xref: /openbmc/linux/fs/btrfs/extent_map.c (revision b293f02e)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include "extent_map.h"
15 
16 /* temporary define until extent_map moves out of btrfs */
17 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
18 				       unsigned long extra_flags,
19 				       void (*ctor)(void *, struct kmem_cache *,
20 						    unsigned long));
21 
22 static struct kmem_cache *extent_map_cache;
23 static struct kmem_cache *extent_state_cache;
24 static struct kmem_cache *extent_buffer_cache;
25 
26 static LIST_HEAD(buffers);
27 static LIST_HEAD(states);
28 
29 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
30 #define BUFFER_LRU_MAX 64
31 
32 struct tree_entry {
33 	u64 start;
34 	u64 end;
35 	int in_tree;
36 	struct rb_node rb_node;
37 };
38 
39 struct extent_page_data {
40 	struct bio *bio;
41 	struct extent_map_tree *tree;
42 	get_extent_t *get_extent;
43 };
44 
45 void __init extent_map_init(void)
46 {
47 	extent_map_cache = btrfs_cache_create("extent_map",
48 					    sizeof(struct extent_map), 0,
49 					    NULL);
50 	extent_state_cache = btrfs_cache_create("extent_state",
51 					    sizeof(struct extent_state), 0,
52 					    NULL);
53 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
54 					    sizeof(struct extent_buffer), 0,
55 					    NULL);
56 }
57 
58 void __exit extent_map_exit(void)
59 {
60 	struct extent_state *state;
61 
62 	while (!list_empty(&states)) {
63 		state = list_entry(states.next, struct extent_state, list);
64 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
65 		list_del(&state->list);
66 		kmem_cache_free(extent_state_cache, state);
67 
68 	}
69 
70 	if (extent_map_cache)
71 		kmem_cache_destroy(extent_map_cache);
72 	if (extent_state_cache)
73 		kmem_cache_destroy(extent_state_cache);
74 	if (extent_buffer_cache)
75 		kmem_cache_destroy(extent_buffer_cache);
76 }
77 
78 void extent_map_tree_init(struct extent_map_tree *tree,
79 			  struct address_space *mapping, gfp_t mask)
80 {
81 	tree->map.rb_node = NULL;
82 	tree->state.rb_node = NULL;
83 	tree->ops = NULL;
84 	rwlock_init(&tree->lock);
85 	spin_lock_init(&tree->lru_lock);
86 	tree->mapping = mapping;
87 	INIT_LIST_HEAD(&tree->buffer_lru);
88 	tree->lru_size = 0;
89 }
90 EXPORT_SYMBOL(extent_map_tree_init);
91 
92 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
93 {
94 	struct extent_buffer *eb;
95 	while(!list_empty(&tree->buffer_lru)) {
96 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
97 				lru);
98 		list_del(&eb->lru);
99 		free_extent_buffer(eb);
100 	}
101 }
102 EXPORT_SYMBOL(extent_map_tree_empty_lru);
103 
104 struct extent_map *alloc_extent_map(gfp_t mask)
105 {
106 	struct extent_map *em;
107 	em = kmem_cache_alloc(extent_map_cache, mask);
108 	if (!em || IS_ERR(em))
109 		return em;
110 	em->in_tree = 0;
111 	atomic_set(&em->refs, 1);
112 	return em;
113 }
114 EXPORT_SYMBOL(alloc_extent_map);
115 
116 void free_extent_map(struct extent_map *em)
117 {
118 	if (!em)
119 		return;
120 	if (atomic_dec_and_test(&em->refs)) {
121 		WARN_ON(em->in_tree);
122 		kmem_cache_free(extent_map_cache, em);
123 	}
124 }
125 EXPORT_SYMBOL(free_extent_map);
126 
127 
128 struct extent_state *alloc_extent_state(gfp_t mask)
129 {
130 	struct extent_state *state;
131 	unsigned long flags;
132 
133 	state = kmem_cache_alloc(extent_state_cache, mask);
134 	if (!state || IS_ERR(state))
135 		return state;
136 	state->state = 0;
137 	state->in_tree = 0;
138 	state->private = 0;
139 
140 	spin_lock_irqsave(&state_lock, flags);
141 	list_add(&state->list, &states);
142 	spin_unlock_irqrestore(&state_lock, flags);
143 
144 	atomic_set(&state->refs, 1);
145 	init_waitqueue_head(&state->wq);
146 	return state;
147 }
148 EXPORT_SYMBOL(alloc_extent_state);
149 
150 void free_extent_state(struct extent_state *state)
151 {
152 	unsigned long flags;
153 	if (!state)
154 		return;
155 	if (atomic_dec_and_test(&state->refs)) {
156 		WARN_ON(state->in_tree);
157 		spin_lock_irqsave(&state_lock, flags);
158 		list_del(&state->list);
159 		spin_unlock_irqrestore(&state_lock, flags);
160 		kmem_cache_free(extent_state_cache, state);
161 	}
162 }
163 EXPORT_SYMBOL(free_extent_state);
164 
165 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
166 				   struct rb_node *node)
167 {
168 	struct rb_node ** p = &root->rb_node;
169 	struct rb_node * parent = NULL;
170 	struct tree_entry *entry;
171 
172 	while(*p) {
173 		parent = *p;
174 		entry = rb_entry(parent, struct tree_entry, rb_node);
175 
176 		if (offset < entry->start)
177 			p = &(*p)->rb_left;
178 		else if (offset > entry->end)
179 			p = &(*p)->rb_right;
180 		else
181 			return parent;
182 	}
183 
184 	entry = rb_entry(node, struct tree_entry, rb_node);
185 	entry->in_tree = 1;
186 	rb_link_node(node, parent, p);
187 	rb_insert_color(node, root);
188 	return NULL;
189 }
190 
191 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
192 				   struct rb_node **prev_ret)
193 {
194 	struct rb_node * n = root->rb_node;
195 	struct rb_node *prev = NULL;
196 	struct tree_entry *entry;
197 	struct tree_entry *prev_entry = NULL;
198 
199 	while(n) {
200 		entry = rb_entry(n, struct tree_entry, rb_node);
201 		prev = n;
202 		prev_entry = entry;
203 
204 		if (offset < entry->start)
205 			n = n->rb_left;
206 		else if (offset > entry->end)
207 			n = n->rb_right;
208 		else
209 			return n;
210 	}
211 	if (!prev_ret)
212 		return NULL;
213 	while(prev && offset > prev_entry->end) {
214 		prev = rb_next(prev);
215 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
216 	}
217 	*prev_ret = prev;
218 	return NULL;
219 }
220 
221 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
222 {
223 	struct rb_node *prev;
224 	struct rb_node *ret;
225 	ret = __tree_search(root, offset, &prev);
226 	if (!ret)
227 		return prev;
228 	return ret;
229 }
230 
231 static int tree_delete(struct rb_root *root, u64 offset)
232 {
233 	struct rb_node *node;
234 	struct tree_entry *entry;
235 
236 	node = __tree_search(root, offset, NULL);
237 	if (!node)
238 		return -ENOENT;
239 	entry = rb_entry(node, struct tree_entry, rb_node);
240 	entry->in_tree = 0;
241 	rb_erase(node, root);
242 	return 0;
243 }
244 
245 /*
246  * add_extent_mapping tries a simple backward merge with existing
247  * mappings.  The extent_map struct passed in will be inserted into
248  * the tree directly (no copies made, just a reference taken).
249  */
250 int add_extent_mapping(struct extent_map_tree *tree,
251 		       struct extent_map *em)
252 {
253 	int ret = 0;
254 	struct extent_map *prev = NULL;
255 	struct rb_node *rb;
256 
257 	write_lock_irq(&tree->lock);
258 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
259 	if (rb) {
260 		prev = rb_entry(rb, struct extent_map, rb_node);
261 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
262 		ret = -EEXIST;
263 		goto out;
264 	}
265 	atomic_inc(&em->refs);
266 	if (em->start != 0) {
267 		rb = rb_prev(&em->rb_node);
268 		if (rb)
269 			prev = rb_entry(rb, struct extent_map, rb_node);
270 		if (prev && prev->end + 1 == em->start &&
271 		    ((em->block_start == EXTENT_MAP_HOLE &&
272 		      prev->block_start == EXTENT_MAP_HOLE) ||
273 		     (em->block_start == EXTENT_MAP_INLINE &&
274 		      prev->block_start == EXTENT_MAP_INLINE) ||
275 		     (em->block_start == EXTENT_MAP_DELALLOC &&
276 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
277 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
278 		      em->block_start == prev->block_end + 1))) {
279 			em->start = prev->start;
280 			em->block_start = prev->block_start;
281 			rb_erase(&prev->rb_node, &tree->map);
282 			prev->in_tree = 0;
283 			free_extent_map(prev);
284 		}
285 	 }
286 out:
287 	write_unlock_irq(&tree->lock);
288 	return ret;
289 }
290 EXPORT_SYMBOL(add_extent_mapping);
291 
292 /*
293  * lookup_extent_mapping returns the first extent_map struct in the
294  * tree that intersects the [start, end] (inclusive) range.  There may
295  * be additional objects in the tree that intersect, so check the object
296  * returned carefully to make sure you don't need additional lookups.
297  */
298 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
299 					 u64 start, u64 end)
300 {
301 	struct extent_map *em;
302 	struct rb_node *rb_node;
303 
304 	read_lock_irq(&tree->lock);
305 	rb_node = tree_search(&tree->map, start);
306 	if (!rb_node) {
307 		em = NULL;
308 		goto out;
309 	}
310 	if (IS_ERR(rb_node)) {
311 		em = ERR_PTR(PTR_ERR(rb_node));
312 		goto out;
313 	}
314 	em = rb_entry(rb_node, struct extent_map, rb_node);
315 	if (em->end < start || em->start > end) {
316 		em = NULL;
317 		goto out;
318 	}
319 	atomic_inc(&em->refs);
320 out:
321 	read_unlock_irq(&tree->lock);
322 	return em;
323 }
324 EXPORT_SYMBOL(lookup_extent_mapping);
325 
326 /*
327  * removes an extent_map struct from the tree.  No reference counts are
328  * dropped, and no checks are done to  see if the range is in use
329  */
330 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
331 {
332 	int ret;
333 
334 	write_lock_irq(&tree->lock);
335 	ret = tree_delete(&tree->map, em->end);
336 	write_unlock_irq(&tree->lock);
337 	return ret;
338 }
339 EXPORT_SYMBOL(remove_extent_mapping);
340 
341 /*
342  * utility function to look for merge candidates inside a given range.
343  * Any extents with matching state are merged together into a single
344  * extent in the tree.  Extents with EXTENT_IO in their state field
345  * are not merged because the end_io handlers need to be able to do
346  * operations on them without sleeping (or doing allocations/splits).
347  *
348  * This should be called with the tree lock held.
349  */
350 static int merge_state(struct extent_map_tree *tree,
351 		       struct extent_state *state)
352 {
353 	struct extent_state *other;
354 	struct rb_node *other_node;
355 
356 	if (state->state & EXTENT_IOBITS)
357 		return 0;
358 
359 	other_node = rb_prev(&state->rb_node);
360 	if (other_node) {
361 		other = rb_entry(other_node, struct extent_state, rb_node);
362 		if (other->end == state->start - 1 &&
363 		    other->state == state->state) {
364 			state->start = other->start;
365 			other->in_tree = 0;
366 			rb_erase(&other->rb_node, &tree->state);
367 			free_extent_state(other);
368 		}
369 	}
370 	other_node = rb_next(&state->rb_node);
371 	if (other_node) {
372 		other = rb_entry(other_node, struct extent_state, rb_node);
373 		if (other->start == state->end + 1 &&
374 		    other->state == state->state) {
375 			other->start = state->start;
376 			state->in_tree = 0;
377 			rb_erase(&state->rb_node, &tree->state);
378 			free_extent_state(state);
379 		}
380 	}
381 	return 0;
382 }
383 
384 /*
385  * insert an extent_state struct into the tree.  'bits' are set on the
386  * struct before it is inserted.
387  *
388  * This may return -EEXIST if the extent is already there, in which case the
389  * state struct is freed.
390  *
391  * The tree lock is not taken internally.  This is a utility function and
392  * probably isn't what you want to call (see set/clear_extent_bit).
393  */
394 static int insert_state(struct extent_map_tree *tree,
395 			struct extent_state *state, u64 start, u64 end,
396 			int bits)
397 {
398 	struct rb_node *node;
399 
400 	if (end < start) {
401 		printk("end < start %Lu %Lu\n", end, start);
402 		WARN_ON(1);
403 	}
404 	state->state |= bits;
405 	state->start = start;
406 	state->end = end;
407 	node = tree_insert(&tree->state, end, &state->rb_node);
408 	if (node) {
409 		struct extent_state *found;
410 		found = rb_entry(node, struct extent_state, rb_node);
411 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
412 		free_extent_state(state);
413 		return -EEXIST;
414 	}
415 	merge_state(tree, state);
416 	return 0;
417 }
418 
419 /*
420  * split a given extent state struct in two, inserting the preallocated
421  * struct 'prealloc' as the newly created second half.  'split' indicates an
422  * offset inside 'orig' where it should be split.
423  *
424  * Before calling,
425  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
426  * are two extent state structs in the tree:
427  * prealloc: [orig->start, split - 1]
428  * orig: [ split, orig->end ]
429  *
430  * The tree locks are not taken by this function. They need to be held
431  * by the caller.
432  */
433 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
434 		       struct extent_state *prealloc, u64 split)
435 {
436 	struct rb_node *node;
437 	prealloc->start = orig->start;
438 	prealloc->end = split - 1;
439 	prealloc->state = orig->state;
440 	orig->start = split;
441 
442 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
443 	if (node) {
444 		struct extent_state *found;
445 		found = rb_entry(node, struct extent_state, rb_node);
446 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
447 		free_extent_state(prealloc);
448 		return -EEXIST;
449 	}
450 	return 0;
451 }
452 
453 /*
454  * utility function to clear some bits in an extent state struct.
455  * it will optionally wake up any one waiting on this state (wake == 1), or
456  * forcibly remove the state from the tree (delete == 1).
457  *
458  * If no bits are set on the state struct after clearing things, the
459  * struct is freed and removed from the tree
460  */
461 static int clear_state_bit(struct extent_map_tree *tree,
462 			    struct extent_state *state, int bits, int wake,
463 			    int delete)
464 {
465 	int ret = state->state & bits;
466 	state->state &= ~bits;
467 	if (wake)
468 		wake_up(&state->wq);
469 	if (delete || state->state == 0) {
470 		if (state->in_tree) {
471 			rb_erase(&state->rb_node, &tree->state);
472 			state->in_tree = 0;
473 			free_extent_state(state);
474 		} else {
475 			WARN_ON(1);
476 		}
477 	} else {
478 		merge_state(tree, state);
479 	}
480 	return ret;
481 }
482 
483 /*
484  * clear some bits on a range in the tree.  This may require splitting
485  * or inserting elements in the tree, so the gfp mask is used to
486  * indicate which allocations or sleeping are allowed.
487  *
488  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
489  * the given range from the tree regardless of state (ie for truncate).
490  *
491  * the range [start, end] is inclusive.
492  *
493  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
494  * bits were already set, or zero if none of the bits were already set.
495  */
496 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
497 		     int bits, int wake, int delete, gfp_t mask)
498 {
499 	struct extent_state *state;
500 	struct extent_state *prealloc = NULL;
501 	struct rb_node *node;
502 	unsigned long flags;
503 	int err;
504 	int set = 0;
505 
506 again:
507 	if (!prealloc && (mask & __GFP_WAIT)) {
508 		prealloc = alloc_extent_state(mask);
509 		if (!prealloc)
510 			return -ENOMEM;
511 	}
512 
513 	write_lock_irqsave(&tree->lock, flags);
514 	/*
515 	 * this search will find the extents that end after
516 	 * our range starts
517 	 */
518 	node = tree_search(&tree->state, start);
519 	if (!node)
520 		goto out;
521 	state = rb_entry(node, struct extent_state, rb_node);
522 	if (state->start > end)
523 		goto out;
524 	WARN_ON(state->end < start);
525 
526 	/*
527 	 *     | ---- desired range ---- |
528 	 *  | state | or
529 	 *  | ------------- state -------------- |
530 	 *
531 	 * We need to split the extent we found, and may flip
532 	 * bits on second half.
533 	 *
534 	 * If the extent we found extends past our range, we
535 	 * just split and search again.  It'll get split again
536 	 * the next time though.
537 	 *
538 	 * If the extent we found is inside our range, we clear
539 	 * the desired bit on it.
540 	 */
541 
542 	if (state->start < start) {
543 		err = split_state(tree, state, prealloc, start);
544 		BUG_ON(err == -EEXIST);
545 		prealloc = NULL;
546 		if (err)
547 			goto out;
548 		if (state->end <= end) {
549 			start = state->end + 1;
550 			set |= clear_state_bit(tree, state, bits,
551 					wake, delete);
552 		} else {
553 			start = state->start;
554 		}
555 		goto search_again;
556 	}
557 	/*
558 	 * | ---- desired range ---- |
559 	 *                        | state |
560 	 * We need to split the extent, and clear the bit
561 	 * on the first half
562 	 */
563 	if (state->start <= end && state->end > end) {
564 		err = split_state(tree, state, prealloc, end + 1);
565 		BUG_ON(err == -EEXIST);
566 
567 		if (wake)
568 			wake_up(&state->wq);
569 		set |= clear_state_bit(tree, prealloc, bits,
570 				       wake, delete);
571 		prealloc = NULL;
572 		goto out;
573 	}
574 
575 	start = state->end + 1;
576 	set |= clear_state_bit(tree, state, bits, wake, delete);
577 	goto search_again;
578 
579 out:
580 	write_unlock_irqrestore(&tree->lock, flags);
581 	if (prealloc)
582 		free_extent_state(prealloc);
583 
584 	return set;
585 
586 search_again:
587 	if (start > end)
588 		goto out;
589 	write_unlock_irqrestore(&tree->lock, flags);
590 	if (mask & __GFP_WAIT)
591 		cond_resched();
592 	goto again;
593 }
594 EXPORT_SYMBOL(clear_extent_bit);
595 
596 static int wait_on_state(struct extent_map_tree *tree,
597 			 struct extent_state *state)
598 {
599 	DEFINE_WAIT(wait);
600 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
601 	read_unlock_irq(&tree->lock);
602 	schedule();
603 	read_lock_irq(&tree->lock);
604 	finish_wait(&state->wq, &wait);
605 	return 0;
606 }
607 
608 /*
609  * waits for one or more bits to clear on a range in the state tree.
610  * The range [start, end] is inclusive.
611  * The tree lock is taken by this function
612  */
613 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
614 {
615 	struct extent_state *state;
616 	struct rb_node *node;
617 
618 	read_lock_irq(&tree->lock);
619 again:
620 	while (1) {
621 		/*
622 		 * this search will find all the extents that end after
623 		 * our range starts
624 		 */
625 		node = tree_search(&tree->state, start);
626 		if (!node)
627 			break;
628 
629 		state = rb_entry(node, struct extent_state, rb_node);
630 
631 		if (state->start > end)
632 			goto out;
633 
634 		if (state->state & bits) {
635 			start = state->start;
636 			atomic_inc(&state->refs);
637 			wait_on_state(tree, state);
638 			free_extent_state(state);
639 			goto again;
640 		}
641 		start = state->end + 1;
642 
643 		if (start > end)
644 			break;
645 
646 		if (need_resched()) {
647 			read_unlock_irq(&tree->lock);
648 			cond_resched();
649 			read_lock_irq(&tree->lock);
650 		}
651 	}
652 out:
653 	read_unlock_irq(&tree->lock);
654 	return 0;
655 }
656 EXPORT_SYMBOL(wait_extent_bit);
657 
658 /*
659  * set some bits on a range in the tree.  This may require allocations
660  * or sleeping, so the gfp mask is used to indicate what is allowed.
661  *
662  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
663  * range already has the desired bits set.  The start of the existing
664  * range is returned in failed_start in this case.
665  *
666  * [start, end] is inclusive
667  * This takes the tree lock.
668  */
669 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
670 		   int exclusive, u64 *failed_start, gfp_t mask)
671 {
672 	struct extent_state *state;
673 	struct extent_state *prealloc = NULL;
674 	struct rb_node *node;
675 	unsigned long flags;
676 	int err = 0;
677 	int set;
678 	u64 last_start;
679 	u64 last_end;
680 again:
681 	if (!prealloc && (mask & __GFP_WAIT)) {
682 		prealloc = alloc_extent_state(mask);
683 		if (!prealloc)
684 			return -ENOMEM;
685 	}
686 
687 	write_lock_irqsave(&tree->lock, flags);
688 	/*
689 	 * this search will find all the extents that end after
690 	 * our range starts.
691 	 */
692 	node = tree_search(&tree->state, start);
693 	if (!node) {
694 		err = insert_state(tree, prealloc, start, end, bits);
695 		prealloc = NULL;
696 		BUG_ON(err == -EEXIST);
697 		goto out;
698 	}
699 
700 	state = rb_entry(node, struct extent_state, rb_node);
701 	last_start = state->start;
702 	last_end = state->end;
703 
704 	/*
705 	 * | ---- desired range ---- |
706 	 * | state |
707 	 *
708 	 * Just lock what we found and keep going
709 	 */
710 	if (state->start == start && state->end <= end) {
711 		set = state->state & bits;
712 		if (set && exclusive) {
713 			*failed_start = state->start;
714 			err = -EEXIST;
715 			goto out;
716 		}
717 		state->state |= bits;
718 		start = state->end + 1;
719 		merge_state(tree, state);
720 		goto search_again;
721 	}
722 
723 	/*
724 	 *     | ---- desired range ---- |
725 	 * | state |
726 	 *   or
727 	 * | ------------- state -------------- |
728 	 *
729 	 * We need to split the extent we found, and may flip bits on
730 	 * second half.
731 	 *
732 	 * If the extent we found extends past our
733 	 * range, we just split and search again.  It'll get split
734 	 * again the next time though.
735 	 *
736 	 * If the extent we found is inside our range, we set the
737 	 * desired bit on it.
738 	 */
739 	if (state->start < start) {
740 		set = state->state & bits;
741 		if (exclusive && set) {
742 			*failed_start = start;
743 			err = -EEXIST;
744 			goto out;
745 		}
746 		err = split_state(tree, state, prealloc, start);
747 		BUG_ON(err == -EEXIST);
748 		prealloc = NULL;
749 		if (err)
750 			goto out;
751 		if (state->end <= end) {
752 			state->state |= bits;
753 			start = state->end + 1;
754 			merge_state(tree, state);
755 		} else {
756 			start = state->start;
757 		}
758 		goto search_again;
759 	}
760 	/*
761 	 * | ---- desired range ---- |
762 	 *     | state | or               | state |
763 	 *
764 	 * There's a hole, we need to insert something in it and
765 	 * ignore the extent we found.
766 	 */
767 	if (state->start > start) {
768 		u64 this_end;
769 		if (end < last_start)
770 			this_end = end;
771 		else
772 			this_end = last_start -1;
773 		err = insert_state(tree, prealloc, start, this_end,
774 				   bits);
775 		prealloc = NULL;
776 		BUG_ON(err == -EEXIST);
777 		if (err)
778 			goto out;
779 		start = this_end + 1;
780 		goto search_again;
781 	}
782 	/*
783 	 * | ---- desired range ---- |
784 	 *                        | state |
785 	 * We need to split the extent, and set the bit
786 	 * on the first half
787 	 */
788 	if (state->start <= end && state->end > end) {
789 		set = state->state & bits;
790 		if (exclusive && set) {
791 			*failed_start = start;
792 			err = -EEXIST;
793 			goto out;
794 		}
795 		err = split_state(tree, state, prealloc, end + 1);
796 		BUG_ON(err == -EEXIST);
797 
798 		prealloc->state |= bits;
799 		merge_state(tree, prealloc);
800 		prealloc = NULL;
801 		goto out;
802 	}
803 
804 	goto search_again;
805 
806 out:
807 	write_unlock_irqrestore(&tree->lock, flags);
808 	if (prealloc)
809 		free_extent_state(prealloc);
810 
811 	return err;
812 
813 search_again:
814 	if (start > end)
815 		goto out;
816 	write_unlock_irqrestore(&tree->lock, flags);
817 	if (mask & __GFP_WAIT)
818 		cond_resched();
819 	goto again;
820 }
821 EXPORT_SYMBOL(set_extent_bit);
822 
823 /* wrappers around set/clear extent bit */
824 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
825 		     gfp_t mask)
826 {
827 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
828 			      mask);
829 }
830 EXPORT_SYMBOL(set_extent_dirty);
831 
832 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
833 		    int bits, gfp_t mask)
834 {
835 	return set_extent_bit(tree, start, end, bits, 0, NULL,
836 			      mask);
837 }
838 EXPORT_SYMBOL(set_extent_bits);
839 
840 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
841 		      int bits, gfp_t mask)
842 {
843 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
844 }
845 EXPORT_SYMBOL(clear_extent_bits);
846 
847 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
848 		     gfp_t mask)
849 {
850 	return set_extent_bit(tree, start, end,
851 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
852 			      mask);
853 }
854 EXPORT_SYMBOL(set_extent_delalloc);
855 
856 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
857 		       gfp_t mask)
858 {
859 	return clear_extent_bit(tree, start, end,
860 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
861 }
862 EXPORT_SYMBOL(clear_extent_dirty);
863 
864 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
865 		     gfp_t mask)
866 {
867 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
868 			      mask);
869 }
870 EXPORT_SYMBOL(set_extent_new);
871 
872 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
873 		       gfp_t mask)
874 {
875 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
876 }
877 EXPORT_SYMBOL(clear_extent_new);
878 
879 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
880 			gfp_t mask)
881 {
882 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
883 			      mask);
884 }
885 EXPORT_SYMBOL(set_extent_uptodate);
886 
887 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
888 			  gfp_t mask)
889 {
890 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
891 }
892 EXPORT_SYMBOL(clear_extent_uptodate);
893 
894 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
895 			 gfp_t mask)
896 {
897 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
898 			      0, NULL, mask);
899 }
900 EXPORT_SYMBOL(set_extent_writeback);
901 
902 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
903 			   gfp_t mask)
904 {
905 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
906 }
907 EXPORT_SYMBOL(clear_extent_writeback);
908 
909 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
910 {
911 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
912 }
913 EXPORT_SYMBOL(wait_on_extent_writeback);
914 
915 /*
916  * locks a range in ascending order, waiting for any locked regions
917  * it hits on the way.  [start,end] are inclusive, and this will sleep.
918  */
919 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
920 {
921 	int err;
922 	u64 failed_start;
923 	while (1) {
924 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
925 				     &failed_start, mask);
926 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
927 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
928 			start = failed_start;
929 		} else {
930 			break;
931 		}
932 		WARN_ON(start > end);
933 	}
934 	return err;
935 }
936 EXPORT_SYMBOL(lock_extent);
937 
938 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
939 		  gfp_t mask)
940 {
941 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
942 }
943 EXPORT_SYMBOL(unlock_extent);
944 
945 /*
946  * helper function to set pages and extents in the tree dirty
947  */
948 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
949 {
950 	unsigned long index = start >> PAGE_CACHE_SHIFT;
951 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
952 	struct page *page;
953 
954 	while (index <= end_index) {
955 		page = find_get_page(tree->mapping, index);
956 		BUG_ON(!page);
957 		__set_page_dirty_nobuffers(page);
958 		page_cache_release(page);
959 		index++;
960 	}
961 	set_extent_dirty(tree, start, end, GFP_NOFS);
962 	return 0;
963 }
964 EXPORT_SYMBOL(set_range_dirty);
965 
966 /*
967  * helper function to set both pages and extents in the tree writeback
968  */
969 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
970 {
971 	unsigned long index = start >> PAGE_CACHE_SHIFT;
972 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
973 	struct page *page;
974 
975 	while (index <= end_index) {
976 		page = find_get_page(tree->mapping, index);
977 		BUG_ON(!page);
978 		set_page_writeback(page);
979 		page_cache_release(page);
980 		index++;
981 	}
982 	set_extent_writeback(tree, start, end, GFP_NOFS);
983 	return 0;
984 }
985 EXPORT_SYMBOL(set_range_writeback);
986 
987 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
988 			  u64 *start_ret, u64 *end_ret, int bits)
989 {
990 	struct rb_node *node;
991 	struct extent_state *state;
992 	int ret = 1;
993 
994 	read_lock_irq(&tree->lock);
995 	/*
996 	 * this search will find all the extents that end after
997 	 * our range starts.
998 	 */
999 	node = tree_search(&tree->state, start);
1000 	if (!node || IS_ERR(node)) {
1001 		goto out;
1002 	}
1003 
1004 	while(1) {
1005 		state = rb_entry(node, struct extent_state, rb_node);
1006 		if (state->end >= start && (state->state & bits)) {
1007 			*start_ret = state->start;
1008 			*end_ret = state->end;
1009 			ret = 0;
1010 			break;
1011 		}
1012 		node = rb_next(node);
1013 		if (!node)
1014 			break;
1015 	}
1016 out:
1017 	read_unlock_irq(&tree->lock);
1018 	return ret;
1019 }
1020 EXPORT_SYMBOL(find_first_extent_bit);
1021 
1022 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1023 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1024 {
1025 	struct rb_node *node;
1026 	struct extent_state *state;
1027 	u64 cur_start = start;
1028 	u64 found = 0;
1029 	u64 total_bytes = 0;
1030 
1031 	write_lock_irq(&tree->lock);
1032 	/*
1033 	 * this search will find all the extents that end after
1034 	 * our range starts.
1035 	 */
1036 search_again:
1037 	node = tree_search(&tree->state, cur_start);
1038 	if (!node || IS_ERR(node)) {
1039 		goto out;
1040 	}
1041 
1042 	while(1) {
1043 		state = rb_entry(node, struct extent_state, rb_node);
1044 		if (state->start != cur_start) {
1045 			goto out;
1046 		}
1047 		if (!(state->state & EXTENT_DELALLOC)) {
1048 			goto out;
1049 		}
1050 		if (state->start >= lock_start) {
1051 			if (state->state & EXTENT_LOCKED) {
1052 				DEFINE_WAIT(wait);
1053 				atomic_inc(&state->refs);
1054 				prepare_to_wait(&state->wq, &wait,
1055 						TASK_UNINTERRUPTIBLE);
1056 				write_unlock_irq(&tree->lock);
1057 				schedule();
1058 				write_lock_irq(&tree->lock);
1059 				finish_wait(&state->wq, &wait);
1060 				free_extent_state(state);
1061 				goto search_again;
1062 			}
1063 			state->state |= EXTENT_LOCKED;
1064 		}
1065 		found++;
1066 		*end = state->end;
1067 		cur_start = state->end + 1;
1068 		node = rb_next(node);
1069 		if (!node)
1070 			break;
1071 		total_bytes += state->end - state->start + 1;
1072 		if (total_bytes >= max_bytes)
1073 			break;
1074 	}
1075 out:
1076 	write_unlock_irq(&tree->lock);
1077 	return found;
1078 }
1079 
1080 /*
1081  * helper function to lock both pages and extents in the tree.
1082  * pages must be locked first.
1083  */
1084 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1085 {
1086 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1087 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1088 	struct page *page;
1089 	int err;
1090 
1091 	while (index <= end_index) {
1092 		page = grab_cache_page(tree->mapping, index);
1093 		if (!page) {
1094 			err = -ENOMEM;
1095 			goto failed;
1096 		}
1097 		if (IS_ERR(page)) {
1098 			err = PTR_ERR(page);
1099 			goto failed;
1100 		}
1101 		index++;
1102 	}
1103 	lock_extent(tree, start, end, GFP_NOFS);
1104 	return 0;
1105 
1106 failed:
1107 	/*
1108 	 * we failed above in getting the page at 'index', so we undo here
1109 	 * up to but not including the page at 'index'
1110 	 */
1111 	end_index = index;
1112 	index = start >> PAGE_CACHE_SHIFT;
1113 	while (index < end_index) {
1114 		page = find_get_page(tree->mapping, index);
1115 		unlock_page(page);
1116 		page_cache_release(page);
1117 		index++;
1118 	}
1119 	return err;
1120 }
1121 EXPORT_SYMBOL(lock_range);
1122 
1123 /*
1124  * helper function to unlock both pages and extents in the tree.
1125  */
1126 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1127 {
1128 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1129 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1130 	struct page *page;
1131 
1132 	while (index <= end_index) {
1133 		page = find_get_page(tree->mapping, index);
1134 		unlock_page(page);
1135 		page_cache_release(page);
1136 		index++;
1137 	}
1138 	unlock_extent(tree, start, end, GFP_NOFS);
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL(unlock_range);
1142 
1143 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1144 {
1145 	struct rb_node *node;
1146 	struct extent_state *state;
1147 	int ret = 0;
1148 
1149 	write_lock_irq(&tree->lock);
1150 	/*
1151 	 * this search will find all the extents that end after
1152 	 * our range starts.
1153 	 */
1154 	node = tree_search(&tree->state, start);
1155 	if (!node || IS_ERR(node)) {
1156 		ret = -ENOENT;
1157 		goto out;
1158 	}
1159 	state = rb_entry(node, struct extent_state, rb_node);
1160 	if (state->start != start) {
1161 		ret = -ENOENT;
1162 		goto out;
1163 	}
1164 	state->private = private;
1165 out:
1166 	write_unlock_irq(&tree->lock);
1167 	return ret;
1168 }
1169 
1170 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1171 {
1172 	struct rb_node *node;
1173 	struct extent_state *state;
1174 	int ret = 0;
1175 
1176 	read_lock_irq(&tree->lock);
1177 	/*
1178 	 * this search will find all the extents that end after
1179 	 * our range starts.
1180 	 */
1181 	node = tree_search(&tree->state, start);
1182 	if (!node || IS_ERR(node)) {
1183 		ret = -ENOENT;
1184 		goto out;
1185 	}
1186 	state = rb_entry(node, struct extent_state, rb_node);
1187 	if (state->start != start) {
1188 		ret = -ENOENT;
1189 		goto out;
1190 	}
1191 	*private = state->private;
1192 out:
1193 	read_unlock_irq(&tree->lock);
1194 	return ret;
1195 }
1196 
1197 /*
1198  * searches a range in the state tree for a given mask.
1199  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1200  * has the bits set.  Otherwise, 1 is returned if any bit in the
1201  * range is found set.
1202  */
1203 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1204 		   int bits, int filled)
1205 {
1206 	struct extent_state *state = NULL;
1207 	struct rb_node *node;
1208 	int bitset = 0;
1209 
1210 	read_lock_irq(&tree->lock);
1211 	node = tree_search(&tree->state, start);
1212 	while (node && start <= end) {
1213 		state = rb_entry(node, struct extent_state, rb_node);
1214 		if (state->start > end)
1215 			break;
1216 
1217 		if (filled && state->start > start) {
1218 			bitset = 0;
1219 			break;
1220 		}
1221 		if (state->state & bits) {
1222 			bitset = 1;
1223 			if (!filled)
1224 				break;
1225 		} else if (filled) {
1226 			bitset = 0;
1227 			break;
1228 		}
1229 		start = state->end + 1;
1230 		if (start > end)
1231 			break;
1232 		node = rb_next(node);
1233 	}
1234 	read_unlock_irq(&tree->lock);
1235 	return bitset;
1236 }
1237 EXPORT_SYMBOL(test_range_bit);
1238 
1239 /*
1240  * helper function to set a given page up to date if all the
1241  * extents in the tree for that page are up to date
1242  */
1243 static int check_page_uptodate(struct extent_map_tree *tree,
1244 			       struct page *page)
1245 {
1246 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1247 	u64 end = start + PAGE_CACHE_SIZE - 1;
1248 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1249 		SetPageUptodate(page);
1250 	return 0;
1251 }
1252 
1253 /*
1254  * helper function to unlock a page if all the extents in the tree
1255  * for that page are unlocked
1256  */
1257 static int check_page_locked(struct extent_map_tree *tree,
1258 			     struct page *page)
1259 {
1260 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1261 	u64 end = start + PAGE_CACHE_SIZE - 1;
1262 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1263 		unlock_page(page);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * helper function to end page writeback if all the extents
1269  * in the tree for that page are done with writeback
1270  */
1271 static int check_page_writeback(struct extent_map_tree *tree,
1272 			     struct page *page)
1273 {
1274 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1275 	u64 end = start + PAGE_CACHE_SIZE - 1;
1276 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1277 		end_page_writeback(page);
1278 	return 0;
1279 }
1280 
1281 /* lots and lots of room for performance fixes in the end_bio funcs */
1282 
1283 /*
1284  * after a writepage IO is done, we need to:
1285  * clear the uptodate bits on error
1286  * clear the writeback bits in the extent tree for this IO
1287  * end_page_writeback if the page has no more pending IO
1288  *
1289  * Scheduling is not allowed, so the extent state tree is expected
1290  * to have one and only one object corresponding to this IO.
1291  */
1292 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1293 static void end_bio_extent_writepage(struct bio *bio, int err)
1294 #else
1295 static int end_bio_extent_writepage(struct bio *bio,
1296 				   unsigned int bytes_done, int err)
1297 #endif
1298 {
1299 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1300 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1301 	struct extent_map_tree *tree = bio->bi_private;
1302 	u64 start;
1303 	u64 end;
1304 	int whole_page;
1305 
1306 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1307 	if (bio->bi_size)
1308 		return 1;
1309 #endif
1310 
1311 	do {
1312 		struct page *page = bvec->bv_page;
1313 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1314 			 bvec->bv_offset;
1315 		end = start + bvec->bv_len - 1;
1316 
1317 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1318 			whole_page = 1;
1319 		else
1320 			whole_page = 0;
1321 
1322 		if (--bvec >= bio->bi_io_vec)
1323 			prefetchw(&bvec->bv_page->flags);
1324 
1325 		if (!uptodate) {
1326 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1327 			ClearPageUptodate(page);
1328 			SetPageError(page);
1329 		}
1330 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1331 
1332 		if (whole_page)
1333 			end_page_writeback(page);
1334 		else
1335 			check_page_writeback(tree, page);
1336 		if (tree->ops && tree->ops->writepage_end_io_hook)
1337 			tree->ops->writepage_end_io_hook(page, start, end);
1338 	} while (bvec >= bio->bi_io_vec);
1339 
1340 	bio_put(bio);
1341 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1342 	return 0;
1343 #endif
1344 }
1345 
1346 /*
1347  * after a readpage IO is done, we need to:
1348  * clear the uptodate bits on error
1349  * set the uptodate bits if things worked
1350  * set the page up to date if all extents in the tree are uptodate
1351  * clear the lock bit in the extent tree
1352  * unlock the page if there are no other extents locked for it
1353  *
1354  * Scheduling is not allowed, so the extent state tree is expected
1355  * to have one and only one object corresponding to this IO.
1356  */
1357 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1358 static void end_bio_extent_readpage(struct bio *bio, int err)
1359 #else
1360 static int end_bio_extent_readpage(struct bio *bio,
1361 				   unsigned int bytes_done, int err)
1362 #endif
1363 {
1364 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1365 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1366 	struct extent_map_tree *tree = bio->bi_private;
1367 	u64 start;
1368 	u64 end;
1369 	int whole_page;
1370 	int ret;
1371 
1372 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1373 	if (bio->bi_size)
1374 		return 1;
1375 #endif
1376 
1377 	do {
1378 		struct page *page = bvec->bv_page;
1379 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1380 			bvec->bv_offset;
1381 		end = start + bvec->bv_len - 1;
1382 
1383 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1384 			whole_page = 1;
1385 		else
1386 			whole_page = 0;
1387 
1388 		if (--bvec >= bio->bi_io_vec)
1389 			prefetchw(&bvec->bv_page->flags);
1390 
1391 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1392 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1393 			if (ret)
1394 				uptodate = 0;
1395 		}
1396 		if (uptodate) {
1397 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1398 			if (whole_page)
1399 				SetPageUptodate(page);
1400 			else
1401 				check_page_uptodate(tree, page);
1402 		} else {
1403 			ClearPageUptodate(page);
1404 			SetPageError(page);
1405 		}
1406 
1407 		unlock_extent(tree, start, end, GFP_ATOMIC);
1408 
1409 		if (whole_page)
1410 			unlock_page(page);
1411 		else
1412 			check_page_locked(tree, page);
1413 	} while (bvec >= bio->bi_io_vec);
1414 
1415 	bio_put(bio);
1416 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1417 	return 0;
1418 #endif
1419 }
1420 
1421 /*
1422  * IO done from prepare_write is pretty simple, we just unlock
1423  * the structs in the extent tree when done, and set the uptodate bits
1424  * as appropriate.
1425  */
1426 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1427 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1428 #else
1429 static int end_bio_extent_preparewrite(struct bio *bio,
1430 				       unsigned int bytes_done, int err)
1431 #endif
1432 {
1433 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1434 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1435 	struct extent_map_tree *tree = bio->bi_private;
1436 	u64 start;
1437 	u64 end;
1438 
1439 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1440 	if (bio->bi_size)
1441 		return 1;
1442 #endif
1443 
1444 	do {
1445 		struct page *page = bvec->bv_page;
1446 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1447 			bvec->bv_offset;
1448 		end = start + bvec->bv_len - 1;
1449 
1450 		if (--bvec >= bio->bi_io_vec)
1451 			prefetchw(&bvec->bv_page->flags);
1452 
1453 		if (uptodate) {
1454 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1455 		} else {
1456 			ClearPageUptodate(page);
1457 			SetPageError(page);
1458 		}
1459 
1460 		unlock_extent(tree, start, end, GFP_ATOMIC);
1461 
1462 	} while (bvec >= bio->bi_io_vec);
1463 
1464 	bio_put(bio);
1465 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1466 	return 0;
1467 #endif
1468 }
1469 
1470 static struct bio *
1471 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1472 		 gfp_t gfp_flags)
1473 {
1474 	struct bio *bio;
1475 
1476 	bio = bio_alloc(gfp_flags, nr_vecs);
1477 
1478 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1479 		while (!bio && (nr_vecs /= 2))
1480 			bio = bio_alloc(gfp_flags, nr_vecs);
1481 	}
1482 
1483 	if (bio) {
1484 		bio->bi_bdev = bdev;
1485 		bio->bi_sector = first_sector;
1486 	}
1487 	return bio;
1488 }
1489 
1490 static int submit_one_bio(int rw, struct bio *bio)
1491 {
1492 	int ret = 0;
1493 	bio_get(bio);
1494 	submit_bio(rw, bio);
1495 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1496 		ret = -EOPNOTSUPP;
1497 	bio_put(bio);
1498 	return ret;
1499 }
1500 
1501 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1502 			      struct page *page, sector_t sector,
1503 			      size_t size, unsigned long offset,
1504 			      struct block_device *bdev,
1505 			      struct bio **bio_ret,
1506 			      int max_pages,
1507 			      bio_end_io_t end_io_func)
1508 {
1509 	int ret = 0;
1510 	struct bio *bio;
1511 	int nr;
1512 
1513 	if (bio_ret && *bio_ret) {
1514 		bio = *bio_ret;
1515 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1516 		    bio_add_page(bio, page, size, offset) < size) {
1517 			ret = submit_one_bio(rw, bio);
1518 			bio = NULL;
1519 		} else {
1520 			return 0;
1521 		}
1522 	}
1523 	nr = min(max_pages, bio_get_nr_vecs(bdev));
1524 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1525 	if (!bio) {
1526 		printk("failed to allocate bio nr %d\n", nr);
1527 	}
1528 	bio_add_page(bio, page, size, offset);
1529 	bio->bi_end_io = end_io_func;
1530 	bio->bi_private = tree;
1531 	if (bio_ret) {
1532 		*bio_ret = bio;
1533 	} else {
1534 		ret = submit_one_bio(rw, bio);
1535 	}
1536 
1537 	return ret;
1538 }
1539 
1540 void set_page_extent_mapped(struct page *page)
1541 {
1542 	if (!PagePrivate(page)) {
1543 		SetPagePrivate(page);
1544 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1545 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1546 		page_cache_get(page);
1547 	}
1548 }
1549 
1550 /*
1551  * basic readpage implementation.  Locked extent state structs are inserted
1552  * into the tree that are removed when the IO is done (by the end_io
1553  * handlers)
1554  */
1555 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1556 			  get_extent_t *get_extent)
1557 {
1558 	struct inode *inode = page->mapping->host;
1559 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1560 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1561 	u64 end;
1562 	u64 cur = start;
1563 	u64 extent_offset;
1564 	u64 last_byte = i_size_read(inode);
1565 	u64 block_start;
1566 	u64 cur_end;
1567 	sector_t sector;
1568 	struct extent_map *em;
1569 	struct block_device *bdev;
1570 	int ret;
1571 	int nr = 0;
1572 	size_t page_offset = 0;
1573 	size_t iosize;
1574 	size_t blocksize = inode->i_sb->s_blocksize;
1575 
1576 	set_page_extent_mapped(page);
1577 
1578 	end = page_end;
1579 	lock_extent(tree, start, end, GFP_NOFS);
1580 
1581 	while (cur <= end) {
1582 		if (cur >= last_byte) {
1583 			iosize = PAGE_CACHE_SIZE - page_offset;
1584 			zero_user_page(page, page_offset, iosize, KM_USER0);
1585 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1586 					    GFP_NOFS);
1587 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1588 			break;
1589 		}
1590 		em = get_extent(inode, page, page_offset, cur, end, 0);
1591 		if (IS_ERR(em) || !em) {
1592 			SetPageError(page);
1593 			unlock_extent(tree, cur, end, GFP_NOFS);
1594 			break;
1595 		}
1596 
1597 		extent_offset = cur - em->start;
1598 		BUG_ON(em->end < cur);
1599 		BUG_ON(end < cur);
1600 
1601 		iosize = min(em->end - cur, end - cur) + 1;
1602 		cur_end = min(em->end, end);
1603 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1604 		sector = (em->block_start + extent_offset) >> 9;
1605 		bdev = em->bdev;
1606 		block_start = em->block_start;
1607 		free_extent_map(em);
1608 		em = NULL;
1609 
1610 		/* we've found a hole, just zero and go on */
1611 		if (block_start == EXTENT_MAP_HOLE) {
1612 			zero_user_page(page, page_offset, iosize, KM_USER0);
1613 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1614 					    GFP_NOFS);
1615 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1616 			cur = cur + iosize;
1617 			page_offset += iosize;
1618 			continue;
1619 		}
1620 		/* the get_extent function already copied into the page */
1621 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1622 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1623 			cur = cur + iosize;
1624 			page_offset += iosize;
1625 			continue;
1626 		}
1627 
1628 		ret = 0;
1629 		if (tree->ops && tree->ops->readpage_io_hook) {
1630 			ret = tree->ops->readpage_io_hook(page, cur,
1631 							  cur + iosize - 1);
1632 		}
1633 		if (!ret) {
1634 			ret = submit_extent_page(READ, tree, page,
1635 						 sector, iosize, page_offset,
1636 						 bdev, NULL, 1,
1637 						 end_bio_extent_readpage);
1638 		}
1639 		if (ret)
1640 			SetPageError(page);
1641 		cur = cur + iosize;
1642 		page_offset += iosize;
1643 		nr++;
1644 	}
1645 	if (!nr) {
1646 		if (!PageError(page))
1647 			SetPageUptodate(page);
1648 		unlock_page(page);
1649 	}
1650 	return 0;
1651 }
1652 EXPORT_SYMBOL(extent_read_full_page);
1653 
1654 /*
1655  * the writepage semantics are similar to regular writepage.  extent
1656  * records are inserted to lock ranges in the tree, and as dirty areas
1657  * are found, they are marked writeback.  Then the lock bits are removed
1658  * and the end_io handler clears the writeback ranges
1659  */
1660 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1661 			      void *data)
1662 {
1663 	struct inode *inode = page->mapping->host;
1664 	struct extent_page_data *epd = data;
1665 	struct extent_map_tree *tree = epd->tree;
1666 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1667 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1668 	u64 end;
1669 	u64 cur = start;
1670 	u64 extent_offset;
1671 	u64 last_byte = i_size_read(inode);
1672 	u64 block_start;
1673 	u64 iosize;
1674 	sector_t sector;
1675 	struct extent_map *em;
1676 	struct block_device *bdev;
1677 	int ret;
1678 	int nr = 0;
1679 	size_t page_offset = 0;
1680 	size_t blocksize;
1681 	loff_t i_size = i_size_read(inode);
1682 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1683 	u64 nr_delalloc;
1684 	u64 delalloc_end;
1685 
1686 	WARN_ON(!PageLocked(page));
1687 	if (page->index > end_index) {
1688 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1689 		unlock_page(page);
1690 		return 0;
1691 	}
1692 
1693 	if (page->index == end_index) {
1694 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1695 		zero_user_page(page, offset,
1696 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1697 	}
1698 
1699 	set_page_extent_mapped(page);
1700 
1701 	lock_extent(tree, start, page_end, GFP_NOFS);
1702 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1703 					       &delalloc_end,
1704 					       128 * 1024 * 1024);
1705 	if (nr_delalloc) {
1706 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1707 		if (delalloc_end >= page_end + 1) {
1708 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1709 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1710 					 1, 0, GFP_NOFS);
1711 		}
1712 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1713 				 0, 0, GFP_NOFS);
1714 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1715 			printk("found delalloc bits after clear extent_bit\n");
1716 		}
1717 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1718 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1719 	}
1720 
1721 	end = page_end;
1722 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1723 		printk("found delalloc bits after lock_extent\n");
1724 	}
1725 
1726 	if (last_byte <= start) {
1727 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1728 		goto done;
1729 	}
1730 
1731 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1732 	blocksize = inode->i_sb->s_blocksize;
1733 
1734 	while (cur <= end) {
1735 		if (cur >= last_byte) {
1736 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1737 			break;
1738 		}
1739 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1740 		if (IS_ERR(em) || !em) {
1741 			SetPageError(page);
1742 			break;
1743 		}
1744 
1745 		extent_offset = cur - em->start;
1746 		BUG_ON(em->end < cur);
1747 		BUG_ON(end < cur);
1748 		iosize = min(em->end - cur, end - cur) + 1;
1749 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1750 		sector = (em->block_start + extent_offset) >> 9;
1751 		bdev = em->bdev;
1752 		block_start = em->block_start;
1753 		free_extent_map(em);
1754 		em = NULL;
1755 
1756 		if (block_start == EXTENT_MAP_HOLE ||
1757 		    block_start == EXTENT_MAP_INLINE) {
1758 			clear_extent_dirty(tree, cur,
1759 					   cur + iosize - 1, GFP_NOFS);
1760 			cur = cur + iosize;
1761 			page_offset += iosize;
1762 			continue;
1763 		}
1764 
1765 		/* leave this out until we have a page_mkwrite call */
1766 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1767 				   EXTENT_DIRTY, 0)) {
1768 			cur = cur + iosize;
1769 			page_offset += iosize;
1770 			continue;
1771 		}
1772 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1773 		if (tree->ops && tree->ops->writepage_io_hook) {
1774 			ret = tree->ops->writepage_io_hook(page, cur,
1775 						cur + iosize - 1);
1776 		} else {
1777 			ret = 0;
1778 		}
1779 		if (ret)
1780 			SetPageError(page);
1781 		else {
1782 			unsigned long nr = end_index + 1;
1783 			set_range_writeback(tree, cur, cur + iosize - 1);
1784 
1785 			ret = submit_extent_page(WRITE, tree, page, sector,
1786 						 iosize, page_offset, bdev,
1787 						 &epd->bio, nr,
1788 						 end_bio_extent_writepage);
1789 			if (ret)
1790 				SetPageError(page);
1791 		}
1792 		cur = cur + iosize;
1793 		page_offset += iosize;
1794 		nr++;
1795 	}
1796 done:
1797 	unlock_extent(tree, start, page_end, GFP_NOFS);
1798 	unlock_page(page);
1799 	return 0;
1800 }
1801 
1802 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1803 			  get_extent_t *get_extent,
1804 			  struct writeback_control *wbc)
1805 {
1806 	int ret;
1807 	struct extent_page_data epd = {
1808 		.bio = NULL,
1809 		.tree = tree,
1810 		.get_extent = get_extent,
1811 	};
1812 
1813 	ret = __extent_writepage(page, wbc, &epd);
1814 	if (epd.bio)
1815 		submit_one_bio(WRITE, epd.bio);
1816 	return ret;
1817 }
1818 EXPORT_SYMBOL(extent_write_full_page);
1819 
1820 int extent_writepages(struct extent_map_tree *tree,
1821 		      struct address_space *mapping,
1822 		      get_extent_t *get_extent,
1823 		      struct writeback_control *wbc)
1824 {
1825 	int ret;
1826 	struct extent_page_data epd = {
1827 		.bio = NULL,
1828 		.tree = tree,
1829 		.get_extent = get_extent,
1830 	};
1831 
1832 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
1833 	if (epd.bio)
1834 		submit_one_bio(WRITE, epd.bio);
1835 	return ret;
1836 }
1837 EXPORT_SYMBOL(extent_writepages);
1838 
1839 /*
1840  * basic invalidatepage code, this waits on any locked or writeback
1841  * ranges corresponding to the page, and then deletes any extent state
1842  * records from the tree
1843  */
1844 int extent_invalidatepage(struct extent_map_tree *tree,
1845 			  struct page *page, unsigned long offset)
1846 {
1847 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
1848 	u64 end = start + PAGE_CACHE_SIZE - 1;
1849 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1850 
1851 	start += (offset + blocksize -1) & ~(blocksize - 1);
1852 	if (start > end)
1853 		return 0;
1854 
1855 	lock_extent(tree, start, end, GFP_NOFS);
1856 	wait_on_extent_writeback(tree, start, end);
1857 	clear_extent_bit(tree, start, end,
1858 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1859 			 1, 1, GFP_NOFS);
1860 	return 0;
1861 }
1862 EXPORT_SYMBOL(extent_invalidatepage);
1863 
1864 /*
1865  * simple commit_write call, set_range_dirty is used to mark both
1866  * the pages and the extent records as dirty
1867  */
1868 int extent_commit_write(struct extent_map_tree *tree,
1869 			struct inode *inode, struct page *page,
1870 			unsigned from, unsigned to)
1871 {
1872 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1873 
1874 	set_page_extent_mapped(page);
1875 	set_page_dirty(page);
1876 
1877 	if (pos > inode->i_size) {
1878 		i_size_write(inode, pos);
1879 		mark_inode_dirty(inode);
1880 	}
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL(extent_commit_write);
1884 
1885 int extent_prepare_write(struct extent_map_tree *tree,
1886 			 struct inode *inode, struct page *page,
1887 			 unsigned from, unsigned to, get_extent_t *get_extent)
1888 {
1889 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
1890 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1891 	u64 block_start;
1892 	u64 orig_block_start;
1893 	u64 block_end;
1894 	u64 cur_end;
1895 	struct extent_map *em;
1896 	unsigned blocksize = 1 << inode->i_blkbits;
1897 	size_t page_offset = 0;
1898 	size_t block_off_start;
1899 	size_t block_off_end;
1900 	int err = 0;
1901 	int iocount = 0;
1902 	int ret = 0;
1903 	int isnew;
1904 
1905 	set_page_extent_mapped(page);
1906 
1907 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1908 	block_end = (page_start + to - 1) | (blocksize - 1);
1909 	orig_block_start = block_start;
1910 
1911 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1912 	while(block_start <= block_end) {
1913 		em = get_extent(inode, page, page_offset, block_start,
1914 				block_end, 1);
1915 		if (IS_ERR(em) || !em) {
1916 			goto err;
1917 		}
1918 		cur_end = min(block_end, em->end);
1919 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1920 		block_off_end = block_off_start + blocksize;
1921 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1922 
1923 		if (!PageUptodate(page) && isnew &&
1924 		    (block_off_end > to || block_off_start < from)) {
1925 			void *kaddr;
1926 
1927 			kaddr = kmap_atomic(page, KM_USER0);
1928 			if (block_off_end > to)
1929 				memset(kaddr + to, 0, block_off_end - to);
1930 			if (block_off_start < from)
1931 				memset(kaddr + block_off_start, 0,
1932 				       from - block_off_start);
1933 			flush_dcache_page(page);
1934 			kunmap_atomic(kaddr, KM_USER0);
1935 		}
1936 		if (!isnew && !PageUptodate(page) &&
1937 		    (block_off_end > to || block_off_start < from) &&
1938 		    !test_range_bit(tree, block_start, cur_end,
1939 				    EXTENT_UPTODATE, 1)) {
1940 			u64 sector;
1941 			u64 extent_offset = block_start - em->start;
1942 			size_t iosize;
1943 			sector = (em->block_start + extent_offset) >> 9;
1944 			iosize = (cur_end - block_start + blocksize - 1) &
1945 				~((u64)blocksize - 1);
1946 			/*
1947 			 * we've already got the extent locked, but we
1948 			 * need to split the state such that our end_bio
1949 			 * handler can clear the lock.
1950 			 */
1951 			set_extent_bit(tree, block_start,
1952 				       block_start + iosize - 1,
1953 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1954 			ret = submit_extent_page(READ, tree, page,
1955 					 sector, iosize, page_offset, em->bdev,
1956 					 NULL, 1,
1957 					 end_bio_extent_preparewrite);
1958 			iocount++;
1959 			block_start = block_start + iosize;
1960 		} else {
1961 			set_extent_uptodate(tree, block_start, cur_end,
1962 					    GFP_NOFS);
1963 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1964 			block_start = cur_end + 1;
1965 		}
1966 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1967 		free_extent_map(em);
1968 	}
1969 	if (iocount) {
1970 		wait_extent_bit(tree, orig_block_start,
1971 				block_end, EXTENT_LOCKED);
1972 	}
1973 	check_page_uptodate(tree, page);
1974 err:
1975 	/* FIXME, zero out newly allocated blocks on error */
1976 	return err;
1977 }
1978 EXPORT_SYMBOL(extent_prepare_write);
1979 
1980 /*
1981  * a helper for releasepage.  As long as there are no locked extents
1982  * in the range corresponding to the page, both state records and extent
1983  * map records are removed
1984  */
1985 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1986 {
1987 	struct extent_map *em;
1988 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1989 	u64 end = start + PAGE_CACHE_SIZE - 1;
1990 	u64 orig_start = start;
1991 	int ret = 1;
1992 
1993 	while (start <= end) {
1994 		em = lookup_extent_mapping(tree, start, end);
1995 		if (!em || IS_ERR(em))
1996 			break;
1997 		if (!test_range_bit(tree, em->start, em->end,
1998 				    EXTENT_LOCKED, 0)) {
1999 			remove_extent_mapping(tree, em);
2000 			/* once for the rb tree */
2001 			free_extent_map(em);
2002 		}
2003 		start = em->end + 1;
2004 		/* once for us */
2005 		free_extent_map(em);
2006 	}
2007 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2008 		ret = 0;
2009 	else
2010 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2011 				 1, 1, GFP_NOFS);
2012 	return ret;
2013 }
2014 EXPORT_SYMBOL(try_release_extent_mapping);
2015 
2016 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2017 		get_extent_t *get_extent)
2018 {
2019 	struct inode *inode = mapping->host;
2020 	u64 start = iblock << inode->i_blkbits;
2021 	u64 end = start + (1 << inode->i_blkbits) - 1;
2022 	sector_t sector = 0;
2023 	struct extent_map *em;
2024 
2025 	em = get_extent(inode, NULL, 0, start, end, 0);
2026 	if (!em || IS_ERR(em))
2027 		return 0;
2028 
2029 	if (em->block_start == EXTENT_MAP_INLINE ||
2030 	    em->block_start == EXTENT_MAP_HOLE)
2031 		goto out;
2032 
2033 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2034 out:
2035 	free_extent_map(em);
2036 	return sector;
2037 }
2038 
2039 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2040 {
2041 	if (list_empty(&eb->lru)) {
2042 		extent_buffer_get(eb);
2043 		list_add(&eb->lru, &tree->buffer_lru);
2044 		tree->lru_size++;
2045 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2046 			struct extent_buffer *rm;
2047 			rm = list_entry(tree->buffer_lru.prev,
2048 					struct extent_buffer, lru);
2049 			tree->lru_size--;
2050 			list_del(&rm->lru);
2051 			free_extent_buffer(rm);
2052 		}
2053 	} else
2054 		list_move(&eb->lru, &tree->buffer_lru);
2055 	return 0;
2056 }
2057 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2058 				      u64 start, unsigned long len)
2059 {
2060 	struct list_head *lru = &tree->buffer_lru;
2061 	struct list_head *cur = lru->next;
2062 	struct extent_buffer *eb;
2063 
2064 	if (list_empty(lru))
2065 		return NULL;
2066 
2067 	do {
2068 		eb = list_entry(cur, struct extent_buffer, lru);
2069 		if (eb->start == start && eb->len == len) {
2070 			extent_buffer_get(eb);
2071 			return eb;
2072 		}
2073 		cur = cur->next;
2074 	} while (cur != lru);
2075 	return NULL;
2076 }
2077 
2078 static inline unsigned long num_extent_pages(u64 start, u64 len)
2079 {
2080 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2081 		(start >> PAGE_CACHE_SHIFT);
2082 }
2083 
2084 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2085 					      unsigned long i)
2086 {
2087 	struct page *p;
2088 	struct address_space *mapping;
2089 
2090 	if (i == 0)
2091 		return eb->first_page;
2092 	i += eb->start >> PAGE_CACHE_SHIFT;
2093 	mapping = eb->first_page->mapping;
2094 	read_lock_irq(&mapping->tree_lock);
2095 	p = radix_tree_lookup(&mapping->page_tree, i);
2096 	read_unlock_irq(&mapping->tree_lock);
2097 	return p;
2098 }
2099 
2100 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2101 						   u64 start,
2102 						   unsigned long len,
2103 						   gfp_t mask)
2104 {
2105 	struct extent_buffer *eb = NULL;
2106 
2107 	spin_lock(&tree->lru_lock);
2108 	eb = find_lru(tree, start, len);
2109 	if (eb) {
2110 		goto lru_add;
2111 	}
2112 	spin_unlock(&tree->lru_lock);
2113 
2114 	if (eb) {
2115 		memset(eb, 0, sizeof(*eb));
2116 	} else {
2117 		eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2118 	}
2119 	INIT_LIST_HEAD(&eb->lru);
2120 	eb->start = start;
2121 	eb->len = len;
2122 	atomic_set(&eb->refs, 1);
2123 
2124 	spin_lock(&tree->lru_lock);
2125 lru_add:
2126 	add_lru(tree, eb);
2127 	spin_unlock(&tree->lru_lock);
2128 	return eb;
2129 }
2130 
2131 static void __free_extent_buffer(struct extent_buffer *eb)
2132 {
2133 	kmem_cache_free(extent_buffer_cache, eb);
2134 }
2135 
2136 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2137 					  u64 start, unsigned long len,
2138 					  struct page *page0,
2139 					  gfp_t mask)
2140 {
2141 	unsigned long num_pages = num_extent_pages(start, len);
2142 	unsigned long i;
2143 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2144 	struct extent_buffer *eb;
2145 	struct page *p;
2146 	struct address_space *mapping = tree->mapping;
2147 	int uptodate = 1;
2148 
2149 	eb = __alloc_extent_buffer(tree, start, len, mask);
2150 	if (!eb || IS_ERR(eb))
2151 		return NULL;
2152 
2153 	if (eb->flags & EXTENT_BUFFER_FILLED)
2154 		return eb;
2155 
2156 	if (page0) {
2157 		eb->first_page = page0;
2158 		i = 1;
2159 		index++;
2160 		page_cache_get(page0);
2161 		mark_page_accessed(page0);
2162 		set_page_extent_mapped(page0);
2163 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2164 				 len << 2);
2165 	} else {
2166 		i = 0;
2167 	}
2168 	for (; i < num_pages; i++, index++) {
2169 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2170 		if (!p) {
2171 			WARN_ON(1);
2172 			/* make sure the free only frees the pages we've
2173 			 * grabbed a reference on
2174 			 */
2175 			eb->len = i << PAGE_CACHE_SHIFT;
2176 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2177 			goto fail;
2178 		}
2179 		set_page_extent_mapped(p);
2180 		mark_page_accessed(p);
2181 		if (i == 0) {
2182 			eb->first_page = p;
2183 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2184 					 len << 2);
2185 		} else {
2186 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2187 		}
2188 		if (!PageUptodate(p))
2189 			uptodate = 0;
2190 		unlock_page(p);
2191 	}
2192 	if (uptodate)
2193 		eb->flags |= EXTENT_UPTODATE;
2194 	eb->flags |= EXTENT_BUFFER_FILLED;
2195 	return eb;
2196 fail:
2197 	free_extent_buffer(eb);
2198 	return NULL;
2199 }
2200 EXPORT_SYMBOL(alloc_extent_buffer);
2201 
2202 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2203 					 u64 start, unsigned long len,
2204 					  gfp_t mask)
2205 {
2206 	unsigned long num_pages = num_extent_pages(start, len);
2207 	unsigned long i; unsigned long index = start >> PAGE_CACHE_SHIFT;
2208 	struct extent_buffer *eb;
2209 	struct page *p;
2210 	struct address_space *mapping = tree->mapping;
2211 	int uptodate = 1;
2212 
2213 	eb = __alloc_extent_buffer(tree, start, len, mask);
2214 	if (!eb || IS_ERR(eb))
2215 		return NULL;
2216 
2217 	if (eb->flags & EXTENT_BUFFER_FILLED)
2218 		return eb;
2219 
2220 	for (i = 0; i < num_pages; i++, index++) {
2221 		p = find_lock_page(mapping, index);
2222 		if (!p) {
2223 			/* make sure the free only frees the pages we've
2224 			 * grabbed a reference on
2225 			 */
2226 			eb->len = i << PAGE_CACHE_SHIFT;
2227 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
2228 			goto fail;
2229 		}
2230 		set_page_extent_mapped(p);
2231 		mark_page_accessed(p);
2232 
2233 		if (i == 0) {
2234 			eb->first_page = p;
2235 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2236 					 len << 2);
2237 		} else {
2238 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2239 		}
2240 
2241 		if (!PageUptodate(p))
2242 			uptodate = 0;
2243 		unlock_page(p);
2244 	}
2245 	if (uptodate)
2246 		eb->flags |= EXTENT_UPTODATE;
2247 	eb->flags |= EXTENT_BUFFER_FILLED;
2248 	return eb;
2249 fail:
2250 	free_extent_buffer(eb);
2251 	return NULL;
2252 }
2253 EXPORT_SYMBOL(find_extent_buffer);
2254 
2255 void free_extent_buffer(struct extent_buffer *eb)
2256 {
2257 	unsigned long i;
2258 	unsigned long num_pages;
2259 
2260 	if (!eb)
2261 		return;
2262 
2263 	if (!atomic_dec_and_test(&eb->refs))
2264 		return;
2265 
2266 	num_pages = num_extent_pages(eb->start, eb->len);
2267 
2268 	for (i = 0; i < num_pages; i++) {
2269 		page_cache_release(extent_buffer_page(eb, i));
2270 	}
2271 	__free_extent_buffer(eb);
2272 }
2273 EXPORT_SYMBOL(free_extent_buffer);
2274 
2275 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2276 			      struct extent_buffer *eb)
2277 {
2278 	int set;
2279 	unsigned long i;
2280 	unsigned long num_pages;
2281 	struct page *page;
2282 
2283 	u64 start = eb->start;
2284 	u64 end = start + eb->len - 1;
2285 
2286 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2287 	num_pages = num_extent_pages(eb->start, eb->len);
2288 
2289 	for (i = 0; i < num_pages; i++) {
2290 		page = extent_buffer_page(eb, i);
2291 		lock_page(page);
2292 		/*
2293 		 * if we're on the last page or the first page and the
2294 		 * block isn't aligned on a page boundary, do extra checks
2295 		 * to make sure we don't clean page that is partially dirty
2296 		 */
2297 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2298 		    ((i == num_pages - 1) &&
2299 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2300 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2301 			end  = start + PAGE_CACHE_SIZE - 1;
2302 			if (test_range_bit(tree, start, end,
2303 					   EXTENT_DIRTY, 0)) {
2304 				unlock_page(page);
2305 				continue;
2306 			}
2307 		}
2308 		clear_page_dirty_for_io(page);
2309 		unlock_page(page);
2310 	}
2311 	return 0;
2312 }
2313 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2314 
2315 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2316 				    struct extent_buffer *eb)
2317 {
2318 	return wait_on_extent_writeback(tree, eb->start,
2319 					eb->start + eb->len - 1);
2320 }
2321 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2322 
2323 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2324 			     struct extent_buffer *eb)
2325 {
2326 	unsigned long i;
2327 	unsigned long num_pages;
2328 
2329 	num_pages = num_extent_pages(eb->start, eb->len);
2330 	for (i = 0; i < num_pages; i++) {
2331 		struct page *page = extent_buffer_page(eb, i);
2332 		/* writepage may need to do something special for the
2333 		 * first page, we have to make sure page->private is
2334 		 * properly set.  releasepage may drop page->private
2335 		 * on us if the page isn't already dirty.
2336 		 */
2337 		if (i == 0) {
2338 			lock_page(page);
2339 			set_page_private(page,
2340 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2341 					 eb->len << 2);
2342 		}
2343 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2344 		if (i == 0)
2345 			unlock_page(page);
2346 	}
2347 	return set_extent_dirty(tree, eb->start,
2348 				eb->start + eb->len - 1, GFP_NOFS);
2349 }
2350 EXPORT_SYMBOL(set_extent_buffer_dirty);
2351 
2352 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2353 				struct extent_buffer *eb)
2354 {
2355 	unsigned long i;
2356 	struct page *page;
2357 	unsigned long num_pages;
2358 
2359 	num_pages = num_extent_pages(eb->start, eb->len);
2360 
2361 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2362 			    GFP_NOFS);
2363 	for (i = 0; i < num_pages; i++) {
2364 		page = extent_buffer_page(eb, i);
2365 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2366 		    ((i == num_pages - 1) &&
2367 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2368 			check_page_uptodate(tree, page);
2369 			continue;
2370 		}
2371 		SetPageUptodate(page);
2372 	}
2373 	return 0;
2374 }
2375 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2376 
2377 int extent_buffer_uptodate(struct extent_map_tree *tree,
2378 			     struct extent_buffer *eb)
2379 {
2380 	if (eb->flags & EXTENT_UPTODATE)
2381 		return 1;
2382 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2383 			   EXTENT_UPTODATE, 1);
2384 }
2385 EXPORT_SYMBOL(extent_buffer_uptodate);
2386 
2387 int read_extent_buffer_pages(struct extent_map_tree *tree,
2388 			     struct extent_buffer *eb,
2389 			     u64 start,
2390 			     int wait)
2391 {
2392 	unsigned long i;
2393 	unsigned long start_i;
2394 	struct page *page;
2395 	int err;
2396 	int ret = 0;
2397 	unsigned long num_pages;
2398 
2399 	if (eb->flags & EXTENT_UPTODATE)
2400 		return 0;
2401 
2402 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2403 			   EXTENT_UPTODATE, 1)) {
2404 		return 0;
2405 	}
2406 	if (start) {
2407 		WARN_ON(start < eb->start);
2408 		start_i = (start >> PAGE_CACHE_SHIFT) -
2409 			(eb->start >> PAGE_CACHE_SHIFT);
2410 	} else {
2411 		start_i = 0;
2412 	}
2413 
2414 	num_pages = num_extent_pages(eb->start, eb->len);
2415 	for (i = start_i; i < num_pages; i++) {
2416 		page = extent_buffer_page(eb, i);
2417 		if (PageUptodate(page)) {
2418 			continue;
2419 		}
2420 		if (!wait) {
2421 			if (TestSetPageLocked(page)) {
2422 				continue;
2423 			}
2424 		} else {
2425 			lock_page(page);
2426 		}
2427 		if (!PageUptodate(page)) {
2428 			err = page->mapping->a_ops->readpage(NULL, page);
2429 			if (err) {
2430 				ret = err;
2431 			}
2432 		} else {
2433 			unlock_page(page);
2434 		}
2435 	}
2436 
2437 	if (ret || !wait) {
2438 		return ret;
2439 	}
2440 
2441 	for (i = start_i; i < num_pages; i++) {
2442 		page = extent_buffer_page(eb, i);
2443 		wait_on_page_locked(page);
2444 		if (!PageUptodate(page)) {
2445 			ret = -EIO;
2446 		}
2447 	}
2448 	if (!ret)
2449 		eb->flags |= EXTENT_UPTODATE;
2450 	return ret;
2451 }
2452 EXPORT_SYMBOL(read_extent_buffer_pages);
2453 
2454 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2455 			unsigned long start,
2456 			unsigned long len)
2457 {
2458 	size_t cur;
2459 	size_t offset;
2460 	struct page *page;
2461 	char *kaddr;
2462 	char *dst = (char *)dstv;
2463 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2464 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2465 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2466 
2467 	WARN_ON(start > eb->len);
2468 	WARN_ON(start + len > eb->start + eb->len);
2469 
2470 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2471 
2472 	while(len > 0) {
2473 		page = extent_buffer_page(eb, i);
2474 		if (!PageUptodate(page)) {
2475 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2476 			WARN_ON(1);
2477 		}
2478 		WARN_ON(!PageUptodate(page));
2479 
2480 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2481 		kaddr = kmap_atomic(page, KM_USER1);
2482 		memcpy(dst, kaddr + offset, cur);
2483 		kunmap_atomic(kaddr, KM_USER1);
2484 
2485 		dst += cur;
2486 		len -= cur;
2487 		offset = 0;
2488 		i++;
2489 	}
2490 }
2491 EXPORT_SYMBOL(read_extent_buffer);
2492 
2493 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2494 			       unsigned long min_len, char **token, char **map,
2495 			       unsigned long *map_start,
2496 			       unsigned long *map_len, int km)
2497 {
2498 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2499 	char *kaddr;
2500 	struct page *p;
2501 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2502 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2503 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2504 		PAGE_CACHE_SHIFT;
2505 
2506 	if (i != end_i)
2507 		return -EINVAL;
2508 
2509 	if (i == 0) {
2510 		offset = start_offset;
2511 		*map_start = 0;
2512 	} else {
2513 		offset = 0;
2514 		*map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2515 	}
2516 	if (start + min_len > eb->len) {
2517 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2518 		WARN_ON(1);
2519 	}
2520 
2521 	p = extent_buffer_page(eb, i);
2522 	WARN_ON(!PageUptodate(p));
2523 	kaddr = kmap_atomic(p, km);
2524 	*token = kaddr;
2525 	*map = kaddr + offset;
2526 	*map_len = PAGE_CACHE_SIZE - offset;
2527 	return 0;
2528 }
2529 EXPORT_SYMBOL(map_private_extent_buffer);
2530 
2531 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2532 		      unsigned long min_len,
2533 		      char **token, char **map,
2534 		      unsigned long *map_start,
2535 		      unsigned long *map_len, int km)
2536 {
2537 	int err;
2538 	int save = 0;
2539 	if (eb->map_token) {
2540 		unmap_extent_buffer(eb, eb->map_token, km);
2541 		eb->map_token = NULL;
2542 		save = 1;
2543 	}
2544 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2545 				       map_start, map_len, km);
2546 	if (!err && save) {
2547 		eb->map_token = *token;
2548 		eb->kaddr = *map;
2549 		eb->map_start = *map_start;
2550 		eb->map_len = *map_len;
2551 	}
2552 	return err;
2553 }
2554 EXPORT_SYMBOL(map_extent_buffer);
2555 
2556 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2557 {
2558 	kunmap_atomic(token, km);
2559 }
2560 EXPORT_SYMBOL(unmap_extent_buffer);
2561 
2562 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2563 			  unsigned long start,
2564 			  unsigned long len)
2565 {
2566 	size_t cur;
2567 	size_t offset;
2568 	struct page *page;
2569 	char *kaddr;
2570 	char *ptr = (char *)ptrv;
2571 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2572 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2573 	int ret = 0;
2574 
2575 	WARN_ON(start > eb->len);
2576 	WARN_ON(start + len > eb->start + eb->len);
2577 
2578 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2579 
2580 	while(len > 0) {
2581 		page = extent_buffer_page(eb, i);
2582 		WARN_ON(!PageUptodate(page));
2583 
2584 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2585 
2586 		kaddr = kmap_atomic(page, KM_USER0);
2587 		ret = memcmp(ptr, kaddr + offset, cur);
2588 		kunmap_atomic(kaddr, KM_USER0);
2589 		if (ret)
2590 			break;
2591 
2592 		ptr += cur;
2593 		len -= cur;
2594 		offset = 0;
2595 		i++;
2596 	}
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL(memcmp_extent_buffer);
2600 
2601 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2602 			 unsigned long start, unsigned long len)
2603 {
2604 	size_t cur;
2605 	size_t offset;
2606 	struct page *page;
2607 	char *kaddr;
2608 	char *src = (char *)srcv;
2609 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2610 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2611 
2612 	WARN_ON(start > eb->len);
2613 	WARN_ON(start + len > eb->start + eb->len);
2614 
2615 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2616 
2617 	while(len > 0) {
2618 		page = extent_buffer_page(eb, i);
2619 		WARN_ON(!PageUptodate(page));
2620 
2621 		cur = min(len, PAGE_CACHE_SIZE - offset);
2622 		kaddr = kmap_atomic(page, KM_USER1);
2623 		memcpy(kaddr + offset, src, cur);
2624 		kunmap_atomic(kaddr, KM_USER1);
2625 
2626 		src += cur;
2627 		len -= cur;
2628 		offset = 0;
2629 		i++;
2630 	}
2631 }
2632 EXPORT_SYMBOL(write_extent_buffer);
2633 
2634 void memset_extent_buffer(struct extent_buffer *eb, char c,
2635 			  unsigned long start, unsigned long len)
2636 {
2637 	size_t cur;
2638 	size_t offset;
2639 	struct page *page;
2640 	char *kaddr;
2641 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2642 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2643 
2644 	WARN_ON(start > eb->len);
2645 	WARN_ON(start + len > eb->start + eb->len);
2646 
2647 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2648 
2649 	while(len > 0) {
2650 		page = extent_buffer_page(eb, i);
2651 		WARN_ON(!PageUptodate(page));
2652 
2653 		cur = min(len, PAGE_CACHE_SIZE - offset);
2654 		kaddr = kmap_atomic(page, KM_USER0);
2655 		memset(kaddr + offset, c, cur);
2656 		kunmap_atomic(kaddr, KM_USER0);
2657 
2658 		len -= cur;
2659 		offset = 0;
2660 		i++;
2661 	}
2662 }
2663 EXPORT_SYMBOL(memset_extent_buffer);
2664 
2665 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2666 			unsigned long dst_offset, unsigned long src_offset,
2667 			unsigned long len)
2668 {
2669 	u64 dst_len = dst->len;
2670 	size_t cur;
2671 	size_t offset;
2672 	struct page *page;
2673 	char *kaddr;
2674 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2675 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2676 
2677 	WARN_ON(src->len != dst_len);
2678 
2679 	offset = (start_offset + dst_offset) &
2680 		((unsigned long)PAGE_CACHE_SIZE - 1);
2681 
2682 	while(len > 0) {
2683 		page = extent_buffer_page(dst, i);
2684 		WARN_ON(!PageUptodate(page));
2685 
2686 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2687 
2688 		kaddr = kmap_atomic(page, KM_USER0);
2689 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2690 		kunmap_atomic(kaddr, KM_USER0);
2691 
2692 		src_offset += cur;
2693 		len -= cur;
2694 		offset = 0;
2695 		i++;
2696 	}
2697 }
2698 EXPORT_SYMBOL(copy_extent_buffer);
2699 
2700 static void move_pages(struct page *dst_page, struct page *src_page,
2701 		       unsigned long dst_off, unsigned long src_off,
2702 		       unsigned long len)
2703 {
2704 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2705 	if (dst_page == src_page) {
2706 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2707 	} else {
2708 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2709 		char *p = dst_kaddr + dst_off + len;
2710 		char *s = src_kaddr + src_off + len;
2711 
2712 		while (len--)
2713 			*--p = *--s;
2714 
2715 		kunmap_atomic(src_kaddr, KM_USER1);
2716 	}
2717 	kunmap_atomic(dst_kaddr, KM_USER0);
2718 }
2719 
2720 static void copy_pages(struct page *dst_page, struct page *src_page,
2721 		       unsigned long dst_off, unsigned long src_off,
2722 		       unsigned long len)
2723 {
2724 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2725 	char *src_kaddr;
2726 
2727 	if (dst_page != src_page)
2728 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2729 	else
2730 		src_kaddr = dst_kaddr;
2731 
2732 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2733 	kunmap_atomic(dst_kaddr, KM_USER0);
2734 	if (dst_page != src_page)
2735 		kunmap_atomic(src_kaddr, KM_USER1);
2736 }
2737 
2738 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2739 			   unsigned long src_offset, unsigned long len)
2740 {
2741 	size_t cur;
2742 	size_t dst_off_in_page;
2743 	size_t src_off_in_page;
2744 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2745 	unsigned long dst_i;
2746 	unsigned long src_i;
2747 
2748 	if (src_offset + len > dst->len) {
2749 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2750 		       src_offset, len, dst->len);
2751 		BUG_ON(1);
2752 	}
2753 	if (dst_offset + len > dst->len) {
2754 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2755 		       dst_offset, len, dst->len);
2756 		BUG_ON(1);
2757 	}
2758 
2759 	while(len > 0) {
2760 		dst_off_in_page = (start_offset + dst_offset) &
2761 			((unsigned long)PAGE_CACHE_SIZE - 1);
2762 		src_off_in_page = (start_offset + src_offset) &
2763 			((unsigned long)PAGE_CACHE_SIZE - 1);
2764 
2765 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2766 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2767 
2768 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2769 					       src_off_in_page));
2770 		cur = min_t(unsigned long, cur,
2771 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2772 
2773 		copy_pages(extent_buffer_page(dst, dst_i),
2774 			   extent_buffer_page(dst, src_i),
2775 			   dst_off_in_page, src_off_in_page, cur);
2776 
2777 		src_offset += cur;
2778 		dst_offset += cur;
2779 		len -= cur;
2780 	}
2781 }
2782 EXPORT_SYMBOL(memcpy_extent_buffer);
2783 
2784 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2785 			   unsigned long src_offset, unsigned long len)
2786 {
2787 	size_t cur;
2788 	size_t dst_off_in_page;
2789 	size_t src_off_in_page;
2790 	unsigned long dst_end = dst_offset + len - 1;
2791 	unsigned long src_end = src_offset + len - 1;
2792 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2793 	unsigned long dst_i;
2794 	unsigned long src_i;
2795 
2796 	if (src_offset + len > dst->len) {
2797 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2798 		       src_offset, len, dst->len);
2799 		BUG_ON(1);
2800 	}
2801 	if (dst_offset + len > dst->len) {
2802 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2803 		       dst_offset, len, dst->len);
2804 		BUG_ON(1);
2805 	}
2806 	if (dst_offset < src_offset) {
2807 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2808 		return;
2809 	}
2810 	while(len > 0) {
2811 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2812 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2813 
2814 		dst_off_in_page = (start_offset + dst_end) &
2815 			((unsigned long)PAGE_CACHE_SIZE - 1);
2816 		src_off_in_page = (start_offset + src_end) &
2817 			((unsigned long)PAGE_CACHE_SIZE - 1);
2818 
2819 		cur = min_t(unsigned long, len, src_off_in_page + 1);
2820 		cur = min(cur, dst_off_in_page + 1);
2821 		move_pages(extent_buffer_page(dst, dst_i),
2822 			   extent_buffer_page(dst, src_i),
2823 			   dst_off_in_page - cur + 1,
2824 			   src_off_in_page - cur + 1, cur);
2825 
2826 		dst_end -= cur;
2827 		src_end -= cur;
2828 		len -= cur;
2829 	}
2830 }
2831 EXPORT_SYMBOL(memmove_extent_buffer);
2832