xref: /openbmc/linux/fs/btrfs/extent_map.c (revision 0591fb56)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16 
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 				       unsigned long extra_flags,
20 				       void (*ctor)(void *, struct kmem_cache *,
21 						    unsigned long));
22 
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	int in_tree;
37 	struct rb_node rb_node;
38 };
39 
40 struct extent_page_data {
41 	struct bio *bio;
42 	struct extent_map_tree *tree;
43 	get_extent_t *get_extent;
44 };
45 
46 void __init extent_map_init(void)
47 {
48 	extent_map_cache = btrfs_cache_create("extent_map",
49 					    sizeof(struct extent_map), 0,
50 					    NULL);
51 	extent_state_cache = btrfs_cache_create("extent_state",
52 					    sizeof(struct extent_state), 0,
53 					    NULL);
54 	extent_buffer_cache = btrfs_cache_create("extent_buffers",
55 					    sizeof(struct extent_buffer), 0,
56 					    NULL);
57 }
58 
59 void __exit extent_map_exit(void)
60 {
61 	struct extent_state *state;
62 
63 	while (!list_empty(&states)) {
64 		state = list_entry(states.next, struct extent_state, list);
65 		printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
66 		list_del(&state->list);
67 		kmem_cache_free(extent_state_cache, state);
68 
69 	}
70 
71 	if (extent_map_cache)
72 		kmem_cache_destroy(extent_map_cache);
73 	if (extent_state_cache)
74 		kmem_cache_destroy(extent_state_cache);
75 	if (extent_buffer_cache)
76 		kmem_cache_destroy(extent_buffer_cache);
77 }
78 
79 void extent_map_tree_init(struct extent_map_tree *tree,
80 			  struct address_space *mapping, gfp_t mask)
81 {
82 	tree->map.rb_node = NULL;
83 	tree->state.rb_node = NULL;
84 	tree->ops = NULL;
85 	rwlock_init(&tree->lock);
86 	spin_lock_init(&tree->lru_lock);
87 	tree->mapping = mapping;
88 	INIT_LIST_HEAD(&tree->buffer_lru);
89 	tree->lru_size = 0;
90 }
91 EXPORT_SYMBOL(extent_map_tree_init);
92 
93 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
94 {
95 	struct extent_buffer *eb;
96 	while(!list_empty(&tree->buffer_lru)) {
97 		eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
98 				lru);
99 		list_del_init(&eb->lru);
100 		free_extent_buffer(eb);
101 	}
102 }
103 EXPORT_SYMBOL(extent_map_tree_empty_lru);
104 
105 struct extent_map *alloc_extent_map(gfp_t mask)
106 {
107 	struct extent_map *em;
108 	em = kmem_cache_alloc(extent_map_cache, mask);
109 	if (!em || IS_ERR(em))
110 		return em;
111 	em->in_tree = 0;
112 	atomic_set(&em->refs, 1);
113 	return em;
114 }
115 EXPORT_SYMBOL(alloc_extent_map);
116 
117 void free_extent_map(struct extent_map *em)
118 {
119 	if (!em)
120 		return;
121 	if (atomic_dec_and_test(&em->refs)) {
122 		WARN_ON(em->in_tree);
123 		kmem_cache_free(extent_map_cache, em);
124 	}
125 }
126 EXPORT_SYMBOL(free_extent_map);
127 
128 
129 struct extent_state *alloc_extent_state(gfp_t mask)
130 {
131 	struct extent_state *state;
132 	unsigned long flags;
133 
134 	state = kmem_cache_alloc(extent_state_cache, mask);
135 	if (!state || IS_ERR(state))
136 		return state;
137 	state->state = 0;
138 	state->in_tree = 0;
139 	state->private = 0;
140 
141 	spin_lock_irqsave(&state_lock, flags);
142 	list_add(&state->list, &states);
143 	spin_unlock_irqrestore(&state_lock, flags);
144 
145 	atomic_set(&state->refs, 1);
146 	init_waitqueue_head(&state->wq);
147 	return state;
148 }
149 EXPORT_SYMBOL(alloc_extent_state);
150 
151 void free_extent_state(struct extent_state *state)
152 {
153 	unsigned long flags;
154 	if (!state)
155 		return;
156 	if (atomic_dec_and_test(&state->refs)) {
157 		WARN_ON(state->in_tree);
158 		spin_lock_irqsave(&state_lock, flags);
159 		list_del(&state->list);
160 		spin_unlock_irqrestore(&state_lock, flags);
161 		kmem_cache_free(extent_state_cache, state);
162 	}
163 }
164 EXPORT_SYMBOL(free_extent_state);
165 
166 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
167 				   struct rb_node *node)
168 {
169 	struct rb_node ** p = &root->rb_node;
170 	struct rb_node * parent = NULL;
171 	struct tree_entry *entry;
172 
173 	while(*p) {
174 		parent = *p;
175 		entry = rb_entry(parent, struct tree_entry, rb_node);
176 
177 		if (offset < entry->start)
178 			p = &(*p)->rb_left;
179 		else if (offset > entry->end)
180 			p = &(*p)->rb_right;
181 		else
182 			return parent;
183 	}
184 
185 	entry = rb_entry(node, struct tree_entry, rb_node);
186 	entry->in_tree = 1;
187 	rb_link_node(node, parent, p);
188 	rb_insert_color(node, root);
189 	return NULL;
190 }
191 
192 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
193 				   struct rb_node **prev_ret)
194 {
195 	struct rb_node * n = root->rb_node;
196 	struct rb_node *prev = NULL;
197 	struct tree_entry *entry;
198 	struct tree_entry *prev_entry = NULL;
199 
200 	while(n) {
201 		entry = rb_entry(n, struct tree_entry, rb_node);
202 		prev = n;
203 		prev_entry = entry;
204 
205 		if (offset < entry->start)
206 			n = n->rb_left;
207 		else if (offset > entry->end)
208 			n = n->rb_right;
209 		else
210 			return n;
211 	}
212 	if (!prev_ret)
213 		return NULL;
214 	while(prev && offset > prev_entry->end) {
215 		prev = rb_next(prev);
216 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 	}
218 	*prev_ret = prev;
219 	return NULL;
220 }
221 
222 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
223 {
224 	struct rb_node *prev;
225 	struct rb_node *ret;
226 	ret = __tree_search(root, offset, &prev);
227 	if (!ret)
228 		return prev;
229 	return ret;
230 }
231 
232 static int tree_delete(struct rb_root *root, u64 offset)
233 {
234 	struct rb_node *node;
235 	struct tree_entry *entry;
236 
237 	node = __tree_search(root, offset, NULL);
238 	if (!node)
239 		return -ENOENT;
240 	entry = rb_entry(node, struct tree_entry, rb_node);
241 	entry->in_tree = 0;
242 	rb_erase(node, root);
243 	return 0;
244 }
245 
246 /*
247  * add_extent_mapping tries a simple backward merge with existing
248  * mappings.  The extent_map struct passed in will be inserted into
249  * the tree directly (no copies made, just a reference taken).
250  */
251 int add_extent_mapping(struct extent_map_tree *tree,
252 		       struct extent_map *em)
253 {
254 	int ret = 0;
255 	struct extent_map *prev = NULL;
256 	struct rb_node *rb;
257 
258 	write_lock_irq(&tree->lock);
259 	rb = tree_insert(&tree->map, em->end, &em->rb_node);
260 	if (rb) {
261 		prev = rb_entry(rb, struct extent_map, rb_node);
262 		printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
263 		ret = -EEXIST;
264 		goto out;
265 	}
266 	atomic_inc(&em->refs);
267 	if (em->start != 0) {
268 		rb = rb_prev(&em->rb_node);
269 		if (rb)
270 			prev = rb_entry(rb, struct extent_map, rb_node);
271 		if (prev && prev->end + 1 == em->start &&
272 		    ((em->block_start == EXTENT_MAP_HOLE &&
273 		      prev->block_start == EXTENT_MAP_HOLE) ||
274 		     (em->block_start == EXTENT_MAP_INLINE &&
275 		      prev->block_start == EXTENT_MAP_INLINE) ||
276 		     (em->block_start == EXTENT_MAP_DELALLOC &&
277 		      prev->block_start == EXTENT_MAP_DELALLOC) ||
278 		     (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
279 		      em->block_start == prev->block_end + 1))) {
280 			em->start = prev->start;
281 			em->block_start = prev->block_start;
282 			rb_erase(&prev->rb_node, &tree->map);
283 			prev->in_tree = 0;
284 			free_extent_map(prev);
285 		}
286 	 }
287 out:
288 	write_unlock_irq(&tree->lock);
289 	return ret;
290 }
291 EXPORT_SYMBOL(add_extent_mapping);
292 
293 /*
294  * lookup_extent_mapping returns the first extent_map struct in the
295  * tree that intersects the [start, end] (inclusive) range.  There may
296  * be additional objects in the tree that intersect, so check the object
297  * returned carefully to make sure you don't need additional lookups.
298  */
299 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
300 					 u64 start, u64 end)
301 {
302 	struct extent_map *em;
303 	struct rb_node *rb_node;
304 
305 	read_lock_irq(&tree->lock);
306 	rb_node = tree_search(&tree->map, start);
307 	if (!rb_node) {
308 		em = NULL;
309 		goto out;
310 	}
311 	if (IS_ERR(rb_node)) {
312 		em = ERR_PTR(PTR_ERR(rb_node));
313 		goto out;
314 	}
315 	em = rb_entry(rb_node, struct extent_map, rb_node);
316 	if (em->end < start || em->start > end) {
317 		em = NULL;
318 		goto out;
319 	}
320 	atomic_inc(&em->refs);
321 out:
322 	read_unlock_irq(&tree->lock);
323 	return em;
324 }
325 EXPORT_SYMBOL(lookup_extent_mapping);
326 
327 /*
328  * removes an extent_map struct from the tree.  No reference counts are
329  * dropped, and no checks are done to  see if the range is in use
330  */
331 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
332 {
333 	int ret;
334 
335 	write_lock_irq(&tree->lock);
336 	ret = tree_delete(&tree->map, em->end);
337 	write_unlock_irq(&tree->lock);
338 	return ret;
339 }
340 EXPORT_SYMBOL(remove_extent_mapping);
341 
342 /*
343  * utility function to look for merge candidates inside a given range.
344  * Any extents with matching state are merged together into a single
345  * extent in the tree.  Extents with EXTENT_IO in their state field
346  * are not merged because the end_io handlers need to be able to do
347  * operations on them without sleeping (or doing allocations/splits).
348  *
349  * This should be called with the tree lock held.
350  */
351 static int merge_state(struct extent_map_tree *tree,
352 		       struct extent_state *state)
353 {
354 	struct extent_state *other;
355 	struct rb_node *other_node;
356 
357 	if (state->state & EXTENT_IOBITS)
358 		return 0;
359 
360 	other_node = rb_prev(&state->rb_node);
361 	if (other_node) {
362 		other = rb_entry(other_node, struct extent_state, rb_node);
363 		if (other->end == state->start - 1 &&
364 		    other->state == state->state) {
365 			state->start = other->start;
366 			other->in_tree = 0;
367 			rb_erase(&other->rb_node, &tree->state);
368 			free_extent_state(other);
369 		}
370 	}
371 	other_node = rb_next(&state->rb_node);
372 	if (other_node) {
373 		other = rb_entry(other_node, struct extent_state, rb_node);
374 		if (other->start == state->end + 1 &&
375 		    other->state == state->state) {
376 			other->start = state->start;
377 			state->in_tree = 0;
378 			rb_erase(&state->rb_node, &tree->state);
379 			free_extent_state(state);
380 		}
381 	}
382 	return 0;
383 }
384 
385 /*
386  * insert an extent_state struct into the tree.  'bits' are set on the
387  * struct before it is inserted.
388  *
389  * This may return -EEXIST if the extent is already there, in which case the
390  * state struct is freed.
391  *
392  * The tree lock is not taken internally.  This is a utility function and
393  * probably isn't what you want to call (see set/clear_extent_bit).
394  */
395 static int insert_state(struct extent_map_tree *tree,
396 			struct extent_state *state, u64 start, u64 end,
397 			int bits)
398 {
399 	struct rb_node *node;
400 
401 	if (end < start) {
402 		printk("end < start %Lu %Lu\n", end, start);
403 		WARN_ON(1);
404 	}
405 	state->state |= bits;
406 	state->start = start;
407 	state->end = end;
408 	node = tree_insert(&tree->state, end, &state->rb_node);
409 	if (node) {
410 		struct extent_state *found;
411 		found = rb_entry(node, struct extent_state, rb_node);
412 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
413 		free_extent_state(state);
414 		return -EEXIST;
415 	}
416 	merge_state(tree, state);
417 	return 0;
418 }
419 
420 /*
421  * split a given extent state struct in two, inserting the preallocated
422  * struct 'prealloc' as the newly created second half.  'split' indicates an
423  * offset inside 'orig' where it should be split.
424  *
425  * Before calling,
426  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
427  * are two extent state structs in the tree:
428  * prealloc: [orig->start, split - 1]
429  * orig: [ split, orig->end ]
430  *
431  * The tree locks are not taken by this function. They need to be held
432  * by the caller.
433  */
434 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
435 		       struct extent_state *prealloc, u64 split)
436 {
437 	struct rb_node *node;
438 	prealloc->start = orig->start;
439 	prealloc->end = split - 1;
440 	prealloc->state = orig->state;
441 	orig->start = split;
442 
443 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
444 	if (node) {
445 		struct extent_state *found;
446 		found = rb_entry(node, struct extent_state, rb_node);
447 		printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
448 		free_extent_state(prealloc);
449 		return -EEXIST;
450 	}
451 	return 0;
452 }
453 
454 /*
455  * utility function to clear some bits in an extent state struct.
456  * it will optionally wake up any one waiting on this state (wake == 1), or
457  * forcibly remove the state from the tree (delete == 1).
458  *
459  * If no bits are set on the state struct after clearing things, the
460  * struct is freed and removed from the tree
461  */
462 static int clear_state_bit(struct extent_map_tree *tree,
463 			    struct extent_state *state, int bits, int wake,
464 			    int delete)
465 {
466 	int ret = state->state & bits;
467 	state->state &= ~bits;
468 	if (wake)
469 		wake_up(&state->wq);
470 	if (delete || state->state == 0) {
471 		if (state->in_tree) {
472 			rb_erase(&state->rb_node, &tree->state);
473 			state->in_tree = 0;
474 			free_extent_state(state);
475 		} else {
476 			WARN_ON(1);
477 		}
478 	} else {
479 		merge_state(tree, state);
480 	}
481 	return ret;
482 }
483 
484 /*
485  * clear some bits on a range in the tree.  This may require splitting
486  * or inserting elements in the tree, so the gfp mask is used to
487  * indicate which allocations or sleeping are allowed.
488  *
489  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
490  * the given range from the tree regardless of state (ie for truncate).
491  *
492  * the range [start, end] is inclusive.
493  *
494  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
495  * bits were already set, or zero if none of the bits were already set.
496  */
497 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
498 		     int bits, int wake, int delete, gfp_t mask)
499 {
500 	struct extent_state *state;
501 	struct extent_state *prealloc = NULL;
502 	struct rb_node *node;
503 	unsigned long flags;
504 	int err;
505 	int set = 0;
506 
507 again:
508 	if (!prealloc && (mask & __GFP_WAIT)) {
509 		prealloc = alloc_extent_state(mask);
510 		if (!prealloc)
511 			return -ENOMEM;
512 	}
513 
514 	write_lock_irqsave(&tree->lock, flags);
515 	/*
516 	 * this search will find the extents that end after
517 	 * our range starts
518 	 */
519 	node = tree_search(&tree->state, start);
520 	if (!node)
521 		goto out;
522 	state = rb_entry(node, struct extent_state, rb_node);
523 	if (state->start > end)
524 		goto out;
525 	WARN_ON(state->end < start);
526 
527 	/*
528 	 *     | ---- desired range ---- |
529 	 *  | state | or
530 	 *  | ------------- state -------------- |
531 	 *
532 	 * We need to split the extent we found, and may flip
533 	 * bits on second half.
534 	 *
535 	 * If the extent we found extends past our range, we
536 	 * just split and search again.  It'll get split again
537 	 * the next time though.
538 	 *
539 	 * If the extent we found is inside our range, we clear
540 	 * the desired bit on it.
541 	 */
542 
543 	if (state->start < start) {
544 		err = split_state(tree, state, prealloc, start);
545 		BUG_ON(err == -EEXIST);
546 		prealloc = NULL;
547 		if (err)
548 			goto out;
549 		if (state->end <= end) {
550 			start = state->end + 1;
551 			set |= clear_state_bit(tree, state, bits,
552 					wake, delete);
553 		} else {
554 			start = state->start;
555 		}
556 		goto search_again;
557 	}
558 	/*
559 	 * | ---- desired range ---- |
560 	 *                        | state |
561 	 * We need to split the extent, and clear the bit
562 	 * on the first half
563 	 */
564 	if (state->start <= end && state->end > end) {
565 		err = split_state(tree, state, prealloc, end + 1);
566 		BUG_ON(err == -EEXIST);
567 
568 		if (wake)
569 			wake_up(&state->wq);
570 		set |= clear_state_bit(tree, prealloc, bits,
571 				       wake, delete);
572 		prealloc = NULL;
573 		goto out;
574 	}
575 
576 	start = state->end + 1;
577 	set |= clear_state_bit(tree, state, bits, wake, delete);
578 	goto search_again;
579 
580 out:
581 	write_unlock_irqrestore(&tree->lock, flags);
582 	if (prealloc)
583 		free_extent_state(prealloc);
584 
585 	return set;
586 
587 search_again:
588 	if (start > end)
589 		goto out;
590 	write_unlock_irqrestore(&tree->lock, flags);
591 	if (mask & __GFP_WAIT)
592 		cond_resched();
593 	goto again;
594 }
595 EXPORT_SYMBOL(clear_extent_bit);
596 
597 static int wait_on_state(struct extent_map_tree *tree,
598 			 struct extent_state *state)
599 {
600 	DEFINE_WAIT(wait);
601 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
602 	read_unlock_irq(&tree->lock);
603 	schedule();
604 	read_lock_irq(&tree->lock);
605 	finish_wait(&state->wq, &wait);
606 	return 0;
607 }
608 
609 /*
610  * waits for one or more bits to clear on a range in the state tree.
611  * The range [start, end] is inclusive.
612  * The tree lock is taken by this function
613  */
614 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
615 {
616 	struct extent_state *state;
617 	struct rb_node *node;
618 
619 	read_lock_irq(&tree->lock);
620 again:
621 	while (1) {
622 		/*
623 		 * this search will find all the extents that end after
624 		 * our range starts
625 		 */
626 		node = tree_search(&tree->state, start);
627 		if (!node)
628 			break;
629 
630 		state = rb_entry(node, struct extent_state, rb_node);
631 
632 		if (state->start > end)
633 			goto out;
634 
635 		if (state->state & bits) {
636 			start = state->start;
637 			atomic_inc(&state->refs);
638 			wait_on_state(tree, state);
639 			free_extent_state(state);
640 			goto again;
641 		}
642 		start = state->end + 1;
643 
644 		if (start > end)
645 			break;
646 
647 		if (need_resched()) {
648 			read_unlock_irq(&tree->lock);
649 			cond_resched();
650 			read_lock_irq(&tree->lock);
651 		}
652 	}
653 out:
654 	read_unlock_irq(&tree->lock);
655 	return 0;
656 }
657 EXPORT_SYMBOL(wait_extent_bit);
658 
659 /*
660  * set some bits on a range in the tree.  This may require allocations
661  * or sleeping, so the gfp mask is used to indicate what is allowed.
662  *
663  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
664  * range already has the desired bits set.  The start of the existing
665  * range is returned in failed_start in this case.
666  *
667  * [start, end] is inclusive
668  * This takes the tree lock.
669  */
670 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
671 		   int exclusive, u64 *failed_start, gfp_t mask)
672 {
673 	struct extent_state *state;
674 	struct extent_state *prealloc = NULL;
675 	struct rb_node *node;
676 	unsigned long flags;
677 	int err = 0;
678 	int set;
679 	u64 last_start;
680 	u64 last_end;
681 again:
682 	if (!prealloc && (mask & __GFP_WAIT)) {
683 		prealloc = alloc_extent_state(mask);
684 		if (!prealloc)
685 			return -ENOMEM;
686 	}
687 
688 	write_lock_irqsave(&tree->lock, flags);
689 	/*
690 	 * this search will find all the extents that end after
691 	 * our range starts.
692 	 */
693 	node = tree_search(&tree->state, start);
694 	if (!node) {
695 		err = insert_state(tree, prealloc, start, end, bits);
696 		prealloc = NULL;
697 		BUG_ON(err == -EEXIST);
698 		goto out;
699 	}
700 
701 	state = rb_entry(node, struct extent_state, rb_node);
702 	last_start = state->start;
703 	last_end = state->end;
704 
705 	/*
706 	 * | ---- desired range ---- |
707 	 * | state |
708 	 *
709 	 * Just lock what we found and keep going
710 	 */
711 	if (state->start == start && state->end <= end) {
712 		set = state->state & bits;
713 		if (set && exclusive) {
714 			*failed_start = state->start;
715 			err = -EEXIST;
716 			goto out;
717 		}
718 		state->state |= bits;
719 		start = state->end + 1;
720 		merge_state(tree, state);
721 		goto search_again;
722 	}
723 
724 	/*
725 	 *     | ---- desired range ---- |
726 	 * | state |
727 	 *   or
728 	 * | ------------- state -------------- |
729 	 *
730 	 * We need to split the extent we found, and may flip bits on
731 	 * second half.
732 	 *
733 	 * If the extent we found extends past our
734 	 * range, we just split and search again.  It'll get split
735 	 * again the next time though.
736 	 *
737 	 * If the extent we found is inside our range, we set the
738 	 * desired bit on it.
739 	 */
740 	if (state->start < start) {
741 		set = state->state & bits;
742 		if (exclusive && set) {
743 			*failed_start = start;
744 			err = -EEXIST;
745 			goto out;
746 		}
747 		err = split_state(tree, state, prealloc, start);
748 		BUG_ON(err == -EEXIST);
749 		prealloc = NULL;
750 		if (err)
751 			goto out;
752 		if (state->end <= end) {
753 			state->state |= bits;
754 			start = state->end + 1;
755 			merge_state(tree, state);
756 		} else {
757 			start = state->start;
758 		}
759 		goto search_again;
760 	}
761 	/*
762 	 * | ---- desired range ---- |
763 	 *     | state | or               | state |
764 	 *
765 	 * There's a hole, we need to insert something in it and
766 	 * ignore the extent we found.
767 	 */
768 	if (state->start > start) {
769 		u64 this_end;
770 		if (end < last_start)
771 			this_end = end;
772 		else
773 			this_end = last_start -1;
774 		err = insert_state(tree, prealloc, start, this_end,
775 				   bits);
776 		prealloc = NULL;
777 		BUG_ON(err == -EEXIST);
778 		if (err)
779 			goto out;
780 		start = this_end + 1;
781 		goto search_again;
782 	}
783 	/*
784 	 * | ---- desired range ---- |
785 	 *                        | state |
786 	 * We need to split the extent, and set the bit
787 	 * on the first half
788 	 */
789 	if (state->start <= end && state->end > end) {
790 		set = state->state & bits;
791 		if (exclusive && set) {
792 			*failed_start = start;
793 			err = -EEXIST;
794 			goto out;
795 		}
796 		err = split_state(tree, state, prealloc, end + 1);
797 		BUG_ON(err == -EEXIST);
798 
799 		prealloc->state |= bits;
800 		merge_state(tree, prealloc);
801 		prealloc = NULL;
802 		goto out;
803 	}
804 
805 	goto search_again;
806 
807 out:
808 	write_unlock_irqrestore(&tree->lock, flags);
809 	if (prealloc)
810 		free_extent_state(prealloc);
811 
812 	return err;
813 
814 search_again:
815 	if (start > end)
816 		goto out;
817 	write_unlock_irqrestore(&tree->lock, flags);
818 	if (mask & __GFP_WAIT)
819 		cond_resched();
820 	goto again;
821 }
822 EXPORT_SYMBOL(set_extent_bit);
823 
824 /* wrappers around set/clear extent bit */
825 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
826 		     gfp_t mask)
827 {
828 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
829 			      mask);
830 }
831 EXPORT_SYMBOL(set_extent_dirty);
832 
833 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
834 		    int bits, gfp_t mask)
835 {
836 	return set_extent_bit(tree, start, end, bits, 0, NULL,
837 			      mask);
838 }
839 EXPORT_SYMBOL(set_extent_bits);
840 
841 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
842 		      int bits, gfp_t mask)
843 {
844 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
845 }
846 EXPORT_SYMBOL(clear_extent_bits);
847 
848 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
849 		     gfp_t mask)
850 {
851 	return set_extent_bit(tree, start, end,
852 			      EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
853 			      mask);
854 }
855 EXPORT_SYMBOL(set_extent_delalloc);
856 
857 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
858 		       gfp_t mask)
859 {
860 	return clear_extent_bit(tree, start, end,
861 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
862 }
863 EXPORT_SYMBOL(clear_extent_dirty);
864 
865 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
866 		     gfp_t mask)
867 {
868 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
869 			      mask);
870 }
871 EXPORT_SYMBOL(set_extent_new);
872 
873 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
874 		       gfp_t mask)
875 {
876 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
877 }
878 EXPORT_SYMBOL(clear_extent_new);
879 
880 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
881 			gfp_t mask)
882 {
883 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
884 			      mask);
885 }
886 EXPORT_SYMBOL(set_extent_uptodate);
887 
888 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
889 			  gfp_t mask)
890 {
891 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
892 }
893 EXPORT_SYMBOL(clear_extent_uptodate);
894 
895 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
896 			 gfp_t mask)
897 {
898 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
899 			      0, NULL, mask);
900 }
901 EXPORT_SYMBOL(set_extent_writeback);
902 
903 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
904 			   gfp_t mask)
905 {
906 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
907 }
908 EXPORT_SYMBOL(clear_extent_writeback);
909 
910 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
911 {
912 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
913 }
914 EXPORT_SYMBOL(wait_on_extent_writeback);
915 
916 /*
917  * locks a range in ascending order, waiting for any locked regions
918  * it hits on the way.  [start,end] are inclusive, and this will sleep.
919  */
920 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
921 {
922 	int err;
923 	u64 failed_start;
924 	while (1) {
925 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
926 				     &failed_start, mask);
927 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
928 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
929 			start = failed_start;
930 		} else {
931 			break;
932 		}
933 		WARN_ON(start > end);
934 	}
935 	return err;
936 }
937 EXPORT_SYMBOL(lock_extent);
938 
939 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
940 		  gfp_t mask)
941 {
942 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
943 }
944 EXPORT_SYMBOL(unlock_extent);
945 
946 /*
947  * helper function to set pages and extents in the tree dirty
948  */
949 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
950 {
951 	unsigned long index = start >> PAGE_CACHE_SHIFT;
952 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
953 	struct page *page;
954 
955 	while (index <= end_index) {
956 		page = find_get_page(tree->mapping, index);
957 		BUG_ON(!page);
958 		__set_page_dirty_nobuffers(page);
959 		page_cache_release(page);
960 		index++;
961 	}
962 	set_extent_dirty(tree, start, end, GFP_NOFS);
963 	return 0;
964 }
965 EXPORT_SYMBOL(set_range_dirty);
966 
967 /*
968  * helper function to set both pages and extents in the tree writeback
969  */
970 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
971 {
972 	unsigned long index = start >> PAGE_CACHE_SHIFT;
973 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
974 	struct page *page;
975 
976 	while (index <= end_index) {
977 		page = find_get_page(tree->mapping, index);
978 		BUG_ON(!page);
979 		set_page_writeback(page);
980 		page_cache_release(page);
981 		index++;
982 	}
983 	set_extent_writeback(tree, start, end, GFP_NOFS);
984 	return 0;
985 }
986 EXPORT_SYMBOL(set_range_writeback);
987 
988 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
989 			  u64 *start_ret, u64 *end_ret, int bits)
990 {
991 	struct rb_node *node;
992 	struct extent_state *state;
993 	int ret = 1;
994 
995 	read_lock_irq(&tree->lock);
996 	/*
997 	 * this search will find all the extents that end after
998 	 * our range starts.
999 	 */
1000 	node = tree_search(&tree->state, start);
1001 	if (!node || IS_ERR(node)) {
1002 		goto out;
1003 	}
1004 
1005 	while(1) {
1006 		state = rb_entry(node, struct extent_state, rb_node);
1007 		if (state->end >= start && (state->state & bits)) {
1008 			*start_ret = state->start;
1009 			*end_ret = state->end;
1010 			ret = 0;
1011 			break;
1012 		}
1013 		node = rb_next(node);
1014 		if (!node)
1015 			break;
1016 	}
1017 out:
1018 	read_unlock_irq(&tree->lock);
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL(find_first_extent_bit);
1022 
1023 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1024 			     u64 start, u64 lock_start, u64 *end, u64 max_bytes)
1025 {
1026 	struct rb_node *node;
1027 	struct extent_state *state;
1028 	u64 cur_start = start;
1029 	u64 found = 0;
1030 	u64 total_bytes = 0;
1031 
1032 	write_lock_irq(&tree->lock);
1033 	/*
1034 	 * this search will find all the extents that end after
1035 	 * our range starts.
1036 	 */
1037 search_again:
1038 	node = tree_search(&tree->state, cur_start);
1039 	if (!node || IS_ERR(node)) {
1040 		goto out;
1041 	}
1042 
1043 	while(1) {
1044 		state = rb_entry(node, struct extent_state, rb_node);
1045 		if (state->start != cur_start) {
1046 			goto out;
1047 		}
1048 		if (!(state->state & EXTENT_DELALLOC)) {
1049 			goto out;
1050 		}
1051 		if (state->start >= lock_start) {
1052 			if (state->state & EXTENT_LOCKED) {
1053 				DEFINE_WAIT(wait);
1054 				atomic_inc(&state->refs);
1055 				prepare_to_wait(&state->wq, &wait,
1056 						TASK_UNINTERRUPTIBLE);
1057 				write_unlock_irq(&tree->lock);
1058 				schedule();
1059 				write_lock_irq(&tree->lock);
1060 				finish_wait(&state->wq, &wait);
1061 				free_extent_state(state);
1062 				goto search_again;
1063 			}
1064 			state->state |= EXTENT_LOCKED;
1065 		}
1066 		found++;
1067 		*end = state->end;
1068 		cur_start = state->end + 1;
1069 		node = rb_next(node);
1070 		if (!node)
1071 			break;
1072 		total_bytes += state->end - state->start + 1;
1073 		if (total_bytes >= max_bytes)
1074 			break;
1075 	}
1076 out:
1077 	write_unlock_irq(&tree->lock);
1078 	return found;
1079 }
1080 
1081 /*
1082  * helper function to lock both pages and extents in the tree.
1083  * pages must be locked first.
1084  */
1085 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1086 {
1087 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1088 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1089 	struct page *page;
1090 	int err;
1091 
1092 	while (index <= end_index) {
1093 		page = grab_cache_page(tree->mapping, index);
1094 		if (!page) {
1095 			err = -ENOMEM;
1096 			goto failed;
1097 		}
1098 		if (IS_ERR(page)) {
1099 			err = PTR_ERR(page);
1100 			goto failed;
1101 		}
1102 		index++;
1103 	}
1104 	lock_extent(tree, start, end, GFP_NOFS);
1105 	return 0;
1106 
1107 failed:
1108 	/*
1109 	 * we failed above in getting the page at 'index', so we undo here
1110 	 * up to but not including the page at 'index'
1111 	 */
1112 	end_index = index;
1113 	index = start >> PAGE_CACHE_SHIFT;
1114 	while (index < end_index) {
1115 		page = find_get_page(tree->mapping, index);
1116 		unlock_page(page);
1117 		page_cache_release(page);
1118 		index++;
1119 	}
1120 	return err;
1121 }
1122 EXPORT_SYMBOL(lock_range);
1123 
1124 /*
1125  * helper function to unlock both pages and extents in the tree.
1126  */
1127 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1128 {
1129 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1130 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1131 	struct page *page;
1132 
1133 	while (index <= end_index) {
1134 		page = find_get_page(tree->mapping, index);
1135 		unlock_page(page);
1136 		page_cache_release(page);
1137 		index++;
1138 	}
1139 	unlock_extent(tree, start, end, GFP_NOFS);
1140 	return 0;
1141 }
1142 EXPORT_SYMBOL(unlock_range);
1143 
1144 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1145 {
1146 	struct rb_node *node;
1147 	struct extent_state *state;
1148 	int ret = 0;
1149 
1150 	write_lock_irq(&tree->lock);
1151 	/*
1152 	 * this search will find all the extents that end after
1153 	 * our range starts.
1154 	 */
1155 	node = tree_search(&tree->state, start);
1156 	if (!node || IS_ERR(node)) {
1157 		ret = -ENOENT;
1158 		goto out;
1159 	}
1160 	state = rb_entry(node, struct extent_state, rb_node);
1161 	if (state->start != start) {
1162 		ret = -ENOENT;
1163 		goto out;
1164 	}
1165 	state->private = private;
1166 out:
1167 	write_unlock_irq(&tree->lock);
1168 	return ret;
1169 }
1170 
1171 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1172 {
1173 	struct rb_node *node;
1174 	struct extent_state *state;
1175 	int ret = 0;
1176 
1177 	read_lock_irq(&tree->lock);
1178 	/*
1179 	 * this search will find all the extents that end after
1180 	 * our range starts.
1181 	 */
1182 	node = tree_search(&tree->state, start);
1183 	if (!node || IS_ERR(node)) {
1184 		ret = -ENOENT;
1185 		goto out;
1186 	}
1187 	state = rb_entry(node, struct extent_state, rb_node);
1188 	if (state->start != start) {
1189 		ret = -ENOENT;
1190 		goto out;
1191 	}
1192 	*private = state->private;
1193 out:
1194 	read_unlock_irq(&tree->lock);
1195 	return ret;
1196 }
1197 
1198 /*
1199  * searches a range in the state tree for a given mask.
1200  * If 'filled' == 1, this returns 1 only if ever extent in the tree
1201  * has the bits set.  Otherwise, 1 is returned if any bit in the
1202  * range is found set.
1203  */
1204 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1205 		   int bits, int filled)
1206 {
1207 	struct extent_state *state = NULL;
1208 	struct rb_node *node;
1209 	int bitset = 0;
1210 
1211 	read_lock_irq(&tree->lock);
1212 	node = tree_search(&tree->state, start);
1213 	while (node && start <= end) {
1214 		state = rb_entry(node, struct extent_state, rb_node);
1215 
1216 		if (filled && state->start > start) {
1217 			bitset = 0;
1218 			break;
1219 		}
1220 
1221 		if (state->start > end)
1222 			break;
1223 
1224 		if (state->state & bits) {
1225 			bitset = 1;
1226 			if (!filled)
1227 				break;
1228 		} else if (filled) {
1229 			bitset = 0;
1230 			break;
1231 		}
1232 		start = state->end + 1;
1233 		if (start > end)
1234 			break;
1235 		node = rb_next(node);
1236 	}
1237 	read_unlock_irq(&tree->lock);
1238 	return bitset;
1239 }
1240 EXPORT_SYMBOL(test_range_bit);
1241 
1242 /*
1243  * helper function to set a given page up to date if all the
1244  * extents in the tree for that page are up to date
1245  */
1246 static int check_page_uptodate(struct extent_map_tree *tree,
1247 			       struct page *page)
1248 {
1249 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1250 	u64 end = start + PAGE_CACHE_SIZE - 1;
1251 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1252 		SetPageUptodate(page);
1253 	return 0;
1254 }
1255 
1256 /*
1257  * helper function to unlock a page if all the extents in the tree
1258  * for that page are unlocked
1259  */
1260 static int check_page_locked(struct extent_map_tree *tree,
1261 			     struct page *page)
1262 {
1263 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1264 	u64 end = start + PAGE_CACHE_SIZE - 1;
1265 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1266 		unlock_page(page);
1267 	return 0;
1268 }
1269 
1270 /*
1271  * helper function to end page writeback if all the extents
1272  * in the tree for that page are done with writeback
1273  */
1274 static int check_page_writeback(struct extent_map_tree *tree,
1275 			     struct page *page)
1276 {
1277 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1278 	u64 end = start + PAGE_CACHE_SIZE - 1;
1279 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1280 		end_page_writeback(page);
1281 	return 0;
1282 }
1283 
1284 /* lots and lots of room for performance fixes in the end_bio funcs */
1285 
1286 /*
1287  * after a writepage IO is done, we need to:
1288  * clear the uptodate bits on error
1289  * clear the writeback bits in the extent tree for this IO
1290  * end_page_writeback if the page has no more pending IO
1291  *
1292  * Scheduling is not allowed, so the extent state tree is expected
1293  * to have one and only one object corresponding to this IO.
1294  */
1295 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1296 static void end_bio_extent_writepage(struct bio *bio, int err)
1297 #else
1298 static int end_bio_extent_writepage(struct bio *bio,
1299 				   unsigned int bytes_done, int err)
1300 #endif
1301 {
1302 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1303 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1304 	struct extent_map_tree *tree = bio->bi_private;
1305 	u64 start;
1306 	u64 end;
1307 	int whole_page;
1308 
1309 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1310 	if (bio->bi_size)
1311 		return 1;
1312 #endif
1313 
1314 	do {
1315 		struct page *page = bvec->bv_page;
1316 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1317 			 bvec->bv_offset;
1318 		end = start + bvec->bv_len - 1;
1319 
1320 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1321 			whole_page = 1;
1322 		else
1323 			whole_page = 0;
1324 
1325 		if (--bvec >= bio->bi_io_vec)
1326 			prefetchw(&bvec->bv_page->flags);
1327 
1328 		if (!uptodate) {
1329 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1330 			ClearPageUptodate(page);
1331 			SetPageError(page);
1332 		}
1333 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1334 
1335 		if (whole_page)
1336 			end_page_writeback(page);
1337 		else
1338 			check_page_writeback(tree, page);
1339 		if (tree->ops && tree->ops->writepage_end_io_hook)
1340 			tree->ops->writepage_end_io_hook(page, start, end);
1341 	} while (bvec >= bio->bi_io_vec);
1342 
1343 	bio_put(bio);
1344 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1345 	return 0;
1346 #endif
1347 }
1348 
1349 /*
1350  * after a readpage IO is done, we need to:
1351  * clear the uptodate bits on error
1352  * set the uptodate bits if things worked
1353  * set the page up to date if all extents in the tree are uptodate
1354  * clear the lock bit in the extent tree
1355  * unlock the page if there are no other extents locked for it
1356  *
1357  * Scheduling is not allowed, so the extent state tree is expected
1358  * to have one and only one object corresponding to this IO.
1359  */
1360 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1361 static void end_bio_extent_readpage(struct bio *bio, int err)
1362 #else
1363 static int end_bio_extent_readpage(struct bio *bio,
1364 				   unsigned int bytes_done, int err)
1365 #endif
1366 {
1367 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1368 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1369 	struct extent_map_tree *tree = bio->bi_private;
1370 	u64 start;
1371 	u64 end;
1372 	int whole_page;
1373 	int ret;
1374 
1375 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1376 	if (bio->bi_size)
1377 		return 1;
1378 #endif
1379 
1380 	do {
1381 		struct page *page = bvec->bv_page;
1382 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1383 			bvec->bv_offset;
1384 		end = start + bvec->bv_len - 1;
1385 
1386 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1387 			whole_page = 1;
1388 		else
1389 			whole_page = 0;
1390 
1391 		if (--bvec >= bio->bi_io_vec)
1392 			prefetchw(&bvec->bv_page->flags);
1393 
1394 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1395 			ret = tree->ops->readpage_end_io_hook(page, start, end);
1396 			if (ret)
1397 				uptodate = 0;
1398 		}
1399 		if (uptodate) {
1400 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1401 			if (whole_page)
1402 				SetPageUptodate(page);
1403 			else
1404 				check_page_uptodate(tree, page);
1405 		} else {
1406 			ClearPageUptodate(page);
1407 			SetPageError(page);
1408 		}
1409 
1410 		unlock_extent(tree, start, end, GFP_ATOMIC);
1411 
1412 		if (whole_page)
1413 			unlock_page(page);
1414 		else
1415 			check_page_locked(tree, page);
1416 	} while (bvec >= bio->bi_io_vec);
1417 
1418 	bio_put(bio);
1419 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1420 	return 0;
1421 #endif
1422 }
1423 
1424 /*
1425  * IO done from prepare_write is pretty simple, we just unlock
1426  * the structs in the extent tree when done, and set the uptodate bits
1427  * as appropriate.
1428  */
1429 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1430 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1431 #else
1432 static int end_bio_extent_preparewrite(struct bio *bio,
1433 				       unsigned int bytes_done, int err)
1434 #endif
1435 {
1436 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1437 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1438 	struct extent_map_tree *tree = bio->bi_private;
1439 	u64 start;
1440 	u64 end;
1441 
1442 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1443 	if (bio->bi_size)
1444 		return 1;
1445 #endif
1446 
1447 	do {
1448 		struct page *page = bvec->bv_page;
1449 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1450 			bvec->bv_offset;
1451 		end = start + bvec->bv_len - 1;
1452 
1453 		if (--bvec >= bio->bi_io_vec)
1454 			prefetchw(&bvec->bv_page->flags);
1455 
1456 		if (uptodate) {
1457 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1458 		} else {
1459 			ClearPageUptodate(page);
1460 			SetPageError(page);
1461 		}
1462 
1463 		unlock_extent(tree, start, end, GFP_ATOMIC);
1464 
1465 	} while (bvec >= bio->bi_io_vec);
1466 
1467 	bio_put(bio);
1468 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1469 	return 0;
1470 #endif
1471 }
1472 
1473 static struct bio *
1474 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1475 		 gfp_t gfp_flags)
1476 {
1477 	struct bio *bio;
1478 
1479 	bio = bio_alloc(gfp_flags, nr_vecs);
1480 
1481 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1482 		while (!bio && (nr_vecs /= 2))
1483 			bio = bio_alloc(gfp_flags, nr_vecs);
1484 	}
1485 
1486 	if (bio) {
1487 		bio->bi_bdev = bdev;
1488 		bio->bi_sector = first_sector;
1489 	}
1490 	return bio;
1491 }
1492 
1493 static int submit_one_bio(int rw, struct bio *bio)
1494 {
1495 	int ret = 0;
1496 	bio_get(bio);
1497 	submit_bio(rw, bio);
1498 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1499 		ret = -EOPNOTSUPP;
1500 	bio_put(bio);
1501 	return ret;
1502 }
1503 
1504 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1505 			      struct page *page, sector_t sector,
1506 			      size_t size, unsigned long offset,
1507 			      struct block_device *bdev,
1508 			      struct bio **bio_ret,
1509 			      unsigned long max_pages,
1510 			      bio_end_io_t end_io_func)
1511 {
1512 	int ret = 0;
1513 	struct bio *bio;
1514 	int nr;
1515 
1516 	if (bio_ret && *bio_ret) {
1517 		bio = *bio_ret;
1518 		if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1519 		    bio_add_page(bio, page, size, offset) < size) {
1520 			ret = submit_one_bio(rw, bio);
1521 			bio = NULL;
1522 		} else {
1523 			return 0;
1524 		}
1525 	}
1526 	nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1527 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1528 	if (!bio) {
1529 		printk("failed to allocate bio nr %d\n", nr);
1530 	}
1531 	bio_add_page(bio, page, size, offset);
1532 	bio->bi_end_io = end_io_func;
1533 	bio->bi_private = tree;
1534 	if (bio_ret) {
1535 		*bio_ret = bio;
1536 	} else {
1537 		ret = submit_one_bio(rw, bio);
1538 	}
1539 
1540 	return ret;
1541 }
1542 
1543 void set_page_extent_mapped(struct page *page)
1544 {
1545 	if (!PagePrivate(page)) {
1546 		SetPagePrivate(page);
1547 		WARN_ON(!page->mapping->a_ops->invalidatepage);
1548 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1549 		page_cache_get(page);
1550 	}
1551 }
1552 
1553 /*
1554  * basic readpage implementation.  Locked extent state structs are inserted
1555  * into the tree that are removed when the IO is done (by the end_io
1556  * handlers)
1557  */
1558 static int __extent_read_full_page(struct extent_map_tree *tree,
1559 				   struct page *page,
1560 				   get_extent_t *get_extent,
1561 				   struct bio **bio)
1562 {
1563 	struct inode *inode = page->mapping->host;
1564 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1565 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1566 	u64 end;
1567 	u64 cur = start;
1568 	u64 extent_offset;
1569 	u64 last_byte = i_size_read(inode);
1570 	u64 block_start;
1571 	u64 cur_end;
1572 	sector_t sector;
1573 	struct extent_map *em;
1574 	struct block_device *bdev;
1575 	int ret;
1576 	int nr = 0;
1577 	size_t page_offset = 0;
1578 	size_t iosize;
1579 	size_t blocksize = inode->i_sb->s_blocksize;
1580 
1581 	set_page_extent_mapped(page);
1582 
1583 	end = page_end;
1584 	lock_extent(tree, start, end, GFP_NOFS);
1585 
1586 	while (cur <= end) {
1587 		if (cur >= last_byte) {
1588 			iosize = PAGE_CACHE_SIZE - page_offset;
1589 			zero_user_page(page, page_offset, iosize, KM_USER0);
1590 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1591 					    GFP_NOFS);
1592 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1593 			break;
1594 		}
1595 		em = get_extent(inode, page, page_offset, cur, end, 0);
1596 		if (IS_ERR(em) || !em) {
1597 			SetPageError(page);
1598 			unlock_extent(tree, cur, end, GFP_NOFS);
1599 			break;
1600 		}
1601 
1602 		extent_offset = cur - em->start;
1603 		BUG_ON(em->end < cur);
1604 		BUG_ON(end < cur);
1605 
1606 		iosize = min(em->end - cur, end - cur) + 1;
1607 		cur_end = min(em->end, end);
1608 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1609 		sector = (em->block_start + extent_offset) >> 9;
1610 		bdev = em->bdev;
1611 		block_start = em->block_start;
1612 		free_extent_map(em);
1613 		em = NULL;
1614 
1615 		/* we've found a hole, just zero and go on */
1616 		if (block_start == EXTENT_MAP_HOLE) {
1617 			zero_user_page(page, page_offset, iosize, KM_USER0);
1618 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1619 					    GFP_NOFS);
1620 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1621 			cur = cur + iosize;
1622 			page_offset += iosize;
1623 			continue;
1624 		}
1625 		/* the get_extent function already copied into the page */
1626 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1627 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1628 			cur = cur + iosize;
1629 			page_offset += iosize;
1630 			continue;
1631 		}
1632 
1633 		ret = 0;
1634 		if (tree->ops && tree->ops->readpage_io_hook) {
1635 			ret = tree->ops->readpage_io_hook(page, cur,
1636 							  cur + iosize - 1);
1637 		}
1638 		if (!ret) {
1639 			unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1640 			nr -= page->index;
1641 			ret = submit_extent_page(READ, tree, page,
1642 					 sector, iosize, page_offset,
1643 					 bdev, bio, nr,
1644 					 end_bio_extent_readpage);
1645 		}
1646 		if (ret)
1647 			SetPageError(page);
1648 		cur = cur + iosize;
1649 		page_offset += iosize;
1650 		nr++;
1651 	}
1652 	if (!nr) {
1653 		if (!PageError(page))
1654 			SetPageUptodate(page);
1655 		unlock_page(page);
1656 	}
1657 	return 0;
1658 }
1659 
1660 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1661 			    get_extent_t *get_extent)
1662 {
1663 	struct bio *bio = NULL;
1664 	int ret;
1665 
1666 	ret = __extent_read_full_page(tree, page, get_extent, &bio);
1667 	if (bio)
1668 		submit_one_bio(READ, bio);
1669 	return ret;
1670 }
1671 EXPORT_SYMBOL(extent_read_full_page);
1672 
1673 /*
1674  * the writepage semantics are similar to regular writepage.  extent
1675  * records are inserted to lock ranges in the tree, and as dirty areas
1676  * are found, they are marked writeback.  Then the lock bits are removed
1677  * and the end_io handler clears the writeback ranges
1678  */
1679 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1680 			      void *data)
1681 {
1682 	struct inode *inode = page->mapping->host;
1683 	struct extent_page_data *epd = data;
1684 	struct extent_map_tree *tree = epd->tree;
1685 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1686 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1687 	u64 end;
1688 	u64 cur = start;
1689 	u64 extent_offset;
1690 	u64 last_byte = i_size_read(inode);
1691 	u64 block_start;
1692 	u64 iosize;
1693 	sector_t sector;
1694 	struct extent_map *em;
1695 	struct block_device *bdev;
1696 	int ret;
1697 	int nr = 0;
1698 	size_t page_offset = 0;
1699 	size_t blocksize;
1700 	loff_t i_size = i_size_read(inode);
1701 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1702 	u64 nr_delalloc;
1703 	u64 delalloc_end;
1704 
1705 	WARN_ON(!PageLocked(page));
1706 	if (page->index > end_index) {
1707 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1708 		unlock_page(page);
1709 		return 0;
1710 	}
1711 
1712 	if (page->index == end_index) {
1713 		size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1714 		zero_user_page(page, offset,
1715 			       PAGE_CACHE_SIZE - offset, KM_USER0);
1716 	}
1717 
1718 	set_page_extent_mapped(page);
1719 
1720 	lock_extent(tree, start, page_end, GFP_NOFS);
1721 	nr_delalloc = find_lock_delalloc_range(tree, start, page_end + 1,
1722 					       &delalloc_end,
1723 					       128 * 1024 * 1024);
1724 	if (nr_delalloc) {
1725 		tree->ops->fill_delalloc(inode, start, delalloc_end);
1726 		if (delalloc_end >= page_end + 1) {
1727 			clear_extent_bit(tree, page_end + 1, delalloc_end,
1728 					 EXTENT_LOCKED | EXTENT_DELALLOC,
1729 					 1, 0, GFP_NOFS);
1730 		}
1731 		clear_extent_bit(tree, start, page_end, EXTENT_DELALLOC,
1732 				 0, 0, GFP_NOFS);
1733 		if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1734 			printk("found delalloc bits after clear extent_bit\n");
1735 		}
1736 	} else if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1737 		printk("found delalloc bits after find_delalloc_range returns 0\n");
1738 	}
1739 
1740 	end = page_end;
1741 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1742 		printk("found delalloc bits after lock_extent\n");
1743 	}
1744 
1745 	if (last_byte <= start) {
1746 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1747 		goto done;
1748 	}
1749 
1750 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1751 	blocksize = inode->i_sb->s_blocksize;
1752 
1753 	while (cur <= end) {
1754 		if (cur >= last_byte) {
1755 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1756 			break;
1757 		}
1758 		em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1759 		if (IS_ERR(em) || !em) {
1760 			SetPageError(page);
1761 			break;
1762 		}
1763 
1764 		extent_offset = cur - em->start;
1765 		BUG_ON(em->end < cur);
1766 		BUG_ON(end < cur);
1767 		iosize = min(em->end - cur, end - cur) + 1;
1768 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1769 		sector = (em->block_start + extent_offset) >> 9;
1770 		bdev = em->bdev;
1771 		block_start = em->block_start;
1772 		free_extent_map(em);
1773 		em = NULL;
1774 
1775 		if (block_start == EXTENT_MAP_HOLE ||
1776 		    block_start == EXTENT_MAP_INLINE) {
1777 			clear_extent_dirty(tree, cur,
1778 					   cur + iosize - 1, GFP_NOFS);
1779 			cur = cur + iosize;
1780 			page_offset += iosize;
1781 			continue;
1782 		}
1783 
1784 		/* leave this out until we have a page_mkwrite call */
1785 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1786 				   EXTENT_DIRTY, 0)) {
1787 			cur = cur + iosize;
1788 			page_offset += iosize;
1789 			continue;
1790 		}
1791 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1792 		if (tree->ops && tree->ops->writepage_io_hook) {
1793 			ret = tree->ops->writepage_io_hook(page, cur,
1794 						cur + iosize - 1);
1795 		} else {
1796 			ret = 0;
1797 		}
1798 		if (ret)
1799 			SetPageError(page);
1800 		else {
1801 			unsigned long nr = end_index + 1;
1802 			set_range_writeback(tree, cur, cur + iosize - 1);
1803 
1804 			ret = submit_extent_page(WRITE, tree, page, sector,
1805 						 iosize, page_offset, bdev,
1806 						 &epd->bio, nr,
1807 						 end_bio_extent_writepage);
1808 			if (ret)
1809 				SetPageError(page);
1810 		}
1811 		cur = cur + iosize;
1812 		page_offset += iosize;
1813 		nr++;
1814 	}
1815 done:
1816 	unlock_extent(tree, start, page_end, GFP_NOFS);
1817 	unlock_page(page);
1818 	return 0;
1819 }
1820 
1821 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
1822 			  get_extent_t *get_extent,
1823 			  struct writeback_control *wbc)
1824 {
1825 	int ret;
1826 	struct extent_page_data epd = {
1827 		.bio = NULL,
1828 		.tree = tree,
1829 		.get_extent = get_extent,
1830 	};
1831 
1832 	ret = __extent_writepage(page, wbc, &epd);
1833 	if (epd.bio)
1834 		submit_one_bio(WRITE, epd.bio);
1835 	return ret;
1836 }
1837 EXPORT_SYMBOL(extent_write_full_page);
1838 
1839 int extent_writepages(struct extent_map_tree *tree,
1840 		      struct address_space *mapping,
1841 		      get_extent_t *get_extent,
1842 		      struct writeback_control *wbc)
1843 {
1844 	int ret;
1845 	struct extent_page_data epd = {
1846 		.bio = NULL,
1847 		.tree = tree,
1848 		.get_extent = get_extent,
1849 	};
1850 
1851 	ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
1852 	if (epd.bio)
1853 		submit_one_bio(WRITE, epd.bio);
1854 	return ret;
1855 }
1856 EXPORT_SYMBOL(extent_writepages);
1857 
1858 int extent_readpages(struct extent_map_tree *tree,
1859 		     struct address_space *mapping,
1860 		     struct list_head *pages, unsigned nr_pages,
1861 		     get_extent_t get_extent)
1862 {
1863 	struct bio *bio = NULL;
1864 	unsigned page_idx;
1865 	struct pagevec pvec;
1866 
1867 	pagevec_init(&pvec, 0);
1868 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
1869 		struct page *page = list_entry(pages->prev, struct page, lru);
1870 
1871 		prefetchw(&page->flags);
1872 		list_del(&page->lru);
1873 		/*
1874 		 * what we want to do here is call add_to_page_cache_lru,
1875 		 * but that isn't exported, so we reproduce it here
1876 		 */
1877 		if (!add_to_page_cache(page, mapping,
1878 					page->index, GFP_KERNEL)) {
1879 
1880 			/* open coding of lru_cache_add, also not exported */
1881 			page_cache_get(page);
1882 			if (!pagevec_add(&pvec, page))
1883 				__pagevec_lru_add(&pvec);
1884 			__extent_read_full_page(tree, page, get_extent, &bio);
1885 		}
1886 		page_cache_release(page);
1887 	}
1888 	if (pagevec_count(&pvec))
1889 		__pagevec_lru_add(&pvec);
1890 	BUG_ON(!list_empty(pages));
1891 	if (bio)
1892 		submit_one_bio(READ, bio);
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(extent_readpages);
1896 
1897 /*
1898  * basic invalidatepage code, this waits on any locked or writeback
1899  * ranges corresponding to the page, and then deletes any extent state
1900  * records from the tree
1901  */
1902 int extent_invalidatepage(struct extent_map_tree *tree,
1903 			  struct page *page, unsigned long offset)
1904 {
1905 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
1906 	u64 end = start + PAGE_CACHE_SIZE - 1;
1907 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
1908 
1909 	start += (offset + blocksize -1) & ~(blocksize - 1);
1910 	if (start > end)
1911 		return 0;
1912 
1913 	lock_extent(tree, start, end, GFP_NOFS);
1914 	wait_on_extent_writeback(tree, start, end);
1915 	clear_extent_bit(tree, start, end,
1916 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
1917 			 1, 1, GFP_NOFS);
1918 	return 0;
1919 }
1920 EXPORT_SYMBOL(extent_invalidatepage);
1921 
1922 /*
1923  * simple commit_write call, set_range_dirty is used to mark both
1924  * the pages and the extent records as dirty
1925  */
1926 int extent_commit_write(struct extent_map_tree *tree,
1927 			struct inode *inode, struct page *page,
1928 			unsigned from, unsigned to)
1929 {
1930 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1931 
1932 	set_page_extent_mapped(page);
1933 	set_page_dirty(page);
1934 
1935 	if (pos > inode->i_size) {
1936 		i_size_write(inode, pos);
1937 		mark_inode_dirty(inode);
1938 	}
1939 	return 0;
1940 }
1941 EXPORT_SYMBOL(extent_commit_write);
1942 
1943 int extent_prepare_write(struct extent_map_tree *tree,
1944 			 struct inode *inode, struct page *page,
1945 			 unsigned from, unsigned to, get_extent_t *get_extent)
1946 {
1947 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
1948 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
1949 	u64 block_start;
1950 	u64 orig_block_start;
1951 	u64 block_end;
1952 	u64 cur_end;
1953 	struct extent_map *em;
1954 	unsigned blocksize = 1 << inode->i_blkbits;
1955 	size_t page_offset = 0;
1956 	size_t block_off_start;
1957 	size_t block_off_end;
1958 	int err = 0;
1959 	int iocount = 0;
1960 	int ret = 0;
1961 	int isnew;
1962 
1963 	set_page_extent_mapped(page);
1964 
1965 	block_start = (page_start + from) & ~((u64)blocksize - 1);
1966 	block_end = (page_start + to - 1) | (blocksize - 1);
1967 	orig_block_start = block_start;
1968 
1969 	lock_extent(tree, page_start, page_end, GFP_NOFS);
1970 	while(block_start <= block_end) {
1971 		em = get_extent(inode, page, page_offset, block_start,
1972 				block_end, 1);
1973 		if (IS_ERR(em) || !em) {
1974 			goto err;
1975 		}
1976 		cur_end = min(block_end, em->end);
1977 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
1978 		block_off_end = block_off_start + blocksize;
1979 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
1980 
1981 		if (!PageUptodate(page) && isnew &&
1982 		    (block_off_end > to || block_off_start < from)) {
1983 			void *kaddr;
1984 
1985 			kaddr = kmap_atomic(page, KM_USER0);
1986 			if (block_off_end > to)
1987 				memset(kaddr + to, 0, block_off_end - to);
1988 			if (block_off_start < from)
1989 				memset(kaddr + block_off_start, 0,
1990 				       from - block_off_start);
1991 			flush_dcache_page(page);
1992 			kunmap_atomic(kaddr, KM_USER0);
1993 		}
1994 		if (!isnew && !PageUptodate(page) &&
1995 		    (block_off_end > to || block_off_start < from) &&
1996 		    !test_range_bit(tree, block_start, cur_end,
1997 				    EXTENT_UPTODATE, 1)) {
1998 			u64 sector;
1999 			u64 extent_offset = block_start - em->start;
2000 			size_t iosize;
2001 			sector = (em->block_start + extent_offset) >> 9;
2002 			iosize = (cur_end - block_start + blocksize - 1) &
2003 				~((u64)blocksize - 1);
2004 			/*
2005 			 * we've already got the extent locked, but we
2006 			 * need to split the state such that our end_bio
2007 			 * handler can clear the lock.
2008 			 */
2009 			set_extent_bit(tree, block_start,
2010 				       block_start + iosize - 1,
2011 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2012 			ret = submit_extent_page(READ, tree, page,
2013 					 sector, iosize, page_offset, em->bdev,
2014 					 NULL, 1,
2015 					 end_bio_extent_preparewrite);
2016 			iocount++;
2017 			block_start = block_start + iosize;
2018 		} else {
2019 			set_extent_uptodate(tree, block_start, cur_end,
2020 					    GFP_NOFS);
2021 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2022 			block_start = cur_end + 1;
2023 		}
2024 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2025 		free_extent_map(em);
2026 	}
2027 	if (iocount) {
2028 		wait_extent_bit(tree, orig_block_start,
2029 				block_end, EXTENT_LOCKED);
2030 	}
2031 	check_page_uptodate(tree, page);
2032 err:
2033 	/* FIXME, zero out newly allocated blocks on error */
2034 	return err;
2035 }
2036 EXPORT_SYMBOL(extent_prepare_write);
2037 
2038 /*
2039  * a helper for releasepage.  As long as there are no locked extents
2040  * in the range corresponding to the page, both state records and extent
2041  * map records are removed
2042  */
2043 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2044 {
2045 	struct extent_map *em;
2046 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2047 	u64 end = start + PAGE_CACHE_SIZE - 1;
2048 	u64 orig_start = start;
2049 	int ret = 1;
2050 
2051 	while (start <= end) {
2052 		em = lookup_extent_mapping(tree, start, end);
2053 		if (!em || IS_ERR(em))
2054 			break;
2055 		if (!test_range_bit(tree, em->start, em->end,
2056 				    EXTENT_LOCKED, 0)) {
2057 			remove_extent_mapping(tree, em);
2058 			/* once for the rb tree */
2059 			free_extent_map(em);
2060 		}
2061 		start = em->end + 1;
2062 		/* once for us */
2063 		free_extent_map(em);
2064 	}
2065 	if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2066 		ret = 0;
2067 	else
2068 		clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2069 				 1, 1, GFP_NOFS);
2070 	return ret;
2071 }
2072 EXPORT_SYMBOL(try_release_extent_mapping);
2073 
2074 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2075 		get_extent_t *get_extent)
2076 {
2077 	struct inode *inode = mapping->host;
2078 	u64 start = iblock << inode->i_blkbits;
2079 	u64 end = start + (1 << inode->i_blkbits) - 1;
2080 	sector_t sector = 0;
2081 	struct extent_map *em;
2082 
2083 	em = get_extent(inode, NULL, 0, start, end, 0);
2084 	if (!em || IS_ERR(em))
2085 		return 0;
2086 
2087 	if (em->block_start == EXTENT_MAP_INLINE ||
2088 	    em->block_start == EXTENT_MAP_HOLE)
2089 		goto out;
2090 
2091 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2092 out:
2093 	free_extent_map(em);
2094 	return sector;
2095 }
2096 
2097 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2098 {
2099 	if (list_empty(&eb->lru)) {
2100 		extent_buffer_get(eb);
2101 		list_add(&eb->lru, &tree->buffer_lru);
2102 		tree->lru_size++;
2103 		if (tree->lru_size >= BUFFER_LRU_MAX) {
2104 			struct extent_buffer *rm;
2105 			rm = list_entry(tree->buffer_lru.prev,
2106 					struct extent_buffer, lru);
2107 			tree->lru_size--;
2108 			list_del_init(&rm->lru);
2109 			free_extent_buffer(rm);
2110 		}
2111 	} else
2112 		list_move(&eb->lru, &tree->buffer_lru);
2113 	return 0;
2114 }
2115 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2116 				      u64 start, unsigned long len)
2117 {
2118 	struct list_head *lru = &tree->buffer_lru;
2119 	struct list_head *cur = lru->next;
2120 	struct extent_buffer *eb;
2121 
2122 	if (list_empty(lru))
2123 		return NULL;
2124 
2125 	do {
2126 		eb = list_entry(cur, struct extent_buffer, lru);
2127 		if (eb->start == start && eb->len == len) {
2128 			extent_buffer_get(eb);
2129 			return eb;
2130 		}
2131 		cur = cur->next;
2132 	} while (cur != lru);
2133 	return NULL;
2134 }
2135 
2136 static inline unsigned long num_extent_pages(u64 start, u64 len)
2137 {
2138 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2139 		(start >> PAGE_CACHE_SHIFT);
2140 }
2141 
2142 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2143 					      unsigned long i)
2144 {
2145 	struct page *p;
2146 	struct address_space *mapping;
2147 
2148 	if (i == 0)
2149 		return eb->first_page;
2150 	i += eb->start >> PAGE_CACHE_SHIFT;
2151 	mapping = eb->first_page->mapping;
2152 	read_lock_irq(&mapping->tree_lock);
2153 	p = radix_tree_lookup(&mapping->page_tree, i);
2154 	read_unlock_irq(&mapping->tree_lock);
2155 	return p;
2156 }
2157 
2158 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2159 						   u64 start,
2160 						   unsigned long len,
2161 						   gfp_t mask)
2162 {
2163 	struct extent_buffer *eb = NULL;
2164 
2165 	spin_lock(&tree->lru_lock);
2166 	eb = find_lru(tree, start, len);
2167 	spin_unlock(&tree->lru_lock);
2168 	if (eb) {
2169 		return eb;
2170 	}
2171 
2172 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2173 	INIT_LIST_HEAD(&eb->lru);
2174 	eb->start = start;
2175 	eb->len = len;
2176 	atomic_set(&eb->refs, 1);
2177 
2178 	return eb;
2179 }
2180 
2181 static void __free_extent_buffer(struct extent_buffer *eb)
2182 {
2183 	kmem_cache_free(extent_buffer_cache, eb);
2184 }
2185 
2186 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2187 					  u64 start, unsigned long len,
2188 					  struct page *page0,
2189 					  gfp_t mask)
2190 {
2191 	unsigned long num_pages = num_extent_pages(start, len);
2192 	unsigned long i;
2193 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2194 	struct extent_buffer *eb;
2195 	struct page *p;
2196 	struct address_space *mapping = tree->mapping;
2197 	int uptodate = 1;
2198 
2199 	eb = __alloc_extent_buffer(tree, start, len, mask);
2200 	if (!eb || IS_ERR(eb))
2201 		return NULL;
2202 
2203 	if (eb->flags & EXTENT_BUFFER_FILLED)
2204 		goto lru_add;
2205 
2206 	if (page0) {
2207 		eb->first_page = page0;
2208 		i = 1;
2209 		index++;
2210 		page_cache_get(page0);
2211 		mark_page_accessed(page0);
2212 		set_page_extent_mapped(page0);
2213 		WARN_ON(!PageUptodate(page0));
2214 		set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2215 				 len << 2);
2216 	} else {
2217 		i = 0;
2218 	}
2219 	for (; i < num_pages; i++, index++) {
2220 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2221 		if (!p) {
2222 			WARN_ON(1);
2223 			goto fail;
2224 		}
2225 		set_page_extent_mapped(p);
2226 		mark_page_accessed(p);
2227 		if (i == 0) {
2228 			eb->first_page = p;
2229 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2230 					 len << 2);
2231 		} else {
2232 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2233 		}
2234 		if (!PageUptodate(p))
2235 			uptodate = 0;
2236 		unlock_page(p);
2237 	}
2238 	if (uptodate)
2239 		eb->flags |= EXTENT_UPTODATE;
2240 	eb->flags |= EXTENT_BUFFER_FILLED;
2241 
2242 lru_add:
2243 	spin_lock(&tree->lru_lock);
2244 	add_lru(tree, eb);
2245 	spin_unlock(&tree->lru_lock);
2246 	return eb;
2247 
2248 fail:
2249 	spin_lock(&tree->lru_lock);
2250 	list_del_init(&eb->lru);
2251 	spin_unlock(&tree->lru_lock);
2252 	if (!atomic_dec_and_test(&eb->refs))
2253 		return NULL;
2254 	for (index = 1; index < i; index++) {
2255 		page_cache_release(extent_buffer_page(eb, index));
2256 	}
2257 	if (i > 0)
2258 		page_cache_release(extent_buffer_page(eb, 0));
2259 	__free_extent_buffer(eb);
2260 	return NULL;
2261 }
2262 EXPORT_SYMBOL(alloc_extent_buffer);
2263 
2264 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2265 					 u64 start, unsigned long len,
2266 					  gfp_t mask)
2267 {
2268 	unsigned long num_pages = num_extent_pages(start, len);
2269 	unsigned long i;
2270 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2271 	struct extent_buffer *eb;
2272 	struct page *p;
2273 	struct address_space *mapping = tree->mapping;
2274 	int uptodate = 1;
2275 
2276 	eb = __alloc_extent_buffer(tree, start, len, mask);
2277 	if (!eb || IS_ERR(eb))
2278 		return NULL;
2279 
2280 	if (eb->flags & EXTENT_BUFFER_FILLED)
2281 		goto lru_add;
2282 
2283 	for (i = 0; i < num_pages; i++, index++) {
2284 		p = find_lock_page(mapping, index);
2285 		if (!p) {
2286 			goto fail;
2287 		}
2288 		set_page_extent_mapped(p);
2289 		mark_page_accessed(p);
2290 
2291 		if (i == 0) {
2292 			eb->first_page = p;
2293 			set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2294 					 len << 2);
2295 		} else {
2296 			set_page_private(p, EXTENT_PAGE_PRIVATE);
2297 		}
2298 
2299 		if (!PageUptodate(p))
2300 			uptodate = 0;
2301 		unlock_page(p);
2302 	}
2303 	if (uptodate)
2304 		eb->flags |= EXTENT_UPTODATE;
2305 	eb->flags |= EXTENT_BUFFER_FILLED;
2306 
2307 lru_add:
2308 	spin_lock(&tree->lru_lock);
2309 	add_lru(tree, eb);
2310 	spin_unlock(&tree->lru_lock);
2311 	return eb;
2312 fail:
2313 	spin_lock(&tree->lru_lock);
2314 	list_del_init(&eb->lru);
2315 	spin_unlock(&tree->lru_lock);
2316 	if (!atomic_dec_and_test(&eb->refs))
2317 		return NULL;
2318 	for (index = 1; index < i; index++) {
2319 		page_cache_release(extent_buffer_page(eb, index));
2320 	}
2321 	if (i > 0)
2322 		page_cache_release(extent_buffer_page(eb, 0));
2323 	__free_extent_buffer(eb);
2324 	return NULL;
2325 }
2326 EXPORT_SYMBOL(find_extent_buffer);
2327 
2328 void free_extent_buffer(struct extent_buffer *eb)
2329 {
2330 	unsigned long i;
2331 	unsigned long num_pages;
2332 
2333 	if (!eb)
2334 		return;
2335 
2336 	if (!atomic_dec_and_test(&eb->refs))
2337 		return;
2338 
2339 	WARN_ON(!list_empty(&eb->lru));
2340 	num_pages = num_extent_pages(eb->start, eb->len);
2341 
2342 	for (i = 1; i < num_pages; i++) {
2343 		page_cache_release(extent_buffer_page(eb, i));
2344 	}
2345 	page_cache_release(extent_buffer_page(eb, 0));
2346 	__free_extent_buffer(eb);
2347 }
2348 EXPORT_SYMBOL(free_extent_buffer);
2349 
2350 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2351 			      struct extent_buffer *eb)
2352 {
2353 	int set;
2354 	unsigned long i;
2355 	unsigned long num_pages;
2356 	struct page *page;
2357 
2358 	u64 start = eb->start;
2359 	u64 end = start + eb->len - 1;
2360 
2361 	set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2362 	num_pages = num_extent_pages(eb->start, eb->len);
2363 
2364 	for (i = 0; i < num_pages; i++) {
2365 		page = extent_buffer_page(eb, i);
2366 		lock_page(page);
2367 		/*
2368 		 * if we're on the last page or the first page and the
2369 		 * block isn't aligned on a page boundary, do extra checks
2370 		 * to make sure we don't clean page that is partially dirty
2371 		 */
2372 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2373 		    ((i == num_pages - 1) &&
2374 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2375 			start = (u64)page->index << PAGE_CACHE_SHIFT;
2376 			end  = start + PAGE_CACHE_SIZE - 1;
2377 			if (test_range_bit(tree, start, end,
2378 					   EXTENT_DIRTY, 0)) {
2379 				unlock_page(page);
2380 				continue;
2381 			}
2382 		}
2383 		clear_page_dirty_for_io(page);
2384 		unlock_page(page);
2385 	}
2386 	return 0;
2387 }
2388 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2389 
2390 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2391 				    struct extent_buffer *eb)
2392 {
2393 	return wait_on_extent_writeback(tree, eb->start,
2394 					eb->start + eb->len - 1);
2395 }
2396 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2397 
2398 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2399 			     struct extent_buffer *eb)
2400 {
2401 	unsigned long i;
2402 	unsigned long num_pages;
2403 
2404 	num_pages = num_extent_pages(eb->start, eb->len);
2405 	for (i = 0; i < num_pages; i++) {
2406 		struct page *page = extent_buffer_page(eb, i);
2407 		/* writepage may need to do something special for the
2408 		 * first page, we have to make sure page->private is
2409 		 * properly set.  releasepage may drop page->private
2410 		 * on us if the page isn't already dirty.
2411 		 */
2412 		if (i == 0) {
2413 			lock_page(page);
2414 			set_page_private(page,
2415 					 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2416 					 eb->len << 2);
2417 		}
2418 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2419 		if (i == 0)
2420 			unlock_page(page);
2421 	}
2422 	return set_extent_dirty(tree, eb->start,
2423 				eb->start + eb->len - 1, GFP_NOFS);
2424 }
2425 EXPORT_SYMBOL(set_extent_buffer_dirty);
2426 
2427 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2428 				struct extent_buffer *eb)
2429 {
2430 	unsigned long i;
2431 	struct page *page;
2432 	unsigned long num_pages;
2433 
2434 	num_pages = num_extent_pages(eb->start, eb->len);
2435 
2436 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2437 			    GFP_NOFS);
2438 	for (i = 0; i < num_pages; i++) {
2439 		page = extent_buffer_page(eb, i);
2440 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2441 		    ((i == num_pages - 1) &&
2442 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2443 			check_page_uptodate(tree, page);
2444 			continue;
2445 		}
2446 		SetPageUptodate(page);
2447 	}
2448 	return 0;
2449 }
2450 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2451 
2452 int extent_buffer_uptodate(struct extent_map_tree *tree,
2453 			     struct extent_buffer *eb)
2454 {
2455 	if (eb->flags & EXTENT_UPTODATE)
2456 		return 1;
2457 	return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2458 			   EXTENT_UPTODATE, 1);
2459 }
2460 EXPORT_SYMBOL(extent_buffer_uptodate);
2461 
2462 int read_extent_buffer_pages(struct extent_map_tree *tree,
2463 			     struct extent_buffer *eb,
2464 			     u64 start,
2465 			     int wait)
2466 {
2467 	unsigned long i;
2468 	unsigned long start_i;
2469 	struct page *page;
2470 	int err;
2471 	int ret = 0;
2472 	unsigned long num_pages;
2473 
2474 	if (eb->flags & EXTENT_UPTODATE)
2475 		return 0;
2476 
2477 	if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2478 			   EXTENT_UPTODATE, 1)) {
2479 		return 0;
2480 	}
2481 
2482 	if (start) {
2483 		WARN_ON(start < eb->start);
2484 		start_i = (start >> PAGE_CACHE_SHIFT) -
2485 			(eb->start >> PAGE_CACHE_SHIFT);
2486 	} else {
2487 		start_i = 0;
2488 	}
2489 
2490 	num_pages = num_extent_pages(eb->start, eb->len);
2491 	for (i = start_i; i < num_pages; i++) {
2492 		page = extent_buffer_page(eb, i);
2493 		if (PageUptodate(page)) {
2494 			continue;
2495 		}
2496 		if (!wait) {
2497 			if (TestSetPageLocked(page)) {
2498 				continue;
2499 			}
2500 		} else {
2501 			lock_page(page);
2502 		}
2503 		if (!PageUptodate(page)) {
2504 			err = page->mapping->a_ops->readpage(NULL, page);
2505 			if (err) {
2506 				ret = err;
2507 			}
2508 		} else {
2509 			unlock_page(page);
2510 		}
2511 	}
2512 
2513 	if (ret || !wait) {
2514 		return ret;
2515 	}
2516 
2517 	for (i = start_i; i < num_pages; i++) {
2518 		page = extent_buffer_page(eb, i);
2519 		wait_on_page_locked(page);
2520 		if (!PageUptodate(page)) {
2521 			ret = -EIO;
2522 		}
2523 	}
2524 	if (!ret)
2525 		eb->flags |= EXTENT_UPTODATE;
2526 	return ret;
2527 }
2528 EXPORT_SYMBOL(read_extent_buffer_pages);
2529 
2530 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2531 			unsigned long start,
2532 			unsigned long len)
2533 {
2534 	size_t cur;
2535 	size_t offset;
2536 	struct page *page;
2537 	char *kaddr;
2538 	char *dst = (char *)dstv;
2539 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2540 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2541 	unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2542 
2543 	WARN_ON(start > eb->len);
2544 	WARN_ON(start + len > eb->start + eb->len);
2545 
2546 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2547 
2548 	while(len > 0) {
2549 		page = extent_buffer_page(eb, i);
2550 		if (!PageUptodate(page)) {
2551 			printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2552 			WARN_ON(1);
2553 		}
2554 		WARN_ON(!PageUptodate(page));
2555 
2556 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2557 		kaddr = kmap_atomic(page, KM_USER1);
2558 		memcpy(dst, kaddr + offset, cur);
2559 		kunmap_atomic(kaddr, KM_USER1);
2560 
2561 		dst += cur;
2562 		len -= cur;
2563 		offset = 0;
2564 		i++;
2565 	}
2566 }
2567 EXPORT_SYMBOL(read_extent_buffer);
2568 
2569 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2570 			       unsigned long min_len, char **token, char **map,
2571 			       unsigned long *map_start,
2572 			       unsigned long *map_len, int km)
2573 {
2574 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
2575 	char *kaddr;
2576 	struct page *p;
2577 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2578 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2579 	unsigned long end_i = (start_offset + start + min_len - 1) >>
2580 		PAGE_CACHE_SHIFT;
2581 
2582 	if (i != end_i)
2583 		return -EINVAL;
2584 
2585 	if (i == 0) {
2586 		offset = start_offset;
2587 		*map_start = 0;
2588 	} else {
2589 		offset = 0;
2590 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2591 	}
2592 	if (start + min_len > eb->len) {
2593 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2594 		WARN_ON(1);
2595 	}
2596 
2597 	p = extent_buffer_page(eb, i);
2598 	WARN_ON(!PageUptodate(p));
2599 	kaddr = kmap_atomic(p, km);
2600 	*token = kaddr;
2601 	*map = kaddr + offset;
2602 	*map_len = PAGE_CACHE_SIZE - offset;
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL(map_private_extent_buffer);
2606 
2607 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2608 		      unsigned long min_len,
2609 		      char **token, char **map,
2610 		      unsigned long *map_start,
2611 		      unsigned long *map_len, int km)
2612 {
2613 	int err;
2614 	int save = 0;
2615 	if (eb->map_token) {
2616 		unmap_extent_buffer(eb, eb->map_token, km);
2617 		eb->map_token = NULL;
2618 		save = 1;
2619 	}
2620 	err = map_private_extent_buffer(eb, start, min_len, token, map,
2621 				       map_start, map_len, km);
2622 	if (!err && save) {
2623 		eb->map_token = *token;
2624 		eb->kaddr = *map;
2625 		eb->map_start = *map_start;
2626 		eb->map_len = *map_len;
2627 	}
2628 	return err;
2629 }
2630 EXPORT_SYMBOL(map_extent_buffer);
2631 
2632 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2633 {
2634 	kunmap_atomic(token, km);
2635 }
2636 EXPORT_SYMBOL(unmap_extent_buffer);
2637 
2638 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2639 			  unsigned long start,
2640 			  unsigned long len)
2641 {
2642 	size_t cur;
2643 	size_t offset;
2644 	struct page *page;
2645 	char *kaddr;
2646 	char *ptr = (char *)ptrv;
2647 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2648 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2649 	int ret = 0;
2650 
2651 	WARN_ON(start > eb->len);
2652 	WARN_ON(start + len > eb->start + eb->len);
2653 
2654 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2655 
2656 	while(len > 0) {
2657 		page = extent_buffer_page(eb, i);
2658 		WARN_ON(!PageUptodate(page));
2659 
2660 		cur = min(len, (PAGE_CACHE_SIZE - offset));
2661 
2662 		kaddr = kmap_atomic(page, KM_USER0);
2663 		ret = memcmp(ptr, kaddr + offset, cur);
2664 		kunmap_atomic(kaddr, KM_USER0);
2665 		if (ret)
2666 			break;
2667 
2668 		ptr += cur;
2669 		len -= cur;
2670 		offset = 0;
2671 		i++;
2672 	}
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL(memcmp_extent_buffer);
2676 
2677 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2678 			 unsigned long start, unsigned long len)
2679 {
2680 	size_t cur;
2681 	size_t offset;
2682 	struct page *page;
2683 	char *kaddr;
2684 	char *src = (char *)srcv;
2685 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2686 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2687 
2688 	WARN_ON(start > eb->len);
2689 	WARN_ON(start + len > eb->start + eb->len);
2690 
2691 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2692 
2693 	while(len > 0) {
2694 		page = extent_buffer_page(eb, i);
2695 		WARN_ON(!PageUptodate(page));
2696 
2697 		cur = min(len, PAGE_CACHE_SIZE - offset);
2698 		kaddr = kmap_atomic(page, KM_USER1);
2699 		memcpy(kaddr + offset, src, cur);
2700 		kunmap_atomic(kaddr, KM_USER1);
2701 
2702 		src += cur;
2703 		len -= cur;
2704 		offset = 0;
2705 		i++;
2706 	}
2707 }
2708 EXPORT_SYMBOL(write_extent_buffer);
2709 
2710 void memset_extent_buffer(struct extent_buffer *eb, char c,
2711 			  unsigned long start, unsigned long len)
2712 {
2713 	size_t cur;
2714 	size_t offset;
2715 	struct page *page;
2716 	char *kaddr;
2717 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2718 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2719 
2720 	WARN_ON(start > eb->len);
2721 	WARN_ON(start + len > eb->start + eb->len);
2722 
2723 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2724 
2725 	while(len > 0) {
2726 		page = extent_buffer_page(eb, i);
2727 		WARN_ON(!PageUptodate(page));
2728 
2729 		cur = min(len, PAGE_CACHE_SIZE - offset);
2730 		kaddr = kmap_atomic(page, KM_USER0);
2731 		memset(kaddr + offset, c, cur);
2732 		kunmap_atomic(kaddr, KM_USER0);
2733 
2734 		len -= cur;
2735 		offset = 0;
2736 		i++;
2737 	}
2738 }
2739 EXPORT_SYMBOL(memset_extent_buffer);
2740 
2741 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
2742 			unsigned long dst_offset, unsigned long src_offset,
2743 			unsigned long len)
2744 {
2745 	u64 dst_len = dst->len;
2746 	size_t cur;
2747 	size_t offset;
2748 	struct page *page;
2749 	char *kaddr;
2750 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2751 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2752 
2753 	WARN_ON(src->len != dst_len);
2754 
2755 	offset = (start_offset + dst_offset) &
2756 		((unsigned long)PAGE_CACHE_SIZE - 1);
2757 
2758 	while(len > 0) {
2759 		page = extent_buffer_page(dst, i);
2760 		WARN_ON(!PageUptodate(page));
2761 
2762 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
2763 
2764 		kaddr = kmap_atomic(page, KM_USER0);
2765 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
2766 		kunmap_atomic(kaddr, KM_USER0);
2767 
2768 		src_offset += cur;
2769 		len -= cur;
2770 		offset = 0;
2771 		i++;
2772 	}
2773 }
2774 EXPORT_SYMBOL(copy_extent_buffer);
2775 
2776 static void move_pages(struct page *dst_page, struct page *src_page,
2777 		       unsigned long dst_off, unsigned long src_off,
2778 		       unsigned long len)
2779 {
2780 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2781 	if (dst_page == src_page) {
2782 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
2783 	} else {
2784 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
2785 		char *p = dst_kaddr + dst_off + len;
2786 		char *s = src_kaddr + src_off + len;
2787 
2788 		while (len--)
2789 			*--p = *--s;
2790 
2791 		kunmap_atomic(src_kaddr, KM_USER1);
2792 	}
2793 	kunmap_atomic(dst_kaddr, KM_USER0);
2794 }
2795 
2796 static void copy_pages(struct page *dst_page, struct page *src_page,
2797 		       unsigned long dst_off, unsigned long src_off,
2798 		       unsigned long len)
2799 {
2800 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
2801 	char *src_kaddr;
2802 
2803 	if (dst_page != src_page)
2804 		src_kaddr = kmap_atomic(src_page, KM_USER1);
2805 	else
2806 		src_kaddr = dst_kaddr;
2807 
2808 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
2809 	kunmap_atomic(dst_kaddr, KM_USER0);
2810 	if (dst_page != src_page)
2811 		kunmap_atomic(src_kaddr, KM_USER1);
2812 }
2813 
2814 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2815 			   unsigned long src_offset, unsigned long len)
2816 {
2817 	size_t cur;
2818 	size_t dst_off_in_page;
2819 	size_t src_off_in_page;
2820 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2821 	unsigned long dst_i;
2822 	unsigned long src_i;
2823 
2824 	if (src_offset + len > dst->len) {
2825 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2826 		       src_offset, len, dst->len);
2827 		BUG_ON(1);
2828 	}
2829 	if (dst_offset + len > dst->len) {
2830 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2831 		       dst_offset, len, dst->len);
2832 		BUG_ON(1);
2833 	}
2834 
2835 	while(len > 0) {
2836 		dst_off_in_page = (start_offset + dst_offset) &
2837 			((unsigned long)PAGE_CACHE_SIZE - 1);
2838 		src_off_in_page = (start_offset + src_offset) &
2839 			((unsigned long)PAGE_CACHE_SIZE - 1);
2840 
2841 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
2842 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
2843 
2844 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
2845 					       src_off_in_page));
2846 		cur = min_t(unsigned long, cur,
2847 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
2848 
2849 		copy_pages(extent_buffer_page(dst, dst_i),
2850 			   extent_buffer_page(dst, src_i),
2851 			   dst_off_in_page, src_off_in_page, cur);
2852 
2853 		src_offset += cur;
2854 		dst_offset += cur;
2855 		len -= cur;
2856 	}
2857 }
2858 EXPORT_SYMBOL(memcpy_extent_buffer);
2859 
2860 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
2861 			   unsigned long src_offset, unsigned long len)
2862 {
2863 	size_t cur;
2864 	size_t dst_off_in_page;
2865 	size_t src_off_in_page;
2866 	unsigned long dst_end = dst_offset + len - 1;
2867 	unsigned long src_end = src_offset + len - 1;
2868 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
2869 	unsigned long dst_i;
2870 	unsigned long src_i;
2871 
2872 	if (src_offset + len > dst->len) {
2873 		printk("memmove bogus src_offset %lu move len %lu len %lu\n",
2874 		       src_offset, len, dst->len);
2875 		BUG_ON(1);
2876 	}
2877 	if (dst_offset + len > dst->len) {
2878 		printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
2879 		       dst_offset, len, dst->len);
2880 		BUG_ON(1);
2881 	}
2882 	if (dst_offset < src_offset) {
2883 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
2884 		return;
2885 	}
2886 	while(len > 0) {
2887 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
2888 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
2889 
2890 		dst_off_in_page = (start_offset + dst_end) &
2891 			((unsigned long)PAGE_CACHE_SIZE - 1);
2892 		src_off_in_page = (start_offset + src_end) &
2893 			((unsigned long)PAGE_CACHE_SIZE - 1);
2894 
2895 		cur = min_t(unsigned long, len, src_off_in_page + 1);
2896 		cur = min(cur, dst_off_in_page + 1);
2897 		move_pages(extent_buffer_page(dst, dst_i),
2898 			   extent_buffer_page(dst, src_i),
2899 			   dst_off_in_page - cur + 1,
2900 			   src_off_in_page - cur + 1, cur);
2901 
2902 		dst_end -= cur;
2903 		src_end -= cur;
2904 		len -= cur;
2905 	}
2906 }
2907 EXPORT_SYMBOL(memmove_extent_buffer);
2908