xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 1832a6d5)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 
46 int __init extent_map_init(void)
47 {
48 	extent_map_cache = btrfs_cache_create("extent_map",
49 					    sizeof(struct extent_map), 0,
50 					    NULL);
51 	if (!extent_map_cache)
52 		return -ENOMEM;
53 	extent_state_cache = btrfs_cache_create("extent_state",
54 					    sizeof(struct extent_state), 0,
55 					    NULL);
56 	if (!extent_state_cache)
57 		goto free_map_cache;
58 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 					    sizeof(struct extent_buffer), 0,
60 					    NULL);
61 	if (!extent_buffer_cache)
62 		goto free_state_cache;
63 	return 0;
64 
65 free_state_cache:
66 	kmem_cache_destroy(extent_state_cache);
67 free_map_cache:
68 	kmem_cache_destroy(extent_map_cache);
69 	return -ENOMEM;
70 }
71 
72 void extent_map_exit(void)
73 {
74 	struct extent_state *state;
75 
76 	while (!list_empty(&states)) {
77 		state = list_entry(states.next, struct extent_state, list);
78 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 		list_del(&state->list);
80 		kmem_cache_free(extent_state_cache, state);
81 
82 	}
83 
84 	if (extent_map_cache)
85 		kmem_cache_destroy(extent_map_cache);
86 	if (extent_state_cache)
87 		kmem_cache_destroy(extent_state_cache);
88 	if (extent_buffer_cache)
89 		kmem_cache_destroy(extent_buffer_cache);
90 }
91 
92 void extent_map_tree_init(struct extent_map_tree *tree,
93 			  struct address_space *mapping, gfp_t mask)
94 {
95 	tree->map.rb_node = NULL;
96 	tree->state.rb_node = NULL;
97 	tree->ops = NULL;
98 	tree->dirty_bytes = 0;
99 	rwlock_init(&tree->lock);
100 	spin_lock_init(&tree->lru_lock);
101 	tree->mapping = mapping;
102 	INIT_LIST_HEAD(&tree->buffer_lru);
103 	tree->lru_size = 0;
104 }
105 EXPORT_SYMBOL(extent_map_tree_init);
106 
107 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108 {
109 	struct extent_buffer *eb;
110 	while(!list_empty(&tree->buffer_lru)) {
111 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 				lru);
113 		list_del_init(&eb->lru);
114 		free_extent_buffer(eb);
115 	}
116 }
117 EXPORT_SYMBOL(extent_map_tree_empty_lru);
118 
119 struct extent_map *alloc_extent_map(gfp_t mask)
120 {
121 	struct extent_map *em;
122 	em = kmem_cache_alloc(extent_map_cache, mask);
123 	if (!em || IS_ERR(em))
124 		return em;
125 	em->in_tree = 0;
126 	atomic_set(&em->refs, 1);
127 	return em;
128 }
129 EXPORT_SYMBOL(alloc_extent_map);
130 
131 void free_extent_map(struct extent_map *em)
132 {
133 	if (!em)
134 		return;
135 	if (atomic_dec_and_test(&em->refs)) {
136 		WARN_ON(em->in_tree);
137 		kmem_cache_free(extent_map_cache, em);
138 	}
139 }
140 EXPORT_SYMBOL(free_extent_map);
141 
142 
143 struct extent_state *alloc_extent_state(gfp_t mask)
144 {
145 	struct extent_state *state;
146 	unsigned long flags;
147 
148 	state = kmem_cache_alloc(extent_state_cache, mask);
149 	if (!state || IS_ERR(state))
150 		return state;
151 	state->state = 0;
152 	state->in_tree = 0;
153 	state->private = 0;
154 
155 	spin_lock_irqsave(&state_lock, flags);
156 	list_add(&state->list, &states);
157 	spin_unlock_irqrestore(&state_lock, flags);
158 
159 	atomic_set(&state->refs, 1);
160 	init_waitqueue_head(&state->wq);
161 	return state;
162 }
163 EXPORT_SYMBOL(alloc_extent_state);
164 
165 void free_extent_state(struct extent_state *state)
166 {
167 	unsigned long flags;
168 	if (!state)
169 		return;
170 	if (atomic_dec_and_test(&state->refs)) {
171 		WARN_ON(state->in_tree);
172 		spin_lock_irqsave(&state_lock, flags);
173 		list_del(&state->list);
174 		spin_unlock_irqrestore(&state_lock, flags);
175 		kmem_cache_free(extent_state_cache, state);
176 	}
177 }
178 EXPORT_SYMBOL(free_extent_state);
179 
180 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 				   struct rb_node *node)
182 {
183 	struct rb_node ** p = &root->rb_node;
184 	struct rb_node * parent = NULL;
185 	struct tree_entry *entry;
186 
187 	while(*p) {
188 		parent = *p;
189 		entry = rb_entry(parent, struct tree_entry, rb_node);
190 
191 		if (offset < entry->start)
192 			p = &(*p)->rb_left;
193 		else if (offset > entry->end)
194 			p = &(*p)->rb_right;
195 		else
196 			return parent;
197 	}
198 
199 	entry = rb_entry(node, struct tree_entry, rb_node);
200 	entry->in_tree = 1;
201 	rb_link_node(node, parent, p);
202 	rb_insert_color(node, root);
203 	return NULL;
204 }
205 
206 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
207 				   struct rb_node **prev_ret)
208 {
209 	struct rb_node * n = root->rb_node;
210 	struct rb_node *prev = NULL;
211 	struct tree_entry *entry;
212 	struct tree_entry *prev_entry = NULL;
213 
214 	while(n) {
215 		entry = rb_entry(n, struct tree_entry, rb_node);
216 		prev = n;
217 		prev_entry = entry;
218 
219 		if (offset < entry->start)
220 			n = n->rb_left;
221 		else if (offset > entry->end)
222 			n = n->rb_right;
223 		else
224 			return n;
225 	}
226 	if (!prev_ret)
227 		return NULL;
228 	while(prev && offset > prev_entry->end) {
229 		prev = rb_next(prev);
230 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 	}
232 	*prev_ret = prev;
233 	return NULL;
234 }
235 
236 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
237 {
238 	struct rb_node *prev;
239 	struct rb_node *ret;
240 	ret = __tree_search(root, offset, &prev);
241 	if (!ret)
242 		return prev;
243 	return ret;
244 }
245 
246 static int tree_delete(struct rb_root *root, u64 offset)
247 {
248 	struct rb_node *node;
249 	struct tree_entry *entry;
250 
251 	node = __tree_search(root, offset, NULL);
252 	if (!node)
253 		return -ENOENT;
254 	entry = rb_entry(node, struct tree_entry, rb_node);
255 	entry->in_tree = 0;
256 	rb_erase(node, root);
257 	return 0;
258 }
259 
260 /*
261  * add_extent_mapping tries a simple backward merge with existing
262  * mappings.  The extent_map struct passed in will be inserted into
263  * the tree directly (no copies made, just a reference taken).
264  */
265 int add_extent_mapping(struct extent_map_tree *tree,
266 		       struct extent_map *em)
267 {
268 	int ret = 0;
269 	struct extent_map *prev = NULL;
270 	struct rb_node *rb;
271 
272 	write_lock_irq(&tree->lock);
273 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
274 	if (rb) {
275 		prev = rb_entry(rb, struct extent_map, rb_node);
276 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
277 		ret = -EEXIST;
278 		goto out;
279 	}
280 	atomic_inc(&em->refs);
281 	if (em->start != 0) {
282 		rb = rb_prev(&em->rb_node);
283 		if (rb)
284 			prev = rb_entry(rb, struct extent_map, rb_node);
285 		if (prev && prev->end + 1 == em->start &&
286 		    ((em->block_start == EXTENT_MAP_HOLE &&
287 		      prev->block_start == EXTENT_MAP_HOLE) ||
288 		     (em->block_start == EXTENT_MAP_INLINE &&
289 		      prev->block_start == EXTENT_MAP_INLINE) ||
290 		     (em->block_start == EXTENT_MAP_DELALLOC &&
291 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
292 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
293 		      em->block_start == prev->block_end + 1))) {
294 			em->start = prev->start;
295 			em->block_start = prev->block_start;
296 			rb_erase(&prev->rb_node, &tree->map);
297 			prev->in_tree = 0;
298 			free_extent_map(prev);
299 		}
300 	 }
301 out:
302 	write_unlock_irq(&tree->lock);
303 	return ret;
304 }
305 EXPORT_SYMBOL(add_extent_mapping);
306 
307 /*
308  * lookup_extent_mapping returns the first extent_map struct in the
309  * tree that intersects the [start, end] (inclusive) range.  There may
310  * be additional objects in the tree that intersect, so check the object
311  * returned carefully to make sure you don't need additional lookups.
312  */
313 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
314 					 u64 start, u64 end)
315 {
316 	struct extent_map *em;
317 	struct rb_node *rb_node;
318 
319 	read_lock_irq(&tree->lock);
320 	rb_node = tree_search(&tree->map, start);
321 	if (!rb_node) {
322 		em = NULL;
323 		goto out;
324 	}
325 	if (IS_ERR(rb_node)) {
326 		em = ERR_PTR(PTR_ERR(rb_node));
327 		goto out;
328 	}
329 	em = rb_entry(rb_node, struct extent_map, rb_node);
330 	if (em->end < start || em->start > end) {
331 		em = NULL;
332 		goto out;
333 	}
334 	atomic_inc(&em->refs);
335 out:
336 	read_unlock_irq(&tree->lock);
337 	return em;
338 }
339 EXPORT_SYMBOL(lookup_extent_mapping);
340 
341 /*
342  * removes an extent_map struct from the tree.  No reference counts are
343  * dropped, and no checks are done to  see if the range is in use
344  */
345 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
346 {
347 	int ret;
348 
349 	write_lock_irq(&tree->lock);
350 	ret = tree_delete(&tree->map, em->end);
351 	write_unlock_irq(&tree->lock);
352 	return ret;
353 }
354 EXPORT_SYMBOL(remove_extent_mapping);
355 
356 /*
357  * utility function to look for merge candidates inside a given range.
358  * Any extents with matching state are merged together into a single
359  * extent in the tree.  Extents with EXTENT_IO in their state field
360  * are not merged because the end_io handlers need to be able to do
361  * operations on them without sleeping (or doing allocations/splits).
362  *
363  * This should be called with the tree lock held.
364  */
365 static int merge_state(struct extent_map_tree *tree,
366 		       struct extent_state *state)
367 {
368 	struct extent_state *other;
369 	struct rb_node *other_node;
370 
371 	if (state->state & EXTENT_IOBITS)
372 		return 0;
373 
374 	other_node = rb_prev(&state->rb_node);
375 	if (other_node) {
376 		other = rb_entry(other_node, struct extent_state, rb_node);
377 		if (other->end == state->start - 1 &&
378 		    other->state == state->state) {
379 			state->start = other->start;
380 			other->in_tree = 0;
381 			rb_erase(&other->rb_node, &tree->state);
382 			free_extent_state(other);
383 		}
384 	}
385 	other_node = rb_next(&state->rb_node);
386 	if (other_node) {
387 		other = rb_entry(other_node, struct extent_state, rb_node);
388 		if (other->start == state->end + 1 &&
389 		    other->state == state->state) {
390 			other->start = state->start;
391 			state->in_tree = 0;
392 			rb_erase(&state->rb_node, &tree->state);
393 			free_extent_state(state);
394 		}
395 	}
396 	return 0;
397 }
398 
399 /*
400  * insert an extent_state struct into the tree.  'bits' are set on the
401  * struct before it is inserted.
402  *
403  * This may return -EEXIST if the extent is already there, in which case the
404  * state struct is freed.
405  *
406  * The tree lock is not taken internally.  This is a utility function and
407  * probably isn't what you want to call (see set/clear_extent_bit).
408  */
409 static int insert_state(struct extent_map_tree *tree,
410 			struct extent_state *state, u64 start, u64 end,
411 			int bits)
412 {
413 	struct rb_node *node;
414 
415 	if (end < start) {
416 		printk("end < start %Lu %Lu\n", end, start);
417 		WARN_ON(1);
418 	}
419 	if (bits & EXTENT_DIRTY)
420 		tree->dirty_bytes += end - start + 1;
421 	state->state |= bits;
422 	state->start = start;
423 	state->end = end;
424 	node = tree_insert(&tree->state, end, &state->rb_node);
425 	if (node) {
426 		struct extent_state *found;
427 		found = rb_entry(node, struct extent_state, rb_node);
428 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
429 		free_extent_state(state);
430 		return -EEXIST;
431 	}
432 	merge_state(tree, state);
433 	return 0;
434 }
435 
436 /*
437  * split a given extent state struct in two, inserting the preallocated
438  * struct 'prealloc' as the newly created second half.  'split' indicates an
439  * offset inside 'orig' where it should be split.
440  *
441  * Before calling,
442  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
443  * are two extent state structs in the tree:
444  * prealloc: [orig->start, split - 1]
445  * orig: [ split, orig->end ]
446  *
447  * The tree locks are not taken by this function. They need to be held
448  * by the caller.
449  */
450 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
451 		       struct extent_state *prealloc, u64 split)
452 {
453 	struct rb_node *node;
454 	prealloc->start = orig->start;
455 	prealloc->end = split - 1;
456 	prealloc->state = orig->state;
457 	orig->start = split;
458 
459 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
460 	if (node) {
461 		struct extent_state *found;
462 		found = rb_entry(node, struct extent_state, rb_node);
463 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
464 		free_extent_state(prealloc);
465 		return -EEXIST;
466 	}
467 	return 0;
468 }
469 
470 /*
471  * utility function to clear some bits in an extent state struct.
472  * it will optionally wake up any one waiting on this state (wake == 1), or
473  * forcibly remove the state from the tree (delete == 1).
474  *
475  * If no bits are set on the state struct after clearing things, the
476  * struct is freed and removed from the tree
477  */
478 static int clear_state_bit(struct extent_map_tree *tree,
479 			    struct extent_state *state, int bits, int wake,
480 			    int delete)
481 {
482 	int ret = state->state & bits;
483 
484 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
485 		u64 range = state->end - state->start + 1;
486 		WARN_ON(range > tree->dirty_bytes);
487 		tree->dirty_bytes -= range;
488 	}
489 	state->state &= ~bits;
490 	if (wake)
491 		wake_up(&state->wq);
492 	if (delete || state->state == 0) {
493 		if (state->in_tree) {
494 			rb_erase(&state->rb_node, &tree->state);
495 			state->in_tree = 0;
496 			free_extent_state(state);
497 		} else {
498 			WARN_ON(1);
499 		}
500 	} else {
501 		merge_state(tree, state);
502 	}
503 	return ret;
504 }
505 
506 /*
507  * clear some bits on a range in the tree.  This may require splitting
508  * or inserting elements in the tree, so the gfp mask is used to
509  * indicate which allocations or sleeping are allowed.
510  *
511  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
512  * the given range from the tree regardless of state (ie for truncate).
513  *
514  * the range [start, end] is inclusive.
515  *
516  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
517  * bits were already set, or zero if none of the bits were already set.
518  */
519 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
520 		     int bits, int wake, int delete, gfp_t mask)
521 {
522 	struct extent_state *state;
523 	struct extent_state *prealloc = NULL;
524 	struct rb_node *node;
525 	unsigned long flags;
526 	int err;
527 	int set = 0;
528 
529 again:
530 	if (!prealloc && (mask & __GFP_WAIT)) {
531 		prealloc = alloc_extent_state(mask);
532 		if (!prealloc)
533 			return -ENOMEM;
534 	}
535 
536 	write_lock_irqsave(&tree->lock, flags);
537 	/*
538 	 * this search will find the extents that end after
539 	 * our range starts
540 	 */
541 	node = tree_search(&tree->state, start);
542 	if (!node)
543 		goto out;
544 	state = rb_entry(node, struct extent_state, rb_node);
545 	if (state->start > end)
546 		goto out;
547 	WARN_ON(state->end < start);
548 
549 	/*
550 	 *     | ---- desired range ---- |
551 	 *  | state | or
552 	 *  | ------------- state -------------- |
553 	 *
554 	 * We need to split the extent we found, and may flip
555 	 * bits on second half.
556 	 *
557 	 * If the extent we found extends past our range, we
558 	 * just split and search again.  It'll get split again
559 	 * the next time though.
560 	 *
561 	 * If the extent we found is inside our range, we clear
562 	 * the desired bit on it.
563 	 */
564 
565 	if (state->start < start) {
566 		err = split_state(tree, state, prealloc, start);
567 		BUG_ON(err == -EEXIST);
568 		prealloc = NULL;
569 		if (err)
570 			goto out;
571 		if (state->end <= end) {
572 			start = state->end + 1;
573 			set |= clear_state_bit(tree, state, bits,
574 					wake, delete);
575 		} else {
576 			start = state->start;
577 		}
578 		goto search_again;
579 	}
580 	/*
581 	 * | ---- desired range ---- |
582 	 *                        | state |
583 	 * We need to split the extent, and clear the bit
584 	 * on the first half
585 	 */
586 	if (state->start <= end && state->end > end) {
587 		err = split_state(tree, state, prealloc, end + 1);
588 		BUG_ON(err == -EEXIST);
589 
590 		if (wake)
591 			wake_up(&state->wq);
592 		set |= clear_state_bit(tree, prealloc, bits,
593 				       wake, delete);
594 		prealloc = NULL;
595 		goto out;
596 	}
597 
598 	start = state->end + 1;
599 	set |= clear_state_bit(tree, state, bits, wake, delete);
600 	goto search_again;
601 
602 out:
603 	write_unlock_irqrestore(&tree->lock, flags);
604 	if (prealloc)
605 		free_extent_state(prealloc);
606 
607 	return set;
608 
609 search_again:
610 	if (start > end)
611 		goto out;
612 	write_unlock_irqrestore(&tree->lock, flags);
613 	if (mask & __GFP_WAIT)
614 		cond_resched();
615 	goto again;
616 }
617 EXPORT_SYMBOL(clear_extent_bit);
618 
619 static int wait_on_state(struct extent_map_tree *tree,
620 			 struct extent_state *state)
621 {
622 	DEFINE_WAIT(wait);
623 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
624 	read_unlock_irq(&tree->lock);
625 	schedule();
626 	read_lock_irq(&tree->lock);
627 	finish_wait(&state->wq, &wait);
628 	return 0;
629 }
630 
631 /*
632  * waits for one or more bits to clear on a range in the state tree.
633  * The range [start, end] is inclusive.
634  * The tree lock is taken by this function
635  */
636 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
637 {
638 	struct extent_state *state;
639 	struct rb_node *node;
640 
641 	read_lock_irq(&tree->lock);
642 again:
643 	while (1) {
644 		/*
645 		 * this search will find all the extents that end after
646 		 * our range starts
647 		 */
648 		node = tree_search(&tree->state, start);
649 		if (!node)
650 			break;
651 
652 		state = rb_entry(node, struct extent_state, rb_node);
653 
654 		if (state->start > end)
655 			goto out;
656 
657 		if (state->state & bits) {
658 			start = state->start;
659 			atomic_inc(&state->refs);
660 			wait_on_state(tree, state);
661 			free_extent_state(state);
662 			goto again;
663 		}
664 		start = state->end + 1;
665 
666 		if (start > end)
667 			break;
668 
669 		if (need_resched()) {
670 			read_unlock_irq(&tree->lock);
671 			cond_resched();
672 			read_lock_irq(&tree->lock);
673 		}
674 	}
675 out:
676 	read_unlock_irq(&tree->lock);
677 	return 0;
678 }
679 EXPORT_SYMBOL(wait_extent_bit);
680 
681 static void set_state_bits(struct extent_map_tree *tree,
682 			   struct extent_state *state,
683 			   int bits)
684 {
685 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
686 		u64 range = state->end - state->start + 1;
687 		tree->dirty_bytes += range;
688 	}
689 	state->state |= bits;
690 }
691 
692 /*
693  * set some bits on a range in the tree.  This may require allocations
694  * or sleeping, so the gfp mask is used to indicate what is allowed.
695  *
696  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
697  * range already has the desired bits set.  The start of the existing
698  * range is returned in failed_start in this case.
699  *
700  * [start, end] is inclusive
701  * This takes the tree lock.
702  */
703 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
704 		   int exclusive, u64 *failed_start, gfp_t mask)
705 {
706 	struct extent_state *state;
707 	struct extent_state *prealloc = NULL;
708 	struct rb_node *node;
709 	unsigned long flags;
710 	int err = 0;
711 	int set;
712 	u64 last_start;
713 	u64 last_end;
714 again:
715 	if (!prealloc && (mask & __GFP_WAIT)) {
716 		prealloc = alloc_extent_state(mask);
717 		if (!prealloc)
718 			return -ENOMEM;
719 	}
720 
721 	write_lock_irqsave(&tree->lock, flags);
722 	/*
723 	 * this search will find all the extents that end after
724 	 * our range starts.
725 	 */
726 	node = tree_search(&tree->state, start);
727 	if (!node) {
728 		err = insert_state(tree, prealloc, start, end, bits);
729 		prealloc = NULL;
730 		BUG_ON(err == -EEXIST);
731 		goto out;
732 	}
733 
734 	state = rb_entry(node, struct extent_state, rb_node);
735 	last_start = state->start;
736 	last_end = state->end;
737 
738 	/*
739 	 * | ---- desired range ---- |
740 	 * | state |
741 	 *
742 	 * Just lock what we found and keep going
743 	 */
744 	if (state->start == start && state->end <= end) {
745 		set = state->state & bits;
746 		if (set && exclusive) {
747 			*failed_start = state->start;
748 			err = -EEXIST;
749 			goto out;
750 		}
751 		set_state_bits(tree, state, bits);
752 		start = state->end + 1;
753 		merge_state(tree, state);
754 		goto search_again;
755 	}
756 
757 	/*
758 	 *     | ---- desired range ---- |
759 	 * | state |
760 	 *   or
761 	 * | ------------- state -------------- |
762 	 *
763 	 * We need to split the extent we found, and may flip bits on
764 	 * second half.
765 	 *
766 	 * If the extent we found extends past our
767 	 * range, we just split and search again.  It'll get split
768 	 * again the next time though.
769 	 *
770 	 * If the extent we found is inside our range, we set the
771 	 * desired bit on it.
772 	 */
773 	if (state->start < start) {
774 		set = state->state & bits;
775 		if (exclusive && set) {
776 			*failed_start = start;
777 			err = -EEXIST;
778 			goto out;
779 		}
780 		err = split_state(tree, state, prealloc, start);
781 		BUG_ON(err == -EEXIST);
782 		prealloc = NULL;
783 		if (err)
784 			goto out;
785 		if (state->end <= end) {
786 			set_state_bits(tree, state, bits);
787 			start = state->end + 1;
788 			merge_state(tree, state);
789 		} else {
790 			start = state->start;
791 		}
792 		goto search_again;
793 	}
794 	/*
795 	 * | ---- desired range ---- |
796 	 *     | state | or               | state |
797 	 *
798 	 * There's a hole, we need to insert something in it and
799 	 * ignore the extent we found.
800 	 */
801 	if (state->start > start) {
802 		u64 this_end;
803 		if (end < last_start)
804 			this_end = end;
805 		else
806 			this_end = last_start -1;
807 		err = insert_state(tree, prealloc, start, this_end,
808 				   bits);
809 		prealloc = NULL;
810 		BUG_ON(err == -EEXIST);
811 		if (err)
812 			goto out;
813 		start = this_end + 1;
814 		goto search_again;
815 	}
816 	/*
817 	 * | ---- desired range ---- |
818 	 *                        | state |
819 	 * We need to split the extent, and set the bit
820 	 * on the first half
821 	 */
822 	if (state->start <= end && state->end > end) {
823 		set = state->state & bits;
824 		if (exclusive && set) {
825 			*failed_start = start;
826 			err = -EEXIST;
827 			goto out;
828 		}
829 		err = split_state(tree, state, prealloc, end + 1);
830 		BUG_ON(err == -EEXIST);
831 
832 		set_state_bits(tree, prealloc, bits);
833 		merge_state(tree, prealloc);
834 		prealloc = NULL;
835 		goto out;
836 	}
837 
838 	goto search_again;
839 
840 out:
841 	write_unlock_irqrestore(&tree->lock, flags);
842 	if (prealloc)
843 		free_extent_state(prealloc);
844 
845 	return err;
846 
847 search_again:
848 	if (start > end)
849 		goto out;
850 	write_unlock_irqrestore(&tree->lock, flags);
851 	if (mask & __GFP_WAIT)
852 		cond_resched();
853 	goto again;
854 }
855 EXPORT_SYMBOL(set_extent_bit);
856 
857 /* wrappers around set/clear extent bit */
858 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
859 		     gfp_t mask)
860 {
861 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
862 			      mask);
863 }
864 EXPORT_SYMBOL(set_extent_dirty);
865 
866 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
867 		    int bits, gfp_t mask)
868 {
869 	return set_extent_bit(tree, start, end, bits, 0, NULL,
870 			      mask);
871 }
872 EXPORT_SYMBOL(set_extent_bits);
873 
874 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
875 		      int bits, gfp_t mask)
876 {
877 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
878 }
879 EXPORT_SYMBOL(clear_extent_bits);
880 
881 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
882 		     gfp_t mask)
883 {
884 	return set_extent_bit(tree, start, end,
885 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
886 			      mask);
887 }
888 EXPORT_SYMBOL(set_extent_delalloc);
889 
890 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
891 		       gfp_t mask)
892 {
893 	return clear_extent_bit(tree, start, end,
894 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
895 }
896 EXPORT_SYMBOL(clear_extent_dirty);
897 
898 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
899 		     gfp_t mask)
900 {
901 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
902 			      mask);
903 }
904 EXPORT_SYMBOL(set_extent_new);
905 
906 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
907 		       gfp_t mask)
908 {
909 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
910 }
911 EXPORT_SYMBOL(clear_extent_new);
912 
913 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
914 			gfp_t mask)
915 {
916 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
917 			      mask);
918 }
919 EXPORT_SYMBOL(set_extent_uptodate);
920 
921 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
922 			  gfp_t mask)
923 {
924 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
925 }
926 EXPORT_SYMBOL(clear_extent_uptodate);
927 
928 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
929 			 gfp_t mask)
930 {
931 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
932 			      0, NULL, mask);
933 }
934 EXPORT_SYMBOL(set_extent_writeback);
935 
936 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
937 			   gfp_t mask)
938 {
939 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
940 }
941 EXPORT_SYMBOL(clear_extent_writeback);
942 
943 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
944 {
945 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
946 }
947 EXPORT_SYMBOL(wait_on_extent_writeback);
948 
949 /*
950  * locks a range in ascending order, waiting for any locked regions
951  * it hits on the way.  [start,end] are inclusive, and this will sleep.
952  */
953 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
954 {
955 	int err;
956 	u64 failed_start;
957 	while (1) {
958 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
959 				     &failed_start, mask);
960 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
961 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
962 			start = failed_start;
963 		} else {
964 			break;
965 		}
966 		WARN_ON(start > end);
967 	}
968 	return err;
969 }
970 EXPORT_SYMBOL(lock_extent);
971 
972 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
973 		  gfp_t mask)
974 {
975 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
976 }
977 EXPORT_SYMBOL(unlock_extent);
978 
979 /*
980  * helper function to set pages and extents in the tree dirty
981  */
982 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
983 {
984 	unsigned long index = start >> PAGE_CACHE_SHIFT;
985 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
986 	struct page *page;
987 
988 	while (index <= end_index) {
989 		page = find_get_page(tree->mapping, index);
990 		BUG_ON(!page);
991 		__set_page_dirty_nobuffers(page);
992 		page_cache_release(page);
993 		index++;
994 	}
995 	set_extent_dirty(tree, start, end, GFP_NOFS);
996 	return 0;
997 }
998 EXPORT_SYMBOL(set_range_dirty);
999 
1000 /*
1001  * helper function to set both pages and extents in the tree writeback
1002  */
1003 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1004 {
1005 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1006 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1007 	struct page *page;
1008 
1009 	while (index <= end_index) {
1010 		page = find_get_page(tree->mapping, index);
1011 		BUG_ON(!page);
1012 		set_page_writeback(page);
1013 		page_cache_release(page);
1014 		index++;
1015 	}
1016 	set_extent_writeback(tree, start, end, GFP_NOFS);
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL(set_range_writeback);
1020 
1021 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1022 			  u64 *start_ret, u64 *end_ret, int bits)
1023 {
1024 	struct rb_node *node;
1025 	struct extent_state *state;
1026 	int ret = 1;
1027 
1028 	read_lock_irq(&tree->lock);
1029 	/*
1030 	 * this search will find all the extents that end after
1031 	 * our range starts.
1032 	 */
1033 	node = tree_search(&tree->state, start);
1034 	if (!node || IS_ERR(node)) {
1035 		goto out;
1036 	}
1037 
1038 	while(1) {
1039 		state = rb_entry(node, struct extent_state, rb_node);
1040 		if (state->end >= start && (state->state & bits)) {
1041 			*start_ret = state->start;
1042 			*end_ret = state->end;
1043 			ret = 0;
1044 			break;
1045 		}
1046 		node = rb_next(node);
1047 		if (!node)
1048 			break;
1049 	}
1050 out:
1051 	read_unlock_irq(&tree->lock);
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL(find_first_extent_bit);
1055 
1056 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1057 			     u64 *start, u64 *end, u64 max_bytes)
1058 {
1059 	struct rb_node *node;
1060 	struct extent_state *state;
1061 	u64 cur_start = *start;
1062 	u64 found = 0;
1063 	u64 total_bytes = 0;
1064 
1065 	write_lock_irq(&tree->lock);
1066 	/*
1067 	 * this search will find all the extents that end after
1068 	 * our range starts.
1069 	 */
1070 search_again:
1071 	node = tree_search(&tree->state, cur_start);
1072 	if (!node || IS_ERR(node)) {
1073 		*end = (u64)-1;
1074 		goto out;
1075 	}
1076 
1077 	while(1) {
1078 		state = rb_entry(node, struct extent_state, rb_node);
1079 		if (found && state->start != cur_start) {
1080 			goto out;
1081 		}
1082 		if (!(state->state & EXTENT_DELALLOC)) {
1083 			if (!found)
1084 				*end = state->end;
1085 			goto out;
1086 		}
1087 		if (!found) {
1088 			struct extent_state *prev_state;
1089 			struct rb_node *prev_node = node;
1090 			while(1) {
1091 				prev_node = rb_prev(prev_node);
1092 				if (!prev_node)
1093 					break;
1094 				prev_state = rb_entry(prev_node,
1095 						      struct extent_state,
1096 						      rb_node);
1097 				if (!(prev_state->state & EXTENT_DELALLOC))
1098 					break;
1099 				state = prev_state;
1100 				node = prev_node;
1101 			}
1102 		}
1103 		if (state->state & EXTENT_LOCKED) {
1104 			DEFINE_WAIT(wait);
1105 			atomic_inc(&state->refs);
1106 			prepare_to_wait(&state->wq, &wait,
1107 					TASK_UNINTERRUPTIBLE);
1108 			write_unlock_irq(&tree->lock);
1109 			schedule();
1110 			write_lock_irq(&tree->lock);
1111 			finish_wait(&state->wq, &wait);
1112 			free_extent_state(state);
1113 			goto search_again;
1114 		}
1115 		state->state |= EXTENT_LOCKED;
1116 		if (!found)
1117 			*start = state->start;
1118 		found++;
1119 		*end = state->end;
1120 		cur_start = state->end + 1;
1121 		node = rb_next(node);
1122 		if (!node)
1123 			break;
1124 		total_bytes += state->end - state->start + 1;
1125 		if (total_bytes >= max_bytes)
1126 			break;
1127 	}
1128 out:
1129 	write_unlock_irq(&tree->lock);
1130 	return found;
1131 }
1132 
1133 u64 count_range_bits(struct extent_map_tree *tree,
1134 		     u64 *start, u64 search_end, u64 max_bytes,
1135 		     unsigned long bits)
1136 {
1137 	struct rb_node *node;
1138 	struct extent_state *state;
1139 	u64 cur_start = *start;
1140 	u64 total_bytes = 0;
1141 	int found = 0;
1142 
1143 	if (search_end <= cur_start) {
1144 		printk("search_end %Lu start %Lu\n", search_end, cur_start);
1145 		WARN_ON(1);
1146 		return 0;
1147 	}
1148 
1149 	write_lock_irq(&tree->lock);
1150 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1151 		total_bytes = tree->dirty_bytes;
1152 		goto out;
1153 	}
1154 	/*
1155 	 * this search will find all the extents that end after
1156 	 * our range starts.
1157 	 */
1158 	node = tree_search(&tree->state, cur_start);
1159 	if (!node || IS_ERR(node)) {
1160 		goto out;
1161 	}
1162 
1163 	while(1) {
1164 		state = rb_entry(node, struct extent_state, rb_node);
1165 		if (state->start > search_end)
1166 			break;
1167 		if (state->end >= cur_start && (state->state & bits)) {
1168 			total_bytes += min(search_end, state->end) + 1 -
1169 				       max(cur_start, state->start);
1170 			if (total_bytes >= max_bytes)
1171 				break;
1172 			if (!found) {
1173 				*start = state->start;
1174 				found = 1;
1175 			}
1176 		}
1177 		node = rb_next(node);
1178 		if (!node)
1179 			break;
1180 	}
1181 out:
1182 	write_unlock_irq(&tree->lock);
1183 	return total_bytes;
1184 }
1185 /*
1186  * helper function to lock both pages and extents in the tree.
1187  * pages must be locked first.
1188  */
1189 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1190 {
1191 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1192 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1193 	struct page *page;
1194 	int err;
1195 
1196 	while (index <= end_index) {
1197 		page = grab_cache_page(tree->mapping, index);
1198 		if (!page) {
1199 			err = -ENOMEM;
1200 			goto failed;
1201 		}
1202 		if (IS_ERR(page)) {
1203 			err = PTR_ERR(page);
1204 			goto failed;
1205 		}
1206 		index++;
1207 	}
1208 	lock_extent(tree, start, end, GFP_NOFS);
1209 	return 0;
1210 
1211 failed:
1212 	/*
1213 	 * we failed above in getting the page at 'index', so we undo here
1214 	 * up to but not including the page at 'index'
1215 	 */
1216 	end_index = index;
1217 	index = start >> PAGE_CACHE_SHIFT;
1218 	while (index < end_index) {
1219 		page = find_get_page(tree->mapping, index);
1220 		unlock_page(page);
1221 		page_cache_release(page);
1222 		index++;
1223 	}
1224 	return err;
1225 }
1226 EXPORT_SYMBOL(lock_range);
1227 
1228 /*
1229  * helper function to unlock both pages and extents in the tree.
1230  */
1231 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1232 {
1233 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1234 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1235 	struct page *page;
1236 
1237 	while (index <= end_index) {
1238 		page = find_get_page(tree->mapping, index);
1239 		unlock_page(page);
1240 		page_cache_release(page);
1241 		index++;
1242 	}
1243 	unlock_extent(tree, start, end, GFP_NOFS);
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL(unlock_range);
1247 
1248 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1249 {
1250 	struct rb_node *node;
1251 	struct extent_state *state;
1252 	int ret = 0;
1253 
1254 	write_lock_irq(&tree->lock);
1255 	/*
1256 	 * this search will find all the extents that end after
1257 	 * our range starts.
1258 	 */
1259 	node = tree_search(&tree->state, start);
1260 	if (!node || IS_ERR(node)) {
1261 		ret = -ENOENT;
1262 		goto out;
1263 	}
1264 	state = rb_entry(node, struct extent_state, rb_node);
1265 	if (state->start != start) {
1266 		ret = -ENOENT;
1267 		goto out;
1268 	}
1269 	state->private = private;
1270 out:
1271 	write_unlock_irq(&tree->lock);
1272 	return ret;
1273 }
1274 
1275 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1276 {
1277 	struct rb_node *node;
1278 	struct extent_state *state;
1279 	int ret = 0;
1280 
1281 	read_lock_irq(&tree->lock);
1282 	/*
1283 	 * this search will find all the extents that end after
1284 	 * our range starts.
1285 	 */
1286 	node = tree_search(&tree->state, start);
1287 	if (!node || IS_ERR(node)) {
1288 		ret = -ENOENT;
1289 		goto out;
1290 	}
1291 	state = rb_entry(node, struct extent_state, rb_node);
1292 	if (state->start != start) {
1293 		ret = -ENOENT;
1294 		goto out;
1295 	}
1296 	*private = state->private;
1297 out:
1298 	read_unlock_irq(&tree->lock);
1299 	return ret;
1300 }
1301 
1302 /*
1303  * searches a range in the state tree for a given mask.
1304  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1305  * has the bits set.  Otherwise, 1 is returned if any bit in the
1306  * range is found set.
1307  */
1308 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1309 		   int bits, int filled)
1310 {
1311 	struct extent_state *state = NULL;
1312 	struct rb_node *node;
1313 	int bitset = 0;
1314 
1315 	read_lock_irq(&tree->lock);
1316 	node = tree_search(&tree->state, start);
1317 	while (node && start <= end) {
1318 		state = rb_entry(node, struct extent_state, rb_node);
1319 
1320 		if (filled && state->start > start) {
1321 			bitset = 0;
1322 			break;
1323 		}
1324 
1325 		if (state->start > end)
1326 			break;
1327 
1328 		if (state->state & bits) {
1329 			bitset = 1;
1330 			if (!filled)
1331 				break;
1332 		} else if (filled) {
1333 			bitset = 0;
1334 			break;
1335 		}
1336 		start = state->end + 1;
1337 		if (start > end)
1338 			break;
1339 		node = rb_next(node);
1340 	}
1341 	read_unlock_irq(&tree->lock);
1342 	return bitset;
1343 }
1344 EXPORT_SYMBOL(test_range_bit);
1345 
1346 /*
1347  * helper function to set a given page up to date if all the
1348  * extents in the tree for that page are up to date
1349  */
1350 static int check_page_uptodate(struct extent_map_tree *tree,
1351 			       struct page *page)
1352 {
1353 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1354 	u64 end = start + PAGE_CACHE_SIZE - 1;
1355 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1356 		SetPageUptodate(page);
1357 	return 0;
1358 }
1359 
1360 /*
1361  * helper function to unlock a page if all the extents in the tree
1362  * for that page are unlocked
1363  */
1364 static int check_page_locked(struct extent_map_tree *tree,
1365 			     struct page *page)
1366 {
1367 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1368 	u64 end = start + PAGE_CACHE_SIZE - 1;
1369 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1370 		unlock_page(page);
1371 	return 0;
1372 }
1373 
1374 /*
1375  * helper function to end page writeback if all the extents
1376  * in the tree for that page are done with writeback
1377  */
1378 static int check_page_writeback(struct extent_map_tree *tree,
1379 			     struct page *page)
1380 {
1381 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1382 	u64 end = start + PAGE_CACHE_SIZE - 1;
1383 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1384 		end_page_writeback(page);
1385 	return 0;
1386 }
1387 
1388 /* lots and lots of room for performance fixes in the end_bio funcs */
1389 
1390 /*
1391  * after a writepage IO is done, we need to:
1392  * clear the uptodate bits on error
1393  * clear the writeback bits in the extent tree for this IO
1394  * end_page_writeback if the page has no more pending IO
1395  *
1396  * Scheduling is not allowed, so the extent state tree is expected
1397  * to have one and only one object corresponding to this IO.
1398  */
1399 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1400 static void end_bio_extent_writepage(struct bio *bio, int err)
1401 #else
1402 static int end_bio_extent_writepage(struct bio *bio,
1403 				   unsigned int bytes_done, int err)
1404 #endif
1405 {
1406 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1407 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1408 	struct extent_map_tree *tree = bio->bi_private;
1409 	u64 start;
1410 	u64 end;
1411 	int whole_page;
1412 
1413 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1414 	if (bio->bi_size)
1415 		return 1;
1416 #endif
1417 
1418 	do {
1419 		struct page *page = bvec->bv_page;
1420 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1421 			 bvec->bv_offset;
1422 		end = start + bvec->bv_len - 1;
1423 
1424 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1425 			whole_page = 1;
1426 		else
1427 			whole_page = 0;
1428 
1429 		if (--bvec >= bio->bi_io_vec)
1430 			prefetchw(&bvec->bv_page->flags);
1431 
1432 		if (!uptodate) {
1433 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1434 			ClearPageUptodate(page);
1435 			SetPageError(page);
1436 		}
1437 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1438 
1439 		if (whole_page)
1440 			end_page_writeback(page);
1441 		else
1442 			check_page_writeback(tree, page);
1443 		if (tree->ops && tree->ops->writepage_end_io_hook)
1444 			tree->ops->writepage_end_io_hook(page, start, end);
1445 	} while (bvec >= bio->bi_io_vec);
1446 
1447 	bio_put(bio);
1448 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1449 	return 0;
1450 #endif
1451 }
1452 
1453 /*
1454  * after a readpage IO is done, we need to:
1455  * clear the uptodate bits on error
1456  * set the uptodate bits if things worked
1457  * set the page up to date if all extents in the tree are uptodate
1458  * clear the lock bit in the extent tree
1459  * unlock the page if there are no other extents locked for it
1460  *
1461  * Scheduling is not allowed, so the extent state tree is expected
1462  * to have one and only one object corresponding to this IO.
1463  */
1464 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1465 static void end_bio_extent_readpage(struct bio *bio, int err)
1466 #else
1467 static int end_bio_extent_readpage(struct bio *bio,
1468 				   unsigned int bytes_done, int err)
1469 #endif
1470 {
1471 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1472 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1473 	struct extent_map_tree *tree = bio->bi_private;
1474 	u64 start;
1475 	u64 end;
1476 	int whole_page;
1477 	int ret;
1478 
1479 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1480 	if (bio->bi_size)
1481 		return 1;
1482 #endif
1483 
1484 	do {
1485 		struct page *page = bvec->bv_page;
1486 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1487 			bvec->bv_offset;
1488 		end = start + bvec->bv_len - 1;
1489 
1490 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1491 			whole_page = 1;
1492 		else
1493 			whole_page = 0;
1494 
1495 		if (--bvec >= bio->bi_io_vec)
1496 			prefetchw(&bvec->bv_page->flags);
1497 
1498 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1499 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1500 			if (ret)
1501 				uptodate = 0;
1502 		}
1503 		if (uptodate) {
1504 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1505 			if (whole_page)
1506 				SetPageUptodate(page);
1507 			else
1508 				check_page_uptodate(tree, page);
1509 		} else {
1510 			ClearPageUptodate(page);
1511 			SetPageError(page);
1512 		}
1513 
1514 		unlock_extent(tree, start, end, GFP_ATOMIC);
1515 
1516 		if (whole_page)
1517 			unlock_page(page);
1518 		else
1519 			check_page_locked(tree, page);
1520 	} while (bvec >= bio->bi_io_vec);
1521 
1522 	bio_put(bio);
1523 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1524 	return 0;
1525 #endif
1526 }
1527 
1528 /*
1529  * IO done from prepare_write is pretty simple, we just unlock
1530  * the structs in the extent tree when done, and set the uptodate bits
1531  * as appropriate.
1532  */
1533 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1534 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1535 #else
1536 static int end_bio_extent_preparewrite(struct bio *bio,
1537 				       unsigned int bytes_done, int err)
1538 #endif
1539 {
1540 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1541 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1542 	struct extent_map_tree *tree = bio->bi_private;
1543 	u64 start;
1544 	u64 end;
1545 
1546 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1547 	if (bio->bi_size)
1548 		return 1;
1549 #endif
1550 
1551 	do {
1552 		struct page *page = bvec->bv_page;
1553 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1554 			bvec->bv_offset;
1555 		end = start + bvec->bv_len - 1;
1556 
1557 		if (--bvec >= bio->bi_io_vec)
1558 			prefetchw(&bvec->bv_page->flags);
1559 
1560 		if (uptodate) {
1561 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1562 		} else {
1563 			ClearPageUptodate(page);
1564 			SetPageError(page);
1565 		}
1566 
1567 		unlock_extent(tree, start, end, GFP_ATOMIC);
1568 
1569 	} while (bvec >= bio->bi_io_vec);
1570 
1571 	bio_put(bio);
1572 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1573 	return 0;
1574 #endif
1575 }
1576 
1577 static struct bio *
1578 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1579 		 gfp_t gfp_flags)
1580 {
1581 	struct bio *bio;
1582 
1583 	bio = bio_alloc(gfp_flags, nr_vecs);
1584 
1585 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1586 		while (!bio && (nr_vecs /= 2))
1587 			bio = bio_alloc(gfp_flags, nr_vecs);
1588 	}
1589 
1590 	if (bio) {
1591 		bio->bi_bdev = bdev;
1592 		bio->bi_sector = first_sector;
1593 	}
1594 	return bio;
1595 }
1596 
1597 static int submit_one_bio(int rw, struct bio *bio)
1598 {
1599 	u64 maxsector;
1600 	int ret = 0;
1601 
1602 	bio_get(bio);
1603 
1604         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1605 	if (maxsector < bio->bi_sector) {
1606 		printk("sector too large max %Lu got %llu\n", maxsector,
1607 			(unsigned long long)bio->bi_sector);
1608 		WARN_ON(1);
1609 	}
1610 
1611 	submit_bio(rw, bio);
1612 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1613 		ret = -EOPNOTSUPP;
1614 	bio_put(bio);
1615 	return ret;
1616 }
1617 
1618 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1619 			      struct page *page, sector_t sector,
1620 			      size_t size, unsigned long offset,
1621 			      struct block_device *bdev,
1622 			      struct bio **bio_ret,
1623 			      unsigned long max_pages,
1624 			      bio_end_io_t end_io_func)
1625 {
1626 	int ret = 0;
1627 	struct bio *bio;
1628 	int nr;
1629 
1630 	if (bio_ret && *bio_ret) {
1631 		bio = *bio_ret;
1632 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1633 		    bio_add_page(bio, page, size, offset) < size) {
1634 			ret = submit_one_bio(rw, bio);
1635 			bio = NULL;
1636 		} else {
1637 			return 0;
1638 		}
1639 	}
1640 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1641 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1642 	if (!bio) {
1643 		printk("failed to allocate bio nr %d\n", nr);
1644 	}
1645 	bio_add_page(bio, page, size, offset);
1646 	bio->bi_end_io = end_io_func;
1647 	bio->bi_private = tree;
1648 	if (bio_ret) {
1649 		*bio_ret = bio;
1650 	} else {
1651 		ret = submit_one_bio(rw, bio);
1652 	}
1653 
1654 	return ret;
1655 }
1656 
1657 void set_page_extent_mapped(struct page *page)
1658 {
1659 	if (!PagePrivate(page)) {
1660 		SetPagePrivate(page);
1661 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1662 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1663 		page_cache_get(page);
1664 	}
1665 }
1666 
1667 /*
1668  * basic readpage implementation.  Locked extent state structs are inserted
1669  * into the tree that are removed when the IO is done (by the end_io
1670  * handlers)
1671  */
1672 static int __extent_read_full_page(struct extent_map_tree *tree,
1673 				   struct page *page,
1674 				   get_extent_t *get_extent,
1675 				   struct bio **bio)
1676 {
1677 	struct inode *inode = page->mapping->host;
1678 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1679 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1680 	u64 end;
1681 	u64 cur = start;
1682 	u64 extent_offset;
1683 	u64 last_byte = i_size_read(inode);
1684 	u64 block_start;
1685 	u64 cur_end;
1686 	sector_t sector;
1687 	struct extent_map *em;
1688 	struct block_device *bdev;
1689 	int ret;
1690 	int nr = 0;
1691 	size_t page_offset = 0;
1692 	size_t iosize;
1693 	size_t blocksize = inode->i_sb->s_blocksize;
1694 
1695 	set_page_extent_mapped(page);
1696 
1697 	end = page_end;
1698 	lock_extent(tree, start, end, GFP_NOFS);
1699 
1700 	while (cur <= end) {
1701 		if (cur >= last_byte) {
1702 			char *userpage;
1703 			iosize = PAGE_CACHE_SIZE - page_offset;
1704 			userpage = kmap_atomic(page, KM_USER0);
1705 			memset(userpage + page_offset, 0, iosize);
1706 			flush_dcache_page(page);
1707 			kunmap_atomic(userpage, KM_USER0);
1708 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1709 					    GFP_NOFS);
1710 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1711 			break;
1712 		}
1713 		em = get_extent(inode, page, page_offset, cur, end, 0);
1714 		if (IS_ERR(em) || !em) {
1715 			SetPageError(page);
1716 			unlock_extent(tree, cur, end, GFP_NOFS);
1717 			break;
1718 		}
1719 
1720 		extent_offset = cur - em->start;
1721 		BUG_ON(em->end < cur);
1722 		BUG_ON(end < cur);
1723 
1724 		iosize = min(em->end - cur, end - cur) + 1;
1725 		cur_end = min(em->end, end);
1726 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1727 		sector = (em->block_start + extent_offset) >> 9;
1728 		bdev = em->bdev;
1729 		block_start = em->block_start;
1730 		free_extent_map(em);
1731 		em = NULL;
1732 
1733 		/* we've found a hole, just zero and go on */
1734 		if (block_start == EXTENT_MAP_HOLE) {
1735 			char *userpage;
1736 			userpage = kmap_atomic(page, KM_USER0);
1737 			memset(userpage + page_offset, 0, iosize);
1738 			flush_dcache_page(page);
1739 			kunmap_atomic(userpage, KM_USER0);
1740 
1741 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1742 					    GFP_NOFS);
1743 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1744 			cur = cur + iosize;
1745 			page_offset += iosize;
1746 			continue;
1747 		}
1748 		/* the get_extent function already copied into the page */
1749 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1750 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1751 			cur = cur + iosize;
1752 			page_offset += iosize;
1753 			continue;
1754 		}
1755 
1756 		ret = 0;
1757 		if (tree->ops && tree->ops->readpage_io_hook) {
1758 			ret = tree->ops->readpage_io_hook(page, cur,
1759 							  cur + iosize - 1);
1760 		}
1761 		if (!ret) {
1762 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1763 			nr -= page->index;
1764 			ret = submit_extent_page(READ, tree, page,
1765 					 sector, iosize, page_offset,
1766 					 bdev, bio, nr,
1767 					 end_bio_extent_readpage);
1768 		}
1769 		if (ret)
1770 			SetPageError(page);
1771 		cur = cur + iosize;
1772 		page_offset += iosize;
1773 		nr++;
1774 	}
1775 	if (!nr) {
1776 		if (!PageError(page))
1777 			SetPageUptodate(page);
1778 		unlock_page(page);
1779 	}
1780 	return 0;
1781 }
1782 
1783 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1784 			    get_extent_t *get_extent)
1785 {
1786 	struct bio *bio = NULL;
1787 	int ret;
1788 
1789 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1790 	if (bio)
1791 		submit_one_bio(READ, bio);
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL(extent_read_full_page);
1795 
1796 /*
1797  * the writepage semantics are similar to regular writepage.  extent
1798  * records are inserted to lock ranges in the tree, and as dirty areas
1799  * are found, they are marked writeback.  Then the lock bits are removed
1800  * and the end_io handler clears the writeback ranges
1801  */
1802 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1803 			      void *data)
1804 {
1805 	struct inode *inode = page->mapping->host;
1806 	struct extent_page_data *epd = data;
1807 	struct extent_map_tree *tree = epd->tree;
1808 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1809 	u64 delalloc_start;
1810 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1811 	u64 end;
1812 	u64 cur = start;
1813 	u64 extent_offset;
1814 	u64 last_byte = i_size_read(inode);
1815 	u64 block_start;
1816 	u64 iosize;
1817 	sector_t sector;
1818 	struct extent_map *em;
1819 	struct block_device *bdev;
1820 	int ret;
1821 	int nr = 0;
1822 	size_t page_offset = 0;
1823 	size_t blocksize;
1824 	loff_t i_size = i_size_read(inode);
1825 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1826 	u64 nr_delalloc;
1827 	u64 delalloc_end;
1828 
1829 	WARN_ON(!PageLocked(page));
1830 	if (page->index > end_index) {
1831 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1832 		unlock_page(page);
1833 		return 0;
1834 	}
1835 
1836 	if (page->index == end_index) {
1837 		char *userpage;
1838 
1839 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1840 
1841 		userpage = kmap_atomic(page, KM_USER0);
1842 		memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1843 		flush_dcache_page(page);
1844 		kunmap_atomic(userpage, KM_USER0);
1845 	}
1846 
1847 	set_page_extent_mapped(page);
1848 
1849 	delalloc_start = start;
1850 	delalloc_end = 0;
1851 	while(delalloc_end < page_end) {
1852 		nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1853 						       &delalloc_end,
1854 						       128 * 1024 * 1024);
1855 		if (nr_delalloc == 0) {
1856 			delalloc_start = delalloc_end + 1;
1857 			continue;
1858 		}
1859 		tree->ops->fill_delalloc(inode, delalloc_start,
1860 					 delalloc_end);
1861 		clear_extent_bit(tree, delalloc_start,
1862 				 delalloc_end,
1863 				 EXTENT_LOCKED | EXTENT_DELALLOC,
1864 				 1, 0, GFP_NOFS);
1865 		delalloc_start = delalloc_end + 1;
1866 	}
1867 	lock_extent(tree, start, page_end, GFP_NOFS);
1868 
1869 	end = page_end;
1870 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1871 		printk("found delalloc bits after lock_extent\n");
1872 	}
1873 
1874 	if (last_byte <= start) {
1875 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1876 		goto done;
1877 	}
1878 
1879 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1880 	blocksize = inode->i_sb->s_blocksize;
1881 
1882 	while (cur <= end) {
1883 		if (cur >= last_byte) {
1884 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1885 			break;
1886 		}
1887 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1888 		if (IS_ERR(em) || !em) {
1889 			SetPageError(page);
1890 			break;
1891 		}
1892 
1893 		extent_offset = cur - em->start;
1894 		BUG_ON(em->end < cur);
1895 		BUG_ON(end < cur);
1896 		iosize = min(em->end - cur, end - cur) + 1;
1897 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1898 		sector = (em->block_start + extent_offset) >> 9;
1899 		bdev = em->bdev;
1900 		block_start = em->block_start;
1901 		free_extent_map(em);
1902 		em = NULL;
1903 
1904 		if (block_start == EXTENT_MAP_HOLE ||
1905 		    block_start == EXTENT_MAP_INLINE) {
1906 			clear_extent_dirty(tree, cur,
1907 					   cur + iosize - 1, GFP_NOFS);
1908 			cur = cur + iosize;
1909 			page_offset += iosize;
1910 			continue;
1911 		}
1912 
1913 		/* leave this out until we have a page_mkwrite call */
1914 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1915 				   EXTENT_DIRTY, 0)) {
1916 			cur = cur + iosize;
1917 			page_offset += iosize;
1918 			continue;
1919 		}
1920 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1921 		if (tree->ops && tree->ops->writepage_io_hook) {
1922 			ret = tree->ops->writepage_io_hook(page, cur,
1923 						cur + iosize - 1);
1924 		} else {
1925 			ret = 0;
1926 		}
1927 		if (ret)
1928 			SetPageError(page);
1929 		else {
1930 			unsigned long max_nr = end_index + 1;
1931 			set_range_writeback(tree, cur, cur + iosize - 1);
1932 			if (!PageWriteback(page)) {
1933 				printk("warning page %lu not writeback, "
1934 				       "cur %llu end %llu\n", page->index,
1935 				       (unsigned long long)cur,
1936 				       (unsigned long long)end);
1937 			}
1938 
1939 			ret = submit_extent_page(WRITE, tree, page, sector,
1940 						 iosize, page_offset, bdev,
1941 						 &epd->bio, max_nr,
1942 						 end_bio_extent_writepage);
1943 			if (ret)
1944 				SetPageError(page);
1945 		}
1946 		cur = cur + iosize;
1947 		page_offset += iosize;
1948 		nr++;
1949 	}
1950 done:
1951 	if (nr == 0) {
1952 		/* make sure the mapping tag for page dirty gets cleared */
1953 		set_page_writeback(page);
1954 		end_page_writeback(page);
1955 	}
1956 	unlock_extent(tree, start, page_end, GFP_NOFS);
1957 	unlock_page(page);
1958 	return 0;
1959 }
1960 
1961 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1962 
1963 /* Taken directly from 2.6.23 for 2.6.18 back port */
1964 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
1965                                 void *data);
1966 
1967 /**
1968  * write_cache_pages - walk the list of dirty pages of the given address space
1969  * and write all of them.
1970  * @mapping: address space structure to write
1971  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1972  * @writepage: function called for each page
1973  * @data: data passed to writepage function
1974  *
1975  * If a page is already under I/O, write_cache_pages() skips it, even
1976  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1977  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1978  * and msync() need to guarantee that all the data which was dirty at the time
1979  * the call was made get new I/O started against them.  If wbc->sync_mode is
1980  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1981  * existing IO to complete.
1982  */
1983 static int write_cache_pages(struct address_space *mapping,
1984 		      struct writeback_control *wbc, writepage_t writepage,
1985 		      void *data)
1986 {
1987 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1988 	int ret = 0;
1989 	int done = 0;
1990 	struct pagevec pvec;
1991 	int nr_pages;
1992 	pgoff_t index;
1993 	pgoff_t end;		/* Inclusive */
1994 	int scanned = 0;
1995 	int range_whole = 0;
1996 
1997 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
1998 		wbc->encountered_congestion = 1;
1999 		return 0;
2000 	}
2001 
2002 	pagevec_init(&pvec, 0);
2003 	if (wbc->range_cyclic) {
2004 		index = mapping->writeback_index; /* Start from prev offset */
2005 		end = -1;
2006 	} else {
2007 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2008 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2009 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2010 			range_whole = 1;
2011 		scanned = 1;
2012 	}
2013 retry:
2014 	while (!done && (index <= end) &&
2015 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2016 					      PAGECACHE_TAG_DIRTY,
2017 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2018 		unsigned i;
2019 
2020 		scanned = 1;
2021 		for (i = 0; i < nr_pages; i++) {
2022 			struct page *page = pvec.pages[i];
2023 
2024 			/*
2025 			 * At this point we hold neither mapping->tree_lock nor
2026 			 * lock on the page itself: the page may be truncated or
2027 			 * invalidated (changing page->mapping to NULL), or even
2028 			 * swizzled back from swapper_space to tmpfs file
2029 			 * mapping
2030 			 */
2031 			lock_page(page);
2032 
2033 			if (unlikely(page->mapping != mapping)) {
2034 				unlock_page(page);
2035 				continue;
2036 			}
2037 
2038 			if (!wbc->range_cyclic && page->index > end) {
2039 				done = 1;
2040 				unlock_page(page);
2041 				continue;
2042 			}
2043 
2044 			if (wbc->sync_mode != WB_SYNC_NONE)
2045 				wait_on_page_writeback(page);
2046 
2047 			if (PageWriteback(page) ||
2048 			    !clear_page_dirty_for_io(page)) {
2049 				unlock_page(page);
2050 				continue;
2051 			}
2052 
2053 			ret = (*writepage)(page, wbc, data);
2054 
2055 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2056 				unlock_page(page);
2057 				ret = 0;
2058 			}
2059 			if (ret || (--(wbc->nr_to_write) <= 0))
2060 				done = 1;
2061 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
2062 				wbc->encountered_congestion = 1;
2063 				done = 1;
2064 			}
2065 		}
2066 		pagevec_release(&pvec);
2067 		cond_resched();
2068 	}
2069 	if (!scanned && !done) {
2070 		/*
2071 		 * We hit the last page and there is more work to be done: wrap
2072 		 * back to the start of the file
2073 		 */
2074 		scanned = 1;
2075 		index = 0;
2076 		goto retry;
2077 	}
2078 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2079 		mapping->writeback_index = index;
2080 	return ret;
2081 }
2082 #endif
2083 
2084 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
2085 			  get_extent_t *get_extent,
2086 			  struct writeback_control *wbc)
2087 {
2088 	int ret;
2089 	struct address_space *mapping = page->mapping;
2090 	struct extent_page_data epd = {
2091 		.bio = NULL,
2092 		.tree = tree,
2093 		.get_extent = get_extent,
2094 	};
2095 	struct writeback_control wbc_writepages = {
2096 		.bdi		= wbc->bdi,
2097 		.sync_mode	= WB_SYNC_NONE,
2098 		.older_than_this = NULL,
2099 		.nr_to_write	= 64,
2100 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2101 		.range_end	= (loff_t)-1,
2102 	};
2103 
2104 
2105 	ret = __extent_writepage(page, wbc, &epd);
2106 
2107 	write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2108 	if (epd.bio) {
2109 		submit_one_bio(WRITE, epd.bio);
2110 	}
2111 	return ret;
2112 }
2113 EXPORT_SYMBOL(extent_write_full_page);
2114 
2115 
2116 int extent_writepages(struct extent_map_tree *tree,
2117 		      struct address_space *mapping,
2118 		      get_extent_t *get_extent,
2119 		      struct writeback_control *wbc)
2120 {
2121 	int ret = 0;
2122 	struct extent_page_data epd = {
2123 		.bio = NULL,
2124 		.tree = tree,
2125 		.get_extent = get_extent,
2126 	};
2127 
2128 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2129 	if (epd.bio) {
2130 		submit_one_bio(WRITE, epd.bio);
2131 	}
2132 	return ret;
2133 }
2134 EXPORT_SYMBOL(extent_writepages);
2135 
2136 int extent_readpages(struct extent_map_tree *tree,
2137 		     struct address_space *mapping,
2138 		     struct list_head *pages, unsigned nr_pages,
2139 		     get_extent_t get_extent)
2140 {
2141 	struct bio *bio = NULL;
2142 	unsigned page_idx;
2143 	struct pagevec pvec;
2144 
2145 	pagevec_init(&pvec, 0);
2146 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2147 		struct page *page = list_entry(pages->prev, struct page, lru);
2148 
2149 		prefetchw(&page->flags);
2150 		list_del(&page->lru);
2151 		/*
2152 		 * what we want to do here is call add_to_page_cache_lru,
2153 		 * but that isn't exported, so we reproduce it here
2154 		 */
2155 		if (!add_to_page_cache(page, mapping,
2156 					page->index, GFP_KERNEL)) {
2157 
2158 			/* open coding of lru_cache_add, also not exported */
2159 			page_cache_get(page);
2160 			if (!pagevec_add(&pvec, page))
2161 				__pagevec_lru_add(&pvec);
2162 			__extent_read_full_page(tree, page, get_extent, &bio);
2163 		}
2164 		page_cache_release(page);
2165 	}
2166 	if (pagevec_count(&pvec))
2167 		__pagevec_lru_add(&pvec);
2168 	BUG_ON(!list_empty(pages));
2169 	if (bio)
2170 		submit_one_bio(READ, bio);
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL(extent_readpages);
2174 
2175 /*
2176  * basic invalidatepage code, this waits on any locked or writeback
2177  * ranges corresponding to the page, and then deletes any extent state
2178  * records from the tree
2179  */
2180 int extent_invalidatepage(struct extent_map_tree *tree,
2181 			  struct page *page, unsigned long offset)
2182 {
2183 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2184 	u64 end = start + PAGE_CACHE_SIZE - 1;
2185 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2186 
2187 	start += (offset + blocksize -1) & ~(blocksize - 1);
2188 	if (start > end)
2189 		return 0;
2190 
2191 	lock_extent(tree, start, end, GFP_NOFS);
2192 	wait_on_extent_writeback(tree, start, end);
2193 	clear_extent_bit(tree, start, end,
2194 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2195 			 1, 1, GFP_NOFS);
2196 	return 0;
2197 }
2198 EXPORT_SYMBOL(extent_invalidatepage);
2199 
2200 /*
2201  * simple commit_write call, set_range_dirty is used to mark both
2202  * the pages and the extent records as dirty
2203  */
2204 int extent_commit_write(struct extent_map_tree *tree,
2205 			struct inode *inode, struct page *page,
2206 			unsigned from, unsigned to)
2207 {
2208 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2209 
2210 	set_page_extent_mapped(page);
2211 	set_page_dirty(page);
2212 
2213 	if (pos > inode->i_size) {
2214 		i_size_write(inode, pos);
2215 		mark_inode_dirty(inode);
2216 	}
2217 	return 0;
2218 }
2219 EXPORT_SYMBOL(extent_commit_write);
2220 
2221 int extent_prepare_write(struct extent_map_tree *tree,
2222 			 struct inode *inode, struct page *page,
2223 			 unsigned from, unsigned to, get_extent_t *get_extent)
2224 {
2225 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2226 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2227 	u64 block_start;
2228 	u64 orig_block_start;
2229 	u64 block_end;
2230 	u64 cur_end;
2231 	struct extent_map *em;
2232 	unsigned blocksize = 1 << inode->i_blkbits;
2233 	size_t page_offset = 0;
2234 	size_t block_off_start;
2235 	size_t block_off_end;
2236 	int err = 0;
2237 	int iocount = 0;
2238 	int ret = 0;
2239 	int isnew;
2240 
2241 	set_page_extent_mapped(page);
2242 
2243 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2244 	block_end = (page_start + to - 1) | (blocksize - 1);
2245 	orig_block_start = block_start;
2246 
2247 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2248 	while(block_start <= block_end) {
2249 		em = get_extent(inode, page, page_offset, block_start,
2250 				block_end, 1);
2251 		if (IS_ERR(em) || !em) {
2252 			goto err;
2253 		}
2254 		cur_end = min(block_end, em->end);
2255 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2256 		block_off_end = block_off_start + blocksize;
2257 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2258 
2259 		if (!PageUptodate(page) && isnew &&
2260 		    (block_off_end > to || block_off_start < from)) {
2261 			void *kaddr;
2262 
2263 			kaddr = kmap_atomic(page, KM_USER0);
2264 			if (block_off_end > to)
2265 				memset(kaddr + to, 0, block_off_end - to);
2266 			if (block_off_start < from)
2267 				memset(kaddr + block_off_start, 0,
2268 				       from - block_off_start);
2269 			flush_dcache_page(page);
2270 			kunmap_atomic(kaddr, KM_USER0);
2271 		}
2272 		if ((em->block_start != EXTENT_MAP_HOLE &&
2273 		     em->block_start != EXTENT_MAP_INLINE) &&
2274 		    !isnew && !PageUptodate(page) &&
2275 		    (block_off_end > to || block_off_start < from) &&
2276 		    !test_range_bit(tree, block_start, cur_end,
2277 				    EXTENT_UPTODATE, 1)) {
2278 			u64 sector;
2279 			u64 extent_offset = block_start - em->start;
2280 			size_t iosize;
2281 			sector = (em->block_start + extent_offset) >> 9;
2282 			iosize = (cur_end - block_start + blocksize - 1) &
2283 				~((u64)blocksize - 1);
2284 			/*
2285 			 * we've already got the extent locked, but we
2286 			 * need to split the state such that our end_bio
2287 			 * handler can clear the lock.
2288 			 */
2289 			set_extent_bit(tree, block_start,
2290 				       block_start + iosize - 1,
2291 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2292 			ret = submit_extent_page(READ, tree, page,
2293 					 sector, iosize, page_offset, em->bdev,
2294 					 NULL, 1,
2295 					 end_bio_extent_preparewrite);
2296 			iocount++;
2297 			block_start = block_start + iosize;
2298 		} else {
2299 			set_extent_uptodate(tree, block_start, cur_end,
2300 					    GFP_NOFS);
2301 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2302 			block_start = cur_end + 1;
2303 		}
2304 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2305 		free_extent_map(em);
2306 	}
2307 	if (iocount) {
2308 		wait_extent_bit(tree, orig_block_start,
2309 				block_end, EXTENT_LOCKED);
2310 	}
2311 	check_page_uptodate(tree, page);
2312 err:
2313 	/* FIXME, zero out newly allocated blocks on error */
2314 	return err;
2315 }
2316 EXPORT_SYMBOL(extent_prepare_write);
2317 
2318 /*
2319  * a helper for releasepage.  As long as there are no locked extents
2320  * in the range corresponding to the page, both state records and extent
2321  * map records are removed
2322  */
2323 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2324 {
2325 	struct extent_map *em;
2326 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2327 	u64 end = start + PAGE_CACHE_SIZE - 1;
2328 	u64 orig_start = start;
2329 	int ret = 1;
2330 
2331 	while (start <= end) {
2332 		em = lookup_extent_mapping(tree, start, end);
2333 		if (!em || IS_ERR(em))
2334 			break;
2335 		if (!test_range_bit(tree, em->start, em->end,
2336 				    EXTENT_LOCKED, 0)) {
2337 			remove_extent_mapping(tree, em);
2338 			/* once for the rb tree */
2339 			free_extent_map(em);
2340 		}
2341 		start = em->end + 1;
2342 		/* once for us */
2343 		free_extent_map(em);
2344 	}
2345 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2346 		ret = 0;
2347 	else
2348 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2349 				 1, 1, GFP_NOFS);
2350 	return ret;
2351 }
2352 EXPORT_SYMBOL(try_release_extent_mapping);
2353 
2354 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2355 		get_extent_t *get_extent)
2356 {
2357 	struct inode *inode = mapping->host;
2358 	u64 start = iblock << inode->i_blkbits;
2359 	u64 end = start + (1 << inode->i_blkbits) - 1;
2360 	sector_t sector = 0;
2361 	struct extent_map *em;
2362 
2363 	em = get_extent(inode, NULL, 0, start, end, 0);
2364 	if (!em || IS_ERR(em))
2365 		return 0;
2366 
2367 	if (em->block_start == EXTENT_MAP_INLINE ||
2368 	    em->block_start == EXTENT_MAP_HOLE)
2369 		goto out;
2370 
2371 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2372 out:
2373 	free_extent_map(em);
2374 	return sector;
2375 }
2376 
2377 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2378 {
2379 	if (list_empty(&eb->lru)) {
2380 		extent_buffer_get(eb);
2381 		list_add(&eb->lru, &tree->buffer_lru);
2382 		tree->lru_size++;
2383 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2384 			struct extent_buffer *rm;
2385 			rm = list_entry(tree->buffer_lru.prev,
2386 					struct extent_buffer, lru);
2387 			tree->lru_size--;
2388 			list_del_init(&rm->lru);
2389 			free_extent_buffer(rm);
2390 		}
2391 	} else
2392 		list_move(&eb->lru, &tree->buffer_lru);
2393 	return 0;
2394 }
2395 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2396 				      u64 start, unsigned long len)
2397 {
2398 	struct list_head *lru = &tree->buffer_lru;
2399 	struct list_head *cur = lru->next;
2400 	struct extent_buffer *eb;
2401 
2402 	if (list_empty(lru))
2403 		return NULL;
2404 
2405 	do {
2406 		eb = list_entry(cur, struct extent_buffer, lru);
2407 		if (eb->start == start && eb->len == len) {
2408 			extent_buffer_get(eb);
2409 			return eb;
2410 		}
2411 		cur = cur->next;
2412 	} while (cur != lru);
2413 	return NULL;
2414 }
2415 
2416 static inline unsigned long num_extent_pages(u64 start, u64 len)
2417 {
2418 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2419 		(start >> PAGE_CACHE_SHIFT);
2420 }
2421 
2422 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2423 					      unsigned long i)
2424 {
2425 	struct page *p;
2426 	struct address_space *mapping;
2427 
2428 	if (i == 0)
2429 		return eb->first_page;
2430 	i += eb->start >> PAGE_CACHE_SHIFT;
2431 	mapping = eb->first_page->mapping;
2432 	read_lock_irq(&mapping->tree_lock);
2433 	p = radix_tree_lookup(&mapping->page_tree, i);
2434 	read_unlock_irq(&mapping->tree_lock);
2435 	return p;
2436 }
2437 
2438 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2439 						   u64 start,
2440 						   unsigned long len,
2441 						   gfp_t mask)
2442 {
2443 	struct extent_buffer *eb = NULL;
2444 
2445 	spin_lock(&tree->lru_lock);
2446 	eb = find_lru(tree, start, len);
2447 	spin_unlock(&tree->lru_lock);
2448 	if (eb) {
2449 		return eb;
2450 	}
2451 
2452 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2453 	INIT_LIST_HEAD(&eb->lru);
2454 	eb->start = start;
2455 	eb->len = len;
2456 	atomic_set(&eb->refs, 1);
2457 
2458 	return eb;
2459 }
2460 
2461 static void __free_extent_buffer(struct extent_buffer *eb)
2462 {
2463 	kmem_cache_free(extent_buffer_cache, eb);
2464 }
2465 
2466 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2467 					  u64 start, unsigned long len,
2468 					  struct page *page0,
2469 					  gfp_t mask)
2470 {
2471 	unsigned long num_pages = num_extent_pages(start, len);
2472 	unsigned long i;
2473 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2474 	struct extent_buffer *eb;
2475 	struct page *p;
2476 	struct address_space *mapping = tree->mapping;
2477 	int uptodate = 1;
2478 
2479 	eb = __alloc_extent_buffer(tree, start, len, mask);
2480 	if (!eb || IS_ERR(eb))
2481 		return NULL;
2482 
2483 	if (eb->flags & EXTENT_BUFFER_FILLED)
2484 		goto lru_add;
2485 
2486 	if (page0) {
2487 		eb->first_page = page0;
2488 		i = 1;
2489 		index++;
2490 		page_cache_get(page0);
2491 		mark_page_accessed(page0);
2492 		set_page_extent_mapped(page0);
2493 		WARN_ON(!PageUptodate(page0));
2494 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2495 				 len << 2);
2496 	} else {
2497 		i = 0;
2498 	}
2499 	for (; i < num_pages; i++, index++) {
2500 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2501 		if (!p) {
2502 			WARN_ON(1);
2503 			goto fail;
2504 		}
2505 		set_page_extent_mapped(p);
2506 		mark_page_accessed(p);
2507 		if (i == 0) {
2508 			eb->first_page = p;
2509 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2510 					 len << 2);
2511 		} else {
2512 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2513 		}
2514 		if (!PageUptodate(p))
2515 			uptodate = 0;
2516 		unlock_page(p);
2517 	}
2518 	if (uptodate)
2519 		eb->flags |= EXTENT_UPTODATE;
2520 	eb->flags |= EXTENT_BUFFER_FILLED;
2521 
2522 lru_add:
2523 	spin_lock(&tree->lru_lock);
2524 	add_lru(tree, eb);
2525 	spin_unlock(&tree->lru_lock);
2526 	return eb;
2527 
2528 fail:
2529 	spin_lock(&tree->lru_lock);
2530 	list_del_init(&eb->lru);
2531 	spin_unlock(&tree->lru_lock);
2532 	if (!atomic_dec_and_test(&eb->refs))
2533 		return NULL;
2534 	for (index = 1; index < i; index++) {
2535 		page_cache_release(extent_buffer_page(eb, index));
2536 	}
2537 	if (i > 0)
2538 		page_cache_release(extent_buffer_page(eb, 0));
2539 	__free_extent_buffer(eb);
2540 	return NULL;
2541 }
2542 EXPORT_SYMBOL(alloc_extent_buffer);
2543 
2544 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2545 					 u64 start, unsigned long len,
2546 					  gfp_t mask)
2547 {
2548 	unsigned long num_pages = num_extent_pages(start, len);
2549 	unsigned long i;
2550 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2551 	struct extent_buffer *eb;
2552 	struct page *p;
2553 	struct address_space *mapping = tree->mapping;
2554 	int uptodate = 1;
2555 
2556 	eb = __alloc_extent_buffer(tree, start, len, mask);
2557 	if (!eb || IS_ERR(eb))
2558 		return NULL;
2559 
2560 	if (eb->flags & EXTENT_BUFFER_FILLED)
2561 		goto lru_add;
2562 
2563 	for (i = 0; i < num_pages; i++, index++) {
2564 		p = find_lock_page(mapping, index);
2565 		if (!p) {
2566 			goto fail;
2567 		}
2568 		set_page_extent_mapped(p);
2569 		mark_page_accessed(p);
2570 
2571 		if (i == 0) {
2572 			eb->first_page = p;
2573 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2574 					 len << 2);
2575 		} else {
2576 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2577 		}
2578 
2579 		if (!PageUptodate(p))
2580 			uptodate = 0;
2581 		unlock_page(p);
2582 	}
2583 	if (uptodate)
2584 		eb->flags |= EXTENT_UPTODATE;
2585 	eb->flags |= EXTENT_BUFFER_FILLED;
2586 
2587 lru_add:
2588 	spin_lock(&tree->lru_lock);
2589 	add_lru(tree, eb);
2590 	spin_unlock(&tree->lru_lock);
2591 	return eb;
2592 fail:
2593 	spin_lock(&tree->lru_lock);
2594 	list_del_init(&eb->lru);
2595 	spin_unlock(&tree->lru_lock);
2596 	if (!atomic_dec_and_test(&eb->refs))
2597 		return NULL;
2598 	for (index = 1; index < i; index++) {
2599 		page_cache_release(extent_buffer_page(eb, index));
2600 	}
2601 	if (i > 0)
2602 		page_cache_release(extent_buffer_page(eb, 0));
2603 	__free_extent_buffer(eb);
2604 	return NULL;
2605 }
2606 EXPORT_SYMBOL(find_extent_buffer);
2607 
2608 void free_extent_buffer(struct extent_buffer *eb)
2609 {
2610 	unsigned long i;
2611 	unsigned long num_pages;
2612 
2613 	if (!eb)
2614 		return;
2615 
2616 	if (!atomic_dec_and_test(&eb->refs))
2617 		return;
2618 
2619 	WARN_ON(!list_empty(&eb->lru));
2620 	num_pages = num_extent_pages(eb->start, eb->len);
2621 
2622 	for (i = 1; i < num_pages; i++) {
2623 		page_cache_release(extent_buffer_page(eb, i));
2624 	}
2625 	page_cache_release(extent_buffer_page(eb, 0));
2626 	__free_extent_buffer(eb);
2627 }
2628 EXPORT_SYMBOL(free_extent_buffer);
2629 
2630 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2631 			      struct extent_buffer *eb)
2632 {
2633 	int set;
2634 	unsigned long i;
2635 	unsigned long num_pages;
2636 	struct page *page;
2637 
2638 	u64 start = eb->start;
2639 	u64 end = start + eb->len - 1;
2640 
2641 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2642 	num_pages = num_extent_pages(eb->start, eb->len);
2643 
2644 	for (i = 0; i < num_pages; i++) {
2645 		page = extent_buffer_page(eb, i);
2646 		lock_page(page);
2647 		/*
2648 		 * if we're on the last page or the first page and the
2649 		 * block isn't aligned on a page boundary, do extra checks
2650 		 * to make sure we don't clean page that is partially dirty
2651 		 */
2652 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2653 		    ((i == num_pages - 1) &&
2654 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2655 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2656 			end  = start + PAGE_CACHE_SIZE - 1;
2657 			if (test_range_bit(tree, start, end,
2658 					   EXTENT_DIRTY, 0)) {
2659 				unlock_page(page);
2660 				continue;
2661 			}
2662 		}
2663 		clear_page_dirty_for_io(page);
2664 		write_lock_irq(&page->mapping->tree_lock);
2665 		if (!PageDirty(page)) {
2666 			radix_tree_tag_clear(&page->mapping->page_tree,
2667 						page_index(page),
2668 						PAGECACHE_TAG_DIRTY);
2669 		}
2670 		write_unlock_irq(&page->mapping->tree_lock);
2671 		unlock_page(page);
2672 	}
2673 	return 0;
2674 }
2675 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2676 
2677 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2678 				    struct extent_buffer *eb)
2679 {
2680 	return wait_on_extent_writeback(tree, eb->start,
2681 					eb->start + eb->len - 1);
2682 }
2683 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2684 
2685 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2686 			     struct extent_buffer *eb)
2687 {
2688 	unsigned long i;
2689 	unsigned long num_pages;
2690 
2691 	num_pages = num_extent_pages(eb->start, eb->len);
2692 	for (i = 0; i < num_pages; i++) {
2693 		struct page *page = extent_buffer_page(eb, i);
2694 		/* writepage may need to do something special for the
2695 		 * first page, we have to make sure page->private is
2696 		 * properly set.  releasepage may drop page->private
2697 		 * on us if the page isn't already dirty.
2698 		 */
2699 		if (i == 0) {
2700 			lock_page(page);
2701 			set_page_private(page,
2702 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2703 					 eb->len << 2);
2704 		}
2705 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2706 		if (i == 0)
2707 			unlock_page(page);
2708 	}
2709 	return set_extent_dirty(tree, eb->start,
2710 				eb->start + eb->len - 1, GFP_NOFS);
2711 }
2712 EXPORT_SYMBOL(set_extent_buffer_dirty);
2713 
2714 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2715 				struct extent_buffer *eb)
2716 {
2717 	unsigned long i;
2718 	struct page *page;
2719 	unsigned long num_pages;
2720 
2721 	num_pages = num_extent_pages(eb->start, eb->len);
2722 
2723 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2724 			    GFP_NOFS);
2725 	for (i = 0; i < num_pages; i++) {
2726 		page = extent_buffer_page(eb, i);
2727 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2728 		    ((i == num_pages - 1) &&
2729 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2730 			check_page_uptodate(tree, page);
2731 			continue;
2732 		}
2733 		SetPageUptodate(page);
2734 	}
2735 	return 0;
2736 }
2737 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2738 
2739 int extent_buffer_uptodate(struct extent_map_tree *tree,
2740 			     struct extent_buffer *eb)
2741 {
2742 	if (eb->flags & EXTENT_UPTODATE)
2743 		return 1;
2744 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2745 			   EXTENT_UPTODATE, 1);
2746 }
2747 EXPORT_SYMBOL(extent_buffer_uptodate);
2748 
2749 int read_extent_buffer_pages(struct extent_map_tree *tree,
2750 			     struct extent_buffer *eb,
2751 			     u64 start,
2752 			     int wait)
2753 {
2754 	unsigned long i;
2755 	unsigned long start_i;
2756 	struct page *page;
2757 	int err;
2758 	int ret = 0;
2759 	unsigned long num_pages;
2760 
2761 	if (eb->flags & EXTENT_UPTODATE)
2762 		return 0;
2763 
2764 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2765 			   EXTENT_UPTODATE, 1)) {
2766 		return 0;
2767 	}
2768 
2769 	if (start) {
2770 		WARN_ON(start < eb->start);
2771 		start_i = (start >> PAGE_CACHE_SHIFT) -
2772 			(eb->start >> PAGE_CACHE_SHIFT);
2773 	} else {
2774 		start_i = 0;
2775 	}
2776 
2777 	num_pages = num_extent_pages(eb->start, eb->len);
2778 	for (i = start_i; i < num_pages; i++) {
2779 		page = extent_buffer_page(eb, i);
2780 		if (PageUptodate(page)) {
2781 			continue;
2782 		}
2783 		if (!wait) {
2784 			if (TestSetPageLocked(page)) {
2785 				continue;
2786 			}
2787 		} else {
2788 			lock_page(page);
2789 		}
2790 		if (!PageUptodate(page)) {
2791 			err = page->mapping->a_ops->readpage(NULL, page);
2792 			if (err) {
2793 				ret = err;
2794 			}
2795 		} else {
2796 			unlock_page(page);
2797 		}
2798 	}
2799 
2800 	if (ret || !wait) {
2801 		return ret;
2802 	}
2803 
2804 	for (i = start_i; i < num_pages; i++) {
2805 		page = extent_buffer_page(eb, i);
2806 		wait_on_page_locked(page);
2807 		if (!PageUptodate(page)) {
2808 			ret = -EIO;
2809 		}
2810 	}
2811 	if (!ret)
2812 		eb->flags |= EXTENT_UPTODATE;
2813 	return ret;
2814 }
2815 EXPORT_SYMBOL(read_extent_buffer_pages);
2816 
2817 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2818 			unsigned long start,
2819 			unsigned long len)
2820 {
2821 	size_t cur;
2822 	size_t offset;
2823 	struct page *page;
2824 	char *kaddr;
2825 	char *dst = (char *)dstv;
2826 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2827 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2828 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2829 
2830 	WARN_ON(start > eb->len);
2831 	WARN_ON(start + len > eb->start + eb->len);
2832 
2833 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2834 
2835 	while(len > 0) {
2836 		page = extent_buffer_page(eb, i);
2837 		if (!PageUptodate(page)) {
2838 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2839 			WARN_ON(1);
2840 		}
2841 		WARN_ON(!PageUptodate(page));
2842 
2843 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2844 		kaddr = kmap_atomic(page, KM_USER1);
2845 		memcpy(dst, kaddr + offset, cur);
2846 		kunmap_atomic(kaddr, KM_USER1);
2847 
2848 		dst += cur;
2849 		len -= cur;
2850 		offset = 0;
2851 		i++;
2852 	}
2853 }
2854 EXPORT_SYMBOL(read_extent_buffer);
2855 
2856 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2857 			       unsigned long min_len, char **token, char **map,
2858 			       unsigned long *map_start,
2859 			       unsigned long *map_len, int km)
2860 {
2861 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2862 	char *kaddr;
2863 	struct page *p;
2864 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2865 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2866 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2867 		PAGE_CACHE_SHIFT;
2868 
2869 	if (i != end_i)
2870 		return -EINVAL;
2871 
2872 	if (i == 0) {
2873 		offset = start_offset;
2874 		*map_start = 0;
2875 	} else {
2876 		offset = 0;
2877 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2878 	}
2879 	if (start + min_len > eb->len) {
2880 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2881 		WARN_ON(1);
2882 	}
2883 
2884 	p = extent_buffer_page(eb, i);
2885 	WARN_ON(!PageUptodate(p));
2886 	kaddr = kmap_atomic(p, km);
2887 	*token = kaddr;
2888 	*map = kaddr + offset;
2889 	*map_len = PAGE_CACHE_SIZE - offset;
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL(map_private_extent_buffer);
2893 
2894 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2895 		      unsigned long min_len,
2896 		      char **token, char **map,
2897 		      unsigned long *map_start,
2898 		      unsigned long *map_len, int km)
2899 {
2900 	int err;
2901 	int save = 0;
2902 	if (eb->map_token) {
2903 		unmap_extent_buffer(eb, eb->map_token, km);
2904 		eb->map_token = NULL;
2905 		save = 1;
2906 	}
2907 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2908 				       map_start, map_len, km);
2909 	if (!err && save) {
2910 		eb->map_token = *token;
2911 		eb->kaddr = *map;
2912 		eb->map_start = *map_start;
2913 		eb->map_len = *map_len;
2914 	}
2915 	return err;
2916 }
2917 EXPORT_SYMBOL(map_extent_buffer);
2918 
2919 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2920 {
2921 	kunmap_atomic(token, km);
2922 }
2923 EXPORT_SYMBOL(unmap_extent_buffer);
2924 
2925 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2926 			  unsigned long start,
2927 			  unsigned long len)
2928 {
2929 	size_t cur;
2930 	size_t offset;
2931 	struct page *page;
2932 	char *kaddr;
2933 	char *ptr = (char *)ptrv;
2934 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2935 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2936 	int ret = 0;
2937 
2938 	WARN_ON(start > eb->len);
2939 	WARN_ON(start + len > eb->start + eb->len);
2940 
2941 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2942 
2943 	while(len > 0) {
2944 		page = extent_buffer_page(eb, i);
2945 		WARN_ON(!PageUptodate(page));
2946 
2947 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2948 
2949 		kaddr = kmap_atomic(page, KM_USER0);
2950 		ret = memcmp(ptr, kaddr + offset, cur);
2951 		kunmap_atomic(kaddr, KM_USER0);
2952 		if (ret)
2953 			break;
2954 
2955 		ptr += cur;
2956 		len -= cur;
2957 		offset = 0;
2958 		i++;
2959 	}
2960 	return ret;
2961 }
2962 EXPORT_SYMBOL(memcmp_extent_buffer);
2963 
2964 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2965 			 unsigned long start, unsigned long len)
2966 {
2967 	size_t cur;
2968 	size_t offset;
2969 	struct page *page;
2970 	char *kaddr;
2971 	char *src = (char *)srcv;
2972 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2973 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2974 
2975 	WARN_ON(start > eb->len);
2976 	WARN_ON(start + len > eb->start + eb->len);
2977 
2978 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2979 
2980 	while(len > 0) {
2981 		page = extent_buffer_page(eb, i);
2982 		WARN_ON(!PageUptodate(page));
2983 
2984 		cur = min(len, PAGE_CACHE_SIZE - offset);
2985 		kaddr = kmap_atomic(page, KM_USER1);
2986 		memcpy(kaddr + offset, src, cur);
2987 		kunmap_atomic(kaddr, KM_USER1);
2988 
2989 		src += cur;
2990 		len -= cur;
2991 		offset = 0;
2992 		i++;
2993 	}
2994 }
2995 EXPORT_SYMBOL(write_extent_buffer);
2996 
2997 void memset_extent_buffer(struct extent_buffer *eb, char c,
2998 			  unsigned long start, unsigned long len)
2999 {
3000 	size_t cur;
3001 	size_t offset;
3002 	struct page *page;
3003 	char *kaddr;
3004 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3005 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3006 
3007 	WARN_ON(start > eb->len);
3008 	WARN_ON(start + len > eb->start + eb->len);
3009 
3010 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3011 
3012 	while(len > 0) {
3013 		page = extent_buffer_page(eb, i);
3014 		WARN_ON(!PageUptodate(page));
3015 
3016 		cur = min(len, PAGE_CACHE_SIZE - offset);
3017 		kaddr = kmap_atomic(page, KM_USER0);
3018 		memset(kaddr + offset, c, cur);
3019 		kunmap_atomic(kaddr, KM_USER0);
3020 
3021 		len -= cur;
3022 		offset = 0;
3023 		i++;
3024 	}
3025 }
3026 EXPORT_SYMBOL(memset_extent_buffer);
3027 
3028 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3029 			unsigned long dst_offset, unsigned long src_offset,
3030 			unsigned long len)
3031 {
3032 	u64 dst_len = dst->len;
3033 	size_t cur;
3034 	size_t offset;
3035 	struct page *page;
3036 	char *kaddr;
3037 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3038 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3039 
3040 	WARN_ON(src->len != dst_len);
3041 
3042 	offset = (start_offset + dst_offset) &
3043 		((unsigned long)PAGE_CACHE_SIZE - 1);
3044 
3045 	while(len > 0) {
3046 		page = extent_buffer_page(dst, i);
3047 		WARN_ON(!PageUptodate(page));
3048 
3049 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3050 
3051 		kaddr = kmap_atomic(page, KM_USER0);
3052 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3053 		kunmap_atomic(kaddr, KM_USER0);
3054 
3055 		src_offset += cur;
3056 		len -= cur;
3057 		offset = 0;
3058 		i++;
3059 	}
3060 }
3061 EXPORT_SYMBOL(copy_extent_buffer);
3062 
3063 static void move_pages(struct page *dst_page, struct page *src_page,
3064 		       unsigned long dst_off, unsigned long src_off,
3065 		       unsigned long len)
3066 {
3067 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3068 	if (dst_page == src_page) {
3069 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3070 	} else {
3071 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3072 		char *p = dst_kaddr + dst_off + len;
3073 		char *s = src_kaddr + src_off + len;
3074 
3075 		while (len--)
3076 			*--p = *--s;
3077 
3078 		kunmap_atomic(src_kaddr, KM_USER1);
3079 	}
3080 	kunmap_atomic(dst_kaddr, KM_USER0);
3081 }
3082 
3083 static void copy_pages(struct page *dst_page, struct page *src_page,
3084 		       unsigned long dst_off, unsigned long src_off,
3085 		       unsigned long len)
3086 {
3087 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3088 	char *src_kaddr;
3089 
3090 	if (dst_page != src_page)
3091 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3092 	else
3093 		src_kaddr = dst_kaddr;
3094 
3095 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3096 	kunmap_atomic(dst_kaddr, KM_USER0);
3097 	if (dst_page != src_page)
3098 		kunmap_atomic(src_kaddr, KM_USER1);
3099 }
3100 
3101 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3102 			   unsigned long src_offset, unsigned long len)
3103 {
3104 	size_t cur;
3105 	size_t dst_off_in_page;
3106 	size_t src_off_in_page;
3107 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3108 	unsigned long dst_i;
3109 	unsigned long src_i;
3110 
3111 	if (src_offset + len > dst->len) {
3112 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3113 		       src_offset, len, dst->len);
3114 		BUG_ON(1);
3115 	}
3116 	if (dst_offset + len > dst->len) {
3117 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3118 		       dst_offset, len, dst->len);
3119 		BUG_ON(1);
3120 	}
3121 
3122 	while(len > 0) {
3123 		dst_off_in_page = (start_offset + dst_offset) &
3124 			((unsigned long)PAGE_CACHE_SIZE - 1);
3125 		src_off_in_page = (start_offset + src_offset) &
3126 			((unsigned long)PAGE_CACHE_SIZE - 1);
3127 
3128 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3129 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3130 
3131 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3132 					       src_off_in_page));
3133 		cur = min_t(unsigned long, cur,
3134 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3135 
3136 		copy_pages(extent_buffer_page(dst, dst_i),
3137 			   extent_buffer_page(dst, src_i),
3138 			   dst_off_in_page, src_off_in_page, cur);
3139 
3140 		src_offset += cur;
3141 		dst_offset += cur;
3142 		len -= cur;
3143 	}
3144 }
3145 EXPORT_SYMBOL(memcpy_extent_buffer);
3146 
3147 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3148 			   unsigned long src_offset, unsigned long len)
3149 {
3150 	size_t cur;
3151 	size_t dst_off_in_page;
3152 	size_t src_off_in_page;
3153 	unsigned long dst_end = dst_offset + len - 1;
3154 	unsigned long src_end = src_offset + len - 1;
3155 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3156 	unsigned long dst_i;
3157 	unsigned long src_i;
3158 
3159 	if (src_offset + len > dst->len) {
3160 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3161 		       src_offset, len, dst->len);
3162 		BUG_ON(1);
3163 	}
3164 	if (dst_offset + len > dst->len) {
3165 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3166 		       dst_offset, len, dst->len);
3167 		BUG_ON(1);
3168 	}
3169 	if (dst_offset < src_offset) {
3170 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3171 		return;
3172 	}
3173 	while(len > 0) {
3174 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3175 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3176 
3177 		dst_off_in_page = (start_offset + dst_end) &
3178 			((unsigned long)PAGE_CACHE_SIZE - 1);
3179 		src_off_in_page = (start_offset + src_end) &
3180 			((unsigned long)PAGE_CACHE_SIZE - 1);
3181 
3182 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3183 		cur = min(cur, dst_off_in_page + 1);
3184 		move_pages(extent_buffer_page(dst, dst_i),
3185 			   extent_buffer_page(dst, src_i),
3186 			   dst_off_in_page - cur + 1,
3187 			   src_off_in_page - cur + 1, cur);
3188 
3189 		dst_end -= cur;
3190 		src_end -= cur;
3191 		len -= cur;
3192 	}
3193 }
3194 EXPORT_SYMBOL(memmove_extent_buffer);
3195