xref: /openbmc/linux/fs/btrfs/extent_io.c (revision fd589a8f)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22 
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
25 
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
30 
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	struct rb_node rb_node;
37 };
38 
39 struct extent_page_data {
40 	struct bio *bio;
41 	struct extent_io_tree *tree;
42 	get_extent_t *get_extent;
43 
44 	/* tells writepage not to lock the state bits for this range
45 	 * it still does the unlocking
46 	 */
47 	unsigned int extent_locked:1;
48 
49 	/* tells the submit_bio code to use a WRITE_SYNC */
50 	unsigned int sync_io:1;
51 };
52 
53 int __init extent_io_init(void)
54 {
55 	extent_state_cache = kmem_cache_create("extent_state",
56 			sizeof(struct extent_state), 0,
57 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 	if (!extent_state_cache)
59 		return -ENOMEM;
60 
61 	extent_buffer_cache = kmem_cache_create("extent_buffers",
62 			sizeof(struct extent_buffer), 0,
63 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 	if (!extent_buffer_cache)
65 		goto free_state_cache;
66 	return 0;
67 
68 free_state_cache:
69 	kmem_cache_destroy(extent_state_cache);
70 	return -ENOMEM;
71 }
72 
73 void extent_io_exit(void)
74 {
75 	struct extent_state *state;
76 	struct extent_buffer *eb;
77 
78 	while (!list_empty(&states)) {
79 		state = list_entry(states.next, struct extent_state, leak_list);
80 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 		       "state %lu in tree %p refs %d\n",
82 		       (unsigned long long)state->start,
83 		       (unsigned long long)state->end,
84 		       state->state, state->tree, atomic_read(&state->refs));
85 		list_del(&state->leak_list);
86 		kmem_cache_free(extent_state_cache, state);
87 
88 	}
89 
90 	while (!list_empty(&buffers)) {
91 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 		       "refs %d\n", (unsigned long long)eb->start,
94 		       eb->len, atomic_read(&eb->refs));
95 		list_del(&eb->leak_list);
96 		kmem_cache_free(extent_buffer_cache, eb);
97 	}
98 	if (extent_state_cache)
99 		kmem_cache_destroy(extent_state_cache);
100 	if (extent_buffer_cache)
101 		kmem_cache_destroy(extent_buffer_cache);
102 }
103 
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 			  struct address_space *mapping, gfp_t mask)
106 {
107 	tree->state.rb_node = NULL;
108 	tree->buffer.rb_node = NULL;
109 	tree->ops = NULL;
110 	tree->dirty_bytes = 0;
111 	spin_lock_init(&tree->lock);
112 	spin_lock_init(&tree->buffer_lock);
113 	tree->mapping = mapping;
114 }
115 
116 static struct extent_state *alloc_extent_state(gfp_t mask)
117 {
118 	struct extent_state *state;
119 #if LEAK_DEBUG
120 	unsigned long flags;
121 #endif
122 
123 	state = kmem_cache_alloc(extent_state_cache, mask);
124 	if (!state)
125 		return state;
126 	state->state = 0;
127 	state->private = 0;
128 	state->tree = NULL;
129 #if LEAK_DEBUG
130 	spin_lock_irqsave(&leak_lock, flags);
131 	list_add(&state->leak_list, &states);
132 	spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 	atomic_set(&state->refs, 1);
135 	init_waitqueue_head(&state->wq);
136 	return state;
137 }
138 
139 static void free_extent_state(struct extent_state *state)
140 {
141 	if (!state)
142 		return;
143 	if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 		unsigned long flags;
146 #endif
147 		WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 		spin_lock_irqsave(&leak_lock, flags);
150 		list_del(&state->leak_list);
151 		spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 		kmem_cache_free(extent_state_cache, state);
154 	}
155 }
156 
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 				   struct rb_node *node)
159 {
160 	struct rb_node **p = &root->rb_node;
161 	struct rb_node *parent = NULL;
162 	struct tree_entry *entry;
163 
164 	while (*p) {
165 		parent = *p;
166 		entry = rb_entry(parent, struct tree_entry, rb_node);
167 
168 		if (offset < entry->start)
169 			p = &(*p)->rb_left;
170 		else if (offset > entry->end)
171 			p = &(*p)->rb_right;
172 		else
173 			return parent;
174 	}
175 
176 	entry = rb_entry(node, struct tree_entry, rb_node);
177 	rb_link_node(node, parent, p);
178 	rb_insert_color(node, root);
179 	return NULL;
180 }
181 
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 				     struct rb_node **prev_ret,
184 				     struct rb_node **next_ret)
185 {
186 	struct rb_root *root = &tree->state;
187 	struct rb_node *n = root->rb_node;
188 	struct rb_node *prev = NULL;
189 	struct rb_node *orig_prev = NULL;
190 	struct tree_entry *entry;
191 	struct tree_entry *prev_entry = NULL;
192 
193 	while (n) {
194 		entry = rb_entry(n, struct tree_entry, rb_node);
195 		prev = n;
196 		prev_entry = entry;
197 
198 		if (offset < entry->start)
199 			n = n->rb_left;
200 		else if (offset > entry->end)
201 			n = n->rb_right;
202 		else
203 			return n;
204 	}
205 
206 	if (prev_ret) {
207 		orig_prev = prev;
208 		while (prev && offset > prev_entry->end) {
209 			prev = rb_next(prev);
210 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 		}
212 		*prev_ret = prev;
213 		prev = orig_prev;
214 	}
215 
216 	if (next_ret) {
217 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 		while (prev && offset < prev_entry->start) {
219 			prev = rb_prev(prev);
220 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 		}
222 		*next_ret = prev;
223 	}
224 	return NULL;
225 }
226 
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 					  u64 offset)
229 {
230 	struct rb_node *prev = NULL;
231 	struct rb_node *ret;
232 
233 	ret = __etree_search(tree, offset, &prev, NULL);
234 	if (!ret)
235 		return prev;
236 	return ret;
237 }
238 
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240 					  u64 offset, struct rb_node *node)
241 {
242 	struct rb_root *root = &tree->buffer;
243 	struct rb_node **p = &root->rb_node;
244 	struct rb_node *parent = NULL;
245 	struct extent_buffer *eb;
246 
247 	while (*p) {
248 		parent = *p;
249 		eb = rb_entry(parent, struct extent_buffer, rb_node);
250 
251 		if (offset < eb->start)
252 			p = &(*p)->rb_left;
253 		else if (offset > eb->start)
254 			p = &(*p)->rb_right;
255 		else
256 			return eb;
257 	}
258 
259 	rb_link_node(node, parent, p);
260 	rb_insert_color(node, root);
261 	return NULL;
262 }
263 
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265 					   u64 offset)
266 {
267 	struct rb_root *root = &tree->buffer;
268 	struct rb_node *n = root->rb_node;
269 	struct extent_buffer *eb;
270 
271 	while (n) {
272 		eb = rb_entry(n, struct extent_buffer, rb_node);
273 		if (offset < eb->start)
274 			n = n->rb_left;
275 		else if (offset > eb->start)
276 			n = n->rb_right;
277 		else
278 			return eb;
279 	}
280 	return NULL;
281 }
282 
283 /*
284  * utility function to look for merge candidates inside a given range.
285  * Any extents with matching state are merged together into a single
286  * extent in the tree.  Extents with EXTENT_IO in their state field
287  * are not merged because the end_io handlers need to be able to do
288  * operations on them without sleeping (or doing allocations/splits).
289  *
290  * This should be called with the tree lock held.
291  */
292 static int merge_state(struct extent_io_tree *tree,
293 		       struct extent_state *state)
294 {
295 	struct extent_state *other;
296 	struct rb_node *other_node;
297 
298 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
299 		return 0;
300 
301 	other_node = rb_prev(&state->rb_node);
302 	if (other_node) {
303 		other = rb_entry(other_node, struct extent_state, rb_node);
304 		if (other->end == state->start - 1 &&
305 		    other->state == state->state) {
306 			state->start = other->start;
307 			other->tree = NULL;
308 			rb_erase(&other->rb_node, &tree->state);
309 			free_extent_state(other);
310 		}
311 	}
312 	other_node = rb_next(&state->rb_node);
313 	if (other_node) {
314 		other = rb_entry(other_node, struct extent_state, rb_node);
315 		if (other->start == state->end + 1 &&
316 		    other->state == state->state) {
317 			other->start = state->start;
318 			state->tree = NULL;
319 			rb_erase(&state->rb_node, &tree->state);
320 			free_extent_state(state);
321 		}
322 	}
323 	return 0;
324 }
325 
326 static void set_state_cb(struct extent_io_tree *tree,
327 			 struct extent_state *state,
328 			 unsigned long bits)
329 {
330 	if (tree->ops && tree->ops->set_bit_hook) {
331 		tree->ops->set_bit_hook(tree->mapping->host, state->start,
332 					state->end, state->state, bits);
333 	}
334 }
335 
336 static void clear_state_cb(struct extent_io_tree *tree,
337 			   struct extent_state *state,
338 			   unsigned long bits)
339 {
340 	if (tree->ops && tree->ops->clear_bit_hook) {
341 		tree->ops->clear_bit_hook(tree->mapping->host, state->start,
342 					  state->end, state->state, bits);
343 	}
344 }
345 
346 /*
347  * insert an extent_state struct into the tree.  'bits' are set on the
348  * struct before it is inserted.
349  *
350  * This may return -EEXIST if the extent is already there, in which case the
351  * state struct is freed.
352  *
353  * The tree lock is not taken internally.  This is a utility function and
354  * probably isn't what you want to call (see set/clear_extent_bit).
355  */
356 static int insert_state(struct extent_io_tree *tree,
357 			struct extent_state *state, u64 start, u64 end,
358 			int bits)
359 {
360 	struct rb_node *node;
361 
362 	if (end < start) {
363 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
364 		       (unsigned long long)end,
365 		       (unsigned long long)start);
366 		WARN_ON(1);
367 	}
368 	if (bits & EXTENT_DIRTY)
369 		tree->dirty_bytes += end - start + 1;
370 	set_state_cb(tree, state, bits);
371 	state->state |= bits;
372 	state->start = start;
373 	state->end = end;
374 	node = tree_insert(&tree->state, end, &state->rb_node);
375 	if (node) {
376 		struct extent_state *found;
377 		found = rb_entry(node, struct extent_state, rb_node);
378 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
379 		       "%llu %llu\n", (unsigned long long)found->start,
380 		       (unsigned long long)found->end,
381 		       (unsigned long long)start, (unsigned long long)end);
382 		free_extent_state(state);
383 		return -EEXIST;
384 	}
385 	state->tree = tree;
386 	merge_state(tree, state);
387 	return 0;
388 }
389 
390 /*
391  * split a given extent state struct in two, inserting the preallocated
392  * struct 'prealloc' as the newly created second half.  'split' indicates an
393  * offset inside 'orig' where it should be split.
394  *
395  * Before calling,
396  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
397  * are two extent state structs in the tree:
398  * prealloc: [orig->start, split - 1]
399  * orig: [ split, orig->end ]
400  *
401  * The tree locks are not taken by this function. They need to be held
402  * by the caller.
403  */
404 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
405 		       struct extent_state *prealloc, u64 split)
406 {
407 	struct rb_node *node;
408 	prealloc->start = orig->start;
409 	prealloc->end = split - 1;
410 	prealloc->state = orig->state;
411 	orig->start = split;
412 
413 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
414 	if (node) {
415 		free_extent_state(prealloc);
416 		return -EEXIST;
417 	}
418 	prealloc->tree = tree;
419 	return 0;
420 }
421 
422 /*
423  * utility function to clear some bits in an extent state struct.
424  * it will optionally wake up any one waiting on this state (wake == 1), or
425  * forcibly remove the state from the tree (delete == 1).
426  *
427  * If no bits are set on the state struct after clearing things, the
428  * struct is freed and removed from the tree
429  */
430 static int clear_state_bit(struct extent_io_tree *tree,
431 			    struct extent_state *state, int bits, int wake,
432 			    int delete)
433 {
434 	int ret = state->state & bits;
435 
436 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
437 		u64 range = state->end - state->start + 1;
438 		WARN_ON(range > tree->dirty_bytes);
439 		tree->dirty_bytes -= range;
440 	}
441 	clear_state_cb(tree, state, bits);
442 	state->state &= ~bits;
443 	if (wake)
444 		wake_up(&state->wq);
445 	if (delete || state->state == 0) {
446 		if (state->tree) {
447 			clear_state_cb(tree, state, state->state);
448 			rb_erase(&state->rb_node, &tree->state);
449 			state->tree = NULL;
450 			free_extent_state(state);
451 		} else {
452 			WARN_ON(1);
453 		}
454 	} else {
455 		merge_state(tree, state);
456 	}
457 	return ret;
458 }
459 
460 /*
461  * clear some bits on a range in the tree.  This may require splitting
462  * or inserting elements in the tree, so the gfp mask is used to
463  * indicate which allocations or sleeping are allowed.
464  *
465  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
466  * the given range from the tree regardless of state (ie for truncate).
467  *
468  * the range [start, end] is inclusive.
469  *
470  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
471  * bits were already set, or zero if none of the bits were already set.
472  */
473 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
474 		     int bits, int wake, int delete, gfp_t mask)
475 {
476 	struct extent_state *state;
477 	struct extent_state *prealloc = NULL;
478 	struct rb_node *node;
479 	u64 last_end;
480 	int err;
481 	int set = 0;
482 
483 again:
484 	if (!prealloc && (mask & __GFP_WAIT)) {
485 		prealloc = alloc_extent_state(mask);
486 		if (!prealloc)
487 			return -ENOMEM;
488 	}
489 
490 	spin_lock(&tree->lock);
491 	/*
492 	 * this search will find the extents that end after
493 	 * our range starts
494 	 */
495 	node = tree_search(tree, start);
496 	if (!node)
497 		goto out;
498 	state = rb_entry(node, struct extent_state, rb_node);
499 	if (state->start > end)
500 		goto out;
501 	WARN_ON(state->end < start);
502 	last_end = state->end;
503 
504 	/*
505 	 *     | ---- desired range ---- |
506 	 *  | state | or
507 	 *  | ------------- state -------------- |
508 	 *
509 	 * We need to split the extent we found, and may flip
510 	 * bits on second half.
511 	 *
512 	 * If the extent we found extends past our range, we
513 	 * just split and search again.  It'll get split again
514 	 * the next time though.
515 	 *
516 	 * If the extent we found is inside our range, we clear
517 	 * the desired bit on it.
518 	 */
519 
520 	if (state->start < start) {
521 		if (!prealloc)
522 			prealloc = alloc_extent_state(GFP_ATOMIC);
523 		err = split_state(tree, state, prealloc, start);
524 		BUG_ON(err == -EEXIST);
525 		prealloc = NULL;
526 		if (err)
527 			goto out;
528 		if (state->end <= end) {
529 			set |= clear_state_bit(tree, state, bits,
530 					wake, delete);
531 			if (last_end == (u64)-1)
532 				goto out;
533 			start = last_end + 1;
534 		} else {
535 			start = state->start;
536 		}
537 		goto search_again;
538 	}
539 	/*
540 	 * | ---- desired range ---- |
541 	 *                        | state |
542 	 * We need to split the extent, and clear the bit
543 	 * on the first half
544 	 */
545 	if (state->start <= end && state->end > end) {
546 		if (!prealloc)
547 			prealloc = alloc_extent_state(GFP_ATOMIC);
548 		err = split_state(tree, state, prealloc, end + 1);
549 		BUG_ON(err == -EEXIST);
550 
551 		if (wake)
552 			wake_up(&state->wq);
553 		set |= clear_state_bit(tree, prealloc, bits,
554 				       wake, delete);
555 		prealloc = NULL;
556 		goto out;
557 	}
558 
559 	set |= clear_state_bit(tree, state, bits, wake, delete);
560 	if (last_end == (u64)-1)
561 		goto out;
562 	start = last_end + 1;
563 	goto search_again;
564 
565 out:
566 	spin_unlock(&tree->lock);
567 	if (prealloc)
568 		free_extent_state(prealloc);
569 
570 	return set;
571 
572 search_again:
573 	if (start > end)
574 		goto out;
575 	spin_unlock(&tree->lock);
576 	if (mask & __GFP_WAIT)
577 		cond_resched();
578 	goto again;
579 }
580 
581 static int wait_on_state(struct extent_io_tree *tree,
582 			 struct extent_state *state)
583 		__releases(tree->lock)
584 		__acquires(tree->lock)
585 {
586 	DEFINE_WAIT(wait);
587 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
588 	spin_unlock(&tree->lock);
589 	schedule();
590 	spin_lock(&tree->lock);
591 	finish_wait(&state->wq, &wait);
592 	return 0;
593 }
594 
595 /*
596  * waits for one or more bits to clear on a range in the state tree.
597  * The range [start, end] is inclusive.
598  * The tree lock is taken by this function
599  */
600 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
601 {
602 	struct extent_state *state;
603 	struct rb_node *node;
604 
605 	spin_lock(&tree->lock);
606 again:
607 	while (1) {
608 		/*
609 		 * this search will find all the extents that end after
610 		 * our range starts
611 		 */
612 		node = tree_search(tree, start);
613 		if (!node)
614 			break;
615 
616 		state = rb_entry(node, struct extent_state, rb_node);
617 
618 		if (state->start > end)
619 			goto out;
620 
621 		if (state->state & bits) {
622 			start = state->start;
623 			atomic_inc(&state->refs);
624 			wait_on_state(tree, state);
625 			free_extent_state(state);
626 			goto again;
627 		}
628 		start = state->end + 1;
629 
630 		if (start > end)
631 			break;
632 
633 		if (need_resched()) {
634 			spin_unlock(&tree->lock);
635 			cond_resched();
636 			spin_lock(&tree->lock);
637 		}
638 	}
639 out:
640 	spin_unlock(&tree->lock);
641 	return 0;
642 }
643 
644 static void set_state_bits(struct extent_io_tree *tree,
645 			   struct extent_state *state,
646 			   int bits)
647 {
648 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
649 		u64 range = state->end - state->start + 1;
650 		tree->dirty_bytes += range;
651 	}
652 	set_state_cb(tree, state, bits);
653 	state->state |= bits;
654 }
655 
656 /*
657  * set some bits on a range in the tree.  This may require allocations
658  * or sleeping, so the gfp mask is used to indicate what is allowed.
659  *
660  * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
661  * range already has the desired bits set.  The start of the existing
662  * range is returned in failed_start in this case.
663  *
664  * [start, end] is inclusive
665  * This takes the tree lock.
666  */
667 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
668 			  int bits, int exclusive, u64 *failed_start,
669 			  gfp_t mask)
670 {
671 	struct extent_state *state;
672 	struct extent_state *prealloc = NULL;
673 	struct rb_node *node;
674 	int err = 0;
675 	int set;
676 	u64 last_start;
677 	u64 last_end;
678 again:
679 	if (!prealloc && (mask & __GFP_WAIT)) {
680 		prealloc = alloc_extent_state(mask);
681 		if (!prealloc)
682 			return -ENOMEM;
683 	}
684 
685 	spin_lock(&tree->lock);
686 	/*
687 	 * this search will find all the extents that end after
688 	 * our range starts.
689 	 */
690 	node = tree_search(tree, start);
691 	if (!node) {
692 		err = insert_state(tree, prealloc, start, end, bits);
693 		prealloc = NULL;
694 		BUG_ON(err == -EEXIST);
695 		goto out;
696 	}
697 
698 	state = rb_entry(node, struct extent_state, rb_node);
699 	last_start = state->start;
700 	last_end = state->end;
701 
702 	/*
703 	 * | ---- desired range ---- |
704 	 * | state |
705 	 *
706 	 * Just lock what we found and keep going
707 	 */
708 	if (state->start == start && state->end <= end) {
709 		set = state->state & bits;
710 		if (set && exclusive) {
711 			*failed_start = state->start;
712 			err = -EEXIST;
713 			goto out;
714 		}
715 		set_state_bits(tree, state, bits);
716 		merge_state(tree, state);
717 		if (last_end == (u64)-1)
718 			goto out;
719 		start = last_end + 1;
720 		goto search_again;
721 	}
722 
723 	/*
724 	 *     | ---- desired range ---- |
725 	 * | state |
726 	 *   or
727 	 * | ------------- state -------------- |
728 	 *
729 	 * We need to split the extent we found, and may flip bits on
730 	 * second half.
731 	 *
732 	 * If the extent we found extends past our
733 	 * range, we just split and search again.  It'll get split
734 	 * again the next time though.
735 	 *
736 	 * If the extent we found is inside our range, we set the
737 	 * desired bit on it.
738 	 */
739 	if (state->start < start) {
740 		set = state->state & bits;
741 		if (exclusive && set) {
742 			*failed_start = start;
743 			err = -EEXIST;
744 			goto out;
745 		}
746 		err = split_state(tree, state, prealloc, start);
747 		BUG_ON(err == -EEXIST);
748 		prealloc = NULL;
749 		if (err)
750 			goto out;
751 		if (state->end <= end) {
752 			set_state_bits(tree, state, bits);
753 			merge_state(tree, state);
754 			if (last_end == (u64)-1)
755 				goto out;
756 			start = last_end + 1;
757 		} else {
758 			start = state->start;
759 		}
760 		goto search_again;
761 	}
762 	/*
763 	 * | ---- desired range ---- |
764 	 *     | state | or               | state |
765 	 *
766 	 * There's a hole, we need to insert something in it and
767 	 * ignore the extent we found.
768 	 */
769 	if (state->start > start) {
770 		u64 this_end;
771 		if (end < last_start)
772 			this_end = end;
773 		else
774 			this_end = last_start - 1;
775 		err = insert_state(tree, prealloc, start, this_end,
776 				   bits);
777 		prealloc = NULL;
778 		BUG_ON(err == -EEXIST);
779 		if (err)
780 			goto out;
781 		start = this_end + 1;
782 		goto search_again;
783 	}
784 	/*
785 	 * | ---- desired range ---- |
786 	 *                        | state |
787 	 * We need to split the extent, and set the bit
788 	 * on the first half
789 	 */
790 	if (state->start <= end && state->end > end) {
791 		set = state->state & bits;
792 		if (exclusive && set) {
793 			*failed_start = start;
794 			err = -EEXIST;
795 			goto out;
796 		}
797 		err = split_state(tree, state, prealloc, end + 1);
798 		BUG_ON(err == -EEXIST);
799 
800 		set_state_bits(tree, prealloc, bits);
801 		merge_state(tree, prealloc);
802 		prealloc = NULL;
803 		goto out;
804 	}
805 
806 	goto search_again;
807 
808 out:
809 	spin_unlock(&tree->lock);
810 	if (prealloc)
811 		free_extent_state(prealloc);
812 
813 	return err;
814 
815 search_again:
816 	if (start > end)
817 		goto out;
818 	spin_unlock(&tree->lock);
819 	if (mask & __GFP_WAIT)
820 		cond_resched();
821 	goto again;
822 }
823 
824 /* wrappers around set/clear extent bit */
825 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
826 		     gfp_t mask)
827 {
828 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
829 			      mask);
830 }
831 
832 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
833 		       gfp_t mask)
834 {
835 	return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
836 }
837 
838 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
839 		    int bits, gfp_t mask)
840 {
841 	return set_extent_bit(tree, start, end, bits, 0, NULL,
842 			      mask);
843 }
844 
845 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
846 		      int bits, gfp_t mask)
847 {
848 	return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
849 }
850 
851 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
852 		     gfp_t mask)
853 {
854 	return set_extent_bit(tree, start, end,
855 			      EXTENT_DELALLOC | EXTENT_DIRTY,
856 			      0, NULL, mask);
857 }
858 
859 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
860 		       gfp_t mask)
861 {
862 	return clear_extent_bit(tree, start, end,
863 				EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
864 }
865 
866 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
867 			 gfp_t mask)
868 {
869 	return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
870 }
871 
872 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
873 		     gfp_t mask)
874 {
875 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
876 			      mask);
877 }
878 
879 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
880 		       gfp_t mask)
881 {
882 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
883 }
884 
885 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
886 			gfp_t mask)
887 {
888 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
889 			      mask);
890 }
891 
892 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
893 				 u64 end, gfp_t mask)
894 {
895 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
896 }
897 
898 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
899 			 gfp_t mask)
900 {
901 	return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
902 			      0, NULL, mask);
903 }
904 
905 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start,
906 				  u64 end, gfp_t mask)
907 {
908 	return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
909 }
910 
911 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
912 {
913 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
914 }
915 
916 /*
917  * either insert or lock state struct between start and end use mask to tell
918  * us if waiting is desired.
919  */
920 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
921 {
922 	int err;
923 	u64 failed_start;
924 	while (1) {
925 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
926 				     &failed_start, mask);
927 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
928 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
929 			start = failed_start;
930 		} else {
931 			break;
932 		}
933 		WARN_ON(start > end);
934 	}
935 	return err;
936 }
937 
938 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
939 		    gfp_t mask)
940 {
941 	int err;
942 	u64 failed_start;
943 
944 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
945 			     &failed_start, mask);
946 	if (err == -EEXIST) {
947 		if (failed_start > start)
948 			clear_extent_bit(tree, start, failed_start - 1,
949 					 EXTENT_LOCKED, 1, 0, mask);
950 		return 0;
951 	}
952 	return 1;
953 }
954 
955 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
956 		  gfp_t mask)
957 {
958 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
959 }
960 
961 /*
962  * helper function to set pages and extents in the tree dirty
963  */
964 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
965 {
966 	unsigned long index = start >> PAGE_CACHE_SHIFT;
967 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
968 	struct page *page;
969 
970 	while (index <= end_index) {
971 		page = find_get_page(tree->mapping, index);
972 		BUG_ON(!page);
973 		__set_page_dirty_nobuffers(page);
974 		page_cache_release(page);
975 		index++;
976 	}
977 	set_extent_dirty(tree, start, end, GFP_NOFS);
978 	return 0;
979 }
980 
981 /*
982  * helper function to set both pages and extents in the tree writeback
983  */
984 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
985 {
986 	unsigned long index = start >> PAGE_CACHE_SHIFT;
987 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
988 	struct page *page;
989 
990 	while (index <= end_index) {
991 		page = find_get_page(tree->mapping, index);
992 		BUG_ON(!page);
993 		set_page_writeback(page);
994 		page_cache_release(page);
995 		index++;
996 	}
997 	set_extent_writeback(tree, start, end, GFP_NOFS);
998 	return 0;
999 }
1000 
1001 /*
1002  * find the first offset in the io tree with 'bits' set. zero is
1003  * returned if we find something, and *start_ret and *end_ret are
1004  * set to reflect the state struct that was found.
1005  *
1006  * If nothing was found, 1 is returned, < 0 on error
1007  */
1008 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1009 			  u64 *start_ret, u64 *end_ret, int bits)
1010 {
1011 	struct rb_node *node;
1012 	struct extent_state *state;
1013 	int ret = 1;
1014 
1015 	spin_lock(&tree->lock);
1016 	/*
1017 	 * this search will find all the extents that end after
1018 	 * our range starts.
1019 	 */
1020 	node = tree_search(tree, start);
1021 	if (!node)
1022 		goto out;
1023 
1024 	while (1) {
1025 		state = rb_entry(node, struct extent_state, rb_node);
1026 		if (state->end >= start && (state->state & bits)) {
1027 			*start_ret = state->start;
1028 			*end_ret = state->end;
1029 			ret = 0;
1030 			break;
1031 		}
1032 		node = rb_next(node);
1033 		if (!node)
1034 			break;
1035 	}
1036 out:
1037 	spin_unlock(&tree->lock);
1038 	return ret;
1039 }
1040 
1041 /* find the first state struct with 'bits' set after 'start', and
1042  * return it.  tree->lock must be held.  NULL will returned if
1043  * nothing was found after 'start'
1044  */
1045 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1046 						 u64 start, int bits)
1047 {
1048 	struct rb_node *node;
1049 	struct extent_state *state;
1050 
1051 	/*
1052 	 * this search will find all the extents that end after
1053 	 * our range starts.
1054 	 */
1055 	node = tree_search(tree, start);
1056 	if (!node)
1057 		goto out;
1058 
1059 	while (1) {
1060 		state = rb_entry(node, struct extent_state, rb_node);
1061 		if (state->end >= start && (state->state & bits))
1062 			return state;
1063 
1064 		node = rb_next(node);
1065 		if (!node)
1066 			break;
1067 	}
1068 out:
1069 	return NULL;
1070 }
1071 
1072 /*
1073  * find a contiguous range of bytes in the file marked as delalloc, not
1074  * more than 'max_bytes'.  start and end are used to return the range,
1075  *
1076  * 1 is returned if we find something, 0 if nothing was in the tree
1077  */
1078 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1079 					u64 *start, u64 *end, u64 max_bytes)
1080 {
1081 	struct rb_node *node;
1082 	struct extent_state *state;
1083 	u64 cur_start = *start;
1084 	u64 found = 0;
1085 	u64 total_bytes = 0;
1086 
1087 	spin_lock(&tree->lock);
1088 
1089 	/*
1090 	 * this search will find all the extents that end after
1091 	 * our range starts.
1092 	 */
1093 	node = tree_search(tree, cur_start);
1094 	if (!node) {
1095 		if (!found)
1096 			*end = (u64)-1;
1097 		goto out;
1098 	}
1099 
1100 	while (1) {
1101 		state = rb_entry(node, struct extent_state, rb_node);
1102 		if (found && (state->start != cur_start ||
1103 			      (state->state & EXTENT_BOUNDARY))) {
1104 			goto out;
1105 		}
1106 		if (!(state->state & EXTENT_DELALLOC)) {
1107 			if (!found)
1108 				*end = state->end;
1109 			goto out;
1110 		}
1111 		if (!found)
1112 			*start = state->start;
1113 		found++;
1114 		*end = state->end;
1115 		cur_start = state->end + 1;
1116 		node = rb_next(node);
1117 		if (!node)
1118 			break;
1119 		total_bytes += state->end - state->start + 1;
1120 		if (total_bytes >= max_bytes)
1121 			break;
1122 	}
1123 out:
1124 	spin_unlock(&tree->lock);
1125 	return found;
1126 }
1127 
1128 static noinline int __unlock_for_delalloc(struct inode *inode,
1129 					  struct page *locked_page,
1130 					  u64 start, u64 end)
1131 {
1132 	int ret;
1133 	struct page *pages[16];
1134 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1135 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1136 	unsigned long nr_pages = end_index - index + 1;
1137 	int i;
1138 
1139 	if (index == locked_page->index && end_index == index)
1140 		return 0;
1141 
1142 	while (nr_pages > 0) {
1143 		ret = find_get_pages_contig(inode->i_mapping, index,
1144 				     min_t(unsigned long, nr_pages,
1145 				     ARRAY_SIZE(pages)), pages);
1146 		for (i = 0; i < ret; i++) {
1147 			if (pages[i] != locked_page)
1148 				unlock_page(pages[i]);
1149 			page_cache_release(pages[i]);
1150 		}
1151 		nr_pages -= ret;
1152 		index += ret;
1153 		cond_resched();
1154 	}
1155 	return 0;
1156 }
1157 
1158 static noinline int lock_delalloc_pages(struct inode *inode,
1159 					struct page *locked_page,
1160 					u64 delalloc_start,
1161 					u64 delalloc_end)
1162 {
1163 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1164 	unsigned long start_index = index;
1165 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1166 	unsigned long pages_locked = 0;
1167 	struct page *pages[16];
1168 	unsigned long nrpages;
1169 	int ret;
1170 	int i;
1171 
1172 	/* the caller is responsible for locking the start index */
1173 	if (index == locked_page->index && index == end_index)
1174 		return 0;
1175 
1176 	/* skip the page at the start index */
1177 	nrpages = end_index - index + 1;
1178 	while (nrpages > 0) {
1179 		ret = find_get_pages_contig(inode->i_mapping, index,
1180 				     min_t(unsigned long,
1181 				     nrpages, ARRAY_SIZE(pages)), pages);
1182 		if (ret == 0) {
1183 			ret = -EAGAIN;
1184 			goto done;
1185 		}
1186 		/* now we have an array of pages, lock them all */
1187 		for (i = 0; i < ret; i++) {
1188 			/*
1189 			 * the caller is taking responsibility for
1190 			 * locked_page
1191 			 */
1192 			if (pages[i] != locked_page) {
1193 				lock_page(pages[i]);
1194 				if (!PageDirty(pages[i]) ||
1195 				    pages[i]->mapping != inode->i_mapping) {
1196 					ret = -EAGAIN;
1197 					unlock_page(pages[i]);
1198 					page_cache_release(pages[i]);
1199 					goto done;
1200 				}
1201 			}
1202 			page_cache_release(pages[i]);
1203 			pages_locked++;
1204 		}
1205 		nrpages -= ret;
1206 		index += ret;
1207 		cond_resched();
1208 	}
1209 	ret = 0;
1210 done:
1211 	if (ret && pages_locked) {
1212 		__unlock_for_delalloc(inode, locked_page,
1213 			      delalloc_start,
1214 			      ((u64)(start_index + pages_locked - 1)) <<
1215 			      PAGE_CACHE_SHIFT);
1216 	}
1217 	return ret;
1218 }
1219 
1220 /*
1221  * find a contiguous range of bytes in the file marked as delalloc, not
1222  * more than 'max_bytes'.  start and end are used to return the range,
1223  *
1224  * 1 is returned if we find something, 0 if nothing was in the tree
1225  */
1226 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1227 					     struct extent_io_tree *tree,
1228 					     struct page *locked_page,
1229 					     u64 *start, u64 *end,
1230 					     u64 max_bytes)
1231 {
1232 	u64 delalloc_start;
1233 	u64 delalloc_end;
1234 	u64 found;
1235 	int ret;
1236 	int loops = 0;
1237 
1238 again:
1239 	/* step one, find a bunch of delalloc bytes starting at start */
1240 	delalloc_start = *start;
1241 	delalloc_end = 0;
1242 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1243 				    max_bytes);
1244 	if (!found || delalloc_end <= *start) {
1245 		*start = delalloc_start;
1246 		*end = delalloc_end;
1247 		return found;
1248 	}
1249 
1250 	/*
1251 	 * start comes from the offset of locked_page.  We have to lock
1252 	 * pages in order, so we can't process delalloc bytes before
1253 	 * locked_page
1254 	 */
1255 	if (delalloc_start < *start)
1256 		delalloc_start = *start;
1257 
1258 	/*
1259 	 * make sure to limit the number of pages we try to lock down
1260 	 * if we're looping.
1261 	 */
1262 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1263 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1264 
1265 	/* step two, lock all the pages after the page that has start */
1266 	ret = lock_delalloc_pages(inode, locked_page,
1267 				  delalloc_start, delalloc_end);
1268 	if (ret == -EAGAIN) {
1269 		/* some of the pages are gone, lets avoid looping by
1270 		 * shortening the size of the delalloc range we're searching
1271 		 */
1272 		if (!loops) {
1273 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1274 			max_bytes = PAGE_CACHE_SIZE - offset;
1275 			loops = 1;
1276 			goto again;
1277 		} else {
1278 			found = 0;
1279 			goto out_failed;
1280 		}
1281 	}
1282 	BUG_ON(ret);
1283 
1284 	/* step three, lock the state bits for the whole range */
1285 	lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1286 
1287 	/* then test to make sure it is all still delalloc */
1288 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1289 			     EXTENT_DELALLOC, 1);
1290 	if (!ret) {
1291 		unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1292 		__unlock_for_delalloc(inode, locked_page,
1293 			      delalloc_start, delalloc_end);
1294 		cond_resched();
1295 		goto again;
1296 	}
1297 	*start = delalloc_start;
1298 	*end = delalloc_end;
1299 out_failed:
1300 	return found;
1301 }
1302 
1303 int extent_clear_unlock_delalloc(struct inode *inode,
1304 				struct extent_io_tree *tree,
1305 				u64 start, u64 end, struct page *locked_page,
1306 				int unlock_pages,
1307 				int clear_unlock,
1308 				int clear_delalloc, int clear_dirty,
1309 				int set_writeback,
1310 				int end_writeback)
1311 {
1312 	int ret;
1313 	struct page *pages[16];
1314 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1315 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1316 	unsigned long nr_pages = end_index - index + 1;
1317 	int i;
1318 	int clear_bits = 0;
1319 
1320 	if (clear_unlock)
1321 		clear_bits |= EXTENT_LOCKED;
1322 	if (clear_dirty)
1323 		clear_bits |= EXTENT_DIRTY;
1324 
1325 	if (clear_delalloc)
1326 		clear_bits |= EXTENT_DELALLOC;
1327 
1328 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1329 	if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1330 		return 0;
1331 
1332 	while (nr_pages > 0) {
1333 		ret = find_get_pages_contig(inode->i_mapping, index,
1334 				     min_t(unsigned long,
1335 				     nr_pages, ARRAY_SIZE(pages)), pages);
1336 		for (i = 0; i < ret; i++) {
1337 			if (pages[i] == locked_page) {
1338 				page_cache_release(pages[i]);
1339 				continue;
1340 			}
1341 			if (clear_dirty)
1342 				clear_page_dirty_for_io(pages[i]);
1343 			if (set_writeback)
1344 				set_page_writeback(pages[i]);
1345 			if (end_writeback)
1346 				end_page_writeback(pages[i]);
1347 			if (unlock_pages)
1348 				unlock_page(pages[i]);
1349 			page_cache_release(pages[i]);
1350 		}
1351 		nr_pages -= ret;
1352 		index += ret;
1353 		cond_resched();
1354 	}
1355 	return 0;
1356 }
1357 
1358 /*
1359  * count the number of bytes in the tree that have a given bit(s)
1360  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1361  * cached.  The total number found is returned.
1362  */
1363 u64 count_range_bits(struct extent_io_tree *tree,
1364 		     u64 *start, u64 search_end, u64 max_bytes,
1365 		     unsigned long bits)
1366 {
1367 	struct rb_node *node;
1368 	struct extent_state *state;
1369 	u64 cur_start = *start;
1370 	u64 total_bytes = 0;
1371 	int found = 0;
1372 
1373 	if (search_end <= cur_start) {
1374 		WARN_ON(1);
1375 		return 0;
1376 	}
1377 
1378 	spin_lock(&tree->lock);
1379 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1380 		total_bytes = tree->dirty_bytes;
1381 		goto out;
1382 	}
1383 	/*
1384 	 * this search will find all the extents that end after
1385 	 * our range starts.
1386 	 */
1387 	node = tree_search(tree, cur_start);
1388 	if (!node)
1389 		goto out;
1390 
1391 	while (1) {
1392 		state = rb_entry(node, struct extent_state, rb_node);
1393 		if (state->start > search_end)
1394 			break;
1395 		if (state->end >= cur_start && (state->state & bits)) {
1396 			total_bytes += min(search_end, state->end) + 1 -
1397 				       max(cur_start, state->start);
1398 			if (total_bytes >= max_bytes)
1399 				break;
1400 			if (!found) {
1401 				*start = state->start;
1402 				found = 1;
1403 			}
1404 		}
1405 		node = rb_next(node);
1406 		if (!node)
1407 			break;
1408 	}
1409 out:
1410 	spin_unlock(&tree->lock);
1411 	return total_bytes;
1412 }
1413 
1414 /*
1415  * set the private field for a given byte offset in the tree.  If there isn't
1416  * an extent_state there already, this does nothing.
1417  */
1418 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1419 {
1420 	struct rb_node *node;
1421 	struct extent_state *state;
1422 	int ret = 0;
1423 
1424 	spin_lock(&tree->lock);
1425 	/*
1426 	 * this search will find all the extents that end after
1427 	 * our range starts.
1428 	 */
1429 	node = tree_search(tree, start);
1430 	if (!node) {
1431 		ret = -ENOENT;
1432 		goto out;
1433 	}
1434 	state = rb_entry(node, struct extent_state, rb_node);
1435 	if (state->start != start) {
1436 		ret = -ENOENT;
1437 		goto out;
1438 	}
1439 	state->private = private;
1440 out:
1441 	spin_unlock(&tree->lock);
1442 	return ret;
1443 }
1444 
1445 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1446 {
1447 	struct rb_node *node;
1448 	struct extent_state *state;
1449 	int ret = 0;
1450 
1451 	spin_lock(&tree->lock);
1452 	/*
1453 	 * this search will find all the extents that end after
1454 	 * our range starts.
1455 	 */
1456 	node = tree_search(tree, start);
1457 	if (!node) {
1458 		ret = -ENOENT;
1459 		goto out;
1460 	}
1461 	state = rb_entry(node, struct extent_state, rb_node);
1462 	if (state->start != start) {
1463 		ret = -ENOENT;
1464 		goto out;
1465 	}
1466 	*private = state->private;
1467 out:
1468 	spin_unlock(&tree->lock);
1469 	return ret;
1470 }
1471 
1472 /*
1473  * searches a range in the state tree for a given mask.
1474  * If 'filled' == 1, this returns 1 only if every extent in the tree
1475  * has the bits set.  Otherwise, 1 is returned if any bit in the
1476  * range is found set.
1477  */
1478 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1479 		   int bits, int filled)
1480 {
1481 	struct extent_state *state = NULL;
1482 	struct rb_node *node;
1483 	int bitset = 0;
1484 
1485 	spin_lock(&tree->lock);
1486 	node = tree_search(tree, start);
1487 	while (node && start <= end) {
1488 		state = rb_entry(node, struct extent_state, rb_node);
1489 
1490 		if (filled && state->start > start) {
1491 			bitset = 0;
1492 			break;
1493 		}
1494 
1495 		if (state->start > end)
1496 			break;
1497 
1498 		if (state->state & bits) {
1499 			bitset = 1;
1500 			if (!filled)
1501 				break;
1502 		} else if (filled) {
1503 			bitset = 0;
1504 			break;
1505 		}
1506 		start = state->end + 1;
1507 		if (start > end)
1508 			break;
1509 		node = rb_next(node);
1510 		if (!node) {
1511 			if (filled)
1512 				bitset = 0;
1513 			break;
1514 		}
1515 	}
1516 	spin_unlock(&tree->lock);
1517 	return bitset;
1518 }
1519 
1520 /*
1521  * helper function to set a given page up to date if all the
1522  * extents in the tree for that page are up to date
1523  */
1524 static int check_page_uptodate(struct extent_io_tree *tree,
1525 			       struct page *page)
1526 {
1527 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1528 	u64 end = start + PAGE_CACHE_SIZE - 1;
1529 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1530 		SetPageUptodate(page);
1531 	return 0;
1532 }
1533 
1534 /*
1535  * helper function to unlock a page if all the extents in the tree
1536  * for that page are unlocked
1537  */
1538 static int check_page_locked(struct extent_io_tree *tree,
1539 			     struct page *page)
1540 {
1541 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1542 	u64 end = start + PAGE_CACHE_SIZE - 1;
1543 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1544 		unlock_page(page);
1545 	return 0;
1546 }
1547 
1548 /*
1549  * helper function to end page writeback if all the extents
1550  * in the tree for that page are done with writeback
1551  */
1552 static int check_page_writeback(struct extent_io_tree *tree,
1553 			     struct page *page)
1554 {
1555 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1556 	u64 end = start + PAGE_CACHE_SIZE - 1;
1557 	if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1558 		end_page_writeback(page);
1559 	return 0;
1560 }
1561 
1562 /* lots and lots of room for performance fixes in the end_bio funcs */
1563 
1564 /*
1565  * after a writepage IO is done, we need to:
1566  * clear the uptodate bits on error
1567  * clear the writeback bits in the extent tree for this IO
1568  * end_page_writeback if the page has no more pending IO
1569  *
1570  * Scheduling is not allowed, so the extent state tree is expected
1571  * to have one and only one object corresponding to this IO.
1572  */
1573 static void end_bio_extent_writepage(struct bio *bio, int err)
1574 {
1575 	int uptodate = err == 0;
1576 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1577 	struct extent_io_tree *tree;
1578 	u64 start;
1579 	u64 end;
1580 	int whole_page;
1581 	int ret;
1582 
1583 	do {
1584 		struct page *page = bvec->bv_page;
1585 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1586 
1587 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1588 			 bvec->bv_offset;
1589 		end = start + bvec->bv_len - 1;
1590 
1591 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1592 			whole_page = 1;
1593 		else
1594 			whole_page = 0;
1595 
1596 		if (--bvec >= bio->bi_io_vec)
1597 			prefetchw(&bvec->bv_page->flags);
1598 		if (tree->ops && tree->ops->writepage_end_io_hook) {
1599 			ret = tree->ops->writepage_end_io_hook(page, start,
1600 						       end, NULL, uptodate);
1601 			if (ret)
1602 				uptodate = 0;
1603 		}
1604 
1605 		if (!uptodate && tree->ops &&
1606 		    tree->ops->writepage_io_failed_hook) {
1607 			ret = tree->ops->writepage_io_failed_hook(bio, page,
1608 							 start, end, NULL);
1609 			if (ret == 0) {
1610 				uptodate = (err == 0);
1611 				continue;
1612 			}
1613 		}
1614 
1615 		if (!uptodate) {
1616 			clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1617 			ClearPageUptodate(page);
1618 			SetPageError(page);
1619 		}
1620 
1621 		clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1622 
1623 		if (whole_page)
1624 			end_page_writeback(page);
1625 		else
1626 			check_page_writeback(tree, page);
1627 	} while (bvec >= bio->bi_io_vec);
1628 
1629 	bio_put(bio);
1630 }
1631 
1632 /*
1633  * after a readpage IO is done, we need to:
1634  * clear the uptodate bits on error
1635  * set the uptodate bits if things worked
1636  * set the page up to date if all extents in the tree are uptodate
1637  * clear the lock bit in the extent tree
1638  * unlock the page if there are no other extents locked for it
1639  *
1640  * Scheduling is not allowed, so the extent state tree is expected
1641  * to have one and only one object corresponding to this IO.
1642  */
1643 static void end_bio_extent_readpage(struct bio *bio, int err)
1644 {
1645 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1646 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1647 	struct extent_io_tree *tree;
1648 	u64 start;
1649 	u64 end;
1650 	int whole_page;
1651 	int ret;
1652 
1653 	if (err)
1654 		uptodate = 0;
1655 
1656 	do {
1657 		struct page *page = bvec->bv_page;
1658 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1659 
1660 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1661 			bvec->bv_offset;
1662 		end = start + bvec->bv_len - 1;
1663 
1664 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1665 			whole_page = 1;
1666 		else
1667 			whole_page = 0;
1668 
1669 		if (--bvec >= bio->bi_io_vec)
1670 			prefetchw(&bvec->bv_page->flags);
1671 
1672 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1673 			ret = tree->ops->readpage_end_io_hook(page, start, end,
1674 							      NULL);
1675 			if (ret)
1676 				uptodate = 0;
1677 		}
1678 		if (!uptodate && tree->ops &&
1679 		    tree->ops->readpage_io_failed_hook) {
1680 			ret = tree->ops->readpage_io_failed_hook(bio, page,
1681 							 start, end, NULL);
1682 			if (ret == 0) {
1683 				uptodate =
1684 					test_bit(BIO_UPTODATE, &bio->bi_flags);
1685 				if (err)
1686 					uptodate = 0;
1687 				continue;
1688 			}
1689 		}
1690 
1691 		if (uptodate) {
1692 			set_extent_uptodate(tree, start, end,
1693 					    GFP_ATOMIC);
1694 		}
1695 		unlock_extent(tree, start, end, GFP_ATOMIC);
1696 
1697 		if (whole_page) {
1698 			if (uptodate) {
1699 				SetPageUptodate(page);
1700 			} else {
1701 				ClearPageUptodate(page);
1702 				SetPageError(page);
1703 			}
1704 			unlock_page(page);
1705 		} else {
1706 			if (uptodate) {
1707 				check_page_uptodate(tree, page);
1708 			} else {
1709 				ClearPageUptodate(page);
1710 				SetPageError(page);
1711 			}
1712 			check_page_locked(tree, page);
1713 		}
1714 	} while (bvec >= bio->bi_io_vec);
1715 
1716 	bio_put(bio);
1717 }
1718 
1719 /*
1720  * IO done from prepare_write is pretty simple, we just unlock
1721  * the structs in the extent tree when done, and set the uptodate bits
1722  * as appropriate.
1723  */
1724 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1725 {
1726 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1727 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1728 	struct extent_io_tree *tree;
1729 	u64 start;
1730 	u64 end;
1731 
1732 	do {
1733 		struct page *page = bvec->bv_page;
1734 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1735 
1736 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1737 			bvec->bv_offset;
1738 		end = start + bvec->bv_len - 1;
1739 
1740 		if (--bvec >= bio->bi_io_vec)
1741 			prefetchw(&bvec->bv_page->flags);
1742 
1743 		if (uptodate) {
1744 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1745 		} else {
1746 			ClearPageUptodate(page);
1747 			SetPageError(page);
1748 		}
1749 
1750 		unlock_extent(tree, start, end, GFP_ATOMIC);
1751 
1752 	} while (bvec >= bio->bi_io_vec);
1753 
1754 	bio_put(bio);
1755 }
1756 
1757 static struct bio *
1758 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1759 		 gfp_t gfp_flags)
1760 {
1761 	struct bio *bio;
1762 
1763 	bio = bio_alloc(gfp_flags, nr_vecs);
1764 
1765 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1766 		while (!bio && (nr_vecs /= 2))
1767 			bio = bio_alloc(gfp_flags, nr_vecs);
1768 	}
1769 
1770 	if (bio) {
1771 		bio->bi_size = 0;
1772 		bio->bi_bdev = bdev;
1773 		bio->bi_sector = first_sector;
1774 	}
1775 	return bio;
1776 }
1777 
1778 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1779 			  unsigned long bio_flags)
1780 {
1781 	int ret = 0;
1782 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1783 	struct page *page = bvec->bv_page;
1784 	struct extent_io_tree *tree = bio->bi_private;
1785 	u64 start;
1786 	u64 end;
1787 
1788 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1789 	end = start + bvec->bv_len - 1;
1790 
1791 	bio->bi_private = NULL;
1792 
1793 	bio_get(bio);
1794 
1795 	if (tree->ops && tree->ops->submit_bio_hook)
1796 		tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1797 					   mirror_num, bio_flags);
1798 	else
1799 		submit_bio(rw, bio);
1800 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1801 		ret = -EOPNOTSUPP;
1802 	bio_put(bio);
1803 	return ret;
1804 }
1805 
1806 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1807 			      struct page *page, sector_t sector,
1808 			      size_t size, unsigned long offset,
1809 			      struct block_device *bdev,
1810 			      struct bio **bio_ret,
1811 			      unsigned long max_pages,
1812 			      bio_end_io_t end_io_func,
1813 			      int mirror_num,
1814 			      unsigned long prev_bio_flags,
1815 			      unsigned long bio_flags)
1816 {
1817 	int ret = 0;
1818 	struct bio *bio;
1819 	int nr;
1820 	int contig = 0;
1821 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1822 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1823 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1824 
1825 	if (bio_ret && *bio_ret) {
1826 		bio = *bio_ret;
1827 		if (old_compressed)
1828 			contig = bio->bi_sector == sector;
1829 		else
1830 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
1831 				sector;
1832 
1833 		if (prev_bio_flags != bio_flags || !contig ||
1834 		    (tree->ops && tree->ops->merge_bio_hook &&
1835 		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1836 					       bio_flags)) ||
1837 		    bio_add_page(bio, page, page_size, offset) < page_size) {
1838 			ret = submit_one_bio(rw, bio, mirror_num,
1839 					     prev_bio_flags);
1840 			bio = NULL;
1841 		} else {
1842 			return 0;
1843 		}
1844 	}
1845 	if (this_compressed)
1846 		nr = BIO_MAX_PAGES;
1847 	else
1848 		nr = bio_get_nr_vecs(bdev);
1849 
1850 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1851 
1852 	bio_add_page(bio, page, page_size, offset);
1853 	bio->bi_end_io = end_io_func;
1854 	bio->bi_private = tree;
1855 
1856 	if (bio_ret)
1857 		*bio_ret = bio;
1858 	else
1859 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1860 
1861 	return ret;
1862 }
1863 
1864 void set_page_extent_mapped(struct page *page)
1865 {
1866 	if (!PagePrivate(page)) {
1867 		SetPagePrivate(page);
1868 		page_cache_get(page);
1869 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1870 	}
1871 }
1872 
1873 static void set_page_extent_head(struct page *page, unsigned long len)
1874 {
1875 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1876 }
1877 
1878 /*
1879  * basic readpage implementation.  Locked extent state structs are inserted
1880  * into the tree that are removed when the IO is done (by the end_io
1881  * handlers)
1882  */
1883 static int __extent_read_full_page(struct extent_io_tree *tree,
1884 				   struct page *page,
1885 				   get_extent_t *get_extent,
1886 				   struct bio **bio, int mirror_num,
1887 				   unsigned long *bio_flags)
1888 {
1889 	struct inode *inode = page->mapping->host;
1890 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1891 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1892 	u64 end;
1893 	u64 cur = start;
1894 	u64 extent_offset;
1895 	u64 last_byte = i_size_read(inode);
1896 	u64 block_start;
1897 	u64 cur_end;
1898 	sector_t sector;
1899 	struct extent_map *em;
1900 	struct block_device *bdev;
1901 	int ret;
1902 	int nr = 0;
1903 	size_t page_offset = 0;
1904 	size_t iosize;
1905 	size_t disk_io_size;
1906 	size_t blocksize = inode->i_sb->s_blocksize;
1907 	unsigned long this_bio_flag = 0;
1908 
1909 	set_page_extent_mapped(page);
1910 
1911 	end = page_end;
1912 	lock_extent(tree, start, end, GFP_NOFS);
1913 
1914 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1915 		char *userpage;
1916 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1917 
1918 		if (zero_offset) {
1919 			iosize = PAGE_CACHE_SIZE - zero_offset;
1920 			userpage = kmap_atomic(page, KM_USER0);
1921 			memset(userpage + zero_offset, 0, iosize);
1922 			flush_dcache_page(page);
1923 			kunmap_atomic(userpage, KM_USER0);
1924 		}
1925 	}
1926 	while (cur <= end) {
1927 		if (cur >= last_byte) {
1928 			char *userpage;
1929 			iosize = PAGE_CACHE_SIZE - page_offset;
1930 			userpage = kmap_atomic(page, KM_USER0);
1931 			memset(userpage + page_offset, 0, iosize);
1932 			flush_dcache_page(page);
1933 			kunmap_atomic(userpage, KM_USER0);
1934 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1935 					    GFP_NOFS);
1936 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1937 			break;
1938 		}
1939 		em = get_extent(inode, page, page_offset, cur,
1940 				end - cur + 1, 0);
1941 		if (IS_ERR(em) || !em) {
1942 			SetPageError(page);
1943 			unlock_extent(tree, cur, end, GFP_NOFS);
1944 			break;
1945 		}
1946 		extent_offset = cur - em->start;
1947 		BUG_ON(extent_map_end(em) <= cur);
1948 		BUG_ON(end < cur);
1949 
1950 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1951 			this_bio_flag = EXTENT_BIO_COMPRESSED;
1952 
1953 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1954 		cur_end = min(extent_map_end(em) - 1, end);
1955 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1956 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
1957 			disk_io_size = em->block_len;
1958 			sector = em->block_start >> 9;
1959 		} else {
1960 			sector = (em->block_start + extent_offset) >> 9;
1961 			disk_io_size = iosize;
1962 		}
1963 		bdev = em->bdev;
1964 		block_start = em->block_start;
1965 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1966 			block_start = EXTENT_MAP_HOLE;
1967 		free_extent_map(em);
1968 		em = NULL;
1969 
1970 		/* we've found a hole, just zero and go on */
1971 		if (block_start == EXTENT_MAP_HOLE) {
1972 			char *userpage;
1973 			userpage = kmap_atomic(page, KM_USER0);
1974 			memset(userpage + page_offset, 0, iosize);
1975 			flush_dcache_page(page);
1976 			kunmap_atomic(userpage, KM_USER0);
1977 
1978 			set_extent_uptodate(tree, cur, cur + iosize - 1,
1979 					    GFP_NOFS);
1980 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1981 			cur = cur + iosize;
1982 			page_offset += iosize;
1983 			continue;
1984 		}
1985 		/* the get_extent function already copied into the page */
1986 		if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1987 			check_page_uptodate(tree, page);
1988 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1989 			cur = cur + iosize;
1990 			page_offset += iosize;
1991 			continue;
1992 		}
1993 		/* we have an inline extent but it didn't get marked up
1994 		 * to date.  Error out
1995 		 */
1996 		if (block_start == EXTENT_MAP_INLINE) {
1997 			SetPageError(page);
1998 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1999 			cur = cur + iosize;
2000 			page_offset += iosize;
2001 			continue;
2002 		}
2003 
2004 		ret = 0;
2005 		if (tree->ops && tree->ops->readpage_io_hook) {
2006 			ret = tree->ops->readpage_io_hook(page, cur,
2007 							  cur + iosize - 1);
2008 		}
2009 		if (!ret) {
2010 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2011 			pnr -= page->index;
2012 			ret = submit_extent_page(READ, tree, page,
2013 					 sector, disk_io_size, page_offset,
2014 					 bdev, bio, pnr,
2015 					 end_bio_extent_readpage, mirror_num,
2016 					 *bio_flags,
2017 					 this_bio_flag);
2018 			nr++;
2019 			*bio_flags = this_bio_flag;
2020 		}
2021 		if (ret)
2022 			SetPageError(page);
2023 		cur = cur + iosize;
2024 		page_offset += iosize;
2025 	}
2026 	if (!nr) {
2027 		if (!PageError(page))
2028 			SetPageUptodate(page);
2029 		unlock_page(page);
2030 	}
2031 	return 0;
2032 }
2033 
2034 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2035 			    get_extent_t *get_extent)
2036 {
2037 	struct bio *bio = NULL;
2038 	unsigned long bio_flags = 0;
2039 	int ret;
2040 
2041 	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2042 				      &bio_flags);
2043 	if (bio)
2044 		submit_one_bio(READ, bio, 0, bio_flags);
2045 	return ret;
2046 }
2047 
2048 static noinline void update_nr_written(struct page *page,
2049 				      struct writeback_control *wbc,
2050 				      unsigned long nr_written)
2051 {
2052 	wbc->nr_to_write -= nr_written;
2053 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2054 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2055 		page->mapping->writeback_index = page->index + nr_written;
2056 }
2057 
2058 /*
2059  * the writepage semantics are similar to regular writepage.  extent
2060  * records are inserted to lock ranges in the tree, and as dirty areas
2061  * are found, they are marked writeback.  Then the lock bits are removed
2062  * and the end_io handler clears the writeback ranges
2063  */
2064 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2065 			      void *data)
2066 {
2067 	struct inode *inode = page->mapping->host;
2068 	struct extent_page_data *epd = data;
2069 	struct extent_io_tree *tree = epd->tree;
2070 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2071 	u64 delalloc_start;
2072 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2073 	u64 end;
2074 	u64 cur = start;
2075 	u64 extent_offset;
2076 	u64 last_byte = i_size_read(inode);
2077 	u64 block_start;
2078 	u64 iosize;
2079 	u64 unlock_start;
2080 	sector_t sector;
2081 	struct extent_map *em;
2082 	struct block_device *bdev;
2083 	int ret;
2084 	int nr = 0;
2085 	size_t pg_offset = 0;
2086 	size_t blocksize;
2087 	loff_t i_size = i_size_read(inode);
2088 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2089 	u64 nr_delalloc;
2090 	u64 delalloc_end;
2091 	int page_started;
2092 	int compressed;
2093 	int write_flags;
2094 	unsigned long nr_written = 0;
2095 
2096 	if (wbc->sync_mode == WB_SYNC_ALL)
2097 		write_flags = WRITE_SYNC_PLUG;
2098 	else
2099 		write_flags = WRITE;
2100 
2101 	WARN_ON(!PageLocked(page));
2102 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2103 	if (page->index > end_index ||
2104 	   (page->index == end_index && !pg_offset)) {
2105 		page->mapping->a_ops->invalidatepage(page, 0);
2106 		unlock_page(page);
2107 		return 0;
2108 	}
2109 
2110 	if (page->index == end_index) {
2111 		char *userpage;
2112 
2113 		userpage = kmap_atomic(page, KM_USER0);
2114 		memset(userpage + pg_offset, 0,
2115 		       PAGE_CACHE_SIZE - pg_offset);
2116 		kunmap_atomic(userpage, KM_USER0);
2117 		flush_dcache_page(page);
2118 	}
2119 	pg_offset = 0;
2120 
2121 	set_page_extent_mapped(page);
2122 
2123 	delalloc_start = start;
2124 	delalloc_end = 0;
2125 	page_started = 0;
2126 	if (!epd->extent_locked) {
2127 		/*
2128 		 * make sure the wbc mapping index is at least updated
2129 		 * to this page.
2130 		 */
2131 		update_nr_written(page, wbc, 0);
2132 
2133 		while (delalloc_end < page_end) {
2134 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2135 						       page,
2136 						       &delalloc_start,
2137 						       &delalloc_end,
2138 						       128 * 1024 * 1024);
2139 			if (nr_delalloc == 0) {
2140 				delalloc_start = delalloc_end + 1;
2141 				continue;
2142 			}
2143 			tree->ops->fill_delalloc(inode, page, delalloc_start,
2144 						 delalloc_end, &page_started,
2145 						 &nr_written);
2146 			delalloc_start = delalloc_end + 1;
2147 		}
2148 
2149 		/* did the fill delalloc function already unlock and start
2150 		 * the IO?
2151 		 */
2152 		if (page_started) {
2153 			ret = 0;
2154 			/*
2155 			 * we've unlocked the page, so we can't update
2156 			 * the mapping's writeback index, just update
2157 			 * nr_to_write.
2158 			 */
2159 			wbc->nr_to_write -= nr_written;
2160 			goto done_unlocked;
2161 		}
2162 	}
2163 	lock_extent(tree, start, page_end, GFP_NOFS);
2164 
2165 	unlock_start = start;
2166 
2167 	if (tree->ops && tree->ops->writepage_start_hook) {
2168 		ret = tree->ops->writepage_start_hook(page, start,
2169 						      page_end);
2170 		if (ret == -EAGAIN) {
2171 			unlock_extent(tree, start, page_end, GFP_NOFS);
2172 			redirty_page_for_writepage(wbc, page);
2173 			update_nr_written(page, wbc, nr_written);
2174 			unlock_page(page);
2175 			ret = 0;
2176 			goto done_unlocked;
2177 		}
2178 	}
2179 
2180 	/*
2181 	 * we don't want to touch the inode after unlocking the page,
2182 	 * so we update the mapping writeback index now
2183 	 */
2184 	update_nr_written(page, wbc, nr_written + 1);
2185 
2186 	end = page_end;
2187 	if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0))
2188 		printk(KERN_ERR "btrfs delalloc bits after lock_extent\n");
2189 
2190 	if (last_byte <= start) {
2191 		clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2192 		unlock_extent(tree, start, page_end, GFP_NOFS);
2193 		if (tree->ops && tree->ops->writepage_end_io_hook)
2194 			tree->ops->writepage_end_io_hook(page, start,
2195 							 page_end, NULL, 1);
2196 		unlock_start = page_end + 1;
2197 		goto done;
2198 	}
2199 
2200 	set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2201 	blocksize = inode->i_sb->s_blocksize;
2202 
2203 	while (cur <= end) {
2204 		if (cur >= last_byte) {
2205 			clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2206 			unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2207 			if (tree->ops && tree->ops->writepage_end_io_hook)
2208 				tree->ops->writepage_end_io_hook(page, cur,
2209 							 page_end, NULL, 1);
2210 			unlock_start = page_end + 1;
2211 			break;
2212 		}
2213 		em = epd->get_extent(inode, page, pg_offset, cur,
2214 				     end - cur + 1, 1);
2215 		if (IS_ERR(em) || !em) {
2216 			SetPageError(page);
2217 			break;
2218 		}
2219 
2220 		extent_offset = cur - em->start;
2221 		BUG_ON(extent_map_end(em) <= cur);
2222 		BUG_ON(end < cur);
2223 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2224 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2225 		sector = (em->block_start + extent_offset) >> 9;
2226 		bdev = em->bdev;
2227 		block_start = em->block_start;
2228 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2229 		free_extent_map(em);
2230 		em = NULL;
2231 
2232 		/*
2233 		 * compressed and inline extents are written through other
2234 		 * paths in the FS
2235 		 */
2236 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2237 		    block_start == EXTENT_MAP_INLINE) {
2238 			clear_extent_dirty(tree, cur,
2239 					   cur + iosize - 1, GFP_NOFS);
2240 
2241 			unlock_extent(tree, unlock_start, cur + iosize - 1,
2242 				      GFP_NOFS);
2243 
2244 			/*
2245 			 * end_io notification does not happen here for
2246 			 * compressed extents
2247 			 */
2248 			if (!compressed && tree->ops &&
2249 			    tree->ops->writepage_end_io_hook)
2250 				tree->ops->writepage_end_io_hook(page, cur,
2251 							 cur + iosize - 1,
2252 							 NULL, 1);
2253 			else if (compressed) {
2254 				/* we don't want to end_page_writeback on
2255 				 * a compressed extent.  this happens
2256 				 * elsewhere
2257 				 */
2258 				nr++;
2259 			}
2260 
2261 			cur += iosize;
2262 			pg_offset += iosize;
2263 			unlock_start = cur;
2264 			continue;
2265 		}
2266 		/* leave this out until we have a page_mkwrite call */
2267 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2268 				   EXTENT_DIRTY, 0)) {
2269 			cur = cur + iosize;
2270 			pg_offset += iosize;
2271 			continue;
2272 		}
2273 
2274 		clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2275 		if (tree->ops && tree->ops->writepage_io_hook) {
2276 			ret = tree->ops->writepage_io_hook(page, cur,
2277 						cur + iosize - 1);
2278 		} else {
2279 			ret = 0;
2280 		}
2281 		if (ret) {
2282 			SetPageError(page);
2283 		} else {
2284 			unsigned long max_nr = end_index + 1;
2285 
2286 			set_range_writeback(tree, cur, cur + iosize - 1);
2287 			if (!PageWriteback(page)) {
2288 				printk(KERN_ERR "btrfs warning page %lu not "
2289 				       "writeback, cur %llu end %llu\n",
2290 				       page->index, (unsigned long long)cur,
2291 				       (unsigned long long)end);
2292 			}
2293 
2294 			ret = submit_extent_page(write_flags, tree, page,
2295 						 sector, iosize, pg_offset,
2296 						 bdev, &epd->bio, max_nr,
2297 						 end_bio_extent_writepage,
2298 						 0, 0, 0);
2299 			if (ret)
2300 				SetPageError(page);
2301 		}
2302 		cur = cur + iosize;
2303 		pg_offset += iosize;
2304 		nr++;
2305 	}
2306 done:
2307 	if (nr == 0) {
2308 		/* make sure the mapping tag for page dirty gets cleared */
2309 		set_page_writeback(page);
2310 		end_page_writeback(page);
2311 	}
2312 	if (unlock_start <= page_end)
2313 		unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2314 	unlock_page(page);
2315 
2316 done_unlocked:
2317 
2318 	return 0;
2319 }
2320 
2321 /**
2322  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2323  * @mapping: address space structure to write
2324  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2325  * @writepage: function called for each page
2326  * @data: data passed to writepage function
2327  *
2328  * If a page is already under I/O, write_cache_pages() skips it, even
2329  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2330  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2331  * and msync() need to guarantee that all the data which was dirty at the time
2332  * the call was made get new I/O started against them.  If wbc->sync_mode is
2333  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2334  * existing IO to complete.
2335  */
2336 static int extent_write_cache_pages(struct extent_io_tree *tree,
2337 			     struct address_space *mapping,
2338 			     struct writeback_control *wbc,
2339 			     writepage_t writepage, void *data,
2340 			     void (*flush_fn)(void *))
2341 {
2342 	struct backing_dev_info *bdi = mapping->backing_dev_info;
2343 	int ret = 0;
2344 	int done = 0;
2345 	struct pagevec pvec;
2346 	int nr_pages;
2347 	pgoff_t index;
2348 	pgoff_t end;		/* Inclusive */
2349 	int scanned = 0;
2350 	int range_whole = 0;
2351 
2352 	pagevec_init(&pvec, 0);
2353 	if (wbc->range_cyclic) {
2354 		index = mapping->writeback_index; /* Start from prev offset */
2355 		end = -1;
2356 	} else {
2357 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2358 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2359 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2360 			range_whole = 1;
2361 		scanned = 1;
2362 	}
2363 retry:
2364 	while (!done && (index <= end) &&
2365 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2366 			      PAGECACHE_TAG_DIRTY, min(end - index,
2367 				  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2368 		unsigned i;
2369 
2370 		scanned = 1;
2371 		for (i = 0; i < nr_pages; i++) {
2372 			struct page *page = pvec.pages[i];
2373 
2374 			/*
2375 			 * At this point we hold neither mapping->tree_lock nor
2376 			 * lock on the page itself: the page may be truncated or
2377 			 * invalidated (changing page->mapping to NULL), or even
2378 			 * swizzled back from swapper_space to tmpfs file
2379 			 * mapping
2380 			 */
2381 			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2382 				tree->ops->write_cache_pages_lock_hook(page);
2383 			else
2384 				lock_page(page);
2385 
2386 			if (unlikely(page->mapping != mapping)) {
2387 				unlock_page(page);
2388 				continue;
2389 			}
2390 
2391 			if (!wbc->range_cyclic && page->index > end) {
2392 				done = 1;
2393 				unlock_page(page);
2394 				continue;
2395 			}
2396 
2397 			if (wbc->sync_mode != WB_SYNC_NONE) {
2398 				if (PageWriteback(page))
2399 					flush_fn(data);
2400 				wait_on_page_writeback(page);
2401 			}
2402 
2403 			if (PageWriteback(page) ||
2404 			    !clear_page_dirty_for_io(page)) {
2405 				unlock_page(page);
2406 				continue;
2407 			}
2408 
2409 			ret = (*writepage)(page, wbc, data);
2410 
2411 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2412 				unlock_page(page);
2413 				ret = 0;
2414 			}
2415 			if (ret || wbc->nr_to_write <= 0)
2416 				done = 1;
2417 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
2418 				wbc->encountered_congestion = 1;
2419 				done = 1;
2420 			}
2421 		}
2422 		pagevec_release(&pvec);
2423 		cond_resched();
2424 	}
2425 	if (!scanned && !done) {
2426 		/*
2427 		 * We hit the last page and there is more work to be done: wrap
2428 		 * back to the start of the file
2429 		 */
2430 		scanned = 1;
2431 		index = 0;
2432 		goto retry;
2433 	}
2434 	return ret;
2435 }
2436 
2437 static void flush_epd_write_bio(struct extent_page_data *epd)
2438 {
2439 	if (epd->bio) {
2440 		if (epd->sync_io)
2441 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2442 		else
2443 			submit_one_bio(WRITE, epd->bio, 0, 0);
2444 		epd->bio = NULL;
2445 	}
2446 }
2447 
2448 static noinline void flush_write_bio(void *data)
2449 {
2450 	struct extent_page_data *epd = data;
2451 	flush_epd_write_bio(epd);
2452 }
2453 
2454 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2455 			  get_extent_t *get_extent,
2456 			  struct writeback_control *wbc)
2457 {
2458 	int ret;
2459 	struct address_space *mapping = page->mapping;
2460 	struct extent_page_data epd = {
2461 		.bio = NULL,
2462 		.tree = tree,
2463 		.get_extent = get_extent,
2464 		.extent_locked = 0,
2465 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2466 	};
2467 	struct writeback_control wbc_writepages = {
2468 		.bdi		= wbc->bdi,
2469 		.sync_mode	= wbc->sync_mode,
2470 		.older_than_this = NULL,
2471 		.nr_to_write	= 64,
2472 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2473 		.range_end	= (loff_t)-1,
2474 	};
2475 
2476 	ret = __extent_writepage(page, wbc, &epd);
2477 
2478 	extent_write_cache_pages(tree, mapping, &wbc_writepages,
2479 				 __extent_writepage, &epd, flush_write_bio);
2480 	flush_epd_write_bio(&epd);
2481 	return ret;
2482 }
2483 
2484 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2485 			      u64 start, u64 end, get_extent_t *get_extent,
2486 			      int mode)
2487 {
2488 	int ret = 0;
2489 	struct address_space *mapping = inode->i_mapping;
2490 	struct page *page;
2491 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2492 		PAGE_CACHE_SHIFT;
2493 
2494 	struct extent_page_data epd = {
2495 		.bio = NULL,
2496 		.tree = tree,
2497 		.get_extent = get_extent,
2498 		.extent_locked = 1,
2499 		.sync_io = mode == WB_SYNC_ALL,
2500 	};
2501 	struct writeback_control wbc_writepages = {
2502 		.bdi		= inode->i_mapping->backing_dev_info,
2503 		.sync_mode	= mode,
2504 		.older_than_this = NULL,
2505 		.nr_to_write	= nr_pages * 2,
2506 		.range_start	= start,
2507 		.range_end	= end + 1,
2508 	};
2509 
2510 	while (start <= end) {
2511 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2512 		if (clear_page_dirty_for_io(page))
2513 			ret = __extent_writepage(page, &wbc_writepages, &epd);
2514 		else {
2515 			if (tree->ops && tree->ops->writepage_end_io_hook)
2516 				tree->ops->writepage_end_io_hook(page, start,
2517 						 start + PAGE_CACHE_SIZE - 1,
2518 						 NULL, 1);
2519 			unlock_page(page);
2520 		}
2521 		page_cache_release(page);
2522 		start += PAGE_CACHE_SIZE;
2523 	}
2524 
2525 	flush_epd_write_bio(&epd);
2526 	return ret;
2527 }
2528 
2529 int extent_writepages(struct extent_io_tree *tree,
2530 		      struct address_space *mapping,
2531 		      get_extent_t *get_extent,
2532 		      struct writeback_control *wbc)
2533 {
2534 	int ret = 0;
2535 	struct extent_page_data epd = {
2536 		.bio = NULL,
2537 		.tree = tree,
2538 		.get_extent = get_extent,
2539 		.extent_locked = 0,
2540 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2541 	};
2542 
2543 	ret = extent_write_cache_pages(tree, mapping, wbc,
2544 				       __extent_writepage, &epd,
2545 				       flush_write_bio);
2546 	flush_epd_write_bio(&epd);
2547 	return ret;
2548 }
2549 
2550 int extent_readpages(struct extent_io_tree *tree,
2551 		     struct address_space *mapping,
2552 		     struct list_head *pages, unsigned nr_pages,
2553 		     get_extent_t get_extent)
2554 {
2555 	struct bio *bio = NULL;
2556 	unsigned page_idx;
2557 	struct pagevec pvec;
2558 	unsigned long bio_flags = 0;
2559 
2560 	pagevec_init(&pvec, 0);
2561 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2562 		struct page *page = list_entry(pages->prev, struct page, lru);
2563 
2564 		prefetchw(&page->flags);
2565 		list_del(&page->lru);
2566 		/*
2567 		 * what we want to do here is call add_to_page_cache_lru,
2568 		 * but that isn't exported, so we reproduce it here
2569 		 */
2570 		if (!add_to_page_cache(page, mapping,
2571 					page->index, GFP_KERNEL)) {
2572 
2573 			/* open coding of lru_cache_add, also not exported */
2574 			page_cache_get(page);
2575 			if (!pagevec_add(&pvec, page))
2576 				__pagevec_lru_add_file(&pvec);
2577 			__extent_read_full_page(tree, page, get_extent,
2578 						&bio, 0, &bio_flags);
2579 		}
2580 		page_cache_release(page);
2581 	}
2582 	if (pagevec_count(&pvec))
2583 		__pagevec_lru_add_file(&pvec);
2584 	BUG_ON(!list_empty(pages));
2585 	if (bio)
2586 		submit_one_bio(READ, bio, 0, bio_flags);
2587 	return 0;
2588 }
2589 
2590 /*
2591  * basic invalidatepage code, this waits on any locked or writeback
2592  * ranges corresponding to the page, and then deletes any extent state
2593  * records from the tree
2594  */
2595 int extent_invalidatepage(struct extent_io_tree *tree,
2596 			  struct page *page, unsigned long offset)
2597 {
2598 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2599 	u64 end = start + PAGE_CACHE_SIZE - 1;
2600 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2601 
2602 	start += (offset + blocksize - 1) & ~(blocksize - 1);
2603 	if (start > end)
2604 		return 0;
2605 
2606 	lock_extent(tree, start, end, GFP_NOFS);
2607 	wait_on_extent_writeback(tree, start, end);
2608 	clear_extent_bit(tree, start, end,
2609 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2610 			 1, 1, GFP_NOFS);
2611 	return 0;
2612 }
2613 
2614 /*
2615  * simple commit_write call, set_range_dirty is used to mark both
2616  * the pages and the extent records as dirty
2617  */
2618 int extent_commit_write(struct extent_io_tree *tree,
2619 			struct inode *inode, struct page *page,
2620 			unsigned from, unsigned to)
2621 {
2622 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2623 
2624 	set_page_extent_mapped(page);
2625 	set_page_dirty(page);
2626 
2627 	if (pos > inode->i_size) {
2628 		i_size_write(inode, pos);
2629 		mark_inode_dirty(inode);
2630 	}
2631 	return 0;
2632 }
2633 
2634 int extent_prepare_write(struct extent_io_tree *tree,
2635 			 struct inode *inode, struct page *page,
2636 			 unsigned from, unsigned to, get_extent_t *get_extent)
2637 {
2638 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2639 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2640 	u64 block_start;
2641 	u64 orig_block_start;
2642 	u64 block_end;
2643 	u64 cur_end;
2644 	struct extent_map *em;
2645 	unsigned blocksize = 1 << inode->i_blkbits;
2646 	size_t page_offset = 0;
2647 	size_t block_off_start;
2648 	size_t block_off_end;
2649 	int err = 0;
2650 	int iocount = 0;
2651 	int ret = 0;
2652 	int isnew;
2653 
2654 	set_page_extent_mapped(page);
2655 
2656 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2657 	block_end = (page_start + to - 1) | (blocksize - 1);
2658 	orig_block_start = block_start;
2659 
2660 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2661 	while (block_start <= block_end) {
2662 		em = get_extent(inode, page, page_offset, block_start,
2663 				block_end - block_start + 1, 1);
2664 		if (IS_ERR(em) || !em)
2665 			goto err;
2666 
2667 		cur_end = min(block_end, extent_map_end(em) - 1);
2668 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2669 		block_off_end = block_off_start + blocksize;
2670 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2671 
2672 		if (!PageUptodate(page) && isnew &&
2673 		    (block_off_end > to || block_off_start < from)) {
2674 			void *kaddr;
2675 
2676 			kaddr = kmap_atomic(page, KM_USER0);
2677 			if (block_off_end > to)
2678 				memset(kaddr + to, 0, block_off_end - to);
2679 			if (block_off_start < from)
2680 				memset(kaddr + block_off_start, 0,
2681 				       from - block_off_start);
2682 			flush_dcache_page(page);
2683 			kunmap_atomic(kaddr, KM_USER0);
2684 		}
2685 		if ((em->block_start != EXTENT_MAP_HOLE &&
2686 		     em->block_start != EXTENT_MAP_INLINE) &&
2687 		    !isnew && !PageUptodate(page) &&
2688 		    (block_off_end > to || block_off_start < from) &&
2689 		    !test_range_bit(tree, block_start, cur_end,
2690 				    EXTENT_UPTODATE, 1)) {
2691 			u64 sector;
2692 			u64 extent_offset = block_start - em->start;
2693 			size_t iosize;
2694 			sector = (em->block_start + extent_offset) >> 9;
2695 			iosize = (cur_end - block_start + blocksize) &
2696 				~((u64)blocksize - 1);
2697 			/*
2698 			 * we've already got the extent locked, but we
2699 			 * need to split the state such that our end_bio
2700 			 * handler can clear the lock.
2701 			 */
2702 			set_extent_bit(tree, block_start,
2703 				       block_start + iosize - 1,
2704 				       EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2705 			ret = submit_extent_page(READ, tree, page,
2706 					 sector, iosize, page_offset, em->bdev,
2707 					 NULL, 1,
2708 					 end_bio_extent_preparewrite, 0,
2709 					 0, 0);
2710 			iocount++;
2711 			block_start = block_start + iosize;
2712 		} else {
2713 			set_extent_uptodate(tree, block_start, cur_end,
2714 					    GFP_NOFS);
2715 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2716 			block_start = cur_end + 1;
2717 		}
2718 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2719 		free_extent_map(em);
2720 	}
2721 	if (iocount) {
2722 		wait_extent_bit(tree, orig_block_start,
2723 				block_end, EXTENT_LOCKED);
2724 	}
2725 	check_page_uptodate(tree, page);
2726 err:
2727 	/* FIXME, zero out newly allocated blocks on error */
2728 	return err;
2729 }
2730 
2731 /*
2732  * a helper for releasepage, this tests for areas of the page that
2733  * are locked or under IO and drops the related state bits if it is safe
2734  * to drop the page.
2735  */
2736 int try_release_extent_state(struct extent_map_tree *map,
2737 			     struct extent_io_tree *tree, struct page *page,
2738 			     gfp_t mask)
2739 {
2740 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2741 	u64 end = start + PAGE_CACHE_SIZE - 1;
2742 	int ret = 1;
2743 
2744 	if (test_range_bit(tree, start, end,
2745 			   EXTENT_IOBITS | EXTENT_ORDERED, 0))
2746 		ret = 0;
2747 	else {
2748 		if ((mask & GFP_NOFS) == GFP_NOFS)
2749 			mask = GFP_NOFS;
2750 		clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2751 				 1, 1, mask);
2752 	}
2753 	return ret;
2754 }
2755 
2756 /*
2757  * a helper for releasepage.  As long as there are no locked extents
2758  * in the range corresponding to the page, both state records and extent
2759  * map records are removed
2760  */
2761 int try_release_extent_mapping(struct extent_map_tree *map,
2762 			       struct extent_io_tree *tree, struct page *page,
2763 			       gfp_t mask)
2764 {
2765 	struct extent_map *em;
2766 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2767 	u64 end = start + PAGE_CACHE_SIZE - 1;
2768 
2769 	if ((mask & __GFP_WAIT) &&
2770 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
2771 		u64 len;
2772 		while (start <= end) {
2773 			len = end - start + 1;
2774 			spin_lock(&map->lock);
2775 			em = lookup_extent_mapping(map, start, len);
2776 			if (!em || IS_ERR(em)) {
2777 				spin_unlock(&map->lock);
2778 				break;
2779 			}
2780 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2781 			    em->start != start) {
2782 				spin_unlock(&map->lock);
2783 				free_extent_map(em);
2784 				break;
2785 			}
2786 			if (!test_range_bit(tree, em->start,
2787 					    extent_map_end(em) - 1,
2788 					    EXTENT_LOCKED | EXTENT_WRITEBACK |
2789 					    EXTENT_ORDERED,
2790 					    0)) {
2791 				remove_extent_mapping(map, em);
2792 				/* once for the rb tree */
2793 				free_extent_map(em);
2794 			}
2795 			start = extent_map_end(em);
2796 			spin_unlock(&map->lock);
2797 
2798 			/* once for us */
2799 			free_extent_map(em);
2800 		}
2801 	}
2802 	return try_release_extent_state(map, tree, page, mask);
2803 }
2804 
2805 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2806 		get_extent_t *get_extent)
2807 {
2808 	struct inode *inode = mapping->host;
2809 	u64 start = iblock << inode->i_blkbits;
2810 	sector_t sector = 0;
2811 	size_t blksize = (1 << inode->i_blkbits);
2812 	struct extent_map *em;
2813 
2814 	lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2815 		    GFP_NOFS);
2816 	em = get_extent(inode, NULL, 0, start, blksize, 0);
2817 	unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2818 		      GFP_NOFS);
2819 	if (!em || IS_ERR(em))
2820 		return 0;
2821 
2822 	if (em->block_start > EXTENT_MAP_LAST_BYTE)
2823 		goto out;
2824 
2825 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2826 out:
2827 	free_extent_map(em);
2828 	return sector;
2829 }
2830 
2831 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2832 		__u64 start, __u64 len, get_extent_t *get_extent)
2833 {
2834 	int ret;
2835 	u64 off = start;
2836 	u64 max = start + len;
2837 	u32 flags = 0;
2838 	u64 disko = 0;
2839 	struct extent_map *em = NULL;
2840 	int end = 0;
2841 	u64 em_start = 0, em_len = 0;
2842 	unsigned long emflags;
2843 	ret = 0;
2844 
2845 	if (len == 0)
2846 		return -EINVAL;
2847 
2848 	lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2849 		GFP_NOFS);
2850 	em = get_extent(inode, NULL, 0, off, max - off, 0);
2851 	if (!em)
2852 		goto out;
2853 	if (IS_ERR(em)) {
2854 		ret = PTR_ERR(em);
2855 		goto out;
2856 	}
2857 	while (!end) {
2858 		off = em->start + em->len;
2859 		if (off >= max)
2860 			end = 1;
2861 
2862 		em_start = em->start;
2863 		em_len = em->len;
2864 
2865 		disko = 0;
2866 		flags = 0;
2867 
2868 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2869 			end = 1;
2870 			flags |= FIEMAP_EXTENT_LAST;
2871 		} else if (em->block_start == EXTENT_MAP_HOLE) {
2872 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2873 		} else if (em->block_start == EXTENT_MAP_INLINE) {
2874 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
2875 				  FIEMAP_EXTENT_NOT_ALIGNED);
2876 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
2877 			flags |= (FIEMAP_EXTENT_DELALLOC |
2878 				  FIEMAP_EXTENT_UNKNOWN);
2879 		} else {
2880 			disko = em->block_start;
2881 		}
2882 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2883 			flags |= FIEMAP_EXTENT_ENCODED;
2884 
2885 		emflags = em->flags;
2886 		free_extent_map(em);
2887 		em = NULL;
2888 
2889 		if (!end) {
2890 			em = get_extent(inode, NULL, 0, off, max - off, 0);
2891 			if (!em)
2892 				goto out;
2893 			if (IS_ERR(em)) {
2894 				ret = PTR_ERR(em);
2895 				goto out;
2896 			}
2897 			emflags = em->flags;
2898 		}
2899 		if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
2900 			flags |= FIEMAP_EXTENT_LAST;
2901 			end = 1;
2902 		}
2903 
2904 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2905 					em_len, flags);
2906 		if (ret)
2907 			goto out_free;
2908 	}
2909 out_free:
2910 	free_extent_map(em);
2911 out:
2912 	unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2913 			GFP_NOFS);
2914 	return ret;
2915 }
2916 
2917 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2918 					      unsigned long i)
2919 {
2920 	struct page *p;
2921 	struct address_space *mapping;
2922 
2923 	if (i == 0)
2924 		return eb->first_page;
2925 	i += eb->start >> PAGE_CACHE_SHIFT;
2926 	mapping = eb->first_page->mapping;
2927 	if (!mapping)
2928 		return NULL;
2929 
2930 	/*
2931 	 * extent_buffer_page is only called after pinning the page
2932 	 * by increasing the reference count.  So we know the page must
2933 	 * be in the radix tree.
2934 	 */
2935 	rcu_read_lock();
2936 	p = radix_tree_lookup(&mapping->page_tree, i);
2937 	rcu_read_unlock();
2938 
2939 	return p;
2940 }
2941 
2942 static inline unsigned long num_extent_pages(u64 start, u64 len)
2943 {
2944 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2945 		(start >> PAGE_CACHE_SHIFT);
2946 }
2947 
2948 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2949 						   u64 start,
2950 						   unsigned long len,
2951 						   gfp_t mask)
2952 {
2953 	struct extent_buffer *eb = NULL;
2954 #if LEAK_DEBUG
2955 	unsigned long flags;
2956 #endif
2957 
2958 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2959 	eb->start = start;
2960 	eb->len = len;
2961 	spin_lock_init(&eb->lock);
2962 	init_waitqueue_head(&eb->lock_wq);
2963 
2964 #if LEAK_DEBUG
2965 	spin_lock_irqsave(&leak_lock, flags);
2966 	list_add(&eb->leak_list, &buffers);
2967 	spin_unlock_irqrestore(&leak_lock, flags);
2968 #endif
2969 	atomic_set(&eb->refs, 1);
2970 
2971 	return eb;
2972 }
2973 
2974 static void __free_extent_buffer(struct extent_buffer *eb)
2975 {
2976 #if LEAK_DEBUG
2977 	unsigned long flags;
2978 	spin_lock_irqsave(&leak_lock, flags);
2979 	list_del(&eb->leak_list);
2980 	spin_unlock_irqrestore(&leak_lock, flags);
2981 #endif
2982 	kmem_cache_free(extent_buffer_cache, eb);
2983 }
2984 
2985 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2986 					  u64 start, unsigned long len,
2987 					  struct page *page0,
2988 					  gfp_t mask)
2989 {
2990 	unsigned long num_pages = num_extent_pages(start, len);
2991 	unsigned long i;
2992 	unsigned long index = start >> PAGE_CACHE_SHIFT;
2993 	struct extent_buffer *eb;
2994 	struct extent_buffer *exists = NULL;
2995 	struct page *p;
2996 	struct address_space *mapping = tree->mapping;
2997 	int uptodate = 1;
2998 
2999 	spin_lock(&tree->buffer_lock);
3000 	eb = buffer_search(tree, start);
3001 	if (eb) {
3002 		atomic_inc(&eb->refs);
3003 		spin_unlock(&tree->buffer_lock);
3004 		mark_page_accessed(eb->first_page);
3005 		return eb;
3006 	}
3007 	spin_unlock(&tree->buffer_lock);
3008 
3009 	eb = __alloc_extent_buffer(tree, start, len, mask);
3010 	if (!eb)
3011 		return NULL;
3012 
3013 	if (page0) {
3014 		eb->first_page = page0;
3015 		i = 1;
3016 		index++;
3017 		page_cache_get(page0);
3018 		mark_page_accessed(page0);
3019 		set_page_extent_mapped(page0);
3020 		set_page_extent_head(page0, len);
3021 		uptodate = PageUptodate(page0);
3022 	} else {
3023 		i = 0;
3024 	}
3025 	for (; i < num_pages; i++, index++) {
3026 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3027 		if (!p) {
3028 			WARN_ON(1);
3029 			goto free_eb;
3030 		}
3031 		set_page_extent_mapped(p);
3032 		mark_page_accessed(p);
3033 		if (i == 0) {
3034 			eb->first_page = p;
3035 			set_page_extent_head(p, len);
3036 		} else {
3037 			set_page_private(p, EXTENT_PAGE_PRIVATE);
3038 		}
3039 		if (!PageUptodate(p))
3040 			uptodate = 0;
3041 		unlock_page(p);
3042 	}
3043 	if (uptodate)
3044 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3045 
3046 	spin_lock(&tree->buffer_lock);
3047 	exists = buffer_tree_insert(tree, start, &eb->rb_node);
3048 	if (exists) {
3049 		/* add one reference for the caller */
3050 		atomic_inc(&exists->refs);
3051 		spin_unlock(&tree->buffer_lock);
3052 		goto free_eb;
3053 	}
3054 	spin_unlock(&tree->buffer_lock);
3055 
3056 	/* add one reference for the tree */
3057 	atomic_inc(&eb->refs);
3058 	return eb;
3059 
3060 free_eb:
3061 	if (!atomic_dec_and_test(&eb->refs))
3062 		return exists;
3063 	for (index = 1; index < i; index++)
3064 		page_cache_release(extent_buffer_page(eb, index));
3065 	page_cache_release(extent_buffer_page(eb, 0));
3066 	__free_extent_buffer(eb);
3067 	return exists;
3068 }
3069 
3070 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3071 					 u64 start, unsigned long len,
3072 					  gfp_t mask)
3073 {
3074 	struct extent_buffer *eb;
3075 
3076 	spin_lock(&tree->buffer_lock);
3077 	eb = buffer_search(tree, start);
3078 	if (eb)
3079 		atomic_inc(&eb->refs);
3080 	spin_unlock(&tree->buffer_lock);
3081 
3082 	if (eb)
3083 		mark_page_accessed(eb->first_page);
3084 
3085 	return eb;
3086 }
3087 
3088 void free_extent_buffer(struct extent_buffer *eb)
3089 {
3090 	if (!eb)
3091 		return;
3092 
3093 	if (!atomic_dec_and_test(&eb->refs))
3094 		return;
3095 
3096 	WARN_ON(1);
3097 }
3098 
3099 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3100 			      struct extent_buffer *eb)
3101 {
3102 	unsigned long i;
3103 	unsigned long num_pages;
3104 	struct page *page;
3105 
3106 	num_pages = num_extent_pages(eb->start, eb->len);
3107 
3108 	for (i = 0; i < num_pages; i++) {
3109 		page = extent_buffer_page(eb, i);
3110 		if (!PageDirty(page))
3111 			continue;
3112 
3113 		lock_page(page);
3114 		if (i == 0)
3115 			set_page_extent_head(page, eb->len);
3116 		else
3117 			set_page_private(page, EXTENT_PAGE_PRIVATE);
3118 
3119 		clear_page_dirty_for_io(page);
3120 		spin_lock_irq(&page->mapping->tree_lock);
3121 		if (!PageDirty(page)) {
3122 			radix_tree_tag_clear(&page->mapping->page_tree,
3123 						page_index(page),
3124 						PAGECACHE_TAG_DIRTY);
3125 		}
3126 		spin_unlock_irq(&page->mapping->tree_lock);
3127 		unlock_page(page);
3128 	}
3129 	return 0;
3130 }
3131 
3132 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3133 				    struct extent_buffer *eb)
3134 {
3135 	return wait_on_extent_writeback(tree, eb->start,
3136 					eb->start + eb->len - 1);
3137 }
3138 
3139 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3140 			     struct extent_buffer *eb)
3141 {
3142 	unsigned long i;
3143 	unsigned long num_pages;
3144 	int was_dirty = 0;
3145 
3146 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3147 	num_pages = num_extent_pages(eb->start, eb->len);
3148 	for (i = 0; i < num_pages; i++)
3149 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3150 	return was_dirty;
3151 }
3152 
3153 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3154 				struct extent_buffer *eb)
3155 {
3156 	unsigned long i;
3157 	struct page *page;
3158 	unsigned long num_pages;
3159 
3160 	num_pages = num_extent_pages(eb->start, eb->len);
3161 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3162 
3163 	clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3164 			      GFP_NOFS);
3165 	for (i = 0; i < num_pages; i++) {
3166 		page = extent_buffer_page(eb, i);
3167 		if (page)
3168 			ClearPageUptodate(page);
3169 	}
3170 	return 0;
3171 }
3172 
3173 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3174 				struct extent_buffer *eb)
3175 {
3176 	unsigned long i;
3177 	struct page *page;
3178 	unsigned long num_pages;
3179 
3180 	num_pages = num_extent_pages(eb->start, eb->len);
3181 
3182 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3183 			    GFP_NOFS);
3184 	for (i = 0; i < num_pages; i++) {
3185 		page = extent_buffer_page(eb, i);
3186 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3187 		    ((i == num_pages - 1) &&
3188 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3189 			check_page_uptodate(tree, page);
3190 			continue;
3191 		}
3192 		SetPageUptodate(page);
3193 	}
3194 	return 0;
3195 }
3196 
3197 int extent_range_uptodate(struct extent_io_tree *tree,
3198 			  u64 start, u64 end)
3199 {
3200 	struct page *page;
3201 	int ret;
3202 	int pg_uptodate = 1;
3203 	int uptodate;
3204 	unsigned long index;
3205 
3206 	ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3207 	if (ret)
3208 		return 1;
3209 	while (start <= end) {
3210 		index = start >> PAGE_CACHE_SHIFT;
3211 		page = find_get_page(tree->mapping, index);
3212 		uptodate = PageUptodate(page);
3213 		page_cache_release(page);
3214 		if (!uptodate) {
3215 			pg_uptodate = 0;
3216 			break;
3217 		}
3218 		start += PAGE_CACHE_SIZE;
3219 	}
3220 	return pg_uptodate;
3221 }
3222 
3223 int extent_buffer_uptodate(struct extent_io_tree *tree,
3224 			   struct extent_buffer *eb)
3225 {
3226 	int ret = 0;
3227 	unsigned long num_pages;
3228 	unsigned long i;
3229 	struct page *page;
3230 	int pg_uptodate = 1;
3231 
3232 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3233 		return 1;
3234 
3235 	ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3236 			   EXTENT_UPTODATE, 1);
3237 	if (ret)
3238 		return ret;
3239 
3240 	num_pages = num_extent_pages(eb->start, eb->len);
3241 	for (i = 0; i < num_pages; i++) {
3242 		page = extent_buffer_page(eb, i);
3243 		if (!PageUptodate(page)) {
3244 			pg_uptodate = 0;
3245 			break;
3246 		}
3247 	}
3248 	return pg_uptodate;
3249 }
3250 
3251 int read_extent_buffer_pages(struct extent_io_tree *tree,
3252 			     struct extent_buffer *eb,
3253 			     u64 start, int wait,
3254 			     get_extent_t *get_extent, int mirror_num)
3255 {
3256 	unsigned long i;
3257 	unsigned long start_i;
3258 	struct page *page;
3259 	int err;
3260 	int ret = 0;
3261 	int locked_pages = 0;
3262 	int all_uptodate = 1;
3263 	int inc_all_pages = 0;
3264 	unsigned long num_pages;
3265 	struct bio *bio = NULL;
3266 	unsigned long bio_flags = 0;
3267 
3268 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3269 		return 0;
3270 
3271 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3272 			   EXTENT_UPTODATE, 1)) {
3273 		return 0;
3274 	}
3275 
3276 	if (start) {
3277 		WARN_ON(start < eb->start);
3278 		start_i = (start >> PAGE_CACHE_SHIFT) -
3279 			(eb->start >> PAGE_CACHE_SHIFT);
3280 	} else {
3281 		start_i = 0;
3282 	}
3283 
3284 	num_pages = num_extent_pages(eb->start, eb->len);
3285 	for (i = start_i; i < num_pages; i++) {
3286 		page = extent_buffer_page(eb, i);
3287 		if (!wait) {
3288 			if (!trylock_page(page))
3289 				goto unlock_exit;
3290 		} else {
3291 			lock_page(page);
3292 		}
3293 		locked_pages++;
3294 		if (!PageUptodate(page))
3295 			all_uptodate = 0;
3296 	}
3297 	if (all_uptodate) {
3298 		if (start_i == 0)
3299 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3300 		goto unlock_exit;
3301 	}
3302 
3303 	for (i = start_i; i < num_pages; i++) {
3304 		page = extent_buffer_page(eb, i);
3305 		if (inc_all_pages)
3306 			page_cache_get(page);
3307 		if (!PageUptodate(page)) {
3308 			if (start_i == 0)
3309 				inc_all_pages = 1;
3310 			ClearPageError(page);
3311 			err = __extent_read_full_page(tree, page,
3312 						      get_extent, &bio,
3313 						      mirror_num, &bio_flags);
3314 			if (err)
3315 				ret = err;
3316 		} else {
3317 			unlock_page(page);
3318 		}
3319 	}
3320 
3321 	if (bio)
3322 		submit_one_bio(READ, bio, mirror_num, bio_flags);
3323 
3324 	if (ret || !wait)
3325 		return ret;
3326 
3327 	for (i = start_i; i < num_pages; i++) {
3328 		page = extent_buffer_page(eb, i);
3329 		wait_on_page_locked(page);
3330 		if (!PageUptodate(page))
3331 			ret = -EIO;
3332 	}
3333 
3334 	if (!ret)
3335 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3336 	return ret;
3337 
3338 unlock_exit:
3339 	i = start_i;
3340 	while (locked_pages > 0) {
3341 		page = extent_buffer_page(eb, i);
3342 		i++;
3343 		unlock_page(page);
3344 		locked_pages--;
3345 	}
3346 	return ret;
3347 }
3348 
3349 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3350 			unsigned long start,
3351 			unsigned long len)
3352 {
3353 	size_t cur;
3354 	size_t offset;
3355 	struct page *page;
3356 	char *kaddr;
3357 	char *dst = (char *)dstv;
3358 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3359 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3360 
3361 	WARN_ON(start > eb->len);
3362 	WARN_ON(start + len > eb->start + eb->len);
3363 
3364 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3365 
3366 	while (len > 0) {
3367 		page = extent_buffer_page(eb, i);
3368 
3369 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3370 		kaddr = kmap_atomic(page, KM_USER1);
3371 		memcpy(dst, kaddr + offset, cur);
3372 		kunmap_atomic(kaddr, KM_USER1);
3373 
3374 		dst += cur;
3375 		len -= cur;
3376 		offset = 0;
3377 		i++;
3378 	}
3379 }
3380 
3381 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3382 			       unsigned long min_len, char **token, char **map,
3383 			       unsigned long *map_start,
3384 			       unsigned long *map_len, int km)
3385 {
3386 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
3387 	char *kaddr;
3388 	struct page *p;
3389 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3390 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3391 	unsigned long end_i = (start_offset + start + min_len - 1) >>
3392 		PAGE_CACHE_SHIFT;
3393 
3394 	if (i != end_i)
3395 		return -EINVAL;
3396 
3397 	if (i == 0) {
3398 		offset = start_offset;
3399 		*map_start = 0;
3400 	} else {
3401 		offset = 0;
3402 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3403 	}
3404 
3405 	if (start + min_len > eb->len) {
3406 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3407 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
3408 		       eb->len, start, min_len);
3409 		WARN_ON(1);
3410 	}
3411 
3412 	p = extent_buffer_page(eb, i);
3413 	kaddr = kmap_atomic(p, km);
3414 	*token = kaddr;
3415 	*map = kaddr + offset;
3416 	*map_len = PAGE_CACHE_SIZE - offset;
3417 	return 0;
3418 }
3419 
3420 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3421 		      unsigned long min_len,
3422 		      char **token, char **map,
3423 		      unsigned long *map_start,
3424 		      unsigned long *map_len, int km)
3425 {
3426 	int err;
3427 	int save = 0;
3428 	if (eb->map_token) {
3429 		unmap_extent_buffer(eb, eb->map_token, km);
3430 		eb->map_token = NULL;
3431 		save = 1;
3432 	}
3433 	err = map_private_extent_buffer(eb, start, min_len, token, map,
3434 				       map_start, map_len, km);
3435 	if (!err && save) {
3436 		eb->map_token = *token;
3437 		eb->kaddr = *map;
3438 		eb->map_start = *map_start;
3439 		eb->map_len = *map_len;
3440 	}
3441 	return err;
3442 }
3443 
3444 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3445 {
3446 	kunmap_atomic(token, km);
3447 }
3448 
3449 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3450 			  unsigned long start,
3451 			  unsigned long len)
3452 {
3453 	size_t cur;
3454 	size_t offset;
3455 	struct page *page;
3456 	char *kaddr;
3457 	char *ptr = (char *)ptrv;
3458 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3459 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3460 	int ret = 0;
3461 
3462 	WARN_ON(start > eb->len);
3463 	WARN_ON(start + len > eb->start + eb->len);
3464 
3465 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3466 
3467 	while (len > 0) {
3468 		page = extent_buffer_page(eb, i);
3469 
3470 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3471 
3472 		kaddr = kmap_atomic(page, KM_USER0);
3473 		ret = memcmp(ptr, kaddr + offset, cur);
3474 		kunmap_atomic(kaddr, KM_USER0);
3475 		if (ret)
3476 			break;
3477 
3478 		ptr += cur;
3479 		len -= cur;
3480 		offset = 0;
3481 		i++;
3482 	}
3483 	return ret;
3484 }
3485 
3486 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3487 			 unsigned long start, unsigned long len)
3488 {
3489 	size_t cur;
3490 	size_t offset;
3491 	struct page *page;
3492 	char *kaddr;
3493 	char *src = (char *)srcv;
3494 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3495 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3496 
3497 	WARN_ON(start > eb->len);
3498 	WARN_ON(start + len > eb->start + eb->len);
3499 
3500 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3501 
3502 	while (len > 0) {
3503 		page = extent_buffer_page(eb, i);
3504 		WARN_ON(!PageUptodate(page));
3505 
3506 		cur = min(len, PAGE_CACHE_SIZE - offset);
3507 		kaddr = kmap_atomic(page, KM_USER1);
3508 		memcpy(kaddr + offset, src, cur);
3509 		kunmap_atomic(kaddr, KM_USER1);
3510 
3511 		src += cur;
3512 		len -= cur;
3513 		offset = 0;
3514 		i++;
3515 	}
3516 }
3517 
3518 void memset_extent_buffer(struct extent_buffer *eb, char c,
3519 			  unsigned long start, unsigned long len)
3520 {
3521 	size_t cur;
3522 	size_t offset;
3523 	struct page *page;
3524 	char *kaddr;
3525 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3526 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3527 
3528 	WARN_ON(start > eb->len);
3529 	WARN_ON(start + len > eb->start + eb->len);
3530 
3531 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3532 
3533 	while (len > 0) {
3534 		page = extent_buffer_page(eb, i);
3535 		WARN_ON(!PageUptodate(page));
3536 
3537 		cur = min(len, PAGE_CACHE_SIZE - offset);
3538 		kaddr = kmap_atomic(page, KM_USER0);
3539 		memset(kaddr + offset, c, cur);
3540 		kunmap_atomic(kaddr, KM_USER0);
3541 
3542 		len -= cur;
3543 		offset = 0;
3544 		i++;
3545 	}
3546 }
3547 
3548 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3549 			unsigned long dst_offset, unsigned long src_offset,
3550 			unsigned long len)
3551 {
3552 	u64 dst_len = dst->len;
3553 	size_t cur;
3554 	size_t offset;
3555 	struct page *page;
3556 	char *kaddr;
3557 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3558 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3559 
3560 	WARN_ON(src->len != dst_len);
3561 
3562 	offset = (start_offset + dst_offset) &
3563 		((unsigned long)PAGE_CACHE_SIZE - 1);
3564 
3565 	while (len > 0) {
3566 		page = extent_buffer_page(dst, i);
3567 		WARN_ON(!PageUptodate(page));
3568 
3569 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3570 
3571 		kaddr = kmap_atomic(page, KM_USER0);
3572 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3573 		kunmap_atomic(kaddr, KM_USER0);
3574 
3575 		src_offset += cur;
3576 		len -= cur;
3577 		offset = 0;
3578 		i++;
3579 	}
3580 }
3581 
3582 static void move_pages(struct page *dst_page, struct page *src_page,
3583 		       unsigned long dst_off, unsigned long src_off,
3584 		       unsigned long len)
3585 {
3586 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3587 	if (dst_page == src_page) {
3588 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3589 	} else {
3590 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3591 		char *p = dst_kaddr + dst_off + len;
3592 		char *s = src_kaddr + src_off + len;
3593 
3594 		while (len--)
3595 			*--p = *--s;
3596 
3597 		kunmap_atomic(src_kaddr, KM_USER1);
3598 	}
3599 	kunmap_atomic(dst_kaddr, KM_USER0);
3600 }
3601 
3602 static void copy_pages(struct page *dst_page, struct page *src_page,
3603 		       unsigned long dst_off, unsigned long src_off,
3604 		       unsigned long len)
3605 {
3606 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3607 	char *src_kaddr;
3608 
3609 	if (dst_page != src_page)
3610 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3611 	else
3612 		src_kaddr = dst_kaddr;
3613 
3614 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3615 	kunmap_atomic(dst_kaddr, KM_USER0);
3616 	if (dst_page != src_page)
3617 		kunmap_atomic(src_kaddr, KM_USER1);
3618 }
3619 
3620 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3621 			   unsigned long src_offset, unsigned long len)
3622 {
3623 	size_t cur;
3624 	size_t dst_off_in_page;
3625 	size_t src_off_in_page;
3626 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3627 	unsigned long dst_i;
3628 	unsigned long src_i;
3629 
3630 	if (src_offset + len > dst->len) {
3631 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3632 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
3633 		BUG_ON(1);
3634 	}
3635 	if (dst_offset + len > dst->len) {
3636 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3637 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3638 		BUG_ON(1);
3639 	}
3640 
3641 	while (len > 0) {
3642 		dst_off_in_page = (start_offset + dst_offset) &
3643 			((unsigned long)PAGE_CACHE_SIZE - 1);
3644 		src_off_in_page = (start_offset + src_offset) &
3645 			((unsigned long)PAGE_CACHE_SIZE - 1);
3646 
3647 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3648 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3649 
3650 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3651 					       src_off_in_page));
3652 		cur = min_t(unsigned long, cur,
3653 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3654 
3655 		copy_pages(extent_buffer_page(dst, dst_i),
3656 			   extent_buffer_page(dst, src_i),
3657 			   dst_off_in_page, src_off_in_page, cur);
3658 
3659 		src_offset += cur;
3660 		dst_offset += cur;
3661 		len -= cur;
3662 	}
3663 }
3664 
3665 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3666 			   unsigned long src_offset, unsigned long len)
3667 {
3668 	size_t cur;
3669 	size_t dst_off_in_page;
3670 	size_t src_off_in_page;
3671 	unsigned long dst_end = dst_offset + len - 1;
3672 	unsigned long src_end = src_offset + len - 1;
3673 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3674 	unsigned long dst_i;
3675 	unsigned long src_i;
3676 
3677 	if (src_offset + len > dst->len) {
3678 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3679 		       "len %lu len %lu\n", src_offset, len, dst->len);
3680 		BUG_ON(1);
3681 	}
3682 	if (dst_offset + len > dst->len) {
3683 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3684 		       "len %lu len %lu\n", dst_offset, len, dst->len);
3685 		BUG_ON(1);
3686 	}
3687 	if (dst_offset < src_offset) {
3688 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3689 		return;
3690 	}
3691 	while (len > 0) {
3692 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3693 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3694 
3695 		dst_off_in_page = (start_offset + dst_end) &
3696 			((unsigned long)PAGE_CACHE_SIZE - 1);
3697 		src_off_in_page = (start_offset + src_end) &
3698 			((unsigned long)PAGE_CACHE_SIZE - 1);
3699 
3700 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3701 		cur = min(cur, dst_off_in_page + 1);
3702 		move_pages(extent_buffer_page(dst, dst_i),
3703 			   extent_buffer_page(dst, src_i),
3704 			   dst_off_in_page - cur + 1,
3705 			   src_off_in_page - cur + 1, cur);
3706 
3707 		dst_end -= cur;
3708 		src_end -= cur;
3709 		len -= cur;
3710 	}
3711 }
3712 
3713 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3714 {
3715 	u64 start = page_offset(page);
3716 	struct extent_buffer *eb;
3717 	int ret = 1;
3718 	unsigned long i;
3719 	unsigned long num_pages;
3720 
3721 	spin_lock(&tree->buffer_lock);
3722 	eb = buffer_search(tree, start);
3723 	if (!eb)
3724 		goto out;
3725 
3726 	if (atomic_read(&eb->refs) > 1) {
3727 		ret = 0;
3728 		goto out;
3729 	}
3730 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3731 		ret = 0;
3732 		goto out;
3733 	}
3734 	/* at this point we can safely release the extent buffer */
3735 	num_pages = num_extent_pages(eb->start, eb->len);
3736 	for (i = 0; i < num_pages; i++)
3737 		page_cache_release(extent_buffer_page(eb, i));
3738 	rb_erase(&eb->rb_node, &tree->buffer);
3739 	__free_extent_buffer(eb);
3740 out:
3741 	spin_unlock(&tree->buffer_lock);
3742 	return ret;
3743 }
3744