xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 2f4cbe64)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 int __init extent_map_init(void)
46 {
47 	extent_map_cache = btrfs_cache_create("extent_map",
48 					    sizeof(struct extent_map), 0,
49 					    NULL);
50 	if (!extent_map_cache)
51 		return -ENOMEM;
52 	extent_state_cache = btrfs_cache_create("extent_state",
53 					    sizeof(struct extent_state), 0,
54 					    NULL);
55 	if (!extent_state_cache)
56 		goto free_map_cache;
57 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
58 					    sizeof(struct extent_buffer), 0,
59 					    NULL);
60 	if (!extent_buffer_cache)
61 		goto free_state_cache;
62 	return 0;
63 
64 free_state_cache:
65 	kmem_cache_destroy(extent_state_cache);
66 free_map_cache:
67 	kmem_cache_destroy(extent_map_cache);
68 	return -ENOMEM;
69 }
70 
71 void __exit extent_map_exit(void)
72 {
73 	struct extent_state *state;
74 
75 	while (!list_empty(&states)) {
76 		state = list_entry(states.next, struct extent_state, list);
77 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
78 		list_del(&state->list);
79 		kmem_cache_free(extent_state_cache, state);
80 
81 	}
82 
83 	if (extent_map_cache)
84 		kmem_cache_destroy(extent_map_cache);
85 	if (extent_state_cache)
86 		kmem_cache_destroy(extent_state_cache);
87 	if (extent_buffer_cache)
88 		kmem_cache_destroy(extent_buffer_cache);
89 }
90 
91 void extent_map_tree_init(struct extent_map_tree *tree,
92 			  struct address_space *mapping, gfp_t mask)
93 {
94 	tree->map.rb_node = NULL;
95 	tree->state.rb_node = NULL;
96 	tree->ops = NULL;
97 	rwlock_init(&tree->lock);
98 	spin_lock_init(&tree->lru_lock);
99 	tree->mapping = mapping;
100 	INIT_LIST_HEAD(&tree->buffer_lru);
101 	tree->lru_size = 0;
102 }
103 EXPORT_SYMBOL(extent_map_tree_init);
104 
105 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
106 {
107 	struct extent_buffer *eb;
108 	while(!list_empty(&tree->buffer_lru)) {
109 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
110 				lru);
111 		list_del_init(&eb->lru);
112 		free_extent_buffer(eb);
113 	}
114 }
115 EXPORT_SYMBOL(extent_map_tree_empty_lru);
116 
117 struct extent_map *alloc_extent_map(gfp_t mask)
118 {
119 	struct extent_map *em;
120 	em = kmem_cache_alloc(extent_map_cache, mask);
121 	if (!em || IS_ERR(em))
122 		return em;
123 	em->in_tree = 0;
124 	atomic_set(&em->refs, 1);
125 	return em;
126 }
127 EXPORT_SYMBOL(alloc_extent_map);
128 
129 void free_extent_map(struct extent_map *em)
130 {
131 	if (!em)
132 		return;
133 	if (atomic_dec_and_test(&em->refs)) {
134 		WARN_ON(em->in_tree);
135 		kmem_cache_free(extent_map_cache, em);
136 	}
137 }
138 EXPORT_SYMBOL(free_extent_map);
139 
140 
141 struct extent_state *alloc_extent_state(gfp_t mask)
142 {
143 	struct extent_state *state;
144 	unsigned long flags;
145 
146 	state = kmem_cache_alloc(extent_state_cache, mask);
147 	if (!state || IS_ERR(state))
148 		return state;
149 	state->state = 0;
150 	state->in_tree = 0;
151 	state->private = 0;
152 
153 	spin_lock_irqsave(&state_lock, flags);
154 	list_add(&state->list, &states);
155 	spin_unlock_irqrestore(&state_lock, flags);
156 
157 	atomic_set(&state->refs, 1);
158 	init_waitqueue_head(&state->wq);
159 	return state;
160 }
161 EXPORT_SYMBOL(alloc_extent_state);
162 
163 void free_extent_state(struct extent_state *state)
164 {
165 	unsigned long flags;
166 	if (!state)
167 		return;
168 	if (atomic_dec_and_test(&state->refs)) {
169 		WARN_ON(state->in_tree);
170 		spin_lock_irqsave(&state_lock, flags);
171 		list_del(&state->list);
172 		spin_unlock_irqrestore(&state_lock, flags);
173 		kmem_cache_free(extent_state_cache, state);
174 	}
175 }
176 EXPORT_SYMBOL(free_extent_state);
177 
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179 				   struct rb_node *node)
180 {
181 	struct rb_node ** p = &root->rb_node;
182 	struct rb_node * parent = NULL;
183 	struct tree_entry *entry;
184 
185 	while(*p) {
186 		parent = *p;
187 		entry = rb_entry(parent, struct tree_entry, rb_node);
188 
189 		if (offset < entry->start)
190 			p = &(*p)->rb_left;
191 		else if (offset > entry->end)
192 			p = &(*p)->rb_right;
193 		else
194 			return parent;
195 	}
196 
197 	entry = rb_entry(node, struct tree_entry, rb_node);
198 	entry->in_tree = 1;
199 	rb_link_node(node, parent, p);
200 	rb_insert_color(node, root);
201 	return NULL;
202 }
203 
204 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
205 				   struct rb_node **prev_ret)
206 {
207 	struct rb_node * n = root->rb_node;
208 	struct rb_node *prev = NULL;
209 	struct tree_entry *entry;
210 	struct tree_entry *prev_entry = NULL;
211 
212 	while(n) {
213 		entry = rb_entry(n, struct tree_entry, rb_node);
214 		prev = n;
215 		prev_entry = entry;
216 
217 		if (offset < entry->start)
218 			n = n->rb_left;
219 		else if (offset > entry->end)
220 			n = n->rb_right;
221 		else
222 			return n;
223 	}
224 	if (!prev_ret)
225 		return NULL;
226 	while(prev && offset > prev_entry->end) {
227 		prev = rb_next(prev);
228 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
229 	}
230 	*prev_ret = prev;
231 	return NULL;
232 }
233 
234 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
235 {
236 	struct rb_node *prev;
237 	struct rb_node *ret;
238 	ret = __tree_search(root, offset, &prev);
239 	if (!ret)
240 		return prev;
241 	return ret;
242 }
243 
244 static int tree_delete(struct rb_root *root, u64 offset)
245 {
246 	struct rb_node *node;
247 	struct tree_entry *entry;
248 
249 	node = __tree_search(root, offset, NULL);
250 	if (!node)
251 		return -ENOENT;
252 	entry = rb_entry(node, struct tree_entry, rb_node);
253 	entry->in_tree = 0;
254 	rb_erase(node, root);
255 	return 0;
256 }
257 
258 /*
259  * add_extent_mapping tries a simple backward merge with existing
260  * mappings.  The extent_map struct passed in will be inserted into
261  * the tree directly (no copies made, just a reference taken).
262  */
263 int add_extent_mapping(struct extent_map_tree *tree,
264 		       struct extent_map *em)
265 {
266 	int ret = 0;
267 	struct extent_map *prev = NULL;
268 	struct rb_node *rb;
269 
270 	write_lock_irq(&tree->lock);
271 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
272 	if (rb) {
273 		prev = rb_entry(rb, struct extent_map, rb_node);
274 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
275 		ret = -EEXIST;
276 		goto out;
277 	}
278 	atomic_inc(&em->refs);
279 	if (em->start != 0) {
280 		rb = rb_prev(&em->rb_node);
281 		if (rb)
282 			prev = rb_entry(rb, struct extent_map, rb_node);
283 		if (prev && prev->end + 1 == em->start &&
284 		    ((em->block_start == EXTENT_MAP_HOLE &&
285 		      prev->block_start == EXTENT_MAP_HOLE) ||
286 		     (em->block_start == EXTENT_MAP_INLINE &&
287 		      prev->block_start == EXTENT_MAP_INLINE) ||
288 		     (em->block_start == EXTENT_MAP_DELALLOC &&
289 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
290 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
291 		      em->block_start == prev->block_end + 1))) {
292 			em->start = prev->start;
293 			em->block_start = prev->block_start;
294 			rb_erase(&prev->rb_node, &tree->map);
295 			prev->in_tree = 0;
296 			free_extent_map(prev);
297 		}
298 	 }
299 out:
300 	write_unlock_irq(&tree->lock);
301 	return ret;
302 }
303 EXPORT_SYMBOL(add_extent_mapping);
304 
305 /*
306  * lookup_extent_mapping returns the first extent_map struct in the
307  * tree that intersects the [start, end] (inclusive) range.  There may
308  * be additional objects in the tree that intersect, so check the object
309  * returned carefully to make sure you don't need additional lookups.
310  */
311 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
312 					 u64 start, u64 end)
313 {
314 	struct extent_map *em;
315 	struct rb_node *rb_node;
316 
317 	read_lock_irq(&tree->lock);
318 	rb_node = tree_search(&tree->map, start);
319 	if (!rb_node) {
320 		em = NULL;
321 		goto out;
322 	}
323 	if (IS_ERR(rb_node)) {
324 		em = ERR_PTR(PTR_ERR(rb_node));
325 		goto out;
326 	}
327 	em = rb_entry(rb_node, struct extent_map, rb_node);
328 	if (em->end < start || em->start > end) {
329 		em = NULL;
330 		goto out;
331 	}
332 	atomic_inc(&em->refs);
333 out:
334 	read_unlock_irq(&tree->lock);
335 	return em;
336 }
337 EXPORT_SYMBOL(lookup_extent_mapping);
338 
339 /*
340  * removes an extent_map struct from the tree.  No reference counts are
341  * dropped, and no checks are done to  see if the range is in use
342  */
343 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
344 {
345 	int ret;
346 
347 	write_lock_irq(&tree->lock);
348 	ret = tree_delete(&tree->map, em->end);
349 	write_unlock_irq(&tree->lock);
350 	return ret;
351 }
352 EXPORT_SYMBOL(remove_extent_mapping);
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static int merge_state(struct extent_map_tree *tree,
364 		       struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & EXTENT_IOBITS)
370 		return 0;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			state->start = other->start;
378 			other->in_tree = 0;
379 			rb_erase(&other->rb_node, &tree->state);
380 			free_extent_state(other);
381 		}
382 	}
383 	other_node = rb_next(&state->rb_node);
384 	if (other_node) {
385 		other = rb_entry(other_node, struct extent_state, rb_node);
386 		if (other->start == state->end + 1 &&
387 		    other->state == state->state) {
388 			other->start = state->start;
389 			state->in_tree = 0;
390 			rb_erase(&state->rb_node, &tree->state);
391 			free_extent_state(state);
392 		}
393 	}
394 	return 0;
395 }
396 
397 /*
398  * insert an extent_state struct into the tree.  'bits' are set on the
399  * struct before it is inserted.
400  *
401  * This may return -EEXIST if the extent is already there, in which case the
402  * state struct is freed.
403  *
404  * The tree lock is not taken internally.  This is a utility function and
405  * probably isn't what you want to call (see set/clear_extent_bit).
406  */
407 static int insert_state(struct extent_map_tree *tree,
408 			struct extent_state *state, u64 start, u64 end,
409 			int bits)
410 {
411 	struct rb_node *node;
412 
413 	if (end < start) {
414 		printk("end < start %Lu %Lu\n", end, start);
415 		WARN_ON(1);
416 	}
417 	state->state |= bits;
418 	state->start = start;
419 	state->end = end;
420 	node = tree_insert(&tree->state, end, &state->rb_node);
421 	if (node) {
422 		struct extent_state *found;
423 		found = rb_entry(node, struct extent_state, rb_node);
424 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
425 		free_extent_state(state);
426 		return -EEXIST;
427 	}
428 	merge_state(tree, state);
429 	return 0;
430 }
431 
432 /*
433  * split a given extent state struct in two, inserting the preallocated
434  * struct 'prealloc' as the newly created second half.  'split' indicates an
435  * offset inside 'orig' where it should be split.
436  *
437  * Before calling,
438  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
439  * are two extent state structs in the tree:
440  * prealloc: [orig->start, split - 1]
441  * orig: [ split, orig->end ]
442  *
443  * The tree locks are not taken by this function. They need to be held
444  * by the caller.
445  */
446 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
447 		       struct extent_state *prealloc, u64 split)
448 {
449 	struct rb_node *node;
450 	prealloc->start = orig->start;
451 	prealloc->end = split - 1;
452 	prealloc->state = orig->state;
453 	orig->start = split;
454 
455 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
456 	if (node) {
457 		struct extent_state *found;
458 		found = rb_entry(node, struct extent_state, rb_node);
459 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
460 		free_extent_state(prealloc);
461 		return -EEXIST;
462 	}
463 	return 0;
464 }
465 
466 /*
467  * utility function to clear some bits in an extent state struct.
468  * it will optionally wake up any one waiting on this state (wake == 1), or
469  * forcibly remove the state from the tree (delete == 1).
470  *
471  * If no bits are set on the state struct after clearing things, the
472  * struct is freed and removed from the tree
473  */
474 static int clear_state_bit(struct extent_map_tree *tree,
475 			    struct extent_state *state, int bits, int wake,
476 			    int delete)
477 {
478 	int ret = state->state & bits;
479 	state->state &= ~bits;
480 	if (wake)
481 		wake_up(&state->wq);
482 	if (delete || state->state == 0) {
483 		if (state->in_tree) {
484 			rb_erase(&state->rb_node, &tree->state);
485 			state->in_tree = 0;
486 			free_extent_state(state);
487 		} else {
488 			WARN_ON(1);
489 		}
490 	} else {
491 		merge_state(tree, state);
492 	}
493 	return ret;
494 }
495 
496 /*
497  * clear some bits on a range in the tree.  This may require splitting
498  * or inserting elements in the tree, so the gfp mask is used to
499  * indicate which allocations or sleeping are allowed.
500  *
501  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
502  * the given range from the tree regardless of state (ie for truncate).
503  *
504  * the range [start, end] is inclusive.
505  *
506  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
507  * bits were already set, or zero if none of the bits were already set.
508  */
509 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
510 		     int bits, int wake, int delete, gfp_t mask)
511 {
512 	struct extent_state *state;
513 	struct extent_state *prealloc = NULL;
514 	struct rb_node *node;
515 	unsigned long flags;
516 	int err;
517 	int set = 0;
518 
519 again:
520 	if (!prealloc && (mask & __GFP_WAIT)) {
521 		prealloc = alloc_extent_state(mask);
522 		if (!prealloc)
523 			return -ENOMEM;
524 	}
525 
526 	write_lock_irqsave(&tree->lock, flags);
527 	/*
528 	 * this search will find the extents that end after
529 	 * our range starts
530 	 */
531 	node = tree_search(&tree->state, start);
532 	if (!node)
533 		goto out;
534 	state = rb_entry(node, struct extent_state, rb_node);
535 	if (state->start > end)
536 		goto out;
537 	WARN_ON(state->end < start);
538 
539 	/*
540 	 *     | ---- desired range ---- |
541 	 *  | state | or
542 	 *  | ------------- state -------------- |
543 	 *
544 	 * We need to split the extent we found, and may flip
545 	 * bits on second half.
546 	 *
547 	 * If the extent we found extends past our range, we
548 	 * just split and search again.  It'll get split again
549 	 * the next time though.
550 	 *
551 	 * If the extent we found is inside our range, we clear
552 	 * the desired bit on it.
553 	 */
554 
555 	if (state->start < start) {
556 		err = split_state(tree, state, prealloc, start);
557 		BUG_ON(err == -EEXIST);
558 		prealloc = NULL;
559 		if (err)
560 			goto out;
561 		if (state->end <= end) {
562 			start = state->end + 1;
563 			set |= clear_state_bit(tree, state, bits,
564 					wake, delete);
565 		} else {
566 			start = state->start;
567 		}
568 		goto search_again;
569 	}
570 	/*
571 	 * | ---- desired range ---- |
572 	 *                        | state |
573 	 * We need to split the extent, and clear the bit
574 	 * on the first half
575 	 */
576 	if (state->start <= end && state->end > end) {
577 		err = split_state(tree, state, prealloc, end + 1);
578 		BUG_ON(err == -EEXIST);
579 
580 		if (wake)
581 			wake_up(&state->wq);
582 		set |= clear_state_bit(tree, prealloc, bits,
583 				       wake, delete);
584 		prealloc = NULL;
585 		goto out;
586 	}
587 
588 	start = state->end + 1;
589 	set |= clear_state_bit(tree, state, bits, wake, delete);
590 	goto search_again;
591 
592 out:
593 	write_unlock_irqrestore(&tree->lock, flags);
594 	if (prealloc)
595 		free_extent_state(prealloc);
596 
597 	return set;
598 
599 search_again:
600 	if (start > end)
601 		goto out;
602 	write_unlock_irqrestore(&tree->lock, flags);
603 	if (mask & __GFP_WAIT)
604 		cond_resched();
605 	goto again;
606 }
607 EXPORT_SYMBOL(clear_extent_bit);
608 
609 static int wait_on_state(struct extent_map_tree *tree,
610 			 struct extent_state *state)
611 {
612 	DEFINE_WAIT(wait);
613 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
614 	read_unlock_irq(&tree->lock);
615 	schedule();
616 	read_lock_irq(&tree->lock);
617 	finish_wait(&state->wq, &wait);
618 	return 0;
619 }
620 
621 /*
622  * waits for one or more bits to clear on a range in the state tree.
623  * The range [start, end] is inclusive.
624  * The tree lock is taken by this function
625  */
626 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
627 {
628 	struct extent_state *state;
629 	struct rb_node *node;
630 
631 	read_lock_irq(&tree->lock);
632 again:
633 	while (1) {
634 		/*
635 		 * this search will find all the extents that end after
636 		 * our range starts
637 		 */
638 		node = tree_search(&tree->state, start);
639 		if (!node)
640 			break;
641 
642 		state = rb_entry(node, struct extent_state, rb_node);
643 
644 		if (state->start > end)
645 			goto out;
646 
647 		if (state->state & bits) {
648 			start = state->start;
649 			atomic_inc(&state->refs);
650 			wait_on_state(tree, state);
651 			free_extent_state(state);
652 			goto again;
653 		}
654 		start = state->end + 1;
655 
656 		if (start > end)
657 			break;
658 
659 		if (need_resched()) {
660 			read_unlock_irq(&tree->lock);
661 			cond_resched();
662 			read_lock_irq(&tree->lock);
663 		}
664 	}
665 out:
666 	read_unlock_irq(&tree->lock);
667 	return 0;
668 }
669 EXPORT_SYMBOL(wait_extent_bit);
670 
671 /*
672  * set some bits on a range in the tree.  This may require allocations
673  * or sleeping, so the gfp mask is used to indicate what is allowed.
674  *
675  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
676  * range already has the desired bits set.  The start of the existing
677  * range is returned in failed_start in this case.
678  *
679  * [start, end] is inclusive
680  * This takes the tree lock.
681  */
682 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
683 		   int exclusive, u64 *failed_start, gfp_t mask)
684 {
685 	struct extent_state *state;
686 	struct extent_state *prealloc = NULL;
687 	struct rb_node *node;
688 	unsigned long flags;
689 	int err = 0;
690 	int set;
691 	u64 last_start;
692 	u64 last_end;
693 again:
694 	if (!prealloc && (mask & __GFP_WAIT)) {
695 		prealloc = alloc_extent_state(mask);
696 		if (!prealloc)
697 			return -ENOMEM;
698 	}
699 
700 	write_lock_irqsave(&tree->lock, flags);
701 	/*
702 	 * this search will find all the extents that end after
703 	 * our range starts.
704 	 */
705 	node = tree_search(&tree->state, start);
706 	if (!node) {
707 		err = insert_state(tree, prealloc, start, end, bits);
708 		prealloc = NULL;
709 		BUG_ON(err == -EEXIST);
710 		goto out;
711 	}
712 
713 	state = rb_entry(node, struct extent_state, rb_node);
714 	last_start = state->start;
715 	last_end = state->end;
716 
717 	/*
718 	 * | ---- desired range ---- |
719 	 * | state |
720 	 *
721 	 * Just lock what we found and keep going
722 	 */
723 	if (state->start == start && state->end <= end) {
724 		set = state->state & bits;
725 		if (set && exclusive) {
726 			*failed_start = state->start;
727 			err = -EEXIST;
728 			goto out;
729 		}
730 		state->state |= bits;
731 		start = state->end + 1;
732 		merge_state(tree, state);
733 		goto search_again;
734 	}
735 
736 	/*
737 	 *     | ---- desired range ---- |
738 	 * | state |
739 	 *   or
740 	 * | ------------- state -------------- |
741 	 *
742 	 * We need to split the extent we found, and may flip bits on
743 	 * second half.
744 	 *
745 	 * If the extent we found extends past our
746 	 * range, we just split and search again.  It'll get split
747 	 * again the next time though.
748 	 *
749 	 * If the extent we found is inside our range, we set the
750 	 * desired bit on it.
751 	 */
752 	if (state->start < start) {
753 		set = state->state & bits;
754 		if (exclusive && set) {
755 			*failed_start = start;
756 			err = -EEXIST;
757 			goto out;
758 		}
759 		err = split_state(tree, state, prealloc, start);
760 		BUG_ON(err == -EEXIST);
761 		prealloc = NULL;
762 		if (err)
763 			goto out;
764 		if (state->end <= end) {
765 			state->state |= bits;
766 			start = state->end + 1;
767 			merge_state(tree, state);
768 		} else {
769 			start = state->start;
770 		}
771 		goto search_again;
772 	}
773 	/*
774 	 * | ---- desired range ---- |
775 	 *     | state | or               | state |
776 	 *
777 	 * There's a hole, we need to insert something in it and
778 	 * ignore the extent we found.
779 	 */
780 	if (state->start > start) {
781 		u64 this_end;
782 		if (end < last_start)
783 			this_end = end;
784 		else
785 			this_end = last_start -1;
786 		err = insert_state(tree, prealloc, start, this_end,
787 				   bits);
788 		prealloc = NULL;
789 		BUG_ON(err == -EEXIST);
790 		if (err)
791 			goto out;
792 		start = this_end + 1;
793 		goto search_again;
794 	}
795 	/*
796 	 * | ---- desired range ---- |
797 	 *                        | state |
798 	 * We need to split the extent, and set the bit
799 	 * on the first half
800 	 */
801 	if (state->start <= end && state->end > end) {
802 		set = state->state & bits;
803 		if (exclusive && set) {
804 			*failed_start = start;
805 			err = -EEXIST;
806 			goto out;
807 		}
808 		err = split_state(tree, state, prealloc, end + 1);
809 		BUG_ON(err == -EEXIST);
810 
811 		prealloc->state |= bits;
812 		merge_state(tree, prealloc);
813 		prealloc = NULL;
814 		goto out;
815 	}
816 
817 	goto search_again;
818 
819 out:
820 	write_unlock_irqrestore(&tree->lock, flags);
821 	if (prealloc)
822 		free_extent_state(prealloc);
823 
824 	return err;
825 
826 search_again:
827 	if (start > end)
828 		goto out;
829 	write_unlock_irqrestore(&tree->lock, flags);
830 	if (mask & __GFP_WAIT)
831 		cond_resched();
832 	goto again;
833 }
834 EXPORT_SYMBOL(set_extent_bit);
835 
836 /* wrappers around set/clear extent bit */
837 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
838 		     gfp_t mask)
839 {
840 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
841 			      mask);
842 }
843 EXPORT_SYMBOL(set_extent_dirty);
844 
845 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
846 		    int bits, gfp_t mask)
847 {
848 	return set_extent_bit(tree, start, end, bits, 0, NULL,
849 			      mask);
850 }
851 EXPORT_SYMBOL(set_extent_bits);
852 
853 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
854 		      int bits, gfp_t mask)
855 {
856 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
857 }
858 EXPORT_SYMBOL(clear_extent_bits);
859 
860 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
861 		     gfp_t mask)
862 {
863 	return set_extent_bit(tree, start, end,
864 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
865 			      mask);
866 }
867 EXPORT_SYMBOL(set_extent_delalloc);
868 
869 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
870 		       gfp_t mask)
871 {
872 	return clear_extent_bit(tree, start, end,
873 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
874 }
875 EXPORT_SYMBOL(clear_extent_dirty);
876 
877 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
878 		     gfp_t mask)
879 {
880 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
881 			      mask);
882 }
883 EXPORT_SYMBOL(set_extent_new);
884 
885 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
886 		       gfp_t mask)
887 {
888 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
889 }
890 EXPORT_SYMBOL(clear_extent_new);
891 
892 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
893 			gfp_t mask)
894 {
895 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
896 			      mask);
897 }
898 EXPORT_SYMBOL(set_extent_uptodate);
899 
900 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
901 			  gfp_t mask)
902 {
903 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
904 }
905 EXPORT_SYMBOL(clear_extent_uptodate);
906 
907 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
908 			 gfp_t mask)
909 {
910 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
911 			      0, NULL, mask);
912 }
913 EXPORT_SYMBOL(set_extent_writeback);
914 
915 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
916 			   gfp_t mask)
917 {
918 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
919 }
920 EXPORT_SYMBOL(clear_extent_writeback);
921 
922 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
923 {
924 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
925 }
926 EXPORT_SYMBOL(wait_on_extent_writeback);
927 
928 /*
929  * locks a range in ascending order, waiting for any locked regions
930  * it hits on the way.  [start,end] are inclusive, and this will sleep.
931  */
932 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
933 {
934 	int err;
935 	u64 failed_start;
936 	while (1) {
937 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
938 				     &failed_start, mask);
939 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
940 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
941 			start = failed_start;
942 		} else {
943 			break;
944 		}
945 		WARN_ON(start > end);
946 	}
947 	return err;
948 }
949 EXPORT_SYMBOL(lock_extent);
950 
951 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
952 		  gfp_t mask)
953 {
954 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
955 }
956 EXPORT_SYMBOL(unlock_extent);
957 
958 /*
959  * helper function to set pages and extents in the tree dirty
960  */
961 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
962 {
963 	unsigned long index = start >> PAGE_CACHE_SHIFT;
964 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
965 	struct page *page;
966 
967 	while (index <= end_index) {
968 		page = find_get_page(tree->mapping, index);
969 		BUG_ON(!page);
970 		__set_page_dirty_nobuffers(page);
971 		page_cache_release(page);
972 		index++;
973 	}
974 	set_extent_dirty(tree, start, end, GFP_NOFS);
975 	return 0;
976 }
977 EXPORT_SYMBOL(set_range_dirty);
978 
979 /*
980  * helper function to set both pages and extents in the tree writeback
981  */
982 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
983 {
984 	unsigned long index = start >> PAGE_CACHE_SHIFT;
985 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
986 	struct page *page;
987 
988 	while (index <= end_index) {
989 		page = find_get_page(tree->mapping, index);
990 		BUG_ON(!page);
991 		set_page_writeback(page);
992 		page_cache_release(page);
993 		index++;
994 	}
995 	set_extent_writeback(tree, start, end, GFP_NOFS);
996 	return 0;
997 }
998 EXPORT_SYMBOL(set_range_writeback);
999 
1000 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1001 			  u64 *start_ret, u64 *end_ret, int bits)
1002 {
1003 	struct rb_node *node;
1004 	struct extent_state *state;
1005 	int ret = 1;
1006 
1007 	read_lock_irq(&tree->lock);
1008 	/*
1009 	 * this search will find all the extents that end after
1010 	 * our range starts.
1011 	 */
1012 	node = tree_search(&tree->state, start);
1013 	if (!node || IS_ERR(node)) {
1014 		goto out;
1015 	}
1016 
1017 	while(1) {
1018 		state = rb_entry(node, struct extent_state, rb_node);
1019 		if (state->end >= start && (state->state & bits)) {
1020 			*start_ret = state->start;
1021 			*end_ret = state->end;
1022 			ret = 0;
1023 			break;
1024 		}
1025 		node = rb_next(node);
1026 		if (!node)
1027 			break;
1028 	}
1029 out:
1030 	read_unlock_irq(&tree->lock);
1031 	return ret;
1032 }
1033 EXPORT_SYMBOL(find_first_extent_bit);
1034 
1035 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1036 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1037 {
1038 	struct rb_node *node;
1039 	struct extent_state *state;
1040 	u64 cur_start = start;
1041 	u64 found = 0;
1042 	u64 total_bytes = 0;
1043 
1044 	write_lock_irq(&tree->lock);
1045 	/*
1046 	 * this search will find all the extents that end after
1047 	 * our range starts.
1048 	 */
1049 search_again:
1050 	node = tree_search(&tree->state, cur_start);
1051 	if (!node || IS_ERR(node)) {
1052 		goto out;
1053 	}
1054 
1055 	while(1) {
1056 		state = rb_entry(node, struct extent_state, rb_node);
1057 		if (state->start != cur_start) {
1058 			goto out;
1059 		}
1060 		if (!(state->state & EXTENT_DELALLOC)) {
1061 			goto out;
1062 		}
1063 		if (state->start >= lock_start) {
1064 			if (state->state & EXTENT_LOCKED) {
1065 				DEFINE_WAIT(wait);
1066 				atomic_inc(&state->refs);
1067 				prepare_to_wait(&state->wq, &wait,
1068 						TASK_UNINTERRUPTIBLE);
1069 				write_unlock_irq(&tree->lock);
1070 				schedule();
1071 				write_lock_irq(&tree->lock);
1072 				finish_wait(&state->wq, &wait);
1073 				free_extent_state(state);
1074 				goto search_again;
1075 			}
1076 			state->state |= EXTENT_LOCKED;
1077 		}
1078 		found++;
1079 		*end = state->end;
1080 		cur_start = state->end + 1;
1081 		node = rb_next(node);
1082 		if (!node)
1083 			break;
1084 		total_bytes += state->end - state->start + 1;
1085 		if (total_bytes >= max_bytes)
1086 			break;
1087 	}
1088 out:
1089 	write_unlock_irq(&tree->lock);
1090 	return found;
1091 }
1092 
1093 /*
1094  * helper function to lock both pages and extents in the tree.
1095  * pages must be locked first.
1096  */
1097 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1098 {
1099 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1100 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1101 	struct page *page;
1102 	int err;
1103 
1104 	while (index <= end_index) {
1105 		page = grab_cache_page(tree->mapping, index);
1106 		if (!page) {
1107 			err = -ENOMEM;
1108 			goto failed;
1109 		}
1110 		if (IS_ERR(page)) {
1111 			err = PTR_ERR(page);
1112 			goto failed;
1113 		}
1114 		index++;
1115 	}
1116 	lock_extent(tree, start, end, GFP_NOFS);
1117 	return 0;
1118 
1119 failed:
1120 	/*
1121 	 * we failed above in getting the page at 'index', so we undo here
1122 	 * up to but not including the page at 'index'
1123 	 */
1124 	end_index = index;
1125 	index = start >> PAGE_CACHE_SHIFT;
1126 	while (index < end_index) {
1127 		page = find_get_page(tree->mapping, index);
1128 		unlock_page(page);
1129 		page_cache_release(page);
1130 		index++;
1131 	}
1132 	return err;
1133 }
1134 EXPORT_SYMBOL(lock_range);
1135 
1136 /*
1137  * helper function to unlock both pages and extents in the tree.
1138  */
1139 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1140 {
1141 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1142 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1143 	struct page *page;
1144 
1145 	while (index <= end_index) {
1146 		page = find_get_page(tree->mapping, index);
1147 		unlock_page(page);
1148 		page_cache_release(page);
1149 		index++;
1150 	}
1151 	unlock_extent(tree, start, end, GFP_NOFS);
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL(unlock_range);
1155 
1156 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1157 {
1158 	struct rb_node *node;
1159 	struct extent_state *state;
1160 	int ret = 0;
1161 
1162 	write_lock_irq(&tree->lock);
1163 	/*
1164 	 * this search will find all the extents that end after
1165 	 * our range starts.
1166 	 */
1167 	node = tree_search(&tree->state, start);
1168 	if (!node || IS_ERR(node)) {
1169 		ret = -ENOENT;
1170 		goto out;
1171 	}
1172 	state = rb_entry(node, struct extent_state, rb_node);
1173 	if (state->start != start) {
1174 		ret = -ENOENT;
1175 		goto out;
1176 	}
1177 	state->private = private;
1178 out:
1179 	write_unlock_irq(&tree->lock);
1180 	return ret;
1181 }
1182 
1183 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1184 {
1185 	struct rb_node *node;
1186 	struct extent_state *state;
1187 	int ret = 0;
1188 
1189 	read_lock_irq(&tree->lock);
1190 	/*
1191 	 * this search will find all the extents that end after
1192 	 * our range starts.
1193 	 */
1194 	node = tree_search(&tree->state, start);
1195 	if (!node || IS_ERR(node)) {
1196 		ret = -ENOENT;
1197 		goto out;
1198 	}
1199 	state = rb_entry(node, struct extent_state, rb_node);
1200 	if (state->start != start) {
1201 		ret = -ENOENT;
1202 		goto out;
1203 	}
1204 	*private = state->private;
1205 out:
1206 	read_unlock_irq(&tree->lock);
1207 	return ret;
1208 }
1209 
1210 /*
1211  * searches a range in the state tree for a given mask.
1212  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1213  * has the bits set.  Otherwise, 1 is returned if any bit in the
1214  * range is found set.
1215  */
1216 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1217 		   int bits, int filled)
1218 {
1219 	struct extent_state *state = NULL;
1220 	struct rb_node *node;
1221 	int bitset = 0;
1222 
1223 	read_lock_irq(&tree->lock);
1224 	node = tree_search(&tree->state, start);
1225 	while (node && start <= end) {
1226 		state = rb_entry(node, struct extent_state, rb_node);
1227 
1228 		if (filled && state->start > start) {
1229 			bitset = 0;
1230 			break;
1231 		}
1232 
1233 		if (state->start > end)
1234 			break;
1235 
1236 		if (state->state & bits) {
1237 			bitset = 1;
1238 			if (!filled)
1239 				break;
1240 		} else if (filled) {
1241 			bitset = 0;
1242 			break;
1243 		}
1244 		start = state->end + 1;
1245 		if (start > end)
1246 			break;
1247 		node = rb_next(node);
1248 	}
1249 	read_unlock_irq(&tree->lock);
1250 	return bitset;
1251 }
1252 EXPORT_SYMBOL(test_range_bit);
1253 
1254 /*
1255  * helper function to set a given page up to date if all the
1256  * extents in the tree for that page are up to date
1257  */
1258 static int check_page_uptodate(struct extent_map_tree *tree,
1259 			       struct page *page)
1260 {
1261 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1262 	u64 end = start + PAGE_CACHE_SIZE - 1;
1263 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1264 		SetPageUptodate(page);
1265 	return 0;
1266 }
1267 
1268 /*
1269  * helper function to unlock a page if all the extents in the tree
1270  * for that page are unlocked
1271  */
1272 static int check_page_locked(struct extent_map_tree *tree,
1273 			     struct page *page)
1274 {
1275 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1276 	u64 end = start + PAGE_CACHE_SIZE - 1;
1277 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1278 		unlock_page(page);
1279 	return 0;
1280 }
1281 
1282 /*
1283  * helper function to end page writeback if all the extents
1284  * in the tree for that page are done with writeback
1285  */
1286 static int check_page_writeback(struct extent_map_tree *tree,
1287 			     struct page *page)
1288 {
1289 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1290 	u64 end = start + PAGE_CACHE_SIZE - 1;
1291 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1292 		end_page_writeback(page);
1293 	return 0;
1294 }
1295 
1296 /* lots and lots of room for performance fixes in the end_bio funcs */
1297 
1298 /*
1299  * after a writepage IO is done, we need to:
1300  * clear the uptodate bits on error
1301  * clear the writeback bits in the extent tree for this IO
1302  * end_page_writeback if the page has no more pending IO
1303  *
1304  * Scheduling is not allowed, so the extent state tree is expected
1305  * to have one and only one object corresponding to this IO.
1306  */
1307 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1308 static void end_bio_extent_writepage(struct bio *bio, int err)
1309 #else
1310 static int end_bio_extent_writepage(struct bio *bio,
1311 				   unsigned int bytes_done, int err)
1312 #endif
1313 {
1314 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1315 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1316 	struct extent_map_tree *tree = bio->bi_private;
1317 	u64 start;
1318 	u64 end;
1319 	int whole_page;
1320 
1321 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1322 	if (bio->bi_size)
1323 		return 1;
1324 #endif
1325 
1326 	do {
1327 		struct page *page = bvec->bv_page;
1328 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1329 			 bvec->bv_offset;
1330 		end = start + bvec->bv_len - 1;
1331 
1332 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1333 			whole_page = 1;
1334 		else
1335 			whole_page = 0;
1336 
1337 		if (--bvec >= bio->bi_io_vec)
1338 			prefetchw(&bvec->bv_page->flags);
1339 
1340 		if (!uptodate) {
1341 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1342 			ClearPageUptodate(page);
1343 			SetPageError(page);
1344 		}
1345 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1346 
1347 		if (whole_page)
1348 			end_page_writeback(page);
1349 		else
1350 			check_page_writeback(tree, page);
1351 		if (tree->ops && tree->ops->writepage_end_io_hook)
1352 			tree->ops->writepage_end_io_hook(page, start, end);
1353 	} while (bvec >= bio->bi_io_vec);
1354 
1355 	bio_put(bio);
1356 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1357 	return 0;
1358 #endif
1359 }
1360 
1361 /*
1362  * after a readpage IO is done, we need to:
1363  * clear the uptodate bits on error
1364  * set the uptodate bits if things worked
1365  * set the page up to date if all extents in the tree are uptodate
1366  * clear the lock bit in the extent tree
1367  * unlock the page if there are no other extents locked for it
1368  *
1369  * Scheduling is not allowed, so the extent state tree is expected
1370  * to have one and only one object corresponding to this IO.
1371  */
1372 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1373 static void end_bio_extent_readpage(struct bio *bio, int err)
1374 #else
1375 static int end_bio_extent_readpage(struct bio *bio,
1376 				   unsigned int bytes_done, int err)
1377 #endif
1378 {
1379 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1380 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1381 	struct extent_map_tree *tree = bio->bi_private;
1382 	u64 start;
1383 	u64 end;
1384 	int whole_page;
1385 	int ret;
1386 
1387 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1388 	if (bio->bi_size)
1389 		return 1;
1390 #endif
1391 
1392 	do {
1393 		struct page *page = bvec->bv_page;
1394 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1395 			bvec->bv_offset;
1396 		end = start + bvec->bv_len - 1;
1397 
1398 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1399 			whole_page = 1;
1400 		else
1401 			whole_page = 0;
1402 
1403 		if (--bvec >= bio->bi_io_vec)
1404 			prefetchw(&bvec->bv_page->flags);
1405 
1406 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1407 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1408 			if (ret)
1409 				uptodate = 0;
1410 		}
1411 		if (uptodate) {
1412 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1413 			if (whole_page)
1414 				SetPageUptodate(page);
1415 			else
1416 				check_page_uptodate(tree, page);
1417 		} else {
1418 			ClearPageUptodate(page);
1419 			SetPageError(page);
1420 		}
1421 
1422 		unlock_extent(tree, start, end, GFP_ATOMIC);
1423 
1424 		if (whole_page)
1425 			unlock_page(page);
1426 		else
1427 			check_page_locked(tree, page);
1428 	} while (bvec >= bio->bi_io_vec);
1429 
1430 	bio_put(bio);
1431 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1432 	return 0;
1433 #endif
1434 }
1435 
1436 /*
1437  * IO done from prepare_write is pretty simple, we just unlock
1438  * the structs in the extent tree when done, and set the uptodate bits
1439  * as appropriate.
1440  */
1441 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1442 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1443 #else
1444 static int end_bio_extent_preparewrite(struct bio *bio,
1445 				       unsigned int bytes_done, int err)
1446 #endif
1447 {
1448 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1449 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1450 	struct extent_map_tree *tree = bio->bi_private;
1451 	u64 start;
1452 	u64 end;
1453 
1454 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1455 	if (bio->bi_size)
1456 		return 1;
1457 #endif
1458 
1459 	do {
1460 		struct page *page = bvec->bv_page;
1461 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1462 			bvec->bv_offset;
1463 		end = start + bvec->bv_len - 1;
1464 
1465 		if (--bvec >= bio->bi_io_vec)
1466 			prefetchw(&bvec->bv_page->flags);
1467 
1468 		if (uptodate) {
1469 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1470 		} else {
1471 			ClearPageUptodate(page);
1472 			SetPageError(page);
1473 		}
1474 
1475 		unlock_extent(tree, start, end, GFP_ATOMIC);
1476 
1477 	} while (bvec >= bio->bi_io_vec);
1478 
1479 	bio_put(bio);
1480 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1481 	return 0;
1482 #endif
1483 }
1484 
1485 static struct bio *
1486 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1487 		 gfp_t gfp_flags)
1488 {
1489 	struct bio *bio;
1490 
1491 	bio = bio_alloc(gfp_flags, nr_vecs);
1492 
1493 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1494 		while (!bio && (nr_vecs /= 2))
1495 			bio = bio_alloc(gfp_flags, nr_vecs);
1496 	}
1497 
1498 	if (bio) {
1499 		bio->bi_bdev = bdev;
1500 		bio->bi_sector = first_sector;
1501 	}
1502 	return bio;
1503 }
1504 
1505 static int submit_one_bio(int rw, struct bio *bio)
1506 {
1507 	int ret = 0;
1508 	bio_get(bio);
1509 	submit_bio(rw, bio);
1510 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1511 		ret = -EOPNOTSUPP;
1512 	bio_put(bio);
1513 	return ret;
1514 }
1515 
1516 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1517 			      struct page *page, sector_t sector,
1518 			      size_t size, unsigned long offset,
1519 			      struct block_device *bdev,
1520 			      struct bio **bio_ret,
1521 			      unsigned long max_pages,
1522 			      bio_end_io_t end_io_func)
1523 {
1524 	int ret = 0;
1525 	struct bio *bio;
1526 	int nr;
1527 
1528 	if (bio_ret && *bio_ret) {
1529 		bio = *bio_ret;
1530 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1531 		    bio_add_page(bio, page, size, offset) < size) {
1532 			ret = submit_one_bio(rw, bio);
1533 			bio = NULL;
1534 		} else {
1535 			return 0;
1536 		}
1537 	}
1538 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1539 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1540 	if (!bio) {
1541 		printk("failed to allocate bio nr %d\n", nr);
1542 	}
1543 	bio_add_page(bio, page, size, offset);
1544 	bio->bi_end_io = end_io_func;
1545 	bio->bi_private = tree;
1546 	if (bio_ret) {
1547 		*bio_ret = bio;
1548 	} else {
1549 		ret = submit_one_bio(rw, bio);
1550 	}
1551 
1552 	return ret;
1553 }
1554 
1555 void set_page_extent_mapped(struct page *page)
1556 {
1557 	if (!PagePrivate(page)) {
1558 		SetPagePrivate(page);
1559 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1560 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1561 		page_cache_get(page);
1562 	}
1563 }
1564 
1565 /*
1566  * basic readpage implementation.  Locked extent state structs are inserted
1567  * into the tree that are removed when the IO is done (by the end_io
1568  * handlers)
1569  */
1570 static int __extent_read_full_page(struct extent_map_tree *tree,
1571 				   struct page *page,
1572 				   get_extent_t *get_extent,
1573 				   struct bio **bio)
1574 {
1575 	struct inode *inode = page->mapping->host;
1576 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1577 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1578 	u64 end;
1579 	u64 cur = start;
1580 	u64 extent_offset;
1581 	u64 last_byte = i_size_read(inode);
1582 	u64 block_start;
1583 	u64 cur_end;
1584 	sector_t sector;
1585 	struct extent_map *em;
1586 	struct block_device *bdev;
1587 	int ret;
1588 	int nr = 0;
1589 	size_t page_offset = 0;
1590 	size_t iosize;
1591 	size_t blocksize = inode->i_sb->s_blocksize;
1592 
1593 	set_page_extent_mapped(page);
1594 
1595 	end = page_end;
1596 	lock_extent(tree, start, end, GFP_NOFS);
1597 
1598 	while (cur <= end) {
1599 		if (cur >= last_byte) {
1600 			iosize = PAGE_CACHE_SIZE - page_offset;
1601 			zero_user_page(page, page_offset, iosize, KM_USER0);
1602 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1603 					    GFP_NOFS);
1604 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1605 			break;
1606 		}
1607 		em = get_extent(inode, page, page_offset, cur, end, 0);
1608 		if (IS_ERR(em) || !em) {
1609 			SetPageError(page);
1610 			unlock_extent(tree, cur, end, GFP_NOFS);
1611 			break;
1612 		}
1613 
1614 		extent_offset = cur - em->start;
1615 		BUG_ON(em->end < cur);
1616 		BUG_ON(end < cur);
1617 
1618 		iosize = min(em->end - cur, end - cur) + 1;
1619 		cur_end = min(em->end, end);
1620 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1621 		sector = (em->block_start + extent_offset) >> 9;
1622 		bdev = em->bdev;
1623 		block_start = em->block_start;
1624 		free_extent_map(em);
1625 		em = NULL;
1626 
1627 		/* we've found a hole, just zero and go on */
1628 		if (block_start == EXTENT_MAP_HOLE) {
1629 			zero_user_page(page, page_offset, iosize, KM_USER0);
1630 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1631 					    GFP_NOFS);
1632 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1633 			cur = cur + iosize;
1634 			page_offset += iosize;
1635 			continue;
1636 		}
1637 		/* the get_extent function already copied into the page */
1638 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1639 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1640 			cur = cur + iosize;
1641 			page_offset += iosize;
1642 			continue;
1643 		}
1644 
1645 		ret = 0;
1646 		if (tree->ops && tree->ops->readpage_io_hook) {
1647 			ret = tree->ops->readpage_io_hook(page, cur,
1648 							  cur + iosize - 1);
1649 		}
1650 		if (!ret) {
1651 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1652 			nr -= page->index;
1653 			ret = submit_extent_page(READ, tree, page,
1654 					 sector, iosize, page_offset,
1655 					 bdev, bio, nr,
1656 					 end_bio_extent_readpage);
1657 		}
1658 		if (ret)
1659 			SetPageError(page);
1660 		cur = cur + iosize;
1661 		page_offset += iosize;
1662 		nr++;
1663 	}
1664 	if (!nr) {
1665 		if (!PageError(page))
1666 			SetPageUptodate(page);
1667 		unlock_page(page);
1668 	}
1669 	return 0;
1670 }
1671 
1672 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1673 			    get_extent_t *get_extent)
1674 {
1675 	struct bio *bio = NULL;
1676 	int ret;
1677 
1678 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1679 	if (bio)
1680 		submit_one_bio(READ, bio);
1681 	return ret;
1682 }
1683 EXPORT_SYMBOL(extent_read_full_page);
1684 
1685 /*
1686  * the writepage semantics are similar to regular writepage.  extent
1687  * records are inserted to lock ranges in the tree, and as dirty areas
1688  * are found, they are marked writeback.  Then the lock bits are removed
1689  * and the end_io handler clears the writeback ranges
1690  */
1691 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1692 			      void *data)
1693 {
1694 	struct inode *inode = page->mapping->host;
1695 	struct extent_page_data *epd = data;
1696 	struct extent_map_tree *tree = epd->tree;
1697 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1698 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1699 	u64 end;
1700 	u64 cur = start;
1701 	u64 extent_offset;
1702 	u64 last_byte = i_size_read(inode);
1703 	u64 block_start;
1704 	u64 iosize;
1705 	sector_t sector;
1706 	struct extent_map *em;
1707 	struct block_device *bdev;
1708 	int ret;
1709 	int nr = 0;
1710 	size_t page_offset = 0;
1711 	size_t blocksize;
1712 	loff_t i_size = i_size_read(inode);
1713 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1714 	u64 nr_delalloc;
1715 	u64 delalloc_end;
1716 
1717 	WARN_ON(!PageLocked(page));
1718 	if (page->index > end_index) {
1719 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1720 		unlock_page(page);
1721 		return 0;
1722 	}
1723 
1724 	if (page->index == end_index) {
1725 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1726 		zero_user_page(page, offset,
1727 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1728 	}
1729 
1730 	set_page_extent_mapped(page);
1731 
1732 	lock_extent(tree, start, page_end, GFP_NOFS);
1733 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1734 					       &delalloc_end,
1735 					       128 * 1024 * 1024);
1736 	if (nr_delalloc) {
1737 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1738 		if (delalloc_end >= page_end + 1) {
1739 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1740 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1741 					 1, 0, GFP_NOFS);
1742 		}
1743 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1744 				 0, 0, GFP_NOFS);
1745 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1746 			printk("found delalloc bits after clear extent_bit\n");
1747 		}
1748 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1749 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1750 	}
1751 
1752 	end = page_end;
1753 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1754 		printk("found delalloc bits after lock_extent\n");
1755 	}
1756 
1757 	if (last_byte <= start) {
1758 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1759 		goto done;
1760 	}
1761 
1762 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1763 	blocksize = inode->i_sb->s_blocksize;
1764 
1765 	while (cur <= end) {
1766 		if (cur >= last_byte) {
1767 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1768 			break;
1769 		}
1770 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1771 		if (IS_ERR(em) || !em) {
1772 			SetPageError(page);
1773 			break;
1774 		}
1775 
1776 		extent_offset = cur - em->start;
1777 		BUG_ON(em->end < cur);
1778 		BUG_ON(end < cur);
1779 		iosize = min(em->end - cur, end - cur) + 1;
1780 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1781 		sector = (em->block_start + extent_offset) >> 9;
1782 		bdev = em->bdev;
1783 		block_start = em->block_start;
1784 		free_extent_map(em);
1785 		em = NULL;
1786 
1787 		if (block_start == EXTENT_MAP_HOLE ||
1788 		    block_start == EXTENT_MAP_INLINE) {
1789 			clear_extent_dirty(tree, cur,
1790 					   cur + iosize - 1, GFP_NOFS);
1791 			cur = cur + iosize;
1792 			page_offset += iosize;
1793 			continue;
1794 		}
1795 
1796 		/* leave this out until we have a page_mkwrite call */
1797 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1798 				   EXTENT_DIRTY, 0)) {
1799 			cur = cur + iosize;
1800 			page_offset += iosize;
1801 			continue;
1802 		}
1803 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1804 		if (tree->ops && tree->ops->writepage_io_hook) {
1805 			ret = tree->ops->writepage_io_hook(page, cur,
1806 						cur + iosize - 1);
1807 		} else {
1808 			ret = 0;
1809 		}
1810 		if (ret)
1811 			SetPageError(page);
1812 		else {
1813 			unsigned long nr = end_index + 1;
1814 			set_range_writeback(tree, cur, cur + iosize - 1);
1815 
1816 			ret = submit_extent_page(WRITE, tree, page, sector,
1817 						 iosize, page_offset, bdev,
1818 						 &epd->bio, nr,
1819 						 end_bio_extent_writepage);
1820 			if (ret)
1821 				SetPageError(page);
1822 		}
1823 		cur = cur + iosize;
1824 		page_offset += iosize;
1825 		nr++;
1826 	}
1827 done:
1828 	unlock_extent(tree, start, page_end, GFP_NOFS);
1829 	unlock_page(page);
1830 	return 0;
1831 }
1832 
1833 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1834 			  get_extent_t *get_extent,
1835 			  struct writeback_control *wbc)
1836 {
1837 	int ret;
1838 	struct extent_page_data epd = {
1839 		.bio = NULL,
1840 		.tree = tree,
1841 		.get_extent = get_extent,
1842 	};
1843 
1844 	ret = __extent_writepage(page, wbc, &epd);
1845 	if (epd.bio)
1846 		submit_one_bio(WRITE, epd.bio);
1847 	return ret;
1848 }
1849 EXPORT_SYMBOL(extent_write_full_page);
1850 
1851 int extent_writepages(struct extent_map_tree *tree,
1852 		      struct address_space *mapping,
1853 		      get_extent_t *get_extent,
1854 		      struct writeback_control *wbc)
1855 {
1856 	int ret;
1857 	struct extent_page_data epd = {
1858 		.bio = NULL,
1859 		.tree = tree,
1860 		.get_extent = get_extent,
1861 	};
1862 
1863 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
1864 	if (epd.bio)
1865 		submit_one_bio(WRITE, epd.bio);
1866 	return ret;
1867 }
1868 EXPORT_SYMBOL(extent_writepages);
1869 
1870 int extent_readpages(struct extent_map_tree *tree,
1871 		     struct address_space *mapping,
1872 		     struct list_head *pages, unsigned nr_pages,
1873 		     get_extent_t get_extent)
1874 {
1875 	struct bio *bio = NULL;
1876 	unsigned page_idx;
1877 	struct pagevec pvec;
1878 
1879 	pagevec_init(&pvec, 0);
1880 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
1881 		struct page *page = list_entry(pages->prev, struct page, lru);
1882 
1883 		prefetchw(&page->flags);
1884 		list_del(&page->lru);
1885 		/*
1886 		 * what we want to do here is call add_to_page_cache_lru,
1887 		 * but that isn't exported, so we reproduce it here
1888 		 */
1889 		if (!add_to_page_cache(page, mapping,
1890 					page->index, GFP_KERNEL)) {
1891 
1892 			/* open coding of lru_cache_add, also not exported */
1893 			page_cache_get(page);
1894 			if (!pagevec_add(&pvec, page))
1895 				__pagevec_lru_add(&pvec);
1896 			__extent_read_full_page(tree, page, get_extent, &bio);
1897 		}
1898 		page_cache_release(page);
1899 	}
1900 	if (pagevec_count(&pvec))
1901 		__pagevec_lru_add(&pvec);
1902 	BUG_ON(!list_empty(pages));
1903 	if (bio)
1904 		submit_one_bio(READ, bio);
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL(extent_readpages);
1908 
1909 /*
1910  * basic invalidatepage code, this waits on any locked or writeback
1911  * ranges corresponding to the page, and then deletes any extent state
1912  * records from the tree
1913  */
1914 int extent_invalidatepage(struct extent_map_tree *tree,
1915 			  struct page *page, unsigned long offset)
1916 {
1917 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
1918 	u64 end = start + PAGE_CACHE_SIZE - 1;
1919 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1920 
1921 	start += (offset + blocksize -1) & ~(blocksize - 1);
1922 	if (start > end)
1923 		return 0;
1924 
1925 	lock_extent(tree, start, end, GFP_NOFS);
1926 	wait_on_extent_writeback(tree, start, end);
1927 	clear_extent_bit(tree, start, end,
1928 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1929 			 1, 1, GFP_NOFS);
1930 	return 0;
1931 }
1932 EXPORT_SYMBOL(extent_invalidatepage);
1933 
1934 /*
1935  * simple commit_write call, set_range_dirty is used to mark both
1936  * the pages and the extent records as dirty
1937  */
1938 int extent_commit_write(struct extent_map_tree *tree,
1939 			struct inode *inode, struct page *page,
1940 			unsigned from, unsigned to)
1941 {
1942 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1943 
1944 	set_page_extent_mapped(page);
1945 	set_page_dirty(page);
1946 
1947 	if (pos > inode->i_size) {
1948 		i_size_write(inode, pos);
1949 		mark_inode_dirty(inode);
1950 	}
1951 	return 0;
1952 }
1953 EXPORT_SYMBOL(extent_commit_write);
1954 
1955 int extent_prepare_write(struct extent_map_tree *tree,
1956 			 struct inode *inode, struct page *page,
1957 			 unsigned from, unsigned to, get_extent_t *get_extent)
1958 {
1959 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
1960 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1961 	u64 block_start;
1962 	u64 orig_block_start;
1963 	u64 block_end;
1964 	u64 cur_end;
1965 	struct extent_map *em;
1966 	unsigned blocksize = 1 << inode->i_blkbits;
1967 	size_t page_offset = 0;
1968 	size_t block_off_start;
1969 	size_t block_off_end;
1970 	int err = 0;
1971 	int iocount = 0;
1972 	int ret = 0;
1973 	int isnew;
1974 
1975 	set_page_extent_mapped(page);
1976 
1977 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1978 	block_end = (page_start + to - 1) | (blocksize - 1);
1979 	orig_block_start = block_start;
1980 
1981 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1982 	while(block_start <= block_end) {
1983 		em = get_extent(inode, page, page_offset, block_start,
1984 				block_end, 1);
1985 		if (IS_ERR(em) || !em) {
1986 			goto err;
1987 		}
1988 		cur_end = min(block_end, em->end);
1989 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1990 		block_off_end = block_off_start + blocksize;
1991 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1992 
1993 		if (!PageUptodate(page) && isnew &&
1994 		    (block_off_end > to || block_off_start < from)) {
1995 			void *kaddr;
1996 
1997 			kaddr = kmap_atomic(page, KM_USER0);
1998 			if (block_off_end > to)
1999 				memset(kaddr + to, 0, block_off_end - to);
2000 			if (block_off_start < from)
2001 				memset(kaddr + block_off_start, 0,
2002 				       from - block_off_start);
2003 			flush_dcache_page(page);
2004 			kunmap_atomic(kaddr, KM_USER0);
2005 		}
2006 		if (!isnew && !PageUptodate(page) &&
2007 		    (block_off_end > to || block_off_start < from) &&
2008 		    !test_range_bit(tree, block_start, cur_end,
2009 				    EXTENT_UPTODATE, 1)) {
2010 			u64 sector;
2011 			u64 extent_offset = block_start - em->start;
2012 			size_t iosize;
2013 			sector = (em->block_start + extent_offset) >> 9;
2014 			iosize = (cur_end - block_start + blocksize - 1) &
2015 				~((u64)blocksize - 1);
2016 			/*
2017 			 * we've already got the extent locked, but we
2018 			 * need to split the state such that our end_bio
2019 			 * handler can clear the lock.
2020 			 */
2021 			set_extent_bit(tree, block_start,
2022 				       block_start + iosize - 1,
2023 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2024 			ret = submit_extent_page(READ, tree, page,
2025 					 sector, iosize, page_offset, em->bdev,
2026 					 NULL, 1,
2027 					 end_bio_extent_preparewrite);
2028 			iocount++;
2029 			block_start = block_start + iosize;
2030 		} else {
2031 			set_extent_uptodate(tree, block_start, cur_end,
2032 					    GFP_NOFS);
2033 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2034 			block_start = cur_end + 1;
2035 		}
2036 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2037 		free_extent_map(em);
2038 	}
2039 	if (iocount) {
2040 		wait_extent_bit(tree, orig_block_start,
2041 				block_end, EXTENT_LOCKED);
2042 	}
2043 	check_page_uptodate(tree, page);
2044 err:
2045 	/* FIXME, zero out newly allocated blocks on error */
2046 	return err;
2047 }
2048 EXPORT_SYMBOL(extent_prepare_write);
2049 
2050 /*
2051  * a helper for releasepage.  As long as there are no locked extents
2052  * in the range corresponding to the page, both state records and extent
2053  * map records are removed
2054  */
2055 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2056 {
2057 	struct extent_map *em;
2058 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2059 	u64 end = start + PAGE_CACHE_SIZE - 1;
2060 	u64 orig_start = start;
2061 	int ret = 1;
2062 
2063 	while (start <= end) {
2064 		em = lookup_extent_mapping(tree, start, end);
2065 		if (!em || IS_ERR(em))
2066 			break;
2067 		if (!test_range_bit(tree, em->start, em->end,
2068 				    EXTENT_LOCKED, 0)) {
2069 			remove_extent_mapping(tree, em);
2070 			/* once for the rb tree */
2071 			free_extent_map(em);
2072 		}
2073 		start = em->end + 1;
2074 		/* once for us */
2075 		free_extent_map(em);
2076 	}
2077 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2078 		ret = 0;
2079 	else
2080 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2081 				 1, 1, GFP_NOFS);
2082 	return ret;
2083 }
2084 EXPORT_SYMBOL(try_release_extent_mapping);
2085 
2086 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2087 		get_extent_t *get_extent)
2088 {
2089 	struct inode *inode = mapping->host;
2090 	u64 start = iblock << inode->i_blkbits;
2091 	u64 end = start + (1 << inode->i_blkbits) - 1;
2092 	sector_t sector = 0;
2093 	struct extent_map *em;
2094 
2095 	em = get_extent(inode, NULL, 0, start, end, 0);
2096 	if (!em || IS_ERR(em))
2097 		return 0;
2098 
2099 	if (em->block_start == EXTENT_MAP_INLINE ||
2100 	    em->block_start == EXTENT_MAP_HOLE)
2101 		goto out;
2102 
2103 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2104 out:
2105 	free_extent_map(em);
2106 	return sector;
2107 }
2108 
2109 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2110 {
2111 	if (list_empty(&eb->lru)) {
2112 		extent_buffer_get(eb);
2113 		list_add(&eb->lru, &tree->buffer_lru);
2114 		tree->lru_size++;
2115 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2116 			struct extent_buffer *rm;
2117 			rm = list_entry(tree->buffer_lru.prev,
2118 					struct extent_buffer, lru);
2119 			tree->lru_size--;
2120 			list_del_init(&rm->lru);
2121 			free_extent_buffer(rm);
2122 		}
2123 	} else
2124 		list_move(&eb->lru, &tree->buffer_lru);
2125 	return 0;
2126 }
2127 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2128 				      u64 start, unsigned long len)
2129 {
2130 	struct list_head *lru = &tree->buffer_lru;
2131 	struct list_head *cur = lru->next;
2132 	struct extent_buffer *eb;
2133 
2134 	if (list_empty(lru))
2135 		return NULL;
2136 
2137 	do {
2138 		eb = list_entry(cur, struct extent_buffer, lru);
2139 		if (eb->start == start && eb->len == len) {
2140 			extent_buffer_get(eb);
2141 			return eb;
2142 		}
2143 		cur = cur->next;
2144 	} while (cur != lru);
2145 	return NULL;
2146 }
2147 
2148 static inline unsigned long num_extent_pages(u64 start, u64 len)
2149 {
2150 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2151 		(start >> PAGE_CACHE_SHIFT);
2152 }
2153 
2154 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2155 					      unsigned long i)
2156 {
2157 	struct page *p;
2158 	struct address_space *mapping;
2159 
2160 	if (i == 0)
2161 		return eb->first_page;
2162 	i += eb->start >> PAGE_CACHE_SHIFT;
2163 	mapping = eb->first_page->mapping;
2164 	read_lock_irq(&mapping->tree_lock);
2165 	p = radix_tree_lookup(&mapping->page_tree, i);
2166 	read_unlock_irq(&mapping->tree_lock);
2167 	return p;
2168 }
2169 
2170 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2171 						   u64 start,
2172 						   unsigned long len,
2173 						   gfp_t mask)
2174 {
2175 	struct extent_buffer *eb = NULL;
2176 
2177 	spin_lock(&tree->lru_lock);
2178 	eb = find_lru(tree, start, len);
2179 	spin_unlock(&tree->lru_lock);
2180 	if (eb) {
2181 		return eb;
2182 	}
2183 
2184 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2185 	INIT_LIST_HEAD(&eb->lru);
2186 	eb->start = start;
2187 	eb->len = len;
2188 	atomic_set(&eb->refs, 1);
2189 
2190 	return eb;
2191 }
2192 
2193 static void __free_extent_buffer(struct extent_buffer *eb)
2194 {
2195 	kmem_cache_free(extent_buffer_cache, eb);
2196 }
2197 
2198 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2199 					  u64 start, unsigned long len,
2200 					  struct page *page0,
2201 					  gfp_t mask)
2202 {
2203 	unsigned long num_pages = num_extent_pages(start, len);
2204 	unsigned long i;
2205 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2206 	struct extent_buffer *eb;
2207 	struct page *p;
2208 	struct address_space *mapping = tree->mapping;
2209 	int uptodate = 1;
2210 
2211 	eb = __alloc_extent_buffer(tree, start, len, mask);
2212 	if (!eb || IS_ERR(eb))
2213 		return NULL;
2214 
2215 	if (eb->flags & EXTENT_BUFFER_FILLED)
2216 		goto lru_add;
2217 
2218 	if (page0) {
2219 		eb->first_page = page0;
2220 		i = 1;
2221 		index++;
2222 		page_cache_get(page0);
2223 		mark_page_accessed(page0);
2224 		set_page_extent_mapped(page0);
2225 		WARN_ON(!PageUptodate(page0));
2226 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2227 				 len << 2);
2228 	} else {
2229 		i = 0;
2230 	}
2231 	for (; i < num_pages; i++, index++) {
2232 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2233 		if (!p) {
2234 			WARN_ON(1);
2235 			goto fail;
2236 		}
2237 		set_page_extent_mapped(p);
2238 		mark_page_accessed(p);
2239 		if (i == 0) {
2240 			eb->first_page = p;
2241 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2242 					 len << 2);
2243 		} else {
2244 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2245 		}
2246 		if (!PageUptodate(p))
2247 			uptodate = 0;
2248 		unlock_page(p);
2249 	}
2250 	if (uptodate)
2251 		eb->flags |= EXTENT_UPTODATE;
2252 	eb->flags |= EXTENT_BUFFER_FILLED;
2253 
2254 lru_add:
2255 	spin_lock(&tree->lru_lock);
2256 	add_lru(tree, eb);
2257 	spin_unlock(&tree->lru_lock);
2258 	return eb;
2259 
2260 fail:
2261 	spin_lock(&tree->lru_lock);
2262 	list_del_init(&eb->lru);
2263 	spin_unlock(&tree->lru_lock);
2264 	if (!atomic_dec_and_test(&eb->refs))
2265 		return NULL;
2266 	for (index = 1; index < i; index++) {
2267 		page_cache_release(extent_buffer_page(eb, index));
2268 	}
2269 	if (i > 0)
2270 		page_cache_release(extent_buffer_page(eb, 0));
2271 	__free_extent_buffer(eb);
2272 	return NULL;
2273 }
2274 EXPORT_SYMBOL(alloc_extent_buffer);
2275 
2276 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2277 					 u64 start, unsigned long len,
2278 					  gfp_t mask)
2279 {
2280 	unsigned long num_pages = num_extent_pages(start, len);
2281 	unsigned long i;
2282 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2283 	struct extent_buffer *eb;
2284 	struct page *p;
2285 	struct address_space *mapping = tree->mapping;
2286 	int uptodate = 1;
2287 
2288 	eb = __alloc_extent_buffer(tree, start, len, mask);
2289 	if (!eb || IS_ERR(eb))
2290 		return NULL;
2291 
2292 	if (eb->flags & EXTENT_BUFFER_FILLED)
2293 		goto lru_add;
2294 
2295 	for (i = 0; i < num_pages; i++, index++) {
2296 		p = find_lock_page(mapping, index);
2297 		if (!p) {
2298 			goto fail;
2299 		}
2300 		set_page_extent_mapped(p);
2301 		mark_page_accessed(p);
2302 
2303 		if (i == 0) {
2304 			eb->first_page = p;
2305 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2306 					 len << 2);
2307 		} else {
2308 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2309 		}
2310 
2311 		if (!PageUptodate(p))
2312 			uptodate = 0;
2313 		unlock_page(p);
2314 	}
2315 	if (uptodate)
2316 		eb->flags |= EXTENT_UPTODATE;
2317 	eb->flags |= EXTENT_BUFFER_FILLED;
2318 
2319 lru_add:
2320 	spin_lock(&tree->lru_lock);
2321 	add_lru(tree, eb);
2322 	spin_unlock(&tree->lru_lock);
2323 	return eb;
2324 fail:
2325 	spin_lock(&tree->lru_lock);
2326 	list_del_init(&eb->lru);
2327 	spin_unlock(&tree->lru_lock);
2328 	if (!atomic_dec_and_test(&eb->refs))
2329 		return NULL;
2330 	for (index = 1; index < i; index++) {
2331 		page_cache_release(extent_buffer_page(eb, index));
2332 	}
2333 	if (i > 0)
2334 		page_cache_release(extent_buffer_page(eb, 0));
2335 	__free_extent_buffer(eb);
2336 	return NULL;
2337 }
2338 EXPORT_SYMBOL(find_extent_buffer);
2339 
2340 void free_extent_buffer(struct extent_buffer *eb)
2341 {
2342 	unsigned long i;
2343 	unsigned long num_pages;
2344 
2345 	if (!eb)
2346 		return;
2347 
2348 	if (!atomic_dec_and_test(&eb->refs))
2349 		return;
2350 
2351 	WARN_ON(!list_empty(&eb->lru));
2352 	num_pages = num_extent_pages(eb->start, eb->len);
2353 
2354 	for (i = 1; i < num_pages; i++) {
2355 		page_cache_release(extent_buffer_page(eb, i));
2356 	}
2357 	page_cache_release(extent_buffer_page(eb, 0));
2358 	__free_extent_buffer(eb);
2359 }
2360 EXPORT_SYMBOL(free_extent_buffer);
2361 
2362 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2363 			      struct extent_buffer *eb)
2364 {
2365 	int set;
2366 	unsigned long i;
2367 	unsigned long num_pages;
2368 	struct page *page;
2369 
2370 	u64 start = eb->start;
2371 	u64 end = start + eb->len - 1;
2372 
2373 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2374 	num_pages = num_extent_pages(eb->start, eb->len);
2375 
2376 	for (i = 0; i < num_pages; i++) {
2377 		page = extent_buffer_page(eb, i);
2378 		lock_page(page);
2379 		/*
2380 		 * if we're on the last page or the first page and the
2381 		 * block isn't aligned on a page boundary, do extra checks
2382 		 * to make sure we don't clean page that is partially dirty
2383 		 */
2384 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2385 		    ((i == num_pages - 1) &&
2386 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2387 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2388 			end  = start + PAGE_CACHE_SIZE - 1;
2389 			if (test_range_bit(tree, start, end,
2390 					   EXTENT_DIRTY, 0)) {
2391 				unlock_page(page);
2392 				continue;
2393 			}
2394 		}
2395 		clear_page_dirty_for_io(page);
2396 		unlock_page(page);
2397 	}
2398 	return 0;
2399 }
2400 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2401 
2402 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2403 				    struct extent_buffer *eb)
2404 {
2405 	return wait_on_extent_writeback(tree, eb->start,
2406 					eb->start + eb->len - 1);
2407 }
2408 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2409 
2410 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2411 			     struct extent_buffer *eb)
2412 {
2413 	unsigned long i;
2414 	unsigned long num_pages;
2415 
2416 	num_pages = num_extent_pages(eb->start, eb->len);
2417 	for (i = 0; i < num_pages; i++) {
2418 		struct page *page = extent_buffer_page(eb, i);
2419 		/* writepage may need to do something special for the
2420 		 * first page, we have to make sure page->private is
2421 		 * properly set.  releasepage may drop page->private
2422 		 * on us if the page isn't already dirty.
2423 		 */
2424 		if (i == 0) {
2425 			lock_page(page);
2426 			set_page_private(page,
2427 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2428 					 eb->len << 2);
2429 		}
2430 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2431 		if (i == 0)
2432 			unlock_page(page);
2433 	}
2434 	return set_extent_dirty(tree, eb->start,
2435 				eb->start + eb->len - 1, GFP_NOFS);
2436 }
2437 EXPORT_SYMBOL(set_extent_buffer_dirty);
2438 
2439 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2440 				struct extent_buffer *eb)
2441 {
2442 	unsigned long i;
2443 	struct page *page;
2444 	unsigned long num_pages;
2445 
2446 	num_pages = num_extent_pages(eb->start, eb->len);
2447 
2448 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2449 			    GFP_NOFS);
2450 	for (i = 0; i < num_pages; i++) {
2451 		page = extent_buffer_page(eb, i);
2452 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2453 		    ((i == num_pages - 1) &&
2454 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2455 			check_page_uptodate(tree, page);
2456 			continue;
2457 		}
2458 		SetPageUptodate(page);
2459 	}
2460 	return 0;
2461 }
2462 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2463 
2464 int extent_buffer_uptodate(struct extent_map_tree *tree,
2465 			     struct extent_buffer *eb)
2466 {
2467 	if (eb->flags & EXTENT_UPTODATE)
2468 		return 1;
2469 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2470 			   EXTENT_UPTODATE, 1);
2471 }
2472 EXPORT_SYMBOL(extent_buffer_uptodate);
2473 
2474 int read_extent_buffer_pages(struct extent_map_tree *tree,
2475 			     struct extent_buffer *eb,
2476 			     u64 start,
2477 			     int wait)
2478 {
2479 	unsigned long i;
2480 	unsigned long start_i;
2481 	struct page *page;
2482 	int err;
2483 	int ret = 0;
2484 	unsigned long num_pages;
2485 
2486 	if (eb->flags & EXTENT_UPTODATE)
2487 		return 0;
2488 
2489 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2490 			   EXTENT_UPTODATE, 1)) {
2491 		return 0;
2492 	}
2493 
2494 	if (start) {
2495 		WARN_ON(start < eb->start);
2496 		start_i = (start >> PAGE_CACHE_SHIFT) -
2497 			(eb->start >> PAGE_CACHE_SHIFT);
2498 	} else {
2499 		start_i = 0;
2500 	}
2501 
2502 	num_pages = num_extent_pages(eb->start, eb->len);
2503 	for (i = start_i; i < num_pages; i++) {
2504 		page = extent_buffer_page(eb, i);
2505 		if (PageUptodate(page)) {
2506 			continue;
2507 		}
2508 		if (!wait) {
2509 			if (TestSetPageLocked(page)) {
2510 				continue;
2511 			}
2512 		} else {
2513 			lock_page(page);
2514 		}
2515 		if (!PageUptodate(page)) {
2516 			err = page->mapping->a_ops->readpage(NULL, page);
2517 			if (err) {
2518 				ret = err;
2519 			}
2520 		} else {
2521 			unlock_page(page);
2522 		}
2523 	}
2524 
2525 	if (ret || !wait) {
2526 		return ret;
2527 	}
2528 
2529 	for (i = start_i; i < num_pages; i++) {
2530 		page = extent_buffer_page(eb, i);
2531 		wait_on_page_locked(page);
2532 		if (!PageUptodate(page)) {
2533 			ret = -EIO;
2534 		}
2535 	}
2536 	if (!ret)
2537 		eb->flags |= EXTENT_UPTODATE;
2538 	return ret;
2539 }
2540 EXPORT_SYMBOL(read_extent_buffer_pages);
2541 
2542 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2543 			unsigned long start,
2544 			unsigned long len)
2545 {
2546 	size_t cur;
2547 	size_t offset;
2548 	struct page *page;
2549 	char *kaddr;
2550 	char *dst = (char *)dstv;
2551 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2552 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2553 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2554 
2555 	WARN_ON(start > eb->len);
2556 	WARN_ON(start + len > eb->start + eb->len);
2557 
2558 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2559 
2560 	while(len > 0) {
2561 		page = extent_buffer_page(eb, i);
2562 		if (!PageUptodate(page)) {
2563 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2564 			WARN_ON(1);
2565 		}
2566 		WARN_ON(!PageUptodate(page));
2567 
2568 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2569 		kaddr = kmap_atomic(page, KM_USER1);
2570 		memcpy(dst, kaddr + offset, cur);
2571 		kunmap_atomic(kaddr, KM_USER1);
2572 
2573 		dst += cur;
2574 		len -= cur;
2575 		offset = 0;
2576 		i++;
2577 	}
2578 }
2579 EXPORT_SYMBOL(read_extent_buffer);
2580 
2581 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2582 			       unsigned long min_len, char **token, char **map,
2583 			       unsigned long *map_start,
2584 			       unsigned long *map_len, int km)
2585 {
2586 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2587 	char *kaddr;
2588 	struct page *p;
2589 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2590 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2591 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2592 		PAGE_CACHE_SHIFT;
2593 
2594 	if (i != end_i)
2595 		return -EINVAL;
2596 
2597 	if (i == 0) {
2598 		offset = start_offset;
2599 		*map_start = 0;
2600 	} else {
2601 		offset = 0;
2602 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2603 	}
2604 	if (start + min_len > eb->len) {
2605 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2606 		WARN_ON(1);
2607 	}
2608 
2609 	p = extent_buffer_page(eb, i);
2610 	WARN_ON(!PageUptodate(p));
2611 	kaddr = kmap_atomic(p, km);
2612 	*token = kaddr;
2613 	*map = kaddr + offset;
2614 	*map_len = PAGE_CACHE_SIZE - offset;
2615 	return 0;
2616 }
2617 EXPORT_SYMBOL(map_private_extent_buffer);
2618 
2619 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2620 		      unsigned long min_len,
2621 		      char **token, char **map,
2622 		      unsigned long *map_start,
2623 		      unsigned long *map_len, int km)
2624 {
2625 	int err;
2626 	int save = 0;
2627 	if (eb->map_token) {
2628 		unmap_extent_buffer(eb, eb->map_token, km);
2629 		eb->map_token = NULL;
2630 		save = 1;
2631 	}
2632 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2633 				       map_start, map_len, km);
2634 	if (!err && save) {
2635 		eb->map_token = *token;
2636 		eb->kaddr = *map;
2637 		eb->map_start = *map_start;
2638 		eb->map_len = *map_len;
2639 	}
2640 	return err;
2641 }
2642 EXPORT_SYMBOL(map_extent_buffer);
2643 
2644 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2645 {
2646 	kunmap_atomic(token, km);
2647 }
2648 EXPORT_SYMBOL(unmap_extent_buffer);
2649 
2650 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2651 			  unsigned long start,
2652 			  unsigned long len)
2653 {
2654 	size_t cur;
2655 	size_t offset;
2656 	struct page *page;
2657 	char *kaddr;
2658 	char *ptr = (char *)ptrv;
2659 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2660 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2661 	int ret = 0;
2662 
2663 	WARN_ON(start > eb->len);
2664 	WARN_ON(start + len > eb->start + eb->len);
2665 
2666 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2667 
2668 	while(len > 0) {
2669 		page = extent_buffer_page(eb, i);
2670 		WARN_ON(!PageUptodate(page));
2671 
2672 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2673 
2674 		kaddr = kmap_atomic(page, KM_USER0);
2675 		ret = memcmp(ptr, kaddr + offset, cur);
2676 		kunmap_atomic(kaddr, KM_USER0);
2677 		if (ret)
2678 			break;
2679 
2680 		ptr += cur;
2681 		len -= cur;
2682 		offset = 0;
2683 		i++;
2684 	}
2685 	return ret;
2686 }
2687 EXPORT_SYMBOL(memcmp_extent_buffer);
2688 
2689 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2690 			 unsigned long start, unsigned long len)
2691 {
2692 	size_t cur;
2693 	size_t offset;
2694 	struct page *page;
2695 	char *kaddr;
2696 	char *src = (char *)srcv;
2697 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2698 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2699 
2700 	WARN_ON(start > eb->len);
2701 	WARN_ON(start + len > eb->start + eb->len);
2702 
2703 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2704 
2705 	while(len > 0) {
2706 		page = extent_buffer_page(eb, i);
2707 		WARN_ON(!PageUptodate(page));
2708 
2709 		cur = min(len, PAGE_CACHE_SIZE - offset);
2710 		kaddr = kmap_atomic(page, KM_USER1);
2711 		memcpy(kaddr + offset, src, cur);
2712 		kunmap_atomic(kaddr, KM_USER1);
2713 
2714 		src += cur;
2715 		len -= cur;
2716 		offset = 0;
2717 		i++;
2718 	}
2719 }
2720 EXPORT_SYMBOL(write_extent_buffer);
2721 
2722 void memset_extent_buffer(struct extent_buffer *eb, char c,
2723 			  unsigned long start, unsigned long len)
2724 {
2725 	size_t cur;
2726 	size_t offset;
2727 	struct page *page;
2728 	char *kaddr;
2729 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2730 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2731 
2732 	WARN_ON(start > eb->len);
2733 	WARN_ON(start + len > eb->start + eb->len);
2734 
2735 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2736 
2737 	while(len > 0) {
2738 		page = extent_buffer_page(eb, i);
2739 		WARN_ON(!PageUptodate(page));
2740 
2741 		cur = min(len, PAGE_CACHE_SIZE - offset);
2742 		kaddr = kmap_atomic(page, KM_USER0);
2743 		memset(kaddr + offset, c, cur);
2744 		kunmap_atomic(kaddr, KM_USER0);
2745 
2746 		len -= cur;
2747 		offset = 0;
2748 		i++;
2749 	}
2750 }
2751 EXPORT_SYMBOL(memset_extent_buffer);
2752 
2753 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2754 			unsigned long dst_offset, unsigned long src_offset,
2755 			unsigned long len)
2756 {
2757 	u64 dst_len = dst->len;
2758 	size_t cur;
2759 	size_t offset;
2760 	struct page *page;
2761 	char *kaddr;
2762 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2763 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2764 
2765 	WARN_ON(src->len != dst_len);
2766 
2767 	offset = (start_offset + dst_offset) &
2768 		((unsigned long)PAGE_CACHE_SIZE - 1);
2769 
2770 	while(len > 0) {
2771 		page = extent_buffer_page(dst, i);
2772 		WARN_ON(!PageUptodate(page));
2773 
2774 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2775 
2776 		kaddr = kmap_atomic(page, KM_USER0);
2777 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2778 		kunmap_atomic(kaddr, KM_USER0);
2779 
2780 		src_offset += cur;
2781 		len -= cur;
2782 		offset = 0;
2783 		i++;
2784 	}
2785 }
2786 EXPORT_SYMBOL(copy_extent_buffer);
2787 
2788 static void move_pages(struct page *dst_page, struct page *src_page,
2789 		       unsigned long dst_off, unsigned long src_off,
2790 		       unsigned long len)
2791 {
2792 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2793 	if (dst_page == src_page) {
2794 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2795 	} else {
2796 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2797 		char *p = dst_kaddr + dst_off + len;
2798 		char *s = src_kaddr + src_off + len;
2799 
2800 		while (len--)
2801 			*--p = *--s;
2802 
2803 		kunmap_atomic(src_kaddr, KM_USER1);
2804 	}
2805 	kunmap_atomic(dst_kaddr, KM_USER0);
2806 }
2807 
2808 static void copy_pages(struct page *dst_page, struct page *src_page,
2809 		       unsigned long dst_off, unsigned long src_off,
2810 		       unsigned long len)
2811 {
2812 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2813 	char *src_kaddr;
2814 
2815 	if (dst_page != src_page)
2816 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2817 	else
2818 		src_kaddr = dst_kaddr;
2819 
2820 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2821 	kunmap_atomic(dst_kaddr, KM_USER0);
2822 	if (dst_page != src_page)
2823 		kunmap_atomic(src_kaddr, KM_USER1);
2824 }
2825 
2826 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2827 			   unsigned long src_offset, unsigned long len)
2828 {
2829 	size_t cur;
2830 	size_t dst_off_in_page;
2831 	size_t src_off_in_page;
2832 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2833 	unsigned long dst_i;
2834 	unsigned long src_i;
2835 
2836 	if (src_offset + len > dst->len) {
2837 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2838 		       src_offset, len, dst->len);
2839 		BUG_ON(1);
2840 	}
2841 	if (dst_offset + len > dst->len) {
2842 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2843 		       dst_offset, len, dst->len);
2844 		BUG_ON(1);
2845 	}
2846 
2847 	while(len > 0) {
2848 		dst_off_in_page = (start_offset + dst_offset) &
2849 			((unsigned long)PAGE_CACHE_SIZE - 1);
2850 		src_off_in_page = (start_offset + src_offset) &
2851 			((unsigned long)PAGE_CACHE_SIZE - 1);
2852 
2853 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2854 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2855 
2856 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2857 					       src_off_in_page));
2858 		cur = min_t(unsigned long, cur,
2859 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2860 
2861 		copy_pages(extent_buffer_page(dst, dst_i),
2862 			   extent_buffer_page(dst, src_i),
2863 			   dst_off_in_page, src_off_in_page, cur);
2864 
2865 		src_offset += cur;
2866 		dst_offset += cur;
2867 		len -= cur;
2868 	}
2869 }
2870 EXPORT_SYMBOL(memcpy_extent_buffer);
2871 
2872 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2873 			   unsigned long src_offset, unsigned long len)
2874 {
2875 	size_t cur;
2876 	size_t dst_off_in_page;
2877 	size_t src_off_in_page;
2878 	unsigned long dst_end = dst_offset + len - 1;
2879 	unsigned long src_end = src_offset + len - 1;
2880 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2881 	unsigned long dst_i;
2882 	unsigned long src_i;
2883 
2884 	if (src_offset + len > dst->len) {
2885 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2886 		       src_offset, len, dst->len);
2887 		BUG_ON(1);
2888 	}
2889 	if (dst_offset + len > dst->len) {
2890 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2891 		       dst_offset, len, dst->len);
2892 		BUG_ON(1);
2893 	}
2894 	if (dst_offset < src_offset) {
2895 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2896 		return;
2897 	}
2898 	while(len > 0) {
2899 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2900 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2901 
2902 		dst_off_in_page = (start_offset + dst_end) &
2903 			((unsigned long)PAGE_CACHE_SIZE - 1);
2904 		src_off_in_page = (start_offset + src_end) &
2905 			((unsigned long)PAGE_CACHE_SIZE - 1);
2906 
2907 		cur = min_t(unsigned long, len, src_off_in_page + 1);
2908 		cur = min(cur, dst_off_in_page + 1);
2909 		move_pages(extent_buffer_page(dst, dst_i),
2910 			   extent_buffer_page(dst, src_i),
2911 			   dst_off_in_page - cur + 1,
2912 			   src_off_in_page - cur + 1, cur);
2913 
2914 		dst_end -= cur;
2915 		src_end -= cur;
2916 		len -= cur;
2917 	}
2918 }
2919 EXPORT_SYMBOL(memmove_extent_buffer);
2920