xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 6da6abae)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 
46 int __init extent_map_init(void)
47 {
48 	extent_map_cache = btrfs_cache_create("extent_map",
49 					    sizeof(struct extent_map), 0,
50 					    NULL);
51 	if (!extent_map_cache)
52 		return -ENOMEM;
53 	extent_state_cache = btrfs_cache_create("extent_state",
54 					    sizeof(struct extent_state), 0,
55 					    NULL);
56 	if (!extent_state_cache)
57 		goto free_map_cache;
58 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 					    sizeof(struct extent_buffer), 0,
60 					    NULL);
61 	if (!extent_buffer_cache)
62 		goto free_state_cache;
63 	return 0;
64 
65 free_state_cache:
66 	kmem_cache_destroy(extent_state_cache);
67 free_map_cache:
68 	kmem_cache_destroy(extent_map_cache);
69 	return -ENOMEM;
70 }
71 
72 void extent_map_exit(void)
73 {
74 	struct extent_state *state;
75 
76 	while (!list_empty(&states)) {
77 		state = list_entry(states.next, struct extent_state, list);
78 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 		list_del(&state->list);
80 		kmem_cache_free(extent_state_cache, state);
81 
82 	}
83 
84 	if (extent_map_cache)
85 		kmem_cache_destroy(extent_map_cache);
86 	if (extent_state_cache)
87 		kmem_cache_destroy(extent_state_cache);
88 	if (extent_buffer_cache)
89 		kmem_cache_destroy(extent_buffer_cache);
90 }
91 
92 void extent_map_tree_init(struct extent_map_tree *tree,
93 			  struct address_space *mapping, gfp_t mask)
94 {
95 	tree->map.rb_node = NULL;
96 	tree->state.rb_node = NULL;
97 	tree->ops = NULL;
98 	tree->dirty_bytes = 0;
99 	rwlock_init(&tree->lock);
100 	spin_lock_init(&tree->lru_lock);
101 	tree->mapping = mapping;
102 	INIT_LIST_HEAD(&tree->buffer_lru);
103 	tree->lru_size = 0;
104 }
105 EXPORT_SYMBOL(extent_map_tree_init);
106 
107 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108 {
109 	struct extent_buffer *eb;
110 	while(!list_empty(&tree->buffer_lru)) {
111 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 				lru);
113 		list_del_init(&eb->lru);
114 		free_extent_buffer(eb);
115 	}
116 }
117 EXPORT_SYMBOL(extent_map_tree_empty_lru);
118 
119 struct extent_map *alloc_extent_map(gfp_t mask)
120 {
121 	struct extent_map *em;
122 	em = kmem_cache_alloc(extent_map_cache, mask);
123 	if (!em || IS_ERR(em))
124 		return em;
125 	em->in_tree = 0;
126 	atomic_set(&em->refs, 1);
127 	return em;
128 }
129 EXPORT_SYMBOL(alloc_extent_map);
130 
131 void free_extent_map(struct extent_map *em)
132 {
133 	if (!em)
134 		return;
135 	if (atomic_dec_and_test(&em->refs)) {
136 		WARN_ON(em->in_tree);
137 		kmem_cache_free(extent_map_cache, em);
138 	}
139 }
140 EXPORT_SYMBOL(free_extent_map);
141 
142 
143 struct extent_state *alloc_extent_state(gfp_t mask)
144 {
145 	struct extent_state *state;
146 	unsigned long flags;
147 
148 	state = kmem_cache_alloc(extent_state_cache, mask);
149 	if (!state || IS_ERR(state))
150 		return state;
151 	state->state = 0;
152 	state->in_tree = 0;
153 	state->private = 0;
154 
155 	spin_lock_irqsave(&state_lock, flags);
156 	list_add(&state->list, &states);
157 	spin_unlock_irqrestore(&state_lock, flags);
158 
159 	atomic_set(&state->refs, 1);
160 	init_waitqueue_head(&state->wq);
161 	return state;
162 }
163 EXPORT_SYMBOL(alloc_extent_state);
164 
165 void free_extent_state(struct extent_state *state)
166 {
167 	unsigned long flags;
168 	if (!state)
169 		return;
170 	if (atomic_dec_and_test(&state->refs)) {
171 		WARN_ON(state->in_tree);
172 		spin_lock_irqsave(&state_lock, flags);
173 		list_del(&state->list);
174 		spin_unlock_irqrestore(&state_lock, flags);
175 		kmem_cache_free(extent_state_cache, state);
176 	}
177 }
178 EXPORT_SYMBOL(free_extent_state);
179 
180 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 				   struct rb_node *node)
182 {
183 	struct rb_node ** p = &root->rb_node;
184 	struct rb_node * parent = NULL;
185 	struct tree_entry *entry;
186 
187 	while(*p) {
188 		parent = *p;
189 		entry = rb_entry(parent, struct tree_entry, rb_node);
190 
191 		if (offset < entry->start)
192 			p = &(*p)->rb_left;
193 		else if (offset > entry->end)
194 			p = &(*p)->rb_right;
195 		else
196 			return parent;
197 	}
198 
199 	entry = rb_entry(node, struct tree_entry, rb_node);
200 	entry->in_tree = 1;
201 	rb_link_node(node, parent, p);
202 	rb_insert_color(node, root);
203 	return NULL;
204 }
205 
206 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
207 				   struct rb_node **prev_ret)
208 {
209 	struct rb_node * n = root->rb_node;
210 	struct rb_node *prev = NULL;
211 	struct tree_entry *entry;
212 	struct tree_entry *prev_entry = NULL;
213 
214 	while(n) {
215 		entry = rb_entry(n, struct tree_entry, rb_node);
216 		prev = n;
217 		prev_entry = entry;
218 
219 		if (offset < entry->start)
220 			n = n->rb_left;
221 		else if (offset > entry->end)
222 			n = n->rb_right;
223 		else
224 			return n;
225 	}
226 	if (!prev_ret)
227 		return NULL;
228 	while(prev && offset > prev_entry->end) {
229 		prev = rb_next(prev);
230 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 	}
232 	*prev_ret = prev;
233 	return NULL;
234 }
235 
236 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
237 {
238 	struct rb_node *prev;
239 	struct rb_node *ret;
240 	ret = __tree_search(root, offset, &prev);
241 	if (!ret)
242 		return prev;
243 	return ret;
244 }
245 
246 static int tree_delete(struct rb_root *root, u64 offset)
247 {
248 	struct rb_node *node;
249 	struct tree_entry *entry;
250 
251 	node = __tree_search(root, offset, NULL);
252 	if (!node)
253 		return -ENOENT;
254 	entry = rb_entry(node, struct tree_entry, rb_node);
255 	entry->in_tree = 0;
256 	rb_erase(node, root);
257 	return 0;
258 }
259 
260 /*
261  * add_extent_mapping tries a simple backward merge with existing
262  * mappings.  The extent_map struct passed in will be inserted into
263  * the tree directly (no copies made, just a reference taken).
264  */
265 int add_extent_mapping(struct extent_map_tree *tree,
266 		       struct extent_map *em)
267 {
268 	int ret = 0;
269 	struct extent_map *prev = NULL;
270 	struct rb_node *rb;
271 
272 	write_lock_irq(&tree->lock);
273 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
274 	if (rb) {
275 		prev = rb_entry(rb, struct extent_map, rb_node);
276 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
277 		ret = -EEXIST;
278 		goto out;
279 	}
280 	atomic_inc(&em->refs);
281 	if (em->start != 0) {
282 		rb = rb_prev(&em->rb_node);
283 		if (rb)
284 			prev = rb_entry(rb, struct extent_map, rb_node);
285 		if (prev && prev->end + 1 == em->start &&
286 		    ((em->block_start == EXTENT_MAP_HOLE &&
287 		      prev->block_start == EXTENT_MAP_HOLE) ||
288 		     (em->block_start == EXTENT_MAP_INLINE &&
289 		      prev->block_start == EXTENT_MAP_INLINE) ||
290 		     (em->block_start == EXTENT_MAP_DELALLOC &&
291 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
292 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
293 		      em->block_start == prev->block_end + 1))) {
294 			em->start = prev->start;
295 			em->block_start = prev->block_start;
296 			rb_erase(&prev->rb_node, &tree->map);
297 			prev->in_tree = 0;
298 			free_extent_map(prev);
299 		}
300 	 }
301 out:
302 	write_unlock_irq(&tree->lock);
303 	return ret;
304 }
305 EXPORT_SYMBOL(add_extent_mapping);
306 
307 /*
308  * lookup_extent_mapping returns the first extent_map struct in the
309  * tree that intersects the [start, end] (inclusive) range.  There may
310  * be additional objects in the tree that intersect, so check the object
311  * returned carefully to make sure you don't need additional lookups.
312  */
313 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
314 					 u64 start, u64 end)
315 {
316 	struct extent_map *em;
317 	struct rb_node *rb_node;
318 
319 	read_lock_irq(&tree->lock);
320 	rb_node = tree_search(&tree->map, start);
321 	if (!rb_node) {
322 		em = NULL;
323 		goto out;
324 	}
325 	if (IS_ERR(rb_node)) {
326 		em = ERR_PTR(PTR_ERR(rb_node));
327 		goto out;
328 	}
329 	em = rb_entry(rb_node, struct extent_map, rb_node);
330 	if (em->end < start || em->start > end) {
331 		em = NULL;
332 		goto out;
333 	}
334 	atomic_inc(&em->refs);
335 out:
336 	read_unlock_irq(&tree->lock);
337 	return em;
338 }
339 EXPORT_SYMBOL(lookup_extent_mapping);
340 
341 /*
342  * removes an extent_map struct from the tree.  No reference counts are
343  * dropped, and no checks are done to  see if the range is in use
344  */
345 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
346 {
347 	int ret;
348 
349 	write_lock_irq(&tree->lock);
350 	ret = tree_delete(&tree->map, em->end);
351 	write_unlock_irq(&tree->lock);
352 	return ret;
353 }
354 EXPORT_SYMBOL(remove_extent_mapping);
355 
356 /*
357  * utility function to look for merge candidates inside a given range.
358  * Any extents with matching state are merged together into a single
359  * extent in the tree.  Extents with EXTENT_IO in their state field
360  * are not merged because the end_io handlers need to be able to do
361  * operations on them without sleeping (or doing allocations/splits).
362  *
363  * This should be called with the tree lock held.
364  */
365 static int merge_state(struct extent_map_tree *tree,
366 		       struct extent_state *state)
367 {
368 	struct extent_state *other;
369 	struct rb_node *other_node;
370 
371 	if (state->state & EXTENT_IOBITS)
372 		return 0;
373 
374 	other_node = rb_prev(&state->rb_node);
375 	if (other_node) {
376 		other = rb_entry(other_node, struct extent_state, rb_node);
377 		if (other->end == state->start - 1 &&
378 		    other->state == state->state) {
379 			state->start = other->start;
380 			other->in_tree = 0;
381 			rb_erase(&other->rb_node, &tree->state);
382 			free_extent_state(other);
383 		}
384 	}
385 	other_node = rb_next(&state->rb_node);
386 	if (other_node) {
387 		other = rb_entry(other_node, struct extent_state, rb_node);
388 		if (other->start == state->end + 1 &&
389 		    other->state == state->state) {
390 			other->start = state->start;
391 			state->in_tree = 0;
392 			rb_erase(&state->rb_node, &tree->state);
393 			free_extent_state(state);
394 		}
395 	}
396 	return 0;
397 }
398 
399 /*
400  * insert an extent_state struct into the tree.  'bits' are set on the
401  * struct before it is inserted.
402  *
403  * This may return -EEXIST if the extent is already there, in which case the
404  * state struct is freed.
405  *
406  * The tree lock is not taken internally.  This is a utility function and
407  * probably isn't what you want to call (see set/clear_extent_bit).
408  */
409 static int insert_state(struct extent_map_tree *tree,
410 			struct extent_state *state, u64 start, u64 end,
411 			int bits)
412 {
413 	struct rb_node *node;
414 
415 	if (end < start) {
416 		printk("end < start %Lu %Lu\n", end, start);
417 		WARN_ON(1);
418 	}
419 	if (bits & EXTENT_DIRTY)
420 		tree->dirty_bytes += end - start + 1;
421 	state->state |= bits;
422 	state->start = start;
423 	state->end = end;
424 	node = tree_insert(&tree->state, end, &state->rb_node);
425 	if (node) {
426 		struct extent_state *found;
427 		found = rb_entry(node, struct extent_state, rb_node);
428 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
429 		free_extent_state(state);
430 		return -EEXIST;
431 	}
432 	merge_state(tree, state);
433 	return 0;
434 }
435 
436 /*
437  * split a given extent state struct in two, inserting the preallocated
438  * struct 'prealloc' as the newly created second half.  'split' indicates an
439  * offset inside 'orig' where it should be split.
440  *
441  * Before calling,
442  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
443  * are two extent state structs in the tree:
444  * prealloc: [orig->start, split - 1]
445  * orig: [ split, orig->end ]
446  *
447  * The tree locks are not taken by this function. They need to be held
448  * by the caller.
449  */
450 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
451 		       struct extent_state *prealloc, u64 split)
452 {
453 	struct rb_node *node;
454 	prealloc->start = orig->start;
455 	prealloc->end = split - 1;
456 	prealloc->state = orig->state;
457 	orig->start = split;
458 
459 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
460 	if (node) {
461 		struct extent_state *found;
462 		found = rb_entry(node, struct extent_state, rb_node);
463 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
464 		free_extent_state(prealloc);
465 		return -EEXIST;
466 	}
467 	return 0;
468 }
469 
470 /*
471  * utility function to clear some bits in an extent state struct.
472  * it will optionally wake up any one waiting on this state (wake == 1), or
473  * forcibly remove the state from the tree (delete == 1).
474  *
475  * If no bits are set on the state struct after clearing things, the
476  * struct is freed and removed from the tree
477  */
478 static int clear_state_bit(struct extent_map_tree *tree,
479 			    struct extent_state *state, int bits, int wake,
480 			    int delete)
481 {
482 	int ret = state->state & bits;
483 
484 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
485 		u64 range = state->end - state->start + 1;
486 		WARN_ON(range > tree->dirty_bytes);
487 		tree->dirty_bytes -= range;
488 	}
489 	state->state &= ~bits;
490 	if (wake)
491 		wake_up(&state->wq);
492 	if (delete || state->state == 0) {
493 		if (state->in_tree) {
494 			rb_erase(&state->rb_node, &tree->state);
495 			state->in_tree = 0;
496 			free_extent_state(state);
497 		} else {
498 			WARN_ON(1);
499 		}
500 	} else {
501 		merge_state(tree, state);
502 	}
503 	return ret;
504 }
505 
506 /*
507  * clear some bits on a range in the tree.  This may require splitting
508  * or inserting elements in the tree, so the gfp mask is used to
509  * indicate which allocations or sleeping are allowed.
510  *
511  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
512  * the given range from the tree regardless of state (ie for truncate).
513  *
514  * the range [start, end] is inclusive.
515  *
516  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
517  * bits were already set, or zero if none of the bits were already set.
518  */
519 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
520 		     int bits, int wake, int delete, gfp_t mask)
521 {
522 	struct extent_state *state;
523 	struct extent_state *prealloc = NULL;
524 	struct rb_node *node;
525 	unsigned long flags;
526 	int err;
527 	int set = 0;
528 
529 again:
530 	if (!prealloc && (mask & __GFP_WAIT)) {
531 		prealloc = alloc_extent_state(mask);
532 		if (!prealloc)
533 			return -ENOMEM;
534 	}
535 
536 	write_lock_irqsave(&tree->lock, flags);
537 	/*
538 	 * this search will find the extents that end after
539 	 * our range starts
540 	 */
541 	node = tree_search(&tree->state, start);
542 	if (!node)
543 		goto out;
544 	state = rb_entry(node, struct extent_state, rb_node);
545 	if (state->start > end)
546 		goto out;
547 	WARN_ON(state->end < start);
548 
549 	/*
550 	 *     | ---- desired range ---- |
551 	 *  | state | or
552 	 *  | ------------- state -------------- |
553 	 *
554 	 * We need to split the extent we found, and may flip
555 	 * bits on second half.
556 	 *
557 	 * If the extent we found extends past our range, we
558 	 * just split and search again.  It'll get split again
559 	 * the next time though.
560 	 *
561 	 * If the extent we found is inside our range, we clear
562 	 * the desired bit on it.
563 	 */
564 
565 	if (state->start < start) {
566 		err = split_state(tree, state, prealloc, start);
567 		BUG_ON(err == -EEXIST);
568 		prealloc = NULL;
569 		if (err)
570 			goto out;
571 		if (state->end <= end) {
572 			start = state->end + 1;
573 			set |= clear_state_bit(tree, state, bits,
574 					wake, delete);
575 		} else {
576 			start = state->start;
577 		}
578 		goto search_again;
579 	}
580 	/*
581 	 * | ---- desired range ---- |
582 	 *                        | state |
583 	 * We need to split the extent, and clear the bit
584 	 * on the first half
585 	 */
586 	if (state->start <= end && state->end > end) {
587 		err = split_state(tree, state, prealloc, end + 1);
588 		BUG_ON(err == -EEXIST);
589 
590 		if (wake)
591 			wake_up(&state->wq);
592 		set |= clear_state_bit(tree, prealloc, bits,
593 				       wake, delete);
594 		prealloc = NULL;
595 		goto out;
596 	}
597 
598 	start = state->end + 1;
599 	set |= clear_state_bit(tree, state, bits, wake, delete);
600 	goto search_again;
601 
602 out:
603 	write_unlock_irqrestore(&tree->lock, flags);
604 	if (prealloc)
605 		free_extent_state(prealloc);
606 
607 	return set;
608 
609 search_again:
610 	if (start > end)
611 		goto out;
612 	write_unlock_irqrestore(&tree->lock, flags);
613 	if (mask & __GFP_WAIT)
614 		cond_resched();
615 	goto again;
616 }
617 EXPORT_SYMBOL(clear_extent_bit);
618 
619 static int wait_on_state(struct extent_map_tree *tree,
620 			 struct extent_state *state)
621 {
622 	DEFINE_WAIT(wait);
623 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
624 	read_unlock_irq(&tree->lock);
625 	schedule();
626 	read_lock_irq(&tree->lock);
627 	finish_wait(&state->wq, &wait);
628 	return 0;
629 }
630 
631 /*
632  * waits for one or more bits to clear on a range in the state tree.
633  * The range [start, end] is inclusive.
634  * The tree lock is taken by this function
635  */
636 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
637 {
638 	struct extent_state *state;
639 	struct rb_node *node;
640 
641 	read_lock_irq(&tree->lock);
642 again:
643 	while (1) {
644 		/*
645 		 * this search will find all the extents that end after
646 		 * our range starts
647 		 */
648 		node = tree_search(&tree->state, start);
649 		if (!node)
650 			break;
651 
652 		state = rb_entry(node, struct extent_state, rb_node);
653 
654 		if (state->start > end)
655 			goto out;
656 
657 		if (state->state & bits) {
658 			start = state->start;
659 			atomic_inc(&state->refs);
660 			wait_on_state(tree, state);
661 			free_extent_state(state);
662 			goto again;
663 		}
664 		start = state->end + 1;
665 
666 		if (start > end)
667 			break;
668 
669 		if (need_resched()) {
670 			read_unlock_irq(&tree->lock);
671 			cond_resched();
672 			read_lock_irq(&tree->lock);
673 		}
674 	}
675 out:
676 	read_unlock_irq(&tree->lock);
677 	return 0;
678 }
679 EXPORT_SYMBOL(wait_extent_bit);
680 
681 static void set_state_bits(struct extent_map_tree *tree,
682 			   struct extent_state *state,
683 			   int bits)
684 {
685 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
686 		u64 range = state->end - state->start + 1;
687 		tree->dirty_bytes += range;
688 	}
689 	state->state |= bits;
690 }
691 
692 /*
693  * set some bits on a range in the tree.  This may require allocations
694  * or sleeping, so the gfp mask is used to indicate what is allowed.
695  *
696  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
697  * range already has the desired bits set.  The start of the existing
698  * range is returned in failed_start in this case.
699  *
700  * [start, end] is inclusive
701  * This takes the tree lock.
702  */
703 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
704 		   int exclusive, u64 *failed_start, gfp_t mask)
705 {
706 	struct extent_state *state;
707 	struct extent_state *prealloc = NULL;
708 	struct rb_node *node;
709 	unsigned long flags;
710 	int err = 0;
711 	int set;
712 	u64 last_start;
713 	u64 last_end;
714 again:
715 	if (!prealloc && (mask & __GFP_WAIT)) {
716 		prealloc = alloc_extent_state(mask);
717 		if (!prealloc)
718 			return -ENOMEM;
719 	}
720 
721 	write_lock_irqsave(&tree->lock, flags);
722 	/*
723 	 * this search will find all the extents that end after
724 	 * our range starts.
725 	 */
726 	node = tree_search(&tree->state, start);
727 	if (!node) {
728 		err = insert_state(tree, prealloc, start, end, bits);
729 		prealloc = NULL;
730 		BUG_ON(err == -EEXIST);
731 		goto out;
732 	}
733 
734 	state = rb_entry(node, struct extent_state, rb_node);
735 	last_start = state->start;
736 	last_end = state->end;
737 
738 	/*
739 	 * | ---- desired range ---- |
740 	 * | state |
741 	 *
742 	 * Just lock what we found and keep going
743 	 */
744 	if (state->start == start && state->end <= end) {
745 		set = state->state & bits;
746 		if (set && exclusive) {
747 			*failed_start = state->start;
748 			err = -EEXIST;
749 			goto out;
750 		}
751 		set_state_bits(tree, state, bits);
752 		start = state->end + 1;
753 		merge_state(tree, state);
754 		goto search_again;
755 	}
756 
757 	/*
758 	 *     | ---- desired range ---- |
759 	 * | state |
760 	 *   or
761 	 * | ------------- state -------------- |
762 	 *
763 	 * We need to split the extent we found, and may flip bits on
764 	 * second half.
765 	 *
766 	 * If the extent we found extends past our
767 	 * range, we just split and search again.  It'll get split
768 	 * again the next time though.
769 	 *
770 	 * If the extent we found is inside our range, we set the
771 	 * desired bit on it.
772 	 */
773 	if (state->start < start) {
774 		set = state->state & bits;
775 		if (exclusive && set) {
776 			*failed_start = start;
777 			err = -EEXIST;
778 			goto out;
779 		}
780 		err = split_state(tree, state, prealloc, start);
781 		BUG_ON(err == -EEXIST);
782 		prealloc = NULL;
783 		if (err)
784 			goto out;
785 		if (state->end <= end) {
786 			set_state_bits(tree, state, bits);
787 			start = state->end + 1;
788 			merge_state(tree, state);
789 		} else {
790 			start = state->start;
791 		}
792 		goto search_again;
793 	}
794 	/*
795 	 * | ---- desired range ---- |
796 	 *     | state | or               | state |
797 	 *
798 	 * There's a hole, we need to insert something in it and
799 	 * ignore the extent we found.
800 	 */
801 	if (state->start > start) {
802 		u64 this_end;
803 		if (end < last_start)
804 			this_end = end;
805 		else
806 			this_end = last_start -1;
807 		err = insert_state(tree, prealloc, start, this_end,
808 				   bits);
809 		prealloc = NULL;
810 		BUG_ON(err == -EEXIST);
811 		if (err)
812 			goto out;
813 		start = this_end + 1;
814 		goto search_again;
815 	}
816 	/*
817 	 * | ---- desired range ---- |
818 	 *                        | state |
819 	 * We need to split the extent, and set the bit
820 	 * on the first half
821 	 */
822 	if (state->start <= end && state->end > end) {
823 		set = state->state & bits;
824 		if (exclusive && set) {
825 			*failed_start = start;
826 			err = -EEXIST;
827 			goto out;
828 		}
829 		err = split_state(tree, state, prealloc, end + 1);
830 		BUG_ON(err == -EEXIST);
831 
832 		set_state_bits(tree, prealloc, bits);
833 		merge_state(tree, prealloc);
834 		prealloc = NULL;
835 		goto out;
836 	}
837 
838 	goto search_again;
839 
840 out:
841 	write_unlock_irqrestore(&tree->lock, flags);
842 	if (prealloc)
843 		free_extent_state(prealloc);
844 
845 	return err;
846 
847 search_again:
848 	if (start > end)
849 		goto out;
850 	write_unlock_irqrestore(&tree->lock, flags);
851 	if (mask & __GFP_WAIT)
852 		cond_resched();
853 	goto again;
854 }
855 EXPORT_SYMBOL(set_extent_bit);
856 
857 /* wrappers around set/clear extent bit */
858 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
859 		     gfp_t mask)
860 {
861 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
862 			      mask);
863 }
864 EXPORT_SYMBOL(set_extent_dirty);
865 
866 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
867 		    int bits, gfp_t mask)
868 {
869 	return set_extent_bit(tree, start, end, bits, 0, NULL,
870 			      mask);
871 }
872 EXPORT_SYMBOL(set_extent_bits);
873 
874 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
875 		      int bits, gfp_t mask)
876 {
877 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
878 }
879 EXPORT_SYMBOL(clear_extent_bits);
880 
881 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
882 		     gfp_t mask)
883 {
884 	return set_extent_bit(tree, start, end,
885 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
886 			      mask);
887 }
888 EXPORT_SYMBOL(set_extent_delalloc);
889 
890 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
891 		       gfp_t mask)
892 {
893 	return clear_extent_bit(tree, start, end,
894 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
895 }
896 EXPORT_SYMBOL(clear_extent_dirty);
897 
898 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
899 		     gfp_t mask)
900 {
901 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
902 			      mask);
903 }
904 EXPORT_SYMBOL(set_extent_new);
905 
906 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
907 		       gfp_t mask)
908 {
909 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
910 }
911 EXPORT_SYMBOL(clear_extent_new);
912 
913 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
914 			gfp_t mask)
915 {
916 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
917 			      mask);
918 }
919 EXPORT_SYMBOL(set_extent_uptodate);
920 
921 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
922 			  gfp_t mask)
923 {
924 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
925 }
926 EXPORT_SYMBOL(clear_extent_uptodate);
927 
928 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
929 			 gfp_t mask)
930 {
931 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
932 			      0, NULL, mask);
933 }
934 EXPORT_SYMBOL(set_extent_writeback);
935 
936 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
937 			   gfp_t mask)
938 {
939 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
940 }
941 EXPORT_SYMBOL(clear_extent_writeback);
942 
943 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
944 {
945 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
946 }
947 EXPORT_SYMBOL(wait_on_extent_writeback);
948 
949 /*
950  * locks a range in ascending order, waiting for any locked regions
951  * it hits on the way.  [start,end] are inclusive, and this will sleep.
952  */
953 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
954 {
955 	int err;
956 	u64 failed_start;
957 	while (1) {
958 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
959 				     &failed_start, mask);
960 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
961 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
962 			start = failed_start;
963 		} else {
964 			break;
965 		}
966 		WARN_ON(start > end);
967 	}
968 	return err;
969 }
970 EXPORT_SYMBOL(lock_extent);
971 
972 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
973 		  gfp_t mask)
974 {
975 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
976 }
977 EXPORT_SYMBOL(unlock_extent);
978 
979 /*
980  * helper function to set pages and extents in the tree dirty
981  */
982 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
983 {
984 	unsigned long index = start >> PAGE_CACHE_SHIFT;
985 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
986 	struct page *page;
987 
988 	while (index <= end_index) {
989 		page = find_get_page(tree->mapping, index);
990 		BUG_ON(!page);
991 		__set_page_dirty_nobuffers(page);
992 		page_cache_release(page);
993 		index++;
994 	}
995 	set_extent_dirty(tree, start, end, GFP_NOFS);
996 	return 0;
997 }
998 EXPORT_SYMBOL(set_range_dirty);
999 
1000 /*
1001  * helper function to set both pages and extents in the tree writeback
1002  */
1003 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1004 {
1005 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1006 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1007 	struct page *page;
1008 
1009 	while (index <= end_index) {
1010 		page = find_get_page(tree->mapping, index);
1011 		BUG_ON(!page);
1012 		set_page_writeback(page);
1013 		page_cache_release(page);
1014 		index++;
1015 	}
1016 	set_extent_writeback(tree, start, end, GFP_NOFS);
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL(set_range_writeback);
1020 
1021 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1022 			  u64 *start_ret, u64 *end_ret, int bits)
1023 {
1024 	struct rb_node *node;
1025 	struct extent_state *state;
1026 	int ret = 1;
1027 
1028 	read_lock_irq(&tree->lock);
1029 	/*
1030 	 * this search will find all the extents that end after
1031 	 * our range starts.
1032 	 */
1033 	node = tree_search(&tree->state, start);
1034 	if (!node || IS_ERR(node)) {
1035 		goto out;
1036 	}
1037 
1038 	while(1) {
1039 		state = rb_entry(node, struct extent_state, rb_node);
1040 		if (state->end >= start && (state->state & bits)) {
1041 			*start_ret = state->start;
1042 			*end_ret = state->end;
1043 			ret = 0;
1044 			break;
1045 		}
1046 		node = rb_next(node);
1047 		if (!node)
1048 			break;
1049 	}
1050 out:
1051 	read_unlock_irq(&tree->lock);
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL(find_first_extent_bit);
1055 
1056 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1057 			     u64 *start, u64 *end, u64 max_bytes)
1058 {
1059 	struct rb_node *node;
1060 	struct extent_state *state;
1061 	u64 cur_start = *start;
1062 	u64 found = 0;
1063 	u64 total_bytes = 0;
1064 
1065 	write_lock_irq(&tree->lock);
1066 	/*
1067 	 * this search will find all the extents that end after
1068 	 * our range starts.
1069 	 */
1070 search_again:
1071 	node = tree_search(&tree->state, cur_start);
1072 	if (!node || IS_ERR(node)) {
1073 		goto out;
1074 	}
1075 
1076 	while(1) {
1077 		state = rb_entry(node, struct extent_state, rb_node);
1078 		if (found && state->start != cur_start) {
1079 			goto out;
1080 		}
1081 		if (!(state->state & EXTENT_DELALLOC)) {
1082 			goto out;
1083 		}
1084 		if (!found) {
1085 			struct extent_state *prev_state;
1086 			struct rb_node *prev_node = node;
1087 			while(1) {
1088 				prev_node = rb_prev(prev_node);
1089 				if (!prev_node)
1090 					break;
1091 				prev_state = rb_entry(prev_node,
1092 						      struct extent_state,
1093 						      rb_node);
1094 				if (!(prev_state->state & EXTENT_DELALLOC))
1095 					break;
1096 				state = prev_state;
1097 				node = prev_node;
1098 			}
1099 		}
1100 		if (state->state & EXTENT_LOCKED) {
1101 			DEFINE_WAIT(wait);
1102 			atomic_inc(&state->refs);
1103 			prepare_to_wait(&state->wq, &wait,
1104 					TASK_UNINTERRUPTIBLE);
1105 			write_unlock_irq(&tree->lock);
1106 			schedule();
1107 			write_lock_irq(&tree->lock);
1108 			finish_wait(&state->wq, &wait);
1109 			free_extent_state(state);
1110 			goto search_again;
1111 		}
1112 		state->state |= EXTENT_LOCKED;
1113 		if (!found)
1114 			*start = state->start;
1115 		found++;
1116 		*end = state->end;
1117 		cur_start = state->end + 1;
1118 		node = rb_next(node);
1119 		if (!node)
1120 			break;
1121 		total_bytes += state->end - state->start + 1;
1122 		if (total_bytes >= max_bytes)
1123 			break;
1124 	}
1125 out:
1126 	write_unlock_irq(&tree->lock);
1127 	return found;
1128 }
1129 
1130 u64 count_range_bits(struct extent_map_tree *tree,
1131 		     u64 *start, u64 max_bytes, unsigned long bits)
1132 {
1133 	struct rb_node *node;
1134 	struct extent_state *state;
1135 	u64 cur_start = *start;
1136 	u64 total_bytes = 0;
1137 	int found = 0;
1138 
1139 	write_lock_irq(&tree->lock);
1140 	if (bits == EXTENT_DIRTY) {
1141 		*start = 0;
1142 		total_bytes = tree->dirty_bytes;
1143 		goto out;
1144 	}
1145 	/*
1146 	 * this search will find all the extents that end after
1147 	 * our range starts.
1148 	 */
1149 	node = tree_search(&tree->state, cur_start);
1150 	if (!node || IS_ERR(node)) {
1151 		goto out;
1152 	}
1153 
1154 	while(1) {
1155 		state = rb_entry(node, struct extent_state, rb_node);
1156 		if ((state->state & bits)) {
1157 			total_bytes += state->end - state->start + 1;
1158 			if (total_bytes >= max_bytes)
1159 				break;
1160 			if (!found) {
1161 				*start = state->start;
1162 				found = 1;
1163 			}
1164 		}
1165 		node = rb_next(node);
1166 		if (!node)
1167 			break;
1168 	}
1169 out:
1170 	write_unlock_irq(&tree->lock);
1171 	return total_bytes;
1172 }
1173 
1174 /*
1175  * helper function to lock both pages and extents in the tree.
1176  * pages must be locked first.
1177  */
1178 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1179 {
1180 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1181 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1182 	struct page *page;
1183 	int err;
1184 
1185 	while (index <= end_index) {
1186 		page = grab_cache_page(tree->mapping, index);
1187 		if (!page) {
1188 			err = -ENOMEM;
1189 			goto failed;
1190 		}
1191 		if (IS_ERR(page)) {
1192 			err = PTR_ERR(page);
1193 			goto failed;
1194 		}
1195 		index++;
1196 	}
1197 	lock_extent(tree, start, end, GFP_NOFS);
1198 	return 0;
1199 
1200 failed:
1201 	/*
1202 	 * we failed above in getting the page at 'index', so we undo here
1203 	 * up to but not including the page at 'index'
1204 	 */
1205 	end_index = index;
1206 	index = start >> PAGE_CACHE_SHIFT;
1207 	while (index < end_index) {
1208 		page = find_get_page(tree->mapping, index);
1209 		unlock_page(page);
1210 		page_cache_release(page);
1211 		index++;
1212 	}
1213 	return err;
1214 }
1215 EXPORT_SYMBOL(lock_range);
1216 
1217 /*
1218  * helper function to unlock both pages and extents in the tree.
1219  */
1220 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1221 {
1222 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1223 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1224 	struct page *page;
1225 
1226 	while (index <= end_index) {
1227 		page = find_get_page(tree->mapping, index);
1228 		unlock_page(page);
1229 		page_cache_release(page);
1230 		index++;
1231 	}
1232 	unlock_extent(tree, start, end, GFP_NOFS);
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL(unlock_range);
1236 
1237 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1238 {
1239 	struct rb_node *node;
1240 	struct extent_state *state;
1241 	int ret = 0;
1242 
1243 	write_lock_irq(&tree->lock);
1244 	/*
1245 	 * this search will find all the extents that end after
1246 	 * our range starts.
1247 	 */
1248 	node = tree_search(&tree->state, start);
1249 	if (!node || IS_ERR(node)) {
1250 		ret = -ENOENT;
1251 		goto out;
1252 	}
1253 	state = rb_entry(node, struct extent_state, rb_node);
1254 	if (state->start != start) {
1255 		ret = -ENOENT;
1256 		goto out;
1257 	}
1258 	state->private = private;
1259 out:
1260 	write_unlock_irq(&tree->lock);
1261 	return ret;
1262 }
1263 
1264 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1265 {
1266 	struct rb_node *node;
1267 	struct extent_state *state;
1268 	int ret = 0;
1269 
1270 	read_lock_irq(&tree->lock);
1271 	/*
1272 	 * this search will find all the extents that end after
1273 	 * our range starts.
1274 	 */
1275 	node = tree_search(&tree->state, start);
1276 	if (!node || IS_ERR(node)) {
1277 		ret = -ENOENT;
1278 		goto out;
1279 	}
1280 	state = rb_entry(node, struct extent_state, rb_node);
1281 	if (state->start != start) {
1282 		ret = -ENOENT;
1283 		goto out;
1284 	}
1285 	*private = state->private;
1286 out:
1287 	read_unlock_irq(&tree->lock);
1288 	return ret;
1289 }
1290 
1291 /*
1292  * searches a range in the state tree for a given mask.
1293  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1294  * has the bits set.  Otherwise, 1 is returned if any bit in the
1295  * range is found set.
1296  */
1297 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1298 		   int bits, int filled)
1299 {
1300 	struct extent_state *state = NULL;
1301 	struct rb_node *node;
1302 	int bitset = 0;
1303 
1304 	read_lock_irq(&tree->lock);
1305 	node = tree_search(&tree->state, start);
1306 	while (node && start <= end) {
1307 		state = rb_entry(node, struct extent_state, rb_node);
1308 
1309 		if (filled && state->start > start) {
1310 			bitset = 0;
1311 			break;
1312 		}
1313 
1314 		if (state->start > end)
1315 			break;
1316 
1317 		if (state->state & bits) {
1318 			bitset = 1;
1319 			if (!filled)
1320 				break;
1321 		} else if (filled) {
1322 			bitset = 0;
1323 			break;
1324 		}
1325 		start = state->end + 1;
1326 		if (start > end)
1327 			break;
1328 		node = rb_next(node);
1329 	}
1330 	read_unlock_irq(&tree->lock);
1331 	return bitset;
1332 }
1333 EXPORT_SYMBOL(test_range_bit);
1334 
1335 /*
1336  * helper function to set a given page up to date if all the
1337  * extents in the tree for that page are up to date
1338  */
1339 static int check_page_uptodate(struct extent_map_tree *tree,
1340 			       struct page *page)
1341 {
1342 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1343 	u64 end = start + PAGE_CACHE_SIZE - 1;
1344 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1345 		SetPageUptodate(page);
1346 	return 0;
1347 }
1348 
1349 /*
1350  * helper function to unlock a page if all the extents in the tree
1351  * for that page are unlocked
1352  */
1353 static int check_page_locked(struct extent_map_tree *tree,
1354 			     struct page *page)
1355 {
1356 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1357 	u64 end = start + PAGE_CACHE_SIZE - 1;
1358 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1359 		unlock_page(page);
1360 	return 0;
1361 }
1362 
1363 /*
1364  * helper function to end page writeback if all the extents
1365  * in the tree for that page are done with writeback
1366  */
1367 static int check_page_writeback(struct extent_map_tree *tree,
1368 			     struct page *page)
1369 {
1370 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1371 	u64 end = start + PAGE_CACHE_SIZE - 1;
1372 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1373 		end_page_writeback(page);
1374 	return 0;
1375 }
1376 
1377 /* lots and lots of room for performance fixes in the end_bio funcs */
1378 
1379 /*
1380  * after a writepage IO is done, we need to:
1381  * clear the uptodate bits on error
1382  * clear the writeback bits in the extent tree for this IO
1383  * end_page_writeback if the page has no more pending IO
1384  *
1385  * Scheduling is not allowed, so the extent state tree is expected
1386  * to have one and only one object corresponding to this IO.
1387  */
1388 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1389 static void end_bio_extent_writepage(struct bio *bio, int err)
1390 #else
1391 static int end_bio_extent_writepage(struct bio *bio,
1392 				   unsigned int bytes_done, int err)
1393 #endif
1394 {
1395 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1396 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1397 	struct extent_map_tree *tree = bio->bi_private;
1398 	u64 start;
1399 	u64 end;
1400 	int whole_page;
1401 
1402 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1403 	if (bio->bi_size)
1404 		return 1;
1405 #endif
1406 
1407 	do {
1408 		struct page *page = bvec->bv_page;
1409 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1410 			 bvec->bv_offset;
1411 		end = start + bvec->bv_len - 1;
1412 
1413 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1414 			whole_page = 1;
1415 		else
1416 			whole_page = 0;
1417 
1418 		if (--bvec >= bio->bi_io_vec)
1419 			prefetchw(&bvec->bv_page->flags);
1420 
1421 		if (!uptodate) {
1422 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1423 			ClearPageUptodate(page);
1424 			SetPageError(page);
1425 		}
1426 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1427 
1428 		if (whole_page)
1429 			end_page_writeback(page);
1430 		else
1431 			check_page_writeback(tree, page);
1432 		if (tree->ops && tree->ops->writepage_end_io_hook)
1433 			tree->ops->writepage_end_io_hook(page, start, end);
1434 	} while (bvec >= bio->bi_io_vec);
1435 
1436 	bio_put(bio);
1437 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1438 	return 0;
1439 #endif
1440 }
1441 
1442 /*
1443  * after a readpage IO is done, we need to:
1444  * clear the uptodate bits on error
1445  * set the uptodate bits if things worked
1446  * set the page up to date if all extents in the tree are uptodate
1447  * clear the lock bit in the extent tree
1448  * unlock the page if there are no other extents locked for it
1449  *
1450  * Scheduling is not allowed, so the extent state tree is expected
1451  * to have one and only one object corresponding to this IO.
1452  */
1453 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1454 static void end_bio_extent_readpage(struct bio *bio, int err)
1455 #else
1456 static int end_bio_extent_readpage(struct bio *bio,
1457 				   unsigned int bytes_done, int err)
1458 #endif
1459 {
1460 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1461 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1462 	struct extent_map_tree *tree = bio->bi_private;
1463 	u64 start;
1464 	u64 end;
1465 	int whole_page;
1466 	int ret;
1467 
1468 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1469 	if (bio->bi_size)
1470 		return 1;
1471 #endif
1472 
1473 	do {
1474 		struct page *page = bvec->bv_page;
1475 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1476 			bvec->bv_offset;
1477 		end = start + bvec->bv_len - 1;
1478 
1479 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1480 			whole_page = 1;
1481 		else
1482 			whole_page = 0;
1483 
1484 		if (--bvec >= bio->bi_io_vec)
1485 			prefetchw(&bvec->bv_page->flags);
1486 
1487 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1488 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1489 			if (ret)
1490 				uptodate = 0;
1491 		}
1492 		if (uptodate) {
1493 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1494 			if (whole_page)
1495 				SetPageUptodate(page);
1496 			else
1497 				check_page_uptodate(tree, page);
1498 		} else {
1499 			ClearPageUptodate(page);
1500 			SetPageError(page);
1501 		}
1502 
1503 		unlock_extent(tree, start, end, GFP_ATOMIC);
1504 
1505 		if (whole_page)
1506 			unlock_page(page);
1507 		else
1508 			check_page_locked(tree, page);
1509 	} while (bvec >= bio->bi_io_vec);
1510 
1511 	bio_put(bio);
1512 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1513 	return 0;
1514 #endif
1515 }
1516 
1517 /*
1518  * IO done from prepare_write is pretty simple, we just unlock
1519  * the structs in the extent tree when done, and set the uptodate bits
1520  * as appropriate.
1521  */
1522 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1523 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1524 #else
1525 static int end_bio_extent_preparewrite(struct bio *bio,
1526 				       unsigned int bytes_done, int err)
1527 #endif
1528 {
1529 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1530 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1531 	struct extent_map_tree *tree = bio->bi_private;
1532 	u64 start;
1533 	u64 end;
1534 
1535 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1536 	if (bio->bi_size)
1537 		return 1;
1538 #endif
1539 
1540 	do {
1541 		struct page *page = bvec->bv_page;
1542 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1543 			bvec->bv_offset;
1544 		end = start + bvec->bv_len - 1;
1545 
1546 		if (--bvec >= bio->bi_io_vec)
1547 			prefetchw(&bvec->bv_page->flags);
1548 
1549 		if (uptodate) {
1550 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1551 		} else {
1552 			ClearPageUptodate(page);
1553 			SetPageError(page);
1554 		}
1555 
1556 		unlock_extent(tree, start, end, GFP_ATOMIC);
1557 
1558 	} while (bvec >= bio->bi_io_vec);
1559 
1560 	bio_put(bio);
1561 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1562 	return 0;
1563 #endif
1564 }
1565 
1566 static struct bio *
1567 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1568 		 gfp_t gfp_flags)
1569 {
1570 	struct bio *bio;
1571 
1572 	bio = bio_alloc(gfp_flags, nr_vecs);
1573 
1574 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1575 		while (!bio && (nr_vecs /= 2))
1576 			bio = bio_alloc(gfp_flags, nr_vecs);
1577 	}
1578 
1579 	if (bio) {
1580 		bio->bi_bdev = bdev;
1581 		bio->bi_sector = first_sector;
1582 	}
1583 	return bio;
1584 }
1585 
1586 static int submit_one_bio(int rw, struct bio *bio)
1587 {
1588 	u64 maxsector;
1589 	int ret = 0;
1590 
1591 	bio_get(bio);
1592 
1593         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1594 	if (maxsector < bio->bi_sector) {
1595 		printk("sector too large max %Lu got %llu\n", maxsector,
1596 			(unsigned long long)bio->bi_sector);
1597 		WARN_ON(1);
1598 	}
1599 
1600 	submit_bio(rw, bio);
1601 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1602 		ret = -EOPNOTSUPP;
1603 	bio_put(bio);
1604 	return ret;
1605 }
1606 
1607 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1608 			      struct page *page, sector_t sector,
1609 			      size_t size, unsigned long offset,
1610 			      struct block_device *bdev,
1611 			      struct bio **bio_ret,
1612 			      unsigned long max_pages,
1613 			      bio_end_io_t end_io_func)
1614 {
1615 	int ret = 0;
1616 	struct bio *bio;
1617 	int nr;
1618 
1619 	if (bio_ret && *bio_ret) {
1620 		bio = *bio_ret;
1621 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1622 		    bio_add_page(bio, page, size, offset) < size) {
1623 			ret = submit_one_bio(rw, bio);
1624 			bio = NULL;
1625 		} else {
1626 			return 0;
1627 		}
1628 	}
1629 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1630 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1631 	if (!bio) {
1632 		printk("failed to allocate bio nr %d\n", nr);
1633 	}
1634 	bio_add_page(bio, page, size, offset);
1635 	bio->bi_end_io = end_io_func;
1636 	bio->bi_private = tree;
1637 	if (bio_ret) {
1638 		*bio_ret = bio;
1639 	} else {
1640 		ret = submit_one_bio(rw, bio);
1641 	}
1642 
1643 	return ret;
1644 }
1645 
1646 void set_page_extent_mapped(struct page *page)
1647 {
1648 	if (!PagePrivate(page)) {
1649 		SetPagePrivate(page);
1650 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1651 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1652 		page_cache_get(page);
1653 	}
1654 }
1655 
1656 /*
1657  * basic readpage implementation.  Locked extent state structs are inserted
1658  * into the tree that are removed when the IO is done (by the end_io
1659  * handlers)
1660  */
1661 static int __extent_read_full_page(struct extent_map_tree *tree,
1662 				   struct page *page,
1663 				   get_extent_t *get_extent,
1664 				   struct bio **bio)
1665 {
1666 	struct inode *inode = page->mapping->host;
1667 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1668 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1669 	u64 end;
1670 	u64 cur = start;
1671 	u64 extent_offset;
1672 	u64 last_byte = i_size_read(inode);
1673 	u64 block_start;
1674 	u64 cur_end;
1675 	sector_t sector;
1676 	struct extent_map *em;
1677 	struct block_device *bdev;
1678 	int ret;
1679 	int nr = 0;
1680 	size_t page_offset = 0;
1681 	size_t iosize;
1682 	size_t blocksize = inode->i_sb->s_blocksize;
1683 
1684 	set_page_extent_mapped(page);
1685 
1686 	end = page_end;
1687 	lock_extent(tree, start, end, GFP_NOFS);
1688 
1689 	while (cur <= end) {
1690 		if (cur >= last_byte) {
1691 			char *userpage;
1692 			iosize = PAGE_CACHE_SIZE - page_offset;
1693 			userpage = kmap_atomic(page, KM_USER0);
1694 			memset(userpage + page_offset, 0, iosize);
1695 			flush_dcache_page(page);
1696 			kunmap_atomic(userpage, KM_USER0);
1697 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1698 					    GFP_NOFS);
1699 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1700 			break;
1701 		}
1702 		em = get_extent(inode, page, page_offset, cur, end, 0);
1703 		if (IS_ERR(em) || !em) {
1704 			SetPageError(page);
1705 			unlock_extent(tree, cur, end, GFP_NOFS);
1706 			break;
1707 		}
1708 
1709 		extent_offset = cur - em->start;
1710 		BUG_ON(em->end < cur);
1711 		BUG_ON(end < cur);
1712 
1713 		iosize = min(em->end - cur, end - cur) + 1;
1714 		cur_end = min(em->end, end);
1715 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1716 		sector = (em->block_start + extent_offset) >> 9;
1717 		bdev = em->bdev;
1718 		block_start = em->block_start;
1719 		free_extent_map(em);
1720 		em = NULL;
1721 
1722 		/* we've found a hole, just zero and go on */
1723 		if (block_start == EXTENT_MAP_HOLE) {
1724 			char *userpage;
1725 			userpage = kmap_atomic(page, KM_USER0);
1726 			memset(userpage + page_offset, 0, iosize);
1727 			flush_dcache_page(page);
1728 			kunmap_atomic(userpage, KM_USER0);
1729 
1730 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1731 					    GFP_NOFS);
1732 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1733 			cur = cur + iosize;
1734 			page_offset += iosize;
1735 			continue;
1736 		}
1737 		/* the get_extent function already copied into the page */
1738 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1739 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1740 			cur = cur + iosize;
1741 			page_offset += iosize;
1742 			continue;
1743 		}
1744 
1745 		ret = 0;
1746 		if (tree->ops && tree->ops->readpage_io_hook) {
1747 			ret = tree->ops->readpage_io_hook(page, cur,
1748 							  cur + iosize - 1);
1749 		}
1750 		if (!ret) {
1751 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1752 			nr -= page->index;
1753 			ret = submit_extent_page(READ, tree, page,
1754 					 sector, iosize, page_offset,
1755 					 bdev, bio, nr,
1756 					 end_bio_extent_readpage);
1757 		}
1758 		if (ret)
1759 			SetPageError(page);
1760 		cur = cur + iosize;
1761 		page_offset += iosize;
1762 		nr++;
1763 	}
1764 	if (!nr) {
1765 		if (!PageError(page))
1766 			SetPageUptodate(page);
1767 		unlock_page(page);
1768 	}
1769 	return 0;
1770 }
1771 
1772 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1773 			    get_extent_t *get_extent)
1774 {
1775 	struct bio *bio = NULL;
1776 	int ret;
1777 
1778 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1779 	if (bio)
1780 		submit_one_bio(READ, bio);
1781 	return ret;
1782 }
1783 EXPORT_SYMBOL(extent_read_full_page);
1784 
1785 /*
1786  * the writepage semantics are similar to regular writepage.  extent
1787  * records are inserted to lock ranges in the tree, and as dirty areas
1788  * are found, they are marked writeback.  Then the lock bits are removed
1789  * and the end_io handler clears the writeback ranges
1790  */
1791 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1792 			      void *data)
1793 {
1794 	struct inode *inode = page->mapping->host;
1795 	struct extent_page_data *epd = data;
1796 	struct extent_map_tree *tree = epd->tree;
1797 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1798 	u64 delalloc_start;
1799 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1800 	u64 end;
1801 	u64 cur = start;
1802 	u64 extent_offset;
1803 	u64 last_byte = i_size_read(inode);
1804 	u64 block_start;
1805 	u64 iosize;
1806 	sector_t sector;
1807 	struct extent_map *em;
1808 	struct block_device *bdev;
1809 	int ret;
1810 	int nr = 0;
1811 	size_t page_offset = 0;
1812 	size_t blocksize;
1813 	loff_t i_size = i_size_read(inode);
1814 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1815 	u64 nr_delalloc;
1816 	u64 delalloc_end;
1817 
1818 	WARN_ON(!PageLocked(page));
1819 	if (page->index > end_index) {
1820 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1821 		unlock_page(page);
1822 		return 0;
1823 	}
1824 
1825 	if (page->index == end_index) {
1826 		char *userpage;
1827 
1828 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1829 
1830 		userpage = kmap_atomic(page, KM_USER0);
1831 		memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1832 		flush_dcache_page(page);
1833 		kunmap_atomic(userpage, KM_USER0);
1834 	}
1835 
1836 	set_page_extent_mapped(page);
1837 
1838 	delalloc_start = start;
1839 	delalloc_end = 0;
1840 	while(delalloc_end < page_end) {
1841 		nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1842 						       &delalloc_end,
1843 						       128 * 1024 * 1024);
1844 		if (nr_delalloc <= 0)
1845 			break;
1846 		tree->ops->fill_delalloc(inode, delalloc_start,
1847 					 delalloc_end);
1848 		clear_extent_bit(tree, delalloc_start,
1849 				 delalloc_end,
1850 				 EXTENT_LOCKED | EXTENT_DELALLOC,
1851 				 1, 0, GFP_NOFS);
1852 		delalloc_start = delalloc_end + 1;
1853 	}
1854 	lock_extent(tree, start, page_end, GFP_NOFS);
1855 
1856 	end = page_end;
1857 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1858 		printk("found delalloc bits after lock_extent\n");
1859 	}
1860 
1861 	if (last_byte <= start) {
1862 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1863 		goto done;
1864 	}
1865 
1866 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1867 	blocksize = inode->i_sb->s_blocksize;
1868 
1869 	while (cur <= end) {
1870 		if (cur >= last_byte) {
1871 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1872 			break;
1873 		}
1874 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1875 		if (IS_ERR(em) || !em) {
1876 			SetPageError(page);
1877 			break;
1878 		}
1879 
1880 		extent_offset = cur - em->start;
1881 		BUG_ON(em->end < cur);
1882 		BUG_ON(end < cur);
1883 		iosize = min(em->end - cur, end - cur) + 1;
1884 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1885 		sector = (em->block_start + extent_offset) >> 9;
1886 		bdev = em->bdev;
1887 		block_start = em->block_start;
1888 		free_extent_map(em);
1889 		em = NULL;
1890 
1891 		if (block_start == EXTENT_MAP_HOLE ||
1892 		    block_start == EXTENT_MAP_INLINE) {
1893 			clear_extent_dirty(tree, cur,
1894 					   cur + iosize - 1, GFP_NOFS);
1895 			cur = cur + iosize;
1896 			page_offset += iosize;
1897 			continue;
1898 		}
1899 
1900 		/* leave this out until we have a page_mkwrite call */
1901 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1902 				   EXTENT_DIRTY, 0)) {
1903 			cur = cur + iosize;
1904 			page_offset += iosize;
1905 			continue;
1906 		}
1907 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1908 		if (tree->ops && tree->ops->writepage_io_hook) {
1909 			ret = tree->ops->writepage_io_hook(page, cur,
1910 						cur + iosize - 1);
1911 		} else {
1912 			ret = 0;
1913 		}
1914 		if (ret)
1915 			SetPageError(page);
1916 		else {
1917 			unsigned long max_nr = end_index + 1;
1918 			set_range_writeback(tree, cur, cur + iosize - 1);
1919 			if (!PageWriteback(page)) {
1920 				printk("warning page %lu not writeback, "
1921 				       "cur %llu end %llu\n", page->index,
1922 				       (unsigned long long)cur,
1923 				       (unsigned long long)end);
1924 			}
1925 
1926 			ret = submit_extent_page(WRITE, tree, page, sector,
1927 						 iosize, page_offset, bdev,
1928 						 &epd->bio, max_nr,
1929 						 end_bio_extent_writepage);
1930 			if (ret)
1931 				SetPageError(page);
1932 		}
1933 		cur = cur + iosize;
1934 		page_offset += iosize;
1935 		nr++;
1936 	}
1937 done:
1938 	if (nr == 0) {
1939 		/* make sure the mapping tag for page dirty gets cleared */
1940 		set_page_writeback(page);
1941 		end_page_writeback(page);
1942 	}
1943 	unlock_extent(tree, start, page_end, GFP_NOFS);
1944 	unlock_page(page);
1945 	return 0;
1946 }
1947 
1948 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1949 
1950 /* Taken directly from 2.6.23 for 2.6.18 back port */
1951 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
1952                                 void *data);
1953 
1954 /**
1955  * write_cache_pages - walk the list of dirty pages of the given address space
1956  * and write all of them.
1957  * @mapping: address space structure to write
1958  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1959  * @writepage: function called for each page
1960  * @data: data passed to writepage function
1961  *
1962  * If a page is already under I/O, write_cache_pages() skips it, even
1963  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1964  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1965  * and msync() need to guarantee that all the data which was dirty at the time
1966  * the call was made get new I/O started against them.  If wbc->sync_mode is
1967  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1968  * existing IO to complete.
1969  */
1970 static int write_cache_pages(struct address_space *mapping,
1971 		      struct writeback_control *wbc, writepage_t writepage,
1972 		      void *data)
1973 {
1974 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1975 	int ret = 0;
1976 	int done = 0;
1977 	struct pagevec pvec;
1978 	int nr_pages;
1979 	pgoff_t index;
1980 	pgoff_t end;		/* Inclusive */
1981 	int scanned = 0;
1982 	int range_whole = 0;
1983 
1984 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
1985 		wbc->encountered_congestion = 1;
1986 		return 0;
1987 	}
1988 
1989 	pagevec_init(&pvec, 0);
1990 	if (wbc->range_cyclic) {
1991 		index = mapping->writeback_index; /* Start from prev offset */
1992 		end = -1;
1993 	} else {
1994 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1995 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1996 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1997 			range_whole = 1;
1998 		scanned = 1;
1999 	}
2000 retry:
2001 	while (!done && (index <= end) &&
2002 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2003 					      PAGECACHE_TAG_DIRTY,
2004 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2005 		unsigned i;
2006 
2007 		scanned = 1;
2008 		for (i = 0; i < nr_pages; i++) {
2009 			struct page *page = pvec.pages[i];
2010 
2011 			/*
2012 			 * At this point we hold neither mapping->tree_lock nor
2013 			 * lock on the page itself: the page may be truncated or
2014 			 * invalidated (changing page->mapping to NULL), or even
2015 			 * swizzled back from swapper_space to tmpfs file
2016 			 * mapping
2017 			 */
2018 			lock_page(page);
2019 
2020 			if (unlikely(page->mapping != mapping)) {
2021 				unlock_page(page);
2022 				continue;
2023 			}
2024 
2025 			if (!wbc->range_cyclic && page->index > end) {
2026 				done = 1;
2027 				unlock_page(page);
2028 				continue;
2029 			}
2030 
2031 			if (wbc->sync_mode != WB_SYNC_NONE)
2032 				wait_on_page_writeback(page);
2033 
2034 			if (PageWriteback(page) ||
2035 			    !clear_page_dirty_for_io(page)) {
2036 				unlock_page(page);
2037 				continue;
2038 			}
2039 
2040 			ret = (*writepage)(page, wbc, data);
2041 
2042 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2043 				unlock_page(page);
2044 				ret = 0;
2045 			}
2046 			if (ret || (--(wbc->nr_to_write) <= 0))
2047 				done = 1;
2048 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
2049 				wbc->encountered_congestion = 1;
2050 				done = 1;
2051 			}
2052 		}
2053 		pagevec_release(&pvec);
2054 		cond_resched();
2055 	}
2056 	if (!scanned && !done) {
2057 		/*
2058 		 * We hit the last page and there is more work to be done: wrap
2059 		 * back to the start of the file
2060 		 */
2061 		scanned = 1;
2062 		index = 0;
2063 		goto retry;
2064 	}
2065 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2066 		mapping->writeback_index = index;
2067 	return ret;
2068 }
2069 #endif
2070 
2071 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
2072 			  get_extent_t *get_extent,
2073 			  struct writeback_control *wbc)
2074 {
2075 	int ret;
2076 	struct address_space *mapping = page->mapping;
2077 	struct extent_page_data epd = {
2078 		.bio = NULL,
2079 		.tree = tree,
2080 		.get_extent = get_extent,
2081 	};
2082 	struct writeback_control wbc_writepages = {
2083 		.bdi		= wbc->bdi,
2084 		.sync_mode	= WB_SYNC_NONE,
2085 		.older_than_this = NULL,
2086 		.nr_to_write	= 64,
2087 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2088 		.range_end	= (loff_t)-1,
2089 	};
2090 
2091 
2092 	ret = __extent_writepage(page, wbc, &epd);
2093 
2094 	write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2095 	if (epd.bio) {
2096 		submit_one_bio(WRITE, epd.bio);
2097 	}
2098 	return ret;
2099 }
2100 EXPORT_SYMBOL(extent_write_full_page);
2101 
2102 
2103 int extent_writepages(struct extent_map_tree *tree,
2104 		      struct address_space *mapping,
2105 		      get_extent_t *get_extent,
2106 		      struct writeback_control *wbc)
2107 {
2108 	int ret = 0;
2109 	struct extent_page_data epd = {
2110 		.bio = NULL,
2111 		.tree = tree,
2112 		.get_extent = get_extent,
2113 	};
2114 
2115 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2116 	if (epd.bio) {
2117 		submit_one_bio(WRITE, epd.bio);
2118 	}
2119 	return ret;
2120 }
2121 EXPORT_SYMBOL(extent_writepages);
2122 
2123 int extent_readpages(struct extent_map_tree *tree,
2124 		     struct address_space *mapping,
2125 		     struct list_head *pages, unsigned nr_pages,
2126 		     get_extent_t get_extent)
2127 {
2128 	struct bio *bio = NULL;
2129 	unsigned page_idx;
2130 	struct pagevec pvec;
2131 
2132 	pagevec_init(&pvec, 0);
2133 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2134 		struct page *page = list_entry(pages->prev, struct page, lru);
2135 
2136 		prefetchw(&page->flags);
2137 		list_del(&page->lru);
2138 		/*
2139 		 * what we want to do here is call add_to_page_cache_lru,
2140 		 * but that isn't exported, so we reproduce it here
2141 		 */
2142 		if (!add_to_page_cache(page, mapping,
2143 					page->index, GFP_KERNEL)) {
2144 
2145 			/* open coding of lru_cache_add, also not exported */
2146 			page_cache_get(page);
2147 			if (!pagevec_add(&pvec, page))
2148 				__pagevec_lru_add(&pvec);
2149 			__extent_read_full_page(tree, page, get_extent, &bio);
2150 		}
2151 		page_cache_release(page);
2152 	}
2153 	if (pagevec_count(&pvec))
2154 		__pagevec_lru_add(&pvec);
2155 	BUG_ON(!list_empty(pages));
2156 	if (bio)
2157 		submit_one_bio(READ, bio);
2158 	return 0;
2159 }
2160 EXPORT_SYMBOL(extent_readpages);
2161 
2162 /*
2163  * basic invalidatepage code, this waits on any locked or writeback
2164  * ranges corresponding to the page, and then deletes any extent state
2165  * records from the tree
2166  */
2167 int extent_invalidatepage(struct extent_map_tree *tree,
2168 			  struct page *page, unsigned long offset)
2169 {
2170 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2171 	u64 end = start + PAGE_CACHE_SIZE - 1;
2172 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2173 
2174 	start += (offset + blocksize -1) & ~(blocksize - 1);
2175 	if (start > end)
2176 		return 0;
2177 
2178 	lock_extent(tree, start, end, GFP_NOFS);
2179 	wait_on_extent_writeback(tree, start, end);
2180 	clear_extent_bit(tree, start, end,
2181 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2182 			 1, 1, GFP_NOFS);
2183 	return 0;
2184 }
2185 EXPORT_SYMBOL(extent_invalidatepage);
2186 
2187 /*
2188  * simple commit_write call, set_range_dirty is used to mark both
2189  * the pages and the extent records as dirty
2190  */
2191 int extent_commit_write(struct extent_map_tree *tree,
2192 			struct inode *inode, struct page *page,
2193 			unsigned from, unsigned to)
2194 {
2195 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2196 
2197 	set_page_extent_mapped(page);
2198 	set_page_dirty(page);
2199 
2200 	if (pos > inode->i_size) {
2201 		i_size_write(inode, pos);
2202 		mark_inode_dirty(inode);
2203 	}
2204 	return 0;
2205 }
2206 EXPORT_SYMBOL(extent_commit_write);
2207 
2208 int extent_prepare_write(struct extent_map_tree *tree,
2209 			 struct inode *inode, struct page *page,
2210 			 unsigned from, unsigned to, get_extent_t *get_extent)
2211 {
2212 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2213 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2214 	u64 block_start;
2215 	u64 orig_block_start;
2216 	u64 block_end;
2217 	u64 cur_end;
2218 	struct extent_map *em;
2219 	unsigned blocksize = 1 << inode->i_blkbits;
2220 	size_t page_offset = 0;
2221 	size_t block_off_start;
2222 	size_t block_off_end;
2223 	int err = 0;
2224 	int iocount = 0;
2225 	int ret = 0;
2226 	int isnew;
2227 
2228 	set_page_extent_mapped(page);
2229 
2230 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2231 	block_end = (page_start + to - 1) | (blocksize - 1);
2232 	orig_block_start = block_start;
2233 
2234 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2235 	while(block_start <= block_end) {
2236 		em = get_extent(inode, page, page_offset, block_start,
2237 				block_end, 1);
2238 		if (IS_ERR(em) || !em) {
2239 			goto err;
2240 		}
2241 		cur_end = min(block_end, em->end);
2242 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2243 		block_off_end = block_off_start + blocksize;
2244 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2245 
2246 		if (!PageUptodate(page) && isnew &&
2247 		    (block_off_end > to || block_off_start < from)) {
2248 			void *kaddr;
2249 
2250 			kaddr = kmap_atomic(page, KM_USER0);
2251 			if (block_off_end > to)
2252 				memset(kaddr + to, 0, block_off_end - to);
2253 			if (block_off_start < from)
2254 				memset(kaddr + block_off_start, 0,
2255 				       from - block_off_start);
2256 			flush_dcache_page(page);
2257 			kunmap_atomic(kaddr, KM_USER0);
2258 		}
2259 		if ((em->block_start != EXTENT_MAP_HOLE &&
2260 		     em->block_start != EXTENT_MAP_INLINE) &&
2261 		    !isnew && !PageUptodate(page) &&
2262 		    (block_off_end > to || block_off_start < from) &&
2263 		    !test_range_bit(tree, block_start, cur_end,
2264 				    EXTENT_UPTODATE, 1)) {
2265 			u64 sector;
2266 			u64 extent_offset = block_start - em->start;
2267 			size_t iosize;
2268 			sector = (em->block_start + extent_offset) >> 9;
2269 			iosize = (cur_end - block_start + blocksize - 1) &
2270 				~((u64)blocksize - 1);
2271 			/*
2272 			 * we've already got the extent locked, but we
2273 			 * need to split the state such that our end_bio
2274 			 * handler can clear the lock.
2275 			 */
2276 			set_extent_bit(tree, block_start,
2277 				       block_start + iosize - 1,
2278 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2279 			ret = submit_extent_page(READ, tree, page,
2280 					 sector, iosize, page_offset, em->bdev,
2281 					 NULL, 1,
2282 					 end_bio_extent_preparewrite);
2283 			iocount++;
2284 			block_start = block_start + iosize;
2285 		} else {
2286 			set_extent_uptodate(tree, block_start, cur_end,
2287 					    GFP_NOFS);
2288 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2289 			block_start = cur_end + 1;
2290 		}
2291 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2292 		free_extent_map(em);
2293 	}
2294 	if (iocount) {
2295 		wait_extent_bit(tree, orig_block_start,
2296 				block_end, EXTENT_LOCKED);
2297 	}
2298 	check_page_uptodate(tree, page);
2299 err:
2300 	/* FIXME, zero out newly allocated blocks on error */
2301 	return err;
2302 }
2303 EXPORT_SYMBOL(extent_prepare_write);
2304 
2305 /*
2306  * a helper for releasepage.  As long as there are no locked extents
2307  * in the range corresponding to the page, both state records and extent
2308  * map records are removed
2309  */
2310 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2311 {
2312 	struct extent_map *em;
2313 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2314 	u64 end = start + PAGE_CACHE_SIZE - 1;
2315 	u64 orig_start = start;
2316 	int ret = 1;
2317 
2318 	while (start <= end) {
2319 		em = lookup_extent_mapping(tree, start, end);
2320 		if (!em || IS_ERR(em))
2321 			break;
2322 		if (!test_range_bit(tree, em->start, em->end,
2323 				    EXTENT_LOCKED, 0)) {
2324 			remove_extent_mapping(tree, em);
2325 			/* once for the rb tree */
2326 			free_extent_map(em);
2327 		}
2328 		start = em->end + 1;
2329 		/* once for us */
2330 		free_extent_map(em);
2331 	}
2332 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2333 		ret = 0;
2334 	else
2335 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2336 				 1, 1, GFP_NOFS);
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL(try_release_extent_mapping);
2340 
2341 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2342 		get_extent_t *get_extent)
2343 {
2344 	struct inode *inode = mapping->host;
2345 	u64 start = iblock << inode->i_blkbits;
2346 	u64 end = start + (1 << inode->i_blkbits) - 1;
2347 	sector_t sector = 0;
2348 	struct extent_map *em;
2349 
2350 	em = get_extent(inode, NULL, 0, start, end, 0);
2351 	if (!em || IS_ERR(em))
2352 		return 0;
2353 
2354 	if (em->block_start == EXTENT_MAP_INLINE ||
2355 	    em->block_start == EXTENT_MAP_HOLE)
2356 		goto out;
2357 
2358 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2359 out:
2360 	free_extent_map(em);
2361 	return sector;
2362 }
2363 
2364 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2365 {
2366 	if (list_empty(&eb->lru)) {
2367 		extent_buffer_get(eb);
2368 		list_add(&eb->lru, &tree->buffer_lru);
2369 		tree->lru_size++;
2370 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2371 			struct extent_buffer *rm;
2372 			rm = list_entry(tree->buffer_lru.prev,
2373 					struct extent_buffer, lru);
2374 			tree->lru_size--;
2375 			list_del_init(&rm->lru);
2376 			free_extent_buffer(rm);
2377 		}
2378 	} else
2379 		list_move(&eb->lru, &tree->buffer_lru);
2380 	return 0;
2381 }
2382 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2383 				      u64 start, unsigned long len)
2384 {
2385 	struct list_head *lru = &tree->buffer_lru;
2386 	struct list_head *cur = lru->next;
2387 	struct extent_buffer *eb;
2388 
2389 	if (list_empty(lru))
2390 		return NULL;
2391 
2392 	do {
2393 		eb = list_entry(cur, struct extent_buffer, lru);
2394 		if (eb->start == start && eb->len == len) {
2395 			extent_buffer_get(eb);
2396 			return eb;
2397 		}
2398 		cur = cur->next;
2399 	} while (cur != lru);
2400 	return NULL;
2401 }
2402 
2403 static inline unsigned long num_extent_pages(u64 start, u64 len)
2404 {
2405 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2406 		(start >> PAGE_CACHE_SHIFT);
2407 }
2408 
2409 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2410 					      unsigned long i)
2411 {
2412 	struct page *p;
2413 	struct address_space *mapping;
2414 
2415 	if (i == 0)
2416 		return eb->first_page;
2417 	i += eb->start >> PAGE_CACHE_SHIFT;
2418 	mapping = eb->first_page->mapping;
2419 	read_lock_irq(&mapping->tree_lock);
2420 	p = radix_tree_lookup(&mapping->page_tree, i);
2421 	read_unlock_irq(&mapping->tree_lock);
2422 	return p;
2423 }
2424 
2425 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2426 						   u64 start,
2427 						   unsigned long len,
2428 						   gfp_t mask)
2429 {
2430 	struct extent_buffer *eb = NULL;
2431 
2432 	spin_lock(&tree->lru_lock);
2433 	eb = find_lru(tree, start, len);
2434 	spin_unlock(&tree->lru_lock);
2435 	if (eb) {
2436 		return eb;
2437 	}
2438 
2439 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2440 	INIT_LIST_HEAD(&eb->lru);
2441 	eb->start = start;
2442 	eb->len = len;
2443 	atomic_set(&eb->refs, 1);
2444 
2445 	return eb;
2446 }
2447 
2448 static void __free_extent_buffer(struct extent_buffer *eb)
2449 {
2450 	kmem_cache_free(extent_buffer_cache, eb);
2451 }
2452 
2453 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2454 					  u64 start, unsigned long len,
2455 					  struct page *page0,
2456 					  gfp_t mask)
2457 {
2458 	unsigned long num_pages = num_extent_pages(start, len);
2459 	unsigned long i;
2460 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2461 	struct extent_buffer *eb;
2462 	struct page *p;
2463 	struct address_space *mapping = tree->mapping;
2464 	int uptodate = 1;
2465 
2466 	eb = __alloc_extent_buffer(tree, start, len, mask);
2467 	if (!eb || IS_ERR(eb))
2468 		return NULL;
2469 
2470 	if (eb->flags & EXTENT_BUFFER_FILLED)
2471 		goto lru_add;
2472 
2473 	if (page0) {
2474 		eb->first_page = page0;
2475 		i = 1;
2476 		index++;
2477 		page_cache_get(page0);
2478 		mark_page_accessed(page0);
2479 		set_page_extent_mapped(page0);
2480 		WARN_ON(!PageUptodate(page0));
2481 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2482 				 len << 2);
2483 	} else {
2484 		i = 0;
2485 	}
2486 	for (; i < num_pages; i++, index++) {
2487 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2488 		if (!p) {
2489 			WARN_ON(1);
2490 			goto fail;
2491 		}
2492 		set_page_extent_mapped(p);
2493 		mark_page_accessed(p);
2494 		if (i == 0) {
2495 			eb->first_page = p;
2496 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2497 					 len << 2);
2498 		} else {
2499 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2500 		}
2501 		if (!PageUptodate(p))
2502 			uptodate = 0;
2503 		unlock_page(p);
2504 	}
2505 	if (uptodate)
2506 		eb->flags |= EXTENT_UPTODATE;
2507 	eb->flags |= EXTENT_BUFFER_FILLED;
2508 
2509 lru_add:
2510 	spin_lock(&tree->lru_lock);
2511 	add_lru(tree, eb);
2512 	spin_unlock(&tree->lru_lock);
2513 	return eb;
2514 
2515 fail:
2516 	spin_lock(&tree->lru_lock);
2517 	list_del_init(&eb->lru);
2518 	spin_unlock(&tree->lru_lock);
2519 	if (!atomic_dec_and_test(&eb->refs))
2520 		return NULL;
2521 	for (index = 1; index < i; index++) {
2522 		page_cache_release(extent_buffer_page(eb, index));
2523 	}
2524 	if (i > 0)
2525 		page_cache_release(extent_buffer_page(eb, 0));
2526 	__free_extent_buffer(eb);
2527 	return NULL;
2528 }
2529 EXPORT_SYMBOL(alloc_extent_buffer);
2530 
2531 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2532 					 u64 start, unsigned long len,
2533 					  gfp_t mask)
2534 {
2535 	unsigned long num_pages = num_extent_pages(start, len);
2536 	unsigned long i;
2537 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2538 	struct extent_buffer *eb;
2539 	struct page *p;
2540 	struct address_space *mapping = tree->mapping;
2541 	int uptodate = 1;
2542 
2543 	eb = __alloc_extent_buffer(tree, start, len, mask);
2544 	if (!eb || IS_ERR(eb))
2545 		return NULL;
2546 
2547 	if (eb->flags & EXTENT_BUFFER_FILLED)
2548 		goto lru_add;
2549 
2550 	for (i = 0; i < num_pages; i++, index++) {
2551 		p = find_lock_page(mapping, index);
2552 		if (!p) {
2553 			goto fail;
2554 		}
2555 		set_page_extent_mapped(p);
2556 		mark_page_accessed(p);
2557 
2558 		if (i == 0) {
2559 			eb->first_page = p;
2560 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2561 					 len << 2);
2562 		} else {
2563 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2564 		}
2565 
2566 		if (!PageUptodate(p))
2567 			uptodate = 0;
2568 		unlock_page(p);
2569 	}
2570 	if (uptodate)
2571 		eb->flags |= EXTENT_UPTODATE;
2572 	eb->flags |= EXTENT_BUFFER_FILLED;
2573 
2574 lru_add:
2575 	spin_lock(&tree->lru_lock);
2576 	add_lru(tree, eb);
2577 	spin_unlock(&tree->lru_lock);
2578 	return eb;
2579 fail:
2580 	spin_lock(&tree->lru_lock);
2581 	list_del_init(&eb->lru);
2582 	spin_unlock(&tree->lru_lock);
2583 	if (!atomic_dec_and_test(&eb->refs))
2584 		return NULL;
2585 	for (index = 1; index < i; index++) {
2586 		page_cache_release(extent_buffer_page(eb, index));
2587 	}
2588 	if (i > 0)
2589 		page_cache_release(extent_buffer_page(eb, 0));
2590 	__free_extent_buffer(eb);
2591 	return NULL;
2592 }
2593 EXPORT_SYMBOL(find_extent_buffer);
2594 
2595 void free_extent_buffer(struct extent_buffer *eb)
2596 {
2597 	unsigned long i;
2598 	unsigned long num_pages;
2599 
2600 	if (!eb)
2601 		return;
2602 
2603 	if (!atomic_dec_and_test(&eb->refs))
2604 		return;
2605 
2606 	WARN_ON(!list_empty(&eb->lru));
2607 	num_pages = num_extent_pages(eb->start, eb->len);
2608 
2609 	for (i = 1; i < num_pages; i++) {
2610 		page_cache_release(extent_buffer_page(eb, i));
2611 	}
2612 	page_cache_release(extent_buffer_page(eb, 0));
2613 	__free_extent_buffer(eb);
2614 }
2615 EXPORT_SYMBOL(free_extent_buffer);
2616 
2617 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2618 			      struct extent_buffer *eb)
2619 {
2620 	int set;
2621 	unsigned long i;
2622 	unsigned long num_pages;
2623 	struct page *page;
2624 
2625 	u64 start = eb->start;
2626 	u64 end = start + eb->len - 1;
2627 
2628 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2629 	num_pages = num_extent_pages(eb->start, eb->len);
2630 
2631 	for (i = 0; i < num_pages; i++) {
2632 		page = extent_buffer_page(eb, i);
2633 		lock_page(page);
2634 		/*
2635 		 * if we're on the last page or the first page and the
2636 		 * block isn't aligned on a page boundary, do extra checks
2637 		 * to make sure we don't clean page that is partially dirty
2638 		 */
2639 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2640 		    ((i == num_pages - 1) &&
2641 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2642 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2643 			end  = start + PAGE_CACHE_SIZE - 1;
2644 			if (test_range_bit(tree, start, end,
2645 					   EXTENT_DIRTY, 0)) {
2646 				unlock_page(page);
2647 				continue;
2648 			}
2649 		}
2650 		clear_page_dirty_for_io(page);
2651 		write_lock_irq(&page->mapping->tree_lock);
2652 		if (!PageDirty(page)) {
2653 			radix_tree_tag_clear(&page->mapping->page_tree,
2654 						page_index(page),
2655 						PAGECACHE_TAG_DIRTY);
2656 		}
2657 		write_unlock_irq(&page->mapping->tree_lock);
2658 		unlock_page(page);
2659 	}
2660 	return 0;
2661 }
2662 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2663 
2664 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2665 				    struct extent_buffer *eb)
2666 {
2667 	return wait_on_extent_writeback(tree, eb->start,
2668 					eb->start + eb->len - 1);
2669 }
2670 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2671 
2672 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2673 			     struct extent_buffer *eb)
2674 {
2675 	unsigned long i;
2676 	unsigned long num_pages;
2677 
2678 	num_pages = num_extent_pages(eb->start, eb->len);
2679 	for (i = 0; i < num_pages; i++) {
2680 		struct page *page = extent_buffer_page(eb, i);
2681 		/* writepage may need to do something special for the
2682 		 * first page, we have to make sure page->private is
2683 		 * properly set.  releasepage may drop page->private
2684 		 * on us if the page isn't already dirty.
2685 		 */
2686 		if (i == 0) {
2687 			lock_page(page);
2688 			set_page_private(page,
2689 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2690 					 eb->len << 2);
2691 		}
2692 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2693 		if (i == 0)
2694 			unlock_page(page);
2695 	}
2696 	return set_extent_dirty(tree, eb->start,
2697 				eb->start + eb->len - 1, GFP_NOFS);
2698 }
2699 EXPORT_SYMBOL(set_extent_buffer_dirty);
2700 
2701 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2702 				struct extent_buffer *eb)
2703 {
2704 	unsigned long i;
2705 	struct page *page;
2706 	unsigned long num_pages;
2707 
2708 	num_pages = num_extent_pages(eb->start, eb->len);
2709 
2710 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2711 			    GFP_NOFS);
2712 	for (i = 0; i < num_pages; i++) {
2713 		page = extent_buffer_page(eb, i);
2714 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2715 		    ((i == num_pages - 1) &&
2716 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2717 			check_page_uptodate(tree, page);
2718 			continue;
2719 		}
2720 		SetPageUptodate(page);
2721 	}
2722 	return 0;
2723 }
2724 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2725 
2726 int extent_buffer_uptodate(struct extent_map_tree *tree,
2727 			     struct extent_buffer *eb)
2728 {
2729 	if (eb->flags & EXTENT_UPTODATE)
2730 		return 1;
2731 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2732 			   EXTENT_UPTODATE, 1);
2733 }
2734 EXPORT_SYMBOL(extent_buffer_uptodate);
2735 
2736 int read_extent_buffer_pages(struct extent_map_tree *tree,
2737 			     struct extent_buffer *eb,
2738 			     u64 start,
2739 			     int wait)
2740 {
2741 	unsigned long i;
2742 	unsigned long start_i;
2743 	struct page *page;
2744 	int err;
2745 	int ret = 0;
2746 	unsigned long num_pages;
2747 
2748 	if (eb->flags & EXTENT_UPTODATE)
2749 		return 0;
2750 
2751 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2752 			   EXTENT_UPTODATE, 1)) {
2753 		return 0;
2754 	}
2755 
2756 	if (start) {
2757 		WARN_ON(start < eb->start);
2758 		start_i = (start >> PAGE_CACHE_SHIFT) -
2759 			(eb->start >> PAGE_CACHE_SHIFT);
2760 	} else {
2761 		start_i = 0;
2762 	}
2763 
2764 	num_pages = num_extent_pages(eb->start, eb->len);
2765 	for (i = start_i; i < num_pages; i++) {
2766 		page = extent_buffer_page(eb, i);
2767 		if (PageUptodate(page)) {
2768 			continue;
2769 		}
2770 		if (!wait) {
2771 			if (TestSetPageLocked(page)) {
2772 				continue;
2773 			}
2774 		} else {
2775 			lock_page(page);
2776 		}
2777 		if (!PageUptodate(page)) {
2778 			err = page->mapping->a_ops->readpage(NULL, page);
2779 			if (err) {
2780 				ret = err;
2781 			}
2782 		} else {
2783 			unlock_page(page);
2784 		}
2785 	}
2786 
2787 	if (ret || !wait) {
2788 		return ret;
2789 	}
2790 
2791 	for (i = start_i; i < num_pages; i++) {
2792 		page = extent_buffer_page(eb, i);
2793 		wait_on_page_locked(page);
2794 		if (!PageUptodate(page)) {
2795 			ret = -EIO;
2796 		}
2797 	}
2798 	if (!ret)
2799 		eb->flags |= EXTENT_UPTODATE;
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL(read_extent_buffer_pages);
2803 
2804 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2805 			unsigned long start,
2806 			unsigned long len)
2807 {
2808 	size_t cur;
2809 	size_t offset;
2810 	struct page *page;
2811 	char *kaddr;
2812 	char *dst = (char *)dstv;
2813 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2814 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2815 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2816 
2817 	WARN_ON(start > eb->len);
2818 	WARN_ON(start + len > eb->start + eb->len);
2819 
2820 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2821 
2822 	while(len > 0) {
2823 		page = extent_buffer_page(eb, i);
2824 		if (!PageUptodate(page)) {
2825 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2826 			WARN_ON(1);
2827 		}
2828 		WARN_ON(!PageUptodate(page));
2829 
2830 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2831 		kaddr = kmap_atomic(page, KM_USER1);
2832 		memcpy(dst, kaddr + offset, cur);
2833 		kunmap_atomic(kaddr, KM_USER1);
2834 
2835 		dst += cur;
2836 		len -= cur;
2837 		offset = 0;
2838 		i++;
2839 	}
2840 }
2841 EXPORT_SYMBOL(read_extent_buffer);
2842 
2843 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2844 			       unsigned long min_len, char **token, char **map,
2845 			       unsigned long *map_start,
2846 			       unsigned long *map_len, int km)
2847 {
2848 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2849 	char *kaddr;
2850 	struct page *p;
2851 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2852 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2853 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2854 		PAGE_CACHE_SHIFT;
2855 
2856 	if (i != end_i)
2857 		return -EINVAL;
2858 
2859 	if (i == 0) {
2860 		offset = start_offset;
2861 		*map_start = 0;
2862 	} else {
2863 		offset = 0;
2864 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2865 	}
2866 	if (start + min_len > eb->len) {
2867 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2868 		WARN_ON(1);
2869 	}
2870 
2871 	p = extent_buffer_page(eb, i);
2872 	WARN_ON(!PageUptodate(p));
2873 	kaddr = kmap_atomic(p, km);
2874 	*token = kaddr;
2875 	*map = kaddr + offset;
2876 	*map_len = PAGE_CACHE_SIZE - offset;
2877 	return 0;
2878 }
2879 EXPORT_SYMBOL(map_private_extent_buffer);
2880 
2881 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2882 		      unsigned long min_len,
2883 		      char **token, char **map,
2884 		      unsigned long *map_start,
2885 		      unsigned long *map_len, int km)
2886 {
2887 	int err;
2888 	int save = 0;
2889 	if (eb->map_token) {
2890 		unmap_extent_buffer(eb, eb->map_token, km);
2891 		eb->map_token = NULL;
2892 		save = 1;
2893 	}
2894 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2895 				       map_start, map_len, km);
2896 	if (!err && save) {
2897 		eb->map_token = *token;
2898 		eb->kaddr = *map;
2899 		eb->map_start = *map_start;
2900 		eb->map_len = *map_len;
2901 	}
2902 	return err;
2903 }
2904 EXPORT_SYMBOL(map_extent_buffer);
2905 
2906 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2907 {
2908 	kunmap_atomic(token, km);
2909 }
2910 EXPORT_SYMBOL(unmap_extent_buffer);
2911 
2912 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2913 			  unsigned long start,
2914 			  unsigned long len)
2915 {
2916 	size_t cur;
2917 	size_t offset;
2918 	struct page *page;
2919 	char *kaddr;
2920 	char *ptr = (char *)ptrv;
2921 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2922 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2923 	int ret = 0;
2924 
2925 	WARN_ON(start > eb->len);
2926 	WARN_ON(start + len > eb->start + eb->len);
2927 
2928 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2929 
2930 	while(len > 0) {
2931 		page = extent_buffer_page(eb, i);
2932 		WARN_ON(!PageUptodate(page));
2933 
2934 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2935 
2936 		kaddr = kmap_atomic(page, KM_USER0);
2937 		ret = memcmp(ptr, kaddr + offset, cur);
2938 		kunmap_atomic(kaddr, KM_USER0);
2939 		if (ret)
2940 			break;
2941 
2942 		ptr += cur;
2943 		len -= cur;
2944 		offset = 0;
2945 		i++;
2946 	}
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL(memcmp_extent_buffer);
2950 
2951 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2952 			 unsigned long start, unsigned long len)
2953 {
2954 	size_t cur;
2955 	size_t offset;
2956 	struct page *page;
2957 	char *kaddr;
2958 	char *src = (char *)srcv;
2959 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2960 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2961 
2962 	WARN_ON(start > eb->len);
2963 	WARN_ON(start + len > eb->start + eb->len);
2964 
2965 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2966 
2967 	while(len > 0) {
2968 		page = extent_buffer_page(eb, i);
2969 		WARN_ON(!PageUptodate(page));
2970 
2971 		cur = min(len, PAGE_CACHE_SIZE - offset);
2972 		kaddr = kmap_atomic(page, KM_USER1);
2973 		memcpy(kaddr + offset, src, cur);
2974 		kunmap_atomic(kaddr, KM_USER1);
2975 
2976 		src += cur;
2977 		len -= cur;
2978 		offset = 0;
2979 		i++;
2980 	}
2981 }
2982 EXPORT_SYMBOL(write_extent_buffer);
2983 
2984 void memset_extent_buffer(struct extent_buffer *eb, char c,
2985 			  unsigned long start, unsigned long len)
2986 {
2987 	size_t cur;
2988 	size_t offset;
2989 	struct page *page;
2990 	char *kaddr;
2991 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2992 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2993 
2994 	WARN_ON(start > eb->len);
2995 	WARN_ON(start + len > eb->start + eb->len);
2996 
2997 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2998 
2999 	while(len > 0) {
3000 		page = extent_buffer_page(eb, i);
3001 		WARN_ON(!PageUptodate(page));
3002 
3003 		cur = min(len, PAGE_CACHE_SIZE - offset);
3004 		kaddr = kmap_atomic(page, KM_USER0);
3005 		memset(kaddr + offset, c, cur);
3006 		kunmap_atomic(kaddr, KM_USER0);
3007 
3008 		len -= cur;
3009 		offset = 0;
3010 		i++;
3011 	}
3012 }
3013 EXPORT_SYMBOL(memset_extent_buffer);
3014 
3015 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3016 			unsigned long dst_offset, unsigned long src_offset,
3017 			unsigned long len)
3018 {
3019 	u64 dst_len = dst->len;
3020 	size_t cur;
3021 	size_t offset;
3022 	struct page *page;
3023 	char *kaddr;
3024 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3025 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3026 
3027 	WARN_ON(src->len != dst_len);
3028 
3029 	offset = (start_offset + dst_offset) &
3030 		((unsigned long)PAGE_CACHE_SIZE - 1);
3031 
3032 	while(len > 0) {
3033 		page = extent_buffer_page(dst, i);
3034 		WARN_ON(!PageUptodate(page));
3035 
3036 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3037 
3038 		kaddr = kmap_atomic(page, KM_USER0);
3039 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3040 		kunmap_atomic(kaddr, KM_USER0);
3041 
3042 		src_offset += cur;
3043 		len -= cur;
3044 		offset = 0;
3045 		i++;
3046 	}
3047 }
3048 EXPORT_SYMBOL(copy_extent_buffer);
3049 
3050 static void move_pages(struct page *dst_page, struct page *src_page,
3051 		       unsigned long dst_off, unsigned long src_off,
3052 		       unsigned long len)
3053 {
3054 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3055 	if (dst_page == src_page) {
3056 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3057 	} else {
3058 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3059 		char *p = dst_kaddr + dst_off + len;
3060 		char *s = src_kaddr + src_off + len;
3061 
3062 		while (len--)
3063 			*--p = *--s;
3064 
3065 		kunmap_atomic(src_kaddr, KM_USER1);
3066 	}
3067 	kunmap_atomic(dst_kaddr, KM_USER0);
3068 }
3069 
3070 static void copy_pages(struct page *dst_page, struct page *src_page,
3071 		       unsigned long dst_off, unsigned long src_off,
3072 		       unsigned long len)
3073 {
3074 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3075 	char *src_kaddr;
3076 
3077 	if (dst_page != src_page)
3078 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3079 	else
3080 		src_kaddr = dst_kaddr;
3081 
3082 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3083 	kunmap_atomic(dst_kaddr, KM_USER0);
3084 	if (dst_page != src_page)
3085 		kunmap_atomic(src_kaddr, KM_USER1);
3086 }
3087 
3088 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3089 			   unsigned long src_offset, unsigned long len)
3090 {
3091 	size_t cur;
3092 	size_t dst_off_in_page;
3093 	size_t src_off_in_page;
3094 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3095 	unsigned long dst_i;
3096 	unsigned long src_i;
3097 
3098 	if (src_offset + len > dst->len) {
3099 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3100 		       src_offset, len, dst->len);
3101 		BUG_ON(1);
3102 	}
3103 	if (dst_offset + len > dst->len) {
3104 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3105 		       dst_offset, len, dst->len);
3106 		BUG_ON(1);
3107 	}
3108 
3109 	while(len > 0) {
3110 		dst_off_in_page = (start_offset + dst_offset) &
3111 			((unsigned long)PAGE_CACHE_SIZE - 1);
3112 		src_off_in_page = (start_offset + src_offset) &
3113 			((unsigned long)PAGE_CACHE_SIZE - 1);
3114 
3115 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3116 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3117 
3118 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3119 					       src_off_in_page));
3120 		cur = min_t(unsigned long, cur,
3121 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3122 
3123 		copy_pages(extent_buffer_page(dst, dst_i),
3124 			   extent_buffer_page(dst, src_i),
3125 			   dst_off_in_page, src_off_in_page, cur);
3126 
3127 		src_offset += cur;
3128 		dst_offset += cur;
3129 		len -= cur;
3130 	}
3131 }
3132 EXPORT_SYMBOL(memcpy_extent_buffer);
3133 
3134 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3135 			   unsigned long src_offset, unsigned long len)
3136 {
3137 	size_t cur;
3138 	size_t dst_off_in_page;
3139 	size_t src_off_in_page;
3140 	unsigned long dst_end = dst_offset + len - 1;
3141 	unsigned long src_end = src_offset + len - 1;
3142 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3143 	unsigned long dst_i;
3144 	unsigned long src_i;
3145 
3146 	if (src_offset + len > dst->len) {
3147 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3148 		       src_offset, len, dst->len);
3149 		BUG_ON(1);
3150 	}
3151 	if (dst_offset + len > dst->len) {
3152 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3153 		       dst_offset, len, dst->len);
3154 		BUG_ON(1);
3155 	}
3156 	if (dst_offset < src_offset) {
3157 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3158 		return;
3159 	}
3160 	while(len > 0) {
3161 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3162 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3163 
3164 		dst_off_in_page = (start_offset + dst_end) &
3165 			((unsigned long)PAGE_CACHE_SIZE - 1);
3166 		src_off_in_page = (start_offset + src_end) &
3167 			((unsigned long)PAGE_CACHE_SIZE - 1);
3168 
3169 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3170 		cur = min(cur, dst_off_in_page + 1);
3171 		move_pages(extent_buffer_page(dst, dst_i),
3172 			   extent_buffer_page(dst, src_i),
3173 			   dst_off_in_page - cur + 1,
3174 			   src_off_in_page - cur + 1, cur);
3175 
3176 		dst_end -= cur;
3177 		src_end -= cur;
3178 		len -= cur;
3179 	}
3180 }
3181 EXPORT_SYMBOL(memmove_extent_buffer);
3182