xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 17636e03)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 
46 int __init extent_map_init(void)
47 {
48 	extent_map_cache = btrfs_cache_create("extent_map",
49 					    sizeof(struct extent_map), 0,
50 					    NULL);
51 	if (!extent_map_cache)
52 		return -ENOMEM;
53 	extent_state_cache = btrfs_cache_create("extent_state",
54 					    sizeof(struct extent_state), 0,
55 					    NULL);
56 	if (!extent_state_cache)
57 		goto free_map_cache;
58 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 					    sizeof(struct extent_buffer), 0,
60 					    NULL);
61 	if (!extent_buffer_cache)
62 		goto free_state_cache;
63 	return 0;
64 
65 free_state_cache:
66 	kmem_cache_destroy(extent_state_cache);
67 free_map_cache:
68 	kmem_cache_destroy(extent_map_cache);
69 	return -ENOMEM;
70 }
71 
72 void extent_map_exit(void)
73 {
74 	struct extent_state *state;
75 
76 	while (!list_empty(&states)) {
77 		state = list_entry(states.next, struct extent_state, list);
78 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 		list_del(&state->list);
80 		kmem_cache_free(extent_state_cache, state);
81 
82 	}
83 
84 	if (extent_map_cache)
85 		kmem_cache_destroy(extent_map_cache);
86 	if (extent_state_cache)
87 		kmem_cache_destroy(extent_state_cache);
88 	if (extent_buffer_cache)
89 		kmem_cache_destroy(extent_buffer_cache);
90 }
91 
92 void extent_map_tree_init(struct extent_map_tree *tree,
93 			  struct address_space *mapping, gfp_t mask)
94 {
95 	tree->map.rb_node = NULL;
96 	tree->state.rb_node = NULL;
97 	tree->ops = NULL;
98 	tree->dirty_bytes = 0;
99 	rwlock_init(&tree->lock);
100 	spin_lock_init(&tree->lru_lock);
101 	tree->mapping = mapping;
102 	INIT_LIST_HEAD(&tree->buffer_lru);
103 	tree->lru_size = 0;
104 }
105 EXPORT_SYMBOL(extent_map_tree_init);
106 
107 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108 {
109 	struct extent_buffer *eb;
110 	while(!list_empty(&tree->buffer_lru)) {
111 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 				lru);
113 		list_del_init(&eb->lru);
114 		free_extent_buffer(eb);
115 	}
116 }
117 EXPORT_SYMBOL(extent_map_tree_empty_lru);
118 
119 struct extent_map *alloc_extent_map(gfp_t mask)
120 {
121 	struct extent_map *em;
122 	em = kmem_cache_alloc(extent_map_cache, mask);
123 	if (!em || IS_ERR(em))
124 		return em;
125 	em->in_tree = 0;
126 	atomic_set(&em->refs, 1);
127 	return em;
128 }
129 EXPORT_SYMBOL(alloc_extent_map);
130 
131 void free_extent_map(struct extent_map *em)
132 {
133 	if (!em)
134 		return;
135 	if (atomic_dec_and_test(&em->refs)) {
136 		WARN_ON(em->in_tree);
137 		kmem_cache_free(extent_map_cache, em);
138 	}
139 }
140 EXPORT_SYMBOL(free_extent_map);
141 
142 
143 struct extent_state *alloc_extent_state(gfp_t mask)
144 {
145 	struct extent_state *state;
146 	unsigned long flags;
147 
148 	state = kmem_cache_alloc(extent_state_cache, mask);
149 	if (!state || IS_ERR(state))
150 		return state;
151 	state->state = 0;
152 	state->in_tree = 0;
153 	state->private = 0;
154 
155 	spin_lock_irqsave(&state_lock, flags);
156 	list_add(&state->list, &states);
157 	spin_unlock_irqrestore(&state_lock, flags);
158 
159 	atomic_set(&state->refs, 1);
160 	init_waitqueue_head(&state->wq);
161 	return state;
162 }
163 EXPORT_SYMBOL(alloc_extent_state);
164 
165 void free_extent_state(struct extent_state *state)
166 {
167 	unsigned long flags;
168 	if (!state)
169 		return;
170 	if (atomic_dec_and_test(&state->refs)) {
171 		WARN_ON(state->in_tree);
172 		spin_lock_irqsave(&state_lock, flags);
173 		list_del(&state->list);
174 		spin_unlock_irqrestore(&state_lock, flags);
175 		kmem_cache_free(extent_state_cache, state);
176 	}
177 }
178 EXPORT_SYMBOL(free_extent_state);
179 
180 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 				   struct rb_node *node)
182 {
183 	struct rb_node ** p = &root->rb_node;
184 	struct rb_node * parent = NULL;
185 	struct tree_entry *entry;
186 
187 	while(*p) {
188 		parent = *p;
189 		entry = rb_entry(parent, struct tree_entry, rb_node);
190 
191 		if (offset < entry->start)
192 			p = &(*p)->rb_left;
193 		else if (offset > entry->end)
194 			p = &(*p)->rb_right;
195 		else
196 			return parent;
197 	}
198 
199 	entry = rb_entry(node, struct tree_entry, rb_node);
200 	entry->in_tree = 1;
201 	rb_link_node(node, parent, p);
202 	rb_insert_color(node, root);
203 	return NULL;
204 }
205 
206 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
207 				   struct rb_node **prev_ret)
208 {
209 	struct rb_node * n = root->rb_node;
210 	struct rb_node *prev = NULL;
211 	struct tree_entry *entry;
212 	struct tree_entry *prev_entry = NULL;
213 
214 	while(n) {
215 		entry = rb_entry(n, struct tree_entry, rb_node);
216 		prev = n;
217 		prev_entry = entry;
218 
219 		if (offset < entry->start)
220 			n = n->rb_left;
221 		else if (offset > entry->end)
222 			n = n->rb_right;
223 		else
224 			return n;
225 	}
226 	if (!prev_ret)
227 		return NULL;
228 	while(prev && offset > prev_entry->end) {
229 		prev = rb_next(prev);
230 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 	}
232 	*prev_ret = prev;
233 	return NULL;
234 }
235 
236 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
237 {
238 	struct rb_node *prev;
239 	struct rb_node *ret;
240 	ret = __tree_search(root, offset, &prev);
241 	if (!ret)
242 		return prev;
243 	return ret;
244 }
245 
246 static int tree_delete(struct rb_root *root, u64 offset)
247 {
248 	struct rb_node *node;
249 	struct tree_entry *entry;
250 
251 	node = __tree_search(root, offset, NULL);
252 	if (!node)
253 		return -ENOENT;
254 	entry = rb_entry(node, struct tree_entry, rb_node);
255 	entry->in_tree = 0;
256 	rb_erase(node, root);
257 	return 0;
258 }
259 
260 /*
261  * add_extent_mapping tries a simple backward merge with existing
262  * mappings.  The extent_map struct passed in will be inserted into
263  * the tree directly (no copies made, just a reference taken).
264  */
265 int add_extent_mapping(struct extent_map_tree *tree,
266 		       struct extent_map *em)
267 {
268 	int ret = 0;
269 	struct extent_map *prev = NULL;
270 	struct rb_node *rb;
271 
272 	write_lock_irq(&tree->lock);
273 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
274 	if (rb) {
275 		prev = rb_entry(rb, struct extent_map, rb_node);
276 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
277 		ret = -EEXIST;
278 		goto out;
279 	}
280 	atomic_inc(&em->refs);
281 	if (em->start != 0) {
282 		rb = rb_prev(&em->rb_node);
283 		if (rb)
284 			prev = rb_entry(rb, struct extent_map, rb_node);
285 		if (prev && prev->end + 1 == em->start &&
286 		    ((em->block_start == EXTENT_MAP_HOLE &&
287 		      prev->block_start == EXTENT_MAP_HOLE) ||
288 		     (em->block_start == EXTENT_MAP_INLINE &&
289 		      prev->block_start == EXTENT_MAP_INLINE) ||
290 		     (em->block_start == EXTENT_MAP_DELALLOC &&
291 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
292 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
293 		      em->block_start == prev->block_end + 1))) {
294 			em->start = prev->start;
295 			em->block_start = prev->block_start;
296 			rb_erase(&prev->rb_node, &tree->map);
297 			prev->in_tree = 0;
298 			free_extent_map(prev);
299 		}
300 	 }
301 out:
302 	write_unlock_irq(&tree->lock);
303 	return ret;
304 }
305 EXPORT_SYMBOL(add_extent_mapping);
306 
307 /*
308  * lookup_extent_mapping returns the first extent_map struct in the
309  * tree that intersects the [start, end] (inclusive) range.  There may
310  * be additional objects in the tree that intersect, so check the object
311  * returned carefully to make sure you don't need additional lookups.
312  */
313 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
314 					 u64 start, u64 end)
315 {
316 	struct extent_map *em;
317 	struct rb_node *rb_node;
318 
319 	read_lock_irq(&tree->lock);
320 	rb_node = tree_search(&tree->map, start);
321 	if (!rb_node) {
322 		em = NULL;
323 		goto out;
324 	}
325 	if (IS_ERR(rb_node)) {
326 		em = ERR_PTR(PTR_ERR(rb_node));
327 		goto out;
328 	}
329 	em = rb_entry(rb_node, struct extent_map, rb_node);
330 	if (em->end < start || em->start > end) {
331 		em = NULL;
332 		goto out;
333 	}
334 	atomic_inc(&em->refs);
335 out:
336 	read_unlock_irq(&tree->lock);
337 	return em;
338 }
339 EXPORT_SYMBOL(lookup_extent_mapping);
340 
341 /*
342  * removes an extent_map struct from the tree.  No reference counts are
343  * dropped, and no checks are done to  see if the range is in use
344  */
345 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
346 {
347 	int ret;
348 
349 	write_lock_irq(&tree->lock);
350 	ret = tree_delete(&tree->map, em->end);
351 	write_unlock_irq(&tree->lock);
352 	return ret;
353 }
354 EXPORT_SYMBOL(remove_extent_mapping);
355 
356 /*
357  * utility function to look for merge candidates inside a given range.
358  * Any extents with matching state are merged together into a single
359  * extent in the tree.  Extents with EXTENT_IO in their state field
360  * are not merged because the end_io handlers need to be able to do
361  * operations on them without sleeping (or doing allocations/splits).
362  *
363  * This should be called with the tree lock held.
364  */
365 static int merge_state(struct extent_map_tree *tree,
366 		       struct extent_state *state)
367 {
368 	struct extent_state *other;
369 	struct rb_node *other_node;
370 
371 	if (state->state & EXTENT_IOBITS)
372 		return 0;
373 
374 	other_node = rb_prev(&state->rb_node);
375 	if (other_node) {
376 		other = rb_entry(other_node, struct extent_state, rb_node);
377 		if (other->end == state->start - 1 &&
378 		    other->state == state->state) {
379 			state->start = other->start;
380 			other->in_tree = 0;
381 			rb_erase(&other->rb_node, &tree->state);
382 			free_extent_state(other);
383 		}
384 	}
385 	other_node = rb_next(&state->rb_node);
386 	if (other_node) {
387 		other = rb_entry(other_node, struct extent_state, rb_node);
388 		if (other->start == state->end + 1 &&
389 		    other->state == state->state) {
390 			other->start = state->start;
391 			state->in_tree = 0;
392 			rb_erase(&state->rb_node, &tree->state);
393 			free_extent_state(state);
394 		}
395 	}
396 	return 0;
397 }
398 
399 /*
400  * insert an extent_state struct into the tree.  'bits' are set on the
401  * struct before it is inserted.
402  *
403  * This may return -EEXIST if the extent is already there, in which case the
404  * state struct is freed.
405  *
406  * The tree lock is not taken internally.  This is a utility function and
407  * probably isn't what you want to call (see set/clear_extent_bit).
408  */
409 static int insert_state(struct extent_map_tree *tree,
410 			struct extent_state *state, u64 start, u64 end,
411 			int bits)
412 {
413 	struct rb_node *node;
414 
415 	if (end < start) {
416 		printk("end < start %Lu %Lu\n", end, start);
417 		WARN_ON(1);
418 	}
419 	if (bits & EXTENT_DIRTY)
420 		tree->dirty_bytes += end - start + 1;
421 	state->state |= bits;
422 	state->start = start;
423 	state->end = end;
424 	node = tree_insert(&tree->state, end, &state->rb_node);
425 	if (node) {
426 		struct extent_state *found;
427 		found = rb_entry(node, struct extent_state, rb_node);
428 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
429 		free_extent_state(state);
430 		return -EEXIST;
431 	}
432 	merge_state(tree, state);
433 	return 0;
434 }
435 
436 /*
437  * split a given extent state struct in two, inserting the preallocated
438  * struct 'prealloc' as the newly created second half.  'split' indicates an
439  * offset inside 'orig' where it should be split.
440  *
441  * Before calling,
442  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
443  * are two extent state structs in the tree:
444  * prealloc: [orig->start, split - 1]
445  * orig: [ split, orig->end ]
446  *
447  * The tree locks are not taken by this function. They need to be held
448  * by the caller.
449  */
450 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
451 		       struct extent_state *prealloc, u64 split)
452 {
453 	struct rb_node *node;
454 	prealloc->start = orig->start;
455 	prealloc->end = split - 1;
456 	prealloc->state = orig->state;
457 	orig->start = split;
458 
459 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
460 	if (node) {
461 		struct extent_state *found;
462 		found = rb_entry(node, struct extent_state, rb_node);
463 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
464 		free_extent_state(prealloc);
465 		return -EEXIST;
466 	}
467 	return 0;
468 }
469 
470 /*
471  * utility function to clear some bits in an extent state struct.
472  * it will optionally wake up any one waiting on this state (wake == 1), or
473  * forcibly remove the state from the tree (delete == 1).
474  *
475  * If no bits are set on the state struct after clearing things, the
476  * struct is freed and removed from the tree
477  */
478 static int clear_state_bit(struct extent_map_tree *tree,
479 			    struct extent_state *state, int bits, int wake,
480 			    int delete)
481 {
482 	int ret = state->state & bits;
483 
484 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
485 		u64 range = state->end - state->start + 1;
486 		WARN_ON(range > tree->dirty_bytes);
487 		tree->dirty_bytes -= range;
488 	}
489 	state->state &= ~bits;
490 	if (wake)
491 		wake_up(&state->wq);
492 	if (delete || state->state == 0) {
493 		if (state->in_tree) {
494 			rb_erase(&state->rb_node, &tree->state);
495 			state->in_tree = 0;
496 			free_extent_state(state);
497 		} else {
498 			WARN_ON(1);
499 		}
500 	} else {
501 		merge_state(tree, state);
502 	}
503 	return ret;
504 }
505 
506 /*
507  * clear some bits on a range in the tree.  This may require splitting
508  * or inserting elements in the tree, so the gfp mask is used to
509  * indicate which allocations or sleeping are allowed.
510  *
511  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
512  * the given range from the tree regardless of state (ie for truncate).
513  *
514  * the range [start, end] is inclusive.
515  *
516  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
517  * bits were already set, or zero if none of the bits were already set.
518  */
519 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
520 		     int bits, int wake, int delete, gfp_t mask)
521 {
522 	struct extent_state *state;
523 	struct extent_state *prealloc = NULL;
524 	struct rb_node *node;
525 	unsigned long flags;
526 	int err;
527 	int set = 0;
528 
529 again:
530 	if (!prealloc && (mask & __GFP_WAIT)) {
531 		prealloc = alloc_extent_state(mask);
532 		if (!prealloc)
533 			return -ENOMEM;
534 	}
535 
536 	write_lock_irqsave(&tree->lock, flags);
537 	/*
538 	 * this search will find the extents that end after
539 	 * our range starts
540 	 */
541 	node = tree_search(&tree->state, start);
542 	if (!node)
543 		goto out;
544 	state = rb_entry(node, struct extent_state, rb_node);
545 	if (state->start > end)
546 		goto out;
547 	WARN_ON(state->end < start);
548 
549 	/*
550 	 *     | ---- desired range ---- |
551 	 *  | state | or
552 	 *  | ------------- state -------------- |
553 	 *
554 	 * We need to split the extent we found, and may flip
555 	 * bits on second half.
556 	 *
557 	 * If the extent we found extends past our range, we
558 	 * just split and search again.  It'll get split again
559 	 * the next time though.
560 	 *
561 	 * If the extent we found is inside our range, we clear
562 	 * the desired bit on it.
563 	 */
564 
565 	if (state->start < start) {
566 		err = split_state(tree, state, prealloc, start);
567 		BUG_ON(err == -EEXIST);
568 		prealloc = NULL;
569 		if (err)
570 			goto out;
571 		if (state->end <= end) {
572 			start = state->end + 1;
573 			set |= clear_state_bit(tree, state, bits,
574 					wake, delete);
575 		} else {
576 			start = state->start;
577 		}
578 		goto search_again;
579 	}
580 	/*
581 	 * | ---- desired range ---- |
582 	 *                        | state |
583 	 * We need to split the extent, and clear the bit
584 	 * on the first half
585 	 */
586 	if (state->start <= end && state->end > end) {
587 		err = split_state(tree, state, prealloc, end + 1);
588 		BUG_ON(err == -EEXIST);
589 
590 		if (wake)
591 			wake_up(&state->wq);
592 		set |= clear_state_bit(tree, prealloc, bits,
593 				       wake, delete);
594 		prealloc = NULL;
595 		goto out;
596 	}
597 
598 	start = state->end + 1;
599 	set |= clear_state_bit(tree, state, bits, wake, delete);
600 	goto search_again;
601 
602 out:
603 	write_unlock_irqrestore(&tree->lock, flags);
604 	if (prealloc)
605 		free_extent_state(prealloc);
606 
607 	return set;
608 
609 search_again:
610 	if (start > end)
611 		goto out;
612 	write_unlock_irqrestore(&tree->lock, flags);
613 	if (mask & __GFP_WAIT)
614 		cond_resched();
615 	goto again;
616 }
617 EXPORT_SYMBOL(clear_extent_bit);
618 
619 static int wait_on_state(struct extent_map_tree *tree,
620 			 struct extent_state *state)
621 {
622 	DEFINE_WAIT(wait);
623 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
624 	read_unlock_irq(&tree->lock);
625 	schedule();
626 	read_lock_irq(&tree->lock);
627 	finish_wait(&state->wq, &wait);
628 	return 0;
629 }
630 
631 /*
632  * waits for one or more bits to clear on a range in the state tree.
633  * The range [start, end] is inclusive.
634  * The tree lock is taken by this function
635  */
636 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
637 {
638 	struct extent_state *state;
639 	struct rb_node *node;
640 
641 	read_lock_irq(&tree->lock);
642 again:
643 	while (1) {
644 		/*
645 		 * this search will find all the extents that end after
646 		 * our range starts
647 		 */
648 		node = tree_search(&tree->state, start);
649 		if (!node)
650 			break;
651 
652 		state = rb_entry(node, struct extent_state, rb_node);
653 
654 		if (state->start > end)
655 			goto out;
656 
657 		if (state->state & bits) {
658 			start = state->start;
659 			atomic_inc(&state->refs);
660 			wait_on_state(tree, state);
661 			free_extent_state(state);
662 			goto again;
663 		}
664 		start = state->end + 1;
665 
666 		if (start > end)
667 			break;
668 
669 		if (need_resched()) {
670 			read_unlock_irq(&tree->lock);
671 			cond_resched();
672 			read_lock_irq(&tree->lock);
673 		}
674 	}
675 out:
676 	read_unlock_irq(&tree->lock);
677 	return 0;
678 }
679 EXPORT_SYMBOL(wait_extent_bit);
680 
681 static void set_state_bits(struct extent_map_tree *tree,
682 			   struct extent_state *state,
683 			   int bits)
684 {
685 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
686 		u64 range = state->end - state->start + 1;
687 		tree->dirty_bytes += range;
688 	}
689 	state->state |= bits;
690 }
691 
692 /*
693  * set some bits on a range in the tree.  This may require allocations
694  * or sleeping, so the gfp mask is used to indicate what is allowed.
695  *
696  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
697  * range already has the desired bits set.  The start of the existing
698  * range is returned in failed_start in this case.
699  *
700  * [start, end] is inclusive
701  * This takes the tree lock.
702  */
703 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
704 		   int exclusive, u64 *failed_start, gfp_t mask)
705 {
706 	struct extent_state *state;
707 	struct extent_state *prealloc = NULL;
708 	struct rb_node *node;
709 	unsigned long flags;
710 	int err = 0;
711 	int set;
712 	u64 last_start;
713 	u64 last_end;
714 again:
715 	if (!prealloc && (mask & __GFP_WAIT)) {
716 		prealloc = alloc_extent_state(mask);
717 		if (!prealloc)
718 			return -ENOMEM;
719 	}
720 
721 	write_lock_irqsave(&tree->lock, flags);
722 	/*
723 	 * this search will find all the extents that end after
724 	 * our range starts.
725 	 */
726 	node = tree_search(&tree->state, start);
727 	if (!node) {
728 		err = insert_state(tree, prealloc, start, end, bits);
729 		prealloc = NULL;
730 		BUG_ON(err == -EEXIST);
731 		goto out;
732 	}
733 
734 	state = rb_entry(node, struct extent_state, rb_node);
735 	last_start = state->start;
736 	last_end = state->end;
737 
738 	/*
739 	 * | ---- desired range ---- |
740 	 * | state |
741 	 *
742 	 * Just lock what we found and keep going
743 	 */
744 	if (state->start == start && state->end <= end) {
745 		set = state->state & bits;
746 		if (set && exclusive) {
747 			*failed_start = state->start;
748 			err = -EEXIST;
749 			goto out;
750 		}
751 		set_state_bits(tree, state, bits);
752 		start = state->end + 1;
753 		merge_state(tree, state);
754 		goto search_again;
755 	}
756 
757 	/*
758 	 *     | ---- desired range ---- |
759 	 * | state |
760 	 *   or
761 	 * | ------------- state -------------- |
762 	 *
763 	 * We need to split the extent we found, and may flip bits on
764 	 * second half.
765 	 *
766 	 * If the extent we found extends past our
767 	 * range, we just split and search again.  It'll get split
768 	 * again the next time though.
769 	 *
770 	 * If the extent we found is inside our range, we set the
771 	 * desired bit on it.
772 	 */
773 	if (state->start < start) {
774 		set = state->state & bits;
775 		if (exclusive && set) {
776 			*failed_start = start;
777 			err = -EEXIST;
778 			goto out;
779 		}
780 		err = split_state(tree, state, prealloc, start);
781 		BUG_ON(err == -EEXIST);
782 		prealloc = NULL;
783 		if (err)
784 			goto out;
785 		if (state->end <= end) {
786 			set_state_bits(tree, state, bits);
787 			start = state->end + 1;
788 			merge_state(tree, state);
789 		} else {
790 			start = state->start;
791 		}
792 		goto search_again;
793 	}
794 	/*
795 	 * | ---- desired range ---- |
796 	 *     | state | or               | state |
797 	 *
798 	 * There's a hole, we need to insert something in it and
799 	 * ignore the extent we found.
800 	 */
801 	if (state->start > start) {
802 		u64 this_end;
803 		if (end < last_start)
804 			this_end = end;
805 		else
806 			this_end = last_start -1;
807 		err = insert_state(tree, prealloc, start, this_end,
808 				   bits);
809 		prealloc = NULL;
810 		BUG_ON(err == -EEXIST);
811 		if (err)
812 			goto out;
813 		start = this_end + 1;
814 		goto search_again;
815 	}
816 	/*
817 	 * | ---- desired range ---- |
818 	 *                        | state |
819 	 * We need to split the extent, and set the bit
820 	 * on the first half
821 	 */
822 	if (state->start <= end && state->end > end) {
823 		set = state->state & bits;
824 		if (exclusive && set) {
825 			*failed_start = start;
826 			err = -EEXIST;
827 			goto out;
828 		}
829 		err = split_state(tree, state, prealloc, end + 1);
830 		BUG_ON(err == -EEXIST);
831 
832 		set_state_bits(tree, prealloc, bits);
833 		merge_state(tree, prealloc);
834 		prealloc = NULL;
835 		goto out;
836 	}
837 
838 	goto search_again;
839 
840 out:
841 	write_unlock_irqrestore(&tree->lock, flags);
842 	if (prealloc)
843 		free_extent_state(prealloc);
844 
845 	return err;
846 
847 search_again:
848 	if (start > end)
849 		goto out;
850 	write_unlock_irqrestore(&tree->lock, flags);
851 	if (mask & __GFP_WAIT)
852 		cond_resched();
853 	goto again;
854 }
855 EXPORT_SYMBOL(set_extent_bit);
856 
857 /* wrappers around set/clear extent bit */
858 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
859 		     gfp_t mask)
860 {
861 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
862 			      mask);
863 }
864 EXPORT_SYMBOL(set_extent_dirty);
865 
866 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
867 		    int bits, gfp_t mask)
868 {
869 	return set_extent_bit(tree, start, end, bits, 0, NULL,
870 			      mask);
871 }
872 EXPORT_SYMBOL(set_extent_bits);
873 
874 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
875 		      int bits, gfp_t mask)
876 {
877 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
878 }
879 EXPORT_SYMBOL(clear_extent_bits);
880 
881 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
882 		     gfp_t mask)
883 {
884 	return set_extent_bit(tree, start, end,
885 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
886 			      mask);
887 }
888 EXPORT_SYMBOL(set_extent_delalloc);
889 
890 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
891 		       gfp_t mask)
892 {
893 	return clear_extent_bit(tree, start, end,
894 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
895 }
896 EXPORT_SYMBOL(clear_extent_dirty);
897 
898 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
899 		     gfp_t mask)
900 {
901 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
902 			      mask);
903 }
904 EXPORT_SYMBOL(set_extent_new);
905 
906 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
907 		       gfp_t mask)
908 {
909 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
910 }
911 EXPORT_SYMBOL(clear_extent_new);
912 
913 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
914 			gfp_t mask)
915 {
916 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
917 			      mask);
918 }
919 EXPORT_SYMBOL(set_extent_uptodate);
920 
921 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
922 			  gfp_t mask)
923 {
924 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
925 }
926 EXPORT_SYMBOL(clear_extent_uptodate);
927 
928 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
929 			 gfp_t mask)
930 {
931 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
932 			      0, NULL, mask);
933 }
934 EXPORT_SYMBOL(set_extent_writeback);
935 
936 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
937 			   gfp_t mask)
938 {
939 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
940 }
941 EXPORT_SYMBOL(clear_extent_writeback);
942 
943 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
944 {
945 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
946 }
947 EXPORT_SYMBOL(wait_on_extent_writeback);
948 
949 /*
950  * locks a range in ascending order, waiting for any locked regions
951  * it hits on the way.  [start,end] are inclusive, and this will sleep.
952  */
953 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
954 {
955 	int err;
956 	u64 failed_start;
957 	while (1) {
958 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
959 				     &failed_start, mask);
960 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
961 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
962 			start = failed_start;
963 		} else {
964 			break;
965 		}
966 		WARN_ON(start > end);
967 	}
968 	return err;
969 }
970 EXPORT_SYMBOL(lock_extent);
971 
972 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
973 		  gfp_t mask)
974 {
975 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
976 }
977 EXPORT_SYMBOL(unlock_extent);
978 
979 /*
980  * helper function to set pages and extents in the tree dirty
981  */
982 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
983 {
984 	unsigned long index = start >> PAGE_CACHE_SHIFT;
985 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
986 	struct page *page;
987 
988 	while (index <= end_index) {
989 		page = find_get_page(tree->mapping, index);
990 		BUG_ON(!page);
991 		__set_page_dirty_nobuffers(page);
992 		page_cache_release(page);
993 		index++;
994 	}
995 	set_extent_dirty(tree, start, end, GFP_NOFS);
996 	return 0;
997 }
998 EXPORT_SYMBOL(set_range_dirty);
999 
1000 /*
1001  * helper function to set both pages and extents in the tree writeback
1002  */
1003 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1004 {
1005 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1006 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1007 	struct page *page;
1008 
1009 	while (index <= end_index) {
1010 		page = find_get_page(tree->mapping, index);
1011 		BUG_ON(!page);
1012 		set_page_writeback(page);
1013 		page_cache_release(page);
1014 		index++;
1015 	}
1016 	set_extent_writeback(tree, start, end, GFP_NOFS);
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL(set_range_writeback);
1020 
1021 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1022 			  u64 *start_ret, u64 *end_ret, int bits)
1023 {
1024 	struct rb_node *node;
1025 	struct extent_state *state;
1026 	int ret = 1;
1027 
1028 	read_lock_irq(&tree->lock);
1029 	/*
1030 	 * this search will find all the extents that end after
1031 	 * our range starts.
1032 	 */
1033 	node = tree_search(&tree->state, start);
1034 	if (!node || IS_ERR(node)) {
1035 		goto out;
1036 	}
1037 
1038 	while(1) {
1039 		state = rb_entry(node, struct extent_state, rb_node);
1040 		if (state->end >= start && (state->state & bits)) {
1041 			*start_ret = state->start;
1042 			*end_ret = state->end;
1043 			ret = 0;
1044 			break;
1045 		}
1046 		node = rb_next(node);
1047 		if (!node)
1048 			break;
1049 	}
1050 out:
1051 	read_unlock_irq(&tree->lock);
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL(find_first_extent_bit);
1055 
1056 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1057 			     u64 *start, u64 *end, u64 max_bytes)
1058 {
1059 	struct rb_node *node;
1060 	struct extent_state *state;
1061 	u64 cur_start = *start;
1062 	u64 found = 0;
1063 	u64 total_bytes = 0;
1064 
1065 	write_lock_irq(&tree->lock);
1066 	/*
1067 	 * this search will find all the extents that end after
1068 	 * our range starts.
1069 	 */
1070 search_again:
1071 	node = tree_search(&tree->state, cur_start);
1072 	if (!node || IS_ERR(node)) {
1073 		goto out;
1074 	}
1075 
1076 	while(1) {
1077 		state = rb_entry(node, struct extent_state, rb_node);
1078 		if (found && state->start != cur_start) {
1079 			goto out;
1080 		}
1081 		if (!(state->state & EXTENT_DELALLOC)) {
1082 			goto out;
1083 		}
1084 		if (!found) {
1085 			struct extent_state *prev_state;
1086 			struct rb_node *prev_node = node;
1087 			while(1) {
1088 				prev_node = rb_prev(prev_node);
1089 				if (!prev_node)
1090 					break;
1091 				prev_state = rb_entry(prev_node,
1092 						      struct extent_state,
1093 						      rb_node);
1094 				if (!(prev_state->state & EXTENT_DELALLOC))
1095 					break;
1096 				state = prev_state;
1097 				node = prev_node;
1098 			}
1099 		}
1100 		if (state->state & EXTENT_LOCKED) {
1101 			DEFINE_WAIT(wait);
1102 			atomic_inc(&state->refs);
1103 			prepare_to_wait(&state->wq, &wait,
1104 					TASK_UNINTERRUPTIBLE);
1105 			write_unlock_irq(&tree->lock);
1106 			schedule();
1107 			write_lock_irq(&tree->lock);
1108 			finish_wait(&state->wq, &wait);
1109 			free_extent_state(state);
1110 			goto search_again;
1111 		}
1112 		state->state |= EXTENT_LOCKED;
1113 		if (!found)
1114 			*start = state->start;
1115 		found++;
1116 		*end = state->end;
1117 		cur_start = state->end + 1;
1118 		node = rb_next(node);
1119 		if (!node)
1120 			break;
1121 		total_bytes += state->end - state->start + 1;
1122 		if (total_bytes >= max_bytes)
1123 			break;
1124 	}
1125 out:
1126 	write_unlock_irq(&tree->lock);
1127 	return found;
1128 }
1129 
1130 u64 count_range_bits(struct extent_map_tree *tree,
1131 		     u64 *start, u64 max_bytes, unsigned long bits)
1132 {
1133 	struct rb_node *node;
1134 	struct extent_state *state;
1135 	u64 cur_start = *start;
1136 	u64 total_bytes = 0;
1137 	int found = 0;
1138 
1139 	write_lock_irq(&tree->lock);
1140 	if (bits == EXTENT_DIRTY) {
1141 		*start = 0;
1142 		total_bytes = tree->dirty_bytes;
1143 		goto out;
1144 	}
1145 	/*
1146 	 * this search will find all the extents that end after
1147 	 * our range starts.
1148 	 */
1149 	node = tree_search(&tree->state, cur_start);
1150 	if (!node || IS_ERR(node)) {
1151 		goto out;
1152 	}
1153 
1154 	while(1) {
1155 		state = rb_entry(node, struct extent_state, rb_node);
1156 		if ((state->state & bits)) {
1157 			total_bytes += state->end - state->start + 1;
1158 			if (total_bytes >= max_bytes)
1159 				break;
1160 			if (!found) {
1161 				*start = state->start;
1162 				found = 1;
1163 			}
1164 		}
1165 		node = rb_next(node);
1166 		if (!node)
1167 			break;
1168 	}
1169 out:
1170 	write_unlock_irq(&tree->lock);
1171 	return total_bytes;
1172 }
1173 
1174 /*
1175  * helper function to lock both pages and extents in the tree.
1176  * pages must be locked first.
1177  */
1178 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1179 {
1180 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1181 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1182 	struct page *page;
1183 	int err;
1184 
1185 	while (index <= end_index) {
1186 		page = grab_cache_page(tree->mapping, index);
1187 		if (!page) {
1188 			err = -ENOMEM;
1189 			goto failed;
1190 		}
1191 		if (IS_ERR(page)) {
1192 			err = PTR_ERR(page);
1193 			goto failed;
1194 		}
1195 		index++;
1196 	}
1197 	lock_extent(tree, start, end, GFP_NOFS);
1198 	return 0;
1199 
1200 failed:
1201 	/*
1202 	 * we failed above in getting the page at 'index', so we undo here
1203 	 * up to but not including the page at 'index'
1204 	 */
1205 	end_index = index;
1206 	index = start >> PAGE_CACHE_SHIFT;
1207 	while (index < end_index) {
1208 		page = find_get_page(tree->mapping, index);
1209 		unlock_page(page);
1210 		page_cache_release(page);
1211 		index++;
1212 	}
1213 	return err;
1214 }
1215 EXPORT_SYMBOL(lock_range);
1216 
1217 /*
1218  * helper function to unlock both pages and extents in the tree.
1219  */
1220 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1221 {
1222 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1223 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1224 	struct page *page;
1225 
1226 	while (index <= end_index) {
1227 		page = find_get_page(tree->mapping, index);
1228 		unlock_page(page);
1229 		page_cache_release(page);
1230 		index++;
1231 	}
1232 	unlock_extent(tree, start, end, GFP_NOFS);
1233 	return 0;
1234 }
1235 EXPORT_SYMBOL(unlock_range);
1236 
1237 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1238 {
1239 	struct rb_node *node;
1240 	struct extent_state *state;
1241 	int ret = 0;
1242 
1243 	write_lock_irq(&tree->lock);
1244 	/*
1245 	 * this search will find all the extents that end after
1246 	 * our range starts.
1247 	 */
1248 	node = tree_search(&tree->state, start);
1249 	if (!node || IS_ERR(node)) {
1250 		ret = -ENOENT;
1251 		goto out;
1252 	}
1253 	state = rb_entry(node, struct extent_state, rb_node);
1254 	if (state->start != start) {
1255 		ret = -ENOENT;
1256 		goto out;
1257 	}
1258 	state->private = private;
1259 out:
1260 	write_unlock_irq(&tree->lock);
1261 	return ret;
1262 }
1263 
1264 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1265 {
1266 	struct rb_node *node;
1267 	struct extent_state *state;
1268 	int ret = 0;
1269 
1270 	read_lock_irq(&tree->lock);
1271 	/*
1272 	 * this search will find all the extents that end after
1273 	 * our range starts.
1274 	 */
1275 	node = tree_search(&tree->state, start);
1276 	if (!node || IS_ERR(node)) {
1277 		ret = -ENOENT;
1278 		goto out;
1279 	}
1280 	state = rb_entry(node, struct extent_state, rb_node);
1281 	if (state->start != start) {
1282 		ret = -ENOENT;
1283 		goto out;
1284 	}
1285 	*private = state->private;
1286 out:
1287 	read_unlock_irq(&tree->lock);
1288 	return ret;
1289 }
1290 
1291 /*
1292  * searches a range in the state tree for a given mask.
1293  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1294  * has the bits set.  Otherwise, 1 is returned if any bit in the
1295  * range is found set.
1296  */
1297 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1298 		   int bits, int filled)
1299 {
1300 	struct extent_state *state = NULL;
1301 	struct rb_node *node;
1302 	int bitset = 0;
1303 
1304 	read_lock_irq(&tree->lock);
1305 	node = tree_search(&tree->state, start);
1306 	while (node && start <= end) {
1307 		state = rb_entry(node, struct extent_state, rb_node);
1308 
1309 		if (filled && state->start > start) {
1310 			bitset = 0;
1311 			break;
1312 		}
1313 
1314 		if (state->start > end)
1315 			break;
1316 
1317 		if (state->state & bits) {
1318 			bitset = 1;
1319 			if (!filled)
1320 				break;
1321 		} else if (filled) {
1322 			bitset = 0;
1323 			break;
1324 		}
1325 		start = state->end + 1;
1326 		if (start > end)
1327 			break;
1328 		node = rb_next(node);
1329 	}
1330 	read_unlock_irq(&tree->lock);
1331 	return bitset;
1332 }
1333 EXPORT_SYMBOL(test_range_bit);
1334 
1335 /*
1336  * helper function to set a given page up to date if all the
1337  * extents in the tree for that page are up to date
1338  */
1339 static int check_page_uptodate(struct extent_map_tree *tree,
1340 			       struct page *page)
1341 {
1342 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1343 	u64 end = start + PAGE_CACHE_SIZE - 1;
1344 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1345 		SetPageUptodate(page);
1346 	return 0;
1347 }
1348 
1349 /*
1350  * helper function to unlock a page if all the extents in the tree
1351  * for that page are unlocked
1352  */
1353 static int check_page_locked(struct extent_map_tree *tree,
1354 			     struct page *page)
1355 {
1356 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1357 	u64 end = start + PAGE_CACHE_SIZE - 1;
1358 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1359 		unlock_page(page);
1360 	return 0;
1361 }
1362 
1363 /*
1364  * helper function to end page writeback if all the extents
1365  * in the tree for that page are done with writeback
1366  */
1367 static int check_page_writeback(struct extent_map_tree *tree,
1368 			     struct page *page)
1369 {
1370 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1371 	u64 end = start + PAGE_CACHE_SIZE - 1;
1372 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1373 		end_page_writeback(page);
1374 	return 0;
1375 }
1376 
1377 /* lots and lots of room for performance fixes in the end_bio funcs */
1378 
1379 /*
1380  * after a writepage IO is done, we need to:
1381  * clear the uptodate bits on error
1382  * clear the writeback bits in the extent tree for this IO
1383  * end_page_writeback if the page has no more pending IO
1384  *
1385  * Scheduling is not allowed, so the extent state tree is expected
1386  * to have one and only one object corresponding to this IO.
1387  */
1388 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1389 static void end_bio_extent_writepage(struct bio *bio, int err)
1390 #else
1391 static int end_bio_extent_writepage(struct bio *bio,
1392 				   unsigned int bytes_done, int err)
1393 #endif
1394 {
1395 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1396 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1397 	struct extent_map_tree *tree = bio->bi_private;
1398 	u64 start;
1399 	u64 end;
1400 	int whole_page;
1401 
1402 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1403 	if (bio->bi_size)
1404 		return 1;
1405 #endif
1406 
1407 	do {
1408 		struct page *page = bvec->bv_page;
1409 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1410 			 bvec->bv_offset;
1411 		end = start + bvec->bv_len - 1;
1412 
1413 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1414 			whole_page = 1;
1415 		else
1416 			whole_page = 0;
1417 
1418 		if (--bvec >= bio->bi_io_vec)
1419 			prefetchw(&bvec->bv_page->flags);
1420 
1421 		if (!uptodate) {
1422 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1423 			ClearPageUptodate(page);
1424 			SetPageError(page);
1425 		}
1426 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1427 
1428 		if (whole_page)
1429 			end_page_writeback(page);
1430 		else
1431 			check_page_writeback(tree, page);
1432 		if (tree->ops && tree->ops->writepage_end_io_hook)
1433 			tree->ops->writepage_end_io_hook(page, start, end);
1434 	} while (bvec >= bio->bi_io_vec);
1435 
1436 	bio_put(bio);
1437 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1438 	return 0;
1439 #endif
1440 }
1441 
1442 /*
1443  * after a readpage IO is done, we need to:
1444  * clear the uptodate bits on error
1445  * set the uptodate bits if things worked
1446  * set the page up to date if all extents in the tree are uptodate
1447  * clear the lock bit in the extent tree
1448  * unlock the page if there are no other extents locked for it
1449  *
1450  * Scheduling is not allowed, so the extent state tree is expected
1451  * to have one and only one object corresponding to this IO.
1452  */
1453 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1454 static void end_bio_extent_readpage(struct bio *bio, int err)
1455 #else
1456 static int end_bio_extent_readpage(struct bio *bio,
1457 				   unsigned int bytes_done, int err)
1458 #endif
1459 {
1460 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1461 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1462 	struct extent_map_tree *tree = bio->bi_private;
1463 	u64 start;
1464 	u64 end;
1465 	int whole_page;
1466 	int ret;
1467 
1468 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1469 	if (bio->bi_size)
1470 		return 1;
1471 #endif
1472 
1473 	do {
1474 		struct page *page = bvec->bv_page;
1475 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1476 			bvec->bv_offset;
1477 		end = start + bvec->bv_len - 1;
1478 
1479 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1480 			whole_page = 1;
1481 		else
1482 			whole_page = 0;
1483 
1484 		if (--bvec >= bio->bi_io_vec)
1485 			prefetchw(&bvec->bv_page->flags);
1486 
1487 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1488 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1489 			if (ret)
1490 				uptodate = 0;
1491 		}
1492 		if (uptodate) {
1493 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1494 			if (whole_page)
1495 				SetPageUptodate(page);
1496 			else
1497 				check_page_uptodate(tree, page);
1498 		} else {
1499 			ClearPageUptodate(page);
1500 			SetPageError(page);
1501 		}
1502 
1503 		unlock_extent(tree, start, end, GFP_ATOMIC);
1504 
1505 		if (whole_page)
1506 			unlock_page(page);
1507 		else
1508 			check_page_locked(tree, page);
1509 	} while (bvec >= bio->bi_io_vec);
1510 
1511 	bio_put(bio);
1512 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1513 	return 0;
1514 #endif
1515 }
1516 
1517 /*
1518  * IO done from prepare_write is pretty simple, we just unlock
1519  * the structs in the extent tree when done, and set the uptodate bits
1520  * as appropriate.
1521  */
1522 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1523 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1524 #else
1525 static int end_bio_extent_preparewrite(struct bio *bio,
1526 				       unsigned int bytes_done, int err)
1527 #endif
1528 {
1529 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1530 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1531 	struct extent_map_tree *tree = bio->bi_private;
1532 	u64 start;
1533 	u64 end;
1534 
1535 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1536 	if (bio->bi_size)
1537 		return 1;
1538 #endif
1539 
1540 	do {
1541 		struct page *page = bvec->bv_page;
1542 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1543 			bvec->bv_offset;
1544 		end = start + bvec->bv_len - 1;
1545 
1546 		if (--bvec >= bio->bi_io_vec)
1547 			prefetchw(&bvec->bv_page->flags);
1548 
1549 		if (uptodate) {
1550 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1551 		} else {
1552 			ClearPageUptodate(page);
1553 			SetPageError(page);
1554 		}
1555 
1556 		unlock_extent(tree, start, end, GFP_ATOMIC);
1557 
1558 	} while (bvec >= bio->bi_io_vec);
1559 
1560 	bio_put(bio);
1561 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1562 	return 0;
1563 #endif
1564 }
1565 
1566 static struct bio *
1567 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1568 		 gfp_t gfp_flags)
1569 {
1570 	struct bio *bio;
1571 
1572 	bio = bio_alloc(gfp_flags, nr_vecs);
1573 
1574 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1575 		while (!bio && (nr_vecs /= 2))
1576 			bio = bio_alloc(gfp_flags, nr_vecs);
1577 	}
1578 
1579 	if (bio) {
1580 		bio->bi_bdev = bdev;
1581 		bio->bi_sector = first_sector;
1582 	}
1583 	return bio;
1584 }
1585 
1586 static int submit_one_bio(int rw, struct bio *bio)
1587 {
1588 	int ret = 0;
1589 	bio_get(bio);
1590 	submit_bio(rw, bio);
1591 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1592 		ret = -EOPNOTSUPP;
1593 	bio_put(bio);
1594 	return ret;
1595 }
1596 
1597 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1598 			      struct page *page, sector_t sector,
1599 			      size_t size, unsigned long offset,
1600 			      struct block_device *bdev,
1601 			      struct bio **bio_ret,
1602 			      unsigned long max_pages,
1603 			      bio_end_io_t end_io_func)
1604 {
1605 	int ret = 0;
1606 	struct bio *bio;
1607 	int nr;
1608 
1609 	if (bio_ret && *bio_ret) {
1610 		bio = *bio_ret;
1611 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1612 		    bio_add_page(bio, page, size, offset) < size) {
1613 			ret = submit_one_bio(rw, bio);
1614 			bio = NULL;
1615 		} else {
1616 			return 0;
1617 		}
1618 	}
1619 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1620 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1621 	if (!bio) {
1622 		printk("failed to allocate bio nr %d\n", nr);
1623 	}
1624 	bio_add_page(bio, page, size, offset);
1625 	bio->bi_end_io = end_io_func;
1626 	bio->bi_private = tree;
1627 	if (bio_ret) {
1628 		*bio_ret = bio;
1629 	} else {
1630 		ret = submit_one_bio(rw, bio);
1631 	}
1632 
1633 	return ret;
1634 }
1635 
1636 void set_page_extent_mapped(struct page *page)
1637 {
1638 	if (!PagePrivate(page)) {
1639 		SetPagePrivate(page);
1640 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1641 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1642 		page_cache_get(page);
1643 	}
1644 }
1645 
1646 /*
1647  * basic readpage implementation.  Locked extent state structs are inserted
1648  * into the tree that are removed when the IO is done (by the end_io
1649  * handlers)
1650  */
1651 static int __extent_read_full_page(struct extent_map_tree *tree,
1652 				   struct page *page,
1653 				   get_extent_t *get_extent,
1654 				   struct bio **bio)
1655 {
1656 	struct inode *inode = page->mapping->host;
1657 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1658 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1659 	u64 end;
1660 	u64 cur = start;
1661 	u64 extent_offset;
1662 	u64 last_byte = i_size_read(inode);
1663 	u64 block_start;
1664 	u64 cur_end;
1665 	sector_t sector;
1666 	struct extent_map *em;
1667 	struct block_device *bdev;
1668 	int ret;
1669 	int nr = 0;
1670 	size_t page_offset = 0;
1671 	size_t iosize;
1672 	size_t blocksize = inode->i_sb->s_blocksize;
1673 
1674 	set_page_extent_mapped(page);
1675 
1676 	end = page_end;
1677 	lock_extent(tree, start, end, GFP_NOFS);
1678 
1679 	while (cur <= end) {
1680 		if (cur >= last_byte) {
1681 			iosize = PAGE_CACHE_SIZE - page_offset;
1682 			zero_user_page(page, page_offset, iosize, KM_USER0);
1683 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1684 					    GFP_NOFS);
1685 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1686 			break;
1687 		}
1688 		em = get_extent(inode, page, page_offset, cur, end, 0);
1689 		if (IS_ERR(em) || !em) {
1690 			SetPageError(page);
1691 			unlock_extent(tree, cur, end, GFP_NOFS);
1692 			break;
1693 		}
1694 
1695 		extent_offset = cur - em->start;
1696 		BUG_ON(em->end < cur);
1697 		BUG_ON(end < cur);
1698 
1699 		iosize = min(em->end - cur, end - cur) + 1;
1700 		cur_end = min(em->end, end);
1701 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1702 		sector = (em->block_start + extent_offset) >> 9;
1703 		bdev = em->bdev;
1704 		block_start = em->block_start;
1705 		free_extent_map(em);
1706 		em = NULL;
1707 
1708 		/* we've found a hole, just zero and go on */
1709 		if (block_start == EXTENT_MAP_HOLE) {
1710 			zero_user_page(page, page_offset, iosize, KM_USER0);
1711 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1712 					    GFP_NOFS);
1713 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1714 			cur = cur + iosize;
1715 			page_offset += iosize;
1716 			continue;
1717 		}
1718 		/* the get_extent function already copied into the page */
1719 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1720 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1721 			cur = cur + iosize;
1722 			page_offset += iosize;
1723 			continue;
1724 		}
1725 
1726 		ret = 0;
1727 		if (tree->ops && tree->ops->readpage_io_hook) {
1728 			ret = tree->ops->readpage_io_hook(page, cur,
1729 							  cur + iosize - 1);
1730 		}
1731 		if (!ret) {
1732 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1733 			nr -= page->index;
1734 			ret = submit_extent_page(READ, tree, page,
1735 					 sector, iosize, page_offset,
1736 					 bdev, bio, nr,
1737 					 end_bio_extent_readpage);
1738 		}
1739 		if (ret)
1740 			SetPageError(page);
1741 		cur = cur + iosize;
1742 		page_offset += iosize;
1743 		nr++;
1744 	}
1745 	if (!nr) {
1746 		if (!PageError(page))
1747 			SetPageUptodate(page);
1748 		unlock_page(page);
1749 	}
1750 	return 0;
1751 }
1752 
1753 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1754 			    get_extent_t *get_extent)
1755 {
1756 	struct bio *bio = NULL;
1757 	int ret;
1758 
1759 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1760 	if (bio)
1761 		submit_one_bio(READ, bio);
1762 	return ret;
1763 }
1764 EXPORT_SYMBOL(extent_read_full_page);
1765 
1766 /*
1767  * the writepage semantics are similar to regular writepage.  extent
1768  * records are inserted to lock ranges in the tree, and as dirty areas
1769  * are found, they are marked writeback.  Then the lock bits are removed
1770  * and the end_io handler clears the writeback ranges
1771  */
1772 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1773 			      void *data)
1774 {
1775 	struct inode *inode = page->mapping->host;
1776 	struct extent_page_data *epd = data;
1777 	struct extent_map_tree *tree = epd->tree;
1778 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1779 	u64 delalloc_start;
1780 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1781 	u64 end;
1782 	u64 cur = start;
1783 	u64 extent_offset;
1784 	u64 last_byte = i_size_read(inode);
1785 	u64 block_start;
1786 	u64 iosize;
1787 	sector_t sector;
1788 	struct extent_map *em;
1789 	struct block_device *bdev;
1790 	int ret;
1791 	int nr = 0;
1792 	size_t page_offset = 0;
1793 	size_t blocksize;
1794 	loff_t i_size = i_size_read(inode);
1795 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1796 	u64 nr_delalloc;
1797 	u64 delalloc_end;
1798 
1799 	WARN_ON(!PageLocked(page));
1800 	if (page->index > end_index) {
1801 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1802 		unlock_page(page);
1803 		return 0;
1804 	}
1805 
1806 	if (page->index == end_index) {
1807 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1808 		zero_user_page(page, offset,
1809 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1810 	}
1811 
1812 	set_page_extent_mapped(page);
1813 
1814 	delalloc_start = start;
1815 	delalloc_end = 0;
1816 	while(delalloc_end < page_end) {
1817 		nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1818 						       &delalloc_end,
1819 						       128 * 1024 * 1024);
1820 		if (nr_delalloc <= 0)
1821 			break;
1822 		tree->ops->fill_delalloc(inode, delalloc_start,
1823 					 delalloc_end);
1824 		clear_extent_bit(tree, delalloc_start,
1825 				 delalloc_end,
1826 				 EXTENT_LOCKED | EXTENT_DELALLOC,
1827 				 1, 0, GFP_NOFS);
1828 		delalloc_start = delalloc_end + 1;
1829 	}
1830 	lock_extent(tree, start, page_end, GFP_NOFS);
1831 
1832 	end = page_end;
1833 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1834 		printk("found delalloc bits after lock_extent\n");
1835 	}
1836 
1837 	if (last_byte <= start) {
1838 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1839 		goto done;
1840 	}
1841 
1842 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1843 	blocksize = inode->i_sb->s_blocksize;
1844 
1845 	while (cur <= end) {
1846 		if (cur >= last_byte) {
1847 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1848 			break;
1849 		}
1850 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1851 		if (IS_ERR(em) || !em) {
1852 			SetPageError(page);
1853 			break;
1854 		}
1855 
1856 		extent_offset = cur - em->start;
1857 		BUG_ON(em->end < cur);
1858 		BUG_ON(end < cur);
1859 		iosize = min(em->end - cur, end - cur) + 1;
1860 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1861 		sector = (em->block_start + extent_offset) >> 9;
1862 		bdev = em->bdev;
1863 		block_start = em->block_start;
1864 		free_extent_map(em);
1865 		em = NULL;
1866 
1867 		if (block_start == EXTENT_MAP_HOLE ||
1868 		    block_start == EXTENT_MAP_INLINE) {
1869 			clear_extent_dirty(tree, cur,
1870 					   cur + iosize - 1, GFP_NOFS);
1871 			cur = cur + iosize;
1872 			page_offset += iosize;
1873 			continue;
1874 		}
1875 
1876 		/* leave this out until we have a page_mkwrite call */
1877 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1878 				   EXTENT_DIRTY, 0)) {
1879 			cur = cur + iosize;
1880 			page_offset += iosize;
1881 			continue;
1882 		}
1883 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1884 		if (tree->ops && tree->ops->writepage_io_hook) {
1885 			ret = tree->ops->writepage_io_hook(page, cur,
1886 						cur + iosize - 1);
1887 		} else {
1888 			ret = 0;
1889 		}
1890 		if (ret)
1891 			SetPageError(page);
1892 		else {
1893 			unsigned long max_nr = end_index + 1;
1894 			set_range_writeback(tree, cur, cur + iosize - 1);
1895 			if (!PageWriteback(page)) {
1896 				printk("warning page %lu not writeback, "
1897 				       "cur %llu end %llu\n", page->index,
1898 				       (unsigned long long)cur,
1899 				       (unsigned long long)end);
1900 			}
1901 
1902 			ret = submit_extent_page(WRITE, tree, page, sector,
1903 						 iosize, page_offset, bdev,
1904 						 &epd->bio, max_nr,
1905 						 end_bio_extent_writepage);
1906 			if (ret)
1907 				SetPageError(page);
1908 		}
1909 		cur = cur + iosize;
1910 		page_offset += iosize;
1911 		nr++;
1912 	}
1913 done:
1914 	if (nr == 0) {
1915 		/* make sure the mapping tag for page dirty gets cleared */
1916 		set_page_writeback(page);
1917 		end_page_writeback(page);
1918 	}
1919 	unlock_extent(tree, start, page_end, GFP_NOFS);
1920 	unlock_page(page);
1921 	return 0;
1922 }
1923 
1924 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1925 			  get_extent_t *get_extent,
1926 			  struct writeback_control *wbc)
1927 {
1928 	int ret;
1929 	struct address_space *mapping = page->mapping;
1930 	struct extent_page_data epd = {
1931 		.bio = NULL,
1932 		.tree = tree,
1933 		.get_extent = get_extent,
1934 	};
1935 	struct writeback_control wbc_writepages = {
1936 		.bdi		= wbc->bdi,
1937 		.sync_mode	= WB_SYNC_NONE,
1938 		.older_than_this = NULL,
1939 		.nr_to_write	= 64,
1940 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
1941 		.range_end	= (loff_t)-1,
1942 	};
1943 
1944 
1945 	ret = __extent_writepage(page, wbc, &epd);
1946 
1947 	write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
1948 	if (epd.bio)
1949 		submit_one_bio(WRITE, epd.bio);
1950 	return ret;
1951 }
1952 EXPORT_SYMBOL(extent_write_full_page);
1953 
1954 int extent_writepages(struct extent_map_tree *tree,
1955 		      struct address_space *mapping,
1956 		      get_extent_t *get_extent,
1957 		      struct writeback_control *wbc)
1958 {
1959 	int ret;
1960 	struct extent_page_data epd = {
1961 		.bio = NULL,
1962 		.tree = tree,
1963 		.get_extent = get_extent,
1964 	};
1965 
1966 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
1967 	if (epd.bio)
1968 		submit_one_bio(WRITE, epd.bio);
1969 	return ret;
1970 }
1971 EXPORT_SYMBOL(extent_writepages);
1972 
1973 int extent_readpages(struct extent_map_tree *tree,
1974 		     struct address_space *mapping,
1975 		     struct list_head *pages, unsigned nr_pages,
1976 		     get_extent_t get_extent)
1977 {
1978 	struct bio *bio = NULL;
1979 	unsigned page_idx;
1980 	struct pagevec pvec;
1981 
1982 	pagevec_init(&pvec, 0);
1983 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
1984 		struct page *page = list_entry(pages->prev, struct page, lru);
1985 
1986 		prefetchw(&page->flags);
1987 		list_del(&page->lru);
1988 		/*
1989 		 * what we want to do here is call add_to_page_cache_lru,
1990 		 * but that isn't exported, so we reproduce it here
1991 		 */
1992 		if (!add_to_page_cache(page, mapping,
1993 					page->index, GFP_KERNEL)) {
1994 
1995 			/* open coding of lru_cache_add, also not exported */
1996 			page_cache_get(page);
1997 			if (!pagevec_add(&pvec, page))
1998 				__pagevec_lru_add(&pvec);
1999 			__extent_read_full_page(tree, page, get_extent, &bio);
2000 		}
2001 		page_cache_release(page);
2002 	}
2003 	if (pagevec_count(&pvec))
2004 		__pagevec_lru_add(&pvec);
2005 	BUG_ON(!list_empty(pages));
2006 	if (bio)
2007 		submit_one_bio(READ, bio);
2008 	return 0;
2009 }
2010 EXPORT_SYMBOL(extent_readpages);
2011 
2012 /*
2013  * basic invalidatepage code, this waits on any locked or writeback
2014  * ranges corresponding to the page, and then deletes any extent state
2015  * records from the tree
2016  */
2017 int extent_invalidatepage(struct extent_map_tree *tree,
2018 			  struct page *page, unsigned long offset)
2019 {
2020 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2021 	u64 end = start + PAGE_CACHE_SIZE - 1;
2022 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2023 
2024 	start += (offset + blocksize -1) & ~(blocksize - 1);
2025 	if (start > end)
2026 		return 0;
2027 
2028 	lock_extent(tree, start, end, GFP_NOFS);
2029 	wait_on_extent_writeback(tree, start, end);
2030 	clear_extent_bit(tree, start, end,
2031 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2032 			 1, 1, GFP_NOFS);
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL(extent_invalidatepage);
2036 
2037 /*
2038  * simple commit_write call, set_range_dirty is used to mark both
2039  * the pages and the extent records as dirty
2040  */
2041 int extent_commit_write(struct extent_map_tree *tree,
2042 			struct inode *inode, struct page *page,
2043 			unsigned from, unsigned to)
2044 {
2045 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2046 
2047 	set_page_extent_mapped(page);
2048 	set_page_dirty(page);
2049 
2050 	if (pos > inode->i_size) {
2051 		i_size_write(inode, pos);
2052 		mark_inode_dirty(inode);
2053 	}
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL(extent_commit_write);
2057 
2058 int extent_prepare_write(struct extent_map_tree *tree,
2059 			 struct inode *inode, struct page *page,
2060 			 unsigned from, unsigned to, get_extent_t *get_extent)
2061 {
2062 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2063 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2064 	u64 block_start;
2065 	u64 orig_block_start;
2066 	u64 block_end;
2067 	u64 cur_end;
2068 	struct extent_map *em;
2069 	unsigned blocksize = 1 << inode->i_blkbits;
2070 	size_t page_offset = 0;
2071 	size_t block_off_start;
2072 	size_t block_off_end;
2073 	int err = 0;
2074 	int iocount = 0;
2075 	int ret = 0;
2076 	int isnew;
2077 
2078 	set_page_extent_mapped(page);
2079 
2080 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2081 	block_end = (page_start + to - 1) | (blocksize - 1);
2082 	orig_block_start = block_start;
2083 
2084 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2085 	while(block_start <= block_end) {
2086 		em = get_extent(inode, page, page_offset, block_start,
2087 				block_end, 1);
2088 		if (IS_ERR(em) || !em) {
2089 			goto err;
2090 		}
2091 		cur_end = min(block_end, em->end);
2092 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2093 		block_off_end = block_off_start + blocksize;
2094 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2095 
2096 		if (!PageUptodate(page) && isnew &&
2097 		    (block_off_end > to || block_off_start < from)) {
2098 			void *kaddr;
2099 
2100 			kaddr = kmap_atomic(page, KM_USER0);
2101 			if (block_off_end > to)
2102 				memset(kaddr + to, 0, block_off_end - to);
2103 			if (block_off_start < from)
2104 				memset(kaddr + block_off_start, 0,
2105 				       from - block_off_start);
2106 			flush_dcache_page(page);
2107 			kunmap_atomic(kaddr, KM_USER0);
2108 		}
2109 		if (!isnew && !PageUptodate(page) &&
2110 		    (block_off_end > to || block_off_start < from) &&
2111 		    !test_range_bit(tree, block_start, cur_end,
2112 				    EXTENT_UPTODATE, 1)) {
2113 			u64 sector;
2114 			u64 extent_offset = block_start - em->start;
2115 			size_t iosize;
2116 			sector = (em->block_start + extent_offset) >> 9;
2117 			iosize = (cur_end - block_start + blocksize - 1) &
2118 				~((u64)blocksize - 1);
2119 			/*
2120 			 * we've already got the extent locked, but we
2121 			 * need to split the state such that our end_bio
2122 			 * handler can clear the lock.
2123 			 */
2124 			set_extent_bit(tree, block_start,
2125 				       block_start + iosize - 1,
2126 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2127 			ret = submit_extent_page(READ, tree, page,
2128 					 sector, iosize, page_offset, em->bdev,
2129 					 NULL, 1,
2130 					 end_bio_extent_preparewrite);
2131 			iocount++;
2132 			block_start = block_start + iosize;
2133 		} else {
2134 			set_extent_uptodate(tree, block_start, cur_end,
2135 					    GFP_NOFS);
2136 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2137 			block_start = cur_end + 1;
2138 		}
2139 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2140 		free_extent_map(em);
2141 	}
2142 	if (iocount) {
2143 		wait_extent_bit(tree, orig_block_start,
2144 				block_end, EXTENT_LOCKED);
2145 	}
2146 	check_page_uptodate(tree, page);
2147 err:
2148 	/* FIXME, zero out newly allocated blocks on error */
2149 	return err;
2150 }
2151 EXPORT_SYMBOL(extent_prepare_write);
2152 
2153 /*
2154  * a helper for releasepage.  As long as there are no locked extents
2155  * in the range corresponding to the page, both state records and extent
2156  * map records are removed
2157  */
2158 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2159 {
2160 	struct extent_map *em;
2161 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2162 	u64 end = start + PAGE_CACHE_SIZE - 1;
2163 	u64 orig_start = start;
2164 	int ret = 1;
2165 
2166 	while (start <= end) {
2167 		em = lookup_extent_mapping(tree, start, end);
2168 		if (!em || IS_ERR(em))
2169 			break;
2170 		if (!test_range_bit(tree, em->start, em->end,
2171 				    EXTENT_LOCKED, 0)) {
2172 			remove_extent_mapping(tree, em);
2173 			/* once for the rb tree */
2174 			free_extent_map(em);
2175 		}
2176 		start = em->end + 1;
2177 		/* once for us */
2178 		free_extent_map(em);
2179 	}
2180 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2181 		ret = 0;
2182 	else
2183 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2184 				 1, 1, GFP_NOFS);
2185 	return ret;
2186 }
2187 EXPORT_SYMBOL(try_release_extent_mapping);
2188 
2189 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2190 		get_extent_t *get_extent)
2191 {
2192 	struct inode *inode = mapping->host;
2193 	u64 start = iblock << inode->i_blkbits;
2194 	u64 end = start + (1 << inode->i_blkbits) - 1;
2195 	sector_t sector = 0;
2196 	struct extent_map *em;
2197 
2198 	em = get_extent(inode, NULL, 0, start, end, 0);
2199 	if (!em || IS_ERR(em))
2200 		return 0;
2201 
2202 	if (em->block_start == EXTENT_MAP_INLINE ||
2203 	    em->block_start == EXTENT_MAP_HOLE)
2204 		goto out;
2205 
2206 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2207 out:
2208 	free_extent_map(em);
2209 	return sector;
2210 }
2211 
2212 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2213 {
2214 	if (list_empty(&eb->lru)) {
2215 		extent_buffer_get(eb);
2216 		list_add(&eb->lru, &tree->buffer_lru);
2217 		tree->lru_size++;
2218 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2219 			struct extent_buffer *rm;
2220 			rm = list_entry(tree->buffer_lru.prev,
2221 					struct extent_buffer, lru);
2222 			tree->lru_size--;
2223 			list_del_init(&rm->lru);
2224 			free_extent_buffer(rm);
2225 		}
2226 	} else
2227 		list_move(&eb->lru, &tree->buffer_lru);
2228 	return 0;
2229 }
2230 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2231 				      u64 start, unsigned long len)
2232 {
2233 	struct list_head *lru = &tree->buffer_lru;
2234 	struct list_head *cur = lru->next;
2235 	struct extent_buffer *eb;
2236 
2237 	if (list_empty(lru))
2238 		return NULL;
2239 
2240 	do {
2241 		eb = list_entry(cur, struct extent_buffer, lru);
2242 		if (eb->start == start && eb->len == len) {
2243 			extent_buffer_get(eb);
2244 			return eb;
2245 		}
2246 		cur = cur->next;
2247 	} while (cur != lru);
2248 	return NULL;
2249 }
2250 
2251 static inline unsigned long num_extent_pages(u64 start, u64 len)
2252 {
2253 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2254 		(start >> PAGE_CACHE_SHIFT);
2255 }
2256 
2257 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2258 					      unsigned long i)
2259 {
2260 	struct page *p;
2261 	struct address_space *mapping;
2262 
2263 	if (i == 0)
2264 		return eb->first_page;
2265 	i += eb->start >> PAGE_CACHE_SHIFT;
2266 	mapping = eb->first_page->mapping;
2267 	read_lock_irq(&mapping->tree_lock);
2268 	p = radix_tree_lookup(&mapping->page_tree, i);
2269 	read_unlock_irq(&mapping->tree_lock);
2270 	return p;
2271 }
2272 
2273 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2274 						   u64 start,
2275 						   unsigned long len,
2276 						   gfp_t mask)
2277 {
2278 	struct extent_buffer *eb = NULL;
2279 
2280 	spin_lock(&tree->lru_lock);
2281 	eb = find_lru(tree, start, len);
2282 	spin_unlock(&tree->lru_lock);
2283 	if (eb) {
2284 		return eb;
2285 	}
2286 
2287 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2288 	INIT_LIST_HEAD(&eb->lru);
2289 	eb->start = start;
2290 	eb->len = len;
2291 	atomic_set(&eb->refs, 1);
2292 
2293 	return eb;
2294 }
2295 
2296 static void __free_extent_buffer(struct extent_buffer *eb)
2297 {
2298 	kmem_cache_free(extent_buffer_cache, eb);
2299 }
2300 
2301 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2302 					  u64 start, unsigned long len,
2303 					  struct page *page0,
2304 					  gfp_t mask)
2305 {
2306 	unsigned long num_pages = num_extent_pages(start, len);
2307 	unsigned long i;
2308 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2309 	struct extent_buffer *eb;
2310 	struct page *p;
2311 	struct address_space *mapping = tree->mapping;
2312 	int uptodate = 1;
2313 
2314 	eb = __alloc_extent_buffer(tree, start, len, mask);
2315 	if (!eb || IS_ERR(eb))
2316 		return NULL;
2317 
2318 	if (eb->flags & EXTENT_BUFFER_FILLED)
2319 		goto lru_add;
2320 
2321 	if (page0) {
2322 		eb->first_page = page0;
2323 		i = 1;
2324 		index++;
2325 		page_cache_get(page0);
2326 		mark_page_accessed(page0);
2327 		set_page_extent_mapped(page0);
2328 		WARN_ON(!PageUptodate(page0));
2329 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2330 				 len << 2);
2331 	} else {
2332 		i = 0;
2333 	}
2334 	for (; i < num_pages; i++, index++) {
2335 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2336 		if (!p) {
2337 			WARN_ON(1);
2338 			goto fail;
2339 		}
2340 		set_page_extent_mapped(p);
2341 		mark_page_accessed(p);
2342 		if (i == 0) {
2343 			eb->first_page = p;
2344 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2345 					 len << 2);
2346 		} else {
2347 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2348 		}
2349 		if (!PageUptodate(p))
2350 			uptodate = 0;
2351 		unlock_page(p);
2352 	}
2353 	if (uptodate)
2354 		eb->flags |= EXTENT_UPTODATE;
2355 	eb->flags |= EXTENT_BUFFER_FILLED;
2356 
2357 lru_add:
2358 	spin_lock(&tree->lru_lock);
2359 	add_lru(tree, eb);
2360 	spin_unlock(&tree->lru_lock);
2361 	return eb;
2362 
2363 fail:
2364 	spin_lock(&tree->lru_lock);
2365 	list_del_init(&eb->lru);
2366 	spin_unlock(&tree->lru_lock);
2367 	if (!atomic_dec_and_test(&eb->refs))
2368 		return NULL;
2369 	for (index = 1; index < i; index++) {
2370 		page_cache_release(extent_buffer_page(eb, index));
2371 	}
2372 	if (i > 0)
2373 		page_cache_release(extent_buffer_page(eb, 0));
2374 	__free_extent_buffer(eb);
2375 	return NULL;
2376 }
2377 EXPORT_SYMBOL(alloc_extent_buffer);
2378 
2379 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2380 					 u64 start, unsigned long len,
2381 					  gfp_t mask)
2382 {
2383 	unsigned long num_pages = num_extent_pages(start, len);
2384 	unsigned long i;
2385 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2386 	struct extent_buffer *eb;
2387 	struct page *p;
2388 	struct address_space *mapping = tree->mapping;
2389 	int uptodate = 1;
2390 
2391 	eb = __alloc_extent_buffer(tree, start, len, mask);
2392 	if (!eb || IS_ERR(eb))
2393 		return NULL;
2394 
2395 	if (eb->flags & EXTENT_BUFFER_FILLED)
2396 		goto lru_add;
2397 
2398 	for (i = 0; i < num_pages; i++, index++) {
2399 		p = find_lock_page(mapping, index);
2400 		if (!p) {
2401 			goto fail;
2402 		}
2403 		set_page_extent_mapped(p);
2404 		mark_page_accessed(p);
2405 
2406 		if (i == 0) {
2407 			eb->first_page = p;
2408 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2409 					 len << 2);
2410 		} else {
2411 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2412 		}
2413 
2414 		if (!PageUptodate(p))
2415 			uptodate = 0;
2416 		unlock_page(p);
2417 	}
2418 	if (uptodate)
2419 		eb->flags |= EXTENT_UPTODATE;
2420 	eb->flags |= EXTENT_BUFFER_FILLED;
2421 
2422 lru_add:
2423 	spin_lock(&tree->lru_lock);
2424 	add_lru(tree, eb);
2425 	spin_unlock(&tree->lru_lock);
2426 	return eb;
2427 fail:
2428 	spin_lock(&tree->lru_lock);
2429 	list_del_init(&eb->lru);
2430 	spin_unlock(&tree->lru_lock);
2431 	if (!atomic_dec_and_test(&eb->refs))
2432 		return NULL;
2433 	for (index = 1; index < i; index++) {
2434 		page_cache_release(extent_buffer_page(eb, index));
2435 	}
2436 	if (i > 0)
2437 		page_cache_release(extent_buffer_page(eb, 0));
2438 	__free_extent_buffer(eb);
2439 	return NULL;
2440 }
2441 EXPORT_SYMBOL(find_extent_buffer);
2442 
2443 void free_extent_buffer(struct extent_buffer *eb)
2444 {
2445 	unsigned long i;
2446 	unsigned long num_pages;
2447 
2448 	if (!eb)
2449 		return;
2450 
2451 	if (!atomic_dec_and_test(&eb->refs))
2452 		return;
2453 
2454 	WARN_ON(!list_empty(&eb->lru));
2455 	num_pages = num_extent_pages(eb->start, eb->len);
2456 
2457 	for (i = 1; i < num_pages; i++) {
2458 		page_cache_release(extent_buffer_page(eb, i));
2459 	}
2460 	page_cache_release(extent_buffer_page(eb, 0));
2461 	__free_extent_buffer(eb);
2462 }
2463 EXPORT_SYMBOL(free_extent_buffer);
2464 
2465 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2466 			      struct extent_buffer *eb)
2467 {
2468 	int set;
2469 	unsigned long i;
2470 	unsigned long num_pages;
2471 	struct page *page;
2472 
2473 	u64 start = eb->start;
2474 	u64 end = start + eb->len - 1;
2475 
2476 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2477 	num_pages = num_extent_pages(eb->start, eb->len);
2478 
2479 	for (i = 0; i < num_pages; i++) {
2480 		page = extent_buffer_page(eb, i);
2481 		lock_page(page);
2482 		/*
2483 		 * if we're on the last page or the first page and the
2484 		 * block isn't aligned on a page boundary, do extra checks
2485 		 * to make sure we don't clean page that is partially dirty
2486 		 */
2487 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2488 		    ((i == num_pages - 1) &&
2489 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2490 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2491 			end  = start + PAGE_CACHE_SIZE - 1;
2492 			if (test_range_bit(tree, start, end,
2493 					   EXTENT_DIRTY, 0)) {
2494 				unlock_page(page);
2495 				continue;
2496 			}
2497 		}
2498 		clear_page_dirty_for_io(page);
2499 		write_lock_irq(&page->mapping->tree_lock);
2500 		if (!PageDirty(page)) {
2501 			radix_tree_tag_clear(&page->mapping->page_tree,
2502 						page_index(page),
2503 						PAGECACHE_TAG_DIRTY);
2504 		}
2505 		write_unlock_irq(&page->mapping->tree_lock);
2506 		unlock_page(page);
2507 	}
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2511 
2512 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2513 				    struct extent_buffer *eb)
2514 {
2515 	return wait_on_extent_writeback(tree, eb->start,
2516 					eb->start + eb->len - 1);
2517 }
2518 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2519 
2520 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2521 			     struct extent_buffer *eb)
2522 {
2523 	unsigned long i;
2524 	unsigned long num_pages;
2525 
2526 	num_pages = num_extent_pages(eb->start, eb->len);
2527 	for (i = 0; i < num_pages; i++) {
2528 		struct page *page = extent_buffer_page(eb, i);
2529 		/* writepage may need to do something special for the
2530 		 * first page, we have to make sure page->private is
2531 		 * properly set.  releasepage may drop page->private
2532 		 * on us if the page isn't already dirty.
2533 		 */
2534 		if (i == 0) {
2535 			lock_page(page);
2536 			set_page_private(page,
2537 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2538 					 eb->len << 2);
2539 		}
2540 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2541 		if (i == 0)
2542 			unlock_page(page);
2543 	}
2544 	return set_extent_dirty(tree, eb->start,
2545 				eb->start + eb->len - 1, GFP_NOFS);
2546 }
2547 EXPORT_SYMBOL(set_extent_buffer_dirty);
2548 
2549 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2550 				struct extent_buffer *eb)
2551 {
2552 	unsigned long i;
2553 	struct page *page;
2554 	unsigned long num_pages;
2555 
2556 	num_pages = num_extent_pages(eb->start, eb->len);
2557 
2558 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2559 			    GFP_NOFS);
2560 	for (i = 0; i < num_pages; i++) {
2561 		page = extent_buffer_page(eb, i);
2562 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2563 		    ((i == num_pages - 1) &&
2564 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2565 			check_page_uptodate(tree, page);
2566 			continue;
2567 		}
2568 		SetPageUptodate(page);
2569 	}
2570 	return 0;
2571 }
2572 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2573 
2574 int extent_buffer_uptodate(struct extent_map_tree *tree,
2575 			     struct extent_buffer *eb)
2576 {
2577 	if (eb->flags & EXTENT_UPTODATE)
2578 		return 1;
2579 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2580 			   EXTENT_UPTODATE, 1);
2581 }
2582 EXPORT_SYMBOL(extent_buffer_uptodate);
2583 
2584 int read_extent_buffer_pages(struct extent_map_tree *tree,
2585 			     struct extent_buffer *eb,
2586 			     u64 start,
2587 			     int wait)
2588 {
2589 	unsigned long i;
2590 	unsigned long start_i;
2591 	struct page *page;
2592 	int err;
2593 	int ret = 0;
2594 	unsigned long num_pages;
2595 
2596 	if (eb->flags & EXTENT_UPTODATE)
2597 		return 0;
2598 
2599 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2600 			   EXTENT_UPTODATE, 1)) {
2601 		return 0;
2602 	}
2603 
2604 	if (start) {
2605 		WARN_ON(start < eb->start);
2606 		start_i = (start >> PAGE_CACHE_SHIFT) -
2607 			(eb->start >> PAGE_CACHE_SHIFT);
2608 	} else {
2609 		start_i = 0;
2610 	}
2611 
2612 	num_pages = num_extent_pages(eb->start, eb->len);
2613 	for (i = start_i; i < num_pages; i++) {
2614 		page = extent_buffer_page(eb, i);
2615 		if (PageUptodate(page)) {
2616 			continue;
2617 		}
2618 		if (!wait) {
2619 			if (TestSetPageLocked(page)) {
2620 				continue;
2621 			}
2622 		} else {
2623 			lock_page(page);
2624 		}
2625 		if (!PageUptodate(page)) {
2626 			err = page->mapping->a_ops->readpage(NULL, page);
2627 			if (err) {
2628 				ret = err;
2629 			}
2630 		} else {
2631 			unlock_page(page);
2632 		}
2633 	}
2634 
2635 	if (ret || !wait) {
2636 		return ret;
2637 	}
2638 
2639 	for (i = start_i; i < num_pages; i++) {
2640 		page = extent_buffer_page(eb, i);
2641 		wait_on_page_locked(page);
2642 		if (!PageUptodate(page)) {
2643 			ret = -EIO;
2644 		}
2645 	}
2646 	if (!ret)
2647 		eb->flags |= EXTENT_UPTODATE;
2648 	return ret;
2649 }
2650 EXPORT_SYMBOL(read_extent_buffer_pages);
2651 
2652 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2653 			unsigned long start,
2654 			unsigned long len)
2655 {
2656 	size_t cur;
2657 	size_t offset;
2658 	struct page *page;
2659 	char *kaddr;
2660 	char *dst = (char *)dstv;
2661 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2662 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2663 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2664 
2665 	WARN_ON(start > eb->len);
2666 	WARN_ON(start + len > eb->start + eb->len);
2667 
2668 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2669 
2670 	while(len > 0) {
2671 		page = extent_buffer_page(eb, i);
2672 		if (!PageUptodate(page)) {
2673 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2674 			WARN_ON(1);
2675 		}
2676 		WARN_ON(!PageUptodate(page));
2677 
2678 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2679 		kaddr = kmap_atomic(page, KM_USER1);
2680 		memcpy(dst, kaddr + offset, cur);
2681 		kunmap_atomic(kaddr, KM_USER1);
2682 
2683 		dst += cur;
2684 		len -= cur;
2685 		offset = 0;
2686 		i++;
2687 	}
2688 }
2689 EXPORT_SYMBOL(read_extent_buffer);
2690 
2691 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2692 			       unsigned long min_len, char **token, char **map,
2693 			       unsigned long *map_start,
2694 			       unsigned long *map_len, int km)
2695 {
2696 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2697 	char *kaddr;
2698 	struct page *p;
2699 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2700 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2701 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2702 		PAGE_CACHE_SHIFT;
2703 
2704 	if (i != end_i)
2705 		return -EINVAL;
2706 
2707 	if (i == 0) {
2708 		offset = start_offset;
2709 		*map_start = 0;
2710 	} else {
2711 		offset = 0;
2712 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2713 	}
2714 	if (start + min_len > eb->len) {
2715 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2716 		WARN_ON(1);
2717 	}
2718 
2719 	p = extent_buffer_page(eb, i);
2720 	WARN_ON(!PageUptodate(p));
2721 	kaddr = kmap_atomic(p, km);
2722 	*token = kaddr;
2723 	*map = kaddr + offset;
2724 	*map_len = PAGE_CACHE_SIZE - offset;
2725 	return 0;
2726 }
2727 EXPORT_SYMBOL(map_private_extent_buffer);
2728 
2729 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2730 		      unsigned long min_len,
2731 		      char **token, char **map,
2732 		      unsigned long *map_start,
2733 		      unsigned long *map_len, int km)
2734 {
2735 	int err;
2736 	int save = 0;
2737 	if (eb->map_token) {
2738 		unmap_extent_buffer(eb, eb->map_token, km);
2739 		eb->map_token = NULL;
2740 		save = 1;
2741 	}
2742 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2743 				       map_start, map_len, km);
2744 	if (!err && save) {
2745 		eb->map_token = *token;
2746 		eb->kaddr = *map;
2747 		eb->map_start = *map_start;
2748 		eb->map_len = *map_len;
2749 	}
2750 	return err;
2751 }
2752 EXPORT_SYMBOL(map_extent_buffer);
2753 
2754 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2755 {
2756 	kunmap_atomic(token, km);
2757 }
2758 EXPORT_SYMBOL(unmap_extent_buffer);
2759 
2760 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2761 			  unsigned long start,
2762 			  unsigned long len)
2763 {
2764 	size_t cur;
2765 	size_t offset;
2766 	struct page *page;
2767 	char *kaddr;
2768 	char *ptr = (char *)ptrv;
2769 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2770 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2771 	int ret = 0;
2772 
2773 	WARN_ON(start > eb->len);
2774 	WARN_ON(start + len > eb->start + eb->len);
2775 
2776 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2777 
2778 	while(len > 0) {
2779 		page = extent_buffer_page(eb, i);
2780 		WARN_ON(!PageUptodate(page));
2781 
2782 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2783 
2784 		kaddr = kmap_atomic(page, KM_USER0);
2785 		ret = memcmp(ptr, kaddr + offset, cur);
2786 		kunmap_atomic(kaddr, KM_USER0);
2787 		if (ret)
2788 			break;
2789 
2790 		ptr += cur;
2791 		len -= cur;
2792 		offset = 0;
2793 		i++;
2794 	}
2795 	return ret;
2796 }
2797 EXPORT_SYMBOL(memcmp_extent_buffer);
2798 
2799 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2800 			 unsigned long start, unsigned long len)
2801 {
2802 	size_t cur;
2803 	size_t offset;
2804 	struct page *page;
2805 	char *kaddr;
2806 	char *src = (char *)srcv;
2807 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2808 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2809 
2810 	WARN_ON(start > eb->len);
2811 	WARN_ON(start + len > eb->start + eb->len);
2812 
2813 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2814 
2815 	while(len > 0) {
2816 		page = extent_buffer_page(eb, i);
2817 		WARN_ON(!PageUptodate(page));
2818 
2819 		cur = min(len, PAGE_CACHE_SIZE - offset);
2820 		kaddr = kmap_atomic(page, KM_USER1);
2821 		memcpy(kaddr + offset, src, cur);
2822 		kunmap_atomic(kaddr, KM_USER1);
2823 
2824 		src += cur;
2825 		len -= cur;
2826 		offset = 0;
2827 		i++;
2828 	}
2829 }
2830 EXPORT_SYMBOL(write_extent_buffer);
2831 
2832 void memset_extent_buffer(struct extent_buffer *eb, char c,
2833 			  unsigned long start, unsigned long len)
2834 {
2835 	size_t cur;
2836 	size_t offset;
2837 	struct page *page;
2838 	char *kaddr;
2839 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2840 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2841 
2842 	WARN_ON(start > eb->len);
2843 	WARN_ON(start + len > eb->start + eb->len);
2844 
2845 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2846 
2847 	while(len > 0) {
2848 		page = extent_buffer_page(eb, i);
2849 		WARN_ON(!PageUptodate(page));
2850 
2851 		cur = min(len, PAGE_CACHE_SIZE - offset);
2852 		kaddr = kmap_atomic(page, KM_USER0);
2853 		memset(kaddr + offset, c, cur);
2854 		kunmap_atomic(kaddr, KM_USER0);
2855 
2856 		len -= cur;
2857 		offset = 0;
2858 		i++;
2859 	}
2860 }
2861 EXPORT_SYMBOL(memset_extent_buffer);
2862 
2863 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2864 			unsigned long dst_offset, unsigned long src_offset,
2865 			unsigned long len)
2866 {
2867 	u64 dst_len = dst->len;
2868 	size_t cur;
2869 	size_t offset;
2870 	struct page *page;
2871 	char *kaddr;
2872 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2873 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2874 
2875 	WARN_ON(src->len != dst_len);
2876 
2877 	offset = (start_offset + dst_offset) &
2878 		((unsigned long)PAGE_CACHE_SIZE - 1);
2879 
2880 	while(len > 0) {
2881 		page = extent_buffer_page(dst, i);
2882 		WARN_ON(!PageUptodate(page));
2883 
2884 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2885 
2886 		kaddr = kmap_atomic(page, KM_USER0);
2887 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2888 		kunmap_atomic(kaddr, KM_USER0);
2889 
2890 		src_offset += cur;
2891 		len -= cur;
2892 		offset = 0;
2893 		i++;
2894 	}
2895 }
2896 EXPORT_SYMBOL(copy_extent_buffer);
2897 
2898 static void move_pages(struct page *dst_page, struct page *src_page,
2899 		       unsigned long dst_off, unsigned long src_off,
2900 		       unsigned long len)
2901 {
2902 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2903 	if (dst_page == src_page) {
2904 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2905 	} else {
2906 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2907 		char *p = dst_kaddr + dst_off + len;
2908 		char *s = src_kaddr + src_off + len;
2909 
2910 		while (len--)
2911 			*--p = *--s;
2912 
2913 		kunmap_atomic(src_kaddr, KM_USER1);
2914 	}
2915 	kunmap_atomic(dst_kaddr, KM_USER0);
2916 }
2917 
2918 static void copy_pages(struct page *dst_page, struct page *src_page,
2919 		       unsigned long dst_off, unsigned long src_off,
2920 		       unsigned long len)
2921 {
2922 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2923 	char *src_kaddr;
2924 
2925 	if (dst_page != src_page)
2926 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2927 	else
2928 		src_kaddr = dst_kaddr;
2929 
2930 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2931 	kunmap_atomic(dst_kaddr, KM_USER0);
2932 	if (dst_page != src_page)
2933 		kunmap_atomic(src_kaddr, KM_USER1);
2934 }
2935 
2936 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2937 			   unsigned long src_offset, unsigned long len)
2938 {
2939 	size_t cur;
2940 	size_t dst_off_in_page;
2941 	size_t src_off_in_page;
2942 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2943 	unsigned long dst_i;
2944 	unsigned long src_i;
2945 
2946 	if (src_offset + len > dst->len) {
2947 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2948 		       src_offset, len, dst->len);
2949 		BUG_ON(1);
2950 	}
2951 	if (dst_offset + len > dst->len) {
2952 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2953 		       dst_offset, len, dst->len);
2954 		BUG_ON(1);
2955 	}
2956 
2957 	while(len > 0) {
2958 		dst_off_in_page = (start_offset + dst_offset) &
2959 			((unsigned long)PAGE_CACHE_SIZE - 1);
2960 		src_off_in_page = (start_offset + src_offset) &
2961 			((unsigned long)PAGE_CACHE_SIZE - 1);
2962 
2963 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2964 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2965 
2966 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2967 					       src_off_in_page));
2968 		cur = min_t(unsigned long, cur,
2969 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2970 
2971 		copy_pages(extent_buffer_page(dst, dst_i),
2972 			   extent_buffer_page(dst, src_i),
2973 			   dst_off_in_page, src_off_in_page, cur);
2974 
2975 		src_offset += cur;
2976 		dst_offset += cur;
2977 		len -= cur;
2978 	}
2979 }
2980 EXPORT_SYMBOL(memcpy_extent_buffer);
2981 
2982 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2983 			   unsigned long src_offset, unsigned long len)
2984 {
2985 	size_t cur;
2986 	size_t dst_off_in_page;
2987 	size_t src_off_in_page;
2988 	unsigned long dst_end = dst_offset + len - 1;
2989 	unsigned long src_end = src_offset + len - 1;
2990 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2991 	unsigned long dst_i;
2992 	unsigned long src_i;
2993 
2994 	if (src_offset + len > dst->len) {
2995 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2996 		       src_offset, len, dst->len);
2997 		BUG_ON(1);
2998 	}
2999 	if (dst_offset + len > dst->len) {
3000 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3001 		       dst_offset, len, dst->len);
3002 		BUG_ON(1);
3003 	}
3004 	if (dst_offset < src_offset) {
3005 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3006 		return;
3007 	}
3008 	while(len > 0) {
3009 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3010 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3011 
3012 		dst_off_in_page = (start_offset + dst_end) &
3013 			((unsigned long)PAGE_CACHE_SIZE - 1);
3014 		src_off_in_page = (start_offset + src_end) &
3015 			((unsigned long)PAGE_CACHE_SIZE - 1);
3016 
3017 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3018 		cur = min(cur, dst_off_in_page + 1);
3019 		move_pages(extent_buffer_page(dst, dst_i),
3020 			   extent_buffer_page(dst, src_i),
3021 			   dst_off_in_page - cur + 1,
3022 			   src_off_in_page - cur + 1, cur);
3023 
3024 		dst_end -= cur;
3025 		src_end -= cur;
3026 		len -= cur;
3027 	}
3028 }
3029 EXPORT_SYMBOL(memmove_extent_buffer);
3030