xref: /openbmc/linux/fs/btrfs/extent_io.c (revision faa16bc4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30 
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	if (tree->ops && tree->ops->check_extent_io_range)
93 		tree->ops->check_extent_io_range(tree->private_data, caller,
94 						 start, end);
95 }
96 #else
97 #define btrfs_leak_debug_add(new, head)	do {} while (0)
98 #define btrfs_leak_debug_del(entry)	do {} while (0)
99 #define btrfs_leak_debug_check()	do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
101 #endif
102 
103 #define BUFFER_LRU_MAX 64
104 
105 struct tree_entry {
106 	u64 start;
107 	u64 end;
108 	struct rb_node rb_node;
109 };
110 
111 struct extent_page_data {
112 	struct bio *bio;
113 	struct extent_io_tree *tree;
114 	/* tells writepage not to lock the state bits for this range
115 	 * it still does the unlocking
116 	 */
117 	unsigned int extent_locked:1;
118 
119 	/* tells the submit_bio code to use REQ_SYNC */
120 	unsigned int sync_io:1;
121 };
122 
123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 				 struct extent_changeset *changeset,
125 				 int set)
126 {
127 	int ret;
128 
129 	if (!changeset)
130 		return 0;
131 	if (set && (state->state & bits) == bits)
132 		return 0;
133 	if (!set && (state->state & bits) == 0)
134 		return 0;
135 	changeset->bytes_changed += state->end - state->start + 1;
136 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 			GFP_ATOMIC);
138 	return ret;
139 }
140 
141 static void flush_write_bio(struct extent_page_data *epd);
142 
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
145 {
146 	if (tree->ops)
147 		return tree->ops->tree_fs_info(tree->private_data);
148 	return NULL;
149 }
150 
151 int __init extent_io_init(void)
152 {
153 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 			sizeof(struct extent_state), 0,
155 			SLAB_MEM_SPREAD, NULL);
156 	if (!extent_state_cache)
157 		return -ENOMEM;
158 
159 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 			sizeof(struct extent_buffer), 0,
161 			SLAB_MEM_SPREAD, NULL);
162 	if (!extent_buffer_cache)
163 		goto free_state_cache;
164 
165 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
166 			offsetof(struct btrfs_io_bio, bio),
167 			BIOSET_NEED_BVECS))
168 		goto free_buffer_cache;
169 
170 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
171 		goto free_bioset;
172 
173 	return 0;
174 
175 free_bioset:
176 	bioset_exit(&btrfs_bioset);
177 
178 free_buffer_cache:
179 	kmem_cache_destroy(extent_buffer_cache);
180 	extent_buffer_cache = NULL;
181 
182 free_state_cache:
183 	kmem_cache_destroy(extent_state_cache);
184 	extent_state_cache = NULL;
185 	return -ENOMEM;
186 }
187 
188 void __cold extent_io_exit(void)
189 {
190 	btrfs_leak_debug_check();
191 
192 	/*
193 	 * Make sure all delayed rcu free are flushed before we
194 	 * destroy caches.
195 	 */
196 	rcu_barrier();
197 	kmem_cache_destroy(extent_state_cache);
198 	kmem_cache_destroy(extent_buffer_cache);
199 	bioset_exit(&btrfs_bioset);
200 }
201 
202 void extent_io_tree_init(struct extent_io_tree *tree,
203 			 void *private_data)
204 {
205 	tree->state = RB_ROOT;
206 	tree->ops = NULL;
207 	tree->dirty_bytes = 0;
208 	spin_lock_init(&tree->lock);
209 	tree->private_data = private_data;
210 }
211 
212 static struct extent_state *alloc_extent_state(gfp_t mask)
213 {
214 	struct extent_state *state;
215 
216 	/*
217 	 * The given mask might be not appropriate for the slab allocator,
218 	 * drop the unsupported bits
219 	 */
220 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
221 	state = kmem_cache_alloc(extent_state_cache, mask);
222 	if (!state)
223 		return state;
224 	state->state = 0;
225 	state->failrec = NULL;
226 	RB_CLEAR_NODE(&state->rb_node);
227 	btrfs_leak_debug_add(&state->leak_list, &states);
228 	refcount_set(&state->refs, 1);
229 	init_waitqueue_head(&state->wq);
230 	trace_alloc_extent_state(state, mask, _RET_IP_);
231 	return state;
232 }
233 
234 void free_extent_state(struct extent_state *state)
235 {
236 	if (!state)
237 		return;
238 	if (refcount_dec_and_test(&state->refs)) {
239 		WARN_ON(extent_state_in_tree(state));
240 		btrfs_leak_debug_del(&state->leak_list);
241 		trace_free_extent_state(state, _RET_IP_);
242 		kmem_cache_free(extent_state_cache, state);
243 	}
244 }
245 
246 static struct rb_node *tree_insert(struct rb_root *root,
247 				   struct rb_node *search_start,
248 				   u64 offset,
249 				   struct rb_node *node,
250 				   struct rb_node ***p_in,
251 				   struct rb_node **parent_in)
252 {
253 	struct rb_node **p;
254 	struct rb_node *parent = NULL;
255 	struct tree_entry *entry;
256 
257 	if (p_in && parent_in) {
258 		p = *p_in;
259 		parent = *parent_in;
260 		goto do_insert;
261 	}
262 
263 	p = search_start ? &search_start : &root->rb_node;
264 	while (*p) {
265 		parent = *p;
266 		entry = rb_entry(parent, struct tree_entry, rb_node);
267 
268 		if (offset < entry->start)
269 			p = &(*p)->rb_left;
270 		else if (offset > entry->end)
271 			p = &(*p)->rb_right;
272 		else
273 			return parent;
274 	}
275 
276 do_insert:
277 	rb_link_node(node, parent, p);
278 	rb_insert_color(node, root);
279 	return NULL;
280 }
281 
282 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
283 				      struct rb_node **prev_ret,
284 				      struct rb_node **next_ret,
285 				      struct rb_node ***p_ret,
286 				      struct rb_node **parent_ret)
287 {
288 	struct rb_root *root = &tree->state;
289 	struct rb_node **n = &root->rb_node;
290 	struct rb_node *prev = NULL;
291 	struct rb_node *orig_prev = NULL;
292 	struct tree_entry *entry;
293 	struct tree_entry *prev_entry = NULL;
294 
295 	while (*n) {
296 		prev = *n;
297 		entry = rb_entry(prev, struct tree_entry, rb_node);
298 		prev_entry = entry;
299 
300 		if (offset < entry->start)
301 			n = &(*n)->rb_left;
302 		else if (offset > entry->end)
303 			n = &(*n)->rb_right;
304 		else
305 			return *n;
306 	}
307 
308 	if (p_ret)
309 		*p_ret = n;
310 	if (parent_ret)
311 		*parent_ret = prev;
312 
313 	if (prev_ret) {
314 		orig_prev = prev;
315 		while (prev && offset > prev_entry->end) {
316 			prev = rb_next(prev);
317 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
318 		}
319 		*prev_ret = prev;
320 		prev = orig_prev;
321 	}
322 
323 	if (next_ret) {
324 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
325 		while (prev && offset < prev_entry->start) {
326 			prev = rb_prev(prev);
327 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 		}
329 		*next_ret = prev;
330 	}
331 	return NULL;
332 }
333 
334 static inline struct rb_node *
335 tree_search_for_insert(struct extent_io_tree *tree,
336 		       u64 offset,
337 		       struct rb_node ***p_ret,
338 		       struct rb_node **parent_ret)
339 {
340 	struct rb_node *prev = NULL;
341 	struct rb_node *ret;
342 
343 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
344 	if (!ret)
345 		return prev;
346 	return ret;
347 }
348 
349 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
350 					  u64 offset)
351 {
352 	return tree_search_for_insert(tree, offset, NULL, NULL);
353 }
354 
355 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
356 		     struct extent_state *other)
357 {
358 	if (tree->ops && tree->ops->merge_extent_hook)
359 		tree->ops->merge_extent_hook(tree->private_data, new, other);
360 }
361 
362 /*
363  * utility function to look for merge candidates inside a given range.
364  * Any extents with matching state are merged together into a single
365  * extent in the tree.  Extents with EXTENT_IO in their state field
366  * are not merged because the end_io handlers need to be able to do
367  * operations on them without sleeping (or doing allocations/splits).
368  *
369  * This should be called with the tree lock held.
370  */
371 static void merge_state(struct extent_io_tree *tree,
372 		        struct extent_state *state)
373 {
374 	struct extent_state *other;
375 	struct rb_node *other_node;
376 
377 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
378 		return;
379 
380 	other_node = rb_prev(&state->rb_node);
381 	if (other_node) {
382 		other = rb_entry(other_node, struct extent_state, rb_node);
383 		if (other->end == state->start - 1 &&
384 		    other->state == state->state) {
385 			merge_cb(tree, state, other);
386 			state->start = other->start;
387 			rb_erase(&other->rb_node, &tree->state);
388 			RB_CLEAR_NODE(&other->rb_node);
389 			free_extent_state(other);
390 		}
391 	}
392 	other_node = rb_next(&state->rb_node);
393 	if (other_node) {
394 		other = rb_entry(other_node, struct extent_state, rb_node);
395 		if (other->start == state->end + 1 &&
396 		    other->state == state->state) {
397 			merge_cb(tree, state, other);
398 			state->end = other->end;
399 			rb_erase(&other->rb_node, &tree->state);
400 			RB_CLEAR_NODE(&other->rb_node);
401 			free_extent_state(other);
402 		}
403 	}
404 }
405 
406 static void set_state_cb(struct extent_io_tree *tree,
407 			 struct extent_state *state, unsigned *bits)
408 {
409 	if (tree->ops && tree->ops->set_bit_hook)
410 		tree->ops->set_bit_hook(tree->private_data, state, bits);
411 }
412 
413 static void clear_state_cb(struct extent_io_tree *tree,
414 			   struct extent_state *state, unsigned *bits)
415 {
416 	if (tree->ops && tree->ops->clear_bit_hook)
417 		tree->ops->clear_bit_hook(tree->private_data, state, bits);
418 }
419 
420 static void set_state_bits(struct extent_io_tree *tree,
421 			   struct extent_state *state, unsigned *bits,
422 			   struct extent_changeset *changeset);
423 
424 /*
425  * insert an extent_state struct into the tree.  'bits' are set on the
426  * struct before it is inserted.
427  *
428  * This may return -EEXIST if the extent is already there, in which case the
429  * state struct is freed.
430  *
431  * The tree lock is not taken internally.  This is a utility function and
432  * probably isn't what you want to call (see set/clear_extent_bit).
433  */
434 static int insert_state(struct extent_io_tree *tree,
435 			struct extent_state *state, u64 start, u64 end,
436 			struct rb_node ***p,
437 			struct rb_node **parent,
438 			unsigned *bits, struct extent_changeset *changeset)
439 {
440 	struct rb_node *node;
441 
442 	if (end < start)
443 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
444 		       end, start);
445 	state->start = start;
446 	state->end = end;
447 
448 	set_state_bits(tree, state, bits, changeset);
449 
450 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
451 	if (node) {
452 		struct extent_state *found;
453 		found = rb_entry(node, struct extent_state, rb_node);
454 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
455 		       found->start, found->end, start, end);
456 		return -EEXIST;
457 	}
458 	merge_state(tree, state);
459 	return 0;
460 }
461 
462 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
463 		     u64 split)
464 {
465 	if (tree->ops && tree->ops->split_extent_hook)
466 		tree->ops->split_extent_hook(tree->private_data, orig, split);
467 }
468 
469 /*
470  * split a given extent state struct in two, inserting the preallocated
471  * struct 'prealloc' as the newly created second half.  'split' indicates an
472  * offset inside 'orig' where it should be split.
473  *
474  * Before calling,
475  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
476  * are two extent state structs in the tree:
477  * prealloc: [orig->start, split - 1]
478  * orig: [ split, orig->end ]
479  *
480  * The tree locks are not taken by this function. They need to be held
481  * by the caller.
482  */
483 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
484 		       struct extent_state *prealloc, u64 split)
485 {
486 	struct rb_node *node;
487 
488 	split_cb(tree, orig, split);
489 
490 	prealloc->start = orig->start;
491 	prealloc->end = split - 1;
492 	prealloc->state = orig->state;
493 	orig->start = split;
494 
495 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
496 			   &prealloc->rb_node, NULL, NULL);
497 	if (node) {
498 		free_extent_state(prealloc);
499 		return -EEXIST;
500 	}
501 	return 0;
502 }
503 
504 static struct extent_state *next_state(struct extent_state *state)
505 {
506 	struct rb_node *next = rb_next(&state->rb_node);
507 	if (next)
508 		return rb_entry(next, struct extent_state, rb_node);
509 	else
510 		return NULL;
511 }
512 
513 /*
514  * utility function to clear some bits in an extent state struct.
515  * it will optionally wake up any one waiting on this state (wake == 1).
516  *
517  * If no bits are set on the state struct after clearing things, the
518  * struct is freed and removed from the tree
519  */
520 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
521 					    struct extent_state *state,
522 					    unsigned *bits, int wake,
523 					    struct extent_changeset *changeset)
524 {
525 	struct extent_state *next;
526 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
527 	int ret;
528 
529 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
530 		u64 range = state->end - state->start + 1;
531 		WARN_ON(range > tree->dirty_bytes);
532 		tree->dirty_bytes -= range;
533 	}
534 	clear_state_cb(tree, state, bits);
535 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
536 	BUG_ON(ret < 0);
537 	state->state &= ~bits_to_clear;
538 	if (wake)
539 		wake_up(&state->wq);
540 	if (state->state == 0) {
541 		next = next_state(state);
542 		if (extent_state_in_tree(state)) {
543 			rb_erase(&state->rb_node, &tree->state);
544 			RB_CLEAR_NODE(&state->rb_node);
545 			free_extent_state(state);
546 		} else {
547 			WARN_ON(1);
548 		}
549 	} else {
550 		merge_state(tree, state);
551 		next = next_state(state);
552 	}
553 	return next;
554 }
555 
556 static struct extent_state *
557 alloc_extent_state_atomic(struct extent_state *prealloc)
558 {
559 	if (!prealloc)
560 		prealloc = alloc_extent_state(GFP_ATOMIC);
561 
562 	return prealloc;
563 }
564 
565 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
566 {
567 	btrfs_panic(tree_fs_info(tree), err,
568 		    "Locking error: Extent tree was modified by another thread while locked.");
569 }
570 
571 /*
572  * clear some bits on a range in the tree.  This may require splitting
573  * or inserting elements in the tree, so the gfp mask is used to
574  * indicate which allocations or sleeping are allowed.
575  *
576  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
577  * the given range from the tree regardless of state (ie for truncate).
578  *
579  * the range [start, end] is inclusive.
580  *
581  * This takes the tree lock, and returns 0 on success and < 0 on error.
582  */
583 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
584 			      unsigned bits, int wake, int delete,
585 			      struct extent_state **cached_state,
586 			      gfp_t mask, struct extent_changeset *changeset)
587 {
588 	struct extent_state *state;
589 	struct extent_state *cached;
590 	struct extent_state *prealloc = NULL;
591 	struct rb_node *node;
592 	u64 last_end;
593 	int err;
594 	int clear = 0;
595 
596 	btrfs_debug_check_extent_io_range(tree, start, end);
597 
598 	if (bits & EXTENT_DELALLOC)
599 		bits |= EXTENT_NORESERVE;
600 
601 	if (delete)
602 		bits |= ~EXTENT_CTLBITS;
603 	bits |= EXTENT_FIRST_DELALLOC;
604 
605 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
606 		clear = 1;
607 again:
608 	if (!prealloc && gfpflags_allow_blocking(mask)) {
609 		/*
610 		 * Don't care for allocation failure here because we might end
611 		 * up not needing the pre-allocated extent state at all, which
612 		 * is the case if we only have in the tree extent states that
613 		 * cover our input range and don't cover too any other range.
614 		 * If we end up needing a new extent state we allocate it later.
615 		 */
616 		prealloc = alloc_extent_state(mask);
617 	}
618 
619 	spin_lock(&tree->lock);
620 	if (cached_state) {
621 		cached = *cached_state;
622 
623 		if (clear) {
624 			*cached_state = NULL;
625 			cached_state = NULL;
626 		}
627 
628 		if (cached && extent_state_in_tree(cached) &&
629 		    cached->start <= start && cached->end > start) {
630 			if (clear)
631 				refcount_dec(&cached->refs);
632 			state = cached;
633 			goto hit_next;
634 		}
635 		if (clear)
636 			free_extent_state(cached);
637 	}
638 	/*
639 	 * this search will find the extents that end after
640 	 * our range starts
641 	 */
642 	node = tree_search(tree, start);
643 	if (!node)
644 		goto out;
645 	state = rb_entry(node, struct extent_state, rb_node);
646 hit_next:
647 	if (state->start > end)
648 		goto out;
649 	WARN_ON(state->end < start);
650 	last_end = state->end;
651 
652 	/* the state doesn't have the wanted bits, go ahead */
653 	if (!(state->state & bits)) {
654 		state = next_state(state);
655 		goto next;
656 	}
657 
658 	/*
659 	 *     | ---- desired range ---- |
660 	 *  | state | or
661 	 *  | ------------- state -------------- |
662 	 *
663 	 * We need to split the extent we found, and may flip
664 	 * bits on second half.
665 	 *
666 	 * If the extent we found extends past our range, we
667 	 * just split and search again.  It'll get split again
668 	 * the next time though.
669 	 *
670 	 * If the extent we found is inside our range, we clear
671 	 * the desired bit on it.
672 	 */
673 
674 	if (state->start < start) {
675 		prealloc = alloc_extent_state_atomic(prealloc);
676 		BUG_ON(!prealloc);
677 		err = split_state(tree, state, prealloc, start);
678 		if (err)
679 			extent_io_tree_panic(tree, err);
680 
681 		prealloc = NULL;
682 		if (err)
683 			goto out;
684 		if (state->end <= end) {
685 			state = clear_state_bit(tree, state, &bits, wake,
686 						changeset);
687 			goto next;
688 		}
689 		goto search_again;
690 	}
691 	/*
692 	 * | ---- desired range ---- |
693 	 *                        | state |
694 	 * We need to split the extent, and clear the bit
695 	 * on the first half
696 	 */
697 	if (state->start <= end && state->end > end) {
698 		prealloc = alloc_extent_state_atomic(prealloc);
699 		BUG_ON(!prealloc);
700 		err = split_state(tree, state, prealloc, end + 1);
701 		if (err)
702 			extent_io_tree_panic(tree, err);
703 
704 		if (wake)
705 			wake_up(&state->wq);
706 
707 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
708 
709 		prealloc = NULL;
710 		goto out;
711 	}
712 
713 	state = clear_state_bit(tree, state, &bits, wake, changeset);
714 next:
715 	if (last_end == (u64)-1)
716 		goto out;
717 	start = last_end + 1;
718 	if (start <= end && state && !need_resched())
719 		goto hit_next;
720 
721 search_again:
722 	if (start > end)
723 		goto out;
724 	spin_unlock(&tree->lock);
725 	if (gfpflags_allow_blocking(mask))
726 		cond_resched();
727 	goto again;
728 
729 out:
730 	spin_unlock(&tree->lock);
731 	if (prealloc)
732 		free_extent_state(prealloc);
733 
734 	return 0;
735 
736 }
737 
738 static void wait_on_state(struct extent_io_tree *tree,
739 			  struct extent_state *state)
740 		__releases(tree->lock)
741 		__acquires(tree->lock)
742 {
743 	DEFINE_WAIT(wait);
744 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
745 	spin_unlock(&tree->lock);
746 	schedule();
747 	spin_lock(&tree->lock);
748 	finish_wait(&state->wq, &wait);
749 }
750 
751 /*
752  * waits for one or more bits to clear on a range in the state tree.
753  * The range [start, end] is inclusive.
754  * The tree lock is taken by this function
755  */
756 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
757 			    unsigned long bits)
758 {
759 	struct extent_state *state;
760 	struct rb_node *node;
761 
762 	btrfs_debug_check_extent_io_range(tree, start, end);
763 
764 	spin_lock(&tree->lock);
765 again:
766 	while (1) {
767 		/*
768 		 * this search will find all the extents that end after
769 		 * our range starts
770 		 */
771 		node = tree_search(tree, start);
772 process_node:
773 		if (!node)
774 			break;
775 
776 		state = rb_entry(node, struct extent_state, rb_node);
777 
778 		if (state->start > end)
779 			goto out;
780 
781 		if (state->state & bits) {
782 			start = state->start;
783 			refcount_inc(&state->refs);
784 			wait_on_state(tree, state);
785 			free_extent_state(state);
786 			goto again;
787 		}
788 		start = state->end + 1;
789 
790 		if (start > end)
791 			break;
792 
793 		if (!cond_resched_lock(&tree->lock)) {
794 			node = rb_next(node);
795 			goto process_node;
796 		}
797 	}
798 out:
799 	spin_unlock(&tree->lock);
800 }
801 
802 static void set_state_bits(struct extent_io_tree *tree,
803 			   struct extent_state *state,
804 			   unsigned *bits, struct extent_changeset *changeset)
805 {
806 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
807 	int ret;
808 
809 	set_state_cb(tree, state, bits);
810 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 		u64 range = state->end - state->start + 1;
812 		tree->dirty_bytes += range;
813 	}
814 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
815 	BUG_ON(ret < 0);
816 	state->state |= bits_to_set;
817 }
818 
819 static void cache_state_if_flags(struct extent_state *state,
820 				 struct extent_state **cached_ptr,
821 				 unsigned flags)
822 {
823 	if (cached_ptr && !(*cached_ptr)) {
824 		if (!flags || (state->state & flags)) {
825 			*cached_ptr = state;
826 			refcount_inc(&state->refs);
827 		}
828 	}
829 }
830 
831 static void cache_state(struct extent_state *state,
832 			struct extent_state **cached_ptr)
833 {
834 	return cache_state_if_flags(state, cached_ptr,
835 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
836 }
837 
838 /*
839  * set some bits on a range in the tree.  This may require allocations or
840  * sleeping, so the gfp mask is used to indicate what is allowed.
841  *
842  * If any of the exclusive bits are set, this will fail with -EEXIST if some
843  * part of the range already has the desired bits set.  The start of the
844  * existing range is returned in failed_start in this case.
845  *
846  * [start, end] is inclusive This takes the tree lock.
847  */
848 
849 static int __must_check
850 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
851 		 unsigned bits, unsigned exclusive_bits,
852 		 u64 *failed_start, struct extent_state **cached_state,
853 		 gfp_t mask, struct extent_changeset *changeset)
854 {
855 	struct extent_state *state;
856 	struct extent_state *prealloc = NULL;
857 	struct rb_node *node;
858 	struct rb_node **p;
859 	struct rb_node *parent;
860 	int err = 0;
861 	u64 last_start;
862 	u64 last_end;
863 
864 	btrfs_debug_check_extent_io_range(tree, start, end);
865 
866 	bits |= EXTENT_FIRST_DELALLOC;
867 again:
868 	if (!prealloc && gfpflags_allow_blocking(mask)) {
869 		/*
870 		 * Don't care for allocation failure here because we might end
871 		 * up not needing the pre-allocated extent state at all, which
872 		 * is the case if we only have in the tree extent states that
873 		 * cover our input range and don't cover too any other range.
874 		 * If we end up needing a new extent state we allocate it later.
875 		 */
876 		prealloc = alloc_extent_state(mask);
877 	}
878 
879 	spin_lock(&tree->lock);
880 	if (cached_state && *cached_state) {
881 		state = *cached_state;
882 		if (state->start <= start && state->end > start &&
883 		    extent_state_in_tree(state)) {
884 			node = &state->rb_node;
885 			goto hit_next;
886 		}
887 	}
888 	/*
889 	 * this search will find all the extents that end after
890 	 * our range starts.
891 	 */
892 	node = tree_search_for_insert(tree, start, &p, &parent);
893 	if (!node) {
894 		prealloc = alloc_extent_state_atomic(prealloc);
895 		BUG_ON(!prealloc);
896 		err = insert_state(tree, prealloc, start, end,
897 				   &p, &parent, &bits, changeset);
898 		if (err)
899 			extent_io_tree_panic(tree, err);
900 
901 		cache_state(prealloc, cached_state);
902 		prealloc = NULL;
903 		goto out;
904 	}
905 	state = rb_entry(node, struct extent_state, rb_node);
906 hit_next:
907 	last_start = state->start;
908 	last_end = state->end;
909 
910 	/*
911 	 * | ---- desired range ---- |
912 	 * | state |
913 	 *
914 	 * Just lock what we found and keep going
915 	 */
916 	if (state->start == start && state->end <= end) {
917 		if (state->state & exclusive_bits) {
918 			*failed_start = state->start;
919 			err = -EEXIST;
920 			goto out;
921 		}
922 
923 		set_state_bits(tree, state, &bits, changeset);
924 		cache_state(state, cached_state);
925 		merge_state(tree, state);
926 		if (last_end == (u64)-1)
927 			goto out;
928 		start = last_end + 1;
929 		state = next_state(state);
930 		if (start < end && state && state->start == start &&
931 		    !need_resched())
932 			goto hit_next;
933 		goto search_again;
934 	}
935 
936 	/*
937 	 *     | ---- desired range ---- |
938 	 * | state |
939 	 *   or
940 	 * | ------------- state -------------- |
941 	 *
942 	 * We need to split the extent we found, and may flip bits on
943 	 * second half.
944 	 *
945 	 * If the extent we found extends past our
946 	 * range, we just split and search again.  It'll get split
947 	 * again the next time though.
948 	 *
949 	 * If the extent we found is inside our range, we set the
950 	 * desired bit on it.
951 	 */
952 	if (state->start < start) {
953 		if (state->state & exclusive_bits) {
954 			*failed_start = start;
955 			err = -EEXIST;
956 			goto out;
957 		}
958 
959 		prealloc = alloc_extent_state_atomic(prealloc);
960 		BUG_ON(!prealloc);
961 		err = split_state(tree, state, prealloc, start);
962 		if (err)
963 			extent_io_tree_panic(tree, err);
964 
965 		prealloc = NULL;
966 		if (err)
967 			goto out;
968 		if (state->end <= end) {
969 			set_state_bits(tree, state, &bits, changeset);
970 			cache_state(state, cached_state);
971 			merge_state(tree, state);
972 			if (last_end == (u64)-1)
973 				goto out;
974 			start = last_end + 1;
975 			state = next_state(state);
976 			if (start < end && state && state->start == start &&
977 			    !need_resched())
978 				goto hit_next;
979 		}
980 		goto search_again;
981 	}
982 	/*
983 	 * | ---- desired range ---- |
984 	 *     | state | or               | state |
985 	 *
986 	 * There's a hole, we need to insert something in it and
987 	 * ignore the extent we found.
988 	 */
989 	if (state->start > start) {
990 		u64 this_end;
991 		if (end < last_start)
992 			this_end = end;
993 		else
994 			this_end = last_start - 1;
995 
996 		prealloc = alloc_extent_state_atomic(prealloc);
997 		BUG_ON(!prealloc);
998 
999 		/*
1000 		 * Avoid to free 'prealloc' if it can be merged with
1001 		 * the later extent.
1002 		 */
1003 		err = insert_state(tree, prealloc, start, this_end,
1004 				   NULL, NULL, &bits, changeset);
1005 		if (err)
1006 			extent_io_tree_panic(tree, err);
1007 
1008 		cache_state(prealloc, cached_state);
1009 		prealloc = NULL;
1010 		start = this_end + 1;
1011 		goto search_again;
1012 	}
1013 	/*
1014 	 * | ---- desired range ---- |
1015 	 *                        | state |
1016 	 * We need to split the extent, and set the bit
1017 	 * on the first half
1018 	 */
1019 	if (state->start <= end && state->end > end) {
1020 		if (state->state & exclusive_bits) {
1021 			*failed_start = start;
1022 			err = -EEXIST;
1023 			goto out;
1024 		}
1025 
1026 		prealloc = alloc_extent_state_atomic(prealloc);
1027 		BUG_ON(!prealloc);
1028 		err = split_state(tree, state, prealloc, end + 1);
1029 		if (err)
1030 			extent_io_tree_panic(tree, err);
1031 
1032 		set_state_bits(tree, prealloc, &bits, changeset);
1033 		cache_state(prealloc, cached_state);
1034 		merge_state(tree, prealloc);
1035 		prealloc = NULL;
1036 		goto out;
1037 	}
1038 
1039 search_again:
1040 	if (start > end)
1041 		goto out;
1042 	spin_unlock(&tree->lock);
1043 	if (gfpflags_allow_blocking(mask))
1044 		cond_resched();
1045 	goto again;
1046 
1047 out:
1048 	spin_unlock(&tree->lock);
1049 	if (prealloc)
1050 		free_extent_state(prealloc);
1051 
1052 	return err;
1053 
1054 }
1055 
1056 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1057 		   unsigned bits, u64 * failed_start,
1058 		   struct extent_state **cached_state, gfp_t mask)
1059 {
1060 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1061 				cached_state, mask, NULL);
1062 }
1063 
1064 
1065 /**
1066  * convert_extent_bit - convert all bits in a given range from one bit to
1067  * 			another
1068  * @tree:	the io tree to search
1069  * @start:	the start offset in bytes
1070  * @end:	the end offset in bytes (inclusive)
1071  * @bits:	the bits to set in this range
1072  * @clear_bits:	the bits to clear in this range
1073  * @cached_state:	state that we're going to cache
1074  *
1075  * This will go through and set bits for the given range.  If any states exist
1076  * already in this range they are set with the given bit and cleared of the
1077  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1078  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1079  * boundary bits like LOCK.
1080  *
1081  * All allocations are done with GFP_NOFS.
1082  */
1083 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1084 		       unsigned bits, unsigned clear_bits,
1085 		       struct extent_state **cached_state)
1086 {
1087 	struct extent_state *state;
1088 	struct extent_state *prealloc = NULL;
1089 	struct rb_node *node;
1090 	struct rb_node **p;
1091 	struct rb_node *parent;
1092 	int err = 0;
1093 	u64 last_start;
1094 	u64 last_end;
1095 	bool first_iteration = true;
1096 
1097 	btrfs_debug_check_extent_io_range(tree, start, end);
1098 
1099 again:
1100 	if (!prealloc) {
1101 		/*
1102 		 * Best effort, don't worry if extent state allocation fails
1103 		 * here for the first iteration. We might have a cached state
1104 		 * that matches exactly the target range, in which case no
1105 		 * extent state allocations are needed. We'll only know this
1106 		 * after locking the tree.
1107 		 */
1108 		prealloc = alloc_extent_state(GFP_NOFS);
1109 		if (!prealloc && !first_iteration)
1110 			return -ENOMEM;
1111 	}
1112 
1113 	spin_lock(&tree->lock);
1114 	if (cached_state && *cached_state) {
1115 		state = *cached_state;
1116 		if (state->start <= start && state->end > start &&
1117 		    extent_state_in_tree(state)) {
1118 			node = &state->rb_node;
1119 			goto hit_next;
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * this search will find all the extents that end after
1125 	 * our range starts.
1126 	 */
1127 	node = tree_search_for_insert(tree, start, &p, &parent);
1128 	if (!node) {
1129 		prealloc = alloc_extent_state_atomic(prealloc);
1130 		if (!prealloc) {
1131 			err = -ENOMEM;
1132 			goto out;
1133 		}
1134 		err = insert_state(tree, prealloc, start, end,
1135 				   &p, &parent, &bits, NULL);
1136 		if (err)
1137 			extent_io_tree_panic(tree, err);
1138 		cache_state(prealloc, cached_state);
1139 		prealloc = NULL;
1140 		goto out;
1141 	}
1142 	state = rb_entry(node, struct extent_state, rb_node);
1143 hit_next:
1144 	last_start = state->start;
1145 	last_end = state->end;
1146 
1147 	/*
1148 	 * | ---- desired range ---- |
1149 	 * | state |
1150 	 *
1151 	 * Just lock what we found and keep going
1152 	 */
1153 	if (state->start == start && state->end <= end) {
1154 		set_state_bits(tree, state, &bits, NULL);
1155 		cache_state(state, cached_state);
1156 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1157 		if (last_end == (u64)-1)
1158 			goto out;
1159 		start = last_end + 1;
1160 		if (start < end && state && state->start == start &&
1161 		    !need_resched())
1162 			goto hit_next;
1163 		goto search_again;
1164 	}
1165 
1166 	/*
1167 	 *     | ---- desired range ---- |
1168 	 * | state |
1169 	 *   or
1170 	 * | ------------- state -------------- |
1171 	 *
1172 	 * We need to split the extent we found, and may flip bits on
1173 	 * second half.
1174 	 *
1175 	 * If the extent we found extends past our
1176 	 * range, we just split and search again.  It'll get split
1177 	 * again the next time though.
1178 	 *
1179 	 * If the extent we found is inside our range, we set the
1180 	 * desired bit on it.
1181 	 */
1182 	if (state->start < start) {
1183 		prealloc = alloc_extent_state_atomic(prealloc);
1184 		if (!prealloc) {
1185 			err = -ENOMEM;
1186 			goto out;
1187 		}
1188 		err = split_state(tree, state, prealloc, start);
1189 		if (err)
1190 			extent_io_tree_panic(tree, err);
1191 		prealloc = NULL;
1192 		if (err)
1193 			goto out;
1194 		if (state->end <= end) {
1195 			set_state_bits(tree, state, &bits, NULL);
1196 			cache_state(state, cached_state);
1197 			state = clear_state_bit(tree, state, &clear_bits, 0,
1198 						NULL);
1199 			if (last_end == (u64)-1)
1200 				goto out;
1201 			start = last_end + 1;
1202 			if (start < end && state && state->start == start &&
1203 			    !need_resched())
1204 				goto hit_next;
1205 		}
1206 		goto search_again;
1207 	}
1208 	/*
1209 	 * | ---- desired range ---- |
1210 	 *     | state | or               | state |
1211 	 *
1212 	 * There's a hole, we need to insert something in it and
1213 	 * ignore the extent we found.
1214 	 */
1215 	if (state->start > start) {
1216 		u64 this_end;
1217 		if (end < last_start)
1218 			this_end = end;
1219 		else
1220 			this_end = last_start - 1;
1221 
1222 		prealloc = alloc_extent_state_atomic(prealloc);
1223 		if (!prealloc) {
1224 			err = -ENOMEM;
1225 			goto out;
1226 		}
1227 
1228 		/*
1229 		 * Avoid to free 'prealloc' if it can be merged with
1230 		 * the later extent.
1231 		 */
1232 		err = insert_state(tree, prealloc, start, this_end,
1233 				   NULL, NULL, &bits, NULL);
1234 		if (err)
1235 			extent_io_tree_panic(tree, err);
1236 		cache_state(prealloc, cached_state);
1237 		prealloc = NULL;
1238 		start = this_end + 1;
1239 		goto search_again;
1240 	}
1241 	/*
1242 	 * | ---- desired range ---- |
1243 	 *                        | state |
1244 	 * We need to split the extent, and set the bit
1245 	 * on the first half
1246 	 */
1247 	if (state->start <= end && state->end > end) {
1248 		prealloc = alloc_extent_state_atomic(prealloc);
1249 		if (!prealloc) {
1250 			err = -ENOMEM;
1251 			goto out;
1252 		}
1253 
1254 		err = split_state(tree, state, prealloc, end + 1);
1255 		if (err)
1256 			extent_io_tree_panic(tree, err);
1257 
1258 		set_state_bits(tree, prealloc, &bits, NULL);
1259 		cache_state(prealloc, cached_state);
1260 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1261 		prealloc = NULL;
1262 		goto out;
1263 	}
1264 
1265 search_again:
1266 	if (start > end)
1267 		goto out;
1268 	spin_unlock(&tree->lock);
1269 	cond_resched();
1270 	first_iteration = false;
1271 	goto again;
1272 
1273 out:
1274 	spin_unlock(&tree->lock);
1275 	if (prealloc)
1276 		free_extent_state(prealloc);
1277 
1278 	return err;
1279 }
1280 
1281 /* wrappers around set/clear extent bit */
1282 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1283 			   unsigned bits, struct extent_changeset *changeset)
1284 {
1285 	/*
1286 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1287 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1288 	 * either fail with -EEXIST or changeset will record the whole
1289 	 * range.
1290 	 */
1291 	BUG_ON(bits & EXTENT_LOCKED);
1292 
1293 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1294 				changeset);
1295 }
1296 
1297 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1298 		     unsigned bits, int wake, int delete,
1299 		     struct extent_state **cached)
1300 {
1301 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1302 				  cached, GFP_NOFS, NULL);
1303 }
1304 
1305 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1306 		unsigned bits, struct extent_changeset *changeset)
1307 {
1308 	/*
1309 	 * Don't support EXTENT_LOCKED case, same reason as
1310 	 * set_record_extent_bits().
1311 	 */
1312 	BUG_ON(bits & EXTENT_LOCKED);
1313 
1314 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1315 				  changeset);
1316 }
1317 
1318 /*
1319  * either insert or lock state struct between start and end use mask to tell
1320  * us if waiting is desired.
1321  */
1322 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 		     struct extent_state **cached_state)
1324 {
1325 	int err;
1326 	u64 failed_start;
1327 
1328 	while (1) {
1329 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1330 				       EXTENT_LOCKED, &failed_start,
1331 				       cached_state, GFP_NOFS, NULL);
1332 		if (err == -EEXIST) {
1333 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1334 			start = failed_start;
1335 		} else
1336 			break;
1337 		WARN_ON(start > end);
1338 	}
1339 	return err;
1340 }
1341 
1342 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1343 {
1344 	int err;
1345 	u64 failed_start;
1346 
1347 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348 			       &failed_start, NULL, GFP_NOFS, NULL);
1349 	if (err == -EEXIST) {
1350 		if (failed_start > start)
1351 			clear_extent_bit(tree, start, failed_start - 1,
1352 					 EXTENT_LOCKED, 1, 0, NULL);
1353 		return 0;
1354 	}
1355 	return 1;
1356 }
1357 
1358 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359 {
1360 	unsigned long index = start >> PAGE_SHIFT;
1361 	unsigned long end_index = end >> PAGE_SHIFT;
1362 	struct page *page;
1363 
1364 	while (index <= end_index) {
1365 		page = find_get_page(inode->i_mapping, index);
1366 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1367 		clear_page_dirty_for_io(page);
1368 		put_page(page);
1369 		index++;
1370 	}
1371 }
1372 
1373 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374 {
1375 	unsigned long index = start >> PAGE_SHIFT;
1376 	unsigned long end_index = end >> PAGE_SHIFT;
1377 	struct page *page;
1378 
1379 	while (index <= end_index) {
1380 		page = find_get_page(inode->i_mapping, index);
1381 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1382 		__set_page_dirty_nobuffers(page);
1383 		account_page_redirty(page);
1384 		put_page(page);
1385 		index++;
1386 	}
1387 }
1388 
1389 /*
1390  * helper function to set both pages and extents in the tree writeback
1391  */
1392 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393 {
1394 	tree->ops->set_range_writeback(tree->private_data, start, end);
1395 }
1396 
1397 /* find the first state struct with 'bits' set after 'start', and
1398  * return it.  tree->lock must be held.  NULL will returned if
1399  * nothing was found after 'start'
1400  */
1401 static struct extent_state *
1402 find_first_extent_bit_state(struct extent_io_tree *tree,
1403 			    u64 start, unsigned bits)
1404 {
1405 	struct rb_node *node;
1406 	struct extent_state *state;
1407 
1408 	/*
1409 	 * this search will find all the extents that end after
1410 	 * our range starts.
1411 	 */
1412 	node = tree_search(tree, start);
1413 	if (!node)
1414 		goto out;
1415 
1416 	while (1) {
1417 		state = rb_entry(node, struct extent_state, rb_node);
1418 		if (state->end >= start && (state->state & bits))
1419 			return state;
1420 
1421 		node = rb_next(node);
1422 		if (!node)
1423 			break;
1424 	}
1425 out:
1426 	return NULL;
1427 }
1428 
1429 /*
1430  * find the first offset in the io tree with 'bits' set. zero is
1431  * returned if we find something, and *start_ret and *end_ret are
1432  * set to reflect the state struct that was found.
1433  *
1434  * If nothing was found, 1 is returned. If found something, return 0.
1435  */
1436 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1437 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1438 			  struct extent_state **cached_state)
1439 {
1440 	struct extent_state *state;
1441 	struct rb_node *n;
1442 	int ret = 1;
1443 
1444 	spin_lock(&tree->lock);
1445 	if (cached_state && *cached_state) {
1446 		state = *cached_state;
1447 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1448 			n = rb_next(&state->rb_node);
1449 			while (n) {
1450 				state = rb_entry(n, struct extent_state,
1451 						 rb_node);
1452 				if (state->state & bits)
1453 					goto got_it;
1454 				n = rb_next(n);
1455 			}
1456 			free_extent_state(*cached_state);
1457 			*cached_state = NULL;
1458 			goto out;
1459 		}
1460 		free_extent_state(*cached_state);
1461 		*cached_state = NULL;
1462 	}
1463 
1464 	state = find_first_extent_bit_state(tree, start, bits);
1465 got_it:
1466 	if (state) {
1467 		cache_state_if_flags(state, cached_state, 0);
1468 		*start_ret = state->start;
1469 		*end_ret = state->end;
1470 		ret = 0;
1471 	}
1472 out:
1473 	spin_unlock(&tree->lock);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * find a contiguous range of bytes in the file marked as delalloc, not
1479  * more than 'max_bytes'.  start and end are used to return the range,
1480  *
1481  * 1 is returned if we find something, 0 if nothing was in the tree
1482  */
1483 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1484 					u64 *start, u64 *end, u64 max_bytes,
1485 					struct extent_state **cached_state)
1486 {
1487 	struct rb_node *node;
1488 	struct extent_state *state;
1489 	u64 cur_start = *start;
1490 	u64 found = 0;
1491 	u64 total_bytes = 0;
1492 
1493 	spin_lock(&tree->lock);
1494 
1495 	/*
1496 	 * this search will find all the extents that end after
1497 	 * our range starts.
1498 	 */
1499 	node = tree_search(tree, cur_start);
1500 	if (!node) {
1501 		if (!found)
1502 			*end = (u64)-1;
1503 		goto out;
1504 	}
1505 
1506 	while (1) {
1507 		state = rb_entry(node, struct extent_state, rb_node);
1508 		if (found && (state->start != cur_start ||
1509 			      (state->state & EXTENT_BOUNDARY))) {
1510 			goto out;
1511 		}
1512 		if (!(state->state & EXTENT_DELALLOC)) {
1513 			if (!found)
1514 				*end = state->end;
1515 			goto out;
1516 		}
1517 		if (!found) {
1518 			*start = state->start;
1519 			*cached_state = state;
1520 			refcount_inc(&state->refs);
1521 		}
1522 		found++;
1523 		*end = state->end;
1524 		cur_start = state->end + 1;
1525 		node = rb_next(node);
1526 		total_bytes += state->end - state->start + 1;
1527 		if (total_bytes >= max_bytes)
1528 			break;
1529 		if (!node)
1530 			break;
1531 	}
1532 out:
1533 	spin_unlock(&tree->lock);
1534 	return found;
1535 }
1536 
1537 static int __process_pages_contig(struct address_space *mapping,
1538 				  struct page *locked_page,
1539 				  pgoff_t start_index, pgoff_t end_index,
1540 				  unsigned long page_ops, pgoff_t *index_ret);
1541 
1542 static noinline void __unlock_for_delalloc(struct inode *inode,
1543 					   struct page *locked_page,
1544 					   u64 start, u64 end)
1545 {
1546 	unsigned long index = start >> PAGE_SHIFT;
1547 	unsigned long end_index = end >> PAGE_SHIFT;
1548 
1549 	ASSERT(locked_page);
1550 	if (index == locked_page->index && end_index == index)
1551 		return;
1552 
1553 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1554 			       PAGE_UNLOCK, NULL);
1555 }
1556 
1557 static noinline int lock_delalloc_pages(struct inode *inode,
1558 					struct page *locked_page,
1559 					u64 delalloc_start,
1560 					u64 delalloc_end)
1561 {
1562 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1563 	unsigned long index_ret = index;
1564 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1565 	int ret;
1566 
1567 	ASSERT(locked_page);
1568 	if (index == locked_page->index && index == end_index)
1569 		return 0;
1570 
1571 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1572 				     end_index, PAGE_LOCK, &index_ret);
1573 	if (ret == -EAGAIN)
1574 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1575 				      (u64)index_ret << PAGE_SHIFT);
1576 	return ret;
1577 }
1578 
1579 /*
1580  * find a contiguous range of bytes in the file marked as delalloc, not
1581  * more than 'max_bytes'.  start and end are used to return the range,
1582  *
1583  * 1 is returned if we find something, 0 if nothing was in the tree
1584  */
1585 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1586 				    struct extent_io_tree *tree,
1587 				    struct page *locked_page, u64 *start,
1588 				    u64 *end, u64 max_bytes)
1589 {
1590 	u64 delalloc_start;
1591 	u64 delalloc_end;
1592 	u64 found;
1593 	struct extent_state *cached_state = NULL;
1594 	int ret;
1595 	int loops = 0;
1596 
1597 again:
1598 	/* step one, find a bunch of delalloc bytes starting at start */
1599 	delalloc_start = *start;
1600 	delalloc_end = 0;
1601 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1602 				    max_bytes, &cached_state);
1603 	if (!found || delalloc_end <= *start) {
1604 		*start = delalloc_start;
1605 		*end = delalloc_end;
1606 		free_extent_state(cached_state);
1607 		return 0;
1608 	}
1609 
1610 	/*
1611 	 * start comes from the offset of locked_page.  We have to lock
1612 	 * pages in order, so we can't process delalloc bytes before
1613 	 * locked_page
1614 	 */
1615 	if (delalloc_start < *start)
1616 		delalloc_start = *start;
1617 
1618 	/*
1619 	 * make sure to limit the number of pages we try to lock down
1620 	 */
1621 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1622 		delalloc_end = delalloc_start + max_bytes - 1;
1623 
1624 	/* step two, lock all the pages after the page that has start */
1625 	ret = lock_delalloc_pages(inode, locked_page,
1626 				  delalloc_start, delalloc_end);
1627 	if (ret == -EAGAIN) {
1628 		/* some of the pages are gone, lets avoid looping by
1629 		 * shortening the size of the delalloc range we're searching
1630 		 */
1631 		free_extent_state(cached_state);
1632 		cached_state = NULL;
1633 		if (!loops) {
1634 			max_bytes = PAGE_SIZE;
1635 			loops = 1;
1636 			goto again;
1637 		} else {
1638 			found = 0;
1639 			goto out_failed;
1640 		}
1641 	}
1642 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643 
1644 	/* step three, lock the state bits for the whole range */
1645 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646 
1647 	/* then test to make sure it is all still delalloc */
1648 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1649 			     EXTENT_DELALLOC, 1, cached_state);
1650 	if (!ret) {
1651 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1652 				     &cached_state);
1653 		__unlock_for_delalloc(inode, locked_page,
1654 			      delalloc_start, delalloc_end);
1655 		cond_resched();
1656 		goto again;
1657 	}
1658 	free_extent_state(cached_state);
1659 	*start = delalloc_start;
1660 	*end = delalloc_end;
1661 out_failed:
1662 	return found;
1663 }
1664 
1665 static int __process_pages_contig(struct address_space *mapping,
1666 				  struct page *locked_page,
1667 				  pgoff_t start_index, pgoff_t end_index,
1668 				  unsigned long page_ops, pgoff_t *index_ret)
1669 {
1670 	unsigned long nr_pages = end_index - start_index + 1;
1671 	unsigned long pages_locked = 0;
1672 	pgoff_t index = start_index;
1673 	struct page *pages[16];
1674 	unsigned ret;
1675 	int err = 0;
1676 	int i;
1677 
1678 	if (page_ops & PAGE_LOCK) {
1679 		ASSERT(page_ops == PAGE_LOCK);
1680 		ASSERT(index_ret && *index_ret == start_index);
1681 	}
1682 
1683 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1684 		mapping_set_error(mapping, -EIO);
1685 
1686 	while (nr_pages > 0) {
1687 		ret = find_get_pages_contig(mapping, index,
1688 				     min_t(unsigned long,
1689 				     nr_pages, ARRAY_SIZE(pages)), pages);
1690 		if (ret == 0) {
1691 			/*
1692 			 * Only if we're going to lock these pages,
1693 			 * can we find nothing at @index.
1694 			 */
1695 			ASSERT(page_ops & PAGE_LOCK);
1696 			err = -EAGAIN;
1697 			goto out;
1698 		}
1699 
1700 		for (i = 0; i < ret; i++) {
1701 			if (page_ops & PAGE_SET_PRIVATE2)
1702 				SetPagePrivate2(pages[i]);
1703 
1704 			if (pages[i] == locked_page) {
1705 				put_page(pages[i]);
1706 				pages_locked++;
1707 				continue;
1708 			}
1709 			if (page_ops & PAGE_CLEAR_DIRTY)
1710 				clear_page_dirty_for_io(pages[i]);
1711 			if (page_ops & PAGE_SET_WRITEBACK)
1712 				set_page_writeback(pages[i]);
1713 			if (page_ops & PAGE_SET_ERROR)
1714 				SetPageError(pages[i]);
1715 			if (page_ops & PAGE_END_WRITEBACK)
1716 				end_page_writeback(pages[i]);
1717 			if (page_ops & PAGE_UNLOCK)
1718 				unlock_page(pages[i]);
1719 			if (page_ops & PAGE_LOCK) {
1720 				lock_page(pages[i]);
1721 				if (!PageDirty(pages[i]) ||
1722 				    pages[i]->mapping != mapping) {
1723 					unlock_page(pages[i]);
1724 					put_page(pages[i]);
1725 					err = -EAGAIN;
1726 					goto out;
1727 				}
1728 			}
1729 			put_page(pages[i]);
1730 			pages_locked++;
1731 		}
1732 		nr_pages -= ret;
1733 		index += ret;
1734 		cond_resched();
1735 	}
1736 out:
1737 	if (err && index_ret)
1738 		*index_ret = start_index + pages_locked - 1;
1739 	return err;
1740 }
1741 
1742 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1743 				 u64 delalloc_end, struct page *locked_page,
1744 				 unsigned clear_bits,
1745 				 unsigned long page_ops)
1746 {
1747 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1748 			 NULL);
1749 
1750 	__process_pages_contig(inode->i_mapping, locked_page,
1751 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1752 			       page_ops, NULL);
1753 }
1754 
1755 /*
1756  * count the number of bytes in the tree that have a given bit(s)
1757  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1758  * cached.  The total number found is returned.
1759  */
1760 u64 count_range_bits(struct extent_io_tree *tree,
1761 		     u64 *start, u64 search_end, u64 max_bytes,
1762 		     unsigned bits, int contig)
1763 {
1764 	struct rb_node *node;
1765 	struct extent_state *state;
1766 	u64 cur_start = *start;
1767 	u64 total_bytes = 0;
1768 	u64 last = 0;
1769 	int found = 0;
1770 
1771 	if (WARN_ON(search_end <= cur_start))
1772 		return 0;
1773 
1774 	spin_lock(&tree->lock);
1775 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1776 		total_bytes = tree->dirty_bytes;
1777 		goto out;
1778 	}
1779 	/*
1780 	 * this search will find all the extents that end after
1781 	 * our range starts.
1782 	 */
1783 	node = tree_search(tree, cur_start);
1784 	if (!node)
1785 		goto out;
1786 
1787 	while (1) {
1788 		state = rb_entry(node, struct extent_state, rb_node);
1789 		if (state->start > search_end)
1790 			break;
1791 		if (contig && found && state->start > last + 1)
1792 			break;
1793 		if (state->end >= cur_start && (state->state & bits) == bits) {
1794 			total_bytes += min(search_end, state->end) + 1 -
1795 				       max(cur_start, state->start);
1796 			if (total_bytes >= max_bytes)
1797 				break;
1798 			if (!found) {
1799 				*start = max(cur_start, state->start);
1800 				found = 1;
1801 			}
1802 			last = state->end;
1803 		} else if (contig && found) {
1804 			break;
1805 		}
1806 		node = rb_next(node);
1807 		if (!node)
1808 			break;
1809 	}
1810 out:
1811 	spin_unlock(&tree->lock);
1812 	return total_bytes;
1813 }
1814 
1815 /*
1816  * set the private field for a given byte offset in the tree.  If there isn't
1817  * an extent_state there already, this does nothing.
1818  */
1819 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1820 		struct io_failure_record *failrec)
1821 {
1822 	struct rb_node *node;
1823 	struct extent_state *state;
1824 	int ret = 0;
1825 
1826 	spin_lock(&tree->lock);
1827 	/*
1828 	 * this search will find all the extents that end after
1829 	 * our range starts.
1830 	 */
1831 	node = tree_search(tree, start);
1832 	if (!node) {
1833 		ret = -ENOENT;
1834 		goto out;
1835 	}
1836 	state = rb_entry(node, struct extent_state, rb_node);
1837 	if (state->start != start) {
1838 		ret = -ENOENT;
1839 		goto out;
1840 	}
1841 	state->failrec = failrec;
1842 out:
1843 	spin_unlock(&tree->lock);
1844 	return ret;
1845 }
1846 
1847 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1848 		struct io_failure_record **failrec)
1849 {
1850 	struct rb_node *node;
1851 	struct extent_state *state;
1852 	int ret = 0;
1853 
1854 	spin_lock(&tree->lock);
1855 	/*
1856 	 * this search will find all the extents that end after
1857 	 * our range starts.
1858 	 */
1859 	node = tree_search(tree, start);
1860 	if (!node) {
1861 		ret = -ENOENT;
1862 		goto out;
1863 	}
1864 	state = rb_entry(node, struct extent_state, rb_node);
1865 	if (state->start != start) {
1866 		ret = -ENOENT;
1867 		goto out;
1868 	}
1869 	*failrec = state->failrec;
1870 out:
1871 	spin_unlock(&tree->lock);
1872 	return ret;
1873 }
1874 
1875 /*
1876  * searches a range in the state tree for a given mask.
1877  * If 'filled' == 1, this returns 1 only if every extent in the tree
1878  * has the bits set.  Otherwise, 1 is returned if any bit in the
1879  * range is found set.
1880  */
1881 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1882 		   unsigned bits, int filled, struct extent_state *cached)
1883 {
1884 	struct extent_state *state = NULL;
1885 	struct rb_node *node;
1886 	int bitset = 0;
1887 
1888 	spin_lock(&tree->lock);
1889 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1890 	    cached->end > start)
1891 		node = &cached->rb_node;
1892 	else
1893 		node = tree_search(tree, start);
1894 	while (node && start <= end) {
1895 		state = rb_entry(node, struct extent_state, rb_node);
1896 
1897 		if (filled && state->start > start) {
1898 			bitset = 0;
1899 			break;
1900 		}
1901 
1902 		if (state->start > end)
1903 			break;
1904 
1905 		if (state->state & bits) {
1906 			bitset = 1;
1907 			if (!filled)
1908 				break;
1909 		} else if (filled) {
1910 			bitset = 0;
1911 			break;
1912 		}
1913 
1914 		if (state->end == (u64)-1)
1915 			break;
1916 
1917 		start = state->end + 1;
1918 		if (start > end)
1919 			break;
1920 		node = rb_next(node);
1921 		if (!node) {
1922 			if (filled)
1923 				bitset = 0;
1924 			break;
1925 		}
1926 	}
1927 	spin_unlock(&tree->lock);
1928 	return bitset;
1929 }
1930 
1931 /*
1932  * helper function to set a given page up to date if all the
1933  * extents in the tree for that page are up to date
1934  */
1935 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1936 {
1937 	u64 start = page_offset(page);
1938 	u64 end = start + PAGE_SIZE - 1;
1939 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1940 		SetPageUptodate(page);
1941 }
1942 
1943 int free_io_failure(struct extent_io_tree *failure_tree,
1944 		    struct extent_io_tree *io_tree,
1945 		    struct io_failure_record *rec)
1946 {
1947 	int ret;
1948 	int err = 0;
1949 
1950 	set_state_failrec(failure_tree, rec->start, NULL);
1951 	ret = clear_extent_bits(failure_tree, rec->start,
1952 				rec->start + rec->len - 1,
1953 				EXTENT_LOCKED | EXTENT_DIRTY);
1954 	if (ret)
1955 		err = ret;
1956 
1957 	ret = clear_extent_bits(io_tree, rec->start,
1958 				rec->start + rec->len - 1,
1959 				EXTENT_DAMAGED);
1960 	if (ret && !err)
1961 		err = ret;
1962 
1963 	kfree(rec);
1964 	return err;
1965 }
1966 
1967 /*
1968  * this bypasses the standard btrfs submit functions deliberately, as
1969  * the standard behavior is to write all copies in a raid setup. here we only
1970  * want to write the one bad copy. so we do the mapping for ourselves and issue
1971  * submit_bio directly.
1972  * to avoid any synchronization issues, wait for the data after writing, which
1973  * actually prevents the read that triggered the error from finishing.
1974  * currently, there can be no more than two copies of every data bit. thus,
1975  * exactly one rewrite is required.
1976  */
1977 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1978 		      u64 length, u64 logical, struct page *page,
1979 		      unsigned int pg_offset, int mirror_num)
1980 {
1981 	struct bio *bio;
1982 	struct btrfs_device *dev;
1983 	u64 map_length = 0;
1984 	u64 sector;
1985 	struct btrfs_bio *bbio = NULL;
1986 	int ret;
1987 
1988 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1989 	BUG_ON(!mirror_num);
1990 
1991 	bio = btrfs_io_bio_alloc(1);
1992 	bio->bi_iter.bi_size = 0;
1993 	map_length = length;
1994 
1995 	/*
1996 	 * Avoid races with device replace and make sure our bbio has devices
1997 	 * associated to its stripes that don't go away while we are doing the
1998 	 * read repair operation.
1999 	 */
2000 	btrfs_bio_counter_inc_blocked(fs_info);
2001 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2002 		/*
2003 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004 		 * to update all raid stripes, but here we just want to correct
2005 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006 		 * stripe's dev and sector.
2007 		 */
2008 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2009 				      &map_length, &bbio, 0);
2010 		if (ret) {
2011 			btrfs_bio_counter_dec(fs_info);
2012 			bio_put(bio);
2013 			return -EIO;
2014 		}
2015 		ASSERT(bbio->mirror_num == 1);
2016 	} else {
2017 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2018 				      &map_length, &bbio, mirror_num);
2019 		if (ret) {
2020 			btrfs_bio_counter_dec(fs_info);
2021 			bio_put(bio);
2022 			return -EIO;
2023 		}
2024 		BUG_ON(mirror_num != bbio->mirror_num);
2025 	}
2026 
2027 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2028 	bio->bi_iter.bi_sector = sector;
2029 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2030 	btrfs_put_bbio(bbio);
2031 	if (!dev || !dev->bdev ||
2032 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2033 		btrfs_bio_counter_dec(fs_info);
2034 		bio_put(bio);
2035 		return -EIO;
2036 	}
2037 	bio_set_dev(bio, dev->bdev);
2038 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2039 	bio_add_page(bio, page, length, pg_offset);
2040 
2041 	if (btrfsic_submit_bio_wait(bio)) {
2042 		/* try to remap that extent elsewhere? */
2043 		btrfs_bio_counter_dec(fs_info);
2044 		bio_put(bio);
2045 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2046 		return -EIO;
2047 	}
2048 
2049 	btrfs_info_rl_in_rcu(fs_info,
2050 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2051 				  ino, start,
2052 				  rcu_str_deref(dev->name), sector);
2053 	btrfs_bio_counter_dec(fs_info);
2054 	bio_put(bio);
2055 	return 0;
2056 }
2057 
2058 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2059 			 struct extent_buffer *eb, int mirror_num)
2060 {
2061 	u64 start = eb->start;
2062 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2063 	int ret = 0;
2064 
2065 	if (sb_rdonly(fs_info->sb))
2066 		return -EROFS;
2067 
2068 	for (i = 0; i < num_pages; i++) {
2069 		struct page *p = eb->pages[i];
2070 
2071 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2072 					start - page_offset(p), mirror_num);
2073 		if (ret)
2074 			break;
2075 		start += PAGE_SIZE;
2076 	}
2077 
2078 	return ret;
2079 }
2080 
2081 /*
2082  * each time an IO finishes, we do a fast check in the IO failure tree
2083  * to see if we need to process or clean up an io_failure_record
2084  */
2085 int clean_io_failure(struct btrfs_fs_info *fs_info,
2086 		     struct extent_io_tree *failure_tree,
2087 		     struct extent_io_tree *io_tree, u64 start,
2088 		     struct page *page, u64 ino, unsigned int pg_offset)
2089 {
2090 	u64 private;
2091 	struct io_failure_record *failrec;
2092 	struct extent_state *state;
2093 	int num_copies;
2094 	int ret;
2095 
2096 	private = 0;
2097 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2098 			       EXTENT_DIRTY, 0);
2099 	if (!ret)
2100 		return 0;
2101 
2102 	ret = get_state_failrec(failure_tree, start, &failrec);
2103 	if (ret)
2104 		return 0;
2105 
2106 	BUG_ON(!failrec->this_mirror);
2107 
2108 	if (failrec->in_validation) {
2109 		/* there was no real error, just free the record */
2110 		btrfs_debug(fs_info,
2111 			"clean_io_failure: freeing dummy error at %llu",
2112 			failrec->start);
2113 		goto out;
2114 	}
2115 	if (sb_rdonly(fs_info->sb))
2116 		goto out;
2117 
2118 	spin_lock(&io_tree->lock);
2119 	state = find_first_extent_bit_state(io_tree,
2120 					    failrec->start,
2121 					    EXTENT_LOCKED);
2122 	spin_unlock(&io_tree->lock);
2123 
2124 	if (state && state->start <= failrec->start &&
2125 	    state->end >= failrec->start + failrec->len - 1) {
2126 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 					      failrec->len);
2128 		if (num_copies > 1)  {
2129 			repair_io_failure(fs_info, ino, start, failrec->len,
2130 					  failrec->logical, page, pg_offset,
2131 					  failrec->failed_mirror);
2132 		}
2133 	}
2134 
2135 out:
2136 	free_io_failure(failure_tree, io_tree, failrec);
2137 
2138 	return 0;
2139 }
2140 
2141 /*
2142  * Can be called when
2143  * - hold extent lock
2144  * - under ordered extent
2145  * - the inode is freeing
2146  */
2147 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2148 {
2149 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2150 	struct io_failure_record *failrec;
2151 	struct extent_state *state, *next;
2152 
2153 	if (RB_EMPTY_ROOT(&failure_tree->state))
2154 		return;
2155 
2156 	spin_lock(&failure_tree->lock);
2157 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 	while (state) {
2159 		if (state->start > end)
2160 			break;
2161 
2162 		ASSERT(state->end <= end);
2163 
2164 		next = next_state(state);
2165 
2166 		failrec = state->failrec;
2167 		free_extent_state(state);
2168 		kfree(failrec);
2169 
2170 		state = next;
2171 	}
2172 	spin_unlock(&failure_tree->lock);
2173 }
2174 
2175 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2176 		struct io_failure_record **failrec_ret)
2177 {
2178 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2179 	struct io_failure_record *failrec;
2180 	struct extent_map *em;
2181 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184 	int ret;
2185 	u64 logical;
2186 
2187 	ret = get_state_failrec(failure_tree, start, &failrec);
2188 	if (ret) {
2189 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 		if (!failrec)
2191 			return -ENOMEM;
2192 
2193 		failrec->start = start;
2194 		failrec->len = end - start + 1;
2195 		failrec->this_mirror = 0;
2196 		failrec->bio_flags = 0;
2197 		failrec->in_validation = 0;
2198 
2199 		read_lock(&em_tree->lock);
2200 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 		if (!em) {
2202 			read_unlock(&em_tree->lock);
2203 			kfree(failrec);
2204 			return -EIO;
2205 		}
2206 
2207 		if (em->start > start || em->start + em->len <= start) {
2208 			free_extent_map(em);
2209 			em = NULL;
2210 		}
2211 		read_unlock(&em_tree->lock);
2212 		if (!em) {
2213 			kfree(failrec);
2214 			return -EIO;
2215 		}
2216 
2217 		logical = start - em->start;
2218 		logical = em->block_start + logical;
2219 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 			logical = em->block_start;
2221 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 			extent_set_compress_type(&failrec->bio_flags,
2223 						 em->compress_type);
2224 		}
2225 
2226 		btrfs_debug(fs_info,
2227 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2228 			logical, start, failrec->len);
2229 
2230 		failrec->logical = logical;
2231 		free_extent_map(em);
2232 
2233 		/* set the bits in the private failure tree */
2234 		ret = set_extent_bits(failure_tree, start, end,
2235 					EXTENT_LOCKED | EXTENT_DIRTY);
2236 		if (ret >= 0)
2237 			ret = set_state_failrec(failure_tree, start, failrec);
2238 		/* set the bits in the inode's tree */
2239 		if (ret >= 0)
2240 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2241 		if (ret < 0) {
2242 			kfree(failrec);
2243 			return ret;
2244 		}
2245 	} else {
2246 		btrfs_debug(fs_info,
2247 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2248 			failrec->logical, failrec->start, failrec->len,
2249 			failrec->in_validation);
2250 		/*
2251 		 * when data can be on disk more than twice, add to failrec here
2252 		 * (e.g. with a list for failed_mirror) to make
2253 		 * clean_io_failure() clean all those errors at once.
2254 		 */
2255 	}
2256 
2257 	*failrec_ret = failrec;
2258 
2259 	return 0;
2260 }
2261 
2262 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2263 			   struct io_failure_record *failrec, int failed_mirror)
2264 {
2265 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2266 	int num_copies;
2267 
2268 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2269 	if (num_copies == 1) {
2270 		/*
2271 		 * we only have a single copy of the data, so don't bother with
2272 		 * all the retry and error correction code that follows. no
2273 		 * matter what the error is, it is very likely to persist.
2274 		 */
2275 		btrfs_debug(fs_info,
2276 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2277 			num_copies, failrec->this_mirror, failed_mirror);
2278 		return false;
2279 	}
2280 
2281 	/*
2282 	 * there are two premises:
2283 	 *	a) deliver good data to the caller
2284 	 *	b) correct the bad sectors on disk
2285 	 */
2286 	if (failed_bio_pages > 1) {
2287 		/*
2288 		 * to fulfill b), we need to know the exact failing sectors, as
2289 		 * we don't want to rewrite any more than the failed ones. thus,
2290 		 * we need separate read requests for the failed bio
2291 		 *
2292 		 * if the following BUG_ON triggers, our validation request got
2293 		 * merged. we need separate requests for our algorithm to work.
2294 		 */
2295 		BUG_ON(failrec->in_validation);
2296 		failrec->in_validation = 1;
2297 		failrec->this_mirror = failed_mirror;
2298 	} else {
2299 		/*
2300 		 * we're ready to fulfill a) and b) alongside. get a good copy
2301 		 * of the failed sector and if we succeed, we have setup
2302 		 * everything for repair_io_failure to do the rest for us.
2303 		 */
2304 		if (failrec->in_validation) {
2305 			BUG_ON(failrec->this_mirror != failed_mirror);
2306 			failrec->in_validation = 0;
2307 			failrec->this_mirror = 0;
2308 		}
2309 		failrec->failed_mirror = failed_mirror;
2310 		failrec->this_mirror++;
2311 		if (failrec->this_mirror == failed_mirror)
2312 			failrec->this_mirror++;
2313 	}
2314 
2315 	if (failrec->this_mirror > num_copies) {
2316 		btrfs_debug(fs_info,
2317 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2318 			num_copies, failrec->this_mirror, failed_mirror);
2319 		return false;
2320 	}
2321 
2322 	return true;
2323 }
2324 
2325 
2326 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2327 				    struct io_failure_record *failrec,
2328 				    struct page *page, int pg_offset, int icsum,
2329 				    bio_end_io_t *endio_func, void *data)
2330 {
2331 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2332 	struct bio *bio;
2333 	struct btrfs_io_bio *btrfs_failed_bio;
2334 	struct btrfs_io_bio *btrfs_bio;
2335 
2336 	bio = btrfs_io_bio_alloc(1);
2337 	bio->bi_end_io = endio_func;
2338 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2340 	bio->bi_iter.bi_size = 0;
2341 	bio->bi_private = data;
2342 
2343 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 	if (btrfs_failed_bio->csum) {
2345 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2346 
2347 		btrfs_bio = btrfs_io_bio(bio);
2348 		btrfs_bio->csum = btrfs_bio->csum_inline;
2349 		icsum *= csum_size;
2350 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2351 		       csum_size);
2352 	}
2353 
2354 	bio_add_page(bio, page, failrec->len, pg_offset);
2355 
2356 	return bio;
2357 }
2358 
2359 /*
2360  * this is a generic handler for readpage errors (default
2361  * readpage_io_failed_hook). if other copies exist, read those and write back
2362  * good data to the failed position. does not investigate in remapping the
2363  * failed extent elsewhere, hoping the device will be smart enough to do this as
2364  * needed
2365  */
2366 
2367 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2368 			      struct page *page, u64 start, u64 end,
2369 			      int failed_mirror)
2370 {
2371 	struct io_failure_record *failrec;
2372 	struct inode *inode = page->mapping->host;
2373 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2374 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2375 	struct bio *bio;
2376 	int read_mode = 0;
2377 	blk_status_t status;
2378 	int ret;
2379 	unsigned failed_bio_pages = bio_pages_all(failed_bio);
2380 
2381 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2382 
2383 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2384 	if (ret)
2385 		return ret;
2386 
2387 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2388 				    failed_mirror)) {
2389 		free_io_failure(failure_tree, tree, failrec);
2390 		return -EIO;
2391 	}
2392 
2393 	if (failed_bio_pages > 1)
2394 		read_mode |= REQ_FAILFAST_DEV;
2395 
2396 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 				      start - page_offset(page),
2399 				      (int)phy_offset, failed_bio->bi_end_io,
2400 				      NULL);
2401 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2402 
2403 	btrfs_debug(btrfs_sb(inode->i_sb),
2404 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2405 		read_mode, failrec->this_mirror, failrec->in_validation);
2406 
2407 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2408 					 failrec->bio_flags, 0);
2409 	if (status) {
2410 		free_io_failure(failure_tree, tree, failrec);
2411 		bio_put(bio);
2412 		ret = blk_status_to_errno(status);
2413 	}
2414 
2415 	return ret;
2416 }
2417 
2418 /* lots and lots of room for performance fixes in the end_bio funcs */
2419 
2420 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2421 {
2422 	int uptodate = (err == 0);
2423 	struct extent_io_tree *tree;
2424 	int ret = 0;
2425 
2426 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2427 
2428 	if (tree->ops && tree->ops->writepage_end_io_hook)
2429 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2430 				uptodate);
2431 
2432 	if (!uptodate) {
2433 		ClearPageUptodate(page);
2434 		SetPageError(page);
2435 		ret = err < 0 ? err : -EIO;
2436 		mapping_set_error(page->mapping, ret);
2437 	}
2438 }
2439 
2440 /*
2441  * after a writepage IO is done, we need to:
2442  * clear the uptodate bits on error
2443  * clear the writeback bits in the extent tree for this IO
2444  * end_page_writeback if the page has no more pending IO
2445  *
2446  * Scheduling is not allowed, so the extent state tree is expected
2447  * to have one and only one object corresponding to this IO.
2448  */
2449 static void end_bio_extent_writepage(struct bio *bio)
2450 {
2451 	int error = blk_status_to_errno(bio->bi_status);
2452 	struct bio_vec *bvec;
2453 	u64 start;
2454 	u64 end;
2455 	int i;
2456 
2457 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2458 	bio_for_each_segment_all(bvec, bio, i) {
2459 		struct page *page = bvec->bv_page;
2460 		struct inode *inode = page->mapping->host;
2461 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2462 
2463 		/* We always issue full-page reads, but if some block
2464 		 * in a page fails to read, blk_update_request() will
2465 		 * advance bv_offset and adjust bv_len to compensate.
2466 		 * Print a warning for nonzero offsets, and an error
2467 		 * if they don't add up to a full page.  */
2468 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2469 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2470 				btrfs_err(fs_info,
2471 				   "partial page write in btrfs with offset %u and length %u",
2472 					bvec->bv_offset, bvec->bv_len);
2473 			else
2474 				btrfs_info(fs_info,
2475 				   "incomplete page write in btrfs with offset %u and length %u",
2476 					bvec->bv_offset, bvec->bv_len);
2477 		}
2478 
2479 		start = page_offset(page);
2480 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2481 
2482 		end_extent_writepage(page, error, start, end);
2483 		end_page_writeback(page);
2484 	}
2485 
2486 	bio_put(bio);
2487 }
2488 
2489 static void
2490 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491 			      int uptodate)
2492 {
2493 	struct extent_state *cached = NULL;
2494 	u64 end = start + len - 1;
2495 
2496 	if (uptodate && tree->track_uptodate)
2497 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2498 	unlock_extent_cached_atomic(tree, start, end, &cached);
2499 }
2500 
2501 /*
2502  * after a readpage IO is done, we need to:
2503  * clear the uptodate bits on error
2504  * set the uptodate bits if things worked
2505  * set the page up to date if all extents in the tree are uptodate
2506  * clear the lock bit in the extent tree
2507  * unlock the page if there are no other extents locked for it
2508  *
2509  * Scheduling is not allowed, so the extent state tree is expected
2510  * to have one and only one object corresponding to this IO.
2511  */
2512 static void end_bio_extent_readpage(struct bio *bio)
2513 {
2514 	struct bio_vec *bvec;
2515 	int uptodate = !bio->bi_status;
2516 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2517 	struct extent_io_tree *tree, *failure_tree;
2518 	u64 offset = 0;
2519 	u64 start;
2520 	u64 end;
2521 	u64 len;
2522 	u64 extent_start = 0;
2523 	u64 extent_len = 0;
2524 	int mirror;
2525 	int ret;
2526 	int i;
2527 
2528 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2529 	bio_for_each_segment_all(bvec, bio, i) {
2530 		struct page *page = bvec->bv_page;
2531 		struct inode *inode = page->mapping->host;
2532 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2533 
2534 		btrfs_debug(fs_info,
2535 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2536 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2537 			io_bio->mirror_num);
2538 		tree = &BTRFS_I(inode)->io_tree;
2539 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2540 
2541 		/* We always issue full-page reads, but if some block
2542 		 * in a page fails to read, blk_update_request() will
2543 		 * advance bv_offset and adjust bv_len to compensate.
2544 		 * Print a warning for nonzero offsets, and an error
2545 		 * if they don't add up to a full page.  */
2546 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2547 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2548 				btrfs_err(fs_info,
2549 					"partial page read in btrfs with offset %u and length %u",
2550 					bvec->bv_offset, bvec->bv_len);
2551 			else
2552 				btrfs_info(fs_info,
2553 					"incomplete page read in btrfs with offset %u and length %u",
2554 					bvec->bv_offset, bvec->bv_len);
2555 		}
2556 
2557 		start = page_offset(page);
2558 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2559 		len = bvec->bv_len;
2560 
2561 		mirror = io_bio->mirror_num;
2562 		if (likely(uptodate && tree->ops)) {
2563 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 							      page, start, end,
2565 							      mirror);
2566 			if (ret)
2567 				uptodate = 0;
2568 			else
2569 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2570 						 failure_tree, tree, start,
2571 						 page,
2572 						 btrfs_ino(BTRFS_I(inode)), 0);
2573 		}
2574 
2575 		if (likely(uptodate))
2576 			goto readpage_ok;
2577 
2578 		if (tree->ops) {
2579 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2580 			if (ret == -EAGAIN) {
2581 				/*
2582 				 * Data inode's readpage_io_failed_hook() always
2583 				 * returns -EAGAIN.
2584 				 *
2585 				 * The generic bio_readpage_error handles errors
2586 				 * the following way: If possible, new read
2587 				 * requests are created and submitted and will
2588 				 * end up in end_bio_extent_readpage as well (if
2589 				 * we're lucky, not in the !uptodate case). In
2590 				 * that case it returns 0 and we just go on with
2591 				 * the next page in our bio. If it can't handle
2592 				 * the error it will return -EIO and we remain
2593 				 * responsible for that page.
2594 				 */
2595 				ret = bio_readpage_error(bio, offset, page,
2596 							 start, end, mirror);
2597 				if (ret == 0) {
2598 					uptodate = !bio->bi_status;
2599 					offset += len;
2600 					continue;
2601 				}
2602 			}
2603 
2604 			/*
2605 			 * metadata's readpage_io_failed_hook() always returns
2606 			 * -EIO and fixes nothing.  -EIO is also returned if
2607 			 * data inode error could not be fixed.
2608 			 */
2609 			ASSERT(ret == -EIO);
2610 		}
2611 readpage_ok:
2612 		if (likely(uptodate)) {
2613 			loff_t i_size = i_size_read(inode);
2614 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2615 			unsigned off;
2616 
2617 			/* Zero out the end if this page straddles i_size */
2618 			off = i_size & (PAGE_SIZE-1);
2619 			if (page->index == end_index && off)
2620 				zero_user_segment(page, off, PAGE_SIZE);
2621 			SetPageUptodate(page);
2622 		} else {
2623 			ClearPageUptodate(page);
2624 			SetPageError(page);
2625 		}
2626 		unlock_page(page);
2627 		offset += len;
2628 
2629 		if (unlikely(!uptodate)) {
2630 			if (extent_len) {
2631 				endio_readpage_release_extent(tree,
2632 							      extent_start,
2633 							      extent_len, 1);
2634 				extent_start = 0;
2635 				extent_len = 0;
2636 			}
2637 			endio_readpage_release_extent(tree, start,
2638 						      end - start + 1, 0);
2639 		} else if (!extent_len) {
2640 			extent_start = start;
2641 			extent_len = end + 1 - start;
2642 		} else if (extent_start + extent_len == start) {
2643 			extent_len += end + 1 - start;
2644 		} else {
2645 			endio_readpage_release_extent(tree, extent_start,
2646 						      extent_len, uptodate);
2647 			extent_start = start;
2648 			extent_len = end + 1 - start;
2649 		}
2650 	}
2651 
2652 	if (extent_len)
2653 		endio_readpage_release_extent(tree, extent_start, extent_len,
2654 					      uptodate);
2655 	if (io_bio->end_io)
2656 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2657 	bio_put(bio);
2658 }
2659 
2660 /*
2661  * Initialize the members up to but not including 'bio'. Use after allocating a
2662  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2663  * 'bio' because use of __GFP_ZERO is not supported.
2664  */
2665 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2666 {
2667 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2668 }
2669 
2670 /*
2671  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2672  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2673  * for the appropriate container_of magic
2674  */
2675 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2676 {
2677 	struct bio *bio;
2678 
2679 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2680 	bio_set_dev(bio, bdev);
2681 	bio->bi_iter.bi_sector = first_byte >> 9;
2682 	btrfs_io_bio_init(btrfs_io_bio(bio));
2683 	return bio;
2684 }
2685 
2686 struct bio *btrfs_bio_clone(struct bio *bio)
2687 {
2688 	struct btrfs_io_bio *btrfs_bio;
2689 	struct bio *new;
2690 
2691 	/* Bio allocation backed by a bioset does not fail */
2692 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2693 	btrfs_bio = btrfs_io_bio(new);
2694 	btrfs_io_bio_init(btrfs_bio);
2695 	btrfs_bio->iter = bio->bi_iter;
2696 	return new;
2697 }
2698 
2699 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2700 {
2701 	struct bio *bio;
2702 
2703 	/* Bio allocation backed by a bioset does not fail */
2704 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2705 	btrfs_io_bio_init(btrfs_io_bio(bio));
2706 	return bio;
2707 }
2708 
2709 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2710 {
2711 	struct bio *bio;
2712 	struct btrfs_io_bio *btrfs_bio;
2713 
2714 	/* this will never fail when it's backed by a bioset */
2715 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2716 	ASSERT(bio);
2717 
2718 	btrfs_bio = btrfs_io_bio(bio);
2719 	btrfs_io_bio_init(btrfs_bio);
2720 
2721 	bio_trim(bio, offset >> 9, size >> 9);
2722 	btrfs_bio->iter = bio->bi_iter;
2723 	return bio;
2724 }
2725 
2726 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 				       unsigned long bio_flags)
2728 {
2729 	blk_status_t ret = 0;
2730 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2731 	struct page *page = bvec->bv_page;
2732 	struct extent_io_tree *tree = bio->bi_private;
2733 	u64 start;
2734 
2735 	start = page_offset(page) + bvec->bv_offset;
2736 
2737 	bio->bi_private = NULL;
2738 
2739 	if (tree->ops)
2740 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2741 					   mirror_num, bio_flags, start);
2742 	else
2743 		btrfsic_submit_bio(bio);
2744 
2745 	return blk_status_to_errno(ret);
2746 }
2747 
2748 /*
2749  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2750  * @tree:	tree so we can call our merge_bio hook
2751  * @wbc:	optional writeback control for io accounting
2752  * @page:	page to add to the bio
2753  * @pg_offset:	offset of the new bio or to check whether we are adding
2754  *              a contiguous page to the previous one
2755  * @size:	portion of page that we want to write
2756  * @offset:	starting offset in the page
2757  * @bdev:	attach newly created bios to this bdev
2758  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2759  * @end_io_func:     end_io callback for new bio
2760  * @mirror_num:	     desired mirror to read/write
2761  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2762  * @bio_flags:	flags of the current bio to see if we can merge them
2763  */
2764 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2765 			      struct writeback_control *wbc,
2766 			      struct page *page, u64 offset,
2767 			      size_t size, unsigned long pg_offset,
2768 			      struct block_device *bdev,
2769 			      struct bio **bio_ret,
2770 			      bio_end_io_t end_io_func,
2771 			      int mirror_num,
2772 			      unsigned long prev_bio_flags,
2773 			      unsigned long bio_flags,
2774 			      bool force_bio_submit)
2775 {
2776 	int ret = 0;
2777 	struct bio *bio;
2778 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2779 	sector_t sector = offset >> 9;
2780 
2781 	ASSERT(bio_ret);
2782 
2783 	if (*bio_ret) {
2784 		bool contig;
2785 		bool can_merge = true;
2786 
2787 		bio = *bio_ret;
2788 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2789 			contig = bio->bi_iter.bi_sector == sector;
2790 		else
2791 			contig = bio_end_sector(bio) == sector;
2792 
2793 		if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2794 					page_size, bio, bio_flags))
2795 			can_merge = false;
2796 
2797 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2798 		    force_bio_submit ||
2799 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2800 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2801 			if (ret < 0) {
2802 				*bio_ret = NULL;
2803 				return ret;
2804 			}
2805 			bio = NULL;
2806 		} else {
2807 			if (wbc)
2808 				wbc_account_io(wbc, page, page_size);
2809 			return 0;
2810 		}
2811 	}
2812 
2813 	bio = btrfs_bio_alloc(bdev, offset);
2814 	bio_add_page(bio, page, page_size, pg_offset);
2815 	bio->bi_end_io = end_io_func;
2816 	bio->bi_private = tree;
2817 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2818 	bio->bi_opf = opf;
2819 	if (wbc) {
2820 		wbc_init_bio(wbc, bio);
2821 		wbc_account_io(wbc, page, page_size);
2822 	}
2823 
2824 	*bio_ret = bio;
2825 
2826 	return ret;
2827 }
2828 
2829 static void attach_extent_buffer_page(struct extent_buffer *eb,
2830 				      struct page *page)
2831 {
2832 	if (!PagePrivate(page)) {
2833 		SetPagePrivate(page);
2834 		get_page(page);
2835 		set_page_private(page, (unsigned long)eb);
2836 	} else {
2837 		WARN_ON(page->private != (unsigned long)eb);
2838 	}
2839 }
2840 
2841 void set_page_extent_mapped(struct page *page)
2842 {
2843 	if (!PagePrivate(page)) {
2844 		SetPagePrivate(page);
2845 		get_page(page);
2846 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2847 	}
2848 }
2849 
2850 static struct extent_map *
2851 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852 		 u64 start, u64 len, get_extent_t *get_extent,
2853 		 struct extent_map **em_cached)
2854 {
2855 	struct extent_map *em;
2856 
2857 	if (em_cached && *em_cached) {
2858 		em = *em_cached;
2859 		if (extent_map_in_tree(em) && start >= em->start &&
2860 		    start < extent_map_end(em)) {
2861 			refcount_inc(&em->refs);
2862 			return em;
2863 		}
2864 
2865 		free_extent_map(em);
2866 		*em_cached = NULL;
2867 	}
2868 
2869 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2870 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2871 		BUG_ON(*em_cached);
2872 		refcount_inc(&em->refs);
2873 		*em_cached = em;
2874 	}
2875 	return em;
2876 }
2877 /*
2878  * basic readpage implementation.  Locked extent state structs are inserted
2879  * into the tree that are removed when the IO is done (by the end_io
2880  * handlers)
2881  * XXX JDM: This needs looking at to ensure proper page locking
2882  * return 0 on success, otherwise return error
2883  */
2884 static int __do_readpage(struct extent_io_tree *tree,
2885 			 struct page *page,
2886 			 get_extent_t *get_extent,
2887 			 struct extent_map **em_cached,
2888 			 struct bio **bio, int mirror_num,
2889 			 unsigned long *bio_flags, unsigned int read_flags,
2890 			 u64 *prev_em_start)
2891 {
2892 	struct inode *inode = page->mapping->host;
2893 	u64 start = page_offset(page);
2894 	const u64 end = start + PAGE_SIZE - 1;
2895 	u64 cur = start;
2896 	u64 extent_offset;
2897 	u64 last_byte = i_size_read(inode);
2898 	u64 block_start;
2899 	u64 cur_end;
2900 	struct extent_map *em;
2901 	struct block_device *bdev;
2902 	int ret = 0;
2903 	int nr = 0;
2904 	size_t pg_offset = 0;
2905 	size_t iosize;
2906 	size_t disk_io_size;
2907 	size_t blocksize = inode->i_sb->s_blocksize;
2908 	unsigned long this_bio_flag = 0;
2909 
2910 	set_page_extent_mapped(page);
2911 
2912 	if (!PageUptodate(page)) {
2913 		if (cleancache_get_page(page) == 0) {
2914 			BUG_ON(blocksize != PAGE_SIZE);
2915 			unlock_extent(tree, start, end);
2916 			goto out;
2917 		}
2918 	}
2919 
2920 	if (page->index == last_byte >> PAGE_SHIFT) {
2921 		char *userpage;
2922 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2923 
2924 		if (zero_offset) {
2925 			iosize = PAGE_SIZE - zero_offset;
2926 			userpage = kmap_atomic(page);
2927 			memset(userpage + zero_offset, 0, iosize);
2928 			flush_dcache_page(page);
2929 			kunmap_atomic(userpage);
2930 		}
2931 	}
2932 	while (cur <= end) {
2933 		bool force_bio_submit = false;
2934 		u64 offset;
2935 
2936 		if (cur >= last_byte) {
2937 			char *userpage;
2938 			struct extent_state *cached = NULL;
2939 
2940 			iosize = PAGE_SIZE - pg_offset;
2941 			userpage = kmap_atomic(page);
2942 			memset(userpage + pg_offset, 0, iosize);
2943 			flush_dcache_page(page);
2944 			kunmap_atomic(userpage);
2945 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2946 					    &cached, GFP_NOFS);
2947 			unlock_extent_cached(tree, cur,
2948 					     cur + iosize - 1, &cached);
2949 			break;
2950 		}
2951 		em = __get_extent_map(inode, page, pg_offset, cur,
2952 				      end - cur + 1, get_extent, em_cached);
2953 		if (IS_ERR_OR_NULL(em)) {
2954 			SetPageError(page);
2955 			unlock_extent(tree, cur, end);
2956 			break;
2957 		}
2958 		extent_offset = cur - em->start;
2959 		BUG_ON(extent_map_end(em) <= cur);
2960 		BUG_ON(end < cur);
2961 
2962 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2963 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2964 			extent_set_compress_type(&this_bio_flag,
2965 						 em->compress_type);
2966 		}
2967 
2968 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2969 		cur_end = min(extent_map_end(em) - 1, end);
2970 		iosize = ALIGN(iosize, blocksize);
2971 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2972 			disk_io_size = em->block_len;
2973 			offset = em->block_start;
2974 		} else {
2975 			offset = em->block_start + extent_offset;
2976 			disk_io_size = iosize;
2977 		}
2978 		bdev = em->bdev;
2979 		block_start = em->block_start;
2980 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2981 			block_start = EXTENT_MAP_HOLE;
2982 
2983 		/*
2984 		 * If we have a file range that points to a compressed extent
2985 		 * and it's followed by a consecutive file range that points to
2986 		 * to the same compressed extent (possibly with a different
2987 		 * offset and/or length, so it either points to the whole extent
2988 		 * or only part of it), we must make sure we do not submit a
2989 		 * single bio to populate the pages for the 2 ranges because
2990 		 * this makes the compressed extent read zero out the pages
2991 		 * belonging to the 2nd range. Imagine the following scenario:
2992 		 *
2993 		 *  File layout
2994 		 *  [0 - 8K]                     [8K - 24K]
2995 		 *    |                               |
2996 		 *    |                               |
2997 		 * points to extent X,         points to extent X,
2998 		 * offset 4K, length of 8K     offset 0, length 16K
2999 		 *
3000 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3001 		 *
3002 		 * If the bio to read the compressed extent covers both ranges,
3003 		 * it will decompress extent X into the pages belonging to the
3004 		 * first range and then it will stop, zeroing out the remaining
3005 		 * pages that belong to the other range that points to extent X.
3006 		 * So here we make sure we submit 2 bios, one for the first
3007 		 * range and another one for the third range. Both will target
3008 		 * the same physical extent from disk, but we can't currently
3009 		 * make the compressed bio endio callback populate the pages
3010 		 * for both ranges because each compressed bio is tightly
3011 		 * coupled with a single extent map, and each range can have
3012 		 * an extent map with a different offset value relative to the
3013 		 * uncompressed data of our extent and different lengths. This
3014 		 * is a corner case so we prioritize correctness over
3015 		 * non-optimal behavior (submitting 2 bios for the same extent).
3016 		 */
3017 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3018 		    prev_em_start && *prev_em_start != (u64)-1 &&
3019 		    *prev_em_start != em->orig_start)
3020 			force_bio_submit = true;
3021 
3022 		if (prev_em_start)
3023 			*prev_em_start = em->orig_start;
3024 
3025 		free_extent_map(em);
3026 		em = NULL;
3027 
3028 		/* we've found a hole, just zero and go on */
3029 		if (block_start == EXTENT_MAP_HOLE) {
3030 			char *userpage;
3031 			struct extent_state *cached = NULL;
3032 
3033 			userpage = kmap_atomic(page);
3034 			memset(userpage + pg_offset, 0, iosize);
3035 			flush_dcache_page(page);
3036 			kunmap_atomic(userpage);
3037 
3038 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3039 					    &cached, GFP_NOFS);
3040 			unlock_extent_cached(tree, cur,
3041 					     cur + iosize - 1, &cached);
3042 			cur = cur + iosize;
3043 			pg_offset += iosize;
3044 			continue;
3045 		}
3046 		/* the get_extent function already copied into the page */
3047 		if (test_range_bit(tree, cur, cur_end,
3048 				   EXTENT_UPTODATE, 1, NULL)) {
3049 			check_page_uptodate(tree, page);
3050 			unlock_extent(tree, cur, cur + iosize - 1);
3051 			cur = cur + iosize;
3052 			pg_offset += iosize;
3053 			continue;
3054 		}
3055 		/* we have an inline extent but it didn't get marked up
3056 		 * to date.  Error out
3057 		 */
3058 		if (block_start == EXTENT_MAP_INLINE) {
3059 			SetPageError(page);
3060 			unlock_extent(tree, cur, cur + iosize - 1);
3061 			cur = cur + iosize;
3062 			pg_offset += iosize;
3063 			continue;
3064 		}
3065 
3066 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3067 					 page, offset, disk_io_size,
3068 					 pg_offset, bdev, bio,
3069 					 end_bio_extent_readpage, mirror_num,
3070 					 *bio_flags,
3071 					 this_bio_flag,
3072 					 force_bio_submit);
3073 		if (!ret) {
3074 			nr++;
3075 			*bio_flags = this_bio_flag;
3076 		} else {
3077 			SetPageError(page);
3078 			unlock_extent(tree, cur, cur + iosize - 1);
3079 			goto out;
3080 		}
3081 		cur = cur + iosize;
3082 		pg_offset += iosize;
3083 	}
3084 out:
3085 	if (!nr) {
3086 		if (!PageError(page))
3087 			SetPageUptodate(page);
3088 		unlock_page(page);
3089 	}
3090 	return ret;
3091 }
3092 
3093 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3094 					     struct page *pages[], int nr_pages,
3095 					     u64 start, u64 end,
3096 					     struct extent_map **em_cached,
3097 					     struct bio **bio,
3098 					     unsigned long *bio_flags,
3099 					     u64 *prev_em_start)
3100 {
3101 	struct inode *inode;
3102 	struct btrfs_ordered_extent *ordered;
3103 	int index;
3104 
3105 	inode = pages[0]->mapping->host;
3106 	while (1) {
3107 		lock_extent(tree, start, end);
3108 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3109 						     end - start + 1);
3110 		if (!ordered)
3111 			break;
3112 		unlock_extent(tree, start, end);
3113 		btrfs_start_ordered_extent(inode, ordered, 1);
3114 		btrfs_put_ordered_extent(ordered);
3115 	}
3116 
3117 	for (index = 0; index < nr_pages; index++) {
3118 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3119 				bio, 0, bio_flags, 0, prev_em_start);
3120 		put_page(pages[index]);
3121 	}
3122 }
3123 
3124 static void __extent_readpages(struct extent_io_tree *tree,
3125 			       struct page *pages[],
3126 			       int nr_pages,
3127 			       struct extent_map **em_cached,
3128 			       struct bio **bio, unsigned long *bio_flags,
3129 			       u64 *prev_em_start)
3130 {
3131 	u64 start = 0;
3132 	u64 end = 0;
3133 	u64 page_start;
3134 	int index;
3135 	int first_index = 0;
3136 
3137 	for (index = 0; index < nr_pages; index++) {
3138 		page_start = page_offset(pages[index]);
3139 		if (!end) {
3140 			start = page_start;
3141 			end = start + PAGE_SIZE - 1;
3142 			first_index = index;
3143 		} else if (end + 1 == page_start) {
3144 			end += PAGE_SIZE;
3145 		} else {
3146 			__do_contiguous_readpages(tree, &pages[first_index],
3147 						  index - first_index, start,
3148 						  end, em_cached,
3149 						  bio, bio_flags,
3150 						  prev_em_start);
3151 			start = page_start;
3152 			end = start + PAGE_SIZE - 1;
3153 			first_index = index;
3154 		}
3155 	}
3156 
3157 	if (end)
3158 		__do_contiguous_readpages(tree, &pages[first_index],
3159 					  index - first_index, start,
3160 					  end, em_cached, bio,
3161 					  bio_flags, prev_em_start);
3162 }
3163 
3164 static int __extent_read_full_page(struct extent_io_tree *tree,
3165 				   struct page *page,
3166 				   get_extent_t *get_extent,
3167 				   struct bio **bio, int mirror_num,
3168 				   unsigned long *bio_flags,
3169 				   unsigned int read_flags)
3170 {
3171 	struct inode *inode = page->mapping->host;
3172 	struct btrfs_ordered_extent *ordered;
3173 	u64 start = page_offset(page);
3174 	u64 end = start + PAGE_SIZE - 1;
3175 	int ret;
3176 
3177 	while (1) {
3178 		lock_extent(tree, start, end);
3179 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3180 						PAGE_SIZE);
3181 		if (!ordered)
3182 			break;
3183 		unlock_extent(tree, start, end);
3184 		btrfs_start_ordered_extent(inode, ordered, 1);
3185 		btrfs_put_ordered_extent(ordered);
3186 	}
3187 
3188 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3189 			    bio_flags, read_flags, NULL);
3190 	return ret;
3191 }
3192 
3193 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3194 			    get_extent_t *get_extent, int mirror_num)
3195 {
3196 	struct bio *bio = NULL;
3197 	unsigned long bio_flags = 0;
3198 	int ret;
3199 
3200 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3201 				      &bio_flags, 0);
3202 	if (bio)
3203 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3204 	return ret;
3205 }
3206 
3207 static void update_nr_written(struct writeback_control *wbc,
3208 			      unsigned long nr_written)
3209 {
3210 	wbc->nr_to_write -= nr_written;
3211 }
3212 
3213 /*
3214  * helper for __extent_writepage, doing all of the delayed allocation setup.
3215  *
3216  * This returns 1 if our fill_delalloc function did all the work required
3217  * to write the page (copy into inline extent).  In this case the IO has
3218  * been started and the page is already unlocked.
3219  *
3220  * This returns 0 if all went well (page still locked)
3221  * This returns < 0 if there were errors (page still locked)
3222  */
3223 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 			      struct page *page, struct writeback_control *wbc,
3225 			      struct extent_page_data *epd,
3226 			      u64 delalloc_start,
3227 			      unsigned long *nr_written)
3228 {
3229 	struct extent_io_tree *tree = epd->tree;
3230 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231 	u64 nr_delalloc;
3232 	u64 delalloc_to_write = 0;
3233 	u64 delalloc_end = 0;
3234 	int ret;
3235 	int page_started = 0;
3236 
3237 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 		return 0;
3239 
3240 	while (delalloc_end < page_end) {
3241 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 					       page,
3243 					       &delalloc_start,
3244 					       &delalloc_end,
3245 					       BTRFS_MAX_EXTENT_SIZE);
3246 		if (nr_delalloc == 0) {
3247 			delalloc_start = delalloc_end + 1;
3248 			continue;
3249 		}
3250 		ret = tree->ops->fill_delalloc(inode, page,
3251 					       delalloc_start,
3252 					       delalloc_end,
3253 					       &page_started,
3254 					       nr_written, wbc);
3255 		/* File system has been set read-only */
3256 		if (ret) {
3257 			SetPageError(page);
3258 			/* fill_delalloc should be return < 0 for error
3259 			 * but just in case, we use > 0 here meaning the
3260 			 * IO is started, so we don't want to return > 0
3261 			 * unless things are going well.
3262 			 */
3263 			ret = ret < 0 ? ret : -EIO;
3264 			goto done;
3265 		}
3266 		/*
3267 		 * delalloc_end is already one less than the total length, so
3268 		 * we don't subtract one from PAGE_SIZE
3269 		 */
3270 		delalloc_to_write += (delalloc_end - delalloc_start +
3271 				      PAGE_SIZE) >> PAGE_SHIFT;
3272 		delalloc_start = delalloc_end + 1;
3273 	}
3274 	if (wbc->nr_to_write < delalloc_to_write) {
3275 		int thresh = 8192;
3276 
3277 		if (delalloc_to_write < thresh * 2)
3278 			thresh = delalloc_to_write;
3279 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 					 thresh);
3281 	}
3282 
3283 	/* did the fill delalloc function already unlock and start
3284 	 * the IO?
3285 	 */
3286 	if (page_started) {
3287 		/*
3288 		 * we've unlocked the page, so we can't update
3289 		 * the mapping's writeback index, just update
3290 		 * nr_to_write.
3291 		 */
3292 		wbc->nr_to_write -= *nr_written;
3293 		return 1;
3294 	}
3295 
3296 	ret = 0;
3297 
3298 done:
3299 	return ret;
3300 }
3301 
3302 /*
3303  * helper for __extent_writepage.  This calls the writepage start hooks,
3304  * and does the loop to map the page into extents and bios.
3305  *
3306  * We return 1 if the IO is started and the page is unlocked,
3307  * 0 if all went well (page still locked)
3308  * < 0 if there were errors (page still locked)
3309  */
3310 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 				 struct page *page,
3312 				 struct writeback_control *wbc,
3313 				 struct extent_page_data *epd,
3314 				 loff_t i_size,
3315 				 unsigned long nr_written,
3316 				 unsigned int write_flags, int *nr_ret)
3317 {
3318 	struct extent_io_tree *tree = epd->tree;
3319 	u64 start = page_offset(page);
3320 	u64 page_end = start + PAGE_SIZE - 1;
3321 	u64 end;
3322 	u64 cur = start;
3323 	u64 extent_offset;
3324 	u64 block_start;
3325 	u64 iosize;
3326 	struct extent_map *em;
3327 	struct block_device *bdev;
3328 	size_t pg_offset = 0;
3329 	size_t blocksize;
3330 	int ret = 0;
3331 	int nr = 0;
3332 	bool compressed;
3333 
3334 	if (tree->ops && tree->ops->writepage_start_hook) {
3335 		ret = tree->ops->writepage_start_hook(page, start,
3336 						      page_end);
3337 		if (ret) {
3338 			/* Fixup worker will requeue */
3339 			if (ret == -EBUSY)
3340 				wbc->pages_skipped++;
3341 			else
3342 				redirty_page_for_writepage(wbc, page);
3343 
3344 			update_nr_written(wbc, nr_written);
3345 			unlock_page(page);
3346 			return 1;
3347 		}
3348 	}
3349 
3350 	/*
3351 	 * we don't want to touch the inode after unlocking the page,
3352 	 * so we update the mapping writeback index now
3353 	 */
3354 	update_nr_written(wbc, nr_written + 1);
3355 
3356 	end = page_end;
3357 	if (i_size <= start) {
3358 		if (tree->ops && tree->ops->writepage_end_io_hook)
3359 			tree->ops->writepage_end_io_hook(page, start,
3360 							 page_end, NULL, 1);
3361 		goto done;
3362 	}
3363 
3364 	blocksize = inode->i_sb->s_blocksize;
3365 
3366 	while (cur <= end) {
3367 		u64 em_end;
3368 		u64 offset;
3369 
3370 		if (cur >= i_size) {
3371 			if (tree->ops && tree->ops->writepage_end_io_hook)
3372 				tree->ops->writepage_end_io_hook(page, cur,
3373 							 page_end, NULL, 1);
3374 			break;
3375 		}
3376 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3377 				     end - cur + 1, 1);
3378 		if (IS_ERR_OR_NULL(em)) {
3379 			SetPageError(page);
3380 			ret = PTR_ERR_OR_ZERO(em);
3381 			break;
3382 		}
3383 
3384 		extent_offset = cur - em->start;
3385 		em_end = extent_map_end(em);
3386 		BUG_ON(em_end <= cur);
3387 		BUG_ON(end < cur);
3388 		iosize = min(em_end - cur, end - cur + 1);
3389 		iosize = ALIGN(iosize, blocksize);
3390 		offset = em->block_start + extent_offset;
3391 		bdev = em->bdev;
3392 		block_start = em->block_start;
3393 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3394 		free_extent_map(em);
3395 		em = NULL;
3396 
3397 		/*
3398 		 * compressed and inline extents are written through other
3399 		 * paths in the FS
3400 		 */
3401 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3402 		    block_start == EXTENT_MAP_INLINE) {
3403 			/*
3404 			 * end_io notification does not happen here for
3405 			 * compressed extents
3406 			 */
3407 			if (!compressed && tree->ops &&
3408 			    tree->ops->writepage_end_io_hook)
3409 				tree->ops->writepage_end_io_hook(page, cur,
3410 							 cur + iosize - 1,
3411 							 NULL, 1);
3412 			else if (compressed) {
3413 				/* we don't want to end_page_writeback on
3414 				 * a compressed extent.  this happens
3415 				 * elsewhere
3416 				 */
3417 				nr++;
3418 			}
3419 
3420 			cur += iosize;
3421 			pg_offset += iosize;
3422 			continue;
3423 		}
3424 
3425 		set_range_writeback(tree, cur, cur + iosize - 1);
3426 		if (!PageWriteback(page)) {
3427 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3428 				   "page %lu not writeback, cur %llu end %llu",
3429 			       page->index, cur, end);
3430 		}
3431 
3432 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3433 					 page, offset, iosize, pg_offset,
3434 					 bdev, &epd->bio,
3435 					 end_bio_extent_writepage,
3436 					 0, 0, 0, false);
3437 		if (ret) {
3438 			SetPageError(page);
3439 			if (PageWriteback(page))
3440 				end_page_writeback(page);
3441 		}
3442 
3443 		cur = cur + iosize;
3444 		pg_offset += iosize;
3445 		nr++;
3446 	}
3447 done:
3448 	*nr_ret = nr;
3449 	return ret;
3450 }
3451 
3452 /*
3453  * the writepage semantics are similar to regular writepage.  extent
3454  * records are inserted to lock ranges in the tree, and as dirty areas
3455  * are found, they are marked writeback.  Then the lock bits are removed
3456  * and the end_io handler clears the writeback ranges
3457  */
3458 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3459 			      struct extent_page_data *epd)
3460 {
3461 	struct inode *inode = page->mapping->host;
3462 	u64 start = page_offset(page);
3463 	u64 page_end = start + PAGE_SIZE - 1;
3464 	int ret;
3465 	int nr = 0;
3466 	size_t pg_offset = 0;
3467 	loff_t i_size = i_size_read(inode);
3468 	unsigned long end_index = i_size >> PAGE_SHIFT;
3469 	unsigned int write_flags = 0;
3470 	unsigned long nr_written = 0;
3471 
3472 	write_flags = wbc_to_write_flags(wbc);
3473 
3474 	trace___extent_writepage(page, inode, wbc);
3475 
3476 	WARN_ON(!PageLocked(page));
3477 
3478 	ClearPageError(page);
3479 
3480 	pg_offset = i_size & (PAGE_SIZE - 1);
3481 	if (page->index > end_index ||
3482 	   (page->index == end_index && !pg_offset)) {
3483 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3484 		unlock_page(page);
3485 		return 0;
3486 	}
3487 
3488 	if (page->index == end_index) {
3489 		char *userpage;
3490 
3491 		userpage = kmap_atomic(page);
3492 		memset(userpage + pg_offset, 0,
3493 		       PAGE_SIZE - pg_offset);
3494 		kunmap_atomic(userpage);
3495 		flush_dcache_page(page);
3496 	}
3497 
3498 	pg_offset = 0;
3499 
3500 	set_page_extent_mapped(page);
3501 
3502 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3503 	if (ret == 1)
3504 		goto done_unlocked;
3505 	if (ret)
3506 		goto done;
3507 
3508 	ret = __extent_writepage_io(inode, page, wbc, epd,
3509 				    i_size, nr_written, write_flags, &nr);
3510 	if (ret == 1)
3511 		goto done_unlocked;
3512 
3513 done:
3514 	if (nr == 0) {
3515 		/* make sure the mapping tag for page dirty gets cleared */
3516 		set_page_writeback(page);
3517 		end_page_writeback(page);
3518 	}
3519 	if (PageError(page)) {
3520 		ret = ret < 0 ? ret : -EIO;
3521 		end_extent_writepage(page, ret, start, page_end);
3522 	}
3523 	unlock_page(page);
3524 	return ret;
3525 
3526 done_unlocked:
3527 	return 0;
3528 }
3529 
3530 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3531 {
3532 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3533 		       TASK_UNINTERRUPTIBLE);
3534 }
3535 
3536 static noinline_for_stack int
3537 lock_extent_buffer_for_io(struct extent_buffer *eb,
3538 			  struct btrfs_fs_info *fs_info,
3539 			  struct extent_page_data *epd)
3540 {
3541 	unsigned long i, num_pages;
3542 	int flush = 0;
3543 	int ret = 0;
3544 
3545 	if (!btrfs_try_tree_write_lock(eb)) {
3546 		flush = 1;
3547 		flush_write_bio(epd);
3548 		btrfs_tree_lock(eb);
3549 	}
3550 
3551 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3552 		btrfs_tree_unlock(eb);
3553 		if (!epd->sync_io)
3554 			return 0;
3555 		if (!flush) {
3556 			flush_write_bio(epd);
3557 			flush = 1;
3558 		}
3559 		while (1) {
3560 			wait_on_extent_buffer_writeback(eb);
3561 			btrfs_tree_lock(eb);
3562 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3563 				break;
3564 			btrfs_tree_unlock(eb);
3565 		}
3566 	}
3567 
3568 	/*
3569 	 * We need to do this to prevent races in people who check if the eb is
3570 	 * under IO since we can end up having no IO bits set for a short period
3571 	 * of time.
3572 	 */
3573 	spin_lock(&eb->refs_lock);
3574 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3575 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3576 		spin_unlock(&eb->refs_lock);
3577 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3578 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3579 					 -eb->len,
3580 					 fs_info->dirty_metadata_batch);
3581 		ret = 1;
3582 	} else {
3583 		spin_unlock(&eb->refs_lock);
3584 	}
3585 
3586 	btrfs_tree_unlock(eb);
3587 
3588 	if (!ret)
3589 		return ret;
3590 
3591 	num_pages = num_extent_pages(eb->start, eb->len);
3592 	for (i = 0; i < num_pages; i++) {
3593 		struct page *p = eb->pages[i];
3594 
3595 		if (!trylock_page(p)) {
3596 			if (!flush) {
3597 				flush_write_bio(epd);
3598 				flush = 1;
3599 			}
3600 			lock_page(p);
3601 		}
3602 	}
3603 
3604 	return ret;
3605 }
3606 
3607 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3608 {
3609 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3610 	smp_mb__after_atomic();
3611 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3612 }
3613 
3614 static void set_btree_ioerr(struct page *page)
3615 {
3616 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3617 
3618 	SetPageError(page);
3619 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3620 		return;
3621 
3622 	/*
3623 	 * If writeback for a btree extent that doesn't belong to a log tree
3624 	 * failed, increment the counter transaction->eb_write_errors.
3625 	 * We do this because while the transaction is running and before it's
3626 	 * committing (when we call filemap_fdata[write|wait]_range against
3627 	 * the btree inode), we might have
3628 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3629 	 * returns an error or an error happens during writeback, when we're
3630 	 * committing the transaction we wouldn't know about it, since the pages
3631 	 * can be no longer dirty nor marked anymore for writeback (if a
3632 	 * subsequent modification to the extent buffer didn't happen before the
3633 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3634 	 * able to find the pages tagged with SetPageError at transaction
3635 	 * commit time. So if this happens we must abort the transaction,
3636 	 * otherwise we commit a super block with btree roots that point to
3637 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3638 	 * or the content of some node/leaf from a past generation that got
3639 	 * cowed or deleted and is no longer valid.
3640 	 *
3641 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3642 	 * not be enough - we need to distinguish between log tree extents vs
3643 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3644 	 * will catch and clear such errors in the mapping - and that call might
3645 	 * be from a log sync and not from a transaction commit. Also, checking
3646 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3647 	 * not done and would not be reliable - the eb might have been released
3648 	 * from memory and reading it back again means that flag would not be
3649 	 * set (since it's a runtime flag, not persisted on disk).
3650 	 *
3651 	 * Using the flags below in the btree inode also makes us achieve the
3652 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3653 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3654 	 * is called, the writeback for all dirty pages had already finished
3655 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3656 	 * filemap_fdatawait_range() would return success, as it could not know
3657 	 * that writeback errors happened (the pages were no longer tagged for
3658 	 * writeback).
3659 	 */
3660 	switch (eb->log_index) {
3661 	case -1:
3662 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3663 		break;
3664 	case 0:
3665 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3666 		break;
3667 	case 1:
3668 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3669 		break;
3670 	default:
3671 		BUG(); /* unexpected, logic error */
3672 	}
3673 }
3674 
3675 static void end_bio_extent_buffer_writepage(struct bio *bio)
3676 {
3677 	struct bio_vec *bvec;
3678 	struct extent_buffer *eb;
3679 	int i, done;
3680 
3681 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3682 	bio_for_each_segment_all(bvec, bio, i) {
3683 		struct page *page = bvec->bv_page;
3684 
3685 		eb = (struct extent_buffer *)page->private;
3686 		BUG_ON(!eb);
3687 		done = atomic_dec_and_test(&eb->io_pages);
3688 
3689 		if (bio->bi_status ||
3690 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3691 			ClearPageUptodate(page);
3692 			set_btree_ioerr(page);
3693 		}
3694 
3695 		end_page_writeback(page);
3696 
3697 		if (!done)
3698 			continue;
3699 
3700 		end_extent_buffer_writeback(eb);
3701 	}
3702 
3703 	bio_put(bio);
3704 }
3705 
3706 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3707 			struct btrfs_fs_info *fs_info,
3708 			struct writeback_control *wbc,
3709 			struct extent_page_data *epd)
3710 {
3711 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3712 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3713 	u64 offset = eb->start;
3714 	u32 nritems;
3715 	unsigned long i, num_pages;
3716 	unsigned long start, end;
3717 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3718 	int ret = 0;
3719 
3720 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3721 	num_pages = num_extent_pages(eb->start, eb->len);
3722 	atomic_set(&eb->io_pages, num_pages);
3723 
3724 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 	nritems = btrfs_header_nritems(eb);
3726 	if (btrfs_header_level(eb) > 0) {
3727 		end = btrfs_node_key_ptr_offset(nritems);
3728 
3729 		memzero_extent_buffer(eb, end, eb->len - end);
3730 	} else {
3731 		/*
3732 		 * leaf:
3733 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3734 		 */
3735 		start = btrfs_item_nr_offset(nritems);
3736 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3737 		memzero_extent_buffer(eb, start, end - start);
3738 	}
3739 
3740 	for (i = 0; i < num_pages; i++) {
3741 		struct page *p = eb->pages[i];
3742 
3743 		clear_page_dirty_for_io(p);
3744 		set_page_writeback(p);
3745 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3746 					 p, offset, PAGE_SIZE, 0, bdev,
3747 					 &epd->bio,
3748 					 end_bio_extent_buffer_writepage,
3749 					 0, 0, 0, false);
3750 		if (ret) {
3751 			set_btree_ioerr(p);
3752 			if (PageWriteback(p))
3753 				end_page_writeback(p);
3754 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 				end_extent_buffer_writeback(eb);
3756 			ret = -EIO;
3757 			break;
3758 		}
3759 		offset += PAGE_SIZE;
3760 		update_nr_written(wbc, 1);
3761 		unlock_page(p);
3762 	}
3763 
3764 	if (unlikely(ret)) {
3765 		for (; i < num_pages; i++) {
3766 			struct page *p = eb->pages[i];
3767 			clear_page_dirty_for_io(p);
3768 			unlock_page(p);
3769 		}
3770 	}
3771 
3772 	return ret;
3773 }
3774 
3775 int btree_write_cache_pages(struct address_space *mapping,
3776 				   struct writeback_control *wbc)
3777 {
3778 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 	struct extent_buffer *eb, *prev_eb = NULL;
3781 	struct extent_page_data epd = {
3782 		.bio = NULL,
3783 		.tree = tree,
3784 		.extent_locked = 0,
3785 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786 	};
3787 	int ret = 0;
3788 	int done = 0;
3789 	int nr_to_write_done = 0;
3790 	struct pagevec pvec;
3791 	int nr_pages;
3792 	pgoff_t index;
3793 	pgoff_t end;		/* Inclusive */
3794 	int scanned = 0;
3795 	int tag;
3796 
3797 	pagevec_init(&pvec);
3798 	if (wbc->range_cyclic) {
3799 		index = mapping->writeback_index; /* Start from prev offset */
3800 		end = -1;
3801 	} else {
3802 		index = wbc->range_start >> PAGE_SHIFT;
3803 		end = wbc->range_end >> PAGE_SHIFT;
3804 		scanned = 1;
3805 	}
3806 	if (wbc->sync_mode == WB_SYNC_ALL)
3807 		tag = PAGECACHE_TAG_TOWRITE;
3808 	else
3809 		tag = PAGECACHE_TAG_DIRTY;
3810 retry:
3811 	if (wbc->sync_mode == WB_SYNC_ALL)
3812 		tag_pages_for_writeback(mapping, index, end);
3813 	while (!done && !nr_to_write_done && (index <= end) &&
3814 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3815 			tag))) {
3816 		unsigned i;
3817 
3818 		scanned = 1;
3819 		for (i = 0; i < nr_pages; i++) {
3820 			struct page *page = pvec.pages[i];
3821 
3822 			if (!PagePrivate(page))
3823 				continue;
3824 
3825 			spin_lock(&mapping->private_lock);
3826 			if (!PagePrivate(page)) {
3827 				spin_unlock(&mapping->private_lock);
3828 				continue;
3829 			}
3830 
3831 			eb = (struct extent_buffer *)page->private;
3832 
3833 			/*
3834 			 * Shouldn't happen and normally this would be a BUG_ON
3835 			 * but no sense in crashing the users box for something
3836 			 * we can survive anyway.
3837 			 */
3838 			if (WARN_ON(!eb)) {
3839 				spin_unlock(&mapping->private_lock);
3840 				continue;
3841 			}
3842 
3843 			if (eb == prev_eb) {
3844 				spin_unlock(&mapping->private_lock);
3845 				continue;
3846 			}
3847 
3848 			ret = atomic_inc_not_zero(&eb->refs);
3849 			spin_unlock(&mapping->private_lock);
3850 			if (!ret)
3851 				continue;
3852 
3853 			prev_eb = eb;
3854 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3855 			if (!ret) {
3856 				free_extent_buffer(eb);
3857 				continue;
3858 			}
3859 
3860 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3861 			if (ret) {
3862 				done = 1;
3863 				free_extent_buffer(eb);
3864 				break;
3865 			}
3866 			free_extent_buffer(eb);
3867 
3868 			/*
3869 			 * the filesystem may choose to bump up nr_to_write.
3870 			 * We have to make sure to honor the new nr_to_write
3871 			 * at any time
3872 			 */
3873 			nr_to_write_done = wbc->nr_to_write <= 0;
3874 		}
3875 		pagevec_release(&pvec);
3876 		cond_resched();
3877 	}
3878 	if (!scanned && !done) {
3879 		/*
3880 		 * We hit the last page and there is more work to be done: wrap
3881 		 * back to the start of the file
3882 		 */
3883 		scanned = 1;
3884 		index = 0;
3885 		goto retry;
3886 	}
3887 	flush_write_bio(&epd);
3888 	return ret;
3889 }
3890 
3891 /**
3892  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3893  * @mapping: address space structure to write
3894  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3895  * @data: data passed to __extent_writepage function
3896  *
3897  * If a page is already under I/O, write_cache_pages() skips it, even
3898  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3899  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3900  * and msync() need to guarantee that all the data which was dirty at the time
3901  * the call was made get new I/O started against them.  If wbc->sync_mode is
3902  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3903  * existing IO to complete.
3904  */
3905 static int extent_write_cache_pages(struct address_space *mapping,
3906 			     struct writeback_control *wbc,
3907 			     struct extent_page_data *epd)
3908 {
3909 	struct inode *inode = mapping->host;
3910 	int ret = 0;
3911 	int done = 0;
3912 	int nr_to_write_done = 0;
3913 	struct pagevec pvec;
3914 	int nr_pages;
3915 	pgoff_t index;
3916 	pgoff_t end;		/* Inclusive */
3917 	pgoff_t done_index;
3918 	int range_whole = 0;
3919 	int scanned = 0;
3920 	int tag;
3921 
3922 	/*
3923 	 * We have to hold onto the inode so that ordered extents can do their
3924 	 * work when the IO finishes.  The alternative to this is failing to add
3925 	 * an ordered extent if the igrab() fails there and that is a huge pain
3926 	 * to deal with, so instead just hold onto the inode throughout the
3927 	 * writepages operation.  If it fails here we are freeing up the inode
3928 	 * anyway and we'd rather not waste our time writing out stuff that is
3929 	 * going to be truncated anyway.
3930 	 */
3931 	if (!igrab(inode))
3932 		return 0;
3933 
3934 	pagevec_init(&pvec);
3935 	if (wbc->range_cyclic) {
3936 		index = mapping->writeback_index; /* Start from prev offset */
3937 		end = -1;
3938 	} else {
3939 		index = wbc->range_start >> PAGE_SHIFT;
3940 		end = wbc->range_end >> PAGE_SHIFT;
3941 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942 			range_whole = 1;
3943 		scanned = 1;
3944 	}
3945 	if (wbc->sync_mode == WB_SYNC_ALL)
3946 		tag = PAGECACHE_TAG_TOWRITE;
3947 	else
3948 		tag = PAGECACHE_TAG_DIRTY;
3949 retry:
3950 	if (wbc->sync_mode == WB_SYNC_ALL)
3951 		tag_pages_for_writeback(mapping, index, end);
3952 	done_index = index;
3953 	while (!done && !nr_to_write_done && (index <= end) &&
3954 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3955 						&index, end, tag))) {
3956 		unsigned i;
3957 
3958 		scanned = 1;
3959 		for (i = 0; i < nr_pages; i++) {
3960 			struct page *page = pvec.pages[i];
3961 
3962 			done_index = page->index;
3963 			/*
3964 			 * At this point we hold neither the i_pages lock nor
3965 			 * the page lock: the page may be truncated or
3966 			 * invalidated (changing page->mapping to NULL),
3967 			 * or even swizzled back from swapper_space to
3968 			 * tmpfs file mapping
3969 			 */
3970 			if (!trylock_page(page)) {
3971 				flush_write_bio(epd);
3972 				lock_page(page);
3973 			}
3974 
3975 			if (unlikely(page->mapping != mapping)) {
3976 				unlock_page(page);
3977 				continue;
3978 			}
3979 
3980 			if (wbc->sync_mode != WB_SYNC_NONE) {
3981 				if (PageWriteback(page))
3982 					flush_write_bio(epd);
3983 				wait_on_page_writeback(page);
3984 			}
3985 
3986 			if (PageWriteback(page) ||
3987 			    !clear_page_dirty_for_io(page)) {
3988 				unlock_page(page);
3989 				continue;
3990 			}
3991 
3992 			ret = __extent_writepage(page, wbc, epd);
3993 
3994 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3995 				unlock_page(page);
3996 				ret = 0;
3997 			}
3998 			if (ret < 0) {
3999 				/*
4000 				 * done_index is set past this page,
4001 				 * so media errors will not choke
4002 				 * background writeout for the entire
4003 				 * file. This has consequences for
4004 				 * range_cyclic semantics (ie. it may
4005 				 * not be suitable for data integrity
4006 				 * writeout).
4007 				 */
4008 				done_index = page->index + 1;
4009 				done = 1;
4010 				break;
4011 			}
4012 
4013 			/*
4014 			 * the filesystem may choose to bump up nr_to_write.
4015 			 * We have to make sure to honor the new nr_to_write
4016 			 * at any time
4017 			 */
4018 			nr_to_write_done = wbc->nr_to_write <= 0;
4019 		}
4020 		pagevec_release(&pvec);
4021 		cond_resched();
4022 	}
4023 	if (!scanned && !done) {
4024 		/*
4025 		 * We hit the last page and there is more work to be done: wrap
4026 		 * back to the start of the file
4027 		 */
4028 		scanned = 1;
4029 		index = 0;
4030 		goto retry;
4031 	}
4032 
4033 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4034 		mapping->writeback_index = done_index;
4035 
4036 	btrfs_add_delayed_iput(inode);
4037 	return ret;
4038 }
4039 
4040 static void flush_write_bio(struct extent_page_data *epd)
4041 {
4042 	if (epd->bio) {
4043 		int ret;
4044 
4045 		ret = submit_one_bio(epd->bio, 0, 0);
4046 		BUG_ON(ret < 0); /* -ENOMEM */
4047 		epd->bio = NULL;
4048 	}
4049 }
4050 
4051 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4052 {
4053 	int ret;
4054 	struct extent_page_data epd = {
4055 		.bio = NULL,
4056 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4057 		.extent_locked = 0,
4058 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4059 	};
4060 
4061 	ret = __extent_writepage(page, wbc, &epd);
4062 
4063 	flush_write_bio(&epd);
4064 	return ret;
4065 }
4066 
4067 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4068 			      int mode)
4069 {
4070 	int ret = 0;
4071 	struct address_space *mapping = inode->i_mapping;
4072 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4073 	struct page *page;
4074 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4075 		PAGE_SHIFT;
4076 
4077 	struct extent_page_data epd = {
4078 		.bio = NULL,
4079 		.tree = tree,
4080 		.extent_locked = 1,
4081 		.sync_io = mode == WB_SYNC_ALL,
4082 	};
4083 	struct writeback_control wbc_writepages = {
4084 		.sync_mode	= mode,
4085 		.nr_to_write	= nr_pages * 2,
4086 		.range_start	= start,
4087 		.range_end	= end + 1,
4088 	};
4089 
4090 	while (start <= end) {
4091 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4092 		if (clear_page_dirty_for_io(page))
4093 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4094 		else {
4095 			if (tree->ops && tree->ops->writepage_end_io_hook)
4096 				tree->ops->writepage_end_io_hook(page, start,
4097 						 start + PAGE_SIZE - 1,
4098 						 NULL, 1);
4099 			unlock_page(page);
4100 		}
4101 		put_page(page);
4102 		start += PAGE_SIZE;
4103 	}
4104 
4105 	flush_write_bio(&epd);
4106 	return ret;
4107 }
4108 
4109 int extent_writepages(struct address_space *mapping,
4110 		      struct writeback_control *wbc)
4111 {
4112 	int ret = 0;
4113 	struct extent_page_data epd = {
4114 		.bio = NULL,
4115 		.tree = &BTRFS_I(mapping->host)->io_tree,
4116 		.extent_locked = 0,
4117 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4118 	};
4119 
4120 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4121 	flush_write_bio(&epd);
4122 	return ret;
4123 }
4124 
4125 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4126 		     unsigned nr_pages)
4127 {
4128 	struct bio *bio = NULL;
4129 	unsigned page_idx;
4130 	unsigned long bio_flags = 0;
4131 	struct page *pagepool[16];
4132 	struct page *page;
4133 	struct extent_map *em_cached = NULL;
4134 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4135 	int nr = 0;
4136 	u64 prev_em_start = (u64)-1;
4137 
4138 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4139 		page = list_entry(pages->prev, struct page, lru);
4140 
4141 		prefetchw(&page->flags);
4142 		list_del(&page->lru);
4143 		if (add_to_page_cache_lru(page, mapping,
4144 					page->index,
4145 					readahead_gfp_mask(mapping))) {
4146 			put_page(page);
4147 			continue;
4148 		}
4149 
4150 		pagepool[nr++] = page;
4151 		if (nr < ARRAY_SIZE(pagepool))
4152 			continue;
4153 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4154 				&bio_flags, &prev_em_start);
4155 		nr = 0;
4156 	}
4157 	if (nr)
4158 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4159 				&bio_flags, &prev_em_start);
4160 
4161 	if (em_cached)
4162 		free_extent_map(em_cached);
4163 
4164 	BUG_ON(!list_empty(pages));
4165 	if (bio)
4166 		return submit_one_bio(bio, 0, bio_flags);
4167 	return 0;
4168 }
4169 
4170 /*
4171  * basic invalidatepage code, this waits on any locked or writeback
4172  * ranges corresponding to the page, and then deletes any extent state
4173  * records from the tree
4174  */
4175 int extent_invalidatepage(struct extent_io_tree *tree,
4176 			  struct page *page, unsigned long offset)
4177 {
4178 	struct extent_state *cached_state = NULL;
4179 	u64 start = page_offset(page);
4180 	u64 end = start + PAGE_SIZE - 1;
4181 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4182 
4183 	start += ALIGN(offset, blocksize);
4184 	if (start > end)
4185 		return 0;
4186 
4187 	lock_extent_bits(tree, start, end, &cached_state);
4188 	wait_on_page_writeback(page);
4189 	clear_extent_bit(tree, start, end,
4190 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4191 			 EXTENT_DO_ACCOUNTING,
4192 			 1, 1, &cached_state);
4193 	return 0;
4194 }
4195 
4196 /*
4197  * a helper for releasepage, this tests for areas of the page that
4198  * are locked or under IO and drops the related state bits if it is safe
4199  * to drop the page.
4200  */
4201 static int try_release_extent_state(struct extent_io_tree *tree,
4202 				    struct page *page, gfp_t mask)
4203 {
4204 	u64 start = page_offset(page);
4205 	u64 end = start + PAGE_SIZE - 1;
4206 	int ret = 1;
4207 
4208 	if (test_range_bit(tree, start, end,
4209 			   EXTENT_IOBITS, 0, NULL))
4210 		ret = 0;
4211 	else {
4212 		/*
4213 		 * at this point we can safely clear everything except the
4214 		 * locked bit and the nodatasum bit
4215 		 */
4216 		ret = __clear_extent_bit(tree, start, end,
4217 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4218 				 0, 0, NULL, mask, NULL);
4219 
4220 		/* if clear_extent_bit failed for enomem reasons,
4221 		 * we can't allow the release to continue.
4222 		 */
4223 		if (ret < 0)
4224 			ret = 0;
4225 		else
4226 			ret = 1;
4227 	}
4228 	return ret;
4229 }
4230 
4231 /*
4232  * a helper for releasepage.  As long as there are no locked extents
4233  * in the range corresponding to the page, both state records and extent
4234  * map records are removed
4235  */
4236 int try_release_extent_mapping(struct page *page, gfp_t mask)
4237 {
4238 	struct extent_map *em;
4239 	u64 start = page_offset(page);
4240 	u64 end = start + PAGE_SIZE - 1;
4241 	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
4242 	struct extent_map_tree *map = &BTRFS_I(page->mapping->host)->extent_tree;
4243 
4244 	if (gfpflags_allow_blocking(mask) &&
4245 	    page->mapping->host->i_size > SZ_16M) {
4246 		u64 len;
4247 		while (start <= end) {
4248 			len = end - start + 1;
4249 			write_lock(&map->lock);
4250 			em = lookup_extent_mapping(map, start, len);
4251 			if (!em) {
4252 				write_unlock(&map->lock);
4253 				break;
4254 			}
4255 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4256 			    em->start != start) {
4257 				write_unlock(&map->lock);
4258 				free_extent_map(em);
4259 				break;
4260 			}
4261 			if (!test_range_bit(tree, em->start,
4262 					    extent_map_end(em) - 1,
4263 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4264 					    0, NULL)) {
4265 				remove_extent_mapping(map, em);
4266 				/* once for the rb tree */
4267 				free_extent_map(em);
4268 			}
4269 			start = extent_map_end(em);
4270 			write_unlock(&map->lock);
4271 
4272 			/* once for us */
4273 			free_extent_map(em);
4274 		}
4275 	}
4276 	return try_release_extent_state(tree, page, mask);
4277 }
4278 
4279 /*
4280  * helper function for fiemap, which doesn't want to see any holes.
4281  * This maps until we find something past 'last'
4282  */
4283 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4284 						u64 offset, u64 last)
4285 {
4286 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4287 	struct extent_map *em;
4288 	u64 len;
4289 
4290 	if (offset >= last)
4291 		return NULL;
4292 
4293 	while (1) {
4294 		len = last - offset;
4295 		if (len == 0)
4296 			break;
4297 		len = ALIGN(len, sectorsize);
4298 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4299 				len, 0);
4300 		if (IS_ERR_OR_NULL(em))
4301 			return em;
4302 
4303 		/* if this isn't a hole return it */
4304 		if (em->block_start != EXTENT_MAP_HOLE)
4305 			return em;
4306 
4307 		/* this is a hole, advance to the next extent */
4308 		offset = extent_map_end(em);
4309 		free_extent_map(em);
4310 		if (offset >= last)
4311 			break;
4312 	}
4313 	return NULL;
4314 }
4315 
4316 /*
4317  * To cache previous fiemap extent
4318  *
4319  * Will be used for merging fiemap extent
4320  */
4321 struct fiemap_cache {
4322 	u64 offset;
4323 	u64 phys;
4324 	u64 len;
4325 	u32 flags;
4326 	bool cached;
4327 };
4328 
4329 /*
4330  * Helper to submit fiemap extent.
4331  *
4332  * Will try to merge current fiemap extent specified by @offset, @phys,
4333  * @len and @flags with cached one.
4334  * And only when we fails to merge, cached one will be submitted as
4335  * fiemap extent.
4336  *
4337  * Return value is the same as fiemap_fill_next_extent().
4338  */
4339 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4340 				struct fiemap_cache *cache,
4341 				u64 offset, u64 phys, u64 len, u32 flags)
4342 {
4343 	int ret = 0;
4344 
4345 	if (!cache->cached)
4346 		goto assign;
4347 
4348 	/*
4349 	 * Sanity check, extent_fiemap() should have ensured that new
4350 	 * fiemap extent won't overlap with cahced one.
4351 	 * Not recoverable.
4352 	 *
4353 	 * NOTE: Physical address can overlap, due to compression
4354 	 */
4355 	if (cache->offset + cache->len > offset) {
4356 		WARN_ON(1);
4357 		return -EINVAL;
4358 	}
4359 
4360 	/*
4361 	 * Only merges fiemap extents if
4362 	 * 1) Their logical addresses are continuous
4363 	 *
4364 	 * 2) Their physical addresses are continuous
4365 	 *    So truly compressed (physical size smaller than logical size)
4366 	 *    extents won't get merged with each other
4367 	 *
4368 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4369 	 *    So regular extent won't get merged with prealloc extent
4370 	 */
4371 	if (cache->offset + cache->len  == offset &&
4372 	    cache->phys + cache->len == phys  &&
4373 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4374 			(flags & ~FIEMAP_EXTENT_LAST)) {
4375 		cache->len += len;
4376 		cache->flags |= flags;
4377 		goto try_submit_last;
4378 	}
4379 
4380 	/* Not mergeable, need to submit cached one */
4381 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4382 				      cache->len, cache->flags);
4383 	cache->cached = false;
4384 	if (ret)
4385 		return ret;
4386 assign:
4387 	cache->cached = true;
4388 	cache->offset = offset;
4389 	cache->phys = phys;
4390 	cache->len = len;
4391 	cache->flags = flags;
4392 try_submit_last:
4393 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4394 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4395 				cache->phys, cache->len, cache->flags);
4396 		cache->cached = false;
4397 	}
4398 	return ret;
4399 }
4400 
4401 /*
4402  * Emit last fiemap cache
4403  *
4404  * The last fiemap cache may still be cached in the following case:
4405  * 0		      4k		    8k
4406  * |<- Fiemap range ->|
4407  * |<------------  First extent ----------->|
4408  *
4409  * In this case, the first extent range will be cached but not emitted.
4410  * So we must emit it before ending extent_fiemap().
4411  */
4412 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4413 				  struct fiemap_extent_info *fieinfo,
4414 				  struct fiemap_cache *cache)
4415 {
4416 	int ret;
4417 
4418 	if (!cache->cached)
4419 		return 0;
4420 
4421 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4422 				      cache->len, cache->flags);
4423 	cache->cached = false;
4424 	if (ret > 0)
4425 		ret = 0;
4426 	return ret;
4427 }
4428 
4429 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4430 		__u64 start, __u64 len)
4431 {
4432 	int ret = 0;
4433 	u64 off = start;
4434 	u64 max = start + len;
4435 	u32 flags = 0;
4436 	u32 found_type;
4437 	u64 last;
4438 	u64 last_for_get_extent = 0;
4439 	u64 disko = 0;
4440 	u64 isize = i_size_read(inode);
4441 	struct btrfs_key found_key;
4442 	struct extent_map *em = NULL;
4443 	struct extent_state *cached_state = NULL;
4444 	struct btrfs_path *path;
4445 	struct btrfs_root *root = BTRFS_I(inode)->root;
4446 	struct fiemap_cache cache = { 0 };
4447 	int end = 0;
4448 	u64 em_start = 0;
4449 	u64 em_len = 0;
4450 	u64 em_end = 0;
4451 
4452 	if (len == 0)
4453 		return -EINVAL;
4454 
4455 	path = btrfs_alloc_path();
4456 	if (!path)
4457 		return -ENOMEM;
4458 	path->leave_spinning = 1;
4459 
4460 	start = round_down(start, btrfs_inode_sectorsize(inode));
4461 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4462 
4463 	/*
4464 	 * lookup the last file extent.  We're not using i_size here
4465 	 * because there might be preallocation past i_size
4466 	 */
4467 	ret = btrfs_lookup_file_extent(NULL, root, path,
4468 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4469 	if (ret < 0) {
4470 		btrfs_free_path(path);
4471 		return ret;
4472 	} else {
4473 		WARN_ON(!ret);
4474 		if (ret == 1)
4475 			ret = 0;
4476 	}
4477 
4478 	path->slots[0]--;
4479 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4480 	found_type = found_key.type;
4481 
4482 	/* No extents, but there might be delalloc bits */
4483 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4484 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4485 		/* have to trust i_size as the end */
4486 		last = (u64)-1;
4487 		last_for_get_extent = isize;
4488 	} else {
4489 		/*
4490 		 * remember the start of the last extent.  There are a
4491 		 * bunch of different factors that go into the length of the
4492 		 * extent, so its much less complex to remember where it started
4493 		 */
4494 		last = found_key.offset;
4495 		last_for_get_extent = last + 1;
4496 	}
4497 	btrfs_release_path(path);
4498 
4499 	/*
4500 	 * we might have some extents allocated but more delalloc past those
4501 	 * extents.  so, we trust isize unless the start of the last extent is
4502 	 * beyond isize
4503 	 */
4504 	if (last < isize) {
4505 		last = (u64)-1;
4506 		last_for_get_extent = isize;
4507 	}
4508 
4509 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4510 			 &cached_state);
4511 
4512 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4513 	if (!em)
4514 		goto out;
4515 	if (IS_ERR(em)) {
4516 		ret = PTR_ERR(em);
4517 		goto out;
4518 	}
4519 
4520 	while (!end) {
4521 		u64 offset_in_extent = 0;
4522 
4523 		/* break if the extent we found is outside the range */
4524 		if (em->start >= max || extent_map_end(em) < off)
4525 			break;
4526 
4527 		/*
4528 		 * get_extent may return an extent that starts before our
4529 		 * requested range.  We have to make sure the ranges
4530 		 * we return to fiemap always move forward and don't
4531 		 * overlap, so adjust the offsets here
4532 		 */
4533 		em_start = max(em->start, off);
4534 
4535 		/*
4536 		 * record the offset from the start of the extent
4537 		 * for adjusting the disk offset below.  Only do this if the
4538 		 * extent isn't compressed since our in ram offset may be past
4539 		 * what we have actually allocated on disk.
4540 		 */
4541 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4542 			offset_in_extent = em_start - em->start;
4543 		em_end = extent_map_end(em);
4544 		em_len = em_end - em_start;
4545 		disko = em->block_start + offset_in_extent;
4546 		flags = 0;
4547 
4548 		/*
4549 		 * bump off for our next call to get_extent
4550 		 */
4551 		off = extent_map_end(em);
4552 		if (off >= max)
4553 			end = 1;
4554 
4555 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4556 			end = 1;
4557 			flags |= FIEMAP_EXTENT_LAST;
4558 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4559 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4560 				  FIEMAP_EXTENT_NOT_ALIGNED);
4561 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4562 			flags |= (FIEMAP_EXTENT_DELALLOC |
4563 				  FIEMAP_EXTENT_UNKNOWN);
4564 		} else if (fieinfo->fi_extents_max) {
4565 			u64 bytenr = em->block_start -
4566 				(em->start - em->orig_start);
4567 
4568 			/*
4569 			 * As btrfs supports shared space, this information
4570 			 * can be exported to userspace tools via
4571 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4572 			 * then we're just getting a count and we can skip the
4573 			 * lookup stuff.
4574 			 */
4575 			ret = btrfs_check_shared(root,
4576 						 btrfs_ino(BTRFS_I(inode)),
4577 						 bytenr);
4578 			if (ret < 0)
4579 				goto out_free;
4580 			if (ret)
4581 				flags |= FIEMAP_EXTENT_SHARED;
4582 			ret = 0;
4583 		}
4584 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4585 			flags |= FIEMAP_EXTENT_ENCODED;
4586 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4587 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4588 
4589 		free_extent_map(em);
4590 		em = NULL;
4591 		if ((em_start >= last) || em_len == (u64)-1 ||
4592 		   (last == (u64)-1 && isize <= em_end)) {
4593 			flags |= FIEMAP_EXTENT_LAST;
4594 			end = 1;
4595 		}
4596 
4597 		/* now scan forward to see if this is really the last extent. */
4598 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4599 		if (IS_ERR(em)) {
4600 			ret = PTR_ERR(em);
4601 			goto out;
4602 		}
4603 		if (!em) {
4604 			flags |= FIEMAP_EXTENT_LAST;
4605 			end = 1;
4606 		}
4607 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4608 					   em_len, flags);
4609 		if (ret) {
4610 			if (ret == 1)
4611 				ret = 0;
4612 			goto out_free;
4613 		}
4614 	}
4615 out_free:
4616 	if (!ret)
4617 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4618 	free_extent_map(em);
4619 out:
4620 	btrfs_free_path(path);
4621 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4622 			     &cached_state);
4623 	return ret;
4624 }
4625 
4626 static void __free_extent_buffer(struct extent_buffer *eb)
4627 {
4628 	btrfs_leak_debug_del(&eb->leak_list);
4629 	kmem_cache_free(extent_buffer_cache, eb);
4630 }
4631 
4632 int extent_buffer_under_io(struct extent_buffer *eb)
4633 {
4634 	return (atomic_read(&eb->io_pages) ||
4635 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4636 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4637 }
4638 
4639 /*
4640  * Helper for releasing extent buffer page.
4641  */
4642 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4643 {
4644 	unsigned long index;
4645 	struct page *page;
4646 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4647 
4648 	BUG_ON(extent_buffer_under_io(eb));
4649 
4650 	index = num_extent_pages(eb->start, eb->len);
4651 	if (index == 0)
4652 		return;
4653 
4654 	do {
4655 		index--;
4656 		page = eb->pages[index];
4657 		if (!page)
4658 			continue;
4659 		if (mapped)
4660 			spin_lock(&page->mapping->private_lock);
4661 		/*
4662 		 * We do this since we'll remove the pages after we've
4663 		 * removed the eb from the radix tree, so we could race
4664 		 * and have this page now attached to the new eb.  So
4665 		 * only clear page_private if it's still connected to
4666 		 * this eb.
4667 		 */
4668 		if (PagePrivate(page) &&
4669 		    page->private == (unsigned long)eb) {
4670 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4671 			BUG_ON(PageDirty(page));
4672 			BUG_ON(PageWriteback(page));
4673 			/*
4674 			 * We need to make sure we haven't be attached
4675 			 * to a new eb.
4676 			 */
4677 			ClearPagePrivate(page);
4678 			set_page_private(page, 0);
4679 			/* One for the page private */
4680 			put_page(page);
4681 		}
4682 
4683 		if (mapped)
4684 			spin_unlock(&page->mapping->private_lock);
4685 
4686 		/* One for when we allocated the page */
4687 		put_page(page);
4688 	} while (index != 0);
4689 }
4690 
4691 /*
4692  * Helper for releasing the extent buffer.
4693  */
4694 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4695 {
4696 	btrfs_release_extent_buffer_page(eb);
4697 	__free_extent_buffer(eb);
4698 }
4699 
4700 static struct extent_buffer *
4701 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4702 		      unsigned long len)
4703 {
4704 	struct extent_buffer *eb = NULL;
4705 
4706 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4707 	eb->start = start;
4708 	eb->len = len;
4709 	eb->fs_info = fs_info;
4710 	eb->bflags = 0;
4711 	rwlock_init(&eb->lock);
4712 	atomic_set(&eb->write_locks, 0);
4713 	atomic_set(&eb->read_locks, 0);
4714 	atomic_set(&eb->blocking_readers, 0);
4715 	atomic_set(&eb->blocking_writers, 0);
4716 	atomic_set(&eb->spinning_readers, 0);
4717 	atomic_set(&eb->spinning_writers, 0);
4718 	eb->lock_nested = 0;
4719 	init_waitqueue_head(&eb->write_lock_wq);
4720 	init_waitqueue_head(&eb->read_lock_wq);
4721 
4722 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4723 
4724 	spin_lock_init(&eb->refs_lock);
4725 	atomic_set(&eb->refs, 1);
4726 	atomic_set(&eb->io_pages, 0);
4727 
4728 	/*
4729 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4730 	 */
4731 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4732 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4733 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4734 
4735 	return eb;
4736 }
4737 
4738 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4739 {
4740 	unsigned long i;
4741 	struct page *p;
4742 	struct extent_buffer *new;
4743 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4744 
4745 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4746 	if (new == NULL)
4747 		return NULL;
4748 
4749 	for (i = 0; i < num_pages; i++) {
4750 		p = alloc_page(GFP_NOFS);
4751 		if (!p) {
4752 			btrfs_release_extent_buffer(new);
4753 			return NULL;
4754 		}
4755 		attach_extent_buffer_page(new, p);
4756 		WARN_ON(PageDirty(p));
4757 		SetPageUptodate(p);
4758 		new->pages[i] = p;
4759 		copy_page(page_address(p), page_address(src->pages[i]));
4760 	}
4761 
4762 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4763 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4764 
4765 	return new;
4766 }
4767 
4768 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4769 						  u64 start, unsigned long len)
4770 {
4771 	struct extent_buffer *eb;
4772 	unsigned long num_pages;
4773 	unsigned long i;
4774 
4775 	num_pages = num_extent_pages(start, len);
4776 
4777 	eb = __alloc_extent_buffer(fs_info, start, len);
4778 	if (!eb)
4779 		return NULL;
4780 
4781 	for (i = 0; i < num_pages; i++) {
4782 		eb->pages[i] = alloc_page(GFP_NOFS);
4783 		if (!eb->pages[i])
4784 			goto err;
4785 	}
4786 	set_extent_buffer_uptodate(eb);
4787 	btrfs_set_header_nritems(eb, 0);
4788 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4789 
4790 	return eb;
4791 err:
4792 	for (; i > 0; i--)
4793 		__free_page(eb->pages[i - 1]);
4794 	__free_extent_buffer(eb);
4795 	return NULL;
4796 }
4797 
4798 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4799 						u64 start)
4800 {
4801 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4802 }
4803 
4804 static void check_buffer_tree_ref(struct extent_buffer *eb)
4805 {
4806 	int refs;
4807 	/* the ref bit is tricky.  We have to make sure it is set
4808 	 * if we have the buffer dirty.   Otherwise the
4809 	 * code to free a buffer can end up dropping a dirty
4810 	 * page
4811 	 *
4812 	 * Once the ref bit is set, it won't go away while the
4813 	 * buffer is dirty or in writeback, and it also won't
4814 	 * go away while we have the reference count on the
4815 	 * eb bumped.
4816 	 *
4817 	 * We can't just set the ref bit without bumping the
4818 	 * ref on the eb because free_extent_buffer might
4819 	 * see the ref bit and try to clear it.  If this happens
4820 	 * free_extent_buffer might end up dropping our original
4821 	 * ref by mistake and freeing the page before we are able
4822 	 * to add one more ref.
4823 	 *
4824 	 * So bump the ref count first, then set the bit.  If someone
4825 	 * beat us to it, drop the ref we added.
4826 	 */
4827 	refs = atomic_read(&eb->refs);
4828 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4829 		return;
4830 
4831 	spin_lock(&eb->refs_lock);
4832 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4833 		atomic_inc(&eb->refs);
4834 	spin_unlock(&eb->refs_lock);
4835 }
4836 
4837 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4838 		struct page *accessed)
4839 {
4840 	unsigned long num_pages, i;
4841 
4842 	check_buffer_tree_ref(eb);
4843 
4844 	num_pages = num_extent_pages(eb->start, eb->len);
4845 	for (i = 0; i < num_pages; i++) {
4846 		struct page *p = eb->pages[i];
4847 
4848 		if (p != accessed)
4849 			mark_page_accessed(p);
4850 	}
4851 }
4852 
4853 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4854 					 u64 start)
4855 {
4856 	struct extent_buffer *eb;
4857 
4858 	rcu_read_lock();
4859 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4860 			       start >> PAGE_SHIFT);
4861 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4862 		rcu_read_unlock();
4863 		/*
4864 		 * Lock our eb's refs_lock to avoid races with
4865 		 * free_extent_buffer. When we get our eb it might be flagged
4866 		 * with EXTENT_BUFFER_STALE and another task running
4867 		 * free_extent_buffer might have seen that flag set,
4868 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4869 		 * writeback flags not set) and it's still in the tree (flag
4870 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4871 		 * of decrementing the extent buffer's reference count twice.
4872 		 * So here we could race and increment the eb's reference count,
4873 		 * clear its stale flag, mark it as dirty and drop our reference
4874 		 * before the other task finishes executing free_extent_buffer,
4875 		 * which would later result in an attempt to free an extent
4876 		 * buffer that is dirty.
4877 		 */
4878 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4879 			spin_lock(&eb->refs_lock);
4880 			spin_unlock(&eb->refs_lock);
4881 		}
4882 		mark_extent_buffer_accessed(eb, NULL);
4883 		return eb;
4884 	}
4885 	rcu_read_unlock();
4886 
4887 	return NULL;
4888 }
4889 
4890 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4891 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4892 					u64 start)
4893 {
4894 	struct extent_buffer *eb, *exists = NULL;
4895 	int ret;
4896 
4897 	eb = find_extent_buffer(fs_info, start);
4898 	if (eb)
4899 		return eb;
4900 	eb = alloc_dummy_extent_buffer(fs_info, start);
4901 	if (!eb)
4902 		return NULL;
4903 	eb->fs_info = fs_info;
4904 again:
4905 	ret = radix_tree_preload(GFP_NOFS);
4906 	if (ret)
4907 		goto free_eb;
4908 	spin_lock(&fs_info->buffer_lock);
4909 	ret = radix_tree_insert(&fs_info->buffer_radix,
4910 				start >> PAGE_SHIFT, eb);
4911 	spin_unlock(&fs_info->buffer_lock);
4912 	radix_tree_preload_end();
4913 	if (ret == -EEXIST) {
4914 		exists = find_extent_buffer(fs_info, start);
4915 		if (exists)
4916 			goto free_eb;
4917 		else
4918 			goto again;
4919 	}
4920 	check_buffer_tree_ref(eb);
4921 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4922 
4923 	/*
4924 	 * We will free dummy extent buffer's if they come into
4925 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4926 	 * want the buffers to stay in memory until we're done with them, so
4927 	 * bump the ref count again.
4928 	 */
4929 	atomic_inc(&eb->refs);
4930 	return eb;
4931 free_eb:
4932 	btrfs_release_extent_buffer(eb);
4933 	return exists;
4934 }
4935 #endif
4936 
4937 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4938 					  u64 start)
4939 {
4940 	unsigned long len = fs_info->nodesize;
4941 	unsigned long num_pages = num_extent_pages(start, len);
4942 	unsigned long i;
4943 	unsigned long index = start >> PAGE_SHIFT;
4944 	struct extent_buffer *eb;
4945 	struct extent_buffer *exists = NULL;
4946 	struct page *p;
4947 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4948 	int uptodate = 1;
4949 	int ret;
4950 
4951 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4952 		btrfs_err(fs_info, "bad tree block start %llu", start);
4953 		return ERR_PTR(-EINVAL);
4954 	}
4955 
4956 	eb = find_extent_buffer(fs_info, start);
4957 	if (eb)
4958 		return eb;
4959 
4960 	eb = __alloc_extent_buffer(fs_info, start, len);
4961 	if (!eb)
4962 		return ERR_PTR(-ENOMEM);
4963 
4964 	for (i = 0; i < num_pages; i++, index++) {
4965 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4966 		if (!p) {
4967 			exists = ERR_PTR(-ENOMEM);
4968 			goto free_eb;
4969 		}
4970 
4971 		spin_lock(&mapping->private_lock);
4972 		if (PagePrivate(p)) {
4973 			/*
4974 			 * We could have already allocated an eb for this page
4975 			 * and attached one so lets see if we can get a ref on
4976 			 * the existing eb, and if we can we know it's good and
4977 			 * we can just return that one, else we know we can just
4978 			 * overwrite page->private.
4979 			 */
4980 			exists = (struct extent_buffer *)p->private;
4981 			if (atomic_inc_not_zero(&exists->refs)) {
4982 				spin_unlock(&mapping->private_lock);
4983 				unlock_page(p);
4984 				put_page(p);
4985 				mark_extent_buffer_accessed(exists, p);
4986 				goto free_eb;
4987 			}
4988 			exists = NULL;
4989 
4990 			/*
4991 			 * Do this so attach doesn't complain and we need to
4992 			 * drop the ref the old guy had.
4993 			 */
4994 			ClearPagePrivate(p);
4995 			WARN_ON(PageDirty(p));
4996 			put_page(p);
4997 		}
4998 		attach_extent_buffer_page(eb, p);
4999 		spin_unlock(&mapping->private_lock);
5000 		WARN_ON(PageDirty(p));
5001 		eb->pages[i] = p;
5002 		if (!PageUptodate(p))
5003 			uptodate = 0;
5004 
5005 		/*
5006 		 * see below about how we avoid a nasty race with release page
5007 		 * and why we unlock later
5008 		 */
5009 	}
5010 	if (uptodate)
5011 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5012 again:
5013 	ret = radix_tree_preload(GFP_NOFS);
5014 	if (ret) {
5015 		exists = ERR_PTR(ret);
5016 		goto free_eb;
5017 	}
5018 
5019 	spin_lock(&fs_info->buffer_lock);
5020 	ret = radix_tree_insert(&fs_info->buffer_radix,
5021 				start >> PAGE_SHIFT, eb);
5022 	spin_unlock(&fs_info->buffer_lock);
5023 	radix_tree_preload_end();
5024 	if (ret == -EEXIST) {
5025 		exists = find_extent_buffer(fs_info, start);
5026 		if (exists)
5027 			goto free_eb;
5028 		else
5029 			goto again;
5030 	}
5031 	/* add one reference for the tree */
5032 	check_buffer_tree_ref(eb);
5033 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5034 
5035 	/*
5036 	 * there is a race where release page may have
5037 	 * tried to find this extent buffer in the radix
5038 	 * but failed.  It will tell the VM it is safe to
5039 	 * reclaim the, and it will clear the page private bit.
5040 	 * We must make sure to set the page private bit properly
5041 	 * after the extent buffer is in the radix tree so
5042 	 * it doesn't get lost
5043 	 */
5044 	SetPageChecked(eb->pages[0]);
5045 	for (i = 1; i < num_pages; i++) {
5046 		p = eb->pages[i];
5047 		ClearPageChecked(p);
5048 		unlock_page(p);
5049 	}
5050 	unlock_page(eb->pages[0]);
5051 	return eb;
5052 
5053 free_eb:
5054 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5055 	for (i = 0; i < num_pages; i++) {
5056 		if (eb->pages[i])
5057 			unlock_page(eb->pages[i]);
5058 	}
5059 
5060 	btrfs_release_extent_buffer(eb);
5061 	return exists;
5062 }
5063 
5064 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5065 {
5066 	struct extent_buffer *eb =
5067 			container_of(head, struct extent_buffer, rcu_head);
5068 
5069 	__free_extent_buffer(eb);
5070 }
5071 
5072 /* Expects to have eb->eb_lock already held */
5073 static int release_extent_buffer(struct extent_buffer *eb)
5074 {
5075 	WARN_ON(atomic_read(&eb->refs) == 0);
5076 	if (atomic_dec_and_test(&eb->refs)) {
5077 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5078 			struct btrfs_fs_info *fs_info = eb->fs_info;
5079 
5080 			spin_unlock(&eb->refs_lock);
5081 
5082 			spin_lock(&fs_info->buffer_lock);
5083 			radix_tree_delete(&fs_info->buffer_radix,
5084 					  eb->start >> PAGE_SHIFT);
5085 			spin_unlock(&fs_info->buffer_lock);
5086 		} else {
5087 			spin_unlock(&eb->refs_lock);
5088 		}
5089 
5090 		/* Should be safe to release our pages at this point */
5091 		btrfs_release_extent_buffer_page(eb);
5092 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5093 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5094 			__free_extent_buffer(eb);
5095 			return 1;
5096 		}
5097 #endif
5098 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5099 		return 1;
5100 	}
5101 	spin_unlock(&eb->refs_lock);
5102 
5103 	return 0;
5104 }
5105 
5106 void free_extent_buffer(struct extent_buffer *eb)
5107 {
5108 	int refs;
5109 	int old;
5110 	if (!eb)
5111 		return;
5112 
5113 	while (1) {
5114 		refs = atomic_read(&eb->refs);
5115 		if (refs <= 3)
5116 			break;
5117 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5118 		if (old == refs)
5119 			return;
5120 	}
5121 
5122 	spin_lock(&eb->refs_lock);
5123 	if (atomic_read(&eb->refs) == 2 &&
5124 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5125 		atomic_dec(&eb->refs);
5126 
5127 	if (atomic_read(&eb->refs) == 2 &&
5128 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5129 	    !extent_buffer_under_io(eb) &&
5130 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5131 		atomic_dec(&eb->refs);
5132 
5133 	/*
5134 	 * I know this is terrible, but it's temporary until we stop tracking
5135 	 * the uptodate bits and such for the extent buffers.
5136 	 */
5137 	release_extent_buffer(eb);
5138 }
5139 
5140 void free_extent_buffer_stale(struct extent_buffer *eb)
5141 {
5142 	if (!eb)
5143 		return;
5144 
5145 	spin_lock(&eb->refs_lock);
5146 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5147 
5148 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5149 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5150 		atomic_dec(&eb->refs);
5151 	release_extent_buffer(eb);
5152 }
5153 
5154 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5155 {
5156 	unsigned long i;
5157 	unsigned long num_pages;
5158 	struct page *page;
5159 
5160 	num_pages = num_extent_pages(eb->start, eb->len);
5161 
5162 	for (i = 0; i < num_pages; i++) {
5163 		page = eb->pages[i];
5164 		if (!PageDirty(page))
5165 			continue;
5166 
5167 		lock_page(page);
5168 		WARN_ON(!PagePrivate(page));
5169 
5170 		clear_page_dirty_for_io(page);
5171 		xa_lock_irq(&page->mapping->i_pages);
5172 		if (!PageDirty(page)) {
5173 			radix_tree_tag_clear(&page->mapping->i_pages,
5174 						page_index(page),
5175 						PAGECACHE_TAG_DIRTY);
5176 		}
5177 		xa_unlock_irq(&page->mapping->i_pages);
5178 		ClearPageError(page);
5179 		unlock_page(page);
5180 	}
5181 	WARN_ON(atomic_read(&eb->refs) == 0);
5182 }
5183 
5184 int set_extent_buffer_dirty(struct extent_buffer *eb)
5185 {
5186 	unsigned long i;
5187 	unsigned long num_pages;
5188 	int was_dirty = 0;
5189 
5190 	check_buffer_tree_ref(eb);
5191 
5192 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5193 
5194 	num_pages = num_extent_pages(eb->start, eb->len);
5195 	WARN_ON(atomic_read(&eb->refs) == 0);
5196 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5197 
5198 	for (i = 0; i < num_pages; i++)
5199 		set_page_dirty(eb->pages[i]);
5200 	return was_dirty;
5201 }
5202 
5203 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5204 {
5205 	unsigned long i;
5206 	struct page *page;
5207 	unsigned long num_pages;
5208 
5209 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5210 	num_pages = num_extent_pages(eb->start, eb->len);
5211 	for (i = 0; i < num_pages; i++) {
5212 		page = eb->pages[i];
5213 		if (page)
5214 			ClearPageUptodate(page);
5215 	}
5216 }
5217 
5218 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5219 {
5220 	unsigned long i;
5221 	struct page *page;
5222 	unsigned long num_pages;
5223 
5224 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5225 	num_pages = num_extent_pages(eb->start, eb->len);
5226 	for (i = 0; i < num_pages; i++) {
5227 		page = eb->pages[i];
5228 		SetPageUptodate(page);
5229 	}
5230 }
5231 
5232 int read_extent_buffer_pages(struct extent_io_tree *tree,
5233 			     struct extent_buffer *eb, int wait, int mirror_num)
5234 {
5235 	unsigned long i;
5236 	struct page *page;
5237 	int err;
5238 	int ret = 0;
5239 	int locked_pages = 0;
5240 	int all_uptodate = 1;
5241 	unsigned long num_pages;
5242 	unsigned long num_reads = 0;
5243 	struct bio *bio = NULL;
5244 	unsigned long bio_flags = 0;
5245 
5246 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5247 		return 0;
5248 
5249 	num_pages = num_extent_pages(eb->start, eb->len);
5250 	for (i = 0; i < num_pages; i++) {
5251 		page = eb->pages[i];
5252 		if (wait == WAIT_NONE) {
5253 			if (!trylock_page(page))
5254 				goto unlock_exit;
5255 		} else {
5256 			lock_page(page);
5257 		}
5258 		locked_pages++;
5259 	}
5260 	/*
5261 	 * We need to firstly lock all pages to make sure that
5262 	 * the uptodate bit of our pages won't be affected by
5263 	 * clear_extent_buffer_uptodate().
5264 	 */
5265 	for (i = 0; i < num_pages; i++) {
5266 		page = eb->pages[i];
5267 		if (!PageUptodate(page)) {
5268 			num_reads++;
5269 			all_uptodate = 0;
5270 		}
5271 	}
5272 
5273 	if (all_uptodate) {
5274 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5275 		goto unlock_exit;
5276 	}
5277 
5278 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5279 	eb->read_mirror = 0;
5280 	atomic_set(&eb->io_pages, num_reads);
5281 	for (i = 0; i < num_pages; i++) {
5282 		page = eb->pages[i];
5283 
5284 		if (!PageUptodate(page)) {
5285 			if (ret) {
5286 				atomic_dec(&eb->io_pages);
5287 				unlock_page(page);
5288 				continue;
5289 			}
5290 
5291 			ClearPageError(page);
5292 			err = __extent_read_full_page(tree, page,
5293 						      btree_get_extent, &bio,
5294 						      mirror_num, &bio_flags,
5295 						      REQ_META);
5296 			if (err) {
5297 				ret = err;
5298 				/*
5299 				 * We use &bio in above __extent_read_full_page,
5300 				 * so we ensure that if it returns error, the
5301 				 * current page fails to add itself to bio and
5302 				 * it's been unlocked.
5303 				 *
5304 				 * We must dec io_pages by ourselves.
5305 				 */
5306 				atomic_dec(&eb->io_pages);
5307 			}
5308 		} else {
5309 			unlock_page(page);
5310 		}
5311 	}
5312 
5313 	if (bio) {
5314 		err = submit_one_bio(bio, mirror_num, bio_flags);
5315 		if (err)
5316 			return err;
5317 	}
5318 
5319 	if (ret || wait != WAIT_COMPLETE)
5320 		return ret;
5321 
5322 	for (i = 0; i < num_pages; i++) {
5323 		page = eb->pages[i];
5324 		wait_on_page_locked(page);
5325 		if (!PageUptodate(page))
5326 			ret = -EIO;
5327 	}
5328 
5329 	return ret;
5330 
5331 unlock_exit:
5332 	while (locked_pages > 0) {
5333 		locked_pages--;
5334 		page = eb->pages[locked_pages];
5335 		unlock_page(page);
5336 	}
5337 	return ret;
5338 }
5339 
5340 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5341 			unsigned long start, unsigned long len)
5342 {
5343 	size_t cur;
5344 	size_t offset;
5345 	struct page *page;
5346 	char *kaddr;
5347 	char *dst = (char *)dstv;
5348 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5349 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5350 
5351 	if (start + len > eb->len) {
5352 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5353 		     eb->start, eb->len, start, len);
5354 		memset(dst, 0, len);
5355 		return;
5356 	}
5357 
5358 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5359 
5360 	while (len > 0) {
5361 		page = eb->pages[i];
5362 
5363 		cur = min(len, (PAGE_SIZE - offset));
5364 		kaddr = page_address(page);
5365 		memcpy(dst, kaddr + offset, cur);
5366 
5367 		dst += cur;
5368 		len -= cur;
5369 		offset = 0;
5370 		i++;
5371 	}
5372 }
5373 
5374 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5375 			       void __user *dstv,
5376 			       unsigned long start, unsigned long len)
5377 {
5378 	size_t cur;
5379 	size_t offset;
5380 	struct page *page;
5381 	char *kaddr;
5382 	char __user *dst = (char __user *)dstv;
5383 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5384 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5385 	int ret = 0;
5386 
5387 	WARN_ON(start > eb->len);
5388 	WARN_ON(start + len > eb->start + eb->len);
5389 
5390 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5391 
5392 	while (len > 0) {
5393 		page = eb->pages[i];
5394 
5395 		cur = min(len, (PAGE_SIZE - offset));
5396 		kaddr = page_address(page);
5397 		if (copy_to_user(dst, kaddr + offset, cur)) {
5398 			ret = -EFAULT;
5399 			break;
5400 		}
5401 
5402 		dst += cur;
5403 		len -= cur;
5404 		offset = 0;
5405 		i++;
5406 	}
5407 
5408 	return ret;
5409 }
5410 
5411 /*
5412  * return 0 if the item is found within a page.
5413  * return 1 if the item spans two pages.
5414  * return -EINVAL otherwise.
5415  */
5416 int map_private_extent_buffer(const struct extent_buffer *eb,
5417 			      unsigned long start, unsigned long min_len,
5418 			      char **map, unsigned long *map_start,
5419 			      unsigned long *map_len)
5420 {
5421 	size_t offset = start & (PAGE_SIZE - 1);
5422 	char *kaddr;
5423 	struct page *p;
5424 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5425 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5426 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5427 		PAGE_SHIFT;
5428 
5429 	if (start + min_len > eb->len) {
5430 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5431 		       eb->start, eb->len, start, min_len);
5432 		return -EINVAL;
5433 	}
5434 
5435 	if (i != end_i)
5436 		return 1;
5437 
5438 	if (i == 0) {
5439 		offset = start_offset;
5440 		*map_start = 0;
5441 	} else {
5442 		offset = 0;
5443 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5444 	}
5445 
5446 	p = eb->pages[i];
5447 	kaddr = page_address(p);
5448 	*map = kaddr + offset;
5449 	*map_len = PAGE_SIZE - offset;
5450 	return 0;
5451 }
5452 
5453 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5454 			 unsigned long start, unsigned long len)
5455 {
5456 	size_t cur;
5457 	size_t offset;
5458 	struct page *page;
5459 	char *kaddr;
5460 	char *ptr = (char *)ptrv;
5461 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5462 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5463 	int ret = 0;
5464 
5465 	WARN_ON(start > eb->len);
5466 	WARN_ON(start + len > eb->start + eb->len);
5467 
5468 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5469 
5470 	while (len > 0) {
5471 		page = eb->pages[i];
5472 
5473 		cur = min(len, (PAGE_SIZE - offset));
5474 
5475 		kaddr = page_address(page);
5476 		ret = memcmp(ptr, kaddr + offset, cur);
5477 		if (ret)
5478 			break;
5479 
5480 		ptr += cur;
5481 		len -= cur;
5482 		offset = 0;
5483 		i++;
5484 	}
5485 	return ret;
5486 }
5487 
5488 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5489 		const void *srcv)
5490 {
5491 	char *kaddr;
5492 
5493 	WARN_ON(!PageUptodate(eb->pages[0]));
5494 	kaddr = page_address(eb->pages[0]);
5495 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5496 			BTRFS_FSID_SIZE);
5497 }
5498 
5499 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5500 {
5501 	char *kaddr;
5502 
5503 	WARN_ON(!PageUptodate(eb->pages[0]));
5504 	kaddr = page_address(eb->pages[0]);
5505 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5506 			BTRFS_FSID_SIZE);
5507 }
5508 
5509 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5510 			 unsigned long start, unsigned long len)
5511 {
5512 	size_t cur;
5513 	size_t offset;
5514 	struct page *page;
5515 	char *kaddr;
5516 	char *src = (char *)srcv;
5517 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5518 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5519 
5520 	WARN_ON(start > eb->len);
5521 	WARN_ON(start + len > eb->start + eb->len);
5522 
5523 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5524 
5525 	while (len > 0) {
5526 		page = eb->pages[i];
5527 		WARN_ON(!PageUptodate(page));
5528 
5529 		cur = min(len, PAGE_SIZE - offset);
5530 		kaddr = page_address(page);
5531 		memcpy(kaddr + offset, src, cur);
5532 
5533 		src += cur;
5534 		len -= cur;
5535 		offset = 0;
5536 		i++;
5537 	}
5538 }
5539 
5540 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5541 		unsigned long len)
5542 {
5543 	size_t cur;
5544 	size_t offset;
5545 	struct page *page;
5546 	char *kaddr;
5547 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5548 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5549 
5550 	WARN_ON(start > eb->len);
5551 	WARN_ON(start + len > eb->start + eb->len);
5552 
5553 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5554 
5555 	while (len > 0) {
5556 		page = eb->pages[i];
5557 		WARN_ON(!PageUptodate(page));
5558 
5559 		cur = min(len, PAGE_SIZE - offset);
5560 		kaddr = page_address(page);
5561 		memset(kaddr + offset, 0, cur);
5562 
5563 		len -= cur;
5564 		offset = 0;
5565 		i++;
5566 	}
5567 }
5568 
5569 void copy_extent_buffer_full(struct extent_buffer *dst,
5570 			     struct extent_buffer *src)
5571 {
5572 	int i;
5573 	unsigned num_pages;
5574 
5575 	ASSERT(dst->len == src->len);
5576 
5577 	num_pages = num_extent_pages(dst->start, dst->len);
5578 	for (i = 0; i < num_pages; i++)
5579 		copy_page(page_address(dst->pages[i]),
5580 				page_address(src->pages[i]));
5581 }
5582 
5583 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5584 			unsigned long dst_offset, unsigned long src_offset,
5585 			unsigned long len)
5586 {
5587 	u64 dst_len = dst->len;
5588 	size_t cur;
5589 	size_t offset;
5590 	struct page *page;
5591 	char *kaddr;
5592 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5593 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5594 
5595 	WARN_ON(src->len != dst_len);
5596 
5597 	offset = (start_offset + dst_offset) &
5598 		(PAGE_SIZE - 1);
5599 
5600 	while (len > 0) {
5601 		page = dst->pages[i];
5602 		WARN_ON(!PageUptodate(page));
5603 
5604 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5605 
5606 		kaddr = page_address(page);
5607 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5608 
5609 		src_offset += cur;
5610 		len -= cur;
5611 		offset = 0;
5612 		i++;
5613 	}
5614 }
5615 
5616 /*
5617  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5618  * given bit number
5619  * @eb: the extent buffer
5620  * @start: offset of the bitmap item in the extent buffer
5621  * @nr: bit number
5622  * @page_index: return index of the page in the extent buffer that contains the
5623  * given bit number
5624  * @page_offset: return offset into the page given by page_index
5625  *
5626  * This helper hides the ugliness of finding the byte in an extent buffer which
5627  * contains a given bit.
5628  */
5629 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5630 				    unsigned long start, unsigned long nr,
5631 				    unsigned long *page_index,
5632 				    size_t *page_offset)
5633 {
5634 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5635 	size_t byte_offset = BIT_BYTE(nr);
5636 	size_t offset;
5637 
5638 	/*
5639 	 * The byte we want is the offset of the extent buffer + the offset of
5640 	 * the bitmap item in the extent buffer + the offset of the byte in the
5641 	 * bitmap item.
5642 	 */
5643 	offset = start_offset + start + byte_offset;
5644 
5645 	*page_index = offset >> PAGE_SHIFT;
5646 	*page_offset = offset & (PAGE_SIZE - 1);
5647 }
5648 
5649 /**
5650  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5651  * @eb: the extent buffer
5652  * @start: offset of the bitmap item in the extent buffer
5653  * @nr: bit number to test
5654  */
5655 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5656 			   unsigned long nr)
5657 {
5658 	u8 *kaddr;
5659 	struct page *page;
5660 	unsigned long i;
5661 	size_t offset;
5662 
5663 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5664 	page = eb->pages[i];
5665 	WARN_ON(!PageUptodate(page));
5666 	kaddr = page_address(page);
5667 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5668 }
5669 
5670 /**
5671  * extent_buffer_bitmap_set - set an area of a bitmap
5672  * @eb: the extent buffer
5673  * @start: offset of the bitmap item in the extent buffer
5674  * @pos: bit number of the first bit
5675  * @len: number of bits to set
5676  */
5677 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5678 			      unsigned long pos, unsigned long len)
5679 {
5680 	u8 *kaddr;
5681 	struct page *page;
5682 	unsigned long i;
5683 	size_t offset;
5684 	const unsigned int size = pos + len;
5685 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5686 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5687 
5688 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5689 	page = eb->pages[i];
5690 	WARN_ON(!PageUptodate(page));
5691 	kaddr = page_address(page);
5692 
5693 	while (len >= bits_to_set) {
5694 		kaddr[offset] |= mask_to_set;
5695 		len -= bits_to_set;
5696 		bits_to_set = BITS_PER_BYTE;
5697 		mask_to_set = ~0;
5698 		if (++offset >= PAGE_SIZE && len > 0) {
5699 			offset = 0;
5700 			page = eb->pages[++i];
5701 			WARN_ON(!PageUptodate(page));
5702 			kaddr = page_address(page);
5703 		}
5704 	}
5705 	if (len) {
5706 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5707 		kaddr[offset] |= mask_to_set;
5708 	}
5709 }
5710 
5711 
5712 /**
5713  * extent_buffer_bitmap_clear - clear an area of a bitmap
5714  * @eb: the extent buffer
5715  * @start: offset of the bitmap item in the extent buffer
5716  * @pos: bit number of the first bit
5717  * @len: number of bits to clear
5718  */
5719 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5720 				unsigned long pos, unsigned long len)
5721 {
5722 	u8 *kaddr;
5723 	struct page *page;
5724 	unsigned long i;
5725 	size_t offset;
5726 	const unsigned int size = pos + len;
5727 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5728 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5729 
5730 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5731 	page = eb->pages[i];
5732 	WARN_ON(!PageUptodate(page));
5733 	kaddr = page_address(page);
5734 
5735 	while (len >= bits_to_clear) {
5736 		kaddr[offset] &= ~mask_to_clear;
5737 		len -= bits_to_clear;
5738 		bits_to_clear = BITS_PER_BYTE;
5739 		mask_to_clear = ~0;
5740 		if (++offset >= PAGE_SIZE && len > 0) {
5741 			offset = 0;
5742 			page = eb->pages[++i];
5743 			WARN_ON(!PageUptodate(page));
5744 			kaddr = page_address(page);
5745 		}
5746 	}
5747 	if (len) {
5748 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5749 		kaddr[offset] &= ~mask_to_clear;
5750 	}
5751 }
5752 
5753 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5754 {
5755 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5756 	return distance < len;
5757 }
5758 
5759 static void copy_pages(struct page *dst_page, struct page *src_page,
5760 		       unsigned long dst_off, unsigned long src_off,
5761 		       unsigned long len)
5762 {
5763 	char *dst_kaddr = page_address(dst_page);
5764 	char *src_kaddr;
5765 	int must_memmove = 0;
5766 
5767 	if (dst_page != src_page) {
5768 		src_kaddr = page_address(src_page);
5769 	} else {
5770 		src_kaddr = dst_kaddr;
5771 		if (areas_overlap(src_off, dst_off, len))
5772 			must_memmove = 1;
5773 	}
5774 
5775 	if (must_memmove)
5776 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5777 	else
5778 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5779 }
5780 
5781 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5782 			   unsigned long src_offset, unsigned long len)
5783 {
5784 	struct btrfs_fs_info *fs_info = dst->fs_info;
5785 	size_t cur;
5786 	size_t dst_off_in_page;
5787 	size_t src_off_in_page;
5788 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5789 	unsigned long dst_i;
5790 	unsigned long src_i;
5791 
5792 	if (src_offset + len > dst->len) {
5793 		btrfs_err(fs_info,
5794 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5795 			 src_offset, len, dst->len);
5796 		BUG_ON(1);
5797 	}
5798 	if (dst_offset + len > dst->len) {
5799 		btrfs_err(fs_info,
5800 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5801 			 dst_offset, len, dst->len);
5802 		BUG_ON(1);
5803 	}
5804 
5805 	while (len > 0) {
5806 		dst_off_in_page = (start_offset + dst_offset) &
5807 			(PAGE_SIZE - 1);
5808 		src_off_in_page = (start_offset + src_offset) &
5809 			(PAGE_SIZE - 1);
5810 
5811 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5812 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5813 
5814 		cur = min(len, (unsigned long)(PAGE_SIZE -
5815 					       src_off_in_page));
5816 		cur = min_t(unsigned long, cur,
5817 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5818 
5819 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5820 			   dst_off_in_page, src_off_in_page, cur);
5821 
5822 		src_offset += cur;
5823 		dst_offset += cur;
5824 		len -= cur;
5825 	}
5826 }
5827 
5828 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829 			   unsigned long src_offset, unsigned long len)
5830 {
5831 	struct btrfs_fs_info *fs_info = dst->fs_info;
5832 	size_t cur;
5833 	size_t dst_off_in_page;
5834 	size_t src_off_in_page;
5835 	unsigned long dst_end = dst_offset + len - 1;
5836 	unsigned long src_end = src_offset + len - 1;
5837 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5838 	unsigned long dst_i;
5839 	unsigned long src_i;
5840 
5841 	if (src_offset + len > dst->len) {
5842 		btrfs_err(fs_info,
5843 			  "memmove bogus src_offset %lu move len %lu len %lu",
5844 			  src_offset, len, dst->len);
5845 		BUG_ON(1);
5846 	}
5847 	if (dst_offset + len > dst->len) {
5848 		btrfs_err(fs_info,
5849 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5850 			  dst_offset, len, dst->len);
5851 		BUG_ON(1);
5852 	}
5853 	if (dst_offset < src_offset) {
5854 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5855 		return;
5856 	}
5857 	while (len > 0) {
5858 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5859 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5860 
5861 		dst_off_in_page = (start_offset + dst_end) &
5862 			(PAGE_SIZE - 1);
5863 		src_off_in_page = (start_offset + src_end) &
5864 			(PAGE_SIZE - 1);
5865 
5866 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5867 		cur = min(cur, dst_off_in_page + 1);
5868 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5869 			   dst_off_in_page - cur + 1,
5870 			   src_off_in_page - cur + 1, cur);
5871 
5872 		dst_end -= cur;
5873 		src_end -= cur;
5874 		len -= cur;
5875 	}
5876 }
5877 
5878 int try_release_extent_buffer(struct page *page)
5879 {
5880 	struct extent_buffer *eb;
5881 
5882 	/*
5883 	 * We need to make sure nobody is attaching this page to an eb right
5884 	 * now.
5885 	 */
5886 	spin_lock(&page->mapping->private_lock);
5887 	if (!PagePrivate(page)) {
5888 		spin_unlock(&page->mapping->private_lock);
5889 		return 1;
5890 	}
5891 
5892 	eb = (struct extent_buffer *)page->private;
5893 	BUG_ON(!eb);
5894 
5895 	/*
5896 	 * This is a little awful but should be ok, we need to make sure that
5897 	 * the eb doesn't disappear out from under us while we're looking at
5898 	 * this page.
5899 	 */
5900 	spin_lock(&eb->refs_lock);
5901 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5902 		spin_unlock(&eb->refs_lock);
5903 		spin_unlock(&page->mapping->private_lock);
5904 		return 0;
5905 	}
5906 	spin_unlock(&page->mapping->private_lock);
5907 
5908 	/*
5909 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5910 	 * so just return, this page will likely be freed soon anyway.
5911 	 */
5912 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5913 		spin_unlock(&eb->refs_lock);
5914 		return 0;
5915 	}
5916 
5917 	return release_extent_buffer(eb);
5918 }
5919