xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 6d36dcd4)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include "extent_map.h"
12 
13 /* temporary define until extent_map moves out of btrfs */
14 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
15 				       unsigned long extra_flags,
16 				       void (*ctor)(void *, struct kmem_cache *,
17 						    unsigned long));
18 
19 static struct kmem_cache *extent_map_cache;
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22 static LIST_HEAD(extent_buffers);
23 static spinlock_t extent_buffers_lock;
24 static int nr_extent_buffers;
25 #define MAX_EXTENT_BUFFER_CACHE 128
26 
27 struct tree_entry {
28 	u64 start;
29 	u64 end;
30 	int in_tree;
31 	struct rb_node rb_node;
32 };
33 
34 void __init extent_map_init(void)
35 {
36 	extent_map_cache = btrfs_cache_create("extent_map",
37 					    sizeof(struct extent_map), 0,
38 					    NULL);
39 	extent_state_cache = btrfs_cache_create("extent_state",
40 					    sizeof(struct extent_state), 0,
41 					    NULL);
42 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
43 					    sizeof(struct extent_buffer), 0,
44 					    NULL);
45 	spin_lock_init(&extent_buffers_lock);
46 }
47 
48 void __exit extent_map_exit(void)
49 {
50 	struct extent_buffer *eb;
51 
52 	while (!list_empty(&extent_buffers)) {
53 		eb = list_entry(extent_buffers.next,
54 				struct extent_buffer, list);
55 		list_del(&eb->list);
56 		kmem_cache_free(extent_buffer_cache, eb);
57 	}
58 	if (extent_map_cache)
59 		kmem_cache_destroy(extent_map_cache);
60 	if (extent_state_cache)
61 		kmem_cache_destroy(extent_state_cache);
62 	if (extent_buffer_cache)
63 		kmem_cache_destroy(extent_buffer_cache);
64 }
65 
66 void extent_map_tree_init(struct extent_map_tree *tree,
67 			  struct address_space *mapping, gfp_t mask)
68 {
69 	tree->map.rb_node = NULL;
70 	tree->state.rb_node = NULL;
71 	tree->ops = NULL;
72 	rwlock_init(&tree->lock);
73 	tree->mapping = mapping;
74 }
75 EXPORT_SYMBOL(extent_map_tree_init);
76 
77 struct extent_map *alloc_extent_map(gfp_t mask)
78 {
79 	struct extent_map *em;
80 	em = kmem_cache_alloc(extent_map_cache, mask);
81 	if (!em || IS_ERR(em))
82 		return em;
83 	em->in_tree = 0;
84 	atomic_set(&em->refs, 1);
85 	return em;
86 }
87 EXPORT_SYMBOL(alloc_extent_map);
88 
89 void free_extent_map(struct extent_map *em)
90 {
91 	if (!em)
92 		return;
93 	if (atomic_dec_and_test(&em->refs)) {
94 		WARN_ON(em->in_tree);
95 		kmem_cache_free(extent_map_cache, em);
96 	}
97 }
98 EXPORT_SYMBOL(free_extent_map);
99 
100 
101 struct extent_state *alloc_extent_state(gfp_t mask)
102 {
103 	struct extent_state *state;
104 	state = kmem_cache_alloc(extent_state_cache, mask);
105 	if (!state || IS_ERR(state))
106 		return state;
107 	state->state = 0;
108 	state->in_tree = 0;
109 	state->private = 0;
110 	atomic_set(&state->refs, 1);
111 	init_waitqueue_head(&state->wq);
112 	return state;
113 }
114 EXPORT_SYMBOL(alloc_extent_state);
115 
116 void free_extent_state(struct extent_state *state)
117 {
118 	if (!state)
119 		return;
120 	if (atomic_dec_and_test(&state->refs)) {
121 		WARN_ON(state->in_tree);
122 		kmem_cache_free(extent_state_cache, state);
123 	}
124 }
125 EXPORT_SYMBOL(free_extent_state);
126 
127 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
128 				   struct rb_node *node)
129 {
130 	struct rb_node ** p = &root->rb_node;
131 	struct rb_node * parent = NULL;
132 	struct tree_entry *entry;
133 
134 	while(*p) {
135 		parent = *p;
136 		entry = rb_entry(parent, struct tree_entry, rb_node);
137 
138 		if (offset < entry->start)
139 			p = &(*p)->rb_left;
140 		else if (offset > entry->end)
141 			p = &(*p)->rb_right;
142 		else
143 			return parent;
144 	}
145 
146 	entry = rb_entry(node, struct tree_entry, rb_node);
147 	entry->in_tree = 1;
148 	rb_link_node(node, parent, p);
149 	rb_insert_color(node, root);
150 	return NULL;
151 }
152 
153 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
154 				   struct rb_node **prev_ret)
155 {
156 	struct rb_node * n = root->rb_node;
157 	struct rb_node *prev = NULL;
158 	struct tree_entry *entry;
159 	struct tree_entry *prev_entry = NULL;
160 
161 	while(n) {
162 		entry = rb_entry(n, struct tree_entry, rb_node);
163 		prev = n;
164 		prev_entry = entry;
165 
166 		if (offset < entry->start)
167 			n = n->rb_left;
168 		else if (offset > entry->end)
169 			n = n->rb_right;
170 		else
171 			return n;
172 	}
173 	if (!prev_ret)
174 		return NULL;
175 	while(prev && offset > prev_entry->end) {
176 		prev = rb_next(prev);
177 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
178 	}
179 	*prev_ret = prev;
180 	return NULL;
181 }
182 
183 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
184 {
185 	struct rb_node *prev;
186 	struct rb_node *ret;
187 	ret = __tree_search(root, offset, &prev);
188 	if (!ret)
189 		return prev;
190 	return ret;
191 }
192 
193 static int tree_delete(struct rb_root *root, u64 offset)
194 {
195 	struct rb_node *node;
196 	struct tree_entry *entry;
197 
198 	node = __tree_search(root, offset, NULL);
199 	if (!node)
200 		return -ENOENT;
201 	entry = rb_entry(node, struct tree_entry, rb_node);
202 	entry->in_tree = 0;
203 	rb_erase(node, root);
204 	return 0;
205 }
206 
207 /*
208  * add_extent_mapping tries a simple backward merge with existing
209  * mappings.  The extent_map struct passed in will be inserted into
210  * the tree directly (no copies made, just a reference taken).
211  */
212 int add_extent_mapping(struct extent_map_tree *tree,
213 		       struct extent_map *em)
214 {
215 	int ret = 0;
216 	struct extent_map *prev = NULL;
217 	struct rb_node *rb;
218 
219 	write_lock_irq(&tree->lock);
220 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
221 	if (rb) {
222 		prev = rb_entry(rb, struct extent_map, rb_node);
223 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
224 		ret = -EEXIST;
225 		goto out;
226 	}
227 	atomic_inc(&em->refs);
228 	if (em->start != 0) {
229 		rb = rb_prev(&em->rb_node);
230 		if (rb)
231 			prev = rb_entry(rb, struct extent_map, rb_node);
232 		if (prev && prev->end + 1 == em->start &&
233 		    ((em->block_start == EXTENT_MAP_HOLE &&
234 		      prev->block_start == EXTENT_MAP_HOLE) ||
235 			     (em->block_start == prev->block_end + 1))) {
236 			em->start = prev->start;
237 			em->block_start = prev->block_start;
238 			rb_erase(&prev->rb_node, &tree->map);
239 			prev->in_tree = 0;
240 			free_extent_map(prev);
241 		}
242 	 }
243 out:
244 	write_unlock_irq(&tree->lock);
245 	return ret;
246 }
247 EXPORT_SYMBOL(add_extent_mapping);
248 
249 /*
250  * lookup_extent_mapping returns the first extent_map struct in the
251  * tree that intersects the [start, end] (inclusive) range.  There may
252  * be additional objects in the tree that intersect, so check the object
253  * returned carefully to make sure you don't need additional lookups.
254  */
255 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
256 					 u64 start, u64 end)
257 {
258 	struct extent_map *em;
259 	struct rb_node *rb_node;
260 
261 	read_lock_irq(&tree->lock);
262 	rb_node = tree_search(&tree->map, start);
263 	if (!rb_node) {
264 		em = NULL;
265 		goto out;
266 	}
267 	if (IS_ERR(rb_node)) {
268 		em = ERR_PTR(PTR_ERR(rb_node));
269 		goto out;
270 	}
271 	em = rb_entry(rb_node, struct extent_map, rb_node);
272 	if (em->end < start || em->start > end) {
273 		em = NULL;
274 		goto out;
275 	}
276 	atomic_inc(&em->refs);
277 out:
278 	read_unlock_irq(&tree->lock);
279 	return em;
280 }
281 EXPORT_SYMBOL(lookup_extent_mapping);
282 
283 /*
284  * removes an extent_map struct from the tree.  No reference counts are
285  * dropped, and no checks are done to  see if the range is in use
286  */
287 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
288 {
289 	int ret;
290 
291 	write_lock_irq(&tree->lock);
292 	ret = tree_delete(&tree->map, em->end);
293 	write_unlock_irq(&tree->lock);
294 	return ret;
295 }
296 EXPORT_SYMBOL(remove_extent_mapping);
297 
298 /*
299  * utility function to look for merge candidates inside a given range.
300  * Any extents with matching state are merged together into a single
301  * extent in the tree.  Extents with EXTENT_IO in their state field
302  * are not merged because the end_io handlers need to be able to do
303  * operations on them without sleeping (or doing allocations/splits).
304  *
305  * This should be called with the tree lock held.
306  */
307 static int merge_state(struct extent_map_tree *tree,
308 		       struct extent_state *state)
309 {
310 	struct extent_state *other;
311 	struct rb_node *other_node;
312 
313 	if (state->state & EXTENT_IOBITS)
314 		return 0;
315 
316 	other_node = rb_prev(&state->rb_node);
317 	if (other_node) {
318 		other = rb_entry(other_node, struct extent_state, rb_node);
319 		if (other->end == state->start - 1 &&
320 		    other->state == state->state) {
321 			state->start = other->start;
322 			other->in_tree = 0;
323 			rb_erase(&other->rb_node, &tree->state);
324 			free_extent_state(other);
325 		}
326 	}
327 	other_node = rb_next(&state->rb_node);
328 	if (other_node) {
329 		other = rb_entry(other_node, struct extent_state, rb_node);
330 		if (other->start == state->end + 1 &&
331 		    other->state == state->state) {
332 			other->start = state->start;
333 			state->in_tree = 0;
334 			rb_erase(&state->rb_node, &tree->state);
335 			free_extent_state(state);
336 		}
337 	}
338 	return 0;
339 }
340 
341 /*
342  * insert an extent_state struct into the tree.  'bits' are set on the
343  * struct before it is inserted.
344  *
345  * This may return -EEXIST if the extent is already there, in which case the
346  * state struct is freed.
347  *
348  * The tree lock is not taken internally.  This is a utility function and
349  * probably isn't what you want to call (see set/clear_extent_bit).
350  */
351 static int insert_state(struct extent_map_tree *tree,
352 			struct extent_state *state, u64 start, u64 end,
353 			int bits)
354 {
355 	struct rb_node *node;
356 
357 	if (end < start) {
358 		printk("end < start %Lu %Lu\n", end, start);
359 		WARN_ON(1);
360 	}
361 	state->state |= bits;
362 	state->start = start;
363 	state->end = end;
364 	if ((end & 4095) == 0) {
365 		printk("insert state %Lu %Lu strange end\n", start, end);
366 		WARN_ON(1);
367 	}
368 	node = tree_insert(&tree->state, end, &state->rb_node);
369 	if (node) {
370 		struct extent_state *found;
371 		found = rb_entry(node, struct extent_state, rb_node);
372 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
373 		free_extent_state(state);
374 		return -EEXIST;
375 	}
376 	merge_state(tree, state);
377 	return 0;
378 }
379 
380 /*
381  * split a given extent state struct in two, inserting the preallocated
382  * struct 'prealloc' as the newly created second half.  'split' indicates an
383  * offset inside 'orig' where it should be split.
384  *
385  * Before calling,
386  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
387  * are two extent state structs in the tree:
388  * prealloc: [orig->start, split - 1]
389  * orig: [ split, orig->end ]
390  *
391  * The tree locks are not taken by this function. They need to be held
392  * by the caller.
393  */
394 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
395 		       struct extent_state *prealloc, u64 split)
396 {
397 	struct rb_node *node;
398 	prealloc->start = orig->start;
399 	prealloc->end = split - 1;
400 	prealloc->state = orig->state;
401 	orig->start = split;
402 	if ((prealloc->end & 4095) == 0) {
403 		printk("insert state %Lu %Lu strange end\n", prealloc->start,
404 		       prealloc->end);
405 		WARN_ON(1);
406 	}
407 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
408 	if (node) {
409 		struct extent_state *found;
410 		found = rb_entry(node, struct extent_state, rb_node);
411 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
412 		free_extent_state(prealloc);
413 		return -EEXIST;
414 	}
415 	return 0;
416 }
417 
418 /*
419  * utility function to clear some bits in an extent state struct.
420  * it will optionally wake up any one waiting on this state (wake == 1), or
421  * forcibly remove the state from the tree (delete == 1).
422  *
423  * If no bits are set on the state struct after clearing things, the
424  * struct is freed and removed from the tree
425  */
426 static int clear_state_bit(struct extent_map_tree *tree,
427 			    struct extent_state *state, int bits, int wake,
428 			    int delete)
429 {
430 	int ret = state->state & bits;
431 	state->state &= ~bits;
432 	if (wake)
433 		wake_up(&state->wq);
434 	if (delete || state->state == 0) {
435 		if (state->in_tree) {
436 			rb_erase(&state->rb_node, &tree->state);
437 			state->in_tree = 0;
438 			free_extent_state(state);
439 		} else {
440 			WARN_ON(1);
441 		}
442 	} else {
443 		merge_state(tree, state);
444 	}
445 	return ret;
446 }
447 
448 /*
449  * clear some bits on a range in the tree.  This may require splitting
450  * or inserting elements in the tree, so the gfp mask is used to
451  * indicate which allocations or sleeping are allowed.
452  *
453  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
454  * the given range from the tree regardless of state (ie for truncate).
455  *
456  * the range [start, end] is inclusive.
457  *
458  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
459  * bits were already set, or zero if none of the bits were already set.
460  */
461 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
462 		     int bits, int wake, int delete, gfp_t mask)
463 {
464 	struct extent_state *state;
465 	struct extent_state *prealloc = NULL;
466 	struct rb_node *node;
467 	unsigned long flags;
468 	int err;
469 	int set = 0;
470 
471 again:
472 	if (!prealloc && (mask & __GFP_WAIT)) {
473 		prealloc = alloc_extent_state(mask);
474 		if (!prealloc)
475 			return -ENOMEM;
476 	}
477 
478 	write_lock_irqsave(&tree->lock, flags);
479 	/*
480 	 * this search will find the extents that end after
481 	 * our range starts
482 	 */
483 	node = tree_search(&tree->state, start);
484 	if (!node)
485 		goto out;
486 	state = rb_entry(node, struct extent_state, rb_node);
487 	if (state->start > end)
488 		goto out;
489 	WARN_ON(state->end < start);
490 
491 	/*
492 	 *     | ---- desired range ---- |
493 	 *  | state | or
494 	 *  | ------------- state -------------- |
495 	 *
496 	 * We need to split the extent we found, and may flip
497 	 * bits on second half.
498 	 *
499 	 * If the extent we found extends past our range, we
500 	 * just split and search again.  It'll get split again
501 	 * the next time though.
502 	 *
503 	 * If the extent we found is inside our range, we clear
504 	 * the desired bit on it.
505 	 */
506 
507 	if (state->start < start) {
508 		err = split_state(tree, state, prealloc, start);
509 		BUG_ON(err == -EEXIST);
510 		prealloc = NULL;
511 		if (err)
512 			goto out;
513 		if (state->end <= end) {
514 			start = state->end + 1;
515 			set |= clear_state_bit(tree, state, bits,
516 					wake, delete);
517 		} else {
518 			start = state->start;
519 		}
520 		goto search_again;
521 	}
522 	/*
523 	 * | ---- desired range ---- |
524 	 *                        | state |
525 	 * We need to split the extent, and clear the bit
526 	 * on the first half
527 	 */
528 	if (state->start <= end && state->end > end) {
529 		err = split_state(tree, state, prealloc, end + 1);
530 		BUG_ON(err == -EEXIST);
531 
532 		if (wake)
533 			wake_up(&state->wq);
534 		set |= clear_state_bit(tree, prealloc, bits,
535 				       wake, delete);
536 		prealloc = NULL;
537 		goto out;
538 	}
539 
540 	start = state->end + 1;
541 	set |= clear_state_bit(tree, state, bits, wake, delete);
542 	goto search_again;
543 
544 out:
545 	write_unlock_irqrestore(&tree->lock, flags);
546 	if (prealloc)
547 		free_extent_state(prealloc);
548 
549 	return set;
550 
551 search_again:
552 	if (start >= end)
553 		goto out;
554 	write_unlock_irqrestore(&tree->lock, flags);
555 	if (mask & __GFP_WAIT)
556 		cond_resched();
557 	goto again;
558 }
559 EXPORT_SYMBOL(clear_extent_bit);
560 
561 static int wait_on_state(struct extent_map_tree *tree,
562 			 struct extent_state *state)
563 {
564 	DEFINE_WAIT(wait);
565 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
566 	read_unlock_irq(&tree->lock);
567 	schedule();
568 	read_lock_irq(&tree->lock);
569 	finish_wait(&state->wq, &wait);
570 	return 0;
571 }
572 
573 /*
574  * waits for one or more bits to clear on a range in the state tree.
575  * The range [start, end] is inclusive.
576  * The tree lock is taken by this function
577  */
578 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
579 {
580 	struct extent_state *state;
581 	struct rb_node *node;
582 
583 	read_lock_irq(&tree->lock);
584 again:
585 	while (1) {
586 		/*
587 		 * this search will find all the extents that end after
588 		 * our range starts
589 		 */
590 		node = tree_search(&tree->state, start);
591 		if (!node)
592 			break;
593 
594 		state = rb_entry(node, struct extent_state, rb_node);
595 
596 		if (state->start > end)
597 			goto out;
598 
599 		if (state->state & bits) {
600 			start = state->start;
601 			atomic_inc(&state->refs);
602 			wait_on_state(tree, state);
603 			free_extent_state(state);
604 			goto again;
605 		}
606 		start = state->end + 1;
607 
608 		if (start > end)
609 			break;
610 
611 		if (need_resched()) {
612 			read_unlock_irq(&tree->lock);
613 			cond_resched();
614 			read_lock_irq(&tree->lock);
615 		}
616 	}
617 out:
618 	read_unlock_irq(&tree->lock);
619 	return 0;
620 }
621 EXPORT_SYMBOL(wait_extent_bit);
622 
623 /*
624  * set some bits on a range in the tree.  This may require allocations
625  * or sleeping, so the gfp mask is used to indicate what is allowed.
626  *
627  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
628  * range already has the desired bits set.  The start of the existing
629  * range is returned in failed_start in this case.
630  *
631  * [start, end] is inclusive
632  * This takes the tree lock.
633  */
634 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
635 		   int exclusive, u64 *failed_start, gfp_t mask)
636 {
637 	struct extent_state *state;
638 	struct extent_state *prealloc = NULL;
639 	struct rb_node *node;
640 	unsigned long flags;
641 	int err = 0;
642 	int set;
643 	u64 last_start;
644 	u64 last_end;
645 again:
646 	if (!prealloc && (mask & __GFP_WAIT)) {
647 		prealloc = alloc_extent_state(mask);
648 		if (!prealloc)
649 			return -ENOMEM;
650 	}
651 
652 	write_lock_irqsave(&tree->lock, flags);
653 	/*
654 	 * this search will find all the extents that end after
655 	 * our range starts.
656 	 */
657 	node = tree_search(&tree->state, start);
658 	if (!node) {
659 		err = insert_state(tree, prealloc, start, end, bits);
660 		prealloc = NULL;
661 		BUG_ON(err == -EEXIST);
662 		goto out;
663 	}
664 
665 	state = rb_entry(node, struct extent_state, rb_node);
666 	last_start = state->start;
667 	last_end = state->end;
668 
669 	/*
670 	 * | ---- desired range ---- |
671 	 * | state |
672 	 *
673 	 * Just lock what we found and keep going
674 	 */
675 	if (state->start == start && state->end <= end) {
676 		set = state->state & bits;
677 		if (set && exclusive) {
678 			*failed_start = state->start;
679 			err = -EEXIST;
680 			goto out;
681 		}
682 		state->state |= bits;
683 		start = state->end + 1;
684 		merge_state(tree, state);
685 		goto search_again;
686 	}
687 
688 	/*
689 	 *     | ---- desired range ---- |
690 	 * | state |
691 	 *   or
692 	 * | ------------- state -------------- |
693 	 *
694 	 * We need to split the extent we found, and may flip bits on
695 	 * second half.
696 	 *
697 	 * If the extent we found extends past our
698 	 * range, we just split and search again.  It'll get split
699 	 * again the next time though.
700 	 *
701 	 * If the extent we found is inside our range, we set the
702 	 * desired bit on it.
703 	 */
704 	if (state->start < start) {
705 		set = state->state & bits;
706 		if (exclusive && set) {
707 			*failed_start = start;
708 			err = -EEXIST;
709 			goto out;
710 		}
711 		err = split_state(tree, state, prealloc, start);
712 		BUG_ON(err == -EEXIST);
713 		prealloc = NULL;
714 		if (err)
715 			goto out;
716 		if (state->end <= end) {
717 			state->state |= bits;
718 			start = state->end + 1;
719 			merge_state(tree, state);
720 		} else {
721 			start = state->start;
722 		}
723 		goto search_again;
724 	}
725 	/*
726 	 * | ---- desired range ---- |
727 	 *     | state | or               | state |
728 	 *
729 	 * There's a hole, we need to insert something in it and
730 	 * ignore the extent we found.
731 	 */
732 	if (state->start > start) {
733 		u64 this_end;
734 		if (end < last_start)
735 			this_end = end;
736 		else
737 			this_end = last_start -1;
738 		err = insert_state(tree, prealloc, start, this_end,
739 				   bits);
740 		prealloc = NULL;
741 		BUG_ON(err == -EEXIST);
742 		if (err)
743 			goto out;
744 		start = this_end + 1;
745 		goto search_again;
746 	}
747 	/*
748 	 * | ---- desired range ---- |
749 	 *                        | state |
750 	 * We need to split the extent, and set the bit
751 	 * on the first half
752 	 */
753 	if (state->start <= end && state->end > end) {
754 		set = state->state & bits;
755 		if (exclusive && set) {
756 			*failed_start = start;
757 			err = -EEXIST;
758 			goto out;
759 		}
760 		err = split_state(tree, state, prealloc, end + 1);
761 		BUG_ON(err == -EEXIST);
762 
763 		prealloc->state |= bits;
764 		merge_state(tree, prealloc);
765 		prealloc = NULL;
766 		goto out;
767 	}
768 
769 	goto search_again;
770 
771 out:
772 	write_unlock_irqrestore(&tree->lock, flags);
773 	if (prealloc)
774 		free_extent_state(prealloc);
775 
776 	return err;
777 
778 search_again:
779 	if (start > end)
780 		goto out;
781 	write_unlock_irqrestore(&tree->lock, flags);
782 	if (mask & __GFP_WAIT)
783 		cond_resched();
784 	goto again;
785 }
786 EXPORT_SYMBOL(set_extent_bit);
787 
788 /* wrappers around set/clear extent bit */
789 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
790 		     gfp_t mask)
791 {
792 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
793 			      mask);
794 }
795 EXPORT_SYMBOL(set_extent_dirty);
796 
797 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
798 		     gfp_t mask)
799 {
800 	return set_extent_bit(tree, start, end,
801 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
802 			      mask);
803 }
804 EXPORT_SYMBOL(set_extent_delalloc);
805 
806 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
807 		       gfp_t mask)
808 {
809 	return clear_extent_bit(tree, start, end,
810 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
811 }
812 EXPORT_SYMBOL(clear_extent_dirty);
813 
814 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
815 		     gfp_t mask)
816 {
817 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
818 			      mask);
819 }
820 EXPORT_SYMBOL(set_extent_new);
821 
822 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
823 		       gfp_t mask)
824 {
825 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
826 }
827 EXPORT_SYMBOL(clear_extent_new);
828 
829 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
830 			gfp_t mask)
831 {
832 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
833 			      mask);
834 }
835 EXPORT_SYMBOL(set_extent_uptodate);
836 
837 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
838 			  gfp_t mask)
839 {
840 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
841 }
842 EXPORT_SYMBOL(clear_extent_uptodate);
843 
844 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
845 			 gfp_t mask)
846 {
847 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
848 			      0, NULL, mask);
849 }
850 EXPORT_SYMBOL(set_extent_writeback);
851 
852 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
853 			   gfp_t mask)
854 {
855 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
856 }
857 EXPORT_SYMBOL(clear_extent_writeback);
858 
859 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
860 {
861 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
862 }
863 EXPORT_SYMBOL(wait_on_extent_writeback);
864 
865 /*
866  * locks a range in ascending order, waiting for any locked regions
867  * it hits on the way.  [start,end] are inclusive, and this will sleep.
868  */
869 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
870 {
871 	int err;
872 	u64 failed_start;
873 	while (1) {
874 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
875 				     &failed_start, mask);
876 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
877 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
878 			start = failed_start;
879 		} else {
880 			break;
881 		}
882 		WARN_ON(start > end);
883 	}
884 	return err;
885 }
886 EXPORT_SYMBOL(lock_extent);
887 
888 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
889 		  gfp_t mask)
890 {
891 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
892 }
893 EXPORT_SYMBOL(unlock_extent);
894 
895 /*
896  * helper function to set pages and extents in the tree dirty
897  */
898 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
899 {
900 	unsigned long index = start >> PAGE_CACHE_SHIFT;
901 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
902 	struct page *page;
903 
904 	while (index <= end_index) {
905 		page = find_get_page(tree->mapping, index);
906 		BUG_ON(!page);
907 		__set_page_dirty_nobuffers(page);
908 		page_cache_release(page);
909 		index++;
910 	}
911 	set_extent_dirty(tree, start, end, GFP_NOFS);
912 	return 0;
913 }
914 EXPORT_SYMBOL(set_range_dirty);
915 
916 /*
917  * helper function to set both pages and extents in the tree writeback
918  */
919 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
920 {
921 	unsigned long index = start >> PAGE_CACHE_SHIFT;
922 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
923 	struct page *page;
924 
925 	while (index <= end_index) {
926 		page = find_get_page(tree->mapping, index);
927 		BUG_ON(!page);
928 		set_page_writeback(page);
929 		page_cache_release(page);
930 		index++;
931 	}
932 	set_extent_writeback(tree, start, end, GFP_NOFS);
933 	return 0;
934 }
935 EXPORT_SYMBOL(set_range_writeback);
936 
937 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
938 			  u64 *start_ret, u64 *end_ret, int bits)
939 {
940 	struct rb_node *node;
941 	struct extent_state *state;
942 	int ret = 1;
943 
944 	write_lock_irq(&tree->lock);
945 	/*
946 	 * this search will find all the extents that end after
947 	 * our range starts.
948 	 */
949 	node = tree_search(&tree->state, start);
950 	if (!node || IS_ERR(node)) {
951 		goto out;
952 	}
953 
954 	while(1) {
955 		state = rb_entry(node, struct extent_state, rb_node);
956 		if (state->state & bits) {
957 			*start_ret = state->start;
958 			*end_ret = state->end;
959 			ret = 0;
960 		}
961 		node = rb_next(node);
962 		if (!node)
963 			break;
964 	}
965 out:
966 	write_unlock_irq(&tree->lock);
967 	return ret;
968 }
969 EXPORT_SYMBOL(find_first_extent_bit);
970 
971 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
972 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
973 {
974 	struct rb_node *node;
975 	struct extent_state *state;
976 	u64 cur_start = start;
977 	u64 found = 0;
978 	u64 total_bytes = 0;
979 
980 	write_lock_irq(&tree->lock);
981 	/*
982 	 * this search will find all the extents that end after
983 	 * our range starts.
984 	 */
985 search_again:
986 	node = tree_search(&tree->state, cur_start);
987 	if (!node || IS_ERR(node)) {
988 		goto out;
989 	}
990 
991 	while(1) {
992 		state = rb_entry(node, struct extent_state, rb_node);
993 		if (state->start != cur_start) {
994 			goto out;
995 		}
996 		if (!(state->state & EXTENT_DELALLOC)) {
997 			goto out;
998 		}
999 		if (state->start >= lock_start) {
1000 			if (state->state & EXTENT_LOCKED) {
1001 				DEFINE_WAIT(wait);
1002 				atomic_inc(&state->refs);
1003 				write_unlock_irq(&tree->lock);
1004 				schedule();
1005 				write_lock_irq(&tree->lock);
1006 				finish_wait(&state->wq, &wait);
1007 				free_extent_state(state);
1008 				goto search_again;
1009 			}
1010 			state->state |= EXTENT_LOCKED;
1011 		}
1012 		found++;
1013 		*end = state->end;
1014 		cur_start = state->end + 1;
1015 		node = rb_next(node);
1016 		if (!node)
1017 			break;
1018 		total_bytes = state->end - state->start + 1;
1019 		if (total_bytes >= max_bytes)
1020 			break;
1021 	}
1022 out:
1023 	write_unlock_irq(&tree->lock);
1024 	return found;
1025 }
1026 
1027 /*
1028  * helper function to lock both pages and extents in the tree.
1029  * pages must be locked first.
1030  */
1031 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1032 {
1033 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1034 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1035 	struct page *page;
1036 	int err;
1037 
1038 	while (index <= end_index) {
1039 		page = grab_cache_page(tree->mapping, index);
1040 		if (!page) {
1041 			err = -ENOMEM;
1042 			goto failed;
1043 		}
1044 		if (IS_ERR(page)) {
1045 			err = PTR_ERR(page);
1046 			goto failed;
1047 		}
1048 		index++;
1049 	}
1050 	lock_extent(tree, start, end, GFP_NOFS);
1051 	return 0;
1052 
1053 failed:
1054 	/*
1055 	 * we failed above in getting the page at 'index', so we undo here
1056 	 * up to but not including the page at 'index'
1057 	 */
1058 	end_index = index;
1059 	index = start >> PAGE_CACHE_SHIFT;
1060 	while (index < end_index) {
1061 		page = find_get_page(tree->mapping, index);
1062 		unlock_page(page);
1063 		page_cache_release(page);
1064 		index++;
1065 	}
1066 	return err;
1067 }
1068 EXPORT_SYMBOL(lock_range);
1069 
1070 /*
1071  * helper function to unlock both pages and extents in the tree.
1072  */
1073 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1074 {
1075 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1076 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1077 	struct page *page;
1078 
1079 	while (index <= end_index) {
1080 		page = find_get_page(tree->mapping, index);
1081 		unlock_page(page);
1082 		page_cache_release(page);
1083 		index++;
1084 	}
1085 	unlock_extent(tree, start, end, GFP_NOFS);
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL(unlock_range);
1089 
1090 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1091 {
1092 	struct rb_node *node;
1093 	struct extent_state *state;
1094 	int ret = 0;
1095 
1096 	write_lock_irq(&tree->lock);
1097 	/*
1098 	 * this search will find all the extents that end after
1099 	 * our range starts.
1100 	 */
1101 	node = tree_search(&tree->state, start);
1102 	if (!node || IS_ERR(node)) {
1103 		ret = -ENOENT;
1104 		goto out;
1105 	}
1106 	state = rb_entry(node, struct extent_state, rb_node);
1107 	if (state->start != start) {
1108 		ret = -ENOENT;
1109 		goto out;
1110 	}
1111 	state->private = private;
1112 out:
1113 	write_unlock_irq(&tree->lock);
1114 	return ret;
1115 
1116 }
1117 
1118 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1119 {
1120 	struct rb_node *node;
1121 	struct extent_state *state;
1122 	int ret = 0;
1123 
1124 	read_lock_irq(&tree->lock);
1125 	/*
1126 	 * this search will find all the extents that end after
1127 	 * our range starts.
1128 	 */
1129 	node = tree_search(&tree->state, start);
1130 	if (!node || IS_ERR(node)) {
1131 		ret = -ENOENT;
1132 		goto out;
1133 	}
1134 	state = rb_entry(node, struct extent_state, rb_node);
1135 	if (state->start != start) {
1136 		ret = -ENOENT;
1137 		goto out;
1138 	}
1139 	*private = state->private;
1140 out:
1141 	read_unlock_irq(&tree->lock);
1142 	return ret;
1143 }
1144 
1145 /*
1146  * searches a range in the state tree for a given mask.
1147  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1148  * has the bits set.  Otherwise, 1 is returned if any bit in the
1149  * range is found set.
1150  */
1151 static int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1152 			  int bits, int filled)
1153 {
1154 	struct extent_state *state = NULL;
1155 	struct rb_node *node;
1156 	int bitset = 0;
1157 
1158 	read_lock_irq(&tree->lock);
1159 	node = tree_search(&tree->state, start);
1160 	while (node && start <= end) {
1161 		state = rb_entry(node, struct extent_state, rb_node);
1162 		if (state->start > end)
1163 			break;
1164 
1165 		if (filled && state->start > start) {
1166 			bitset = 0;
1167 			break;
1168 		}
1169 		if (state->state & bits) {
1170 			bitset = 1;
1171 			if (!filled)
1172 				break;
1173 		} else if (filled) {
1174 			bitset = 0;
1175 			break;
1176 		}
1177 		start = state->end + 1;
1178 		if (start > end)
1179 			break;
1180 		node = rb_next(node);
1181 	}
1182 	read_unlock_irq(&tree->lock);
1183 	return bitset;
1184 }
1185 
1186 /*
1187  * helper function to set a given page up to date if all the
1188  * extents in the tree for that page are up to date
1189  */
1190 static int check_page_uptodate(struct extent_map_tree *tree,
1191 			       struct page *page)
1192 {
1193 	u64 start = page->index << PAGE_CACHE_SHIFT;
1194 	u64 end = start + PAGE_CACHE_SIZE - 1;
1195 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1196 		SetPageUptodate(page);
1197 	return 0;
1198 }
1199 
1200 /*
1201  * helper function to unlock a page if all the extents in the tree
1202  * for that page are unlocked
1203  */
1204 static int check_page_locked(struct extent_map_tree *tree,
1205 			     struct page *page)
1206 {
1207 	u64 start = page->index << PAGE_CACHE_SHIFT;
1208 	u64 end = start + PAGE_CACHE_SIZE - 1;
1209 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1210 		unlock_page(page);
1211 	return 0;
1212 }
1213 
1214 /*
1215  * helper function to end page writeback if all the extents
1216  * in the tree for that page are done with writeback
1217  */
1218 static int check_page_writeback(struct extent_map_tree *tree,
1219 			     struct page *page)
1220 {
1221 	u64 start = page->index << PAGE_CACHE_SHIFT;
1222 	u64 end = start + PAGE_CACHE_SIZE - 1;
1223 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1224 		end_page_writeback(page);
1225 	return 0;
1226 }
1227 
1228 /* lots and lots of room for performance fixes in the end_bio funcs */
1229 
1230 /*
1231  * after a writepage IO is done, we need to:
1232  * clear the uptodate bits on error
1233  * clear the writeback bits in the extent tree for this IO
1234  * end_page_writeback if the page has no more pending IO
1235  *
1236  * Scheduling is not allowed, so the extent state tree is expected
1237  * to have one and only one object corresponding to this IO.
1238  */
1239 static int end_bio_extent_writepage(struct bio *bio,
1240 				   unsigned int bytes_done, int err)
1241 {
1242 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1243 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1244 	struct extent_map_tree *tree = bio->bi_private;
1245 	u64 start;
1246 	u64 end;
1247 	int whole_page;
1248 
1249 	if (bio->bi_size)
1250 		return 1;
1251 
1252 	do {
1253 		struct page *page = bvec->bv_page;
1254 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1255 		end = start + bvec->bv_len - 1;
1256 
1257 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1258 			whole_page = 1;
1259 		else
1260 			whole_page = 0;
1261 
1262 		if (--bvec >= bio->bi_io_vec)
1263 			prefetchw(&bvec->bv_page->flags);
1264 
1265 		if (!uptodate) {
1266 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1267 			ClearPageUptodate(page);
1268 			SetPageError(page);
1269 		}
1270 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1271 
1272 		if (whole_page)
1273 			end_page_writeback(page);
1274 		else
1275 			check_page_writeback(tree, page);
1276 		if (tree->ops && tree->ops->writepage_end_io_hook)
1277 			tree->ops->writepage_end_io_hook(page, start, end);
1278 	} while (bvec >= bio->bi_io_vec);
1279 
1280 	bio_put(bio);
1281 	return 0;
1282 }
1283 
1284 /*
1285  * after a readpage IO is done, we need to:
1286  * clear the uptodate bits on error
1287  * set the uptodate bits if things worked
1288  * set the page up to date if all extents in the tree are uptodate
1289  * clear the lock bit in the extent tree
1290  * unlock the page if there are no other extents locked for it
1291  *
1292  * Scheduling is not allowed, so the extent state tree is expected
1293  * to have one and only one object corresponding to this IO.
1294  */
1295 static int end_bio_extent_readpage(struct bio *bio,
1296 				   unsigned int bytes_done, int err)
1297 {
1298 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1299 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1300 	struct extent_map_tree *tree = bio->bi_private;
1301 	u64 start;
1302 	u64 end;
1303 	int whole_page;
1304 	int ret;
1305 
1306 	if (bio->bi_size)
1307 		return 1;
1308 
1309 	do {
1310 		struct page *page = bvec->bv_page;
1311 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1312 		end = start + bvec->bv_len - 1;
1313 
1314 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1315 			whole_page = 1;
1316 		else
1317 			whole_page = 0;
1318 
1319 		if (--bvec >= bio->bi_io_vec)
1320 			prefetchw(&bvec->bv_page->flags);
1321 
1322 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1323 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1324 			if (ret)
1325 				uptodate = 0;
1326 		}
1327 		if (uptodate) {
1328 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1329 			if (whole_page)
1330 				SetPageUptodate(page);
1331 			else
1332 				check_page_uptodate(tree, page);
1333 		} else {
1334 			ClearPageUptodate(page);
1335 			SetPageError(page);
1336 		}
1337 
1338 		unlock_extent(tree, start, end, GFP_ATOMIC);
1339 
1340 		if (whole_page)
1341 			unlock_page(page);
1342 		else
1343 			check_page_locked(tree, page);
1344 	} while (bvec >= bio->bi_io_vec);
1345 
1346 	bio_put(bio);
1347 	return 0;
1348 }
1349 
1350 /*
1351  * IO done from prepare_write is pretty simple, we just unlock
1352  * the structs in the extent tree when done, and set the uptodate bits
1353  * as appropriate.
1354  */
1355 static int end_bio_extent_preparewrite(struct bio *bio,
1356 				       unsigned int bytes_done, int err)
1357 {
1358 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1359 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1360 	struct extent_map_tree *tree = bio->bi_private;
1361 	u64 start;
1362 	u64 end;
1363 
1364 	if (bio->bi_size)
1365 		return 1;
1366 
1367 	do {
1368 		struct page *page = bvec->bv_page;
1369 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1370 		end = start + bvec->bv_len - 1;
1371 
1372 		if (--bvec >= bio->bi_io_vec)
1373 			prefetchw(&bvec->bv_page->flags);
1374 
1375 		if (uptodate) {
1376 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1377 		} else {
1378 			ClearPageUptodate(page);
1379 			SetPageError(page);
1380 		}
1381 
1382 		unlock_extent(tree, start, end, GFP_ATOMIC);
1383 
1384 	} while (bvec >= bio->bi_io_vec);
1385 
1386 	bio_put(bio);
1387 	return 0;
1388 }
1389 
1390 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1391 			      struct page *page, sector_t sector,
1392 			      size_t size, unsigned long offset,
1393 			      struct block_device *bdev,
1394 			      bio_end_io_t end_io_func)
1395 {
1396 	struct bio *bio;
1397 	int ret = 0;
1398 
1399 	bio = bio_alloc(GFP_NOIO, 1);
1400 
1401 	bio->bi_sector = sector;
1402 	bio->bi_bdev = bdev;
1403 	bio->bi_io_vec[0].bv_page = page;
1404 	bio->bi_io_vec[0].bv_len = size;
1405 	bio->bi_io_vec[0].bv_offset = offset;
1406 
1407 	bio->bi_vcnt = 1;
1408 	bio->bi_idx = 0;
1409 	bio->bi_size = size;
1410 
1411 	bio->bi_end_io = end_io_func;
1412 	bio->bi_private = tree;
1413 
1414 	bio_get(bio);
1415 	submit_bio(rw, bio);
1416 
1417 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1418 		ret = -EOPNOTSUPP;
1419 
1420 	bio_put(bio);
1421 	return ret;
1422 }
1423 
1424 void set_page_extent_mapped(struct page *page)
1425 {
1426 	if (!PagePrivate(page)) {
1427 		SetPagePrivate(page);
1428 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1429 		set_page_private(page, 1);
1430 		page_cache_get(page);
1431 	}
1432 }
1433 
1434 /*
1435  * basic readpage implementation.  Locked extent state structs are inserted
1436  * into the tree that are removed when the IO is done (by the end_io
1437  * handlers)
1438  */
1439 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1440 			  get_extent_t *get_extent)
1441 {
1442 	struct inode *inode = page->mapping->host;
1443 	u64 start = page->index << PAGE_CACHE_SHIFT;
1444 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1445 	u64 end;
1446 	u64 cur = start;
1447 	u64 extent_offset;
1448 	u64 last_byte = i_size_read(inode);
1449 	u64 block_start;
1450 	u64 cur_end;
1451 	sector_t sector;
1452 	struct extent_map *em;
1453 	struct block_device *bdev;
1454 	int ret;
1455 	int nr = 0;
1456 	size_t page_offset = 0;
1457 	size_t iosize;
1458 	size_t blocksize = inode->i_sb->s_blocksize;
1459 
1460 	set_page_extent_mapped(page);
1461 
1462 	end = page_end;
1463 	lock_extent(tree, start, end, GFP_NOFS);
1464 
1465 	while (cur <= end) {
1466 		if (cur >= last_byte) {
1467 			iosize = PAGE_CACHE_SIZE - page_offset;
1468 			zero_user_page(page, page_offset, iosize, KM_USER0);
1469 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1470 					    GFP_NOFS);
1471 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1472 			break;
1473 		}
1474 		em = get_extent(inode, page, page_offset, cur, end, 0);
1475 		if (IS_ERR(em) || !em) {
1476 			SetPageError(page);
1477 			unlock_extent(tree, cur, end, GFP_NOFS);
1478 			break;
1479 		}
1480 
1481 		extent_offset = cur - em->start;
1482 		BUG_ON(em->end < cur);
1483 		BUG_ON(end < cur);
1484 
1485 		iosize = min(em->end - cur, end - cur) + 1;
1486 		cur_end = min(em->end, end);
1487 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1488 		sector = (em->block_start + extent_offset) >> 9;
1489 		bdev = em->bdev;
1490 		block_start = em->block_start;
1491 		free_extent_map(em);
1492 		em = NULL;
1493 
1494 		/* we've found a hole, just zero and go on */
1495 		if (block_start == EXTENT_MAP_HOLE) {
1496 			zero_user_page(page, page_offset, iosize, KM_USER0);
1497 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1498 					    GFP_NOFS);
1499 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1500 			cur = cur + iosize;
1501 			page_offset += iosize;
1502 			continue;
1503 		}
1504 		/* the get_extent function already copied into the page */
1505 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1506 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1507 			cur = cur + iosize;
1508 			page_offset += iosize;
1509 			continue;
1510 		}
1511 
1512 		ret = 0;
1513 		if (tree->ops && tree->ops->readpage_io_hook) {
1514 			ret = tree->ops->readpage_io_hook(page, cur,
1515 							  cur + iosize - 1);
1516 		}
1517 		if (!ret) {
1518 			ret = submit_extent_page(READ, tree, page,
1519 						 sector, iosize, page_offset,
1520 						 bdev, end_bio_extent_readpage);
1521 		}
1522 		if (ret)
1523 			SetPageError(page);
1524 		cur = cur + iosize;
1525 		page_offset += iosize;
1526 		nr++;
1527 	}
1528 	if (!nr) {
1529 		if (!PageError(page))
1530 			SetPageUptodate(page);
1531 		unlock_page(page);
1532 	}
1533 	return 0;
1534 }
1535 EXPORT_SYMBOL(extent_read_full_page);
1536 
1537 /*
1538  * the writepage semantics are similar to regular writepage.  extent
1539  * records are inserted to lock ranges in the tree, and as dirty areas
1540  * are found, they are marked writeback.  Then the lock bits are removed
1541  * and the end_io handler clears the writeback ranges
1542  */
1543 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1544 			  get_extent_t *get_extent,
1545 			  struct writeback_control *wbc)
1546 {
1547 	struct inode *inode = page->mapping->host;
1548 	u64 start = page->index << PAGE_CACHE_SHIFT;
1549 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1550 	u64 end;
1551 	u64 cur = start;
1552 	u64 extent_offset;
1553 	u64 last_byte = i_size_read(inode);
1554 	u64 block_start;
1555 	sector_t sector;
1556 	struct extent_map *em;
1557 	struct block_device *bdev;
1558 	int ret;
1559 	int nr = 0;
1560 	size_t page_offset = 0;
1561 	size_t iosize;
1562 	size_t blocksize;
1563 	loff_t i_size = i_size_read(inode);
1564 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1565 	u64 nr_delalloc;
1566 	u64 delalloc_end;
1567 
1568 	WARN_ON(!PageLocked(page));
1569 	if (page->index > end_index) {
1570 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1571 		unlock_page(page);
1572 		return 0;
1573 	}
1574 
1575 	if (page->index == end_index) {
1576 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1577 		zero_user_page(page, offset,
1578 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1579 	}
1580 
1581 	set_page_extent_mapped(page);
1582 
1583 	lock_extent(tree, start, page_end, GFP_NOFS);
1584 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1585 					       &delalloc_end,
1586 					       128 * 1024 * 1024);
1587 	if (nr_delalloc) {
1588 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1589 		if (delalloc_end >= page_end + 1) {
1590 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1591 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1592 					 1, 0, GFP_NOFS);
1593 		}
1594 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1595 				 0, 0, GFP_NOFS);
1596 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1597 			printk("found delalloc bits after clear extent_bit\n");
1598 		}
1599 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1600 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1601 	}
1602 
1603 	end = page_end;
1604 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1605 		printk("found delalloc bits after lock_extent\n");
1606 	}
1607 
1608 	if (last_byte <= start) {
1609 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1610 		goto done;
1611 	}
1612 
1613 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1614 	blocksize = inode->i_sb->s_blocksize;
1615 
1616 	while (cur <= end) {
1617 		if (cur >= last_byte) {
1618 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1619 			break;
1620 		}
1621 		em = get_extent(inode, page, page_offset, cur, end, 0);
1622 		if (IS_ERR(em) || !em) {
1623 			SetPageError(page);
1624 			break;
1625 		}
1626 
1627 		extent_offset = cur - em->start;
1628 		BUG_ON(em->end < cur);
1629 		BUG_ON(end < cur);
1630 		iosize = min(em->end - cur, end - cur) + 1;
1631 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1632 		sector = (em->block_start + extent_offset) >> 9;
1633 		bdev = em->bdev;
1634 		block_start = em->block_start;
1635 		free_extent_map(em);
1636 		em = NULL;
1637 
1638 		if (block_start == EXTENT_MAP_HOLE ||
1639 		    block_start == EXTENT_MAP_INLINE) {
1640 			clear_extent_dirty(tree, cur,
1641 					   cur + iosize - 1, GFP_NOFS);
1642 			cur = cur + iosize;
1643 			page_offset += iosize;
1644 			continue;
1645 		}
1646 
1647 		/* leave this out until we have a page_mkwrite call */
1648 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1649 				   EXTENT_DIRTY, 0)) {
1650 			cur = cur + iosize;
1651 			page_offset += iosize;
1652 			continue;
1653 		}
1654 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1655 		if (tree->ops && tree->ops->writepage_io_hook) {
1656 			ret = tree->ops->writepage_io_hook(page, cur,
1657 						cur + iosize - 1);
1658 		} else {
1659 			ret = 0;
1660 		}
1661 		if (ret)
1662 			SetPageError(page);
1663 		else {
1664 			set_range_writeback(tree, cur, cur + iosize - 1);
1665 			ret = submit_extent_page(WRITE, tree, page, sector,
1666 						 iosize, page_offset, bdev,
1667 						 end_bio_extent_writepage);
1668 			if (ret)
1669 				SetPageError(page);
1670 		}
1671 		cur = cur + iosize;
1672 		page_offset += iosize;
1673 		nr++;
1674 	}
1675 done:
1676 	unlock_extent(tree, start, page_end, GFP_NOFS);
1677 	unlock_page(page);
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL(extent_write_full_page);
1681 
1682 /*
1683  * basic invalidatepage code, this waits on any locked or writeback
1684  * ranges corresponding to the page, and then deletes any extent state
1685  * records from the tree
1686  */
1687 int extent_invalidatepage(struct extent_map_tree *tree,
1688 			  struct page *page, unsigned long offset)
1689 {
1690 	u64 start = (page->index << PAGE_CACHE_SHIFT);
1691 	u64 end = start + PAGE_CACHE_SIZE - 1;
1692 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1693 
1694 	start += (offset + blocksize -1) & ~(blocksize - 1);
1695 	if (start > end)
1696 		return 0;
1697 
1698 	lock_extent(tree, start, end, GFP_NOFS);
1699 	wait_on_extent_writeback(tree, start, end);
1700 	clear_extent_bit(tree, start, end,
1701 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1702 			 1, 1, GFP_NOFS);
1703 	return 0;
1704 }
1705 EXPORT_SYMBOL(extent_invalidatepage);
1706 
1707 /*
1708  * simple commit_write call, set_range_dirty is used to mark both
1709  * the pages and the extent records as dirty
1710  */
1711 int extent_commit_write(struct extent_map_tree *tree,
1712 			struct inode *inode, struct page *page,
1713 			unsigned from, unsigned to)
1714 {
1715 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1716 
1717 	set_page_extent_mapped(page);
1718 	set_page_dirty(page);
1719 
1720 	if (pos > inode->i_size) {
1721 		i_size_write(inode, pos);
1722 		mark_inode_dirty(inode);
1723 	}
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(extent_commit_write);
1727 
1728 int extent_prepare_write(struct extent_map_tree *tree,
1729 			 struct inode *inode, struct page *page,
1730 			 unsigned from, unsigned to, get_extent_t *get_extent)
1731 {
1732 	u64 page_start = page->index << PAGE_CACHE_SHIFT;
1733 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1734 	u64 block_start;
1735 	u64 orig_block_start;
1736 	u64 block_end;
1737 	u64 cur_end;
1738 	struct extent_map *em;
1739 	unsigned blocksize = 1 << inode->i_blkbits;
1740 	size_t page_offset = 0;
1741 	size_t block_off_start;
1742 	size_t block_off_end;
1743 	int err = 0;
1744 	int iocount = 0;
1745 	int ret = 0;
1746 	int isnew;
1747 
1748 	set_page_extent_mapped(page);
1749 
1750 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1751 	block_end = (page_start + to - 1) | (blocksize - 1);
1752 	orig_block_start = block_start;
1753 
1754 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1755 	while(block_start <= block_end) {
1756 		em = get_extent(inode, page, page_offset, block_start,
1757 				block_end, 1);
1758 		if (IS_ERR(em) || !em) {
1759 			goto err;
1760 		}
1761 		cur_end = min(block_end, em->end);
1762 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1763 		block_off_end = block_off_start + blocksize;
1764 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1765 
1766 		if (!PageUptodate(page) && isnew &&
1767 		    (block_off_end > to || block_off_start < from)) {
1768 			void *kaddr;
1769 
1770 			kaddr = kmap_atomic(page, KM_USER0);
1771 			if (block_off_end > to)
1772 				memset(kaddr + to, 0, block_off_end - to);
1773 			if (block_off_start < from)
1774 				memset(kaddr + block_off_start, 0,
1775 				       from - block_off_start);
1776 			flush_dcache_page(page);
1777 			kunmap_atomic(kaddr, KM_USER0);
1778 		}
1779 		if (!isnew && !PageUptodate(page) &&
1780 		    (block_off_end > to || block_off_start < from) &&
1781 		    !test_range_bit(tree, block_start, cur_end,
1782 				    EXTENT_UPTODATE, 1)) {
1783 			u64 sector;
1784 			u64 extent_offset = block_start - em->start;
1785 			size_t iosize;
1786 			sector = (em->block_start + extent_offset) >> 9;
1787 			iosize = (cur_end - block_start + blocksize - 1) &
1788 				~((u64)blocksize - 1);
1789 			/*
1790 			 * we've already got the extent locked, but we
1791 			 * need to split the state such that our end_bio
1792 			 * handler can clear the lock.
1793 			 */
1794 			set_extent_bit(tree, block_start,
1795 				       block_start + iosize - 1,
1796 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1797 			ret = submit_extent_page(READ, tree, page,
1798 					 sector, iosize, page_offset, em->bdev,
1799 					 end_bio_extent_preparewrite);
1800 			iocount++;
1801 			block_start = block_start + iosize;
1802 		} else {
1803 			set_extent_uptodate(tree, block_start, cur_end,
1804 					    GFP_NOFS);
1805 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1806 			block_start = cur_end + 1;
1807 		}
1808 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1809 		free_extent_map(em);
1810 	}
1811 	if (iocount) {
1812 		wait_extent_bit(tree, orig_block_start,
1813 				block_end, EXTENT_LOCKED);
1814 	}
1815 	check_page_uptodate(tree, page);
1816 err:
1817 	/* FIXME, zero out newly allocated blocks on error */
1818 	return err;
1819 }
1820 EXPORT_SYMBOL(extent_prepare_write);
1821 
1822 /*
1823  * a helper for releasepage.  As long as there are no locked extents
1824  * in the range corresponding to the page, both state records and extent
1825  * map records are removed
1826  */
1827 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1828 {
1829 	struct extent_map *em;
1830 	u64 start = page->index << PAGE_CACHE_SHIFT;
1831 	u64 end = start + PAGE_CACHE_SIZE - 1;
1832 	u64 orig_start = start;
1833 	int ret = 1;
1834 
1835 	while (start <= end) {
1836 		em = lookup_extent_mapping(tree, start, end);
1837 		if (!em || IS_ERR(em))
1838 			break;
1839 		if (!test_range_bit(tree, em->start, em->end,
1840 				    EXTENT_LOCKED, 0)) {
1841 			remove_extent_mapping(tree, em);
1842 			/* once for the rb tree */
1843 			free_extent_map(em);
1844 		}
1845 		start = em->end + 1;
1846 		/* once for us */
1847 		free_extent_map(em);
1848 	}
1849 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1850 		ret = 0;
1851 	else
1852 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1853 				 1, 1, GFP_NOFS);
1854 	return ret;
1855 }
1856 EXPORT_SYMBOL(try_release_extent_mapping);
1857 
1858 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1859 		get_extent_t *get_extent)
1860 {
1861 	struct inode *inode = mapping->host;
1862 	u64 start = iblock << inode->i_blkbits;
1863 	u64 end = start + (1 << inode->i_blkbits) - 1;
1864 	struct extent_map *em;
1865 
1866 	em = get_extent(inode, NULL, 0, start, end, 0);
1867 	if (!em || IS_ERR(em))
1868 		return 0;
1869 
1870 	// XXX(hch): block 0 is valid in some cases, e.g. XFS RT device
1871 	if (em->block_start == EXTENT_MAP_INLINE ||
1872 	    em->block_start == EXTENT_MAP_HOLE)
1873 		return 0;
1874 
1875 	return (em->block_start + start - em->start) >> inode->i_blkbits;
1876 }
1877 
1878 static struct extent_buffer *__alloc_extent_buffer(gfp_t mask)
1879 {
1880 	struct extent_buffer *eb = NULL;
1881 	spin_lock(&extent_buffers_lock);
1882 	if (!list_empty(&extent_buffers)) {
1883 		eb = list_entry(extent_buffers.next, struct extent_buffer,
1884 				list);
1885 		list_del(&eb->list);
1886 		WARN_ON(nr_extent_buffers == 0);
1887 		nr_extent_buffers--;
1888 	}
1889 	spin_unlock(&extent_buffers_lock);
1890 	if (eb) {
1891 		memset(eb, 0, sizeof(*eb));
1892 		return eb;
1893 	}
1894 	return kmem_cache_zalloc(extent_buffer_cache, mask);
1895 }
1896 
1897 static void __free_extent_buffer(struct extent_buffer *eb)
1898 {
1899 	if (nr_extent_buffers >= MAX_EXTENT_BUFFER_CACHE) {
1900 		kmem_cache_free(extent_buffer_cache, eb);
1901 	} else {
1902 		spin_lock(&extent_buffers_lock);
1903 		list_add(&eb->list, &extent_buffers);
1904 		nr_extent_buffers++;
1905 		spin_unlock(&extent_buffers_lock);
1906 	}
1907 }
1908 
1909 static inline struct page *extent_buffer_page(struct extent_buffer *eb, int i)
1910 {
1911 	struct page *p;
1912 	if (i == 0)
1913 		return eb->first_page;
1914 	i += eb->start >> PAGE_CACHE_SHIFT;
1915 	p = find_get_page(eb->first_page->mapping, i);
1916 	page_cache_release(p);
1917 	return p;
1918 }
1919 
1920 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
1921 					  u64 start, unsigned long len,
1922 					  gfp_t mask)
1923 {
1924 	unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
1925 				  (start >> PAGE_CACHE_SHIFT) + 1;
1926 	unsigned long i;
1927 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1928 	struct extent_buffer *eb;
1929 	struct page *p;
1930 	struct address_space *mapping = tree->mapping;
1931 	int uptodate = 0;
1932 
1933 	eb = __alloc_extent_buffer(mask);
1934 	if (!eb || IS_ERR(eb))
1935 		return NULL;
1936 
1937 	eb->start = start;
1938 	eb->len = len;
1939 	atomic_set(&eb->refs, 1);
1940 
1941 	for (i = 0; i < num_pages; i++, index++) {
1942 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
1943 		if (!p) {
1944 			/* make sure the free only frees the pages we've
1945 			 * grabbed a reference on
1946 			 */
1947 			eb->len = i << PAGE_CACHE_SHIFT;
1948 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
1949 			goto fail;
1950 		}
1951 		if (i == 0)
1952 			eb->first_page = p;
1953 		if (!PageUptodate(p))
1954 			uptodate = 0;
1955 		unlock_page(p);
1956 	}
1957 	if (uptodate)
1958 		eb->flags |= EXTENT_UPTODATE;
1959 	return eb;
1960 fail:
1961 	free_extent_buffer(eb);
1962 	return NULL;
1963 }
1964 EXPORT_SYMBOL(alloc_extent_buffer);
1965 
1966 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
1967 					 u64 start, unsigned long len,
1968 					  gfp_t mask)
1969 {
1970 	unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
1971 				  (start >> PAGE_CACHE_SHIFT) + 1;
1972 	unsigned long i;
1973 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1974 	struct extent_buffer *eb;
1975 	struct page *p;
1976 	struct address_space *mapping = tree->mapping;
1977 
1978 	eb = __alloc_extent_buffer(mask);
1979 	if (!eb || IS_ERR(eb))
1980 		return NULL;
1981 
1982 	eb->start = start;
1983 	eb->len = len;
1984 	atomic_set(&eb->refs, 1);
1985 
1986 	for (i = 0; i < num_pages; i++, index++) {
1987 		p = find_get_page(mapping, index);
1988 		if (!p) {
1989 			/* make sure the free only frees the pages we've
1990 			 * grabbed a reference on
1991 			 */
1992 			eb->len = i << PAGE_CACHE_SHIFT;
1993 			eb->start &= ~((u64)PAGE_CACHE_SIZE - 1);
1994 			goto fail;
1995 		}
1996 		if (i == 0)
1997 			eb->first_page = p;
1998 	}
1999 	return eb;
2000 fail:
2001 	free_extent_buffer(eb);
2002 	return NULL;
2003 }
2004 EXPORT_SYMBOL(find_extent_buffer);
2005 
2006 void free_extent_buffer(struct extent_buffer *eb)
2007 {
2008 	unsigned long i;
2009 	unsigned long num_pages;
2010 
2011 	if (!eb)
2012 		return;
2013 
2014 	if (!atomic_dec_and_test(&eb->refs))
2015 		return;
2016 
2017 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2018 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2019 
2020 	if (eb->first_page)
2021 		page_cache_release(eb->first_page);
2022 	for (i = 1; i < num_pages; i++) {
2023 		page_cache_release(extent_buffer_page(eb, i));
2024 	}
2025 	__free_extent_buffer(eb);
2026 }
2027 EXPORT_SYMBOL(free_extent_buffer);
2028 
2029 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2030 			      struct extent_buffer *eb)
2031 {
2032 	int set;
2033 	unsigned long i;
2034 	unsigned long num_pages;
2035 	struct page *page;
2036 
2037 	u64 start = eb->start;
2038 	u64 end = start + eb->len - 1;
2039 
2040 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2041 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2042 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2043 
2044 	for (i = 0; i < num_pages; i++) {
2045 		page = extent_buffer_page(eb, i);
2046 		lock_page(page);
2047 		/*
2048 		 * if we're on the last page or the first page and the
2049 		 * block isn't aligned on a page boundary, do extra checks
2050 		 * to make sure we don't clean page that is partially dirty
2051 		 */
2052 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2053 		    ((i == num_pages - 1) &&
2054 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2055 			start = page->index << PAGE_CACHE_SHIFT;
2056 			end  = start + PAGE_CACHE_SIZE - 1;
2057 			if (test_range_bit(tree, start, end,
2058 					   EXTENT_DIRTY, 0)) {
2059 				unlock_page(page);
2060 				continue;
2061 			}
2062 		}
2063 		clear_page_dirty_for_io(page);
2064 		unlock_page(page);
2065 	}
2066 	return 0;
2067 }
2068 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2069 
2070 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2071 				    struct extent_buffer *eb)
2072 {
2073 	return wait_on_extent_writeback(tree, eb->start,
2074 					eb->start + eb->len - 1);
2075 }
2076 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2077 
2078 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2079 			     struct extent_buffer *eb)
2080 {
2081 	return set_range_dirty(tree, eb->start, eb->start + eb->len - 1);
2082 }
2083 EXPORT_SYMBOL(set_extent_buffer_dirty);
2084 
2085 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2086 				struct extent_buffer *eb)
2087 {
2088 	unsigned long i;
2089 	struct page *page;
2090 	unsigned long num_pages;
2091 
2092 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2093 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2094 
2095 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2096 			    GFP_NOFS);
2097 	for (i = 0; i < num_pages; i++) {
2098 		page = extent_buffer_page(eb, i);
2099 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2100 		    ((i == num_pages - 1) &&
2101 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2102 			check_page_uptodate(tree, page);
2103 			continue;
2104 		}
2105 		SetPageUptodate(page);
2106 	}
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2110 
2111 int extent_buffer_uptodate(struct extent_map_tree *tree,
2112 			     struct extent_buffer *eb)
2113 {
2114 	if (eb->flags & EXTENT_UPTODATE)
2115 		return 1;
2116 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2117 			   EXTENT_UPTODATE, 1);
2118 }
2119 EXPORT_SYMBOL(extent_buffer_uptodate);
2120 
2121 int read_extent_buffer_pages(struct extent_map_tree *tree,
2122 			     struct extent_buffer *eb, int wait)
2123 {
2124 	unsigned long i;
2125 	struct page *page;
2126 	int err;
2127 	int ret = 0;
2128 	unsigned long num_pages;
2129 
2130 	if (eb->flags & EXTENT_UPTODATE)
2131 		return 0;
2132 
2133 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2134 			   EXTENT_UPTODATE, 1)) {
2135 		return 0;
2136 	}
2137 
2138 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2139 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2140 	for (i = 0; i < num_pages; i++) {
2141 		page = extent_buffer_page(eb, i);
2142 		if (PageUptodate(page)) {
2143 			continue;
2144 		}
2145 		if (!wait) {
2146 			if (TestSetPageLocked(page)) {
2147 				continue;
2148 			}
2149 		} else {
2150 			lock_page(page);
2151 		}
2152 		if (!PageUptodate(page)) {
2153 			err = page->mapping->a_ops->readpage(NULL, page);
2154 			if (err) {
2155 				ret = err;
2156 			}
2157 		} else {
2158 			unlock_page(page);
2159 		}
2160 	}
2161 
2162 	if (ret || !wait) {
2163 		return ret;
2164 	}
2165 
2166 	for (i = 0; i < num_pages; i++) {
2167 		page = extent_buffer_page(eb, i);
2168 		wait_on_page_locked(page);
2169 		if (!PageUptodate(page)) {
2170 			ret = -EIO;
2171 		}
2172 	}
2173 	eb->flags |= EXTENT_UPTODATE;
2174 	return ret;
2175 }
2176 EXPORT_SYMBOL(read_extent_buffer_pages);
2177 
2178 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2179 			unsigned long start,
2180 			unsigned long len)
2181 {
2182 	size_t cur;
2183 	size_t offset;
2184 	struct page *page;
2185 	char *kaddr;
2186 	char *dst = (char *)dstv;
2187 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2188 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2189 
2190 	WARN_ON(start > eb->len);
2191 	WARN_ON(start + len > eb->start + eb->len);
2192 
2193 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2194 	if (i == 0)
2195 		offset += start_offset;
2196 
2197 	while(len > 0) {
2198 		page = extent_buffer_page(eb, i);
2199 		WARN_ON(!PageUptodate(page));
2200 
2201 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2202 		// kaddr = kmap_atomic(page, KM_USER0);
2203 		kaddr = page_address(page);
2204 		memcpy(dst, kaddr + offset, cur);
2205 		// kunmap_atomic(kaddr, KM_USER0);
2206 
2207 		dst += cur;
2208 		len -= cur;
2209 		offset = 0;
2210 		i++;
2211 	}
2212 }
2213 EXPORT_SYMBOL(read_extent_buffer);
2214 
2215 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2216 		      unsigned long min_len,
2217 		      char **token, char **map,
2218 		      unsigned long *map_start,
2219 		      unsigned long *map_len, int km)
2220 {
2221 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2222 	char *kaddr;
2223 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2224 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2225 	unsigned long end_i = (start_offset + start + min_len) >>
2226 				PAGE_CACHE_SHIFT;
2227 
2228 	if (i != end_i)
2229 		return -EINVAL;
2230 
2231 	WARN_ON(start > eb->len);
2232 
2233 	if (i == 0) {
2234 		offset = start_offset;
2235 		*map_start = 0;
2236 	} else {
2237 		*map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2238 	}
2239 
2240 	// kaddr = kmap_atomic(eb->pages[i], km);
2241 	kaddr = page_address(extent_buffer_page(eb, i));
2242 	*token = kaddr;
2243 	*map = kaddr + offset;
2244 	*map_len = PAGE_CACHE_SIZE - offset;
2245 	return 0;
2246 }
2247 EXPORT_SYMBOL(map_extent_buffer);
2248 
2249 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2250 {
2251 	// kunmap_atomic(token, km);
2252 }
2253 EXPORT_SYMBOL(unmap_extent_buffer);
2254 
2255 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2256 			  unsigned long start,
2257 			  unsigned long len)
2258 {
2259 	size_t cur;
2260 	size_t offset;
2261 	struct page *page;
2262 	char *kaddr;
2263 	char *ptr = (char *)ptrv;
2264 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2265 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2266 	int ret = 0;
2267 
2268 	WARN_ON(start > eb->len);
2269 	WARN_ON(start + len > eb->start + eb->len);
2270 
2271 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2272 	if (i == 0)
2273 		offset += start_offset;
2274 
2275 	while(len > 0) {
2276 		page = extent_buffer_page(eb, i);
2277 		WARN_ON(!PageUptodate(page));
2278 
2279 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2280 
2281 		// kaddr = kmap_atomic(page, KM_USER0);
2282 		kaddr = page_address(page);
2283 		ret = memcmp(ptr, kaddr + offset, cur);
2284 		// kunmap_atomic(kaddr, KM_USER0);
2285 		if (ret)
2286 			break;
2287 
2288 		ptr += cur;
2289 		len -= cur;
2290 		offset = 0;
2291 		i++;
2292 	}
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL(memcmp_extent_buffer);
2296 
2297 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2298 			 unsigned long start, unsigned long len)
2299 {
2300 	size_t cur;
2301 	size_t offset;
2302 	struct page *page;
2303 	char *kaddr;
2304 	char *src = (char *)srcv;
2305 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2306 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2307 
2308 	WARN_ON(start > eb->len);
2309 	WARN_ON(start + len > eb->start + eb->len);
2310 
2311 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2312 	if (i == 0)
2313 		offset += start_offset;
2314 
2315 	while(len > 0) {
2316 		page = extent_buffer_page(eb, i);
2317 		WARN_ON(!PageUptodate(page));
2318 
2319 		cur = min(len, PAGE_CACHE_SIZE - offset);
2320 		// kaddr = kmap_atomic(page, KM_USER0);
2321 		kaddr = page_address(page);
2322 		memcpy(kaddr + offset, src, cur);
2323 		// kunmap_atomic(kaddr, KM_USER0);
2324 
2325 		src += cur;
2326 		len -= cur;
2327 		offset = 0;
2328 		i++;
2329 	}
2330 }
2331 EXPORT_SYMBOL(write_extent_buffer);
2332 
2333 void memset_extent_buffer(struct extent_buffer *eb, char c,
2334 			  unsigned long start, unsigned long len)
2335 {
2336 	size_t cur;
2337 	size_t offset;
2338 	struct page *page;
2339 	char *kaddr;
2340 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2341 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2342 
2343 	WARN_ON(start > eb->len);
2344 	WARN_ON(start + len > eb->start + eb->len);
2345 
2346 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2347 	if (i == 0)
2348 		offset += start_offset;
2349 
2350 	while(len > 0) {
2351 		page = extent_buffer_page(eb, i);
2352 		WARN_ON(!PageUptodate(page));
2353 
2354 		cur = min(len, PAGE_CACHE_SIZE - offset);
2355 		// kaddr = kmap_atomic(page, KM_USER0);
2356 		kaddr = page_address(page);
2357 		memset(kaddr + offset, c, cur);
2358 		// kunmap_atomic(kaddr, KM_USER0);
2359 
2360 		len -= cur;
2361 		offset = 0;
2362 		i++;
2363 	}
2364 }
2365 EXPORT_SYMBOL(memset_extent_buffer);
2366 
2367 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2368 			unsigned long dst_offset, unsigned long src_offset,
2369 			unsigned long len)
2370 {
2371 	u64 dst_len = dst->len;
2372 	size_t cur;
2373 	size_t offset;
2374 	struct page *page;
2375 	char *kaddr;
2376 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2377 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2378 
2379 	WARN_ON(src->len != dst_len);
2380 
2381 	offset = dst_offset & ((unsigned long)PAGE_CACHE_SIZE - 1);
2382 	if (i == 0)
2383 		offset += start_offset;
2384 
2385 	while(len > 0) {
2386 		page = extent_buffer_page(dst, i);
2387 		WARN_ON(!PageUptodate(page));
2388 
2389 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2390 
2391 		// kaddr = kmap_atomic(page, KM_USER1);
2392 		kaddr = page_address(page);
2393 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2394 		// kunmap_atomic(kaddr, KM_USER1);
2395 
2396 		src_offset += cur;
2397 		len -= cur;
2398 		offset = 0;
2399 		i++;
2400 	}
2401 }
2402 EXPORT_SYMBOL(copy_extent_buffer);
2403 
2404 static void move_pages(struct page *dst_page, struct page *src_page,
2405 		       unsigned long dst_off, unsigned long src_off,
2406 		       unsigned long len)
2407 {
2408 	// char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2409 	char *dst_kaddr = page_address(dst_page);
2410 	if (dst_page == src_page) {
2411 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2412 	} else {
2413 		// char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2414 		char *src_kaddr = page_address(src_page);
2415 		char *p = dst_kaddr + dst_off + len;
2416 		char *s = src_kaddr + src_off + len;
2417 
2418 		while (len--)
2419 			*--p = *--s;
2420 
2421 		// kunmap_atomic(src_kaddr, KM_USER1);
2422 	}
2423 	// kunmap_atomic(dst_kaddr, KM_USER0);
2424 }
2425 
2426 static void copy_pages(struct page *dst_page, struct page *src_page,
2427 		       unsigned long dst_off, unsigned long src_off,
2428 		       unsigned long len)
2429 {
2430 	//kmap_atomic(dst_page, KM_USER0);
2431 	char *dst_kaddr = page_address(dst_page);
2432 	char *src_kaddr;
2433 
2434 	if (dst_page != src_page)
2435 		src_kaddr = page_address(src_page); // kmap_atomic(src_page, KM_USER1);
2436 	else
2437 		src_kaddr = dst_kaddr;
2438 
2439 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2440 	/*
2441 	kunmap_atomic(dst_kaddr, KM_USER0);
2442 	if (dst_page != src_page)
2443 		kunmap_atomic(src_kaddr, KM_USER1);
2444 	*/
2445 }
2446 
2447 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2448 			   unsigned long src_offset, unsigned long len)
2449 {
2450 	size_t cur;
2451 	size_t dst_off_in_page;
2452 	size_t src_off_in_page;
2453 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2454 	unsigned long dst_i;
2455 	unsigned long src_i;
2456 
2457 	if (src_offset + len > dst->len) {
2458 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2459 		       src_offset, len, dst->len);
2460 		BUG_ON(1);
2461 	}
2462 	if (dst_offset + len > dst->len) {
2463 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2464 		       dst_offset, len, dst->len);
2465 		BUG_ON(1);
2466 	}
2467 
2468 	while(len > 0) {
2469 		dst_off_in_page = dst_offset &
2470 			((unsigned long)PAGE_CACHE_SIZE - 1);
2471 		src_off_in_page = src_offset &
2472 			((unsigned long)PAGE_CACHE_SIZE - 1);
2473 
2474 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2475 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2476 
2477 		if (src_i == 0)
2478 			src_off_in_page += start_offset;
2479 		if (dst_i == 0)
2480 			dst_off_in_page += start_offset;
2481 
2482 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2483 					       src_off_in_page));
2484 		cur = min(cur, (unsigned long)(PAGE_CACHE_SIZE -
2485 					       dst_off_in_page));
2486 
2487 		copy_pages(extent_buffer_page(dst, dst_i),
2488 			   extent_buffer_page(dst, src_i),
2489 			   dst_off_in_page, src_off_in_page, cur);
2490 
2491 		src_offset += cur;
2492 		dst_offset += cur;
2493 		len -= cur;
2494 	}
2495 }
2496 EXPORT_SYMBOL(memcpy_extent_buffer);
2497 
2498 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2499 			   unsigned long src_offset, unsigned long len)
2500 {
2501 	size_t cur;
2502 	size_t dst_off_in_page;
2503 	size_t src_off_in_page;
2504 	unsigned long dst_end = dst_offset + len - 1;
2505 	unsigned long src_end = src_offset + len - 1;
2506 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2507 	unsigned long dst_i;
2508 	unsigned long src_i;
2509 
2510 	if (src_offset + len > dst->len) {
2511 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2512 		       src_offset, len, dst->len);
2513 		BUG_ON(1);
2514 	}
2515 	if (dst_offset + len > dst->len) {
2516 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2517 		       dst_offset, len, dst->len);
2518 		BUG_ON(1);
2519 	}
2520 	if (dst_offset < src_offset) {
2521 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2522 		return;
2523 	}
2524 	while(len > 0) {
2525 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2526 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2527 
2528 		dst_off_in_page = dst_end &
2529 			((unsigned long)PAGE_CACHE_SIZE - 1);
2530 		src_off_in_page = src_end &
2531 			((unsigned long)PAGE_CACHE_SIZE - 1);
2532 
2533 		if (src_i == 0)
2534 			src_off_in_page += start_offset;
2535 		if (dst_i == 0)
2536 			dst_off_in_page += start_offset;
2537 
2538 		cur = min(len, src_off_in_page + 1);
2539 		cur = min(cur, dst_off_in_page + 1);
2540 // printk("move pages orig dst %lu src %lu len %lu, this %lu %lu %lu\n", dst_offset, src_offset, len, dst_off_in_page - cur + 1, src_off_in_page - cur + 1, cur);
2541 		move_pages(extent_buffer_page(dst, dst_i),
2542 			   extent_buffer_page(dst, src_i),
2543 			   dst_off_in_page - cur + 1,
2544 			   src_off_in_page - cur + 1, cur);
2545 
2546 		dst_end -= cur - 1;
2547 		src_end -= cur - 1;
2548 		len -= cur;
2549 	}
2550 }
2551 EXPORT_SYMBOL(memmove_extent_buffer);
2552