xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 3ab2fb5a)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 
46 void __init extent_map_init(void)
47 {
48 	extent_map_cache = btrfs_cache_create("extent_map",
49 					    sizeof(struct extent_map), 0,
50 					    NULL);
51 	extent_state_cache = btrfs_cache_create("extent_state",
52 					    sizeof(struct extent_state), 0,
53 					    NULL);
54 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
55 					    sizeof(struct extent_buffer), 0,
56 					    NULL);
57 }
58 
59 void __exit extent_map_exit(void)
60 {
61 	struct extent_state *state;
62 
63 	while (!list_empty(&states)) {
64 		state = list_entry(states.next, struct extent_state, list);
65 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
66 		list_del(&state->list);
67 		kmem_cache_free(extent_state_cache, state);
68 
69 	}
70 
71 	if (extent_map_cache)
72 		kmem_cache_destroy(extent_map_cache);
73 	if (extent_state_cache)
74 		kmem_cache_destroy(extent_state_cache);
75 	if (extent_buffer_cache)
76 		kmem_cache_destroy(extent_buffer_cache);
77 }
78 
79 void extent_map_tree_init(struct extent_map_tree *tree,
80 			  struct address_space *mapping, gfp_t mask)
81 {
82 	tree->map.rb_node = NULL;
83 	tree->state.rb_node = NULL;
84 	tree->ops = NULL;
85 	rwlock_init(&tree->lock);
86 	spin_lock_init(&tree->lru_lock);
87 	tree->mapping = mapping;
88 	INIT_LIST_HEAD(&tree->buffer_lru);
89 	tree->lru_size = 0;
90 }
91 EXPORT_SYMBOL(extent_map_tree_init);
92 
93 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
94 {
95 	struct extent_buffer *eb;
96 	while(!list_empty(&tree->buffer_lru)) {
97 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
98 				lru);
99 		list_del(&eb->lru);
100 		free_extent_buffer(eb);
101 	}
102 }
103 EXPORT_SYMBOL(extent_map_tree_empty_lru);
104 
105 struct extent_map *alloc_extent_map(gfp_t mask)
106 {
107 	struct extent_map *em;
108 	em = kmem_cache_alloc(extent_map_cache, mask);
109 	if (!em || IS_ERR(em))
110 		return em;
111 	em->in_tree = 0;
112 	atomic_set(&em->refs, 1);
113 	return em;
114 }
115 EXPORT_SYMBOL(alloc_extent_map);
116 
117 void free_extent_map(struct extent_map *em)
118 {
119 	if (!em)
120 		return;
121 	if (atomic_dec_and_test(&em->refs)) {
122 		WARN_ON(em->in_tree);
123 		kmem_cache_free(extent_map_cache, em);
124 	}
125 }
126 EXPORT_SYMBOL(free_extent_map);
127 
128 
129 struct extent_state *alloc_extent_state(gfp_t mask)
130 {
131 	struct extent_state *state;
132 	unsigned long flags;
133 
134 	state = kmem_cache_alloc(extent_state_cache, mask);
135 	if (!state || IS_ERR(state))
136 		return state;
137 	state->state = 0;
138 	state->in_tree = 0;
139 	state->private = 0;
140 
141 	spin_lock_irqsave(&state_lock, flags);
142 	list_add(&state->list, &states);
143 	spin_unlock_irqrestore(&state_lock, flags);
144 
145 	atomic_set(&state->refs, 1);
146 	init_waitqueue_head(&state->wq);
147 	return state;
148 }
149 EXPORT_SYMBOL(alloc_extent_state);
150 
151 void free_extent_state(struct extent_state *state)
152 {
153 	unsigned long flags;
154 	if (!state)
155 		return;
156 	if (atomic_dec_and_test(&state->refs)) {
157 		WARN_ON(state->in_tree);
158 		spin_lock_irqsave(&state_lock, flags);
159 		list_del(&state->list);
160 		spin_unlock_irqrestore(&state_lock, flags);
161 		kmem_cache_free(extent_state_cache, state);
162 	}
163 }
164 EXPORT_SYMBOL(free_extent_state);
165 
166 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
167 				   struct rb_node *node)
168 {
169 	struct rb_node ** p = &root->rb_node;
170 	struct rb_node * parent = NULL;
171 	struct tree_entry *entry;
172 
173 	while(*p) {
174 		parent = *p;
175 		entry = rb_entry(parent, struct tree_entry, rb_node);
176 
177 		if (offset < entry->start)
178 			p = &(*p)->rb_left;
179 		else if (offset > entry->end)
180 			p = &(*p)->rb_right;
181 		else
182 			return parent;
183 	}
184 
185 	entry = rb_entry(node, struct tree_entry, rb_node);
186 	entry->in_tree = 1;
187 	rb_link_node(node, parent, p);
188 	rb_insert_color(node, root);
189 	return NULL;
190 }
191 
192 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
193 				   struct rb_node **prev_ret)
194 {
195 	struct rb_node * n = root->rb_node;
196 	struct rb_node *prev = NULL;
197 	struct tree_entry *entry;
198 	struct tree_entry *prev_entry = NULL;
199 
200 	while(n) {
201 		entry = rb_entry(n, struct tree_entry, rb_node);
202 		prev = n;
203 		prev_entry = entry;
204 
205 		if (offset < entry->start)
206 			n = n->rb_left;
207 		else if (offset > entry->end)
208 			n = n->rb_right;
209 		else
210 			return n;
211 	}
212 	if (!prev_ret)
213 		return NULL;
214 	while(prev && offset > prev_entry->end) {
215 		prev = rb_next(prev);
216 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 	}
218 	*prev_ret = prev;
219 	return NULL;
220 }
221 
222 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
223 {
224 	struct rb_node *prev;
225 	struct rb_node *ret;
226 	ret = __tree_search(root, offset, &prev);
227 	if (!ret)
228 		return prev;
229 	return ret;
230 }
231 
232 static int tree_delete(struct rb_root *root, u64 offset)
233 {
234 	struct rb_node *node;
235 	struct tree_entry *entry;
236 
237 	node = __tree_search(root, offset, NULL);
238 	if (!node)
239 		return -ENOENT;
240 	entry = rb_entry(node, struct tree_entry, rb_node);
241 	entry->in_tree = 0;
242 	rb_erase(node, root);
243 	return 0;
244 }
245 
246 /*
247  * add_extent_mapping tries a simple backward merge with existing
248  * mappings.  The extent_map struct passed in will be inserted into
249  * the tree directly (no copies made, just a reference taken).
250  */
251 int add_extent_mapping(struct extent_map_tree *tree,
252 		       struct extent_map *em)
253 {
254 	int ret = 0;
255 	struct extent_map *prev = NULL;
256 	struct rb_node *rb;
257 
258 	write_lock_irq(&tree->lock);
259 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
260 	if (rb) {
261 		prev = rb_entry(rb, struct extent_map, rb_node);
262 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
263 		ret = -EEXIST;
264 		goto out;
265 	}
266 	atomic_inc(&em->refs);
267 	if (em->start != 0) {
268 		rb = rb_prev(&em->rb_node);
269 		if (rb)
270 			prev = rb_entry(rb, struct extent_map, rb_node);
271 		if (prev && prev->end + 1 == em->start &&
272 		    ((em->block_start == EXTENT_MAP_HOLE &&
273 		      prev->block_start == EXTENT_MAP_HOLE) ||
274 		     (em->block_start == EXTENT_MAP_INLINE &&
275 		      prev->block_start == EXTENT_MAP_INLINE) ||
276 		     (em->block_start == EXTENT_MAP_DELALLOC &&
277 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
278 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
279 		      em->block_start == prev->block_end + 1))) {
280 			em->start = prev->start;
281 			em->block_start = prev->block_start;
282 			rb_erase(&prev->rb_node, &tree->map);
283 			prev->in_tree = 0;
284 			free_extent_map(prev);
285 		}
286 	 }
287 out:
288 	write_unlock_irq(&tree->lock);
289 	return ret;
290 }
291 EXPORT_SYMBOL(add_extent_mapping);
292 
293 /*
294  * lookup_extent_mapping returns the first extent_map struct in the
295  * tree that intersects the [start, end] (inclusive) range.  There may
296  * be additional objects in the tree that intersect, so check the object
297  * returned carefully to make sure you don't need additional lookups.
298  */
299 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
300 					 u64 start, u64 end)
301 {
302 	struct extent_map *em;
303 	struct rb_node *rb_node;
304 
305 	read_lock_irq(&tree->lock);
306 	rb_node = tree_search(&tree->map, start);
307 	if (!rb_node) {
308 		em = NULL;
309 		goto out;
310 	}
311 	if (IS_ERR(rb_node)) {
312 		em = ERR_PTR(PTR_ERR(rb_node));
313 		goto out;
314 	}
315 	em = rb_entry(rb_node, struct extent_map, rb_node);
316 	if (em->end < start || em->start > end) {
317 		em = NULL;
318 		goto out;
319 	}
320 	atomic_inc(&em->refs);
321 out:
322 	read_unlock_irq(&tree->lock);
323 	return em;
324 }
325 EXPORT_SYMBOL(lookup_extent_mapping);
326 
327 /*
328  * removes an extent_map struct from the tree.  No reference counts are
329  * dropped, and no checks are done to  see if the range is in use
330  */
331 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
332 {
333 	int ret;
334 
335 	write_lock_irq(&tree->lock);
336 	ret = tree_delete(&tree->map, em->end);
337 	write_unlock_irq(&tree->lock);
338 	return ret;
339 }
340 EXPORT_SYMBOL(remove_extent_mapping);
341 
342 /*
343  * utility function to look for merge candidates inside a given range.
344  * Any extents with matching state are merged together into a single
345  * extent in the tree.  Extents with EXTENT_IO in their state field
346  * are not merged because the end_io handlers need to be able to do
347  * operations on them without sleeping (or doing allocations/splits).
348  *
349  * This should be called with the tree lock held.
350  */
351 static int merge_state(struct extent_map_tree *tree,
352 		       struct extent_state *state)
353 {
354 	struct extent_state *other;
355 	struct rb_node *other_node;
356 
357 	if (state->state & EXTENT_IOBITS)
358 		return 0;
359 
360 	other_node = rb_prev(&state->rb_node);
361 	if (other_node) {
362 		other = rb_entry(other_node, struct extent_state, rb_node);
363 		if (other->end == state->start - 1 &&
364 		    other->state == state->state) {
365 			state->start = other->start;
366 			other->in_tree = 0;
367 			rb_erase(&other->rb_node, &tree->state);
368 			free_extent_state(other);
369 		}
370 	}
371 	other_node = rb_next(&state->rb_node);
372 	if (other_node) {
373 		other = rb_entry(other_node, struct extent_state, rb_node);
374 		if (other->start == state->end + 1 &&
375 		    other->state == state->state) {
376 			other->start = state->start;
377 			state->in_tree = 0;
378 			rb_erase(&state->rb_node, &tree->state);
379 			free_extent_state(state);
380 		}
381 	}
382 	return 0;
383 }
384 
385 /*
386  * insert an extent_state struct into the tree.  'bits' are set on the
387  * struct before it is inserted.
388  *
389  * This may return -EEXIST if the extent is already there, in which case the
390  * state struct is freed.
391  *
392  * The tree lock is not taken internally.  This is a utility function and
393  * probably isn't what you want to call (see set/clear_extent_bit).
394  */
395 static int insert_state(struct extent_map_tree *tree,
396 			struct extent_state *state, u64 start, u64 end,
397 			int bits)
398 {
399 	struct rb_node *node;
400 
401 	if (end < start) {
402 		printk("end < start %Lu %Lu\n", end, start);
403 		WARN_ON(1);
404 	}
405 	state->state |= bits;
406 	state->start = start;
407 	state->end = end;
408 	node = tree_insert(&tree->state, end, &state->rb_node);
409 	if (node) {
410 		struct extent_state *found;
411 		found = rb_entry(node, struct extent_state, rb_node);
412 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
413 		free_extent_state(state);
414 		return -EEXIST;
415 	}
416 	merge_state(tree, state);
417 	return 0;
418 }
419 
420 /*
421  * split a given extent state struct in two, inserting the preallocated
422  * struct 'prealloc' as the newly created second half.  'split' indicates an
423  * offset inside 'orig' where it should be split.
424  *
425  * Before calling,
426  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
427  * are two extent state structs in the tree:
428  * prealloc: [orig->start, split - 1]
429  * orig: [ split, orig->end ]
430  *
431  * The tree locks are not taken by this function. They need to be held
432  * by the caller.
433  */
434 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
435 		       struct extent_state *prealloc, u64 split)
436 {
437 	struct rb_node *node;
438 	prealloc->start = orig->start;
439 	prealloc->end = split - 1;
440 	prealloc->state = orig->state;
441 	orig->start = split;
442 
443 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
444 	if (node) {
445 		struct extent_state *found;
446 		found = rb_entry(node, struct extent_state, rb_node);
447 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
448 		free_extent_state(prealloc);
449 		return -EEXIST;
450 	}
451 	return 0;
452 }
453 
454 /*
455  * utility function to clear some bits in an extent state struct.
456  * it will optionally wake up any one waiting on this state (wake == 1), or
457  * forcibly remove the state from the tree (delete == 1).
458  *
459  * If no bits are set on the state struct after clearing things, the
460  * struct is freed and removed from the tree
461  */
462 static int clear_state_bit(struct extent_map_tree *tree,
463 			    struct extent_state *state, int bits, int wake,
464 			    int delete)
465 {
466 	int ret = state->state & bits;
467 	state->state &= ~bits;
468 	if (wake)
469 		wake_up(&state->wq);
470 	if (delete || state->state == 0) {
471 		if (state->in_tree) {
472 			rb_erase(&state->rb_node, &tree->state);
473 			state->in_tree = 0;
474 			free_extent_state(state);
475 		} else {
476 			WARN_ON(1);
477 		}
478 	} else {
479 		merge_state(tree, state);
480 	}
481 	return ret;
482 }
483 
484 /*
485  * clear some bits on a range in the tree.  This may require splitting
486  * or inserting elements in the tree, so the gfp mask is used to
487  * indicate which allocations or sleeping are allowed.
488  *
489  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
490  * the given range from the tree regardless of state (ie for truncate).
491  *
492  * the range [start, end] is inclusive.
493  *
494  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
495  * bits were already set, or zero if none of the bits were already set.
496  */
497 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
498 		     int bits, int wake, int delete, gfp_t mask)
499 {
500 	struct extent_state *state;
501 	struct extent_state *prealloc = NULL;
502 	struct rb_node *node;
503 	unsigned long flags;
504 	int err;
505 	int set = 0;
506 
507 again:
508 	if (!prealloc && (mask & __GFP_WAIT)) {
509 		prealloc = alloc_extent_state(mask);
510 		if (!prealloc)
511 			return -ENOMEM;
512 	}
513 
514 	write_lock_irqsave(&tree->lock, flags);
515 	/*
516 	 * this search will find the extents that end after
517 	 * our range starts
518 	 */
519 	node = tree_search(&tree->state, start);
520 	if (!node)
521 		goto out;
522 	state = rb_entry(node, struct extent_state, rb_node);
523 	if (state->start > end)
524 		goto out;
525 	WARN_ON(state->end < start);
526 
527 	/*
528 	 *     | ---- desired range ---- |
529 	 *  | state | or
530 	 *  | ------------- state -------------- |
531 	 *
532 	 * We need to split the extent we found, and may flip
533 	 * bits on second half.
534 	 *
535 	 * If the extent we found extends past our range, we
536 	 * just split and search again.  It'll get split again
537 	 * the next time though.
538 	 *
539 	 * If the extent we found is inside our range, we clear
540 	 * the desired bit on it.
541 	 */
542 
543 	if (state->start < start) {
544 		err = split_state(tree, state, prealloc, start);
545 		BUG_ON(err == -EEXIST);
546 		prealloc = NULL;
547 		if (err)
548 			goto out;
549 		if (state->end <= end) {
550 			start = state->end + 1;
551 			set |= clear_state_bit(tree, state, bits,
552 					wake, delete);
553 		} else {
554 			start = state->start;
555 		}
556 		goto search_again;
557 	}
558 	/*
559 	 * | ---- desired range ---- |
560 	 *                        | state |
561 	 * We need to split the extent, and clear the bit
562 	 * on the first half
563 	 */
564 	if (state->start <= end && state->end > end) {
565 		err = split_state(tree, state, prealloc, end + 1);
566 		BUG_ON(err == -EEXIST);
567 
568 		if (wake)
569 			wake_up(&state->wq);
570 		set |= clear_state_bit(tree, prealloc, bits,
571 				       wake, delete);
572 		prealloc = NULL;
573 		goto out;
574 	}
575 
576 	start = state->end + 1;
577 	set |= clear_state_bit(tree, state, bits, wake, delete);
578 	goto search_again;
579 
580 out:
581 	write_unlock_irqrestore(&tree->lock, flags);
582 	if (prealloc)
583 		free_extent_state(prealloc);
584 
585 	return set;
586 
587 search_again:
588 	if (start > end)
589 		goto out;
590 	write_unlock_irqrestore(&tree->lock, flags);
591 	if (mask & __GFP_WAIT)
592 		cond_resched();
593 	goto again;
594 }
595 EXPORT_SYMBOL(clear_extent_bit);
596 
597 static int wait_on_state(struct extent_map_tree *tree,
598 			 struct extent_state *state)
599 {
600 	DEFINE_WAIT(wait);
601 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
602 	read_unlock_irq(&tree->lock);
603 	schedule();
604 	read_lock_irq(&tree->lock);
605 	finish_wait(&state->wq, &wait);
606 	return 0;
607 }
608 
609 /*
610  * waits for one or more bits to clear on a range in the state tree.
611  * The range [start, end] is inclusive.
612  * The tree lock is taken by this function
613  */
614 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
615 {
616 	struct extent_state *state;
617 	struct rb_node *node;
618 
619 	read_lock_irq(&tree->lock);
620 again:
621 	while (1) {
622 		/*
623 		 * this search will find all the extents that end after
624 		 * our range starts
625 		 */
626 		node = tree_search(&tree->state, start);
627 		if (!node)
628 			break;
629 
630 		state = rb_entry(node, struct extent_state, rb_node);
631 
632 		if (state->start > end)
633 			goto out;
634 
635 		if (state->state & bits) {
636 			start = state->start;
637 			atomic_inc(&state->refs);
638 			wait_on_state(tree, state);
639 			free_extent_state(state);
640 			goto again;
641 		}
642 		start = state->end + 1;
643 
644 		if (start > end)
645 			break;
646 
647 		if (need_resched()) {
648 			read_unlock_irq(&tree->lock);
649 			cond_resched();
650 			read_lock_irq(&tree->lock);
651 		}
652 	}
653 out:
654 	read_unlock_irq(&tree->lock);
655 	return 0;
656 }
657 EXPORT_SYMBOL(wait_extent_bit);
658 
659 /*
660  * set some bits on a range in the tree.  This may require allocations
661  * or sleeping, so the gfp mask is used to indicate what is allowed.
662  *
663  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
664  * range already has the desired bits set.  The start of the existing
665  * range is returned in failed_start in this case.
666  *
667  * [start, end] is inclusive
668  * This takes the tree lock.
669  */
670 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
671 		   int exclusive, u64 *failed_start, gfp_t mask)
672 {
673 	struct extent_state *state;
674 	struct extent_state *prealloc = NULL;
675 	struct rb_node *node;
676 	unsigned long flags;
677 	int err = 0;
678 	int set;
679 	u64 last_start;
680 	u64 last_end;
681 again:
682 	if (!prealloc && (mask & __GFP_WAIT)) {
683 		prealloc = alloc_extent_state(mask);
684 		if (!prealloc)
685 			return -ENOMEM;
686 	}
687 
688 	write_lock_irqsave(&tree->lock, flags);
689 	/*
690 	 * this search will find all the extents that end after
691 	 * our range starts.
692 	 */
693 	node = tree_search(&tree->state, start);
694 	if (!node) {
695 		err = insert_state(tree, prealloc, start, end, bits);
696 		prealloc = NULL;
697 		BUG_ON(err == -EEXIST);
698 		goto out;
699 	}
700 
701 	state = rb_entry(node, struct extent_state, rb_node);
702 	last_start = state->start;
703 	last_end = state->end;
704 
705 	/*
706 	 * | ---- desired range ---- |
707 	 * | state |
708 	 *
709 	 * Just lock what we found and keep going
710 	 */
711 	if (state->start == start && state->end <= end) {
712 		set = state->state & bits;
713 		if (set && exclusive) {
714 			*failed_start = state->start;
715 			err = -EEXIST;
716 			goto out;
717 		}
718 		state->state |= bits;
719 		start = state->end + 1;
720 		merge_state(tree, state);
721 		goto search_again;
722 	}
723 
724 	/*
725 	 *     | ---- desired range ---- |
726 	 * | state |
727 	 *   or
728 	 * | ------------- state -------------- |
729 	 *
730 	 * We need to split the extent we found, and may flip bits on
731 	 * second half.
732 	 *
733 	 * If the extent we found extends past our
734 	 * range, we just split and search again.  It'll get split
735 	 * again the next time though.
736 	 *
737 	 * If the extent we found is inside our range, we set the
738 	 * desired bit on it.
739 	 */
740 	if (state->start < start) {
741 		set = state->state & bits;
742 		if (exclusive && set) {
743 			*failed_start = start;
744 			err = -EEXIST;
745 			goto out;
746 		}
747 		err = split_state(tree, state, prealloc, start);
748 		BUG_ON(err == -EEXIST);
749 		prealloc = NULL;
750 		if (err)
751 			goto out;
752 		if (state->end <= end) {
753 			state->state |= bits;
754 			start = state->end + 1;
755 			merge_state(tree, state);
756 		} else {
757 			start = state->start;
758 		}
759 		goto search_again;
760 	}
761 	/*
762 	 * | ---- desired range ---- |
763 	 *     | state | or               | state |
764 	 *
765 	 * There's a hole, we need to insert something in it and
766 	 * ignore the extent we found.
767 	 */
768 	if (state->start > start) {
769 		u64 this_end;
770 		if (end < last_start)
771 			this_end = end;
772 		else
773 			this_end = last_start -1;
774 		err = insert_state(tree, prealloc, start, this_end,
775 				   bits);
776 		prealloc = NULL;
777 		BUG_ON(err == -EEXIST);
778 		if (err)
779 			goto out;
780 		start = this_end + 1;
781 		goto search_again;
782 	}
783 	/*
784 	 * | ---- desired range ---- |
785 	 *                        | state |
786 	 * We need to split the extent, and set the bit
787 	 * on the first half
788 	 */
789 	if (state->start <= end && state->end > end) {
790 		set = state->state & bits;
791 		if (exclusive && set) {
792 			*failed_start = start;
793 			err = -EEXIST;
794 			goto out;
795 		}
796 		err = split_state(tree, state, prealloc, end + 1);
797 		BUG_ON(err == -EEXIST);
798 
799 		prealloc->state |= bits;
800 		merge_state(tree, prealloc);
801 		prealloc = NULL;
802 		goto out;
803 	}
804 
805 	goto search_again;
806 
807 out:
808 	write_unlock_irqrestore(&tree->lock, flags);
809 	if (prealloc)
810 		free_extent_state(prealloc);
811 
812 	return err;
813 
814 search_again:
815 	if (start > end)
816 		goto out;
817 	write_unlock_irqrestore(&tree->lock, flags);
818 	if (mask & __GFP_WAIT)
819 		cond_resched();
820 	goto again;
821 }
822 EXPORT_SYMBOL(set_extent_bit);
823 
824 /* wrappers around set/clear extent bit */
825 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
826 		     gfp_t mask)
827 {
828 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
829 			      mask);
830 }
831 EXPORT_SYMBOL(set_extent_dirty);
832 
833 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
834 		    int bits, gfp_t mask)
835 {
836 	return set_extent_bit(tree, start, end, bits, 0, NULL,
837 			      mask);
838 }
839 EXPORT_SYMBOL(set_extent_bits);
840 
841 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
842 		      int bits, gfp_t mask)
843 {
844 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
845 }
846 EXPORT_SYMBOL(clear_extent_bits);
847 
848 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
849 		     gfp_t mask)
850 {
851 	return set_extent_bit(tree, start, end,
852 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
853 			      mask);
854 }
855 EXPORT_SYMBOL(set_extent_delalloc);
856 
857 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
858 		       gfp_t mask)
859 {
860 	return clear_extent_bit(tree, start, end,
861 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
862 }
863 EXPORT_SYMBOL(clear_extent_dirty);
864 
865 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
866 		     gfp_t mask)
867 {
868 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
869 			      mask);
870 }
871 EXPORT_SYMBOL(set_extent_new);
872 
873 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
874 		       gfp_t mask)
875 {
876 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
877 }
878 EXPORT_SYMBOL(clear_extent_new);
879 
880 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
881 			gfp_t mask)
882 {
883 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
884 			      mask);
885 }
886 EXPORT_SYMBOL(set_extent_uptodate);
887 
888 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
889 			  gfp_t mask)
890 {
891 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
892 }
893 EXPORT_SYMBOL(clear_extent_uptodate);
894 
895 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
896 			 gfp_t mask)
897 {
898 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
899 			      0, NULL, mask);
900 }
901 EXPORT_SYMBOL(set_extent_writeback);
902 
903 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
904 			   gfp_t mask)
905 {
906 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
907 }
908 EXPORT_SYMBOL(clear_extent_writeback);
909 
910 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
911 {
912 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
913 }
914 EXPORT_SYMBOL(wait_on_extent_writeback);
915 
916 /*
917  * locks a range in ascending order, waiting for any locked regions
918  * it hits on the way.  [start,end] are inclusive, and this will sleep.
919  */
920 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
921 {
922 	int err;
923 	u64 failed_start;
924 	while (1) {
925 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
926 				     &failed_start, mask);
927 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
928 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
929 			start = failed_start;
930 		} else {
931 			break;
932 		}
933 		WARN_ON(start > end);
934 	}
935 	return err;
936 }
937 EXPORT_SYMBOL(lock_extent);
938 
939 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
940 		  gfp_t mask)
941 {
942 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
943 }
944 EXPORT_SYMBOL(unlock_extent);
945 
946 /*
947  * helper function to set pages and extents in the tree dirty
948  */
949 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
950 {
951 	unsigned long index = start >> PAGE_CACHE_SHIFT;
952 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
953 	struct page *page;
954 
955 	while (index <= end_index) {
956 		page = find_get_page(tree->mapping, index);
957 		BUG_ON(!page);
958 		__set_page_dirty_nobuffers(page);
959 		page_cache_release(page);
960 		index++;
961 	}
962 	set_extent_dirty(tree, start, end, GFP_NOFS);
963 	return 0;
964 }
965 EXPORT_SYMBOL(set_range_dirty);
966 
967 /*
968  * helper function to set both pages and extents in the tree writeback
969  */
970 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
971 {
972 	unsigned long index = start >> PAGE_CACHE_SHIFT;
973 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
974 	struct page *page;
975 
976 	while (index <= end_index) {
977 		page = find_get_page(tree->mapping, index);
978 		BUG_ON(!page);
979 		set_page_writeback(page);
980 		page_cache_release(page);
981 		index++;
982 	}
983 	set_extent_writeback(tree, start, end, GFP_NOFS);
984 	return 0;
985 }
986 EXPORT_SYMBOL(set_range_writeback);
987 
988 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
989 			  u64 *start_ret, u64 *end_ret, int bits)
990 {
991 	struct rb_node *node;
992 	struct extent_state *state;
993 	int ret = 1;
994 
995 	read_lock_irq(&tree->lock);
996 	/*
997 	 * this search will find all the extents that end after
998 	 * our range starts.
999 	 */
1000 	node = tree_search(&tree->state, start);
1001 	if (!node || IS_ERR(node)) {
1002 		goto out;
1003 	}
1004 
1005 	while(1) {
1006 		state = rb_entry(node, struct extent_state, rb_node);
1007 		if (state->end >= start && (state->state & bits)) {
1008 			*start_ret = state->start;
1009 			*end_ret = state->end;
1010 			ret = 0;
1011 			break;
1012 		}
1013 		node = rb_next(node);
1014 		if (!node)
1015 			break;
1016 	}
1017 out:
1018 	read_unlock_irq(&tree->lock);
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL(find_first_extent_bit);
1022 
1023 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1024 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1025 {
1026 	struct rb_node *node;
1027 	struct extent_state *state;
1028 	u64 cur_start = start;
1029 	u64 found = 0;
1030 	u64 total_bytes = 0;
1031 
1032 	write_lock_irq(&tree->lock);
1033 	/*
1034 	 * this search will find all the extents that end after
1035 	 * our range starts.
1036 	 */
1037 search_again:
1038 	node = tree_search(&tree->state, cur_start);
1039 	if (!node || IS_ERR(node)) {
1040 		goto out;
1041 	}
1042 
1043 	while(1) {
1044 		state = rb_entry(node, struct extent_state, rb_node);
1045 		if (state->start != cur_start) {
1046 			goto out;
1047 		}
1048 		if (!(state->state & EXTENT_DELALLOC)) {
1049 			goto out;
1050 		}
1051 		if (state->start >= lock_start) {
1052 			if (state->state & EXTENT_LOCKED) {
1053 				DEFINE_WAIT(wait);
1054 				atomic_inc(&state->refs);
1055 				prepare_to_wait(&state->wq, &wait,
1056 						TASK_UNINTERRUPTIBLE);
1057 				write_unlock_irq(&tree->lock);
1058 				schedule();
1059 				write_lock_irq(&tree->lock);
1060 				finish_wait(&state->wq, &wait);
1061 				free_extent_state(state);
1062 				goto search_again;
1063 			}
1064 			state->state |= EXTENT_LOCKED;
1065 		}
1066 		found++;
1067 		*end = state->end;
1068 		cur_start = state->end + 1;
1069 		node = rb_next(node);
1070 		if (!node)
1071 			break;
1072 		total_bytes += state->end - state->start + 1;
1073 		if (total_bytes >= max_bytes)
1074 			break;
1075 	}
1076 out:
1077 	write_unlock_irq(&tree->lock);
1078 	return found;
1079 }
1080 
1081 /*
1082  * helper function to lock both pages and extents in the tree.
1083  * pages must be locked first.
1084  */
1085 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1086 {
1087 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1088 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1089 	struct page *page;
1090 	int err;
1091 
1092 	while (index <= end_index) {
1093 		page = grab_cache_page(tree->mapping, index);
1094 		if (!page) {
1095 			err = -ENOMEM;
1096 			goto failed;
1097 		}
1098 		if (IS_ERR(page)) {
1099 			err = PTR_ERR(page);
1100 			goto failed;
1101 		}
1102 		index++;
1103 	}
1104 	lock_extent(tree, start, end, GFP_NOFS);
1105 	return 0;
1106 
1107 failed:
1108 	/*
1109 	 * we failed above in getting the page at 'index', so we undo here
1110 	 * up to but not including the page at 'index'
1111 	 */
1112 	end_index = index;
1113 	index = start >> PAGE_CACHE_SHIFT;
1114 	while (index < end_index) {
1115 		page = find_get_page(tree->mapping, index);
1116 		unlock_page(page);
1117 		page_cache_release(page);
1118 		index++;
1119 	}
1120 	return err;
1121 }
1122 EXPORT_SYMBOL(lock_range);
1123 
1124 /*
1125  * helper function to unlock both pages and extents in the tree.
1126  */
1127 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1128 {
1129 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1130 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1131 	struct page *page;
1132 
1133 	while (index <= end_index) {
1134 		page = find_get_page(tree->mapping, index);
1135 		unlock_page(page);
1136 		page_cache_release(page);
1137 		index++;
1138 	}
1139 	unlock_extent(tree, start, end, GFP_NOFS);
1140 	return 0;
1141 }
1142 EXPORT_SYMBOL(unlock_range);
1143 
1144 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1145 {
1146 	struct rb_node *node;
1147 	struct extent_state *state;
1148 	int ret = 0;
1149 
1150 	write_lock_irq(&tree->lock);
1151 	/*
1152 	 * this search will find all the extents that end after
1153 	 * our range starts.
1154 	 */
1155 	node = tree_search(&tree->state, start);
1156 	if (!node || IS_ERR(node)) {
1157 		ret = -ENOENT;
1158 		goto out;
1159 	}
1160 	state = rb_entry(node, struct extent_state, rb_node);
1161 	if (state->start != start) {
1162 		ret = -ENOENT;
1163 		goto out;
1164 	}
1165 	state->private = private;
1166 out:
1167 	write_unlock_irq(&tree->lock);
1168 	return ret;
1169 }
1170 
1171 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1172 {
1173 	struct rb_node *node;
1174 	struct extent_state *state;
1175 	int ret = 0;
1176 
1177 	read_lock_irq(&tree->lock);
1178 	/*
1179 	 * this search will find all the extents that end after
1180 	 * our range starts.
1181 	 */
1182 	node = tree_search(&tree->state, start);
1183 	if (!node || IS_ERR(node)) {
1184 		ret = -ENOENT;
1185 		goto out;
1186 	}
1187 	state = rb_entry(node, struct extent_state, rb_node);
1188 	if (state->start != start) {
1189 		ret = -ENOENT;
1190 		goto out;
1191 	}
1192 	*private = state->private;
1193 out:
1194 	read_unlock_irq(&tree->lock);
1195 	return ret;
1196 }
1197 
1198 /*
1199  * searches a range in the state tree for a given mask.
1200  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1201  * has the bits set.  Otherwise, 1 is returned if any bit in the
1202  * range is found set.
1203  */
1204 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1205 		   int bits, int filled)
1206 {
1207 	struct extent_state *state = NULL;
1208 	struct rb_node *node;
1209 	int bitset = 0;
1210 
1211 	read_lock_irq(&tree->lock);
1212 	node = tree_search(&tree->state, start);
1213 	while (node && start <= end) {
1214 		state = rb_entry(node, struct extent_state, rb_node);
1215 		if (state->start > end)
1216 			break;
1217 
1218 		if (filled && state->start > start) {
1219 			bitset = 0;
1220 			break;
1221 		}
1222 		if (state->state & bits) {
1223 			bitset = 1;
1224 			if (!filled)
1225 				break;
1226 		} else if (filled) {
1227 			bitset = 0;
1228 			break;
1229 		}
1230 		start = state->end + 1;
1231 		if (start > end)
1232 			break;
1233 		node = rb_next(node);
1234 	}
1235 	read_unlock_irq(&tree->lock);
1236 	return bitset;
1237 }
1238 EXPORT_SYMBOL(test_range_bit);
1239 
1240 /*
1241  * helper function to set a given page up to date if all the
1242  * extents in the tree for that page are up to date
1243  */
1244 static int check_page_uptodate(struct extent_map_tree *tree,
1245 			       struct page *page)
1246 {
1247 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1248 	u64 end = start + PAGE_CACHE_SIZE - 1;
1249 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1250 		SetPageUptodate(page);
1251 	return 0;
1252 }
1253 
1254 /*
1255  * helper function to unlock a page if all the extents in the tree
1256  * for that page are unlocked
1257  */
1258 static int check_page_locked(struct extent_map_tree *tree,
1259 			     struct page *page)
1260 {
1261 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1262 	u64 end = start + PAGE_CACHE_SIZE - 1;
1263 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1264 		unlock_page(page);
1265 	return 0;
1266 }
1267 
1268 /*
1269  * helper function to end page writeback if all the extents
1270  * in the tree for that page are done with writeback
1271  */
1272 static int check_page_writeback(struct extent_map_tree *tree,
1273 			     struct page *page)
1274 {
1275 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1276 	u64 end = start + PAGE_CACHE_SIZE - 1;
1277 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1278 		end_page_writeback(page);
1279 	return 0;
1280 }
1281 
1282 /* lots and lots of room for performance fixes in the end_bio funcs */
1283 
1284 /*
1285  * after a writepage IO is done, we need to:
1286  * clear the uptodate bits on error
1287  * clear the writeback bits in the extent tree for this IO
1288  * end_page_writeback if the page has no more pending IO
1289  *
1290  * Scheduling is not allowed, so the extent state tree is expected
1291  * to have one and only one object corresponding to this IO.
1292  */
1293 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1294 static void end_bio_extent_writepage(struct bio *bio, int err)
1295 #else
1296 static int end_bio_extent_writepage(struct bio *bio,
1297 				   unsigned int bytes_done, int err)
1298 #endif
1299 {
1300 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1301 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1302 	struct extent_map_tree *tree = bio->bi_private;
1303 	u64 start;
1304 	u64 end;
1305 	int whole_page;
1306 
1307 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1308 	if (bio->bi_size)
1309 		return 1;
1310 #endif
1311 
1312 	do {
1313 		struct page *page = bvec->bv_page;
1314 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1315 			 bvec->bv_offset;
1316 		end = start + bvec->bv_len - 1;
1317 
1318 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1319 			whole_page = 1;
1320 		else
1321 			whole_page = 0;
1322 
1323 		if (--bvec >= bio->bi_io_vec)
1324 			prefetchw(&bvec->bv_page->flags);
1325 
1326 		if (!uptodate) {
1327 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1328 			ClearPageUptodate(page);
1329 			SetPageError(page);
1330 		}
1331 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1332 
1333 		if (whole_page)
1334 			end_page_writeback(page);
1335 		else
1336 			check_page_writeback(tree, page);
1337 		if (tree->ops && tree->ops->writepage_end_io_hook)
1338 			tree->ops->writepage_end_io_hook(page, start, end);
1339 	} while (bvec >= bio->bi_io_vec);
1340 
1341 	bio_put(bio);
1342 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1343 	return 0;
1344 #endif
1345 }
1346 
1347 /*
1348  * after a readpage IO is done, we need to:
1349  * clear the uptodate bits on error
1350  * set the uptodate bits if things worked
1351  * set the page up to date if all extents in the tree are uptodate
1352  * clear the lock bit in the extent tree
1353  * unlock the page if there are no other extents locked for it
1354  *
1355  * Scheduling is not allowed, so the extent state tree is expected
1356  * to have one and only one object corresponding to this IO.
1357  */
1358 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1359 static void end_bio_extent_readpage(struct bio *bio, int err)
1360 #else
1361 static int end_bio_extent_readpage(struct bio *bio,
1362 				   unsigned int bytes_done, int err)
1363 #endif
1364 {
1365 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1366 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1367 	struct extent_map_tree *tree = bio->bi_private;
1368 	u64 start;
1369 	u64 end;
1370 	int whole_page;
1371 	int ret;
1372 
1373 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1374 	if (bio->bi_size)
1375 		return 1;
1376 #endif
1377 
1378 	do {
1379 		struct page *page = bvec->bv_page;
1380 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1381 			bvec->bv_offset;
1382 		end = start + bvec->bv_len - 1;
1383 
1384 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1385 			whole_page = 1;
1386 		else
1387 			whole_page = 0;
1388 
1389 		if (--bvec >= bio->bi_io_vec)
1390 			prefetchw(&bvec->bv_page->flags);
1391 
1392 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1393 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1394 			if (ret)
1395 				uptodate = 0;
1396 		}
1397 		if (uptodate) {
1398 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1399 			if (whole_page)
1400 				SetPageUptodate(page);
1401 			else
1402 				check_page_uptodate(tree, page);
1403 		} else {
1404 			ClearPageUptodate(page);
1405 			SetPageError(page);
1406 		}
1407 
1408 		unlock_extent(tree, start, end, GFP_ATOMIC);
1409 
1410 		if (whole_page)
1411 			unlock_page(page);
1412 		else
1413 			check_page_locked(tree, page);
1414 	} while (bvec >= bio->bi_io_vec);
1415 
1416 	bio_put(bio);
1417 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1418 	return 0;
1419 #endif
1420 }
1421 
1422 /*
1423  * IO done from prepare_write is pretty simple, we just unlock
1424  * the structs in the extent tree when done, and set the uptodate bits
1425  * as appropriate.
1426  */
1427 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1428 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1429 #else
1430 static int end_bio_extent_preparewrite(struct bio *bio,
1431 				       unsigned int bytes_done, int err)
1432 #endif
1433 {
1434 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1435 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1436 	struct extent_map_tree *tree = bio->bi_private;
1437 	u64 start;
1438 	u64 end;
1439 
1440 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1441 	if (bio->bi_size)
1442 		return 1;
1443 #endif
1444 
1445 	do {
1446 		struct page *page = bvec->bv_page;
1447 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1448 			bvec->bv_offset;
1449 		end = start + bvec->bv_len - 1;
1450 
1451 		if (--bvec >= bio->bi_io_vec)
1452 			prefetchw(&bvec->bv_page->flags);
1453 
1454 		if (uptodate) {
1455 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1456 		} else {
1457 			ClearPageUptodate(page);
1458 			SetPageError(page);
1459 		}
1460 
1461 		unlock_extent(tree, start, end, GFP_ATOMIC);
1462 
1463 	} while (bvec >= bio->bi_io_vec);
1464 
1465 	bio_put(bio);
1466 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1467 	return 0;
1468 #endif
1469 }
1470 
1471 static struct bio *
1472 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1473 		 gfp_t gfp_flags)
1474 {
1475 	struct bio *bio;
1476 
1477 	bio = bio_alloc(gfp_flags, nr_vecs);
1478 
1479 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1480 		while (!bio && (nr_vecs /= 2))
1481 			bio = bio_alloc(gfp_flags, nr_vecs);
1482 	}
1483 
1484 	if (bio) {
1485 		bio->bi_bdev = bdev;
1486 		bio->bi_sector = first_sector;
1487 	}
1488 	return bio;
1489 }
1490 
1491 static int submit_one_bio(int rw, struct bio *bio)
1492 {
1493 	int ret = 0;
1494 	bio_get(bio);
1495 	submit_bio(rw, bio);
1496 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1497 		ret = -EOPNOTSUPP;
1498 	bio_put(bio);
1499 	return ret;
1500 }
1501 
1502 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1503 			      struct page *page, sector_t sector,
1504 			      size_t size, unsigned long offset,
1505 			      struct block_device *bdev,
1506 			      struct bio **bio_ret,
1507 			      unsigned long max_pages,
1508 			      bio_end_io_t end_io_func)
1509 {
1510 	int ret = 0;
1511 	struct bio *bio;
1512 	int nr;
1513 
1514 	if (bio_ret && *bio_ret) {
1515 		bio = *bio_ret;
1516 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1517 		    bio_add_page(bio, page, size, offset) < size) {
1518 			ret = submit_one_bio(rw, bio);
1519 			bio = NULL;
1520 		} else {
1521 			return 0;
1522 		}
1523 	}
1524 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1525 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1526 	if (!bio) {
1527 		printk("failed to allocate bio nr %d\n", nr);
1528 	}
1529 	bio_add_page(bio, page, size, offset);
1530 	bio->bi_end_io = end_io_func;
1531 	bio->bi_private = tree;
1532 	if (bio_ret) {
1533 		*bio_ret = bio;
1534 	} else {
1535 		ret = submit_one_bio(rw, bio);
1536 	}
1537 
1538 	return ret;
1539 }
1540 
1541 void set_page_extent_mapped(struct page *page)
1542 {
1543 	if (!PagePrivate(page)) {
1544 		SetPagePrivate(page);
1545 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1546 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1547 		page_cache_get(page);
1548 	}
1549 }
1550 
1551 /*
1552  * basic readpage implementation.  Locked extent state structs are inserted
1553  * into the tree that are removed when the IO is done (by the end_io
1554  * handlers)
1555  */
1556 static int __extent_read_full_page(struct extent_map_tree *tree,
1557 				   struct page *page,
1558 				   get_extent_t *get_extent,
1559 				   struct bio **bio)
1560 {
1561 	struct inode *inode = page->mapping->host;
1562 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1563 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1564 	u64 end;
1565 	u64 cur = start;
1566 	u64 extent_offset;
1567 	u64 last_byte = i_size_read(inode);
1568 	u64 block_start;
1569 	u64 cur_end;
1570 	sector_t sector;
1571 	struct extent_map *em;
1572 	struct block_device *bdev;
1573 	int ret;
1574 	int nr = 0;
1575 	size_t page_offset = 0;
1576 	size_t iosize;
1577 	size_t blocksize = inode->i_sb->s_blocksize;
1578 
1579 	set_page_extent_mapped(page);
1580 
1581 	end = page_end;
1582 	lock_extent(tree, start, end, GFP_NOFS);
1583 
1584 	while (cur <= end) {
1585 		if (cur >= last_byte) {
1586 			iosize = PAGE_CACHE_SIZE - page_offset;
1587 			zero_user_page(page, page_offset, iosize, KM_USER0);
1588 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1589 					    GFP_NOFS);
1590 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1591 			break;
1592 		}
1593 		em = get_extent(inode, page, page_offset, cur, end, 0);
1594 		if (IS_ERR(em) || !em) {
1595 			SetPageError(page);
1596 			unlock_extent(tree, cur, end, GFP_NOFS);
1597 			break;
1598 		}
1599 
1600 		extent_offset = cur - em->start;
1601 		BUG_ON(em->end < cur);
1602 		BUG_ON(end < cur);
1603 
1604 		iosize = min(em->end - cur, end - cur) + 1;
1605 		cur_end = min(em->end, end);
1606 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1607 		sector = (em->block_start + extent_offset) >> 9;
1608 		bdev = em->bdev;
1609 		block_start = em->block_start;
1610 		free_extent_map(em);
1611 		em = NULL;
1612 
1613 		/* we've found a hole, just zero and go on */
1614 		if (block_start == EXTENT_MAP_HOLE) {
1615 			zero_user_page(page, page_offset, iosize, KM_USER0);
1616 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1617 					    GFP_NOFS);
1618 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1619 			cur = cur + iosize;
1620 			page_offset += iosize;
1621 			continue;
1622 		}
1623 		/* the get_extent function already copied into the page */
1624 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1625 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1626 			cur = cur + iosize;
1627 			page_offset += iosize;
1628 			continue;
1629 		}
1630 
1631 		ret = 0;
1632 		if (tree->ops && tree->ops->readpage_io_hook) {
1633 			ret = tree->ops->readpage_io_hook(page, cur,
1634 							  cur + iosize - 1);
1635 		}
1636 		if (!ret) {
1637 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1638 			nr -= page->index;
1639 			ret = submit_extent_page(READ, tree, page,
1640 					 sector, iosize, page_offset,
1641 					 bdev, bio, nr,
1642 					 end_bio_extent_readpage);
1643 		}
1644 		if (ret)
1645 			SetPageError(page);
1646 		cur = cur + iosize;
1647 		page_offset += iosize;
1648 		nr++;
1649 	}
1650 	if (!nr) {
1651 		if (!PageError(page))
1652 			SetPageUptodate(page);
1653 		unlock_page(page);
1654 	}
1655 	return 0;
1656 }
1657 
1658 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1659 			    get_extent_t *get_extent)
1660 {
1661 	struct bio *bio = NULL;
1662 	int ret;
1663 
1664 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1665 	if (bio)
1666 		submit_one_bio(READ, bio);
1667 	return ret;
1668 }
1669 EXPORT_SYMBOL(extent_read_full_page);
1670 
1671 /*
1672  * the writepage semantics are similar to regular writepage.  extent
1673  * records are inserted to lock ranges in the tree, and as dirty areas
1674  * are found, they are marked writeback.  Then the lock bits are removed
1675  * and the end_io handler clears the writeback ranges
1676  */
1677 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1678 			      void *data)
1679 {
1680 	struct inode *inode = page->mapping->host;
1681 	struct extent_page_data *epd = data;
1682 	struct extent_map_tree *tree = epd->tree;
1683 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1684 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1685 	u64 end;
1686 	u64 cur = start;
1687 	u64 extent_offset;
1688 	u64 last_byte = i_size_read(inode);
1689 	u64 block_start;
1690 	u64 iosize;
1691 	sector_t sector;
1692 	struct extent_map *em;
1693 	struct block_device *bdev;
1694 	int ret;
1695 	int nr = 0;
1696 	size_t page_offset = 0;
1697 	size_t blocksize;
1698 	loff_t i_size = i_size_read(inode);
1699 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1700 	u64 nr_delalloc;
1701 	u64 delalloc_end;
1702 
1703 	WARN_ON(!PageLocked(page));
1704 	if (page->index > end_index) {
1705 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1706 		unlock_page(page);
1707 		return 0;
1708 	}
1709 
1710 	if (page->index == end_index) {
1711 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1712 		zero_user_page(page, offset,
1713 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1714 	}
1715 
1716 	set_page_extent_mapped(page);
1717 
1718 	lock_extent(tree, start, page_end, GFP_NOFS);
1719 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1720 					       &delalloc_end,
1721 					       128 * 1024 * 1024);
1722 	if (nr_delalloc) {
1723 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1724 		if (delalloc_end >= page_end + 1) {
1725 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1726 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1727 					 1, 0, GFP_NOFS);
1728 		}
1729 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1730 				 0, 0, GFP_NOFS);
1731 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1732 			printk("found delalloc bits after clear extent_bit\n");
1733 		}
1734 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1735 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1736 	}
1737 
1738 	end = page_end;
1739 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1740 		printk("found delalloc bits after lock_extent\n");
1741 	}
1742 
1743 	if (last_byte <= start) {
1744 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1745 		goto done;
1746 	}
1747 
1748 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1749 	blocksize = inode->i_sb->s_blocksize;
1750 
1751 	while (cur <= end) {
1752 		if (cur >= last_byte) {
1753 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1754 			break;
1755 		}
1756 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1757 		if (IS_ERR(em) || !em) {
1758 			SetPageError(page);
1759 			break;
1760 		}
1761 
1762 		extent_offset = cur - em->start;
1763 		BUG_ON(em->end < cur);
1764 		BUG_ON(end < cur);
1765 		iosize = min(em->end - cur, end - cur) + 1;
1766 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1767 		sector = (em->block_start + extent_offset) >> 9;
1768 		bdev = em->bdev;
1769 		block_start = em->block_start;
1770 		free_extent_map(em);
1771 		em = NULL;
1772 
1773 		if (block_start == EXTENT_MAP_HOLE ||
1774 		    block_start == EXTENT_MAP_INLINE) {
1775 			clear_extent_dirty(tree, cur,
1776 					   cur + iosize - 1, GFP_NOFS);
1777 			cur = cur + iosize;
1778 			page_offset += iosize;
1779 			continue;
1780 		}
1781 
1782 		/* leave this out until we have a page_mkwrite call */
1783 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1784 				   EXTENT_DIRTY, 0)) {
1785 			cur = cur + iosize;
1786 			page_offset += iosize;
1787 			continue;
1788 		}
1789 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1790 		if (tree->ops && tree->ops->writepage_io_hook) {
1791 			ret = tree->ops->writepage_io_hook(page, cur,
1792 						cur + iosize - 1);
1793 		} else {
1794 			ret = 0;
1795 		}
1796 		if (ret)
1797 			SetPageError(page);
1798 		else {
1799 			unsigned long nr = end_index + 1;
1800 			set_range_writeback(tree, cur, cur + iosize - 1);
1801 
1802 			ret = submit_extent_page(WRITE, tree, page, sector,
1803 						 iosize, page_offset, bdev,
1804 						 &epd->bio, nr,
1805 						 end_bio_extent_writepage);
1806 			if (ret)
1807 				SetPageError(page);
1808 		}
1809 		cur = cur + iosize;
1810 		page_offset += iosize;
1811 		nr++;
1812 	}
1813 done:
1814 	unlock_extent(tree, start, page_end, GFP_NOFS);
1815 	unlock_page(page);
1816 	return 0;
1817 }
1818 
1819 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1820 			  get_extent_t *get_extent,
1821 			  struct writeback_control *wbc)
1822 {
1823 	int ret;
1824 	struct extent_page_data epd = {
1825 		.bio = NULL,
1826 		.tree = tree,
1827 		.get_extent = get_extent,
1828 	};
1829 
1830 	ret = __extent_writepage(page, wbc, &epd);
1831 	if (epd.bio)
1832 		submit_one_bio(WRITE, epd.bio);
1833 	return ret;
1834 }
1835 EXPORT_SYMBOL(extent_write_full_page);
1836 
1837 int extent_writepages(struct extent_map_tree *tree,
1838 		      struct address_space *mapping,
1839 		      get_extent_t *get_extent,
1840 		      struct writeback_control *wbc)
1841 {
1842 	int ret;
1843 	struct extent_page_data epd = {
1844 		.bio = NULL,
1845 		.tree = tree,
1846 		.get_extent = get_extent,
1847 	};
1848 
1849 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
1850 	if (epd.bio)
1851 		submit_one_bio(WRITE, epd.bio);
1852 	return ret;
1853 }
1854 EXPORT_SYMBOL(extent_writepages);
1855 
1856 int extent_readpages(struct extent_map_tree *tree,
1857 		     struct address_space *mapping,
1858 		     struct list_head *pages, unsigned nr_pages,
1859 		     get_extent_t get_extent)
1860 {
1861 	struct bio *bio = NULL;
1862 	unsigned page_idx;
1863 	struct pagevec pvec;
1864 
1865 	pagevec_init(&pvec, 0);
1866 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
1867 		struct page *page = list_entry(pages->prev, struct page, lru);
1868 
1869 		prefetchw(&page->flags);
1870 		list_del(&page->lru);
1871 		/*
1872 		 * what we want to do here is call add_to_page_cache_lru,
1873 		 * but that isn't exported, so we reproduce it here
1874 		 */
1875 		if (!add_to_page_cache(page, mapping,
1876 					page->index, GFP_KERNEL)) {
1877 
1878 			/* open coding of lru_cache_add, also not exported */
1879 			page_cache_get(page);
1880 			if (!pagevec_add(&pvec, page))
1881 				__pagevec_lru_add(&pvec);
1882 			__extent_read_full_page(tree, page, get_extent, &bio);
1883 		}
1884 		page_cache_release(page);
1885 	}
1886 	if (pagevec_count(&pvec))
1887 		__pagevec_lru_add(&pvec);
1888 	BUG_ON(!list_empty(pages));
1889 	if (bio)
1890 		submit_one_bio(READ, bio);
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL(extent_readpages);
1894 
1895 /*
1896  * basic invalidatepage code, this waits on any locked or writeback
1897  * ranges corresponding to the page, and then deletes any extent state
1898  * records from the tree
1899  */
1900 int extent_invalidatepage(struct extent_map_tree *tree,
1901 			  struct page *page, unsigned long offset)
1902 {
1903 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
1904 	u64 end = start + PAGE_CACHE_SIZE - 1;
1905 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1906 
1907 	start += (offset + blocksize -1) & ~(blocksize - 1);
1908 	if (start > end)
1909 		return 0;
1910 
1911 	lock_extent(tree, start, end, GFP_NOFS);
1912 	wait_on_extent_writeback(tree, start, end);
1913 	clear_extent_bit(tree, start, end,
1914 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1915 			 1, 1, GFP_NOFS);
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL(extent_invalidatepage);
1919 
1920 /*
1921  * simple commit_write call, set_range_dirty is used to mark both
1922  * the pages and the extent records as dirty
1923  */
1924 int extent_commit_write(struct extent_map_tree *tree,
1925 			struct inode *inode, struct page *page,
1926 			unsigned from, unsigned to)
1927 {
1928 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1929 
1930 	set_page_extent_mapped(page);
1931 	set_page_dirty(page);
1932 
1933 	if (pos > inode->i_size) {
1934 		i_size_write(inode, pos);
1935 		mark_inode_dirty(inode);
1936 	}
1937 	return 0;
1938 }
1939 EXPORT_SYMBOL(extent_commit_write);
1940 
1941 int extent_prepare_write(struct extent_map_tree *tree,
1942 			 struct inode *inode, struct page *page,
1943 			 unsigned from, unsigned to, get_extent_t *get_extent)
1944 {
1945 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
1946 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1947 	u64 block_start;
1948 	u64 orig_block_start;
1949 	u64 block_end;
1950 	u64 cur_end;
1951 	struct extent_map *em;
1952 	unsigned blocksize = 1 << inode->i_blkbits;
1953 	size_t page_offset = 0;
1954 	size_t block_off_start;
1955 	size_t block_off_end;
1956 	int err = 0;
1957 	int iocount = 0;
1958 	int ret = 0;
1959 	int isnew;
1960 
1961 	set_page_extent_mapped(page);
1962 
1963 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1964 	block_end = (page_start + to - 1) | (blocksize - 1);
1965 	orig_block_start = block_start;
1966 
1967 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1968 	while(block_start <= block_end) {
1969 		em = get_extent(inode, page, page_offset, block_start,
1970 				block_end, 1);
1971 		if (IS_ERR(em) || !em) {
1972 			goto err;
1973 		}
1974 		cur_end = min(block_end, em->end);
1975 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1976 		block_off_end = block_off_start + blocksize;
1977 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1978 
1979 		if (!PageUptodate(page) && isnew &&
1980 		    (block_off_end > to || block_off_start < from)) {
1981 			void *kaddr;
1982 
1983 			kaddr = kmap_atomic(page, KM_USER0);
1984 			if (block_off_end > to)
1985 				memset(kaddr + to, 0, block_off_end - to);
1986 			if (block_off_start < from)
1987 				memset(kaddr + block_off_start, 0,
1988 				       from - block_off_start);
1989 			flush_dcache_page(page);
1990 			kunmap_atomic(kaddr, KM_USER0);
1991 		}
1992 		if (!isnew && !PageUptodate(page) &&
1993 		    (block_off_end > to || block_off_start < from) &&
1994 		    !test_range_bit(tree, block_start, cur_end,
1995 				    EXTENT_UPTODATE, 1)) {
1996 			u64 sector;
1997 			u64 extent_offset = block_start - em->start;
1998 			size_t iosize;
1999 			sector = (em->block_start + extent_offset) >> 9;
2000 			iosize = (cur_end - block_start + blocksize - 1) &
2001 				~((u64)blocksize - 1);
2002 			/*
2003 			 * we've already got the extent locked, but we
2004 			 * need to split the state such that our end_bio
2005 			 * handler can clear the lock.
2006 			 */
2007 			set_extent_bit(tree, block_start,
2008 				       block_start + iosize - 1,
2009 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2010 			ret = submit_extent_page(READ, tree, page,
2011 					 sector, iosize, page_offset, em->bdev,
2012 					 NULL, 1,
2013 					 end_bio_extent_preparewrite);
2014 			iocount++;
2015 			block_start = block_start + iosize;
2016 		} else {
2017 			set_extent_uptodate(tree, block_start, cur_end,
2018 					    GFP_NOFS);
2019 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2020 			block_start = cur_end + 1;
2021 		}
2022 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2023 		free_extent_map(em);
2024 	}
2025 	if (iocount) {
2026 		wait_extent_bit(tree, orig_block_start,
2027 				block_end, EXTENT_LOCKED);
2028 	}
2029 	check_page_uptodate(tree, page);
2030 err:
2031 	/* FIXME, zero out newly allocated blocks on error */
2032 	return err;
2033 }
2034 EXPORT_SYMBOL(extent_prepare_write);
2035 
2036 /*
2037  * a helper for releasepage.  As long as there are no locked extents
2038  * in the range corresponding to the page, both state records and extent
2039  * map records are removed
2040  */
2041 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2042 {
2043 	struct extent_map *em;
2044 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2045 	u64 end = start + PAGE_CACHE_SIZE - 1;
2046 	u64 orig_start = start;
2047 	int ret = 1;
2048 
2049 	while (start <= end) {
2050 		em = lookup_extent_mapping(tree, start, end);
2051 		if (!em || IS_ERR(em))
2052 			break;
2053 		if (!test_range_bit(tree, em->start, em->end,
2054 				    EXTENT_LOCKED, 0)) {
2055 			remove_extent_mapping(tree, em);
2056 			/* once for the rb tree */
2057 			free_extent_map(em);
2058 		}
2059 		start = em->end + 1;
2060 		/* once for us */
2061 		free_extent_map(em);
2062 	}
2063 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2064 		ret = 0;
2065 	else
2066 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2067 				 1, 1, GFP_NOFS);
2068 	return ret;
2069 }
2070 EXPORT_SYMBOL(try_release_extent_mapping);
2071 
2072 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2073 		get_extent_t *get_extent)
2074 {
2075 	struct inode *inode = mapping->host;
2076 	u64 start = iblock << inode->i_blkbits;
2077 	u64 end = start + (1 << inode->i_blkbits) - 1;
2078 	sector_t sector = 0;
2079 	struct extent_map *em;
2080 
2081 	em = get_extent(inode, NULL, 0, start, end, 0);
2082 	if (!em || IS_ERR(em))
2083 		return 0;
2084 
2085 	if (em->block_start == EXTENT_MAP_INLINE ||
2086 	    em->block_start == EXTENT_MAP_HOLE)
2087 		goto out;
2088 
2089 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2090 out:
2091 	free_extent_map(em);
2092 	return sector;
2093 }
2094 
2095 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2096 {
2097 	if (list_empty(&eb->lru)) {
2098 		extent_buffer_get(eb);
2099 		list_add(&eb->lru, &tree->buffer_lru);
2100 		tree->lru_size++;
2101 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2102 			struct extent_buffer *rm;
2103 			rm = list_entry(tree->buffer_lru.prev,
2104 					struct extent_buffer, lru);
2105 			tree->lru_size--;
2106 			list_del_init(&rm->lru);
2107 			free_extent_buffer(rm);
2108 		}
2109 	} else
2110 		list_move(&eb->lru, &tree->buffer_lru);
2111 	return 0;
2112 }
2113 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2114 				      u64 start, unsigned long len)
2115 {
2116 	struct list_head *lru = &tree->buffer_lru;
2117 	struct list_head *cur = lru->next;
2118 	struct extent_buffer *eb;
2119 
2120 	if (list_empty(lru))
2121 		return NULL;
2122 
2123 	do {
2124 		eb = list_entry(cur, struct extent_buffer, lru);
2125 		if (eb->start == start && eb->len == len) {
2126 			extent_buffer_get(eb);
2127 			return eb;
2128 		}
2129 		cur = cur->next;
2130 	} while (cur != lru);
2131 	return NULL;
2132 }
2133 
2134 static inline unsigned long num_extent_pages(u64 start, u64 len)
2135 {
2136 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2137 		(start >> PAGE_CACHE_SHIFT);
2138 }
2139 
2140 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2141 					      unsigned long i)
2142 {
2143 	struct page *p;
2144 	struct address_space *mapping;
2145 
2146 	if (i == 0)
2147 		return eb->first_page;
2148 	i += eb->start >> PAGE_CACHE_SHIFT;
2149 	mapping = eb->first_page->mapping;
2150 	read_lock_irq(&mapping->tree_lock);
2151 	p = radix_tree_lookup(&mapping->page_tree, i);
2152 	read_unlock_irq(&mapping->tree_lock);
2153 	return p;
2154 }
2155 
2156 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2157 						   u64 start,
2158 						   unsigned long len,
2159 						   gfp_t mask)
2160 {
2161 	struct extent_buffer *eb = NULL;
2162 
2163 	spin_lock(&tree->lru_lock);
2164 	eb = find_lru(tree, start, len);
2165 	spin_unlock(&tree->lru_lock);
2166 	if (eb) {
2167 		return eb;
2168 	}
2169 
2170 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2171 	INIT_LIST_HEAD(&eb->lru);
2172 	eb->start = start;
2173 	eb->len = len;
2174 	atomic_set(&eb->refs, 1);
2175 
2176 	return eb;
2177 }
2178 
2179 static void __free_extent_buffer(struct extent_buffer *eb)
2180 {
2181 	kmem_cache_free(extent_buffer_cache, eb);
2182 }
2183 
2184 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2185 					  u64 start, unsigned long len,
2186 					  struct page *page0,
2187 					  gfp_t mask)
2188 {
2189 	unsigned long num_pages = num_extent_pages(start, len);
2190 	unsigned long i;
2191 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2192 	struct extent_buffer *eb;
2193 	struct page *p;
2194 	struct address_space *mapping = tree->mapping;
2195 	int uptodate = 1;
2196 
2197 	eb = __alloc_extent_buffer(tree, start, len, mask);
2198 	if (!eb || IS_ERR(eb))
2199 		return NULL;
2200 
2201 	if (eb->flags & EXTENT_BUFFER_FILLED)
2202 		goto lru_add;
2203 
2204 	if (page0) {
2205 		eb->first_page = page0;
2206 		i = 1;
2207 		index++;
2208 		page_cache_get(page0);
2209 		mark_page_accessed(page0);
2210 		set_page_extent_mapped(page0);
2211 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2212 				 len << 2);
2213 	} else {
2214 		i = 0;
2215 	}
2216 	for (; i < num_pages; i++, index++) {
2217 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2218 		if (!p) {
2219 			WARN_ON(1);
2220 			goto fail;
2221 		}
2222 		set_page_extent_mapped(p);
2223 		mark_page_accessed(p);
2224 		if (i == 0) {
2225 			eb->first_page = p;
2226 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2227 					 len << 2);
2228 		} else {
2229 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2230 		}
2231 		if (!PageUptodate(p))
2232 			uptodate = 0;
2233 		unlock_page(p);
2234 	}
2235 	if (uptodate)
2236 		eb->flags |= EXTENT_UPTODATE;
2237 	eb->flags |= EXTENT_BUFFER_FILLED;
2238 
2239 lru_add:
2240 	spin_lock(&tree->lru_lock);
2241 	add_lru(tree, eb);
2242 	spin_unlock(&tree->lru_lock);
2243 	return eb;
2244 
2245 fail:
2246 	spin_lock(&tree->lru_lock);
2247 	list_del_init(&eb->lru);
2248 	spin_unlock(&tree->lru_lock);
2249 	if (!atomic_dec_and_test(&eb->refs))
2250 		return NULL;
2251 	for (index = 0; index < i; index++) {
2252 		page_cache_release(extent_buffer_page(eb, index));
2253 	}
2254 	__free_extent_buffer(eb);
2255 	return NULL;
2256 }
2257 EXPORT_SYMBOL(alloc_extent_buffer);
2258 
2259 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2260 					 u64 start, unsigned long len,
2261 					  gfp_t mask)
2262 {
2263 	unsigned long num_pages = num_extent_pages(start, len);
2264 	unsigned long i;
2265 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2266 	struct extent_buffer *eb;
2267 	struct page *p;
2268 	struct address_space *mapping = tree->mapping;
2269 	int uptodate = 1;
2270 
2271 	eb = __alloc_extent_buffer(tree, start, len, mask);
2272 	if (!eb || IS_ERR(eb))
2273 		return NULL;
2274 
2275 	if (eb->flags & EXTENT_BUFFER_FILLED)
2276 		goto lru_add;
2277 
2278 	for (i = 0; i < num_pages; i++, index++) {
2279 		p = find_lock_page(mapping, index);
2280 		if (!p) {
2281 			goto fail;
2282 		}
2283 		set_page_extent_mapped(p);
2284 		mark_page_accessed(p);
2285 
2286 		if (i == 0) {
2287 			eb->first_page = p;
2288 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2289 					 len << 2);
2290 		} else {
2291 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2292 		}
2293 
2294 		if (!PageUptodate(p))
2295 			uptodate = 0;
2296 		unlock_page(p);
2297 	}
2298 	if (uptodate)
2299 		eb->flags |= EXTENT_UPTODATE;
2300 	eb->flags |= EXTENT_BUFFER_FILLED;
2301 
2302 lru_add:
2303 	spin_lock(&tree->lru_lock);
2304 	add_lru(tree, eb);
2305 	spin_unlock(&tree->lru_lock);
2306 	return eb;
2307 fail:
2308 	spin_lock(&tree->lru_lock);
2309 	list_del_init(&eb->lru);
2310 	spin_unlock(&tree->lru_lock);
2311 	if (!atomic_dec_and_test(&eb->refs))
2312 		return NULL;
2313 	for (index = 0; index < i; index++) {
2314 		page_cache_release(extent_buffer_page(eb, index));
2315 	}
2316 	__free_extent_buffer(eb);
2317 	return NULL;
2318 }
2319 EXPORT_SYMBOL(find_extent_buffer);
2320 
2321 void free_extent_buffer(struct extent_buffer *eb)
2322 {
2323 	unsigned long i;
2324 	unsigned long num_pages;
2325 
2326 	if (!eb)
2327 		return;
2328 
2329 	if (!atomic_dec_and_test(&eb->refs))
2330 		return;
2331 
2332 	num_pages = num_extent_pages(eb->start, eb->len);
2333 
2334 	for (i = 0; i < num_pages; i++) {
2335 		page_cache_release(extent_buffer_page(eb, i));
2336 	}
2337 	__free_extent_buffer(eb);
2338 }
2339 EXPORT_SYMBOL(free_extent_buffer);
2340 
2341 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2342 			      struct extent_buffer *eb)
2343 {
2344 	int set;
2345 	unsigned long i;
2346 	unsigned long num_pages;
2347 	struct page *page;
2348 
2349 	u64 start = eb->start;
2350 	u64 end = start + eb->len - 1;
2351 
2352 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2353 	num_pages = num_extent_pages(eb->start, eb->len);
2354 
2355 	for (i = 0; i < num_pages; i++) {
2356 		page = extent_buffer_page(eb, i);
2357 		lock_page(page);
2358 		/*
2359 		 * if we're on the last page or the first page and the
2360 		 * block isn't aligned on a page boundary, do extra checks
2361 		 * to make sure we don't clean page that is partially dirty
2362 		 */
2363 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2364 		    ((i == num_pages - 1) &&
2365 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2366 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2367 			end  = start + PAGE_CACHE_SIZE - 1;
2368 			if (test_range_bit(tree, start, end,
2369 					   EXTENT_DIRTY, 0)) {
2370 				unlock_page(page);
2371 				continue;
2372 			}
2373 		}
2374 		clear_page_dirty_for_io(page);
2375 		unlock_page(page);
2376 	}
2377 	return 0;
2378 }
2379 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2380 
2381 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2382 				    struct extent_buffer *eb)
2383 {
2384 	return wait_on_extent_writeback(tree, eb->start,
2385 					eb->start + eb->len - 1);
2386 }
2387 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2388 
2389 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2390 			     struct extent_buffer *eb)
2391 {
2392 	unsigned long i;
2393 	unsigned long num_pages;
2394 
2395 	num_pages = num_extent_pages(eb->start, eb->len);
2396 	for (i = 0; i < num_pages; i++) {
2397 		struct page *page = extent_buffer_page(eb, i);
2398 		/* writepage may need to do something special for the
2399 		 * first page, we have to make sure page->private is
2400 		 * properly set.  releasepage may drop page->private
2401 		 * on us if the page isn't already dirty.
2402 		 */
2403 		if (i == 0) {
2404 			lock_page(page);
2405 			set_page_private(page,
2406 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2407 					 eb->len << 2);
2408 		}
2409 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2410 		if (i == 0)
2411 			unlock_page(page);
2412 	}
2413 	return set_extent_dirty(tree, eb->start,
2414 				eb->start + eb->len - 1, GFP_NOFS);
2415 }
2416 EXPORT_SYMBOL(set_extent_buffer_dirty);
2417 
2418 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2419 				struct extent_buffer *eb)
2420 {
2421 	unsigned long i;
2422 	struct page *page;
2423 	unsigned long num_pages;
2424 
2425 	num_pages = num_extent_pages(eb->start, eb->len);
2426 
2427 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2428 			    GFP_NOFS);
2429 	for (i = 0; i < num_pages; i++) {
2430 		page = extent_buffer_page(eb, i);
2431 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2432 		    ((i == num_pages - 1) &&
2433 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2434 			check_page_uptodate(tree, page);
2435 			continue;
2436 		}
2437 		SetPageUptodate(page);
2438 	}
2439 	return 0;
2440 }
2441 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2442 
2443 int extent_buffer_uptodate(struct extent_map_tree *tree,
2444 			     struct extent_buffer *eb)
2445 {
2446 	if (eb->flags & EXTENT_UPTODATE)
2447 		return 1;
2448 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2449 			   EXTENT_UPTODATE, 1);
2450 }
2451 EXPORT_SYMBOL(extent_buffer_uptodate);
2452 
2453 int read_extent_buffer_pages(struct extent_map_tree *tree,
2454 			     struct extent_buffer *eb,
2455 			     u64 start,
2456 			     int wait)
2457 {
2458 	unsigned long i;
2459 	unsigned long start_i;
2460 	struct page *page;
2461 	int err;
2462 	int ret = 0;
2463 	unsigned long num_pages;
2464 
2465 	if (eb->flags & EXTENT_UPTODATE)
2466 		return 0;
2467 
2468 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2469 			   EXTENT_UPTODATE, 1)) {
2470 		return 0;
2471 	}
2472 	if (start) {
2473 		WARN_ON(start < eb->start);
2474 		start_i = (start >> PAGE_CACHE_SHIFT) -
2475 			(eb->start >> PAGE_CACHE_SHIFT);
2476 	} else {
2477 		start_i = 0;
2478 	}
2479 
2480 	num_pages = num_extent_pages(eb->start, eb->len);
2481 	for (i = start_i; i < num_pages; i++) {
2482 		page = extent_buffer_page(eb, i);
2483 		if (PageUptodate(page)) {
2484 			continue;
2485 		}
2486 		if (!wait) {
2487 			if (TestSetPageLocked(page)) {
2488 				continue;
2489 			}
2490 		} else {
2491 			lock_page(page);
2492 		}
2493 		if (!PageUptodate(page)) {
2494 			err = page->mapping->a_ops->readpage(NULL, page);
2495 			if (err) {
2496 				ret = err;
2497 			}
2498 		} else {
2499 			unlock_page(page);
2500 		}
2501 	}
2502 
2503 	if (ret || !wait) {
2504 		return ret;
2505 	}
2506 
2507 	for (i = start_i; i < num_pages; i++) {
2508 		page = extent_buffer_page(eb, i);
2509 		wait_on_page_locked(page);
2510 		if (!PageUptodate(page)) {
2511 			ret = -EIO;
2512 		}
2513 	}
2514 	if (!ret)
2515 		eb->flags |= EXTENT_UPTODATE;
2516 	return ret;
2517 }
2518 EXPORT_SYMBOL(read_extent_buffer_pages);
2519 
2520 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2521 			unsigned long start,
2522 			unsigned long len)
2523 {
2524 	size_t cur;
2525 	size_t offset;
2526 	struct page *page;
2527 	char *kaddr;
2528 	char *dst = (char *)dstv;
2529 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2530 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2531 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2532 
2533 	WARN_ON(start > eb->len);
2534 	WARN_ON(start + len > eb->start + eb->len);
2535 
2536 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2537 
2538 	while(len > 0) {
2539 		page = extent_buffer_page(eb, i);
2540 		if (!PageUptodate(page)) {
2541 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2542 			WARN_ON(1);
2543 		}
2544 		WARN_ON(!PageUptodate(page));
2545 
2546 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2547 		kaddr = kmap_atomic(page, KM_USER1);
2548 		memcpy(dst, kaddr + offset, cur);
2549 		kunmap_atomic(kaddr, KM_USER1);
2550 
2551 		dst += cur;
2552 		len -= cur;
2553 		offset = 0;
2554 		i++;
2555 	}
2556 }
2557 EXPORT_SYMBOL(read_extent_buffer);
2558 
2559 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2560 			       unsigned long min_len, char **token, char **map,
2561 			       unsigned long *map_start,
2562 			       unsigned long *map_len, int km)
2563 {
2564 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2565 	char *kaddr;
2566 	struct page *p;
2567 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2568 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2569 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2570 		PAGE_CACHE_SHIFT;
2571 
2572 	if (i != end_i)
2573 		return -EINVAL;
2574 
2575 	if (i == 0) {
2576 		offset = start_offset;
2577 		*map_start = 0;
2578 	} else {
2579 		offset = 0;
2580 		*map_start = (i << PAGE_CACHE_SHIFT) - start_offset;
2581 	}
2582 	if (start + min_len > eb->len) {
2583 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2584 		WARN_ON(1);
2585 	}
2586 
2587 	p = extent_buffer_page(eb, i);
2588 	WARN_ON(!PageUptodate(p));
2589 	kaddr = kmap_atomic(p, km);
2590 	*token = kaddr;
2591 	*map = kaddr + offset;
2592 	*map_len = PAGE_CACHE_SIZE - offset;
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL(map_private_extent_buffer);
2596 
2597 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2598 		      unsigned long min_len,
2599 		      char **token, char **map,
2600 		      unsigned long *map_start,
2601 		      unsigned long *map_len, int km)
2602 {
2603 	int err;
2604 	int save = 0;
2605 	if (eb->map_token) {
2606 		unmap_extent_buffer(eb, eb->map_token, km);
2607 		eb->map_token = NULL;
2608 		save = 1;
2609 	}
2610 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2611 				       map_start, map_len, km);
2612 	if (!err && save) {
2613 		eb->map_token = *token;
2614 		eb->kaddr = *map;
2615 		eb->map_start = *map_start;
2616 		eb->map_len = *map_len;
2617 	}
2618 	return err;
2619 }
2620 EXPORT_SYMBOL(map_extent_buffer);
2621 
2622 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2623 {
2624 	kunmap_atomic(token, km);
2625 }
2626 EXPORT_SYMBOL(unmap_extent_buffer);
2627 
2628 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2629 			  unsigned long start,
2630 			  unsigned long len)
2631 {
2632 	size_t cur;
2633 	size_t offset;
2634 	struct page *page;
2635 	char *kaddr;
2636 	char *ptr = (char *)ptrv;
2637 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2638 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2639 	int ret = 0;
2640 
2641 	WARN_ON(start > eb->len);
2642 	WARN_ON(start + len > eb->start + eb->len);
2643 
2644 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2645 
2646 	while(len > 0) {
2647 		page = extent_buffer_page(eb, i);
2648 		WARN_ON(!PageUptodate(page));
2649 
2650 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2651 
2652 		kaddr = kmap_atomic(page, KM_USER0);
2653 		ret = memcmp(ptr, kaddr + offset, cur);
2654 		kunmap_atomic(kaddr, KM_USER0);
2655 		if (ret)
2656 			break;
2657 
2658 		ptr += cur;
2659 		len -= cur;
2660 		offset = 0;
2661 		i++;
2662 	}
2663 	return ret;
2664 }
2665 EXPORT_SYMBOL(memcmp_extent_buffer);
2666 
2667 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2668 			 unsigned long start, unsigned long len)
2669 {
2670 	size_t cur;
2671 	size_t offset;
2672 	struct page *page;
2673 	char *kaddr;
2674 	char *src = (char *)srcv;
2675 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2676 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2677 
2678 	WARN_ON(start > eb->len);
2679 	WARN_ON(start + len > eb->start + eb->len);
2680 
2681 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2682 
2683 	while(len > 0) {
2684 		page = extent_buffer_page(eb, i);
2685 		WARN_ON(!PageUptodate(page));
2686 
2687 		cur = min(len, PAGE_CACHE_SIZE - offset);
2688 		kaddr = kmap_atomic(page, KM_USER1);
2689 		memcpy(kaddr + offset, src, cur);
2690 		kunmap_atomic(kaddr, KM_USER1);
2691 
2692 		src += cur;
2693 		len -= cur;
2694 		offset = 0;
2695 		i++;
2696 	}
2697 }
2698 EXPORT_SYMBOL(write_extent_buffer);
2699 
2700 void memset_extent_buffer(struct extent_buffer *eb, char c,
2701 			  unsigned long start, unsigned long len)
2702 {
2703 	size_t cur;
2704 	size_t offset;
2705 	struct page *page;
2706 	char *kaddr;
2707 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2708 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2709 
2710 	WARN_ON(start > eb->len);
2711 	WARN_ON(start + len > eb->start + eb->len);
2712 
2713 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2714 
2715 	while(len > 0) {
2716 		page = extent_buffer_page(eb, i);
2717 		WARN_ON(!PageUptodate(page));
2718 
2719 		cur = min(len, PAGE_CACHE_SIZE - offset);
2720 		kaddr = kmap_atomic(page, KM_USER0);
2721 		memset(kaddr + offset, c, cur);
2722 		kunmap_atomic(kaddr, KM_USER0);
2723 
2724 		len -= cur;
2725 		offset = 0;
2726 		i++;
2727 	}
2728 }
2729 EXPORT_SYMBOL(memset_extent_buffer);
2730 
2731 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2732 			unsigned long dst_offset, unsigned long src_offset,
2733 			unsigned long len)
2734 {
2735 	u64 dst_len = dst->len;
2736 	size_t cur;
2737 	size_t offset;
2738 	struct page *page;
2739 	char *kaddr;
2740 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2741 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2742 
2743 	WARN_ON(src->len != dst_len);
2744 
2745 	offset = (start_offset + dst_offset) &
2746 		((unsigned long)PAGE_CACHE_SIZE - 1);
2747 
2748 	while(len > 0) {
2749 		page = extent_buffer_page(dst, i);
2750 		WARN_ON(!PageUptodate(page));
2751 
2752 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2753 
2754 		kaddr = kmap_atomic(page, KM_USER0);
2755 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2756 		kunmap_atomic(kaddr, KM_USER0);
2757 
2758 		src_offset += cur;
2759 		len -= cur;
2760 		offset = 0;
2761 		i++;
2762 	}
2763 }
2764 EXPORT_SYMBOL(copy_extent_buffer);
2765 
2766 static void move_pages(struct page *dst_page, struct page *src_page,
2767 		       unsigned long dst_off, unsigned long src_off,
2768 		       unsigned long len)
2769 {
2770 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2771 	if (dst_page == src_page) {
2772 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2773 	} else {
2774 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2775 		char *p = dst_kaddr + dst_off + len;
2776 		char *s = src_kaddr + src_off + len;
2777 
2778 		while (len--)
2779 			*--p = *--s;
2780 
2781 		kunmap_atomic(src_kaddr, KM_USER1);
2782 	}
2783 	kunmap_atomic(dst_kaddr, KM_USER0);
2784 }
2785 
2786 static void copy_pages(struct page *dst_page, struct page *src_page,
2787 		       unsigned long dst_off, unsigned long src_off,
2788 		       unsigned long len)
2789 {
2790 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2791 	char *src_kaddr;
2792 
2793 	if (dst_page != src_page)
2794 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2795 	else
2796 		src_kaddr = dst_kaddr;
2797 
2798 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2799 	kunmap_atomic(dst_kaddr, KM_USER0);
2800 	if (dst_page != src_page)
2801 		kunmap_atomic(src_kaddr, KM_USER1);
2802 }
2803 
2804 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2805 			   unsigned long src_offset, unsigned long len)
2806 {
2807 	size_t cur;
2808 	size_t dst_off_in_page;
2809 	size_t src_off_in_page;
2810 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2811 	unsigned long dst_i;
2812 	unsigned long src_i;
2813 
2814 	if (src_offset + len > dst->len) {
2815 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2816 		       src_offset, len, dst->len);
2817 		BUG_ON(1);
2818 	}
2819 	if (dst_offset + len > dst->len) {
2820 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2821 		       dst_offset, len, dst->len);
2822 		BUG_ON(1);
2823 	}
2824 
2825 	while(len > 0) {
2826 		dst_off_in_page = (start_offset + dst_offset) &
2827 			((unsigned long)PAGE_CACHE_SIZE - 1);
2828 		src_off_in_page = (start_offset + src_offset) &
2829 			((unsigned long)PAGE_CACHE_SIZE - 1);
2830 
2831 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2832 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2833 
2834 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2835 					       src_off_in_page));
2836 		cur = min_t(unsigned long, cur,
2837 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2838 
2839 		copy_pages(extent_buffer_page(dst, dst_i),
2840 			   extent_buffer_page(dst, src_i),
2841 			   dst_off_in_page, src_off_in_page, cur);
2842 
2843 		src_offset += cur;
2844 		dst_offset += cur;
2845 		len -= cur;
2846 	}
2847 }
2848 EXPORT_SYMBOL(memcpy_extent_buffer);
2849 
2850 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2851 			   unsigned long src_offset, unsigned long len)
2852 {
2853 	size_t cur;
2854 	size_t dst_off_in_page;
2855 	size_t src_off_in_page;
2856 	unsigned long dst_end = dst_offset + len - 1;
2857 	unsigned long src_end = src_offset + len - 1;
2858 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2859 	unsigned long dst_i;
2860 	unsigned long src_i;
2861 
2862 	if (src_offset + len > dst->len) {
2863 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2864 		       src_offset, len, dst->len);
2865 		BUG_ON(1);
2866 	}
2867 	if (dst_offset + len > dst->len) {
2868 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2869 		       dst_offset, len, dst->len);
2870 		BUG_ON(1);
2871 	}
2872 	if (dst_offset < src_offset) {
2873 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2874 		return;
2875 	}
2876 	while(len > 0) {
2877 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2878 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2879 
2880 		dst_off_in_page = (start_offset + dst_end) &
2881 			((unsigned long)PAGE_CACHE_SIZE - 1);
2882 		src_off_in_page = (start_offset + src_end) &
2883 			((unsigned long)PAGE_CACHE_SIZE - 1);
2884 
2885 		cur = min_t(unsigned long, len, src_off_in_page + 1);
2886 		cur = min(cur, dst_off_in_page + 1);
2887 		move_pages(extent_buffer_page(dst, dst_i),
2888 			   extent_buffer_page(dst, src_i),
2889 			   dst_off_in_page - cur + 1,
2890 			   src_off_in_page - cur + 1, cur);
2891 
2892 		dst_end -= cur;
2893 		src_end -= cur;
2894 		len -= cur;
2895 	}
2896 }
2897 EXPORT_SYMBOL(memmove_extent_buffer);
2898