xref: /openbmc/linux/fs/btrfs/extent_map.c (revision a8c450b2)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include "extent_map.h"
12 
13 /* temporary define until extent_map moves out of btrfs */
14 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
15 				       unsigned long extra_flags,
16 				       void (*ctor)(void *, struct kmem_cache *,
17 						    unsigned long));
18 
19 static struct kmem_cache *extent_map_cache;
20 static struct kmem_cache *extent_state_cache;
21 
22 struct tree_entry {
23 	u64 start;
24 	u64 end;
25 	int in_tree;
26 	struct rb_node rb_node;
27 };
28 
29 /* bits for the extent state */
30 #define EXTENT_DIRTY 1
31 #define EXTENT_WRITEBACK (1 << 1)
32 #define EXTENT_UPTODATE (1 << 2)
33 #define EXTENT_LOCKED (1 << 3)
34 #define EXTENT_NEW (1 << 4)
35 #define EXTENT_DELALLOC (1 << 5)
36 
37 #define EXTENT_IOBITS (EXTENT_LOCKED | EXTENT_WRITEBACK)
38 
39 void __init extent_map_init(void)
40 {
41 	extent_map_cache = btrfs_cache_create("extent_map",
42 					    sizeof(struct extent_map),
43 					    SLAB_DESTROY_BY_RCU,
44 					    NULL);
45 	extent_state_cache = btrfs_cache_create("extent_state",
46 					    sizeof(struct extent_state),
47 					    SLAB_DESTROY_BY_RCU,
48 					    NULL);
49 }
50 
51 void __exit extent_map_exit(void)
52 {
53 	if (extent_map_cache)
54 		kmem_cache_destroy(extent_map_cache);
55 	if (extent_state_cache)
56 		kmem_cache_destroy(extent_state_cache);
57 }
58 
59 void extent_map_tree_init(struct extent_map_tree *tree,
60 			  struct address_space *mapping, gfp_t mask)
61 {
62 	tree->map.rb_node = NULL;
63 	tree->state.rb_node = NULL;
64 	tree->ops = NULL;
65 	rwlock_init(&tree->lock);
66 	tree->mapping = mapping;
67 }
68 EXPORT_SYMBOL(extent_map_tree_init);
69 
70 struct extent_map *alloc_extent_map(gfp_t mask)
71 {
72 	struct extent_map *em;
73 	em = kmem_cache_alloc(extent_map_cache, mask);
74 	if (!em || IS_ERR(em))
75 		return em;
76 	em->in_tree = 0;
77 	atomic_set(&em->refs, 1);
78 	return em;
79 }
80 EXPORT_SYMBOL(alloc_extent_map);
81 
82 void free_extent_map(struct extent_map *em)
83 {
84 	if (!em)
85 		return;
86 	if (atomic_dec_and_test(&em->refs)) {
87 		WARN_ON(em->in_tree);
88 		kmem_cache_free(extent_map_cache, em);
89 	}
90 }
91 EXPORT_SYMBOL(free_extent_map);
92 
93 
94 struct extent_state *alloc_extent_state(gfp_t mask)
95 {
96 	struct extent_state *state;
97 	state = kmem_cache_alloc(extent_state_cache, mask);
98 	if (!state || IS_ERR(state))
99 		return state;
100 	state->state = 0;
101 	state->in_tree = 0;
102 	state->private = 0;
103 	atomic_set(&state->refs, 1);
104 	init_waitqueue_head(&state->wq);
105 	return state;
106 }
107 EXPORT_SYMBOL(alloc_extent_state);
108 
109 void free_extent_state(struct extent_state *state)
110 {
111 	if (!state)
112 		return;
113 	if (atomic_dec_and_test(&state->refs)) {
114 		WARN_ON(state->in_tree);
115 		kmem_cache_free(extent_state_cache, state);
116 	}
117 }
118 EXPORT_SYMBOL(free_extent_state);
119 
120 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
121 				   struct rb_node *node)
122 {
123 	struct rb_node ** p = &root->rb_node;
124 	struct rb_node * parent = NULL;
125 	struct tree_entry *entry;
126 
127 	while(*p) {
128 		parent = *p;
129 		entry = rb_entry(parent, struct tree_entry, rb_node);
130 
131 		if (offset < entry->start)
132 			p = &(*p)->rb_left;
133 		else if (offset > entry->end)
134 			p = &(*p)->rb_right;
135 		else
136 			return parent;
137 	}
138 
139 	entry = rb_entry(node, struct tree_entry, rb_node);
140 	entry->in_tree = 1;
141 	rb_link_node(node, parent, p);
142 	rb_insert_color(node, root);
143 	return NULL;
144 }
145 
146 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
147 				   struct rb_node **prev_ret)
148 {
149 	struct rb_node * n = root->rb_node;
150 	struct rb_node *prev = NULL;
151 	struct tree_entry *entry;
152 	struct tree_entry *prev_entry = NULL;
153 
154 	while(n) {
155 		entry = rb_entry(n, struct tree_entry, rb_node);
156 		prev = n;
157 		prev_entry = entry;
158 
159 		if (offset < entry->start)
160 			n = n->rb_left;
161 		else if (offset > entry->end)
162 			n = n->rb_right;
163 		else
164 			return n;
165 	}
166 	if (!prev_ret)
167 		return NULL;
168 	while(prev && offset > prev_entry->end) {
169 		prev = rb_next(prev);
170 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
171 	}
172 	*prev_ret = prev;
173 	return NULL;
174 }
175 
176 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
177 {
178 	struct rb_node *prev;
179 	struct rb_node *ret;
180 	ret = __tree_search(root, offset, &prev);
181 	if (!ret)
182 		return prev;
183 	return ret;
184 }
185 
186 static int tree_delete(struct rb_root *root, u64 offset)
187 {
188 	struct rb_node *node;
189 	struct tree_entry *entry;
190 
191 	node = __tree_search(root, offset, NULL);
192 	if (!node)
193 		return -ENOENT;
194 	entry = rb_entry(node, struct tree_entry, rb_node);
195 	entry->in_tree = 0;
196 	rb_erase(node, root);
197 	return 0;
198 }
199 
200 /*
201  * add_extent_mapping tries a simple backward merge with existing
202  * mappings.  The extent_map struct passed in will be inserted into
203  * the tree directly (no copies made, just a reference taken).
204  */
205 int add_extent_mapping(struct extent_map_tree *tree,
206 		       struct extent_map *em)
207 {
208 	int ret = 0;
209 	struct extent_map *prev = NULL;
210 	struct rb_node *rb;
211 
212 	write_lock_irq(&tree->lock);
213 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
214 	if (rb) {
215 		prev = rb_entry(rb, struct extent_map, rb_node);
216 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
217 		ret = -EEXIST;
218 		goto out;
219 	}
220 	atomic_inc(&em->refs);
221 	if (em->start != 0) {
222 		rb = rb_prev(&em->rb_node);
223 		if (rb)
224 			prev = rb_entry(rb, struct extent_map, rb_node);
225 		if (prev && prev->end + 1 == em->start &&
226 		    ((em->block_start == 0 && prev->block_start == 0) ||
227 			     (em->block_start == prev->block_end + 1))) {
228 			em->start = prev->start;
229 			em->block_start = prev->block_start;
230 			rb_erase(&prev->rb_node, &tree->map);
231 			prev->in_tree = 0;
232 			free_extent_map(prev);
233 		}
234 	 }
235 out:
236 	write_unlock_irq(&tree->lock);
237 	return ret;
238 }
239 EXPORT_SYMBOL(add_extent_mapping);
240 
241 /*
242  * lookup_extent_mapping returns the first extent_map struct in the
243  * tree that intersects the [start, end] (inclusive) range.  There may
244  * be additional objects in the tree that intersect, so check the object
245  * returned carefully to make sure you don't need additional lookups.
246  */
247 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
248 					 u64 start, u64 end)
249 {
250 	struct extent_map *em;
251 	struct rb_node *rb_node;
252 
253 	read_lock_irq(&tree->lock);
254 	rb_node = tree_search(&tree->map, start);
255 	if (!rb_node) {
256 		em = NULL;
257 		goto out;
258 	}
259 	if (IS_ERR(rb_node)) {
260 		em = ERR_PTR(PTR_ERR(rb_node));
261 		goto out;
262 	}
263 	em = rb_entry(rb_node, struct extent_map, rb_node);
264 	if (em->end < start || em->start > end) {
265 		em = NULL;
266 		goto out;
267 	}
268 	atomic_inc(&em->refs);
269 out:
270 	read_unlock_irq(&tree->lock);
271 	return em;
272 }
273 EXPORT_SYMBOL(lookup_extent_mapping);
274 
275 /*
276  * removes an extent_map struct from the tree.  No reference counts are
277  * dropped, and no checks are done to  see if the range is in use
278  */
279 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
280 {
281 	int ret;
282 
283 	write_lock_irq(&tree->lock);
284 	ret = tree_delete(&tree->map, em->end);
285 	write_unlock_irq(&tree->lock);
286 	return ret;
287 }
288 EXPORT_SYMBOL(remove_extent_mapping);
289 
290 /*
291  * utility function to look for merge candidates inside a given range.
292  * Any extents with matching state are merged together into a single
293  * extent in the tree.  Extents with EXTENT_IO in their state field
294  * are not merged because the end_io handlers need to be able to do
295  * operations on them without sleeping (or doing allocations/splits).
296  *
297  * This should be called with the tree lock held.
298  */
299 static int merge_state(struct extent_map_tree *tree,
300 		       struct extent_state *state)
301 {
302 	struct extent_state *other;
303 	struct rb_node *other_node;
304 
305 	if (state->state & EXTENT_IOBITS)
306 		return 0;
307 
308 	other_node = rb_prev(&state->rb_node);
309 	if (other_node) {
310 		other = rb_entry(other_node, struct extent_state, rb_node);
311 		if (other->end == state->start - 1 &&
312 		    other->state == state->state) {
313 			state->start = other->start;
314 			other->in_tree = 0;
315 			rb_erase(&other->rb_node, &tree->state);
316 			free_extent_state(other);
317 		}
318 	}
319 	other_node = rb_next(&state->rb_node);
320 	if (other_node) {
321 		other = rb_entry(other_node, struct extent_state, rb_node);
322 		if (other->start == state->end + 1 &&
323 		    other->state == state->state) {
324 			other->start = state->start;
325 			state->in_tree = 0;
326 			rb_erase(&state->rb_node, &tree->state);
327 			free_extent_state(state);
328 		}
329 	}
330 	return 0;
331 }
332 
333 /*
334  * insert an extent_state struct into the tree.  'bits' are set on the
335  * struct before it is inserted.
336  *
337  * This may return -EEXIST if the extent is already there, in which case the
338  * state struct is freed.
339  *
340  * The tree lock is not taken internally.  This is a utility function and
341  * probably isn't what you want to call (see set/clear_extent_bit).
342  */
343 static int insert_state(struct extent_map_tree *tree,
344 			struct extent_state *state, u64 start, u64 end,
345 			int bits)
346 {
347 	struct rb_node *node;
348 
349 	if (end < start) {
350 		printk("end < start %Lu %Lu\n", end, start);
351 		WARN_ON(1);
352 	}
353 	state->state |= bits;
354 	state->start = start;
355 	state->end = end;
356 	if ((end & 4095) == 0) {
357 		printk("insert state %Lu %Lu strange end\n", start, end);
358 		WARN_ON(1);
359 	}
360 	node = tree_insert(&tree->state, end, &state->rb_node);
361 	if (node) {
362 		struct extent_state *found;
363 		found = rb_entry(node, struct extent_state, rb_node);
364 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
365 		free_extent_state(state);
366 		return -EEXIST;
367 	}
368 	merge_state(tree, state);
369 	return 0;
370 }
371 
372 /*
373  * split a given extent state struct in two, inserting the preallocated
374  * struct 'prealloc' as the newly created second half.  'split' indicates an
375  * offset inside 'orig' where it should be split.
376  *
377  * Before calling,
378  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
379  * are two extent state structs in the tree:
380  * prealloc: [orig->start, split - 1]
381  * orig: [ split, orig->end ]
382  *
383  * The tree locks are not taken by this function. They need to be held
384  * by the caller.
385  */
386 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
387 		       struct extent_state *prealloc, u64 split)
388 {
389 	struct rb_node *node;
390 	prealloc->start = orig->start;
391 	prealloc->end = split - 1;
392 	prealloc->state = orig->state;
393 	orig->start = split;
394 	if ((prealloc->end & 4095) == 0) {
395 		printk("insert state %Lu %Lu strange end\n", prealloc->start,
396 		       prealloc->end);
397 		WARN_ON(1);
398 	}
399 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
400 	if (node) {
401 		struct extent_state *found;
402 		found = rb_entry(node, struct extent_state, rb_node);
403 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
404 		free_extent_state(prealloc);
405 		return -EEXIST;
406 	}
407 	return 0;
408 }
409 
410 /*
411  * utility function to clear some bits in an extent state struct.
412  * it will optionally wake up any one waiting on this state (wake == 1), or
413  * forcibly remove the state from the tree (delete == 1).
414  *
415  * If no bits are set on the state struct after clearing things, the
416  * struct is freed and removed from the tree
417  */
418 static int clear_state_bit(struct extent_map_tree *tree,
419 			    struct extent_state *state, int bits, int wake,
420 			    int delete)
421 {
422 	int ret = state->state & bits;
423 	state->state &= ~bits;
424 	if (wake)
425 		wake_up(&state->wq);
426 	if (delete || state->state == 0) {
427 		if (state->in_tree) {
428 			rb_erase(&state->rb_node, &tree->state);
429 			state->in_tree = 0;
430 			free_extent_state(state);
431 		} else {
432 			WARN_ON(1);
433 		}
434 	} else {
435 		merge_state(tree, state);
436 	}
437 	return ret;
438 }
439 
440 /*
441  * clear some bits on a range in the tree.  This may require splitting
442  * or inserting elements in the tree, so the gfp mask is used to
443  * indicate which allocations or sleeping are allowed.
444  *
445  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
446  * the given range from the tree regardless of state (ie for truncate).
447  *
448  * the range [start, end] is inclusive.
449  *
450  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
451  * bits were already set, or zero if none of the bits were already set.
452  */
453 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
454 		     int bits, int wake, int delete, gfp_t mask)
455 {
456 	struct extent_state *state;
457 	struct extent_state *prealloc = NULL;
458 	struct rb_node *node;
459 	int err;
460 	int set = 0;
461 
462 again:
463 	if (!prealloc && (mask & __GFP_WAIT)) {
464 		prealloc = alloc_extent_state(mask);
465 		if (!prealloc)
466 			return -ENOMEM;
467 	}
468 
469 	write_lock_irq(&tree->lock);
470 	/*
471 	 * this search will find the extents that end after
472 	 * our range starts
473 	 */
474 	node = tree_search(&tree->state, start);
475 	if (!node)
476 		goto out;
477 	state = rb_entry(node, struct extent_state, rb_node);
478 	if (state->start > end)
479 		goto out;
480 	WARN_ON(state->end < start);
481 
482 	/*
483 	 *     | ---- desired range ---- |
484 	 *  | state | or
485 	 *  | ------------- state -------------- |
486 	 *
487 	 * We need to split the extent we found, and may flip
488 	 * bits on second half.
489 	 *
490 	 * If the extent we found extends past our range, we
491 	 * just split and search again.  It'll get split again
492 	 * the next time though.
493 	 *
494 	 * If the extent we found is inside our range, we clear
495 	 * the desired bit on it.
496 	 */
497 
498 	if (state->start < start) {
499 		err = split_state(tree, state, prealloc, start);
500 		BUG_ON(err == -EEXIST);
501 		prealloc = NULL;
502 		if (err)
503 			goto out;
504 		if (state->end <= end) {
505 			start = state->end + 1;
506 			set |= clear_state_bit(tree, state, bits,
507 					wake, delete);
508 		} else {
509 			start = state->start;
510 		}
511 		goto search_again;
512 	}
513 	/*
514 	 * | ---- desired range ---- |
515 	 *                        | state |
516 	 * We need to split the extent, and clear the bit
517 	 * on the first half
518 	 */
519 	if (state->start <= end && state->end > end) {
520 		err = split_state(tree, state, prealloc, end + 1);
521 		BUG_ON(err == -EEXIST);
522 
523 		if (wake)
524 			wake_up(&state->wq);
525 		set |= clear_state_bit(tree, prealloc, bits,
526 				       wake, delete);
527 		prealloc = NULL;
528 		goto out;
529 	}
530 
531 	start = state->end + 1;
532 	set |= clear_state_bit(tree, state, bits, wake, delete);
533 	goto search_again;
534 
535 out:
536 	write_unlock_irq(&tree->lock);
537 	if (prealloc)
538 		free_extent_state(prealloc);
539 
540 	return set;
541 
542 search_again:
543 	if (start >= end)
544 		goto out;
545 	write_unlock_irq(&tree->lock);
546 	if (mask & __GFP_WAIT)
547 		cond_resched();
548 	goto again;
549 }
550 EXPORT_SYMBOL(clear_extent_bit);
551 
552 static int wait_on_state(struct extent_map_tree *tree,
553 			 struct extent_state *state)
554 {
555 	DEFINE_WAIT(wait);
556 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
557 	read_unlock_irq(&tree->lock);
558 	schedule();
559 	read_lock_irq(&tree->lock);
560 	finish_wait(&state->wq, &wait);
561 	return 0;
562 }
563 
564 /*
565  * waits for one or more bits to clear on a range in the state tree.
566  * The range [start, end] is inclusive.
567  * The tree lock is taken by this function
568  */
569 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
570 {
571 	struct extent_state *state;
572 	struct rb_node *node;
573 
574 	read_lock_irq(&tree->lock);
575 again:
576 	while (1) {
577 		/*
578 		 * this search will find all the extents that end after
579 		 * our range starts
580 		 */
581 		node = tree_search(&tree->state, start);
582 		if (!node)
583 			break;
584 
585 		state = rb_entry(node, struct extent_state, rb_node);
586 
587 		if (state->start > end)
588 			goto out;
589 
590 		if (state->state & bits) {
591 			start = state->start;
592 			atomic_inc(&state->refs);
593 			wait_on_state(tree, state);
594 			free_extent_state(state);
595 			goto again;
596 		}
597 		start = state->end + 1;
598 
599 		if (start > end)
600 			break;
601 
602 		if (need_resched()) {
603 			read_unlock_irq(&tree->lock);
604 			cond_resched();
605 			read_lock_irq(&tree->lock);
606 		}
607 	}
608 out:
609 	read_unlock_irq(&tree->lock);
610 	return 0;
611 }
612 EXPORT_SYMBOL(wait_extent_bit);
613 
614 /*
615  * set some bits on a range in the tree.  This may require allocations
616  * or sleeping, so the gfp mask is used to indicate what is allowed.
617  *
618  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
619  * range already has the desired bits set.  The start of the existing
620  * range is returned in failed_start in this case.
621  *
622  * [start, end] is inclusive
623  * This takes the tree lock.
624  */
625 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
626 		   int exclusive, u64 *failed_start, gfp_t mask)
627 {
628 	struct extent_state *state;
629 	struct extent_state *prealloc = NULL;
630 	struct rb_node *node;
631 	int err = 0;
632 	int set;
633 	u64 last_start;
634 	u64 last_end;
635 again:
636 	if (!prealloc && (mask & __GFP_WAIT)) {
637 		prealloc = alloc_extent_state(mask);
638 		if (!prealloc)
639 			return -ENOMEM;
640 	}
641 
642 	write_lock_irq(&tree->lock);
643 	/*
644 	 * this search will find all the extents that end after
645 	 * our range starts.
646 	 */
647 	node = tree_search(&tree->state, start);
648 	if (!node) {
649 		err = insert_state(tree, prealloc, start, end, bits);
650 		prealloc = NULL;
651 		BUG_ON(err == -EEXIST);
652 		goto out;
653 	}
654 
655 	state = rb_entry(node, struct extent_state, rb_node);
656 	last_start = state->start;
657 	last_end = state->end;
658 
659 	/*
660 	 * | ---- desired range ---- |
661 	 * | state |
662 	 *
663 	 * Just lock what we found and keep going
664 	 */
665 	if (state->start == start && state->end <= end) {
666 		set = state->state & bits;
667 		if (set && exclusive) {
668 			*failed_start = state->start;
669 			err = -EEXIST;
670 			goto out;
671 		}
672 		state->state |= bits;
673 		start = state->end + 1;
674 		merge_state(tree, state);
675 		goto search_again;
676 	}
677 
678 	/*
679 	 *     | ---- desired range ---- |
680 	 * | state |
681 	 *   or
682 	 * | ------------- state -------------- |
683 	 *
684 	 * We need to split the extent we found, and may flip bits on
685 	 * second half.
686 	 *
687 	 * If the extent we found extends past our
688 	 * range, we just split and search again.  It'll get split
689 	 * again the next time though.
690 	 *
691 	 * If the extent we found is inside our range, we set the
692 	 * desired bit on it.
693 	 */
694 	if (state->start < start) {
695 		set = state->state & bits;
696 		if (exclusive && set) {
697 			*failed_start = start;
698 			err = -EEXIST;
699 			goto out;
700 		}
701 		err = split_state(tree, state, prealloc, start);
702 		BUG_ON(err == -EEXIST);
703 		prealloc = NULL;
704 		if (err)
705 			goto out;
706 		if (state->end <= end) {
707 			state->state |= bits;
708 			start = state->end + 1;
709 			merge_state(tree, state);
710 		} else {
711 			start = state->start;
712 		}
713 		goto search_again;
714 	}
715 	/*
716 	 * | ---- desired range ---- |
717 	 *     | state | or               | state |
718 	 *
719 	 * There's a hole, we need to insert something in it and
720 	 * ignore the extent we found.
721 	 */
722 	if (state->start > start) {
723 		u64 this_end;
724 		if (end < last_start)
725 			this_end = end;
726 		else
727 			this_end = last_start -1;
728 		err = insert_state(tree, prealloc, start, this_end,
729 				   bits);
730 		prealloc = NULL;
731 		BUG_ON(err == -EEXIST);
732 		if (err)
733 			goto out;
734 		start = this_end + 1;
735 		goto search_again;
736 	}
737 	/*
738 	 * | ---- desired range ---- |
739 	 *                        | state |
740 	 * We need to split the extent, and set the bit
741 	 * on the first half
742 	 */
743 	if (state->start <= end && state->end > end) {
744 		set = state->state & bits;
745 		if (exclusive && set) {
746 			*failed_start = start;
747 			err = -EEXIST;
748 			goto out;
749 		}
750 		err = split_state(tree, state, prealloc, end + 1);
751 		BUG_ON(err == -EEXIST);
752 
753 		prealloc->state |= bits;
754 		merge_state(tree, prealloc);
755 		prealloc = NULL;
756 		goto out;
757 	}
758 
759 	goto search_again;
760 
761 out:
762 	write_unlock_irq(&tree->lock);
763 	if (prealloc)
764 		free_extent_state(prealloc);
765 
766 	return err;
767 
768 search_again:
769 	if (start > end)
770 		goto out;
771 	write_unlock_irq(&tree->lock);
772 	if (mask & __GFP_WAIT)
773 		cond_resched();
774 	goto again;
775 }
776 EXPORT_SYMBOL(set_extent_bit);
777 
778 /* wrappers around set/clear extent bit */
779 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
780 		     gfp_t mask)
781 {
782 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
783 			      mask);
784 }
785 EXPORT_SYMBOL(set_extent_dirty);
786 
787 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
788 		     gfp_t mask)
789 {
790 	return set_extent_bit(tree, start, end,
791 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
792 			      mask);
793 }
794 EXPORT_SYMBOL(set_extent_delalloc);
795 
796 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
797 		       gfp_t mask)
798 {
799 	return clear_extent_bit(tree, start, end,
800 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
801 }
802 EXPORT_SYMBOL(clear_extent_dirty);
803 
804 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
805 		     gfp_t mask)
806 {
807 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
808 			      mask);
809 }
810 EXPORT_SYMBOL(set_extent_new);
811 
812 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
813 		       gfp_t mask)
814 {
815 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
816 }
817 EXPORT_SYMBOL(clear_extent_new);
818 
819 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
820 			gfp_t mask)
821 {
822 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
823 			      mask);
824 }
825 EXPORT_SYMBOL(set_extent_uptodate);
826 
827 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
828 			  gfp_t mask)
829 {
830 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
831 }
832 EXPORT_SYMBOL(clear_extent_uptodate);
833 
834 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
835 			 gfp_t mask)
836 {
837 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
838 			      0, NULL, mask);
839 }
840 EXPORT_SYMBOL(set_extent_writeback);
841 
842 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
843 			   gfp_t mask)
844 {
845 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
846 }
847 EXPORT_SYMBOL(clear_extent_writeback);
848 
849 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
850 {
851 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
852 }
853 EXPORT_SYMBOL(wait_on_extent_writeback);
854 
855 /*
856  * locks a range in ascending order, waiting for any locked regions
857  * it hits on the way.  [start,end] are inclusive, and this will sleep.
858  */
859 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
860 {
861 	int err;
862 	u64 failed_start;
863 	while (1) {
864 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
865 				     &failed_start, mask);
866 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
867 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
868 			start = failed_start;
869 		} else {
870 			break;
871 		}
872 		WARN_ON(start > end);
873 	}
874 	return err;
875 }
876 EXPORT_SYMBOL(lock_extent);
877 
878 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
879 		  gfp_t mask)
880 {
881 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
882 }
883 EXPORT_SYMBOL(unlock_extent);
884 
885 /*
886  * helper function to set pages and extents in the tree dirty
887  */
888 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
889 {
890 	unsigned long index = start >> PAGE_CACHE_SHIFT;
891 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
892 	struct page *page;
893 
894 	while (index <= end_index) {
895 		page = find_get_page(tree->mapping, index);
896 		BUG_ON(!page);
897 		__set_page_dirty_nobuffers(page);
898 		page_cache_release(page);
899 		index++;
900 	}
901 	set_extent_dirty(tree, start, end, GFP_NOFS);
902 	return 0;
903 }
904 EXPORT_SYMBOL(set_range_dirty);
905 
906 /*
907  * helper function to set both pages and extents in the tree writeback
908  */
909 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
910 {
911 	unsigned long index = start >> PAGE_CACHE_SHIFT;
912 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
913 	struct page *page;
914 
915 	while (index <= end_index) {
916 		page = find_get_page(tree->mapping, index);
917 		BUG_ON(!page);
918 		set_page_writeback(page);
919 		page_cache_release(page);
920 		index++;
921 	}
922 	set_extent_writeback(tree, start, end, GFP_NOFS);
923 	return 0;
924 }
925 EXPORT_SYMBOL(set_range_writeback);
926 
927 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
928 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
929 {
930 	struct rb_node *node;
931 	struct extent_state *state;
932 	u64 cur_start = start;
933 	u64 found = 0;
934 	u64 total_bytes = 0;
935 
936 	write_lock_irq(&tree->lock);
937 	/*
938 	 * this search will find all the extents that end after
939 	 * our range starts.
940 	 */
941 search_again:
942 	node = tree_search(&tree->state, cur_start);
943 	if (!node || IS_ERR(node)) {
944 		goto out;
945 	}
946 
947 	while(1) {
948 		state = rb_entry(node, struct extent_state, rb_node);
949 		if (state->start != cur_start) {
950 			goto out;
951 		}
952 		if (!(state->state & EXTENT_DELALLOC)) {
953 			goto out;
954 		}
955 		if (state->start >= lock_start) {
956 			if (state->state & EXTENT_LOCKED) {
957 				DEFINE_WAIT(wait);
958 				atomic_inc(&state->refs);
959 				write_unlock_irq(&tree->lock);
960 				schedule();
961 				write_lock_irq(&tree->lock);
962 				finish_wait(&state->wq, &wait);
963 				free_extent_state(state);
964 				goto search_again;
965 			}
966 			state->state |= EXTENT_LOCKED;
967 		}
968 		found++;
969 		*end = state->end;
970 		cur_start = state->end + 1;
971 		node = rb_next(node);
972 		if (!node)
973 			break;
974 		total_bytes = state->end - state->start + 1;
975 		if (total_bytes >= max_bytes)
976 			break;
977 	}
978 out:
979 	write_unlock_irq(&tree->lock);
980 	return found;
981 }
982 
983 /*
984  * helper function to lock both pages and extents in the tree.
985  * pages must be locked first.
986  */
987 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
988 {
989 	unsigned long index = start >> PAGE_CACHE_SHIFT;
990 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
991 	struct page *page;
992 	int err;
993 
994 	while (index <= end_index) {
995 		page = grab_cache_page(tree->mapping, index);
996 		if (!page) {
997 			err = -ENOMEM;
998 			goto failed;
999 		}
1000 		if (IS_ERR(page)) {
1001 			err = PTR_ERR(page);
1002 			goto failed;
1003 		}
1004 		index++;
1005 	}
1006 	lock_extent(tree, start, end, GFP_NOFS);
1007 	return 0;
1008 
1009 failed:
1010 	/*
1011 	 * we failed above in getting the page at 'index', so we undo here
1012 	 * up to but not including the page at 'index'
1013 	 */
1014 	end_index = index;
1015 	index = start >> PAGE_CACHE_SHIFT;
1016 	while (index < end_index) {
1017 		page = find_get_page(tree->mapping, index);
1018 		unlock_page(page);
1019 		page_cache_release(page);
1020 		index++;
1021 	}
1022 	return err;
1023 }
1024 EXPORT_SYMBOL(lock_range);
1025 
1026 /*
1027  * helper function to unlock both pages and extents in the tree.
1028  */
1029 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1030 {
1031 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1032 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1033 	struct page *page;
1034 
1035 	while (index <= end_index) {
1036 		page = find_get_page(tree->mapping, index);
1037 		unlock_page(page);
1038 		page_cache_release(page);
1039 		index++;
1040 	}
1041 	unlock_extent(tree, start, end, GFP_NOFS);
1042 	return 0;
1043 }
1044 EXPORT_SYMBOL(unlock_range);
1045 
1046 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1047 {
1048 	struct rb_node *node;
1049 	struct extent_state *state;
1050 	int ret = 0;
1051 
1052 	write_lock_irq(&tree->lock);
1053 	/*
1054 	 * this search will find all the extents that end after
1055 	 * our range starts.
1056 	 */
1057 	node = tree_search(&tree->state, start);
1058 	if (!node || IS_ERR(node)) {
1059 		ret = -ENOENT;
1060 		goto out;
1061 	}
1062 	state = rb_entry(node, struct extent_state, rb_node);
1063 	if (state->start != start) {
1064 		ret = -ENOENT;
1065 		goto out;
1066 	}
1067 	state->private = private;
1068 out:
1069 	write_unlock_irq(&tree->lock);
1070 	return ret;
1071 
1072 }
1073 
1074 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1075 {
1076 	struct rb_node *node;
1077 	struct extent_state *state;
1078 	int ret = 0;
1079 
1080 	read_lock_irq(&tree->lock);
1081 	/*
1082 	 * this search will find all the extents that end after
1083 	 * our range starts.
1084 	 */
1085 	node = tree_search(&tree->state, start);
1086 	if (!node || IS_ERR(node)) {
1087 		ret = -ENOENT;
1088 		goto out;
1089 	}
1090 	state = rb_entry(node, struct extent_state, rb_node);
1091 	if (state->start != start) {
1092 		ret = -ENOENT;
1093 		goto out;
1094 	}
1095 	*private = state->private;
1096 out:
1097 	read_unlock_irq(&tree->lock);
1098 	return ret;
1099 }
1100 
1101 /*
1102  * searches a range in the state tree for a given mask.
1103  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1104  * has the bits set.  Otherwise, 1 is returned if any bit in the
1105  * range is found set.
1106  */
1107 static int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1108 			  int bits, int filled)
1109 {
1110 	struct extent_state *state = NULL;
1111 	struct rb_node *node;
1112 	int bitset = 0;
1113 
1114 	read_lock_irq(&tree->lock);
1115 	node = tree_search(&tree->state, start);
1116 	while (node && start <= end) {
1117 		state = rb_entry(node, struct extent_state, rb_node);
1118 		if (state->start > end)
1119 			break;
1120 
1121 		if (filled && state->start > start) {
1122 			bitset = 0;
1123 			break;
1124 		}
1125 		if (state->state & bits) {
1126 			bitset = 1;
1127 			if (!filled)
1128 				break;
1129 		} else if (filled) {
1130 			bitset = 0;
1131 			break;
1132 		}
1133 		start = state->end + 1;
1134 		if (start > end)
1135 			break;
1136 		node = rb_next(node);
1137 	}
1138 	read_unlock_irq(&tree->lock);
1139 	return bitset;
1140 }
1141 
1142 /*
1143  * helper function to set a given page up to date if all the
1144  * extents in the tree for that page are up to date
1145  */
1146 static int check_page_uptodate(struct extent_map_tree *tree,
1147 			       struct page *page)
1148 {
1149 	u64 start = page->index << PAGE_CACHE_SHIFT;
1150 	u64 end = start + PAGE_CACHE_SIZE - 1;
1151 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1152 		SetPageUptodate(page);
1153 	return 0;
1154 }
1155 
1156 /*
1157  * helper function to unlock a page if all the extents in the tree
1158  * for that page are unlocked
1159  */
1160 static int check_page_locked(struct extent_map_tree *tree,
1161 			     struct page *page)
1162 {
1163 	u64 start = page->index << PAGE_CACHE_SHIFT;
1164 	u64 end = start + PAGE_CACHE_SIZE - 1;
1165 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1166 		unlock_page(page);
1167 	return 0;
1168 }
1169 
1170 /*
1171  * helper function to end page writeback if all the extents
1172  * in the tree for that page are done with writeback
1173  */
1174 static int check_page_writeback(struct extent_map_tree *tree,
1175 			     struct page *page)
1176 {
1177 	u64 start = page->index << PAGE_CACHE_SHIFT;
1178 	u64 end = start + PAGE_CACHE_SIZE - 1;
1179 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1180 		end_page_writeback(page);
1181 	return 0;
1182 }
1183 
1184 /* lots and lots of room for performance fixes in the end_bio funcs */
1185 
1186 /*
1187  * after a writepage IO is done, we need to:
1188  * clear the uptodate bits on error
1189  * clear the writeback bits in the extent tree for this IO
1190  * end_page_writeback if the page has no more pending IO
1191  *
1192  * Scheduling is not allowed, so the extent state tree is expected
1193  * to have one and only one object corresponding to this IO.
1194  */
1195 static int end_bio_extent_writepage(struct bio *bio,
1196 				   unsigned int bytes_done, int err)
1197 {
1198 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1199 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1200 	struct extent_map_tree *tree = bio->bi_private;
1201 	u64 start;
1202 	u64 end;
1203 	int whole_page;
1204 
1205 	if (bio->bi_size)
1206 		return 1;
1207 
1208 	do {
1209 		struct page *page = bvec->bv_page;
1210 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1211 		end = start + bvec->bv_len - 1;
1212 
1213 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1214 			whole_page = 1;
1215 		else
1216 			whole_page = 0;
1217 
1218 		if (--bvec >= bio->bi_io_vec)
1219 			prefetchw(&bvec->bv_page->flags);
1220 
1221 		if (!uptodate) {
1222 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1223 			ClearPageUptodate(page);
1224 			SetPageError(page);
1225 		}
1226 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1227 
1228 		if (whole_page)
1229 			end_page_writeback(page);
1230 		else
1231 			check_page_writeback(tree, page);
1232 	} while (bvec >= bio->bi_io_vec);
1233 
1234 	bio_put(bio);
1235 	return 0;
1236 }
1237 
1238 /*
1239  * after a readpage IO is done, we need to:
1240  * clear the uptodate bits on error
1241  * set the uptodate bits if things worked
1242  * set the page up to date if all extents in the tree are uptodate
1243  * clear the lock bit in the extent tree
1244  * unlock the page if there are no other extents locked for it
1245  *
1246  * Scheduling is not allowed, so the extent state tree is expected
1247  * to have one and only one object corresponding to this IO.
1248  */
1249 static int end_bio_extent_readpage(struct bio *bio,
1250 				   unsigned int bytes_done, int err)
1251 {
1252 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1253 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1254 	struct extent_map_tree *tree = bio->bi_private;
1255 	u64 start;
1256 	u64 end;
1257 	int whole_page;
1258 	int ret;
1259 
1260 	if (bio->bi_size)
1261 		return 1;
1262 
1263 	do {
1264 		struct page *page = bvec->bv_page;
1265 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1266 		end = start + bvec->bv_len - 1;
1267 
1268 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1269 			whole_page = 1;
1270 		else
1271 			whole_page = 0;
1272 
1273 		if (--bvec >= bio->bi_io_vec)
1274 			prefetchw(&bvec->bv_page->flags);
1275 
1276 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1277 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1278 			if (ret)
1279 				uptodate = 0;
1280 		}
1281 		if (uptodate) {
1282 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1283 			if (whole_page)
1284 				SetPageUptodate(page);
1285 			else
1286 				check_page_uptodate(tree, page);
1287 		} else {
1288 			ClearPageUptodate(page);
1289 			SetPageError(page);
1290 		}
1291 
1292 		unlock_extent(tree, start, end, GFP_ATOMIC);
1293 
1294 		if (whole_page)
1295 			unlock_page(page);
1296 		else
1297 			check_page_locked(tree, page);
1298 	} while (bvec >= bio->bi_io_vec);
1299 
1300 	bio_put(bio);
1301 	return 0;
1302 }
1303 
1304 /*
1305  * IO done from prepare_write is pretty simple, we just unlock
1306  * the structs in the extent tree when done, and set the uptodate bits
1307  * as appropriate.
1308  */
1309 static int end_bio_extent_preparewrite(struct bio *bio,
1310 				       unsigned int bytes_done, int err)
1311 {
1312 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1313 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1314 	struct extent_map_tree *tree = bio->bi_private;
1315 	u64 start;
1316 	u64 end;
1317 
1318 	if (bio->bi_size)
1319 		return 1;
1320 
1321 	do {
1322 		struct page *page = bvec->bv_page;
1323 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1324 		end = start + bvec->bv_len - 1;
1325 
1326 		if (--bvec >= bio->bi_io_vec)
1327 			prefetchw(&bvec->bv_page->flags);
1328 
1329 		if (uptodate) {
1330 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1331 		} else {
1332 			ClearPageUptodate(page);
1333 			SetPageError(page);
1334 		}
1335 
1336 		unlock_extent(tree, start, end, GFP_ATOMIC);
1337 
1338 	} while (bvec >= bio->bi_io_vec);
1339 
1340 	bio_put(bio);
1341 	return 0;
1342 }
1343 
1344 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1345 			      struct page *page, sector_t sector,
1346 			      size_t size, unsigned long offset,
1347 			      struct block_device *bdev,
1348 			      bio_end_io_t end_io_func)
1349 {
1350 	struct bio *bio;
1351 	int ret = 0;
1352 
1353 	bio = bio_alloc(GFP_NOIO, 1);
1354 
1355 	bio->bi_sector = sector;
1356 	bio->bi_bdev = bdev;
1357 	bio->bi_io_vec[0].bv_page = page;
1358 	bio->bi_io_vec[0].bv_len = size;
1359 	bio->bi_io_vec[0].bv_offset = offset;
1360 
1361 	bio->bi_vcnt = 1;
1362 	bio->bi_idx = 0;
1363 	bio->bi_size = size;
1364 
1365 	bio->bi_end_io = end_io_func;
1366 	bio->bi_private = tree;
1367 
1368 	bio_get(bio);
1369 	submit_bio(rw, bio);
1370 
1371 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1372 		ret = -EOPNOTSUPP;
1373 
1374 	bio_put(bio);
1375 	return ret;
1376 }
1377 
1378 /*
1379  * basic readpage implementation.  Locked extent state structs are inserted
1380  * into the tree that are removed when the IO is done (by the end_io
1381  * handlers)
1382  */
1383 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1384 			  get_extent_t *get_extent)
1385 {
1386 	struct inode *inode = page->mapping->host;
1387 	u64 start = page->index << PAGE_CACHE_SHIFT;
1388 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1389 	u64 end;
1390 	u64 cur = start;
1391 	u64 extent_offset;
1392 	u64 last_byte = i_size_read(inode);
1393 	u64 block_start;
1394 	u64 cur_end;
1395 	sector_t sector;
1396 	struct extent_map *em;
1397 	struct block_device *bdev;
1398 	int ret;
1399 	int nr = 0;
1400 	size_t page_offset = 0;
1401 	size_t iosize;
1402 	size_t blocksize = inode->i_sb->s_blocksize;
1403 
1404 	if (!PagePrivate(page)) {
1405 		SetPagePrivate(page);
1406 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1407 		set_page_private(page, 1);
1408 		page_cache_get(page);
1409 	}
1410 
1411 	end = page_end;
1412 	lock_extent(tree, start, end, GFP_NOFS);
1413 
1414 	while (cur <= end) {
1415 		if (cur >= last_byte) {
1416 			iosize = PAGE_CACHE_SIZE - page_offset;
1417 			zero_user_page(page, page_offset, iosize, KM_USER0);
1418 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1419 					    GFP_NOFS);
1420 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1421 			break;
1422 		}
1423 		em = get_extent(inode, page, page_offset, cur, end, 0);
1424 		if (IS_ERR(em) || !em) {
1425 			SetPageError(page);
1426 			unlock_extent(tree, cur, end, GFP_NOFS);
1427 			break;
1428 		}
1429 
1430 		extent_offset = cur - em->start;
1431 		BUG_ON(em->end < cur);
1432 		BUG_ON(end < cur);
1433 
1434 		iosize = min(em->end - cur, end - cur) + 1;
1435 		cur_end = min(em->end, end);
1436 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1437 		sector = (em->block_start + extent_offset) >> 9;
1438 		bdev = em->bdev;
1439 		block_start = em->block_start;
1440 		free_extent_map(em);
1441 		em = NULL;
1442 
1443 		/* we've found a hole, just zero and go on */
1444 		if (block_start == 0) {
1445 			zero_user_page(page, page_offset, iosize, KM_USER0);
1446 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1447 					    GFP_NOFS);
1448 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1449 			cur = cur + iosize;
1450 			page_offset += iosize;
1451 			continue;
1452 		}
1453 		/* the get_extent function already copied into the page */
1454 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1455 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1456 			cur = cur + iosize;
1457 			page_offset += iosize;
1458 			continue;
1459 		}
1460 
1461 		ret = 0;
1462 		if (tree->ops && tree->ops->readpage_io_hook) {
1463 			ret = tree->ops->readpage_io_hook(page, cur,
1464 							  cur + iosize - 1);
1465 		}
1466 		if (!ret) {
1467 			ret = submit_extent_page(READ, tree, page,
1468 						 sector, iosize, page_offset,
1469 						 bdev, end_bio_extent_readpage);
1470 		}
1471 		if (ret)
1472 			SetPageError(page);
1473 		cur = cur + iosize;
1474 		page_offset += iosize;
1475 		nr++;
1476 	}
1477 	if (!nr) {
1478 		if (!PageError(page))
1479 			SetPageUptodate(page);
1480 		unlock_page(page);
1481 	}
1482 	return 0;
1483 }
1484 EXPORT_SYMBOL(extent_read_full_page);
1485 
1486 /*
1487  * the writepage semantics are similar to regular writepage.  extent
1488  * records are inserted to lock ranges in the tree, and as dirty areas
1489  * are found, they are marked writeback.  Then the lock bits are removed
1490  * and the end_io handler clears the writeback ranges
1491  */
1492 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1493 			  get_extent_t *get_extent,
1494 			  struct writeback_control *wbc)
1495 {
1496 	struct inode *inode = page->mapping->host;
1497 	u64 start = page->index << PAGE_CACHE_SHIFT;
1498 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1499 	u64 end;
1500 	u64 cur = start;
1501 	u64 extent_offset;
1502 	u64 last_byte = i_size_read(inode);
1503 	u64 block_start;
1504 	sector_t sector;
1505 	struct extent_map *em;
1506 	struct block_device *bdev;
1507 	int ret;
1508 	int nr = 0;
1509 	size_t page_offset = 0;
1510 	size_t iosize;
1511 	size_t blocksize;
1512 	loff_t i_size = i_size_read(inode);
1513 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1514 	u64 nr_delalloc;
1515 	u64 delalloc_end;
1516 
1517 	WARN_ON(!PageLocked(page));
1518 	if (page->index > end_index) {
1519 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1520 		unlock_page(page);
1521 		return 0;
1522 	}
1523 
1524 	if (page->index == end_index) {
1525 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1526 		zero_user_page(page, offset,
1527 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1528 	}
1529 
1530 	if (!PagePrivate(page)) {
1531 		SetPagePrivate(page);
1532 		set_page_private(page, 1);
1533 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1534 		page_cache_get(page);
1535 	}
1536 
1537 	lock_extent(tree, start, page_end, GFP_NOFS);
1538 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1539 					       &delalloc_end,
1540 					       128 * 1024 * 1024);
1541 	if (nr_delalloc) {
1542 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1543 		if (delalloc_end >= page_end + 1) {
1544 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1545 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1546 					 1, 0, GFP_NOFS);
1547 		}
1548 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1549 				 0, 0, GFP_NOFS);
1550 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1551 			printk("found delalloc bits after clear extent_bit\n");
1552 		}
1553 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1554 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1555 	}
1556 
1557 	end = page_end;
1558 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1559 		printk("found delalloc bits after lock_extent\n");
1560 	}
1561 
1562 	if (last_byte <= start) {
1563 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1564 		goto done;
1565 	}
1566 
1567 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1568 	blocksize = inode->i_sb->s_blocksize;
1569 
1570 	while (cur <= end) {
1571 		if (cur >= last_byte) {
1572 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1573 			break;
1574 		}
1575 		em = get_extent(inode, page, page_offset, cur, end, 0);
1576 		if (IS_ERR(em) || !em) {
1577 			SetPageError(page);
1578 			break;
1579 		}
1580 
1581 		extent_offset = cur - em->start;
1582 		BUG_ON(em->end < cur);
1583 		BUG_ON(end < cur);
1584 		iosize = min(em->end - cur, end - cur) + 1;
1585 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1586 		sector = (em->block_start + extent_offset) >> 9;
1587 		bdev = em->bdev;
1588 		block_start = em->block_start;
1589 		free_extent_map(em);
1590 		em = NULL;
1591 
1592 		if (block_start == 0 || block_start == EXTENT_MAP_INLINE) {
1593 			clear_extent_dirty(tree, cur,
1594 					   cur + iosize - 1, GFP_NOFS);
1595 			cur = cur + iosize;
1596 			page_offset += iosize;
1597 			continue;
1598 		}
1599 
1600 		/* leave this out until we have a page_mkwrite call */
1601 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1602 				   EXTENT_DIRTY, 0)) {
1603 			cur = cur + iosize;
1604 			page_offset += iosize;
1605 			continue;
1606 		}
1607 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1608 		ret = tree->ops->writepage_io_hook(page, cur, cur + iosize - 1);
1609 		if (ret)
1610 			SetPageError(page);
1611 		else {
1612 			set_range_writeback(tree, cur, cur + iosize - 1);
1613 			ret = submit_extent_page(WRITE, tree, page, sector,
1614 						 iosize, page_offset, bdev,
1615 						 end_bio_extent_writepage);
1616 			if (ret)
1617 				SetPageError(page);
1618 		}
1619 		cur = cur + iosize;
1620 		page_offset += iosize;
1621 		nr++;
1622 	}
1623 done:
1624 	WARN_ON(test_range_bit(tree, start, page_end, EXTENT_DIRTY, 0));
1625 	unlock_extent(tree, start, page_end, GFP_NOFS);
1626 	unlock_page(page);
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL(extent_write_full_page);
1630 
1631 /*
1632  * basic invalidatepage code, this waits on any locked or writeback
1633  * ranges corresponding to the page, and then deletes any extent state
1634  * records from the tree
1635  */
1636 int extent_invalidatepage(struct extent_map_tree *tree,
1637 			  struct page *page, unsigned long offset)
1638 {
1639 	u64 start = (page->index << PAGE_CACHE_SHIFT);
1640 	u64 end = start + PAGE_CACHE_SIZE - 1;
1641 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1642 
1643 	start += (offset + blocksize -1) & ~(blocksize - 1);
1644 	if (start > end)
1645 		return 0;
1646 
1647 	lock_extent(tree, start, end, GFP_NOFS);
1648 	wait_on_extent_writeback(tree, start, end);
1649 	clear_extent_bit(tree, start, end,
1650 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1651 			 1, 1, GFP_NOFS);
1652 	return 0;
1653 }
1654 EXPORT_SYMBOL(extent_invalidatepage);
1655 
1656 /*
1657  * simple commit_write call, set_range_dirty is used to mark both
1658  * the pages and the extent records as dirty
1659  */
1660 int extent_commit_write(struct extent_map_tree *tree,
1661 			struct inode *inode, struct page *page,
1662 			unsigned from, unsigned to)
1663 {
1664 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1665 
1666 	if (!PagePrivate(page)) {
1667 		SetPagePrivate(page);
1668 		set_page_private(page, 1);
1669 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1670 		page_cache_get(page);
1671 	}
1672 
1673 	set_page_dirty(page);
1674 
1675 	if (pos > inode->i_size) {
1676 		i_size_write(inode, pos);
1677 		mark_inode_dirty(inode);
1678 	}
1679 	return 0;
1680 }
1681 EXPORT_SYMBOL(extent_commit_write);
1682 
1683 int extent_prepare_write(struct extent_map_tree *tree,
1684 			 struct inode *inode, struct page *page,
1685 			 unsigned from, unsigned to, get_extent_t *get_extent)
1686 {
1687 	u64 page_start = page->index << PAGE_CACHE_SHIFT;
1688 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1689 	u64 block_start;
1690 	u64 orig_block_start;
1691 	u64 block_end;
1692 	u64 cur_end;
1693 	struct extent_map *em;
1694 	unsigned blocksize = 1 << inode->i_blkbits;
1695 	size_t page_offset = 0;
1696 	size_t block_off_start;
1697 	size_t block_off_end;
1698 	int err = 0;
1699 	int iocount = 0;
1700 	int ret = 0;
1701 	int isnew;
1702 
1703 	if (!PagePrivate(page)) {
1704 		SetPagePrivate(page);
1705 		set_page_private(page, 1);
1706 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1707 		page_cache_get(page);
1708 	}
1709 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1710 	block_end = (page_start + to - 1) | (blocksize - 1);
1711 	orig_block_start = block_start;
1712 
1713 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1714 	while(block_start <= block_end) {
1715 		em = get_extent(inode, page, page_offset, block_start,
1716 				block_end, 1);
1717 		if (IS_ERR(em) || !em) {
1718 			goto err;
1719 		}
1720 		cur_end = min(block_end, em->end);
1721 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1722 		block_off_end = block_off_start + blocksize;
1723 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1724 
1725 		if (!PageUptodate(page) && isnew &&
1726 		    (block_off_end > to || block_off_start < from)) {
1727 			void *kaddr;
1728 
1729 			kaddr = kmap_atomic(page, KM_USER0);
1730 			if (block_off_end > to)
1731 				memset(kaddr + to, 0, block_off_end - to);
1732 			if (block_off_start < from)
1733 				memset(kaddr + block_off_start, 0,
1734 				       from - block_off_start);
1735 			flush_dcache_page(page);
1736 			kunmap_atomic(kaddr, KM_USER0);
1737 		}
1738 		if (!isnew && !PageUptodate(page) &&
1739 		    (block_off_end > to || block_off_start < from) &&
1740 		    !test_range_bit(tree, block_start, cur_end,
1741 				    EXTENT_UPTODATE, 1)) {
1742 			u64 sector;
1743 			u64 extent_offset = block_start - em->start;
1744 			size_t iosize;
1745 			sector = (em->block_start + extent_offset) >> 9;
1746 			iosize = (cur_end - block_start + blocksize - 1) &
1747 				~((u64)blocksize - 1);
1748 			/*
1749 			 * we've already got the extent locked, but we
1750 			 * need to split the state such that our end_bio
1751 			 * handler can clear the lock.
1752 			 */
1753 			set_extent_bit(tree, block_start,
1754 				       block_start + iosize - 1,
1755 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1756 			ret = submit_extent_page(READ, tree, page,
1757 					 sector, iosize, page_offset, em->bdev,
1758 					 end_bio_extent_preparewrite);
1759 			iocount++;
1760 			block_start = block_start + iosize;
1761 		} else {
1762 			set_extent_uptodate(tree, block_start, cur_end,
1763 					    GFP_NOFS);
1764 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1765 			block_start = cur_end + 1;
1766 		}
1767 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1768 		free_extent_map(em);
1769 	}
1770 	if (iocount) {
1771 		wait_extent_bit(tree, orig_block_start,
1772 				block_end, EXTENT_LOCKED);
1773 	}
1774 	check_page_uptodate(tree, page);
1775 err:
1776 	/* FIXME, zero out newly allocated blocks on error */
1777 	return err;
1778 }
1779 EXPORT_SYMBOL(extent_prepare_write);
1780 
1781 /*
1782  * a helper for releasepage.  As long as there are no locked extents
1783  * in the range corresponding to the page, both state records and extent
1784  * map records are removed
1785  */
1786 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1787 {
1788 	struct extent_map *em;
1789 	u64 start = page->index << PAGE_CACHE_SHIFT;
1790 	u64 end = start + PAGE_CACHE_SIZE - 1;
1791 	u64 orig_start = start;
1792 	int ret = 1;
1793 
1794 	while (start <= end) {
1795 		em = lookup_extent_mapping(tree, start, end);
1796 		if (!em || IS_ERR(em))
1797 			break;
1798 		if (!test_range_bit(tree, em->start, em->end,
1799 				    EXTENT_LOCKED, 0)) {
1800 			remove_extent_mapping(tree, em);
1801 			/* once for the rb tree */
1802 			free_extent_map(em);
1803 		}
1804 		start = em->end + 1;
1805 		/* once for us */
1806 		free_extent_map(em);
1807 	}
1808 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1809 		ret = 0;
1810 	else
1811 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1812 				 1, 1, GFP_NOFS);
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL(try_release_extent_mapping);
1816 
1817