xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 5f39d397)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include "extent_map.h"
12 
13 /* temporary define until extent_map moves out of btrfs */
14 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
15 				       unsigned long extra_flags,
16 				       void (*ctor)(void *, struct kmem_cache *,
17 						    unsigned long));
18 
19 static struct kmem_cache *extent_map_cache;
20 static struct kmem_cache *extent_state_cache;
21 
22 struct tree_entry {
23 	u64 start;
24 	u64 end;
25 	int in_tree;
26 	struct rb_node rb_node;
27 };
28 
29 void __init extent_map_init(void)
30 {
31 	extent_map_cache = btrfs_cache_create("extent_map",
32 					    sizeof(struct extent_map),
33 					    SLAB_DESTROY_BY_RCU,
34 					    NULL);
35 	extent_state_cache = btrfs_cache_create("extent_state",
36 					    sizeof(struct extent_state),
37 					    SLAB_DESTROY_BY_RCU,
38 					    NULL);
39 }
40 
41 void __exit extent_map_exit(void)
42 {
43 	if (extent_map_cache)
44 		kmem_cache_destroy(extent_map_cache);
45 	if (extent_state_cache)
46 		kmem_cache_destroy(extent_state_cache);
47 }
48 
49 void extent_map_tree_init(struct extent_map_tree *tree,
50 			  struct address_space *mapping, gfp_t mask)
51 {
52 	tree->map.rb_node = NULL;
53 	tree->state.rb_node = NULL;
54 	tree->ops = NULL;
55 	rwlock_init(&tree->lock);
56 	tree->mapping = mapping;
57 }
58 EXPORT_SYMBOL(extent_map_tree_init);
59 
60 struct extent_map *alloc_extent_map(gfp_t mask)
61 {
62 	struct extent_map *em;
63 	em = kmem_cache_alloc(extent_map_cache, mask);
64 	if (!em || IS_ERR(em))
65 		return em;
66 	em->in_tree = 0;
67 	atomic_set(&em->refs, 1);
68 	return em;
69 }
70 EXPORT_SYMBOL(alloc_extent_map);
71 
72 void free_extent_map(struct extent_map *em)
73 {
74 	if (!em)
75 		return;
76 	if (atomic_dec_and_test(&em->refs)) {
77 		WARN_ON(em->in_tree);
78 		kmem_cache_free(extent_map_cache, em);
79 	}
80 }
81 EXPORT_SYMBOL(free_extent_map);
82 
83 
84 struct extent_state *alloc_extent_state(gfp_t mask)
85 {
86 	struct extent_state *state;
87 	state = kmem_cache_alloc(extent_state_cache, mask);
88 	if (!state || IS_ERR(state))
89 		return state;
90 	state->state = 0;
91 	state->in_tree = 0;
92 	state->private = 0;
93 	atomic_set(&state->refs, 1);
94 	init_waitqueue_head(&state->wq);
95 	return state;
96 }
97 EXPORT_SYMBOL(alloc_extent_state);
98 
99 void free_extent_state(struct extent_state *state)
100 {
101 	if (!state)
102 		return;
103 	if (atomic_dec_and_test(&state->refs)) {
104 		WARN_ON(state->in_tree);
105 		kmem_cache_free(extent_state_cache, state);
106 	}
107 }
108 EXPORT_SYMBOL(free_extent_state);
109 
110 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
111 				   struct rb_node *node)
112 {
113 	struct rb_node ** p = &root->rb_node;
114 	struct rb_node * parent = NULL;
115 	struct tree_entry *entry;
116 
117 	while(*p) {
118 		parent = *p;
119 		entry = rb_entry(parent, struct tree_entry, rb_node);
120 
121 		if (offset < entry->start)
122 			p = &(*p)->rb_left;
123 		else if (offset > entry->end)
124 			p = &(*p)->rb_right;
125 		else
126 			return parent;
127 	}
128 
129 	entry = rb_entry(node, struct tree_entry, rb_node);
130 	entry->in_tree = 1;
131 	rb_link_node(node, parent, p);
132 	rb_insert_color(node, root);
133 	return NULL;
134 }
135 
136 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
137 				   struct rb_node **prev_ret)
138 {
139 	struct rb_node * n = root->rb_node;
140 	struct rb_node *prev = NULL;
141 	struct tree_entry *entry;
142 	struct tree_entry *prev_entry = NULL;
143 
144 	while(n) {
145 		entry = rb_entry(n, struct tree_entry, rb_node);
146 		prev = n;
147 		prev_entry = entry;
148 
149 		if (offset < entry->start)
150 			n = n->rb_left;
151 		else if (offset > entry->end)
152 			n = n->rb_right;
153 		else
154 			return n;
155 	}
156 	if (!prev_ret)
157 		return NULL;
158 	while(prev && offset > prev_entry->end) {
159 		prev = rb_next(prev);
160 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
161 	}
162 	*prev_ret = prev;
163 	return NULL;
164 }
165 
166 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
167 {
168 	struct rb_node *prev;
169 	struct rb_node *ret;
170 	ret = __tree_search(root, offset, &prev);
171 	if (!ret)
172 		return prev;
173 	return ret;
174 }
175 
176 static int tree_delete(struct rb_root *root, u64 offset)
177 {
178 	struct rb_node *node;
179 	struct tree_entry *entry;
180 
181 	node = __tree_search(root, offset, NULL);
182 	if (!node)
183 		return -ENOENT;
184 	entry = rb_entry(node, struct tree_entry, rb_node);
185 	entry->in_tree = 0;
186 	rb_erase(node, root);
187 	return 0;
188 }
189 
190 /*
191  * add_extent_mapping tries a simple backward merge with existing
192  * mappings.  The extent_map struct passed in will be inserted into
193  * the tree directly (no copies made, just a reference taken).
194  */
195 int add_extent_mapping(struct extent_map_tree *tree,
196 		       struct extent_map *em)
197 {
198 	int ret = 0;
199 	struct extent_map *prev = NULL;
200 	struct rb_node *rb;
201 
202 	write_lock_irq(&tree->lock);
203 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
204 	if (rb) {
205 		prev = rb_entry(rb, struct extent_map, rb_node);
206 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
207 		ret = -EEXIST;
208 		goto out;
209 	}
210 	atomic_inc(&em->refs);
211 	if (em->start != 0) {
212 		rb = rb_prev(&em->rb_node);
213 		if (rb)
214 			prev = rb_entry(rb, struct extent_map, rb_node);
215 		if (prev && prev->end + 1 == em->start &&
216 		    ((em->block_start == EXTENT_MAP_HOLE &&
217 		      prev->block_start == EXTENT_MAP_HOLE) ||
218 			     (em->block_start == prev->block_end + 1))) {
219 			em->start = prev->start;
220 			em->block_start = prev->block_start;
221 			rb_erase(&prev->rb_node, &tree->map);
222 			prev->in_tree = 0;
223 			free_extent_map(prev);
224 		}
225 	 }
226 out:
227 	write_unlock_irq(&tree->lock);
228 	return ret;
229 }
230 EXPORT_SYMBOL(add_extent_mapping);
231 
232 /*
233  * lookup_extent_mapping returns the first extent_map struct in the
234  * tree that intersects the [start, end] (inclusive) range.  There may
235  * be additional objects in the tree that intersect, so check the object
236  * returned carefully to make sure you don't need additional lookups.
237  */
238 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
239 					 u64 start, u64 end)
240 {
241 	struct extent_map *em;
242 	struct rb_node *rb_node;
243 
244 	read_lock_irq(&tree->lock);
245 	rb_node = tree_search(&tree->map, start);
246 	if (!rb_node) {
247 		em = NULL;
248 		goto out;
249 	}
250 	if (IS_ERR(rb_node)) {
251 		em = ERR_PTR(PTR_ERR(rb_node));
252 		goto out;
253 	}
254 	em = rb_entry(rb_node, struct extent_map, rb_node);
255 	if (em->end < start || em->start > end) {
256 		em = NULL;
257 		goto out;
258 	}
259 	atomic_inc(&em->refs);
260 out:
261 	read_unlock_irq(&tree->lock);
262 	return em;
263 }
264 EXPORT_SYMBOL(lookup_extent_mapping);
265 
266 /*
267  * removes an extent_map struct from the tree.  No reference counts are
268  * dropped, and no checks are done to  see if the range is in use
269  */
270 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
271 {
272 	int ret;
273 
274 	write_lock_irq(&tree->lock);
275 	ret = tree_delete(&tree->map, em->end);
276 	write_unlock_irq(&tree->lock);
277 	return ret;
278 }
279 EXPORT_SYMBOL(remove_extent_mapping);
280 
281 /*
282  * utility function to look for merge candidates inside a given range.
283  * Any extents with matching state are merged together into a single
284  * extent in the tree.  Extents with EXTENT_IO in their state field
285  * are not merged because the end_io handlers need to be able to do
286  * operations on them without sleeping (or doing allocations/splits).
287  *
288  * This should be called with the tree lock held.
289  */
290 static int merge_state(struct extent_map_tree *tree,
291 		       struct extent_state *state)
292 {
293 	struct extent_state *other;
294 	struct rb_node *other_node;
295 
296 	if (state->state & EXTENT_IOBITS)
297 		return 0;
298 
299 	other_node = rb_prev(&state->rb_node);
300 	if (other_node) {
301 		other = rb_entry(other_node, struct extent_state, rb_node);
302 		if (other->end == state->start - 1 &&
303 		    other->state == state->state) {
304 			state->start = other->start;
305 			other->in_tree = 0;
306 			rb_erase(&other->rb_node, &tree->state);
307 			free_extent_state(other);
308 		}
309 	}
310 	other_node = rb_next(&state->rb_node);
311 	if (other_node) {
312 		other = rb_entry(other_node, struct extent_state, rb_node);
313 		if (other->start == state->end + 1 &&
314 		    other->state == state->state) {
315 			other->start = state->start;
316 			state->in_tree = 0;
317 			rb_erase(&state->rb_node, &tree->state);
318 			free_extent_state(state);
319 		}
320 	}
321 	return 0;
322 }
323 
324 /*
325  * insert an extent_state struct into the tree.  'bits' are set on the
326  * struct before it is inserted.
327  *
328  * This may return -EEXIST if the extent is already there, in which case the
329  * state struct is freed.
330  *
331  * The tree lock is not taken internally.  This is a utility function and
332  * probably isn't what you want to call (see set/clear_extent_bit).
333  */
334 static int insert_state(struct extent_map_tree *tree,
335 			struct extent_state *state, u64 start, u64 end,
336 			int bits)
337 {
338 	struct rb_node *node;
339 
340 	if (end < start) {
341 		printk("end < start %Lu %Lu\n", end, start);
342 		WARN_ON(1);
343 	}
344 	state->state |= bits;
345 	state->start = start;
346 	state->end = end;
347 	if ((end & 4095) == 0) {
348 		printk("insert state %Lu %Lu strange end\n", start, end);
349 		WARN_ON(1);
350 	}
351 	node = tree_insert(&tree->state, end, &state->rb_node);
352 	if (node) {
353 		struct extent_state *found;
354 		found = rb_entry(node, struct extent_state, rb_node);
355 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
356 		free_extent_state(state);
357 		return -EEXIST;
358 	}
359 	merge_state(tree, state);
360 	return 0;
361 }
362 
363 /*
364  * split a given extent state struct in two, inserting the preallocated
365  * struct 'prealloc' as the newly created second half.  'split' indicates an
366  * offset inside 'orig' where it should be split.
367  *
368  * Before calling,
369  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
370  * are two extent state structs in the tree:
371  * prealloc: [orig->start, split - 1]
372  * orig: [ split, orig->end ]
373  *
374  * The tree locks are not taken by this function. They need to be held
375  * by the caller.
376  */
377 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
378 		       struct extent_state *prealloc, u64 split)
379 {
380 	struct rb_node *node;
381 	prealloc->start = orig->start;
382 	prealloc->end = split - 1;
383 	prealloc->state = orig->state;
384 	orig->start = split;
385 	if ((prealloc->end & 4095) == 0) {
386 		printk("insert state %Lu %Lu strange end\n", prealloc->start,
387 		       prealloc->end);
388 		WARN_ON(1);
389 	}
390 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
391 	if (node) {
392 		struct extent_state *found;
393 		found = rb_entry(node, struct extent_state, rb_node);
394 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
395 		free_extent_state(prealloc);
396 		return -EEXIST;
397 	}
398 	return 0;
399 }
400 
401 /*
402  * utility function to clear some bits in an extent state struct.
403  * it will optionally wake up any one waiting on this state (wake == 1), or
404  * forcibly remove the state from the tree (delete == 1).
405  *
406  * If no bits are set on the state struct after clearing things, the
407  * struct is freed and removed from the tree
408  */
409 static int clear_state_bit(struct extent_map_tree *tree,
410 			    struct extent_state *state, int bits, int wake,
411 			    int delete)
412 {
413 	int ret = state->state & bits;
414 	state->state &= ~bits;
415 	if (wake)
416 		wake_up(&state->wq);
417 	if (delete || state->state == 0) {
418 		if (state->in_tree) {
419 			rb_erase(&state->rb_node, &tree->state);
420 			state->in_tree = 0;
421 			free_extent_state(state);
422 		} else {
423 			WARN_ON(1);
424 		}
425 	} else {
426 		merge_state(tree, state);
427 	}
428 	return ret;
429 }
430 
431 /*
432  * clear some bits on a range in the tree.  This may require splitting
433  * or inserting elements in the tree, so the gfp mask is used to
434  * indicate which allocations or sleeping are allowed.
435  *
436  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
437  * the given range from the tree regardless of state (ie for truncate).
438  *
439  * the range [start, end] is inclusive.
440  *
441  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
442  * bits were already set, or zero if none of the bits were already set.
443  */
444 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
445 		     int bits, int wake, int delete, gfp_t mask)
446 {
447 	struct extent_state *state;
448 	struct extent_state *prealloc = NULL;
449 	struct rb_node *node;
450 	unsigned long flags;
451 	int err;
452 	int set = 0;
453 
454 again:
455 	if (!prealloc && (mask & __GFP_WAIT)) {
456 		prealloc = alloc_extent_state(mask);
457 		if (!prealloc)
458 			return -ENOMEM;
459 	}
460 
461 	write_lock_irqsave(&tree->lock, flags);
462 	/*
463 	 * this search will find the extents that end after
464 	 * our range starts
465 	 */
466 	node = tree_search(&tree->state, start);
467 	if (!node)
468 		goto out;
469 	state = rb_entry(node, struct extent_state, rb_node);
470 	if (state->start > end)
471 		goto out;
472 	WARN_ON(state->end < start);
473 
474 	/*
475 	 *     | ---- desired range ---- |
476 	 *  | state | or
477 	 *  | ------------- state -------------- |
478 	 *
479 	 * We need to split the extent we found, and may flip
480 	 * bits on second half.
481 	 *
482 	 * If the extent we found extends past our range, we
483 	 * just split and search again.  It'll get split again
484 	 * the next time though.
485 	 *
486 	 * If the extent we found is inside our range, we clear
487 	 * the desired bit on it.
488 	 */
489 
490 	if (state->start < start) {
491 		err = split_state(tree, state, prealloc, start);
492 		BUG_ON(err == -EEXIST);
493 		prealloc = NULL;
494 		if (err)
495 			goto out;
496 		if (state->end <= end) {
497 			start = state->end + 1;
498 			set |= clear_state_bit(tree, state, bits,
499 					wake, delete);
500 		} else {
501 			start = state->start;
502 		}
503 		goto search_again;
504 	}
505 	/*
506 	 * | ---- desired range ---- |
507 	 *                        | state |
508 	 * We need to split the extent, and clear the bit
509 	 * on the first half
510 	 */
511 	if (state->start <= end && state->end > end) {
512 		err = split_state(tree, state, prealloc, end + 1);
513 		BUG_ON(err == -EEXIST);
514 
515 		if (wake)
516 			wake_up(&state->wq);
517 		set |= clear_state_bit(tree, prealloc, bits,
518 				       wake, delete);
519 		prealloc = NULL;
520 		goto out;
521 	}
522 
523 	start = state->end + 1;
524 	set |= clear_state_bit(tree, state, bits, wake, delete);
525 	goto search_again;
526 
527 out:
528 	write_unlock_irqrestore(&tree->lock, flags);
529 	if (prealloc)
530 		free_extent_state(prealloc);
531 
532 	return set;
533 
534 search_again:
535 	if (start >= end)
536 		goto out;
537 	write_unlock_irqrestore(&tree->lock, flags);
538 	if (mask & __GFP_WAIT)
539 		cond_resched();
540 	goto again;
541 }
542 EXPORT_SYMBOL(clear_extent_bit);
543 
544 static int wait_on_state(struct extent_map_tree *tree,
545 			 struct extent_state *state)
546 {
547 	DEFINE_WAIT(wait);
548 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
549 	read_unlock_irq(&tree->lock);
550 	schedule();
551 	read_lock_irq(&tree->lock);
552 	finish_wait(&state->wq, &wait);
553 	return 0;
554 }
555 
556 /*
557  * waits for one or more bits to clear on a range in the state tree.
558  * The range [start, end] is inclusive.
559  * The tree lock is taken by this function
560  */
561 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
562 {
563 	struct extent_state *state;
564 	struct rb_node *node;
565 
566 	read_lock_irq(&tree->lock);
567 again:
568 	while (1) {
569 		/*
570 		 * this search will find all the extents that end after
571 		 * our range starts
572 		 */
573 		node = tree_search(&tree->state, start);
574 		if (!node)
575 			break;
576 
577 		state = rb_entry(node, struct extent_state, rb_node);
578 
579 		if (state->start > end)
580 			goto out;
581 
582 		if (state->state & bits) {
583 			start = state->start;
584 			atomic_inc(&state->refs);
585 			wait_on_state(tree, state);
586 			free_extent_state(state);
587 			goto again;
588 		}
589 		start = state->end + 1;
590 
591 		if (start > end)
592 			break;
593 
594 		if (need_resched()) {
595 			read_unlock_irq(&tree->lock);
596 			cond_resched();
597 			read_lock_irq(&tree->lock);
598 		}
599 	}
600 out:
601 	read_unlock_irq(&tree->lock);
602 	return 0;
603 }
604 EXPORT_SYMBOL(wait_extent_bit);
605 
606 /*
607  * set some bits on a range in the tree.  This may require allocations
608  * or sleeping, so the gfp mask is used to indicate what is allowed.
609  *
610  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
611  * range already has the desired bits set.  The start of the existing
612  * range is returned in failed_start in this case.
613  *
614  * [start, end] is inclusive
615  * This takes the tree lock.
616  */
617 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
618 		   int exclusive, u64 *failed_start, gfp_t mask)
619 {
620 	struct extent_state *state;
621 	struct extent_state *prealloc = NULL;
622 	struct rb_node *node;
623 	unsigned long flags;
624 	int err = 0;
625 	int set;
626 	u64 last_start;
627 	u64 last_end;
628 again:
629 	if (!prealloc && (mask & __GFP_WAIT)) {
630 		prealloc = alloc_extent_state(mask);
631 		if (!prealloc)
632 			return -ENOMEM;
633 	}
634 
635 	write_lock_irqsave(&tree->lock, flags);
636 	/*
637 	 * this search will find all the extents that end after
638 	 * our range starts.
639 	 */
640 	node = tree_search(&tree->state, start);
641 	if (!node) {
642 		err = insert_state(tree, prealloc, start, end, bits);
643 		prealloc = NULL;
644 		BUG_ON(err == -EEXIST);
645 		goto out;
646 	}
647 
648 	state = rb_entry(node, struct extent_state, rb_node);
649 	last_start = state->start;
650 	last_end = state->end;
651 
652 	/*
653 	 * | ---- desired range ---- |
654 	 * | state |
655 	 *
656 	 * Just lock what we found and keep going
657 	 */
658 	if (state->start == start && state->end <= end) {
659 		set = state->state & bits;
660 		if (set && exclusive) {
661 			*failed_start = state->start;
662 			err = -EEXIST;
663 			goto out;
664 		}
665 		state->state |= bits;
666 		start = state->end + 1;
667 		merge_state(tree, state);
668 		goto search_again;
669 	}
670 
671 	/*
672 	 *     | ---- desired range ---- |
673 	 * | state |
674 	 *   or
675 	 * | ------------- state -------------- |
676 	 *
677 	 * We need to split the extent we found, and may flip bits on
678 	 * second half.
679 	 *
680 	 * If the extent we found extends past our
681 	 * range, we just split and search again.  It'll get split
682 	 * again the next time though.
683 	 *
684 	 * If the extent we found is inside our range, we set the
685 	 * desired bit on it.
686 	 */
687 	if (state->start < start) {
688 		set = state->state & bits;
689 		if (exclusive && set) {
690 			*failed_start = start;
691 			err = -EEXIST;
692 			goto out;
693 		}
694 		err = split_state(tree, state, prealloc, start);
695 		BUG_ON(err == -EEXIST);
696 		prealloc = NULL;
697 		if (err)
698 			goto out;
699 		if (state->end <= end) {
700 			state->state |= bits;
701 			start = state->end + 1;
702 			merge_state(tree, state);
703 		} else {
704 			start = state->start;
705 		}
706 		goto search_again;
707 	}
708 	/*
709 	 * | ---- desired range ---- |
710 	 *     | state | or               | state |
711 	 *
712 	 * There's a hole, we need to insert something in it and
713 	 * ignore the extent we found.
714 	 */
715 	if (state->start > start) {
716 		u64 this_end;
717 		if (end < last_start)
718 			this_end = end;
719 		else
720 			this_end = last_start -1;
721 		err = insert_state(tree, prealloc, start, this_end,
722 				   bits);
723 		prealloc = NULL;
724 		BUG_ON(err == -EEXIST);
725 		if (err)
726 			goto out;
727 		start = this_end + 1;
728 		goto search_again;
729 	}
730 	/*
731 	 * | ---- desired range ---- |
732 	 *                        | state |
733 	 * We need to split the extent, and set the bit
734 	 * on the first half
735 	 */
736 	if (state->start <= end && state->end > end) {
737 		set = state->state & bits;
738 		if (exclusive && set) {
739 			*failed_start = start;
740 			err = -EEXIST;
741 			goto out;
742 		}
743 		err = split_state(tree, state, prealloc, end + 1);
744 		BUG_ON(err == -EEXIST);
745 
746 		prealloc->state |= bits;
747 		merge_state(tree, prealloc);
748 		prealloc = NULL;
749 		goto out;
750 	}
751 
752 	goto search_again;
753 
754 out:
755 	write_unlock_irqrestore(&tree->lock, flags);
756 	if (prealloc)
757 		free_extent_state(prealloc);
758 
759 	return err;
760 
761 search_again:
762 	if (start > end)
763 		goto out;
764 	write_unlock_irqrestore(&tree->lock, flags);
765 	if (mask & __GFP_WAIT)
766 		cond_resched();
767 	goto again;
768 }
769 EXPORT_SYMBOL(set_extent_bit);
770 
771 /* wrappers around set/clear extent bit */
772 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
773 		     gfp_t mask)
774 {
775 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
776 			      mask);
777 }
778 EXPORT_SYMBOL(set_extent_dirty);
779 
780 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
781 		     gfp_t mask)
782 {
783 	return set_extent_bit(tree, start, end,
784 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
785 			      mask);
786 }
787 EXPORT_SYMBOL(set_extent_delalloc);
788 
789 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
790 		       gfp_t mask)
791 {
792 	return clear_extent_bit(tree, start, end,
793 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
794 }
795 EXPORT_SYMBOL(clear_extent_dirty);
796 
797 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
798 		     gfp_t mask)
799 {
800 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
801 			      mask);
802 }
803 EXPORT_SYMBOL(set_extent_new);
804 
805 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
806 		       gfp_t mask)
807 {
808 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
809 }
810 EXPORT_SYMBOL(clear_extent_new);
811 
812 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
813 			gfp_t mask)
814 {
815 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
816 			      mask);
817 }
818 EXPORT_SYMBOL(set_extent_uptodate);
819 
820 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
821 			  gfp_t mask)
822 {
823 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
824 }
825 EXPORT_SYMBOL(clear_extent_uptodate);
826 
827 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
828 			 gfp_t mask)
829 {
830 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
831 			      0, NULL, mask);
832 }
833 EXPORT_SYMBOL(set_extent_writeback);
834 
835 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
836 			   gfp_t mask)
837 {
838 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
839 }
840 EXPORT_SYMBOL(clear_extent_writeback);
841 
842 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
843 {
844 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
845 }
846 EXPORT_SYMBOL(wait_on_extent_writeback);
847 
848 /*
849  * locks a range in ascending order, waiting for any locked regions
850  * it hits on the way.  [start,end] are inclusive, and this will sleep.
851  */
852 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
853 {
854 	int err;
855 	u64 failed_start;
856 	while (1) {
857 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
858 				     &failed_start, mask);
859 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
860 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
861 			start = failed_start;
862 		} else {
863 			break;
864 		}
865 		WARN_ON(start > end);
866 	}
867 	return err;
868 }
869 EXPORT_SYMBOL(lock_extent);
870 
871 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
872 		  gfp_t mask)
873 {
874 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
875 }
876 EXPORT_SYMBOL(unlock_extent);
877 
878 /*
879  * helper function to set pages and extents in the tree dirty
880  */
881 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
882 {
883 	unsigned long index = start >> PAGE_CACHE_SHIFT;
884 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
885 	struct page *page;
886 
887 	while (index <= end_index) {
888 		page = find_get_page(tree->mapping, index);
889 		BUG_ON(!page);
890 		__set_page_dirty_nobuffers(page);
891 		page_cache_release(page);
892 		index++;
893 	}
894 	set_extent_dirty(tree, start, end, GFP_NOFS);
895 	return 0;
896 }
897 EXPORT_SYMBOL(set_range_dirty);
898 
899 /*
900  * helper function to set both pages and extents in the tree writeback
901  */
902 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
903 {
904 	unsigned long index = start >> PAGE_CACHE_SHIFT;
905 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
906 	struct page *page;
907 
908 	while (index <= end_index) {
909 		page = find_get_page(tree->mapping, index);
910 		BUG_ON(!page);
911 		set_page_writeback(page);
912 		page_cache_release(page);
913 		index++;
914 	}
915 	set_extent_writeback(tree, start, end, GFP_NOFS);
916 	return 0;
917 }
918 EXPORT_SYMBOL(set_range_writeback);
919 
920 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
921 			  u64 *start_ret, u64 *end_ret, int bits)
922 {
923 	struct rb_node *node;
924 	struct extent_state *state;
925 	int ret = 1;
926 
927 	write_lock_irq(&tree->lock);
928 	/*
929 	 * this search will find all the extents that end after
930 	 * our range starts.
931 	 */
932 	node = tree_search(&tree->state, start);
933 	if (!node || IS_ERR(node)) {
934 		goto out;
935 	}
936 
937 	while(1) {
938 		state = rb_entry(node, struct extent_state, rb_node);
939 		if (state->state & bits) {
940 			*start_ret = state->start;
941 			*end_ret = state->end;
942 			ret = 0;
943 		}
944 		node = rb_next(node);
945 		if (!node)
946 			break;
947 	}
948 out:
949 	write_unlock_irq(&tree->lock);
950 	return ret;
951 }
952 EXPORT_SYMBOL(find_first_extent_bit);
953 
954 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
955 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
956 {
957 	struct rb_node *node;
958 	struct extent_state *state;
959 	u64 cur_start = start;
960 	u64 found = 0;
961 	u64 total_bytes = 0;
962 
963 	write_lock_irq(&tree->lock);
964 	/*
965 	 * this search will find all the extents that end after
966 	 * our range starts.
967 	 */
968 search_again:
969 	node = tree_search(&tree->state, cur_start);
970 	if (!node || IS_ERR(node)) {
971 		goto out;
972 	}
973 
974 	while(1) {
975 		state = rb_entry(node, struct extent_state, rb_node);
976 		if (state->start != cur_start) {
977 			goto out;
978 		}
979 		if (!(state->state & EXTENT_DELALLOC)) {
980 			goto out;
981 		}
982 		if (state->start >= lock_start) {
983 			if (state->state & EXTENT_LOCKED) {
984 				DEFINE_WAIT(wait);
985 				atomic_inc(&state->refs);
986 				write_unlock_irq(&tree->lock);
987 				schedule();
988 				write_lock_irq(&tree->lock);
989 				finish_wait(&state->wq, &wait);
990 				free_extent_state(state);
991 				goto search_again;
992 			}
993 			state->state |= EXTENT_LOCKED;
994 		}
995 		found++;
996 		*end = state->end;
997 		cur_start = state->end + 1;
998 		node = rb_next(node);
999 		if (!node)
1000 			break;
1001 		total_bytes = state->end - state->start + 1;
1002 		if (total_bytes >= max_bytes)
1003 			break;
1004 	}
1005 out:
1006 	write_unlock_irq(&tree->lock);
1007 	return found;
1008 }
1009 
1010 /*
1011  * helper function to lock both pages and extents in the tree.
1012  * pages must be locked first.
1013  */
1014 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1015 {
1016 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1017 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1018 	struct page *page;
1019 	int err;
1020 
1021 	while (index <= end_index) {
1022 		page = grab_cache_page(tree->mapping, index);
1023 		if (!page) {
1024 			err = -ENOMEM;
1025 			goto failed;
1026 		}
1027 		if (IS_ERR(page)) {
1028 			err = PTR_ERR(page);
1029 			goto failed;
1030 		}
1031 		index++;
1032 	}
1033 	lock_extent(tree, start, end, GFP_NOFS);
1034 	return 0;
1035 
1036 failed:
1037 	/*
1038 	 * we failed above in getting the page at 'index', so we undo here
1039 	 * up to but not including the page at 'index'
1040 	 */
1041 	end_index = index;
1042 	index = start >> PAGE_CACHE_SHIFT;
1043 	while (index < end_index) {
1044 		page = find_get_page(tree->mapping, index);
1045 		unlock_page(page);
1046 		page_cache_release(page);
1047 		index++;
1048 	}
1049 	return err;
1050 }
1051 EXPORT_SYMBOL(lock_range);
1052 
1053 /*
1054  * helper function to unlock both pages and extents in the tree.
1055  */
1056 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1057 {
1058 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1059 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1060 	struct page *page;
1061 
1062 	while (index <= end_index) {
1063 		page = find_get_page(tree->mapping, index);
1064 		unlock_page(page);
1065 		page_cache_release(page);
1066 		index++;
1067 	}
1068 	unlock_extent(tree, start, end, GFP_NOFS);
1069 	return 0;
1070 }
1071 EXPORT_SYMBOL(unlock_range);
1072 
1073 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1074 {
1075 	struct rb_node *node;
1076 	struct extent_state *state;
1077 	int ret = 0;
1078 
1079 	write_lock_irq(&tree->lock);
1080 	/*
1081 	 * this search will find all the extents that end after
1082 	 * our range starts.
1083 	 */
1084 	node = tree_search(&tree->state, start);
1085 	if (!node || IS_ERR(node)) {
1086 		ret = -ENOENT;
1087 		goto out;
1088 	}
1089 	state = rb_entry(node, struct extent_state, rb_node);
1090 	if (state->start != start) {
1091 		ret = -ENOENT;
1092 		goto out;
1093 	}
1094 	state->private = private;
1095 out:
1096 	write_unlock_irq(&tree->lock);
1097 	return ret;
1098 
1099 }
1100 
1101 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1102 {
1103 	struct rb_node *node;
1104 	struct extent_state *state;
1105 	int ret = 0;
1106 
1107 	read_lock_irq(&tree->lock);
1108 	/*
1109 	 * this search will find all the extents that end after
1110 	 * our range starts.
1111 	 */
1112 	node = tree_search(&tree->state, start);
1113 	if (!node || IS_ERR(node)) {
1114 		ret = -ENOENT;
1115 		goto out;
1116 	}
1117 	state = rb_entry(node, struct extent_state, rb_node);
1118 	if (state->start != start) {
1119 		ret = -ENOENT;
1120 		goto out;
1121 	}
1122 	*private = state->private;
1123 out:
1124 	read_unlock_irq(&tree->lock);
1125 	return ret;
1126 }
1127 
1128 /*
1129  * searches a range in the state tree for a given mask.
1130  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1131  * has the bits set.  Otherwise, 1 is returned if any bit in the
1132  * range is found set.
1133  */
1134 static int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1135 			  int bits, int filled)
1136 {
1137 	struct extent_state *state = NULL;
1138 	struct rb_node *node;
1139 	int bitset = 0;
1140 
1141 	read_lock_irq(&tree->lock);
1142 	node = tree_search(&tree->state, start);
1143 	while (node && start <= end) {
1144 		state = rb_entry(node, struct extent_state, rb_node);
1145 		if (state->start > end)
1146 			break;
1147 
1148 		if (filled && state->start > start) {
1149 			bitset = 0;
1150 			break;
1151 		}
1152 		if (state->state & bits) {
1153 			bitset = 1;
1154 			if (!filled)
1155 				break;
1156 		} else if (filled) {
1157 			bitset = 0;
1158 			break;
1159 		}
1160 		start = state->end + 1;
1161 		if (start > end)
1162 			break;
1163 		node = rb_next(node);
1164 	}
1165 	read_unlock_irq(&tree->lock);
1166 	return bitset;
1167 }
1168 
1169 /*
1170  * helper function to set a given page up to date if all the
1171  * extents in the tree for that page are up to date
1172  */
1173 static int check_page_uptodate(struct extent_map_tree *tree,
1174 			       struct page *page)
1175 {
1176 	u64 start = page->index << PAGE_CACHE_SHIFT;
1177 	u64 end = start + PAGE_CACHE_SIZE - 1;
1178 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1179 		SetPageUptodate(page);
1180 	return 0;
1181 }
1182 
1183 /*
1184  * helper function to unlock a page if all the extents in the tree
1185  * for that page are unlocked
1186  */
1187 static int check_page_locked(struct extent_map_tree *tree,
1188 			     struct page *page)
1189 {
1190 	u64 start = page->index << PAGE_CACHE_SHIFT;
1191 	u64 end = start + PAGE_CACHE_SIZE - 1;
1192 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1193 		unlock_page(page);
1194 	return 0;
1195 }
1196 
1197 /*
1198  * helper function to end page writeback if all the extents
1199  * in the tree for that page are done with writeback
1200  */
1201 static int check_page_writeback(struct extent_map_tree *tree,
1202 			     struct page *page)
1203 {
1204 	u64 start = page->index << PAGE_CACHE_SHIFT;
1205 	u64 end = start + PAGE_CACHE_SIZE - 1;
1206 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1207 		end_page_writeback(page);
1208 	return 0;
1209 }
1210 
1211 /* lots and lots of room for performance fixes in the end_bio funcs */
1212 
1213 /*
1214  * after a writepage IO is done, we need to:
1215  * clear the uptodate bits on error
1216  * clear the writeback bits in the extent tree for this IO
1217  * end_page_writeback if the page has no more pending IO
1218  *
1219  * Scheduling is not allowed, so the extent state tree is expected
1220  * to have one and only one object corresponding to this IO.
1221  */
1222 static int end_bio_extent_writepage(struct bio *bio,
1223 				   unsigned int bytes_done, int err)
1224 {
1225 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1226 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1227 	struct extent_map_tree *tree = bio->bi_private;
1228 	u64 start;
1229 	u64 end;
1230 	int whole_page;
1231 
1232 	if (bio->bi_size)
1233 		return 1;
1234 
1235 	do {
1236 		struct page *page = bvec->bv_page;
1237 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1238 		end = start + bvec->bv_len - 1;
1239 
1240 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1241 			whole_page = 1;
1242 		else
1243 			whole_page = 0;
1244 
1245 		if (--bvec >= bio->bi_io_vec)
1246 			prefetchw(&bvec->bv_page->flags);
1247 
1248 		if (!uptodate) {
1249 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1250 			ClearPageUptodate(page);
1251 			SetPageError(page);
1252 		}
1253 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1254 
1255 		if (whole_page)
1256 			end_page_writeback(page);
1257 		else
1258 			check_page_writeback(tree, page);
1259 		if (tree->ops && tree->ops->writepage_end_io_hook)
1260 			tree->ops->writepage_end_io_hook(page, start, end);
1261 	} while (bvec >= bio->bi_io_vec);
1262 
1263 	bio_put(bio);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * after a readpage IO is done, we need to:
1269  * clear the uptodate bits on error
1270  * set the uptodate bits if things worked
1271  * set the page up to date if all extents in the tree are uptodate
1272  * clear the lock bit in the extent tree
1273  * unlock the page if there are no other extents locked for it
1274  *
1275  * Scheduling is not allowed, so the extent state tree is expected
1276  * to have one and only one object corresponding to this IO.
1277  */
1278 static int end_bio_extent_readpage(struct bio *bio,
1279 				   unsigned int bytes_done, int err)
1280 {
1281 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1282 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1283 	struct extent_map_tree *tree = bio->bi_private;
1284 	u64 start;
1285 	u64 end;
1286 	int whole_page;
1287 	int ret;
1288 
1289 	if (bio->bi_size)
1290 		return 1;
1291 
1292 	do {
1293 		struct page *page = bvec->bv_page;
1294 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1295 		end = start + bvec->bv_len - 1;
1296 
1297 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1298 			whole_page = 1;
1299 		else
1300 			whole_page = 0;
1301 
1302 		if (--bvec >= bio->bi_io_vec)
1303 			prefetchw(&bvec->bv_page->flags);
1304 
1305 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1306 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1307 			if (ret)
1308 				uptodate = 0;
1309 		}
1310 		if (uptodate) {
1311 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1312 			if (whole_page)
1313 				SetPageUptodate(page);
1314 			else
1315 				check_page_uptodate(tree, page);
1316 		} else {
1317 			ClearPageUptodate(page);
1318 			SetPageError(page);
1319 		}
1320 
1321 		unlock_extent(tree, start, end, GFP_ATOMIC);
1322 
1323 		if (whole_page)
1324 			unlock_page(page);
1325 		else
1326 			check_page_locked(tree, page);
1327 	} while (bvec >= bio->bi_io_vec);
1328 
1329 	bio_put(bio);
1330 	return 0;
1331 }
1332 
1333 /*
1334  * IO done from prepare_write is pretty simple, we just unlock
1335  * the structs in the extent tree when done, and set the uptodate bits
1336  * as appropriate.
1337  */
1338 static int end_bio_extent_preparewrite(struct bio *bio,
1339 				       unsigned int bytes_done, int err)
1340 {
1341 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1342 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1343 	struct extent_map_tree *tree = bio->bi_private;
1344 	u64 start;
1345 	u64 end;
1346 
1347 	if (bio->bi_size)
1348 		return 1;
1349 
1350 	do {
1351 		struct page *page = bvec->bv_page;
1352 		start = (page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1353 		end = start + bvec->bv_len - 1;
1354 
1355 		if (--bvec >= bio->bi_io_vec)
1356 			prefetchw(&bvec->bv_page->flags);
1357 
1358 		if (uptodate) {
1359 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1360 		} else {
1361 			ClearPageUptodate(page);
1362 			SetPageError(page);
1363 		}
1364 
1365 		unlock_extent(tree, start, end, GFP_ATOMIC);
1366 
1367 	} while (bvec >= bio->bi_io_vec);
1368 
1369 	bio_put(bio);
1370 	return 0;
1371 }
1372 
1373 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1374 			      struct page *page, sector_t sector,
1375 			      size_t size, unsigned long offset,
1376 			      struct block_device *bdev,
1377 			      bio_end_io_t end_io_func)
1378 {
1379 	struct bio *bio;
1380 	int ret = 0;
1381 
1382 	bio = bio_alloc(GFP_NOIO, 1);
1383 
1384 	bio->bi_sector = sector;
1385 	bio->bi_bdev = bdev;
1386 	bio->bi_io_vec[0].bv_page = page;
1387 	bio->bi_io_vec[0].bv_len = size;
1388 	bio->bi_io_vec[0].bv_offset = offset;
1389 
1390 	bio->bi_vcnt = 1;
1391 	bio->bi_idx = 0;
1392 	bio->bi_size = size;
1393 
1394 	bio->bi_end_io = end_io_func;
1395 	bio->bi_private = tree;
1396 
1397 	bio_get(bio);
1398 	submit_bio(rw, bio);
1399 
1400 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1401 		ret = -EOPNOTSUPP;
1402 
1403 	bio_put(bio);
1404 	return ret;
1405 }
1406 
1407 void set_page_extent_mapped(struct page *page)
1408 {
1409 	if (!PagePrivate(page)) {
1410 		SetPagePrivate(page);
1411 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1412 		set_page_private(page, 1);
1413 		page_cache_get(page);
1414 	}
1415 }
1416 
1417 /*
1418  * basic readpage implementation.  Locked extent state structs are inserted
1419  * into the tree that are removed when the IO is done (by the end_io
1420  * handlers)
1421  */
1422 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1423 			  get_extent_t *get_extent)
1424 {
1425 	struct inode *inode = page->mapping->host;
1426 	u64 start = page->index << PAGE_CACHE_SHIFT;
1427 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1428 	u64 end;
1429 	u64 cur = start;
1430 	u64 extent_offset;
1431 	u64 last_byte = i_size_read(inode);
1432 	u64 block_start;
1433 	u64 cur_end;
1434 	sector_t sector;
1435 	struct extent_map *em;
1436 	struct block_device *bdev;
1437 	int ret;
1438 	int nr = 0;
1439 	size_t page_offset = 0;
1440 	size_t iosize;
1441 	size_t blocksize = inode->i_sb->s_blocksize;
1442 
1443 	set_page_extent_mapped(page);
1444 
1445 	end = page_end;
1446 	lock_extent(tree, start, end, GFP_NOFS);
1447 
1448 	while (cur <= end) {
1449 		if (cur >= last_byte) {
1450 			iosize = PAGE_CACHE_SIZE - page_offset;
1451 			zero_user_page(page, page_offset, iosize, KM_USER0);
1452 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1453 					    GFP_NOFS);
1454 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1455 			break;
1456 		}
1457 		em = get_extent(inode, page, page_offset, cur, end, 0);
1458 		if (IS_ERR(em) || !em) {
1459 			SetPageError(page);
1460 			unlock_extent(tree, cur, end, GFP_NOFS);
1461 			break;
1462 		}
1463 
1464 		extent_offset = cur - em->start;
1465 		BUG_ON(em->end < cur);
1466 		BUG_ON(end < cur);
1467 
1468 		iosize = min(em->end - cur, end - cur) + 1;
1469 		cur_end = min(em->end, end);
1470 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1471 		sector = (em->block_start + extent_offset) >> 9;
1472 		bdev = em->bdev;
1473 		block_start = em->block_start;
1474 		free_extent_map(em);
1475 		em = NULL;
1476 
1477 		/* we've found a hole, just zero and go on */
1478 		if (block_start == EXTENT_MAP_HOLE) {
1479 			zero_user_page(page, page_offset, iosize, KM_USER0);
1480 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1481 					    GFP_NOFS);
1482 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1483 			cur = cur + iosize;
1484 			page_offset += iosize;
1485 			continue;
1486 		}
1487 		/* the get_extent function already copied into the page */
1488 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1489 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1490 			cur = cur + iosize;
1491 			page_offset += iosize;
1492 			continue;
1493 		}
1494 
1495 		ret = 0;
1496 		if (tree->ops && tree->ops->readpage_io_hook) {
1497 			ret = tree->ops->readpage_io_hook(page, cur,
1498 							  cur + iosize - 1);
1499 		}
1500 		if (!ret) {
1501 			ret = submit_extent_page(READ, tree, page,
1502 						 sector, iosize, page_offset,
1503 						 bdev, end_bio_extent_readpage);
1504 		}
1505 		if (ret)
1506 			SetPageError(page);
1507 		cur = cur + iosize;
1508 		page_offset += iosize;
1509 		nr++;
1510 	}
1511 	if (!nr) {
1512 		if (!PageError(page))
1513 			SetPageUptodate(page);
1514 		unlock_page(page);
1515 	}
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL(extent_read_full_page);
1519 
1520 /*
1521  * the writepage semantics are similar to regular writepage.  extent
1522  * records are inserted to lock ranges in the tree, and as dirty areas
1523  * are found, they are marked writeback.  Then the lock bits are removed
1524  * and the end_io handler clears the writeback ranges
1525  */
1526 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1527 			  get_extent_t *get_extent,
1528 			  struct writeback_control *wbc)
1529 {
1530 	struct inode *inode = page->mapping->host;
1531 	u64 start = page->index << PAGE_CACHE_SHIFT;
1532 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1533 	u64 end;
1534 	u64 cur = start;
1535 	u64 extent_offset;
1536 	u64 last_byte = i_size_read(inode);
1537 	u64 block_start;
1538 	sector_t sector;
1539 	struct extent_map *em;
1540 	struct block_device *bdev;
1541 	int ret;
1542 	int nr = 0;
1543 	size_t page_offset = 0;
1544 	size_t iosize;
1545 	size_t blocksize;
1546 	loff_t i_size = i_size_read(inode);
1547 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1548 	u64 nr_delalloc;
1549 	u64 delalloc_end;
1550 
1551 	WARN_ON(!PageLocked(page));
1552 	if (page->index > end_index) {
1553 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1554 		unlock_page(page);
1555 		return 0;
1556 	}
1557 
1558 	if (page->index == end_index) {
1559 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1560 		zero_user_page(page, offset,
1561 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1562 	}
1563 
1564 	set_page_extent_mapped(page);
1565 
1566 	lock_extent(tree, start, page_end, GFP_NOFS);
1567 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1568 					       &delalloc_end,
1569 					       128 * 1024 * 1024);
1570 	if (nr_delalloc) {
1571 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1572 		if (delalloc_end >= page_end + 1) {
1573 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1574 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1575 					 1, 0, GFP_NOFS);
1576 		}
1577 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1578 				 0, 0, GFP_NOFS);
1579 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1580 			printk("found delalloc bits after clear extent_bit\n");
1581 		}
1582 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1583 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1584 	}
1585 
1586 	end = page_end;
1587 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1588 		printk("found delalloc bits after lock_extent\n");
1589 	}
1590 
1591 	if (last_byte <= start) {
1592 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1593 		goto done;
1594 	}
1595 
1596 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1597 	blocksize = inode->i_sb->s_blocksize;
1598 
1599 	while (cur <= end) {
1600 		if (cur >= last_byte) {
1601 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1602 			break;
1603 		}
1604 		em = get_extent(inode, page, page_offset, cur, end, 0);
1605 		if (IS_ERR(em) || !em) {
1606 			SetPageError(page);
1607 			break;
1608 		}
1609 
1610 		extent_offset = cur - em->start;
1611 		BUG_ON(em->end < cur);
1612 		BUG_ON(end < cur);
1613 		iosize = min(em->end - cur, end - cur) + 1;
1614 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1615 		sector = (em->block_start + extent_offset) >> 9;
1616 		bdev = em->bdev;
1617 		block_start = em->block_start;
1618 		free_extent_map(em);
1619 		em = NULL;
1620 
1621 		if (block_start == EXTENT_MAP_HOLE ||
1622 		    block_start == EXTENT_MAP_INLINE) {
1623 			clear_extent_dirty(tree, cur,
1624 					   cur + iosize - 1, GFP_NOFS);
1625 			cur = cur + iosize;
1626 			page_offset += iosize;
1627 			continue;
1628 		}
1629 
1630 		/* leave this out until we have a page_mkwrite call */
1631 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1632 				   EXTENT_DIRTY, 0)) {
1633 			cur = cur + iosize;
1634 			page_offset += iosize;
1635 			continue;
1636 		}
1637 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1638 		if (tree->ops && tree->ops->writepage_io_hook) {
1639 			ret = tree->ops->writepage_io_hook(page, cur,
1640 						cur + iosize - 1);
1641 		} else {
1642 			ret = 0;
1643 		}
1644 		if (ret)
1645 			SetPageError(page);
1646 		else {
1647 			set_range_writeback(tree, cur, cur + iosize - 1);
1648 			ret = submit_extent_page(WRITE, tree, page, sector,
1649 						 iosize, page_offset, bdev,
1650 						 end_bio_extent_writepage);
1651 			if (ret)
1652 				SetPageError(page);
1653 		}
1654 		cur = cur + iosize;
1655 		page_offset += iosize;
1656 		nr++;
1657 	}
1658 done:
1659 	unlock_extent(tree, start, page_end, GFP_NOFS);
1660 	unlock_page(page);
1661 	return 0;
1662 }
1663 EXPORT_SYMBOL(extent_write_full_page);
1664 
1665 /*
1666  * basic invalidatepage code, this waits on any locked or writeback
1667  * ranges corresponding to the page, and then deletes any extent state
1668  * records from the tree
1669  */
1670 int extent_invalidatepage(struct extent_map_tree *tree,
1671 			  struct page *page, unsigned long offset)
1672 {
1673 	u64 start = (page->index << PAGE_CACHE_SHIFT);
1674 	u64 end = start + PAGE_CACHE_SIZE - 1;
1675 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1676 
1677 	start += (offset + blocksize -1) & ~(blocksize - 1);
1678 	if (start > end)
1679 		return 0;
1680 
1681 	lock_extent(tree, start, end, GFP_NOFS);
1682 	wait_on_extent_writeback(tree, start, end);
1683 	clear_extent_bit(tree, start, end,
1684 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1685 			 1, 1, GFP_NOFS);
1686 	return 0;
1687 }
1688 EXPORT_SYMBOL(extent_invalidatepage);
1689 
1690 /*
1691  * simple commit_write call, set_range_dirty is used to mark both
1692  * the pages and the extent records as dirty
1693  */
1694 int extent_commit_write(struct extent_map_tree *tree,
1695 			struct inode *inode, struct page *page,
1696 			unsigned from, unsigned to)
1697 {
1698 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1699 
1700 	set_page_extent_mapped(page);
1701 	set_page_dirty(page);
1702 
1703 	if (pos > inode->i_size) {
1704 		i_size_write(inode, pos);
1705 		mark_inode_dirty(inode);
1706 	}
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(extent_commit_write);
1710 
1711 int extent_prepare_write(struct extent_map_tree *tree,
1712 			 struct inode *inode, struct page *page,
1713 			 unsigned from, unsigned to, get_extent_t *get_extent)
1714 {
1715 	u64 page_start = page->index << PAGE_CACHE_SHIFT;
1716 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1717 	u64 block_start;
1718 	u64 orig_block_start;
1719 	u64 block_end;
1720 	u64 cur_end;
1721 	struct extent_map *em;
1722 	unsigned blocksize = 1 << inode->i_blkbits;
1723 	size_t page_offset = 0;
1724 	size_t block_off_start;
1725 	size_t block_off_end;
1726 	int err = 0;
1727 	int iocount = 0;
1728 	int ret = 0;
1729 	int isnew;
1730 
1731 	set_page_extent_mapped(page);
1732 
1733 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1734 	block_end = (page_start + to - 1) | (blocksize - 1);
1735 	orig_block_start = block_start;
1736 
1737 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1738 	while(block_start <= block_end) {
1739 		em = get_extent(inode, page, page_offset, block_start,
1740 				block_end, 1);
1741 		if (IS_ERR(em) || !em) {
1742 			goto err;
1743 		}
1744 		cur_end = min(block_end, em->end);
1745 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1746 		block_off_end = block_off_start + blocksize;
1747 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1748 
1749 		if (!PageUptodate(page) && isnew &&
1750 		    (block_off_end > to || block_off_start < from)) {
1751 			void *kaddr;
1752 
1753 			kaddr = kmap_atomic(page, KM_USER0);
1754 			if (block_off_end > to)
1755 				memset(kaddr + to, 0, block_off_end - to);
1756 			if (block_off_start < from)
1757 				memset(kaddr + block_off_start, 0,
1758 				       from - block_off_start);
1759 			flush_dcache_page(page);
1760 			kunmap_atomic(kaddr, KM_USER0);
1761 		}
1762 		if (!isnew && !PageUptodate(page) &&
1763 		    (block_off_end > to || block_off_start < from) &&
1764 		    !test_range_bit(tree, block_start, cur_end,
1765 				    EXTENT_UPTODATE, 1)) {
1766 			u64 sector;
1767 			u64 extent_offset = block_start - em->start;
1768 			size_t iosize;
1769 			sector = (em->block_start + extent_offset) >> 9;
1770 			iosize = (cur_end - block_start + blocksize - 1) &
1771 				~((u64)blocksize - 1);
1772 			/*
1773 			 * we've already got the extent locked, but we
1774 			 * need to split the state such that our end_bio
1775 			 * handler can clear the lock.
1776 			 */
1777 			set_extent_bit(tree, block_start,
1778 				       block_start + iosize - 1,
1779 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
1780 			ret = submit_extent_page(READ, tree, page,
1781 					 sector, iosize, page_offset, em->bdev,
1782 					 end_bio_extent_preparewrite);
1783 			iocount++;
1784 			block_start = block_start + iosize;
1785 		} else {
1786 			set_extent_uptodate(tree, block_start, cur_end,
1787 					    GFP_NOFS);
1788 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
1789 			block_start = cur_end + 1;
1790 		}
1791 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
1792 		free_extent_map(em);
1793 	}
1794 	if (iocount) {
1795 		wait_extent_bit(tree, orig_block_start,
1796 				block_end, EXTENT_LOCKED);
1797 	}
1798 	check_page_uptodate(tree, page);
1799 err:
1800 	/* FIXME, zero out newly allocated blocks on error */
1801 	return err;
1802 }
1803 EXPORT_SYMBOL(extent_prepare_write);
1804 
1805 /*
1806  * a helper for releasepage.  As long as there are no locked extents
1807  * in the range corresponding to the page, both state records and extent
1808  * map records are removed
1809  */
1810 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
1811 {
1812 	struct extent_map *em;
1813 	u64 start = page->index << PAGE_CACHE_SHIFT;
1814 	u64 end = start + PAGE_CACHE_SIZE - 1;
1815 	u64 orig_start = start;
1816 	int ret = 1;
1817 
1818 	while (start <= end) {
1819 		em = lookup_extent_mapping(tree, start, end);
1820 		if (!em || IS_ERR(em))
1821 			break;
1822 		if (!test_range_bit(tree, em->start, em->end,
1823 				    EXTENT_LOCKED, 0)) {
1824 			remove_extent_mapping(tree, em);
1825 			/* once for the rb tree */
1826 			free_extent_map(em);
1827 		}
1828 		start = em->end + 1;
1829 		/* once for us */
1830 		free_extent_map(em);
1831 	}
1832 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
1833 		ret = 0;
1834 	else
1835 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
1836 				 1, 1, GFP_NOFS);
1837 	return ret;
1838 }
1839 EXPORT_SYMBOL(try_release_extent_mapping);
1840 
1841 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
1842 		get_extent_t *get_extent)
1843 {
1844 	struct inode *inode = mapping->host;
1845 	u64 start = iblock << inode->i_blkbits;
1846 	u64 end = start + (1 << inode->i_blkbits) - 1;
1847 	struct extent_map *em;
1848 
1849 	em = get_extent(inode, NULL, 0, start, end, 0);
1850 	if (!em || IS_ERR(em))
1851 		return 0;
1852 
1853 	// XXX(hch): block 0 is valid in some cases, e.g. XFS RT device
1854 	if (em->block_start == EXTENT_MAP_INLINE ||
1855 	    em->block_start == EXTENT_MAP_HOLE)
1856 		return 0;
1857 
1858 	return (em->block_start + start - em->start) >> inode->i_blkbits;
1859 }
1860 
1861 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
1862 					  u64 start, unsigned long len,
1863 					  gfp_t mask)
1864 {
1865 	unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
1866 				  (start >> PAGE_CACHE_SHIFT) + 1;
1867 	unsigned long i;
1868 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1869 	struct extent_buffer *eb;
1870 	struct page *p;
1871 	struct address_space *mapping = tree->mapping;
1872 	int uptodate = 0;
1873 
1874 	eb = kzalloc(EXTENT_BUFFER_SIZE(num_pages), mask);
1875 	if (!eb || IS_ERR(eb))
1876 		return NULL;
1877 
1878 	eb->start = start;
1879 	eb->len = len;
1880 	atomic_set(&eb->refs, 1);
1881 
1882 	for (i = 0; i < num_pages; i++, index++) {
1883 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
1884 		if (!p)
1885 			goto fail;
1886 		eb->pages[i] = p;
1887 		if (!PageUptodate(p))
1888 			uptodate = 0;
1889 		unlock_page(p);
1890 	}
1891 	if (uptodate)
1892 		eb->flags |= EXTENT_UPTODATE;
1893 	return eb;
1894 fail:
1895 	free_extent_buffer(eb);
1896 	return NULL;
1897 }
1898 EXPORT_SYMBOL(alloc_extent_buffer);
1899 
1900 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
1901 					 u64 start, unsigned long len,
1902 					  gfp_t mask)
1903 {
1904 	unsigned long num_pages = ((start + len - 1) >> PAGE_CACHE_SHIFT) -
1905 				  (start >> PAGE_CACHE_SHIFT) + 1;
1906 	unsigned long i;
1907 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1908 	struct extent_buffer *eb;
1909 	struct page *p;
1910 	struct address_space *mapping = tree->mapping;
1911 
1912 	eb = kzalloc(EXTENT_BUFFER_SIZE(num_pages), mask);
1913 	if (!eb || IS_ERR(eb))
1914 		return NULL;
1915 
1916 	eb->start = start;
1917 	eb->len = len;
1918 	atomic_set(&eb->refs, 1);
1919 
1920 	for (i = 0; i < num_pages; i++, index++) {
1921 		p = find_get_page(mapping, index);
1922 		if (!p)
1923 			goto fail;
1924 		eb->pages[i] = p;
1925 	}
1926 	return eb;
1927 fail:
1928 	free_extent_buffer(eb);
1929 	return NULL;
1930 }
1931 EXPORT_SYMBOL(find_extent_buffer);
1932 
1933 void free_extent_buffer(struct extent_buffer *eb)
1934 {
1935 	unsigned long i;
1936 	unsigned long num_pages;
1937 
1938 	if (!eb)
1939 		return;
1940 
1941 	if (!atomic_dec_and_test(&eb->refs))
1942 		return;
1943 
1944 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
1945 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
1946 
1947 	for (i = 0; i < num_pages; i++) {
1948 		if (eb->pages[i])
1949 			page_cache_release(eb->pages[i]);
1950 	}
1951 	kfree(eb);
1952 }
1953 EXPORT_SYMBOL(free_extent_buffer);
1954 
1955 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
1956 			      struct extent_buffer *eb)
1957 {
1958 	int set;
1959 	unsigned long i;
1960 	unsigned long num_pages;
1961 	struct page *page;
1962 
1963 	u64 start = eb->start;
1964 	u64 end = start + eb->len - 1;
1965 
1966 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
1967 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
1968 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
1969 
1970 	for (i = 0; i < num_pages; i++) {
1971 		page = eb->pages[i];
1972 		lock_page(page);
1973 		/*
1974 		 * if we're on the last page or the first page and the
1975 		 * block isn't aligned on a page boundary, do extra checks
1976 		 * to make sure we don't clean page that is partially dirty
1977 		 */
1978 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
1979 		    ((i == num_pages - 1) &&
1980 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
1981 			start = page->index << PAGE_CACHE_SHIFT;
1982 			end  = start + PAGE_CACHE_SIZE - 1;
1983 			if (test_range_bit(tree, start, end,
1984 					   EXTENT_DIRTY, 0)) {
1985 				unlock_page(page);
1986 				continue;
1987 			}
1988 		}
1989 		clear_page_dirty_for_io(page);
1990 		unlock_page(page);
1991 	}
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL(clear_extent_buffer_dirty);
1995 
1996 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
1997 				    struct extent_buffer *eb)
1998 {
1999 	return wait_on_extent_writeback(tree, eb->start,
2000 					eb->start + eb->len - 1);
2001 }
2002 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2003 
2004 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2005 			     struct extent_buffer *eb)
2006 {
2007 	return set_range_dirty(tree, eb->start, eb->start + eb->len - 1);
2008 }
2009 EXPORT_SYMBOL(set_extent_buffer_dirty);
2010 
2011 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2012 				struct extent_buffer *eb)
2013 {
2014 	unsigned long i;
2015 	struct page *page;
2016 	unsigned long num_pages;
2017 
2018 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2019 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2020 
2021 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2022 			    GFP_NOFS);
2023 	for (i = 0; i < num_pages; i++) {
2024 		page = eb->pages[i];
2025 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2026 		    ((i == num_pages - 1) &&
2027 		     ((eb->start + eb->len - 1) & (PAGE_CACHE_SIZE - 1)))) {
2028 			check_page_uptodate(tree, page);
2029 			continue;
2030 		}
2031 		SetPageUptodate(page);
2032 	}
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2036 
2037 int extent_buffer_uptodate(struct extent_map_tree *tree,
2038 			     struct extent_buffer *eb)
2039 {
2040 	if (eb->flags & EXTENT_UPTODATE)
2041 		return 1;
2042 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2043 			   EXTENT_UPTODATE, 1);
2044 }
2045 EXPORT_SYMBOL(extent_buffer_uptodate);
2046 
2047 int read_extent_buffer_pages(struct extent_map_tree *tree,
2048 			     struct extent_buffer *eb, int wait)
2049 {
2050 	unsigned long i;
2051 	struct page *page;
2052 	int err;
2053 	int ret = 0;
2054 	unsigned long num_pages;
2055 
2056 	if (eb->flags & EXTENT_UPTODATE)
2057 		return 0;
2058 
2059 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2060 			   EXTENT_UPTODATE, 1)) {
2061 		return 0;
2062 	}
2063 
2064 	num_pages = ((eb->start + eb->len - 1) >> PAGE_CACHE_SHIFT) -
2065 		(eb->start >> PAGE_CACHE_SHIFT) + 1;
2066 	for (i = 0; i < num_pages; i++) {
2067 		page = eb->pages[i];
2068 		if (PageUptodate(page)) {
2069 			continue;
2070 		}
2071 		if (!wait) {
2072 			if (TestSetPageLocked(page)) {
2073 				continue;
2074 			}
2075 		} else {
2076 			lock_page(page);
2077 		}
2078 		if (!PageUptodate(page)) {
2079 			err = page->mapping->a_ops->readpage(NULL, page);
2080 			if (err) {
2081 				ret = err;
2082 			}
2083 		} else {
2084 			unlock_page(page);
2085 		}
2086 	}
2087 
2088 	if (ret || !wait) {
2089 		return ret;
2090 	}
2091 
2092 	for (i = 0; i < num_pages; i++) {
2093 		page = eb->pages[i];
2094 		wait_on_page_locked(page);
2095 		if (!PageUptodate(page)) {
2096 			ret = -EIO;
2097 		}
2098 	}
2099 	eb->flags |= EXTENT_UPTODATE;
2100 	return ret;
2101 }
2102 EXPORT_SYMBOL(read_extent_buffer_pages);
2103 
2104 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2105 			unsigned long start,
2106 			unsigned long len)
2107 {
2108 	size_t cur;
2109 	size_t offset;
2110 	struct page *page;
2111 	char *kaddr;
2112 	char *dst = (char *)dstv;
2113 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2114 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2115 
2116 	WARN_ON(start > eb->len);
2117 	WARN_ON(start + len > eb->start + eb->len);
2118 
2119 	page = eb->pages[i];
2120 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2121 	if (i == 0)
2122 		offset += start_offset;
2123 
2124 	while(len > 0) {
2125 		WARN_ON(!PageUptodate(page));
2126 
2127 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2128 		// kaddr = kmap_atomic(page, KM_USER0);
2129 		kaddr = page_address(page);
2130 		memcpy(dst, kaddr + offset, cur);
2131 		// kunmap_atomic(kaddr, KM_USER0);
2132 
2133 		dst += cur;
2134 		len -= cur;
2135 		offset = 0;
2136 		i++;
2137 		page = eb->pages[i];
2138 	}
2139 }
2140 EXPORT_SYMBOL(read_extent_buffer);
2141 
2142 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2143 		      char **token, char **map,
2144 		      unsigned long *map_start,
2145 		      unsigned long *map_len, int km)
2146 {
2147 	size_t offset;
2148 	char *kaddr;
2149 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2150 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2151 
2152 	WARN_ON(start > eb->len);
2153 
2154 	if (i == 0) {
2155 		offset = start_offset;
2156 		*map_start = 0;
2157 	} else {
2158 		offset = 0;
2159 		*map_start = (i << PAGE_CACHE_SHIFT) - offset;
2160 	}
2161 
2162 	// kaddr = kmap_atomic(eb->pages[i], km);
2163 	kaddr = page_address(eb->pages[i]);
2164 	*token = kaddr;
2165 	*map = kaddr + offset;
2166 	*map_len = PAGE_CACHE_SIZE - offset;
2167 	return 0;
2168 }
2169 EXPORT_SYMBOL(map_extent_buffer);
2170 
2171 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2172 {
2173 	// kunmap_atomic(token, km);
2174 }
2175 EXPORT_SYMBOL(unmap_extent_buffer);
2176 
2177 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2178 			  unsigned long start,
2179 			  unsigned long len)
2180 {
2181 	size_t cur;
2182 	size_t offset;
2183 	struct page *page;
2184 	char *kaddr;
2185 	char *ptr = (char *)ptrv;
2186 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2187 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2188 	int ret = 0;
2189 
2190 	WARN_ON(start > eb->len);
2191 	WARN_ON(start + len > eb->start + eb->len);
2192 
2193 	page = eb->pages[i];
2194 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2195 	if (i == 0)
2196 		offset += start_offset;
2197 
2198 	while(len > 0) {
2199 		WARN_ON(!PageUptodate(page));
2200 
2201 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2202 
2203 		// kaddr = kmap_atomic(page, KM_USER0);
2204 		kaddr = page_address(page);
2205 		ret = memcmp(ptr, kaddr + offset, cur);
2206 		// kunmap_atomic(kaddr, KM_USER0);
2207 		if (ret)
2208 			break;
2209 
2210 		ptr += cur;
2211 		len -= cur;
2212 		offset = 0;
2213 		i++;
2214 		page = eb->pages[i];
2215 	}
2216 	return ret;
2217 }
2218 EXPORT_SYMBOL(memcmp_extent_buffer);
2219 
2220 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2221 			 unsigned long start, unsigned long len)
2222 {
2223 	size_t cur;
2224 	size_t offset;
2225 	struct page *page;
2226 	char *kaddr;
2227 	char *src = (char *)srcv;
2228 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2229 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2230 
2231 	WARN_ON(start > eb->len);
2232 	WARN_ON(start + len > eb->start + eb->len);
2233 
2234 	page = eb->pages[i];
2235 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2236 	if (i == 0)
2237 		offset += start_offset;
2238 
2239 	while(len > 0) {
2240 		WARN_ON(!PageUptodate(page));
2241 
2242 		cur = min(len, PAGE_CACHE_SIZE - offset);
2243 		// kaddr = kmap_atomic(page, KM_USER0);
2244 		kaddr = page_address(page);
2245 		memcpy(kaddr + offset, src, cur);
2246 		// kunmap_atomic(kaddr, KM_USER0);
2247 
2248 		src += cur;
2249 		len -= cur;
2250 		offset = 0;
2251 		i++;
2252 		page = eb->pages[i];
2253 	}
2254 }
2255 EXPORT_SYMBOL(write_extent_buffer);
2256 
2257 void memset_extent_buffer(struct extent_buffer *eb, char c,
2258 			  unsigned long start, unsigned long len)
2259 {
2260 	size_t cur;
2261 	size_t offset;
2262 	struct page *page;
2263 	char *kaddr;
2264 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2265 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2266 
2267 	WARN_ON(start > eb->len);
2268 	WARN_ON(start + len > eb->start + eb->len);
2269 
2270 	page = eb->pages[i];
2271 	offset = start & ((unsigned long)PAGE_CACHE_SIZE - 1);
2272 	if (i == 0)
2273 		offset += start_offset;
2274 
2275 	while(len > 0) {
2276 		WARN_ON(!PageUptodate(page));
2277 
2278 		cur = min(len, PAGE_CACHE_SIZE - offset);
2279 		// kaddr = kmap_atomic(page, KM_USER0);
2280 		kaddr = page_address(page);
2281 		memset(kaddr + offset, c, cur);
2282 		// kunmap_atomic(kaddr, KM_USER0);
2283 
2284 		len -= cur;
2285 		offset = 0;
2286 		i++;
2287 		page = eb->pages[i];
2288 	}
2289 }
2290 EXPORT_SYMBOL(memset_extent_buffer);
2291 
2292 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2293 			unsigned long dst_offset, unsigned long src_offset,
2294 			unsigned long len)
2295 {
2296 	u64 dst_len = dst->len;
2297 	size_t cur;
2298 	size_t offset;
2299 	struct page *page;
2300 	char *kaddr;
2301 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2302 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2303 
2304 	WARN_ON(src->len != dst_len);
2305 
2306 	offset = dst_offset & ((unsigned long)PAGE_CACHE_SIZE - 1);
2307 	if (i == 0)
2308 		offset += start_offset;
2309 
2310 	while(len > 0) {
2311 		page = dst->pages[i];
2312 		WARN_ON(!PageUptodate(page));
2313 
2314 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2315 
2316 		// kaddr = kmap_atomic(page, KM_USER1);
2317 		kaddr = page_address(page);
2318 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2319 		// kunmap_atomic(kaddr, KM_USER1);
2320 
2321 		src_offset += cur;
2322 		len -= cur;
2323 		offset = 0;
2324 		i++;
2325 	}
2326 }
2327 EXPORT_SYMBOL(copy_extent_buffer);
2328 
2329 static void move_pages(struct page *dst_page, struct page *src_page,
2330 		       unsigned long dst_off, unsigned long src_off,
2331 		       unsigned long len)
2332 {
2333 	// char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2334 	char *dst_kaddr = page_address(dst_page);
2335 	if (dst_page == src_page) {
2336 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2337 	} else {
2338 		// char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2339 		char *src_kaddr = page_address(src_page);
2340 		char *p = dst_kaddr + dst_off + len;
2341 		char *s = src_kaddr + src_off + len;
2342 
2343 		while (len--)
2344 			*--p = *--s;
2345 
2346 		// kunmap_atomic(src_kaddr, KM_USER1);
2347 	}
2348 	// kunmap_atomic(dst_kaddr, KM_USER0);
2349 }
2350 
2351 static void copy_pages(struct page *dst_page, struct page *src_page,
2352 		       unsigned long dst_off, unsigned long src_off,
2353 		       unsigned long len)
2354 {
2355 	//kmap_atomic(dst_page, KM_USER0);
2356 	char *dst_kaddr = page_address(dst_page);
2357 	char *src_kaddr;
2358 
2359 	if (dst_page != src_page)
2360 		src_kaddr = page_address(src_page); // kmap_atomic(src_page, KM_USER1);
2361 	else
2362 		src_kaddr = dst_kaddr;
2363 
2364 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2365 	/*
2366 	kunmap_atomic(dst_kaddr, KM_USER0);
2367 	if (dst_page != src_page)
2368 		kunmap_atomic(src_kaddr, KM_USER1);
2369 	*/
2370 }
2371 
2372 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2373 			   unsigned long src_offset, unsigned long len)
2374 {
2375 	size_t cur;
2376 	size_t dst_off_in_page;
2377 	size_t src_off_in_page;
2378 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2379 	unsigned long dst_i;
2380 	unsigned long src_i;
2381 
2382 	if (src_offset + len > dst->len) {
2383 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2384 		       src_offset, len, dst->len);
2385 		BUG_ON(1);
2386 	}
2387 	if (dst_offset + len > dst->len) {
2388 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2389 		       dst_offset, len, dst->len);
2390 		BUG_ON(1);
2391 	}
2392 
2393 	while(len > 0) {
2394 		dst_off_in_page = dst_offset &
2395 			((unsigned long)PAGE_CACHE_SIZE - 1);
2396 		src_off_in_page = src_offset &
2397 			((unsigned long)PAGE_CACHE_SIZE - 1);
2398 
2399 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2400 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2401 
2402 		if (src_i == 0)
2403 			src_off_in_page += start_offset;
2404 		if (dst_i == 0)
2405 			dst_off_in_page += start_offset;
2406 
2407 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2408 					       src_off_in_page));
2409 		cur = min(cur, (unsigned long)(PAGE_CACHE_SIZE -
2410 					       dst_off_in_page));
2411 
2412 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
2413 			   dst_off_in_page, src_off_in_page, cur);
2414 
2415 		src_offset += cur;
2416 		dst_offset += cur;
2417 		len -= cur;
2418 	}
2419 }
2420 EXPORT_SYMBOL(memcpy_extent_buffer);
2421 
2422 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2423 			   unsigned long src_offset, unsigned long len)
2424 {
2425 	size_t cur;
2426 	size_t dst_off_in_page;
2427 	size_t src_off_in_page;
2428 	unsigned long dst_end = dst_offset + len - 1;
2429 	unsigned long src_end = src_offset + len - 1;
2430 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2431 	unsigned long dst_i;
2432 	unsigned long src_i;
2433 
2434 	if (src_offset + len > dst->len) {
2435 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2436 		       src_offset, len, dst->len);
2437 		BUG_ON(1);
2438 	}
2439 	if (dst_offset + len > dst->len) {
2440 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2441 		       dst_offset, len, dst->len);
2442 		BUG_ON(1);
2443 	}
2444 	if (dst_offset < src_offset) {
2445 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2446 		return;
2447 	}
2448 	while(len > 0) {
2449 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2450 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2451 
2452 		dst_off_in_page = dst_end &
2453 			((unsigned long)PAGE_CACHE_SIZE - 1);
2454 		src_off_in_page = src_end &
2455 			((unsigned long)PAGE_CACHE_SIZE - 1);
2456 
2457 		if (src_i == 0)
2458 			src_off_in_page += start_offset;
2459 		if (dst_i == 0)
2460 			dst_off_in_page += start_offset;
2461 
2462 		cur = min(len, src_off_in_page + 1);
2463 		cur = min(cur, dst_off_in_page + 1);
2464 // printk("move pages orig dst %lu src %lu len %lu, this %lu %lu %lu\n", dst_offset, src_offset, len, dst_off_in_page - cur + 1, src_off_in_page - cur + 1, cur);
2465 		move_pages(dst->pages[dst_i], dst->pages[src_i],
2466 			   dst_off_in_page - cur + 1,
2467 			   src_off_in_page - cur + 1, cur);
2468 
2469 		dst_end -= cur - 1;
2470 		src_end -= cur - 1;
2471 		len -= cur;
2472 	}
2473 }
2474 EXPORT_SYMBOL(memmove_extent_buffer);
2475