1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 #include "transaction.h" 24 25 static struct kmem_cache *extent_state_cache; 26 static struct kmem_cache *extent_buffer_cache; 27 static struct bio_set *btrfs_bioset; 28 29 static inline bool extent_state_in_tree(const struct extent_state *state) 30 { 31 return !RB_EMPTY_NODE(&state->rb_node); 32 } 33 34 #ifdef CONFIG_BTRFS_DEBUG 35 static LIST_HEAD(buffers); 36 static LIST_HEAD(states); 37 38 static DEFINE_SPINLOCK(leak_lock); 39 40 static inline 41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 42 { 43 unsigned long flags; 44 45 spin_lock_irqsave(&leak_lock, flags); 46 list_add(new, head); 47 spin_unlock_irqrestore(&leak_lock, flags); 48 } 49 50 static inline 51 void btrfs_leak_debug_del(struct list_head *entry) 52 { 53 unsigned long flags; 54 55 spin_lock_irqsave(&leak_lock, flags); 56 list_del(entry); 57 spin_unlock_irqrestore(&leak_lock, flags); 58 } 59 60 static inline 61 void btrfs_leak_debug_check(void) 62 { 63 struct extent_state *state; 64 struct extent_buffer *eb; 65 66 while (!list_empty(&states)) { 67 state = list_entry(states.next, struct extent_state, leak_list); 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 69 state->start, state->end, state->state, 70 extent_state_in_tree(state), 71 atomic_read(&state->refs)); 72 list_del(&state->leak_list); 73 kmem_cache_free(extent_state_cache, state); 74 } 75 76 while (!list_empty(&buffers)) { 77 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 100 "%s: ino %llu isize %llu odd range [%llu,%llu]", 101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use REQ_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static void add_extent_changeset(struct extent_state *state, unsigned bits, 135 struct extent_changeset *changeset, 136 int set) 137 { 138 int ret; 139 140 if (!changeset) 141 return; 142 if (set && (state->state & bits) == bits) 143 return; 144 if (!set && (state->state & bits) == 0) 145 return; 146 changeset->bytes_changed += state->end - state->start + 1; 147 ret = ulist_add(&changeset->range_changed, state->start, state->end, 148 GFP_ATOMIC); 149 /* ENOMEM */ 150 BUG_ON(ret < 0); 151 } 152 153 static noinline void flush_write_bio(void *data); 154 static inline struct btrfs_fs_info * 155 tree_fs_info(struct extent_io_tree *tree) 156 { 157 if (!tree->mapping) 158 return NULL; 159 return btrfs_sb(tree->mapping->host->i_sb); 160 } 161 162 int __init extent_io_init(void) 163 { 164 extent_state_cache = kmem_cache_create("btrfs_extent_state", 165 sizeof(struct extent_state), 0, 166 SLAB_MEM_SPREAD, NULL); 167 if (!extent_state_cache) 168 return -ENOMEM; 169 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 goto free_state_cache; 175 176 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 177 offsetof(struct btrfs_io_bio, bio)); 178 if (!btrfs_bioset) 179 goto free_buffer_cache; 180 181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 182 goto free_bioset; 183 184 return 0; 185 186 free_bioset: 187 bioset_free(btrfs_bioset); 188 btrfs_bioset = NULL; 189 190 free_buffer_cache: 191 kmem_cache_destroy(extent_buffer_cache); 192 extent_buffer_cache = NULL; 193 194 free_state_cache: 195 kmem_cache_destroy(extent_state_cache); 196 extent_state_cache = NULL; 197 return -ENOMEM; 198 } 199 200 void extent_io_exit(void) 201 { 202 btrfs_leak_debug_check(); 203 204 /* 205 * Make sure all delayed rcu free are flushed before we 206 * destroy caches. 207 */ 208 rcu_barrier(); 209 kmem_cache_destroy(extent_state_cache); 210 kmem_cache_destroy(extent_buffer_cache); 211 if (btrfs_bioset) 212 bioset_free(btrfs_bioset); 213 } 214 215 void extent_io_tree_init(struct extent_io_tree *tree, 216 struct address_space *mapping) 217 { 218 tree->state = RB_ROOT; 219 tree->ops = NULL; 220 tree->dirty_bytes = 0; 221 spin_lock_init(&tree->lock); 222 tree->mapping = mapping; 223 } 224 225 static struct extent_state *alloc_extent_state(gfp_t mask) 226 { 227 struct extent_state *state; 228 229 /* 230 * The given mask might be not appropriate for the slab allocator, 231 * drop the unsupported bits 232 */ 233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 234 state = kmem_cache_alloc(extent_state_cache, mask); 235 if (!state) 236 return state; 237 state->state = 0; 238 state->failrec = NULL; 239 RB_CLEAR_NODE(&state->rb_node); 240 btrfs_leak_debug_add(&state->leak_list, &states); 241 atomic_set(&state->refs, 1); 242 init_waitqueue_head(&state->wq); 243 trace_alloc_extent_state(state, mask, _RET_IP_); 244 return state; 245 } 246 247 void free_extent_state(struct extent_state *state) 248 { 249 if (!state) 250 return; 251 if (atomic_dec_and_test(&state->refs)) { 252 WARN_ON(extent_state_in_tree(state)); 253 btrfs_leak_debug_del(&state->leak_list); 254 trace_free_extent_state(state, _RET_IP_); 255 kmem_cache_free(extent_state_cache, state); 256 } 257 } 258 259 static struct rb_node *tree_insert(struct rb_root *root, 260 struct rb_node *search_start, 261 u64 offset, 262 struct rb_node *node, 263 struct rb_node ***p_in, 264 struct rb_node **parent_in) 265 { 266 struct rb_node **p; 267 struct rb_node *parent = NULL; 268 struct tree_entry *entry; 269 270 if (p_in && parent_in) { 271 p = *p_in; 272 parent = *parent_in; 273 goto do_insert; 274 } 275 276 p = search_start ? &search_start : &root->rb_node; 277 while (*p) { 278 parent = *p; 279 entry = rb_entry(parent, struct tree_entry, rb_node); 280 281 if (offset < entry->start) 282 p = &(*p)->rb_left; 283 else if (offset > entry->end) 284 p = &(*p)->rb_right; 285 else 286 return parent; 287 } 288 289 do_insert: 290 rb_link_node(node, parent, p); 291 rb_insert_color(node, root); 292 return NULL; 293 } 294 295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 296 struct rb_node **prev_ret, 297 struct rb_node **next_ret, 298 struct rb_node ***p_ret, 299 struct rb_node **parent_ret) 300 { 301 struct rb_root *root = &tree->state; 302 struct rb_node **n = &root->rb_node; 303 struct rb_node *prev = NULL; 304 struct rb_node *orig_prev = NULL; 305 struct tree_entry *entry; 306 struct tree_entry *prev_entry = NULL; 307 308 while (*n) { 309 prev = *n; 310 entry = rb_entry(prev, struct tree_entry, rb_node); 311 prev_entry = entry; 312 313 if (offset < entry->start) 314 n = &(*n)->rb_left; 315 else if (offset > entry->end) 316 n = &(*n)->rb_right; 317 else 318 return *n; 319 } 320 321 if (p_ret) 322 *p_ret = n; 323 if (parent_ret) 324 *parent_ret = prev; 325 326 if (prev_ret) { 327 orig_prev = prev; 328 while (prev && offset > prev_entry->end) { 329 prev = rb_next(prev); 330 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 331 } 332 *prev_ret = prev; 333 prev = orig_prev; 334 } 335 336 if (next_ret) { 337 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 338 while (prev && offset < prev_entry->start) { 339 prev = rb_prev(prev); 340 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 341 } 342 *next_ret = prev; 343 } 344 return NULL; 345 } 346 347 static inline struct rb_node * 348 tree_search_for_insert(struct extent_io_tree *tree, 349 u64 offset, 350 struct rb_node ***p_ret, 351 struct rb_node **parent_ret) 352 { 353 struct rb_node *prev = NULL; 354 struct rb_node *ret; 355 356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 357 if (!ret) 358 return prev; 359 return ret; 360 } 361 362 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 363 u64 offset) 364 { 365 return tree_search_for_insert(tree, offset, NULL, NULL); 366 } 367 368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 369 struct extent_state *other) 370 { 371 if (tree->ops && tree->ops->merge_extent_hook) 372 tree->ops->merge_extent_hook(tree->mapping->host, new, 373 other); 374 } 375 376 /* 377 * utility function to look for merge candidates inside a given range. 378 * Any extents with matching state are merged together into a single 379 * extent in the tree. Extents with EXTENT_IO in their state field 380 * are not merged because the end_io handlers need to be able to do 381 * operations on them without sleeping (or doing allocations/splits). 382 * 383 * This should be called with the tree lock held. 384 */ 385 static void merge_state(struct extent_io_tree *tree, 386 struct extent_state *state) 387 { 388 struct extent_state *other; 389 struct rb_node *other_node; 390 391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 392 return; 393 394 other_node = rb_prev(&state->rb_node); 395 if (other_node) { 396 other = rb_entry(other_node, struct extent_state, rb_node); 397 if (other->end == state->start - 1 && 398 other->state == state->state) { 399 merge_cb(tree, state, other); 400 state->start = other->start; 401 rb_erase(&other->rb_node, &tree->state); 402 RB_CLEAR_NODE(&other->rb_node); 403 free_extent_state(other); 404 } 405 } 406 other_node = rb_next(&state->rb_node); 407 if (other_node) { 408 other = rb_entry(other_node, struct extent_state, rb_node); 409 if (other->start == state->end + 1 && 410 other->state == state->state) { 411 merge_cb(tree, state, other); 412 state->end = other->end; 413 rb_erase(&other->rb_node, &tree->state); 414 RB_CLEAR_NODE(&other->rb_node); 415 free_extent_state(other); 416 } 417 } 418 } 419 420 static void set_state_cb(struct extent_io_tree *tree, 421 struct extent_state *state, unsigned *bits) 422 { 423 if (tree->ops && tree->ops->set_bit_hook) 424 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 425 } 426 427 static void clear_state_cb(struct extent_io_tree *tree, 428 struct extent_state *state, unsigned *bits) 429 { 430 if (tree->ops && tree->ops->clear_bit_hook) 431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host), 432 state, bits); 433 } 434 435 static void set_state_bits(struct extent_io_tree *tree, 436 struct extent_state *state, unsigned *bits, 437 struct extent_changeset *changeset); 438 439 /* 440 * insert an extent_state struct into the tree. 'bits' are set on the 441 * struct before it is inserted. 442 * 443 * This may return -EEXIST if the extent is already there, in which case the 444 * state struct is freed. 445 * 446 * The tree lock is not taken internally. This is a utility function and 447 * probably isn't what you want to call (see set/clear_extent_bit). 448 */ 449 static int insert_state(struct extent_io_tree *tree, 450 struct extent_state *state, u64 start, u64 end, 451 struct rb_node ***p, 452 struct rb_node **parent, 453 unsigned *bits, struct extent_changeset *changeset) 454 { 455 struct rb_node *node; 456 457 if (end < start) 458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 459 end, start); 460 state->start = start; 461 state->end = end; 462 463 set_state_bits(tree, state, bits, changeset); 464 465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 466 if (node) { 467 struct extent_state *found; 468 found = rb_entry(node, struct extent_state, rb_node); 469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 470 found->start, found->end, start, end); 471 return -EEXIST; 472 } 473 merge_state(tree, state); 474 return 0; 475 } 476 477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 478 u64 split) 479 { 480 if (tree->ops && tree->ops->split_extent_hook) 481 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 482 } 483 484 /* 485 * split a given extent state struct in two, inserting the preallocated 486 * struct 'prealloc' as the newly created second half. 'split' indicates an 487 * offset inside 'orig' where it should be split. 488 * 489 * Before calling, 490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 491 * are two extent state structs in the tree: 492 * prealloc: [orig->start, split - 1] 493 * orig: [ split, orig->end ] 494 * 495 * The tree locks are not taken by this function. They need to be held 496 * by the caller. 497 */ 498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 499 struct extent_state *prealloc, u64 split) 500 { 501 struct rb_node *node; 502 503 split_cb(tree, orig, split); 504 505 prealloc->start = orig->start; 506 prealloc->end = split - 1; 507 prealloc->state = orig->state; 508 orig->start = split; 509 510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 511 &prealloc->rb_node, NULL, NULL); 512 if (node) { 513 free_extent_state(prealloc); 514 return -EEXIST; 515 } 516 return 0; 517 } 518 519 static struct extent_state *next_state(struct extent_state *state) 520 { 521 struct rb_node *next = rb_next(&state->rb_node); 522 if (next) 523 return rb_entry(next, struct extent_state, rb_node); 524 else 525 return NULL; 526 } 527 528 /* 529 * utility function to clear some bits in an extent state struct. 530 * it will optionally wake up any one waiting on this state (wake == 1). 531 * 532 * If no bits are set on the state struct after clearing things, the 533 * struct is freed and removed from the tree 534 */ 535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 536 struct extent_state *state, 537 unsigned *bits, int wake, 538 struct extent_changeset *changeset) 539 { 540 struct extent_state *next; 541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 542 543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 544 u64 range = state->end - state->start + 1; 545 WARN_ON(range > tree->dirty_bytes); 546 tree->dirty_bytes -= range; 547 } 548 clear_state_cb(tree, state, bits); 549 add_extent_changeset(state, bits_to_clear, changeset, 0); 550 state->state &= ~bits_to_clear; 551 if (wake) 552 wake_up(&state->wq); 553 if (state->state == 0) { 554 next = next_state(state); 555 if (extent_state_in_tree(state)) { 556 rb_erase(&state->rb_node, &tree->state); 557 RB_CLEAR_NODE(&state->rb_node); 558 free_extent_state(state); 559 } else { 560 WARN_ON(1); 561 } 562 } else { 563 merge_state(tree, state); 564 next = next_state(state); 565 } 566 return next; 567 } 568 569 static struct extent_state * 570 alloc_extent_state_atomic(struct extent_state *prealloc) 571 { 572 if (!prealloc) 573 prealloc = alloc_extent_state(GFP_ATOMIC); 574 575 return prealloc; 576 } 577 578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 579 { 580 btrfs_panic(tree_fs_info(tree), err, 581 "Locking error: Extent tree was modified by another thread while locked."); 582 } 583 584 /* 585 * clear some bits on a range in the tree. This may require splitting 586 * or inserting elements in the tree, so the gfp mask is used to 587 * indicate which allocations or sleeping are allowed. 588 * 589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 590 * the given range from the tree regardless of state (ie for truncate). 591 * 592 * the range [start, end] is inclusive. 593 * 594 * This takes the tree lock, and returns 0 on success and < 0 on error. 595 */ 596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 597 unsigned bits, int wake, int delete, 598 struct extent_state **cached_state, 599 gfp_t mask, struct extent_changeset *changeset) 600 { 601 struct extent_state *state; 602 struct extent_state *cached; 603 struct extent_state *prealloc = NULL; 604 struct rb_node *node; 605 u64 last_end; 606 int err; 607 int clear = 0; 608 609 btrfs_debug_check_extent_io_range(tree, start, end); 610 611 if (bits & EXTENT_DELALLOC) 612 bits |= EXTENT_NORESERVE; 613 614 if (delete) 615 bits |= ~EXTENT_CTLBITS; 616 bits |= EXTENT_FIRST_DELALLOC; 617 618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 619 clear = 1; 620 again: 621 if (!prealloc && gfpflags_allow_blocking(mask)) { 622 /* 623 * Don't care for allocation failure here because we might end 624 * up not needing the pre-allocated extent state at all, which 625 * is the case if we only have in the tree extent states that 626 * cover our input range and don't cover too any other range. 627 * If we end up needing a new extent state we allocate it later. 628 */ 629 prealloc = alloc_extent_state(mask); 630 } 631 632 spin_lock(&tree->lock); 633 if (cached_state) { 634 cached = *cached_state; 635 636 if (clear) { 637 *cached_state = NULL; 638 cached_state = NULL; 639 } 640 641 if (cached && extent_state_in_tree(cached) && 642 cached->start <= start && cached->end > start) { 643 if (clear) 644 atomic_dec(&cached->refs); 645 state = cached; 646 goto hit_next; 647 } 648 if (clear) 649 free_extent_state(cached); 650 } 651 /* 652 * this search will find the extents that end after 653 * our range starts 654 */ 655 node = tree_search(tree, start); 656 if (!node) 657 goto out; 658 state = rb_entry(node, struct extent_state, rb_node); 659 hit_next: 660 if (state->start > end) 661 goto out; 662 WARN_ON(state->end < start); 663 last_end = state->end; 664 665 /* the state doesn't have the wanted bits, go ahead */ 666 if (!(state->state & bits)) { 667 state = next_state(state); 668 goto next; 669 } 670 671 /* 672 * | ---- desired range ---- | 673 * | state | or 674 * | ------------- state -------------- | 675 * 676 * We need to split the extent we found, and may flip 677 * bits on second half. 678 * 679 * If the extent we found extends past our range, we 680 * just split and search again. It'll get split again 681 * the next time though. 682 * 683 * If the extent we found is inside our range, we clear 684 * the desired bit on it. 685 */ 686 687 if (state->start < start) { 688 prealloc = alloc_extent_state_atomic(prealloc); 689 BUG_ON(!prealloc); 690 err = split_state(tree, state, prealloc, start); 691 if (err) 692 extent_io_tree_panic(tree, err); 693 694 prealloc = NULL; 695 if (err) 696 goto out; 697 if (state->end <= end) { 698 state = clear_state_bit(tree, state, &bits, wake, 699 changeset); 700 goto next; 701 } 702 goto search_again; 703 } 704 /* 705 * | ---- desired range ---- | 706 * | state | 707 * We need to split the extent, and clear the bit 708 * on the first half 709 */ 710 if (state->start <= end && state->end > end) { 711 prealloc = alloc_extent_state_atomic(prealloc); 712 BUG_ON(!prealloc); 713 err = split_state(tree, state, prealloc, end + 1); 714 if (err) 715 extent_io_tree_panic(tree, err); 716 717 if (wake) 718 wake_up(&state->wq); 719 720 clear_state_bit(tree, prealloc, &bits, wake, changeset); 721 722 prealloc = NULL; 723 goto out; 724 } 725 726 state = clear_state_bit(tree, state, &bits, wake, changeset); 727 next: 728 if (last_end == (u64)-1) 729 goto out; 730 start = last_end + 1; 731 if (start <= end && state && !need_resched()) 732 goto hit_next; 733 734 search_again: 735 if (start > end) 736 goto out; 737 spin_unlock(&tree->lock); 738 if (gfpflags_allow_blocking(mask)) 739 cond_resched(); 740 goto again; 741 742 out: 743 spin_unlock(&tree->lock); 744 if (prealloc) 745 free_extent_state(prealloc); 746 747 return 0; 748 749 } 750 751 static void wait_on_state(struct extent_io_tree *tree, 752 struct extent_state *state) 753 __releases(tree->lock) 754 __acquires(tree->lock) 755 { 756 DEFINE_WAIT(wait); 757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 758 spin_unlock(&tree->lock); 759 schedule(); 760 spin_lock(&tree->lock); 761 finish_wait(&state->wq, &wait); 762 } 763 764 /* 765 * waits for one or more bits to clear on a range in the state tree. 766 * The range [start, end] is inclusive. 767 * The tree lock is taken by this function 768 */ 769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 770 unsigned long bits) 771 { 772 struct extent_state *state; 773 struct rb_node *node; 774 775 btrfs_debug_check_extent_io_range(tree, start, end); 776 777 spin_lock(&tree->lock); 778 again: 779 while (1) { 780 /* 781 * this search will find all the extents that end after 782 * our range starts 783 */ 784 node = tree_search(tree, start); 785 process_node: 786 if (!node) 787 break; 788 789 state = rb_entry(node, struct extent_state, rb_node); 790 791 if (state->start > end) 792 goto out; 793 794 if (state->state & bits) { 795 start = state->start; 796 atomic_inc(&state->refs); 797 wait_on_state(tree, state); 798 free_extent_state(state); 799 goto again; 800 } 801 start = state->end + 1; 802 803 if (start > end) 804 break; 805 806 if (!cond_resched_lock(&tree->lock)) { 807 node = rb_next(node); 808 goto process_node; 809 } 810 } 811 out: 812 spin_unlock(&tree->lock); 813 } 814 815 static void set_state_bits(struct extent_io_tree *tree, 816 struct extent_state *state, 817 unsigned *bits, struct extent_changeset *changeset) 818 { 819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 820 821 set_state_cb(tree, state, bits); 822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 823 u64 range = state->end - state->start + 1; 824 tree->dirty_bytes += range; 825 } 826 add_extent_changeset(state, bits_to_set, changeset, 1); 827 state->state |= bits_to_set; 828 } 829 830 static void cache_state_if_flags(struct extent_state *state, 831 struct extent_state **cached_ptr, 832 unsigned flags) 833 { 834 if (cached_ptr && !(*cached_ptr)) { 835 if (!flags || (state->state & flags)) { 836 *cached_ptr = state; 837 atomic_inc(&state->refs); 838 } 839 } 840 } 841 842 static void cache_state(struct extent_state *state, 843 struct extent_state **cached_ptr) 844 { 845 return cache_state_if_flags(state, cached_ptr, 846 EXTENT_IOBITS | EXTENT_BOUNDARY); 847 } 848 849 /* 850 * set some bits on a range in the tree. This may require allocations or 851 * sleeping, so the gfp mask is used to indicate what is allowed. 852 * 853 * If any of the exclusive bits are set, this will fail with -EEXIST if some 854 * part of the range already has the desired bits set. The start of the 855 * existing range is returned in failed_start in this case. 856 * 857 * [start, end] is inclusive This takes the tree lock. 858 */ 859 860 static int __must_check 861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 862 unsigned bits, unsigned exclusive_bits, 863 u64 *failed_start, struct extent_state **cached_state, 864 gfp_t mask, struct extent_changeset *changeset) 865 { 866 struct extent_state *state; 867 struct extent_state *prealloc = NULL; 868 struct rb_node *node; 869 struct rb_node **p; 870 struct rb_node *parent; 871 int err = 0; 872 u64 last_start; 873 u64 last_end; 874 875 btrfs_debug_check_extent_io_range(tree, start, end); 876 877 bits |= EXTENT_FIRST_DELALLOC; 878 again: 879 if (!prealloc && gfpflags_allow_blocking(mask)) { 880 /* 881 * Don't care for allocation failure here because we might end 882 * up not needing the pre-allocated extent state at all, which 883 * is the case if we only have in the tree extent states that 884 * cover our input range and don't cover too any other range. 885 * If we end up needing a new extent state we allocate it later. 886 */ 887 prealloc = alloc_extent_state(mask); 888 } 889 890 spin_lock(&tree->lock); 891 if (cached_state && *cached_state) { 892 state = *cached_state; 893 if (state->start <= start && state->end > start && 894 extent_state_in_tree(state)) { 895 node = &state->rb_node; 896 goto hit_next; 897 } 898 } 899 /* 900 * this search will find all the extents that end after 901 * our range starts. 902 */ 903 node = tree_search_for_insert(tree, start, &p, &parent); 904 if (!node) { 905 prealloc = alloc_extent_state_atomic(prealloc); 906 BUG_ON(!prealloc); 907 err = insert_state(tree, prealloc, start, end, 908 &p, &parent, &bits, changeset); 909 if (err) 910 extent_io_tree_panic(tree, err); 911 912 cache_state(prealloc, cached_state); 913 prealloc = NULL; 914 goto out; 915 } 916 state = rb_entry(node, struct extent_state, rb_node); 917 hit_next: 918 last_start = state->start; 919 last_end = state->end; 920 921 /* 922 * | ---- desired range ---- | 923 * | state | 924 * 925 * Just lock what we found and keep going 926 */ 927 if (state->start == start && state->end <= end) { 928 if (state->state & exclusive_bits) { 929 *failed_start = state->start; 930 err = -EEXIST; 931 goto out; 932 } 933 934 set_state_bits(tree, state, &bits, changeset); 935 cache_state(state, cached_state); 936 merge_state(tree, state); 937 if (last_end == (u64)-1) 938 goto out; 939 start = last_end + 1; 940 state = next_state(state); 941 if (start < end && state && state->start == start && 942 !need_resched()) 943 goto hit_next; 944 goto search_again; 945 } 946 947 /* 948 * | ---- desired range ---- | 949 * | state | 950 * or 951 * | ------------- state -------------- | 952 * 953 * We need to split the extent we found, and may flip bits on 954 * second half. 955 * 956 * If the extent we found extends past our 957 * range, we just split and search again. It'll get split 958 * again the next time though. 959 * 960 * If the extent we found is inside our range, we set the 961 * desired bit on it. 962 */ 963 if (state->start < start) { 964 if (state->state & exclusive_bits) { 965 *failed_start = start; 966 err = -EEXIST; 967 goto out; 968 } 969 970 prealloc = alloc_extent_state_atomic(prealloc); 971 BUG_ON(!prealloc); 972 err = split_state(tree, state, prealloc, start); 973 if (err) 974 extent_io_tree_panic(tree, err); 975 976 prealloc = NULL; 977 if (err) 978 goto out; 979 if (state->end <= end) { 980 set_state_bits(tree, state, &bits, changeset); 981 cache_state(state, cached_state); 982 merge_state(tree, state); 983 if (last_end == (u64)-1) 984 goto out; 985 start = last_end + 1; 986 state = next_state(state); 987 if (start < end && state && state->start == start && 988 !need_resched()) 989 goto hit_next; 990 } 991 goto search_again; 992 } 993 /* 994 * | ---- desired range ---- | 995 * | state | or | state | 996 * 997 * There's a hole, we need to insert something in it and 998 * ignore the extent we found. 999 */ 1000 if (state->start > start) { 1001 u64 this_end; 1002 if (end < last_start) 1003 this_end = end; 1004 else 1005 this_end = last_start - 1; 1006 1007 prealloc = alloc_extent_state_atomic(prealloc); 1008 BUG_ON(!prealloc); 1009 1010 /* 1011 * Avoid to free 'prealloc' if it can be merged with 1012 * the later extent. 1013 */ 1014 err = insert_state(tree, prealloc, start, this_end, 1015 NULL, NULL, &bits, changeset); 1016 if (err) 1017 extent_io_tree_panic(tree, err); 1018 1019 cache_state(prealloc, cached_state); 1020 prealloc = NULL; 1021 start = this_end + 1; 1022 goto search_again; 1023 } 1024 /* 1025 * | ---- desired range ---- | 1026 * | state | 1027 * We need to split the extent, and set the bit 1028 * on the first half 1029 */ 1030 if (state->start <= end && state->end > end) { 1031 if (state->state & exclusive_bits) { 1032 *failed_start = start; 1033 err = -EEXIST; 1034 goto out; 1035 } 1036 1037 prealloc = alloc_extent_state_atomic(prealloc); 1038 BUG_ON(!prealloc); 1039 err = split_state(tree, state, prealloc, end + 1); 1040 if (err) 1041 extent_io_tree_panic(tree, err); 1042 1043 set_state_bits(tree, prealloc, &bits, changeset); 1044 cache_state(prealloc, cached_state); 1045 merge_state(tree, prealloc); 1046 prealloc = NULL; 1047 goto out; 1048 } 1049 1050 search_again: 1051 if (start > end) 1052 goto out; 1053 spin_unlock(&tree->lock); 1054 if (gfpflags_allow_blocking(mask)) 1055 cond_resched(); 1056 goto again; 1057 1058 out: 1059 spin_unlock(&tree->lock); 1060 if (prealloc) 1061 free_extent_state(prealloc); 1062 1063 return err; 1064 1065 } 1066 1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1068 unsigned bits, u64 * failed_start, 1069 struct extent_state **cached_state, gfp_t mask) 1070 { 1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1072 cached_state, mask, NULL); 1073 } 1074 1075 1076 /** 1077 * convert_extent_bit - convert all bits in a given range from one bit to 1078 * another 1079 * @tree: the io tree to search 1080 * @start: the start offset in bytes 1081 * @end: the end offset in bytes (inclusive) 1082 * @bits: the bits to set in this range 1083 * @clear_bits: the bits to clear in this range 1084 * @cached_state: state that we're going to cache 1085 * 1086 * This will go through and set bits for the given range. If any states exist 1087 * already in this range they are set with the given bit and cleared of the 1088 * clear_bits. This is only meant to be used by things that are mergeable, ie 1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1090 * boundary bits like LOCK. 1091 * 1092 * All allocations are done with GFP_NOFS. 1093 */ 1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1095 unsigned bits, unsigned clear_bits, 1096 struct extent_state **cached_state) 1097 { 1098 struct extent_state *state; 1099 struct extent_state *prealloc = NULL; 1100 struct rb_node *node; 1101 struct rb_node **p; 1102 struct rb_node *parent; 1103 int err = 0; 1104 u64 last_start; 1105 u64 last_end; 1106 bool first_iteration = true; 1107 1108 btrfs_debug_check_extent_io_range(tree, start, end); 1109 1110 again: 1111 if (!prealloc) { 1112 /* 1113 * Best effort, don't worry if extent state allocation fails 1114 * here for the first iteration. We might have a cached state 1115 * that matches exactly the target range, in which case no 1116 * extent state allocations are needed. We'll only know this 1117 * after locking the tree. 1118 */ 1119 prealloc = alloc_extent_state(GFP_NOFS); 1120 if (!prealloc && !first_iteration) 1121 return -ENOMEM; 1122 } 1123 1124 spin_lock(&tree->lock); 1125 if (cached_state && *cached_state) { 1126 state = *cached_state; 1127 if (state->start <= start && state->end > start && 1128 extent_state_in_tree(state)) { 1129 node = &state->rb_node; 1130 goto hit_next; 1131 } 1132 } 1133 1134 /* 1135 * this search will find all the extents that end after 1136 * our range starts. 1137 */ 1138 node = tree_search_for_insert(tree, start, &p, &parent); 1139 if (!node) { 1140 prealloc = alloc_extent_state_atomic(prealloc); 1141 if (!prealloc) { 1142 err = -ENOMEM; 1143 goto out; 1144 } 1145 err = insert_state(tree, prealloc, start, end, 1146 &p, &parent, &bits, NULL); 1147 if (err) 1148 extent_io_tree_panic(tree, err); 1149 cache_state(prealloc, cached_state); 1150 prealloc = NULL; 1151 goto out; 1152 } 1153 state = rb_entry(node, struct extent_state, rb_node); 1154 hit_next: 1155 last_start = state->start; 1156 last_end = state->end; 1157 1158 /* 1159 * | ---- desired range ---- | 1160 * | state | 1161 * 1162 * Just lock what we found and keep going 1163 */ 1164 if (state->start == start && state->end <= end) { 1165 set_state_bits(tree, state, &bits, NULL); 1166 cache_state(state, cached_state); 1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1168 if (last_end == (u64)-1) 1169 goto out; 1170 start = last_end + 1; 1171 if (start < end && state && state->start == start && 1172 !need_resched()) 1173 goto hit_next; 1174 goto search_again; 1175 } 1176 1177 /* 1178 * | ---- desired range ---- | 1179 * | state | 1180 * or 1181 * | ------------- state -------------- | 1182 * 1183 * We need to split the extent we found, and may flip bits on 1184 * second half. 1185 * 1186 * If the extent we found extends past our 1187 * range, we just split and search again. It'll get split 1188 * again the next time though. 1189 * 1190 * If the extent we found is inside our range, we set the 1191 * desired bit on it. 1192 */ 1193 if (state->start < start) { 1194 prealloc = alloc_extent_state_atomic(prealloc); 1195 if (!prealloc) { 1196 err = -ENOMEM; 1197 goto out; 1198 } 1199 err = split_state(tree, state, prealloc, start); 1200 if (err) 1201 extent_io_tree_panic(tree, err); 1202 prealloc = NULL; 1203 if (err) 1204 goto out; 1205 if (state->end <= end) { 1206 set_state_bits(tree, state, &bits, NULL); 1207 cache_state(state, cached_state); 1208 state = clear_state_bit(tree, state, &clear_bits, 0, 1209 NULL); 1210 if (last_end == (u64)-1) 1211 goto out; 1212 start = last_end + 1; 1213 if (start < end && state && state->start == start && 1214 !need_resched()) 1215 goto hit_next; 1216 } 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | or | state | 1222 * 1223 * There's a hole, we need to insert something in it and 1224 * ignore the extent we found. 1225 */ 1226 if (state->start > start) { 1227 u64 this_end; 1228 if (end < last_start) 1229 this_end = end; 1230 else 1231 this_end = last_start - 1; 1232 1233 prealloc = alloc_extent_state_atomic(prealloc); 1234 if (!prealloc) { 1235 err = -ENOMEM; 1236 goto out; 1237 } 1238 1239 /* 1240 * Avoid to free 'prealloc' if it can be merged with 1241 * the later extent. 1242 */ 1243 err = insert_state(tree, prealloc, start, this_end, 1244 NULL, NULL, &bits, NULL); 1245 if (err) 1246 extent_io_tree_panic(tree, err); 1247 cache_state(prealloc, cached_state); 1248 prealloc = NULL; 1249 start = this_end + 1; 1250 goto search_again; 1251 } 1252 /* 1253 * | ---- desired range ---- | 1254 * | state | 1255 * We need to split the extent, and set the bit 1256 * on the first half 1257 */ 1258 if (state->start <= end && state->end > end) { 1259 prealloc = alloc_extent_state_atomic(prealloc); 1260 if (!prealloc) { 1261 err = -ENOMEM; 1262 goto out; 1263 } 1264 1265 err = split_state(tree, state, prealloc, end + 1); 1266 if (err) 1267 extent_io_tree_panic(tree, err); 1268 1269 set_state_bits(tree, prealloc, &bits, NULL); 1270 cache_state(prealloc, cached_state); 1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1272 prealloc = NULL; 1273 goto out; 1274 } 1275 1276 search_again: 1277 if (start > end) 1278 goto out; 1279 spin_unlock(&tree->lock); 1280 cond_resched(); 1281 first_iteration = false; 1282 goto again; 1283 1284 out: 1285 spin_unlock(&tree->lock); 1286 if (prealloc) 1287 free_extent_state(prealloc); 1288 1289 return err; 1290 } 1291 1292 /* wrappers around set/clear extent bit */ 1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1294 unsigned bits, struct extent_changeset *changeset) 1295 { 1296 /* 1297 * We don't support EXTENT_LOCKED yet, as current changeset will 1298 * record any bits changed, so for EXTENT_LOCKED case, it will 1299 * either fail with -EEXIST or changeset will record the whole 1300 * range. 1301 */ 1302 BUG_ON(bits & EXTENT_LOCKED); 1303 1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1305 changeset); 1306 } 1307 1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1309 unsigned bits, int wake, int delete, 1310 struct extent_state **cached, gfp_t mask) 1311 { 1312 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1313 cached, mask, NULL); 1314 } 1315 1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1317 unsigned bits, struct extent_changeset *changeset) 1318 { 1319 /* 1320 * Don't support EXTENT_LOCKED case, same reason as 1321 * set_record_extent_bits(). 1322 */ 1323 BUG_ON(bits & EXTENT_LOCKED); 1324 1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1326 changeset); 1327 } 1328 1329 /* 1330 * either insert or lock state struct between start and end use mask to tell 1331 * us if waiting is desired. 1332 */ 1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1334 struct extent_state **cached_state) 1335 { 1336 int err; 1337 u64 failed_start; 1338 1339 while (1) { 1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1341 EXTENT_LOCKED, &failed_start, 1342 cached_state, GFP_NOFS, NULL); 1343 if (err == -EEXIST) { 1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1345 start = failed_start; 1346 } else 1347 break; 1348 WARN_ON(start > end); 1349 } 1350 return err; 1351 } 1352 1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1354 { 1355 int err; 1356 u64 failed_start; 1357 1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1359 &failed_start, NULL, GFP_NOFS, NULL); 1360 if (err == -EEXIST) { 1361 if (failed_start > start) 1362 clear_extent_bit(tree, start, failed_start - 1, 1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1364 return 0; 1365 } 1366 return 1; 1367 } 1368 1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1370 { 1371 unsigned long index = start >> PAGE_SHIFT; 1372 unsigned long end_index = end >> PAGE_SHIFT; 1373 struct page *page; 1374 1375 while (index <= end_index) { 1376 page = find_get_page(inode->i_mapping, index); 1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1378 clear_page_dirty_for_io(page); 1379 put_page(page); 1380 index++; 1381 } 1382 } 1383 1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1385 { 1386 unsigned long index = start >> PAGE_SHIFT; 1387 unsigned long end_index = end >> PAGE_SHIFT; 1388 struct page *page; 1389 1390 while (index <= end_index) { 1391 page = find_get_page(inode->i_mapping, index); 1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1393 __set_page_dirty_nobuffers(page); 1394 account_page_redirty(page); 1395 put_page(page); 1396 index++; 1397 } 1398 } 1399 1400 /* 1401 * helper function to set both pages and extents in the tree writeback 1402 */ 1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1404 { 1405 unsigned long index = start >> PAGE_SHIFT; 1406 unsigned long end_index = end >> PAGE_SHIFT; 1407 struct page *page; 1408 1409 while (index <= end_index) { 1410 page = find_get_page(tree->mapping, index); 1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1412 set_page_writeback(page); 1413 put_page(page); 1414 index++; 1415 } 1416 } 1417 1418 /* find the first state struct with 'bits' set after 'start', and 1419 * return it. tree->lock must be held. NULL will returned if 1420 * nothing was found after 'start' 1421 */ 1422 static struct extent_state * 1423 find_first_extent_bit_state(struct extent_io_tree *tree, 1424 u64 start, unsigned bits) 1425 { 1426 struct rb_node *node; 1427 struct extent_state *state; 1428 1429 /* 1430 * this search will find all the extents that end after 1431 * our range starts. 1432 */ 1433 node = tree_search(tree, start); 1434 if (!node) 1435 goto out; 1436 1437 while (1) { 1438 state = rb_entry(node, struct extent_state, rb_node); 1439 if (state->end >= start && (state->state & bits)) 1440 return state; 1441 1442 node = rb_next(node); 1443 if (!node) 1444 break; 1445 } 1446 out: 1447 return NULL; 1448 } 1449 1450 /* 1451 * find the first offset in the io tree with 'bits' set. zero is 1452 * returned if we find something, and *start_ret and *end_ret are 1453 * set to reflect the state struct that was found. 1454 * 1455 * If nothing was found, 1 is returned. If found something, return 0. 1456 */ 1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1458 u64 *start_ret, u64 *end_ret, unsigned bits, 1459 struct extent_state **cached_state) 1460 { 1461 struct extent_state *state; 1462 struct rb_node *n; 1463 int ret = 1; 1464 1465 spin_lock(&tree->lock); 1466 if (cached_state && *cached_state) { 1467 state = *cached_state; 1468 if (state->end == start - 1 && extent_state_in_tree(state)) { 1469 n = rb_next(&state->rb_node); 1470 while (n) { 1471 state = rb_entry(n, struct extent_state, 1472 rb_node); 1473 if (state->state & bits) 1474 goto got_it; 1475 n = rb_next(n); 1476 } 1477 free_extent_state(*cached_state); 1478 *cached_state = NULL; 1479 goto out; 1480 } 1481 free_extent_state(*cached_state); 1482 *cached_state = NULL; 1483 } 1484 1485 state = find_first_extent_bit_state(tree, start, bits); 1486 got_it: 1487 if (state) { 1488 cache_state_if_flags(state, cached_state, 0); 1489 *start_ret = state->start; 1490 *end_ret = state->end; 1491 ret = 0; 1492 } 1493 out: 1494 spin_unlock(&tree->lock); 1495 return ret; 1496 } 1497 1498 /* 1499 * find a contiguous range of bytes in the file marked as delalloc, not 1500 * more than 'max_bytes'. start and end are used to return the range, 1501 * 1502 * 1 is returned if we find something, 0 if nothing was in the tree 1503 */ 1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1505 u64 *start, u64 *end, u64 max_bytes, 1506 struct extent_state **cached_state) 1507 { 1508 struct rb_node *node; 1509 struct extent_state *state; 1510 u64 cur_start = *start; 1511 u64 found = 0; 1512 u64 total_bytes = 0; 1513 1514 spin_lock(&tree->lock); 1515 1516 /* 1517 * this search will find all the extents that end after 1518 * our range starts. 1519 */ 1520 node = tree_search(tree, cur_start); 1521 if (!node) { 1522 if (!found) 1523 *end = (u64)-1; 1524 goto out; 1525 } 1526 1527 while (1) { 1528 state = rb_entry(node, struct extent_state, rb_node); 1529 if (found && (state->start != cur_start || 1530 (state->state & EXTENT_BOUNDARY))) { 1531 goto out; 1532 } 1533 if (!(state->state & EXTENT_DELALLOC)) { 1534 if (!found) 1535 *end = state->end; 1536 goto out; 1537 } 1538 if (!found) { 1539 *start = state->start; 1540 *cached_state = state; 1541 atomic_inc(&state->refs); 1542 } 1543 found++; 1544 *end = state->end; 1545 cur_start = state->end + 1; 1546 node = rb_next(node); 1547 total_bytes += state->end - state->start + 1; 1548 if (total_bytes >= max_bytes) 1549 break; 1550 if (!node) 1551 break; 1552 } 1553 out: 1554 spin_unlock(&tree->lock); 1555 return found; 1556 } 1557 1558 static int __process_pages_contig(struct address_space *mapping, 1559 struct page *locked_page, 1560 pgoff_t start_index, pgoff_t end_index, 1561 unsigned long page_ops, pgoff_t *index_ret); 1562 1563 static noinline void __unlock_for_delalloc(struct inode *inode, 1564 struct page *locked_page, 1565 u64 start, u64 end) 1566 { 1567 unsigned long index = start >> PAGE_SHIFT; 1568 unsigned long end_index = end >> PAGE_SHIFT; 1569 1570 ASSERT(locked_page); 1571 if (index == locked_page->index && end_index == index) 1572 return; 1573 1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1575 PAGE_UNLOCK, NULL); 1576 } 1577 1578 static noinline int lock_delalloc_pages(struct inode *inode, 1579 struct page *locked_page, 1580 u64 delalloc_start, 1581 u64 delalloc_end) 1582 { 1583 unsigned long index = delalloc_start >> PAGE_SHIFT; 1584 unsigned long index_ret = index; 1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1586 int ret; 1587 1588 ASSERT(locked_page); 1589 if (index == locked_page->index && index == end_index) 1590 return 0; 1591 1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1593 end_index, PAGE_LOCK, &index_ret); 1594 if (ret == -EAGAIN) 1595 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1596 (u64)index_ret << PAGE_SHIFT); 1597 return ret; 1598 } 1599 1600 /* 1601 * find a contiguous range of bytes in the file marked as delalloc, not 1602 * more than 'max_bytes'. start and end are used to return the range, 1603 * 1604 * 1 is returned if we find something, 0 if nothing was in the tree 1605 */ 1606 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1607 struct extent_io_tree *tree, 1608 struct page *locked_page, u64 *start, 1609 u64 *end, u64 max_bytes) 1610 { 1611 u64 delalloc_start; 1612 u64 delalloc_end; 1613 u64 found; 1614 struct extent_state *cached_state = NULL; 1615 int ret; 1616 int loops = 0; 1617 1618 again: 1619 /* step one, find a bunch of delalloc bytes starting at start */ 1620 delalloc_start = *start; 1621 delalloc_end = 0; 1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1623 max_bytes, &cached_state); 1624 if (!found || delalloc_end <= *start) { 1625 *start = delalloc_start; 1626 *end = delalloc_end; 1627 free_extent_state(cached_state); 1628 return 0; 1629 } 1630 1631 /* 1632 * start comes from the offset of locked_page. We have to lock 1633 * pages in order, so we can't process delalloc bytes before 1634 * locked_page 1635 */ 1636 if (delalloc_start < *start) 1637 delalloc_start = *start; 1638 1639 /* 1640 * make sure to limit the number of pages we try to lock down 1641 */ 1642 if (delalloc_end + 1 - delalloc_start > max_bytes) 1643 delalloc_end = delalloc_start + max_bytes - 1; 1644 1645 /* step two, lock all the pages after the page that has start */ 1646 ret = lock_delalloc_pages(inode, locked_page, 1647 delalloc_start, delalloc_end); 1648 if (ret == -EAGAIN) { 1649 /* some of the pages are gone, lets avoid looping by 1650 * shortening the size of the delalloc range we're searching 1651 */ 1652 free_extent_state(cached_state); 1653 cached_state = NULL; 1654 if (!loops) { 1655 max_bytes = PAGE_SIZE; 1656 loops = 1; 1657 goto again; 1658 } else { 1659 found = 0; 1660 goto out_failed; 1661 } 1662 } 1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1664 1665 /* step three, lock the state bits for the whole range */ 1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1667 1668 /* then test to make sure it is all still delalloc */ 1669 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1670 EXTENT_DELALLOC, 1, cached_state); 1671 if (!ret) { 1672 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1673 &cached_state, GFP_NOFS); 1674 __unlock_for_delalloc(inode, locked_page, 1675 delalloc_start, delalloc_end); 1676 cond_resched(); 1677 goto again; 1678 } 1679 free_extent_state(cached_state); 1680 *start = delalloc_start; 1681 *end = delalloc_end; 1682 out_failed: 1683 return found; 1684 } 1685 1686 static int __process_pages_contig(struct address_space *mapping, 1687 struct page *locked_page, 1688 pgoff_t start_index, pgoff_t end_index, 1689 unsigned long page_ops, pgoff_t *index_ret) 1690 { 1691 unsigned long nr_pages = end_index - start_index + 1; 1692 unsigned long pages_locked = 0; 1693 pgoff_t index = start_index; 1694 struct page *pages[16]; 1695 unsigned ret; 1696 int err = 0; 1697 int i; 1698 1699 if (page_ops & PAGE_LOCK) { 1700 ASSERT(page_ops == PAGE_LOCK); 1701 ASSERT(index_ret && *index_ret == start_index); 1702 } 1703 1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1705 mapping_set_error(mapping, -EIO); 1706 1707 while (nr_pages > 0) { 1708 ret = find_get_pages_contig(mapping, index, 1709 min_t(unsigned long, 1710 nr_pages, ARRAY_SIZE(pages)), pages); 1711 if (ret == 0) { 1712 /* 1713 * Only if we're going to lock these pages, 1714 * can we find nothing at @index. 1715 */ 1716 ASSERT(page_ops & PAGE_LOCK); 1717 err = -EAGAIN; 1718 goto out; 1719 } 1720 1721 for (i = 0; i < ret; i++) { 1722 if (page_ops & PAGE_SET_PRIVATE2) 1723 SetPagePrivate2(pages[i]); 1724 1725 if (pages[i] == locked_page) { 1726 put_page(pages[i]); 1727 pages_locked++; 1728 continue; 1729 } 1730 if (page_ops & PAGE_CLEAR_DIRTY) 1731 clear_page_dirty_for_io(pages[i]); 1732 if (page_ops & PAGE_SET_WRITEBACK) 1733 set_page_writeback(pages[i]); 1734 if (page_ops & PAGE_SET_ERROR) 1735 SetPageError(pages[i]); 1736 if (page_ops & PAGE_END_WRITEBACK) 1737 end_page_writeback(pages[i]); 1738 if (page_ops & PAGE_UNLOCK) 1739 unlock_page(pages[i]); 1740 if (page_ops & PAGE_LOCK) { 1741 lock_page(pages[i]); 1742 if (!PageDirty(pages[i]) || 1743 pages[i]->mapping != mapping) { 1744 unlock_page(pages[i]); 1745 put_page(pages[i]); 1746 err = -EAGAIN; 1747 goto out; 1748 } 1749 } 1750 put_page(pages[i]); 1751 pages_locked++; 1752 } 1753 nr_pages -= ret; 1754 index += ret; 1755 cond_resched(); 1756 } 1757 out: 1758 if (err && index_ret) 1759 *index_ret = start_index + pages_locked - 1; 1760 return err; 1761 } 1762 1763 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1764 u64 delalloc_end, struct page *locked_page, 1765 unsigned clear_bits, 1766 unsigned long page_ops) 1767 { 1768 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1769 NULL, GFP_NOFS); 1770 1771 __process_pages_contig(inode->i_mapping, locked_page, 1772 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1773 page_ops, NULL); 1774 } 1775 1776 /* 1777 * count the number of bytes in the tree that have a given bit(s) 1778 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1779 * cached. The total number found is returned. 1780 */ 1781 u64 count_range_bits(struct extent_io_tree *tree, 1782 u64 *start, u64 search_end, u64 max_bytes, 1783 unsigned bits, int contig) 1784 { 1785 struct rb_node *node; 1786 struct extent_state *state; 1787 u64 cur_start = *start; 1788 u64 total_bytes = 0; 1789 u64 last = 0; 1790 int found = 0; 1791 1792 if (WARN_ON(search_end <= cur_start)) 1793 return 0; 1794 1795 spin_lock(&tree->lock); 1796 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1797 total_bytes = tree->dirty_bytes; 1798 goto out; 1799 } 1800 /* 1801 * this search will find all the extents that end after 1802 * our range starts. 1803 */ 1804 node = tree_search(tree, cur_start); 1805 if (!node) 1806 goto out; 1807 1808 while (1) { 1809 state = rb_entry(node, struct extent_state, rb_node); 1810 if (state->start > search_end) 1811 break; 1812 if (contig && found && state->start > last + 1) 1813 break; 1814 if (state->end >= cur_start && (state->state & bits) == bits) { 1815 total_bytes += min(search_end, state->end) + 1 - 1816 max(cur_start, state->start); 1817 if (total_bytes >= max_bytes) 1818 break; 1819 if (!found) { 1820 *start = max(cur_start, state->start); 1821 found = 1; 1822 } 1823 last = state->end; 1824 } else if (contig && found) { 1825 break; 1826 } 1827 node = rb_next(node); 1828 if (!node) 1829 break; 1830 } 1831 out: 1832 spin_unlock(&tree->lock); 1833 return total_bytes; 1834 } 1835 1836 /* 1837 * set the private field for a given byte offset in the tree. If there isn't 1838 * an extent_state there already, this does nothing. 1839 */ 1840 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1841 struct io_failure_record *failrec) 1842 { 1843 struct rb_node *node; 1844 struct extent_state *state; 1845 int ret = 0; 1846 1847 spin_lock(&tree->lock); 1848 /* 1849 * this search will find all the extents that end after 1850 * our range starts. 1851 */ 1852 node = tree_search(tree, start); 1853 if (!node) { 1854 ret = -ENOENT; 1855 goto out; 1856 } 1857 state = rb_entry(node, struct extent_state, rb_node); 1858 if (state->start != start) { 1859 ret = -ENOENT; 1860 goto out; 1861 } 1862 state->failrec = failrec; 1863 out: 1864 spin_unlock(&tree->lock); 1865 return ret; 1866 } 1867 1868 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1869 struct io_failure_record **failrec) 1870 { 1871 struct rb_node *node; 1872 struct extent_state *state; 1873 int ret = 0; 1874 1875 spin_lock(&tree->lock); 1876 /* 1877 * this search will find all the extents that end after 1878 * our range starts. 1879 */ 1880 node = tree_search(tree, start); 1881 if (!node) { 1882 ret = -ENOENT; 1883 goto out; 1884 } 1885 state = rb_entry(node, struct extent_state, rb_node); 1886 if (state->start != start) { 1887 ret = -ENOENT; 1888 goto out; 1889 } 1890 *failrec = state->failrec; 1891 out: 1892 spin_unlock(&tree->lock); 1893 return ret; 1894 } 1895 1896 /* 1897 * searches a range in the state tree for a given mask. 1898 * If 'filled' == 1, this returns 1 only if every extent in the tree 1899 * has the bits set. Otherwise, 1 is returned if any bit in the 1900 * range is found set. 1901 */ 1902 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1903 unsigned bits, int filled, struct extent_state *cached) 1904 { 1905 struct extent_state *state = NULL; 1906 struct rb_node *node; 1907 int bitset = 0; 1908 1909 spin_lock(&tree->lock); 1910 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1911 cached->end > start) 1912 node = &cached->rb_node; 1913 else 1914 node = tree_search(tree, start); 1915 while (node && start <= end) { 1916 state = rb_entry(node, struct extent_state, rb_node); 1917 1918 if (filled && state->start > start) { 1919 bitset = 0; 1920 break; 1921 } 1922 1923 if (state->start > end) 1924 break; 1925 1926 if (state->state & bits) { 1927 bitset = 1; 1928 if (!filled) 1929 break; 1930 } else if (filled) { 1931 bitset = 0; 1932 break; 1933 } 1934 1935 if (state->end == (u64)-1) 1936 break; 1937 1938 start = state->end + 1; 1939 if (start > end) 1940 break; 1941 node = rb_next(node); 1942 if (!node) { 1943 if (filled) 1944 bitset = 0; 1945 break; 1946 } 1947 } 1948 spin_unlock(&tree->lock); 1949 return bitset; 1950 } 1951 1952 /* 1953 * helper function to set a given page up to date if all the 1954 * extents in the tree for that page are up to date 1955 */ 1956 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1957 { 1958 u64 start = page_offset(page); 1959 u64 end = start + PAGE_SIZE - 1; 1960 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1961 SetPageUptodate(page); 1962 } 1963 1964 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec) 1965 { 1966 int ret; 1967 int err = 0; 1968 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 1969 1970 set_state_failrec(failure_tree, rec->start, NULL); 1971 ret = clear_extent_bits(failure_tree, rec->start, 1972 rec->start + rec->len - 1, 1973 EXTENT_LOCKED | EXTENT_DIRTY); 1974 if (ret) 1975 err = ret; 1976 1977 ret = clear_extent_bits(&inode->io_tree, rec->start, 1978 rec->start + rec->len - 1, 1979 EXTENT_DAMAGED); 1980 if (ret && !err) 1981 err = ret; 1982 1983 kfree(rec); 1984 return err; 1985 } 1986 1987 /* 1988 * this bypasses the standard btrfs submit functions deliberately, as 1989 * the standard behavior is to write all copies in a raid setup. here we only 1990 * want to write the one bad copy. so we do the mapping for ourselves and issue 1991 * submit_bio directly. 1992 * to avoid any synchronization issues, wait for the data after writing, which 1993 * actually prevents the read that triggered the error from finishing. 1994 * currently, there can be no more than two copies of every data bit. thus, 1995 * exactly one rewrite is required. 1996 */ 1997 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length, 1998 u64 logical, struct page *page, 1999 unsigned int pg_offset, int mirror_num) 2000 { 2001 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2002 struct bio *bio; 2003 struct btrfs_device *dev; 2004 u64 map_length = 0; 2005 u64 sector; 2006 struct btrfs_bio *bbio = NULL; 2007 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2008 int ret; 2009 2010 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2011 BUG_ON(!mirror_num); 2012 2013 /* we can't repair anything in raid56 yet */ 2014 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2015 return 0; 2016 2017 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2018 if (!bio) 2019 return -EIO; 2020 bio->bi_iter.bi_size = 0; 2021 map_length = length; 2022 2023 /* 2024 * Avoid races with device replace and make sure our bbio has devices 2025 * associated to its stripes that don't go away while we are doing the 2026 * read repair operation. 2027 */ 2028 btrfs_bio_counter_inc_blocked(fs_info); 2029 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2030 &map_length, &bbio, mirror_num); 2031 if (ret) { 2032 btrfs_bio_counter_dec(fs_info); 2033 bio_put(bio); 2034 return -EIO; 2035 } 2036 BUG_ON(mirror_num != bbio->mirror_num); 2037 sector = bbio->stripes[mirror_num-1].physical >> 9; 2038 bio->bi_iter.bi_sector = sector; 2039 dev = bbio->stripes[mirror_num-1].dev; 2040 btrfs_put_bbio(bbio); 2041 if (!dev || !dev->bdev || !dev->writeable) { 2042 btrfs_bio_counter_dec(fs_info); 2043 bio_put(bio); 2044 return -EIO; 2045 } 2046 bio->bi_bdev = dev->bdev; 2047 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2048 bio_add_page(bio, page, length, pg_offset); 2049 2050 if (btrfsic_submit_bio_wait(bio)) { 2051 /* try to remap that extent elsewhere? */ 2052 btrfs_bio_counter_dec(fs_info); 2053 bio_put(bio); 2054 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2055 return -EIO; 2056 } 2057 2058 btrfs_info_rl_in_rcu(fs_info, 2059 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2060 btrfs_ino(inode), start, 2061 rcu_str_deref(dev->name), sector); 2062 btrfs_bio_counter_dec(fs_info); 2063 bio_put(bio); 2064 return 0; 2065 } 2066 2067 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2068 struct extent_buffer *eb, int mirror_num) 2069 { 2070 u64 start = eb->start; 2071 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2072 int ret = 0; 2073 2074 if (fs_info->sb->s_flags & MS_RDONLY) 2075 return -EROFS; 2076 2077 for (i = 0; i < num_pages; i++) { 2078 struct page *p = eb->pages[i]; 2079 2080 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start, 2081 PAGE_SIZE, start, p, 2082 start - page_offset(p), mirror_num); 2083 if (ret) 2084 break; 2085 start += PAGE_SIZE; 2086 } 2087 2088 return ret; 2089 } 2090 2091 /* 2092 * each time an IO finishes, we do a fast check in the IO failure tree 2093 * to see if we need to process or clean up an io_failure_record 2094 */ 2095 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page, 2096 unsigned int pg_offset) 2097 { 2098 u64 private; 2099 struct io_failure_record *failrec; 2100 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2101 struct extent_state *state; 2102 int num_copies; 2103 int ret; 2104 2105 private = 0; 2106 ret = count_range_bits(&inode->io_failure_tree, &private, 2107 (u64)-1, 1, EXTENT_DIRTY, 0); 2108 if (!ret) 2109 return 0; 2110 2111 ret = get_state_failrec(&inode->io_failure_tree, start, 2112 &failrec); 2113 if (ret) 2114 return 0; 2115 2116 BUG_ON(!failrec->this_mirror); 2117 2118 if (failrec->in_validation) { 2119 /* there was no real error, just free the record */ 2120 btrfs_debug(fs_info, 2121 "clean_io_failure: freeing dummy error at %llu", 2122 failrec->start); 2123 goto out; 2124 } 2125 if (fs_info->sb->s_flags & MS_RDONLY) 2126 goto out; 2127 2128 spin_lock(&inode->io_tree.lock); 2129 state = find_first_extent_bit_state(&inode->io_tree, 2130 failrec->start, 2131 EXTENT_LOCKED); 2132 spin_unlock(&inode->io_tree.lock); 2133 2134 if (state && state->start <= failrec->start && 2135 state->end >= failrec->start + failrec->len - 1) { 2136 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2137 failrec->len); 2138 if (num_copies > 1) { 2139 repair_io_failure(inode, start, failrec->len, 2140 failrec->logical, page, 2141 pg_offset, failrec->failed_mirror); 2142 } 2143 } 2144 2145 out: 2146 free_io_failure(inode, failrec); 2147 2148 return 0; 2149 } 2150 2151 /* 2152 * Can be called when 2153 * - hold extent lock 2154 * - under ordered extent 2155 * - the inode is freeing 2156 */ 2157 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2158 { 2159 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2160 struct io_failure_record *failrec; 2161 struct extent_state *state, *next; 2162 2163 if (RB_EMPTY_ROOT(&failure_tree->state)) 2164 return; 2165 2166 spin_lock(&failure_tree->lock); 2167 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2168 while (state) { 2169 if (state->start > end) 2170 break; 2171 2172 ASSERT(state->end <= end); 2173 2174 next = next_state(state); 2175 2176 failrec = state->failrec; 2177 free_extent_state(state); 2178 kfree(failrec); 2179 2180 state = next; 2181 } 2182 spin_unlock(&failure_tree->lock); 2183 } 2184 2185 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2186 struct io_failure_record **failrec_ret) 2187 { 2188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2189 struct io_failure_record *failrec; 2190 struct extent_map *em; 2191 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2192 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2193 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2194 int ret; 2195 u64 logical; 2196 2197 ret = get_state_failrec(failure_tree, start, &failrec); 2198 if (ret) { 2199 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2200 if (!failrec) 2201 return -ENOMEM; 2202 2203 failrec->start = start; 2204 failrec->len = end - start + 1; 2205 failrec->this_mirror = 0; 2206 failrec->bio_flags = 0; 2207 failrec->in_validation = 0; 2208 2209 read_lock(&em_tree->lock); 2210 em = lookup_extent_mapping(em_tree, start, failrec->len); 2211 if (!em) { 2212 read_unlock(&em_tree->lock); 2213 kfree(failrec); 2214 return -EIO; 2215 } 2216 2217 if (em->start > start || em->start + em->len <= start) { 2218 free_extent_map(em); 2219 em = NULL; 2220 } 2221 read_unlock(&em_tree->lock); 2222 if (!em) { 2223 kfree(failrec); 2224 return -EIO; 2225 } 2226 2227 logical = start - em->start; 2228 logical = em->block_start + logical; 2229 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2230 logical = em->block_start; 2231 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2232 extent_set_compress_type(&failrec->bio_flags, 2233 em->compress_type); 2234 } 2235 2236 btrfs_debug(fs_info, 2237 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2238 logical, start, failrec->len); 2239 2240 failrec->logical = logical; 2241 free_extent_map(em); 2242 2243 /* set the bits in the private failure tree */ 2244 ret = set_extent_bits(failure_tree, start, end, 2245 EXTENT_LOCKED | EXTENT_DIRTY); 2246 if (ret >= 0) 2247 ret = set_state_failrec(failure_tree, start, failrec); 2248 /* set the bits in the inode's tree */ 2249 if (ret >= 0) 2250 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2251 if (ret < 0) { 2252 kfree(failrec); 2253 return ret; 2254 } 2255 } else { 2256 btrfs_debug(fs_info, 2257 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2258 failrec->logical, failrec->start, failrec->len, 2259 failrec->in_validation); 2260 /* 2261 * when data can be on disk more than twice, add to failrec here 2262 * (e.g. with a list for failed_mirror) to make 2263 * clean_io_failure() clean all those errors at once. 2264 */ 2265 } 2266 2267 *failrec_ret = failrec; 2268 2269 return 0; 2270 } 2271 2272 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2273 struct io_failure_record *failrec, int failed_mirror) 2274 { 2275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2276 int num_copies; 2277 2278 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2279 if (num_copies == 1) { 2280 /* 2281 * we only have a single copy of the data, so don't bother with 2282 * all the retry and error correction code that follows. no 2283 * matter what the error is, it is very likely to persist. 2284 */ 2285 btrfs_debug(fs_info, 2286 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2287 num_copies, failrec->this_mirror, failed_mirror); 2288 return 0; 2289 } 2290 2291 /* 2292 * there are two premises: 2293 * a) deliver good data to the caller 2294 * b) correct the bad sectors on disk 2295 */ 2296 if (failed_bio->bi_vcnt > 1) { 2297 /* 2298 * to fulfill b), we need to know the exact failing sectors, as 2299 * we don't want to rewrite any more than the failed ones. thus, 2300 * we need separate read requests for the failed bio 2301 * 2302 * if the following BUG_ON triggers, our validation request got 2303 * merged. we need separate requests for our algorithm to work. 2304 */ 2305 BUG_ON(failrec->in_validation); 2306 failrec->in_validation = 1; 2307 failrec->this_mirror = failed_mirror; 2308 } else { 2309 /* 2310 * we're ready to fulfill a) and b) alongside. get a good copy 2311 * of the failed sector and if we succeed, we have setup 2312 * everything for repair_io_failure to do the rest for us. 2313 */ 2314 if (failrec->in_validation) { 2315 BUG_ON(failrec->this_mirror != failed_mirror); 2316 failrec->in_validation = 0; 2317 failrec->this_mirror = 0; 2318 } 2319 failrec->failed_mirror = failed_mirror; 2320 failrec->this_mirror++; 2321 if (failrec->this_mirror == failed_mirror) 2322 failrec->this_mirror++; 2323 } 2324 2325 if (failrec->this_mirror > num_copies) { 2326 btrfs_debug(fs_info, 2327 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2328 num_copies, failrec->this_mirror, failed_mirror); 2329 return 0; 2330 } 2331 2332 return 1; 2333 } 2334 2335 2336 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2337 struct io_failure_record *failrec, 2338 struct page *page, int pg_offset, int icsum, 2339 bio_end_io_t *endio_func, void *data) 2340 { 2341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2342 struct bio *bio; 2343 struct btrfs_io_bio *btrfs_failed_bio; 2344 struct btrfs_io_bio *btrfs_bio; 2345 2346 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2347 if (!bio) 2348 return NULL; 2349 2350 bio->bi_end_io = endio_func; 2351 bio->bi_iter.bi_sector = failrec->logical >> 9; 2352 bio->bi_bdev = fs_info->fs_devices->latest_bdev; 2353 bio->bi_iter.bi_size = 0; 2354 bio->bi_private = data; 2355 2356 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2357 if (btrfs_failed_bio->csum) { 2358 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2359 2360 btrfs_bio = btrfs_io_bio(bio); 2361 btrfs_bio->csum = btrfs_bio->csum_inline; 2362 icsum *= csum_size; 2363 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2364 csum_size); 2365 } 2366 2367 bio_add_page(bio, page, failrec->len, pg_offset); 2368 2369 return bio; 2370 } 2371 2372 /* 2373 * this is a generic handler for readpage errors (default 2374 * readpage_io_failed_hook). if other copies exist, read those and write back 2375 * good data to the failed position. does not investigate in remapping the 2376 * failed extent elsewhere, hoping the device will be smart enough to do this as 2377 * needed 2378 */ 2379 2380 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2381 struct page *page, u64 start, u64 end, 2382 int failed_mirror) 2383 { 2384 struct io_failure_record *failrec; 2385 struct inode *inode = page->mapping->host; 2386 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2387 struct bio *bio; 2388 int read_mode = 0; 2389 int ret; 2390 2391 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2392 2393 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2394 if (ret) 2395 return ret; 2396 2397 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2398 if (!ret) { 2399 free_io_failure(BTRFS_I(inode), failrec); 2400 return -EIO; 2401 } 2402 2403 if (failed_bio->bi_vcnt > 1) 2404 read_mode |= REQ_FAILFAST_DEV; 2405 2406 phy_offset >>= inode->i_sb->s_blocksize_bits; 2407 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2408 start - page_offset(page), 2409 (int)phy_offset, failed_bio->bi_end_io, 2410 NULL); 2411 if (!bio) { 2412 free_io_failure(BTRFS_I(inode), failrec); 2413 return -EIO; 2414 } 2415 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2416 2417 btrfs_debug(btrfs_sb(inode->i_sb), 2418 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2419 read_mode, failrec->this_mirror, failrec->in_validation); 2420 2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror, 2422 failrec->bio_flags, 0); 2423 if (ret) { 2424 free_io_failure(BTRFS_I(inode), failrec); 2425 bio_put(bio); 2426 } 2427 2428 return ret; 2429 } 2430 2431 /* lots and lots of room for performance fixes in the end_bio funcs */ 2432 2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2434 { 2435 int uptodate = (err == 0); 2436 struct extent_io_tree *tree; 2437 int ret = 0; 2438 2439 tree = &BTRFS_I(page->mapping->host)->io_tree; 2440 2441 if (tree->ops && tree->ops->writepage_end_io_hook) 2442 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2443 uptodate); 2444 2445 if (!uptodate) { 2446 ClearPageUptodate(page); 2447 SetPageError(page); 2448 ret = ret < 0 ? ret : -EIO; 2449 mapping_set_error(page->mapping, ret); 2450 } 2451 } 2452 2453 /* 2454 * after a writepage IO is done, we need to: 2455 * clear the uptodate bits on error 2456 * clear the writeback bits in the extent tree for this IO 2457 * end_page_writeback if the page has no more pending IO 2458 * 2459 * Scheduling is not allowed, so the extent state tree is expected 2460 * to have one and only one object corresponding to this IO. 2461 */ 2462 static void end_bio_extent_writepage(struct bio *bio) 2463 { 2464 struct bio_vec *bvec; 2465 u64 start; 2466 u64 end; 2467 int i; 2468 2469 bio_for_each_segment_all(bvec, bio, i) { 2470 struct page *page = bvec->bv_page; 2471 struct inode *inode = page->mapping->host; 2472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2473 2474 /* We always issue full-page reads, but if some block 2475 * in a page fails to read, blk_update_request() will 2476 * advance bv_offset and adjust bv_len to compensate. 2477 * Print a warning for nonzero offsets, and an error 2478 * if they don't add up to a full page. */ 2479 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2480 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2481 btrfs_err(fs_info, 2482 "partial page write in btrfs with offset %u and length %u", 2483 bvec->bv_offset, bvec->bv_len); 2484 else 2485 btrfs_info(fs_info, 2486 "incomplete page write in btrfs with offset %u and length %u", 2487 bvec->bv_offset, bvec->bv_len); 2488 } 2489 2490 start = page_offset(page); 2491 end = start + bvec->bv_offset + bvec->bv_len - 1; 2492 2493 end_extent_writepage(page, bio->bi_error, start, end); 2494 end_page_writeback(page); 2495 } 2496 2497 bio_put(bio); 2498 } 2499 2500 static void 2501 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2502 int uptodate) 2503 { 2504 struct extent_state *cached = NULL; 2505 u64 end = start + len - 1; 2506 2507 if (uptodate && tree->track_uptodate) 2508 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2509 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2510 } 2511 2512 /* 2513 * after a readpage IO is done, we need to: 2514 * clear the uptodate bits on error 2515 * set the uptodate bits if things worked 2516 * set the page up to date if all extents in the tree are uptodate 2517 * clear the lock bit in the extent tree 2518 * unlock the page if there are no other extents locked for it 2519 * 2520 * Scheduling is not allowed, so the extent state tree is expected 2521 * to have one and only one object corresponding to this IO. 2522 */ 2523 static void end_bio_extent_readpage(struct bio *bio) 2524 { 2525 struct bio_vec *bvec; 2526 int uptodate = !bio->bi_error; 2527 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2528 struct extent_io_tree *tree; 2529 u64 offset = 0; 2530 u64 start; 2531 u64 end; 2532 u64 len; 2533 u64 extent_start = 0; 2534 u64 extent_len = 0; 2535 int mirror; 2536 int ret; 2537 int i; 2538 2539 bio_for_each_segment_all(bvec, bio, i) { 2540 struct page *page = bvec->bv_page; 2541 struct inode *inode = page->mapping->host; 2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2543 2544 btrfs_debug(fs_info, 2545 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2546 (u64)bio->bi_iter.bi_sector, bio->bi_error, 2547 io_bio->mirror_num); 2548 tree = &BTRFS_I(inode)->io_tree; 2549 2550 /* We always issue full-page reads, but if some block 2551 * in a page fails to read, blk_update_request() will 2552 * advance bv_offset and adjust bv_len to compensate. 2553 * Print a warning for nonzero offsets, and an error 2554 * if they don't add up to a full page. */ 2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2557 btrfs_err(fs_info, 2558 "partial page read in btrfs with offset %u and length %u", 2559 bvec->bv_offset, bvec->bv_len); 2560 else 2561 btrfs_info(fs_info, 2562 "incomplete page read in btrfs with offset %u and length %u", 2563 bvec->bv_offset, bvec->bv_len); 2564 } 2565 2566 start = page_offset(page); 2567 end = start + bvec->bv_offset + bvec->bv_len - 1; 2568 len = bvec->bv_len; 2569 2570 mirror = io_bio->mirror_num; 2571 if (likely(uptodate && tree->ops)) { 2572 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2573 page, start, end, 2574 mirror); 2575 if (ret) 2576 uptodate = 0; 2577 else 2578 clean_io_failure(BTRFS_I(inode), start, 2579 page, 0); 2580 } 2581 2582 if (likely(uptodate)) 2583 goto readpage_ok; 2584 2585 if (tree->ops) { 2586 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2587 if (!ret && !bio->bi_error) 2588 uptodate = 1; 2589 } else { 2590 /* 2591 * The generic bio_readpage_error handles errors the 2592 * following way: If possible, new read requests are 2593 * created and submitted and will end up in 2594 * end_bio_extent_readpage as well (if we're lucky, not 2595 * in the !uptodate case). In that case it returns 0 and 2596 * we just go on with the next page in our bio. If it 2597 * can't handle the error it will return -EIO and we 2598 * remain responsible for that page. 2599 */ 2600 ret = bio_readpage_error(bio, offset, page, start, end, 2601 mirror); 2602 if (ret == 0) { 2603 uptodate = !bio->bi_error; 2604 offset += len; 2605 continue; 2606 } 2607 } 2608 readpage_ok: 2609 if (likely(uptodate)) { 2610 loff_t i_size = i_size_read(inode); 2611 pgoff_t end_index = i_size >> PAGE_SHIFT; 2612 unsigned off; 2613 2614 /* Zero out the end if this page straddles i_size */ 2615 off = i_size & (PAGE_SIZE-1); 2616 if (page->index == end_index && off) 2617 zero_user_segment(page, off, PAGE_SIZE); 2618 SetPageUptodate(page); 2619 } else { 2620 ClearPageUptodate(page); 2621 SetPageError(page); 2622 } 2623 unlock_page(page); 2624 offset += len; 2625 2626 if (unlikely(!uptodate)) { 2627 if (extent_len) { 2628 endio_readpage_release_extent(tree, 2629 extent_start, 2630 extent_len, 1); 2631 extent_start = 0; 2632 extent_len = 0; 2633 } 2634 endio_readpage_release_extent(tree, start, 2635 end - start + 1, 0); 2636 } else if (!extent_len) { 2637 extent_start = start; 2638 extent_len = end + 1 - start; 2639 } else if (extent_start + extent_len == start) { 2640 extent_len += end + 1 - start; 2641 } else { 2642 endio_readpage_release_extent(tree, extent_start, 2643 extent_len, uptodate); 2644 extent_start = start; 2645 extent_len = end + 1 - start; 2646 } 2647 } 2648 2649 if (extent_len) 2650 endio_readpage_release_extent(tree, extent_start, extent_len, 2651 uptodate); 2652 if (io_bio->end_io) 2653 io_bio->end_io(io_bio, bio->bi_error); 2654 bio_put(bio); 2655 } 2656 2657 /* 2658 * this allocates from the btrfs_bioset. We're returning a bio right now 2659 * but you can call btrfs_io_bio for the appropriate container_of magic 2660 */ 2661 struct bio * 2662 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2663 gfp_t gfp_flags) 2664 { 2665 struct btrfs_io_bio *btrfs_bio; 2666 struct bio *bio; 2667 2668 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2669 2670 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2671 while (!bio && (nr_vecs /= 2)) { 2672 bio = bio_alloc_bioset(gfp_flags, 2673 nr_vecs, btrfs_bioset); 2674 } 2675 } 2676 2677 if (bio) { 2678 bio->bi_bdev = bdev; 2679 bio->bi_iter.bi_sector = first_sector; 2680 btrfs_bio = btrfs_io_bio(bio); 2681 btrfs_bio->csum = NULL; 2682 btrfs_bio->csum_allocated = NULL; 2683 btrfs_bio->end_io = NULL; 2684 } 2685 return bio; 2686 } 2687 2688 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2689 { 2690 struct btrfs_io_bio *btrfs_bio; 2691 struct bio *new; 2692 2693 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2694 if (new) { 2695 btrfs_bio = btrfs_io_bio(new); 2696 btrfs_bio->csum = NULL; 2697 btrfs_bio->csum_allocated = NULL; 2698 btrfs_bio->end_io = NULL; 2699 } 2700 return new; 2701 } 2702 2703 /* this also allocates from the btrfs_bioset */ 2704 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2705 { 2706 struct btrfs_io_bio *btrfs_bio; 2707 struct bio *bio; 2708 2709 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2710 if (bio) { 2711 btrfs_bio = btrfs_io_bio(bio); 2712 btrfs_bio->csum = NULL; 2713 btrfs_bio->csum_allocated = NULL; 2714 btrfs_bio->end_io = NULL; 2715 } 2716 return bio; 2717 } 2718 2719 2720 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2721 unsigned long bio_flags) 2722 { 2723 int ret = 0; 2724 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2725 struct page *page = bvec->bv_page; 2726 struct extent_io_tree *tree = bio->bi_private; 2727 u64 start; 2728 2729 start = page_offset(page) + bvec->bv_offset; 2730 2731 bio->bi_private = NULL; 2732 bio_get(bio); 2733 2734 if (tree->ops) 2735 ret = tree->ops->submit_bio_hook(page->mapping->host, bio, 2736 mirror_num, bio_flags, start); 2737 else 2738 btrfsic_submit_bio(bio); 2739 2740 bio_put(bio); 2741 return ret; 2742 } 2743 2744 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2745 unsigned long offset, size_t size, struct bio *bio, 2746 unsigned long bio_flags) 2747 { 2748 int ret = 0; 2749 if (tree->ops) 2750 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2751 bio_flags); 2752 return ret; 2753 2754 } 2755 2756 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree, 2757 struct writeback_control *wbc, 2758 struct page *page, sector_t sector, 2759 size_t size, unsigned long offset, 2760 struct block_device *bdev, 2761 struct bio **bio_ret, 2762 bio_end_io_t end_io_func, 2763 int mirror_num, 2764 unsigned long prev_bio_flags, 2765 unsigned long bio_flags, 2766 bool force_bio_submit) 2767 { 2768 int ret = 0; 2769 struct bio *bio; 2770 int contig = 0; 2771 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2772 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2773 2774 if (bio_ret && *bio_ret) { 2775 bio = *bio_ret; 2776 if (old_compressed) 2777 contig = bio->bi_iter.bi_sector == sector; 2778 else 2779 contig = bio_end_sector(bio) == sector; 2780 2781 if (prev_bio_flags != bio_flags || !contig || 2782 force_bio_submit || 2783 merge_bio(tree, page, offset, page_size, bio, bio_flags) || 2784 bio_add_page(bio, page, page_size, offset) < page_size) { 2785 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2786 if (ret < 0) { 2787 *bio_ret = NULL; 2788 return ret; 2789 } 2790 bio = NULL; 2791 } else { 2792 if (wbc) 2793 wbc_account_io(wbc, page, page_size); 2794 return 0; 2795 } 2796 } 2797 2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2799 GFP_NOFS | __GFP_HIGH); 2800 if (!bio) 2801 return -ENOMEM; 2802 2803 bio_add_page(bio, page, page_size, offset); 2804 bio->bi_end_io = end_io_func; 2805 bio->bi_private = tree; 2806 bio_set_op_attrs(bio, op, op_flags); 2807 if (wbc) { 2808 wbc_init_bio(wbc, bio); 2809 wbc_account_io(wbc, page, page_size); 2810 } 2811 2812 if (bio_ret) 2813 *bio_ret = bio; 2814 else 2815 ret = submit_one_bio(bio, mirror_num, bio_flags); 2816 2817 return ret; 2818 } 2819 2820 static void attach_extent_buffer_page(struct extent_buffer *eb, 2821 struct page *page) 2822 { 2823 if (!PagePrivate(page)) { 2824 SetPagePrivate(page); 2825 get_page(page); 2826 set_page_private(page, (unsigned long)eb); 2827 } else { 2828 WARN_ON(page->private != (unsigned long)eb); 2829 } 2830 } 2831 2832 void set_page_extent_mapped(struct page *page) 2833 { 2834 if (!PagePrivate(page)) { 2835 SetPagePrivate(page); 2836 get_page(page); 2837 set_page_private(page, EXTENT_PAGE_PRIVATE); 2838 } 2839 } 2840 2841 static struct extent_map * 2842 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2843 u64 start, u64 len, get_extent_t *get_extent, 2844 struct extent_map **em_cached) 2845 { 2846 struct extent_map *em; 2847 2848 if (em_cached && *em_cached) { 2849 em = *em_cached; 2850 if (extent_map_in_tree(em) && start >= em->start && 2851 start < extent_map_end(em)) { 2852 atomic_inc(&em->refs); 2853 return em; 2854 } 2855 2856 free_extent_map(em); 2857 *em_cached = NULL; 2858 } 2859 2860 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2861 if (em_cached && !IS_ERR_OR_NULL(em)) { 2862 BUG_ON(*em_cached); 2863 atomic_inc(&em->refs); 2864 *em_cached = em; 2865 } 2866 return em; 2867 } 2868 /* 2869 * basic readpage implementation. Locked extent state structs are inserted 2870 * into the tree that are removed when the IO is done (by the end_io 2871 * handlers) 2872 * XXX JDM: This needs looking at to ensure proper page locking 2873 * return 0 on success, otherwise return error 2874 */ 2875 static int __do_readpage(struct extent_io_tree *tree, 2876 struct page *page, 2877 get_extent_t *get_extent, 2878 struct extent_map **em_cached, 2879 struct bio **bio, int mirror_num, 2880 unsigned long *bio_flags, int read_flags, 2881 u64 *prev_em_start) 2882 { 2883 struct inode *inode = page->mapping->host; 2884 u64 start = page_offset(page); 2885 u64 page_end = start + PAGE_SIZE - 1; 2886 u64 end; 2887 u64 cur = start; 2888 u64 extent_offset; 2889 u64 last_byte = i_size_read(inode); 2890 u64 block_start; 2891 u64 cur_end; 2892 sector_t sector; 2893 struct extent_map *em; 2894 struct block_device *bdev; 2895 int ret = 0; 2896 int nr = 0; 2897 size_t pg_offset = 0; 2898 size_t iosize; 2899 size_t disk_io_size; 2900 size_t blocksize = inode->i_sb->s_blocksize; 2901 unsigned long this_bio_flag = 0; 2902 2903 set_page_extent_mapped(page); 2904 2905 end = page_end; 2906 if (!PageUptodate(page)) { 2907 if (cleancache_get_page(page) == 0) { 2908 BUG_ON(blocksize != PAGE_SIZE); 2909 unlock_extent(tree, start, end); 2910 goto out; 2911 } 2912 } 2913 2914 if (page->index == last_byte >> PAGE_SHIFT) { 2915 char *userpage; 2916 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2917 2918 if (zero_offset) { 2919 iosize = PAGE_SIZE - zero_offset; 2920 userpage = kmap_atomic(page); 2921 memset(userpage + zero_offset, 0, iosize); 2922 flush_dcache_page(page); 2923 kunmap_atomic(userpage); 2924 } 2925 } 2926 while (cur <= end) { 2927 bool force_bio_submit = false; 2928 2929 if (cur >= last_byte) { 2930 char *userpage; 2931 struct extent_state *cached = NULL; 2932 2933 iosize = PAGE_SIZE - pg_offset; 2934 userpage = kmap_atomic(page); 2935 memset(userpage + pg_offset, 0, iosize); 2936 flush_dcache_page(page); 2937 kunmap_atomic(userpage); 2938 set_extent_uptodate(tree, cur, cur + iosize - 1, 2939 &cached, GFP_NOFS); 2940 unlock_extent_cached(tree, cur, 2941 cur + iosize - 1, 2942 &cached, GFP_NOFS); 2943 break; 2944 } 2945 em = __get_extent_map(inode, page, pg_offset, cur, 2946 end - cur + 1, get_extent, em_cached); 2947 if (IS_ERR_OR_NULL(em)) { 2948 SetPageError(page); 2949 unlock_extent(tree, cur, end); 2950 break; 2951 } 2952 extent_offset = cur - em->start; 2953 BUG_ON(extent_map_end(em) <= cur); 2954 BUG_ON(end < cur); 2955 2956 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2957 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2958 extent_set_compress_type(&this_bio_flag, 2959 em->compress_type); 2960 } 2961 2962 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2963 cur_end = min(extent_map_end(em) - 1, end); 2964 iosize = ALIGN(iosize, blocksize); 2965 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2966 disk_io_size = em->block_len; 2967 sector = em->block_start >> 9; 2968 } else { 2969 sector = (em->block_start + extent_offset) >> 9; 2970 disk_io_size = iosize; 2971 } 2972 bdev = em->bdev; 2973 block_start = em->block_start; 2974 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2975 block_start = EXTENT_MAP_HOLE; 2976 2977 /* 2978 * If we have a file range that points to a compressed extent 2979 * and it's followed by a consecutive file range that points to 2980 * to the same compressed extent (possibly with a different 2981 * offset and/or length, so it either points to the whole extent 2982 * or only part of it), we must make sure we do not submit a 2983 * single bio to populate the pages for the 2 ranges because 2984 * this makes the compressed extent read zero out the pages 2985 * belonging to the 2nd range. Imagine the following scenario: 2986 * 2987 * File layout 2988 * [0 - 8K] [8K - 24K] 2989 * | | 2990 * | | 2991 * points to extent X, points to extent X, 2992 * offset 4K, length of 8K offset 0, length 16K 2993 * 2994 * [extent X, compressed length = 4K uncompressed length = 16K] 2995 * 2996 * If the bio to read the compressed extent covers both ranges, 2997 * it will decompress extent X into the pages belonging to the 2998 * first range and then it will stop, zeroing out the remaining 2999 * pages that belong to the other range that points to extent X. 3000 * So here we make sure we submit 2 bios, one for the first 3001 * range and another one for the third range. Both will target 3002 * the same physical extent from disk, but we can't currently 3003 * make the compressed bio endio callback populate the pages 3004 * for both ranges because each compressed bio is tightly 3005 * coupled with a single extent map, and each range can have 3006 * an extent map with a different offset value relative to the 3007 * uncompressed data of our extent and different lengths. This 3008 * is a corner case so we prioritize correctness over 3009 * non-optimal behavior (submitting 2 bios for the same extent). 3010 */ 3011 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3012 prev_em_start && *prev_em_start != (u64)-1 && 3013 *prev_em_start != em->orig_start) 3014 force_bio_submit = true; 3015 3016 if (prev_em_start) 3017 *prev_em_start = em->orig_start; 3018 3019 free_extent_map(em); 3020 em = NULL; 3021 3022 /* we've found a hole, just zero and go on */ 3023 if (block_start == EXTENT_MAP_HOLE) { 3024 char *userpage; 3025 struct extent_state *cached = NULL; 3026 3027 userpage = kmap_atomic(page); 3028 memset(userpage + pg_offset, 0, iosize); 3029 flush_dcache_page(page); 3030 kunmap_atomic(userpage); 3031 3032 set_extent_uptodate(tree, cur, cur + iosize - 1, 3033 &cached, GFP_NOFS); 3034 unlock_extent_cached(tree, cur, 3035 cur + iosize - 1, 3036 &cached, GFP_NOFS); 3037 cur = cur + iosize; 3038 pg_offset += iosize; 3039 continue; 3040 } 3041 /* the get_extent function already copied into the page */ 3042 if (test_range_bit(tree, cur, cur_end, 3043 EXTENT_UPTODATE, 1, NULL)) { 3044 check_page_uptodate(tree, page); 3045 unlock_extent(tree, cur, cur + iosize - 1); 3046 cur = cur + iosize; 3047 pg_offset += iosize; 3048 continue; 3049 } 3050 /* we have an inline extent but it didn't get marked up 3051 * to date. Error out 3052 */ 3053 if (block_start == EXTENT_MAP_INLINE) { 3054 SetPageError(page); 3055 unlock_extent(tree, cur, cur + iosize - 1); 3056 cur = cur + iosize; 3057 pg_offset += iosize; 3058 continue; 3059 } 3060 3061 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL, 3062 page, sector, disk_io_size, pg_offset, 3063 bdev, bio, 3064 end_bio_extent_readpage, mirror_num, 3065 *bio_flags, 3066 this_bio_flag, 3067 force_bio_submit); 3068 if (!ret) { 3069 nr++; 3070 *bio_flags = this_bio_flag; 3071 } else { 3072 SetPageError(page); 3073 unlock_extent(tree, cur, cur + iosize - 1); 3074 goto out; 3075 } 3076 cur = cur + iosize; 3077 pg_offset += iosize; 3078 } 3079 out: 3080 if (!nr) { 3081 if (!PageError(page)) 3082 SetPageUptodate(page); 3083 unlock_page(page); 3084 } 3085 return ret; 3086 } 3087 3088 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3089 struct page *pages[], int nr_pages, 3090 u64 start, u64 end, 3091 get_extent_t *get_extent, 3092 struct extent_map **em_cached, 3093 struct bio **bio, int mirror_num, 3094 unsigned long *bio_flags, 3095 u64 *prev_em_start) 3096 { 3097 struct inode *inode; 3098 struct btrfs_ordered_extent *ordered; 3099 int index; 3100 3101 inode = pages[0]->mapping->host; 3102 while (1) { 3103 lock_extent(tree, start, end); 3104 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3105 end - start + 1); 3106 if (!ordered) 3107 break; 3108 unlock_extent(tree, start, end); 3109 btrfs_start_ordered_extent(inode, ordered, 1); 3110 btrfs_put_ordered_extent(ordered); 3111 } 3112 3113 for (index = 0; index < nr_pages; index++) { 3114 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3115 mirror_num, bio_flags, 0, prev_em_start); 3116 put_page(pages[index]); 3117 } 3118 } 3119 3120 static void __extent_readpages(struct extent_io_tree *tree, 3121 struct page *pages[], 3122 int nr_pages, get_extent_t *get_extent, 3123 struct extent_map **em_cached, 3124 struct bio **bio, int mirror_num, 3125 unsigned long *bio_flags, 3126 u64 *prev_em_start) 3127 { 3128 u64 start = 0; 3129 u64 end = 0; 3130 u64 page_start; 3131 int index; 3132 int first_index = 0; 3133 3134 for (index = 0; index < nr_pages; index++) { 3135 page_start = page_offset(pages[index]); 3136 if (!end) { 3137 start = page_start; 3138 end = start + PAGE_SIZE - 1; 3139 first_index = index; 3140 } else if (end + 1 == page_start) { 3141 end += PAGE_SIZE; 3142 } else { 3143 __do_contiguous_readpages(tree, &pages[first_index], 3144 index - first_index, start, 3145 end, get_extent, em_cached, 3146 bio, mirror_num, bio_flags, 3147 prev_em_start); 3148 start = page_start; 3149 end = start + PAGE_SIZE - 1; 3150 first_index = index; 3151 } 3152 } 3153 3154 if (end) 3155 __do_contiguous_readpages(tree, &pages[first_index], 3156 index - first_index, start, 3157 end, get_extent, em_cached, bio, 3158 mirror_num, bio_flags, 3159 prev_em_start); 3160 } 3161 3162 static int __extent_read_full_page(struct extent_io_tree *tree, 3163 struct page *page, 3164 get_extent_t *get_extent, 3165 struct bio **bio, int mirror_num, 3166 unsigned long *bio_flags, int read_flags) 3167 { 3168 struct inode *inode = page->mapping->host; 3169 struct btrfs_ordered_extent *ordered; 3170 u64 start = page_offset(page); 3171 u64 end = start + PAGE_SIZE - 1; 3172 int ret; 3173 3174 while (1) { 3175 lock_extent(tree, start, end); 3176 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3177 PAGE_SIZE); 3178 if (!ordered) 3179 break; 3180 unlock_extent(tree, start, end); 3181 btrfs_start_ordered_extent(inode, ordered, 1); 3182 btrfs_put_ordered_extent(ordered); 3183 } 3184 3185 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3186 bio_flags, read_flags, NULL); 3187 return ret; 3188 } 3189 3190 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3191 get_extent_t *get_extent, int mirror_num) 3192 { 3193 struct bio *bio = NULL; 3194 unsigned long bio_flags = 0; 3195 int ret; 3196 3197 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3198 &bio_flags, 0); 3199 if (bio) 3200 ret = submit_one_bio(bio, mirror_num, bio_flags); 3201 return ret; 3202 } 3203 3204 static void update_nr_written(struct writeback_control *wbc, 3205 unsigned long nr_written) 3206 { 3207 wbc->nr_to_write -= nr_written; 3208 } 3209 3210 /* 3211 * helper for __extent_writepage, doing all of the delayed allocation setup. 3212 * 3213 * This returns 1 if our fill_delalloc function did all the work required 3214 * to write the page (copy into inline extent). In this case the IO has 3215 * been started and the page is already unlocked. 3216 * 3217 * This returns 0 if all went well (page still locked) 3218 * This returns < 0 if there were errors (page still locked) 3219 */ 3220 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3221 struct page *page, struct writeback_control *wbc, 3222 struct extent_page_data *epd, 3223 u64 delalloc_start, 3224 unsigned long *nr_written) 3225 { 3226 struct extent_io_tree *tree = epd->tree; 3227 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3228 u64 nr_delalloc; 3229 u64 delalloc_to_write = 0; 3230 u64 delalloc_end = 0; 3231 int ret; 3232 int page_started = 0; 3233 3234 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3235 return 0; 3236 3237 while (delalloc_end < page_end) { 3238 nr_delalloc = find_lock_delalloc_range(inode, tree, 3239 page, 3240 &delalloc_start, 3241 &delalloc_end, 3242 BTRFS_MAX_EXTENT_SIZE); 3243 if (nr_delalloc == 0) { 3244 delalloc_start = delalloc_end + 1; 3245 continue; 3246 } 3247 ret = tree->ops->fill_delalloc(inode, page, 3248 delalloc_start, 3249 delalloc_end, 3250 &page_started, 3251 nr_written); 3252 /* File system has been set read-only */ 3253 if (ret) { 3254 SetPageError(page); 3255 /* fill_delalloc should be return < 0 for error 3256 * but just in case, we use > 0 here meaning the 3257 * IO is started, so we don't want to return > 0 3258 * unless things are going well. 3259 */ 3260 ret = ret < 0 ? ret : -EIO; 3261 goto done; 3262 } 3263 /* 3264 * delalloc_end is already one less than the total length, so 3265 * we don't subtract one from PAGE_SIZE 3266 */ 3267 delalloc_to_write += (delalloc_end - delalloc_start + 3268 PAGE_SIZE) >> PAGE_SHIFT; 3269 delalloc_start = delalloc_end + 1; 3270 } 3271 if (wbc->nr_to_write < delalloc_to_write) { 3272 int thresh = 8192; 3273 3274 if (delalloc_to_write < thresh * 2) 3275 thresh = delalloc_to_write; 3276 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3277 thresh); 3278 } 3279 3280 /* did the fill delalloc function already unlock and start 3281 * the IO? 3282 */ 3283 if (page_started) { 3284 /* 3285 * we've unlocked the page, so we can't update 3286 * the mapping's writeback index, just update 3287 * nr_to_write. 3288 */ 3289 wbc->nr_to_write -= *nr_written; 3290 return 1; 3291 } 3292 3293 ret = 0; 3294 3295 done: 3296 return ret; 3297 } 3298 3299 /* 3300 * helper for __extent_writepage. This calls the writepage start hooks, 3301 * and does the loop to map the page into extents and bios. 3302 * 3303 * We return 1 if the IO is started and the page is unlocked, 3304 * 0 if all went well (page still locked) 3305 * < 0 if there were errors (page still locked) 3306 */ 3307 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3308 struct page *page, 3309 struct writeback_control *wbc, 3310 struct extent_page_data *epd, 3311 loff_t i_size, 3312 unsigned long nr_written, 3313 int write_flags, int *nr_ret) 3314 { 3315 struct extent_io_tree *tree = epd->tree; 3316 u64 start = page_offset(page); 3317 u64 page_end = start + PAGE_SIZE - 1; 3318 u64 end; 3319 u64 cur = start; 3320 u64 extent_offset; 3321 u64 block_start; 3322 u64 iosize; 3323 sector_t sector; 3324 struct extent_map *em; 3325 struct block_device *bdev; 3326 size_t pg_offset = 0; 3327 size_t blocksize; 3328 int ret = 0; 3329 int nr = 0; 3330 bool compressed; 3331 3332 if (tree->ops && tree->ops->writepage_start_hook) { 3333 ret = tree->ops->writepage_start_hook(page, start, 3334 page_end); 3335 if (ret) { 3336 /* Fixup worker will requeue */ 3337 if (ret == -EBUSY) 3338 wbc->pages_skipped++; 3339 else 3340 redirty_page_for_writepage(wbc, page); 3341 3342 update_nr_written(wbc, nr_written); 3343 unlock_page(page); 3344 return 1; 3345 } 3346 } 3347 3348 /* 3349 * we don't want to touch the inode after unlocking the page, 3350 * so we update the mapping writeback index now 3351 */ 3352 update_nr_written(wbc, nr_written + 1); 3353 3354 end = page_end; 3355 if (i_size <= start) { 3356 if (tree->ops && tree->ops->writepage_end_io_hook) 3357 tree->ops->writepage_end_io_hook(page, start, 3358 page_end, NULL, 1); 3359 goto done; 3360 } 3361 3362 blocksize = inode->i_sb->s_blocksize; 3363 3364 while (cur <= end) { 3365 u64 em_end; 3366 3367 if (cur >= i_size) { 3368 if (tree->ops && tree->ops->writepage_end_io_hook) 3369 tree->ops->writepage_end_io_hook(page, cur, 3370 page_end, NULL, 1); 3371 break; 3372 } 3373 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur, 3374 end - cur + 1, 1); 3375 if (IS_ERR_OR_NULL(em)) { 3376 SetPageError(page); 3377 ret = PTR_ERR_OR_ZERO(em); 3378 break; 3379 } 3380 3381 extent_offset = cur - em->start; 3382 em_end = extent_map_end(em); 3383 BUG_ON(em_end <= cur); 3384 BUG_ON(end < cur); 3385 iosize = min(em_end - cur, end - cur + 1); 3386 iosize = ALIGN(iosize, blocksize); 3387 sector = (em->block_start + extent_offset) >> 9; 3388 bdev = em->bdev; 3389 block_start = em->block_start; 3390 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3391 free_extent_map(em); 3392 em = NULL; 3393 3394 /* 3395 * compressed and inline extents are written through other 3396 * paths in the FS 3397 */ 3398 if (compressed || block_start == EXTENT_MAP_HOLE || 3399 block_start == EXTENT_MAP_INLINE) { 3400 /* 3401 * end_io notification does not happen here for 3402 * compressed extents 3403 */ 3404 if (!compressed && tree->ops && 3405 tree->ops->writepage_end_io_hook) 3406 tree->ops->writepage_end_io_hook(page, cur, 3407 cur + iosize - 1, 3408 NULL, 1); 3409 else if (compressed) { 3410 /* we don't want to end_page_writeback on 3411 * a compressed extent. this happens 3412 * elsewhere 3413 */ 3414 nr++; 3415 } 3416 3417 cur += iosize; 3418 pg_offset += iosize; 3419 continue; 3420 } 3421 3422 set_range_writeback(tree, cur, cur + iosize - 1); 3423 if (!PageWriteback(page)) { 3424 btrfs_err(BTRFS_I(inode)->root->fs_info, 3425 "page %lu not writeback, cur %llu end %llu", 3426 page->index, cur, end); 3427 } 3428 3429 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc, 3430 page, sector, iosize, pg_offset, 3431 bdev, &epd->bio, 3432 end_bio_extent_writepage, 3433 0, 0, 0, false); 3434 if (ret) { 3435 SetPageError(page); 3436 if (PageWriteback(page)) 3437 end_page_writeback(page); 3438 } 3439 3440 cur = cur + iosize; 3441 pg_offset += iosize; 3442 nr++; 3443 } 3444 done: 3445 *nr_ret = nr; 3446 return ret; 3447 } 3448 3449 /* 3450 * the writepage semantics are similar to regular writepage. extent 3451 * records are inserted to lock ranges in the tree, and as dirty areas 3452 * are found, they are marked writeback. Then the lock bits are removed 3453 * and the end_io handler clears the writeback ranges 3454 */ 3455 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3456 void *data) 3457 { 3458 struct inode *inode = page->mapping->host; 3459 struct extent_page_data *epd = data; 3460 u64 start = page_offset(page); 3461 u64 page_end = start + PAGE_SIZE - 1; 3462 int ret; 3463 int nr = 0; 3464 size_t pg_offset = 0; 3465 loff_t i_size = i_size_read(inode); 3466 unsigned long end_index = i_size >> PAGE_SHIFT; 3467 int write_flags = 0; 3468 unsigned long nr_written = 0; 3469 3470 if (wbc->sync_mode == WB_SYNC_ALL) 3471 write_flags = REQ_SYNC; 3472 3473 trace___extent_writepage(page, inode, wbc); 3474 3475 WARN_ON(!PageLocked(page)); 3476 3477 ClearPageError(page); 3478 3479 pg_offset = i_size & (PAGE_SIZE - 1); 3480 if (page->index > end_index || 3481 (page->index == end_index && !pg_offset)) { 3482 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3483 unlock_page(page); 3484 return 0; 3485 } 3486 3487 if (page->index == end_index) { 3488 char *userpage; 3489 3490 userpage = kmap_atomic(page); 3491 memset(userpage + pg_offset, 0, 3492 PAGE_SIZE - pg_offset); 3493 kunmap_atomic(userpage); 3494 flush_dcache_page(page); 3495 } 3496 3497 pg_offset = 0; 3498 3499 set_page_extent_mapped(page); 3500 3501 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3502 if (ret == 1) 3503 goto done_unlocked; 3504 if (ret) 3505 goto done; 3506 3507 ret = __extent_writepage_io(inode, page, wbc, epd, 3508 i_size, nr_written, write_flags, &nr); 3509 if (ret == 1) 3510 goto done_unlocked; 3511 3512 done: 3513 if (nr == 0) { 3514 /* make sure the mapping tag for page dirty gets cleared */ 3515 set_page_writeback(page); 3516 end_page_writeback(page); 3517 } 3518 if (PageError(page)) { 3519 ret = ret < 0 ? ret : -EIO; 3520 end_extent_writepage(page, ret, start, page_end); 3521 } 3522 unlock_page(page); 3523 return ret; 3524 3525 done_unlocked: 3526 return 0; 3527 } 3528 3529 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3530 { 3531 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3532 TASK_UNINTERRUPTIBLE); 3533 } 3534 3535 static noinline_for_stack int 3536 lock_extent_buffer_for_io(struct extent_buffer *eb, 3537 struct btrfs_fs_info *fs_info, 3538 struct extent_page_data *epd) 3539 { 3540 unsigned long i, num_pages; 3541 int flush = 0; 3542 int ret = 0; 3543 3544 if (!btrfs_try_tree_write_lock(eb)) { 3545 flush = 1; 3546 flush_write_bio(epd); 3547 btrfs_tree_lock(eb); 3548 } 3549 3550 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3551 btrfs_tree_unlock(eb); 3552 if (!epd->sync_io) 3553 return 0; 3554 if (!flush) { 3555 flush_write_bio(epd); 3556 flush = 1; 3557 } 3558 while (1) { 3559 wait_on_extent_buffer_writeback(eb); 3560 btrfs_tree_lock(eb); 3561 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3562 break; 3563 btrfs_tree_unlock(eb); 3564 } 3565 } 3566 3567 /* 3568 * We need to do this to prevent races in people who check if the eb is 3569 * under IO since we can end up having no IO bits set for a short period 3570 * of time. 3571 */ 3572 spin_lock(&eb->refs_lock); 3573 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3574 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3575 spin_unlock(&eb->refs_lock); 3576 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3577 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3578 -eb->len, 3579 fs_info->dirty_metadata_batch); 3580 ret = 1; 3581 } else { 3582 spin_unlock(&eb->refs_lock); 3583 } 3584 3585 btrfs_tree_unlock(eb); 3586 3587 if (!ret) 3588 return ret; 3589 3590 num_pages = num_extent_pages(eb->start, eb->len); 3591 for (i = 0; i < num_pages; i++) { 3592 struct page *p = eb->pages[i]; 3593 3594 if (!trylock_page(p)) { 3595 if (!flush) { 3596 flush_write_bio(epd); 3597 flush = 1; 3598 } 3599 lock_page(p); 3600 } 3601 } 3602 3603 return ret; 3604 } 3605 3606 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3607 { 3608 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3609 smp_mb__after_atomic(); 3610 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3611 } 3612 3613 static void set_btree_ioerr(struct page *page) 3614 { 3615 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3616 3617 SetPageError(page); 3618 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3619 return; 3620 3621 /* 3622 * If writeback for a btree extent that doesn't belong to a log tree 3623 * failed, increment the counter transaction->eb_write_errors. 3624 * We do this because while the transaction is running and before it's 3625 * committing (when we call filemap_fdata[write|wait]_range against 3626 * the btree inode), we might have 3627 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3628 * returns an error or an error happens during writeback, when we're 3629 * committing the transaction we wouldn't know about it, since the pages 3630 * can be no longer dirty nor marked anymore for writeback (if a 3631 * subsequent modification to the extent buffer didn't happen before the 3632 * transaction commit), which makes filemap_fdata[write|wait]_range not 3633 * able to find the pages tagged with SetPageError at transaction 3634 * commit time. So if this happens we must abort the transaction, 3635 * otherwise we commit a super block with btree roots that point to 3636 * btree nodes/leafs whose content on disk is invalid - either garbage 3637 * or the content of some node/leaf from a past generation that got 3638 * cowed or deleted and is no longer valid. 3639 * 3640 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3641 * not be enough - we need to distinguish between log tree extents vs 3642 * non-log tree extents, and the next filemap_fdatawait_range() call 3643 * will catch and clear such errors in the mapping - and that call might 3644 * be from a log sync and not from a transaction commit. Also, checking 3645 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3646 * not done and would not be reliable - the eb might have been released 3647 * from memory and reading it back again means that flag would not be 3648 * set (since it's a runtime flag, not persisted on disk). 3649 * 3650 * Using the flags below in the btree inode also makes us achieve the 3651 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3652 * writeback for all dirty pages and before filemap_fdatawait_range() 3653 * is called, the writeback for all dirty pages had already finished 3654 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3655 * filemap_fdatawait_range() would return success, as it could not know 3656 * that writeback errors happened (the pages were no longer tagged for 3657 * writeback). 3658 */ 3659 switch (eb->log_index) { 3660 case -1: 3661 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3662 break; 3663 case 0: 3664 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3665 break; 3666 case 1: 3667 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3668 break; 3669 default: 3670 BUG(); /* unexpected, logic error */ 3671 } 3672 } 3673 3674 static void end_bio_extent_buffer_writepage(struct bio *bio) 3675 { 3676 struct bio_vec *bvec; 3677 struct extent_buffer *eb; 3678 int i, done; 3679 3680 bio_for_each_segment_all(bvec, bio, i) { 3681 struct page *page = bvec->bv_page; 3682 3683 eb = (struct extent_buffer *)page->private; 3684 BUG_ON(!eb); 3685 done = atomic_dec_and_test(&eb->io_pages); 3686 3687 if (bio->bi_error || 3688 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3689 ClearPageUptodate(page); 3690 set_btree_ioerr(page); 3691 } 3692 3693 end_page_writeback(page); 3694 3695 if (!done) 3696 continue; 3697 3698 end_extent_buffer_writeback(eb); 3699 } 3700 3701 bio_put(bio); 3702 } 3703 3704 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3705 struct btrfs_fs_info *fs_info, 3706 struct writeback_control *wbc, 3707 struct extent_page_data *epd) 3708 { 3709 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3710 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3711 u64 offset = eb->start; 3712 u32 nritems; 3713 unsigned long i, num_pages; 3714 unsigned long bio_flags = 0; 3715 unsigned long start, end; 3716 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META; 3717 int ret = 0; 3718 3719 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3720 num_pages = num_extent_pages(eb->start, eb->len); 3721 atomic_set(&eb->io_pages, num_pages); 3722 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3723 bio_flags = EXTENT_BIO_TREE_LOG; 3724 3725 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3726 nritems = btrfs_header_nritems(eb); 3727 if (btrfs_header_level(eb) > 0) { 3728 end = btrfs_node_key_ptr_offset(nritems); 3729 3730 memzero_extent_buffer(eb, end, eb->len - end); 3731 } else { 3732 /* 3733 * leaf: 3734 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3735 */ 3736 start = btrfs_item_nr_offset(nritems); 3737 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb); 3738 memzero_extent_buffer(eb, start, end - start); 3739 } 3740 3741 for (i = 0; i < num_pages; i++) { 3742 struct page *p = eb->pages[i]; 3743 3744 clear_page_dirty_for_io(p); 3745 set_page_writeback(p); 3746 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc, 3747 p, offset >> 9, PAGE_SIZE, 0, bdev, 3748 &epd->bio, 3749 end_bio_extent_buffer_writepage, 3750 0, epd->bio_flags, bio_flags, false); 3751 epd->bio_flags = bio_flags; 3752 if (ret) { 3753 set_btree_ioerr(p); 3754 if (PageWriteback(p)) 3755 end_page_writeback(p); 3756 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3757 end_extent_buffer_writeback(eb); 3758 ret = -EIO; 3759 break; 3760 } 3761 offset += PAGE_SIZE; 3762 update_nr_written(wbc, 1); 3763 unlock_page(p); 3764 } 3765 3766 if (unlikely(ret)) { 3767 for (; i < num_pages; i++) { 3768 struct page *p = eb->pages[i]; 3769 clear_page_dirty_for_io(p); 3770 unlock_page(p); 3771 } 3772 } 3773 3774 return ret; 3775 } 3776 3777 int btree_write_cache_pages(struct address_space *mapping, 3778 struct writeback_control *wbc) 3779 { 3780 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3781 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3782 struct extent_buffer *eb, *prev_eb = NULL; 3783 struct extent_page_data epd = { 3784 .bio = NULL, 3785 .tree = tree, 3786 .extent_locked = 0, 3787 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3788 .bio_flags = 0, 3789 }; 3790 int ret = 0; 3791 int done = 0; 3792 int nr_to_write_done = 0; 3793 struct pagevec pvec; 3794 int nr_pages; 3795 pgoff_t index; 3796 pgoff_t end; /* Inclusive */ 3797 int scanned = 0; 3798 int tag; 3799 3800 pagevec_init(&pvec, 0); 3801 if (wbc->range_cyclic) { 3802 index = mapping->writeback_index; /* Start from prev offset */ 3803 end = -1; 3804 } else { 3805 index = wbc->range_start >> PAGE_SHIFT; 3806 end = wbc->range_end >> PAGE_SHIFT; 3807 scanned = 1; 3808 } 3809 if (wbc->sync_mode == WB_SYNC_ALL) 3810 tag = PAGECACHE_TAG_TOWRITE; 3811 else 3812 tag = PAGECACHE_TAG_DIRTY; 3813 retry: 3814 if (wbc->sync_mode == WB_SYNC_ALL) 3815 tag_pages_for_writeback(mapping, index, end); 3816 while (!done && !nr_to_write_done && (index <= end) && 3817 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3818 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3819 unsigned i; 3820 3821 scanned = 1; 3822 for (i = 0; i < nr_pages; i++) { 3823 struct page *page = pvec.pages[i]; 3824 3825 if (!PagePrivate(page)) 3826 continue; 3827 3828 if (!wbc->range_cyclic && page->index > end) { 3829 done = 1; 3830 break; 3831 } 3832 3833 spin_lock(&mapping->private_lock); 3834 if (!PagePrivate(page)) { 3835 spin_unlock(&mapping->private_lock); 3836 continue; 3837 } 3838 3839 eb = (struct extent_buffer *)page->private; 3840 3841 /* 3842 * Shouldn't happen and normally this would be a BUG_ON 3843 * but no sense in crashing the users box for something 3844 * we can survive anyway. 3845 */ 3846 if (WARN_ON(!eb)) { 3847 spin_unlock(&mapping->private_lock); 3848 continue; 3849 } 3850 3851 if (eb == prev_eb) { 3852 spin_unlock(&mapping->private_lock); 3853 continue; 3854 } 3855 3856 ret = atomic_inc_not_zero(&eb->refs); 3857 spin_unlock(&mapping->private_lock); 3858 if (!ret) 3859 continue; 3860 3861 prev_eb = eb; 3862 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3863 if (!ret) { 3864 free_extent_buffer(eb); 3865 continue; 3866 } 3867 3868 ret = write_one_eb(eb, fs_info, wbc, &epd); 3869 if (ret) { 3870 done = 1; 3871 free_extent_buffer(eb); 3872 break; 3873 } 3874 free_extent_buffer(eb); 3875 3876 /* 3877 * the filesystem may choose to bump up nr_to_write. 3878 * We have to make sure to honor the new nr_to_write 3879 * at any time 3880 */ 3881 nr_to_write_done = wbc->nr_to_write <= 0; 3882 } 3883 pagevec_release(&pvec); 3884 cond_resched(); 3885 } 3886 if (!scanned && !done) { 3887 /* 3888 * We hit the last page and there is more work to be done: wrap 3889 * back to the start of the file 3890 */ 3891 scanned = 1; 3892 index = 0; 3893 goto retry; 3894 } 3895 flush_write_bio(&epd); 3896 return ret; 3897 } 3898 3899 /** 3900 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3901 * @mapping: address space structure to write 3902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3903 * @writepage: function called for each page 3904 * @data: data passed to writepage function 3905 * 3906 * If a page is already under I/O, write_cache_pages() skips it, even 3907 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3908 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3909 * and msync() need to guarantee that all the data which was dirty at the time 3910 * the call was made get new I/O started against them. If wbc->sync_mode is 3911 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3912 * existing IO to complete. 3913 */ 3914 static int extent_write_cache_pages(struct address_space *mapping, 3915 struct writeback_control *wbc, 3916 writepage_t writepage, void *data, 3917 void (*flush_fn)(void *)) 3918 { 3919 struct inode *inode = mapping->host; 3920 int ret = 0; 3921 int done = 0; 3922 int nr_to_write_done = 0; 3923 struct pagevec pvec; 3924 int nr_pages; 3925 pgoff_t index; 3926 pgoff_t end; /* Inclusive */ 3927 pgoff_t done_index; 3928 int range_whole = 0; 3929 int scanned = 0; 3930 int tag; 3931 3932 /* 3933 * We have to hold onto the inode so that ordered extents can do their 3934 * work when the IO finishes. The alternative to this is failing to add 3935 * an ordered extent if the igrab() fails there and that is a huge pain 3936 * to deal with, so instead just hold onto the inode throughout the 3937 * writepages operation. If it fails here we are freeing up the inode 3938 * anyway and we'd rather not waste our time writing out stuff that is 3939 * going to be truncated anyway. 3940 */ 3941 if (!igrab(inode)) 3942 return 0; 3943 3944 pagevec_init(&pvec, 0); 3945 if (wbc->range_cyclic) { 3946 index = mapping->writeback_index; /* Start from prev offset */ 3947 end = -1; 3948 } else { 3949 index = wbc->range_start >> PAGE_SHIFT; 3950 end = wbc->range_end >> PAGE_SHIFT; 3951 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3952 range_whole = 1; 3953 scanned = 1; 3954 } 3955 if (wbc->sync_mode == WB_SYNC_ALL) 3956 tag = PAGECACHE_TAG_TOWRITE; 3957 else 3958 tag = PAGECACHE_TAG_DIRTY; 3959 retry: 3960 if (wbc->sync_mode == WB_SYNC_ALL) 3961 tag_pages_for_writeback(mapping, index, end); 3962 done_index = index; 3963 while (!done && !nr_to_write_done && (index <= end) && 3964 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3965 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3966 unsigned i; 3967 3968 scanned = 1; 3969 for (i = 0; i < nr_pages; i++) { 3970 struct page *page = pvec.pages[i]; 3971 3972 done_index = page->index; 3973 /* 3974 * At this point we hold neither mapping->tree_lock nor 3975 * lock on the page itself: the page may be truncated or 3976 * invalidated (changing page->mapping to NULL), or even 3977 * swizzled back from swapper_space to tmpfs file 3978 * mapping 3979 */ 3980 if (!trylock_page(page)) { 3981 flush_fn(data); 3982 lock_page(page); 3983 } 3984 3985 if (unlikely(page->mapping != mapping)) { 3986 unlock_page(page); 3987 continue; 3988 } 3989 3990 if (!wbc->range_cyclic && page->index > end) { 3991 done = 1; 3992 unlock_page(page); 3993 continue; 3994 } 3995 3996 if (wbc->sync_mode != WB_SYNC_NONE) { 3997 if (PageWriteback(page)) 3998 flush_fn(data); 3999 wait_on_page_writeback(page); 4000 } 4001 4002 if (PageWriteback(page) || 4003 !clear_page_dirty_for_io(page)) { 4004 unlock_page(page); 4005 continue; 4006 } 4007 4008 ret = (*writepage)(page, wbc, data); 4009 4010 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4011 unlock_page(page); 4012 ret = 0; 4013 } 4014 if (ret < 0) { 4015 /* 4016 * done_index is set past this page, 4017 * so media errors will not choke 4018 * background writeout for the entire 4019 * file. This has consequences for 4020 * range_cyclic semantics (ie. it may 4021 * not be suitable for data integrity 4022 * writeout). 4023 */ 4024 done_index = page->index + 1; 4025 done = 1; 4026 break; 4027 } 4028 4029 /* 4030 * the filesystem may choose to bump up nr_to_write. 4031 * We have to make sure to honor the new nr_to_write 4032 * at any time 4033 */ 4034 nr_to_write_done = wbc->nr_to_write <= 0; 4035 } 4036 pagevec_release(&pvec); 4037 cond_resched(); 4038 } 4039 if (!scanned && !done) { 4040 /* 4041 * We hit the last page and there is more work to be done: wrap 4042 * back to the start of the file 4043 */ 4044 scanned = 1; 4045 index = 0; 4046 goto retry; 4047 } 4048 4049 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4050 mapping->writeback_index = done_index; 4051 4052 btrfs_add_delayed_iput(inode); 4053 return ret; 4054 } 4055 4056 static void flush_epd_write_bio(struct extent_page_data *epd) 4057 { 4058 if (epd->bio) { 4059 int ret; 4060 4061 bio_set_op_attrs(epd->bio, REQ_OP_WRITE, 4062 epd->sync_io ? REQ_SYNC : 0); 4063 4064 ret = submit_one_bio(epd->bio, 0, epd->bio_flags); 4065 BUG_ON(ret < 0); /* -ENOMEM */ 4066 epd->bio = NULL; 4067 } 4068 } 4069 4070 static noinline void flush_write_bio(void *data) 4071 { 4072 struct extent_page_data *epd = data; 4073 flush_epd_write_bio(epd); 4074 } 4075 4076 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4077 get_extent_t *get_extent, 4078 struct writeback_control *wbc) 4079 { 4080 int ret; 4081 struct extent_page_data epd = { 4082 .bio = NULL, 4083 .tree = tree, 4084 .get_extent = get_extent, 4085 .extent_locked = 0, 4086 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4087 .bio_flags = 0, 4088 }; 4089 4090 ret = __extent_writepage(page, wbc, &epd); 4091 4092 flush_epd_write_bio(&epd); 4093 return ret; 4094 } 4095 4096 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4097 u64 start, u64 end, get_extent_t *get_extent, 4098 int mode) 4099 { 4100 int ret = 0; 4101 struct address_space *mapping = inode->i_mapping; 4102 struct page *page; 4103 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4104 PAGE_SHIFT; 4105 4106 struct extent_page_data epd = { 4107 .bio = NULL, 4108 .tree = tree, 4109 .get_extent = get_extent, 4110 .extent_locked = 1, 4111 .sync_io = mode == WB_SYNC_ALL, 4112 .bio_flags = 0, 4113 }; 4114 struct writeback_control wbc_writepages = { 4115 .sync_mode = mode, 4116 .nr_to_write = nr_pages * 2, 4117 .range_start = start, 4118 .range_end = end + 1, 4119 }; 4120 4121 while (start <= end) { 4122 page = find_get_page(mapping, start >> PAGE_SHIFT); 4123 if (clear_page_dirty_for_io(page)) 4124 ret = __extent_writepage(page, &wbc_writepages, &epd); 4125 else { 4126 if (tree->ops && tree->ops->writepage_end_io_hook) 4127 tree->ops->writepage_end_io_hook(page, start, 4128 start + PAGE_SIZE - 1, 4129 NULL, 1); 4130 unlock_page(page); 4131 } 4132 put_page(page); 4133 start += PAGE_SIZE; 4134 } 4135 4136 flush_epd_write_bio(&epd); 4137 return ret; 4138 } 4139 4140 int extent_writepages(struct extent_io_tree *tree, 4141 struct address_space *mapping, 4142 get_extent_t *get_extent, 4143 struct writeback_control *wbc) 4144 { 4145 int ret = 0; 4146 struct extent_page_data epd = { 4147 .bio = NULL, 4148 .tree = tree, 4149 .get_extent = get_extent, 4150 .extent_locked = 0, 4151 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4152 .bio_flags = 0, 4153 }; 4154 4155 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd, 4156 flush_write_bio); 4157 flush_epd_write_bio(&epd); 4158 return ret; 4159 } 4160 4161 int extent_readpages(struct extent_io_tree *tree, 4162 struct address_space *mapping, 4163 struct list_head *pages, unsigned nr_pages, 4164 get_extent_t get_extent) 4165 { 4166 struct bio *bio = NULL; 4167 unsigned page_idx; 4168 unsigned long bio_flags = 0; 4169 struct page *pagepool[16]; 4170 struct page *page; 4171 struct extent_map *em_cached = NULL; 4172 int nr = 0; 4173 u64 prev_em_start = (u64)-1; 4174 4175 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4176 page = list_entry(pages->prev, struct page, lru); 4177 4178 prefetchw(&page->flags); 4179 list_del(&page->lru); 4180 if (add_to_page_cache_lru(page, mapping, 4181 page->index, 4182 readahead_gfp_mask(mapping))) { 4183 put_page(page); 4184 continue; 4185 } 4186 4187 pagepool[nr++] = page; 4188 if (nr < ARRAY_SIZE(pagepool)) 4189 continue; 4190 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4191 &bio, 0, &bio_flags, &prev_em_start); 4192 nr = 0; 4193 } 4194 if (nr) 4195 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4196 &bio, 0, &bio_flags, &prev_em_start); 4197 4198 if (em_cached) 4199 free_extent_map(em_cached); 4200 4201 BUG_ON(!list_empty(pages)); 4202 if (bio) 4203 return submit_one_bio(bio, 0, bio_flags); 4204 return 0; 4205 } 4206 4207 /* 4208 * basic invalidatepage code, this waits on any locked or writeback 4209 * ranges corresponding to the page, and then deletes any extent state 4210 * records from the tree 4211 */ 4212 int extent_invalidatepage(struct extent_io_tree *tree, 4213 struct page *page, unsigned long offset) 4214 { 4215 struct extent_state *cached_state = NULL; 4216 u64 start = page_offset(page); 4217 u64 end = start + PAGE_SIZE - 1; 4218 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4219 4220 start += ALIGN(offset, blocksize); 4221 if (start > end) 4222 return 0; 4223 4224 lock_extent_bits(tree, start, end, &cached_state); 4225 wait_on_page_writeback(page); 4226 clear_extent_bit(tree, start, end, 4227 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4228 EXTENT_DO_ACCOUNTING, 4229 1, 1, &cached_state, GFP_NOFS); 4230 return 0; 4231 } 4232 4233 /* 4234 * a helper for releasepage, this tests for areas of the page that 4235 * are locked or under IO and drops the related state bits if it is safe 4236 * to drop the page. 4237 */ 4238 static int try_release_extent_state(struct extent_map_tree *map, 4239 struct extent_io_tree *tree, 4240 struct page *page, gfp_t mask) 4241 { 4242 u64 start = page_offset(page); 4243 u64 end = start + PAGE_SIZE - 1; 4244 int ret = 1; 4245 4246 if (test_range_bit(tree, start, end, 4247 EXTENT_IOBITS, 0, NULL)) 4248 ret = 0; 4249 else { 4250 /* 4251 * at this point we can safely clear everything except the 4252 * locked bit and the nodatasum bit 4253 */ 4254 ret = clear_extent_bit(tree, start, end, 4255 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4256 0, 0, NULL, mask); 4257 4258 /* if clear_extent_bit failed for enomem reasons, 4259 * we can't allow the release to continue. 4260 */ 4261 if (ret < 0) 4262 ret = 0; 4263 else 4264 ret = 1; 4265 } 4266 return ret; 4267 } 4268 4269 /* 4270 * a helper for releasepage. As long as there are no locked extents 4271 * in the range corresponding to the page, both state records and extent 4272 * map records are removed 4273 */ 4274 int try_release_extent_mapping(struct extent_map_tree *map, 4275 struct extent_io_tree *tree, struct page *page, 4276 gfp_t mask) 4277 { 4278 struct extent_map *em; 4279 u64 start = page_offset(page); 4280 u64 end = start + PAGE_SIZE - 1; 4281 4282 if (gfpflags_allow_blocking(mask) && 4283 page->mapping->host->i_size > SZ_16M) { 4284 u64 len; 4285 while (start <= end) { 4286 len = end - start + 1; 4287 write_lock(&map->lock); 4288 em = lookup_extent_mapping(map, start, len); 4289 if (!em) { 4290 write_unlock(&map->lock); 4291 break; 4292 } 4293 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4294 em->start != start) { 4295 write_unlock(&map->lock); 4296 free_extent_map(em); 4297 break; 4298 } 4299 if (!test_range_bit(tree, em->start, 4300 extent_map_end(em) - 1, 4301 EXTENT_LOCKED | EXTENT_WRITEBACK, 4302 0, NULL)) { 4303 remove_extent_mapping(map, em); 4304 /* once for the rb tree */ 4305 free_extent_map(em); 4306 } 4307 start = extent_map_end(em); 4308 write_unlock(&map->lock); 4309 4310 /* once for us */ 4311 free_extent_map(em); 4312 } 4313 } 4314 return try_release_extent_state(map, tree, page, mask); 4315 } 4316 4317 /* 4318 * helper function for fiemap, which doesn't want to see any holes. 4319 * This maps until we find something past 'last' 4320 */ 4321 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4322 u64 offset, 4323 u64 last, 4324 get_extent_t *get_extent) 4325 { 4326 u64 sectorsize = btrfs_inode_sectorsize(inode); 4327 struct extent_map *em; 4328 u64 len; 4329 4330 if (offset >= last) 4331 return NULL; 4332 4333 while (1) { 4334 len = last - offset; 4335 if (len == 0) 4336 break; 4337 len = ALIGN(len, sectorsize); 4338 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0); 4339 if (IS_ERR_OR_NULL(em)) 4340 return em; 4341 4342 /* if this isn't a hole return it */ 4343 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4344 em->block_start != EXTENT_MAP_HOLE) { 4345 return em; 4346 } 4347 4348 /* this is a hole, advance to the next extent */ 4349 offset = extent_map_end(em); 4350 free_extent_map(em); 4351 if (offset >= last) 4352 break; 4353 } 4354 return NULL; 4355 } 4356 4357 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4358 __u64 start, __u64 len, get_extent_t *get_extent) 4359 { 4360 int ret = 0; 4361 u64 off = start; 4362 u64 max = start + len; 4363 u32 flags = 0; 4364 u32 found_type; 4365 u64 last; 4366 u64 last_for_get_extent = 0; 4367 u64 disko = 0; 4368 u64 isize = i_size_read(inode); 4369 struct btrfs_key found_key; 4370 struct extent_map *em = NULL; 4371 struct extent_state *cached_state = NULL; 4372 struct btrfs_path *path; 4373 struct btrfs_root *root = BTRFS_I(inode)->root; 4374 int end = 0; 4375 u64 em_start = 0; 4376 u64 em_len = 0; 4377 u64 em_end = 0; 4378 4379 if (len == 0) 4380 return -EINVAL; 4381 4382 path = btrfs_alloc_path(); 4383 if (!path) 4384 return -ENOMEM; 4385 path->leave_spinning = 1; 4386 4387 start = round_down(start, btrfs_inode_sectorsize(inode)); 4388 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4389 4390 /* 4391 * lookup the last file extent. We're not using i_size here 4392 * because there might be preallocation past i_size 4393 */ 4394 ret = btrfs_lookup_file_extent(NULL, root, path, 4395 btrfs_ino(BTRFS_I(inode)), -1, 0); 4396 if (ret < 0) { 4397 btrfs_free_path(path); 4398 return ret; 4399 } else { 4400 WARN_ON(!ret); 4401 if (ret == 1) 4402 ret = 0; 4403 } 4404 4405 path->slots[0]--; 4406 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4407 found_type = found_key.type; 4408 4409 /* No extents, but there might be delalloc bits */ 4410 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4411 found_type != BTRFS_EXTENT_DATA_KEY) { 4412 /* have to trust i_size as the end */ 4413 last = (u64)-1; 4414 last_for_get_extent = isize; 4415 } else { 4416 /* 4417 * remember the start of the last extent. There are a 4418 * bunch of different factors that go into the length of the 4419 * extent, so its much less complex to remember where it started 4420 */ 4421 last = found_key.offset; 4422 last_for_get_extent = last + 1; 4423 } 4424 btrfs_release_path(path); 4425 4426 /* 4427 * we might have some extents allocated but more delalloc past those 4428 * extents. so, we trust isize unless the start of the last extent is 4429 * beyond isize 4430 */ 4431 if (last < isize) { 4432 last = (u64)-1; 4433 last_for_get_extent = isize; 4434 } 4435 4436 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4437 &cached_state); 4438 4439 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4440 get_extent); 4441 if (!em) 4442 goto out; 4443 if (IS_ERR(em)) { 4444 ret = PTR_ERR(em); 4445 goto out; 4446 } 4447 4448 while (!end) { 4449 u64 offset_in_extent = 0; 4450 4451 /* break if the extent we found is outside the range */ 4452 if (em->start >= max || extent_map_end(em) < off) 4453 break; 4454 4455 /* 4456 * get_extent may return an extent that starts before our 4457 * requested range. We have to make sure the ranges 4458 * we return to fiemap always move forward and don't 4459 * overlap, so adjust the offsets here 4460 */ 4461 em_start = max(em->start, off); 4462 4463 /* 4464 * record the offset from the start of the extent 4465 * for adjusting the disk offset below. Only do this if the 4466 * extent isn't compressed since our in ram offset may be past 4467 * what we have actually allocated on disk. 4468 */ 4469 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4470 offset_in_extent = em_start - em->start; 4471 em_end = extent_map_end(em); 4472 em_len = em_end - em_start; 4473 disko = 0; 4474 flags = 0; 4475 4476 /* 4477 * bump off for our next call to get_extent 4478 */ 4479 off = extent_map_end(em); 4480 if (off >= max) 4481 end = 1; 4482 4483 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4484 end = 1; 4485 flags |= FIEMAP_EXTENT_LAST; 4486 } else if (em->block_start == EXTENT_MAP_INLINE) { 4487 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4488 FIEMAP_EXTENT_NOT_ALIGNED); 4489 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4490 flags |= (FIEMAP_EXTENT_DELALLOC | 4491 FIEMAP_EXTENT_UNKNOWN); 4492 } else if (fieinfo->fi_extents_max) { 4493 struct btrfs_trans_handle *trans; 4494 4495 u64 bytenr = em->block_start - 4496 (em->start - em->orig_start); 4497 4498 disko = em->block_start + offset_in_extent; 4499 4500 /* 4501 * We need a trans handle to get delayed refs 4502 */ 4503 trans = btrfs_join_transaction(root); 4504 /* 4505 * It's OK if we can't start a trans we can still check 4506 * from commit_root 4507 */ 4508 if (IS_ERR(trans)) 4509 trans = NULL; 4510 4511 /* 4512 * As btrfs supports shared space, this information 4513 * can be exported to userspace tools via 4514 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4515 * then we're just getting a count and we can skip the 4516 * lookup stuff. 4517 */ 4518 ret = btrfs_check_shared(trans, root->fs_info, 4519 root->objectid, 4520 btrfs_ino(BTRFS_I(inode)), bytenr); 4521 if (trans) 4522 btrfs_end_transaction(trans); 4523 if (ret < 0) 4524 goto out_free; 4525 if (ret) 4526 flags |= FIEMAP_EXTENT_SHARED; 4527 ret = 0; 4528 } 4529 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4530 flags |= FIEMAP_EXTENT_ENCODED; 4531 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4532 flags |= FIEMAP_EXTENT_UNWRITTEN; 4533 4534 free_extent_map(em); 4535 em = NULL; 4536 if ((em_start >= last) || em_len == (u64)-1 || 4537 (last == (u64)-1 && isize <= em_end)) { 4538 flags |= FIEMAP_EXTENT_LAST; 4539 end = 1; 4540 } 4541 4542 /* now scan forward to see if this is really the last extent. */ 4543 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4544 get_extent); 4545 if (IS_ERR(em)) { 4546 ret = PTR_ERR(em); 4547 goto out; 4548 } 4549 if (!em) { 4550 flags |= FIEMAP_EXTENT_LAST; 4551 end = 1; 4552 } 4553 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4554 em_len, flags); 4555 if (ret) { 4556 if (ret == 1) 4557 ret = 0; 4558 goto out_free; 4559 } 4560 } 4561 out_free: 4562 free_extent_map(em); 4563 out: 4564 btrfs_free_path(path); 4565 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4566 &cached_state, GFP_NOFS); 4567 return ret; 4568 } 4569 4570 static void __free_extent_buffer(struct extent_buffer *eb) 4571 { 4572 btrfs_leak_debug_del(&eb->leak_list); 4573 kmem_cache_free(extent_buffer_cache, eb); 4574 } 4575 4576 int extent_buffer_under_io(struct extent_buffer *eb) 4577 { 4578 return (atomic_read(&eb->io_pages) || 4579 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4580 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4581 } 4582 4583 /* 4584 * Helper for releasing extent buffer page. 4585 */ 4586 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4587 { 4588 unsigned long index; 4589 struct page *page; 4590 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4591 4592 BUG_ON(extent_buffer_under_io(eb)); 4593 4594 index = num_extent_pages(eb->start, eb->len); 4595 if (index == 0) 4596 return; 4597 4598 do { 4599 index--; 4600 page = eb->pages[index]; 4601 if (!page) 4602 continue; 4603 if (mapped) 4604 spin_lock(&page->mapping->private_lock); 4605 /* 4606 * We do this since we'll remove the pages after we've 4607 * removed the eb from the radix tree, so we could race 4608 * and have this page now attached to the new eb. So 4609 * only clear page_private if it's still connected to 4610 * this eb. 4611 */ 4612 if (PagePrivate(page) && 4613 page->private == (unsigned long)eb) { 4614 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4615 BUG_ON(PageDirty(page)); 4616 BUG_ON(PageWriteback(page)); 4617 /* 4618 * We need to make sure we haven't be attached 4619 * to a new eb. 4620 */ 4621 ClearPagePrivate(page); 4622 set_page_private(page, 0); 4623 /* One for the page private */ 4624 put_page(page); 4625 } 4626 4627 if (mapped) 4628 spin_unlock(&page->mapping->private_lock); 4629 4630 /* One for when we allocated the page */ 4631 put_page(page); 4632 } while (index != 0); 4633 } 4634 4635 /* 4636 * Helper for releasing the extent buffer. 4637 */ 4638 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4639 { 4640 btrfs_release_extent_buffer_page(eb); 4641 __free_extent_buffer(eb); 4642 } 4643 4644 static struct extent_buffer * 4645 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4646 unsigned long len) 4647 { 4648 struct extent_buffer *eb = NULL; 4649 4650 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4651 eb->start = start; 4652 eb->len = len; 4653 eb->fs_info = fs_info; 4654 eb->bflags = 0; 4655 rwlock_init(&eb->lock); 4656 atomic_set(&eb->write_locks, 0); 4657 atomic_set(&eb->read_locks, 0); 4658 atomic_set(&eb->blocking_readers, 0); 4659 atomic_set(&eb->blocking_writers, 0); 4660 atomic_set(&eb->spinning_readers, 0); 4661 atomic_set(&eb->spinning_writers, 0); 4662 eb->lock_nested = 0; 4663 init_waitqueue_head(&eb->write_lock_wq); 4664 init_waitqueue_head(&eb->read_lock_wq); 4665 4666 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4667 4668 spin_lock_init(&eb->refs_lock); 4669 atomic_set(&eb->refs, 1); 4670 atomic_set(&eb->io_pages, 0); 4671 4672 /* 4673 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4674 */ 4675 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4676 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4677 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4678 4679 return eb; 4680 } 4681 4682 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4683 { 4684 unsigned long i; 4685 struct page *p; 4686 struct extent_buffer *new; 4687 unsigned long num_pages = num_extent_pages(src->start, src->len); 4688 4689 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4690 if (new == NULL) 4691 return NULL; 4692 4693 for (i = 0; i < num_pages; i++) { 4694 p = alloc_page(GFP_NOFS); 4695 if (!p) { 4696 btrfs_release_extent_buffer(new); 4697 return NULL; 4698 } 4699 attach_extent_buffer_page(new, p); 4700 WARN_ON(PageDirty(p)); 4701 SetPageUptodate(p); 4702 new->pages[i] = p; 4703 copy_page(page_address(p), page_address(src->pages[i])); 4704 } 4705 4706 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4707 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4708 4709 return new; 4710 } 4711 4712 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4713 u64 start, unsigned long len) 4714 { 4715 struct extent_buffer *eb; 4716 unsigned long num_pages; 4717 unsigned long i; 4718 4719 num_pages = num_extent_pages(start, len); 4720 4721 eb = __alloc_extent_buffer(fs_info, start, len); 4722 if (!eb) 4723 return NULL; 4724 4725 for (i = 0; i < num_pages; i++) { 4726 eb->pages[i] = alloc_page(GFP_NOFS); 4727 if (!eb->pages[i]) 4728 goto err; 4729 } 4730 set_extent_buffer_uptodate(eb); 4731 btrfs_set_header_nritems(eb, 0); 4732 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4733 4734 return eb; 4735 err: 4736 for (; i > 0; i--) 4737 __free_page(eb->pages[i - 1]); 4738 __free_extent_buffer(eb); 4739 return NULL; 4740 } 4741 4742 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4743 u64 start) 4744 { 4745 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4746 } 4747 4748 static void check_buffer_tree_ref(struct extent_buffer *eb) 4749 { 4750 int refs; 4751 /* the ref bit is tricky. We have to make sure it is set 4752 * if we have the buffer dirty. Otherwise the 4753 * code to free a buffer can end up dropping a dirty 4754 * page 4755 * 4756 * Once the ref bit is set, it won't go away while the 4757 * buffer is dirty or in writeback, and it also won't 4758 * go away while we have the reference count on the 4759 * eb bumped. 4760 * 4761 * We can't just set the ref bit without bumping the 4762 * ref on the eb because free_extent_buffer might 4763 * see the ref bit and try to clear it. If this happens 4764 * free_extent_buffer might end up dropping our original 4765 * ref by mistake and freeing the page before we are able 4766 * to add one more ref. 4767 * 4768 * So bump the ref count first, then set the bit. If someone 4769 * beat us to it, drop the ref we added. 4770 */ 4771 refs = atomic_read(&eb->refs); 4772 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4773 return; 4774 4775 spin_lock(&eb->refs_lock); 4776 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4777 atomic_inc(&eb->refs); 4778 spin_unlock(&eb->refs_lock); 4779 } 4780 4781 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4782 struct page *accessed) 4783 { 4784 unsigned long num_pages, i; 4785 4786 check_buffer_tree_ref(eb); 4787 4788 num_pages = num_extent_pages(eb->start, eb->len); 4789 for (i = 0; i < num_pages; i++) { 4790 struct page *p = eb->pages[i]; 4791 4792 if (p != accessed) 4793 mark_page_accessed(p); 4794 } 4795 } 4796 4797 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4798 u64 start) 4799 { 4800 struct extent_buffer *eb; 4801 4802 rcu_read_lock(); 4803 eb = radix_tree_lookup(&fs_info->buffer_radix, 4804 start >> PAGE_SHIFT); 4805 if (eb && atomic_inc_not_zero(&eb->refs)) { 4806 rcu_read_unlock(); 4807 /* 4808 * Lock our eb's refs_lock to avoid races with 4809 * free_extent_buffer. When we get our eb it might be flagged 4810 * with EXTENT_BUFFER_STALE and another task running 4811 * free_extent_buffer might have seen that flag set, 4812 * eb->refs == 2, that the buffer isn't under IO (dirty and 4813 * writeback flags not set) and it's still in the tree (flag 4814 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4815 * of decrementing the extent buffer's reference count twice. 4816 * So here we could race and increment the eb's reference count, 4817 * clear its stale flag, mark it as dirty and drop our reference 4818 * before the other task finishes executing free_extent_buffer, 4819 * which would later result in an attempt to free an extent 4820 * buffer that is dirty. 4821 */ 4822 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4823 spin_lock(&eb->refs_lock); 4824 spin_unlock(&eb->refs_lock); 4825 } 4826 mark_extent_buffer_accessed(eb, NULL); 4827 return eb; 4828 } 4829 rcu_read_unlock(); 4830 4831 return NULL; 4832 } 4833 4834 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4835 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4836 u64 start) 4837 { 4838 struct extent_buffer *eb, *exists = NULL; 4839 int ret; 4840 4841 eb = find_extent_buffer(fs_info, start); 4842 if (eb) 4843 return eb; 4844 eb = alloc_dummy_extent_buffer(fs_info, start); 4845 if (!eb) 4846 return NULL; 4847 eb->fs_info = fs_info; 4848 again: 4849 ret = radix_tree_preload(GFP_NOFS); 4850 if (ret) 4851 goto free_eb; 4852 spin_lock(&fs_info->buffer_lock); 4853 ret = radix_tree_insert(&fs_info->buffer_radix, 4854 start >> PAGE_SHIFT, eb); 4855 spin_unlock(&fs_info->buffer_lock); 4856 radix_tree_preload_end(); 4857 if (ret == -EEXIST) { 4858 exists = find_extent_buffer(fs_info, start); 4859 if (exists) 4860 goto free_eb; 4861 else 4862 goto again; 4863 } 4864 check_buffer_tree_ref(eb); 4865 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4866 4867 /* 4868 * We will free dummy extent buffer's if they come into 4869 * free_extent_buffer with a ref count of 2, but if we are using this we 4870 * want the buffers to stay in memory until we're done with them, so 4871 * bump the ref count again. 4872 */ 4873 atomic_inc(&eb->refs); 4874 return eb; 4875 free_eb: 4876 btrfs_release_extent_buffer(eb); 4877 return exists; 4878 } 4879 #endif 4880 4881 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4882 u64 start) 4883 { 4884 unsigned long len = fs_info->nodesize; 4885 unsigned long num_pages = num_extent_pages(start, len); 4886 unsigned long i; 4887 unsigned long index = start >> PAGE_SHIFT; 4888 struct extent_buffer *eb; 4889 struct extent_buffer *exists = NULL; 4890 struct page *p; 4891 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4892 int uptodate = 1; 4893 int ret; 4894 4895 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4896 btrfs_err(fs_info, "bad tree block start %llu", start); 4897 return ERR_PTR(-EINVAL); 4898 } 4899 4900 eb = find_extent_buffer(fs_info, start); 4901 if (eb) 4902 return eb; 4903 4904 eb = __alloc_extent_buffer(fs_info, start, len); 4905 if (!eb) 4906 return ERR_PTR(-ENOMEM); 4907 4908 for (i = 0; i < num_pages; i++, index++) { 4909 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4910 if (!p) { 4911 exists = ERR_PTR(-ENOMEM); 4912 goto free_eb; 4913 } 4914 4915 spin_lock(&mapping->private_lock); 4916 if (PagePrivate(p)) { 4917 /* 4918 * We could have already allocated an eb for this page 4919 * and attached one so lets see if we can get a ref on 4920 * the existing eb, and if we can we know it's good and 4921 * we can just return that one, else we know we can just 4922 * overwrite page->private. 4923 */ 4924 exists = (struct extent_buffer *)p->private; 4925 if (atomic_inc_not_zero(&exists->refs)) { 4926 spin_unlock(&mapping->private_lock); 4927 unlock_page(p); 4928 put_page(p); 4929 mark_extent_buffer_accessed(exists, p); 4930 goto free_eb; 4931 } 4932 exists = NULL; 4933 4934 /* 4935 * Do this so attach doesn't complain and we need to 4936 * drop the ref the old guy had. 4937 */ 4938 ClearPagePrivate(p); 4939 WARN_ON(PageDirty(p)); 4940 put_page(p); 4941 } 4942 attach_extent_buffer_page(eb, p); 4943 spin_unlock(&mapping->private_lock); 4944 WARN_ON(PageDirty(p)); 4945 eb->pages[i] = p; 4946 if (!PageUptodate(p)) 4947 uptodate = 0; 4948 4949 /* 4950 * see below about how we avoid a nasty race with release page 4951 * and why we unlock later 4952 */ 4953 } 4954 if (uptodate) 4955 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4956 again: 4957 ret = radix_tree_preload(GFP_NOFS); 4958 if (ret) { 4959 exists = ERR_PTR(ret); 4960 goto free_eb; 4961 } 4962 4963 spin_lock(&fs_info->buffer_lock); 4964 ret = radix_tree_insert(&fs_info->buffer_radix, 4965 start >> PAGE_SHIFT, eb); 4966 spin_unlock(&fs_info->buffer_lock); 4967 radix_tree_preload_end(); 4968 if (ret == -EEXIST) { 4969 exists = find_extent_buffer(fs_info, start); 4970 if (exists) 4971 goto free_eb; 4972 else 4973 goto again; 4974 } 4975 /* add one reference for the tree */ 4976 check_buffer_tree_ref(eb); 4977 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4978 4979 /* 4980 * there is a race where release page may have 4981 * tried to find this extent buffer in the radix 4982 * but failed. It will tell the VM it is safe to 4983 * reclaim the, and it will clear the page private bit. 4984 * We must make sure to set the page private bit properly 4985 * after the extent buffer is in the radix tree so 4986 * it doesn't get lost 4987 */ 4988 SetPageChecked(eb->pages[0]); 4989 for (i = 1; i < num_pages; i++) { 4990 p = eb->pages[i]; 4991 ClearPageChecked(p); 4992 unlock_page(p); 4993 } 4994 unlock_page(eb->pages[0]); 4995 return eb; 4996 4997 free_eb: 4998 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4999 for (i = 0; i < num_pages; i++) { 5000 if (eb->pages[i]) 5001 unlock_page(eb->pages[i]); 5002 } 5003 5004 btrfs_release_extent_buffer(eb); 5005 return exists; 5006 } 5007 5008 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5009 { 5010 struct extent_buffer *eb = 5011 container_of(head, struct extent_buffer, rcu_head); 5012 5013 __free_extent_buffer(eb); 5014 } 5015 5016 /* Expects to have eb->eb_lock already held */ 5017 static int release_extent_buffer(struct extent_buffer *eb) 5018 { 5019 WARN_ON(atomic_read(&eb->refs) == 0); 5020 if (atomic_dec_and_test(&eb->refs)) { 5021 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5022 struct btrfs_fs_info *fs_info = eb->fs_info; 5023 5024 spin_unlock(&eb->refs_lock); 5025 5026 spin_lock(&fs_info->buffer_lock); 5027 radix_tree_delete(&fs_info->buffer_radix, 5028 eb->start >> PAGE_SHIFT); 5029 spin_unlock(&fs_info->buffer_lock); 5030 } else { 5031 spin_unlock(&eb->refs_lock); 5032 } 5033 5034 /* Should be safe to release our pages at this point */ 5035 btrfs_release_extent_buffer_page(eb); 5036 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5037 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5038 __free_extent_buffer(eb); 5039 return 1; 5040 } 5041 #endif 5042 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5043 return 1; 5044 } 5045 spin_unlock(&eb->refs_lock); 5046 5047 return 0; 5048 } 5049 5050 void free_extent_buffer(struct extent_buffer *eb) 5051 { 5052 int refs; 5053 int old; 5054 if (!eb) 5055 return; 5056 5057 while (1) { 5058 refs = atomic_read(&eb->refs); 5059 if (refs <= 3) 5060 break; 5061 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5062 if (old == refs) 5063 return; 5064 } 5065 5066 spin_lock(&eb->refs_lock); 5067 if (atomic_read(&eb->refs) == 2 && 5068 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5069 atomic_dec(&eb->refs); 5070 5071 if (atomic_read(&eb->refs) == 2 && 5072 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5073 !extent_buffer_under_io(eb) && 5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5075 atomic_dec(&eb->refs); 5076 5077 /* 5078 * I know this is terrible, but it's temporary until we stop tracking 5079 * the uptodate bits and such for the extent buffers. 5080 */ 5081 release_extent_buffer(eb); 5082 } 5083 5084 void free_extent_buffer_stale(struct extent_buffer *eb) 5085 { 5086 if (!eb) 5087 return; 5088 5089 spin_lock(&eb->refs_lock); 5090 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5091 5092 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5094 atomic_dec(&eb->refs); 5095 release_extent_buffer(eb); 5096 } 5097 5098 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5099 { 5100 unsigned long i; 5101 unsigned long num_pages; 5102 struct page *page; 5103 5104 num_pages = num_extent_pages(eb->start, eb->len); 5105 5106 for (i = 0; i < num_pages; i++) { 5107 page = eb->pages[i]; 5108 if (!PageDirty(page)) 5109 continue; 5110 5111 lock_page(page); 5112 WARN_ON(!PagePrivate(page)); 5113 5114 clear_page_dirty_for_io(page); 5115 spin_lock_irq(&page->mapping->tree_lock); 5116 if (!PageDirty(page)) { 5117 radix_tree_tag_clear(&page->mapping->page_tree, 5118 page_index(page), 5119 PAGECACHE_TAG_DIRTY); 5120 } 5121 spin_unlock_irq(&page->mapping->tree_lock); 5122 ClearPageError(page); 5123 unlock_page(page); 5124 } 5125 WARN_ON(atomic_read(&eb->refs) == 0); 5126 } 5127 5128 int set_extent_buffer_dirty(struct extent_buffer *eb) 5129 { 5130 unsigned long i; 5131 unsigned long num_pages; 5132 int was_dirty = 0; 5133 5134 check_buffer_tree_ref(eb); 5135 5136 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5137 5138 num_pages = num_extent_pages(eb->start, eb->len); 5139 WARN_ON(atomic_read(&eb->refs) == 0); 5140 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5141 5142 for (i = 0; i < num_pages; i++) 5143 set_page_dirty(eb->pages[i]); 5144 return was_dirty; 5145 } 5146 5147 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5148 { 5149 unsigned long i; 5150 struct page *page; 5151 unsigned long num_pages; 5152 5153 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5154 num_pages = num_extent_pages(eb->start, eb->len); 5155 for (i = 0; i < num_pages; i++) { 5156 page = eb->pages[i]; 5157 if (page) 5158 ClearPageUptodate(page); 5159 } 5160 } 5161 5162 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5163 { 5164 unsigned long i; 5165 struct page *page; 5166 unsigned long num_pages; 5167 5168 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5169 num_pages = num_extent_pages(eb->start, eb->len); 5170 for (i = 0; i < num_pages; i++) { 5171 page = eb->pages[i]; 5172 SetPageUptodate(page); 5173 } 5174 } 5175 5176 int extent_buffer_uptodate(struct extent_buffer *eb) 5177 { 5178 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5179 } 5180 5181 int read_extent_buffer_pages(struct extent_io_tree *tree, 5182 struct extent_buffer *eb, int wait, 5183 get_extent_t *get_extent, int mirror_num) 5184 { 5185 unsigned long i; 5186 struct page *page; 5187 int err; 5188 int ret = 0; 5189 int locked_pages = 0; 5190 int all_uptodate = 1; 5191 unsigned long num_pages; 5192 unsigned long num_reads = 0; 5193 struct bio *bio = NULL; 5194 unsigned long bio_flags = 0; 5195 5196 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5197 return 0; 5198 5199 num_pages = num_extent_pages(eb->start, eb->len); 5200 for (i = 0; i < num_pages; i++) { 5201 page = eb->pages[i]; 5202 if (wait == WAIT_NONE) { 5203 if (!trylock_page(page)) 5204 goto unlock_exit; 5205 } else { 5206 lock_page(page); 5207 } 5208 locked_pages++; 5209 } 5210 /* 5211 * We need to firstly lock all pages to make sure that 5212 * the uptodate bit of our pages won't be affected by 5213 * clear_extent_buffer_uptodate(). 5214 */ 5215 for (i = 0; i < num_pages; i++) { 5216 page = eb->pages[i]; 5217 if (!PageUptodate(page)) { 5218 num_reads++; 5219 all_uptodate = 0; 5220 } 5221 } 5222 5223 if (all_uptodate) { 5224 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5225 goto unlock_exit; 5226 } 5227 5228 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5229 eb->read_mirror = 0; 5230 atomic_set(&eb->io_pages, num_reads); 5231 for (i = 0; i < num_pages; i++) { 5232 page = eb->pages[i]; 5233 5234 if (!PageUptodate(page)) { 5235 if (ret) { 5236 atomic_dec(&eb->io_pages); 5237 unlock_page(page); 5238 continue; 5239 } 5240 5241 ClearPageError(page); 5242 err = __extent_read_full_page(tree, page, 5243 get_extent, &bio, 5244 mirror_num, &bio_flags, 5245 REQ_META); 5246 if (err) { 5247 ret = err; 5248 /* 5249 * We use &bio in above __extent_read_full_page, 5250 * so we ensure that if it returns error, the 5251 * current page fails to add itself to bio and 5252 * it's been unlocked. 5253 * 5254 * We must dec io_pages by ourselves. 5255 */ 5256 atomic_dec(&eb->io_pages); 5257 } 5258 } else { 5259 unlock_page(page); 5260 } 5261 } 5262 5263 if (bio) { 5264 err = submit_one_bio(bio, mirror_num, bio_flags); 5265 if (err) 5266 return err; 5267 } 5268 5269 if (ret || wait != WAIT_COMPLETE) 5270 return ret; 5271 5272 for (i = 0; i < num_pages; i++) { 5273 page = eb->pages[i]; 5274 wait_on_page_locked(page); 5275 if (!PageUptodate(page)) 5276 ret = -EIO; 5277 } 5278 5279 return ret; 5280 5281 unlock_exit: 5282 while (locked_pages > 0) { 5283 locked_pages--; 5284 page = eb->pages[locked_pages]; 5285 unlock_page(page); 5286 } 5287 return ret; 5288 } 5289 5290 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5291 unsigned long start, 5292 unsigned long len) 5293 { 5294 size_t cur; 5295 size_t offset; 5296 struct page *page; 5297 char *kaddr; 5298 char *dst = (char *)dstv; 5299 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5300 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5301 5302 WARN_ON(start > eb->len); 5303 WARN_ON(start + len > eb->start + eb->len); 5304 5305 offset = (start_offset + start) & (PAGE_SIZE - 1); 5306 5307 while (len > 0) { 5308 page = eb->pages[i]; 5309 5310 cur = min(len, (PAGE_SIZE - offset)); 5311 kaddr = page_address(page); 5312 memcpy(dst, kaddr + offset, cur); 5313 5314 dst += cur; 5315 len -= cur; 5316 offset = 0; 5317 i++; 5318 } 5319 } 5320 5321 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5322 unsigned long start, 5323 unsigned long len) 5324 { 5325 size_t cur; 5326 size_t offset; 5327 struct page *page; 5328 char *kaddr; 5329 char __user *dst = (char __user *)dstv; 5330 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5331 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5332 int ret = 0; 5333 5334 WARN_ON(start > eb->len); 5335 WARN_ON(start + len > eb->start + eb->len); 5336 5337 offset = (start_offset + start) & (PAGE_SIZE - 1); 5338 5339 while (len > 0) { 5340 page = eb->pages[i]; 5341 5342 cur = min(len, (PAGE_SIZE - offset)); 5343 kaddr = page_address(page); 5344 if (copy_to_user(dst, kaddr + offset, cur)) { 5345 ret = -EFAULT; 5346 break; 5347 } 5348 5349 dst += cur; 5350 len -= cur; 5351 offset = 0; 5352 i++; 5353 } 5354 5355 return ret; 5356 } 5357 5358 /* 5359 * return 0 if the item is found within a page. 5360 * return 1 if the item spans two pages. 5361 * return -EINVAL otherwise. 5362 */ 5363 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5364 unsigned long min_len, char **map, 5365 unsigned long *map_start, 5366 unsigned long *map_len) 5367 { 5368 size_t offset = start & (PAGE_SIZE - 1); 5369 char *kaddr; 5370 struct page *p; 5371 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5372 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5373 unsigned long end_i = (start_offset + start + min_len - 1) >> 5374 PAGE_SHIFT; 5375 5376 if (i != end_i) 5377 return 1; 5378 5379 if (i == 0) { 5380 offset = start_offset; 5381 *map_start = 0; 5382 } else { 5383 offset = 0; 5384 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5385 } 5386 5387 if (start + min_len > eb->len) { 5388 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5389 eb->start, eb->len, start, min_len); 5390 return -EINVAL; 5391 } 5392 5393 p = eb->pages[i]; 5394 kaddr = page_address(p); 5395 *map = kaddr + offset; 5396 *map_len = PAGE_SIZE - offset; 5397 return 0; 5398 } 5399 5400 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5401 unsigned long start, 5402 unsigned long len) 5403 { 5404 size_t cur; 5405 size_t offset; 5406 struct page *page; 5407 char *kaddr; 5408 char *ptr = (char *)ptrv; 5409 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5410 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5411 int ret = 0; 5412 5413 WARN_ON(start > eb->len); 5414 WARN_ON(start + len > eb->start + eb->len); 5415 5416 offset = (start_offset + start) & (PAGE_SIZE - 1); 5417 5418 while (len > 0) { 5419 page = eb->pages[i]; 5420 5421 cur = min(len, (PAGE_SIZE - offset)); 5422 5423 kaddr = page_address(page); 5424 ret = memcmp(ptr, kaddr + offset, cur); 5425 if (ret) 5426 break; 5427 5428 ptr += cur; 5429 len -= cur; 5430 offset = 0; 5431 i++; 5432 } 5433 return ret; 5434 } 5435 5436 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5437 const void *srcv) 5438 { 5439 char *kaddr; 5440 5441 WARN_ON(!PageUptodate(eb->pages[0])); 5442 kaddr = page_address(eb->pages[0]); 5443 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5444 BTRFS_FSID_SIZE); 5445 } 5446 5447 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5448 { 5449 char *kaddr; 5450 5451 WARN_ON(!PageUptodate(eb->pages[0])); 5452 kaddr = page_address(eb->pages[0]); 5453 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5454 BTRFS_FSID_SIZE); 5455 } 5456 5457 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5458 unsigned long start, unsigned long len) 5459 { 5460 size_t cur; 5461 size_t offset; 5462 struct page *page; 5463 char *kaddr; 5464 char *src = (char *)srcv; 5465 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5466 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5467 5468 WARN_ON(start > eb->len); 5469 WARN_ON(start + len > eb->start + eb->len); 5470 5471 offset = (start_offset + start) & (PAGE_SIZE - 1); 5472 5473 while (len > 0) { 5474 page = eb->pages[i]; 5475 WARN_ON(!PageUptodate(page)); 5476 5477 cur = min(len, PAGE_SIZE - offset); 5478 kaddr = page_address(page); 5479 memcpy(kaddr + offset, src, cur); 5480 5481 src += cur; 5482 len -= cur; 5483 offset = 0; 5484 i++; 5485 } 5486 } 5487 5488 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5489 unsigned long len) 5490 { 5491 size_t cur; 5492 size_t offset; 5493 struct page *page; 5494 char *kaddr; 5495 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5496 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5497 5498 WARN_ON(start > eb->len); 5499 WARN_ON(start + len > eb->start + eb->len); 5500 5501 offset = (start_offset + start) & (PAGE_SIZE - 1); 5502 5503 while (len > 0) { 5504 page = eb->pages[i]; 5505 WARN_ON(!PageUptodate(page)); 5506 5507 cur = min(len, PAGE_SIZE - offset); 5508 kaddr = page_address(page); 5509 memset(kaddr + offset, 0, cur); 5510 5511 len -= cur; 5512 offset = 0; 5513 i++; 5514 } 5515 } 5516 5517 void copy_extent_buffer_full(struct extent_buffer *dst, 5518 struct extent_buffer *src) 5519 { 5520 int i; 5521 unsigned num_pages; 5522 5523 ASSERT(dst->len == src->len); 5524 5525 num_pages = num_extent_pages(dst->start, dst->len); 5526 for (i = 0; i < num_pages; i++) 5527 copy_page(page_address(dst->pages[i]), 5528 page_address(src->pages[i])); 5529 } 5530 5531 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5532 unsigned long dst_offset, unsigned long src_offset, 5533 unsigned long len) 5534 { 5535 u64 dst_len = dst->len; 5536 size_t cur; 5537 size_t offset; 5538 struct page *page; 5539 char *kaddr; 5540 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5541 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5542 5543 WARN_ON(src->len != dst_len); 5544 5545 offset = (start_offset + dst_offset) & 5546 (PAGE_SIZE - 1); 5547 5548 while (len > 0) { 5549 page = dst->pages[i]; 5550 WARN_ON(!PageUptodate(page)); 5551 5552 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5553 5554 kaddr = page_address(page); 5555 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5556 5557 src_offset += cur; 5558 len -= cur; 5559 offset = 0; 5560 i++; 5561 } 5562 } 5563 5564 void le_bitmap_set(u8 *map, unsigned int start, int len) 5565 { 5566 u8 *p = map + BIT_BYTE(start); 5567 const unsigned int size = start + len; 5568 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5569 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 5570 5571 while (len - bits_to_set >= 0) { 5572 *p |= mask_to_set; 5573 len -= bits_to_set; 5574 bits_to_set = BITS_PER_BYTE; 5575 mask_to_set = ~0; 5576 p++; 5577 } 5578 if (len) { 5579 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5580 *p |= mask_to_set; 5581 } 5582 } 5583 5584 void le_bitmap_clear(u8 *map, unsigned int start, int len) 5585 { 5586 u8 *p = map + BIT_BYTE(start); 5587 const unsigned int size = start + len; 5588 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5589 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start); 5590 5591 while (len - bits_to_clear >= 0) { 5592 *p &= ~mask_to_clear; 5593 len -= bits_to_clear; 5594 bits_to_clear = BITS_PER_BYTE; 5595 mask_to_clear = ~0; 5596 p++; 5597 } 5598 if (len) { 5599 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5600 *p &= ~mask_to_clear; 5601 } 5602 } 5603 5604 /* 5605 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5606 * given bit number 5607 * @eb: the extent buffer 5608 * @start: offset of the bitmap item in the extent buffer 5609 * @nr: bit number 5610 * @page_index: return index of the page in the extent buffer that contains the 5611 * given bit number 5612 * @page_offset: return offset into the page given by page_index 5613 * 5614 * This helper hides the ugliness of finding the byte in an extent buffer which 5615 * contains a given bit. 5616 */ 5617 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5618 unsigned long start, unsigned long nr, 5619 unsigned long *page_index, 5620 size_t *page_offset) 5621 { 5622 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5623 size_t byte_offset = BIT_BYTE(nr); 5624 size_t offset; 5625 5626 /* 5627 * The byte we want is the offset of the extent buffer + the offset of 5628 * the bitmap item in the extent buffer + the offset of the byte in the 5629 * bitmap item. 5630 */ 5631 offset = start_offset + start + byte_offset; 5632 5633 *page_index = offset >> PAGE_SHIFT; 5634 *page_offset = offset & (PAGE_SIZE - 1); 5635 } 5636 5637 /** 5638 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5639 * @eb: the extent buffer 5640 * @start: offset of the bitmap item in the extent buffer 5641 * @nr: bit number to test 5642 */ 5643 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5644 unsigned long nr) 5645 { 5646 u8 *kaddr; 5647 struct page *page; 5648 unsigned long i; 5649 size_t offset; 5650 5651 eb_bitmap_offset(eb, start, nr, &i, &offset); 5652 page = eb->pages[i]; 5653 WARN_ON(!PageUptodate(page)); 5654 kaddr = page_address(page); 5655 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5656 } 5657 5658 /** 5659 * extent_buffer_bitmap_set - set an area of a bitmap 5660 * @eb: the extent buffer 5661 * @start: offset of the bitmap item in the extent buffer 5662 * @pos: bit number of the first bit 5663 * @len: number of bits to set 5664 */ 5665 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5666 unsigned long pos, unsigned long len) 5667 { 5668 u8 *kaddr; 5669 struct page *page; 5670 unsigned long i; 5671 size_t offset; 5672 const unsigned int size = pos + len; 5673 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5674 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5675 5676 eb_bitmap_offset(eb, start, pos, &i, &offset); 5677 page = eb->pages[i]; 5678 WARN_ON(!PageUptodate(page)); 5679 kaddr = page_address(page); 5680 5681 while (len >= bits_to_set) { 5682 kaddr[offset] |= mask_to_set; 5683 len -= bits_to_set; 5684 bits_to_set = BITS_PER_BYTE; 5685 mask_to_set = ~0; 5686 if (++offset >= PAGE_SIZE && len > 0) { 5687 offset = 0; 5688 page = eb->pages[++i]; 5689 WARN_ON(!PageUptodate(page)); 5690 kaddr = page_address(page); 5691 } 5692 } 5693 if (len) { 5694 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5695 kaddr[offset] |= mask_to_set; 5696 } 5697 } 5698 5699 5700 /** 5701 * extent_buffer_bitmap_clear - clear an area of a bitmap 5702 * @eb: the extent buffer 5703 * @start: offset of the bitmap item in the extent buffer 5704 * @pos: bit number of the first bit 5705 * @len: number of bits to clear 5706 */ 5707 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5708 unsigned long pos, unsigned long len) 5709 { 5710 u8 *kaddr; 5711 struct page *page; 5712 unsigned long i; 5713 size_t offset; 5714 const unsigned int size = pos + len; 5715 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5716 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5717 5718 eb_bitmap_offset(eb, start, pos, &i, &offset); 5719 page = eb->pages[i]; 5720 WARN_ON(!PageUptodate(page)); 5721 kaddr = page_address(page); 5722 5723 while (len >= bits_to_clear) { 5724 kaddr[offset] &= ~mask_to_clear; 5725 len -= bits_to_clear; 5726 bits_to_clear = BITS_PER_BYTE; 5727 mask_to_clear = ~0; 5728 if (++offset >= PAGE_SIZE && len > 0) { 5729 offset = 0; 5730 page = eb->pages[++i]; 5731 WARN_ON(!PageUptodate(page)); 5732 kaddr = page_address(page); 5733 } 5734 } 5735 if (len) { 5736 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5737 kaddr[offset] &= ~mask_to_clear; 5738 } 5739 } 5740 5741 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5742 { 5743 unsigned long distance = (src > dst) ? src - dst : dst - src; 5744 return distance < len; 5745 } 5746 5747 static void copy_pages(struct page *dst_page, struct page *src_page, 5748 unsigned long dst_off, unsigned long src_off, 5749 unsigned long len) 5750 { 5751 char *dst_kaddr = page_address(dst_page); 5752 char *src_kaddr; 5753 int must_memmove = 0; 5754 5755 if (dst_page != src_page) { 5756 src_kaddr = page_address(src_page); 5757 } else { 5758 src_kaddr = dst_kaddr; 5759 if (areas_overlap(src_off, dst_off, len)) 5760 must_memmove = 1; 5761 } 5762 5763 if (must_memmove) 5764 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5765 else 5766 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5767 } 5768 5769 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5770 unsigned long src_offset, unsigned long len) 5771 { 5772 struct btrfs_fs_info *fs_info = dst->fs_info; 5773 size_t cur; 5774 size_t dst_off_in_page; 5775 size_t src_off_in_page; 5776 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5777 unsigned long dst_i; 5778 unsigned long src_i; 5779 5780 if (src_offset + len > dst->len) { 5781 btrfs_err(fs_info, 5782 "memmove bogus src_offset %lu move len %lu dst len %lu", 5783 src_offset, len, dst->len); 5784 BUG_ON(1); 5785 } 5786 if (dst_offset + len > dst->len) { 5787 btrfs_err(fs_info, 5788 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5789 dst_offset, len, dst->len); 5790 BUG_ON(1); 5791 } 5792 5793 while (len > 0) { 5794 dst_off_in_page = (start_offset + dst_offset) & 5795 (PAGE_SIZE - 1); 5796 src_off_in_page = (start_offset + src_offset) & 5797 (PAGE_SIZE - 1); 5798 5799 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5800 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5801 5802 cur = min(len, (unsigned long)(PAGE_SIZE - 5803 src_off_in_page)); 5804 cur = min_t(unsigned long, cur, 5805 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5806 5807 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5808 dst_off_in_page, src_off_in_page, cur); 5809 5810 src_offset += cur; 5811 dst_offset += cur; 5812 len -= cur; 5813 } 5814 } 5815 5816 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5817 unsigned long src_offset, unsigned long len) 5818 { 5819 struct btrfs_fs_info *fs_info = dst->fs_info; 5820 size_t cur; 5821 size_t dst_off_in_page; 5822 size_t src_off_in_page; 5823 unsigned long dst_end = dst_offset + len - 1; 5824 unsigned long src_end = src_offset + len - 1; 5825 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5826 unsigned long dst_i; 5827 unsigned long src_i; 5828 5829 if (src_offset + len > dst->len) { 5830 btrfs_err(fs_info, 5831 "memmove bogus src_offset %lu move len %lu len %lu", 5832 src_offset, len, dst->len); 5833 BUG_ON(1); 5834 } 5835 if (dst_offset + len > dst->len) { 5836 btrfs_err(fs_info, 5837 "memmove bogus dst_offset %lu move len %lu len %lu", 5838 dst_offset, len, dst->len); 5839 BUG_ON(1); 5840 } 5841 if (dst_offset < src_offset) { 5842 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5843 return; 5844 } 5845 while (len > 0) { 5846 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5847 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5848 5849 dst_off_in_page = (start_offset + dst_end) & 5850 (PAGE_SIZE - 1); 5851 src_off_in_page = (start_offset + src_end) & 5852 (PAGE_SIZE - 1); 5853 5854 cur = min_t(unsigned long, len, src_off_in_page + 1); 5855 cur = min(cur, dst_off_in_page + 1); 5856 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5857 dst_off_in_page - cur + 1, 5858 src_off_in_page - cur + 1, cur); 5859 5860 dst_end -= cur; 5861 src_end -= cur; 5862 len -= cur; 5863 } 5864 } 5865 5866 int try_release_extent_buffer(struct page *page) 5867 { 5868 struct extent_buffer *eb; 5869 5870 /* 5871 * We need to make sure nobody is attaching this page to an eb right 5872 * now. 5873 */ 5874 spin_lock(&page->mapping->private_lock); 5875 if (!PagePrivate(page)) { 5876 spin_unlock(&page->mapping->private_lock); 5877 return 1; 5878 } 5879 5880 eb = (struct extent_buffer *)page->private; 5881 BUG_ON(!eb); 5882 5883 /* 5884 * This is a little awful but should be ok, we need to make sure that 5885 * the eb doesn't disappear out from under us while we're looking at 5886 * this page. 5887 */ 5888 spin_lock(&eb->refs_lock); 5889 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5890 spin_unlock(&eb->refs_lock); 5891 spin_unlock(&page->mapping->private_lock); 5892 return 0; 5893 } 5894 spin_unlock(&page->mapping->private_lock); 5895 5896 /* 5897 * If tree ref isn't set then we know the ref on this eb is a real ref, 5898 * so just return, this page will likely be freed soon anyway. 5899 */ 5900 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5901 spin_unlock(&eb->refs_lock); 5902 return 0; 5903 } 5904 5905 return release_extent_buffer(eb); 5906 } 5907