xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 55c69072)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 
46 int __init extent_map_init(void)
47 {
48 	extent_map_cache = btrfs_cache_create("extent_map",
49 					    sizeof(struct extent_map), 0,
50 					    NULL);
51 	if (!extent_map_cache)
52 		return -ENOMEM;
53 	extent_state_cache = btrfs_cache_create("extent_state",
54 					    sizeof(struct extent_state), 0,
55 					    NULL);
56 	if (!extent_state_cache)
57 		goto free_map_cache;
58 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 					    sizeof(struct extent_buffer), 0,
60 					    NULL);
61 	if (!extent_buffer_cache)
62 		goto free_state_cache;
63 	return 0;
64 
65 free_state_cache:
66 	kmem_cache_destroy(extent_state_cache);
67 free_map_cache:
68 	kmem_cache_destroy(extent_map_cache);
69 	return -ENOMEM;
70 }
71 
72 void extent_map_exit(void)
73 {
74 	struct extent_state *state;
75 
76 	while (!list_empty(&states)) {
77 		state = list_entry(states.next, struct extent_state, list);
78 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 		list_del(&state->list);
80 		kmem_cache_free(extent_state_cache, state);
81 
82 	}
83 
84 	if (extent_map_cache)
85 		kmem_cache_destroy(extent_map_cache);
86 	if (extent_state_cache)
87 		kmem_cache_destroy(extent_state_cache);
88 	if (extent_buffer_cache)
89 		kmem_cache_destroy(extent_buffer_cache);
90 }
91 
92 void extent_map_tree_init(struct extent_map_tree *tree,
93 			  struct address_space *mapping, gfp_t mask)
94 {
95 	tree->map.rb_node = NULL;
96 	tree->state.rb_node = NULL;
97 	tree->ops = NULL;
98 	tree->dirty_bytes = 0;
99 	rwlock_init(&tree->lock);
100 	spin_lock_init(&tree->lru_lock);
101 	tree->mapping = mapping;
102 	INIT_LIST_HEAD(&tree->buffer_lru);
103 	tree->lru_size = 0;
104 }
105 EXPORT_SYMBOL(extent_map_tree_init);
106 
107 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108 {
109 	struct extent_buffer *eb;
110 	while(!list_empty(&tree->buffer_lru)) {
111 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 				lru);
113 		list_del_init(&eb->lru);
114 		free_extent_buffer(eb);
115 	}
116 }
117 EXPORT_SYMBOL(extent_map_tree_empty_lru);
118 
119 struct extent_map *alloc_extent_map(gfp_t mask)
120 {
121 	struct extent_map *em;
122 	em = kmem_cache_alloc(extent_map_cache, mask);
123 	if (!em || IS_ERR(em))
124 		return em;
125 	em->in_tree = 0;
126 	atomic_set(&em->refs, 1);
127 	return em;
128 }
129 EXPORT_SYMBOL(alloc_extent_map);
130 
131 void free_extent_map(struct extent_map *em)
132 {
133 	if (!em)
134 		return;
135 	if (atomic_dec_and_test(&em->refs)) {
136 		WARN_ON(em->in_tree);
137 		kmem_cache_free(extent_map_cache, em);
138 	}
139 }
140 EXPORT_SYMBOL(free_extent_map);
141 
142 
143 struct extent_state *alloc_extent_state(gfp_t mask)
144 {
145 	struct extent_state *state;
146 	unsigned long flags;
147 
148 	state = kmem_cache_alloc(extent_state_cache, mask);
149 	if (!state || IS_ERR(state))
150 		return state;
151 	state->state = 0;
152 	state->in_tree = 0;
153 	state->private = 0;
154 
155 	spin_lock_irqsave(&state_lock, flags);
156 	list_add(&state->list, &states);
157 	spin_unlock_irqrestore(&state_lock, flags);
158 
159 	atomic_set(&state->refs, 1);
160 	init_waitqueue_head(&state->wq);
161 	return state;
162 }
163 EXPORT_SYMBOL(alloc_extent_state);
164 
165 void free_extent_state(struct extent_state *state)
166 {
167 	unsigned long flags;
168 	if (!state)
169 		return;
170 	if (atomic_dec_and_test(&state->refs)) {
171 		WARN_ON(state->in_tree);
172 		spin_lock_irqsave(&state_lock, flags);
173 		list_del(&state->list);
174 		spin_unlock_irqrestore(&state_lock, flags);
175 		kmem_cache_free(extent_state_cache, state);
176 	}
177 }
178 EXPORT_SYMBOL(free_extent_state);
179 
180 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 				   struct rb_node *node)
182 {
183 	struct rb_node ** p = &root->rb_node;
184 	struct rb_node * parent = NULL;
185 	struct tree_entry *entry;
186 
187 	while(*p) {
188 		parent = *p;
189 		entry = rb_entry(parent, struct tree_entry, rb_node);
190 
191 		if (offset < entry->start)
192 			p = &(*p)->rb_left;
193 		else if (offset > entry->end)
194 			p = &(*p)->rb_right;
195 		else
196 			return parent;
197 	}
198 
199 	entry = rb_entry(node, struct tree_entry, rb_node);
200 	entry->in_tree = 1;
201 	rb_link_node(node, parent, p);
202 	rb_insert_color(node, root);
203 	return NULL;
204 }
205 
206 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
207 				   struct rb_node **prev_ret)
208 {
209 	struct rb_node * n = root->rb_node;
210 	struct rb_node *prev = NULL;
211 	struct tree_entry *entry;
212 	struct tree_entry *prev_entry = NULL;
213 
214 	while(n) {
215 		entry = rb_entry(n, struct tree_entry, rb_node);
216 		prev = n;
217 		prev_entry = entry;
218 
219 		if (offset < entry->start)
220 			n = n->rb_left;
221 		else if (offset > entry->end)
222 			n = n->rb_right;
223 		else
224 			return n;
225 	}
226 	if (!prev_ret)
227 		return NULL;
228 	while(prev && offset > prev_entry->end) {
229 		prev = rb_next(prev);
230 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 	}
232 	*prev_ret = prev;
233 	return NULL;
234 }
235 
236 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
237 {
238 	struct rb_node *prev;
239 	struct rb_node *ret;
240 	ret = __tree_search(root, offset, &prev);
241 	if (!ret)
242 		return prev;
243 	return ret;
244 }
245 
246 static int tree_delete(struct rb_root *root, u64 offset)
247 {
248 	struct rb_node *node;
249 	struct tree_entry *entry;
250 
251 	node = __tree_search(root, offset, NULL);
252 	if (!node)
253 		return -ENOENT;
254 	entry = rb_entry(node, struct tree_entry, rb_node);
255 	entry->in_tree = 0;
256 	rb_erase(node, root);
257 	return 0;
258 }
259 
260 /*
261  * add_extent_mapping tries a simple backward merge with existing
262  * mappings.  The extent_map struct passed in will be inserted into
263  * the tree directly (no copies made, just a reference taken).
264  */
265 int add_extent_mapping(struct extent_map_tree *tree,
266 		       struct extent_map *em)
267 {
268 	int ret = 0;
269 	struct extent_map *prev = NULL;
270 	struct rb_node *rb;
271 
272 	write_lock_irq(&tree->lock);
273 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
274 	if (rb) {
275 		prev = rb_entry(rb, struct extent_map, rb_node);
276 		ret = -EEXIST;
277 		goto out;
278 	}
279 	atomic_inc(&em->refs);
280 	if (em->start != 0) {
281 		rb = rb_prev(&em->rb_node);
282 		if (rb)
283 			prev = rb_entry(rb, struct extent_map, rb_node);
284 		if (prev && prev->end + 1 == em->start &&
285 		    ((em->block_start == EXTENT_MAP_HOLE &&
286 		      prev->block_start == EXTENT_MAP_HOLE) ||
287 		     (em->block_start == EXTENT_MAP_INLINE &&
288 		      prev->block_start == EXTENT_MAP_INLINE) ||
289 		     (em->block_start == EXTENT_MAP_DELALLOC &&
290 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
291 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
292 		      em->block_start == prev->block_end + 1))) {
293 			em->start = prev->start;
294 			em->block_start = prev->block_start;
295 			rb_erase(&prev->rb_node, &tree->map);
296 			prev->in_tree = 0;
297 			free_extent_map(prev);
298 		}
299 	 }
300 out:
301 	write_unlock_irq(&tree->lock);
302 	return ret;
303 }
304 EXPORT_SYMBOL(add_extent_mapping);
305 
306 /*
307  * lookup_extent_mapping returns the first extent_map struct in the
308  * tree that intersects the [start, end] (inclusive) range.  There may
309  * be additional objects in the tree that intersect, so check the object
310  * returned carefully to make sure you don't need additional lookups.
311  */
312 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
313 					 u64 start, u64 end)
314 {
315 	struct extent_map *em;
316 	struct rb_node *rb_node;
317 
318 	read_lock_irq(&tree->lock);
319 	rb_node = tree_search(&tree->map, start);
320 	if (!rb_node) {
321 		em = NULL;
322 		goto out;
323 	}
324 	if (IS_ERR(rb_node)) {
325 		em = ERR_PTR(PTR_ERR(rb_node));
326 		goto out;
327 	}
328 	em = rb_entry(rb_node, struct extent_map, rb_node);
329 	if (em->end < start || em->start > end) {
330 		em = NULL;
331 		goto out;
332 	}
333 	atomic_inc(&em->refs);
334 out:
335 	read_unlock_irq(&tree->lock);
336 	return em;
337 }
338 EXPORT_SYMBOL(lookup_extent_mapping);
339 
340 /*
341  * removes an extent_map struct from the tree.  No reference counts are
342  * dropped, and no checks are done to  see if the range is in use
343  */
344 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
345 {
346 	int ret;
347 
348 	write_lock_irq(&tree->lock);
349 	ret = tree_delete(&tree->map, em->end);
350 	write_unlock_irq(&tree->lock);
351 	return ret;
352 }
353 EXPORT_SYMBOL(remove_extent_mapping);
354 
355 /*
356  * utility function to look for merge candidates inside a given range.
357  * Any extents with matching state are merged together into a single
358  * extent in the tree.  Extents with EXTENT_IO in their state field
359  * are not merged because the end_io handlers need to be able to do
360  * operations on them without sleeping (or doing allocations/splits).
361  *
362  * This should be called with the tree lock held.
363  */
364 static int merge_state(struct extent_map_tree *tree,
365 		       struct extent_state *state)
366 {
367 	struct extent_state *other;
368 	struct rb_node *other_node;
369 
370 	if (state->state & EXTENT_IOBITS)
371 		return 0;
372 
373 	other_node = rb_prev(&state->rb_node);
374 	if (other_node) {
375 		other = rb_entry(other_node, struct extent_state, rb_node);
376 		if (other->end == state->start - 1 &&
377 		    other->state == state->state) {
378 			state->start = other->start;
379 			other->in_tree = 0;
380 			rb_erase(&other->rb_node, &tree->state);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			other->start = state->start;
390 			state->in_tree = 0;
391 			rb_erase(&state->rb_node, &tree->state);
392 			free_extent_state(state);
393 		}
394 	}
395 	return 0;
396 }
397 
398 /*
399  * insert an extent_state struct into the tree.  'bits' are set on the
400  * struct before it is inserted.
401  *
402  * This may return -EEXIST if the extent is already there, in which case the
403  * state struct is freed.
404  *
405  * The tree lock is not taken internally.  This is a utility function and
406  * probably isn't what you want to call (see set/clear_extent_bit).
407  */
408 static int insert_state(struct extent_map_tree *tree,
409 			struct extent_state *state, u64 start, u64 end,
410 			int bits)
411 {
412 	struct rb_node *node;
413 
414 	if (end < start) {
415 		printk("end < start %Lu %Lu\n", end, start);
416 		WARN_ON(1);
417 	}
418 	if (bits & EXTENT_DIRTY)
419 		tree->dirty_bytes += end - start + 1;
420 	state->state |= bits;
421 	state->start = start;
422 	state->end = end;
423 	node = tree_insert(&tree->state, end, &state->rb_node);
424 	if (node) {
425 		struct extent_state *found;
426 		found = rb_entry(node, struct extent_state, rb_node);
427 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
428 		free_extent_state(state);
429 		return -EEXIST;
430 	}
431 	merge_state(tree, state);
432 	return 0;
433 }
434 
435 /*
436  * split a given extent state struct in two, inserting the preallocated
437  * struct 'prealloc' as the newly created second half.  'split' indicates an
438  * offset inside 'orig' where it should be split.
439  *
440  * Before calling,
441  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
442  * are two extent state structs in the tree:
443  * prealloc: [orig->start, split - 1]
444  * orig: [ split, orig->end ]
445  *
446  * The tree locks are not taken by this function. They need to be held
447  * by the caller.
448  */
449 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
450 		       struct extent_state *prealloc, u64 split)
451 {
452 	struct rb_node *node;
453 	prealloc->start = orig->start;
454 	prealloc->end = split - 1;
455 	prealloc->state = orig->state;
456 	orig->start = split;
457 
458 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
459 	if (node) {
460 		struct extent_state *found;
461 		found = rb_entry(node, struct extent_state, rb_node);
462 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
463 		free_extent_state(prealloc);
464 		return -EEXIST;
465 	}
466 	return 0;
467 }
468 
469 /*
470  * utility function to clear some bits in an extent state struct.
471  * it will optionally wake up any one waiting on this state (wake == 1), or
472  * forcibly remove the state from the tree (delete == 1).
473  *
474  * If no bits are set on the state struct after clearing things, the
475  * struct is freed and removed from the tree
476  */
477 static int clear_state_bit(struct extent_map_tree *tree,
478 			    struct extent_state *state, int bits, int wake,
479 			    int delete)
480 {
481 	int ret = state->state & bits;
482 
483 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
484 		u64 range = state->end - state->start + 1;
485 		WARN_ON(range > tree->dirty_bytes);
486 		tree->dirty_bytes -= range;
487 	}
488 	state->state &= ~bits;
489 	if (wake)
490 		wake_up(&state->wq);
491 	if (delete || state->state == 0) {
492 		if (state->in_tree) {
493 			rb_erase(&state->rb_node, &tree->state);
494 			state->in_tree = 0;
495 			free_extent_state(state);
496 		} else {
497 			WARN_ON(1);
498 		}
499 	} else {
500 		merge_state(tree, state);
501 	}
502 	return ret;
503 }
504 
505 /*
506  * clear some bits on a range in the tree.  This may require splitting
507  * or inserting elements in the tree, so the gfp mask is used to
508  * indicate which allocations or sleeping are allowed.
509  *
510  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
511  * the given range from the tree regardless of state (ie for truncate).
512  *
513  * the range [start, end] is inclusive.
514  *
515  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
516  * bits were already set, or zero if none of the bits were already set.
517  */
518 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
519 		     int bits, int wake, int delete, gfp_t mask)
520 {
521 	struct extent_state *state;
522 	struct extent_state *prealloc = NULL;
523 	struct rb_node *node;
524 	unsigned long flags;
525 	int err;
526 	int set = 0;
527 
528 again:
529 	if (!prealloc && (mask & __GFP_WAIT)) {
530 		prealloc = alloc_extent_state(mask);
531 		if (!prealloc)
532 			return -ENOMEM;
533 	}
534 
535 	write_lock_irqsave(&tree->lock, flags);
536 	/*
537 	 * this search will find the extents that end after
538 	 * our range starts
539 	 */
540 	node = tree_search(&tree->state, start);
541 	if (!node)
542 		goto out;
543 	state = rb_entry(node, struct extent_state, rb_node);
544 	if (state->start > end)
545 		goto out;
546 	WARN_ON(state->end < start);
547 
548 	/*
549 	 *     | ---- desired range ---- |
550 	 *  | state | or
551 	 *  | ------------- state -------------- |
552 	 *
553 	 * We need to split the extent we found, and may flip
554 	 * bits on second half.
555 	 *
556 	 * If the extent we found extends past our range, we
557 	 * just split and search again.  It'll get split again
558 	 * the next time though.
559 	 *
560 	 * If the extent we found is inside our range, we clear
561 	 * the desired bit on it.
562 	 */
563 
564 	if (state->start < start) {
565 		err = split_state(tree, state, prealloc, start);
566 		BUG_ON(err == -EEXIST);
567 		prealloc = NULL;
568 		if (err)
569 			goto out;
570 		if (state->end <= end) {
571 			start = state->end + 1;
572 			set |= clear_state_bit(tree, state, bits,
573 					wake, delete);
574 		} else {
575 			start = state->start;
576 		}
577 		goto search_again;
578 	}
579 	/*
580 	 * | ---- desired range ---- |
581 	 *                        | state |
582 	 * We need to split the extent, and clear the bit
583 	 * on the first half
584 	 */
585 	if (state->start <= end && state->end > end) {
586 		err = split_state(tree, state, prealloc, end + 1);
587 		BUG_ON(err == -EEXIST);
588 
589 		if (wake)
590 			wake_up(&state->wq);
591 		set |= clear_state_bit(tree, prealloc, bits,
592 				       wake, delete);
593 		prealloc = NULL;
594 		goto out;
595 	}
596 
597 	start = state->end + 1;
598 	set |= clear_state_bit(tree, state, bits, wake, delete);
599 	goto search_again;
600 
601 out:
602 	write_unlock_irqrestore(&tree->lock, flags);
603 	if (prealloc)
604 		free_extent_state(prealloc);
605 
606 	return set;
607 
608 search_again:
609 	if (start > end)
610 		goto out;
611 	write_unlock_irqrestore(&tree->lock, flags);
612 	if (mask & __GFP_WAIT)
613 		cond_resched();
614 	goto again;
615 }
616 EXPORT_SYMBOL(clear_extent_bit);
617 
618 static int wait_on_state(struct extent_map_tree *tree,
619 			 struct extent_state *state)
620 {
621 	DEFINE_WAIT(wait);
622 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
623 	read_unlock_irq(&tree->lock);
624 	schedule();
625 	read_lock_irq(&tree->lock);
626 	finish_wait(&state->wq, &wait);
627 	return 0;
628 }
629 
630 /*
631  * waits for one or more bits to clear on a range in the state tree.
632  * The range [start, end] is inclusive.
633  * The tree lock is taken by this function
634  */
635 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
636 {
637 	struct extent_state *state;
638 	struct rb_node *node;
639 
640 	read_lock_irq(&tree->lock);
641 again:
642 	while (1) {
643 		/*
644 		 * this search will find all the extents that end after
645 		 * our range starts
646 		 */
647 		node = tree_search(&tree->state, start);
648 		if (!node)
649 			break;
650 
651 		state = rb_entry(node, struct extent_state, rb_node);
652 
653 		if (state->start > end)
654 			goto out;
655 
656 		if (state->state & bits) {
657 			start = state->start;
658 			atomic_inc(&state->refs);
659 			wait_on_state(tree, state);
660 			free_extent_state(state);
661 			goto again;
662 		}
663 		start = state->end + 1;
664 
665 		if (start > end)
666 			break;
667 
668 		if (need_resched()) {
669 			read_unlock_irq(&tree->lock);
670 			cond_resched();
671 			read_lock_irq(&tree->lock);
672 		}
673 	}
674 out:
675 	read_unlock_irq(&tree->lock);
676 	return 0;
677 }
678 EXPORT_SYMBOL(wait_extent_bit);
679 
680 static void set_state_bits(struct extent_map_tree *tree,
681 			   struct extent_state *state,
682 			   int bits)
683 {
684 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
685 		u64 range = state->end - state->start + 1;
686 		tree->dirty_bytes += range;
687 	}
688 	state->state |= bits;
689 }
690 
691 /*
692  * set some bits on a range in the tree.  This may require allocations
693  * or sleeping, so the gfp mask is used to indicate what is allowed.
694  *
695  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
696  * range already has the desired bits set.  The start of the existing
697  * range is returned in failed_start in this case.
698  *
699  * [start, end] is inclusive
700  * This takes the tree lock.
701  */
702 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
703 		   int exclusive, u64 *failed_start, gfp_t mask)
704 {
705 	struct extent_state *state;
706 	struct extent_state *prealloc = NULL;
707 	struct rb_node *node;
708 	unsigned long flags;
709 	int err = 0;
710 	int set;
711 	u64 last_start;
712 	u64 last_end;
713 again:
714 	if (!prealloc && (mask & __GFP_WAIT)) {
715 		prealloc = alloc_extent_state(mask);
716 		if (!prealloc)
717 			return -ENOMEM;
718 	}
719 
720 	write_lock_irqsave(&tree->lock, flags);
721 	/*
722 	 * this search will find all the extents that end after
723 	 * our range starts.
724 	 */
725 	node = tree_search(&tree->state, start);
726 	if (!node) {
727 		err = insert_state(tree, prealloc, start, end, bits);
728 		prealloc = NULL;
729 		BUG_ON(err == -EEXIST);
730 		goto out;
731 	}
732 
733 	state = rb_entry(node, struct extent_state, rb_node);
734 	last_start = state->start;
735 	last_end = state->end;
736 
737 	/*
738 	 * | ---- desired range ---- |
739 	 * | state |
740 	 *
741 	 * Just lock what we found and keep going
742 	 */
743 	if (state->start == start && state->end <= end) {
744 		set = state->state & bits;
745 		if (set && exclusive) {
746 			*failed_start = state->start;
747 			err = -EEXIST;
748 			goto out;
749 		}
750 		set_state_bits(tree, state, bits);
751 		start = state->end + 1;
752 		merge_state(tree, state);
753 		goto search_again;
754 	}
755 
756 	/*
757 	 *     | ---- desired range ---- |
758 	 * | state |
759 	 *   or
760 	 * | ------------- state -------------- |
761 	 *
762 	 * We need to split the extent we found, and may flip bits on
763 	 * second half.
764 	 *
765 	 * If the extent we found extends past our
766 	 * range, we just split and search again.  It'll get split
767 	 * again the next time though.
768 	 *
769 	 * If the extent we found is inside our range, we set the
770 	 * desired bit on it.
771 	 */
772 	if (state->start < start) {
773 		set = state->state & bits;
774 		if (exclusive && set) {
775 			*failed_start = start;
776 			err = -EEXIST;
777 			goto out;
778 		}
779 		err = split_state(tree, state, prealloc, start);
780 		BUG_ON(err == -EEXIST);
781 		prealloc = NULL;
782 		if (err)
783 			goto out;
784 		if (state->end <= end) {
785 			set_state_bits(tree, state, bits);
786 			start = state->end + 1;
787 			merge_state(tree, state);
788 		} else {
789 			start = state->start;
790 		}
791 		goto search_again;
792 	}
793 	/*
794 	 * | ---- desired range ---- |
795 	 *     | state | or               | state |
796 	 *
797 	 * There's a hole, we need to insert something in it and
798 	 * ignore the extent we found.
799 	 */
800 	if (state->start > start) {
801 		u64 this_end;
802 		if (end < last_start)
803 			this_end = end;
804 		else
805 			this_end = last_start -1;
806 		err = insert_state(tree, prealloc, start, this_end,
807 				   bits);
808 		prealloc = NULL;
809 		BUG_ON(err == -EEXIST);
810 		if (err)
811 			goto out;
812 		start = this_end + 1;
813 		goto search_again;
814 	}
815 	/*
816 	 * | ---- desired range ---- |
817 	 *                        | state |
818 	 * We need to split the extent, and set the bit
819 	 * on the first half
820 	 */
821 	if (state->start <= end && state->end > end) {
822 		set = state->state & bits;
823 		if (exclusive && set) {
824 			*failed_start = start;
825 			err = -EEXIST;
826 			goto out;
827 		}
828 		err = split_state(tree, state, prealloc, end + 1);
829 		BUG_ON(err == -EEXIST);
830 
831 		set_state_bits(tree, prealloc, bits);
832 		merge_state(tree, prealloc);
833 		prealloc = NULL;
834 		goto out;
835 	}
836 
837 	goto search_again;
838 
839 out:
840 	write_unlock_irqrestore(&tree->lock, flags);
841 	if (prealloc)
842 		free_extent_state(prealloc);
843 
844 	return err;
845 
846 search_again:
847 	if (start > end)
848 		goto out;
849 	write_unlock_irqrestore(&tree->lock, flags);
850 	if (mask & __GFP_WAIT)
851 		cond_resched();
852 	goto again;
853 }
854 EXPORT_SYMBOL(set_extent_bit);
855 
856 /* wrappers around set/clear extent bit */
857 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
858 		     gfp_t mask)
859 {
860 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
861 			      mask);
862 }
863 EXPORT_SYMBOL(set_extent_dirty);
864 
865 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
866 		    int bits, gfp_t mask)
867 {
868 	return set_extent_bit(tree, start, end, bits, 0, NULL,
869 			      mask);
870 }
871 EXPORT_SYMBOL(set_extent_bits);
872 
873 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
874 		      int bits, gfp_t mask)
875 {
876 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
877 }
878 EXPORT_SYMBOL(clear_extent_bits);
879 
880 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
881 		     gfp_t mask)
882 {
883 	return set_extent_bit(tree, start, end,
884 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
885 			      mask);
886 }
887 EXPORT_SYMBOL(set_extent_delalloc);
888 
889 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
890 		       gfp_t mask)
891 {
892 	return clear_extent_bit(tree, start, end,
893 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
894 }
895 EXPORT_SYMBOL(clear_extent_dirty);
896 
897 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
898 		     gfp_t mask)
899 {
900 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
901 			      mask);
902 }
903 EXPORT_SYMBOL(set_extent_new);
904 
905 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
906 		       gfp_t mask)
907 {
908 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
909 }
910 EXPORT_SYMBOL(clear_extent_new);
911 
912 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
913 			gfp_t mask)
914 {
915 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
916 			      mask);
917 }
918 EXPORT_SYMBOL(set_extent_uptodate);
919 
920 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
921 			  gfp_t mask)
922 {
923 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
924 }
925 EXPORT_SYMBOL(clear_extent_uptodate);
926 
927 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
928 			 gfp_t mask)
929 {
930 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
931 			      0, NULL, mask);
932 }
933 EXPORT_SYMBOL(set_extent_writeback);
934 
935 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
936 			   gfp_t mask)
937 {
938 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
939 }
940 EXPORT_SYMBOL(clear_extent_writeback);
941 
942 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
943 {
944 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
945 }
946 EXPORT_SYMBOL(wait_on_extent_writeback);
947 
948 /*
949  * locks a range in ascending order, waiting for any locked regions
950  * it hits on the way.  [start,end] are inclusive, and this will sleep.
951  */
952 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
953 {
954 	int err;
955 	u64 failed_start;
956 	while (1) {
957 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
958 				     &failed_start, mask);
959 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
960 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
961 			start = failed_start;
962 		} else {
963 			break;
964 		}
965 		WARN_ON(start > end);
966 	}
967 	return err;
968 }
969 EXPORT_SYMBOL(lock_extent);
970 
971 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
972 		  gfp_t mask)
973 {
974 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
975 }
976 EXPORT_SYMBOL(unlock_extent);
977 
978 /*
979  * helper function to set pages and extents in the tree dirty
980  */
981 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
982 {
983 	unsigned long index = start >> PAGE_CACHE_SHIFT;
984 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
985 	struct page *page;
986 
987 	while (index <= end_index) {
988 		page = find_get_page(tree->mapping, index);
989 		BUG_ON(!page);
990 		__set_page_dirty_nobuffers(page);
991 		page_cache_release(page);
992 		index++;
993 	}
994 	set_extent_dirty(tree, start, end, GFP_NOFS);
995 	return 0;
996 }
997 EXPORT_SYMBOL(set_range_dirty);
998 
999 /*
1000  * helper function to set both pages and extents in the tree writeback
1001  */
1002 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1003 {
1004 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1005 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1006 	struct page *page;
1007 
1008 	while (index <= end_index) {
1009 		page = find_get_page(tree->mapping, index);
1010 		BUG_ON(!page);
1011 		set_page_writeback(page);
1012 		page_cache_release(page);
1013 		index++;
1014 	}
1015 	set_extent_writeback(tree, start, end, GFP_NOFS);
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL(set_range_writeback);
1019 
1020 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1021 			  u64 *start_ret, u64 *end_ret, int bits)
1022 {
1023 	struct rb_node *node;
1024 	struct extent_state *state;
1025 	int ret = 1;
1026 
1027 	read_lock_irq(&tree->lock);
1028 	/*
1029 	 * this search will find all the extents that end after
1030 	 * our range starts.
1031 	 */
1032 	node = tree_search(&tree->state, start);
1033 	if (!node || IS_ERR(node)) {
1034 		goto out;
1035 	}
1036 
1037 	while(1) {
1038 		state = rb_entry(node, struct extent_state, rb_node);
1039 		if (state->end >= start && (state->state & bits)) {
1040 			*start_ret = state->start;
1041 			*end_ret = state->end;
1042 			ret = 0;
1043 			break;
1044 		}
1045 		node = rb_next(node);
1046 		if (!node)
1047 			break;
1048 	}
1049 out:
1050 	read_unlock_irq(&tree->lock);
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL(find_first_extent_bit);
1054 
1055 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1056 			     u64 *start, u64 *end, u64 max_bytes)
1057 {
1058 	struct rb_node *node;
1059 	struct extent_state *state;
1060 	u64 cur_start = *start;
1061 	u64 found = 0;
1062 	u64 total_bytes = 0;
1063 
1064 	write_lock_irq(&tree->lock);
1065 	/*
1066 	 * this search will find all the extents that end after
1067 	 * our range starts.
1068 	 */
1069 search_again:
1070 	node = tree_search(&tree->state, cur_start);
1071 	if (!node || IS_ERR(node)) {
1072 		*end = (u64)-1;
1073 		goto out;
1074 	}
1075 
1076 	while(1) {
1077 		state = rb_entry(node, struct extent_state, rb_node);
1078 		if (found && state->start != cur_start) {
1079 			goto out;
1080 		}
1081 		if (!(state->state & EXTENT_DELALLOC)) {
1082 			if (!found)
1083 				*end = state->end;
1084 			goto out;
1085 		}
1086 		if (!found) {
1087 			struct extent_state *prev_state;
1088 			struct rb_node *prev_node = node;
1089 			while(1) {
1090 				prev_node = rb_prev(prev_node);
1091 				if (!prev_node)
1092 					break;
1093 				prev_state = rb_entry(prev_node,
1094 						      struct extent_state,
1095 						      rb_node);
1096 				if (!(prev_state->state & EXTENT_DELALLOC))
1097 					break;
1098 				state = prev_state;
1099 				node = prev_node;
1100 			}
1101 		}
1102 		if (state->state & EXTENT_LOCKED) {
1103 			DEFINE_WAIT(wait);
1104 			atomic_inc(&state->refs);
1105 			prepare_to_wait(&state->wq, &wait,
1106 					TASK_UNINTERRUPTIBLE);
1107 			write_unlock_irq(&tree->lock);
1108 			schedule();
1109 			write_lock_irq(&tree->lock);
1110 			finish_wait(&state->wq, &wait);
1111 			free_extent_state(state);
1112 			goto search_again;
1113 		}
1114 		state->state |= EXTENT_LOCKED;
1115 		if (!found)
1116 			*start = state->start;
1117 		found++;
1118 		*end = state->end;
1119 		cur_start = state->end + 1;
1120 		node = rb_next(node);
1121 		if (!node)
1122 			break;
1123 		total_bytes += state->end - state->start + 1;
1124 		if (total_bytes >= max_bytes)
1125 			break;
1126 	}
1127 out:
1128 	write_unlock_irq(&tree->lock);
1129 	return found;
1130 }
1131 
1132 u64 count_range_bits(struct extent_map_tree *tree,
1133 		     u64 *start, u64 search_end, u64 max_bytes,
1134 		     unsigned long bits)
1135 {
1136 	struct rb_node *node;
1137 	struct extent_state *state;
1138 	u64 cur_start = *start;
1139 	u64 total_bytes = 0;
1140 	int found = 0;
1141 
1142 	if (search_end <= cur_start) {
1143 		printk("search_end %Lu start %Lu\n", search_end, cur_start);
1144 		WARN_ON(1);
1145 		return 0;
1146 	}
1147 
1148 	write_lock_irq(&tree->lock);
1149 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1150 		total_bytes = tree->dirty_bytes;
1151 		goto out;
1152 	}
1153 	/*
1154 	 * this search will find all the extents that end after
1155 	 * our range starts.
1156 	 */
1157 	node = tree_search(&tree->state, cur_start);
1158 	if (!node || IS_ERR(node)) {
1159 		goto out;
1160 	}
1161 
1162 	while(1) {
1163 		state = rb_entry(node, struct extent_state, rb_node);
1164 		if (state->start > search_end)
1165 			break;
1166 		if (state->end >= cur_start && (state->state & bits)) {
1167 			total_bytes += min(search_end, state->end) + 1 -
1168 				       max(cur_start, state->start);
1169 			if (total_bytes >= max_bytes)
1170 				break;
1171 			if (!found) {
1172 				*start = state->start;
1173 				found = 1;
1174 			}
1175 		}
1176 		node = rb_next(node);
1177 		if (!node)
1178 			break;
1179 	}
1180 out:
1181 	write_unlock_irq(&tree->lock);
1182 	return total_bytes;
1183 }
1184 /*
1185  * helper function to lock both pages and extents in the tree.
1186  * pages must be locked first.
1187  */
1188 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1189 {
1190 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1191 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1192 	struct page *page;
1193 	int err;
1194 
1195 	while (index <= end_index) {
1196 		page = grab_cache_page(tree->mapping, index);
1197 		if (!page) {
1198 			err = -ENOMEM;
1199 			goto failed;
1200 		}
1201 		if (IS_ERR(page)) {
1202 			err = PTR_ERR(page);
1203 			goto failed;
1204 		}
1205 		index++;
1206 	}
1207 	lock_extent(tree, start, end, GFP_NOFS);
1208 	return 0;
1209 
1210 failed:
1211 	/*
1212 	 * we failed above in getting the page at 'index', so we undo here
1213 	 * up to but not including the page at 'index'
1214 	 */
1215 	end_index = index;
1216 	index = start >> PAGE_CACHE_SHIFT;
1217 	while (index < end_index) {
1218 		page = find_get_page(tree->mapping, index);
1219 		unlock_page(page);
1220 		page_cache_release(page);
1221 		index++;
1222 	}
1223 	return err;
1224 }
1225 EXPORT_SYMBOL(lock_range);
1226 
1227 /*
1228  * helper function to unlock both pages and extents in the tree.
1229  */
1230 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1231 {
1232 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1233 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1234 	struct page *page;
1235 
1236 	while (index <= end_index) {
1237 		page = find_get_page(tree->mapping, index);
1238 		unlock_page(page);
1239 		page_cache_release(page);
1240 		index++;
1241 	}
1242 	unlock_extent(tree, start, end, GFP_NOFS);
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(unlock_range);
1246 
1247 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1248 {
1249 	struct rb_node *node;
1250 	struct extent_state *state;
1251 	int ret = 0;
1252 
1253 	write_lock_irq(&tree->lock);
1254 	/*
1255 	 * this search will find all the extents that end after
1256 	 * our range starts.
1257 	 */
1258 	node = tree_search(&tree->state, start);
1259 	if (!node || IS_ERR(node)) {
1260 		ret = -ENOENT;
1261 		goto out;
1262 	}
1263 	state = rb_entry(node, struct extent_state, rb_node);
1264 	if (state->start != start) {
1265 		ret = -ENOENT;
1266 		goto out;
1267 	}
1268 	state->private = private;
1269 out:
1270 	write_unlock_irq(&tree->lock);
1271 	return ret;
1272 }
1273 
1274 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1275 {
1276 	struct rb_node *node;
1277 	struct extent_state *state;
1278 	int ret = 0;
1279 
1280 	read_lock_irq(&tree->lock);
1281 	/*
1282 	 * this search will find all the extents that end after
1283 	 * our range starts.
1284 	 */
1285 	node = tree_search(&tree->state, start);
1286 	if (!node || IS_ERR(node)) {
1287 		ret = -ENOENT;
1288 		goto out;
1289 	}
1290 	state = rb_entry(node, struct extent_state, rb_node);
1291 	if (state->start != start) {
1292 		ret = -ENOENT;
1293 		goto out;
1294 	}
1295 	*private = state->private;
1296 out:
1297 	read_unlock_irq(&tree->lock);
1298 	return ret;
1299 }
1300 
1301 /*
1302  * searches a range in the state tree for a given mask.
1303  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1304  * has the bits set.  Otherwise, 1 is returned if any bit in the
1305  * range is found set.
1306  */
1307 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1308 		   int bits, int filled)
1309 {
1310 	struct extent_state *state = NULL;
1311 	struct rb_node *node;
1312 	int bitset = 0;
1313 
1314 	read_lock_irq(&tree->lock);
1315 	node = tree_search(&tree->state, start);
1316 	while (node && start <= end) {
1317 		state = rb_entry(node, struct extent_state, rb_node);
1318 
1319 		if (filled && state->start > start) {
1320 			bitset = 0;
1321 			break;
1322 		}
1323 
1324 		if (state->start > end)
1325 			break;
1326 
1327 		if (state->state & bits) {
1328 			bitset = 1;
1329 			if (!filled)
1330 				break;
1331 		} else if (filled) {
1332 			bitset = 0;
1333 			break;
1334 		}
1335 		start = state->end + 1;
1336 		if (start > end)
1337 			break;
1338 		node = rb_next(node);
1339 	}
1340 	read_unlock_irq(&tree->lock);
1341 	return bitset;
1342 }
1343 EXPORT_SYMBOL(test_range_bit);
1344 
1345 /*
1346  * helper function to set a given page up to date if all the
1347  * extents in the tree for that page are up to date
1348  */
1349 static int check_page_uptodate(struct extent_map_tree *tree,
1350 			       struct page *page)
1351 {
1352 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1353 	u64 end = start + PAGE_CACHE_SIZE - 1;
1354 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1355 		SetPageUptodate(page);
1356 	return 0;
1357 }
1358 
1359 /*
1360  * helper function to unlock a page if all the extents in the tree
1361  * for that page are unlocked
1362  */
1363 static int check_page_locked(struct extent_map_tree *tree,
1364 			     struct page *page)
1365 {
1366 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1367 	u64 end = start + PAGE_CACHE_SIZE - 1;
1368 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1369 		unlock_page(page);
1370 	return 0;
1371 }
1372 
1373 /*
1374  * helper function to end page writeback if all the extents
1375  * in the tree for that page are done with writeback
1376  */
1377 static int check_page_writeback(struct extent_map_tree *tree,
1378 			     struct page *page)
1379 {
1380 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1381 	u64 end = start + PAGE_CACHE_SIZE - 1;
1382 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1383 		end_page_writeback(page);
1384 	return 0;
1385 }
1386 
1387 /* lots and lots of room for performance fixes in the end_bio funcs */
1388 
1389 /*
1390  * after a writepage IO is done, we need to:
1391  * clear the uptodate bits on error
1392  * clear the writeback bits in the extent tree for this IO
1393  * end_page_writeback if the page has no more pending IO
1394  *
1395  * Scheduling is not allowed, so the extent state tree is expected
1396  * to have one and only one object corresponding to this IO.
1397  */
1398 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1399 static void end_bio_extent_writepage(struct bio *bio, int err)
1400 #else
1401 static int end_bio_extent_writepage(struct bio *bio,
1402 				   unsigned int bytes_done, int err)
1403 #endif
1404 {
1405 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1406 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1407 	struct extent_map_tree *tree = bio->bi_private;
1408 	u64 start;
1409 	u64 end;
1410 	int whole_page;
1411 
1412 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1413 	if (bio->bi_size)
1414 		return 1;
1415 #endif
1416 
1417 	do {
1418 		struct page *page = bvec->bv_page;
1419 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1420 			 bvec->bv_offset;
1421 		end = start + bvec->bv_len - 1;
1422 
1423 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1424 			whole_page = 1;
1425 		else
1426 			whole_page = 0;
1427 
1428 		if (--bvec >= bio->bi_io_vec)
1429 			prefetchw(&bvec->bv_page->flags);
1430 
1431 		if (!uptodate) {
1432 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1433 			ClearPageUptodate(page);
1434 			SetPageError(page);
1435 		}
1436 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1437 
1438 		if (whole_page)
1439 			end_page_writeback(page);
1440 		else
1441 			check_page_writeback(tree, page);
1442 		if (tree->ops && tree->ops->writepage_end_io_hook)
1443 			tree->ops->writepage_end_io_hook(page, start, end);
1444 	} while (bvec >= bio->bi_io_vec);
1445 
1446 	bio_put(bio);
1447 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1448 	return 0;
1449 #endif
1450 }
1451 
1452 /*
1453  * after a readpage IO is done, we need to:
1454  * clear the uptodate bits on error
1455  * set the uptodate bits if things worked
1456  * set the page up to date if all extents in the tree are uptodate
1457  * clear the lock bit in the extent tree
1458  * unlock the page if there are no other extents locked for it
1459  *
1460  * Scheduling is not allowed, so the extent state tree is expected
1461  * to have one and only one object corresponding to this IO.
1462  */
1463 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1464 static void end_bio_extent_readpage(struct bio *bio, int err)
1465 #else
1466 static int end_bio_extent_readpage(struct bio *bio,
1467 				   unsigned int bytes_done, int err)
1468 #endif
1469 {
1470 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1471 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1472 	struct extent_map_tree *tree = bio->bi_private;
1473 	u64 start;
1474 	u64 end;
1475 	int whole_page;
1476 	int ret;
1477 
1478 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1479 	if (bio->bi_size)
1480 		return 1;
1481 #endif
1482 
1483 	do {
1484 		struct page *page = bvec->bv_page;
1485 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1486 			bvec->bv_offset;
1487 		end = start + bvec->bv_len - 1;
1488 
1489 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1490 			whole_page = 1;
1491 		else
1492 			whole_page = 0;
1493 
1494 		if (--bvec >= bio->bi_io_vec)
1495 			prefetchw(&bvec->bv_page->flags);
1496 
1497 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1498 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1499 			if (ret)
1500 				uptodate = 0;
1501 		}
1502 		if (uptodate) {
1503 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1504 			if (whole_page)
1505 				SetPageUptodate(page);
1506 			else
1507 				check_page_uptodate(tree, page);
1508 		} else {
1509 			ClearPageUptodate(page);
1510 			SetPageError(page);
1511 		}
1512 
1513 		unlock_extent(tree, start, end, GFP_ATOMIC);
1514 
1515 		if (whole_page)
1516 			unlock_page(page);
1517 		else
1518 			check_page_locked(tree, page);
1519 	} while (bvec >= bio->bi_io_vec);
1520 
1521 	bio_put(bio);
1522 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1523 	return 0;
1524 #endif
1525 }
1526 
1527 /*
1528  * IO done from prepare_write is pretty simple, we just unlock
1529  * the structs in the extent tree when done, and set the uptodate bits
1530  * as appropriate.
1531  */
1532 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1533 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1534 #else
1535 static int end_bio_extent_preparewrite(struct bio *bio,
1536 				       unsigned int bytes_done, int err)
1537 #endif
1538 {
1539 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1540 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1541 	struct extent_map_tree *tree = bio->bi_private;
1542 	u64 start;
1543 	u64 end;
1544 
1545 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1546 	if (bio->bi_size)
1547 		return 1;
1548 #endif
1549 
1550 	do {
1551 		struct page *page = bvec->bv_page;
1552 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1553 			bvec->bv_offset;
1554 		end = start + bvec->bv_len - 1;
1555 
1556 		if (--bvec >= bio->bi_io_vec)
1557 			prefetchw(&bvec->bv_page->flags);
1558 
1559 		if (uptodate) {
1560 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1561 		} else {
1562 			ClearPageUptodate(page);
1563 			SetPageError(page);
1564 		}
1565 
1566 		unlock_extent(tree, start, end, GFP_ATOMIC);
1567 
1568 	} while (bvec >= bio->bi_io_vec);
1569 
1570 	bio_put(bio);
1571 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1572 	return 0;
1573 #endif
1574 }
1575 
1576 static struct bio *
1577 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1578 		 gfp_t gfp_flags)
1579 {
1580 	struct bio *bio;
1581 
1582 	bio = bio_alloc(gfp_flags, nr_vecs);
1583 
1584 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1585 		while (!bio && (nr_vecs /= 2))
1586 			bio = bio_alloc(gfp_flags, nr_vecs);
1587 	}
1588 
1589 	if (bio) {
1590 		bio->bi_bdev = bdev;
1591 		bio->bi_sector = first_sector;
1592 	}
1593 	return bio;
1594 }
1595 
1596 static int submit_one_bio(int rw, struct bio *bio)
1597 {
1598 	u64 maxsector;
1599 	int ret = 0;
1600 
1601 	bio_get(bio);
1602 
1603         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1604 	if (maxsector < bio->bi_sector) {
1605 		printk("sector too large max %Lu got %llu\n", maxsector,
1606 			(unsigned long long)bio->bi_sector);
1607 		WARN_ON(1);
1608 	}
1609 
1610 	submit_bio(rw, bio);
1611 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1612 		ret = -EOPNOTSUPP;
1613 	bio_put(bio);
1614 	return ret;
1615 }
1616 
1617 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1618 			      struct page *page, sector_t sector,
1619 			      size_t size, unsigned long offset,
1620 			      struct block_device *bdev,
1621 			      struct bio **bio_ret,
1622 			      unsigned long max_pages,
1623 			      bio_end_io_t end_io_func)
1624 {
1625 	int ret = 0;
1626 	struct bio *bio;
1627 	int nr;
1628 
1629 	if (bio_ret && *bio_ret) {
1630 		bio = *bio_ret;
1631 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1632 		    bio_add_page(bio, page, size, offset) < size) {
1633 			ret = submit_one_bio(rw, bio);
1634 			bio = NULL;
1635 		} else {
1636 			return 0;
1637 		}
1638 	}
1639 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1640 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1641 	if (!bio) {
1642 		printk("failed to allocate bio nr %d\n", nr);
1643 	}
1644 	bio_add_page(bio, page, size, offset);
1645 	bio->bi_end_io = end_io_func;
1646 	bio->bi_private = tree;
1647 	if (bio_ret) {
1648 		*bio_ret = bio;
1649 	} else {
1650 		ret = submit_one_bio(rw, bio);
1651 	}
1652 
1653 	return ret;
1654 }
1655 
1656 void set_page_extent_mapped(struct page *page)
1657 {
1658 	if (!PagePrivate(page)) {
1659 		SetPagePrivate(page);
1660 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1661 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1662 		page_cache_get(page);
1663 	}
1664 }
1665 
1666 void set_page_extent_head(struct page *page, unsigned long len)
1667 {
1668 	WARN_ON(page->private && page->private == EXTENT_PAGE_PRIVATE &&
1669 		PageDirty(page));
1670 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1671 }
1672 
1673 /*
1674  * basic readpage implementation.  Locked extent state structs are inserted
1675  * into the tree that are removed when the IO is done (by the end_io
1676  * handlers)
1677  */
1678 static int __extent_read_full_page(struct extent_map_tree *tree,
1679 				   struct page *page,
1680 				   get_extent_t *get_extent,
1681 				   struct bio **bio)
1682 {
1683 	struct inode *inode = page->mapping->host;
1684 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1685 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1686 	u64 end;
1687 	u64 cur = start;
1688 	u64 extent_offset;
1689 	u64 last_byte = i_size_read(inode);
1690 	u64 block_start;
1691 	u64 cur_end;
1692 	sector_t sector;
1693 	struct extent_map *em;
1694 	struct block_device *bdev;
1695 	int ret;
1696 	int nr = 0;
1697 	size_t page_offset = 0;
1698 	size_t iosize;
1699 	size_t blocksize = inode->i_sb->s_blocksize;
1700 
1701 	set_page_extent_mapped(page);
1702 
1703 	end = page_end;
1704 	lock_extent(tree, start, end, GFP_NOFS);
1705 
1706 	while (cur <= end) {
1707 		if (cur >= last_byte) {
1708 			char *userpage;
1709 			iosize = PAGE_CACHE_SIZE - page_offset;
1710 			userpage = kmap_atomic(page, KM_USER0);
1711 			memset(userpage + page_offset, 0, iosize);
1712 			flush_dcache_page(page);
1713 			kunmap_atomic(userpage, KM_USER0);
1714 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1715 					    GFP_NOFS);
1716 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1717 			break;
1718 		}
1719 		em = get_extent(inode, page, page_offset, cur, end, 0);
1720 		if (IS_ERR(em) || !em) {
1721 			SetPageError(page);
1722 			unlock_extent(tree, cur, end, GFP_NOFS);
1723 			break;
1724 		}
1725 
1726 		extent_offset = cur - em->start;
1727 		BUG_ON(em->end < cur);
1728 		BUG_ON(end < cur);
1729 
1730 		iosize = min(em->end - cur, end - cur) + 1;
1731 		cur_end = min(em->end, end);
1732 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1733 		sector = (em->block_start + extent_offset) >> 9;
1734 		bdev = em->bdev;
1735 		block_start = em->block_start;
1736 		free_extent_map(em);
1737 		em = NULL;
1738 
1739 		/* we've found a hole, just zero and go on */
1740 		if (block_start == EXTENT_MAP_HOLE) {
1741 			char *userpage;
1742 			userpage = kmap_atomic(page, KM_USER0);
1743 			memset(userpage + page_offset, 0, iosize);
1744 			flush_dcache_page(page);
1745 			kunmap_atomic(userpage, KM_USER0);
1746 
1747 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1748 					    GFP_NOFS);
1749 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1750 			cur = cur + iosize;
1751 			page_offset += iosize;
1752 			continue;
1753 		}
1754 		/* the get_extent function already copied into the page */
1755 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1756 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1757 			cur = cur + iosize;
1758 			page_offset += iosize;
1759 			continue;
1760 		}
1761 
1762 		ret = 0;
1763 		if (tree->ops && tree->ops->readpage_io_hook) {
1764 			ret = tree->ops->readpage_io_hook(page, cur,
1765 							  cur + iosize - 1);
1766 		}
1767 		if (!ret) {
1768 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1769 			nr -= page->index;
1770 			ret = submit_extent_page(READ, tree, page,
1771 					 sector, iosize, page_offset,
1772 					 bdev, bio, nr,
1773 					 end_bio_extent_readpage);
1774 		}
1775 		if (ret)
1776 			SetPageError(page);
1777 		cur = cur + iosize;
1778 		page_offset += iosize;
1779 		nr++;
1780 	}
1781 	if (!nr) {
1782 		if (!PageError(page))
1783 			SetPageUptodate(page);
1784 		unlock_page(page);
1785 	}
1786 	return 0;
1787 }
1788 
1789 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1790 			    get_extent_t *get_extent)
1791 {
1792 	struct bio *bio = NULL;
1793 	int ret;
1794 
1795 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1796 	if (bio)
1797 		submit_one_bio(READ, bio);
1798 	return ret;
1799 }
1800 EXPORT_SYMBOL(extent_read_full_page);
1801 
1802 /*
1803  * the writepage semantics are similar to regular writepage.  extent
1804  * records are inserted to lock ranges in the tree, and as dirty areas
1805  * are found, they are marked writeback.  Then the lock bits are removed
1806  * and the end_io handler clears the writeback ranges
1807  */
1808 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1809 			      void *data)
1810 {
1811 	struct inode *inode = page->mapping->host;
1812 	struct extent_page_data *epd = data;
1813 	struct extent_map_tree *tree = epd->tree;
1814 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1815 	u64 delalloc_start;
1816 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1817 	u64 end;
1818 	u64 cur = start;
1819 	u64 extent_offset;
1820 	u64 last_byte = i_size_read(inode);
1821 	u64 block_start;
1822 	u64 iosize;
1823 	sector_t sector;
1824 	struct extent_map *em;
1825 	struct block_device *bdev;
1826 	int ret;
1827 	int nr = 0;
1828 	size_t page_offset = 0;
1829 	size_t blocksize;
1830 	loff_t i_size = i_size_read(inode);
1831 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1832 	u64 nr_delalloc;
1833 	u64 delalloc_end;
1834 
1835 	WARN_ON(!PageLocked(page));
1836 	if (page->index > end_index) {
1837 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1838 		unlock_page(page);
1839 		return 0;
1840 	}
1841 
1842 	if (page->index == end_index) {
1843 		char *userpage;
1844 
1845 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1846 
1847 		userpage = kmap_atomic(page, KM_USER0);
1848 		memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1849 		flush_dcache_page(page);
1850 		kunmap_atomic(userpage, KM_USER0);
1851 	}
1852 
1853 	set_page_extent_mapped(page);
1854 
1855 	delalloc_start = start;
1856 	delalloc_end = 0;
1857 	while(delalloc_end < page_end) {
1858 		nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1859 						       &delalloc_end,
1860 						       128 * 1024 * 1024);
1861 		if (nr_delalloc == 0) {
1862 			delalloc_start = delalloc_end + 1;
1863 			continue;
1864 		}
1865 		tree->ops->fill_delalloc(inode, delalloc_start,
1866 					 delalloc_end);
1867 		clear_extent_bit(tree, delalloc_start,
1868 				 delalloc_end,
1869 				 EXTENT_LOCKED | EXTENT_DELALLOC,
1870 				 1, 0, GFP_NOFS);
1871 		delalloc_start = delalloc_end + 1;
1872 	}
1873 	lock_extent(tree, start, page_end, GFP_NOFS);
1874 
1875 	end = page_end;
1876 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1877 		printk("found delalloc bits after lock_extent\n");
1878 	}
1879 
1880 	if (last_byte <= start) {
1881 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1882 		goto done;
1883 	}
1884 
1885 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1886 	blocksize = inode->i_sb->s_blocksize;
1887 
1888 	while (cur <= end) {
1889 		if (cur >= last_byte) {
1890 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1891 			break;
1892 		}
1893 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1894 		if (IS_ERR(em) || !em) {
1895 			SetPageError(page);
1896 			break;
1897 		}
1898 
1899 		extent_offset = cur - em->start;
1900 		BUG_ON(em->end < cur);
1901 		BUG_ON(end < cur);
1902 		iosize = min(em->end - cur, end - cur) + 1;
1903 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1904 		sector = (em->block_start + extent_offset) >> 9;
1905 		bdev = em->bdev;
1906 		block_start = em->block_start;
1907 		free_extent_map(em);
1908 		em = NULL;
1909 
1910 		if (block_start == EXTENT_MAP_HOLE ||
1911 		    block_start == EXTENT_MAP_INLINE) {
1912 			clear_extent_dirty(tree, cur,
1913 					   cur + iosize - 1, GFP_NOFS);
1914 			cur = cur + iosize;
1915 			page_offset += iosize;
1916 			continue;
1917 		}
1918 
1919 		/* leave this out until we have a page_mkwrite call */
1920 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1921 				   EXTENT_DIRTY, 0)) {
1922 			cur = cur + iosize;
1923 			page_offset += iosize;
1924 			continue;
1925 		}
1926 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1927 		if (tree->ops && tree->ops->writepage_io_hook) {
1928 			ret = tree->ops->writepage_io_hook(page, cur,
1929 						cur + iosize - 1);
1930 		} else {
1931 			ret = 0;
1932 		}
1933 		if (ret)
1934 			SetPageError(page);
1935 		else {
1936 			unsigned long max_nr = end_index + 1;
1937 			set_range_writeback(tree, cur, cur + iosize - 1);
1938 			if (!PageWriteback(page)) {
1939 				printk("warning page %lu not writeback, "
1940 				       "cur %llu end %llu\n", page->index,
1941 				       (unsigned long long)cur,
1942 				       (unsigned long long)end);
1943 			}
1944 
1945 			ret = submit_extent_page(WRITE, tree, page, sector,
1946 						 iosize, page_offset, bdev,
1947 						 &epd->bio, max_nr,
1948 						 end_bio_extent_writepage);
1949 			if (ret)
1950 				SetPageError(page);
1951 		}
1952 		cur = cur + iosize;
1953 		page_offset += iosize;
1954 		nr++;
1955 	}
1956 done:
1957 	if (nr == 0) {
1958 		/* make sure the mapping tag for page dirty gets cleared */
1959 		set_page_writeback(page);
1960 		end_page_writeback(page);
1961 	}
1962 	unlock_extent(tree, start, page_end, GFP_NOFS);
1963 	unlock_page(page);
1964 	return 0;
1965 }
1966 
1967 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1968 
1969 /* Taken directly from 2.6.23 for 2.6.18 back port */
1970 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
1971                                 void *data);
1972 
1973 /**
1974  * write_cache_pages - walk the list of dirty pages of the given address space
1975  * and write all of them.
1976  * @mapping: address space structure to write
1977  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1978  * @writepage: function called for each page
1979  * @data: data passed to writepage function
1980  *
1981  * If a page is already under I/O, write_cache_pages() skips it, even
1982  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1983  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1984  * and msync() need to guarantee that all the data which was dirty at the time
1985  * the call was made get new I/O started against them.  If wbc->sync_mode is
1986  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1987  * existing IO to complete.
1988  */
1989 static int write_cache_pages(struct address_space *mapping,
1990 		      struct writeback_control *wbc, writepage_t writepage,
1991 		      void *data)
1992 {
1993 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1994 	int ret = 0;
1995 	int done = 0;
1996 	struct pagevec pvec;
1997 	int nr_pages;
1998 	pgoff_t index;
1999 	pgoff_t end;		/* Inclusive */
2000 	int scanned = 0;
2001 	int range_whole = 0;
2002 
2003 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
2004 		wbc->encountered_congestion = 1;
2005 		return 0;
2006 	}
2007 
2008 	pagevec_init(&pvec, 0);
2009 	if (wbc->range_cyclic) {
2010 		index = mapping->writeback_index; /* Start from prev offset */
2011 		end = -1;
2012 	} else {
2013 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2014 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2015 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2016 			range_whole = 1;
2017 		scanned = 1;
2018 	}
2019 retry:
2020 	while (!done && (index <= end) &&
2021 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2022 					      PAGECACHE_TAG_DIRTY,
2023 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2024 		unsigned i;
2025 
2026 		scanned = 1;
2027 		for (i = 0; i < nr_pages; i++) {
2028 			struct page *page = pvec.pages[i];
2029 
2030 			/*
2031 			 * At this point we hold neither mapping->tree_lock nor
2032 			 * lock on the page itself: the page may be truncated or
2033 			 * invalidated (changing page->mapping to NULL), or even
2034 			 * swizzled back from swapper_space to tmpfs file
2035 			 * mapping
2036 			 */
2037 			lock_page(page);
2038 
2039 			if (unlikely(page->mapping != mapping)) {
2040 				unlock_page(page);
2041 				continue;
2042 			}
2043 
2044 			if (!wbc->range_cyclic && page->index > end) {
2045 				done = 1;
2046 				unlock_page(page);
2047 				continue;
2048 			}
2049 
2050 			if (wbc->sync_mode != WB_SYNC_NONE)
2051 				wait_on_page_writeback(page);
2052 
2053 			if (PageWriteback(page) ||
2054 			    !clear_page_dirty_for_io(page)) {
2055 				unlock_page(page);
2056 				continue;
2057 			}
2058 
2059 			ret = (*writepage)(page, wbc, data);
2060 
2061 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2062 				unlock_page(page);
2063 				ret = 0;
2064 			}
2065 			if (ret || (--(wbc->nr_to_write) <= 0))
2066 				done = 1;
2067 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
2068 				wbc->encountered_congestion = 1;
2069 				done = 1;
2070 			}
2071 		}
2072 		pagevec_release(&pvec);
2073 		cond_resched();
2074 	}
2075 	if (!scanned && !done) {
2076 		/*
2077 		 * We hit the last page and there is more work to be done: wrap
2078 		 * back to the start of the file
2079 		 */
2080 		scanned = 1;
2081 		index = 0;
2082 		goto retry;
2083 	}
2084 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2085 		mapping->writeback_index = index;
2086 	return ret;
2087 }
2088 #endif
2089 
2090 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
2091 			  get_extent_t *get_extent,
2092 			  struct writeback_control *wbc)
2093 {
2094 	int ret;
2095 	struct address_space *mapping = page->mapping;
2096 	struct extent_page_data epd = {
2097 		.bio = NULL,
2098 		.tree = tree,
2099 		.get_extent = get_extent,
2100 	};
2101 	struct writeback_control wbc_writepages = {
2102 		.bdi		= wbc->bdi,
2103 		.sync_mode	= WB_SYNC_NONE,
2104 		.older_than_this = NULL,
2105 		.nr_to_write	= 64,
2106 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2107 		.range_end	= (loff_t)-1,
2108 	};
2109 
2110 
2111 	ret = __extent_writepage(page, wbc, &epd);
2112 
2113 	write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2114 	if (epd.bio) {
2115 		submit_one_bio(WRITE, epd.bio);
2116 	}
2117 	return ret;
2118 }
2119 EXPORT_SYMBOL(extent_write_full_page);
2120 
2121 
2122 int extent_writepages(struct extent_map_tree *tree,
2123 		      struct address_space *mapping,
2124 		      get_extent_t *get_extent,
2125 		      struct writeback_control *wbc)
2126 {
2127 	int ret = 0;
2128 	struct extent_page_data epd = {
2129 		.bio = NULL,
2130 		.tree = tree,
2131 		.get_extent = get_extent,
2132 	};
2133 
2134 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2135 	if (epd.bio) {
2136 		submit_one_bio(WRITE, epd.bio);
2137 	}
2138 	return ret;
2139 }
2140 EXPORT_SYMBOL(extent_writepages);
2141 
2142 int extent_readpages(struct extent_map_tree *tree,
2143 		     struct address_space *mapping,
2144 		     struct list_head *pages, unsigned nr_pages,
2145 		     get_extent_t get_extent)
2146 {
2147 	struct bio *bio = NULL;
2148 	unsigned page_idx;
2149 	struct pagevec pvec;
2150 
2151 	pagevec_init(&pvec, 0);
2152 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2153 		struct page *page = list_entry(pages->prev, struct page, lru);
2154 
2155 		prefetchw(&page->flags);
2156 		list_del(&page->lru);
2157 		/*
2158 		 * what we want to do here is call add_to_page_cache_lru,
2159 		 * but that isn't exported, so we reproduce it here
2160 		 */
2161 		if (!add_to_page_cache(page, mapping,
2162 					page->index, GFP_KERNEL)) {
2163 
2164 			/* open coding of lru_cache_add, also not exported */
2165 			page_cache_get(page);
2166 			if (!pagevec_add(&pvec, page))
2167 				__pagevec_lru_add(&pvec);
2168 			__extent_read_full_page(tree, page, get_extent, &bio);
2169 		}
2170 		page_cache_release(page);
2171 	}
2172 	if (pagevec_count(&pvec))
2173 		__pagevec_lru_add(&pvec);
2174 	BUG_ON(!list_empty(pages));
2175 	if (bio)
2176 		submit_one_bio(READ, bio);
2177 	return 0;
2178 }
2179 EXPORT_SYMBOL(extent_readpages);
2180 
2181 /*
2182  * basic invalidatepage code, this waits on any locked or writeback
2183  * ranges corresponding to the page, and then deletes any extent state
2184  * records from the tree
2185  */
2186 int extent_invalidatepage(struct extent_map_tree *tree,
2187 			  struct page *page, unsigned long offset)
2188 {
2189 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2190 	u64 end = start + PAGE_CACHE_SIZE - 1;
2191 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2192 
2193 	start += (offset + blocksize -1) & ~(blocksize - 1);
2194 	if (start > end)
2195 		return 0;
2196 
2197 	lock_extent(tree, start, end, GFP_NOFS);
2198 	wait_on_extent_writeback(tree, start, end);
2199 	clear_extent_bit(tree, start, end,
2200 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2201 			 1, 1, GFP_NOFS);
2202 	return 0;
2203 }
2204 EXPORT_SYMBOL(extent_invalidatepage);
2205 
2206 /*
2207  * simple commit_write call, set_range_dirty is used to mark both
2208  * the pages and the extent records as dirty
2209  */
2210 int extent_commit_write(struct extent_map_tree *tree,
2211 			struct inode *inode, struct page *page,
2212 			unsigned from, unsigned to)
2213 {
2214 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2215 
2216 	set_page_extent_mapped(page);
2217 	set_page_dirty(page);
2218 
2219 	if (pos > inode->i_size) {
2220 		i_size_write(inode, pos);
2221 		mark_inode_dirty(inode);
2222 	}
2223 	return 0;
2224 }
2225 EXPORT_SYMBOL(extent_commit_write);
2226 
2227 int extent_prepare_write(struct extent_map_tree *tree,
2228 			 struct inode *inode, struct page *page,
2229 			 unsigned from, unsigned to, get_extent_t *get_extent)
2230 {
2231 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2232 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2233 	u64 block_start;
2234 	u64 orig_block_start;
2235 	u64 block_end;
2236 	u64 cur_end;
2237 	struct extent_map *em;
2238 	unsigned blocksize = 1 << inode->i_blkbits;
2239 	size_t page_offset = 0;
2240 	size_t block_off_start;
2241 	size_t block_off_end;
2242 	int err = 0;
2243 	int iocount = 0;
2244 	int ret = 0;
2245 	int isnew;
2246 
2247 	set_page_extent_mapped(page);
2248 
2249 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2250 	block_end = (page_start + to - 1) | (blocksize - 1);
2251 	orig_block_start = block_start;
2252 
2253 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2254 	while(block_start <= block_end) {
2255 		em = get_extent(inode, page, page_offset, block_start,
2256 				block_end, 1);
2257 		if (IS_ERR(em) || !em) {
2258 			goto err;
2259 		}
2260 		cur_end = min(block_end, em->end);
2261 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2262 		block_off_end = block_off_start + blocksize;
2263 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2264 
2265 		if (!PageUptodate(page) && isnew &&
2266 		    (block_off_end > to || block_off_start < from)) {
2267 			void *kaddr;
2268 
2269 			kaddr = kmap_atomic(page, KM_USER0);
2270 			if (block_off_end > to)
2271 				memset(kaddr + to, 0, block_off_end - to);
2272 			if (block_off_start < from)
2273 				memset(kaddr + block_off_start, 0,
2274 				       from - block_off_start);
2275 			flush_dcache_page(page);
2276 			kunmap_atomic(kaddr, KM_USER0);
2277 		}
2278 		if ((em->block_start != EXTENT_MAP_HOLE &&
2279 		     em->block_start != EXTENT_MAP_INLINE) &&
2280 		    !isnew && !PageUptodate(page) &&
2281 		    (block_off_end > to || block_off_start < from) &&
2282 		    !test_range_bit(tree, block_start, cur_end,
2283 				    EXTENT_UPTODATE, 1)) {
2284 			u64 sector;
2285 			u64 extent_offset = block_start - em->start;
2286 			size_t iosize;
2287 			sector = (em->block_start + extent_offset) >> 9;
2288 			iosize = (cur_end - block_start + blocksize) &
2289 				~((u64)blocksize - 1);
2290 			/*
2291 			 * we've already got the extent locked, but we
2292 			 * need to split the state such that our end_bio
2293 			 * handler can clear the lock.
2294 			 */
2295 			set_extent_bit(tree, block_start,
2296 				       block_start + iosize - 1,
2297 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2298 			ret = submit_extent_page(READ, tree, page,
2299 					 sector, iosize, page_offset, em->bdev,
2300 					 NULL, 1,
2301 					 end_bio_extent_preparewrite);
2302 			iocount++;
2303 			block_start = block_start + iosize;
2304 		} else {
2305 			set_extent_uptodate(tree, block_start, cur_end,
2306 					    GFP_NOFS);
2307 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2308 			block_start = cur_end + 1;
2309 		}
2310 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2311 		free_extent_map(em);
2312 	}
2313 	if (iocount) {
2314 		wait_extent_bit(tree, orig_block_start,
2315 				block_end, EXTENT_LOCKED);
2316 	}
2317 	check_page_uptodate(tree, page);
2318 err:
2319 	/* FIXME, zero out newly allocated blocks on error */
2320 	return err;
2321 }
2322 EXPORT_SYMBOL(extent_prepare_write);
2323 
2324 /*
2325  * a helper for releasepage.  As long as there are no locked extents
2326  * in the range corresponding to the page, both state records and extent
2327  * map records are removed
2328  */
2329 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2330 {
2331 	struct extent_map *em;
2332 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2333 	u64 end = start + PAGE_CACHE_SIZE - 1;
2334 	u64 orig_start = start;
2335 	int ret = 1;
2336 
2337 	while (start <= end) {
2338 		em = lookup_extent_mapping(tree, start, end);
2339 		if (!em || IS_ERR(em))
2340 			break;
2341 		if (!test_range_bit(tree, em->start, em->end,
2342 				    EXTENT_LOCKED, 0)) {
2343 			remove_extent_mapping(tree, em);
2344 			/* once for the rb tree */
2345 			free_extent_map(em);
2346 		}
2347 		start = em->end + 1;
2348 		/* once for us */
2349 		free_extent_map(em);
2350 	}
2351 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2352 		ret = 0;
2353 	else
2354 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2355 				 1, 1, GFP_NOFS);
2356 	return ret;
2357 }
2358 EXPORT_SYMBOL(try_release_extent_mapping);
2359 
2360 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2361 		get_extent_t *get_extent)
2362 {
2363 	struct inode *inode = mapping->host;
2364 	u64 start = iblock << inode->i_blkbits;
2365 	u64 end = start + (1 << inode->i_blkbits) - 1;
2366 	sector_t sector = 0;
2367 	struct extent_map *em;
2368 
2369 	em = get_extent(inode, NULL, 0, start, end, 0);
2370 	if (!em || IS_ERR(em))
2371 		return 0;
2372 
2373 	if (em->block_start == EXTENT_MAP_INLINE ||
2374 	    em->block_start == EXTENT_MAP_HOLE)
2375 		goto out;
2376 
2377 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2378 out:
2379 	free_extent_map(em);
2380 	return sector;
2381 }
2382 
2383 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2384 {
2385 	if (list_empty(&eb->lru)) {
2386 		extent_buffer_get(eb);
2387 		list_add(&eb->lru, &tree->buffer_lru);
2388 		tree->lru_size++;
2389 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2390 			struct extent_buffer *rm;
2391 			rm = list_entry(tree->buffer_lru.prev,
2392 					struct extent_buffer, lru);
2393 			tree->lru_size--;
2394 			list_del_init(&rm->lru);
2395 			free_extent_buffer(rm);
2396 		}
2397 	} else
2398 		list_move(&eb->lru, &tree->buffer_lru);
2399 	return 0;
2400 }
2401 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2402 				      u64 start, unsigned long len)
2403 {
2404 	struct list_head *lru = &tree->buffer_lru;
2405 	struct list_head *cur = lru->next;
2406 	struct extent_buffer *eb;
2407 
2408 	if (list_empty(lru))
2409 		return NULL;
2410 
2411 	do {
2412 		eb = list_entry(cur, struct extent_buffer, lru);
2413 		if (eb->start == start && eb->len == len) {
2414 			extent_buffer_get(eb);
2415 			return eb;
2416 		}
2417 		cur = cur->next;
2418 	} while (cur != lru);
2419 	return NULL;
2420 }
2421 
2422 static inline unsigned long num_extent_pages(u64 start, u64 len)
2423 {
2424 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2425 		(start >> PAGE_CACHE_SHIFT);
2426 }
2427 
2428 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2429 					      unsigned long i)
2430 {
2431 	struct page *p;
2432 	struct address_space *mapping;
2433 
2434 	if (i == 0)
2435 		return eb->first_page;
2436 	i += eb->start >> PAGE_CACHE_SHIFT;
2437 	mapping = eb->first_page->mapping;
2438 	read_lock_irq(&mapping->tree_lock);
2439 	p = radix_tree_lookup(&mapping->page_tree, i);
2440 	read_unlock_irq(&mapping->tree_lock);
2441 	return p;
2442 }
2443 
2444 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2445 						   u64 start,
2446 						   unsigned long len,
2447 						   gfp_t mask)
2448 {
2449 	struct extent_buffer *eb = NULL;
2450 
2451 	spin_lock(&tree->lru_lock);
2452 	eb = find_lru(tree, start, len);
2453 	spin_unlock(&tree->lru_lock);
2454 	if (eb) {
2455 		return eb;
2456 	}
2457 
2458 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2459 	INIT_LIST_HEAD(&eb->lru);
2460 	eb->start = start;
2461 	eb->len = len;
2462 	atomic_set(&eb->refs, 1);
2463 
2464 	return eb;
2465 }
2466 
2467 static void __free_extent_buffer(struct extent_buffer *eb)
2468 {
2469 	kmem_cache_free(extent_buffer_cache, eb);
2470 }
2471 
2472 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2473 					  u64 start, unsigned long len,
2474 					  struct page *page0,
2475 					  gfp_t mask)
2476 {
2477 	unsigned long num_pages = num_extent_pages(start, len);
2478 	unsigned long i;
2479 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2480 	struct extent_buffer *eb;
2481 	struct page *p;
2482 	struct address_space *mapping = tree->mapping;
2483 	int uptodate = 1;
2484 
2485 	eb = __alloc_extent_buffer(tree, start, len, mask);
2486 	if (!eb || IS_ERR(eb))
2487 		return NULL;
2488 
2489 	if (eb->flags & EXTENT_BUFFER_FILLED)
2490 		goto lru_add;
2491 
2492 	if (page0) {
2493 		eb->first_page = page0;
2494 		i = 1;
2495 		index++;
2496 		page_cache_get(page0);
2497 		mark_page_accessed(page0);
2498 		set_page_extent_mapped(page0);
2499 		WARN_ON(!PageUptodate(page0));
2500 		set_page_extent_head(page0, len);
2501 	} else {
2502 		i = 0;
2503 	}
2504 	for (; i < num_pages; i++, index++) {
2505 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2506 		if (!p) {
2507 			WARN_ON(1);
2508 			goto fail;
2509 		}
2510 		set_page_extent_mapped(p);
2511 		mark_page_accessed(p);
2512 		if (i == 0) {
2513 			eb->first_page = p;
2514 			set_page_extent_head(p, len);
2515 		} else {
2516 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2517 		}
2518 		if (!PageUptodate(p))
2519 			uptodate = 0;
2520 		unlock_page(p);
2521 	}
2522 	if (uptodate)
2523 		eb->flags |= EXTENT_UPTODATE;
2524 	eb->flags |= EXTENT_BUFFER_FILLED;
2525 
2526 lru_add:
2527 	spin_lock(&tree->lru_lock);
2528 	add_lru(tree, eb);
2529 	spin_unlock(&tree->lru_lock);
2530 	return eb;
2531 
2532 fail:
2533 	spin_lock(&tree->lru_lock);
2534 	list_del_init(&eb->lru);
2535 	spin_unlock(&tree->lru_lock);
2536 	if (!atomic_dec_and_test(&eb->refs))
2537 		return NULL;
2538 	for (index = 1; index < i; index++) {
2539 		page_cache_release(extent_buffer_page(eb, index));
2540 	}
2541 	if (i > 0)
2542 		page_cache_release(extent_buffer_page(eb, 0));
2543 	__free_extent_buffer(eb);
2544 	return NULL;
2545 }
2546 EXPORT_SYMBOL(alloc_extent_buffer);
2547 
2548 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2549 					 u64 start, unsigned long len,
2550 					  gfp_t mask)
2551 {
2552 	unsigned long num_pages = num_extent_pages(start, len);
2553 	unsigned long i;
2554 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2555 	struct extent_buffer *eb;
2556 	struct page *p;
2557 	struct address_space *mapping = tree->mapping;
2558 	int uptodate = 1;
2559 
2560 	eb = __alloc_extent_buffer(tree, start, len, mask);
2561 	if (!eb || IS_ERR(eb))
2562 		return NULL;
2563 
2564 	if (eb->flags & EXTENT_BUFFER_FILLED)
2565 		goto lru_add;
2566 
2567 	for (i = 0; i < num_pages; i++, index++) {
2568 		p = find_lock_page(mapping, index);
2569 		if (!p) {
2570 			goto fail;
2571 		}
2572 		set_page_extent_mapped(p);
2573 		mark_page_accessed(p);
2574 
2575 		if (i == 0) {
2576 			eb->first_page = p;
2577 			set_page_extent_head(p, len);
2578 		} else {
2579 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2580 		}
2581 
2582 		if (!PageUptodate(p))
2583 			uptodate = 0;
2584 		unlock_page(p);
2585 	}
2586 	if (uptodate)
2587 		eb->flags |= EXTENT_UPTODATE;
2588 	eb->flags |= EXTENT_BUFFER_FILLED;
2589 
2590 lru_add:
2591 	spin_lock(&tree->lru_lock);
2592 	add_lru(tree, eb);
2593 	spin_unlock(&tree->lru_lock);
2594 	return eb;
2595 fail:
2596 	spin_lock(&tree->lru_lock);
2597 	list_del_init(&eb->lru);
2598 	spin_unlock(&tree->lru_lock);
2599 	if (!atomic_dec_and_test(&eb->refs))
2600 		return NULL;
2601 	for (index = 1; index < i; index++) {
2602 		page_cache_release(extent_buffer_page(eb, index));
2603 	}
2604 	if (i > 0)
2605 		page_cache_release(extent_buffer_page(eb, 0));
2606 	__free_extent_buffer(eb);
2607 	return NULL;
2608 }
2609 EXPORT_SYMBOL(find_extent_buffer);
2610 
2611 void free_extent_buffer(struct extent_buffer *eb)
2612 {
2613 	unsigned long i;
2614 	unsigned long num_pages;
2615 
2616 	if (!eb)
2617 		return;
2618 
2619 	if (!atomic_dec_and_test(&eb->refs))
2620 		return;
2621 
2622 	WARN_ON(!list_empty(&eb->lru));
2623 	num_pages = num_extent_pages(eb->start, eb->len);
2624 
2625 	for (i = 1; i < num_pages; i++) {
2626 		page_cache_release(extent_buffer_page(eb, i));
2627 	}
2628 	page_cache_release(extent_buffer_page(eb, 0));
2629 	__free_extent_buffer(eb);
2630 }
2631 EXPORT_SYMBOL(free_extent_buffer);
2632 
2633 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2634 			      struct extent_buffer *eb)
2635 {
2636 	int set;
2637 	unsigned long i;
2638 	unsigned long num_pages;
2639 	struct page *page;
2640 
2641 	u64 start = eb->start;
2642 	u64 end = start + eb->len - 1;
2643 
2644 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2645 	num_pages = num_extent_pages(eb->start, eb->len);
2646 
2647 	for (i = 0; i < num_pages; i++) {
2648 		page = extent_buffer_page(eb, i);
2649 		lock_page(page);
2650 		if (i == 0)
2651 			set_page_extent_head(page, eb->len);
2652 		else
2653 			set_page_private(page, EXTENT_PAGE_PRIVATE);
2654 
2655 		/*
2656 		 * if we're on the last page or the first page and the
2657 		 * block isn't aligned on a page boundary, do extra checks
2658 		 * to make sure we don't clean page that is partially dirty
2659 		 */
2660 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2661 		    ((i == num_pages - 1) &&
2662 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2663 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2664 			end  = start + PAGE_CACHE_SIZE - 1;
2665 			if (test_range_bit(tree, start, end,
2666 					   EXTENT_DIRTY, 0)) {
2667 				unlock_page(page);
2668 				continue;
2669 			}
2670 		}
2671 		clear_page_dirty_for_io(page);
2672 		write_lock_irq(&page->mapping->tree_lock);
2673 		if (!PageDirty(page)) {
2674 			radix_tree_tag_clear(&page->mapping->page_tree,
2675 						page_index(page),
2676 						PAGECACHE_TAG_DIRTY);
2677 		}
2678 		write_unlock_irq(&page->mapping->tree_lock);
2679 		unlock_page(page);
2680 	}
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2684 
2685 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2686 				    struct extent_buffer *eb)
2687 {
2688 	return wait_on_extent_writeback(tree, eb->start,
2689 					eb->start + eb->len - 1);
2690 }
2691 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2692 
2693 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2694 			     struct extent_buffer *eb)
2695 {
2696 	unsigned long i;
2697 	unsigned long num_pages;
2698 
2699 	num_pages = num_extent_pages(eb->start, eb->len);
2700 	for (i = 0; i < num_pages; i++) {
2701 		struct page *page = extent_buffer_page(eb, i);
2702 		/* writepage may need to do something special for the
2703 		 * first page, we have to make sure page->private is
2704 		 * properly set.  releasepage may drop page->private
2705 		 * on us if the page isn't already dirty.
2706 		 */
2707 		if (i == 0) {
2708 			lock_page(page);
2709 			set_page_extent_head(page, eb->len);
2710 		} else if (PagePrivate(page) &&
2711 			   page->private != EXTENT_PAGE_PRIVATE) {
2712 			lock_page(page);
2713 			set_page_extent_mapped(page);
2714 			unlock_page(page);
2715 		}
2716 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2717 		if (i == 0)
2718 			unlock_page(page);
2719 	}
2720 	return set_extent_dirty(tree, eb->start,
2721 				eb->start + eb->len - 1, GFP_NOFS);
2722 }
2723 EXPORT_SYMBOL(set_extent_buffer_dirty);
2724 
2725 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2726 				struct extent_buffer *eb)
2727 {
2728 	unsigned long i;
2729 	struct page *page;
2730 	unsigned long num_pages;
2731 
2732 	num_pages = num_extent_pages(eb->start, eb->len);
2733 
2734 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2735 			    GFP_NOFS);
2736 	for (i = 0; i < num_pages; i++) {
2737 		page = extent_buffer_page(eb, i);
2738 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2739 		    ((i == num_pages - 1) &&
2740 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2741 			check_page_uptodate(tree, page);
2742 			continue;
2743 		}
2744 		SetPageUptodate(page);
2745 	}
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2749 
2750 int extent_buffer_uptodate(struct extent_map_tree *tree,
2751 			     struct extent_buffer *eb)
2752 {
2753 	if (eb->flags & EXTENT_UPTODATE)
2754 		return 1;
2755 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2756 			   EXTENT_UPTODATE, 1);
2757 }
2758 EXPORT_SYMBOL(extent_buffer_uptodate);
2759 
2760 int read_extent_buffer_pages(struct extent_map_tree *tree,
2761 			     struct extent_buffer *eb,
2762 			     u64 start,
2763 			     int wait)
2764 {
2765 	unsigned long i;
2766 	unsigned long start_i;
2767 	struct page *page;
2768 	int err;
2769 	int ret = 0;
2770 	unsigned long num_pages;
2771 
2772 	if (eb->flags & EXTENT_UPTODATE)
2773 		return 0;
2774 
2775 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2776 			   EXTENT_UPTODATE, 1)) {
2777 		return 0;
2778 	}
2779 
2780 	if (start) {
2781 		WARN_ON(start < eb->start);
2782 		start_i = (start >> PAGE_CACHE_SHIFT) -
2783 			(eb->start >> PAGE_CACHE_SHIFT);
2784 	} else {
2785 		start_i = 0;
2786 	}
2787 
2788 	num_pages = num_extent_pages(eb->start, eb->len);
2789 	for (i = start_i; i < num_pages; i++) {
2790 		page = extent_buffer_page(eb, i);
2791 		if (PageUptodate(page)) {
2792 			continue;
2793 		}
2794 		if (!wait) {
2795 			if (TestSetPageLocked(page)) {
2796 				continue;
2797 			}
2798 		} else {
2799 			lock_page(page);
2800 		}
2801 		if (!PageUptodate(page)) {
2802 			err = page->mapping->a_ops->readpage(NULL, page);
2803 			if (err) {
2804 				ret = err;
2805 			}
2806 		} else {
2807 			unlock_page(page);
2808 		}
2809 	}
2810 
2811 	if (ret || !wait) {
2812 		return ret;
2813 	}
2814 
2815 	for (i = start_i; i < num_pages; i++) {
2816 		page = extent_buffer_page(eb, i);
2817 		wait_on_page_locked(page);
2818 		if (!PageUptodate(page)) {
2819 			ret = -EIO;
2820 		}
2821 	}
2822 	if (!ret)
2823 		eb->flags |= EXTENT_UPTODATE;
2824 	return ret;
2825 }
2826 EXPORT_SYMBOL(read_extent_buffer_pages);
2827 
2828 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2829 			unsigned long start,
2830 			unsigned long len)
2831 {
2832 	size_t cur;
2833 	size_t offset;
2834 	struct page *page;
2835 	char *kaddr;
2836 	char *dst = (char *)dstv;
2837 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2838 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2839 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2840 
2841 	WARN_ON(start > eb->len);
2842 	WARN_ON(start + len > eb->start + eb->len);
2843 
2844 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2845 
2846 	while(len > 0) {
2847 		page = extent_buffer_page(eb, i);
2848 		if (!PageUptodate(page)) {
2849 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2850 			WARN_ON(1);
2851 		}
2852 		WARN_ON(!PageUptodate(page));
2853 
2854 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2855 		kaddr = kmap_atomic(page, KM_USER1);
2856 		memcpy(dst, kaddr + offset, cur);
2857 		kunmap_atomic(kaddr, KM_USER1);
2858 
2859 		dst += cur;
2860 		len -= cur;
2861 		offset = 0;
2862 		i++;
2863 	}
2864 }
2865 EXPORT_SYMBOL(read_extent_buffer);
2866 
2867 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2868 			       unsigned long min_len, char **token, char **map,
2869 			       unsigned long *map_start,
2870 			       unsigned long *map_len, int km)
2871 {
2872 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2873 	char *kaddr;
2874 	struct page *p;
2875 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2876 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2877 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2878 		PAGE_CACHE_SHIFT;
2879 
2880 	if (i != end_i)
2881 		return -EINVAL;
2882 
2883 	if (i == 0) {
2884 		offset = start_offset;
2885 		*map_start = 0;
2886 	} else {
2887 		offset = 0;
2888 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2889 	}
2890 	if (start + min_len > eb->len) {
2891 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2892 		WARN_ON(1);
2893 	}
2894 
2895 	p = extent_buffer_page(eb, i);
2896 	WARN_ON(!PageUptodate(p));
2897 	kaddr = kmap_atomic(p, km);
2898 	*token = kaddr;
2899 	*map = kaddr + offset;
2900 	*map_len = PAGE_CACHE_SIZE - offset;
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL(map_private_extent_buffer);
2904 
2905 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2906 		      unsigned long min_len,
2907 		      char **token, char **map,
2908 		      unsigned long *map_start,
2909 		      unsigned long *map_len, int km)
2910 {
2911 	int err;
2912 	int save = 0;
2913 	if (eb->map_token) {
2914 		unmap_extent_buffer(eb, eb->map_token, km);
2915 		eb->map_token = NULL;
2916 		save = 1;
2917 	}
2918 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2919 				       map_start, map_len, km);
2920 	if (!err && save) {
2921 		eb->map_token = *token;
2922 		eb->kaddr = *map;
2923 		eb->map_start = *map_start;
2924 		eb->map_len = *map_len;
2925 	}
2926 	return err;
2927 }
2928 EXPORT_SYMBOL(map_extent_buffer);
2929 
2930 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2931 {
2932 	kunmap_atomic(token, km);
2933 }
2934 EXPORT_SYMBOL(unmap_extent_buffer);
2935 
2936 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2937 			  unsigned long start,
2938 			  unsigned long len)
2939 {
2940 	size_t cur;
2941 	size_t offset;
2942 	struct page *page;
2943 	char *kaddr;
2944 	char *ptr = (char *)ptrv;
2945 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2946 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2947 	int ret = 0;
2948 
2949 	WARN_ON(start > eb->len);
2950 	WARN_ON(start + len > eb->start + eb->len);
2951 
2952 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2953 
2954 	while(len > 0) {
2955 		page = extent_buffer_page(eb, i);
2956 		WARN_ON(!PageUptodate(page));
2957 
2958 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2959 
2960 		kaddr = kmap_atomic(page, KM_USER0);
2961 		ret = memcmp(ptr, kaddr + offset, cur);
2962 		kunmap_atomic(kaddr, KM_USER0);
2963 		if (ret)
2964 			break;
2965 
2966 		ptr += cur;
2967 		len -= cur;
2968 		offset = 0;
2969 		i++;
2970 	}
2971 	return ret;
2972 }
2973 EXPORT_SYMBOL(memcmp_extent_buffer);
2974 
2975 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2976 			 unsigned long start, unsigned long len)
2977 {
2978 	size_t cur;
2979 	size_t offset;
2980 	struct page *page;
2981 	char *kaddr;
2982 	char *src = (char *)srcv;
2983 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2984 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2985 
2986 	WARN_ON(start > eb->len);
2987 	WARN_ON(start + len > eb->start + eb->len);
2988 
2989 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2990 
2991 	while(len > 0) {
2992 		page = extent_buffer_page(eb, i);
2993 		WARN_ON(!PageUptodate(page));
2994 
2995 		cur = min(len, PAGE_CACHE_SIZE - offset);
2996 		kaddr = kmap_atomic(page, KM_USER1);
2997 		memcpy(kaddr + offset, src, cur);
2998 		kunmap_atomic(kaddr, KM_USER1);
2999 
3000 		src += cur;
3001 		len -= cur;
3002 		offset = 0;
3003 		i++;
3004 	}
3005 }
3006 EXPORT_SYMBOL(write_extent_buffer);
3007 
3008 void memset_extent_buffer(struct extent_buffer *eb, char c,
3009 			  unsigned long start, unsigned long len)
3010 {
3011 	size_t cur;
3012 	size_t offset;
3013 	struct page *page;
3014 	char *kaddr;
3015 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3016 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3017 
3018 	WARN_ON(start > eb->len);
3019 	WARN_ON(start + len > eb->start + eb->len);
3020 
3021 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3022 
3023 	while(len > 0) {
3024 		page = extent_buffer_page(eb, i);
3025 		WARN_ON(!PageUptodate(page));
3026 
3027 		cur = min(len, PAGE_CACHE_SIZE - offset);
3028 		kaddr = kmap_atomic(page, KM_USER0);
3029 		memset(kaddr + offset, c, cur);
3030 		kunmap_atomic(kaddr, KM_USER0);
3031 
3032 		len -= cur;
3033 		offset = 0;
3034 		i++;
3035 	}
3036 }
3037 EXPORT_SYMBOL(memset_extent_buffer);
3038 
3039 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3040 			unsigned long dst_offset, unsigned long src_offset,
3041 			unsigned long len)
3042 {
3043 	u64 dst_len = dst->len;
3044 	size_t cur;
3045 	size_t offset;
3046 	struct page *page;
3047 	char *kaddr;
3048 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3049 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3050 
3051 	WARN_ON(src->len != dst_len);
3052 
3053 	offset = (start_offset + dst_offset) &
3054 		((unsigned long)PAGE_CACHE_SIZE - 1);
3055 
3056 	while(len > 0) {
3057 		page = extent_buffer_page(dst, i);
3058 		WARN_ON(!PageUptodate(page));
3059 
3060 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3061 
3062 		kaddr = kmap_atomic(page, KM_USER0);
3063 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3064 		kunmap_atomic(kaddr, KM_USER0);
3065 
3066 		src_offset += cur;
3067 		len -= cur;
3068 		offset = 0;
3069 		i++;
3070 	}
3071 }
3072 EXPORT_SYMBOL(copy_extent_buffer);
3073 
3074 static void move_pages(struct page *dst_page, struct page *src_page,
3075 		       unsigned long dst_off, unsigned long src_off,
3076 		       unsigned long len)
3077 {
3078 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3079 	if (dst_page == src_page) {
3080 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3081 	} else {
3082 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3083 		char *p = dst_kaddr + dst_off + len;
3084 		char *s = src_kaddr + src_off + len;
3085 
3086 		while (len--)
3087 			*--p = *--s;
3088 
3089 		kunmap_atomic(src_kaddr, KM_USER1);
3090 	}
3091 	kunmap_atomic(dst_kaddr, KM_USER0);
3092 }
3093 
3094 static void copy_pages(struct page *dst_page, struct page *src_page,
3095 		       unsigned long dst_off, unsigned long src_off,
3096 		       unsigned long len)
3097 {
3098 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3099 	char *src_kaddr;
3100 
3101 	if (dst_page != src_page)
3102 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3103 	else
3104 		src_kaddr = dst_kaddr;
3105 
3106 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3107 	kunmap_atomic(dst_kaddr, KM_USER0);
3108 	if (dst_page != src_page)
3109 		kunmap_atomic(src_kaddr, KM_USER1);
3110 }
3111 
3112 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3113 			   unsigned long src_offset, unsigned long len)
3114 {
3115 	size_t cur;
3116 	size_t dst_off_in_page;
3117 	size_t src_off_in_page;
3118 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3119 	unsigned long dst_i;
3120 	unsigned long src_i;
3121 
3122 	if (src_offset + len > dst->len) {
3123 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3124 		       src_offset, len, dst->len);
3125 		BUG_ON(1);
3126 	}
3127 	if (dst_offset + len > dst->len) {
3128 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3129 		       dst_offset, len, dst->len);
3130 		BUG_ON(1);
3131 	}
3132 
3133 	while(len > 0) {
3134 		dst_off_in_page = (start_offset + dst_offset) &
3135 			((unsigned long)PAGE_CACHE_SIZE - 1);
3136 		src_off_in_page = (start_offset + src_offset) &
3137 			((unsigned long)PAGE_CACHE_SIZE - 1);
3138 
3139 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3140 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3141 
3142 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3143 					       src_off_in_page));
3144 		cur = min_t(unsigned long, cur,
3145 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3146 
3147 		copy_pages(extent_buffer_page(dst, dst_i),
3148 			   extent_buffer_page(dst, src_i),
3149 			   dst_off_in_page, src_off_in_page, cur);
3150 
3151 		src_offset += cur;
3152 		dst_offset += cur;
3153 		len -= cur;
3154 	}
3155 }
3156 EXPORT_SYMBOL(memcpy_extent_buffer);
3157 
3158 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3159 			   unsigned long src_offset, unsigned long len)
3160 {
3161 	size_t cur;
3162 	size_t dst_off_in_page;
3163 	size_t src_off_in_page;
3164 	unsigned long dst_end = dst_offset + len - 1;
3165 	unsigned long src_end = src_offset + len - 1;
3166 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3167 	unsigned long dst_i;
3168 	unsigned long src_i;
3169 
3170 	if (src_offset + len > dst->len) {
3171 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3172 		       src_offset, len, dst->len);
3173 		BUG_ON(1);
3174 	}
3175 	if (dst_offset + len > dst->len) {
3176 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3177 		       dst_offset, len, dst->len);
3178 		BUG_ON(1);
3179 	}
3180 	if (dst_offset < src_offset) {
3181 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3182 		return;
3183 	}
3184 	while(len > 0) {
3185 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3186 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3187 
3188 		dst_off_in_page = (start_offset + dst_end) &
3189 			((unsigned long)PAGE_CACHE_SIZE - 1);
3190 		src_off_in_page = (start_offset + src_end) &
3191 			((unsigned long)PAGE_CACHE_SIZE - 1);
3192 
3193 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3194 		cur = min(cur, dst_off_in_page + 1);
3195 		move_pages(extent_buffer_page(dst, dst_i),
3196 			   extent_buffer_page(dst, src_i),
3197 			   dst_off_in_page - cur + 1,
3198 			   src_off_in_page - cur + 1, cur);
3199 
3200 		dst_end -= cur;
3201 		src_end -= cur;
3202 		len -= cur;
3203 	}
3204 }
3205 EXPORT_SYMBOL(memmove_extent_buffer);
3206