xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 3e9fd94f)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 int __init extent_map_init(void)
46 {
47 	extent_map_cache = btrfs_cache_create("extent_map",
48 					    sizeof(struct extent_map), 0,
49 					    NULL);
50 	if (!extent_map_cache)
51 		return -ENOMEM;
52 	extent_state_cache = btrfs_cache_create("extent_state",
53 					    sizeof(struct extent_state), 0,
54 					    NULL);
55 	if (!extent_state_cache)
56 		goto free_map_cache;
57 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
58 					    sizeof(struct extent_buffer), 0,
59 					    NULL);
60 	if (!extent_buffer_cache)
61 		goto free_state_cache;
62 	return 0;
63 
64 free_state_cache:
65 	kmem_cache_destroy(extent_state_cache);
66 free_map_cache:
67 	kmem_cache_destroy(extent_map_cache);
68 	return -ENOMEM;
69 }
70 
71 void __exit extent_map_exit(void)
72 {
73 	struct extent_state *state;
74 
75 	while (!list_empty(&states)) {
76 		state = list_entry(states.next, struct extent_state, list);
77 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
78 		list_del(&state->list);
79 		kmem_cache_free(extent_state_cache, state);
80 
81 	}
82 
83 	if (extent_map_cache)
84 		kmem_cache_destroy(extent_map_cache);
85 	if (extent_state_cache)
86 		kmem_cache_destroy(extent_state_cache);
87 	if (extent_buffer_cache)
88 		kmem_cache_destroy(extent_buffer_cache);
89 }
90 
91 void extent_map_tree_init(struct extent_map_tree *tree,
92 			  struct address_space *mapping, gfp_t mask)
93 {
94 	tree->map.rb_node = NULL;
95 	tree->state.rb_node = NULL;
96 	tree->ops = NULL;
97 	rwlock_init(&tree->lock);
98 	spin_lock_init(&tree->lru_lock);
99 	tree->mapping = mapping;
100 	INIT_LIST_HEAD(&tree->buffer_lru);
101 	tree->lru_size = 0;
102 }
103 EXPORT_SYMBOL(extent_map_tree_init);
104 
105 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
106 {
107 	struct extent_buffer *eb;
108 	while(!list_empty(&tree->buffer_lru)) {
109 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
110 				lru);
111 		list_del_init(&eb->lru);
112 		free_extent_buffer(eb);
113 	}
114 }
115 EXPORT_SYMBOL(extent_map_tree_empty_lru);
116 
117 struct extent_map *alloc_extent_map(gfp_t mask)
118 {
119 	struct extent_map *em;
120 	em = kmem_cache_alloc(extent_map_cache, mask);
121 	if (!em || IS_ERR(em))
122 		return em;
123 	em->in_tree = 0;
124 	atomic_set(&em->refs, 1);
125 	return em;
126 }
127 EXPORT_SYMBOL(alloc_extent_map);
128 
129 void free_extent_map(struct extent_map *em)
130 {
131 	if (!em)
132 		return;
133 	if (atomic_dec_and_test(&em->refs)) {
134 		WARN_ON(em->in_tree);
135 		kmem_cache_free(extent_map_cache, em);
136 	}
137 }
138 EXPORT_SYMBOL(free_extent_map);
139 
140 
141 struct extent_state *alloc_extent_state(gfp_t mask)
142 {
143 	struct extent_state *state;
144 	unsigned long flags;
145 
146 	state = kmem_cache_alloc(extent_state_cache, mask);
147 	if (!state || IS_ERR(state))
148 		return state;
149 	state->state = 0;
150 	state->in_tree = 0;
151 	state->private = 0;
152 
153 	spin_lock_irqsave(&state_lock, flags);
154 	list_add(&state->list, &states);
155 	spin_unlock_irqrestore(&state_lock, flags);
156 
157 	atomic_set(&state->refs, 1);
158 	init_waitqueue_head(&state->wq);
159 	return state;
160 }
161 EXPORT_SYMBOL(alloc_extent_state);
162 
163 void free_extent_state(struct extent_state *state)
164 {
165 	unsigned long flags;
166 	if (!state)
167 		return;
168 	if (atomic_dec_and_test(&state->refs)) {
169 		WARN_ON(state->in_tree);
170 		spin_lock_irqsave(&state_lock, flags);
171 		list_del(&state->list);
172 		spin_unlock_irqrestore(&state_lock, flags);
173 		kmem_cache_free(extent_state_cache, state);
174 	}
175 }
176 EXPORT_SYMBOL(free_extent_state);
177 
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179 				   struct rb_node *node)
180 {
181 	struct rb_node ** p = &root->rb_node;
182 	struct rb_node * parent = NULL;
183 	struct tree_entry *entry;
184 
185 	while(*p) {
186 		parent = *p;
187 		entry = rb_entry(parent, struct tree_entry, rb_node);
188 
189 		if (offset < entry->start)
190 			p = &(*p)->rb_left;
191 		else if (offset > entry->end)
192 			p = &(*p)->rb_right;
193 		else
194 			return parent;
195 	}
196 
197 	entry = rb_entry(node, struct tree_entry, rb_node);
198 	entry->in_tree = 1;
199 	rb_link_node(node, parent, p);
200 	rb_insert_color(node, root);
201 	return NULL;
202 }
203 
204 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
205 				   struct rb_node **prev_ret)
206 {
207 	struct rb_node * n = root->rb_node;
208 	struct rb_node *prev = NULL;
209 	struct tree_entry *entry;
210 	struct tree_entry *prev_entry = NULL;
211 
212 	while(n) {
213 		entry = rb_entry(n, struct tree_entry, rb_node);
214 		prev = n;
215 		prev_entry = entry;
216 
217 		if (offset < entry->start)
218 			n = n->rb_left;
219 		else if (offset > entry->end)
220 			n = n->rb_right;
221 		else
222 			return n;
223 	}
224 	if (!prev_ret)
225 		return NULL;
226 	while(prev && offset > prev_entry->end) {
227 		prev = rb_next(prev);
228 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
229 	}
230 	*prev_ret = prev;
231 	return NULL;
232 }
233 
234 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
235 {
236 	struct rb_node *prev;
237 	struct rb_node *ret;
238 	ret = __tree_search(root, offset, &prev);
239 	if (!ret)
240 		return prev;
241 	return ret;
242 }
243 
244 static int tree_delete(struct rb_root *root, u64 offset)
245 {
246 	struct rb_node *node;
247 	struct tree_entry *entry;
248 
249 	node = __tree_search(root, offset, NULL);
250 	if (!node)
251 		return -ENOENT;
252 	entry = rb_entry(node, struct tree_entry, rb_node);
253 	entry->in_tree = 0;
254 	rb_erase(node, root);
255 	return 0;
256 }
257 
258 /*
259  * add_extent_mapping tries a simple backward merge with existing
260  * mappings.  The extent_map struct passed in will be inserted into
261  * the tree directly (no copies made, just a reference taken).
262  */
263 int add_extent_mapping(struct extent_map_tree *tree,
264 		       struct extent_map *em)
265 {
266 	int ret = 0;
267 	struct extent_map *prev = NULL;
268 	struct rb_node *rb;
269 
270 	write_lock_irq(&tree->lock);
271 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
272 	if (rb) {
273 		prev = rb_entry(rb, struct extent_map, rb_node);
274 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
275 		ret = -EEXIST;
276 		goto out;
277 	}
278 	atomic_inc(&em->refs);
279 	if (em->start != 0) {
280 		rb = rb_prev(&em->rb_node);
281 		if (rb)
282 			prev = rb_entry(rb, struct extent_map, rb_node);
283 		if (prev && prev->end + 1 == em->start &&
284 		    ((em->block_start == EXTENT_MAP_HOLE &&
285 		      prev->block_start == EXTENT_MAP_HOLE) ||
286 		     (em->block_start == EXTENT_MAP_INLINE &&
287 		      prev->block_start == EXTENT_MAP_INLINE) ||
288 		     (em->block_start == EXTENT_MAP_DELALLOC &&
289 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
290 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
291 		      em->block_start == prev->block_end + 1))) {
292 			em->start = prev->start;
293 			em->block_start = prev->block_start;
294 			rb_erase(&prev->rb_node, &tree->map);
295 			prev->in_tree = 0;
296 			free_extent_map(prev);
297 		}
298 	 }
299 out:
300 	write_unlock_irq(&tree->lock);
301 	return ret;
302 }
303 EXPORT_SYMBOL(add_extent_mapping);
304 
305 /*
306  * lookup_extent_mapping returns the first extent_map struct in the
307  * tree that intersects the [start, end] (inclusive) range.  There may
308  * be additional objects in the tree that intersect, so check the object
309  * returned carefully to make sure you don't need additional lookups.
310  */
311 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
312 					 u64 start, u64 end)
313 {
314 	struct extent_map *em;
315 	struct rb_node *rb_node;
316 
317 	read_lock_irq(&tree->lock);
318 	rb_node = tree_search(&tree->map, start);
319 	if (!rb_node) {
320 		em = NULL;
321 		goto out;
322 	}
323 	if (IS_ERR(rb_node)) {
324 		em = ERR_PTR(PTR_ERR(rb_node));
325 		goto out;
326 	}
327 	em = rb_entry(rb_node, struct extent_map, rb_node);
328 	if (em->end < start || em->start > end) {
329 		em = NULL;
330 		goto out;
331 	}
332 	atomic_inc(&em->refs);
333 out:
334 	read_unlock_irq(&tree->lock);
335 	return em;
336 }
337 EXPORT_SYMBOL(lookup_extent_mapping);
338 
339 /*
340  * removes an extent_map struct from the tree.  No reference counts are
341  * dropped, and no checks are done to  see if the range is in use
342  */
343 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
344 {
345 	int ret;
346 
347 	write_lock_irq(&tree->lock);
348 	ret = tree_delete(&tree->map, em->end);
349 	write_unlock_irq(&tree->lock);
350 	return ret;
351 }
352 EXPORT_SYMBOL(remove_extent_mapping);
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static int merge_state(struct extent_map_tree *tree,
364 		       struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & EXTENT_IOBITS)
370 		return 0;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			state->start = other->start;
378 			other->in_tree = 0;
379 			rb_erase(&other->rb_node, &tree->state);
380 			free_extent_state(other);
381 		}
382 	}
383 	other_node = rb_next(&state->rb_node);
384 	if (other_node) {
385 		other = rb_entry(other_node, struct extent_state, rb_node);
386 		if (other->start == state->end + 1 &&
387 		    other->state == state->state) {
388 			other->start = state->start;
389 			state->in_tree = 0;
390 			rb_erase(&state->rb_node, &tree->state);
391 			free_extent_state(state);
392 		}
393 	}
394 	return 0;
395 }
396 
397 /*
398  * insert an extent_state struct into the tree.  'bits' are set on the
399  * struct before it is inserted.
400  *
401  * This may return -EEXIST if the extent is already there, in which case the
402  * state struct is freed.
403  *
404  * The tree lock is not taken internally.  This is a utility function and
405  * probably isn't what you want to call (see set/clear_extent_bit).
406  */
407 static int insert_state(struct extent_map_tree *tree,
408 			struct extent_state *state, u64 start, u64 end,
409 			int bits)
410 {
411 	struct rb_node *node;
412 
413 	if (end < start) {
414 		printk("end < start %Lu %Lu\n", end, start);
415 		WARN_ON(1);
416 	}
417 	state->state |= bits;
418 	state->start = start;
419 	state->end = end;
420 	node = tree_insert(&tree->state, end, &state->rb_node);
421 	if (node) {
422 		struct extent_state *found;
423 		found = rb_entry(node, struct extent_state, rb_node);
424 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
425 		free_extent_state(state);
426 		return -EEXIST;
427 	}
428 	merge_state(tree, state);
429 	return 0;
430 }
431 
432 /*
433  * split a given extent state struct in two, inserting the preallocated
434  * struct 'prealloc' as the newly created second half.  'split' indicates an
435  * offset inside 'orig' where it should be split.
436  *
437  * Before calling,
438  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
439  * are two extent state structs in the tree:
440  * prealloc: [orig->start, split - 1]
441  * orig: [ split, orig->end ]
442  *
443  * The tree locks are not taken by this function. They need to be held
444  * by the caller.
445  */
446 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
447 		       struct extent_state *prealloc, u64 split)
448 {
449 	struct rb_node *node;
450 	prealloc->start = orig->start;
451 	prealloc->end = split - 1;
452 	prealloc->state = orig->state;
453 	orig->start = split;
454 
455 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
456 	if (node) {
457 		struct extent_state *found;
458 		found = rb_entry(node, struct extent_state, rb_node);
459 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
460 		free_extent_state(prealloc);
461 		return -EEXIST;
462 	}
463 	return 0;
464 }
465 
466 /*
467  * utility function to clear some bits in an extent state struct.
468  * it will optionally wake up any one waiting on this state (wake == 1), or
469  * forcibly remove the state from the tree (delete == 1).
470  *
471  * If no bits are set on the state struct after clearing things, the
472  * struct is freed and removed from the tree
473  */
474 static int clear_state_bit(struct extent_map_tree *tree,
475 			    struct extent_state *state, int bits, int wake,
476 			    int delete)
477 {
478 	int ret = state->state & bits;
479 	state->state &= ~bits;
480 	if (wake)
481 		wake_up(&state->wq);
482 	if (delete || state->state == 0) {
483 		if (state->in_tree) {
484 			rb_erase(&state->rb_node, &tree->state);
485 			state->in_tree = 0;
486 			free_extent_state(state);
487 		} else {
488 			WARN_ON(1);
489 		}
490 	} else {
491 		merge_state(tree, state);
492 	}
493 	return ret;
494 }
495 
496 /*
497  * clear some bits on a range in the tree.  This may require splitting
498  * or inserting elements in the tree, so the gfp mask is used to
499  * indicate which allocations or sleeping are allowed.
500  *
501  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
502  * the given range from the tree regardless of state (ie for truncate).
503  *
504  * the range [start, end] is inclusive.
505  *
506  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
507  * bits were already set, or zero if none of the bits were already set.
508  */
509 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
510 		     int bits, int wake, int delete, gfp_t mask)
511 {
512 	struct extent_state *state;
513 	struct extent_state *prealloc = NULL;
514 	struct rb_node *node;
515 	unsigned long flags;
516 	int err;
517 	int set = 0;
518 
519 again:
520 	if (!prealloc && (mask & __GFP_WAIT)) {
521 		prealloc = alloc_extent_state(mask);
522 		if (!prealloc)
523 			return -ENOMEM;
524 	}
525 
526 	write_lock_irqsave(&tree->lock, flags);
527 	/*
528 	 * this search will find the extents that end after
529 	 * our range starts
530 	 */
531 	node = tree_search(&tree->state, start);
532 	if (!node)
533 		goto out;
534 	state = rb_entry(node, struct extent_state, rb_node);
535 	if (state->start > end)
536 		goto out;
537 	WARN_ON(state->end < start);
538 
539 	/*
540 	 *     | ---- desired range ---- |
541 	 *  | state | or
542 	 *  | ------------- state -------------- |
543 	 *
544 	 * We need to split the extent we found, and may flip
545 	 * bits on second half.
546 	 *
547 	 * If the extent we found extends past our range, we
548 	 * just split and search again.  It'll get split again
549 	 * the next time though.
550 	 *
551 	 * If the extent we found is inside our range, we clear
552 	 * the desired bit on it.
553 	 */
554 
555 	if (state->start < start) {
556 		err = split_state(tree, state, prealloc, start);
557 		BUG_ON(err == -EEXIST);
558 		prealloc = NULL;
559 		if (err)
560 			goto out;
561 		if (state->end <= end) {
562 			start = state->end + 1;
563 			set |= clear_state_bit(tree, state, bits,
564 					wake, delete);
565 		} else {
566 			start = state->start;
567 		}
568 		goto search_again;
569 	}
570 	/*
571 	 * | ---- desired range ---- |
572 	 *                        | state |
573 	 * We need to split the extent, and clear the bit
574 	 * on the first half
575 	 */
576 	if (state->start <= end && state->end > end) {
577 		err = split_state(tree, state, prealloc, end + 1);
578 		BUG_ON(err == -EEXIST);
579 
580 		if (wake)
581 			wake_up(&state->wq);
582 		set |= clear_state_bit(tree, prealloc, bits,
583 				       wake, delete);
584 		prealloc = NULL;
585 		goto out;
586 	}
587 
588 	start = state->end + 1;
589 	set |= clear_state_bit(tree, state, bits, wake, delete);
590 	goto search_again;
591 
592 out:
593 	write_unlock_irqrestore(&tree->lock, flags);
594 	if (prealloc)
595 		free_extent_state(prealloc);
596 
597 	return set;
598 
599 search_again:
600 	if (start > end)
601 		goto out;
602 	write_unlock_irqrestore(&tree->lock, flags);
603 	if (mask & __GFP_WAIT)
604 		cond_resched();
605 	goto again;
606 }
607 EXPORT_SYMBOL(clear_extent_bit);
608 
609 static int wait_on_state(struct extent_map_tree *tree,
610 			 struct extent_state *state)
611 {
612 	DEFINE_WAIT(wait);
613 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
614 	read_unlock_irq(&tree->lock);
615 	schedule();
616 	read_lock_irq(&tree->lock);
617 	finish_wait(&state->wq, &wait);
618 	return 0;
619 }
620 
621 /*
622  * waits for one or more bits to clear on a range in the state tree.
623  * The range [start, end] is inclusive.
624  * The tree lock is taken by this function
625  */
626 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
627 {
628 	struct extent_state *state;
629 	struct rb_node *node;
630 
631 	read_lock_irq(&tree->lock);
632 again:
633 	while (1) {
634 		/*
635 		 * this search will find all the extents that end after
636 		 * our range starts
637 		 */
638 		node = tree_search(&tree->state, start);
639 		if (!node)
640 			break;
641 
642 		state = rb_entry(node, struct extent_state, rb_node);
643 
644 		if (state->start > end)
645 			goto out;
646 
647 		if (state->state & bits) {
648 			start = state->start;
649 			atomic_inc(&state->refs);
650 			wait_on_state(tree, state);
651 			free_extent_state(state);
652 			goto again;
653 		}
654 		start = state->end + 1;
655 
656 		if (start > end)
657 			break;
658 
659 		if (need_resched()) {
660 			read_unlock_irq(&tree->lock);
661 			cond_resched();
662 			read_lock_irq(&tree->lock);
663 		}
664 	}
665 out:
666 	read_unlock_irq(&tree->lock);
667 	return 0;
668 }
669 EXPORT_SYMBOL(wait_extent_bit);
670 
671 /*
672  * set some bits on a range in the tree.  This may require allocations
673  * or sleeping, so the gfp mask is used to indicate what is allowed.
674  *
675  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
676  * range already has the desired bits set.  The start of the existing
677  * range is returned in failed_start in this case.
678  *
679  * [start, end] is inclusive
680  * This takes the tree lock.
681  */
682 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
683 		   int exclusive, u64 *failed_start, gfp_t mask)
684 {
685 	struct extent_state *state;
686 	struct extent_state *prealloc = NULL;
687 	struct rb_node *node;
688 	unsigned long flags;
689 	int err = 0;
690 	int set;
691 	u64 last_start;
692 	u64 last_end;
693 again:
694 	if (!prealloc && (mask & __GFP_WAIT)) {
695 		prealloc = alloc_extent_state(mask);
696 		if (!prealloc)
697 			return -ENOMEM;
698 	}
699 
700 	write_lock_irqsave(&tree->lock, flags);
701 	/*
702 	 * this search will find all the extents that end after
703 	 * our range starts.
704 	 */
705 	node = tree_search(&tree->state, start);
706 	if (!node) {
707 		err = insert_state(tree, prealloc, start, end, bits);
708 		prealloc = NULL;
709 		BUG_ON(err == -EEXIST);
710 		goto out;
711 	}
712 
713 	state = rb_entry(node, struct extent_state, rb_node);
714 	last_start = state->start;
715 	last_end = state->end;
716 
717 	/*
718 	 * | ---- desired range ---- |
719 	 * | state |
720 	 *
721 	 * Just lock what we found and keep going
722 	 */
723 	if (state->start == start && state->end <= end) {
724 		set = state->state & bits;
725 		if (set && exclusive) {
726 			*failed_start = state->start;
727 			err = -EEXIST;
728 			goto out;
729 		}
730 		state->state |= bits;
731 		start = state->end + 1;
732 		merge_state(tree, state);
733 		goto search_again;
734 	}
735 
736 	/*
737 	 *     | ---- desired range ---- |
738 	 * | state |
739 	 *   or
740 	 * | ------------- state -------------- |
741 	 *
742 	 * We need to split the extent we found, and may flip bits on
743 	 * second half.
744 	 *
745 	 * If the extent we found extends past our
746 	 * range, we just split and search again.  It'll get split
747 	 * again the next time though.
748 	 *
749 	 * If the extent we found is inside our range, we set the
750 	 * desired bit on it.
751 	 */
752 	if (state->start < start) {
753 		set = state->state & bits;
754 		if (exclusive && set) {
755 			*failed_start = start;
756 			err = -EEXIST;
757 			goto out;
758 		}
759 		err = split_state(tree, state, prealloc, start);
760 		BUG_ON(err == -EEXIST);
761 		prealloc = NULL;
762 		if (err)
763 			goto out;
764 		if (state->end <= end) {
765 			state->state |= bits;
766 			start = state->end + 1;
767 			merge_state(tree, state);
768 		} else {
769 			start = state->start;
770 		}
771 		goto search_again;
772 	}
773 	/*
774 	 * | ---- desired range ---- |
775 	 *     | state | or               | state |
776 	 *
777 	 * There's a hole, we need to insert something in it and
778 	 * ignore the extent we found.
779 	 */
780 	if (state->start > start) {
781 		u64 this_end;
782 		if (end < last_start)
783 			this_end = end;
784 		else
785 			this_end = last_start -1;
786 		err = insert_state(tree, prealloc, start, this_end,
787 				   bits);
788 		prealloc = NULL;
789 		BUG_ON(err == -EEXIST);
790 		if (err)
791 			goto out;
792 		start = this_end + 1;
793 		goto search_again;
794 	}
795 	/*
796 	 * | ---- desired range ---- |
797 	 *                        | state |
798 	 * We need to split the extent, and set the bit
799 	 * on the first half
800 	 */
801 	if (state->start <= end && state->end > end) {
802 		set = state->state & bits;
803 		if (exclusive && set) {
804 			*failed_start = start;
805 			err = -EEXIST;
806 			goto out;
807 		}
808 		err = split_state(tree, state, prealloc, end + 1);
809 		BUG_ON(err == -EEXIST);
810 
811 		prealloc->state |= bits;
812 		merge_state(tree, prealloc);
813 		prealloc = NULL;
814 		goto out;
815 	}
816 
817 	goto search_again;
818 
819 out:
820 	write_unlock_irqrestore(&tree->lock, flags);
821 	if (prealloc)
822 		free_extent_state(prealloc);
823 
824 	return err;
825 
826 search_again:
827 	if (start > end)
828 		goto out;
829 	write_unlock_irqrestore(&tree->lock, flags);
830 	if (mask & __GFP_WAIT)
831 		cond_resched();
832 	goto again;
833 }
834 EXPORT_SYMBOL(set_extent_bit);
835 
836 /* wrappers around set/clear extent bit */
837 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
838 		     gfp_t mask)
839 {
840 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
841 			      mask);
842 }
843 EXPORT_SYMBOL(set_extent_dirty);
844 
845 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
846 		    int bits, gfp_t mask)
847 {
848 	return set_extent_bit(tree, start, end, bits, 0, NULL,
849 			      mask);
850 }
851 EXPORT_SYMBOL(set_extent_bits);
852 
853 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
854 		      int bits, gfp_t mask)
855 {
856 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
857 }
858 EXPORT_SYMBOL(clear_extent_bits);
859 
860 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
861 		     gfp_t mask)
862 {
863 	return set_extent_bit(tree, start, end,
864 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
865 			      mask);
866 }
867 EXPORT_SYMBOL(set_extent_delalloc);
868 
869 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
870 		       gfp_t mask)
871 {
872 	return clear_extent_bit(tree, start, end,
873 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
874 }
875 EXPORT_SYMBOL(clear_extent_dirty);
876 
877 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
878 		     gfp_t mask)
879 {
880 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
881 			      mask);
882 }
883 EXPORT_SYMBOL(set_extent_new);
884 
885 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
886 		       gfp_t mask)
887 {
888 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
889 }
890 EXPORT_SYMBOL(clear_extent_new);
891 
892 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
893 			gfp_t mask)
894 {
895 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
896 			      mask);
897 }
898 EXPORT_SYMBOL(set_extent_uptodate);
899 
900 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
901 			  gfp_t mask)
902 {
903 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
904 }
905 EXPORT_SYMBOL(clear_extent_uptodate);
906 
907 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
908 			 gfp_t mask)
909 {
910 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
911 			      0, NULL, mask);
912 }
913 EXPORT_SYMBOL(set_extent_writeback);
914 
915 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
916 			   gfp_t mask)
917 {
918 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
919 }
920 EXPORT_SYMBOL(clear_extent_writeback);
921 
922 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
923 {
924 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
925 }
926 EXPORT_SYMBOL(wait_on_extent_writeback);
927 
928 /*
929  * locks a range in ascending order, waiting for any locked regions
930  * it hits on the way.  [start,end] are inclusive, and this will sleep.
931  */
932 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
933 {
934 	int err;
935 	u64 failed_start;
936 	while (1) {
937 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
938 				     &failed_start, mask);
939 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
940 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
941 			start = failed_start;
942 		} else {
943 			break;
944 		}
945 		WARN_ON(start > end);
946 	}
947 	return err;
948 }
949 EXPORT_SYMBOL(lock_extent);
950 
951 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
952 		  gfp_t mask)
953 {
954 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
955 }
956 EXPORT_SYMBOL(unlock_extent);
957 
958 /*
959  * helper function to set pages and extents in the tree dirty
960  */
961 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
962 {
963 	unsigned long index = start >> PAGE_CACHE_SHIFT;
964 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
965 	struct page *page;
966 
967 	while (index <= end_index) {
968 		page = find_get_page(tree->mapping, index);
969 		BUG_ON(!page);
970 		__set_page_dirty_nobuffers(page);
971 		page_cache_release(page);
972 		index++;
973 	}
974 	set_extent_dirty(tree, start, end, GFP_NOFS);
975 	return 0;
976 }
977 EXPORT_SYMBOL(set_range_dirty);
978 
979 /*
980  * helper function to set both pages and extents in the tree writeback
981  */
982 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
983 {
984 	unsigned long index = start >> PAGE_CACHE_SHIFT;
985 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
986 	struct page *page;
987 
988 	while (index <= end_index) {
989 		page = find_get_page(tree->mapping, index);
990 		BUG_ON(!page);
991 		set_page_writeback(page);
992 		page_cache_release(page);
993 		index++;
994 	}
995 	set_extent_writeback(tree, start, end, GFP_NOFS);
996 	return 0;
997 }
998 EXPORT_SYMBOL(set_range_writeback);
999 
1000 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1001 			  u64 *start_ret, u64 *end_ret, int bits)
1002 {
1003 	struct rb_node *node;
1004 	struct extent_state *state;
1005 	int ret = 1;
1006 
1007 	read_lock_irq(&tree->lock);
1008 	/*
1009 	 * this search will find all the extents that end after
1010 	 * our range starts.
1011 	 */
1012 	node = tree_search(&tree->state, start);
1013 	if (!node || IS_ERR(node)) {
1014 		goto out;
1015 	}
1016 
1017 	while(1) {
1018 		state = rb_entry(node, struct extent_state, rb_node);
1019 		if (state->end >= start && (state->state & bits)) {
1020 			*start_ret = state->start;
1021 			*end_ret = state->end;
1022 			ret = 0;
1023 			break;
1024 		}
1025 		node = rb_next(node);
1026 		if (!node)
1027 			break;
1028 	}
1029 out:
1030 	read_unlock_irq(&tree->lock);
1031 	return ret;
1032 }
1033 EXPORT_SYMBOL(find_first_extent_bit);
1034 
1035 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1036 			     u64 *start, u64 *end, u64 max_bytes)
1037 {
1038 	struct rb_node *node;
1039 	struct extent_state *state;
1040 	u64 cur_start = *start;
1041 	u64 found = 0;
1042 	u64 total_bytes = 0;
1043 
1044 	write_lock_irq(&tree->lock);
1045 	/*
1046 	 * this search will find all the extents that end after
1047 	 * our range starts.
1048 	 */
1049 search_again:
1050 	node = tree_search(&tree->state, cur_start);
1051 	if (!node || IS_ERR(node)) {
1052 		goto out;
1053 	}
1054 
1055 	while(1) {
1056 		state = rb_entry(node, struct extent_state, rb_node);
1057 		if (found && state->start != cur_start) {
1058 			goto out;
1059 		}
1060 		if (!(state->state & EXTENT_DELALLOC)) {
1061 			goto out;
1062 		}
1063 		if (!found) {
1064 			struct extent_state *prev_state;
1065 			struct rb_node *prev_node = node;
1066 			while(1) {
1067 				prev_node = rb_prev(prev_node);
1068 				if (!prev_node)
1069 					break;
1070 				prev_state = rb_entry(prev_node,
1071 						      struct extent_state,
1072 						      rb_node);
1073 				if (!(prev_state->state & EXTENT_DELALLOC))
1074 					break;
1075 				state = prev_state;
1076 				node = prev_node;
1077 			}
1078 		}
1079 		if (state->state & EXTENT_LOCKED) {
1080 			DEFINE_WAIT(wait);
1081 			atomic_inc(&state->refs);
1082 			prepare_to_wait(&state->wq, &wait,
1083 					TASK_UNINTERRUPTIBLE);
1084 			write_unlock_irq(&tree->lock);
1085 			schedule();
1086 			write_lock_irq(&tree->lock);
1087 			finish_wait(&state->wq, &wait);
1088 			free_extent_state(state);
1089 			goto search_again;
1090 		}
1091 		state->state |= EXTENT_LOCKED;
1092 		if (!found)
1093 			*start = state->start;
1094 		found++;
1095 		*end = state->end;
1096 		cur_start = state->end + 1;
1097 		node = rb_next(node);
1098 		if (!node)
1099 			break;
1100 		total_bytes += state->end - state->start + 1;
1101 		if (total_bytes >= max_bytes)
1102 			break;
1103 	}
1104 out:
1105 	write_unlock_irq(&tree->lock);
1106 	return found;
1107 }
1108 
1109 /*
1110  * helper function to lock both pages and extents in the tree.
1111  * pages must be locked first.
1112  */
1113 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1114 {
1115 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1116 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1117 	struct page *page;
1118 	int err;
1119 
1120 	while (index <= end_index) {
1121 		page = grab_cache_page(tree->mapping, index);
1122 		if (!page) {
1123 			err = -ENOMEM;
1124 			goto failed;
1125 		}
1126 		if (IS_ERR(page)) {
1127 			err = PTR_ERR(page);
1128 			goto failed;
1129 		}
1130 		index++;
1131 	}
1132 	lock_extent(tree, start, end, GFP_NOFS);
1133 	return 0;
1134 
1135 failed:
1136 	/*
1137 	 * we failed above in getting the page at 'index', so we undo here
1138 	 * up to but not including the page at 'index'
1139 	 */
1140 	end_index = index;
1141 	index = start >> PAGE_CACHE_SHIFT;
1142 	while (index < end_index) {
1143 		page = find_get_page(tree->mapping, index);
1144 		unlock_page(page);
1145 		page_cache_release(page);
1146 		index++;
1147 	}
1148 	return err;
1149 }
1150 EXPORT_SYMBOL(lock_range);
1151 
1152 /*
1153  * helper function to unlock both pages and extents in the tree.
1154  */
1155 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1156 {
1157 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1158 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1159 	struct page *page;
1160 
1161 	while (index <= end_index) {
1162 		page = find_get_page(tree->mapping, index);
1163 		unlock_page(page);
1164 		page_cache_release(page);
1165 		index++;
1166 	}
1167 	unlock_extent(tree, start, end, GFP_NOFS);
1168 	return 0;
1169 }
1170 EXPORT_SYMBOL(unlock_range);
1171 
1172 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1173 {
1174 	struct rb_node *node;
1175 	struct extent_state *state;
1176 	int ret = 0;
1177 
1178 	write_lock_irq(&tree->lock);
1179 	/*
1180 	 * this search will find all the extents that end after
1181 	 * our range starts.
1182 	 */
1183 	node = tree_search(&tree->state, start);
1184 	if (!node || IS_ERR(node)) {
1185 		ret = -ENOENT;
1186 		goto out;
1187 	}
1188 	state = rb_entry(node, struct extent_state, rb_node);
1189 	if (state->start != start) {
1190 		ret = -ENOENT;
1191 		goto out;
1192 	}
1193 	state->private = private;
1194 out:
1195 	write_unlock_irq(&tree->lock);
1196 	return ret;
1197 }
1198 
1199 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1200 {
1201 	struct rb_node *node;
1202 	struct extent_state *state;
1203 	int ret = 0;
1204 
1205 	read_lock_irq(&tree->lock);
1206 	/*
1207 	 * this search will find all the extents that end after
1208 	 * our range starts.
1209 	 */
1210 	node = tree_search(&tree->state, start);
1211 	if (!node || IS_ERR(node)) {
1212 		ret = -ENOENT;
1213 		goto out;
1214 	}
1215 	state = rb_entry(node, struct extent_state, rb_node);
1216 	if (state->start != start) {
1217 		ret = -ENOENT;
1218 		goto out;
1219 	}
1220 	*private = state->private;
1221 out:
1222 	read_unlock_irq(&tree->lock);
1223 	return ret;
1224 }
1225 
1226 /*
1227  * searches a range in the state tree for a given mask.
1228  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1229  * has the bits set.  Otherwise, 1 is returned if any bit in the
1230  * range is found set.
1231  */
1232 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1233 		   int bits, int filled)
1234 {
1235 	struct extent_state *state = NULL;
1236 	struct rb_node *node;
1237 	int bitset = 0;
1238 
1239 	read_lock_irq(&tree->lock);
1240 	node = tree_search(&tree->state, start);
1241 	while (node && start <= end) {
1242 		state = rb_entry(node, struct extent_state, rb_node);
1243 
1244 		if (filled && state->start > start) {
1245 			bitset = 0;
1246 			break;
1247 		}
1248 
1249 		if (state->start > end)
1250 			break;
1251 
1252 		if (state->state & bits) {
1253 			bitset = 1;
1254 			if (!filled)
1255 				break;
1256 		} else if (filled) {
1257 			bitset = 0;
1258 			break;
1259 		}
1260 		start = state->end + 1;
1261 		if (start > end)
1262 			break;
1263 		node = rb_next(node);
1264 	}
1265 	read_unlock_irq(&tree->lock);
1266 	return bitset;
1267 }
1268 EXPORT_SYMBOL(test_range_bit);
1269 
1270 /*
1271  * helper function to set a given page up to date if all the
1272  * extents in the tree for that page are up to date
1273  */
1274 static int check_page_uptodate(struct extent_map_tree *tree,
1275 			       struct page *page)
1276 {
1277 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1278 	u64 end = start + PAGE_CACHE_SIZE - 1;
1279 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1280 		SetPageUptodate(page);
1281 	return 0;
1282 }
1283 
1284 /*
1285  * helper function to unlock a page if all the extents in the tree
1286  * for that page are unlocked
1287  */
1288 static int check_page_locked(struct extent_map_tree *tree,
1289 			     struct page *page)
1290 {
1291 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1292 	u64 end = start + PAGE_CACHE_SIZE - 1;
1293 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1294 		unlock_page(page);
1295 	return 0;
1296 }
1297 
1298 /*
1299  * helper function to end page writeback if all the extents
1300  * in the tree for that page are done with writeback
1301  */
1302 static int check_page_writeback(struct extent_map_tree *tree,
1303 			     struct page *page)
1304 {
1305 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1306 	u64 end = start + PAGE_CACHE_SIZE - 1;
1307 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1308 		end_page_writeback(page);
1309 	return 0;
1310 }
1311 
1312 /* lots and lots of room for performance fixes in the end_bio funcs */
1313 
1314 /*
1315  * after a writepage IO is done, we need to:
1316  * clear the uptodate bits on error
1317  * clear the writeback bits in the extent tree for this IO
1318  * end_page_writeback if the page has no more pending IO
1319  *
1320  * Scheduling is not allowed, so the extent state tree is expected
1321  * to have one and only one object corresponding to this IO.
1322  */
1323 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1324 static void end_bio_extent_writepage(struct bio *bio, int err)
1325 #else
1326 static int end_bio_extent_writepage(struct bio *bio,
1327 				   unsigned int bytes_done, int err)
1328 #endif
1329 {
1330 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1331 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1332 	struct extent_map_tree *tree = bio->bi_private;
1333 	u64 start;
1334 	u64 end;
1335 	int whole_page;
1336 
1337 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1338 	if (bio->bi_size)
1339 		return 1;
1340 #endif
1341 
1342 	do {
1343 		struct page *page = bvec->bv_page;
1344 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1345 			 bvec->bv_offset;
1346 		end = start + bvec->bv_len - 1;
1347 
1348 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1349 			whole_page = 1;
1350 		else
1351 			whole_page = 0;
1352 
1353 		if (--bvec >= bio->bi_io_vec)
1354 			prefetchw(&bvec->bv_page->flags);
1355 
1356 		if (!uptodate) {
1357 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1358 			ClearPageUptodate(page);
1359 			SetPageError(page);
1360 		}
1361 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1362 
1363 		if (whole_page)
1364 			end_page_writeback(page);
1365 		else
1366 			check_page_writeback(tree, page);
1367 		if (tree->ops && tree->ops->writepage_end_io_hook)
1368 			tree->ops->writepage_end_io_hook(page, start, end);
1369 	} while (bvec >= bio->bi_io_vec);
1370 
1371 	bio_put(bio);
1372 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1373 	return 0;
1374 #endif
1375 }
1376 
1377 /*
1378  * after a readpage IO is done, we need to:
1379  * clear the uptodate bits on error
1380  * set the uptodate bits if things worked
1381  * set the page up to date if all extents in the tree are uptodate
1382  * clear the lock bit in the extent tree
1383  * unlock the page if there are no other extents locked for it
1384  *
1385  * Scheduling is not allowed, so the extent state tree is expected
1386  * to have one and only one object corresponding to this IO.
1387  */
1388 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1389 static void end_bio_extent_readpage(struct bio *bio, int err)
1390 #else
1391 static int end_bio_extent_readpage(struct bio *bio,
1392 				   unsigned int bytes_done, int err)
1393 #endif
1394 {
1395 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1396 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1397 	struct extent_map_tree *tree = bio->bi_private;
1398 	u64 start;
1399 	u64 end;
1400 	int whole_page;
1401 	int ret;
1402 
1403 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1404 	if (bio->bi_size)
1405 		return 1;
1406 #endif
1407 
1408 	do {
1409 		struct page *page = bvec->bv_page;
1410 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1411 			bvec->bv_offset;
1412 		end = start + bvec->bv_len - 1;
1413 
1414 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1415 			whole_page = 1;
1416 		else
1417 			whole_page = 0;
1418 
1419 		if (--bvec >= bio->bi_io_vec)
1420 			prefetchw(&bvec->bv_page->flags);
1421 
1422 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1423 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1424 			if (ret)
1425 				uptodate = 0;
1426 		}
1427 		if (uptodate) {
1428 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1429 			if (whole_page)
1430 				SetPageUptodate(page);
1431 			else
1432 				check_page_uptodate(tree, page);
1433 		} else {
1434 			ClearPageUptodate(page);
1435 			SetPageError(page);
1436 		}
1437 
1438 		unlock_extent(tree, start, end, GFP_ATOMIC);
1439 
1440 		if (whole_page)
1441 			unlock_page(page);
1442 		else
1443 			check_page_locked(tree, page);
1444 	} while (bvec >= bio->bi_io_vec);
1445 
1446 	bio_put(bio);
1447 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1448 	return 0;
1449 #endif
1450 }
1451 
1452 /*
1453  * IO done from prepare_write is pretty simple, we just unlock
1454  * the structs in the extent tree when done, and set the uptodate bits
1455  * as appropriate.
1456  */
1457 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1458 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1459 #else
1460 static int end_bio_extent_preparewrite(struct bio *bio,
1461 				       unsigned int bytes_done, int err)
1462 #endif
1463 {
1464 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1465 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1466 	struct extent_map_tree *tree = bio->bi_private;
1467 	u64 start;
1468 	u64 end;
1469 
1470 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1471 	if (bio->bi_size)
1472 		return 1;
1473 #endif
1474 
1475 	do {
1476 		struct page *page = bvec->bv_page;
1477 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1478 			bvec->bv_offset;
1479 		end = start + bvec->bv_len - 1;
1480 
1481 		if (--bvec >= bio->bi_io_vec)
1482 			prefetchw(&bvec->bv_page->flags);
1483 
1484 		if (uptodate) {
1485 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1486 		} else {
1487 			ClearPageUptodate(page);
1488 			SetPageError(page);
1489 		}
1490 
1491 		unlock_extent(tree, start, end, GFP_ATOMIC);
1492 
1493 	} while (bvec >= bio->bi_io_vec);
1494 
1495 	bio_put(bio);
1496 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1497 	return 0;
1498 #endif
1499 }
1500 
1501 static struct bio *
1502 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1503 		 gfp_t gfp_flags)
1504 {
1505 	struct bio *bio;
1506 
1507 	bio = bio_alloc(gfp_flags, nr_vecs);
1508 
1509 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1510 		while (!bio && (nr_vecs /= 2))
1511 			bio = bio_alloc(gfp_flags, nr_vecs);
1512 	}
1513 
1514 	if (bio) {
1515 		bio->bi_bdev = bdev;
1516 		bio->bi_sector = first_sector;
1517 	}
1518 	return bio;
1519 }
1520 
1521 static int submit_one_bio(int rw, struct bio *bio)
1522 {
1523 	int ret = 0;
1524 	bio_get(bio);
1525 	submit_bio(rw, bio);
1526 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1527 		ret = -EOPNOTSUPP;
1528 	bio_put(bio);
1529 	return ret;
1530 }
1531 
1532 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1533 			      struct page *page, sector_t sector,
1534 			      size_t size, unsigned long offset,
1535 			      struct block_device *bdev,
1536 			      struct bio **bio_ret,
1537 			      unsigned long max_pages,
1538 			      bio_end_io_t end_io_func)
1539 {
1540 	int ret = 0;
1541 	struct bio *bio;
1542 	int nr;
1543 
1544 	if (bio_ret && *bio_ret) {
1545 		bio = *bio_ret;
1546 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1547 		    bio_add_page(bio, page, size, offset) < size) {
1548 			ret = submit_one_bio(rw, bio);
1549 			bio = NULL;
1550 		} else {
1551 			return 0;
1552 		}
1553 	}
1554 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1555 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1556 	if (!bio) {
1557 		printk("failed to allocate bio nr %d\n", nr);
1558 	}
1559 	bio_add_page(bio, page, size, offset);
1560 	bio->bi_end_io = end_io_func;
1561 	bio->bi_private = tree;
1562 	if (bio_ret) {
1563 		*bio_ret = bio;
1564 	} else {
1565 		ret = submit_one_bio(rw, bio);
1566 	}
1567 
1568 	return ret;
1569 }
1570 
1571 void set_page_extent_mapped(struct page *page)
1572 {
1573 	if (!PagePrivate(page)) {
1574 		SetPagePrivate(page);
1575 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1576 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1577 		page_cache_get(page);
1578 	}
1579 }
1580 
1581 /*
1582  * basic readpage implementation.  Locked extent state structs are inserted
1583  * into the tree that are removed when the IO is done (by the end_io
1584  * handlers)
1585  */
1586 static int __extent_read_full_page(struct extent_map_tree *tree,
1587 				   struct page *page,
1588 				   get_extent_t *get_extent,
1589 				   struct bio **bio)
1590 {
1591 	struct inode *inode = page->mapping->host;
1592 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1593 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1594 	u64 end;
1595 	u64 cur = start;
1596 	u64 extent_offset;
1597 	u64 last_byte = i_size_read(inode);
1598 	u64 block_start;
1599 	u64 cur_end;
1600 	sector_t sector;
1601 	struct extent_map *em;
1602 	struct block_device *bdev;
1603 	int ret;
1604 	int nr = 0;
1605 	size_t page_offset = 0;
1606 	size_t iosize;
1607 	size_t blocksize = inode->i_sb->s_blocksize;
1608 
1609 	set_page_extent_mapped(page);
1610 
1611 	end = page_end;
1612 	lock_extent(tree, start, end, GFP_NOFS);
1613 
1614 	while (cur <= end) {
1615 		if (cur >= last_byte) {
1616 			iosize = PAGE_CACHE_SIZE - page_offset;
1617 			zero_user_page(page, page_offset, iosize, KM_USER0);
1618 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1619 					    GFP_NOFS);
1620 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1621 			break;
1622 		}
1623 		em = get_extent(inode, page, page_offset, cur, end, 0);
1624 		if (IS_ERR(em) || !em) {
1625 			SetPageError(page);
1626 			unlock_extent(tree, cur, end, GFP_NOFS);
1627 			break;
1628 		}
1629 
1630 		extent_offset = cur - em->start;
1631 		BUG_ON(em->end < cur);
1632 		BUG_ON(end < cur);
1633 
1634 		iosize = min(em->end - cur, end - cur) + 1;
1635 		cur_end = min(em->end, end);
1636 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1637 		sector = (em->block_start + extent_offset) >> 9;
1638 		bdev = em->bdev;
1639 		block_start = em->block_start;
1640 		free_extent_map(em);
1641 		em = NULL;
1642 
1643 		/* we've found a hole, just zero and go on */
1644 		if (block_start == EXTENT_MAP_HOLE) {
1645 			zero_user_page(page, page_offset, iosize, KM_USER0);
1646 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1647 					    GFP_NOFS);
1648 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1649 			cur = cur + iosize;
1650 			page_offset += iosize;
1651 			continue;
1652 		}
1653 		/* the get_extent function already copied into the page */
1654 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1655 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1656 			cur = cur + iosize;
1657 			page_offset += iosize;
1658 			continue;
1659 		}
1660 
1661 		ret = 0;
1662 		if (tree->ops && tree->ops->readpage_io_hook) {
1663 			ret = tree->ops->readpage_io_hook(page, cur,
1664 							  cur + iosize - 1);
1665 		}
1666 		if (!ret) {
1667 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1668 			nr -= page->index;
1669 			ret = submit_extent_page(READ, tree, page,
1670 					 sector, iosize, page_offset,
1671 					 bdev, bio, nr,
1672 					 end_bio_extent_readpage);
1673 		}
1674 		if (ret)
1675 			SetPageError(page);
1676 		cur = cur + iosize;
1677 		page_offset += iosize;
1678 		nr++;
1679 	}
1680 	if (!nr) {
1681 		if (!PageError(page))
1682 			SetPageUptodate(page);
1683 		unlock_page(page);
1684 	}
1685 	return 0;
1686 }
1687 
1688 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1689 			    get_extent_t *get_extent)
1690 {
1691 	struct bio *bio = NULL;
1692 	int ret;
1693 
1694 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1695 	if (bio)
1696 		submit_one_bio(READ, bio);
1697 	return ret;
1698 }
1699 EXPORT_SYMBOL(extent_read_full_page);
1700 
1701 /*
1702  * the writepage semantics are similar to regular writepage.  extent
1703  * records are inserted to lock ranges in the tree, and as dirty areas
1704  * are found, they are marked writeback.  Then the lock bits are removed
1705  * and the end_io handler clears the writeback ranges
1706  */
1707 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1708 			      void *data)
1709 {
1710 	struct inode *inode = page->mapping->host;
1711 	struct extent_page_data *epd = data;
1712 	struct extent_map_tree *tree = epd->tree;
1713 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1714 	u64 delalloc_start;
1715 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1716 	u64 end;
1717 	u64 cur = start;
1718 	u64 extent_offset;
1719 	u64 last_byte = i_size_read(inode);
1720 	u64 block_start;
1721 	u64 iosize;
1722 	sector_t sector;
1723 	struct extent_map *em;
1724 	struct block_device *bdev;
1725 	int ret;
1726 	int nr = 0;
1727 	size_t page_offset = 0;
1728 	size_t blocksize;
1729 	loff_t i_size = i_size_read(inode);
1730 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1731 	u64 nr_delalloc;
1732 	u64 delalloc_end;
1733 
1734 	WARN_ON(!PageLocked(page));
1735 	if (page->index > end_index) {
1736 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1737 		unlock_page(page);
1738 		return 0;
1739 	}
1740 
1741 	if (page->index == end_index) {
1742 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1743 		zero_user_page(page, offset,
1744 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1745 	}
1746 
1747 	set_page_extent_mapped(page);
1748 
1749 	delalloc_start = start;
1750 	delalloc_end = 0;
1751 	while(delalloc_end < page_end) {
1752 		nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1753 						       &delalloc_end,
1754 						       128 * 1024 * 1024);
1755 		if (nr_delalloc <= 0)
1756 			break;
1757 		tree->ops->fill_delalloc(inode, delalloc_start,
1758 					 delalloc_end);
1759 		clear_extent_bit(tree, delalloc_start,
1760 				 delalloc_end,
1761 				 EXTENT_LOCKED | EXTENT_DELALLOC,
1762 				 1, 0, GFP_NOFS);
1763 		delalloc_start = delalloc_end + 1;
1764 	}
1765 	lock_extent(tree, start, page_end, GFP_NOFS);
1766 
1767 	end = page_end;
1768 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1769 		printk("found delalloc bits after lock_extent\n");
1770 	}
1771 
1772 	if (last_byte <= start) {
1773 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1774 		goto done;
1775 	}
1776 
1777 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1778 	blocksize = inode->i_sb->s_blocksize;
1779 
1780 	while (cur <= end) {
1781 		if (cur >= last_byte) {
1782 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1783 			break;
1784 		}
1785 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1786 		if (IS_ERR(em) || !em) {
1787 			SetPageError(page);
1788 			break;
1789 		}
1790 
1791 		extent_offset = cur - em->start;
1792 		BUG_ON(em->end < cur);
1793 		BUG_ON(end < cur);
1794 		iosize = min(em->end - cur, end - cur) + 1;
1795 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1796 		sector = (em->block_start + extent_offset) >> 9;
1797 		bdev = em->bdev;
1798 		block_start = em->block_start;
1799 		free_extent_map(em);
1800 		em = NULL;
1801 
1802 		if (block_start == EXTENT_MAP_HOLE ||
1803 		    block_start == EXTENT_MAP_INLINE) {
1804 			clear_extent_dirty(tree, cur,
1805 					   cur + iosize - 1, GFP_NOFS);
1806 			cur = cur + iosize;
1807 			page_offset += iosize;
1808 			continue;
1809 		}
1810 
1811 		/* leave this out until we have a page_mkwrite call */
1812 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1813 				   EXTENT_DIRTY, 0)) {
1814 			cur = cur + iosize;
1815 			page_offset += iosize;
1816 			continue;
1817 		}
1818 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1819 		if (tree->ops && tree->ops->writepage_io_hook) {
1820 			ret = tree->ops->writepage_io_hook(page, cur,
1821 						cur + iosize - 1);
1822 		} else {
1823 			ret = 0;
1824 		}
1825 		if (ret)
1826 			SetPageError(page);
1827 		else {
1828 			unsigned long nr = end_index + 1;
1829 			set_range_writeback(tree, cur, cur + iosize - 1);
1830 
1831 			ret = submit_extent_page(WRITE, tree, page, sector,
1832 						 iosize, page_offset, bdev,
1833 						 &epd->bio, nr,
1834 						 end_bio_extent_writepage);
1835 			if (ret)
1836 				SetPageError(page);
1837 		}
1838 		cur = cur + iosize;
1839 		page_offset += iosize;
1840 		nr++;
1841 	}
1842 done:
1843 	unlock_extent(tree, start, page_end, GFP_NOFS);
1844 	unlock_page(page);
1845 	return 0;
1846 }
1847 
1848 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1849 			  get_extent_t *get_extent,
1850 			  struct writeback_control *wbc)
1851 {
1852 	int ret;
1853 	struct extent_page_data epd = {
1854 		.bio = NULL,
1855 		.tree = tree,
1856 		.get_extent = get_extent,
1857 	};
1858 
1859 	ret = __extent_writepage(page, wbc, &epd);
1860 	if (epd.bio)
1861 		submit_one_bio(WRITE, epd.bio);
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL(extent_write_full_page);
1865 
1866 int extent_writepages(struct extent_map_tree *tree,
1867 		      struct address_space *mapping,
1868 		      get_extent_t *get_extent,
1869 		      struct writeback_control *wbc)
1870 {
1871 	int ret;
1872 	struct extent_page_data epd = {
1873 		.bio = NULL,
1874 		.tree = tree,
1875 		.get_extent = get_extent,
1876 	};
1877 
1878 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
1879 	if (epd.bio)
1880 		submit_one_bio(WRITE, epd.bio);
1881 	return ret;
1882 }
1883 EXPORT_SYMBOL(extent_writepages);
1884 
1885 int extent_readpages(struct extent_map_tree *tree,
1886 		     struct address_space *mapping,
1887 		     struct list_head *pages, unsigned nr_pages,
1888 		     get_extent_t get_extent)
1889 {
1890 	struct bio *bio = NULL;
1891 	unsigned page_idx;
1892 	struct pagevec pvec;
1893 
1894 	pagevec_init(&pvec, 0);
1895 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
1896 		struct page *page = list_entry(pages->prev, struct page, lru);
1897 
1898 		prefetchw(&page->flags);
1899 		list_del(&page->lru);
1900 		/*
1901 		 * what we want to do here is call add_to_page_cache_lru,
1902 		 * but that isn't exported, so we reproduce it here
1903 		 */
1904 		if (!add_to_page_cache(page, mapping,
1905 					page->index, GFP_KERNEL)) {
1906 
1907 			/* open coding of lru_cache_add, also not exported */
1908 			page_cache_get(page);
1909 			if (!pagevec_add(&pvec, page))
1910 				__pagevec_lru_add(&pvec);
1911 			__extent_read_full_page(tree, page, get_extent, &bio);
1912 		}
1913 		page_cache_release(page);
1914 	}
1915 	if (pagevec_count(&pvec))
1916 		__pagevec_lru_add(&pvec);
1917 	BUG_ON(!list_empty(pages));
1918 	if (bio)
1919 		submit_one_bio(READ, bio);
1920 	return 0;
1921 }
1922 EXPORT_SYMBOL(extent_readpages);
1923 
1924 /*
1925  * basic invalidatepage code, this waits on any locked or writeback
1926  * ranges corresponding to the page, and then deletes any extent state
1927  * records from the tree
1928  */
1929 int extent_invalidatepage(struct extent_map_tree *tree,
1930 			  struct page *page, unsigned long offset)
1931 {
1932 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
1933 	u64 end = start + PAGE_CACHE_SIZE - 1;
1934 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1935 
1936 	start += (offset + blocksize -1) & ~(blocksize - 1);
1937 	if (start > end)
1938 		return 0;
1939 
1940 	lock_extent(tree, start, end, GFP_NOFS);
1941 	wait_on_extent_writeback(tree, start, end);
1942 	clear_extent_bit(tree, start, end,
1943 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1944 			 1, 1, GFP_NOFS);
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL(extent_invalidatepage);
1948 
1949 /*
1950  * simple commit_write call, set_range_dirty is used to mark both
1951  * the pages and the extent records as dirty
1952  */
1953 int extent_commit_write(struct extent_map_tree *tree,
1954 			struct inode *inode, struct page *page,
1955 			unsigned from, unsigned to)
1956 {
1957 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1958 
1959 	set_page_extent_mapped(page);
1960 	set_page_dirty(page);
1961 
1962 	if (pos > inode->i_size) {
1963 		i_size_write(inode, pos);
1964 		mark_inode_dirty(inode);
1965 	}
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL(extent_commit_write);
1969 
1970 int extent_prepare_write(struct extent_map_tree *tree,
1971 			 struct inode *inode, struct page *page,
1972 			 unsigned from, unsigned to, get_extent_t *get_extent)
1973 {
1974 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
1975 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1976 	u64 block_start;
1977 	u64 orig_block_start;
1978 	u64 block_end;
1979 	u64 cur_end;
1980 	struct extent_map *em;
1981 	unsigned blocksize = 1 << inode->i_blkbits;
1982 	size_t page_offset = 0;
1983 	size_t block_off_start;
1984 	size_t block_off_end;
1985 	int err = 0;
1986 	int iocount = 0;
1987 	int ret = 0;
1988 	int isnew;
1989 
1990 	set_page_extent_mapped(page);
1991 
1992 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1993 	block_end = (page_start + to - 1) | (blocksize - 1);
1994 	orig_block_start = block_start;
1995 
1996 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1997 	while(block_start <= block_end) {
1998 		em = get_extent(inode, page, page_offset, block_start,
1999 				block_end, 1);
2000 		if (IS_ERR(em) || !em) {
2001 			goto err;
2002 		}
2003 		cur_end = min(block_end, em->end);
2004 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2005 		block_off_end = block_off_start + blocksize;
2006 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2007 
2008 		if (!PageUptodate(page) && isnew &&
2009 		    (block_off_end > to || block_off_start < from)) {
2010 			void *kaddr;
2011 
2012 			kaddr = kmap_atomic(page, KM_USER0);
2013 			if (block_off_end > to)
2014 				memset(kaddr + to, 0, block_off_end - to);
2015 			if (block_off_start < from)
2016 				memset(kaddr + block_off_start, 0,
2017 				       from - block_off_start);
2018 			flush_dcache_page(page);
2019 			kunmap_atomic(kaddr, KM_USER0);
2020 		}
2021 		if (!isnew && !PageUptodate(page) &&
2022 		    (block_off_end > to || block_off_start < from) &&
2023 		    !test_range_bit(tree, block_start, cur_end,
2024 				    EXTENT_UPTODATE, 1)) {
2025 			u64 sector;
2026 			u64 extent_offset = block_start - em->start;
2027 			size_t iosize;
2028 			sector = (em->block_start + extent_offset) >> 9;
2029 			iosize = (cur_end - block_start + blocksize - 1) &
2030 				~((u64)blocksize - 1);
2031 			/*
2032 			 * we've already got the extent locked, but we
2033 			 * need to split the state such that our end_bio
2034 			 * handler can clear the lock.
2035 			 */
2036 			set_extent_bit(tree, block_start,
2037 				       block_start + iosize - 1,
2038 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2039 			ret = submit_extent_page(READ, tree, page,
2040 					 sector, iosize, page_offset, em->bdev,
2041 					 NULL, 1,
2042 					 end_bio_extent_preparewrite);
2043 			iocount++;
2044 			block_start = block_start + iosize;
2045 		} else {
2046 			set_extent_uptodate(tree, block_start, cur_end,
2047 					    GFP_NOFS);
2048 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2049 			block_start = cur_end + 1;
2050 		}
2051 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2052 		free_extent_map(em);
2053 	}
2054 	if (iocount) {
2055 		wait_extent_bit(tree, orig_block_start,
2056 				block_end, EXTENT_LOCKED);
2057 	}
2058 	check_page_uptodate(tree, page);
2059 err:
2060 	/* FIXME, zero out newly allocated blocks on error */
2061 	return err;
2062 }
2063 EXPORT_SYMBOL(extent_prepare_write);
2064 
2065 /*
2066  * a helper for releasepage.  As long as there are no locked extents
2067  * in the range corresponding to the page, both state records and extent
2068  * map records are removed
2069  */
2070 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2071 {
2072 	struct extent_map *em;
2073 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2074 	u64 end = start + PAGE_CACHE_SIZE - 1;
2075 	u64 orig_start = start;
2076 	int ret = 1;
2077 
2078 	while (start <= end) {
2079 		em = lookup_extent_mapping(tree, start, end);
2080 		if (!em || IS_ERR(em))
2081 			break;
2082 		if (!test_range_bit(tree, em->start, em->end,
2083 				    EXTENT_LOCKED, 0)) {
2084 			remove_extent_mapping(tree, em);
2085 			/* once for the rb tree */
2086 			free_extent_map(em);
2087 		}
2088 		start = em->end + 1;
2089 		/* once for us */
2090 		free_extent_map(em);
2091 	}
2092 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2093 		ret = 0;
2094 	else
2095 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2096 				 1, 1, GFP_NOFS);
2097 	return ret;
2098 }
2099 EXPORT_SYMBOL(try_release_extent_mapping);
2100 
2101 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2102 		get_extent_t *get_extent)
2103 {
2104 	struct inode *inode = mapping->host;
2105 	u64 start = iblock << inode->i_blkbits;
2106 	u64 end = start + (1 << inode->i_blkbits) - 1;
2107 	sector_t sector = 0;
2108 	struct extent_map *em;
2109 
2110 	em = get_extent(inode, NULL, 0, start, end, 0);
2111 	if (!em || IS_ERR(em))
2112 		return 0;
2113 
2114 	if (em->block_start == EXTENT_MAP_INLINE ||
2115 	    em->block_start == EXTENT_MAP_HOLE)
2116 		goto out;
2117 
2118 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2119 out:
2120 	free_extent_map(em);
2121 	return sector;
2122 }
2123 
2124 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2125 {
2126 	if (list_empty(&eb->lru)) {
2127 		extent_buffer_get(eb);
2128 		list_add(&eb->lru, &tree->buffer_lru);
2129 		tree->lru_size++;
2130 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2131 			struct extent_buffer *rm;
2132 			rm = list_entry(tree->buffer_lru.prev,
2133 					struct extent_buffer, lru);
2134 			tree->lru_size--;
2135 			list_del_init(&rm->lru);
2136 			free_extent_buffer(rm);
2137 		}
2138 	} else
2139 		list_move(&eb->lru, &tree->buffer_lru);
2140 	return 0;
2141 }
2142 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2143 				      u64 start, unsigned long len)
2144 {
2145 	struct list_head *lru = &tree->buffer_lru;
2146 	struct list_head *cur = lru->next;
2147 	struct extent_buffer *eb;
2148 
2149 	if (list_empty(lru))
2150 		return NULL;
2151 
2152 	do {
2153 		eb = list_entry(cur, struct extent_buffer, lru);
2154 		if (eb->start == start && eb->len == len) {
2155 			extent_buffer_get(eb);
2156 			return eb;
2157 		}
2158 		cur = cur->next;
2159 	} while (cur != lru);
2160 	return NULL;
2161 }
2162 
2163 static inline unsigned long num_extent_pages(u64 start, u64 len)
2164 {
2165 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2166 		(start >> PAGE_CACHE_SHIFT);
2167 }
2168 
2169 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2170 					      unsigned long i)
2171 {
2172 	struct page *p;
2173 	struct address_space *mapping;
2174 
2175 	if (i == 0)
2176 		return eb->first_page;
2177 	i += eb->start >> PAGE_CACHE_SHIFT;
2178 	mapping = eb->first_page->mapping;
2179 	read_lock_irq(&mapping->tree_lock);
2180 	p = radix_tree_lookup(&mapping->page_tree, i);
2181 	read_unlock_irq(&mapping->tree_lock);
2182 	return p;
2183 }
2184 
2185 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2186 						   u64 start,
2187 						   unsigned long len,
2188 						   gfp_t mask)
2189 {
2190 	struct extent_buffer *eb = NULL;
2191 
2192 	spin_lock(&tree->lru_lock);
2193 	eb = find_lru(tree, start, len);
2194 	spin_unlock(&tree->lru_lock);
2195 	if (eb) {
2196 		return eb;
2197 	}
2198 
2199 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2200 	INIT_LIST_HEAD(&eb->lru);
2201 	eb->start = start;
2202 	eb->len = len;
2203 	atomic_set(&eb->refs, 1);
2204 
2205 	return eb;
2206 }
2207 
2208 static void __free_extent_buffer(struct extent_buffer *eb)
2209 {
2210 	kmem_cache_free(extent_buffer_cache, eb);
2211 }
2212 
2213 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2214 					  u64 start, unsigned long len,
2215 					  struct page *page0,
2216 					  gfp_t mask)
2217 {
2218 	unsigned long num_pages = num_extent_pages(start, len);
2219 	unsigned long i;
2220 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2221 	struct extent_buffer *eb;
2222 	struct page *p;
2223 	struct address_space *mapping = tree->mapping;
2224 	int uptodate = 1;
2225 
2226 	eb = __alloc_extent_buffer(tree, start, len, mask);
2227 	if (!eb || IS_ERR(eb))
2228 		return NULL;
2229 
2230 	if (eb->flags & EXTENT_BUFFER_FILLED)
2231 		goto lru_add;
2232 
2233 	if (page0) {
2234 		eb->first_page = page0;
2235 		i = 1;
2236 		index++;
2237 		page_cache_get(page0);
2238 		mark_page_accessed(page0);
2239 		set_page_extent_mapped(page0);
2240 		WARN_ON(!PageUptodate(page0));
2241 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2242 				 len << 2);
2243 	} else {
2244 		i = 0;
2245 	}
2246 	for (; i < num_pages; i++, index++) {
2247 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2248 		if (!p) {
2249 			WARN_ON(1);
2250 			goto fail;
2251 		}
2252 		set_page_extent_mapped(p);
2253 		mark_page_accessed(p);
2254 		if (i == 0) {
2255 			eb->first_page = p;
2256 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2257 					 len << 2);
2258 		} else {
2259 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2260 		}
2261 		if (!PageUptodate(p))
2262 			uptodate = 0;
2263 		unlock_page(p);
2264 	}
2265 	if (uptodate)
2266 		eb->flags |= EXTENT_UPTODATE;
2267 	eb->flags |= EXTENT_BUFFER_FILLED;
2268 
2269 lru_add:
2270 	spin_lock(&tree->lru_lock);
2271 	add_lru(tree, eb);
2272 	spin_unlock(&tree->lru_lock);
2273 	return eb;
2274 
2275 fail:
2276 	spin_lock(&tree->lru_lock);
2277 	list_del_init(&eb->lru);
2278 	spin_unlock(&tree->lru_lock);
2279 	if (!atomic_dec_and_test(&eb->refs))
2280 		return NULL;
2281 	for (index = 1; index < i; index++) {
2282 		page_cache_release(extent_buffer_page(eb, index));
2283 	}
2284 	if (i > 0)
2285 		page_cache_release(extent_buffer_page(eb, 0));
2286 	__free_extent_buffer(eb);
2287 	return NULL;
2288 }
2289 EXPORT_SYMBOL(alloc_extent_buffer);
2290 
2291 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2292 					 u64 start, unsigned long len,
2293 					  gfp_t mask)
2294 {
2295 	unsigned long num_pages = num_extent_pages(start, len);
2296 	unsigned long i;
2297 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2298 	struct extent_buffer *eb;
2299 	struct page *p;
2300 	struct address_space *mapping = tree->mapping;
2301 	int uptodate = 1;
2302 
2303 	eb = __alloc_extent_buffer(tree, start, len, mask);
2304 	if (!eb || IS_ERR(eb))
2305 		return NULL;
2306 
2307 	if (eb->flags & EXTENT_BUFFER_FILLED)
2308 		goto lru_add;
2309 
2310 	for (i = 0; i < num_pages; i++, index++) {
2311 		p = find_lock_page(mapping, index);
2312 		if (!p) {
2313 			goto fail;
2314 		}
2315 		set_page_extent_mapped(p);
2316 		mark_page_accessed(p);
2317 
2318 		if (i == 0) {
2319 			eb->first_page = p;
2320 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2321 					 len << 2);
2322 		} else {
2323 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2324 		}
2325 
2326 		if (!PageUptodate(p))
2327 			uptodate = 0;
2328 		unlock_page(p);
2329 	}
2330 	if (uptodate)
2331 		eb->flags |= EXTENT_UPTODATE;
2332 	eb->flags |= EXTENT_BUFFER_FILLED;
2333 
2334 lru_add:
2335 	spin_lock(&tree->lru_lock);
2336 	add_lru(tree, eb);
2337 	spin_unlock(&tree->lru_lock);
2338 	return eb;
2339 fail:
2340 	spin_lock(&tree->lru_lock);
2341 	list_del_init(&eb->lru);
2342 	spin_unlock(&tree->lru_lock);
2343 	if (!atomic_dec_and_test(&eb->refs))
2344 		return NULL;
2345 	for (index = 1; index < i; index++) {
2346 		page_cache_release(extent_buffer_page(eb, index));
2347 	}
2348 	if (i > 0)
2349 		page_cache_release(extent_buffer_page(eb, 0));
2350 	__free_extent_buffer(eb);
2351 	return NULL;
2352 }
2353 EXPORT_SYMBOL(find_extent_buffer);
2354 
2355 void free_extent_buffer(struct extent_buffer *eb)
2356 {
2357 	unsigned long i;
2358 	unsigned long num_pages;
2359 
2360 	if (!eb)
2361 		return;
2362 
2363 	if (!atomic_dec_and_test(&eb->refs))
2364 		return;
2365 
2366 	WARN_ON(!list_empty(&eb->lru));
2367 	num_pages = num_extent_pages(eb->start, eb->len);
2368 
2369 	for (i = 1; i < num_pages; i++) {
2370 		page_cache_release(extent_buffer_page(eb, i));
2371 	}
2372 	page_cache_release(extent_buffer_page(eb, 0));
2373 	__free_extent_buffer(eb);
2374 }
2375 EXPORT_SYMBOL(free_extent_buffer);
2376 
2377 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2378 			      struct extent_buffer *eb)
2379 {
2380 	int set;
2381 	unsigned long i;
2382 	unsigned long num_pages;
2383 	struct page *page;
2384 
2385 	u64 start = eb->start;
2386 	u64 end = start + eb->len - 1;
2387 
2388 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2389 	num_pages = num_extent_pages(eb->start, eb->len);
2390 
2391 	for (i = 0; i < num_pages; i++) {
2392 		page = extent_buffer_page(eb, i);
2393 		lock_page(page);
2394 		/*
2395 		 * if we're on the last page or the first page and the
2396 		 * block isn't aligned on a page boundary, do extra checks
2397 		 * to make sure we don't clean page that is partially dirty
2398 		 */
2399 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2400 		    ((i == num_pages - 1) &&
2401 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2402 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2403 			end  = start + PAGE_CACHE_SIZE - 1;
2404 			if (test_range_bit(tree, start, end,
2405 					   EXTENT_DIRTY, 0)) {
2406 				unlock_page(page);
2407 				continue;
2408 			}
2409 		}
2410 		clear_page_dirty_for_io(page);
2411 		unlock_page(page);
2412 	}
2413 	return 0;
2414 }
2415 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2416 
2417 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2418 				    struct extent_buffer *eb)
2419 {
2420 	return wait_on_extent_writeback(tree, eb->start,
2421 					eb->start + eb->len - 1);
2422 }
2423 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2424 
2425 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2426 			     struct extent_buffer *eb)
2427 {
2428 	unsigned long i;
2429 	unsigned long num_pages;
2430 
2431 	num_pages = num_extent_pages(eb->start, eb->len);
2432 	for (i = 0; i < num_pages; i++) {
2433 		struct page *page = extent_buffer_page(eb, i);
2434 		/* writepage may need to do something special for the
2435 		 * first page, we have to make sure page->private is
2436 		 * properly set.  releasepage may drop page->private
2437 		 * on us if the page isn't already dirty.
2438 		 */
2439 		if (i == 0) {
2440 			lock_page(page);
2441 			set_page_private(page,
2442 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2443 					 eb->len << 2);
2444 		}
2445 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2446 		if (i == 0)
2447 			unlock_page(page);
2448 	}
2449 	return set_extent_dirty(tree, eb->start,
2450 				eb->start + eb->len - 1, GFP_NOFS);
2451 }
2452 EXPORT_SYMBOL(set_extent_buffer_dirty);
2453 
2454 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2455 				struct extent_buffer *eb)
2456 {
2457 	unsigned long i;
2458 	struct page *page;
2459 	unsigned long num_pages;
2460 
2461 	num_pages = num_extent_pages(eb->start, eb->len);
2462 
2463 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2464 			    GFP_NOFS);
2465 	for (i = 0; i < num_pages; i++) {
2466 		page = extent_buffer_page(eb, i);
2467 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2468 		    ((i == num_pages - 1) &&
2469 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2470 			check_page_uptodate(tree, page);
2471 			continue;
2472 		}
2473 		SetPageUptodate(page);
2474 	}
2475 	return 0;
2476 }
2477 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2478 
2479 int extent_buffer_uptodate(struct extent_map_tree *tree,
2480 			     struct extent_buffer *eb)
2481 {
2482 	if (eb->flags & EXTENT_UPTODATE)
2483 		return 1;
2484 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2485 			   EXTENT_UPTODATE, 1);
2486 }
2487 EXPORT_SYMBOL(extent_buffer_uptodate);
2488 
2489 int read_extent_buffer_pages(struct extent_map_tree *tree,
2490 			     struct extent_buffer *eb,
2491 			     u64 start,
2492 			     int wait)
2493 {
2494 	unsigned long i;
2495 	unsigned long start_i;
2496 	struct page *page;
2497 	int err;
2498 	int ret = 0;
2499 	unsigned long num_pages;
2500 
2501 	if (eb->flags & EXTENT_UPTODATE)
2502 		return 0;
2503 
2504 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2505 			   EXTENT_UPTODATE, 1)) {
2506 		return 0;
2507 	}
2508 
2509 	if (start) {
2510 		WARN_ON(start < eb->start);
2511 		start_i = (start >> PAGE_CACHE_SHIFT) -
2512 			(eb->start >> PAGE_CACHE_SHIFT);
2513 	} else {
2514 		start_i = 0;
2515 	}
2516 
2517 	num_pages = num_extent_pages(eb->start, eb->len);
2518 	for (i = start_i; i < num_pages; i++) {
2519 		page = extent_buffer_page(eb, i);
2520 		if (PageUptodate(page)) {
2521 			continue;
2522 		}
2523 		if (!wait) {
2524 			if (TestSetPageLocked(page)) {
2525 				continue;
2526 			}
2527 		} else {
2528 			lock_page(page);
2529 		}
2530 		if (!PageUptodate(page)) {
2531 			err = page->mapping->a_ops->readpage(NULL, page);
2532 			if (err) {
2533 				ret = err;
2534 			}
2535 		} else {
2536 			unlock_page(page);
2537 		}
2538 	}
2539 
2540 	if (ret || !wait) {
2541 		return ret;
2542 	}
2543 
2544 	for (i = start_i; i < num_pages; i++) {
2545 		page = extent_buffer_page(eb, i);
2546 		wait_on_page_locked(page);
2547 		if (!PageUptodate(page)) {
2548 			ret = -EIO;
2549 		}
2550 	}
2551 	if (!ret)
2552 		eb->flags |= EXTENT_UPTODATE;
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL(read_extent_buffer_pages);
2556 
2557 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2558 			unsigned long start,
2559 			unsigned long len)
2560 {
2561 	size_t cur;
2562 	size_t offset;
2563 	struct page *page;
2564 	char *kaddr;
2565 	char *dst = (char *)dstv;
2566 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2567 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2568 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2569 
2570 	WARN_ON(start > eb->len);
2571 	WARN_ON(start + len > eb->start + eb->len);
2572 
2573 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2574 
2575 	while(len > 0) {
2576 		page = extent_buffer_page(eb, i);
2577 		if (!PageUptodate(page)) {
2578 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2579 			WARN_ON(1);
2580 		}
2581 		WARN_ON(!PageUptodate(page));
2582 
2583 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2584 		kaddr = kmap_atomic(page, KM_USER1);
2585 		memcpy(dst, kaddr + offset, cur);
2586 		kunmap_atomic(kaddr, KM_USER1);
2587 
2588 		dst += cur;
2589 		len -= cur;
2590 		offset = 0;
2591 		i++;
2592 	}
2593 }
2594 EXPORT_SYMBOL(read_extent_buffer);
2595 
2596 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2597 			       unsigned long min_len, char **token, char **map,
2598 			       unsigned long *map_start,
2599 			       unsigned long *map_len, int km)
2600 {
2601 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2602 	char *kaddr;
2603 	struct page *p;
2604 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2605 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2606 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2607 		PAGE_CACHE_SHIFT;
2608 
2609 	if (i != end_i)
2610 		return -EINVAL;
2611 
2612 	if (i == 0) {
2613 		offset = start_offset;
2614 		*map_start = 0;
2615 	} else {
2616 		offset = 0;
2617 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2618 	}
2619 	if (start + min_len > eb->len) {
2620 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2621 		WARN_ON(1);
2622 	}
2623 
2624 	p = extent_buffer_page(eb, i);
2625 	WARN_ON(!PageUptodate(p));
2626 	kaddr = kmap_atomic(p, km);
2627 	*token = kaddr;
2628 	*map = kaddr + offset;
2629 	*map_len = PAGE_CACHE_SIZE - offset;
2630 	return 0;
2631 }
2632 EXPORT_SYMBOL(map_private_extent_buffer);
2633 
2634 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2635 		      unsigned long min_len,
2636 		      char **token, char **map,
2637 		      unsigned long *map_start,
2638 		      unsigned long *map_len, int km)
2639 {
2640 	int err;
2641 	int save = 0;
2642 	if (eb->map_token) {
2643 		unmap_extent_buffer(eb, eb->map_token, km);
2644 		eb->map_token = NULL;
2645 		save = 1;
2646 	}
2647 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2648 				       map_start, map_len, km);
2649 	if (!err && save) {
2650 		eb->map_token = *token;
2651 		eb->kaddr = *map;
2652 		eb->map_start = *map_start;
2653 		eb->map_len = *map_len;
2654 	}
2655 	return err;
2656 }
2657 EXPORT_SYMBOL(map_extent_buffer);
2658 
2659 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2660 {
2661 	kunmap_atomic(token, km);
2662 }
2663 EXPORT_SYMBOL(unmap_extent_buffer);
2664 
2665 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2666 			  unsigned long start,
2667 			  unsigned long len)
2668 {
2669 	size_t cur;
2670 	size_t offset;
2671 	struct page *page;
2672 	char *kaddr;
2673 	char *ptr = (char *)ptrv;
2674 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2675 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2676 	int ret = 0;
2677 
2678 	WARN_ON(start > eb->len);
2679 	WARN_ON(start + len > eb->start + eb->len);
2680 
2681 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2682 
2683 	while(len > 0) {
2684 		page = extent_buffer_page(eb, i);
2685 		WARN_ON(!PageUptodate(page));
2686 
2687 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2688 
2689 		kaddr = kmap_atomic(page, KM_USER0);
2690 		ret = memcmp(ptr, kaddr + offset, cur);
2691 		kunmap_atomic(kaddr, KM_USER0);
2692 		if (ret)
2693 			break;
2694 
2695 		ptr += cur;
2696 		len -= cur;
2697 		offset = 0;
2698 		i++;
2699 	}
2700 	return ret;
2701 }
2702 EXPORT_SYMBOL(memcmp_extent_buffer);
2703 
2704 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2705 			 unsigned long start, unsigned long len)
2706 {
2707 	size_t cur;
2708 	size_t offset;
2709 	struct page *page;
2710 	char *kaddr;
2711 	char *src = (char *)srcv;
2712 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2713 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2714 
2715 	WARN_ON(start > eb->len);
2716 	WARN_ON(start + len > eb->start + eb->len);
2717 
2718 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2719 
2720 	while(len > 0) {
2721 		page = extent_buffer_page(eb, i);
2722 		WARN_ON(!PageUptodate(page));
2723 
2724 		cur = min(len, PAGE_CACHE_SIZE - offset);
2725 		kaddr = kmap_atomic(page, KM_USER1);
2726 		memcpy(kaddr + offset, src, cur);
2727 		kunmap_atomic(kaddr, KM_USER1);
2728 
2729 		src += cur;
2730 		len -= cur;
2731 		offset = 0;
2732 		i++;
2733 	}
2734 }
2735 EXPORT_SYMBOL(write_extent_buffer);
2736 
2737 void memset_extent_buffer(struct extent_buffer *eb, char c,
2738 			  unsigned long start, unsigned long len)
2739 {
2740 	size_t cur;
2741 	size_t offset;
2742 	struct page *page;
2743 	char *kaddr;
2744 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2745 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2746 
2747 	WARN_ON(start > eb->len);
2748 	WARN_ON(start + len > eb->start + eb->len);
2749 
2750 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2751 
2752 	while(len > 0) {
2753 		page = extent_buffer_page(eb, i);
2754 		WARN_ON(!PageUptodate(page));
2755 
2756 		cur = min(len, PAGE_CACHE_SIZE - offset);
2757 		kaddr = kmap_atomic(page, KM_USER0);
2758 		memset(kaddr + offset, c, cur);
2759 		kunmap_atomic(kaddr, KM_USER0);
2760 
2761 		len -= cur;
2762 		offset = 0;
2763 		i++;
2764 	}
2765 }
2766 EXPORT_SYMBOL(memset_extent_buffer);
2767 
2768 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2769 			unsigned long dst_offset, unsigned long src_offset,
2770 			unsigned long len)
2771 {
2772 	u64 dst_len = dst->len;
2773 	size_t cur;
2774 	size_t offset;
2775 	struct page *page;
2776 	char *kaddr;
2777 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2778 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2779 
2780 	WARN_ON(src->len != dst_len);
2781 
2782 	offset = (start_offset + dst_offset) &
2783 		((unsigned long)PAGE_CACHE_SIZE - 1);
2784 
2785 	while(len > 0) {
2786 		page = extent_buffer_page(dst, i);
2787 		WARN_ON(!PageUptodate(page));
2788 
2789 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2790 
2791 		kaddr = kmap_atomic(page, KM_USER0);
2792 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2793 		kunmap_atomic(kaddr, KM_USER0);
2794 
2795 		src_offset += cur;
2796 		len -= cur;
2797 		offset = 0;
2798 		i++;
2799 	}
2800 }
2801 EXPORT_SYMBOL(copy_extent_buffer);
2802 
2803 static void move_pages(struct page *dst_page, struct page *src_page,
2804 		       unsigned long dst_off, unsigned long src_off,
2805 		       unsigned long len)
2806 {
2807 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2808 	if (dst_page == src_page) {
2809 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2810 	} else {
2811 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2812 		char *p = dst_kaddr + dst_off + len;
2813 		char *s = src_kaddr + src_off + len;
2814 
2815 		while (len--)
2816 			*--p = *--s;
2817 
2818 		kunmap_atomic(src_kaddr, KM_USER1);
2819 	}
2820 	kunmap_atomic(dst_kaddr, KM_USER0);
2821 }
2822 
2823 static void copy_pages(struct page *dst_page, struct page *src_page,
2824 		       unsigned long dst_off, unsigned long src_off,
2825 		       unsigned long len)
2826 {
2827 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2828 	char *src_kaddr;
2829 
2830 	if (dst_page != src_page)
2831 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2832 	else
2833 		src_kaddr = dst_kaddr;
2834 
2835 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2836 	kunmap_atomic(dst_kaddr, KM_USER0);
2837 	if (dst_page != src_page)
2838 		kunmap_atomic(src_kaddr, KM_USER1);
2839 }
2840 
2841 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2842 			   unsigned long src_offset, unsigned long len)
2843 {
2844 	size_t cur;
2845 	size_t dst_off_in_page;
2846 	size_t src_off_in_page;
2847 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2848 	unsigned long dst_i;
2849 	unsigned long src_i;
2850 
2851 	if (src_offset + len > dst->len) {
2852 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2853 		       src_offset, len, dst->len);
2854 		BUG_ON(1);
2855 	}
2856 	if (dst_offset + len > dst->len) {
2857 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2858 		       dst_offset, len, dst->len);
2859 		BUG_ON(1);
2860 	}
2861 
2862 	while(len > 0) {
2863 		dst_off_in_page = (start_offset + dst_offset) &
2864 			((unsigned long)PAGE_CACHE_SIZE - 1);
2865 		src_off_in_page = (start_offset + src_offset) &
2866 			((unsigned long)PAGE_CACHE_SIZE - 1);
2867 
2868 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2869 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2870 
2871 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2872 					       src_off_in_page));
2873 		cur = min_t(unsigned long, cur,
2874 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2875 
2876 		copy_pages(extent_buffer_page(dst, dst_i),
2877 			   extent_buffer_page(dst, src_i),
2878 			   dst_off_in_page, src_off_in_page, cur);
2879 
2880 		src_offset += cur;
2881 		dst_offset += cur;
2882 		len -= cur;
2883 	}
2884 }
2885 EXPORT_SYMBOL(memcpy_extent_buffer);
2886 
2887 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2888 			   unsigned long src_offset, unsigned long len)
2889 {
2890 	size_t cur;
2891 	size_t dst_off_in_page;
2892 	size_t src_off_in_page;
2893 	unsigned long dst_end = dst_offset + len - 1;
2894 	unsigned long src_end = src_offset + len - 1;
2895 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2896 	unsigned long dst_i;
2897 	unsigned long src_i;
2898 
2899 	if (src_offset + len > dst->len) {
2900 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2901 		       src_offset, len, dst->len);
2902 		BUG_ON(1);
2903 	}
2904 	if (dst_offset + len > dst->len) {
2905 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2906 		       dst_offset, len, dst->len);
2907 		BUG_ON(1);
2908 	}
2909 	if (dst_offset < src_offset) {
2910 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2911 		return;
2912 	}
2913 	while(len > 0) {
2914 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2915 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2916 
2917 		dst_off_in_page = (start_offset + dst_end) &
2918 			((unsigned long)PAGE_CACHE_SIZE - 1);
2919 		src_off_in_page = (start_offset + src_end) &
2920 			((unsigned long)PAGE_CACHE_SIZE - 1);
2921 
2922 		cur = min_t(unsigned long, len, src_off_in_page + 1);
2923 		cur = min(cur, dst_off_in_page + 1);
2924 		move_pages(extent_buffer_page(dst, dst_i),
2925 			   extent_buffer_page(dst, src_i),
2926 			   dst_off_in_page - cur + 1,
2927 			   src_off_in_page - cur + 1, cur);
2928 
2929 		dst_end -= cur;
2930 		src_end -= cur;
2931 		len -= cur;
2932 	}
2933 }
2934 EXPORT_SYMBOL(memmove_extent_buffer);
2935