,
2134 		.get_extent = get_extent,
2135 	};
2136 
2137 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2138 	if (epd.bio) {
2139 		submit_one_bio(WRITE, epd.bio);
2140 	}
2141 	return ret;
2142 }
2143 EXPORT_SYMBOL(extent_writepages);
2144 
2145 int extent_readpages(struct extent_map_tree *tree,
2146 		     struct address_space *mapping,
2147 		     struct list_head *pages, unsigned nr_pages,
2148 		     get_extent_t get_extent)
2149 {
2150 	struct bio *bio = NULL;
2151 	unsigned page_idx;
2152 	struct pagevec pvec;
2153 
2154 	pagevec_init(&pvec, 0);
2155 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2156 		struct page *page = list_entry(pages->prev, struct page, lru);
2157 
2158 		prefetchw(&page->flags);
2159 		list_del(&page->lru);
2160 		/*
2161 		 * what we want to do here is call add_to_page_cache_lru,
2162 		 * but that isn't exported, so we reproduce it here
2163 		 */
2164 		if (!add_to_page_cache(page, mapping,
2165 					page->index, GFP_KERNEL)) {
2166 
2167 			/* open coding of lru_cache_add, also not exported */
2168 			page_cache_get(page);
2169 			if (!pagevec_add(&pvec, page))
2170 				__pagevec_lru_add(&pvec);
2171 			__extent_read_full_page(tree, page, get_extent, &bio);
2172 		}
2173 		page_cache_release(page);
2174 	}
2175 	if (pagevec_count(&pvec))
2176 		__pagevec_lru_add(&pvec);
2177 	BUG_ON(!list_empty(pages));
2178 	if (bio)
2179 		submit_one_bio(READ, bio);
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL(extent_readpages);
2183 
2184 /*
2185  * basic invalidatepage code, this waits on any locked or writeback
2186  * ranges corresponding to the page, and then deletes any extent state
2187  * records from the tree
2188  */
2189 int extent_invalidatepage(struct extent_map_tree *tree,
2190 			  struct page *page, unsigned long offset)
2191 {
2192 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2193 	u64 end = start + PAGE_CACHE_SIZE - 1;
2194 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2195 
2196 	start += (offset + blocksize -1) & ~(blocksize - 1);
2197 	if (start > end)
2198 		return 0;
2199 
2200 	lock_extent(tree, start, end, GFP_NOFS);
2201 	wait_on_extent_writeback(tree, start, end);
2202 	clear_extent_bit(tree, start, end,
2203 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2204 			 1, 1, GFP_NOFS);
2205 	return 0;
2206 }
2207 EXPORT_SYMBOL(extent_invalidatepage);
2208 
2209 /*
2210  * simple commit_write call, set_range_dirty is used to mark both
2211  * the pages and the extent records as dirty
2212  */
2213 int extent_commit_write(struct extent_map_tree *tree,
2214 			struct inode *inode, struct page *page,
2215 			unsigned from, unsigned to)
2216 {
2217 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2218 
2219 	set_page_extent_mapped(page);
2220 	set_page_dirty(page);
2221 
2222 	if (pos > inode->i_size) {
2223 		i_size_write(inode, pos);
2224 		mark_inode_dirty(inode);
2225 	}
2226 	return 0;
2227 }
2228 EXPORT_SYMBOL(extent_commit_write);
2229 
2230 int extent_prepare_write(struct extent_map_tree *tree,
2231 			 struct inode *inode, struct page *page,
2232 			 unsigned from, unsigned to, get_extent_t *get_extent)
2233 {
2234 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2235 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2236 	u64 block_start;
2237 	u64 orig_block_start;
2238 	u64 block_end;
2239 	u64 cur_end;
2240 	struct extent_map *em;
2241 	unsigned blocksize = 1 << inode->i_blkbits;
2242 	size_t page_offset = 0;
2243 	size_t block_off_start;
2244 	size_t block_off_end;
2245 	int err = 0;
2246 	int iocount = 0;
2247 	int ret = 0;
2248 	int isnew;
2249 
2250 	set_page_extent_mapped(page);
2251 
2252 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2253 	block_end = (page_start + to - 1) | (blocksize - 1);
2254 	orig_block_start = block_start;
2255 
2256 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2257 	while(block_start <= block_end) {
2258 		em = get_extent(inode, page, page_offset, block_start,
2259 				block_end, 1);
2260 		if (IS_ERR(em) || !em) {
2261 			goto err;
2262 		}
2263 		cur_end = min(block_end, em->end);
2264 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2265 		block_off_end = block_off_start + blocksize;
2266 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2267 
2268 		if (!PageUptodate(page) && isnew &&
2269 		    (block_off_end > to || block_off_start < from)) {
2270 			void *kaddr;
2271 
2272 			kaddr = kmap_atomic(page, KM_USER0);
2273 			if (block_off_end > to)
2274 				memset(kaddr + to, 0, block_off_end - to);
2275 			if (block_off_start < from)
2276 				memset(kaddr + block_off_start, 0,
2277 				       from - block_off_start);
2278 			flush_dcache_page(page);
2279 			kunmap_atomic(kaddr, KM_USER0);
2280 		}
2281 		if ((em->block_start != EXTENT_MAP_HOLE &&
2282 		     em->block_start != EXTENT_MAP_INLINE) &&
2283 		    !isnew && !PageUptodate(page) &&
2284 		    (block_off_end > to || block_off_start < from) &&
2285 		    !test_range_bit(tree, block_start, cur_end,
2286 				    EXTENT_UPTODATE, 1)) {
2287 			u64 sector;
2288 			u64 extent_offset = block_start - em->start;
2289 			size_t iosize;
2290 			sector = (em->block_start + extent_offset) >> 9;
2291 			iosize = (cur_end - block_start + blocksize) &
2292 				~((u64)blocksize - 1);
2293 			/*
2294 			 * we've already got the extent locked, but we
2295 			 * need to split the state such that our end_bio
2296 			 * handler can clear the lock.
2297 			 */
2298 			set_extent_bit(tree, block_start,
2299 				       block_start + iosize - 1,
2300 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2301 			ret = submit_extent_page(READ, tree, page,
2302 					 sector, iosize, page_offset, em->bdev,
2303 					 NULL, 1,
2304 					 end_bio_extent_preparewrite);
2305 			iocount++;
2306 			block_start = block_start + iosize;
2307 		} else {
2308 			set_extent_uptodate(tree, block_start, cur_end,
2309 					    GFP_NOFS);
2310 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2311 			block_start = cur_end + 1;
2312 		}
2313 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2314 		free_extent_map(em);
2315 	}
2316 	if (iocount) {
2317 		wait_extent_bit(tree, orig_block_start,
2318 				block_end, EXTENT_LOCKED);
2319 	}
2320 	check_page_uptodate(tree, page);
2321 err:
2322 	/* FIXME, zero out newly allocated blocks on error */
2323 	return err;
2324 }
2325 EXPORT_SYMBOL(extent_prepare_write);
2326 
2327 /*
2328  * a helper for releasepage.  As long as there are no locked extents
2329  * in the range corresponding to the page, both state records and extent
2330  * map records are removed
2331  */
2332 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2333 {
2334 	struct extent_map *em;
2335 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2336 	u64 end = start + PAGE_CACHE_SIZE - 1;
2337 	u64 orig_start = start;
2338 	int ret = 1;
2339 
2340 	while (start <= end) {
2341 		em = lookup_extent_mapping(tree, start, end);
2342 		if (!em || IS_ERR(em))
2343 			break;
2344 		if (!test_range_bit(tree, em->start, em->end,
2345 				    EXTENT_LOCKED, 0)) {
2346 			remove_extent_mapping(tree, em);
2347 			/* once for the rb tree */
2348 			free_extent_map(em);
2349 		}
2350 		start = em->end + 1;
2351 		/* once for us */
2352 		free_extent_map(em);
2353 	}
2354 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2355 		ret = 0;
2356 	else
2357 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2358 				 1, 1, GFP_NOFS);
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL(try_release_extent_mapping);
2362 
2363 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2364 		get_extent_t *get_extent)
2365 {
2366 	struct inode *inode = mapping->host;
2367 	u64 start = iblock << inode->i_blkbits;
2368 	u64 end = start + (1 << inode->i_blkbits) - 1;
2369 	sector_t sector = 0;
2370 	struct extent_map *em;
2371 
2372 	em = get_extent(inode, NULL, 0, start, end, 0);
2373 	if (!em || IS_ERR(em))
2374 		return 0;
2375 
2376 	if (em->block_start == EXTENT_MAP_INLINE ||
2377 	    em->block_start == EXTENT_MAP_HOLE)
2378 		goto out;
2379 
2380 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2381 out:
2382 	free_extent_map(em);
2383 	return sector;
2384 }
2385 
2386 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2387 {
2388 	if (list_empty(&eb->lru)) {
2389 		extent_buffer_get(eb);
2390 		list_add(&eb->lru, &tree->buffer_lru);
2391 		tree->lru_size++;
2392 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2393 			struct extent_buffer *rm;
2394 			rm = list_entry(tree->buffer_lru.prev,
2395 					struct extent_buffer, lru);
2396 			tree->lru_size--;
2397 			list_del_init(&rm->lru);
2398 			free_extent_buffer(rm);
2399 		}
2400 	} else
2401 		list_move(&eb->lru, &tree->buffer_lru);
2402 	return 0;
2403 }
2404 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2405 				      u64 start, unsigned long len)
2406 {
2407 	struct list_head *lru = &tree->buffer_lru;
2408 	struct list_head *cur = lru->next;
2409 	struct extent_buffer *eb;
2410 
2411 	if (list_empty(lru))
2412 		return NULL;
2413 
2414 	do {
2415 		eb = list_entry(cur, struct extent_buffer, lru);
2416 		if (eb->start == start && eb->len == len) {
2417 			extent_buffer_get(eb);
2418 			return eb;
2419 		}
2420 		cur = cur->next;
2421 	} while (cur != lru);
2422 	return NULL;
2423 }
2424 
2425 static inline unsigned long num_extent_pages(u64 start, u64 len)
2426 {
2427 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2428 		(start >> PAGE_CACHE_SHIFT);
2429 }
2430 
2431 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2432 					      unsigned long i)
2433 {
2434 	struct page *p;
2435 	struct address_space *mapping;
2436 
2437 	if (i == 0)
2438 		return eb->first_page;
2439 	i += eb->start >> PAGE_CACHE_SHIFT;
2440 	mapping = eb->first_page->mapping;
2441 	read_lock_irq(&mapping->tree_lock);
2442 	p = radix_tree_lookup(&mapping->page_tree, i);
2443 	read_unlock_irq(&mapping->tree_lock);
2444 	return p;
2445 }
2446 
2447 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2448 						   u64 start,
2449 						   unsigned long len,
2450 						   gfp_t mask)
2451 {
2452 	struct extent_buffer *eb = NULL;
2453 
2454 	spin_lock(&tree->lru_lock);
2455 	eb = find_lru(tree, start, len);
2456 	spin_unlock(&tree->lru_lock);
2457 	if (eb) {
2458 		return eb;
2459 	}
2460 
2461 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2462 	INIT_LIST_HEAD(&eb->lru);
2463 	eb->start = start;
2464 	eb->len = len;
2465 	atomic_set(&eb->refs, 1);
2466 
2467 	return eb;
2468 }
2469 
2470 static void __free_extent_buffer(struct extent_buffer *eb)
2471 {
2472 	kmem_cache_free(extent_buffer_cache, eb);
2473 }
2474 
2475 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2476 					  u64 start, unsigned long len,
2477 					  struct page *page0,
2478 					  gfp_t mask)
2479 {
2480 	unsigned long num_pages = num_extent_pages(start, len);
2481 	unsigned long i;
2482 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2483 	struct extent_buffer *eb;
2484 	struct page *p;
2485 	struct address_space *mapping = tree->mapping;
2486 	int uptodate = 1;
2487 
2488 	eb = __alloc_extent_buffer(tree, start, len, mask);
2489 	if (!eb || IS_ERR(eb))
2490 		return NULL;
2491 
2492 	if (eb->flags & EXTENT_BUFFER_FILLED)
2493 		goto lru_add;
2494 
2495 	if (page0) {
2496 		eb->first_page = page0;
2497 		i = 1;
2498 		index++;
2499 		page_cache_get(page0);
2500 		mark_page_accessed(page0);
2501 		set_page_extent_mapped(page0);
2502 		WARN_ON(!PageUptodate(page0));
2503 		set_page_extent_head(page0, len);
2504 	} else {
2505 		i = 0;
2506 	}
2507 	for (; i < num_pages; i++, index++) {
2508 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2509 		if (!p) {
2510 			WARN_ON(1);
2511 			goto fail;
2512 		}
2513 		set_page_extent_mapped(p);
2514 		mark_page_accessed(p);
2515 		if (i == 0) {
2516 			eb->first_page = p;
2517 			set_page_extent_head(p, len);
2518 		} else {
2519 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2520 		}
2521 		if (!PageUptodate(p))
2522 			uptodate = 0;
2523 		unlock_page(p);
2524 	}
2525 	if (uptodate)
2526 		eb->flags |= EXTENT_UPTODATE;
2527 	eb->flags |= EXTENT_BUFFER_FILLED;
2528 
2529 lru_add:
2530 	spin_lock(&tree->lru_lock);
2531 	add_lru(tree, eb);
2532 	spin_unlock(&tree->lru_lock);
2533 	return eb;
2534 
2535 fail:
2536 	spin_lock(&tree->lru_lock);
2537 	list_del_init(&eb->lru);
2538 	spin_unlock(&tree->lru_lock);
2539 	if (!atomic_dec_and_test(&eb->refs))
2540 		return NULL;
2541 	for (index = 1; index < i; index++) {
2542 		page_cache_release(extent_buffer_page(eb, index));
2543 	}
2544 	if (i > 0)
2545 		page_cache_release(extent_buffer_page(eb, 0));
2546 	__free_extent_buffer(eb);
2547 	return NULL;
2548 }
2549 EXPORT_SYMBOL(alloc_extent_buffer);
2550 
2551 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2552 					 u64 start, unsigned long len,
2553 					  gfp_t mask)
2554 {
2555 	unsigned long num_pages = num_extent_pages(start, len);
2556 	unsigned long i;
2557 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2558 	struct extent_buffer *eb;
2559 	struct page *p;
2560 	struct address_space *mapping = tree->mapping;
2561 	int uptodate = 1;
2562 
2563 	eb = __alloc_extent_buffer(tree, start, len, mask);
2564 	if (!eb || IS_ERR(eb))
2565 		return NULL;
2566 
2567 	if (eb->flags & EXTENT_BUFFER_FILLED)
2568 		goto lru_add;
2569 
2570 	for (i = 0; i < num_pages; i++, index++) {
2571 		p = find_lock_page(mapping, index);
2572 		if (!p) {
2573 			goto fail;
2574 		}
2575 		set_page_extent_mapped(p);
2576 		mark_page_accessed(p);
2577 
2578 		if (i == 0) {
2579 			eb->first_page = p;
2580 			set_page_extent_head(p, len);
2581 		} else {
2582 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2583 		}
2584 
2585 		if (!PageUptodate(p))
2586 			uptodate = 0;
2587 		unlock_page(p);
2588 	}
2589 	if (uptodate)
2590 		eb->flags |= EXTENT_UPTODATE;
2591 	eb->flags |= EXTENT_BUFFER_FILLED;
2592 
2593 lru_add:
2594 	spin_lock(&tree->lru_lock);
2595 	add_lru(tree, eb);
2596 	spin_unlock(&tree->lru_lock);
2597 	return eb;
2598 fail:
2599 	spin_lock(&tree->lru_lock);
2600 	list_del_init(&eb->lru);
2601 	spin_unlock(&tree->lru_lock);
2602 	if (!atomic_dec_and_test(&eb->refs))
2603 		return NULL;
2604 	for (index = 1; index < i; index++) {
2605 		page_cache_release(extent_buffer_page(eb, index));
2606 	}
2607 	if (i > 0)
2608 		page_cache_release(extent_buffer_page(eb, 0));
2609 	__free_extent_buffer(eb);
2610 	return NULL;
2611 }
2612 EXPORT_SYMBOL(find_extent_buffer);
2613 
2614 void free_extent_buffer(struct extent_buffer *eb)
2615 {
2616 	unsigned long i;
2617 	unsigned long num_pages;
2618 
2619 	if (!eb)
2620 		return;
2621 
2622 	if (!atomic_dec_and_test(&eb->refs))
2623 		return;
2624 
2625 	WARN_ON(!list_empty(&eb->lru));
2626 	num_pages = num_extent_pages(eb->start, eb->len);
2627 
2628 	for (i = 1; i < num_pages; i++) {
2629 		page_cache_release(extent_buffer_page(eb, i));
2630 	}
2631 	page_cache_release(extent_buffer_page(eb, 0));
2632 	__free_extent_buffer(eb);
2633 }
2634 EXPORT_SYMBOL(free_extent_buffer);
2635 
2636 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2637 			      struct extent_buffer *eb)
2638 {
2639 	int set;
2640 	unsigned long i;
2641 	unsigned long num_pages;
2642 	struct page *page;
2643 
2644 	u64 start = eb->start;
2645 	u64 end = start + eb->len - 1;
2646 
2647 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2648 	num_pages = num_extent_pages(eb->start, eb->len);
2649 
2650 	for (i = 0; i < num_pages; i++) {
2651 		page = extent_buffer_page(eb, i);
2652 		lock_page(page);
2653 		if (i == 0)
2654 			set_page_extent_head(page, eb->len);
2655 		else
2656 			set_page_private(page, EXTENT_PAGE_PRIVATE);
2657 
2658 		/*
2659 		 * if we're on the last page or the first page and the
2660 		 * block isn't aligned on a page boundary, do extra checks
2661 		 * to make sure we don't clean page that is partially dirty
2662 		 */
2663 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2664 		    ((i == num_pages - 1) &&
2665 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2666 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2667 			end  = start + PAGE_CACHE_SIZE - 1;
2668 			if (test_range_bit(tree, start, end,
2669 					   EXTENT_DIRTY, 0)) {
2670 				unlock_page(page);
2671 				continue;
2672 			}
2673 		}
2674 		clear_page_dirty_for_io(page);
2675 		write_lock_irq(&page->mapping->tree_lock);
2676 		if (!PageDirty(page)) {
2677 			radix_tree_tag_clear(&page->mapping->page_tree,
2678 						page_index(page),
2679 						PAGECACHE_TAG_DIRTY);
2680 		}
2681 		write_unlock_irq(&page->mapping->tree_lock);
2682 		unlock_page(page);
2683 	}
2684 	return 0;
2685 }
2686 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2687 
2688 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2689 				    struct extent_buffer *eb)
2690 {
2691 	return wait_on_extent_writeback(tree, eb->start,
2692 					eb->start + eb->len - 1);
2693 }
2694 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2695 
2696 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2697 			     struct extent_buffer *eb)
2698 {
2699 	unsigned long i;
2700 	unsigned long num_pages;
2701 
2702 	num_pages = num_extent_pages(eb->start, eb->len);
2703 	for (i = 0; i < num_pages; i++) {
2704 		struct page *page = extent_buffer_page(eb, i);
2705 		/* writepage may need to do something special for the
2706 		 * first page, we have to make sure page->private is
2707 		 * properly set.  releasepage may drop page->private
2708 		 * on us if the page isn't already dirty.
2709 		 */
2710 		if (i == 0) {
2711 			lock_page(page);
2712 			set_page_extent_head(page, eb->len);
2713 		} else if (PagePrivate(page) &&
2714 			   page->private != EXTENT_PAGE_PRIVATE) {
2715 			lock_page(page);
2716 			set_page_extent_mapped(page);
2717 			unlock_page(page);
2718 		}
2719 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2720 		if (i == 0)
2721 			unlock_page(page);
2722 	}
2723 	return set_extent_dirty(tree, eb->start,
2724 				eb->start + eb->len - 1, GFP_NOFS);
2725 }
2726 EXPORT_SYMBOL(set_extent_buffer_dirty);
2727 
2728 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2729 				struct extent_buffer *eb)
2730 {
2731 	unsigned long i;
2732 	struct page *page;
2733 	unsigned long num_pages;
2734 
2735 	num_pages = num_extent_pages(eb->start, eb->len);
2736 
2737 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2738 			    GFP_NOFS);
2739 	for (i = 0; i < num_pages; i++) {
2740 		page = extent_buffer_page(eb, i);
2741 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2742 		    ((i == num_pages - 1) &&
2743 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2744 			check_page_uptodate(tree, page);
2745 			continue;
2746 		}
2747 		SetPageUptodate(page);
2748 	}
2749 	return 0;
2750 }
2751 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2752 
2753 int extent_buffer_uptodate(struct extent_map_tree *tree,
2754 			     struct extent_buffer *eb)
2755 {
2756 	if (eb->flags & EXTENT_UPTODATE)
2757 		return 1;
2758 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2759 			   EXTENT_UPTODATE, 1);
2760 }
2761 EXPORT_SYMBOL(extent_buffer_uptodate);
2762 
2763 int read_extent_buffer_pages(struct extent_map_tree *tree,
2764 			     struct extent_buffer *eb,
2765 			     u64 start,
2766 			     int wait)
2767 {
2768 	unsigned long i;
2769 	unsigned long start_i;
2770 	struct page *page;
2771 	int err;
2772 	int ret = 0;
2773 	unsigned long num_pages;
2774 
2775 	if (eb->flags & EXTENT_UPTODATE)
2776 		return 0;
2777 
2778 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2779 			   EXTENT_UPTODATE, 1)) {
2780 		return 0;
2781 	}
2782 
2783 	if (start) {
2784 		WARN_ON(start < eb->start);
2785 		start_i = (start >> PAGE_CACHE_SHIFT) -
2786 			(eb->start >> PAGE_CACHE_SHIFT);
2787 	} else {
2788 		start_i = 0;
2789 	}
2790 
2791 	num_pages = num_extent_pages(eb->start, eb->len);
2792 	for (i = start_i; i < num_pages; i++) {
2793 		page = extent_buffer_page(eb, i);
2794 		if (PageUptodate(page)) {
2795 			continue;
2796 		}
2797 		if (!wait) {
2798 			if (TestSetPageLocked(page)) {
2799 				continue;
2800 			}
2801 		} else {
2802 			lock_page(page);
2803 		}
2804 		if (!PageUptodate(page)) {
2805 			err = page->mapping->a_ops->readpage(NULL, page);
2806 			if (err) {
2807 				ret = err;
2808 			}
2809 		} else {
2810 			unlock_page(page);
2811 		}
2812 	}
2813 
2814 	if (ret || !wait) {
2815 		return ret;
2816 	}
2817 
2818 	for (i = start_i; i < num_pages; i++) {
2819 		page = extent_buffer_page(eb, i);
2820 		wait_on_page_locked(page);
2821 		if (!PageUptodate(page)) {
2822 			ret = -EIO;
2823 		}
2824 	}
2825 	if (!ret)
2826 		eb->flags |= EXTENT_UPTODATE;
2827 	return ret;
2828 }
2829 EXPORT_SYMBOL(read_extent_buffer_pages);
2830 
2831 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2832 			unsigned long start,
2833 			unsigned long len)
2834 {
2835 	size_t cur;
2836 	size_t offset;
2837 	struct page *page;
2838 	char *kaddr;
2839 	char *dst = (char *)dstv;
2840 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2841 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2842 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2843 
2844 	WARN_ON(start > eb->len);
2845 	WARN_ON(start + len > eb->start + eb->len);
2846 
2847 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2848 
2849 	while(len > 0) {
2850 		page = extent_buffer_page(eb, i);
2851 		if (!PageUptodate(page)) {
2852 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2853 			WARN_ON(1);
2854 		}
2855 		WARN_ON(!PageUptodate(page));
2856 
2857 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2858 		kaddr = kmap_atomic(page, KM_USER1);
2859 		memcpy(dst, kaddr + offset, cur);
2860 		kunmap_atomic(kaddr, KM_USER1);
2861 
2862 		dst += cur;
2863 		len -= cur;
2864 		offset = 0;
2865 		i++;
2866 	}
2867 }
2868 EXPORT_SYMBOL(read_extent_buffer);
2869 
2870 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2871 			       unsigned long min_len, char **token, char **map,
2872 			       unsigned long *map_start,
2873 			       unsigned long *map_len, int km)
2874 {
2875 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2876 	char *kaddr;
2877 	struct page *p;
2878 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2879 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2880 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2881 		PAGE_CACHE_SHIFT;
2882 
2883 	if (i != end_i)
2884 		return -EINVAL;
2885 
2886 	if (i == 0) {
2887 		offset = start_offset;
2888 		*map_start = 0;
2889 	} else {
2890 		offset = 0;
2891 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2892 	}
2893 	if (start + min_len > eb->len) {
2894 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2895 		WARN_ON(1);
2896 	}
2897 
2898 	p = extent_buffer_page(eb, i);
2899 	WARN_ON(!PageUptodate(p));
2900 	kaddr = kmap_atomic(p, km);
2901 	*token = kaddr;
2902 	*map = kaddr + offset;
2903 	*map_len = PAGE_CACHE_SIZE - offset;
2904 	return 0;
2905 }
2906 EXPORT_SYMBOL(map_private_extent_buffer);
2907 
2908 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2909 		      unsigned long min_len,
2910 		      char **token, char **map,
2911 		      unsigned long *map_start,
2912 		      unsigned long *map_len, int km)
2913 {
2914 	int err;
2915 	int save = 0;
2916 	if (eb->map_token) {
2917 		unmap_extent_buffer(eb, eb->map_token, km);
2918 		eb->map_token = NULL;
2919 		save = 1;
2920 	}
2921 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2922 				       map_start, map_len, km);
2923 	if (!err && save) {
2924 		eb->map_token = *token;
2925 		eb->kaddr = *map;
2926 		eb->map_start = *map_start;
2927 		eb->map_len = *map_len;
2928 	}
2929 	return err;
2930 }
2931 EXPORT_SYMBOL(map_extent_buffer);
2932 
2933 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2934 {
2935 	kunmap_atomic(token, km);
2936 }
2937 EXPORT_SYMBOL(unmap_extent_buffer);
2938 
2939 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2940 			  unsigned long start,
2941 			  unsigned long len)
2942 {
2943 	size_t cur;
2944 	size_t offset;
2945 	struct page *page;
2946 	char *kaddr;
2947 	char *ptr = (char *)ptrv;
2948 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2949 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2950 	int ret = 0;
2951 
2952 	WARN_ON(start > eb->len);
2953 	WARN_ON(start + len > eb->start + eb->len);
2954 
2955 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2956 
2957 	while(len > 0) {
2958 		page = extent_buffer_page(eb, i);
2959 		WARN_ON(!PageUptodate(page));
2960 
2961 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2962 
2963 		kaddr = kmap_atomic(page, KM_USER0);
2964 		ret = memcmp(ptr, kaddr + offset, cur);
2965 		kunmap_atomic(kaddr, KM_USER0);
2966 		if (ret)
2967 			break;
2968 
2969 		ptr += cur;
2970 		len -= cur;
2971 		offset = 0;
2972 		i++;
2973 	}
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL(memcmp_extent_buffer);
2977 
2978 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2979 			 unsigned long start, unsigned long len)
2980 {
2981 	size_t cur;
2982 	size_t offset;
2983 	struct page *page;
2984 	char *kaddr;
2985 	char *src = (char *)srcv;
2986 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2987 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2988 
2989 	WARN_ON(start > eb->len);
2990 	WARN_ON(start + len > eb->start + eb->len);
2991 
2992 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2993 
2994 	while(len > 0) {
2995 		page = extent_buffer_page(eb, i);
2996 		WARN_ON(!PageUptodate(page));
2997 
2998 		cur = min(len, PAGE_CACHE_SIZE - offset);
2999 		kaddr = kmap_atomic(page, KM_USER1);
3000 		memcpy(kaddr + offset, src, cur);
3001 		kunmap_atomic(kaddr, KM_USER1);
3002 
3003 		src += cur;
3004 		len -= cur;
3005 		offset = 0;
3006 		i++;
3007 	}
3008 }
3009 EXPORT_SYMBOL(write_extent_buffer);
3010 
3011 void memset_extent_buffer(struct extent_buffer *eb, char c,
3012 			  unsigned long start, unsigned long len)
3013 {
3014 	size_t cur;
3015 	size_t offset;
3016 	struct page *page;
3017 	char *kaddr;
3018 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3019 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3020 
3021 	WARN_ON(start > eb->len);
3022 	WARN_ON(start + len > eb->start + eb->len);
3023 
3024 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3025 
3026 	while(len > 0) {
3027 		page = extent_buffer_page(eb, i);
3028 		WARN_ON(!PageUptodate(page));
3029 
3030 		cur = min(len, PAGE_CACHE_SIZE - offset);
3031 		kaddr = kmap_atomic(page, KM_USER0);
3032 		memset(kaddr + offset, c, cur);
3033 		kunmap_atomic(kaddr, KM_USER0);
3034 
3035 		len -= cur;
3036 		offset = 0;
3037 		i++;
3038 	}
3039 }
3040 EXPORT_SYMBOL(memset_extent_buffer);
3041 
3042 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3043 			unsigned long dst_offset, unsigned long src_offset,
3044 			unsigned long len)
3045 {
3046 	u64 dst_len = dst->len;
3047 	size_t cur;
3048 	size_t offset;
3049 	struct page *page;
3050 	char *kaddr;
3051 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3052 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3053 
3054 	WARN_ON(src->len != dst_len);
3055 
3056 	offset = (start_offset + dst_offset) &
3057 		((unsigned long)PAGE_CACHE_SIZE - 1);
3058 
3059 	while(len > 0) {
3060 		page = extent_buffer_page(dst, i);
3061 		WARN_ON(!PageUptodate(page));
3062 
3063 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3064 
3065 		kaddr = kmap_atomic(page, KM_USER0);
3066 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3067 		kunmap_atomic(kaddr, KM_USER0);
3068 
3069 		src_offset += cur;
3070 		len -= cur;
3071 		offset = 0;
3072 		i++;
3073 	}
3074 }
3075 EXPORT_SYMBOL(copy_extent_buffer);
3076 
3077 static void move_pages(struct page *dst_page, struct page *src_page,
3078 		       unsigned long dst_off, unsigned long src_off,
3079 		       unsigned long len)
3080 {
3081 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3082 	if (dst_page == src_page) {
3083 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3084 	} else {
3085 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3086 		char *p = dst_kaddr + dst_off + len;
3087 		char *s = src_kaddr + src_off + len;
3088 
3089 		while (len--)
3090 			*--p = *--s;
3091 
3092 		kunmap_atomic(src_kaddr, KM_USER1);
3093 	}
3094 	kunmap_atomic(dst_kaddr, KM_USER0);
3095 }
3096 
3097 static void copy_pages(struct page *dst_page, struct page *src_page,
3098 		       unsigned long dst_off, unsigned long src_off,
3099 		       unsigned long len)
3100 {
3101 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3102 	char *src_kaddr;
3103 
3104 	if (dst_page != src_page)
3105 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3106 	else
3107 		src_kaddr = dst_kaddr;
3108 
3109 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3110 	kunmap_atomic(dst_kaddr, KM_USER0);
3111 	if (dst_page != src_page)
3112 		kunmap_atomic(src_kaddr, KM_USER1);
3113 }
3114 
3115 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3116 			   unsigned long src_offset, unsigned long len)
3117 {
3118 	size_t cur;
3119 	size_t dst_off_in_page;
3120 	size_t src_off_in_page;
3121 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3122 	unsigned long dst_i;
3123 	unsigned long src_i;
3124 
3125 	if (src_offset + len > dst->len) {
3126 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3127 		       src_offset, len, dst->len);
3128 		BUG_ON(1);
3129 	}
3130 	if (dst_offset + len > dst->len) {
3131 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3132 		       dst_offset, len, dst->len);
3133 		BUG_ON(1);
3134 	}
3135 
3136 	while(len > 0) {
3137 		dst_off_in_page = (start_offset + dst_offset) &
3138 			((unsigned long)PAGE_CACHE_SIZE - 1);
3139 		src_off_in_page = (start_offset + src_offset) &
3140 			((unsigned long)PAGE_CACHE_SIZE - 1);
3141 
3142 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3143 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3144 
3145 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3146 					       src_off_in_page));
3147 		cur = min_t(unsigned long, cur,
3148 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3149 
3150 		copy_pages(extent_buffer_page(dst, dst_i),
3151 			   extent_buffer_page(dst, src_i),
3152 			   dst_off_in_page, src_off_in_page, cur);
3153 
3154 		src_offset += cur;
3155 		dst_offset += cur;
3156 		len -= cur;
3157 	}
3158 }
3159 EXPORT_SYMBOL(memcpy_extent_buffer);
3160 
3161 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3162 			   unsigned long src_offset, unsigned long len)
3163 {
3164 	size_t cur;
3165 	size_t dst_off_in_page;
3166 	size_t src_off_in_page;
3167 	unsigned long dst_end = dst_offset + len - 1;
3168 	unsigned long src_end = src_offset + len - 1;
3169 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3170 	unsigned long dst_i;
3171 	unsigned long src_i;
3172 
3173 	if (src_offset + len > dst->len) {
3174 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3175 		       src_offset, len, dst->len);
3176 		BUG_ON(1);
3177 	}
3178 	if (dst_offset + len > dst->len) {
3179 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3180 		       dst_offset, len, dst->len);
3181 		BUG_ON(1);
3182 	}
3183 	if (dst_offset < src_offset) {
3184 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3185 		return;
3186 	}
3187 	while(len > 0) {
3188 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3189 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3190 
3191 		dst_off_in_page = (start_offset + dst_end) &
3192 			((unsigned long)PAGE_CACHE_SIZE - 1);
3193 		src_off_in_page = (start_offset + src_end) &
3194 			((unsigned long)PAGE_CACHE_SIZE - 1);
3195 
3196 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3197 		cur = min(cur, dst_off_in_page + 1);
3198 		move_pages(extent_buffer_page(dst, dst_i),
3199 			   extent_buffer_page(dst, src_i),
3200 			   dst_off_in_page - cur + 1,
3201 			   src_off_in_page - cur + 1, cur);
3202 
3203 		dst_end -= cur;
3204 		src_end -= cur;
3205 		len -= cur;
3206 	}
3207 }
3208 EXPORT_SYMBOL(memmove_extent_buffer);
3209