1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/gfp.h> 6 #include <linux/pagemap.h> 7 #include <linux/page-flags.h> 8 #include <linux/module.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 20 static struct kmem_cache *extent_state_cache; 21 static struct kmem_cache *extent_buffer_cache; 22 23 static LIST_HEAD(buffers); 24 static LIST_HEAD(states); 25 26 #define LEAK_DEBUG 0 27 #if LEAK_DEBUG 28 static DEFINE_SPINLOCK(leak_lock); 29 #endif 30 31 #define BUFFER_LRU_MAX 64 32 33 struct tree_entry { 34 u64 start; 35 u64 end; 36 struct rb_node rb_node; 37 }; 38 39 struct extent_page_data { 40 struct bio *bio; 41 struct extent_io_tree *tree; 42 get_extent_t *get_extent; 43 44 /* tells writepage not to lock the state bits for this range 45 * it still does the unlocking 46 */ 47 unsigned int extent_locked:1; 48 49 /* tells the submit_bio code to use a WRITE_SYNC */ 50 unsigned int sync_io:1; 51 }; 52 53 int __init extent_io_init(void) 54 { 55 extent_state_cache = kmem_cache_create("extent_state", 56 sizeof(struct extent_state), 0, 57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 58 if (!extent_state_cache) 59 return -ENOMEM; 60 61 extent_buffer_cache = kmem_cache_create("extent_buffers", 62 sizeof(struct extent_buffer), 0, 63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 64 if (!extent_buffer_cache) 65 goto free_state_cache; 66 return 0; 67 68 free_state_cache: 69 kmem_cache_destroy(extent_state_cache); 70 return -ENOMEM; 71 } 72 73 void extent_io_exit(void) 74 { 75 struct extent_state *state; 76 struct extent_buffer *eb; 77 78 while (!list_empty(&states)) { 79 state = list_entry(states.next, struct extent_state, leak_list); 80 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 81 "state %lu in tree %p refs %d\n", 82 (unsigned long long)state->start, 83 (unsigned long long)state->end, 84 state->state, state->tree, atomic_read(&state->refs)); 85 list_del(&state->leak_list); 86 kmem_cache_free(extent_state_cache, state); 87 88 } 89 90 while (!list_empty(&buffers)) { 91 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 93 "refs %d\n", (unsigned long long)eb->start, 94 eb->len, atomic_read(&eb->refs)); 95 list_del(&eb->leak_list); 96 kmem_cache_free(extent_buffer_cache, eb); 97 } 98 if (extent_state_cache) 99 kmem_cache_destroy(extent_state_cache); 100 if (extent_buffer_cache) 101 kmem_cache_destroy(extent_buffer_cache); 102 } 103 104 void extent_io_tree_init(struct extent_io_tree *tree, 105 struct address_space *mapping, gfp_t mask) 106 { 107 tree->state.rb_node = NULL; 108 tree->buffer.rb_node = NULL; 109 tree->ops = NULL; 110 tree->dirty_bytes = 0; 111 spin_lock_init(&tree->lock); 112 spin_lock_init(&tree->buffer_lock); 113 tree->mapping = mapping; 114 } 115 116 static struct extent_state *alloc_extent_state(gfp_t mask) 117 { 118 struct extent_state *state; 119 #if LEAK_DEBUG 120 unsigned long flags; 121 #endif 122 123 state = kmem_cache_alloc(extent_state_cache, mask); 124 if (!state) 125 return state; 126 state->state = 0; 127 state->private = 0; 128 state->tree = NULL; 129 #if LEAK_DEBUG 130 spin_lock_irqsave(&leak_lock, flags); 131 list_add(&state->leak_list, &states); 132 spin_unlock_irqrestore(&leak_lock, flags); 133 #endif 134 atomic_set(&state->refs, 1); 135 init_waitqueue_head(&state->wq); 136 return state; 137 } 138 139 static void free_extent_state(struct extent_state *state) 140 { 141 if (!state) 142 return; 143 if (atomic_dec_and_test(&state->refs)) { 144 #if LEAK_DEBUG 145 unsigned long flags; 146 #endif 147 WARN_ON(state->tree); 148 #if LEAK_DEBUG 149 spin_lock_irqsave(&leak_lock, flags); 150 list_del(&state->leak_list); 151 spin_unlock_irqrestore(&leak_lock, flags); 152 #endif 153 kmem_cache_free(extent_state_cache, state); 154 } 155 } 156 157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 158 struct rb_node *node) 159 { 160 struct rb_node **p = &root->rb_node; 161 struct rb_node *parent = NULL; 162 struct tree_entry *entry; 163 164 while (*p) { 165 parent = *p; 166 entry = rb_entry(parent, struct tree_entry, rb_node); 167 168 if (offset < entry->start) 169 p = &(*p)->rb_left; 170 else if (offset > entry->end) 171 p = &(*p)->rb_right; 172 else 173 return parent; 174 } 175 176 entry = rb_entry(node, struct tree_entry, rb_node); 177 rb_link_node(node, parent, p); 178 rb_insert_color(node, root); 179 return NULL; 180 } 181 182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 183 struct rb_node **prev_ret, 184 struct rb_node **next_ret) 185 { 186 struct rb_root *root = &tree->state; 187 struct rb_node *n = root->rb_node; 188 struct rb_node *prev = NULL; 189 struct rb_node *orig_prev = NULL; 190 struct tree_entry *entry; 191 struct tree_entry *prev_entry = NULL; 192 193 while (n) { 194 entry = rb_entry(n, struct tree_entry, rb_node); 195 prev = n; 196 prev_entry = entry; 197 198 if (offset < entry->start) 199 n = n->rb_left; 200 else if (offset > entry->end) 201 n = n->rb_right; 202 else 203 return n; 204 } 205 206 if (prev_ret) { 207 orig_prev = prev; 208 while (prev && offset > prev_entry->end) { 209 prev = rb_next(prev); 210 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 211 } 212 *prev_ret = prev; 213 prev = orig_prev; 214 } 215 216 if (next_ret) { 217 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 218 while (prev && offset < prev_entry->start) { 219 prev = rb_prev(prev); 220 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 221 } 222 *next_ret = prev; 223 } 224 return NULL; 225 } 226 227 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 228 u64 offset) 229 { 230 struct rb_node *prev = NULL; 231 struct rb_node *ret; 232 233 ret = __etree_search(tree, offset, &prev, NULL); 234 if (!ret) 235 return prev; 236 return ret; 237 } 238 239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree, 240 u64 offset, struct rb_node *node) 241 { 242 struct rb_root *root = &tree->buffer; 243 struct rb_node **p = &root->rb_node; 244 struct rb_node *parent = NULL; 245 struct extent_buffer *eb; 246 247 while (*p) { 248 parent = *p; 249 eb = rb_entry(parent, struct extent_buffer, rb_node); 250 251 if (offset < eb->start) 252 p = &(*p)->rb_left; 253 else if (offset > eb->start) 254 p = &(*p)->rb_right; 255 else 256 return eb; 257 } 258 259 rb_link_node(node, parent, p); 260 rb_insert_color(node, root); 261 return NULL; 262 } 263 264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree, 265 u64 offset) 266 { 267 struct rb_root *root = &tree->buffer; 268 struct rb_node *n = root->rb_node; 269 struct extent_buffer *eb; 270 271 while (n) { 272 eb = rb_entry(n, struct extent_buffer, rb_node); 273 if (offset < eb->start) 274 n = n->rb_left; 275 else if (offset > eb->start) 276 n = n->rb_right; 277 else 278 return eb; 279 } 280 return NULL; 281 } 282 283 /* 284 * utility function to look for merge candidates inside a given range. 285 * Any extents with matching state are merged together into a single 286 * extent in the tree. Extents with EXTENT_IO in their state field 287 * are not merged because the end_io handlers need to be able to do 288 * operations on them without sleeping (or doing allocations/splits). 289 * 290 * This should be called with the tree lock held. 291 */ 292 static int merge_state(struct extent_io_tree *tree, 293 struct extent_state *state) 294 { 295 struct extent_state *other; 296 struct rb_node *other_node; 297 298 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 299 return 0; 300 301 other_node = rb_prev(&state->rb_node); 302 if (other_node) { 303 other = rb_entry(other_node, struct extent_state, rb_node); 304 if (other->end == state->start - 1 && 305 other->state == state->state) { 306 state->start = other->start; 307 other->tree = NULL; 308 rb_erase(&other->rb_node, &tree->state); 309 free_extent_state(other); 310 } 311 } 312 other_node = rb_next(&state->rb_node); 313 if (other_node) { 314 other = rb_entry(other_node, struct extent_state, rb_node); 315 if (other->start == state->end + 1 && 316 other->state == state->state) { 317 other->start = state->start; 318 state->tree = NULL; 319 rb_erase(&state->rb_node, &tree->state); 320 free_extent_state(state); 321 } 322 } 323 return 0; 324 } 325 326 static void set_state_cb(struct extent_io_tree *tree, 327 struct extent_state *state, 328 unsigned long bits) 329 { 330 if (tree->ops && tree->ops->set_bit_hook) { 331 tree->ops->set_bit_hook(tree->mapping->host, state->start, 332 state->end, state->state, bits); 333 } 334 } 335 336 static void clear_state_cb(struct extent_io_tree *tree, 337 struct extent_state *state, 338 unsigned long bits) 339 { 340 if (tree->ops && tree->ops->clear_bit_hook) { 341 tree->ops->clear_bit_hook(tree->mapping->host, state->start, 342 state->end, state->state, bits); 343 } 344 } 345 346 /* 347 * insert an extent_state struct into the tree. 'bits' are set on the 348 * struct before it is inserted. 349 * 350 * This may return -EEXIST if the extent is already there, in which case the 351 * state struct is freed. 352 * 353 * The tree lock is not taken internally. This is a utility function and 354 * probably isn't what you want to call (see set/clear_extent_bit). 355 */ 356 static int insert_state(struct extent_io_tree *tree, 357 struct extent_state *state, u64 start, u64 end, 358 int bits) 359 { 360 struct rb_node *node; 361 362 if (end < start) { 363 printk(KERN_ERR "btrfs end < start %llu %llu\n", 364 (unsigned long long)end, 365 (unsigned long long)start); 366 WARN_ON(1); 367 } 368 if (bits & EXTENT_DIRTY) 369 tree->dirty_bytes += end - start + 1; 370 set_state_cb(tree, state, bits); 371 state->state |= bits; 372 state->start = start; 373 state->end = end; 374 node = tree_insert(&tree->state, end, &state->rb_node); 375 if (node) { 376 struct extent_state *found; 377 found = rb_entry(node, struct extent_state, rb_node); 378 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 379 "%llu %llu\n", (unsigned long long)found->start, 380 (unsigned long long)found->end, 381 (unsigned long long)start, (unsigned long long)end); 382 free_extent_state(state); 383 return -EEXIST; 384 } 385 state->tree = tree; 386 merge_state(tree, state); 387 return 0; 388 } 389 390 /* 391 * split a given extent state struct in two, inserting the preallocated 392 * struct 'prealloc' as the newly created second half. 'split' indicates an 393 * offset inside 'orig' where it should be split. 394 * 395 * Before calling, 396 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 397 * are two extent state structs in the tree: 398 * prealloc: [orig->start, split - 1] 399 * orig: [ split, orig->end ] 400 * 401 * The tree locks are not taken by this function. They need to be held 402 * by the caller. 403 */ 404 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 405 struct extent_state *prealloc, u64 split) 406 { 407 struct rb_node *node; 408 prealloc->start = orig->start; 409 prealloc->end = split - 1; 410 prealloc->state = orig->state; 411 orig->start = split; 412 413 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 414 if (node) { 415 free_extent_state(prealloc); 416 return -EEXIST; 417 } 418 prealloc->tree = tree; 419 return 0; 420 } 421 422 /* 423 * utility function to clear some bits in an extent state struct. 424 * it will optionally wake up any one waiting on this state (wake == 1), or 425 * forcibly remove the state from the tree (delete == 1). 426 * 427 * If no bits are set on the state struct after clearing things, the 428 * struct is freed and removed from the tree 429 */ 430 static int clear_state_bit(struct extent_io_tree *tree, 431 struct extent_state *state, int bits, int wake, 432 int delete) 433 { 434 int ret = state->state & bits; 435 436 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 437 u64 range = state->end - state->start + 1; 438 WARN_ON(range > tree->dirty_bytes); 439 tree->dirty_bytes -= range; 440 } 441 clear_state_cb(tree, state, bits); 442 state->state &= ~bits; 443 if (wake) 444 wake_up(&state->wq); 445 if (delete || state->state == 0) { 446 if (state->tree) { 447 clear_state_cb(tree, state, state->state); 448 rb_erase(&state->rb_node, &tree->state); 449 state->tree = NULL; 450 free_extent_state(state); 451 } else { 452 WARN_ON(1); 453 } 454 } else { 455 merge_state(tree, state); 456 } 457 return ret; 458 } 459 460 /* 461 * clear some bits on a range in the tree. This may require splitting 462 * or inserting elements in the tree, so the gfp mask is used to 463 * indicate which allocations or sleeping are allowed. 464 * 465 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 466 * the given range from the tree regardless of state (ie for truncate). 467 * 468 * the range [start, end] is inclusive. 469 * 470 * This takes the tree lock, and returns < 0 on error, > 0 if any of the 471 * bits were already set, or zero if none of the bits were already set. 472 */ 473 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 474 int bits, int wake, int delete, gfp_t mask) 475 { 476 struct extent_state *state; 477 struct extent_state *prealloc = NULL; 478 struct rb_node *node; 479 u64 last_end; 480 int err; 481 int set = 0; 482 483 again: 484 if (!prealloc && (mask & __GFP_WAIT)) { 485 prealloc = alloc_extent_state(mask); 486 if (!prealloc) 487 return -ENOMEM; 488 } 489 490 spin_lock(&tree->lock); 491 /* 492 * this search will find the extents that end after 493 * our range starts 494 */ 495 node = tree_search(tree, start); 496 if (!node) 497 goto out; 498 state = rb_entry(node, struct extent_state, rb_node); 499 if (state->start > end) 500 goto out; 501 WARN_ON(state->end < start); 502 last_end = state->end; 503 504 /* 505 * | ---- desired range ---- | 506 * | state | or 507 * | ------------- state -------------- | 508 * 509 * We need to split the extent we found, and may flip 510 * bits on second half. 511 * 512 * If the extent we found extends past our range, we 513 * just split and search again. It'll get split again 514 * the next time though. 515 * 516 * If the extent we found is inside our range, we clear 517 * the desired bit on it. 518 */ 519 520 if (state->start < start) { 521 if (!prealloc) 522 prealloc = alloc_extent_state(GFP_ATOMIC); 523 err = split_state(tree, state, prealloc, start); 524 BUG_ON(err == -EEXIST); 525 prealloc = NULL; 526 if (err) 527 goto out; 528 if (state->end <= end) { 529 set |= clear_state_bit(tree, state, bits, 530 wake, delete); 531 if (last_end == (u64)-1) 532 goto out; 533 start = last_end + 1; 534 } else { 535 start = state->start; 536 } 537 goto search_again; 538 } 539 /* 540 * | ---- desired range ---- | 541 * | state | 542 * We need to split the extent, and clear the bit 543 * on the first half 544 */ 545 if (state->start <= end && state->end > end) { 546 if (!prealloc) 547 prealloc = alloc_extent_state(GFP_ATOMIC); 548 err = split_state(tree, state, prealloc, end + 1); 549 BUG_ON(err == -EEXIST); 550 551 if (wake) 552 wake_up(&state->wq); 553 set |= clear_state_bit(tree, prealloc, bits, 554 wake, delete); 555 prealloc = NULL; 556 goto out; 557 } 558 559 set |= clear_state_bit(tree, state, bits, wake, delete); 560 if (last_end == (u64)-1) 561 goto out; 562 start = last_end + 1; 563 goto search_again; 564 565 out: 566 spin_unlock(&tree->lock); 567 if (prealloc) 568 free_extent_state(prealloc); 569 570 return set; 571 572 search_again: 573 if (start > end) 574 goto out; 575 spin_unlock(&tree->lock); 576 if (mask & __GFP_WAIT) 577 cond_resched(); 578 goto again; 579 } 580 581 static int wait_on_state(struct extent_io_tree *tree, 582 struct extent_state *state) 583 __releases(tree->lock) 584 __acquires(tree->lock) 585 { 586 DEFINE_WAIT(wait); 587 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 588 spin_unlock(&tree->lock); 589 schedule(); 590 spin_lock(&tree->lock); 591 finish_wait(&state->wq, &wait); 592 return 0; 593 } 594 595 /* 596 * waits for one or more bits to clear on a range in the state tree. 597 * The range [start, end] is inclusive. 598 * The tree lock is taken by this function 599 */ 600 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 601 { 602 struct extent_state *state; 603 struct rb_node *node; 604 605 spin_lock(&tree->lock); 606 again: 607 while (1) { 608 /* 609 * this search will find all the extents that end after 610 * our range starts 611 */ 612 node = tree_search(tree, start); 613 if (!node) 614 break; 615 616 state = rb_entry(node, struct extent_state, rb_node); 617 618 if (state->start > end) 619 goto out; 620 621 if (state->state & bits) { 622 start = state->start; 623 atomic_inc(&state->refs); 624 wait_on_state(tree, state); 625 free_extent_state(state); 626 goto again; 627 } 628 start = state->end + 1; 629 630 if (start > end) 631 break; 632 633 if (need_resched()) { 634 spin_unlock(&tree->lock); 635 cond_resched(); 636 spin_lock(&tree->lock); 637 } 638 } 639 out: 640 spin_unlock(&tree->lock); 641 return 0; 642 } 643 644 static void set_state_bits(struct extent_io_tree *tree, 645 struct extent_state *state, 646 int bits) 647 { 648 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 649 u64 range = state->end - state->start + 1; 650 tree->dirty_bytes += range; 651 } 652 set_state_cb(tree, state, bits); 653 state->state |= bits; 654 } 655 656 /* 657 * set some bits on a range in the tree. This may require allocations 658 * or sleeping, so the gfp mask is used to indicate what is allowed. 659 * 660 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the 661 * range already has the desired bits set. The start of the existing 662 * range is returned in failed_start in this case. 663 * 664 * [start, end] is inclusive 665 * This takes the tree lock. 666 */ 667 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 668 int bits, int exclusive, u64 *failed_start, 669 gfp_t mask) 670 { 671 struct extent_state *state; 672 struct extent_state *prealloc = NULL; 673 struct rb_node *node; 674 int err = 0; 675 int set; 676 u64 last_start; 677 u64 last_end; 678 again: 679 if (!prealloc && (mask & __GFP_WAIT)) { 680 prealloc = alloc_extent_state(mask); 681 if (!prealloc) 682 return -ENOMEM; 683 } 684 685 spin_lock(&tree->lock); 686 /* 687 * this search will find all the extents that end after 688 * our range starts. 689 */ 690 node = tree_search(tree, start); 691 if (!node) { 692 err = insert_state(tree, prealloc, start, end, bits); 693 prealloc = NULL; 694 BUG_ON(err == -EEXIST); 695 goto out; 696 } 697 698 state = rb_entry(node, struct extent_state, rb_node); 699 last_start = state->start; 700 last_end = state->end; 701 702 /* 703 * | ---- desired range ---- | 704 * | state | 705 * 706 * Just lock what we found and keep going 707 */ 708 if (state->start == start && state->end <= end) { 709 set = state->state & bits; 710 if (set && exclusive) { 711 *failed_start = state->start; 712 err = -EEXIST; 713 goto out; 714 } 715 set_state_bits(tree, state, bits); 716 merge_state(tree, state); 717 if (last_end == (u64)-1) 718 goto out; 719 start = last_end + 1; 720 goto search_again; 721 } 722 723 /* 724 * | ---- desired range ---- | 725 * | state | 726 * or 727 * | ------------- state -------------- | 728 * 729 * We need to split the extent we found, and may flip bits on 730 * second half. 731 * 732 * If the extent we found extends past our 733 * range, we just split and search again. It'll get split 734 * again the next time though. 735 * 736 * If the extent we found is inside our range, we set the 737 * desired bit on it. 738 */ 739 if (state->start < start) { 740 set = state->state & bits; 741 if (exclusive && set) { 742 *failed_start = start; 743 err = -EEXIST; 744 goto out; 745 } 746 err = split_state(tree, state, prealloc, start); 747 BUG_ON(err == -EEXIST); 748 prealloc = NULL; 749 if (err) 750 goto out; 751 if (state->end <= end) { 752 set_state_bits(tree, state, bits); 753 merge_state(tree, state); 754 if (last_end == (u64)-1) 755 goto out; 756 start = last_end + 1; 757 } else { 758 start = state->start; 759 } 760 goto search_again; 761 } 762 /* 763 * | ---- desired range ---- | 764 * | state | or | state | 765 * 766 * There's a hole, we need to insert something in it and 767 * ignore the extent we found. 768 */ 769 if (state->start > start) { 770 u64 this_end; 771 if (end < last_start) 772 this_end = end; 773 else 774 this_end = last_start - 1; 775 err = insert_state(tree, prealloc, start, this_end, 776 bits); 777 prealloc = NULL; 778 BUG_ON(err == -EEXIST); 779 if (err) 780 goto out; 781 start = this_end + 1; 782 goto search_again; 783 } 784 /* 785 * | ---- desired range ---- | 786 * | state | 787 * We need to split the extent, and set the bit 788 * on the first half 789 */ 790 if (state->start <= end && state->end > end) { 791 set = state->state & bits; 792 if (exclusive && set) { 793 *failed_start = start; 794 err = -EEXIST; 795 goto out; 796 } 797 err = split_state(tree, state, prealloc, end + 1); 798 BUG_ON(err == -EEXIST); 799 800 set_state_bits(tree, prealloc, bits); 801 merge_state(tree, prealloc); 802 prealloc = NULL; 803 goto out; 804 } 805 806 goto search_again; 807 808 out: 809 spin_unlock(&tree->lock); 810 if (prealloc) 811 free_extent_state(prealloc); 812 813 return err; 814 815 search_again: 816 if (start > end) 817 goto out; 818 spin_unlock(&tree->lock); 819 if (mask & __GFP_WAIT) 820 cond_resched(); 821 goto again; 822 } 823 824 /* wrappers around set/clear extent bit */ 825 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 826 gfp_t mask) 827 { 828 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, 829 mask); 830 } 831 832 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, 833 gfp_t mask) 834 { 835 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask); 836 } 837 838 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 839 int bits, gfp_t mask) 840 { 841 return set_extent_bit(tree, start, end, bits, 0, NULL, 842 mask); 843 } 844 845 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 846 int bits, gfp_t mask) 847 { 848 return clear_extent_bit(tree, start, end, bits, 0, 0, mask); 849 } 850 851 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 852 gfp_t mask) 853 { 854 return set_extent_bit(tree, start, end, 855 EXTENT_DELALLOC | EXTENT_DIRTY, 856 0, NULL, mask); 857 } 858 859 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 860 gfp_t mask) 861 { 862 return clear_extent_bit(tree, start, end, 863 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask); 864 } 865 866 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end, 867 gfp_t mask) 868 { 869 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask); 870 } 871 872 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 873 gfp_t mask) 874 { 875 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, 876 mask); 877 } 878 879 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 880 gfp_t mask) 881 { 882 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask); 883 } 884 885 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 886 gfp_t mask) 887 { 888 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, 889 mask); 890 } 891 892 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, 893 u64 end, gfp_t mask) 894 { 895 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask); 896 } 897 898 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end, 899 gfp_t mask) 900 { 901 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK, 902 0, NULL, mask); 903 } 904 905 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start, 906 u64 end, gfp_t mask) 907 { 908 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask); 909 } 910 911 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) 912 { 913 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); 914 } 915 916 /* 917 * either insert or lock state struct between start and end use mask to tell 918 * us if waiting is desired. 919 */ 920 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) 921 { 922 int err; 923 u64 failed_start; 924 while (1) { 925 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 926 &failed_start, mask); 927 if (err == -EEXIST && (mask & __GFP_WAIT)) { 928 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 929 start = failed_start; 930 } else { 931 break; 932 } 933 WARN_ON(start > end); 934 } 935 return err; 936 } 937 938 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, 939 gfp_t mask) 940 { 941 int err; 942 u64 failed_start; 943 944 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 945 &failed_start, mask); 946 if (err == -EEXIST) { 947 if (failed_start > start) 948 clear_extent_bit(tree, start, failed_start - 1, 949 EXTENT_LOCKED, 1, 0, mask); 950 return 0; 951 } 952 return 1; 953 } 954 955 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, 956 gfp_t mask) 957 { 958 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask); 959 } 960 961 /* 962 * helper function to set pages and extents in the tree dirty 963 */ 964 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) 965 { 966 unsigned long index = start >> PAGE_CACHE_SHIFT; 967 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 968 struct page *page; 969 970 while (index <= end_index) { 971 page = find_get_page(tree->mapping, index); 972 BUG_ON(!page); 973 __set_page_dirty_nobuffers(page); 974 page_cache_release(page); 975 index++; 976 } 977 set_extent_dirty(tree, start, end, GFP_NOFS); 978 return 0; 979 } 980 981 /* 982 * helper function to set both pages and extents in the tree writeback 983 */ 984 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 985 { 986 unsigned long index = start >> PAGE_CACHE_SHIFT; 987 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 988 struct page *page; 989 990 while (index <= end_index) { 991 page = find_get_page(tree->mapping, index); 992 BUG_ON(!page); 993 set_page_writeback(page); 994 page_cache_release(page); 995 index++; 996 } 997 set_extent_writeback(tree, start, end, GFP_NOFS); 998 return 0; 999 } 1000 1001 /* 1002 * find the first offset in the io tree with 'bits' set. zero is 1003 * returned if we find something, and *start_ret and *end_ret are 1004 * set to reflect the state struct that was found. 1005 * 1006 * If nothing was found, 1 is returned, < 0 on error 1007 */ 1008 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1009 u64 *start_ret, u64 *end_ret, int bits) 1010 { 1011 struct rb_node *node; 1012 struct extent_state *state; 1013 int ret = 1; 1014 1015 spin_lock(&tree->lock); 1016 /* 1017 * this search will find all the extents that end after 1018 * our range starts. 1019 */ 1020 node = tree_search(tree, start); 1021 if (!node) 1022 goto out; 1023 1024 while (1) { 1025 state = rb_entry(node, struct extent_state, rb_node); 1026 if (state->end >= start && (state->state & bits)) { 1027 *start_ret = state->start; 1028 *end_ret = state->end; 1029 ret = 0; 1030 break; 1031 } 1032 node = rb_next(node); 1033 if (!node) 1034 break; 1035 } 1036 out: 1037 spin_unlock(&tree->lock); 1038 return ret; 1039 } 1040 1041 /* find the first state struct with 'bits' set after 'start', and 1042 * return it. tree->lock must be held. NULL will returned if 1043 * nothing was found after 'start' 1044 */ 1045 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1046 u64 start, int bits) 1047 { 1048 struct rb_node *node; 1049 struct extent_state *state; 1050 1051 /* 1052 * this search will find all the extents that end after 1053 * our range starts. 1054 */ 1055 node = tree_search(tree, start); 1056 if (!node) 1057 goto out; 1058 1059 while (1) { 1060 state = rb_entry(node, struct extent_state, rb_node); 1061 if (state->end >= start && (state->state & bits)) 1062 return state; 1063 1064 node = rb_next(node); 1065 if (!node) 1066 break; 1067 } 1068 out: 1069 return NULL; 1070 } 1071 1072 /* 1073 * find a contiguous range of bytes in the file marked as delalloc, not 1074 * more than 'max_bytes'. start and end are used to return the range, 1075 * 1076 * 1 is returned if we find something, 0 if nothing was in the tree 1077 */ 1078 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1079 u64 *start, u64 *end, u64 max_bytes) 1080 { 1081 struct rb_node *node; 1082 struct extent_state *state; 1083 u64 cur_start = *start; 1084 u64 found = 0; 1085 u64 total_bytes = 0; 1086 1087 spin_lock(&tree->lock); 1088 1089 /* 1090 * this search will find all the extents that end after 1091 * our range starts. 1092 */ 1093 node = tree_search(tree, cur_start); 1094 if (!node) { 1095 if (!found) 1096 *end = (u64)-1; 1097 goto out; 1098 } 1099 1100 while (1) { 1101 state = rb_entry(node, struct extent_state, rb_node); 1102 if (found && (state->start != cur_start || 1103 (state->state & EXTENT_BOUNDARY))) { 1104 goto out; 1105 } 1106 if (!(state->state & EXTENT_DELALLOC)) { 1107 if (!found) 1108 *end = state->end; 1109 goto out; 1110 } 1111 if (!found) 1112 *start = state->start; 1113 found++; 1114 *end = state->end; 1115 cur_start = state->end + 1; 1116 node = rb_next(node); 1117 if (!node) 1118 break; 1119 total_bytes += state->end - state->start + 1; 1120 if (total_bytes >= max_bytes) 1121 break; 1122 } 1123 out: 1124 spin_unlock(&tree->lock); 1125 return found; 1126 } 1127 1128 static noinline int __unlock_for_delalloc(struct inode *inode, 1129 struct page *locked_page, 1130 u64 start, u64 end) 1131 { 1132 int ret; 1133 struct page *pages[16]; 1134 unsigned long index = start >> PAGE_CACHE_SHIFT; 1135 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1136 unsigned long nr_pages = end_index - index + 1; 1137 int i; 1138 1139 if (index == locked_page->index && end_index == index) 1140 return 0; 1141 1142 while (nr_pages > 0) { 1143 ret = find_get_pages_contig(inode->i_mapping, index, 1144 min_t(unsigned long, nr_pages, 1145 ARRAY_SIZE(pages)), pages); 1146 for (i = 0; i < ret; i++) { 1147 if (pages[i] != locked_page) 1148 unlock_page(pages[i]); 1149 page_cache_release(pages[i]); 1150 } 1151 nr_pages -= ret; 1152 index += ret; 1153 cond_resched(); 1154 } 1155 return 0; 1156 } 1157 1158 static noinline int lock_delalloc_pages(struct inode *inode, 1159 struct page *locked_page, 1160 u64 delalloc_start, 1161 u64 delalloc_end) 1162 { 1163 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1164 unsigned long start_index = index; 1165 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1166 unsigned long pages_locked = 0; 1167 struct page *pages[16]; 1168 unsigned long nrpages; 1169 int ret; 1170 int i; 1171 1172 /* the caller is responsible for locking the start index */ 1173 if (index == locked_page->index && index == end_index) 1174 return 0; 1175 1176 /* skip the page at the start index */ 1177 nrpages = end_index - index + 1; 1178 while (nrpages > 0) { 1179 ret = find_get_pages_contig(inode->i_mapping, index, 1180 min_t(unsigned long, 1181 nrpages, ARRAY_SIZE(pages)), pages); 1182 if (ret == 0) { 1183 ret = -EAGAIN; 1184 goto done; 1185 } 1186 /* now we have an array of pages, lock them all */ 1187 for (i = 0; i < ret; i++) { 1188 /* 1189 * the caller is taking responsibility for 1190 * locked_page 1191 */ 1192 if (pages[i] != locked_page) { 1193 lock_page(pages[i]); 1194 if (!PageDirty(pages[i]) || 1195 pages[i]->mapping != inode->i_mapping) { 1196 ret = -EAGAIN; 1197 unlock_page(pages[i]); 1198 page_cache_release(pages[i]); 1199 goto done; 1200 } 1201 } 1202 page_cache_release(pages[i]); 1203 pages_locked++; 1204 } 1205 nrpages -= ret; 1206 index += ret; 1207 cond_resched(); 1208 } 1209 ret = 0; 1210 done: 1211 if (ret && pages_locked) { 1212 __unlock_for_delalloc(inode, locked_page, 1213 delalloc_start, 1214 ((u64)(start_index + pages_locked - 1)) << 1215 PAGE_CACHE_SHIFT); 1216 } 1217 return ret; 1218 } 1219 1220 /* 1221 * find a contiguous range of bytes in the file marked as delalloc, not 1222 * more than 'max_bytes'. start and end are used to return the range, 1223 * 1224 * 1 is returned if we find something, 0 if nothing was in the tree 1225 */ 1226 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1227 struct extent_io_tree *tree, 1228 struct page *locked_page, 1229 u64 *start, u64 *end, 1230 u64 max_bytes) 1231 { 1232 u64 delalloc_start; 1233 u64 delalloc_end; 1234 u64 found; 1235 int ret; 1236 int loops = 0; 1237 1238 again: 1239 /* step one, find a bunch of delalloc bytes starting at start */ 1240 delalloc_start = *start; 1241 delalloc_end = 0; 1242 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1243 max_bytes); 1244 if (!found || delalloc_end <= *start) { 1245 *start = delalloc_start; 1246 *end = delalloc_end; 1247 return found; 1248 } 1249 1250 /* 1251 * start comes from the offset of locked_page. We have to lock 1252 * pages in order, so we can't process delalloc bytes before 1253 * locked_page 1254 */ 1255 if (delalloc_start < *start) 1256 delalloc_start = *start; 1257 1258 /* 1259 * make sure to limit the number of pages we try to lock down 1260 * if we're looping. 1261 */ 1262 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1263 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1264 1265 /* step two, lock all the pages after the page that has start */ 1266 ret = lock_delalloc_pages(inode, locked_page, 1267 delalloc_start, delalloc_end); 1268 if (ret == -EAGAIN) { 1269 /* some of the pages are gone, lets avoid looping by 1270 * shortening the size of the delalloc range we're searching 1271 */ 1272 if (!loops) { 1273 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1274 max_bytes = PAGE_CACHE_SIZE - offset; 1275 loops = 1; 1276 goto again; 1277 } else { 1278 found = 0; 1279 goto out_failed; 1280 } 1281 } 1282 BUG_ON(ret); 1283 1284 /* step three, lock the state bits for the whole range */ 1285 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS); 1286 1287 /* then test to make sure it is all still delalloc */ 1288 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1289 EXTENT_DELALLOC, 1); 1290 if (!ret) { 1291 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS); 1292 __unlock_for_delalloc(inode, locked_page, 1293 delalloc_start, delalloc_end); 1294 cond_resched(); 1295 goto again; 1296 } 1297 *start = delalloc_start; 1298 *end = delalloc_end; 1299 out_failed: 1300 return found; 1301 } 1302 1303 int extent_clear_unlock_delalloc(struct inode *inode, 1304 struct extent_io_tree *tree, 1305 u64 start, u64 end, struct page *locked_page, 1306 int unlock_pages, 1307 int clear_unlock, 1308 int clear_delalloc, int clear_dirty, 1309 int set_writeback, 1310 int end_writeback) 1311 { 1312 int ret; 1313 struct page *pages[16]; 1314 unsigned long index = start >> PAGE_CACHE_SHIFT; 1315 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1316 unsigned long nr_pages = end_index - index + 1; 1317 int i; 1318 int clear_bits = 0; 1319 1320 if (clear_unlock) 1321 clear_bits |= EXTENT_LOCKED; 1322 if (clear_dirty) 1323 clear_bits |= EXTENT_DIRTY; 1324 1325 if (clear_delalloc) 1326 clear_bits |= EXTENT_DELALLOC; 1327 1328 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS); 1329 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback)) 1330 return 0; 1331 1332 while (nr_pages > 0) { 1333 ret = find_get_pages_contig(inode->i_mapping, index, 1334 min_t(unsigned long, 1335 nr_pages, ARRAY_SIZE(pages)), pages); 1336 for (i = 0; i < ret; i++) { 1337 if (pages[i] == locked_page) { 1338 page_cache_release(pages[i]); 1339 continue; 1340 } 1341 if (clear_dirty) 1342 clear_page_dirty_for_io(pages[i]); 1343 if (set_writeback) 1344 set_page_writeback(pages[i]); 1345 if (end_writeback) 1346 end_page_writeback(pages[i]); 1347 if (unlock_pages) 1348 unlock_page(pages[i]); 1349 page_cache_release(pages[i]); 1350 } 1351 nr_pages -= ret; 1352 index += ret; 1353 cond_resched(); 1354 } 1355 return 0; 1356 } 1357 1358 /* 1359 * count the number of bytes in the tree that have a given bit(s) 1360 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1361 * cached. The total number found is returned. 1362 */ 1363 u64 count_range_bits(struct extent_io_tree *tree, 1364 u64 *start, u64 search_end, u64 max_bytes, 1365 unsigned long bits) 1366 { 1367 struct rb_node *node; 1368 struct extent_state *state; 1369 u64 cur_start = *start; 1370 u64 total_bytes = 0; 1371 int found = 0; 1372 1373 if (search_end <= cur_start) { 1374 WARN_ON(1); 1375 return 0; 1376 } 1377 1378 spin_lock(&tree->lock); 1379 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1380 total_bytes = tree->dirty_bytes; 1381 goto out; 1382 } 1383 /* 1384 * this search will find all the extents that end after 1385 * our range starts. 1386 */ 1387 node = tree_search(tree, cur_start); 1388 if (!node) 1389 goto out; 1390 1391 while (1) { 1392 state = rb_entry(node, struct extent_state, rb_node); 1393 if (state->start > search_end) 1394 break; 1395 if (state->end >= cur_start && (state->state & bits)) { 1396 total_bytes += min(search_end, state->end) + 1 - 1397 max(cur_start, state->start); 1398 if (total_bytes >= max_bytes) 1399 break; 1400 if (!found) { 1401 *start = state->start; 1402 found = 1; 1403 } 1404 } 1405 node = rb_next(node); 1406 if (!node) 1407 break; 1408 } 1409 out: 1410 spin_unlock(&tree->lock); 1411 return total_bytes; 1412 } 1413 1414 /* 1415 * set the private field for a given byte offset in the tree. If there isn't 1416 * an extent_state there already, this does nothing. 1417 */ 1418 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1419 { 1420 struct rb_node *node; 1421 struct extent_state *state; 1422 int ret = 0; 1423 1424 spin_lock(&tree->lock); 1425 /* 1426 * this search will find all the extents that end after 1427 * our range starts. 1428 */ 1429 node = tree_search(tree, start); 1430 if (!node) { 1431 ret = -ENOENT; 1432 goto out; 1433 } 1434 state = rb_entry(node, struct extent_state, rb_node); 1435 if (state->start != start) { 1436 ret = -ENOENT; 1437 goto out; 1438 } 1439 state->private = private; 1440 out: 1441 spin_unlock(&tree->lock); 1442 return ret; 1443 } 1444 1445 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1446 { 1447 struct rb_node *node; 1448 struct extent_state *state; 1449 int ret = 0; 1450 1451 spin_lock(&tree->lock); 1452 /* 1453 * this search will find all the extents that end after 1454 * our range starts. 1455 */ 1456 node = tree_search(tree, start); 1457 if (!node) { 1458 ret = -ENOENT; 1459 goto out; 1460 } 1461 state = rb_entry(node, struct extent_state, rb_node); 1462 if (state->start != start) { 1463 ret = -ENOENT; 1464 goto out; 1465 } 1466 *private = state->private; 1467 out: 1468 spin_unlock(&tree->lock); 1469 return ret; 1470 } 1471 1472 /* 1473 * searches a range in the state tree for a given mask. 1474 * If 'filled' == 1, this returns 1 only if every extent in the tree 1475 * has the bits set. Otherwise, 1 is returned if any bit in the 1476 * range is found set. 1477 */ 1478 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1479 int bits, int filled) 1480 { 1481 struct extent_state *state = NULL; 1482 struct rb_node *node; 1483 int bitset = 0; 1484 1485 spin_lock(&tree->lock); 1486 node = tree_search(tree, start); 1487 while (node && start <= end) { 1488 state = rb_entry(node, struct extent_state, rb_node); 1489 1490 if (filled && state->start > start) { 1491 bitset = 0; 1492 break; 1493 } 1494 1495 if (state->start > end) 1496 break; 1497 1498 if (state->state & bits) { 1499 bitset = 1; 1500 if (!filled) 1501 break; 1502 } else if (filled) { 1503 bitset = 0; 1504 break; 1505 } 1506 start = state->end + 1; 1507 if (start > end) 1508 break; 1509 node = rb_next(node); 1510 if (!node) { 1511 if (filled) 1512 bitset = 0; 1513 break; 1514 } 1515 } 1516 spin_unlock(&tree->lock); 1517 return bitset; 1518 } 1519 1520 /* 1521 * helper function to set a given page up to date if all the 1522 * extents in the tree for that page are up to date 1523 */ 1524 static int check_page_uptodate(struct extent_io_tree *tree, 1525 struct page *page) 1526 { 1527 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1528 u64 end = start + PAGE_CACHE_SIZE - 1; 1529 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1)) 1530 SetPageUptodate(page); 1531 return 0; 1532 } 1533 1534 /* 1535 * helper function to unlock a page if all the extents in the tree 1536 * for that page are unlocked 1537 */ 1538 static int check_page_locked(struct extent_io_tree *tree, 1539 struct page *page) 1540 { 1541 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1542 u64 end = start + PAGE_CACHE_SIZE - 1; 1543 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0)) 1544 unlock_page(page); 1545 return 0; 1546 } 1547 1548 /* 1549 * helper function to end page writeback if all the extents 1550 * in the tree for that page are done with writeback 1551 */ 1552 static int check_page_writeback(struct extent_io_tree *tree, 1553 struct page *page) 1554 { 1555 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1556 u64 end = start + PAGE_CACHE_SIZE - 1; 1557 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0)) 1558 end_page_writeback(page); 1559 return 0; 1560 } 1561 1562 /* lots and lots of room for performance fixes in the end_bio funcs */ 1563 1564 /* 1565 * after a writepage IO is done, we need to: 1566 * clear the uptodate bits on error 1567 * clear the writeback bits in the extent tree for this IO 1568 * end_page_writeback if the page has no more pending IO 1569 * 1570 * Scheduling is not allowed, so the extent state tree is expected 1571 * to have one and only one object corresponding to this IO. 1572 */ 1573 static void end_bio_extent_writepage(struct bio *bio, int err) 1574 { 1575 int uptodate = err == 0; 1576 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1577 struct extent_io_tree *tree; 1578 u64 start; 1579 u64 end; 1580 int whole_page; 1581 int ret; 1582 1583 do { 1584 struct page *page = bvec->bv_page; 1585 tree = &BTRFS_I(page->mapping->host)->io_tree; 1586 1587 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1588 bvec->bv_offset; 1589 end = start + bvec->bv_len - 1; 1590 1591 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1592 whole_page = 1; 1593 else 1594 whole_page = 0; 1595 1596 if (--bvec >= bio->bi_io_vec) 1597 prefetchw(&bvec->bv_page->flags); 1598 if (tree->ops && tree->ops->writepage_end_io_hook) { 1599 ret = tree->ops->writepage_end_io_hook(page, start, 1600 end, NULL, uptodate); 1601 if (ret) 1602 uptodate = 0; 1603 } 1604 1605 if (!uptodate && tree->ops && 1606 tree->ops->writepage_io_failed_hook) { 1607 ret = tree->ops->writepage_io_failed_hook(bio, page, 1608 start, end, NULL); 1609 if (ret == 0) { 1610 uptodate = (err == 0); 1611 continue; 1612 } 1613 } 1614 1615 if (!uptodate) { 1616 clear_extent_uptodate(tree, start, end, GFP_ATOMIC); 1617 ClearPageUptodate(page); 1618 SetPageError(page); 1619 } 1620 1621 clear_extent_writeback(tree, start, end, GFP_ATOMIC); 1622 1623 if (whole_page) 1624 end_page_writeback(page); 1625 else 1626 check_page_writeback(tree, page); 1627 } while (bvec >= bio->bi_io_vec); 1628 1629 bio_put(bio); 1630 } 1631 1632 /* 1633 * after a readpage IO is done, we need to: 1634 * clear the uptodate bits on error 1635 * set the uptodate bits if things worked 1636 * set the page up to date if all extents in the tree are uptodate 1637 * clear the lock bit in the extent tree 1638 * unlock the page if there are no other extents locked for it 1639 * 1640 * Scheduling is not allowed, so the extent state tree is expected 1641 * to have one and only one object corresponding to this IO. 1642 */ 1643 static void end_bio_extent_readpage(struct bio *bio, int err) 1644 { 1645 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1646 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1647 struct extent_io_tree *tree; 1648 u64 start; 1649 u64 end; 1650 int whole_page; 1651 int ret; 1652 1653 if (err) 1654 uptodate = 0; 1655 1656 do { 1657 struct page *page = bvec->bv_page; 1658 tree = &BTRFS_I(page->mapping->host)->io_tree; 1659 1660 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1661 bvec->bv_offset; 1662 end = start + bvec->bv_len - 1; 1663 1664 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1665 whole_page = 1; 1666 else 1667 whole_page = 0; 1668 1669 if (--bvec >= bio->bi_io_vec) 1670 prefetchw(&bvec->bv_page->flags); 1671 1672 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 1673 ret = tree->ops->readpage_end_io_hook(page, start, end, 1674 NULL); 1675 if (ret) 1676 uptodate = 0; 1677 } 1678 if (!uptodate && tree->ops && 1679 tree->ops->readpage_io_failed_hook) { 1680 ret = tree->ops->readpage_io_failed_hook(bio, page, 1681 start, end, NULL); 1682 if (ret == 0) { 1683 uptodate = 1684 test_bit(BIO_UPTODATE, &bio->bi_flags); 1685 if (err) 1686 uptodate = 0; 1687 continue; 1688 } 1689 } 1690 1691 if (uptodate) { 1692 set_extent_uptodate(tree, start, end, 1693 GFP_ATOMIC); 1694 } 1695 unlock_extent(tree, start, end, GFP_ATOMIC); 1696 1697 if (whole_page) { 1698 if (uptodate) { 1699 SetPageUptodate(page); 1700 } else { 1701 ClearPageUptodate(page); 1702 SetPageError(page); 1703 } 1704 unlock_page(page); 1705 } else { 1706 if (uptodate) { 1707 check_page_uptodate(tree, page); 1708 } else { 1709 ClearPageUptodate(page); 1710 SetPageError(page); 1711 } 1712 check_page_locked(tree, page); 1713 } 1714 } while (bvec >= bio->bi_io_vec); 1715 1716 bio_put(bio); 1717 } 1718 1719 /* 1720 * IO done from prepare_write is pretty simple, we just unlock 1721 * the structs in the extent tree when done, and set the uptodate bits 1722 * as appropriate. 1723 */ 1724 static void end_bio_extent_preparewrite(struct bio *bio, int err) 1725 { 1726 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1728 struct extent_io_tree *tree; 1729 u64 start; 1730 u64 end; 1731 1732 do { 1733 struct page *page = bvec->bv_page; 1734 tree = &BTRFS_I(page->mapping->host)->io_tree; 1735 1736 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1737 bvec->bv_offset; 1738 end = start + bvec->bv_len - 1; 1739 1740 if (--bvec >= bio->bi_io_vec) 1741 prefetchw(&bvec->bv_page->flags); 1742 1743 if (uptodate) { 1744 set_extent_uptodate(tree, start, end, GFP_ATOMIC); 1745 } else { 1746 ClearPageUptodate(page); 1747 SetPageError(page); 1748 } 1749 1750 unlock_extent(tree, start, end, GFP_ATOMIC); 1751 1752 } while (bvec >= bio->bi_io_vec); 1753 1754 bio_put(bio); 1755 } 1756 1757 static struct bio * 1758 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 1759 gfp_t gfp_flags) 1760 { 1761 struct bio *bio; 1762 1763 bio = bio_alloc(gfp_flags, nr_vecs); 1764 1765 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 1766 while (!bio && (nr_vecs /= 2)) 1767 bio = bio_alloc(gfp_flags, nr_vecs); 1768 } 1769 1770 if (bio) { 1771 bio->bi_size = 0; 1772 bio->bi_bdev = bdev; 1773 bio->bi_sector = first_sector; 1774 } 1775 return bio; 1776 } 1777 1778 static int submit_one_bio(int rw, struct bio *bio, int mirror_num, 1779 unsigned long bio_flags) 1780 { 1781 int ret = 0; 1782 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1783 struct page *page = bvec->bv_page; 1784 struct extent_io_tree *tree = bio->bi_private; 1785 u64 start; 1786 u64 end; 1787 1788 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 1789 end = start + bvec->bv_len - 1; 1790 1791 bio->bi_private = NULL; 1792 1793 bio_get(bio); 1794 1795 if (tree->ops && tree->ops->submit_bio_hook) 1796 tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 1797 mirror_num, bio_flags); 1798 else 1799 submit_bio(rw, bio); 1800 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 1801 ret = -EOPNOTSUPP; 1802 bio_put(bio); 1803 return ret; 1804 } 1805 1806 static int submit_extent_page(int rw, struct extent_io_tree *tree, 1807 struct page *page, sector_t sector, 1808 size_t size, unsigned long offset, 1809 struct block_device *bdev, 1810 struct bio **bio_ret, 1811 unsigned long max_pages, 1812 bio_end_io_t end_io_func, 1813 int mirror_num, 1814 unsigned long prev_bio_flags, 1815 unsigned long bio_flags) 1816 { 1817 int ret = 0; 1818 struct bio *bio; 1819 int nr; 1820 int contig = 0; 1821 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 1822 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 1823 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 1824 1825 if (bio_ret && *bio_ret) { 1826 bio = *bio_ret; 1827 if (old_compressed) 1828 contig = bio->bi_sector == sector; 1829 else 1830 contig = bio->bi_sector + (bio->bi_size >> 9) == 1831 sector; 1832 1833 if (prev_bio_flags != bio_flags || !contig || 1834 (tree->ops && tree->ops->merge_bio_hook && 1835 tree->ops->merge_bio_hook(page, offset, page_size, bio, 1836 bio_flags)) || 1837 bio_add_page(bio, page, page_size, offset) < page_size) { 1838 ret = submit_one_bio(rw, bio, mirror_num, 1839 prev_bio_flags); 1840 bio = NULL; 1841 } else { 1842 return 0; 1843 } 1844 } 1845 if (this_compressed) 1846 nr = BIO_MAX_PAGES; 1847 else 1848 nr = bio_get_nr_vecs(bdev); 1849 1850 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 1851 1852 bio_add_page(bio, page, page_size, offset); 1853 bio->bi_end_io = end_io_func; 1854 bio->bi_private = tree; 1855 1856 if (bio_ret) 1857 *bio_ret = bio; 1858 else 1859 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 1860 1861 return ret; 1862 } 1863 1864 void set_page_extent_mapped(struct page *page) 1865 { 1866 if (!PagePrivate(page)) { 1867 SetPagePrivate(page); 1868 page_cache_get(page); 1869 set_page_private(page, EXTENT_PAGE_PRIVATE); 1870 } 1871 } 1872 1873 static void set_page_extent_head(struct page *page, unsigned long len) 1874 { 1875 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); 1876 } 1877 1878 /* 1879 * basic readpage implementation. Locked extent state structs are inserted 1880 * into the tree that are removed when the IO is done (by the end_io 1881 * handlers) 1882 */ 1883 static int __extent_read_full_page(struct extent_io_tree *tree, 1884 struct page *page, 1885 get_extent_t *get_extent, 1886 struct bio **bio, int mirror_num, 1887 unsigned long *bio_flags) 1888 { 1889 struct inode *inode = page->mapping->host; 1890 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1891 u64 page_end = start + PAGE_CACHE_SIZE - 1; 1892 u64 end; 1893 u64 cur = start; 1894 u64 extent_offset; 1895 u64 last_byte = i_size_read(inode); 1896 u64 block_start; 1897 u64 cur_end; 1898 sector_t sector; 1899 struct extent_map *em; 1900 struct block_device *bdev; 1901 int ret; 1902 int nr = 0; 1903 size_t page_offset = 0; 1904 size_t iosize; 1905 size_t disk_io_size; 1906 size_t blocksize = inode->i_sb->s_blocksize; 1907 unsigned long this_bio_flag = 0; 1908 1909 set_page_extent_mapped(page); 1910 1911 end = page_end; 1912 lock_extent(tree, start, end, GFP_NOFS); 1913 1914 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 1915 char *userpage; 1916 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 1917 1918 if (zero_offset) { 1919 iosize = PAGE_CACHE_SIZE - zero_offset; 1920 userpage = kmap_atomic(page, KM_USER0); 1921 memset(userpage + zero_offset, 0, iosize); 1922 flush_dcache_page(page); 1923 kunmap_atomic(userpage, KM_USER0); 1924 } 1925 } 1926 while (cur <= end) { 1927 if (cur >= last_byte) { 1928 char *userpage; 1929 iosize = PAGE_CACHE_SIZE - page_offset; 1930 userpage = kmap_atomic(page, KM_USER0); 1931 memset(userpage + page_offset, 0, iosize); 1932 flush_dcache_page(page); 1933 kunmap_atomic(userpage, KM_USER0); 1934 set_extent_uptodate(tree, cur, cur + iosize - 1, 1935 GFP_NOFS); 1936 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 1937 break; 1938 } 1939 em = get_extent(inode, page, page_offset, cur, 1940 end - cur + 1, 0); 1941 if (IS_ERR(em) || !em) { 1942 SetPageError(page); 1943 unlock_extent(tree, cur, end, GFP_NOFS); 1944 break; 1945 } 1946 extent_offset = cur - em->start; 1947 BUG_ON(extent_map_end(em) <= cur); 1948 BUG_ON(end < cur); 1949 1950 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1951 this_bio_flag = EXTENT_BIO_COMPRESSED; 1952 1953 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1954 cur_end = min(extent_map_end(em) - 1, end); 1955 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 1956 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 1957 disk_io_size = em->block_len; 1958 sector = em->block_start >> 9; 1959 } else { 1960 sector = (em->block_start + extent_offset) >> 9; 1961 disk_io_size = iosize; 1962 } 1963 bdev = em->bdev; 1964 block_start = em->block_start; 1965 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1966 block_start = EXTENT_MAP_HOLE; 1967 free_extent_map(em); 1968 em = NULL; 1969 1970 /* we've found a hole, just zero and go on */ 1971 if (block_start == EXTENT_MAP_HOLE) { 1972 char *userpage; 1973 userpage = kmap_atomic(page, KM_USER0); 1974 memset(userpage + page_offset, 0, iosize); 1975 flush_dcache_page(page); 1976 kunmap_atomic(userpage, KM_USER0); 1977 1978 set_extent_uptodate(tree, cur, cur + iosize - 1, 1979 GFP_NOFS); 1980 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 1981 cur = cur + iosize; 1982 page_offset += iosize; 1983 continue; 1984 } 1985 /* the get_extent function already copied into the page */ 1986 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) { 1987 check_page_uptodate(tree, page); 1988 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 1989 cur = cur + iosize; 1990 page_offset += iosize; 1991 continue; 1992 } 1993 /* we have an inline extent but it didn't get marked up 1994 * to date. Error out 1995 */ 1996 if (block_start == EXTENT_MAP_INLINE) { 1997 SetPageError(page); 1998 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 1999 cur = cur + iosize; 2000 page_offset += iosize; 2001 continue; 2002 } 2003 2004 ret = 0; 2005 if (tree->ops && tree->ops->readpage_io_hook) { 2006 ret = tree->ops->readpage_io_hook(page, cur, 2007 cur + iosize - 1); 2008 } 2009 if (!ret) { 2010 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2011 pnr -= page->index; 2012 ret = submit_extent_page(READ, tree, page, 2013 sector, disk_io_size, page_offset, 2014 bdev, bio, pnr, 2015 end_bio_extent_readpage, mirror_num, 2016 *bio_flags, 2017 this_bio_flag); 2018 nr++; 2019 *bio_flags = this_bio_flag; 2020 } 2021 if (ret) 2022 SetPageError(page); 2023 cur = cur + iosize; 2024 page_offset += iosize; 2025 } 2026 if (!nr) { 2027 if (!PageError(page)) 2028 SetPageUptodate(page); 2029 unlock_page(page); 2030 } 2031 return 0; 2032 } 2033 2034 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2035 get_extent_t *get_extent) 2036 { 2037 struct bio *bio = NULL; 2038 unsigned long bio_flags = 0; 2039 int ret; 2040 2041 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, 2042 &bio_flags); 2043 if (bio) 2044 submit_one_bio(READ, bio, 0, bio_flags); 2045 return ret; 2046 } 2047 2048 static noinline void update_nr_written(struct page *page, 2049 struct writeback_control *wbc, 2050 unsigned long nr_written) 2051 { 2052 wbc->nr_to_write -= nr_written; 2053 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2054 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2055 page->mapping->writeback_index = page->index + nr_written; 2056 } 2057 2058 /* 2059 * the writepage semantics are similar to regular writepage. extent 2060 * records are inserted to lock ranges in the tree, and as dirty areas 2061 * are found, they are marked writeback. Then the lock bits are removed 2062 * and the end_io handler clears the writeback ranges 2063 */ 2064 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2065 void *data) 2066 { 2067 struct inode *inode = page->mapping->host; 2068 struct extent_page_data *epd = data; 2069 struct extent_io_tree *tree = epd->tree; 2070 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2071 u64 delalloc_start; 2072 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2073 u64 end; 2074 u64 cur = start; 2075 u64 extent_offset; 2076 u64 last_byte = i_size_read(inode); 2077 u64 block_start; 2078 u64 iosize; 2079 u64 unlock_start; 2080 sector_t sector; 2081 struct extent_map *em; 2082 struct block_device *bdev; 2083 int ret; 2084 int nr = 0; 2085 size_t pg_offset = 0; 2086 size_t blocksize; 2087 loff_t i_size = i_size_read(inode); 2088 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2089 u64 nr_delalloc; 2090 u64 delalloc_end; 2091 int page_started; 2092 int compressed; 2093 int write_flags; 2094 unsigned long nr_written = 0; 2095 2096 if (wbc->sync_mode == WB_SYNC_ALL) 2097 write_flags = WRITE_SYNC_PLUG; 2098 else 2099 write_flags = WRITE; 2100 2101 WARN_ON(!PageLocked(page)); 2102 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2103 if (page->index > end_index || 2104 (page->index == end_index && !pg_offset)) { 2105 page->mapping->a_ops->invalidatepage(page, 0); 2106 unlock_page(page); 2107 return 0; 2108 } 2109 2110 if (page->index == end_index) { 2111 char *userpage; 2112 2113 userpage = kmap_atomic(page, KM_USER0); 2114 memset(userpage + pg_offset, 0, 2115 PAGE_CACHE_SIZE - pg_offset); 2116 kunmap_atomic(userpage, KM_USER0); 2117 flush_dcache_page(page); 2118 } 2119 pg_offset = 0; 2120 2121 set_page_extent_mapped(page); 2122 2123 delalloc_start = start; 2124 delalloc_end = 0; 2125 page_started = 0; 2126 if (!epd->extent_locked) { 2127 /* 2128 * make sure the wbc mapping index is at least updated 2129 * to this page. 2130 */ 2131 update_nr_written(page, wbc, 0); 2132 2133 while (delalloc_end < page_end) { 2134 nr_delalloc = find_lock_delalloc_range(inode, tree, 2135 page, 2136 &delalloc_start, 2137 &delalloc_end, 2138 128 * 1024 * 1024); 2139 if (nr_delalloc == 0) { 2140 delalloc_start = delalloc_end + 1; 2141 continue; 2142 } 2143 tree->ops->fill_delalloc(inode, page, delalloc_start, 2144 delalloc_end, &page_started, 2145 &nr_written); 2146 delalloc_start = delalloc_end + 1; 2147 } 2148 2149 /* did the fill delalloc function already unlock and start 2150 * the IO? 2151 */ 2152 if (page_started) { 2153 ret = 0; 2154 /* 2155 * we've unlocked the page, so we can't update 2156 * the mapping's writeback index, just update 2157 * nr_to_write. 2158 */ 2159 wbc->nr_to_write -= nr_written; 2160 goto done_unlocked; 2161 } 2162 } 2163 lock_extent(tree, start, page_end, GFP_NOFS); 2164 2165 unlock_start = start; 2166 2167 if (tree->ops && tree->ops->writepage_start_hook) { 2168 ret = tree->ops->writepage_start_hook(page, start, 2169 page_end); 2170 if (ret == -EAGAIN) { 2171 unlock_extent(tree, start, page_end, GFP_NOFS); 2172 redirty_page_for_writepage(wbc, page); 2173 update_nr_written(page, wbc, nr_written); 2174 unlock_page(page); 2175 ret = 0; 2176 goto done_unlocked; 2177 } 2178 } 2179 2180 /* 2181 * we don't want to touch the inode after unlocking the page, 2182 * so we update the mapping writeback index now 2183 */ 2184 update_nr_written(page, wbc, nr_written + 1); 2185 2186 end = page_end; 2187 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) 2188 printk(KERN_ERR "btrfs delalloc bits after lock_extent\n"); 2189 2190 if (last_byte <= start) { 2191 clear_extent_dirty(tree, start, page_end, GFP_NOFS); 2192 unlock_extent(tree, start, page_end, GFP_NOFS); 2193 if (tree->ops && tree->ops->writepage_end_io_hook) 2194 tree->ops->writepage_end_io_hook(page, start, 2195 page_end, NULL, 1); 2196 unlock_start = page_end + 1; 2197 goto done; 2198 } 2199 2200 set_extent_uptodate(tree, start, page_end, GFP_NOFS); 2201 blocksize = inode->i_sb->s_blocksize; 2202 2203 while (cur <= end) { 2204 if (cur >= last_byte) { 2205 clear_extent_dirty(tree, cur, page_end, GFP_NOFS); 2206 unlock_extent(tree, unlock_start, page_end, GFP_NOFS); 2207 if (tree->ops && tree->ops->writepage_end_io_hook) 2208 tree->ops->writepage_end_io_hook(page, cur, 2209 page_end, NULL, 1); 2210 unlock_start = page_end + 1; 2211 break; 2212 } 2213 em = epd->get_extent(inode, page, pg_offset, cur, 2214 end - cur + 1, 1); 2215 if (IS_ERR(em) || !em) { 2216 SetPageError(page); 2217 break; 2218 } 2219 2220 extent_offset = cur - em->start; 2221 BUG_ON(extent_map_end(em) <= cur); 2222 BUG_ON(end < cur); 2223 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2224 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2225 sector = (em->block_start + extent_offset) >> 9; 2226 bdev = em->bdev; 2227 block_start = em->block_start; 2228 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2229 free_extent_map(em); 2230 em = NULL; 2231 2232 /* 2233 * compressed and inline extents are written through other 2234 * paths in the FS 2235 */ 2236 if (compressed || block_start == EXTENT_MAP_HOLE || 2237 block_start == EXTENT_MAP_INLINE) { 2238 clear_extent_dirty(tree, cur, 2239 cur + iosize - 1, GFP_NOFS); 2240 2241 unlock_extent(tree, unlock_start, cur + iosize - 1, 2242 GFP_NOFS); 2243 2244 /* 2245 * end_io notification does not happen here for 2246 * compressed extents 2247 */ 2248 if (!compressed && tree->ops && 2249 tree->ops->writepage_end_io_hook) 2250 tree->ops->writepage_end_io_hook(page, cur, 2251 cur + iosize - 1, 2252 NULL, 1); 2253 else if (compressed) { 2254 /* we don't want to end_page_writeback on 2255 * a compressed extent. this happens 2256 * elsewhere 2257 */ 2258 nr++; 2259 } 2260 2261 cur += iosize; 2262 pg_offset += iosize; 2263 unlock_start = cur; 2264 continue; 2265 } 2266 /* leave this out until we have a page_mkwrite call */ 2267 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2268 EXTENT_DIRTY, 0)) { 2269 cur = cur + iosize; 2270 pg_offset += iosize; 2271 continue; 2272 } 2273 2274 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS); 2275 if (tree->ops && tree->ops->writepage_io_hook) { 2276 ret = tree->ops->writepage_io_hook(page, cur, 2277 cur + iosize - 1); 2278 } else { 2279 ret = 0; 2280 } 2281 if (ret) { 2282 SetPageError(page); 2283 } else { 2284 unsigned long max_nr = end_index + 1; 2285 2286 set_range_writeback(tree, cur, cur + iosize - 1); 2287 if (!PageWriteback(page)) { 2288 printk(KERN_ERR "btrfs warning page %lu not " 2289 "writeback, cur %llu end %llu\n", 2290 page->index, (unsigned long long)cur, 2291 (unsigned long long)end); 2292 } 2293 2294 ret = submit_extent_page(write_flags, tree, page, 2295 sector, iosize, pg_offset, 2296 bdev, &epd->bio, max_nr, 2297 end_bio_extent_writepage, 2298 0, 0, 0); 2299 if (ret) 2300 SetPageError(page); 2301 } 2302 cur = cur + iosize; 2303 pg_offset += iosize; 2304 nr++; 2305 } 2306 done: 2307 if (nr == 0) { 2308 /* make sure the mapping tag for page dirty gets cleared */ 2309 set_page_writeback(page); 2310 end_page_writeback(page); 2311 } 2312 if (unlock_start <= page_end) 2313 unlock_extent(tree, unlock_start, page_end, GFP_NOFS); 2314 unlock_page(page); 2315 2316 done_unlocked: 2317 2318 return 0; 2319 } 2320 2321 /** 2322 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2323 * @mapping: address space structure to write 2324 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2325 * @writepage: function called for each page 2326 * @data: data passed to writepage function 2327 * 2328 * If a page is already under I/O, write_cache_pages() skips it, even 2329 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2330 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2331 * and msync() need to guarantee that all the data which was dirty at the time 2332 * the call was made get new I/O started against them. If wbc->sync_mode is 2333 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2334 * existing IO to complete. 2335 */ 2336 static int extent_write_cache_pages(struct extent_io_tree *tree, 2337 struct address_space *mapping, 2338 struct writeback_control *wbc, 2339 writepage_t writepage, void *data, 2340 void (*flush_fn)(void *)) 2341 { 2342 struct backing_dev_info *bdi = mapping->backing_dev_info; 2343 int ret = 0; 2344 int done = 0; 2345 struct pagevec pvec; 2346 int nr_pages; 2347 pgoff_t index; 2348 pgoff_t end; /* Inclusive */ 2349 int scanned = 0; 2350 int range_whole = 0; 2351 2352 pagevec_init(&pvec, 0); 2353 if (wbc->range_cyclic) { 2354 index = mapping->writeback_index; /* Start from prev offset */ 2355 end = -1; 2356 } else { 2357 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2358 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2359 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2360 range_whole = 1; 2361 scanned = 1; 2362 } 2363 retry: 2364 while (!done && (index <= end) && 2365 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2366 PAGECACHE_TAG_DIRTY, min(end - index, 2367 (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 2368 unsigned i; 2369 2370 scanned = 1; 2371 for (i = 0; i < nr_pages; i++) { 2372 struct page *page = pvec.pages[i]; 2373 2374 /* 2375 * At this point we hold neither mapping->tree_lock nor 2376 * lock on the page itself: the page may be truncated or 2377 * invalidated (changing page->mapping to NULL), or even 2378 * swizzled back from swapper_space to tmpfs file 2379 * mapping 2380 */ 2381 if (tree->ops && tree->ops->write_cache_pages_lock_hook) 2382 tree->ops->write_cache_pages_lock_hook(page); 2383 else 2384 lock_page(page); 2385 2386 if (unlikely(page->mapping != mapping)) { 2387 unlock_page(page); 2388 continue; 2389 } 2390 2391 if (!wbc->range_cyclic && page->index > end) { 2392 done = 1; 2393 unlock_page(page); 2394 continue; 2395 } 2396 2397 if (wbc->sync_mode != WB_SYNC_NONE) { 2398 if (PageWriteback(page)) 2399 flush_fn(data); 2400 wait_on_page_writeback(page); 2401 } 2402 2403 if (PageWriteback(page) || 2404 !clear_page_dirty_for_io(page)) { 2405 unlock_page(page); 2406 continue; 2407 } 2408 2409 ret = (*writepage)(page, wbc, data); 2410 2411 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 2412 unlock_page(page); 2413 ret = 0; 2414 } 2415 if (ret || wbc->nr_to_write <= 0) 2416 done = 1; 2417 if (wbc->nonblocking && bdi_write_congested(bdi)) { 2418 wbc->encountered_congestion = 1; 2419 done = 1; 2420 } 2421 } 2422 pagevec_release(&pvec); 2423 cond_resched(); 2424 } 2425 if (!scanned && !done) { 2426 /* 2427 * We hit the last page and there is more work to be done: wrap 2428 * back to the start of the file 2429 */ 2430 scanned = 1; 2431 index = 0; 2432 goto retry; 2433 } 2434 return ret; 2435 } 2436 2437 static void flush_epd_write_bio(struct extent_page_data *epd) 2438 { 2439 if (epd->bio) { 2440 if (epd->sync_io) 2441 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0); 2442 else 2443 submit_one_bio(WRITE, epd->bio, 0, 0); 2444 epd->bio = NULL; 2445 } 2446 } 2447 2448 static noinline void flush_write_bio(void *data) 2449 { 2450 struct extent_page_data *epd = data; 2451 flush_epd_write_bio(epd); 2452 } 2453 2454 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 2455 get_extent_t *get_extent, 2456 struct writeback_control *wbc) 2457 { 2458 int ret; 2459 struct address_space *mapping = page->mapping; 2460 struct extent_page_data epd = { 2461 .bio = NULL, 2462 .tree = tree, 2463 .get_extent = get_extent, 2464 .extent_locked = 0, 2465 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2466 }; 2467 struct writeback_control wbc_writepages = { 2468 .bdi = wbc->bdi, 2469 .sync_mode = wbc->sync_mode, 2470 .older_than_this = NULL, 2471 .nr_to_write = 64, 2472 .range_start = page_offset(page) + PAGE_CACHE_SIZE, 2473 .range_end = (loff_t)-1, 2474 }; 2475 2476 ret = __extent_writepage(page, wbc, &epd); 2477 2478 extent_write_cache_pages(tree, mapping, &wbc_writepages, 2479 __extent_writepage, &epd, flush_write_bio); 2480 flush_epd_write_bio(&epd); 2481 return ret; 2482 } 2483 2484 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 2485 u64 start, u64 end, get_extent_t *get_extent, 2486 int mode) 2487 { 2488 int ret = 0; 2489 struct address_space *mapping = inode->i_mapping; 2490 struct page *page; 2491 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 2492 PAGE_CACHE_SHIFT; 2493 2494 struct extent_page_data epd = { 2495 .bio = NULL, 2496 .tree = tree, 2497 .get_extent = get_extent, 2498 .extent_locked = 1, 2499 .sync_io = mode == WB_SYNC_ALL, 2500 }; 2501 struct writeback_control wbc_writepages = { 2502 .bdi = inode->i_mapping->backing_dev_info, 2503 .sync_mode = mode, 2504 .older_than_this = NULL, 2505 .nr_to_write = nr_pages * 2, 2506 .range_start = start, 2507 .range_end = end + 1, 2508 }; 2509 2510 while (start <= end) { 2511 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 2512 if (clear_page_dirty_for_io(page)) 2513 ret = __extent_writepage(page, &wbc_writepages, &epd); 2514 else { 2515 if (tree->ops && tree->ops->writepage_end_io_hook) 2516 tree->ops->writepage_end_io_hook(page, start, 2517 start + PAGE_CACHE_SIZE - 1, 2518 NULL, 1); 2519 unlock_page(page); 2520 } 2521 page_cache_release(page); 2522 start += PAGE_CACHE_SIZE; 2523 } 2524 2525 flush_epd_write_bio(&epd); 2526 return ret; 2527 } 2528 2529 int extent_writepages(struct extent_io_tree *tree, 2530 struct address_space *mapping, 2531 get_extent_t *get_extent, 2532 struct writeback_control *wbc) 2533 { 2534 int ret = 0; 2535 struct extent_page_data epd = { 2536 .bio = NULL, 2537 .tree = tree, 2538 .get_extent = get_extent, 2539 .extent_locked = 0, 2540 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2541 }; 2542 2543 ret = extent_write_cache_pages(tree, mapping, wbc, 2544 __extent_writepage, &epd, 2545 flush_write_bio); 2546 flush_epd_write_bio(&epd); 2547 return ret; 2548 } 2549 2550 int extent_readpages(struct extent_io_tree *tree, 2551 struct address_space *mapping, 2552 struct list_head *pages, unsigned nr_pages, 2553 get_extent_t get_extent) 2554 { 2555 struct bio *bio = NULL; 2556 unsigned page_idx; 2557 struct pagevec pvec; 2558 unsigned long bio_flags = 0; 2559 2560 pagevec_init(&pvec, 0); 2561 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 2562 struct page *page = list_entry(pages->prev, struct page, lru); 2563 2564 prefetchw(&page->flags); 2565 list_del(&page->lru); 2566 /* 2567 * what we want to do here is call add_to_page_cache_lru, 2568 * but that isn't exported, so we reproduce it here 2569 */ 2570 if (!add_to_page_cache(page, mapping, 2571 page->index, GFP_KERNEL)) { 2572 2573 /* open coding of lru_cache_add, also not exported */ 2574 page_cache_get(page); 2575 if (!pagevec_add(&pvec, page)) 2576 __pagevec_lru_add_file(&pvec); 2577 __extent_read_full_page(tree, page, get_extent, 2578 &bio, 0, &bio_flags); 2579 } 2580 page_cache_release(page); 2581 } 2582 if (pagevec_count(&pvec)) 2583 __pagevec_lru_add_file(&pvec); 2584 BUG_ON(!list_empty(pages)); 2585 if (bio) 2586 submit_one_bio(READ, bio, 0, bio_flags); 2587 return 0; 2588 } 2589 2590 /* 2591 * basic invalidatepage code, this waits on any locked or writeback 2592 * ranges corresponding to the page, and then deletes any extent state 2593 * records from the tree 2594 */ 2595 int extent_invalidatepage(struct extent_io_tree *tree, 2596 struct page *page, unsigned long offset) 2597 { 2598 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 2599 u64 end = start + PAGE_CACHE_SIZE - 1; 2600 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 2601 2602 start += (offset + blocksize - 1) & ~(blocksize - 1); 2603 if (start > end) 2604 return 0; 2605 2606 lock_extent(tree, start, end, GFP_NOFS); 2607 wait_on_extent_writeback(tree, start, end); 2608 clear_extent_bit(tree, start, end, 2609 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC, 2610 1, 1, GFP_NOFS); 2611 return 0; 2612 } 2613 2614 /* 2615 * simple commit_write call, set_range_dirty is used to mark both 2616 * the pages and the extent records as dirty 2617 */ 2618 int extent_commit_write(struct extent_io_tree *tree, 2619 struct inode *inode, struct page *page, 2620 unsigned from, unsigned to) 2621 { 2622 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2623 2624 set_page_extent_mapped(page); 2625 set_page_dirty(page); 2626 2627 if (pos > inode->i_size) { 2628 i_size_write(inode, pos); 2629 mark_inode_dirty(inode); 2630 } 2631 return 0; 2632 } 2633 2634 int extent_prepare_write(struct extent_io_tree *tree, 2635 struct inode *inode, struct page *page, 2636 unsigned from, unsigned to, get_extent_t *get_extent) 2637 { 2638 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 2639 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 2640 u64 block_start; 2641 u64 orig_block_start; 2642 u64 block_end; 2643 u64 cur_end; 2644 struct extent_map *em; 2645 unsigned blocksize = 1 << inode->i_blkbits; 2646 size_t page_offset = 0; 2647 size_t block_off_start; 2648 size_t block_off_end; 2649 int err = 0; 2650 int iocount = 0; 2651 int ret = 0; 2652 int isnew; 2653 2654 set_page_extent_mapped(page); 2655 2656 block_start = (page_start + from) & ~((u64)blocksize - 1); 2657 block_end = (page_start + to - 1) | (blocksize - 1); 2658 orig_block_start = block_start; 2659 2660 lock_extent(tree, page_start, page_end, GFP_NOFS); 2661 while (block_start <= block_end) { 2662 em = get_extent(inode, page, page_offset, block_start, 2663 block_end - block_start + 1, 1); 2664 if (IS_ERR(em) || !em) 2665 goto err; 2666 2667 cur_end = min(block_end, extent_map_end(em) - 1); 2668 block_off_start = block_start & (PAGE_CACHE_SIZE - 1); 2669 block_off_end = block_off_start + blocksize; 2670 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); 2671 2672 if (!PageUptodate(page) && isnew && 2673 (block_off_end > to || block_off_start < from)) { 2674 void *kaddr; 2675 2676 kaddr = kmap_atomic(page, KM_USER0); 2677 if (block_off_end > to) 2678 memset(kaddr + to, 0, block_off_end - to); 2679 if (block_off_start < from) 2680 memset(kaddr + block_off_start, 0, 2681 from - block_off_start); 2682 flush_dcache_page(page); 2683 kunmap_atomic(kaddr, KM_USER0); 2684 } 2685 if ((em->block_start != EXTENT_MAP_HOLE && 2686 em->block_start != EXTENT_MAP_INLINE) && 2687 !isnew && !PageUptodate(page) && 2688 (block_off_end > to || block_off_start < from) && 2689 !test_range_bit(tree, block_start, cur_end, 2690 EXTENT_UPTODATE, 1)) { 2691 u64 sector; 2692 u64 extent_offset = block_start - em->start; 2693 size_t iosize; 2694 sector = (em->block_start + extent_offset) >> 9; 2695 iosize = (cur_end - block_start + blocksize) & 2696 ~((u64)blocksize - 1); 2697 /* 2698 * we've already got the extent locked, but we 2699 * need to split the state such that our end_bio 2700 * handler can clear the lock. 2701 */ 2702 set_extent_bit(tree, block_start, 2703 block_start + iosize - 1, 2704 EXTENT_LOCKED, 0, NULL, GFP_NOFS); 2705 ret = submit_extent_page(READ, tree, page, 2706 sector, iosize, page_offset, em->bdev, 2707 NULL, 1, 2708 end_bio_extent_preparewrite, 0, 2709 0, 0); 2710 iocount++; 2711 block_start = block_start + iosize; 2712 } else { 2713 set_extent_uptodate(tree, block_start, cur_end, 2714 GFP_NOFS); 2715 unlock_extent(tree, block_start, cur_end, GFP_NOFS); 2716 block_start = cur_end + 1; 2717 } 2718 page_offset = block_start & (PAGE_CACHE_SIZE - 1); 2719 free_extent_map(em); 2720 } 2721 if (iocount) { 2722 wait_extent_bit(tree, orig_block_start, 2723 block_end, EXTENT_LOCKED); 2724 } 2725 check_page_uptodate(tree, page); 2726 err: 2727 /* FIXME, zero out newly allocated blocks on error */ 2728 return err; 2729 } 2730 2731 /* 2732 * a helper for releasepage, this tests for areas of the page that 2733 * are locked or under IO and drops the related state bits if it is safe 2734 * to drop the page. 2735 */ 2736 int try_release_extent_state(struct extent_map_tree *map, 2737 struct extent_io_tree *tree, struct page *page, 2738 gfp_t mask) 2739 { 2740 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2741 u64 end = start + PAGE_CACHE_SIZE - 1; 2742 int ret = 1; 2743 2744 if (test_range_bit(tree, start, end, 2745 EXTENT_IOBITS | EXTENT_ORDERED, 0)) 2746 ret = 0; 2747 else { 2748 if ((mask & GFP_NOFS) == GFP_NOFS) 2749 mask = GFP_NOFS; 2750 clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 2751 1, 1, mask); 2752 } 2753 return ret; 2754 } 2755 2756 /* 2757 * a helper for releasepage. As long as there are no locked extents 2758 * in the range corresponding to the page, both state records and extent 2759 * map records are removed 2760 */ 2761 int try_release_extent_mapping(struct extent_map_tree *map, 2762 struct extent_io_tree *tree, struct page *page, 2763 gfp_t mask) 2764 { 2765 struct extent_map *em; 2766 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2767 u64 end = start + PAGE_CACHE_SIZE - 1; 2768 2769 if ((mask & __GFP_WAIT) && 2770 page->mapping->host->i_size > 16 * 1024 * 1024) { 2771 u64 len; 2772 while (start <= end) { 2773 len = end - start + 1; 2774 spin_lock(&map->lock); 2775 em = lookup_extent_mapping(map, start, len); 2776 if (!em || IS_ERR(em)) { 2777 spin_unlock(&map->lock); 2778 break; 2779 } 2780 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2781 em->start != start) { 2782 spin_unlock(&map->lock); 2783 free_extent_map(em); 2784 break; 2785 } 2786 if (!test_range_bit(tree, em->start, 2787 extent_map_end(em) - 1, 2788 EXTENT_LOCKED | EXTENT_WRITEBACK | 2789 EXTENT_ORDERED, 2790 0)) { 2791 remove_extent_mapping(map, em); 2792 /* once for the rb tree */ 2793 free_extent_map(em); 2794 } 2795 start = extent_map_end(em); 2796 spin_unlock(&map->lock); 2797 2798 /* once for us */ 2799 free_extent_map(em); 2800 } 2801 } 2802 return try_release_extent_state(map, tree, page, mask); 2803 } 2804 2805 sector_t extent_bmap(struct address_space *mapping, sector_t iblock, 2806 get_extent_t *get_extent) 2807 { 2808 struct inode *inode = mapping->host; 2809 u64 start = iblock << inode->i_blkbits; 2810 sector_t sector = 0; 2811 size_t blksize = (1 << inode->i_blkbits); 2812 struct extent_map *em; 2813 2814 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, 2815 GFP_NOFS); 2816 em = get_extent(inode, NULL, 0, start, blksize, 0); 2817 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, 2818 GFP_NOFS); 2819 if (!em || IS_ERR(em)) 2820 return 0; 2821 2822 if (em->block_start > EXTENT_MAP_LAST_BYTE) 2823 goto out; 2824 2825 sector = (em->block_start + start - em->start) >> inode->i_blkbits; 2826 out: 2827 free_extent_map(em); 2828 return sector; 2829 } 2830 2831 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2832 __u64 start, __u64 len, get_extent_t *get_extent) 2833 { 2834 int ret; 2835 u64 off = start; 2836 u64 max = start + len; 2837 u32 flags = 0; 2838 u64 disko = 0; 2839 struct extent_map *em = NULL; 2840 int end = 0; 2841 u64 em_start = 0, em_len = 0; 2842 unsigned long emflags; 2843 ret = 0; 2844 2845 if (len == 0) 2846 return -EINVAL; 2847 2848 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len, 2849 GFP_NOFS); 2850 em = get_extent(inode, NULL, 0, off, max - off, 0); 2851 if (!em) 2852 goto out; 2853 if (IS_ERR(em)) { 2854 ret = PTR_ERR(em); 2855 goto out; 2856 } 2857 while (!end) { 2858 off = em->start + em->len; 2859 if (off >= max) 2860 end = 1; 2861 2862 em_start = em->start; 2863 em_len = em->len; 2864 2865 disko = 0; 2866 flags = 0; 2867 2868 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 2869 end = 1; 2870 flags |= FIEMAP_EXTENT_LAST; 2871 } else if (em->block_start == EXTENT_MAP_HOLE) { 2872 flags |= FIEMAP_EXTENT_UNWRITTEN; 2873 } else if (em->block_start == EXTENT_MAP_INLINE) { 2874 flags |= (FIEMAP_EXTENT_DATA_INLINE | 2875 FIEMAP_EXTENT_NOT_ALIGNED); 2876 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 2877 flags |= (FIEMAP_EXTENT_DELALLOC | 2878 FIEMAP_EXTENT_UNKNOWN); 2879 } else { 2880 disko = em->block_start; 2881 } 2882 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 2883 flags |= FIEMAP_EXTENT_ENCODED; 2884 2885 emflags = em->flags; 2886 free_extent_map(em); 2887 em = NULL; 2888 2889 if (!end) { 2890 em = get_extent(inode, NULL, 0, off, max - off, 0); 2891 if (!em) 2892 goto out; 2893 if (IS_ERR(em)) { 2894 ret = PTR_ERR(em); 2895 goto out; 2896 } 2897 emflags = em->flags; 2898 } 2899 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) { 2900 flags |= FIEMAP_EXTENT_LAST; 2901 end = 1; 2902 } 2903 2904 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 2905 em_len, flags); 2906 if (ret) 2907 goto out_free; 2908 } 2909 out_free: 2910 free_extent_map(em); 2911 out: 2912 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len, 2913 GFP_NOFS); 2914 return ret; 2915 } 2916 2917 static inline struct page *extent_buffer_page(struct extent_buffer *eb, 2918 unsigned long i) 2919 { 2920 struct page *p; 2921 struct address_space *mapping; 2922 2923 if (i == 0) 2924 return eb->first_page; 2925 i += eb->start >> PAGE_CACHE_SHIFT; 2926 mapping = eb->first_page->mapping; 2927 if (!mapping) 2928 return NULL; 2929 2930 /* 2931 * extent_buffer_page is only called after pinning the page 2932 * by increasing the reference count. So we know the page must 2933 * be in the radix tree. 2934 */ 2935 rcu_read_lock(); 2936 p = radix_tree_lookup(&mapping->page_tree, i); 2937 rcu_read_unlock(); 2938 2939 return p; 2940 } 2941 2942 static inline unsigned long num_extent_pages(u64 start, u64 len) 2943 { 2944 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 2945 (start >> PAGE_CACHE_SHIFT); 2946 } 2947 2948 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 2949 u64 start, 2950 unsigned long len, 2951 gfp_t mask) 2952 { 2953 struct extent_buffer *eb = NULL; 2954 #if LEAK_DEBUG 2955 unsigned long flags; 2956 #endif 2957 2958 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 2959 eb->start = start; 2960 eb->len = len; 2961 spin_lock_init(&eb->lock); 2962 init_waitqueue_head(&eb->lock_wq); 2963 2964 #if LEAK_DEBUG 2965 spin_lock_irqsave(&leak_lock, flags); 2966 list_add(&eb->leak_list, &buffers); 2967 spin_unlock_irqrestore(&leak_lock, flags); 2968 #endif 2969 atomic_set(&eb->refs, 1); 2970 2971 return eb; 2972 } 2973 2974 static void __free_extent_buffer(struct extent_buffer *eb) 2975 { 2976 #if LEAK_DEBUG 2977 unsigned long flags; 2978 spin_lock_irqsave(&leak_lock, flags); 2979 list_del(&eb->leak_list); 2980 spin_unlock_irqrestore(&leak_lock, flags); 2981 #endif 2982 kmem_cache_free(extent_buffer_cache, eb); 2983 } 2984 2985 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 2986 u64 start, unsigned long len, 2987 struct page *page0, 2988 gfp_t mask) 2989 { 2990 unsigned long num_pages = num_extent_pages(start, len); 2991 unsigned long i; 2992 unsigned long index = start >> PAGE_CACHE_SHIFT; 2993 struct extent_buffer *eb; 2994 struct extent_buffer *exists = NULL; 2995 struct page *p; 2996 struct address_space *mapping = tree->mapping; 2997 int uptodate = 1; 2998 2999 spin_lock(&tree->buffer_lock); 3000 eb = buffer_search(tree, start); 3001 if (eb) { 3002 atomic_inc(&eb->refs); 3003 spin_unlock(&tree->buffer_lock); 3004 mark_page_accessed(eb->first_page); 3005 return eb; 3006 } 3007 spin_unlock(&tree->buffer_lock); 3008 3009 eb = __alloc_extent_buffer(tree, start, len, mask); 3010 if (!eb) 3011 return NULL; 3012 3013 if (page0) { 3014 eb->first_page = page0; 3015 i = 1; 3016 index++; 3017 page_cache_get(page0); 3018 mark_page_accessed(page0); 3019 set_page_extent_mapped(page0); 3020 set_page_extent_head(page0, len); 3021 uptodate = PageUptodate(page0); 3022 } else { 3023 i = 0; 3024 } 3025 for (; i < num_pages; i++, index++) { 3026 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); 3027 if (!p) { 3028 WARN_ON(1); 3029 goto free_eb; 3030 } 3031 set_page_extent_mapped(p); 3032 mark_page_accessed(p); 3033 if (i == 0) { 3034 eb->first_page = p; 3035 set_page_extent_head(p, len); 3036 } else { 3037 set_page_private(p, EXTENT_PAGE_PRIVATE); 3038 } 3039 if (!PageUptodate(p)) 3040 uptodate = 0; 3041 unlock_page(p); 3042 } 3043 if (uptodate) 3044 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3045 3046 spin_lock(&tree->buffer_lock); 3047 exists = buffer_tree_insert(tree, start, &eb->rb_node); 3048 if (exists) { 3049 /* add one reference for the caller */ 3050 atomic_inc(&exists->refs); 3051 spin_unlock(&tree->buffer_lock); 3052 goto free_eb; 3053 } 3054 spin_unlock(&tree->buffer_lock); 3055 3056 /* add one reference for the tree */ 3057 atomic_inc(&eb->refs); 3058 return eb; 3059 3060 free_eb: 3061 if (!atomic_dec_and_test(&eb->refs)) 3062 return exists; 3063 for (index = 1; index < i; index++) 3064 page_cache_release(extent_buffer_page(eb, index)); 3065 page_cache_release(extent_buffer_page(eb, 0)); 3066 __free_extent_buffer(eb); 3067 return exists; 3068 } 3069 3070 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 3071 u64 start, unsigned long len, 3072 gfp_t mask) 3073 { 3074 struct extent_buffer *eb; 3075 3076 spin_lock(&tree->buffer_lock); 3077 eb = buffer_search(tree, start); 3078 if (eb) 3079 atomic_inc(&eb->refs); 3080 spin_unlock(&tree->buffer_lock); 3081 3082 if (eb) 3083 mark_page_accessed(eb->first_page); 3084 3085 return eb; 3086 } 3087 3088 void free_extent_buffer(struct extent_buffer *eb) 3089 { 3090 if (!eb) 3091 return; 3092 3093 if (!atomic_dec_and_test(&eb->refs)) 3094 return; 3095 3096 WARN_ON(1); 3097 } 3098 3099 int clear_extent_buffer_dirty(struct extent_io_tree *tree, 3100 struct extent_buffer *eb) 3101 { 3102 unsigned long i; 3103 unsigned long num_pages; 3104 struct page *page; 3105 3106 num_pages = num_extent_pages(eb->start, eb->len); 3107 3108 for (i = 0; i < num_pages; i++) { 3109 page = extent_buffer_page(eb, i); 3110 if (!PageDirty(page)) 3111 continue; 3112 3113 lock_page(page); 3114 if (i == 0) 3115 set_page_extent_head(page, eb->len); 3116 else 3117 set_page_private(page, EXTENT_PAGE_PRIVATE); 3118 3119 clear_page_dirty_for_io(page); 3120 spin_lock_irq(&page->mapping->tree_lock); 3121 if (!PageDirty(page)) { 3122 radix_tree_tag_clear(&page->mapping->page_tree, 3123 page_index(page), 3124 PAGECACHE_TAG_DIRTY); 3125 } 3126 spin_unlock_irq(&page->mapping->tree_lock); 3127 unlock_page(page); 3128 } 3129 return 0; 3130 } 3131 3132 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, 3133 struct extent_buffer *eb) 3134 { 3135 return wait_on_extent_writeback(tree, eb->start, 3136 eb->start + eb->len - 1); 3137 } 3138 3139 int set_extent_buffer_dirty(struct extent_io_tree *tree, 3140 struct extent_buffer *eb) 3141 { 3142 unsigned long i; 3143 unsigned long num_pages; 3144 int was_dirty = 0; 3145 3146 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3147 num_pages = num_extent_pages(eb->start, eb->len); 3148 for (i = 0; i < num_pages; i++) 3149 __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); 3150 return was_dirty; 3151 } 3152 3153 int clear_extent_buffer_uptodate(struct extent_io_tree *tree, 3154 struct extent_buffer *eb) 3155 { 3156 unsigned long i; 3157 struct page *page; 3158 unsigned long num_pages; 3159 3160 num_pages = num_extent_pages(eb->start, eb->len); 3161 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3162 3163 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3164 GFP_NOFS); 3165 for (i = 0; i < num_pages; i++) { 3166 page = extent_buffer_page(eb, i); 3167 if (page) 3168 ClearPageUptodate(page); 3169 } 3170 return 0; 3171 } 3172 3173 int set_extent_buffer_uptodate(struct extent_io_tree *tree, 3174 struct extent_buffer *eb) 3175 { 3176 unsigned long i; 3177 struct page *page; 3178 unsigned long num_pages; 3179 3180 num_pages = num_extent_pages(eb->start, eb->len); 3181 3182 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3183 GFP_NOFS); 3184 for (i = 0; i < num_pages; i++) { 3185 page = extent_buffer_page(eb, i); 3186 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || 3187 ((i == num_pages - 1) && 3188 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { 3189 check_page_uptodate(tree, page); 3190 continue; 3191 } 3192 SetPageUptodate(page); 3193 } 3194 return 0; 3195 } 3196 3197 int extent_range_uptodate(struct extent_io_tree *tree, 3198 u64 start, u64 end) 3199 { 3200 struct page *page; 3201 int ret; 3202 int pg_uptodate = 1; 3203 int uptodate; 3204 unsigned long index; 3205 3206 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1); 3207 if (ret) 3208 return 1; 3209 while (start <= end) { 3210 index = start >> PAGE_CACHE_SHIFT; 3211 page = find_get_page(tree->mapping, index); 3212 uptodate = PageUptodate(page); 3213 page_cache_release(page); 3214 if (!uptodate) { 3215 pg_uptodate = 0; 3216 break; 3217 } 3218 start += PAGE_CACHE_SIZE; 3219 } 3220 return pg_uptodate; 3221 } 3222 3223 int extent_buffer_uptodate(struct extent_io_tree *tree, 3224 struct extent_buffer *eb) 3225 { 3226 int ret = 0; 3227 unsigned long num_pages; 3228 unsigned long i; 3229 struct page *page; 3230 int pg_uptodate = 1; 3231 3232 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3233 return 1; 3234 3235 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3236 EXTENT_UPTODATE, 1); 3237 if (ret) 3238 return ret; 3239 3240 num_pages = num_extent_pages(eb->start, eb->len); 3241 for (i = 0; i < num_pages; i++) { 3242 page = extent_buffer_page(eb, i); 3243 if (!PageUptodate(page)) { 3244 pg_uptodate = 0; 3245 break; 3246 } 3247 } 3248 return pg_uptodate; 3249 } 3250 3251 int read_extent_buffer_pages(struct extent_io_tree *tree, 3252 struct extent_buffer *eb, 3253 u64 start, int wait, 3254 get_extent_t *get_extent, int mirror_num) 3255 { 3256 unsigned long i; 3257 unsigned long start_i; 3258 struct page *page; 3259 int err; 3260 int ret = 0; 3261 int locked_pages = 0; 3262 int all_uptodate = 1; 3263 int inc_all_pages = 0; 3264 unsigned long num_pages; 3265 struct bio *bio = NULL; 3266 unsigned long bio_flags = 0; 3267 3268 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3269 return 0; 3270 3271 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3272 EXTENT_UPTODATE, 1)) { 3273 return 0; 3274 } 3275 3276 if (start) { 3277 WARN_ON(start < eb->start); 3278 start_i = (start >> PAGE_CACHE_SHIFT) - 3279 (eb->start >> PAGE_CACHE_SHIFT); 3280 } else { 3281 start_i = 0; 3282 } 3283 3284 num_pages = num_extent_pages(eb->start, eb->len); 3285 for (i = start_i; i < num_pages; i++) { 3286 page = extent_buffer_page(eb, i); 3287 if (!wait) { 3288 if (!trylock_page(page)) 3289 goto unlock_exit; 3290 } else { 3291 lock_page(page); 3292 } 3293 locked_pages++; 3294 if (!PageUptodate(page)) 3295 all_uptodate = 0; 3296 } 3297 if (all_uptodate) { 3298 if (start_i == 0) 3299 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3300 goto unlock_exit; 3301 } 3302 3303 for (i = start_i; i < num_pages; i++) { 3304 page = extent_buffer_page(eb, i); 3305 if (inc_all_pages) 3306 page_cache_get(page); 3307 if (!PageUptodate(page)) { 3308 if (start_i == 0) 3309 inc_all_pages = 1; 3310 ClearPageError(page); 3311 err = __extent_read_full_page(tree, page, 3312 get_extent, &bio, 3313 mirror_num, &bio_flags); 3314 if (err) 3315 ret = err; 3316 } else { 3317 unlock_page(page); 3318 } 3319 } 3320 3321 if (bio) 3322 submit_one_bio(READ, bio, mirror_num, bio_flags); 3323 3324 if (ret || !wait) 3325 return ret; 3326 3327 for (i = start_i; i < num_pages; i++) { 3328 page = extent_buffer_page(eb, i); 3329 wait_on_page_locked(page); 3330 if (!PageUptodate(page)) 3331 ret = -EIO; 3332 } 3333 3334 if (!ret) 3335 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3336 return ret; 3337 3338 unlock_exit: 3339 i = start_i; 3340 while (locked_pages > 0) { 3341 page = extent_buffer_page(eb, i); 3342 i++; 3343 unlock_page(page); 3344 locked_pages--; 3345 } 3346 return ret; 3347 } 3348 3349 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 3350 unsigned long start, 3351 unsigned long len) 3352 { 3353 size_t cur; 3354 size_t offset; 3355 struct page *page; 3356 char *kaddr; 3357 char *dst = (char *)dstv; 3358 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3359 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3360 3361 WARN_ON(start > eb->len); 3362 WARN_ON(start + len > eb->start + eb->len); 3363 3364 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3365 3366 while (len > 0) { 3367 page = extent_buffer_page(eb, i); 3368 3369 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3370 kaddr = kmap_atomic(page, KM_USER1); 3371 memcpy(dst, kaddr + offset, cur); 3372 kunmap_atomic(kaddr, KM_USER1); 3373 3374 dst += cur; 3375 len -= cur; 3376 offset = 0; 3377 i++; 3378 } 3379 } 3380 3381 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 3382 unsigned long min_len, char **token, char **map, 3383 unsigned long *map_start, 3384 unsigned long *map_len, int km) 3385 { 3386 size_t offset = start & (PAGE_CACHE_SIZE - 1); 3387 char *kaddr; 3388 struct page *p; 3389 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3390 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3391 unsigned long end_i = (start_offset + start + min_len - 1) >> 3392 PAGE_CACHE_SHIFT; 3393 3394 if (i != end_i) 3395 return -EINVAL; 3396 3397 if (i == 0) { 3398 offset = start_offset; 3399 *map_start = 0; 3400 } else { 3401 offset = 0; 3402 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 3403 } 3404 3405 if (start + min_len > eb->len) { 3406 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 3407 "wanted %lu %lu\n", (unsigned long long)eb->start, 3408 eb->len, start, min_len); 3409 WARN_ON(1); 3410 } 3411 3412 p = extent_buffer_page(eb, i); 3413 kaddr = kmap_atomic(p, km); 3414 *token = kaddr; 3415 *map = kaddr + offset; 3416 *map_len = PAGE_CACHE_SIZE - offset; 3417 return 0; 3418 } 3419 3420 int map_extent_buffer(struct extent_buffer *eb, unsigned long start, 3421 unsigned long min_len, 3422 char **token, char **map, 3423 unsigned long *map_start, 3424 unsigned long *map_len, int km) 3425 { 3426 int err; 3427 int save = 0; 3428 if (eb->map_token) { 3429 unmap_extent_buffer(eb, eb->map_token, km); 3430 eb->map_token = NULL; 3431 save = 1; 3432 } 3433 err = map_private_extent_buffer(eb, start, min_len, token, map, 3434 map_start, map_len, km); 3435 if (!err && save) { 3436 eb->map_token = *token; 3437 eb->kaddr = *map; 3438 eb->map_start = *map_start; 3439 eb->map_len = *map_len; 3440 } 3441 return err; 3442 } 3443 3444 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) 3445 { 3446 kunmap_atomic(token, km); 3447 } 3448 3449 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 3450 unsigned long start, 3451 unsigned long len) 3452 { 3453 size_t cur; 3454 size_t offset; 3455 struct page *page; 3456 char *kaddr; 3457 char *ptr = (char *)ptrv; 3458 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3459 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3460 int ret = 0; 3461 3462 WARN_ON(start > eb->len); 3463 WARN_ON(start + len > eb->start + eb->len); 3464 3465 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3466 3467 while (len > 0) { 3468 page = extent_buffer_page(eb, i); 3469 3470 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3471 3472 kaddr = kmap_atomic(page, KM_USER0); 3473 ret = memcmp(ptr, kaddr + offset, cur); 3474 kunmap_atomic(kaddr, KM_USER0); 3475 if (ret) 3476 break; 3477 3478 ptr += cur; 3479 len -= cur; 3480 offset = 0; 3481 i++; 3482 } 3483 return ret; 3484 } 3485 3486 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 3487 unsigned long start, unsigned long len) 3488 { 3489 size_t cur; 3490 size_t offset; 3491 struct page *page; 3492 char *kaddr; 3493 char *src = (char *)srcv; 3494 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3495 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3496 3497 WARN_ON(start > eb->len); 3498 WARN_ON(start + len > eb->start + eb->len); 3499 3500 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3501 3502 while (len > 0) { 3503 page = extent_buffer_page(eb, i); 3504 WARN_ON(!PageUptodate(page)); 3505 3506 cur = min(len, PAGE_CACHE_SIZE - offset); 3507 kaddr = kmap_atomic(page, KM_USER1); 3508 memcpy(kaddr + offset, src, cur); 3509 kunmap_atomic(kaddr, KM_USER1); 3510 3511 src += cur; 3512 len -= cur; 3513 offset = 0; 3514 i++; 3515 } 3516 } 3517 3518 void memset_extent_buffer(struct extent_buffer *eb, char c, 3519 unsigned long start, unsigned long len) 3520 { 3521 size_t cur; 3522 size_t offset; 3523 struct page *page; 3524 char *kaddr; 3525 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3526 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3527 3528 WARN_ON(start > eb->len); 3529 WARN_ON(start + len > eb->start + eb->len); 3530 3531 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3532 3533 while (len > 0) { 3534 page = extent_buffer_page(eb, i); 3535 WARN_ON(!PageUptodate(page)); 3536 3537 cur = min(len, PAGE_CACHE_SIZE - offset); 3538 kaddr = kmap_atomic(page, KM_USER0); 3539 memset(kaddr + offset, c, cur); 3540 kunmap_atomic(kaddr, KM_USER0); 3541 3542 len -= cur; 3543 offset = 0; 3544 i++; 3545 } 3546 } 3547 3548 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 3549 unsigned long dst_offset, unsigned long src_offset, 3550 unsigned long len) 3551 { 3552 u64 dst_len = dst->len; 3553 size_t cur; 3554 size_t offset; 3555 struct page *page; 3556 char *kaddr; 3557 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3558 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3559 3560 WARN_ON(src->len != dst_len); 3561 3562 offset = (start_offset + dst_offset) & 3563 ((unsigned long)PAGE_CACHE_SIZE - 1); 3564 3565 while (len > 0) { 3566 page = extent_buffer_page(dst, i); 3567 WARN_ON(!PageUptodate(page)); 3568 3569 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 3570 3571 kaddr = kmap_atomic(page, KM_USER0); 3572 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3573 kunmap_atomic(kaddr, KM_USER0); 3574 3575 src_offset += cur; 3576 len -= cur; 3577 offset = 0; 3578 i++; 3579 } 3580 } 3581 3582 static void move_pages(struct page *dst_page, struct page *src_page, 3583 unsigned long dst_off, unsigned long src_off, 3584 unsigned long len) 3585 { 3586 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3587 if (dst_page == src_page) { 3588 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 3589 } else { 3590 char *src_kaddr = kmap_atomic(src_page, KM_USER1); 3591 char *p = dst_kaddr + dst_off + len; 3592 char *s = src_kaddr + src_off + len; 3593 3594 while (len--) 3595 *--p = *--s; 3596 3597 kunmap_atomic(src_kaddr, KM_USER1); 3598 } 3599 kunmap_atomic(dst_kaddr, KM_USER0); 3600 } 3601 3602 static void copy_pages(struct page *dst_page, struct page *src_page, 3603 unsigned long dst_off, unsigned long src_off, 3604 unsigned long len) 3605 { 3606 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3607 char *src_kaddr; 3608 3609 if (dst_page != src_page) 3610 src_kaddr = kmap_atomic(src_page, KM_USER1); 3611 else 3612 src_kaddr = dst_kaddr; 3613 3614 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 3615 kunmap_atomic(dst_kaddr, KM_USER0); 3616 if (dst_page != src_page) 3617 kunmap_atomic(src_kaddr, KM_USER1); 3618 } 3619 3620 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3621 unsigned long src_offset, unsigned long len) 3622 { 3623 size_t cur; 3624 size_t dst_off_in_page; 3625 size_t src_off_in_page; 3626 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3627 unsigned long dst_i; 3628 unsigned long src_i; 3629 3630 if (src_offset + len > dst->len) { 3631 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3632 "len %lu dst len %lu\n", src_offset, len, dst->len); 3633 BUG_ON(1); 3634 } 3635 if (dst_offset + len > dst->len) { 3636 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3637 "len %lu dst len %lu\n", dst_offset, len, dst->len); 3638 BUG_ON(1); 3639 } 3640 3641 while (len > 0) { 3642 dst_off_in_page = (start_offset + dst_offset) & 3643 ((unsigned long)PAGE_CACHE_SIZE - 1); 3644 src_off_in_page = (start_offset + src_offset) & 3645 ((unsigned long)PAGE_CACHE_SIZE - 1); 3646 3647 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3648 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 3649 3650 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 3651 src_off_in_page)); 3652 cur = min_t(unsigned long, cur, 3653 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 3654 3655 copy_pages(extent_buffer_page(dst, dst_i), 3656 extent_buffer_page(dst, src_i), 3657 dst_off_in_page, src_off_in_page, cur); 3658 3659 src_offset += cur; 3660 dst_offset += cur; 3661 len -= cur; 3662 } 3663 } 3664 3665 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3666 unsigned long src_offset, unsigned long len) 3667 { 3668 size_t cur; 3669 size_t dst_off_in_page; 3670 size_t src_off_in_page; 3671 unsigned long dst_end = dst_offset + len - 1; 3672 unsigned long src_end = src_offset + len - 1; 3673 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3674 unsigned long dst_i; 3675 unsigned long src_i; 3676 3677 if (src_offset + len > dst->len) { 3678 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3679 "len %lu len %lu\n", src_offset, len, dst->len); 3680 BUG_ON(1); 3681 } 3682 if (dst_offset + len > dst->len) { 3683 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3684 "len %lu len %lu\n", dst_offset, len, dst->len); 3685 BUG_ON(1); 3686 } 3687 if (dst_offset < src_offset) { 3688 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 3689 return; 3690 } 3691 while (len > 0) { 3692 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 3693 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 3694 3695 dst_off_in_page = (start_offset + dst_end) & 3696 ((unsigned long)PAGE_CACHE_SIZE - 1); 3697 src_off_in_page = (start_offset + src_end) & 3698 ((unsigned long)PAGE_CACHE_SIZE - 1); 3699 3700 cur = min_t(unsigned long, len, src_off_in_page + 1); 3701 cur = min(cur, dst_off_in_page + 1); 3702 move_pages(extent_buffer_page(dst, dst_i), 3703 extent_buffer_page(dst, src_i), 3704 dst_off_in_page - cur + 1, 3705 src_off_in_page - cur + 1, cur); 3706 3707 dst_end -= cur; 3708 src_end -= cur; 3709 len -= cur; 3710 } 3711 } 3712 3713 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page) 3714 { 3715 u64 start = page_offset(page); 3716 struct extent_buffer *eb; 3717 int ret = 1; 3718 unsigned long i; 3719 unsigned long num_pages; 3720 3721 spin_lock(&tree->buffer_lock); 3722 eb = buffer_search(tree, start); 3723 if (!eb) 3724 goto out; 3725 3726 if (atomic_read(&eb->refs) > 1) { 3727 ret = 0; 3728 goto out; 3729 } 3730 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3731 ret = 0; 3732 goto out; 3733 } 3734 /* at this point we can safely release the extent buffer */ 3735 num_pages = num_extent_pages(eb->start, eb->len); 3736 for (i = 0; i < num_pages; i++) 3737 page_cache_release(extent_buffer_page(eb, i)); 3738 rb_erase(&eb->rb_node, &tree->buffer); 3739 __free_extent_buffer(eb); 3740 out: 3741 spin_unlock(&tree->buffer_lock); 3742 return ret; 3743 } 3744