xref: /openbmc/linux/fs/btrfs/extent_map.c (revision c67cda17)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include "extent_map.h"
14 
15 /* temporary define until extent_map moves out of btrfs */
16 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
17 				       unsigned long extra_flags,
18 				       void (*ctor)(void *, struct kmem_cache *,
19 						    unsigned long));
20 
21 static struct kmem_cache *extent_map_cache;
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
24 
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
27 
28 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
29 #define BUFFER_LRU_MAX 64
30 
31 struct tree_entry {
32 	u64 start;
33 	u64 end;
34 	int in_tree;
35 	struct rb_node rb_node;
36 };
37 
38 void __init extent_map_init(void)
39 {
40 	extent_map_cache = btrfs_cache_create("extent_map",
41 					    sizeof(struct extent_map), 0,
42 					    NULL);
43 	extent_state_cache = btrfs_cache_create("extent_state",
44 					    sizeof(struct extent_state), 0,
45 					    NULL);
46 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
47 					    sizeof(struct extent_buffer), 0,
48 					    NULL);
49 }
50 
51 void __exit extent_map_exit(void)
52 {
53 	struct extent_state *state;
54 
55 	while (!list_empty(&states)) {
56 		state = list_entry(states.next, struct extent_state, list);
57 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
58 		list_del(&state->list);
59 		kmem_cache_free(extent_state_cache, state);
60 
61 	}
62 
63 	if (extent_map_cache)
64 		kmem_cache_destroy(extent_map_cache);
65 	if (extent_state_cache)
66 		kmem_cache_destroy(extent_state_cache);
67 	if (extent_buffer_cache)
68 		kmem_cache_destroy(extent_buffer_cache);
69 }
70 
71 void extent_map_tree_init(struct extent_map_tree *tree,
72 			  struct address_space *mapping, gfp_t mask)
73 {
74 	tree->map.rb_node = NULL;
75 	tree->state.rb_node = NULL;
76 	tree->ops = NULL;
77 	rwlock_init(&tree->lock);
78 	spin_lock_init(&tree->lru_lock);
79 	tree->mapping = mapping;
80 	INIT_LIST_HEAD(&tree->buffer_lru);
81 	tree->lru_size = 0;
82 }
83 EXPORT_SYMBOL(extent_map_tree_init);
84 
85 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
86 {
87 	struct extent_buffer *eb;
88 	while(!list_empty(&tree->buffer_lru)) {
89 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
90 				lru);
91 		list_del(&eb->lru);
92 		free_extent_buffer(eb);
93 	}
94 }
95 EXPORT_SYMBOL(extent_map_tree_empty_lru);
96 
97 struct extent_map *alloc_extent_map(gfp_t mask)
98 {
99 	struct extent_map *em;
100 	em = kmem_cache_alloc(extent_map_cache, mask);
101 	if (!em || IS_ERR(em))
102 		return em;
103 	em->in_tree = 0;
104 	atomic_set(&em->refs, 1);
105 	return em;
106 }
107 EXPORT_SYMBOL(alloc_extent_map);
108 
109 void free_extent_map(struct extent_map *em)
110 {
111 	if (!em)
112 		return;
113 	if (atomic_dec_and_test(&em->refs)) {
114 		WARN_ON(em->in_tree);
115 		kmem_cache_free(extent_map_cache, em);
116 	}
117 }
118 EXPORT_SYMBOL(free_extent_map);
119 
120 
121 struct extent_state *alloc_extent_state(gfp_t mask)
122 {
123 	struct extent_state *state;
124 	unsigned long flags;
125 
126 	state = kmem_cache_alloc(extent_state_cache, mask);
127 	if (!state || IS_ERR(state))
128 		return state;
129 	state->state = 0;
130 	state->in_tree = 0;
131 	state->private = 0;
132 
133 	spin_lock_irqsave(&state_lock, flags);
134 	list_add(&state->list, &states);
135 	spin_unlock_irqrestore(&state_lock, flags);
136 
137 	atomic_set(&state->refs, 1);
138 	init_waitqueue_head(&state->wq);
139 	return state;
140 }
141 EXPORT_SYMBOL(alloc_extent_state);
142 
143 void free_extent_state(struct extent_state *state)
144 {
145 	unsigned long flags;
146 	if (!state)
147 		return;
148 	if (atomic_dec_and_test(&state->refs)) {
149 		WARN_ON(state->in_tree);
150 		spin_lock_irqsave(&state_lock, flags);
151 		list_del(&state->list);
152 		spin_unlock_irqrestore(&state_lock, flags);
153 		kmem_cache_free(extent_state_cache, state);
154 	}
155 }
156 EXPORT_SYMBOL(free_extent_state);
157 
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 				   struct rb_node *node)
160 {
161 	struct rb_node ** p = &root->rb_node;
162 	struct rb_node * parent = NULL;
163 	struct tree_entry *entry;
164 
165 	while(*p) {
166 		parent = *p;
167 		entry = rb_entry(parent, struct tree_entry, rb_node);
168 
169 		if (offset < entry->start)
170 			p = &(*p)->rb_left;
171 		else if (offset > entry->end)
172 			p = &(*p)->rb_right;
173 		else
174 			return parent;
175 	}
176 
177 	entry = rb_entry(node, struct tree_entry, rb_node);
178 	entry->in_tree = 1;
179 	rb_link_node(node, parent, p);
180 	rb_insert_color(node, root);
181 	return NULL;
182 }
183 
184 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
185 				   struct rb_node **prev_ret)
186 {
187 	struct rb_node * n = root->rb_node;
188 	struct rb_node *prev = NULL;
189 	struct tree_entry *entry;
190 	struct tree_entry *prev_entry = NULL;
191 
192 	while(n) {
193 		entry = rb_entry(n, struct tree_entry, rb_node);
194 		prev = n;
195 		prev_entry = entry;
196 
197 		if (offset < entry->start)
198 			n = n->rb_left;
199 		else if (offset > entry->end)
200 			n = n->rb_right;
201 		else
202 			return n;
203 	}
204 	if (!prev_ret)
205 		return NULL;
206 	while(prev && offset > prev_entry->end) {
207 		prev = rb_next(prev);
208 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
209 	}
210 	*prev_ret = prev;
211 	return NULL;
212 }
213 
214 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
215 {
216 	struct rb_node *prev;
217 	struct rb_node *ret;
218 	ret = __tree_search(root, offset, &prev);
219 	if (!ret)
220 		return prev;
221 	return ret;
222 }
223 
224 static int tree_delete(struct rb_root *root, u64 offset)
225 {
226 	struct rb_node *node;
227 	struct tree_entry *entry;
228 
229 	node = __tree_search(root, offset, NULL);
230 	if (!node)
231 		return -ENOENT;
232 	entry = rb_entry(node, struct tree_entry, rb_node);
233 	entry->in_tree = 0;
234 	rb_erase(node, root);
235 	return 0;
236 }
237 
238 /*
239  * add_extent_mapping tries a simple backward merge with existing
240  * mappings.  The extent_map struct passed in will be inserted into
241  * the tree directly (no copies made, just a reference taken).
242  */
243 int add_extent_mapping(struct extent_map_tree *tree,
244 		       struct extent_map *em)
245 {
246 	int ret = 0;
247 	struct extent_map *prev = NULL;
248 	struct rb_node *rb;
249 
250 	write_lock_irq(&tree->lock);
251 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
252 	if (rb) {
253 		prev = rb_entry(rb, struct extent_map, rb_node);
254 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
255 		ret = -EEXIST;
256 		goto out;
257 	}
258 	atomic_inc(&em->refs);
259 	if (em->start != 0) {
260 		rb = rb_prev(&em->rb_node);
261 		if (rb)
262 			prev = rb_entry(rb, struct extent_map, rb_node);
263 		if (prev && prev->end + 1 == em->start &&
264 		    ((em->block_start == EXTENT_MAP_HOLE &&
265 		      prev->block_start == EXTENT_MAP_HOLE) ||
266 			     (em->block_start == prev->block_end + 1))) {
267 			em->start = prev->start;
268 			em->block_start = prev->block_start;
269 			rb_erase(&prev->rb_node, &tree->map);
270 			prev->in_tree = 0;
271 			free_extent_map(prev);
272 		}
273 	 }
274 out:
275 	write_unlock_irq(&tree->lock);
276 	return ret;
277 }
278 EXPORT_SYMBOL(add_extent_mapping);
279 
280 /*
281  * lookup_extent_mapping returns the first extent_map struct in the
282  * tree that intersects the [start, end] (inclusive) range.  There may
283  * be additional objects in the tree that intersect, so check the object
284  * returned carefully to make sure you don't need additional lookups.
285  */
286 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
287 					 u64 start, u64 end)
288 {
289 	struct extent_map *em;
290 	struct rb_node *rb_node;
291 
292 	read_lock_irq(&tree->lock);
293 	rb_node = tree_search(&tree->map, start);
294 	if (!rb_node) {
295 		em = NULL;
296 		goto out;
297 	}
298 	if (IS_ERR(rb_node)) {
299 		em = ERR_PTR(PTR_ERR(rb_node));
300 		goto out;
301 	}
302 	em = rb_entry(rb_node, struct extent_map, rb_node);
303 	if (em->end < start || em->start > end) {
304 		em = NULL;
305 		goto out;
306 	}
307 	atomic_inc(&em->refs);
308 out:
309 	read_unlock_irq(&tree->lock);
310 	return em;
311 }
312 EXPORT_SYMBOL(lookup_extent_mapping);
313 
314 /*
315  * removes an extent_map struct from the tree.  No reference counts are
316  * dropped, and no checks are done to  see if the range is in use
317  */
318 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
319 {
320 	int ret;
321 
322 	write_lock_irq(&tree->lock);
323 	ret = tree_delete(&tree->map, em->end);
324 	write_unlock_irq(&tree->lock);
325 	return ret;
326 }
327 EXPORT_SYMBOL(remove_extent_mapping);
328 
329 /*
330  * utility function to look for merge candidates inside a given range.
331  * Any extents with matching state are merged together into a single
332  * extent in the tree.  Extents with EXTENT_IO in their state field
333  * are not merged because the end_io handlers need to be able to do
334  * operations on them without sleeping (or doing allocations/splits).
335  *
336  * This should be called with the tree lock held.
337  */
338 static int merge_state(struct extent_map_tree *tree,
339 		       struct extent_state *state)
340 {
341 	struct extent_state *other;
342 	struct rb_node *other_node;
343 
344 	if (state->state & EXTENT_IOBITS)
345 		return 0;
346 
347 	other_node = rb_prev(&state->rb_node);
348 	if (other_node) {
349 		other = rb_entry(other_node, struct extent_state, rb_node);
350 		if (other->end == state->start - 1 &&
351 		    other->state == state->state) {
352 			state->start = other->start;
353 			other->in_tree = 0;
354 			rb_erase(&other->rb_node, &tree->state);
355 			free_extent_state(other);
356 		}
357 	}
358 	other_node = rb_next(&state->rb_node);
359 	if (other_node) {
360 		other = rb_entry(other_node, struct extent_state, rb_node);
361 		if (other->start == state->end + 1 &&
362 		    other->state == state->state) {
363 			other->start = state->start;
364 			state->in_tree = 0;
365 			rb_erase(&state->rb_node, &tree->state);
366 			free_extent_state(state);
367 		}
368 	}
369 	return 0;
370 }
371 
372 /*
373  * insert an extent_state struct into the tree.  'bits' are set on the
374  * struct before it is inserted.
375  *
376  * This may return -EEXIST if the extent is already there, in which case the
377  * state struct is freed.
378  *
379  * The tree lock is not taken internally.  This is a utility function and
380  * probably isn't what you want to call (see set/clear_extent_bit).
381  */
382 static int insert_state(struct extent_map_tree *tree,
383 			struct extent_state *state, u64 start, u64 end,
384 			int bits)
385 {
386 	struct rb_node *node;
387 
388 	if (end < start) {
389 		printk("end < start %Lu %Lu\n", end, start);
390 		WARN_ON(1);
391 	}
392 	state->state |= bits;
393 	state->start = start;
394 	state->end = end;
395 	node = tree_insert(&tree->state, end, &state->rb_node);
396 	if (node) {
397 		struct extent_state *found;
398 		found = rb_entry(node, struct extent_state, rb_node);
399 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
400 		free_extent_state(state);
401 		return -EEXIST;
402 	}
403 	merge_state(tree, state);
404 	return 0;
405 }
406 
407 /*
408  * split a given extent state struct in two, inserting the preallocated
409  * struct 'prealloc' as the newly created second half.  'split' indicates an
410  * offset inside 'orig' where it should be split.
411  *
412  * Before calling,
413  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
414  * are two extent state structs in the tree:
415  * prealloc: [orig->start, split - 1]
416  * orig: [ split, orig->end ]
417  *
418  * The tree locks are not taken by this function. They need to be held
419  * by the caller.
420  */
421 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
422 		       struct extent_state *prealloc, u64 split)
423 {
424 	struct rb_node *node;
425 	prealloc->start = orig->start;
426 	prealloc->end = split - 1;
427 	prealloc->state = orig->state;
428 	orig->start = split;
429 
430 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
431 	if (node) {
432 		struct extent_state *found;
433 		found = rb_entry(node, struct extent_state, rb_node);
434 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
435 		free_extent_state(prealloc);
436 		return -EEXIST;
437 	}
438 	return 0;
439 }
440 
441 /*
442  * utility function to clear some bits in an extent state struct.
443  * it will optionally wake up any one waiting on this state (wake == 1), or
444  * forcibly remove the state from the tree (delete == 1).
445  *
446  * If no bits are set on the state struct after clearing things, the
447  * struct is freed and removed from the tree
448  */
449 static int clear_state_bit(struct extent_map_tree *tree,
450 			    struct extent_state *state, int bits, int wake,
451 			    int delete)
452 {
453 	int ret = state->state & bits;
454 	state->state &= ~bits;
455 	if (wake)
456 		wake_up(&state->wq);
457 	if (delete || state->state == 0) {
458 		if (state->in_tree) {
459 			rb_erase(&state->rb_node, &tree->state);
460 			state->in_tree = 0;
461 			free_extent_state(state);
462 		} else {
463 			WARN_ON(1);
464 		}
465 	} else {
466 		merge_state(tree, state);
467 	}
468 	return ret;
469 }
470 
471 /*
472  * clear some bits on a range in the tree.  This may require splitting
473  * or inserting elements in the tree, so the gfp mask is used to
474  * indicate which allocations or sleeping are allowed.
475  *
476  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
477  * the given range from the tree regardless of state (ie for truncate).
478  *
479  * the range [start, end] is inclusive.
480  *
481  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
482  * bits were already set, or zero if none of the bits were already set.
483  */
484 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
485 		     int bits, int wake, int delete, gfp_t mask)
486 {
487 	struct extent_state *state;
488 	struct extent_state *prealloc = NULL;
489 	struct rb_node *node;
490 	unsigned long flags;
491 	int err;
492 	int set = 0;
493 
494 again:
495 	if (!prealloc && (mask & __GFP_WAIT)) {
496 		prealloc = alloc_extent_state(mask);
497 		if (!prealloc)
498 			return -ENOMEM;
499 	}
500 
501 	write_lock_irqsave(&tree->lock, flags);
502 	/*
503 	 * this search will find the extents that end after
504 	 * our range starts
505 	 */
506 	node = tree_search(&tree->state, start);
507 	if (!node)
508 		goto out;
509 	state = rb_entry(node, struct extent_state, rb_node);
510 	if (state->start > end)
511 		goto out;
512 	WARN_ON(state->end < start);
513 
514 	/*
515 	 *     | ---- desired range ---- |
516 	 *  | state | or
517 	 *  | ------------- state -------------- |
518 	 *
519 	 * We need to split the extent we found, and may flip
520 	 * bits on second half.
521 	 *
522 	 * If the extent we found extends past our range, we
523 	 * just split and search again.  It'll get split again
524 	 * the next time though.
525 	 *
526 	 * If the extent we found is inside our range, we clear
527 	 * the desired bit on it.
528 	 */
529 
530 	if (state->start < start) {
531 		err = split_state(tree, state, prealloc, start);
532 		BUG_ON(err == -EEXIST);
533 		prealloc = NULL;
534 		if (err)
535 			goto out;
536 		if (state->end <= end) {
537 			start = state->end + 1;
538 			set |= clear_state_bit(tree, state, bits,
539 					wake, delete);
540 		} else {
541 			start = state->start;
542 		}
543 		goto search_again;
544 	}
545 	/*
546 	 * | ---- desired range ---- |
547 	 *                        | state |
548 	 * We need to split the extent, and clear the bit
549 	 * on the first half
550 	 */
551 	if (state->start <= end && state->end > end) {
552 		err = split_state(tree, state, prealloc, end + 1);
553 		BUG_ON(err == -EEXIST);
554 
555 		if (wake)
556 			wake_up(&state->wq);
557 		set |= clear_state_bit(tree, prealloc, bits,
558 				       wake, delete);
559 		prealloc = NULL;
560 		goto out;
561 	}
562 
563 	start = state->end + 1;
564 	set |= clear_state_bit(tree, state, bits, wake, delete);
565 	goto search_again;
566 
567 out:
568 	write_unlock_irqrestore(&tree->lock, flags);
569 	if (prealloc)
570 		free_extent_state(prealloc);
571 
572 	return set;
573 
574 search_again:
575 	if (start > end)
576 		goto out;
577 	write_unlock_irqrestore(&tree->lock, flags);
578 	if (mask & __GFP_WAIT)
579 		cond_resched();
580 	goto again;
581 }
582 EXPORT_SYMBOL(clear_extent_bit);
583 
584 static int wait_on_state(struct extent_map_tree *tree,
585 			 struct extent_state *state)
586 {
587 	DEFINE_WAIT(wait);
588 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
589 	read_unlock_irq(&tree->lock);
590 	schedule();
591 	read_lock_irq(&tree->lock);
592 	finish_wait(&state->wq, &wait);
593 	return 0;
594 }
595 
596 /*
597  * waits for one or more bits to clear on a range in the state tree.
598  * The range [start, end] is inclusive.
599  * The tree lock is taken by this function
600  */
601 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
602 {
603 	struct extent_state *state;
604 	struct rb_node *node;
605 
606 	read_lock_irq(&tree->lock);
607 again:
608 	while (1) {
609 		/*
610 		 * this search will find all the extents that end after
611 		 * our range starts
612 		 */
613 		node = tree_search(&tree->state, start);
614 		if (!node)
615 			break;
616 
617 		state = rb_entry(node, struct extent_state, rb_node);
618 
619 		if (state->start > end)
620 			goto out;
621 
622 		if (state->state & bits) {
623 			start = state->start;
624 			atomic_inc(&state->refs);
625 			wait_on_state(tree, state);
626 			free_extent_state(state);
627 			goto again;
628 		}
629 		start = state->end + 1;
630 
631 		if (start > end)
632 			break;
633 
634 		if (need_resched()) {
635 			read_unlock_irq(&tree->lock);
636 			cond_resched();
637 			read_lock_irq(&tree->lock);
638 		}
639 	}
640 out:
641 	read_unlock_irq(&tree->lock);
642 	return 0;
643 }
644 EXPORT_SYMBOL(wait_extent_bit);
645 
646 /*
647  * set some bits on a range in the tree.  This may require allocations
648  * or sleeping, so the gfp mask is used to indicate what is allowed.
649  *
650  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
651  * range already has the desired bits set.  The start of the existing
652  * range is returned in failed_start in this case.
653  *
654  * [start, end] is inclusive
655  * This takes the tree lock.
656  */
657 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
658 		   int exclusive, u64 *failed_start, gfp_t mask)
659 {
660 	struct extent_state *state;
661 	struct extent_state *prealloc = NULL;
662 	struct rb_node *node;
663 	unsigned long flags;
664 	int err = 0;
665 	int set;
666 	u64 last_start;
667 	u64 last_end;
668 again:
669 	if (!prealloc && (mask & __GFP_WAIT)) {
670 		prealloc = alloc_extent_state(mask);
671 		if (!prealloc)
672 			return -ENOMEM;
673 	}
674 
675 	write_lock_irqsave(&tree->lock, flags);
676 	/*
677 	 * this search will find all the extents that end after
678 	 * our range starts.
679 	 */
680 	node = tree_search(&tree->state, start);
681 	if (!node) {
682 		err = insert_state(tree, prealloc, start, end, bits);
683 		prealloc = NULL;
684 		BUG_ON(err == -EEXIST);
685 		goto out;
686 	}
687 
688 	state = rb_entry(node, struct extent_state, rb_node);
689 	last_start = state->start;
690 	last_end = state->end;
691 
692 	/*
693 	 * | ---- desired range ---- |
694 	 * | state |
695 	 *
696 	 * Just lock what we found and keep going
697 	 */
698 	if (state->start == start && state->end <= end) {
699 		set = state->state & bits;
700 		if (set && exclusive) {
701 			*failed_start = state->start;
702 			err = -EEXIST;
703 			goto out;
704 		}
705 		state->state |= bits;
706 		start = state->end + 1;
707 		merge_state(tree, state);
708 		goto search_again;
709 	}
710 
711 	/*
712 	 *     | ---- desired range ---- |
713 	 * | state |
714 	 *   or
715 	 * | ------------- state -------------- |
716 	 *
717 	 * We need to split the extent we found, and may flip bits on
718 	 * second half.
719 	 *
720 	 * If the extent we found extends past our
721 	 * range, we just split and search again.  It'll get split
722 	 * again the next time though.
723 	 *
724 	 * If the extent we found is inside our range, we set the
725 	 * desired bit on it.
726 	 */
727 	if (state->start < start) {
728 		set = state->state & bits;
729 		if (exclusive && set) {
730 			*failed_start = start;
731 			err = -EEXIST;
732 			goto out;
733 		}
734 		err = split_state(tree, state, prealloc, start);
735 		BUG_ON(err == -EEXIST);
736 		prealloc = NULL;
737 		if (err)
738 			goto out;
739 		if (state->end <= end) {
740 			state->state |= bits;
741 			start = state->end + 1;
742 			merge_state(tree, state);
743 		} else {
744 			start = state->start;
745 		}
746 		goto search_again;
747 	}
748 	/*
749 	 * | ---- desired range ---- |
750 	 *     | state | or               | state |
751 	 *
752 	 * There's a hole, we need to insert something in it and
753 	 * ignore the extent we found.
754 	 */
755 	if (state->start > start) {
756 		u64 this_end;
757 		if (end < last_start)
758 			this_end = end;
759 		else
760 			this_end = last_start -1;
761 		err = insert_state(tree, prealloc, start, this_end,
762 				   bits);
763 		prealloc = NULL;
764 		BUG_ON(err == -EEXIST);
765 		if (err)
766 			goto out;
767 		start = this_end + 1;
768 		goto search_again;
769 	}
770 	/*
771 	 * | ---- desired range ---- |
772 	 *                        | state |
773 	 * We need to split the extent, and set the bit
774 	 * on the first half
775 	 */
776 	if (state->start <= end && state->end > end) {
777 		set = state->state & bits;
778 		if (exclusive && set) {
779 			*failed_start = start;
780 			err = -EEXIST;
781 			goto out;
782 		}
783 		err = split_state(tree, state, prealloc, end + 1);
784 		BUG_ON(err == -EEXIST);
785 
786 		prealloc->state |= bits;
787 		merge_state(tree, prealloc);
788 		prealloc = NULL;
789 		goto out;
790 	}
791 
792 	goto search_again;
793 
794 out:
795 	write_unlock_irqrestore(&tree->lock, flags);
796 	if (prealloc)
797 		free_extent_state(prealloc);
798 
799 	return err;
800 
801 search_again:
802 	if (start > end)
803 		goto out;
804 	write_unlock_irqrestore(&tree->lock, flags);
805 	if (mask & __GFP_WAIT)
806 		cond_resched();
807 	goto again;
808 }
809 EXPORT_SYMBOL(set_extent_bit);
810 
811 /* wrappers around set/clear extent bit */
812 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
813 		     gfp_t mask)
814 {
815 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
816 			      mask);
817 }
818 EXPORT_SYMBOL(set_extent_dirty);
819 
820 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
821 		    int bits, gfp_t mask)
822 {
823 	return set_extent_bit(tree, start, end, bits, 0, NULL,
824 			      mask);
825 }
826 EXPORT_SYMBOL(set_extent_bits);
827 
828 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
829 		      int bits, gfp_t mask)
830 {
831 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
832 }
833 EXPORT_SYMBOL(clear_extent_bits);
834 
835 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
836 		     gfp_t mask)
837 {
838 	return set_extent_bit(tree, start, end,
839 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
840 			      mask);
841 }
842 EXPORT_SYMBOL(set_extent_delalloc);
843 
844 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
845 		       gfp_t mask)
846 {
847 	return clear_extent_bit(tree, start, end,
848 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
849 }
850 EXPORT_SYMBOL(clear_extent_dirty);
851 
852 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
853 		     gfp_t mask)
854 {
855 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
856 			      mask);
857 }
858 EXPORT_SYMBOL(set_extent_new);
859 
860 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
861 		       gfp_t mask)
862 {
863 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
864 }
865 EXPORT_SYMBOL(clear_extent_new);
866 
867 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
868 			gfp_t mask)
869 {
870 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
871 			      mask);
872 }
873 EXPORT_SYMBOL(set_extent_uptodate);
874 
875 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
876 			  gfp_t mask)
877 {
878 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
879 }
880 EXPORT_SYMBOL(clear_extent_uptodate);
881 
882 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
883 			 gfp_t mask)
884 {
885 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
886 			      0, NULL, mask);
887 }
888 EXPORT_SYMBOL(set_extent_writeback);
889 
890 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
891 			   gfp_t mask)
892 {
893 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
894 }
895 EXPORT_SYMBOL(clear_extent_writeback);
896 
897 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
898 {
899 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
900 }
901 EXPORT_SYMBOL(wait_on_extent_writeback);
902 
903 /*
904  * locks a range in ascending order, waiting for any locked regions
905  * it hits on the way.  [start,end] are inclusive, and this will sleep.
906  */
907 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
908 {
909 	int err;
910 	u64 failed_start;
911 	while (1) {
912 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
913 				     &failed_start, mask);
914 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
915 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
916 			start = failed_start;
917 		} else {
918 			break;
919 		}
920 		WARN_ON(start > end);
921 	}
922 	return err;
923 }
924 EXPORT_SYMBOL(lock_extent);
925 
926 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
927 		  gfp_t mask)
928 {
929 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
930 }
931 EXPORT_SYMBOL(unlock_extent);
932 
933 /*
934  * helper function to set pages and extents in the tree dirty
935  */
936 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
937 {
938 	unsigned long index = start >> PAGE_CACHE_SHIFT;
939 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
940 	struct page *page;
941 
942 	while (index <= end_index) {
943 		page = find_get_page(tree->mapping, index);
944 		BUG_ON(!page);
945 		__set_page_dirty_nobuffers(page);
946 		page_cache_release(page);
947 		index++;
948 	}
949 	set_extent_dirty(tree, start, end, GFP_NOFS);
950 	return 0;
951 }
952 EXPORT_SYMBOL(set_range_dirty);
953 
954 /*
955  * helper function to set both pages and extents in the tree writeback
956  */
957 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
958 {
959 	unsigned long index = start >> PAGE_CACHE_SHIFT;
960 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
961 	struct page *page;
962 
963 	while (index <= end_index) {
964 		page = find_get_page(tree->mapping, index);
965 		BUG_ON(!page);
966 		set_page_writeback(page);
967 		page_cache_release(page);
968 		index++;
969 	}
970 	set_extent_writeback(tree, start, end, GFP_NOFS);
971 	return 0;
972 }
973 EXPORT_SYMBOL(set_range_writeback);
974 
975 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
976 			  u64 *start_ret, u64 *end_ret, int bits)
977 {
978 	struct rb_node *node;
979 	struct extent_state *state;
980 	int ret = 1;
981 
982 	read_lock_irq(&tree->lock);
983 	/*
984 	 * this search will find all the extents that end after
985 	 * our range starts.
986 	 */
987 	node = tree_search(&tree->state, start);
988 	if (!node || IS_ERR(node)) {
989 		goto out;
990 	}
991 
992 	while(1) {
993 		state = rb_entry(node, struct extent_state, rb_node);
994 		if (state->end >= start && (state->state & bits)) {
995 			*start_ret = state->start;
996 			*end_ret = state->end;
997 			ret = 0;
998 			break;
999 		}
1000 		node = rb_next(node);
1001 		if (!node)
1002 			break;
1003 	}
1004 out:
1005 	read_unlock_irq(&tree->lock);
1006 	return ret;
1007 }
1008 EXPORT_SYMBOL(find_first_extent_bit);
1009 
1010 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1011 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1012 {
1013 	struct rb_node *node;
1014 	struct extent_state *state;
1015 	u64 cur_start = start;
1016 	u64 found = 0;
1017 	u64 total_bytes = 0;
1018 
1019 	write_lock_irq(&tree->lock);
1020 	/*
1021 	 * this search will find all the extents that end after
1022 	 * our range starts.
1023 	 */
1024 search_again:
1025 	node = tree_search(&tree->state, cur_start);
1026 	if (!node || IS_ERR(node)) {
1027 		goto out;
1028 	}
1029 
1030 	while(1) {
1031 		state = rb_entry(node, struct extent_state, rb_node);
1032 		if (state->start != cur_start) {
1033 			goto out;
1034 		}
1035 		if (!(state->state & EXTENT_DELALLOC)) {
1036 			goto out;
1037 		}
1038 		if (state->start >= lock_start) {
1039 			if (state->state & EXTENT_LOCKED) {
1040 				DEFINE_WAIT(wait);
1041 				atomic_inc(&state->refs);
1042 				write_unlock_irq(&tree->lock);
1043 				schedule();
1044 				write_lock_irq(&tree->lock);
1045 				finish_wait(&state->wq, &wait);
1046 				free_extent_state(state);
1047 				goto search_again;
1048 			}
1049 			state->state |= EXTENT_LOCKED;
1050 		}
1051 		found++;
1052 		*end = state->end;
1053 		cur_start = state->end + 1;
1054 		node = rb_next(node);
1055 		if (!node)
1056 			break;
1057 		total_bytes = state->end - state->start + 1;
1058 		if (total_bytes >= max_bytes)
1059 			break;
1060 	}
1061 out:
1062 	write_unlock_irq(&tree->lock);
1063 	return found;
1064 }
1065 
1066 /*
1067  * helper function to lock both pages and extents in the tree.
1068  * pages must be locked first.
1069  */
1070 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1071 {
1072 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1073 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1074 	struct page *page;
1075 	int err;
1076 
1077 	while (index <= end_index) {
1078 		page = grab_cache_page(tree->mapping, index);
1079 		if (!page) {
1080 			err = -ENOMEM;
1081 			goto failed;
1082 		}
1083 		if (IS_ERR(page)) {
1084 			err = PTR_ERR(page);
1085 			goto failed;
1086 		}
1087 		index++;
1088 	}
1089 	lock_extent(tree, start, end, GFP_NOFS);
1090 	return 0;
1091 
1092 failed:
1093 	/*
1094 	 * we failed above in getting the page at 'index', so we undo here
1095 	 * up to but not including the page at 'index'
1096 	 */
1097 	end_index = index;
1098 	index = start >> PAGE_CACHE_SHIFT;
1099 	while (index < end_index) {
1100 		page = find_get_page(tree->mapping, index);
1101 		unlock_page(page);
1102 		page_cache_release(page);
1103 		index++;
1104 	}
1105 	return err;
1106 }
1107 EXPORT_SYMBOL(lock_range);
1108 
1109 /*
1110  * helper function to unlock both pages and extents in the tree.
1111  */
1112 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1113 {
1114 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1115 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1116 	struct page *page;
1117 
1118 	while (index <= end_index) {
1119 		page = find_get_page(tree->mapping, index);
1120 		unlock_page(page);
1121 		page_cache_release(page);
1122 		index++;
1123 	}
1124 	unlock_extent(tree, start, end, GFP_NOFS);
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL(unlock_range);
1128 
1129 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1130 {
1131 	struct rb_node *node;
1132 	struct extent_state *state;
1133 	int ret = 0;
1134 
1135 	write_lock_irq(&tree->lock);
1136 	/*
1137 	 * this search will find all the extents that end after
1138 	 * our range starts.
1139 	 */
1140 	node = tree_search(&tree->state, start);
1141 	if (!node || IS_ERR(node)) {
1142 		ret = -ENOENT;
1143 		goto out;
1144 	}
1145 	state = rb_entry(node, struct extent_state, rb_node);
1146 	if (state->start != start) {
1147 		ret = -ENOENT;
1148 		goto out;
1149 	}
1150 	state->private = private;
1151 out:
1152 	write_unlock_irq(&tree->lock);
1153 	return ret;
1154 }
1155 
1156 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1157 {
1158 	struct rb_node *node;
1159 	struct extent_state *state;
1160 	int ret = 0;
1161 
1162 	read_lock_irq(&tree->lock);
1163 	/*
1164 	 * this search will find all the extents that end after
1165 	 * our range starts.
1166 	 */
1167 	node = tree_search(&tree->state, start);
1168 	if (!node || IS_ERR(node)) {
1169 		ret = -ENOENT;
1170 		goto out;
1171 	}
1172 	state = rb_entry(node, struct extent_state, rb_node);
1173 	if (state->start != start) {
1174 		ret = -ENOENT;
1175 		goto out;
1176 	}
1177 	*private = state->private;
1178 out:
1179 	read_unlock_irq(&tree->lock);
1180 	return ret;
1181 }
1182 
1183 /*
1184  * searches a range in the state tree for a given mask.
1185  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1186  * has the bits set.  Otherwise, 1 is returned if any bit in the
1187  * range is found set.
1188  */
1189 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1190 		   int bits, int filled)
1191 {
1192 	struct extent_state *state = NULL;
1193 	struct rb_node *node;
1194 	int bitset = 0;
1195 
1196 	read_lock_irq(&tree->lock);
1197 	node = tree_search(&tree->state, start);
1198 	while (node && start <= end) {
1199 		state = rb_entry(node, struct extent_state, rb_node);
1200 		if (state->start > end)
1201 			break;
1202 
1203 		if (filled && state->start > start) {
1204 			bitset = 0;
1205 			break;
1206 		}
1207 		if (state->state & bits) {
1208 			bitset = 1;
1209 			if (!filled)
1210 				break;
1211 		} else if (filled) {
1212 			bitset = 0;
1213 			break;
1214 		}
1215 		start = state->end + 1;
1216 		if (start > end)
1217 			break;
1218 		node = rb_next(node);
1219 	}
1220 	read_unlock_irq(&tree->lock);
1221 	return bitset;
1222 }
1223 EXPORT_SYMBOL(test_range_bit);
1224 
1225 /*
1226  * helper function to set a given page up to date if all the
1227  * extents in the tree for that page are up to date
1228  */
1229 static int check_page_uptodate(struct extent_map_tree *tree,
1230 			       struct page *page)
1231 {
1232 	u64 start = page->index << PAGE_CACHE_SHIFT;
1233 	u64 end = start + PAGE_CACHE_SIZE - 1;
1234 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1235 		SetPageUptodate(page);
1236 	return 0;
1237 }
1238 
1239 /*
1240  * helper function to unlock a page if all the extents in the tree
1241  * for that page are unlocked
1242  */
1243 static int check_page_locked(struct extent_map_tree *tree,
1244 			     struct page *page)
1245 {
1246 	u64 start = page->index << PAGE_CACHE_SHIFT;
1247 	u64 end = start + PAGE_CACHE_SIZE - 1;
1248 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1249 		unlock_page(page);
1250 	return 0;
1251 }
1252 
1253 /*
1254  * helper function to end page writeback if all the extents
1255  * in the tree for that page are done with writeback
1256  */
1257 static int check_page_writeback(struct extent_map_tree *tree,
1258 			     struct page *page)
1259 {
1260 	u64 start = page->index << PAGE_CACHE_SHIFT;
1261 	u64 end = start + PAGE_CACHE_SIZE - 1;
1262 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1263 		end_page_writeback(page);
1264 	return 0;
1265 }
1266 
1267 /* lots and lots of room for performance fixes in the end_bio funcs */
1268 
1269 /*
1270  * after a writepage IO is done, we need to:
1271  * clear the uptodate bits on error
1272  * clear the writeback bits in the extent tree for this IO
1273  * end_page_writeback if the page has no more pending IO
1274  *
1275  * Scheduling is not allowed, so the extent state tree is expected
1276  * to have one and only one object corresponding to this IO.
1277  */
1278 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1279 static void end_bio_extent_writepage(struct bio *bio, int err)
1280 #else
1281 static int end_bio_extent_writepage(struct bio *bio,
1282 				   unsigned int bytes_done, int err)
1283 #endif
1284 {
1285 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1286 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1287 	struct extent_map_tree *tree = bio->bi_private;
1288 	u64 start;
1289 	u64 end;
1290 	int whole_page;
1291 
1292 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1293 	if (bio->bi_size)
1294 		return 1;
1295 #endif
1296 
1297 	do {
1298 		struct page *page = bvec->bv_page;
1299 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1300 		end = start + bvec->bv_len - 1;
1301 
1302 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1303 			whole_page = 1;
1304 		else
1305 			whole_page = 0;
1306 
1307 		if (--bvec >= bio->bi_io_vec)
1308 			prefetchw(&bvec->bv_page->flags);
1309 
1310 		if (!uptodate) {
1311 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1312 			ClearPageUptodate(page);
1313 			SetPageError(page);
1314 		}
1315 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1316 
1317 		if (whole_page)
1318 			end_page_writeback(page);
1319 		else
1320 			check_page_writeback(tree, page);
1321 		if (tree->ops && tree->ops->writepage_end_io_hook)
1322 			tree->ops->writepage_end_io_hook(page, start, end);
1323 	} while (bvec >= bio->bi_io_vec);
1324 
1325 	bio_put(bio);
1326 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1327 	return 0;
1328 #endif
1329 }
1330 
1331 /*
1332  * after a readpage IO is done, we need to:
1333  * clear the uptodate bits on error
1334  * set the uptodate bits if things worked
1335  * set the page up to date if all extents in the tree are uptodate
1336  * clear the lock bit in the extent tree
1337  * unlock the page if there are no other extents locked for it
1338  *
1339  * Scheduling is not allowed, so the extent state tree is expected
1340  * to have one and only one object corresponding to this IO.
1341  */
1342 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1343 static void end_bio_extent_readpage(struct bio *bio, int err)
1344 #else
1345 static int end_bio_extent_readpage(struct bio *bio,
1346 				   unsigned int bytes_done, int err)
1347 #endif
1348 {
1349 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1350 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1351 	struct extent_map_tree *tree = bio->bi_private;
1352 	u64 start;
1353 	u64 end;
1354 	int whole_page;
1355 	int ret;
1356 
1357 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1358 	if (bio->bi_size)
1359 		return 1;
1360 #endif
1361 
1362 	do {
1363 		struct page *page = bvec->bv_page;
1364 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1365 		end = start + bvec->bv_len - 1;
1366 
1367 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1368 			whole_page = 1;
1369 		else
1370 			whole_page = 0;
1371 
1372 		if (--bvec >= bio->bi_io_vec)
1373 			prefetchw(&bvec->bv_page->flags);
1374 
1375 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1376 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1377 			if (ret)
1378 				uptodate = 0;
1379 		}
1380 		if (uptodate) {
1381 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1382 			if (whole_page)
1383 				SetPageUptodate(page);
1384 			else
1385 				check_page_uptodate(tree, page);
1386 		} else {
1387 			ClearPageUptodate(page);
1388 			SetPageError(page);
1389 		}
1390 
1391 		unlock_extent(tree, start, end, GFP_ATOMIC);
1392 
1393 		if (whole_page)
1394 			unlock_page(page);
1395 		else
1396 			check_page_locked(tree, page);
1397 	} while (bvec >= bio->bi_io_vec);
1398 
1399 	bio_put(bio);
1400 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1401 	return 0;
1402 #endif
1403 }
1404 
1405 /*
1406  * IO done from prepare_write is pretty simple, we just unlock
1407  * the structs in the extent tree when done, and set the uptodate bits
1408  * as appropriate.
1409  */
1410 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1411 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1412 #else
1413 static int end_bio_extent_preparewrite(struct bio *bio,
1414 				       unsigned int bytes_done, int err)
1415 #endif
1416 {
1417 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1418 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1419 	struct extent_map_tree *tree = bio->bi_private;
1420 	u64 start;
1421 	u64 end;
1422 
1423 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1424 	if (bio->bi_size)
1425 		return 1;
1426 #endif
1427 
1428 	do {
1429 		struct page *page = bvec->bv_page;
1430 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1431 		end = start + bvec->bv_len - 1;
1432 
1433 		if (--bvec >= bio->bi_io_vec)
1434 			prefetchw(&bvec->bv_page->flags);
1435 
1436 		if (uptodate) {
1437 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1438 		} else {
1439 			ClearPageUptodate(page);
1440 			SetPageError(page);
1441 		}
1442 
1443 		unlock_extent(tree, start, end, GFP_ATOMIC);
1444 
1445 	} while (bvec >= bio->bi_io_vec);
1446 
1447 	bio_put(bio);
1448 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1449 	return 0;
1450 #endif
1451 }
1452 
1453 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1454 			      struct page *page, sector_t sector,
1455 			      size_t size, unsigned long offset,
1456 			      struct block_device *bdev,
1457 			      bio_end_io_t end_io_func)
1458 {
1459 	struct bio *bio;
1460 	int ret = 0;
1461 
1462 	bio = bio_alloc(GFP_NOIO, 1);
1463 
1464 	bio->bi_sector = sector;
1465 	bio->bi_bdev = bdev;
1466 	bio->bi_io_vec[0].bv_page = page;
1467 	bio->bi_io_vec[0].bv_len = size;
1468 	bio->bi_io_vec[0].bv_offset = offset;
1469 
1470 	bio->bi_vcnt = 1;
1471 	bio->bi_idx = 0;
1472 	bio->bi_size = size;
1473 
1474 	bio->bi_end_io = end_io_func;
1475 	bio->bi_private = tree;
1476 
1477 	bio_get(bio);
1478 	submit_bio(rw, bio);
1479 
1480 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1481 		ret = -EOPNOTSUPP;
1482 
1483 	bio_put(bio);
1484 	return ret;
1485 }
1486 
1487 void set_page_extent_mapped(struct page *page)
1488 {
1489 	if (!PagePrivate(page)) {
1490 		SetPagePrivate(page);
1491 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1492 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1493 		page_cache_get(page);
1494 	}
1495 }
1496 
1497 /*
1498  * basic readpage implementation.  Locked extent state structs are inserted
1499  * into the tree that are removed when the IO is done (by the end_io
1500  * handlers)
1501  */
1502 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1503 			  get_extent_t *get_extent)
1504 {
1505 	struct inode *inode = page->mapping->host;
1506 	u64 start = page->index << PAGE_CACHE_SHIFT;
1507 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1508 	u64 end;
1509 	u64 cur = start;
1510 	u64 extent_offset;
1511 	u64 last_byte = i_size_read(inode);
1512 	u64 block_start;
1513 	u64 cur_end;
1514 	sector_t sector;
1515 	struct extent_map *em;
1516 	struct block_device *bdev;
1517 	int ret;
1518 	int nr = 0;
1519 	size_t page_offset = 0;
1520 	size_t iosize;
1521 	size_t blocksize = inode->i_sb->s_blocksize;
1522 
1523 	set_page_extent_mapped(page);
1524 
1525 	end = page_end;
1526 	lock_extent(tree, start, end, GFP_NOFS);
1527 
1528 	while (cur <= end) {
1529 		if (cur >= last_byte) {
1530 			iosize = PAGE_CACHE_SIZE - page_offset;
1531 			zero_user_page(page, page_offset, iosize, KM_USER0);
1532 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1533 					    GFP_NOFS);
1534 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1535 			break;
1536 		}
1537 		em = get_extent(inode, page, page_offset, cur, end, 0);
1538 		if (IS_ERR(em) || !em) {
1539 			SetPageError(page);
1540 			unlock_extent(tree, cur, end, GFP_NOFS);
1541 			break;
1542 		}
1543 
1544 		extent_offset = cur - em->start;
1545 		BUG_ON(em->end < cur);
1546 		BUG_ON(end < cur);
1547 
1548 		iosize = min(em->end - cur, end - cur) + 1;
1549 		cur_end = min(em->end, end);
1550 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1551 		sector = (em->block_start + extent_offset) >> 9;
1552 		bdev = em->bdev;
1553 		block_start = em->block_start;
1554 		free_extent_map(em);
1555 		em = NULL;
1556 
1557 		/* we've found a hole, just zero and go on */
1558 		if (block_start == EXTENT_MAP_HOLE) {
1559 			zero_user_page(page, page_offset, iosize, KM_USER0);
1560 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1561 					    GFP_NOFS);
1562 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1563 			cur = cur + iosize;
1564 			page_offset += iosize;
1565 			continue;
1566 		}
1567 		/* the get_extent function already copied into the page */
1568 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1569 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1570 			cur = cur + iosize;
1571 			page_offset += iosize;
1572 			continue;
1573 		}
1574 
1575 		ret = 0;
1576 		if (tree->ops && tree->ops->readpage_io_hook) {
1577 			ret = tree->ops->readpage_io_hook(page, cur,
1578 							  cur + iosize - 1);
1579 		}
1580 		if (!ret) {
1581 			ret = submit_extent_page(READ, tree, page,
1582 						 sector, iosize, page_offset,
1583 						 bdev, end_bio_extent_readpage);
1584 		}
1585 		if (ret)
1586 			SetPageError(page);
1587 		cur = cur + iosize;
1588 		page_offset += iosize;
1589 		nr++;
1590 	}
1591 	if (!nr) {
1592 		if (!PageError(page))
1593 			SetPageUptodate(page);
1594 		unlock_page(page);
1595 	}
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(extent_read_full_page);
1599 
1600 /*
1601  * the writepage semantics are similar to regular writepage.  extent
1602  * records are inserted to lock ranges in the tree, and as dirty areas
1603  * are found, they are marked writeback.  Then the lock bits are removed
1604  * and the end_io handler clears the writeback ranges
1605  */
1606 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1607 			  get_extent_t *get_extent,
1608 			  struct writeback_control *wbc)
1609 {
1610 	struct inode *inode = page->mapping->host;
1611 	u64 start = page->index << PAGE_CACHE_SHIFT;
1612 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1613 	u64 end;
1614 	u64 cur = start;
1615 	u64 extent_offset;
1616 	u64 last_byte = i_size_read(inode);
1617 	u64 block_start;
1618 	sector_t sector;
1619 	struct extent_map *em;
1620 	struct block_device *bdev;
1621 	int ret;
1622 	int nr = 0;
1623 	size_t page_offset = 0;
1624 	size_t iosize;
1625 	size_t blocksize;
1626 	loff_t i_size = i_size_read(inode);
1627 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1628 	u64 nr_delalloc;
1629 	u64 delalloc_end;
1630 
1631 	WARN_ON(!PageLocked(page));
1632 	if (page->index > end_index) {
1633 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1634 		unlock_page(page);
1635 		return 0;
1636 	}
1637 
1638 	if (page->index == end_index) {
1639 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1640 		zero_user_page(page, offset,
1641 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1642 	}
1643 
1644 	set_page_extent_mapped(page);
1645 
1646 	lock_extent(tree, start, page_end, GFP_NOFS);
1647 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1648 					       &delalloc_end,
1649 					       128 * 1024 * 1024);
1650 	if (nr_delalloc) {
1651 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1652 		if (delalloc_end >= page_end + 1) {
1653 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1654 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1655 					 1, 0, GFP_NOFS);
1656 		}
1657 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1658 				 0, 0, GFP_NOFS);
1659 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1660 			printk("found delalloc bits after clear extent_bit\n");
1661 		}
1662 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1663 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1664 	}
1665 
1666 	end = page_end;
1667 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1668 		printk("found delalloc bits after lock_extent\n");
1669 	}
1670 
1671 	if (last_byte <= start) {
1672 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1673 		goto done;
1674 	}
1675 
1676 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1677 	blocksize = inode->i_sb->s_blocksize;
1678 
1679 	while (cur <= end) {
1680 		if (cur >= last_byte) {
1681 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1682 			break;
1683 		}
1684 		em = get_extent(inode, page, page_offset, cur, end, 0);
1685 		if (IS_ERR(em) || !em) {
1686 			SetPageError(page);
1687 			break;
1688 		}
1689 
1690 		extent_offset = cur - em->start;
1691 		BUG_ON(em->end < cur);
1692 		BUG_ON(end < cur);
1693 		iosize = min(em->end - cur, end - cur) + 1;
1694 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1695 		sector = (em->block_start + extent_offset) >> 9;
1696 		bdev = em->bdev;
1697 		block_start = em->block_start;
1698 		free_extent_map(em);
1699 		em = NULL;
1700 
1701 		if (block_start == EXTENT_MAP_HOLE ||
1702 		    block_start == EXTENT_MAP_INLINE) {
1703 			clear_extent_dirty(tree, cur,
1704 					   cur + iosize - 1, GFP_NOFS);
1705 			cur = cur + iosize;
1706 			page_offset += iosize;
1707 			continue;
1708 		}
1709 
1710 		/* leave this out until we have a page_mkwrite call */
1711 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1712 				   EXTENT_DIRTY, 0)) {
1713 			cur = cur + iosize;
1714 			page_offset += iosize;
1715 			continue;
1716 		}
1717 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1718 		if (tree->ops && tree->ops->writepage_io_hook) {
1719 			ret = tree->ops->writepage_io_hook(page, cur,
1720 						cur + iosize - 1);
1721 		} else {
1722 			ret = 0;
1723 		}
1724 		if (ret)
1725 			SetPageError(page);
1726 		else {
1727 			set_range_writeback(tree, cur, cur + iosize - 1);
1728 			ret = submit_extent_page(WRITE, tree, page, sector,
1729 						 iosize, page_offset, bdev,
1730 						 end_bio_extent_writepage);
1731 			if (ret)
1732 				SetPageError(page);
1733 		}
1734 		cur = cur + iosize;
1735 		page_offset += iosize;
1736 		nr++;
1737 	}
1738 done:
1739 	unlock_extent(tree, start, page_end, GFP_NOFS);
1740 	unlock_page(page);
1741 	return 0;
1742 }
1743 EXPORT_SYMBOL(extent_write_full_page);
1744 
1745 /*
1746  * basic invalidatepage code, this waits on any locked or writeback
1747  * ranges corresponding to the page, and then deletes any extent state
1748  * records from the tree
1749  */
1750 int extent_invalidatepage(struct extent_map_tree *tree,
1751 			  struct page *page, unsigned long offset)
1752 {
1753 	u64 start = (page->index << PAGE_CACHE_SHIFT);
1754 	u64 end = start + PAGE_CACHE_SIZE - 1;
1755 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1756 
1757 	start += (offset + blocksize -1) & ~(blocksize - 1);
1758 	if (start > end)
1759 		return 0;
1760 
1761 	lock_extent(tree, start, end, GFP_NOFS);
1762 	wait_on_extent_writeback(tree, start, end);
1763 	clear_extent_bit(tree, start, end,
1764 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1765 			 1, 1, GFP_NOFS);
1766 	return 0;
1767 }
1768 EXPORT_SYMBOL(extent_invalidatepage);
1769 
1770 /*
1771  * simple commit_write call, set_range_dirty is used to mark both
1772  * the pages and the extent records as dirty
1773  */
1774 int extent_commit_write(struct extent_map_tree *tree,
1775 			struct inode *inode, struct page *page,
1776 			unsigned from, unsigned to)
1777 {
1778 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1779 
1780 	set_page_extent_mapped(page);
1781 	set_page_dirty(page);
1782 
1783 	if (pos > inode->i_size) {
1784 		i_size_write(inode, pos);
1785 		mark_inode_dirty(inode);
1786 	}
1787 	return 0;
1788 }
1789 EXPORT_SYMBOL(extent_commit_write);
1790 
1791 int extent_prepare_write(struct extent_map_tree *tree,
1792 			 struct inode *inode, struct page *page,
1793 			 unsigned from, unsigned to, get_extent_t *get_extent)
1794 {
1795 	u64 page_start = page->index << PAGE_CACHE_SHIFT;
1796 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1797 	u64 block_start;
1798 	u64 orig_block_start;
1799 	u64 block_end;
1800 	u64 cur_end;
1801 	struct extent_map *em;
1802 	unsigned blocksize = 1 << inode->i_blkbits;
1803 	size_t page_offset = 0;
1804 	size_t block_off_start;
1805 	size_t block_off_end;
1806 	int err = 0;
1807 	int iocount = 0;
1808 	int ret = 0;
1809 	int isnew;
1810 
1811 	set_page_extent_mapped(page);
1812 
1813 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1814 	block_end = (page_start + to - 1) | (blocksize - 1);
1815 	orig_block_start = block_start;
1816 
1817 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1818 	while(block_start <= block_end) {
1819 		em = get_extent(inode, page, page_offset, block_start,
1820 				block_end, 1);
1821 		if (IS_ERR(em) || !em) {
1822 			goto err;
1823 		}
1824 		cur_end = min(block_end, em->end);
1825 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1826 		block_off_end = block_off_start + blocksize;
1827 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1828 
1829 		if (!PageUptodate(page) && isnew &&
1830 		    (block_off_end > to || block_off_start < from)) {
1831 			void *kaddr;
1832 
1833 			kaddr = kmap_atomic(page, KM_USER0);
1834 			if (block_off_end > to)
1835 				memset(kaddr + to, 0, block_off_end - to);
1836 			if (block_off_start < from)
1837 				memset(kaddr + block_off_start, 0,
1838 				       from - block_off_start);
1839 			flush_dcache_page(page);
1840 			kunmap_atomic(kaddr, KM_USER0);
1841 		}
1842 		if (!isnew && !PageUptodate(page) &&
1843 		    (block_off_end > to || block_off_start < from) &&
1844 		    !test_range_bit(tree, block_start, cur_end,
1845 				    EXTENT_UPTODATE, 1)) {
1846 			u64 sector;
1847 			u64 extent_offset = block_start - em->start;
1848 			size_t iosize;
1849 			sector = (em->block_start + extent_offset) >> 9;
1850 			iosize = (cur_end - block_start + blocksize - 1) &
1851 				~((u64)blocksize - 1);
1852 			/*
1853 			 * we've already got the extent locked, but we
1854 			 * need to split the state such that our end_bio
1855 			 * handler can clear the lock.
1856 			 */
1857 			set_extent_bit(tree, block_start,
1858 				       block_start + iosize - 1,
1859 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1860 			ret = submit_extent_page(READ, tree, page,
1861 					 sector, iosize, page_offset, em->bdev,
1862 					 end_bio_extent_preparewrite);
1863 			iocount++;
1864 			block_start = block_start + iosize;
1865 		} else {
1866 			set_extent_uptodate(tree, block_start, cur_end,
1867 					    GFP_NOFS);
1868 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1869 			block_start = cur_end + 1;
1870 		}
1871 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1872 		free_extent_map(em);
1873 	}
1874 	if (iocount) {
1875 		wait_extent_bit(tree, orig_block_start,
1876 				block_end, EXTENT_LOCKED);
1877 	}
1878 	check_page_uptodate(tree, page);
1879 err:
1880 	/* FIXME, zero out newly allocated blocks on error */
1881 	return err;
1882 }
1883 EXPORT_SYMBOL(extent_prepare_write);
1884 
1885 /*
1886  * a helper for releasepage.  As long as there are no locked extents
1887  * in the range corresponding to the page, both state records and extent
1888  * map records are removed
1889  */
1890 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1891 {
1892 	struct extent_map *em;
1893 	u64 start = page->index << PAGE_CACHE_SHIFT;
1894 	u64 end = start + PAGE_CACHE_SIZE - 1;
1895 	u64 orig_start = start;
1896 	int ret = 1;
1897 
1898 	while (start <= end) {
1899 		em = lookup_extent_mapping(tree, start, end);
1900 		if (!em || IS_ERR(em))
1901 			break;
1902 		if (!test_range_bit(tree, em->start, em->end,
1903 				    EXTENT_LOCKED, 0)) {
1904 			remove_extent_mapping(tree, em);
1905 			/* once for the rb tree */
1906 			free_extent_map(em);
1907 		}
1908 		start = em->end + 1;
1909 		/* once for us */
1910 		free_extent_map(em);
1911 	}
1912 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1913 		ret = 0;
1914 	else
1915 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1916 				 1, 1, GFP_NOFS);
1917 	return ret;
1918 }
1919 EXPORT_SYMBOL(try_release_extent_mapping);
1920 
1921 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1922 		get_extent_t *get_extent)
1923 {
1924 	struct inode *inode = mapping->host;
1925 	u64 start = iblock << inode->i_blkbits;
1926 	u64 end = start + (1 << inode->i_blkbits) - 1;
1927 	sector_t sector = 0;
1928 	struct extent_map *em;
1929 
1930 	em = get_extent(inode, NULL, 0, start, end, 0);
1931 	if (!em || IS_ERR(em))
1932 		return 0;
1933 
1934 	if (em->block_start == EXTENT_MAP_INLINE ||
1935 	    em->block_start == EXTENT_MAP_HOLE)
1936 		goto out;
1937 
1938 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
1939 out:
1940 	free_extent_map(em);
1941 	return sector;
1942 }
1943 
1944 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
1945 {
1946 	if (list_empty(&eb->lru)) {
1947 		extent_buffer_get(eb);
1948 		list_add(&eb->lru, &tree->buffer_lru);
1949 		tree->lru_size++;
1950 		if (tree->lru_size >= BUFFER_LRU_MAX) {
1951 			struct extent_buffer *rm;
1952 			rm = list_entry(tree->buffer_lru.prev,
1953 					struct extent_buffer, lru);
1954 			tree->lru_size--;
1955 			list_del(&rm->lru);
1956 			free_extent_buffer(rm);
1957 		}
1958 	} else
1959 		list_move(&eb->lru, &tree->buffer_lru);
1960 	return 0;
1961 }
1962 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
1963 				      u64 start, unsigned long len)
1964 {
1965 	struct list_head *lru = &tree->buffer_lru;
1966 	struct list_head *cur = lru->next;
1967 	struct extent_buffer *eb;
1968 
1969 	if (list_empty(lru))
1970 		return NULL;
1971 
1972 	do {
1973 		eb = list_entry(cur, struct extent_buffer, lru);
1974 		if (eb->start == start && eb->len == len) {
1975 			extent_buffer_get(eb);
1976 			return eb;
1977 		}
1978 		cur = cur->next;
1979 	} while (cur != lru);
1980 	return NULL;
1981 }
1982 
1983 static inline unsigned long num_extent_pages(u64 start, u64 len)
1984 {
1985 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
1986 		(start >> PAGE_CACHE_SHIFT);
1987 }
1988 
1989 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
1990 					      unsigned long i)
1991 {
1992 	struct page *p;
1993 	struct address_space *mapping;
1994 
1995 	if (i == 0)
1996 		return eb->first_page;
1997 	i += eb->start >> PAGE_CACHE_SHIFT;
1998 	mapping = eb->first_page->mapping;
1999 	read_lock_irq(&mapping->tree_lock);
2000 	p = radix_tree_lookup(&mapping->page_tree, i);
2001 	read_unlock_irq(&mapping->tree_lock);
2002 	return p;
2003 }
2004 
2005 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2006 						   u64 start,
2007 						   unsigned long len,
2008 						   gfp_t mask)
2009 {
2010 	struct extent_buffer *eb = NULL;
2011 
2012 	spin_lock(&tree->lru_lock);
2013 	eb = find_lru(tree, start, len);
2014 	if (eb) {
2015 		goto lru_add;
2016 	}
2017 	spin_unlock(&tree->lru_lock);
2018 
2019 	if (eb) {
2020 		memset(eb, 0, sizeof(*eb));
2021 	} else {
2022 		eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2023 	}
2024 	INIT_LIST_HEAD(&eb->lru);
2025 	eb->start = start;
2026 	eb->len = len;
2027 	atomic_set(&eb->refs, 1);
2028 
2029 	spin_lock(&tree->lru_lock);
2030 lru_add:
2031 	add_lru(tree, eb);
2032 	spin_unlock(&tree->lru_lock);
2033 	return eb;
2034 }
2035 
2036 static void __free_extent_buffer(struct extent_buffer *eb)
2037 {
2038 	kmem_cache_free(extent_buffer_cache, eb);
2039 }
2040 
2041 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2042 					  u64 start, unsigned long len,
2043 					  struct page *page0,
2044 					  gfp_t mask)
2045 {
2046 	unsigned long num_pages = num_extent_pages(start, len);
2047 	unsigned long i;
2048 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2049 	struct extent_buffer *eb;
2050 	struct page *p;
2051 	struct address_space *mapping = tree->mapping;
2052 	int uptodate = 1;
2053 
2054 	eb = __alloc_extent_buffer(tree, start, len, mask);
2055 	if (!eb || IS_ERR(eb))
2056 		return NULL;
2057 
2058 	if (eb->flags & EXTENT_BUFFER_FILLED)
2059 		return eb;
2060 
2061 	if (page0) {
2062 		eb->first_page = page0;
2063 		i = 1;
2064 		index++;
2065 		page_cache_get(page0);
2066 		mark_page_accessed(page0);
2067 		set_page_extent_mapped(page0);
2068 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2069 				 len << 2);
2070 	} else {
2071 		i = 0;
2072 	}
2073 	for (; i < num_pages; i++, index++) {
2074 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2075 		if (!p) {
2076 			WARN_ON(1);
2077 			/* make sure the free only frees the pages we've
2078 			 * grabbed a reference on
2079 			 */
2080 			eb->len = i << PAGE_CACHE_SHIFT;
2081 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2082 			goto fail;
2083 		}
2084 		set_page_extent_mapped(p);
2085 		mark_page_accessed(p);
2086 		if (i == 0) {
2087 			eb->first_page = p;
2088 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2089 					 len << 2);
2090 		} else {
2091 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2092 		}
2093 		if (!PageUptodate(p))
2094 			uptodate = 0;
2095 		unlock_page(p);
2096 	}
2097 	if (uptodate)
2098 		eb->flags |= EXTENT_UPTODATE;
2099 	eb->flags |= EXTENT_BUFFER_FILLED;
2100 	return eb;
2101 fail:
2102 	free_extent_buffer(eb);
2103 	return NULL;
2104 }
2105 EXPORT_SYMBOL(alloc_extent_buffer);
2106 
2107 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2108 					 u64 start, unsigned long len,
2109 					  gfp_t mask)
2110 {
2111 	unsigned long num_pages = num_extent_pages(start, len);
2112 	unsigned long i; unsigned long index = start >> PAGE_CACHE_SHIFT;
2113 	struct extent_buffer *eb;
2114 	struct page *p;
2115 	struct address_space *mapping = tree->mapping;
2116 	int uptodate = 1;
2117 
2118 	eb = __alloc_extent_buffer(tree, start, len, mask);
2119 	if (!eb || IS_ERR(eb))
2120 		return NULL;
2121 
2122 	if (eb->flags & EXTENT_BUFFER_FILLED)
2123 		return eb;
2124 
2125 	for (i = 0; i < num_pages; i++, index++) {
2126 		p = find_lock_page(mapping, index);
2127 		if (!p) {
2128 			/* make sure the free only frees the pages we've
2129 			 * grabbed a reference on
2130 			 */
2131 			eb->len = i << PAGE_CACHE_SHIFT;
2132 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2133 			goto fail;
2134 		}
2135 		set_page_extent_mapped(p);
2136 		mark_page_accessed(p);
2137 
2138 		if (i == 0) {
2139 			eb->first_page = p;
2140 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2141 					 len << 2);
2142 		} else {
2143 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2144 		}
2145 
2146 		if (!PageUptodate(p))
2147 			uptodate = 0;
2148 		unlock_page(p);
2149 	}
2150 	if (uptodate)
2151 		eb->flags |= EXTENT_UPTODATE;
2152 	eb->flags |= EXTENT_BUFFER_FILLED;
2153 	return eb;
2154 fail:
2155 	free_extent_buffer(eb);
2156 	return NULL;
2157 }
2158 EXPORT_SYMBOL(find_extent_buffer);
2159 
2160 void free_extent_buffer(struct extent_buffer *eb)
2161 {
2162 	unsigned long i;
2163 	unsigned long num_pages;
2164 
2165 	if (!eb)
2166 		return;
2167 
2168 	if (!atomic_dec_and_test(&eb->refs))
2169 		return;
2170 
2171 	num_pages = num_extent_pages(eb->start, eb->len);
2172 
2173 	for (i = 0; i < num_pages; i++) {
2174 		page_cache_release(extent_buffer_page(eb, i));
2175 	}
2176 	__free_extent_buffer(eb);
2177 }
2178 EXPORT_SYMBOL(free_extent_buffer);
2179 
2180 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2181 			      struct extent_buffer *eb)
2182 {
2183 	int set;
2184 	unsigned long i;
2185 	unsigned long num_pages;
2186 	struct page *page;
2187 
2188 	u64 start = eb->start;
2189 	u64 end = start + eb->len - 1;
2190 
2191 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2192 	num_pages = num_extent_pages(eb->start, eb->len);
2193 
2194 	for (i = 0; i < num_pages; i++) {
2195 		page = extent_buffer_page(eb, i);
2196 		lock_page(page);
2197 		/*
2198 		 * if we're on the last page or the first page and the
2199 		 * block isn't aligned on a page boundary, do extra checks
2200 		 * to make sure we don't clean page that is partially dirty
2201 		 */
2202 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2203 		    ((i == num_pages - 1) &&
2204 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2205 			start = page->index << PAGE_CACHE_SHIFT;
2206 			end  = start + PAGE_CACHE_SIZE - 1;
2207 			if (test_range_bit(tree, start, end,
2208 					   EXTENT_DIRTY, 0)) {
2209 				unlock_page(page);
2210 				continue;
2211 			}
2212 		}
2213 		clear_page_dirty_for_io(page);
2214 		unlock_page(page);
2215 	}
2216 	return 0;
2217 }
2218 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2219 
2220 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2221 				    struct extent_buffer *eb)
2222 {
2223 	return wait_on_extent_writeback(tree, eb->start,
2224 					eb->start + eb->len - 1);
2225 }
2226 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2227 
2228 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2229 			     struct extent_buffer *eb)
2230 {
2231 	unsigned long i;
2232 	unsigned long num_pages;
2233 
2234 	num_pages = num_extent_pages(eb->start, eb->len);
2235 	for (i = 0; i < num_pages; i++) {
2236 		struct page *page = extent_buffer_page(eb, i);
2237 		/* writepage may need to do something special for the
2238 		 * first page, we have to make sure page->private is
2239 		 * properly set.  releasepage may drop page->private
2240 		 * on us if the page isn't already dirty.
2241 		 */
2242 		if (i == 0) {
2243 			lock_page(page);
2244 			set_page_private(page,
2245 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2246 					 eb->len << 2);
2247 		}
2248 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2249 		if (i == 0)
2250 			unlock_page(page);
2251 	}
2252 	return set_extent_dirty(tree, eb->start,
2253 				eb->start + eb->len - 1, GFP_NOFS);
2254 }
2255 EXPORT_SYMBOL(set_extent_buffer_dirty);
2256 
2257 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2258 				struct extent_buffer *eb)
2259 {
2260 	unsigned long i;
2261 	struct page *page;
2262 	unsigned long num_pages;
2263 
2264 	num_pages = num_extent_pages(eb->start, eb->len);
2265 
2266 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2267 			    GFP_NOFS);
2268 	for (i = 0; i < num_pages; i++) {
2269 		page = extent_buffer_page(eb, i);
2270 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2271 		    ((i == num_pages - 1) &&
2272 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2273 			check_page_uptodate(tree, page);
2274 			continue;
2275 		}
2276 		SetPageUptodate(page);
2277 	}
2278 	return 0;
2279 }
2280 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2281 
2282 int extent_buffer_uptodate(struct extent_map_tree *tree,
2283 			     struct extent_buffer *eb)
2284 {
2285 	if (eb->flags & EXTENT_UPTODATE)
2286 		return 1;
2287 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2288 			   EXTENT_UPTODATE, 1);
2289 }
2290 EXPORT_SYMBOL(extent_buffer_uptodate);
2291 
2292 int read_extent_buffer_pages(struct extent_map_tree *tree,
2293 			     struct extent_buffer *eb,
2294 			     u64 start,
2295 			     int wait)
2296 {
2297 	unsigned long i;
2298 	unsigned long start_i;
2299 	struct page *page;
2300 	int err;
2301 	int ret = 0;
2302 	unsigned long num_pages;
2303 
2304 	if (eb->flags & EXTENT_UPTODATE)
2305 		return 0;
2306 
2307 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2308 			   EXTENT_UPTODATE, 1)) {
2309 		return 0;
2310 	}
2311 	if (start) {
2312 		WARN_ON(start < eb->start);
2313 		start_i = (start >> PAGE_CACHE_SHIFT) -
2314 			(eb->start >> PAGE_CACHE_SHIFT);
2315 	} else {
2316 		start_i = 0;
2317 	}
2318 
2319 	num_pages = num_extent_pages(eb->start, eb->len);
2320 	for (i = start_i; i < num_pages; i++) {
2321 		page = extent_buffer_page(eb, i);
2322 		if (PageUptodate(page)) {
2323 			continue;
2324 		}
2325 		if (!wait) {
2326 			if (TestSetPageLocked(page)) {
2327 				continue;
2328 			}
2329 		} else {
2330 			lock_page(page);
2331 		}
2332 		if (!PageUptodate(page)) {
2333 			err = page->mapping->a_ops->readpage(NULL, page);
2334 			if (err) {
2335 				ret = err;
2336 			}
2337 		} else {
2338 			unlock_page(page);
2339 		}
2340 	}
2341 
2342 	if (ret || !wait) {
2343 		return ret;
2344 	}
2345 
2346 	for (i = start_i; i < num_pages; i++) {
2347 		page = extent_buffer_page(eb, i);
2348 		wait_on_page_locked(page);
2349 		if (!PageUptodate(page)) {
2350 			ret = -EIO;
2351 		}
2352 	}
2353 	if (!ret)
2354 		eb->flags |= EXTENT_UPTODATE;
2355 	return ret;
2356 }
2357 EXPORT_SYMBOL(read_extent_buffer_pages);
2358 
2359 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2360 			unsigned long start,
2361 			unsigned long len)
2362 {
2363 	size_t cur;
2364 	size_t offset;
2365 	struct page *page;
2366 	char *kaddr;
2367 	char *dst = (char *)dstv;
2368 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2369 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2370 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2371 
2372 	WARN_ON(start > eb->len);
2373 	WARN_ON(start + len > eb->start + eb->len);
2374 
2375 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2376 
2377 	while(len > 0) {
2378 		page = extent_buffer_page(eb, i);
2379 		if (!PageUptodate(page)) {
2380 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2381 			WARN_ON(1);
2382 		}
2383 		WARN_ON(!PageUptodate(page));
2384 
2385 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2386 		kaddr = kmap_atomic(page, KM_USER1);
2387 		memcpy(dst, kaddr + offset, cur);
2388 		kunmap_atomic(kaddr, KM_USER1);
2389 
2390 		dst += cur;
2391 		len -= cur;
2392 		offset = 0;
2393 		i++;
2394 	}
2395 }
2396 EXPORT_SYMBOL(read_extent_buffer);
2397 
2398 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2399 			       unsigned long min_len, char **token, char **map,
2400 			       unsigned long *map_start,
2401 			       unsigned long *map_len, int km)
2402 {
2403 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2404 	char *kaddr;
2405 	struct page *p;
2406 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2407 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2408 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2409 		PAGE_CACHE_SHIFT;
2410 
2411 	if (i != end_i)
2412 		return -EINVAL;
2413 
2414 	if (i == 0) {
2415 		offset = start_offset;
2416 		*map_start = 0;
2417 	} else {
2418 		offset = 0;
2419 		*map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2420 	}
2421 	if (start + min_len > eb->len) {
2422 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2423 		WARN_ON(1);
2424 	}
2425 
2426 	p = extent_buffer_page(eb, i);
2427 	WARN_ON(!PageUptodate(p));
2428 	kaddr = kmap_atomic(p, km);
2429 	*token = kaddr;
2430 	*map = kaddr + offset;
2431 	*map_len = PAGE_CACHE_SIZE - offset;
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL(map_private_extent_buffer);
2435 
2436 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2437 		      unsigned long min_len,
2438 		      char **token, char **map,
2439 		      unsigned long *map_start,
2440 		      unsigned long *map_len, int km)
2441 {
2442 	int err;
2443 	int save = 0;
2444 	if (eb->map_token) {
2445 		unmap_extent_buffer(eb, eb->map_token, km);
2446 		eb->map_token = NULL;
2447 		save = 1;
2448 	}
2449 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2450 				       map_start, map_len, km);
2451 	if (!err && save) {
2452 		eb->map_token = *token;
2453 		eb->kaddr = *map;
2454 		eb->map_start = *map_start;
2455 		eb->map_len = *map_len;
2456 	}
2457 	return err;
2458 }
2459 EXPORT_SYMBOL(map_extent_buffer);
2460 
2461 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2462 {
2463 	kunmap_atomic(token, km);
2464 }
2465 EXPORT_SYMBOL(unmap_extent_buffer);
2466 
2467 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2468 			  unsigned long start,
2469 			  unsigned long len)
2470 {
2471 	size_t cur;
2472 	size_t offset;
2473 	struct page *page;
2474 	char *kaddr;
2475 	char *ptr = (char *)ptrv;
2476 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2477 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2478 	int ret = 0;
2479 
2480 	WARN_ON(start > eb->len);
2481 	WARN_ON(start + len > eb->start + eb->len);
2482 
2483 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2484 
2485 	while(len > 0) {
2486 		page = extent_buffer_page(eb, i);
2487 		WARN_ON(!PageUptodate(page));
2488 
2489 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2490 
2491 		kaddr = kmap_atomic(page, KM_USER0);
2492 		ret = memcmp(ptr, kaddr + offset, cur);
2493 		kunmap_atomic(kaddr, KM_USER0);
2494 		if (ret)
2495 			break;
2496 
2497 		ptr += cur;
2498 		len -= cur;
2499 		offset = 0;
2500 		i++;
2501 	}
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL(memcmp_extent_buffer);
2505 
2506 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2507 			 unsigned long start, unsigned long len)
2508 {
2509 	size_t cur;
2510 	size_t offset;
2511 	struct page *page;
2512 	char *kaddr;
2513 	char *src = (char *)srcv;
2514 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2515 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2516 
2517 	WARN_ON(start > eb->len);
2518 	WARN_ON(start + len > eb->start + eb->len);
2519 
2520 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2521 
2522 	while(len > 0) {
2523 		page = extent_buffer_page(eb, i);
2524 		WARN_ON(!PageUptodate(page));
2525 
2526 		cur = min(len, PAGE_CACHE_SIZE - offset);
2527 		kaddr = kmap_atomic(page, KM_USER1);
2528 		memcpy(kaddr + offset, src, cur);
2529 		kunmap_atomic(kaddr, KM_USER1);
2530 
2531 		src += cur;
2532 		len -= cur;
2533 		offset = 0;
2534 		i++;
2535 	}
2536 }
2537 EXPORT_SYMBOL(write_extent_buffer);
2538 
2539 void memset_extent_buffer(struct extent_buffer *eb, char c,
2540 			  unsigned long start, unsigned long len)
2541 {
2542 	size_t cur;
2543 	size_t offset;
2544 	struct page *page;
2545 	char *kaddr;
2546 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2547 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2548 
2549 	WARN_ON(start > eb->len);
2550 	WARN_ON(start + len > eb->start + eb->len);
2551 
2552 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2553 
2554 	while(len > 0) {
2555 		page = extent_buffer_page(eb, i);
2556 		WARN_ON(!PageUptodate(page));
2557 
2558 		cur = min(len, PAGE_CACHE_SIZE - offset);
2559 		kaddr = kmap_atomic(page, KM_USER0);
2560 		memset(kaddr + offset, c, cur);
2561 		kunmap_atomic(kaddr, KM_USER0);
2562 
2563 		len -= cur;
2564 		offset = 0;
2565 		i++;
2566 	}
2567 }
2568 EXPORT_SYMBOL(memset_extent_buffer);
2569 
2570 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2571 			unsigned long dst_offset, unsigned long src_offset,
2572 			unsigned long len)
2573 {
2574 	u64 dst_len = dst->len;
2575 	size_t cur;
2576 	size_t offset;
2577 	struct page *page;
2578 	char *kaddr;
2579 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2580 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2581 
2582 	WARN_ON(src->len != dst_len);
2583 
2584 	offset = (start_offset + dst_offset) &
2585 		((unsigned long)PAGE_CACHE_SIZE - 1);
2586 
2587 	while(len > 0) {
2588 		page = extent_buffer_page(dst, i);
2589 		WARN_ON(!PageUptodate(page));
2590 
2591 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2592 
2593 		kaddr = kmap_atomic(page, KM_USER0);
2594 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2595 		kunmap_atomic(kaddr, KM_USER0);
2596 
2597 		src_offset += cur;
2598 		len -= cur;
2599 		offset = 0;
2600 		i++;
2601 	}
2602 }
2603 EXPORT_SYMBOL(copy_extent_buffer);
2604 
2605 static void move_pages(struct page *dst_page, struct page *src_page,
2606 		       unsigned long dst_off, unsigned long src_off,
2607 		       unsigned long len)
2608 {
2609 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2610 	if (dst_page == src_page) {
2611 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2612 	} else {
2613 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2614 		char *p = dst_kaddr + dst_off + len;
2615 		char *s = src_kaddr + src_off + len;
2616 
2617 		while (len--)
2618 			*--p = *--s;
2619 
2620 		kunmap_atomic(src_kaddr, KM_USER1);
2621 	}
2622 	kunmap_atomic(dst_kaddr, KM_USER0);
2623 }
2624 
2625 static void copy_pages(struct page *dst_page, struct page *src_page,
2626 		       unsigned long dst_off, unsigned long src_off,
2627 		       unsigned long len)
2628 {
2629 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2630 	char *src_kaddr;
2631 
2632 	if (dst_page != src_page)
2633 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2634 	else
2635 		src_kaddr = dst_kaddr;
2636 
2637 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2638 	kunmap_atomic(dst_kaddr, KM_USER0);
2639 	if (dst_page != src_page)
2640 		kunmap_atomic(src_kaddr, KM_USER1);
2641 }
2642 
2643 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2644 			   unsigned long src_offset, unsigned long len)
2645 {
2646 	size_t cur;
2647 	size_t dst_off_in_page;
2648 	size_t src_off_in_page;
2649 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2650 	unsigned long dst_i;
2651 	unsigned long src_i;
2652 
2653 	if (src_offset + len > dst->len) {
2654 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2655 		       src_offset, len, dst->len);
2656 		BUG_ON(1);
2657 	}
2658 	if (dst_offset + len > dst->len) {
2659 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2660 		       dst_offset, len, dst->len);
2661 		BUG_ON(1);
2662 	}
2663 
2664 	while(len > 0) {
2665 		dst_off_in_page = (start_offset + dst_offset) &
2666 			((unsigned long)PAGE_CACHE_SIZE - 1);
2667 		src_off_in_page = (start_offset + src_offset) &
2668 			((unsigned long)PAGE_CACHE_SIZE - 1);
2669 
2670 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2671 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2672 
2673 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2674 					       src_off_in_page));
2675 		cur = min_t(unsigned long, cur,
2676 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2677 
2678 		copy_pages(extent_buffer_page(dst, dst_i),
2679 			   extent_buffer_page(dst, src_i),
2680 			   dst_off_in_page, src_off_in_page, cur);
2681 
2682 		src_offset += cur;
2683 		dst_offset += cur;
2684 		len -= cur;
2685 	}
2686 }
2687 EXPORT_SYMBOL(memcpy_extent_buffer);
2688 
2689 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2690 			   unsigned long src_offset, unsigned long len)
2691 {
2692 	size_t cur;
2693 	size_t dst_off_in_page;
2694 	size_t src_off_in_page;
2695 	unsigned long dst_end = dst_offset + len - 1;
2696 	unsigned long src_end = src_offset + len - 1;
2697 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2698 	unsigned long dst_i;
2699 	unsigned long src_i;
2700 
2701 	if (src_offset + len > dst->len) {
2702 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2703 		       src_offset, len, dst->len);
2704 		BUG_ON(1);
2705 	}
2706 	if (dst_offset + len > dst->len) {
2707 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2708 		       dst_offset, len, dst->len);
2709 		BUG_ON(1);
2710 	}
2711 	if (dst_offset < src_offset) {
2712 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2713 		return;
2714 	}
2715 	while(len > 0) {
2716 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2717 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2718 
2719 		dst_off_in_page = (start_offset + dst_end) &
2720 			((unsigned long)PAGE_CACHE_SIZE - 1);
2721 		src_off_in_page = (start_offset + src_end) &
2722 			((unsigned long)PAGE_CACHE_SIZE - 1);
2723 
2724 		cur = min_t(unsigned long, len, src_off_in_page + 1);
2725 		cur = min(cur, dst_off_in_page + 1);
2726 		move_pages(extent_buffer_page(dst, dst_i),
2727 			   extent_buffer_page(dst, src_i),
2728 			   dst_off_in_page - cur + 1,
2729 			   src_off_in_page - cur + 1, cur);
2730 
2731 		dst_end -= cur;
2732 		src_end -= cur;
2733 		len -= cur;
2734 	}
2735 }
2736 EXPORT_SYMBOL(memmove_extent_buffer);
2737