xref: /openbmc/linux/fs/btrfs/extent_io.c (revision f7c35abe)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28 
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 	return !RB_EMPTY_NODE(&state->rb_node);
32 }
33 
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37 
38 static DEFINE_SPINLOCK(leak_lock);
39 
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&leak_lock, flags);
46 	list_add(new, head);
47 	spin_unlock_irqrestore(&leak_lock, flags);
48 }
49 
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&leak_lock, flags);
56 	list_del(entry);
57 	spin_unlock_irqrestore(&leak_lock, flags);
58 }
59 
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 	struct extent_state *state;
64 	struct extent_buffer *eb;
65 
66 	while (!list_empty(&states)) {
67 		state = list_entry(states.next, struct extent_state, leak_list);
68 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 		       state->start, state->end, state->state,
70 		       extent_state_in_tree(state),
71 		       atomic_read(&state->refs));
72 		list_del(&state->leak_list);
73 		kmem_cache_free(extent_state_cache, state);
74 	}
75 
76 	while (!list_empty(&buffers)) {
77 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use REQ_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	kmem_cache_destroy(extent_state_cache);
210 	kmem_cache_destroy(extent_buffer_cache);
211 	if (btrfs_bioset)
212 		bioset_free(btrfs_bioset);
213 }
214 
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 			 struct address_space *mapping)
217 {
218 	tree->state = RB_ROOT;
219 	tree->ops = NULL;
220 	tree->dirty_bytes = 0;
221 	spin_lock_init(&tree->lock);
222 	tree->mapping = mapping;
223 }
224 
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 	struct extent_state *state;
228 
229 	/*
230 	 * The given mask might be not appropriate for the slab allocator,
231 	 * drop the unsupported bits
232 	 */
233 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
234 	state = kmem_cache_alloc(extent_state_cache, mask);
235 	if (!state)
236 		return state;
237 	state->state = 0;
238 	state->failrec = NULL;
239 	RB_CLEAR_NODE(&state->rb_node);
240 	btrfs_leak_debug_add(&state->leak_list, &states);
241 	atomic_set(&state->refs, 1);
242 	init_waitqueue_head(&state->wq);
243 	trace_alloc_extent_state(state, mask, _RET_IP_);
244 	return state;
245 }
246 
247 void free_extent_state(struct extent_state *state)
248 {
249 	if (!state)
250 		return;
251 	if (atomic_dec_and_test(&state->refs)) {
252 		WARN_ON(extent_state_in_tree(state));
253 		btrfs_leak_debug_del(&state->leak_list);
254 		trace_free_extent_state(state, _RET_IP_);
255 		kmem_cache_free(extent_state_cache, state);
256 	}
257 }
258 
259 static struct rb_node *tree_insert(struct rb_root *root,
260 				   struct rb_node *search_start,
261 				   u64 offset,
262 				   struct rb_node *node,
263 				   struct rb_node ***p_in,
264 				   struct rb_node **parent_in)
265 {
266 	struct rb_node **p;
267 	struct rb_node *parent = NULL;
268 	struct tree_entry *entry;
269 
270 	if (p_in && parent_in) {
271 		p = *p_in;
272 		parent = *parent_in;
273 		goto do_insert;
274 	}
275 
276 	p = search_start ? &search_start : &root->rb_node;
277 	while (*p) {
278 		parent = *p;
279 		entry = rb_entry(parent, struct tree_entry, rb_node);
280 
281 		if (offset < entry->start)
282 			p = &(*p)->rb_left;
283 		else if (offset > entry->end)
284 			p = &(*p)->rb_right;
285 		else
286 			return parent;
287 	}
288 
289 do_insert:
290 	rb_link_node(node, parent, p);
291 	rb_insert_color(node, root);
292 	return NULL;
293 }
294 
295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
296 				      struct rb_node **prev_ret,
297 				      struct rb_node **next_ret,
298 				      struct rb_node ***p_ret,
299 				      struct rb_node **parent_ret)
300 {
301 	struct rb_root *root = &tree->state;
302 	struct rb_node **n = &root->rb_node;
303 	struct rb_node *prev = NULL;
304 	struct rb_node *orig_prev = NULL;
305 	struct tree_entry *entry;
306 	struct tree_entry *prev_entry = NULL;
307 
308 	while (*n) {
309 		prev = *n;
310 		entry = rb_entry(prev, struct tree_entry, rb_node);
311 		prev_entry = entry;
312 
313 		if (offset < entry->start)
314 			n = &(*n)->rb_left;
315 		else if (offset > entry->end)
316 			n = &(*n)->rb_right;
317 		else
318 			return *n;
319 	}
320 
321 	if (p_ret)
322 		*p_ret = n;
323 	if (parent_ret)
324 		*parent_ret = prev;
325 
326 	if (prev_ret) {
327 		orig_prev = prev;
328 		while (prev && offset > prev_entry->end) {
329 			prev = rb_next(prev);
330 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 		}
332 		*prev_ret = prev;
333 		prev = orig_prev;
334 	}
335 
336 	if (next_ret) {
337 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 		while (prev && offset < prev_entry->start) {
339 			prev = rb_prev(prev);
340 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 		}
342 		*next_ret = prev;
343 	}
344 	return NULL;
345 }
346 
347 static inline struct rb_node *
348 tree_search_for_insert(struct extent_io_tree *tree,
349 		       u64 offset,
350 		       struct rb_node ***p_ret,
351 		       struct rb_node **parent_ret)
352 {
353 	struct rb_node *prev = NULL;
354 	struct rb_node *ret;
355 
356 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
357 	if (!ret)
358 		return prev;
359 	return ret;
360 }
361 
362 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 					  u64 offset)
364 {
365 	return tree_search_for_insert(tree, offset, NULL, NULL);
366 }
367 
368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 		     struct extent_state *other)
370 {
371 	if (tree->ops && tree->ops->merge_extent_hook)
372 		tree->ops->merge_extent_hook(tree->mapping->host, new,
373 					     other);
374 }
375 
376 /*
377  * utility function to look for merge candidates inside a given range.
378  * Any extents with matching state are merged together into a single
379  * extent in the tree.  Extents with EXTENT_IO in their state field
380  * are not merged because the end_io handlers need to be able to do
381  * operations on them without sleeping (or doing allocations/splits).
382  *
383  * This should be called with the tree lock held.
384  */
385 static void merge_state(struct extent_io_tree *tree,
386 		        struct extent_state *state)
387 {
388 	struct extent_state *other;
389 	struct rb_node *other_node;
390 
391 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
392 		return;
393 
394 	other_node = rb_prev(&state->rb_node);
395 	if (other_node) {
396 		other = rb_entry(other_node, struct extent_state, rb_node);
397 		if (other->end == state->start - 1 &&
398 		    other->state == state->state) {
399 			merge_cb(tree, state, other);
400 			state->start = other->start;
401 			rb_erase(&other->rb_node, &tree->state);
402 			RB_CLEAR_NODE(&other->rb_node);
403 			free_extent_state(other);
404 		}
405 	}
406 	other_node = rb_next(&state->rb_node);
407 	if (other_node) {
408 		other = rb_entry(other_node, struct extent_state, rb_node);
409 		if (other->start == state->end + 1 &&
410 		    other->state == state->state) {
411 			merge_cb(tree, state, other);
412 			state->end = other->end;
413 			rb_erase(&other->rb_node, &tree->state);
414 			RB_CLEAR_NODE(&other->rb_node);
415 			free_extent_state(other);
416 		}
417 	}
418 }
419 
420 static void set_state_cb(struct extent_io_tree *tree,
421 			 struct extent_state *state, unsigned *bits)
422 {
423 	if (tree->ops && tree->ops->set_bit_hook)
424 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
425 }
426 
427 static void clear_state_cb(struct extent_io_tree *tree,
428 			   struct extent_state *state, unsigned *bits)
429 {
430 	if (tree->ops && tree->ops->clear_bit_hook)
431 		tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 				state, bits);
433 }
434 
435 static void set_state_bits(struct extent_io_tree *tree,
436 			   struct extent_state *state, unsigned *bits,
437 			   struct extent_changeset *changeset);
438 
439 /*
440  * insert an extent_state struct into the tree.  'bits' are set on the
441  * struct before it is inserted.
442  *
443  * This may return -EEXIST if the extent is already there, in which case the
444  * state struct is freed.
445  *
446  * The tree lock is not taken internally.  This is a utility function and
447  * probably isn't what you want to call (see set/clear_extent_bit).
448  */
449 static int insert_state(struct extent_io_tree *tree,
450 			struct extent_state *state, u64 start, u64 end,
451 			struct rb_node ***p,
452 			struct rb_node **parent,
453 			unsigned *bits, struct extent_changeset *changeset)
454 {
455 	struct rb_node *node;
456 
457 	if (end < start)
458 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
459 		       end, start);
460 	state->start = start;
461 	state->end = end;
462 
463 	set_state_bits(tree, state, bits, changeset);
464 
465 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
466 	if (node) {
467 		struct extent_state *found;
468 		found = rb_entry(node, struct extent_state, rb_node);
469 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
470 		       found->start, found->end, start, end);
471 		return -EEXIST;
472 	}
473 	merge_state(tree, state);
474 	return 0;
475 }
476 
477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
478 		     u64 split)
479 {
480 	if (tree->ops && tree->ops->split_extent_hook)
481 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 }
483 
484 /*
485  * split a given extent state struct in two, inserting the preallocated
486  * struct 'prealloc' as the newly created second half.  'split' indicates an
487  * offset inside 'orig' where it should be split.
488  *
489  * Before calling,
490  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
491  * are two extent state structs in the tree:
492  * prealloc: [orig->start, split - 1]
493  * orig: [ split, orig->end ]
494  *
495  * The tree locks are not taken by this function. They need to be held
496  * by the caller.
497  */
498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 		       struct extent_state *prealloc, u64 split)
500 {
501 	struct rb_node *node;
502 
503 	split_cb(tree, orig, split);
504 
505 	prealloc->start = orig->start;
506 	prealloc->end = split - 1;
507 	prealloc->state = orig->state;
508 	orig->start = split;
509 
510 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 			   &prealloc->rb_node, NULL, NULL);
512 	if (node) {
513 		free_extent_state(prealloc);
514 		return -EEXIST;
515 	}
516 	return 0;
517 }
518 
519 static struct extent_state *next_state(struct extent_state *state)
520 {
521 	struct rb_node *next = rb_next(&state->rb_node);
522 	if (next)
523 		return rb_entry(next, struct extent_state, rb_node);
524 	else
525 		return NULL;
526 }
527 
528 /*
529  * utility function to clear some bits in an extent state struct.
530  * it will optionally wake up any one waiting on this state (wake == 1).
531  *
532  * If no bits are set on the state struct after clearing things, the
533  * struct is freed and removed from the tree
534  */
535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 					    struct extent_state *state,
537 					    unsigned *bits, int wake,
538 					    struct extent_changeset *changeset)
539 {
540 	struct extent_state *next;
541 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
542 
543 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
544 		u64 range = state->end - state->start + 1;
545 		WARN_ON(range > tree->dirty_bytes);
546 		tree->dirty_bytes -= range;
547 	}
548 	clear_state_cb(tree, state, bits);
549 	add_extent_changeset(state, bits_to_clear, changeset, 0);
550 	state->state &= ~bits_to_clear;
551 	if (wake)
552 		wake_up(&state->wq);
553 	if (state->state == 0) {
554 		next = next_state(state);
555 		if (extent_state_in_tree(state)) {
556 			rb_erase(&state->rb_node, &tree->state);
557 			RB_CLEAR_NODE(&state->rb_node);
558 			free_extent_state(state);
559 		} else {
560 			WARN_ON(1);
561 		}
562 	} else {
563 		merge_state(tree, state);
564 		next = next_state(state);
565 	}
566 	return next;
567 }
568 
569 static struct extent_state *
570 alloc_extent_state_atomic(struct extent_state *prealloc)
571 {
572 	if (!prealloc)
573 		prealloc = alloc_extent_state(GFP_ATOMIC);
574 
575 	return prealloc;
576 }
577 
578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
579 {
580 	btrfs_panic(tree_fs_info(tree), err,
581 		    "Locking error: Extent tree was modified by another thread while locked.");
582 }
583 
584 /*
585  * clear some bits on a range in the tree.  This may require splitting
586  * or inserting elements in the tree, so the gfp mask is used to
587  * indicate which allocations or sleeping are allowed.
588  *
589  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590  * the given range from the tree regardless of state (ie for truncate).
591  *
592  * the range [start, end] is inclusive.
593  *
594  * This takes the tree lock, and returns 0 on success and < 0 on error.
595  */
596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 			      unsigned bits, int wake, int delete,
598 			      struct extent_state **cached_state,
599 			      gfp_t mask, struct extent_changeset *changeset)
600 {
601 	struct extent_state *state;
602 	struct extent_state *cached;
603 	struct extent_state *prealloc = NULL;
604 	struct rb_node *node;
605 	u64 last_end;
606 	int err;
607 	int clear = 0;
608 
609 	btrfs_debug_check_extent_io_range(tree, start, end);
610 
611 	if (bits & EXTENT_DELALLOC)
612 		bits |= EXTENT_NORESERVE;
613 
614 	if (delete)
615 		bits |= ~EXTENT_CTLBITS;
616 	bits |= EXTENT_FIRST_DELALLOC;
617 
618 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 		clear = 1;
620 again:
621 	if (!prealloc && gfpflags_allow_blocking(mask)) {
622 		/*
623 		 * Don't care for allocation failure here because we might end
624 		 * up not needing the pre-allocated extent state at all, which
625 		 * is the case if we only have in the tree extent states that
626 		 * cover our input range and don't cover too any other range.
627 		 * If we end up needing a new extent state we allocate it later.
628 		 */
629 		prealloc = alloc_extent_state(mask);
630 	}
631 
632 	spin_lock(&tree->lock);
633 	if (cached_state) {
634 		cached = *cached_state;
635 
636 		if (clear) {
637 			*cached_state = NULL;
638 			cached_state = NULL;
639 		}
640 
641 		if (cached && extent_state_in_tree(cached) &&
642 		    cached->start <= start && cached->end > start) {
643 			if (clear)
644 				atomic_dec(&cached->refs);
645 			state = cached;
646 			goto hit_next;
647 		}
648 		if (clear)
649 			free_extent_state(cached);
650 	}
651 	/*
652 	 * this search will find the extents that end after
653 	 * our range starts
654 	 */
655 	node = tree_search(tree, start);
656 	if (!node)
657 		goto out;
658 	state = rb_entry(node, struct extent_state, rb_node);
659 hit_next:
660 	if (state->start > end)
661 		goto out;
662 	WARN_ON(state->end < start);
663 	last_end = state->end;
664 
665 	/* the state doesn't have the wanted bits, go ahead */
666 	if (!(state->state & bits)) {
667 		state = next_state(state);
668 		goto next;
669 	}
670 
671 	/*
672 	 *     | ---- desired range ---- |
673 	 *  | state | or
674 	 *  | ------------- state -------------- |
675 	 *
676 	 * We need to split the extent we found, and may flip
677 	 * bits on second half.
678 	 *
679 	 * If the extent we found extends past our range, we
680 	 * just split and search again.  It'll get split again
681 	 * the next time though.
682 	 *
683 	 * If the extent we found is inside our range, we clear
684 	 * the desired bit on it.
685 	 */
686 
687 	if (state->start < start) {
688 		prealloc = alloc_extent_state_atomic(prealloc);
689 		BUG_ON(!prealloc);
690 		err = split_state(tree, state, prealloc, start);
691 		if (err)
692 			extent_io_tree_panic(tree, err);
693 
694 		prealloc = NULL;
695 		if (err)
696 			goto out;
697 		if (state->end <= end) {
698 			state = clear_state_bit(tree, state, &bits, wake,
699 						changeset);
700 			goto next;
701 		}
702 		goto search_again;
703 	}
704 	/*
705 	 * | ---- desired range ---- |
706 	 *                        | state |
707 	 * We need to split the extent, and clear the bit
708 	 * on the first half
709 	 */
710 	if (state->start <= end && state->end > end) {
711 		prealloc = alloc_extent_state_atomic(prealloc);
712 		BUG_ON(!prealloc);
713 		err = split_state(tree, state, prealloc, end + 1);
714 		if (err)
715 			extent_io_tree_panic(tree, err);
716 
717 		if (wake)
718 			wake_up(&state->wq);
719 
720 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
721 
722 		prealloc = NULL;
723 		goto out;
724 	}
725 
726 	state = clear_state_bit(tree, state, &bits, wake, changeset);
727 next:
728 	if (last_end == (u64)-1)
729 		goto out;
730 	start = last_end + 1;
731 	if (start <= end && state && !need_resched())
732 		goto hit_next;
733 
734 search_again:
735 	if (start > end)
736 		goto out;
737 	spin_unlock(&tree->lock);
738 	if (gfpflags_allow_blocking(mask))
739 		cond_resched();
740 	goto again;
741 
742 out:
743 	spin_unlock(&tree->lock);
744 	if (prealloc)
745 		free_extent_state(prealloc);
746 
747 	return 0;
748 
749 }
750 
751 static void wait_on_state(struct extent_io_tree *tree,
752 			  struct extent_state *state)
753 		__releases(tree->lock)
754 		__acquires(tree->lock)
755 {
756 	DEFINE_WAIT(wait);
757 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
758 	spin_unlock(&tree->lock);
759 	schedule();
760 	spin_lock(&tree->lock);
761 	finish_wait(&state->wq, &wait);
762 }
763 
764 /*
765  * waits for one or more bits to clear on a range in the state tree.
766  * The range [start, end] is inclusive.
767  * The tree lock is taken by this function
768  */
769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 			    unsigned long bits)
771 {
772 	struct extent_state *state;
773 	struct rb_node *node;
774 
775 	btrfs_debug_check_extent_io_range(tree, start, end);
776 
777 	spin_lock(&tree->lock);
778 again:
779 	while (1) {
780 		/*
781 		 * this search will find all the extents that end after
782 		 * our range starts
783 		 */
784 		node = tree_search(tree, start);
785 process_node:
786 		if (!node)
787 			break;
788 
789 		state = rb_entry(node, struct extent_state, rb_node);
790 
791 		if (state->start > end)
792 			goto out;
793 
794 		if (state->state & bits) {
795 			start = state->start;
796 			atomic_inc(&state->refs);
797 			wait_on_state(tree, state);
798 			free_extent_state(state);
799 			goto again;
800 		}
801 		start = state->end + 1;
802 
803 		if (start > end)
804 			break;
805 
806 		if (!cond_resched_lock(&tree->lock)) {
807 			node = rb_next(node);
808 			goto process_node;
809 		}
810 	}
811 out:
812 	spin_unlock(&tree->lock);
813 }
814 
815 static void set_state_bits(struct extent_io_tree *tree,
816 			   struct extent_state *state,
817 			   unsigned *bits, struct extent_changeset *changeset)
818 {
819 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
820 
821 	set_state_cb(tree, state, bits);
822 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
823 		u64 range = state->end - state->start + 1;
824 		tree->dirty_bytes += range;
825 	}
826 	add_extent_changeset(state, bits_to_set, changeset, 1);
827 	state->state |= bits_to_set;
828 }
829 
830 static void cache_state_if_flags(struct extent_state *state,
831 				 struct extent_state **cached_ptr,
832 				 unsigned flags)
833 {
834 	if (cached_ptr && !(*cached_ptr)) {
835 		if (!flags || (state->state & flags)) {
836 			*cached_ptr = state;
837 			atomic_inc(&state->refs);
838 		}
839 	}
840 }
841 
842 static void cache_state(struct extent_state *state,
843 			struct extent_state **cached_ptr)
844 {
845 	return cache_state_if_flags(state, cached_ptr,
846 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
847 }
848 
849 /*
850  * set some bits on a range in the tree.  This may require allocations or
851  * sleeping, so the gfp mask is used to indicate what is allowed.
852  *
853  * If any of the exclusive bits are set, this will fail with -EEXIST if some
854  * part of the range already has the desired bits set.  The start of the
855  * existing range is returned in failed_start in this case.
856  *
857  * [start, end] is inclusive This takes the tree lock.
858  */
859 
860 static int __must_check
861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
862 		 unsigned bits, unsigned exclusive_bits,
863 		 u64 *failed_start, struct extent_state **cached_state,
864 		 gfp_t mask, struct extent_changeset *changeset)
865 {
866 	struct extent_state *state;
867 	struct extent_state *prealloc = NULL;
868 	struct rb_node *node;
869 	struct rb_node **p;
870 	struct rb_node *parent;
871 	int err = 0;
872 	u64 last_start;
873 	u64 last_end;
874 
875 	btrfs_debug_check_extent_io_range(tree, start, end);
876 
877 	bits |= EXTENT_FIRST_DELALLOC;
878 again:
879 	if (!prealloc && gfpflags_allow_blocking(mask)) {
880 		/*
881 		 * Don't care for allocation failure here because we might end
882 		 * up not needing the pre-allocated extent state at all, which
883 		 * is the case if we only have in the tree extent states that
884 		 * cover our input range and don't cover too any other range.
885 		 * If we end up needing a new extent state we allocate it later.
886 		 */
887 		prealloc = alloc_extent_state(mask);
888 	}
889 
890 	spin_lock(&tree->lock);
891 	if (cached_state && *cached_state) {
892 		state = *cached_state;
893 		if (state->start <= start && state->end > start &&
894 		    extent_state_in_tree(state)) {
895 			node = &state->rb_node;
896 			goto hit_next;
897 		}
898 	}
899 	/*
900 	 * this search will find all the extents that end after
901 	 * our range starts.
902 	 */
903 	node = tree_search_for_insert(tree, start, &p, &parent);
904 	if (!node) {
905 		prealloc = alloc_extent_state_atomic(prealloc);
906 		BUG_ON(!prealloc);
907 		err = insert_state(tree, prealloc, start, end,
908 				   &p, &parent, &bits, changeset);
909 		if (err)
910 			extent_io_tree_panic(tree, err);
911 
912 		cache_state(prealloc, cached_state);
913 		prealloc = NULL;
914 		goto out;
915 	}
916 	state = rb_entry(node, struct extent_state, rb_node);
917 hit_next:
918 	last_start = state->start;
919 	last_end = state->end;
920 
921 	/*
922 	 * | ---- desired range ---- |
923 	 * | state |
924 	 *
925 	 * Just lock what we found and keep going
926 	 */
927 	if (state->start == start && state->end <= end) {
928 		if (state->state & exclusive_bits) {
929 			*failed_start = state->start;
930 			err = -EEXIST;
931 			goto out;
932 		}
933 
934 		set_state_bits(tree, state, &bits, changeset);
935 		cache_state(state, cached_state);
936 		merge_state(tree, state);
937 		if (last_end == (u64)-1)
938 			goto out;
939 		start = last_end + 1;
940 		state = next_state(state);
941 		if (start < end && state && state->start == start &&
942 		    !need_resched())
943 			goto hit_next;
944 		goto search_again;
945 	}
946 
947 	/*
948 	 *     | ---- desired range ---- |
949 	 * | state |
950 	 *   or
951 	 * | ------------- state -------------- |
952 	 *
953 	 * We need to split the extent we found, and may flip bits on
954 	 * second half.
955 	 *
956 	 * If the extent we found extends past our
957 	 * range, we just split and search again.  It'll get split
958 	 * again the next time though.
959 	 *
960 	 * If the extent we found is inside our range, we set the
961 	 * desired bit on it.
962 	 */
963 	if (state->start < start) {
964 		if (state->state & exclusive_bits) {
965 			*failed_start = start;
966 			err = -EEXIST;
967 			goto out;
968 		}
969 
970 		prealloc = alloc_extent_state_atomic(prealloc);
971 		BUG_ON(!prealloc);
972 		err = split_state(tree, state, prealloc, start);
973 		if (err)
974 			extent_io_tree_panic(tree, err);
975 
976 		prealloc = NULL;
977 		if (err)
978 			goto out;
979 		if (state->end <= end) {
980 			set_state_bits(tree, state, &bits, changeset);
981 			cache_state(state, cached_state);
982 			merge_state(tree, state);
983 			if (last_end == (u64)-1)
984 				goto out;
985 			start = last_end + 1;
986 			state = next_state(state);
987 			if (start < end && state && state->start == start &&
988 			    !need_resched())
989 				goto hit_next;
990 		}
991 		goto search_again;
992 	}
993 	/*
994 	 * | ---- desired range ---- |
995 	 *     | state | or               | state |
996 	 *
997 	 * There's a hole, we need to insert something in it and
998 	 * ignore the extent we found.
999 	 */
1000 	if (state->start > start) {
1001 		u64 this_end;
1002 		if (end < last_start)
1003 			this_end = end;
1004 		else
1005 			this_end = last_start - 1;
1006 
1007 		prealloc = alloc_extent_state_atomic(prealloc);
1008 		BUG_ON(!prealloc);
1009 
1010 		/*
1011 		 * Avoid to free 'prealloc' if it can be merged with
1012 		 * the later extent.
1013 		 */
1014 		err = insert_state(tree, prealloc, start, this_end,
1015 				   NULL, NULL, &bits, changeset);
1016 		if (err)
1017 			extent_io_tree_panic(tree, err);
1018 
1019 		cache_state(prealloc, cached_state);
1020 		prealloc = NULL;
1021 		start = this_end + 1;
1022 		goto search_again;
1023 	}
1024 	/*
1025 	 * | ---- desired range ---- |
1026 	 *                        | state |
1027 	 * We need to split the extent, and set the bit
1028 	 * on the first half
1029 	 */
1030 	if (state->start <= end && state->end > end) {
1031 		if (state->state & exclusive_bits) {
1032 			*failed_start = start;
1033 			err = -EEXIST;
1034 			goto out;
1035 		}
1036 
1037 		prealloc = alloc_extent_state_atomic(prealloc);
1038 		BUG_ON(!prealloc);
1039 		err = split_state(tree, state, prealloc, end + 1);
1040 		if (err)
1041 			extent_io_tree_panic(tree, err);
1042 
1043 		set_state_bits(tree, prealloc, &bits, changeset);
1044 		cache_state(prealloc, cached_state);
1045 		merge_state(tree, prealloc);
1046 		prealloc = NULL;
1047 		goto out;
1048 	}
1049 
1050 search_again:
1051 	if (start > end)
1052 		goto out;
1053 	spin_unlock(&tree->lock);
1054 	if (gfpflags_allow_blocking(mask))
1055 		cond_resched();
1056 	goto again;
1057 
1058 out:
1059 	spin_unlock(&tree->lock);
1060 	if (prealloc)
1061 		free_extent_state(prealloc);
1062 
1063 	return err;
1064 
1065 }
1066 
1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1068 		   unsigned bits, u64 * failed_start,
1069 		   struct extent_state **cached_state, gfp_t mask)
1070 {
1071 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1072 				cached_state, mask, NULL);
1073 }
1074 
1075 
1076 /**
1077  * convert_extent_bit - convert all bits in a given range from one bit to
1078  * 			another
1079  * @tree:	the io tree to search
1080  * @start:	the start offset in bytes
1081  * @end:	the end offset in bytes (inclusive)
1082  * @bits:	the bits to set in this range
1083  * @clear_bits:	the bits to clear in this range
1084  * @cached_state:	state that we're going to cache
1085  *
1086  * This will go through and set bits for the given range.  If any states exist
1087  * already in this range they are set with the given bit and cleared of the
1088  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1089  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1090  * boundary bits like LOCK.
1091  *
1092  * All allocations are done with GFP_NOFS.
1093  */
1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1095 		       unsigned bits, unsigned clear_bits,
1096 		       struct extent_state **cached_state)
1097 {
1098 	struct extent_state *state;
1099 	struct extent_state *prealloc = NULL;
1100 	struct rb_node *node;
1101 	struct rb_node **p;
1102 	struct rb_node *parent;
1103 	int err = 0;
1104 	u64 last_start;
1105 	u64 last_end;
1106 	bool first_iteration = true;
1107 
1108 	btrfs_debug_check_extent_io_range(tree, start, end);
1109 
1110 again:
1111 	if (!prealloc) {
1112 		/*
1113 		 * Best effort, don't worry if extent state allocation fails
1114 		 * here for the first iteration. We might have a cached state
1115 		 * that matches exactly the target range, in which case no
1116 		 * extent state allocations are needed. We'll only know this
1117 		 * after locking the tree.
1118 		 */
1119 		prealloc = alloc_extent_state(GFP_NOFS);
1120 		if (!prealloc && !first_iteration)
1121 			return -ENOMEM;
1122 	}
1123 
1124 	spin_lock(&tree->lock);
1125 	if (cached_state && *cached_state) {
1126 		state = *cached_state;
1127 		if (state->start <= start && state->end > start &&
1128 		    extent_state_in_tree(state)) {
1129 			node = &state->rb_node;
1130 			goto hit_next;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * this search will find all the extents that end after
1136 	 * our range starts.
1137 	 */
1138 	node = tree_search_for_insert(tree, start, &p, &parent);
1139 	if (!node) {
1140 		prealloc = alloc_extent_state_atomic(prealloc);
1141 		if (!prealloc) {
1142 			err = -ENOMEM;
1143 			goto out;
1144 		}
1145 		err = insert_state(tree, prealloc, start, end,
1146 				   &p, &parent, &bits, NULL);
1147 		if (err)
1148 			extent_io_tree_panic(tree, err);
1149 		cache_state(prealloc, cached_state);
1150 		prealloc = NULL;
1151 		goto out;
1152 	}
1153 	state = rb_entry(node, struct extent_state, rb_node);
1154 hit_next:
1155 	last_start = state->start;
1156 	last_end = state->end;
1157 
1158 	/*
1159 	 * | ---- desired range ---- |
1160 	 * | state |
1161 	 *
1162 	 * Just lock what we found and keep going
1163 	 */
1164 	if (state->start == start && state->end <= end) {
1165 		set_state_bits(tree, state, &bits, NULL);
1166 		cache_state(state, cached_state);
1167 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1168 		if (last_end == (u64)-1)
1169 			goto out;
1170 		start = last_end + 1;
1171 		if (start < end && state && state->start == start &&
1172 		    !need_resched())
1173 			goto hit_next;
1174 		goto search_again;
1175 	}
1176 
1177 	/*
1178 	 *     | ---- desired range ---- |
1179 	 * | state |
1180 	 *   or
1181 	 * | ------------- state -------------- |
1182 	 *
1183 	 * We need to split the extent we found, and may flip bits on
1184 	 * second half.
1185 	 *
1186 	 * If the extent we found extends past our
1187 	 * range, we just split and search again.  It'll get split
1188 	 * again the next time though.
1189 	 *
1190 	 * If the extent we found is inside our range, we set the
1191 	 * desired bit on it.
1192 	 */
1193 	if (state->start < start) {
1194 		prealloc = alloc_extent_state_atomic(prealloc);
1195 		if (!prealloc) {
1196 			err = -ENOMEM;
1197 			goto out;
1198 		}
1199 		err = split_state(tree, state, prealloc, start);
1200 		if (err)
1201 			extent_io_tree_panic(tree, err);
1202 		prealloc = NULL;
1203 		if (err)
1204 			goto out;
1205 		if (state->end <= end) {
1206 			set_state_bits(tree, state, &bits, NULL);
1207 			cache_state(state, cached_state);
1208 			state = clear_state_bit(tree, state, &clear_bits, 0,
1209 						NULL);
1210 			if (last_end == (u64)-1)
1211 				goto out;
1212 			start = last_end + 1;
1213 			if (start < end && state && state->start == start &&
1214 			    !need_resched())
1215 				goto hit_next;
1216 		}
1217 		goto search_again;
1218 	}
1219 	/*
1220 	 * | ---- desired range ---- |
1221 	 *     | state | or               | state |
1222 	 *
1223 	 * There's a hole, we need to insert something in it and
1224 	 * ignore the extent we found.
1225 	 */
1226 	if (state->start > start) {
1227 		u64 this_end;
1228 		if (end < last_start)
1229 			this_end = end;
1230 		else
1231 			this_end = last_start - 1;
1232 
1233 		prealloc = alloc_extent_state_atomic(prealloc);
1234 		if (!prealloc) {
1235 			err = -ENOMEM;
1236 			goto out;
1237 		}
1238 
1239 		/*
1240 		 * Avoid to free 'prealloc' if it can be merged with
1241 		 * the later extent.
1242 		 */
1243 		err = insert_state(tree, prealloc, start, this_end,
1244 				   NULL, NULL, &bits, NULL);
1245 		if (err)
1246 			extent_io_tree_panic(tree, err);
1247 		cache_state(prealloc, cached_state);
1248 		prealloc = NULL;
1249 		start = this_end + 1;
1250 		goto search_again;
1251 	}
1252 	/*
1253 	 * | ---- desired range ---- |
1254 	 *                        | state |
1255 	 * We need to split the extent, and set the bit
1256 	 * on the first half
1257 	 */
1258 	if (state->start <= end && state->end > end) {
1259 		prealloc = alloc_extent_state_atomic(prealloc);
1260 		if (!prealloc) {
1261 			err = -ENOMEM;
1262 			goto out;
1263 		}
1264 
1265 		err = split_state(tree, state, prealloc, end + 1);
1266 		if (err)
1267 			extent_io_tree_panic(tree, err);
1268 
1269 		set_state_bits(tree, prealloc, &bits, NULL);
1270 		cache_state(prealloc, cached_state);
1271 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1272 		prealloc = NULL;
1273 		goto out;
1274 	}
1275 
1276 search_again:
1277 	if (start > end)
1278 		goto out;
1279 	spin_unlock(&tree->lock);
1280 	cond_resched();
1281 	first_iteration = false;
1282 	goto again;
1283 
1284 out:
1285 	spin_unlock(&tree->lock);
1286 	if (prealloc)
1287 		free_extent_state(prealloc);
1288 
1289 	return err;
1290 }
1291 
1292 /* wrappers around set/clear extent bit */
1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1294 			   unsigned bits, struct extent_changeset *changeset)
1295 {
1296 	/*
1297 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 	 * either fail with -EEXIST or changeset will record the whole
1300 	 * range.
1301 	 */
1302 	BUG_ON(bits & EXTENT_LOCKED);
1303 
1304 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1305 				changeset);
1306 }
1307 
1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 		     unsigned bits, int wake, int delete,
1310 		     struct extent_state **cached, gfp_t mask)
1311 {
1312 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 				  cached, mask, NULL);
1314 }
1315 
1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 		unsigned bits, struct extent_changeset *changeset)
1318 {
1319 	/*
1320 	 * Don't support EXTENT_LOCKED case, same reason as
1321 	 * set_record_extent_bits().
1322 	 */
1323 	BUG_ON(bits & EXTENT_LOCKED);
1324 
1325 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1326 				  changeset);
1327 }
1328 
1329 /*
1330  * either insert or lock state struct between start and end use mask to tell
1331  * us if waiting is desired.
1332  */
1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1334 		     struct extent_state **cached_state)
1335 {
1336 	int err;
1337 	u64 failed_start;
1338 
1339 	while (1) {
1340 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1341 				       EXTENT_LOCKED, &failed_start,
1342 				       cached_state, GFP_NOFS, NULL);
1343 		if (err == -EEXIST) {
1344 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 			start = failed_start;
1346 		} else
1347 			break;
1348 		WARN_ON(start > end);
1349 	}
1350 	return err;
1351 }
1352 
1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 {
1355 	int err;
1356 	u64 failed_start;
1357 
1358 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1359 			       &failed_start, NULL, GFP_NOFS, NULL);
1360 	if (err == -EEXIST) {
1361 		if (failed_start > start)
1362 			clear_extent_bit(tree, start, failed_start - 1,
1363 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1364 		return 0;
1365 	}
1366 	return 1;
1367 }
1368 
1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371 	unsigned long index = start >> PAGE_SHIFT;
1372 	unsigned long end_index = end >> PAGE_SHIFT;
1373 	struct page *page;
1374 
1375 	while (index <= end_index) {
1376 		page = find_get_page(inode->i_mapping, index);
1377 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 		clear_page_dirty_for_io(page);
1379 		put_page(page);
1380 		index++;
1381 	}
1382 }
1383 
1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1385 {
1386 	unsigned long index = start >> PAGE_SHIFT;
1387 	unsigned long end_index = end >> PAGE_SHIFT;
1388 	struct page *page;
1389 
1390 	while (index <= end_index) {
1391 		page = find_get_page(inode->i_mapping, index);
1392 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1393 		__set_page_dirty_nobuffers(page);
1394 		account_page_redirty(page);
1395 		put_page(page);
1396 		index++;
1397 	}
1398 }
1399 
1400 /*
1401  * helper function to set both pages and extents in the tree writeback
1402  */
1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1404 {
1405 	unsigned long index = start >> PAGE_SHIFT;
1406 	unsigned long end_index = end >> PAGE_SHIFT;
1407 	struct page *page;
1408 
1409 	while (index <= end_index) {
1410 		page = find_get_page(tree->mapping, index);
1411 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 		set_page_writeback(page);
1413 		put_page(page);
1414 		index++;
1415 	}
1416 }
1417 
1418 /* find the first state struct with 'bits' set after 'start', and
1419  * return it.  tree->lock must be held.  NULL will returned if
1420  * nothing was found after 'start'
1421  */
1422 static struct extent_state *
1423 find_first_extent_bit_state(struct extent_io_tree *tree,
1424 			    u64 start, unsigned bits)
1425 {
1426 	struct rb_node *node;
1427 	struct extent_state *state;
1428 
1429 	/*
1430 	 * this search will find all the extents that end after
1431 	 * our range starts.
1432 	 */
1433 	node = tree_search(tree, start);
1434 	if (!node)
1435 		goto out;
1436 
1437 	while (1) {
1438 		state = rb_entry(node, struct extent_state, rb_node);
1439 		if (state->end >= start && (state->state & bits))
1440 			return state;
1441 
1442 		node = rb_next(node);
1443 		if (!node)
1444 			break;
1445 	}
1446 out:
1447 	return NULL;
1448 }
1449 
1450 /*
1451  * find the first offset in the io tree with 'bits' set. zero is
1452  * returned if we find something, and *start_ret and *end_ret are
1453  * set to reflect the state struct that was found.
1454  *
1455  * If nothing was found, 1 is returned. If found something, return 0.
1456  */
1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1458 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1459 			  struct extent_state **cached_state)
1460 {
1461 	struct extent_state *state;
1462 	struct rb_node *n;
1463 	int ret = 1;
1464 
1465 	spin_lock(&tree->lock);
1466 	if (cached_state && *cached_state) {
1467 		state = *cached_state;
1468 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1469 			n = rb_next(&state->rb_node);
1470 			while (n) {
1471 				state = rb_entry(n, struct extent_state,
1472 						 rb_node);
1473 				if (state->state & bits)
1474 					goto got_it;
1475 				n = rb_next(n);
1476 			}
1477 			free_extent_state(*cached_state);
1478 			*cached_state = NULL;
1479 			goto out;
1480 		}
1481 		free_extent_state(*cached_state);
1482 		*cached_state = NULL;
1483 	}
1484 
1485 	state = find_first_extent_bit_state(tree, start, bits);
1486 got_it:
1487 	if (state) {
1488 		cache_state_if_flags(state, cached_state, 0);
1489 		*start_ret = state->start;
1490 		*end_ret = state->end;
1491 		ret = 0;
1492 	}
1493 out:
1494 	spin_unlock(&tree->lock);
1495 	return ret;
1496 }
1497 
1498 /*
1499  * find a contiguous range of bytes in the file marked as delalloc, not
1500  * more than 'max_bytes'.  start and end are used to return the range,
1501  *
1502  * 1 is returned if we find something, 0 if nothing was in the tree
1503  */
1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1505 					u64 *start, u64 *end, u64 max_bytes,
1506 					struct extent_state **cached_state)
1507 {
1508 	struct rb_node *node;
1509 	struct extent_state *state;
1510 	u64 cur_start = *start;
1511 	u64 found = 0;
1512 	u64 total_bytes = 0;
1513 
1514 	spin_lock(&tree->lock);
1515 
1516 	/*
1517 	 * this search will find all the extents that end after
1518 	 * our range starts.
1519 	 */
1520 	node = tree_search(tree, cur_start);
1521 	if (!node) {
1522 		if (!found)
1523 			*end = (u64)-1;
1524 		goto out;
1525 	}
1526 
1527 	while (1) {
1528 		state = rb_entry(node, struct extent_state, rb_node);
1529 		if (found && (state->start != cur_start ||
1530 			      (state->state & EXTENT_BOUNDARY))) {
1531 			goto out;
1532 		}
1533 		if (!(state->state & EXTENT_DELALLOC)) {
1534 			if (!found)
1535 				*end = state->end;
1536 			goto out;
1537 		}
1538 		if (!found) {
1539 			*start = state->start;
1540 			*cached_state = state;
1541 			atomic_inc(&state->refs);
1542 		}
1543 		found++;
1544 		*end = state->end;
1545 		cur_start = state->end + 1;
1546 		node = rb_next(node);
1547 		total_bytes += state->end - state->start + 1;
1548 		if (total_bytes >= max_bytes)
1549 			break;
1550 		if (!node)
1551 			break;
1552 	}
1553 out:
1554 	spin_unlock(&tree->lock);
1555 	return found;
1556 }
1557 
1558 static int __process_pages_contig(struct address_space *mapping,
1559 				  struct page *locked_page,
1560 				  pgoff_t start_index, pgoff_t end_index,
1561 				  unsigned long page_ops, pgoff_t *index_ret);
1562 
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 					   struct page *locked_page,
1565 					   u64 start, u64 end)
1566 {
1567 	unsigned long index = start >> PAGE_SHIFT;
1568 	unsigned long end_index = end >> PAGE_SHIFT;
1569 
1570 	ASSERT(locked_page);
1571 	if (index == locked_page->index && end_index == index)
1572 		return;
1573 
1574 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 			       PAGE_UNLOCK, NULL);
1576 }
1577 
1578 static noinline int lock_delalloc_pages(struct inode *inode,
1579 					struct page *locked_page,
1580 					u64 delalloc_start,
1581 					u64 delalloc_end)
1582 {
1583 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1584 	unsigned long index_ret = index;
1585 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1586 	int ret;
1587 
1588 	ASSERT(locked_page);
1589 	if (index == locked_page->index && index == end_index)
1590 		return 0;
1591 
1592 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 				     end_index, PAGE_LOCK, &index_ret);
1594 	if (ret == -EAGAIN)
1595 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 				      (u64)index_ret << PAGE_SHIFT);
1597 	return ret;
1598 }
1599 
1600 /*
1601  * find a contiguous range of bytes in the file marked as delalloc, not
1602  * more than 'max_bytes'.  start and end are used to return the range,
1603  *
1604  * 1 is returned if we find something, 0 if nothing was in the tree
1605  */
1606 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 				    struct extent_io_tree *tree,
1608 				    struct page *locked_page, u64 *start,
1609 				    u64 *end, u64 max_bytes)
1610 {
1611 	u64 delalloc_start;
1612 	u64 delalloc_end;
1613 	u64 found;
1614 	struct extent_state *cached_state = NULL;
1615 	int ret;
1616 	int loops = 0;
1617 
1618 again:
1619 	/* step one, find a bunch of delalloc bytes starting at start */
1620 	delalloc_start = *start;
1621 	delalloc_end = 0;
1622 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1623 				    max_bytes, &cached_state);
1624 	if (!found || delalloc_end <= *start) {
1625 		*start = delalloc_start;
1626 		*end = delalloc_end;
1627 		free_extent_state(cached_state);
1628 		return 0;
1629 	}
1630 
1631 	/*
1632 	 * start comes from the offset of locked_page.  We have to lock
1633 	 * pages in order, so we can't process delalloc bytes before
1634 	 * locked_page
1635 	 */
1636 	if (delalloc_start < *start)
1637 		delalloc_start = *start;
1638 
1639 	/*
1640 	 * make sure to limit the number of pages we try to lock down
1641 	 */
1642 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 		delalloc_end = delalloc_start + max_bytes - 1;
1644 
1645 	/* step two, lock all the pages after the page that has start */
1646 	ret = lock_delalloc_pages(inode, locked_page,
1647 				  delalloc_start, delalloc_end);
1648 	if (ret == -EAGAIN) {
1649 		/* some of the pages are gone, lets avoid looping by
1650 		 * shortening the size of the delalloc range we're searching
1651 		 */
1652 		free_extent_state(cached_state);
1653 		cached_state = NULL;
1654 		if (!loops) {
1655 			max_bytes = PAGE_SIZE;
1656 			loops = 1;
1657 			goto again;
1658 		} else {
1659 			found = 0;
1660 			goto out_failed;
1661 		}
1662 	}
1663 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1664 
1665 	/* step three, lock the state bits for the whole range */
1666 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1667 
1668 	/* then test to make sure it is all still delalloc */
1669 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1670 			     EXTENT_DELALLOC, 1, cached_state);
1671 	if (!ret) {
1672 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 				     &cached_state, GFP_NOFS);
1674 		__unlock_for_delalloc(inode, locked_page,
1675 			      delalloc_start, delalloc_end);
1676 		cond_resched();
1677 		goto again;
1678 	}
1679 	free_extent_state(cached_state);
1680 	*start = delalloc_start;
1681 	*end = delalloc_end;
1682 out_failed:
1683 	return found;
1684 }
1685 
1686 static int __process_pages_contig(struct address_space *mapping,
1687 				  struct page *locked_page,
1688 				  pgoff_t start_index, pgoff_t end_index,
1689 				  unsigned long page_ops, pgoff_t *index_ret)
1690 {
1691 	unsigned long nr_pages = end_index - start_index + 1;
1692 	unsigned long pages_locked = 0;
1693 	pgoff_t index = start_index;
1694 	struct page *pages[16];
1695 	unsigned ret;
1696 	int err = 0;
1697 	int i;
1698 
1699 	if (page_ops & PAGE_LOCK) {
1700 		ASSERT(page_ops == PAGE_LOCK);
1701 		ASSERT(index_ret && *index_ret == start_index);
1702 	}
1703 
1704 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1705 		mapping_set_error(mapping, -EIO);
1706 
1707 	while (nr_pages > 0) {
1708 		ret = find_get_pages_contig(mapping, index,
1709 				     min_t(unsigned long,
1710 				     nr_pages, ARRAY_SIZE(pages)), pages);
1711 		if (ret == 0) {
1712 			/*
1713 			 * Only if we're going to lock these pages,
1714 			 * can we find nothing at @index.
1715 			 */
1716 			ASSERT(page_ops & PAGE_LOCK);
1717 			err = -EAGAIN;
1718 			goto out;
1719 		}
1720 
1721 		for (i = 0; i < ret; i++) {
1722 			if (page_ops & PAGE_SET_PRIVATE2)
1723 				SetPagePrivate2(pages[i]);
1724 
1725 			if (pages[i] == locked_page) {
1726 				put_page(pages[i]);
1727 				pages_locked++;
1728 				continue;
1729 			}
1730 			if (page_ops & PAGE_CLEAR_DIRTY)
1731 				clear_page_dirty_for_io(pages[i]);
1732 			if (page_ops & PAGE_SET_WRITEBACK)
1733 				set_page_writeback(pages[i]);
1734 			if (page_ops & PAGE_SET_ERROR)
1735 				SetPageError(pages[i]);
1736 			if (page_ops & PAGE_END_WRITEBACK)
1737 				end_page_writeback(pages[i]);
1738 			if (page_ops & PAGE_UNLOCK)
1739 				unlock_page(pages[i]);
1740 			if (page_ops & PAGE_LOCK) {
1741 				lock_page(pages[i]);
1742 				if (!PageDirty(pages[i]) ||
1743 				    pages[i]->mapping != mapping) {
1744 					unlock_page(pages[i]);
1745 					put_page(pages[i]);
1746 					err = -EAGAIN;
1747 					goto out;
1748 				}
1749 			}
1750 			put_page(pages[i]);
1751 			pages_locked++;
1752 		}
1753 		nr_pages -= ret;
1754 		index += ret;
1755 		cond_resched();
1756 	}
1757 out:
1758 	if (err && index_ret)
1759 		*index_ret = start_index + pages_locked - 1;
1760 	return err;
1761 }
1762 
1763 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1764 				 u64 delalloc_end, struct page *locked_page,
1765 				 unsigned clear_bits,
1766 				 unsigned long page_ops)
1767 {
1768 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1769 			 NULL, GFP_NOFS);
1770 
1771 	__process_pages_contig(inode->i_mapping, locked_page,
1772 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1773 			       page_ops, NULL);
1774 }
1775 
1776 /*
1777  * count the number of bytes in the tree that have a given bit(s)
1778  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1779  * cached.  The total number found is returned.
1780  */
1781 u64 count_range_bits(struct extent_io_tree *tree,
1782 		     u64 *start, u64 search_end, u64 max_bytes,
1783 		     unsigned bits, int contig)
1784 {
1785 	struct rb_node *node;
1786 	struct extent_state *state;
1787 	u64 cur_start = *start;
1788 	u64 total_bytes = 0;
1789 	u64 last = 0;
1790 	int found = 0;
1791 
1792 	if (WARN_ON(search_end <= cur_start))
1793 		return 0;
1794 
1795 	spin_lock(&tree->lock);
1796 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 		total_bytes = tree->dirty_bytes;
1798 		goto out;
1799 	}
1800 	/*
1801 	 * this search will find all the extents that end after
1802 	 * our range starts.
1803 	 */
1804 	node = tree_search(tree, cur_start);
1805 	if (!node)
1806 		goto out;
1807 
1808 	while (1) {
1809 		state = rb_entry(node, struct extent_state, rb_node);
1810 		if (state->start > search_end)
1811 			break;
1812 		if (contig && found && state->start > last + 1)
1813 			break;
1814 		if (state->end >= cur_start && (state->state & bits) == bits) {
1815 			total_bytes += min(search_end, state->end) + 1 -
1816 				       max(cur_start, state->start);
1817 			if (total_bytes >= max_bytes)
1818 				break;
1819 			if (!found) {
1820 				*start = max(cur_start, state->start);
1821 				found = 1;
1822 			}
1823 			last = state->end;
1824 		} else if (contig && found) {
1825 			break;
1826 		}
1827 		node = rb_next(node);
1828 		if (!node)
1829 			break;
1830 	}
1831 out:
1832 	spin_unlock(&tree->lock);
1833 	return total_bytes;
1834 }
1835 
1836 /*
1837  * set the private field for a given byte offset in the tree.  If there isn't
1838  * an extent_state there already, this does nothing.
1839  */
1840 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1841 		struct io_failure_record *failrec)
1842 {
1843 	struct rb_node *node;
1844 	struct extent_state *state;
1845 	int ret = 0;
1846 
1847 	spin_lock(&tree->lock);
1848 	/*
1849 	 * this search will find all the extents that end after
1850 	 * our range starts.
1851 	 */
1852 	node = tree_search(tree, start);
1853 	if (!node) {
1854 		ret = -ENOENT;
1855 		goto out;
1856 	}
1857 	state = rb_entry(node, struct extent_state, rb_node);
1858 	if (state->start != start) {
1859 		ret = -ENOENT;
1860 		goto out;
1861 	}
1862 	state->failrec = failrec;
1863 out:
1864 	spin_unlock(&tree->lock);
1865 	return ret;
1866 }
1867 
1868 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1869 		struct io_failure_record **failrec)
1870 {
1871 	struct rb_node *node;
1872 	struct extent_state *state;
1873 	int ret = 0;
1874 
1875 	spin_lock(&tree->lock);
1876 	/*
1877 	 * this search will find all the extents that end after
1878 	 * our range starts.
1879 	 */
1880 	node = tree_search(tree, start);
1881 	if (!node) {
1882 		ret = -ENOENT;
1883 		goto out;
1884 	}
1885 	state = rb_entry(node, struct extent_state, rb_node);
1886 	if (state->start != start) {
1887 		ret = -ENOENT;
1888 		goto out;
1889 	}
1890 	*failrec = state->failrec;
1891 out:
1892 	spin_unlock(&tree->lock);
1893 	return ret;
1894 }
1895 
1896 /*
1897  * searches a range in the state tree for a given mask.
1898  * If 'filled' == 1, this returns 1 only if every extent in the tree
1899  * has the bits set.  Otherwise, 1 is returned if any bit in the
1900  * range is found set.
1901  */
1902 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1903 		   unsigned bits, int filled, struct extent_state *cached)
1904 {
1905 	struct extent_state *state = NULL;
1906 	struct rb_node *node;
1907 	int bitset = 0;
1908 
1909 	spin_lock(&tree->lock);
1910 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1911 	    cached->end > start)
1912 		node = &cached->rb_node;
1913 	else
1914 		node = tree_search(tree, start);
1915 	while (node && start <= end) {
1916 		state = rb_entry(node, struct extent_state, rb_node);
1917 
1918 		if (filled && state->start > start) {
1919 			bitset = 0;
1920 			break;
1921 		}
1922 
1923 		if (state->start > end)
1924 			break;
1925 
1926 		if (state->state & bits) {
1927 			bitset = 1;
1928 			if (!filled)
1929 				break;
1930 		} else if (filled) {
1931 			bitset = 0;
1932 			break;
1933 		}
1934 
1935 		if (state->end == (u64)-1)
1936 			break;
1937 
1938 		start = state->end + 1;
1939 		if (start > end)
1940 			break;
1941 		node = rb_next(node);
1942 		if (!node) {
1943 			if (filled)
1944 				bitset = 0;
1945 			break;
1946 		}
1947 	}
1948 	spin_unlock(&tree->lock);
1949 	return bitset;
1950 }
1951 
1952 /*
1953  * helper function to set a given page up to date if all the
1954  * extents in the tree for that page are up to date
1955  */
1956 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1957 {
1958 	u64 start = page_offset(page);
1959 	u64 end = start + PAGE_SIZE - 1;
1960 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1961 		SetPageUptodate(page);
1962 }
1963 
1964 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1965 {
1966 	int ret;
1967 	int err = 0;
1968 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1969 
1970 	set_state_failrec(failure_tree, rec->start, NULL);
1971 	ret = clear_extent_bits(failure_tree, rec->start,
1972 				rec->start + rec->len - 1,
1973 				EXTENT_LOCKED | EXTENT_DIRTY);
1974 	if (ret)
1975 		err = ret;
1976 
1977 	ret = clear_extent_bits(&inode->io_tree, rec->start,
1978 				rec->start + rec->len - 1,
1979 				EXTENT_DAMAGED);
1980 	if (ret && !err)
1981 		err = ret;
1982 
1983 	kfree(rec);
1984 	return err;
1985 }
1986 
1987 /*
1988  * this bypasses the standard btrfs submit functions deliberately, as
1989  * the standard behavior is to write all copies in a raid setup. here we only
1990  * want to write the one bad copy. so we do the mapping for ourselves and issue
1991  * submit_bio directly.
1992  * to avoid any synchronization issues, wait for the data after writing, which
1993  * actually prevents the read that triggered the error from finishing.
1994  * currently, there can be no more than two copies of every data bit. thus,
1995  * exactly one rewrite is required.
1996  */
1997 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1998 		u64 logical, struct page *page,
1999 		unsigned int pg_offset, int mirror_num)
2000 {
2001 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2002 	struct bio *bio;
2003 	struct btrfs_device *dev;
2004 	u64 map_length = 0;
2005 	u64 sector;
2006 	struct btrfs_bio *bbio = NULL;
2007 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2008 	int ret;
2009 
2010 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2011 	BUG_ON(!mirror_num);
2012 
2013 	/* we can't repair anything in raid56 yet */
2014 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2015 		return 0;
2016 
2017 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2018 	if (!bio)
2019 		return -EIO;
2020 	bio->bi_iter.bi_size = 0;
2021 	map_length = length;
2022 
2023 	/*
2024 	 * Avoid races with device replace and make sure our bbio has devices
2025 	 * associated to its stripes that don't go away while we are doing the
2026 	 * read repair operation.
2027 	 */
2028 	btrfs_bio_counter_inc_blocked(fs_info);
2029 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2030 			      &map_length, &bbio, mirror_num);
2031 	if (ret) {
2032 		btrfs_bio_counter_dec(fs_info);
2033 		bio_put(bio);
2034 		return -EIO;
2035 	}
2036 	BUG_ON(mirror_num != bbio->mirror_num);
2037 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2038 	bio->bi_iter.bi_sector = sector;
2039 	dev = bbio->stripes[mirror_num-1].dev;
2040 	btrfs_put_bbio(bbio);
2041 	if (!dev || !dev->bdev || !dev->writeable) {
2042 		btrfs_bio_counter_dec(fs_info);
2043 		bio_put(bio);
2044 		return -EIO;
2045 	}
2046 	bio->bi_bdev = dev->bdev;
2047 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2048 	bio_add_page(bio, page, length, pg_offset);
2049 
2050 	if (btrfsic_submit_bio_wait(bio)) {
2051 		/* try to remap that extent elsewhere? */
2052 		btrfs_bio_counter_dec(fs_info);
2053 		bio_put(bio);
2054 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2055 		return -EIO;
2056 	}
2057 
2058 	btrfs_info_rl_in_rcu(fs_info,
2059 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2060 				  btrfs_ino(inode), start,
2061 				  rcu_str_deref(dev->name), sector);
2062 	btrfs_bio_counter_dec(fs_info);
2063 	bio_put(bio);
2064 	return 0;
2065 }
2066 
2067 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2068 			 struct extent_buffer *eb, int mirror_num)
2069 {
2070 	u64 start = eb->start;
2071 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2072 	int ret = 0;
2073 
2074 	if (fs_info->sb->s_flags & MS_RDONLY)
2075 		return -EROFS;
2076 
2077 	for (i = 0; i < num_pages; i++) {
2078 		struct page *p = eb->pages[i];
2079 
2080 		ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2081 					PAGE_SIZE, start, p,
2082 					start - page_offset(p), mirror_num);
2083 		if (ret)
2084 			break;
2085 		start += PAGE_SIZE;
2086 	}
2087 
2088 	return ret;
2089 }
2090 
2091 /*
2092  * each time an IO finishes, we do a fast check in the IO failure tree
2093  * to see if we need to process or clean up an io_failure_record
2094  */
2095 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2096 		     unsigned int pg_offset)
2097 {
2098 	u64 private;
2099 	struct io_failure_record *failrec;
2100 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2101 	struct extent_state *state;
2102 	int num_copies;
2103 	int ret;
2104 
2105 	private = 0;
2106 	ret = count_range_bits(&inode->io_failure_tree, &private,
2107 				(u64)-1, 1, EXTENT_DIRTY, 0);
2108 	if (!ret)
2109 		return 0;
2110 
2111 	ret = get_state_failrec(&inode->io_failure_tree, start,
2112 			&failrec);
2113 	if (ret)
2114 		return 0;
2115 
2116 	BUG_ON(!failrec->this_mirror);
2117 
2118 	if (failrec->in_validation) {
2119 		/* there was no real error, just free the record */
2120 		btrfs_debug(fs_info,
2121 			"clean_io_failure: freeing dummy error at %llu",
2122 			failrec->start);
2123 		goto out;
2124 	}
2125 	if (fs_info->sb->s_flags & MS_RDONLY)
2126 		goto out;
2127 
2128 	spin_lock(&inode->io_tree.lock);
2129 	state = find_first_extent_bit_state(&inode->io_tree,
2130 					    failrec->start,
2131 					    EXTENT_LOCKED);
2132 	spin_unlock(&inode->io_tree.lock);
2133 
2134 	if (state && state->start <= failrec->start &&
2135 	    state->end >= failrec->start + failrec->len - 1) {
2136 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2137 					      failrec->len);
2138 		if (num_copies > 1)  {
2139 			repair_io_failure(inode, start, failrec->len,
2140 					  failrec->logical, page,
2141 					  pg_offset, failrec->failed_mirror);
2142 		}
2143 	}
2144 
2145 out:
2146 	free_io_failure(inode, failrec);
2147 
2148 	return 0;
2149 }
2150 
2151 /*
2152  * Can be called when
2153  * - hold extent lock
2154  * - under ordered extent
2155  * - the inode is freeing
2156  */
2157 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2158 {
2159 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2160 	struct io_failure_record *failrec;
2161 	struct extent_state *state, *next;
2162 
2163 	if (RB_EMPTY_ROOT(&failure_tree->state))
2164 		return;
2165 
2166 	spin_lock(&failure_tree->lock);
2167 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2168 	while (state) {
2169 		if (state->start > end)
2170 			break;
2171 
2172 		ASSERT(state->end <= end);
2173 
2174 		next = next_state(state);
2175 
2176 		failrec = state->failrec;
2177 		free_extent_state(state);
2178 		kfree(failrec);
2179 
2180 		state = next;
2181 	}
2182 	spin_unlock(&failure_tree->lock);
2183 }
2184 
2185 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2186 		struct io_failure_record **failrec_ret)
2187 {
2188 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2189 	struct io_failure_record *failrec;
2190 	struct extent_map *em;
2191 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2192 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2193 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2194 	int ret;
2195 	u64 logical;
2196 
2197 	ret = get_state_failrec(failure_tree, start, &failrec);
2198 	if (ret) {
2199 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2200 		if (!failrec)
2201 			return -ENOMEM;
2202 
2203 		failrec->start = start;
2204 		failrec->len = end - start + 1;
2205 		failrec->this_mirror = 0;
2206 		failrec->bio_flags = 0;
2207 		failrec->in_validation = 0;
2208 
2209 		read_lock(&em_tree->lock);
2210 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2211 		if (!em) {
2212 			read_unlock(&em_tree->lock);
2213 			kfree(failrec);
2214 			return -EIO;
2215 		}
2216 
2217 		if (em->start > start || em->start + em->len <= start) {
2218 			free_extent_map(em);
2219 			em = NULL;
2220 		}
2221 		read_unlock(&em_tree->lock);
2222 		if (!em) {
2223 			kfree(failrec);
2224 			return -EIO;
2225 		}
2226 
2227 		logical = start - em->start;
2228 		logical = em->block_start + logical;
2229 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2230 			logical = em->block_start;
2231 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2232 			extent_set_compress_type(&failrec->bio_flags,
2233 						 em->compress_type);
2234 		}
2235 
2236 		btrfs_debug(fs_info,
2237 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2238 			logical, start, failrec->len);
2239 
2240 		failrec->logical = logical;
2241 		free_extent_map(em);
2242 
2243 		/* set the bits in the private failure tree */
2244 		ret = set_extent_bits(failure_tree, start, end,
2245 					EXTENT_LOCKED | EXTENT_DIRTY);
2246 		if (ret >= 0)
2247 			ret = set_state_failrec(failure_tree, start, failrec);
2248 		/* set the bits in the inode's tree */
2249 		if (ret >= 0)
2250 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2251 		if (ret < 0) {
2252 			kfree(failrec);
2253 			return ret;
2254 		}
2255 	} else {
2256 		btrfs_debug(fs_info,
2257 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2258 			failrec->logical, failrec->start, failrec->len,
2259 			failrec->in_validation);
2260 		/*
2261 		 * when data can be on disk more than twice, add to failrec here
2262 		 * (e.g. with a list for failed_mirror) to make
2263 		 * clean_io_failure() clean all those errors at once.
2264 		 */
2265 	}
2266 
2267 	*failrec_ret = failrec;
2268 
2269 	return 0;
2270 }
2271 
2272 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2273 			   struct io_failure_record *failrec, int failed_mirror)
2274 {
2275 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2276 	int num_copies;
2277 
2278 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2279 	if (num_copies == 1) {
2280 		/*
2281 		 * we only have a single copy of the data, so don't bother with
2282 		 * all the retry and error correction code that follows. no
2283 		 * matter what the error is, it is very likely to persist.
2284 		 */
2285 		btrfs_debug(fs_info,
2286 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2287 			num_copies, failrec->this_mirror, failed_mirror);
2288 		return 0;
2289 	}
2290 
2291 	/*
2292 	 * there are two premises:
2293 	 *	a) deliver good data to the caller
2294 	 *	b) correct the bad sectors on disk
2295 	 */
2296 	if (failed_bio->bi_vcnt > 1) {
2297 		/*
2298 		 * to fulfill b), we need to know the exact failing sectors, as
2299 		 * we don't want to rewrite any more than the failed ones. thus,
2300 		 * we need separate read requests for the failed bio
2301 		 *
2302 		 * if the following BUG_ON triggers, our validation request got
2303 		 * merged. we need separate requests for our algorithm to work.
2304 		 */
2305 		BUG_ON(failrec->in_validation);
2306 		failrec->in_validation = 1;
2307 		failrec->this_mirror = failed_mirror;
2308 	} else {
2309 		/*
2310 		 * we're ready to fulfill a) and b) alongside. get a good copy
2311 		 * of the failed sector and if we succeed, we have setup
2312 		 * everything for repair_io_failure to do the rest for us.
2313 		 */
2314 		if (failrec->in_validation) {
2315 			BUG_ON(failrec->this_mirror != failed_mirror);
2316 			failrec->in_validation = 0;
2317 			failrec->this_mirror = 0;
2318 		}
2319 		failrec->failed_mirror = failed_mirror;
2320 		failrec->this_mirror++;
2321 		if (failrec->this_mirror == failed_mirror)
2322 			failrec->this_mirror++;
2323 	}
2324 
2325 	if (failrec->this_mirror > num_copies) {
2326 		btrfs_debug(fs_info,
2327 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2328 			num_copies, failrec->this_mirror, failed_mirror);
2329 		return 0;
2330 	}
2331 
2332 	return 1;
2333 }
2334 
2335 
2336 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2337 				    struct io_failure_record *failrec,
2338 				    struct page *page, int pg_offset, int icsum,
2339 				    bio_end_io_t *endio_func, void *data)
2340 {
2341 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2342 	struct bio *bio;
2343 	struct btrfs_io_bio *btrfs_failed_bio;
2344 	struct btrfs_io_bio *btrfs_bio;
2345 
2346 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2347 	if (!bio)
2348 		return NULL;
2349 
2350 	bio->bi_end_io = endio_func;
2351 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2352 	bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2353 	bio->bi_iter.bi_size = 0;
2354 	bio->bi_private = data;
2355 
2356 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2357 	if (btrfs_failed_bio->csum) {
2358 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2359 
2360 		btrfs_bio = btrfs_io_bio(bio);
2361 		btrfs_bio->csum = btrfs_bio->csum_inline;
2362 		icsum *= csum_size;
2363 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2364 		       csum_size);
2365 	}
2366 
2367 	bio_add_page(bio, page, failrec->len, pg_offset);
2368 
2369 	return bio;
2370 }
2371 
2372 /*
2373  * this is a generic handler for readpage errors (default
2374  * readpage_io_failed_hook). if other copies exist, read those and write back
2375  * good data to the failed position. does not investigate in remapping the
2376  * failed extent elsewhere, hoping the device will be smart enough to do this as
2377  * needed
2378  */
2379 
2380 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2381 			      struct page *page, u64 start, u64 end,
2382 			      int failed_mirror)
2383 {
2384 	struct io_failure_record *failrec;
2385 	struct inode *inode = page->mapping->host;
2386 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2387 	struct bio *bio;
2388 	int read_mode = 0;
2389 	int ret;
2390 
2391 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2392 
2393 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2394 	if (ret)
2395 		return ret;
2396 
2397 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2398 	if (!ret) {
2399 		free_io_failure(BTRFS_I(inode), failrec);
2400 		return -EIO;
2401 	}
2402 
2403 	if (failed_bio->bi_vcnt > 1)
2404 		read_mode |= REQ_FAILFAST_DEV;
2405 
2406 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2407 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2408 				      start - page_offset(page),
2409 				      (int)phy_offset, failed_bio->bi_end_io,
2410 				      NULL);
2411 	if (!bio) {
2412 		free_io_failure(BTRFS_I(inode), failrec);
2413 		return -EIO;
2414 	}
2415 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2416 
2417 	btrfs_debug(btrfs_sb(inode->i_sb),
2418 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2419 		read_mode, failrec->this_mirror, failrec->in_validation);
2420 
2421 	ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2422 					 failrec->bio_flags, 0);
2423 	if (ret) {
2424 		free_io_failure(BTRFS_I(inode), failrec);
2425 		bio_put(bio);
2426 	}
2427 
2428 	return ret;
2429 }
2430 
2431 /* lots and lots of room for performance fixes in the end_bio funcs */
2432 
2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2434 {
2435 	int uptodate = (err == 0);
2436 	struct extent_io_tree *tree;
2437 	int ret = 0;
2438 
2439 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2440 
2441 	if (tree->ops && tree->ops->writepage_end_io_hook)
2442 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2443 				uptodate);
2444 
2445 	if (!uptodate) {
2446 		ClearPageUptodate(page);
2447 		SetPageError(page);
2448 		ret = ret < 0 ? ret : -EIO;
2449 		mapping_set_error(page->mapping, ret);
2450 	}
2451 }
2452 
2453 /*
2454  * after a writepage IO is done, we need to:
2455  * clear the uptodate bits on error
2456  * clear the writeback bits in the extent tree for this IO
2457  * end_page_writeback if the page has no more pending IO
2458  *
2459  * Scheduling is not allowed, so the extent state tree is expected
2460  * to have one and only one object corresponding to this IO.
2461  */
2462 static void end_bio_extent_writepage(struct bio *bio)
2463 {
2464 	struct bio_vec *bvec;
2465 	u64 start;
2466 	u64 end;
2467 	int i;
2468 
2469 	bio_for_each_segment_all(bvec, bio, i) {
2470 		struct page *page = bvec->bv_page;
2471 		struct inode *inode = page->mapping->host;
2472 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2473 
2474 		/* We always issue full-page reads, but if some block
2475 		 * in a page fails to read, blk_update_request() will
2476 		 * advance bv_offset and adjust bv_len to compensate.
2477 		 * Print a warning for nonzero offsets, and an error
2478 		 * if they don't add up to a full page.  */
2479 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2480 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2481 				btrfs_err(fs_info,
2482 				   "partial page write in btrfs with offset %u and length %u",
2483 					bvec->bv_offset, bvec->bv_len);
2484 			else
2485 				btrfs_info(fs_info,
2486 				   "incomplete page write in btrfs with offset %u and length %u",
2487 					bvec->bv_offset, bvec->bv_len);
2488 		}
2489 
2490 		start = page_offset(page);
2491 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2492 
2493 		end_extent_writepage(page, bio->bi_error, start, end);
2494 		end_page_writeback(page);
2495 	}
2496 
2497 	bio_put(bio);
2498 }
2499 
2500 static void
2501 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2502 			      int uptodate)
2503 {
2504 	struct extent_state *cached = NULL;
2505 	u64 end = start + len - 1;
2506 
2507 	if (uptodate && tree->track_uptodate)
2508 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2509 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2510 }
2511 
2512 /*
2513  * after a readpage IO is done, we need to:
2514  * clear the uptodate bits on error
2515  * set the uptodate bits if things worked
2516  * set the page up to date if all extents in the tree are uptodate
2517  * clear the lock bit in the extent tree
2518  * unlock the page if there are no other extents locked for it
2519  *
2520  * Scheduling is not allowed, so the extent state tree is expected
2521  * to have one and only one object corresponding to this IO.
2522  */
2523 static void end_bio_extent_readpage(struct bio *bio)
2524 {
2525 	struct bio_vec *bvec;
2526 	int uptodate = !bio->bi_error;
2527 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2528 	struct extent_io_tree *tree;
2529 	u64 offset = 0;
2530 	u64 start;
2531 	u64 end;
2532 	u64 len;
2533 	u64 extent_start = 0;
2534 	u64 extent_len = 0;
2535 	int mirror;
2536 	int ret;
2537 	int i;
2538 
2539 	bio_for_each_segment_all(bvec, bio, i) {
2540 		struct page *page = bvec->bv_page;
2541 		struct inode *inode = page->mapping->host;
2542 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543 
2544 		btrfs_debug(fs_info,
2545 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2546 			(u64)bio->bi_iter.bi_sector, bio->bi_error,
2547 			io_bio->mirror_num);
2548 		tree = &BTRFS_I(inode)->io_tree;
2549 
2550 		/* We always issue full-page reads, but if some block
2551 		 * in a page fails to read, blk_update_request() will
2552 		 * advance bv_offset and adjust bv_len to compensate.
2553 		 * Print a warning for nonzero offsets, and an error
2554 		 * if they don't add up to a full page.  */
2555 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2557 				btrfs_err(fs_info,
2558 					"partial page read in btrfs with offset %u and length %u",
2559 					bvec->bv_offset, bvec->bv_len);
2560 			else
2561 				btrfs_info(fs_info,
2562 					"incomplete page read in btrfs with offset %u and length %u",
2563 					bvec->bv_offset, bvec->bv_len);
2564 		}
2565 
2566 		start = page_offset(page);
2567 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2568 		len = bvec->bv_len;
2569 
2570 		mirror = io_bio->mirror_num;
2571 		if (likely(uptodate && tree->ops)) {
2572 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2573 							      page, start, end,
2574 							      mirror);
2575 			if (ret)
2576 				uptodate = 0;
2577 			else
2578 				clean_io_failure(BTRFS_I(inode), start,
2579 						page, 0);
2580 		}
2581 
2582 		if (likely(uptodate))
2583 			goto readpage_ok;
2584 
2585 		if (tree->ops) {
2586 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2587 			if (!ret && !bio->bi_error)
2588 				uptodate = 1;
2589 		} else {
2590 			/*
2591 			 * The generic bio_readpage_error handles errors the
2592 			 * following way: If possible, new read requests are
2593 			 * created and submitted and will end up in
2594 			 * end_bio_extent_readpage as well (if we're lucky, not
2595 			 * in the !uptodate case). In that case it returns 0 and
2596 			 * we just go on with the next page in our bio. If it
2597 			 * can't handle the error it will return -EIO and we
2598 			 * remain responsible for that page.
2599 			 */
2600 			ret = bio_readpage_error(bio, offset, page, start, end,
2601 						 mirror);
2602 			if (ret == 0) {
2603 				uptodate = !bio->bi_error;
2604 				offset += len;
2605 				continue;
2606 			}
2607 		}
2608 readpage_ok:
2609 		if (likely(uptodate)) {
2610 			loff_t i_size = i_size_read(inode);
2611 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2612 			unsigned off;
2613 
2614 			/* Zero out the end if this page straddles i_size */
2615 			off = i_size & (PAGE_SIZE-1);
2616 			if (page->index == end_index && off)
2617 				zero_user_segment(page, off, PAGE_SIZE);
2618 			SetPageUptodate(page);
2619 		} else {
2620 			ClearPageUptodate(page);
2621 			SetPageError(page);
2622 		}
2623 		unlock_page(page);
2624 		offset += len;
2625 
2626 		if (unlikely(!uptodate)) {
2627 			if (extent_len) {
2628 				endio_readpage_release_extent(tree,
2629 							      extent_start,
2630 							      extent_len, 1);
2631 				extent_start = 0;
2632 				extent_len = 0;
2633 			}
2634 			endio_readpage_release_extent(tree, start,
2635 						      end - start + 1, 0);
2636 		} else if (!extent_len) {
2637 			extent_start = start;
2638 			extent_len = end + 1 - start;
2639 		} else if (extent_start + extent_len == start) {
2640 			extent_len += end + 1 - start;
2641 		} else {
2642 			endio_readpage_release_extent(tree, extent_start,
2643 						      extent_len, uptodate);
2644 			extent_start = start;
2645 			extent_len = end + 1 - start;
2646 		}
2647 	}
2648 
2649 	if (extent_len)
2650 		endio_readpage_release_extent(tree, extent_start, extent_len,
2651 					      uptodate);
2652 	if (io_bio->end_io)
2653 		io_bio->end_io(io_bio, bio->bi_error);
2654 	bio_put(bio);
2655 }
2656 
2657 /*
2658  * this allocates from the btrfs_bioset.  We're returning a bio right now
2659  * but you can call btrfs_io_bio for the appropriate container_of magic
2660  */
2661 struct bio *
2662 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2663 		gfp_t gfp_flags)
2664 {
2665 	struct btrfs_io_bio *btrfs_bio;
2666 	struct bio *bio;
2667 
2668 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2669 
2670 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2671 		while (!bio && (nr_vecs /= 2)) {
2672 			bio = bio_alloc_bioset(gfp_flags,
2673 					       nr_vecs, btrfs_bioset);
2674 		}
2675 	}
2676 
2677 	if (bio) {
2678 		bio->bi_bdev = bdev;
2679 		bio->bi_iter.bi_sector = first_sector;
2680 		btrfs_bio = btrfs_io_bio(bio);
2681 		btrfs_bio->csum = NULL;
2682 		btrfs_bio->csum_allocated = NULL;
2683 		btrfs_bio->end_io = NULL;
2684 	}
2685 	return bio;
2686 }
2687 
2688 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2689 {
2690 	struct btrfs_io_bio *btrfs_bio;
2691 	struct bio *new;
2692 
2693 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2694 	if (new) {
2695 		btrfs_bio = btrfs_io_bio(new);
2696 		btrfs_bio->csum = NULL;
2697 		btrfs_bio->csum_allocated = NULL;
2698 		btrfs_bio->end_io = NULL;
2699 	}
2700 	return new;
2701 }
2702 
2703 /* this also allocates from the btrfs_bioset */
2704 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2705 {
2706 	struct btrfs_io_bio *btrfs_bio;
2707 	struct bio *bio;
2708 
2709 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2710 	if (bio) {
2711 		btrfs_bio = btrfs_io_bio(bio);
2712 		btrfs_bio->csum = NULL;
2713 		btrfs_bio->csum_allocated = NULL;
2714 		btrfs_bio->end_io = NULL;
2715 	}
2716 	return bio;
2717 }
2718 
2719 
2720 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2721 				       unsigned long bio_flags)
2722 {
2723 	int ret = 0;
2724 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2725 	struct page *page = bvec->bv_page;
2726 	struct extent_io_tree *tree = bio->bi_private;
2727 	u64 start;
2728 
2729 	start = page_offset(page) + bvec->bv_offset;
2730 
2731 	bio->bi_private = NULL;
2732 	bio_get(bio);
2733 
2734 	if (tree->ops)
2735 		ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2736 					   mirror_num, bio_flags, start);
2737 	else
2738 		btrfsic_submit_bio(bio);
2739 
2740 	bio_put(bio);
2741 	return ret;
2742 }
2743 
2744 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2745 		     unsigned long offset, size_t size, struct bio *bio,
2746 		     unsigned long bio_flags)
2747 {
2748 	int ret = 0;
2749 	if (tree->ops)
2750 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2751 						bio_flags);
2752 	return ret;
2753 
2754 }
2755 
2756 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2757 			      struct writeback_control *wbc,
2758 			      struct page *page, sector_t sector,
2759 			      size_t size, unsigned long offset,
2760 			      struct block_device *bdev,
2761 			      struct bio **bio_ret,
2762 			      bio_end_io_t end_io_func,
2763 			      int mirror_num,
2764 			      unsigned long prev_bio_flags,
2765 			      unsigned long bio_flags,
2766 			      bool force_bio_submit)
2767 {
2768 	int ret = 0;
2769 	struct bio *bio;
2770 	int contig = 0;
2771 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2772 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2773 
2774 	if (bio_ret && *bio_ret) {
2775 		bio = *bio_ret;
2776 		if (old_compressed)
2777 			contig = bio->bi_iter.bi_sector == sector;
2778 		else
2779 			contig = bio_end_sector(bio) == sector;
2780 
2781 		if (prev_bio_flags != bio_flags || !contig ||
2782 		    force_bio_submit ||
2783 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2784 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2785 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2786 			if (ret < 0) {
2787 				*bio_ret = NULL;
2788 				return ret;
2789 			}
2790 			bio = NULL;
2791 		} else {
2792 			if (wbc)
2793 				wbc_account_io(wbc, page, page_size);
2794 			return 0;
2795 		}
2796 	}
2797 
2798 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 			GFP_NOFS | __GFP_HIGH);
2800 	if (!bio)
2801 		return -ENOMEM;
2802 
2803 	bio_add_page(bio, page, page_size, offset);
2804 	bio->bi_end_io = end_io_func;
2805 	bio->bi_private = tree;
2806 	bio_set_op_attrs(bio, op, op_flags);
2807 	if (wbc) {
2808 		wbc_init_bio(wbc, bio);
2809 		wbc_account_io(wbc, page, page_size);
2810 	}
2811 
2812 	if (bio_ret)
2813 		*bio_ret = bio;
2814 	else
2815 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2816 
2817 	return ret;
2818 }
2819 
2820 static void attach_extent_buffer_page(struct extent_buffer *eb,
2821 				      struct page *page)
2822 {
2823 	if (!PagePrivate(page)) {
2824 		SetPagePrivate(page);
2825 		get_page(page);
2826 		set_page_private(page, (unsigned long)eb);
2827 	} else {
2828 		WARN_ON(page->private != (unsigned long)eb);
2829 	}
2830 }
2831 
2832 void set_page_extent_mapped(struct page *page)
2833 {
2834 	if (!PagePrivate(page)) {
2835 		SetPagePrivate(page);
2836 		get_page(page);
2837 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2838 	}
2839 }
2840 
2841 static struct extent_map *
2842 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2843 		 u64 start, u64 len, get_extent_t *get_extent,
2844 		 struct extent_map **em_cached)
2845 {
2846 	struct extent_map *em;
2847 
2848 	if (em_cached && *em_cached) {
2849 		em = *em_cached;
2850 		if (extent_map_in_tree(em) && start >= em->start &&
2851 		    start < extent_map_end(em)) {
2852 			atomic_inc(&em->refs);
2853 			return em;
2854 		}
2855 
2856 		free_extent_map(em);
2857 		*em_cached = NULL;
2858 	}
2859 
2860 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2861 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2862 		BUG_ON(*em_cached);
2863 		atomic_inc(&em->refs);
2864 		*em_cached = em;
2865 	}
2866 	return em;
2867 }
2868 /*
2869  * basic readpage implementation.  Locked extent state structs are inserted
2870  * into the tree that are removed when the IO is done (by the end_io
2871  * handlers)
2872  * XXX JDM: This needs looking at to ensure proper page locking
2873  * return 0 on success, otherwise return error
2874  */
2875 static int __do_readpage(struct extent_io_tree *tree,
2876 			 struct page *page,
2877 			 get_extent_t *get_extent,
2878 			 struct extent_map **em_cached,
2879 			 struct bio **bio, int mirror_num,
2880 			 unsigned long *bio_flags, int read_flags,
2881 			 u64 *prev_em_start)
2882 {
2883 	struct inode *inode = page->mapping->host;
2884 	u64 start = page_offset(page);
2885 	u64 page_end = start + PAGE_SIZE - 1;
2886 	u64 end;
2887 	u64 cur = start;
2888 	u64 extent_offset;
2889 	u64 last_byte = i_size_read(inode);
2890 	u64 block_start;
2891 	u64 cur_end;
2892 	sector_t sector;
2893 	struct extent_map *em;
2894 	struct block_device *bdev;
2895 	int ret = 0;
2896 	int nr = 0;
2897 	size_t pg_offset = 0;
2898 	size_t iosize;
2899 	size_t disk_io_size;
2900 	size_t blocksize = inode->i_sb->s_blocksize;
2901 	unsigned long this_bio_flag = 0;
2902 
2903 	set_page_extent_mapped(page);
2904 
2905 	end = page_end;
2906 	if (!PageUptodate(page)) {
2907 		if (cleancache_get_page(page) == 0) {
2908 			BUG_ON(blocksize != PAGE_SIZE);
2909 			unlock_extent(tree, start, end);
2910 			goto out;
2911 		}
2912 	}
2913 
2914 	if (page->index == last_byte >> PAGE_SHIFT) {
2915 		char *userpage;
2916 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2917 
2918 		if (zero_offset) {
2919 			iosize = PAGE_SIZE - zero_offset;
2920 			userpage = kmap_atomic(page);
2921 			memset(userpage + zero_offset, 0, iosize);
2922 			flush_dcache_page(page);
2923 			kunmap_atomic(userpage);
2924 		}
2925 	}
2926 	while (cur <= end) {
2927 		bool force_bio_submit = false;
2928 
2929 		if (cur >= last_byte) {
2930 			char *userpage;
2931 			struct extent_state *cached = NULL;
2932 
2933 			iosize = PAGE_SIZE - pg_offset;
2934 			userpage = kmap_atomic(page);
2935 			memset(userpage + pg_offset, 0, iosize);
2936 			flush_dcache_page(page);
2937 			kunmap_atomic(userpage);
2938 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2939 					    &cached, GFP_NOFS);
2940 			unlock_extent_cached(tree, cur,
2941 					     cur + iosize - 1,
2942 					     &cached, GFP_NOFS);
2943 			break;
2944 		}
2945 		em = __get_extent_map(inode, page, pg_offset, cur,
2946 				      end - cur + 1, get_extent, em_cached);
2947 		if (IS_ERR_OR_NULL(em)) {
2948 			SetPageError(page);
2949 			unlock_extent(tree, cur, end);
2950 			break;
2951 		}
2952 		extent_offset = cur - em->start;
2953 		BUG_ON(extent_map_end(em) <= cur);
2954 		BUG_ON(end < cur);
2955 
2956 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2957 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2958 			extent_set_compress_type(&this_bio_flag,
2959 						 em->compress_type);
2960 		}
2961 
2962 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2963 		cur_end = min(extent_map_end(em) - 1, end);
2964 		iosize = ALIGN(iosize, blocksize);
2965 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2966 			disk_io_size = em->block_len;
2967 			sector = em->block_start >> 9;
2968 		} else {
2969 			sector = (em->block_start + extent_offset) >> 9;
2970 			disk_io_size = iosize;
2971 		}
2972 		bdev = em->bdev;
2973 		block_start = em->block_start;
2974 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2975 			block_start = EXTENT_MAP_HOLE;
2976 
2977 		/*
2978 		 * If we have a file range that points to a compressed extent
2979 		 * and it's followed by a consecutive file range that points to
2980 		 * to the same compressed extent (possibly with a different
2981 		 * offset and/or length, so it either points to the whole extent
2982 		 * or only part of it), we must make sure we do not submit a
2983 		 * single bio to populate the pages for the 2 ranges because
2984 		 * this makes the compressed extent read zero out the pages
2985 		 * belonging to the 2nd range. Imagine the following scenario:
2986 		 *
2987 		 *  File layout
2988 		 *  [0 - 8K]                     [8K - 24K]
2989 		 *    |                               |
2990 		 *    |                               |
2991 		 * points to extent X,         points to extent X,
2992 		 * offset 4K, length of 8K     offset 0, length 16K
2993 		 *
2994 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2995 		 *
2996 		 * If the bio to read the compressed extent covers both ranges,
2997 		 * it will decompress extent X into the pages belonging to the
2998 		 * first range and then it will stop, zeroing out the remaining
2999 		 * pages that belong to the other range that points to extent X.
3000 		 * So here we make sure we submit 2 bios, one for the first
3001 		 * range and another one for the third range. Both will target
3002 		 * the same physical extent from disk, but we can't currently
3003 		 * make the compressed bio endio callback populate the pages
3004 		 * for both ranges because each compressed bio is tightly
3005 		 * coupled with a single extent map, and each range can have
3006 		 * an extent map with a different offset value relative to the
3007 		 * uncompressed data of our extent and different lengths. This
3008 		 * is a corner case so we prioritize correctness over
3009 		 * non-optimal behavior (submitting 2 bios for the same extent).
3010 		 */
3011 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3012 		    prev_em_start && *prev_em_start != (u64)-1 &&
3013 		    *prev_em_start != em->orig_start)
3014 			force_bio_submit = true;
3015 
3016 		if (prev_em_start)
3017 			*prev_em_start = em->orig_start;
3018 
3019 		free_extent_map(em);
3020 		em = NULL;
3021 
3022 		/* we've found a hole, just zero and go on */
3023 		if (block_start == EXTENT_MAP_HOLE) {
3024 			char *userpage;
3025 			struct extent_state *cached = NULL;
3026 
3027 			userpage = kmap_atomic(page);
3028 			memset(userpage + pg_offset, 0, iosize);
3029 			flush_dcache_page(page);
3030 			kunmap_atomic(userpage);
3031 
3032 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3033 					    &cached, GFP_NOFS);
3034 			unlock_extent_cached(tree, cur,
3035 					     cur + iosize - 1,
3036 					     &cached, GFP_NOFS);
3037 			cur = cur + iosize;
3038 			pg_offset += iosize;
3039 			continue;
3040 		}
3041 		/* the get_extent function already copied into the page */
3042 		if (test_range_bit(tree, cur, cur_end,
3043 				   EXTENT_UPTODATE, 1, NULL)) {
3044 			check_page_uptodate(tree, page);
3045 			unlock_extent(tree, cur, cur + iosize - 1);
3046 			cur = cur + iosize;
3047 			pg_offset += iosize;
3048 			continue;
3049 		}
3050 		/* we have an inline extent but it didn't get marked up
3051 		 * to date.  Error out
3052 		 */
3053 		if (block_start == EXTENT_MAP_INLINE) {
3054 			SetPageError(page);
3055 			unlock_extent(tree, cur, cur + iosize - 1);
3056 			cur = cur + iosize;
3057 			pg_offset += iosize;
3058 			continue;
3059 		}
3060 
3061 		ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3062 					 page, sector, disk_io_size, pg_offset,
3063 					 bdev, bio,
3064 					 end_bio_extent_readpage, mirror_num,
3065 					 *bio_flags,
3066 					 this_bio_flag,
3067 					 force_bio_submit);
3068 		if (!ret) {
3069 			nr++;
3070 			*bio_flags = this_bio_flag;
3071 		} else {
3072 			SetPageError(page);
3073 			unlock_extent(tree, cur, cur + iosize - 1);
3074 			goto out;
3075 		}
3076 		cur = cur + iosize;
3077 		pg_offset += iosize;
3078 	}
3079 out:
3080 	if (!nr) {
3081 		if (!PageError(page))
3082 			SetPageUptodate(page);
3083 		unlock_page(page);
3084 	}
3085 	return ret;
3086 }
3087 
3088 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3089 					     struct page *pages[], int nr_pages,
3090 					     u64 start, u64 end,
3091 					     get_extent_t *get_extent,
3092 					     struct extent_map **em_cached,
3093 					     struct bio **bio, int mirror_num,
3094 					     unsigned long *bio_flags,
3095 					     u64 *prev_em_start)
3096 {
3097 	struct inode *inode;
3098 	struct btrfs_ordered_extent *ordered;
3099 	int index;
3100 
3101 	inode = pages[0]->mapping->host;
3102 	while (1) {
3103 		lock_extent(tree, start, end);
3104 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3105 						     end - start + 1);
3106 		if (!ordered)
3107 			break;
3108 		unlock_extent(tree, start, end);
3109 		btrfs_start_ordered_extent(inode, ordered, 1);
3110 		btrfs_put_ordered_extent(ordered);
3111 	}
3112 
3113 	for (index = 0; index < nr_pages; index++) {
3114 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3115 			      mirror_num, bio_flags, 0, prev_em_start);
3116 		put_page(pages[index]);
3117 	}
3118 }
3119 
3120 static void __extent_readpages(struct extent_io_tree *tree,
3121 			       struct page *pages[],
3122 			       int nr_pages, get_extent_t *get_extent,
3123 			       struct extent_map **em_cached,
3124 			       struct bio **bio, int mirror_num,
3125 			       unsigned long *bio_flags,
3126 			       u64 *prev_em_start)
3127 {
3128 	u64 start = 0;
3129 	u64 end = 0;
3130 	u64 page_start;
3131 	int index;
3132 	int first_index = 0;
3133 
3134 	for (index = 0; index < nr_pages; index++) {
3135 		page_start = page_offset(pages[index]);
3136 		if (!end) {
3137 			start = page_start;
3138 			end = start + PAGE_SIZE - 1;
3139 			first_index = index;
3140 		} else if (end + 1 == page_start) {
3141 			end += PAGE_SIZE;
3142 		} else {
3143 			__do_contiguous_readpages(tree, &pages[first_index],
3144 						  index - first_index, start,
3145 						  end, get_extent, em_cached,
3146 						  bio, mirror_num, bio_flags,
3147 						  prev_em_start);
3148 			start = page_start;
3149 			end = start + PAGE_SIZE - 1;
3150 			first_index = index;
3151 		}
3152 	}
3153 
3154 	if (end)
3155 		__do_contiguous_readpages(tree, &pages[first_index],
3156 					  index - first_index, start,
3157 					  end, get_extent, em_cached, bio,
3158 					  mirror_num, bio_flags,
3159 					  prev_em_start);
3160 }
3161 
3162 static int __extent_read_full_page(struct extent_io_tree *tree,
3163 				   struct page *page,
3164 				   get_extent_t *get_extent,
3165 				   struct bio **bio, int mirror_num,
3166 				   unsigned long *bio_flags, int read_flags)
3167 {
3168 	struct inode *inode = page->mapping->host;
3169 	struct btrfs_ordered_extent *ordered;
3170 	u64 start = page_offset(page);
3171 	u64 end = start + PAGE_SIZE - 1;
3172 	int ret;
3173 
3174 	while (1) {
3175 		lock_extent(tree, start, end);
3176 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3177 						PAGE_SIZE);
3178 		if (!ordered)
3179 			break;
3180 		unlock_extent(tree, start, end);
3181 		btrfs_start_ordered_extent(inode, ordered, 1);
3182 		btrfs_put_ordered_extent(ordered);
3183 	}
3184 
3185 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3186 			    bio_flags, read_flags, NULL);
3187 	return ret;
3188 }
3189 
3190 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3191 			    get_extent_t *get_extent, int mirror_num)
3192 {
3193 	struct bio *bio = NULL;
3194 	unsigned long bio_flags = 0;
3195 	int ret;
3196 
3197 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3198 				      &bio_flags, 0);
3199 	if (bio)
3200 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3201 	return ret;
3202 }
3203 
3204 static void update_nr_written(struct writeback_control *wbc,
3205 			      unsigned long nr_written)
3206 {
3207 	wbc->nr_to_write -= nr_written;
3208 }
3209 
3210 /*
3211  * helper for __extent_writepage, doing all of the delayed allocation setup.
3212  *
3213  * This returns 1 if our fill_delalloc function did all the work required
3214  * to write the page (copy into inline extent).  In this case the IO has
3215  * been started and the page is already unlocked.
3216  *
3217  * This returns 0 if all went well (page still locked)
3218  * This returns < 0 if there were errors (page still locked)
3219  */
3220 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3221 			      struct page *page, struct writeback_control *wbc,
3222 			      struct extent_page_data *epd,
3223 			      u64 delalloc_start,
3224 			      unsigned long *nr_written)
3225 {
3226 	struct extent_io_tree *tree = epd->tree;
3227 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3228 	u64 nr_delalloc;
3229 	u64 delalloc_to_write = 0;
3230 	u64 delalloc_end = 0;
3231 	int ret;
3232 	int page_started = 0;
3233 
3234 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3235 		return 0;
3236 
3237 	while (delalloc_end < page_end) {
3238 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3239 					       page,
3240 					       &delalloc_start,
3241 					       &delalloc_end,
3242 					       BTRFS_MAX_EXTENT_SIZE);
3243 		if (nr_delalloc == 0) {
3244 			delalloc_start = delalloc_end + 1;
3245 			continue;
3246 		}
3247 		ret = tree->ops->fill_delalloc(inode, page,
3248 					       delalloc_start,
3249 					       delalloc_end,
3250 					       &page_started,
3251 					       nr_written);
3252 		/* File system has been set read-only */
3253 		if (ret) {
3254 			SetPageError(page);
3255 			/* fill_delalloc should be return < 0 for error
3256 			 * but just in case, we use > 0 here meaning the
3257 			 * IO is started, so we don't want to return > 0
3258 			 * unless things are going well.
3259 			 */
3260 			ret = ret < 0 ? ret : -EIO;
3261 			goto done;
3262 		}
3263 		/*
3264 		 * delalloc_end is already one less than the total length, so
3265 		 * we don't subtract one from PAGE_SIZE
3266 		 */
3267 		delalloc_to_write += (delalloc_end - delalloc_start +
3268 				      PAGE_SIZE) >> PAGE_SHIFT;
3269 		delalloc_start = delalloc_end + 1;
3270 	}
3271 	if (wbc->nr_to_write < delalloc_to_write) {
3272 		int thresh = 8192;
3273 
3274 		if (delalloc_to_write < thresh * 2)
3275 			thresh = delalloc_to_write;
3276 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3277 					 thresh);
3278 	}
3279 
3280 	/* did the fill delalloc function already unlock and start
3281 	 * the IO?
3282 	 */
3283 	if (page_started) {
3284 		/*
3285 		 * we've unlocked the page, so we can't update
3286 		 * the mapping's writeback index, just update
3287 		 * nr_to_write.
3288 		 */
3289 		wbc->nr_to_write -= *nr_written;
3290 		return 1;
3291 	}
3292 
3293 	ret = 0;
3294 
3295 done:
3296 	return ret;
3297 }
3298 
3299 /*
3300  * helper for __extent_writepage.  This calls the writepage start hooks,
3301  * and does the loop to map the page into extents and bios.
3302  *
3303  * We return 1 if the IO is started and the page is unlocked,
3304  * 0 if all went well (page still locked)
3305  * < 0 if there were errors (page still locked)
3306  */
3307 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3308 				 struct page *page,
3309 				 struct writeback_control *wbc,
3310 				 struct extent_page_data *epd,
3311 				 loff_t i_size,
3312 				 unsigned long nr_written,
3313 				 int write_flags, int *nr_ret)
3314 {
3315 	struct extent_io_tree *tree = epd->tree;
3316 	u64 start = page_offset(page);
3317 	u64 page_end = start + PAGE_SIZE - 1;
3318 	u64 end;
3319 	u64 cur = start;
3320 	u64 extent_offset;
3321 	u64 block_start;
3322 	u64 iosize;
3323 	sector_t sector;
3324 	struct extent_map *em;
3325 	struct block_device *bdev;
3326 	size_t pg_offset = 0;
3327 	size_t blocksize;
3328 	int ret = 0;
3329 	int nr = 0;
3330 	bool compressed;
3331 
3332 	if (tree->ops && tree->ops->writepage_start_hook) {
3333 		ret = tree->ops->writepage_start_hook(page, start,
3334 						      page_end);
3335 		if (ret) {
3336 			/* Fixup worker will requeue */
3337 			if (ret == -EBUSY)
3338 				wbc->pages_skipped++;
3339 			else
3340 				redirty_page_for_writepage(wbc, page);
3341 
3342 			update_nr_written(wbc, nr_written);
3343 			unlock_page(page);
3344 			return 1;
3345 		}
3346 	}
3347 
3348 	/*
3349 	 * we don't want to touch the inode after unlocking the page,
3350 	 * so we update the mapping writeback index now
3351 	 */
3352 	update_nr_written(wbc, nr_written + 1);
3353 
3354 	end = page_end;
3355 	if (i_size <= start) {
3356 		if (tree->ops && tree->ops->writepage_end_io_hook)
3357 			tree->ops->writepage_end_io_hook(page, start,
3358 							 page_end, NULL, 1);
3359 		goto done;
3360 	}
3361 
3362 	blocksize = inode->i_sb->s_blocksize;
3363 
3364 	while (cur <= end) {
3365 		u64 em_end;
3366 
3367 		if (cur >= i_size) {
3368 			if (tree->ops && tree->ops->writepage_end_io_hook)
3369 				tree->ops->writepage_end_io_hook(page, cur,
3370 							 page_end, NULL, 1);
3371 			break;
3372 		}
3373 		em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3374 				     end - cur + 1, 1);
3375 		if (IS_ERR_OR_NULL(em)) {
3376 			SetPageError(page);
3377 			ret = PTR_ERR_OR_ZERO(em);
3378 			break;
3379 		}
3380 
3381 		extent_offset = cur - em->start;
3382 		em_end = extent_map_end(em);
3383 		BUG_ON(em_end <= cur);
3384 		BUG_ON(end < cur);
3385 		iosize = min(em_end - cur, end - cur + 1);
3386 		iosize = ALIGN(iosize, blocksize);
3387 		sector = (em->block_start + extent_offset) >> 9;
3388 		bdev = em->bdev;
3389 		block_start = em->block_start;
3390 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3391 		free_extent_map(em);
3392 		em = NULL;
3393 
3394 		/*
3395 		 * compressed and inline extents are written through other
3396 		 * paths in the FS
3397 		 */
3398 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3399 		    block_start == EXTENT_MAP_INLINE) {
3400 			/*
3401 			 * end_io notification does not happen here for
3402 			 * compressed extents
3403 			 */
3404 			if (!compressed && tree->ops &&
3405 			    tree->ops->writepage_end_io_hook)
3406 				tree->ops->writepage_end_io_hook(page, cur,
3407 							 cur + iosize - 1,
3408 							 NULL, 1);
3409 			else if (compressed) {
3410 				/* we don't want to end_page_writeback on
3411 				 * a compressed extent.  this happens
3412 				 * elsewhere
3413 				 */
3414 				nr++;
3415 			}
3416 
3417 			cur += iosize;
3418 			pg_offset += iosize;
3419 			continue;
3420 		}
3421 
3422 		set_range_writeback(tree, cur, cur + iosize - 1);
3423 		if (!PageWriteback(page)) {
3424 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3425 				   "page %lu not writeback, cur %llu end %llu",
3426 			       page->index, cur, end);
3427 		}
3428 
3429 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3430 					 page, sector, iosize, pg_offset,
3431 					 bdev, &epd->bio,
3432 					 end_bio_extent_writepage,
3433 					 0, 0, 0, false);
3434 		if (ret) {
3435 			SetPageError(page);
3436 			if (PageWriteback(page))
3437 				end_page_writeback(page);
3438 		}
3439 
3440 		cur = cur + iosize;
3441 		pg_offset += iosize;
3442 		nr++;
3443 	}
3444 done:
3445 	*nr_ret = nr;
3446 	return ret;
3447 }
3448 
3449 /*
3450  * the writepage semantics are similar to regular writepage.  extent
3451  * records are inserted to lock ranges in the tree, and as dirty areas
3452  * are found, they are marked writeback.  Then the lock bits are removed
3453  * and the end_io handler clears the writeback ranges
3454  */
3455 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3456 			      void *data)
3457 {
3458 	struct inode *inode = page->mapping->host;
3459 	struct extent_page_data *epd = data;
3460 	u64 start = page_offset(page);
3461 	u64 page_end = start + PAGE_SIZE - 1;
3462 	int ret;
3463 	int nr = 0;
3464 	size_t pg_offset = 0;
3465 	loff_t i_size = i_size_read(inode);
3466 	unsigned long end_index = i_size >> PAGE_SHIFT;
3467 	int write_flags = 0;
3468 	unsigned long nr_written = 0;
3469 
3470 	if (wbc->sync_mode == WB_SYNC_ALL)
3471 		write_flags = REQ_SYNC;
3472 
3473 	trace___extent_writepage(page, inode, wbc);
3474 
3475 	WARN_ON(!PageLocked(page));
3476 
3477 	ClearPageError(page);
3478 
3479 	pg_offset = i_size & (PAGE_SIZE - 1);
3480 	if (page->index > end_index ||
3481 	   (page->index == end_index && !pg_offset)) {
3482 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3483 		unlock_page(page);
3484 		return 0;
3485 	}
3486 
3487 	if (page->index == end_index) {
3488 		char *userpage;
3489 
3490 		userpage = kmap_atomic(page);
3491 		memset(userpage + pg_offset, 0,
3492 		       PAGE_SIZE - pg_offset);
3493 		kunmap_atomic(userpage);
3494 		flush_dcache_page(page);
3495 	}
3496 
3497 	pg_offset = 0;
3498 
3499 	set_page_extent_mapped(page);
3500 
3501 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3502 	if (ret == 1)
3503 		goto done_unlocked;
3504 	if (ret)
3505 		goto done;
3506 
3507 	ret = __extent_writepage_io(inode, page, wbc, epd,
3508 				    i_size, nr_written, write_flags, &nr);
3509 	if (ret == 1)
3510 		goto done_unlocked;
3511 
3512 done:
3513 	if (nr == 0) {
3514 		/* make sure the mapping tag for page dirty gets cleared */
3515 		set_page_writeback(page);
3516 		end_page_writeback(page);
3517 	}
3518 	if (PageError(page)) {
3519 		ret = ret < 0 ? ret : -EIO;
3520 		end_extent_writepage(page, ret, start, page_end);
3521 	}
3522 	unlock_page(page);
3523 	return ret;
3524 
3525 done_unlocked:
3526 	return 0;
3527 }
3528 
3529 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3530 {
3531 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3532 		       TASK_UNINTERRUPTIBLE);
3533 }
3534 
3535 static noinline_for_stack int
3536 lock_extent_buffer_for_io(struct extent_buffer *eb,
3537 			  struct btrfs_fs_info *fs_info,
3538 			  struct extent_page_data *epd)
3539 {
3540 	unsigned long i, num_pages;
3541 	int flush = 0;
3542 	int ret = 0;
3543 
3544 	if (!btrfs_try_tree_write_lock(eb)) {
3545 		flush = 1;
3546 		flush_write_bio(epd);
3547 		btrfs_tree_lock(eb);
3548 	}
3549 
3550 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3551 		btrfs_tree_unlock(eb);
3552 		if (!epd->sync_io)
3553 			return 0;
3554 		if (!flush) {
3555 			flush_write_bio(epd);
3556 			flush = 1;
3557 		}
3558 		while (1) {
3559 			wait_on_extent_buffer_writeback(eb);
3560 			btrfs_tree_lock(eb);
3561 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3562 				break;
3563 			btrfs_tree_unlock(eb);
3564 		}
3565 	}
3566 
3567 	/*
3568 	 * We need to do this to prevent races in people who check if the eb is
3569 	 * under IO since we can end up having no IO bits set for a short period
3570 	 * of time.
3571 	 */
3572 	spin_lock(&eb->refs_lock);
3573 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3574 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3575 		spin_unlock(&eb->refs_lock);
3576 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3577 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3578 				     -eb->len,
3579 				     fs_info->dirty_metadata_batch);
3580 		ret = 1;
3581 	} else {
3582 		spin_unlock(&eb->refs_lock);
3583 	}
3584 
3585 	btrfs_tree_unlock(eb);
3586 
3587 	if (!ret)
3588 		return ret;
3589 
3590 	num_pages = num_extent_pages(eb->start, eb->len);
3591 	for (i = 0; i < num_pages; i++) {
3592 		struct page *p = eb->pages[i];
3593 
3594 		if (!trylock_page(p)) {
3595 			if (!flush) {
3596 				flush_write_bio(epd);
3597 				flush = 1;
3598 			}
3599 			lock_page(p);
3600 		}
3601 	}
3602 
3603 	return ret;
3604 }
3605 
3606 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3607 {
3608 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3609 	smp_mb__after_atomic();
3610 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3611 }
3612 
3613 static void set_btree_ioerr(struct page *page)
3614 {
3615 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3616 
3617 	SetPageError(page);
3618 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3619 		return;
3620 
3621 	/*
3622 	 * If writeback for a btree extent that doesn't belong to a log tree
3623 	 * failed, increment the counter transaction->eb_write_errors.
3624 	 * We do this because while the transaction is running and before it's
3625 	 * committing (when we call filemap_fdata[write|wait]_range against
3626 	 * the btree inode), we might have
3627 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3628 	 * returns an error or an error happens during writeback, when we're
3629 	 * committing the transaction we wouldn't know about it, since the pages
3630 	 * can be no longer dirty nor marked anymore for writeback (if a
3631 	 * subsequent modification to the extent buffer didn't happen before the
3632 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3633 	 * able to find the pages tagged with SetPageError at transaction
3634 	 * commit time. So if this happens we must abort the transaction,
3635 	 * otherwise we commit a super block with btree roots that point to
3636 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3637 	 * or the content of some node/leaf from a past generation that got
3638 	 * cowed or deleted and is no longer valid.
3639 	 *
3640 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3641 	 * not be enough - we need to distinguish between log tree extents vs
3642 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3643 	 * will catch and clear such errors in the mapping - and that call might
3644 	 * be from a log sync and not from a transaction commit. Also, checking
3645 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3646 	 * not done and would not be reliable - the eb might have been released
3647 	 * from memory and reading it back again means that flag would not be
3648 	 * set (since it's a runtime flag, not persisted on disk).
3649 	 *
3650 	 * Using the flags below in the btree inode also makes us achieve the
3651 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3652 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3653 	 * is called, the writeback for all dirty pages had already finished
3654 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3655 	 * filemap_fdatawait_range() would return success, as it could not know
3656 	 * that writeback errors happened (the pages were no longer tagged for
3657 	 * writeback).
3658 	 */
3659 	switch (eb->log_index) {
3660 	case -1:
3661 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3662 		break;
3663 	case 0:
3664 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3665 		break;
3666 	case 1:
3667 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3668 		break;
3669 	default:
3670 		BUG(); /* unexpected, logic error */
3671 	}
3672 }
3673 
3674 static void end_bio_extent_buffer_writepage(struct bio *bio)
3675 {
3676 	struct bio_vec *bvec;
3677 	struct extent_buffer *eb;
3678 	int i, done;
3679 
3680 	bio_for_each_segment_all(bvec, bio, i) {
3681 		struct page *page = bvec->bv_page;
3682 
3683 		eb = (struct extent_buffer *)page->private;
3684 		BUG_ON(!eb);
3685 		done = atomic_dec_and_test(&eb->io_pages);
3686 
3687 		if (bio->bi_error ||
3688 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3689 			ClearPageUptodate(page);
3690 			set_btree_ioerr(page);
3691 		}
3692 
3693 		end_page_writeback(page);
3694 
3695 		if (!done)
3696 			continue;
3697 
3698 		end_extent_buffer_writeback(eb);
3699 	}
3700 
3701 	bio_put(bio);
3702 }
3703 
3704 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3705 			struct btrfs_fs_info *fs_info,
3706 			struct writeback_control *wbc,
3707 			struct extent_page_data *epd)
3708 {
3709 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3710 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3711 	u64 offset = eb->start;
3712 	u32 nritems;
3713 	unsigned long i, num_pages;
3714 	unsigned long bio_flags = 0;
3715 	unsigned long start, end;
3716 	int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3717 	int ret = 0;
3718 
3719 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3720 	num_pages = num_extent_pages(eb->start, eb->len);
3721 	atomic_set(&eb->io_pages, num_pages);
3722 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3723 		bio_flags = EXTENT_BIO_TREE_LOG;
3724 
3725 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3726 	nritems = btrfs_header_nritems(eb);
3727 	if (btrfs_header_level(eb) > 0) {
3728 		end = btrfs_node_key_ptr_offset(nritems);
3729 
3730 		memzero_extent_buffer(eb, end, eb->len - end);
3731 	} else {
3732 		/*
3733 		 * leaf:
3734 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3735 		 */
3736 		start = btrfs_item_nr_offset(nritems);
3737 		end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3738 		memzero_extent_buffer(eb, start, end - start);
3739 	}
3740 
3741 	for (i = 0; i < num_pages; i++) {
3742 		struct page *p = eb->pages[i];
3743 
3744 		clear_page_dirty_for_io(p);
3745 		set_page_writeback(p);
3746 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3747 					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3748 					 &epd->bio,
3749 					 end_bio_extent_buffer_writepage,
3750 					 0, epd->bio_flags, bio_flags, false);
3751 		epd->bio_flags = bio_flags;
3752 		if (ret) {
3753 			set_btree_ioerr(p);
3754 			if (PageWriteback(p))
3755 				end_page_writeback(p);
3756 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757 				end_extent_buffer_writeback(eb);
3758 			ret = -EIO;
3759 			break;
3760 		}
3761 		offset += PAGE_SIZE;
3762 		update_nr_written(wbc, 1);
3763 		unlock_page(p);
3764 	}
3765 
3766 	if (unlikely(ret)) {
3767 		for (; i < num_pages; i++) {
3768 			struct page *p = eb->pages[i];
3769 			clear_page_dirty_for_io(p);
3770 			unlock_page(p);
3771 		}
3772 	}
3773 
3774 	return ret;
3775 }
3776 
3777 int btree_write_cache_pages(struct address_space *mapping,
3778 				   struct writeback_control *wbc)
3779 {
3780 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782 	struct extent_buffer *eb, *prev_eb = NULL;
3783 	struct extent_page_data epd = {
3784 		.bio = NULL,
3785 		.tree = tree,
3786 		.extent_locked = 0,
3787 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3788 		.bio_flags = 0,
3789 	};
3790 	int ret = 0;
3791 	int done = 0;
3792 	int nr_to_write_done = 0;
3793 	struct pagevec pvec;
3794 	int nr_pages;
3795 	pgoff_t index;
3796 	pgoff_t end;		/* Inclusive */
3797 	int scanned = 0;
3798 	int tag;
3799 
3800 	pagevec_init(&pvec, 0);
3801 	if (wbc->range_cyclic) {
3802 		index = mapping->writeback_index; /* Start from prev offset */
3803 		end = -1;
3804 	} else {
3805 		index = wbc->range_start >> PAGE_SHIFT;
3806 		end = wbc->range_end >> PAGE_SHIFT;
3807 		scanned = 1;
3808 	}
3809 	if (wbc->sync_mode == WB_SYNC_ALL)
3810 		tag = PAGECACHE_TAG_TOWRITE;
3811 	else
3812 		tag = PAGECACHE_TAG_DIRTY;
3813 retry:
3814 	if (wbc->sync_mode == WB_SYNC_ALL)
3815 		tag_pages_for_writeback(mapping, index, end);
3816 	while (!done && !nr_to_write_done && (index <= end) &&
3817 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819 		unsigned i;
3820 
3821 		scanned = 1;
3822 		for (i = 0; i < nr_pages; i++) {
3823 			struct page *page = pvec.pages[i];
3824 
3825 			if (!PagePrivate(page))
3826 				continue;
3827 
3828 			if (!wbc->range_cyclic && page->index > end) {
3829 				done = 1;
3830 				break;
3831 			}
3832 
3833 			spin_lock(&mapping->private_lock);
3834 			if (!PagePrivate(page)) {
3835 				spin_unlock(&mapping->private_lock);
3836 				continue;
3837 			}
3838 
3839 			eb = (struct extent_buffer *)page->private;
3840 
3841 			/*
3842 			 * Shouldn't happen and normally this would be a BUG_ON
3843 			 * but no sense in crashing the users box for something
3844 			 * we can survive anyway.
3845 			 */
3846 			if (WARN_ON(!eb)) {
3847 				spin_unlock(&mapping->private_lock);
3848 				continue;
3849 			}
3850 
3851 			if (eb == prev_eb) {
3852 				spin_unlock(&mapping->private_lock);
3853 				continue;
3854 			}
3855 
3856 			ret = atomic_inc_not_zero(&eb->refs);
3857 			spin_unlock(&mapping->private_lock);
3858 			if (!ret)
3859 				continue;
3860 
3861 			prev_eb = eb;
3862 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863 			if (!ret) {
3864 				free_extent_buffer(eb);
3865 				continue;
3866 			}
3867 
3868 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3869 			if (ret) {
3870 				done = 1;
3871 				free_extent_buffer(eb);
3872 				break;
3873 			}
3874 			free_extent_buffer(eb);
3875 
3876 			/*
3877 			 * the filesystem may choose to bump up nr_to_write.
3878 			 * We have to make sure to honor the new nr_to_write
3879 			 * at any time
3880 			 */
3881 			nr_to_write_done = wbc->nr_to_write <= 0;
3882 		}
3883 		pagevec_release(&pvec);
3884 		cond_resched();
3885 	}
3886 	if (!scanned && !done) {
3887 		/*
3888 		 * We hit the last page and there is more work to be done: wrap
3889 		 * back to the start of the file
3890 		 */
3891 		scanned = 1;
3892 		index = 0;
3893 		goto retry;
3894 	}
3895 	flush_write_bio(&epd);
3896 	return ret;
3897 }
3898 
3899 /**
3900  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3901  * @mapping: address space structure to write
3902  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903  * @writepage: function called for each page
3904  * @data: data passed to writepage function
3905  *
3906  * If a page is already under I/O, write_cache_pages() skips it, even
3907  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3908  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3909  * and msync() need to guarantee that all the data which was dirty at the time
3910  * the call was made get new I/O started against them.  If wbc->sync_mode is
3911  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912  * existing IO to complete.
3913  */
3914 static int extent_write_cache_pages(struct address_space *mapping,
3915 			     struct writeback_control *wbc,
3916 			     writepage_t writepage, void *data,
3917 			     void (*flush_fn)(void *))
3918 {
3919 	struct inode *inode = mapping->host;
3920 	int ret = 0;
3921 	int done = 0;
3922 	int nr_to_write_done = 0;
3923 	struct pagevec pvec;
3924 	int nr_pages;
3925 	pgoff_t index;
3926 	pgoff_t end;		/* Inclusive */
3927 	pgoff_t done_index;
3928 	int range_whole = 0;
3929 	int scanned = 0;
3930 	int tag;
3931 
3932 	/*
3933 	 * We have to hold onto the inode so that ordered extents can do their
3934 	 * work when the IO finishes.  The alternative to this is failing to add
3935 	 * an ordered extent if the igrab() fails there and that is a huge pain
3936 	 * to deal with, so instead just hold onto the inode throughout the
3937 	 * writepages operation.  If it fails here we are freeing up the inode
3938 	 * anyway and we'd rather not waste our time writing out stuff that is
3939 	 * going to be truncated anyway.
3940 	 */
3941 	if (!igrab(inode))
3942 		return 0;
3943 
3944 	pagevec_init(&pvec, 0);
3945 	if (wbc->range_cyclic) {
3946 		index = mapping->writeback_index; /* Start from prev offset */
3947 		end = -1;
3948 	} else {
3949 		index = wbc->range_start >> PAGE_SHIFT;
3950 		end = wbc->range_end >> PAGE_SHIFT;
3951 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3952 			range_whole = 1;
3953 		scanned = 1;
3954 	}
3955 	if (wbc->sync_mode == WB_SYNC_ALL)
3956 		tag = PAGECACHE_TAG_TOWRITE;
3957 	else
3958 		tag = PAGECACHE_TAG_DIRTY;
3959 retry:
3960 	if (wbc->sync_mode == WB_SYNC_ALL)
3961 		tag_pages_for_writeback(mapping, index, end);
3962 	done_index = index;
3963 	while (!done && !nr_to_write_done && (index <= end) &&
3964 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3965 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3966 		unsigned i;
3967 
3968 		scanned = 1;
3969 		for (i = 0; i < nr_pages; i++) {
3970 			struct page *page = pvec.pages[i];
3971 
3972 			done_index = page->index;
3973 			/*
3974 			 * At this point we hold neither mapping->tree_lock nor
3975 			 * lock on the page itself: the page may be truncated or
3976 			 * invalidated (changing page->mapping to NULL), or even
3977 			 * swizzled back from swapper_space to tmpfs file
3978 			 * mapping
3979 			 */
3980 			if (!trylock_page(page)) {
3981 				flush_fn(data);
3982 				lock_page(page);
3983 			}
3984 
3985 			if (unlikely(page->mapping != mapping)) {
3986 				unlock_page(page);
3987 				continue;
3988 			}
3989 
3990 			if (!wbc->range_cyclic && page->index > end) {
3991 				done = 1;
3992 				unlock_page(page);
3993 				continue;
3994 			}
3995 
3996 			if (wbc->sync_mode != WB_SYNC_NONE) {
3997 				if (PageWriteback(page))
3998 					flush_fn(data);
3999 				wait_on_page_writeback(page);
4000 			}
4001 
4002 			if (PageWriteback(page) ||
4003 			    !clear_page_dirty_for_io(page)) {
4004 				unlock_page(page);
4005 				continue;
4006 			}
4007 
4008 			ret = (*writepage)(page, wbc, data);
4009 
4010 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4011 				unlock_page(page);
4012 				ret = 0;
4013 			}
4014 			if (ret < 0) {
4015 				/*
4016 				 * done_index is set past this page,
4017 				 * so media errors will not choke
4018 				 * background writeout for the entire
4019 				 * file. This has consequences for
4020 				 * range_cyclic semantics (ie. it may
4021 				 * not be suitable for data integrity
4022 				 * writeout).
4023 				 */
4024 				done_index = page->index + 1;
4025 				done = 1;
4026 				break;
4027 			}
4028 
4029 			/*
4030 			 * the filesystem may choose to bump up nr_to_write.
4031 			 * We have to make sure to honor the new nr_to_write
4032 			 * at any time
4033 			 */
4034 			nr_to_write_done = wbc->nr_to_write <= 0;
4035 		}
4036 		pagevec_release(&pvec);
4037 		cond_resched();
4038 	}
4039 	if (!scanned && !done) {
4040 		/*
4041 		 * We hit the last page and there is more work to be done: wrap
4042 		 * back to the start of the file
4043 		 */
4044 		scanned = 1;
4045 		index = 0;
4046 		goto retry;
4047 	}
4048 
4049 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4050 		mapping->writeback_index = done_index;
4051 
4052 	btrfs_add_delayed_iput(inode);
4053 	return ret;
4054 }
4055 
4056 static void flush_epd_write_bio(struct extent_page_data *epd)
4057 {
4058 	if (epd->bio) {
4059 		int ret;
4060 
4061 		bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4062 				 epd->sync_io ? REQ_SYNC : 0);
4063 
4064 		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4065 		BUG_ON(ret < 0); /* -ENOMEM */
4066 		epd->bio = NULL;
4067 	}
4068 }
4069 
4070 static noinline void flush_write_bio(void *data)
4071 {
4072 	struct extent_page_data *epd = data;
4073 	flush_epd_write_bio(epd);
4074 }
4075 
4076 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4077 			  get_extent_t *get_extent,
4078 			  struct writeback_control *wbc)
4079 {
4080 	int ret;
4081 	struct extent_page_data epd = {
4082 		.bio = NULL,
4083 		.tree = tree,
4084 		.get_extent = get_extent,
4085 		.extent_locked = 0,
4086 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4087 		.bio_flags = 0,
4088 	};
4089 
4090 	ret = __extent_writepage(page, wbc, &epd);
4091 
4092 	flush_epd_write_bio(&epd);
4093 	return ret;
4094 }
4095 
4096 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4097 			      u64 start, u64 end, get_extent_t *get_extent,
4098 			      int mode)
4099 {
4100 	int ret = 0;
4101 	struct address_space *mapping = inode->i_mapping;
4102 	struct page *page;
4103 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4104 		PAGE_SHIFT;
4105 
4106 	struct extent_page_data epd = {
4107 		.bio = NULL,
4108 		.tree = tree,
4109 		.get_extent = get_extent,
4110 		.extent_locked = 1,
4111 		.sync_io = mode == WB_SYNC_ALL,
4112 		.bio_flags = 0,
4113 	};
4114 	struct writeback_control wbc_writepages = {
4115 		.sync_mode	= mode,
4116 		.nr_to_write	= nr_pages * 2,
4117 		.range_start	= start,
4118 		.range_end	= end + 1,
4119 	};
4120 
4121 	while (start <= end) {
4122 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4123 		if (clear_page_dirty_for_io(page))
4124 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4125 		else {
4126 			if (tree->ops && tree->ops->writepage_end_io_hook)
4127 				tree->ops->writepage_end_io_hook(page, start,
4128 						 start + PAGE_SIZE - 1,
4129 						 NULL, 1);
4130 			unlock_page(page);
4131 		}
4132 		put_page(page);
4133 		start += PAGE_SIZE;
4134 	}
4135 
4136 	flush_epd_write_bio(&epd);
4137 	return ret;
4138 }
4139 
4140 int extent_writepages(struct extent_io_tree *tree,
4141 		      struct address_space *mapping,
4142 		      get_extent_t *get_extent,
4143 		      struct writeback_control *wbc)
4144 {
4145 	int ret = 0;
4146 	struct extent_page_data epd = {
4147 		.bio = NULL,
4148 		.tree = tree,
4149 		.get_extent = get_extent,
4150 		.extent_locked = 0,
4151 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4152 		.bio_flags = 0,
4153 	};
4154 
4155 	ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4156 				       flush_write_bio);
4157 	flush_epd_write_bio(&epd);
4158 	return ret;
4159 }
4160 
4161 int extent_readpages(struct extent_io_tree *tree,
4162 		     struct address_space *mapping,
4163 		     struct list_head *pages, unsigned nr_pages,
4164 		     get_extent_t get_extent)
4165 {
4166 	struct bio *bio = NULL;
4167 	unsigned page_idx;
4168 	unsigned long bio_flags = 0;
4169 	struct page *pagepool[16];
4170 	struct page *page;
4171 	struct extent_map *em_cached = NULL;
4172 	int nr = 0;
4173 	u64 prev_em_start = (u64)-1;
4174 
4175 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4176 		page = list_entry(pages->prev, struct page, lru);
4177 
4178 		prefetchw(&page->flags);
4179 		list_del(&page->lru);
4180 		if (add_to_page_cache_lru(page, mapping,
4181 					page->index,
4182 					readahead_gfp_mask(mapping))) {
4183 			put_page(page);
4184 			continue;
4185 		}
4186 
4187 		pagepool[nr++] = page;
4188 		if (nr < ARRAY_SIZE(pagepool))
4189 			continue;
4190 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4191 				   &bio, 0, &bio_flags, &prev_em_start);
4192 		nr = 0;
4193 	}
4194 	if (nr)
4195 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4196 				   &bio, 0, &bio_flags, &prev_em_start);
4197 
4198 	if (em_cached)
4199 		free_extent_map(em_cached);
4200 
4201 	BUG_ON(!list_empty(pages));
4202 	if (bio)
4203 		return submit_one_bio(bio, 0, bio_flags);
4204 	return 0;
4205 }
4206 
4207 /*
4208  * basic invalidatepage code, this waits on any locked or writeback
4209  * ranges corresponding to the page, and then deletes any extent state
4210  * records from the tree
4211  */
4212 int extent_invalidatepage(struct extent_io_tree *tree,
4213 			  struct page *page, unsigned long offset)
4214 {
4215 	struct extent_state *cached_state = NULL;
4216 	u64 start = page_offset(page);
4217 	u64 end = start + PAGE_SIZE - 1;
4218 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4219 
4220 	start += ALIGN(offset, blocksize);
4221 	if (start > end)
4222 		return 0;
4223 
4224 	lock_extent_bits(tree, start, end, &cached_state);
4225 	wait_on_page_writeback(page);
4226 	clear_extent_bit(tree, start, end,
4227 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4228 			 EXTENT_DO_ACCOUNTING,
4229 			 1, 1, &cached_state, GFP_NOFS);
4230 	return 0;
4231 }
4232 
4233 /*
4234  * a helper for releasepage, this tests for areas of the page that
4235  * are locked or under IO and drops the related state bits if it is safe
4236  * to drop the page.
4237  */
4238 static int try_release_extent_state(struct extent_map_tree *map,
4239 				    struct extent_io_tree *tree,
4240 				    struct page *page, gfp_t mask)
4241 {
4242 	u64 start = page_offset(page);
4243 	u64 end = start + PAGE_SIZE - 1;
4244 	int ret = 1;
4245 
4246 	if (test_range_bit(tree, start, end,
4247 			   EXTENT_IOBITS, 0, NULL))
4248 		ret = 0;
4249 	else {
4250 		/*
4251 		 * at this point we can safely clear everything except the
4252 		 * locked bit and the nodatasum bit
4253 		 */
4254 		ret = clear_extent_bit(tree, start, end,
4255 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4256 				 0, 0, NULL, mask);
4257 
4258 		/* if clear_extent_bit failed for enomem reasons,
4259 		 * we can't allow the release to continue.
4260 		 */
4261 		if (ret < 0)
4262 			ret = 0;
4263 		else
4264 			ret = 1;
4265 	}
4266 	return ret;
4267 }
4268 
4269 /*
4270  * a helper for releasepage.  As long as there are no locked extents
4271  * in the range corresponding to the page, both state records and extent
4272  * map records are removed
4273  */
4274 int try_release_extent_mapping(struct extent_map_tree *map,
4275 			       struct extent_io_tree *tree, struct page *page,
4276 			       gfp_t mask)
4277 {
4278 	struct extent_map *em;
4279 	u64 start = page_offset(page);
4280 	u64 end = start + PAGE_SIZE - 1;
4281 
4282 	if (gfpflags_allow_blocking(mask) &&
4283 	    page->mapping->host->i_size > SZ_16M) {
4284 		u64 len;
4285 		while (start <= end) {
4286 			len = end - start + 1;
4287 			write_lock(&map->lock);
4288 			em = lookup_extent_mapping(map, start, len);
4289 			if (!em) {
4290 				write_unlock(&map->lock);
4291 				break;
4292 			}
4293 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4294 			    em->start != start) {
4295 				write_unlock(&map->lock);
4296 				free_extent_map(em);
4297 				break;
4298 			}
4299 			if (!test_range_bit(tree, em->start,
4300 					    extent_map_end(em) - 1,
4301 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4302 					    0, NULL)) {
4303 				remove_extent_mapping(map, em);
4304 				/* once for the rb tree */
4305 				free_extent_map(em);
4306 			}
4307 			start = extent_map_end(em);
4308 			write_unlock(&map->lock);
4309 
4310 			/* once for us */
4311 			free_extent_map(em);
4312 		}
4313 	}
4314 	return try_release_extent_state(map, tree, page, mask);
4315 }
4316 
4317 /*
4318  * helper function for fiemap, which doesn't want to see any holes.
4319  * This maps until we find something past 'last'
4320  */
4321 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4322 						u64 offset,
4323 						u64 last,
4324 						get_extent_t *get_extent)
4325 {
4326 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4327 	struct extent_map *em;
4328 	u64 len;
4329 
4330 	if (offset >= last)
4331 		return NULL;
4332 
4333 	while (1) {
4334 		len = last - offset;
4335 		if (len == 0)
4336 			break;
4337 		len = ALIGN(len, sectorsize);
4338 		em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4339 		if (IS_ERR_OR_NULL(em))
4340 			return em;
4341 
4342 		/* if this isn't a hole return it */
4343 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4344 		    em->block_start != EXTENT_MAP_HOLE) {
4345 			return em;
4346 		}
4347 
4348 		/* this is a hole, advance to the next extent */
4349 		offset = extent_map_end(em);
4350 		free_extent_map(em);
4351 		if (offset >= last)
4352 			break;
4353 	}
4354 	return NULL;
4355 }
4356 
4357 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4358 		__u64 start, __u64 len, get_extent_t *get_extent)
4359 {
4360 	int ret = 0;
4361 	u64 off = start;
4362 	u64 max = start + len;
4363 	u32 flags = 0;
4364 	u32 found_type;
4365 	u64 last;
4366 	u64 last_for_get_extent = 0;
4367 	u64 disko = 0;
4368 	u64 isize = i_size_read(inode);
4369 	struct btrfs_key found_key;
4370 	struct extent_map *em = NULL;
4371 	struct extent_state *cached_state = NULL;
4372 	struct btrfs_path *path;
4373 	struct btrfs_root *root = BTRFS_I(inode)->root;
4374 	int end = 0;
4375 	u64 em_start = 0;
4376 	u64 em_len = 0;
4377 	u64 em_end = 0;
4378 
4379 	if (len == 0)
4380 		return -EINVAL;
4381 
4382 	path = btrfs_alloc_path();
4383 	if (!path)
4384 		return -ENOMEM;
4385 	path->leave_spinning = 1;
4386 
4387 	start = round_down(start, btrfs_inode_sectorsize(inode));
4388 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4389 
4390 	/*
4391 	 * lookup the last file extent.  We're not using i_size here
4392 	 * because there might be preallocation past i_size
4393 	 */
4394 	ret = btrfs_lookup_file_extent(NULL, root, path,
4395 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4396 	if (ret < 0) {
4397 		btrfs_free_path(path);
4398 		return ret;
4399 	} else {
4400 		WARN_ON(!ret);
4401 		if (ret == 1)
4402 			ret = 0;
4403 	}
4404 
4405 	path->slots[0]--;
4406 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4407 	found_type = found_key.type;
4408 
4409 	/* No extents, but there might be delalloc bits */
4410 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4411 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4412 		/* have to trust i_size as the end */
4413 		last = (u64)-1;
4414 		last_for_get_extent = isize;
4415 	} else {
4416 		/*
4417 		 * remember the start of the last extent.  There are a
4418 		 * bunch of different factors that go into the length of the
4419 		 * extent, so its much less complex to remember where it started
4420 		 */
4421 		last = found_key.offset;
4422 		last_for_get_extent = last + 1;
4423 	}
4424 	btrfs_release_path(path);
4425 
4426 	/*
4427 	 * we might have some extents allocated but more delalloc past those
4428 	 * extents.  so, we trust isize unless the start of the last extent is
4429 	 * beyond isize
4430 	 */
4431 	if (last < isize) {
4432 		last = (u64)-1;
4433 		last_for_get_extent = isize;
4434 	}
4435 
4436 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4437 			 &cached_state);
4438 
4439 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4440 				   get_extent);
4441 	if (!em)
4442 		goto out;
4443 	if (IS_ERR(em)) {
4444 		ret = PTR_ERR(em);
4445 		goto out;
4446 	}
4447 
4448 	while (!end) {
4449 		u64 offset_in_extent = 0;
4450 
4451 		/* break if the extent we found is outside the range */
4452 		if (em->start >= max || extent_map_end(em) < off)
4453 			break;
4454 
4455 		/*
4456 		 * get_extent may return an extent that starts before our
4457 		 * requested range.  We have to make sure the ranges
4458 		 * we return to fiemap always move forward and don't
4459 		 * overlap, so adjust the offsets here
4460 		 */
4461 		em_start = max(em->start, off);
4462 
4463 		/*
4464 		 * record the offset from the start of the extent
4465 		 * for adjusting the disk offset below.  Only do this if the
4466 		 * extent isn't compressed since our in ram offset may be past
4467 		 * what we have actually allocated on disk.
4468 		 */
4469 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4470 			offset_in_extent = em_start - em->start;
4471 		em_end = extent_map_end(em);
4472 		em_len = em_end - em_start;
4473 		disko = 0;
4474 		flags = 0;
4475 
4476 		/*
4477 		 * bump off for our next call to get_extent
4478 		 */
4479 		off = extent_map_end(em);
4480 		if (off >= max)
4481 			end = 1;
4482 
4483 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4484 			end = 1;
4485 			flags |= FIEMAP_EXTENT_LAST;
4486 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4487 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4488 				  FIEMAP_EXTENT_NOT_ALIGNED);
4489 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4490 			flags |= (FIEMAP_EXTENT_DELALLOC |
4491 				  FIEMAP_EXTENT_UNKNOWN);
4492 		} else if (fieinfo->fi_extents_max) {
4493 			struct btrfs_trans_handle *trans;
4494 
4495 			u64 bytenr = em->block_start -
4496 				(em->start - em->orig_start);
4497 
4498 			disko = em->block_start + offset_in_extent;
4499 
4500 			/*
4501 			 * We need a trans handle to get delayed refs
4502 			 */
4503 			trans = btrfs_join_transaction(root);
4504 			/*
4505 			 * It's OK if we can't start a trans we can still check
4506 			 * from commit_root
4507 			 */
4508 			if (IS_ERR(trans))
4509 				trans = NULL;
4510 
4511 			/*
4512 			 * As btrfs supports shared space, this information
4513 			 * can be exported to userspace tools via
4514 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4515 			 * then we're just getting a count and we can skip the
4516 			 * lookup stuff.
4517 			 */
4518 			ret = btrfs_check_shared(trans, root->fs_info,
4519 					root->objectid,
4520 					btrfs_ino(BTRFS_I(inode)), bytenr);
4521 			if (trans)
4522 				btrfs_end_transaction(trans);
4523 			if (ret < 0)
4524 				goto out_free;
4525 			if (ret)
4526 				flags |= FIEMAP_EXTENT_SHARED;
4527 			ret = 0;
4528 		}
4529 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4530 			flags |= FIEMAP_EXTENT_ENCODED;
4531 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4532 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4533 
4534 		free_extent_map(em);
4535 		em = NULL;
4536 		if ((em_start >= last) || em_len == (u64)-1 ||
4537 		   (last == (u64)-1 && isize <= em_end)) {
4538 			flags |= FIEMAP_EXTENT_LAST;
4539 			end = 1;
4540 		}
4541 
4542 		/* now scan forward to see if this is really the last extent. */
4543 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4544 					   get_extent);
4545 		if (IS_ERR(em)) {
4546 			ret = PTR_ERR(em);
4547 			goto out;
4548 		}
4549 		if (!em) {
4550 			flags |= FIEMAP_EXTENT_LAST;
4551 			end = 1;
4552 		}
4553 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4554 					      em_len, flags);
4555 		if (ret) {
4556 			if (ret == 1)
4557 				ret = 0;
4558 			goto out_free;
4559 		}
4560 	}
4561 out_free:
4562 	free_extent_map(em);
4563 out:
4564 	btrfs_free_path(path);
4565 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4566 			     &cached_state, GFP_NOFS);
4567 	return ret;
4568 }
4569 
4570 static void __free_extent_buffer(struct extent_buffer *eb)
4571 {
4572 	btrfs_leak_debug_del(&eb->leak_list);
4573 	kmem_cache_free(extent_buffer_cache, eb);
4574 }
4575 
4576 int extent_buffer_under_io(struct extent_buffer *eb)
4577 {
4578 	return (atomic_read(&eb->io_pages) ||
4579 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4580 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4581 }
4582 
4583 /*
4584  * Helper for releasing extent buffer page.
4585  */
4586 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4587 {
4588 	unsigned long index;
4589 	struct page *page;
4590 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4591 
4592 	BUG_ON(extent_buffer_under_io(eb));
4593 
4594 	index = num_extent_pages(eb->start, eb->len);
4595 	if (index == 0)
4596 		return;
4597 
4598 	do {
4599 		index--;
4600 		page = eb->pages[index];
4601 		if (!page)
4602 			continue;
4603 		if (mapped)
4604 			spin_lock(&page->mapping->private_lock);
4605 		/*
4606 		 * We do this since we'll remove the pages after we've
4607 		 * removed the eb from the radix tree, so we could race
4608 		 * and have this page now attached to the new eb.  So
4609 		 * only clear page_private if it's still connected to
4610 		 * this eb.
4611 		 */
4612 		if (PagePrivate(page) &&
4613 		    page->private == (unsigned long)eb) {
4614 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4615 			BUG_ON(PageDirty(page));
4616 			BUG_ON(PageWriteback(page));
4617 			/*
4618 			 * We need to make sure we haven't be attached
4619 			 * to a new eb.
4620 			 */
4621 			ClearPagePrivate(page);
4622 			set_page_private(page, 0);
4623 			/* One for the page private */
4624 			put_page(page);
4625 		}
4626 
4627 		if (mapped)
4628 			spin_unlock(&page->mapping->private_lock);
4629 
4630 		/* One for when we allocated the page */
4631 		put_page(page);
4632 	} while (index != 0);
4633 }
4634 
4635 /*
4636  * Helper for releasing the extent buffer.
4637  */
4638 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4639 {
4640 	btrfs_release_extent_buffer_page(eb);
4641 	__free_extent_buffer(eb);
4642 }
4643 
4644 static struct extent_buffer *
4645 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4646 		      unsigned long len)
4647 {
4648 	struct extent_buffer *eb = NULL;
4649 
4650 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4651 	eb->start = start;
4652 	eb->len = len;
4653 	eb->fs_info = fs_info;
4654 	eb->bflags = 0;
4655 	rwlock_init(&eb->lock);
4656 	atomic_set(&eb->write_locks, 0);
4657 	atomic_set(&eb->read_locks, 0);
4658 	atomic_set(&eb->blocking_readers, 0);
4659 	atomic_set(&eb->blocking_writers, 0);
4660 	atomic_set(&eb->spinning_readers, 0);
4661 	atomic_set(&eb->spinning_writers, 0);
4662 	eb->lock_nested = 0;
4663 	init_waitqueue_head(&eb->write_lock_wq);
4664 	init_waitqueue_head(&eb->read_lock_wq);
4665 
4666 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4667 
4668 	spin_lock_init(&eb->refs_lock);
4669 	atomic_set(&eb->refs, 1);
4670 	atomic_set(&eb->io_pages, 0);
4671 
4672 	/*
4673 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4674 	 */
4675 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4676 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4677 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4678 
4679 	return eb;
4680 }
4681 
4682 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4683 {
4684 	unsigned long i;
4685 	struct page *p;
4686 	struct extent_buffer *new;
4687 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4688 
4689 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4690 	if (new == NULL)
4691 		return NULL;
4692 
4693 	for (i = 0; i < num_pages; i++) {
4694 		p = alloc_page(GFP_NOFS);
4695 		if (!p) {
4696 			btrfs_release_extent_buffer(new);
4697 			return NULL;
4698 		}
4699 		attach_extent_buffer_page(new, p);
4700 		WARN_ON(PageDirty(p));
4701 		SetPageUptodate(p);
4702 		new->pages[i] = p;
4703 		copy_page(page_address(p), page_address(src->pages[i]));
4704 	}
4705 
4706 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4707 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4708 
4709 	return new;
4710 }
4711 
4712 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4713 						  u64 start, unsigned long len)
4714 {
4715 	struct extent_buffer *eb;
4716 	unsigned long num_pages;
4717 	unsigned long i;
4718 
4719 	num_pages = num_extent_pages(start, len);
4720 
4721 	eb = __alloc_extent_buffer(fs_info, start, len);
4722 	if (!eb)
4723 		return NULL;
4724 
4725 	for (i = 0; i < num_pages; i++) {
4726 		eb->pages[i] = alloc_page(GFP_NOFS);
4727 		if (!eb->pages[i])
4728 			goto err;
4729 	}
4730 	set_extent_buffer_uptodate(eb);
4731 	btrfs_set_header_nritems(eb, 0);
4732 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4733 
4734 	return eb;
4735 err:
4736 	for (; i > 0; i--)
4737 		__free_page(eb->pages[i - 1]);
4738 	__free_extent_buffer(eb);
4739 	return NULL;
4740 }
4741 
4742 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4743 						u64 start)
4744 {
4745 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4746 }
4747 
4748 static void check_buffer_tree_ref(struct extent_buffer *eb)
4749 {
4750 	int refs;
4751 	/* the ref bit is tricky.  We have to make sure it is set
4752 	 * if we have the buffer dirty.   Otherwise the
4753 	 * code to free a buffer can end up dropping a dirty
4754 	 * page
4755 	 *
4756 	 * Once the ref bit is set, it won't go away while the
4757 	 * buffer is dirty or in writeback, and it also won't
4758 	 * go away while we have the reference count on the
4759 	 * eb bumped.
4760 	 *
4761 	 * We can't just set the ref bit without bumping the
4762 	 * ref on the eb because free_extent_buffer might
4763 	 * see the ref bit and try to clear it.  If this happens
4764 	 * free_extent_buffer might end up dropping our original
4765 	 * ref by mistake and freeing the page before we are able
4766 	 * to add one more ref.
4767 	 *
4768 	 * So bump the ref count first, then set the bit.  If someone
4769 	 * beat us to it, drop the ref we added.
4770 	 */
4771 	refs = atomic_read(&eb->refs);
4772 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4773 		return;
4774 
4775 	spin_lock(&eb->refs_lock);
4776 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4777 		atomic_inc(&eb->refs);
4778 	spin_unlock(&eb->refs_lock);
4779 }
4780 
4781 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4782 		struct page *accessed)
4783 {
4784 	unsigned long num_pages, i;
4785 
4786 	check_buffer_tree_ref(eb);
4787 
4788 	num_pages = num_extent_pages(eb->start, eb->len);
4789 	for (i = 0; i < num_pages; i++) {
4790 		struct page *p = eb->pages[i];
4791 
4792 		if (p != accessed)
4793 			mark_page_accessed(p);
4794 	}
4795 }
4796 
4797 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4798 					 u64 start)
4799 {
4800 	struct extent_buffer *eb;
4801 
4802 	rcu_read_lock();
4803 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4804 			       start >> PAGE_SHIFT);
4805 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4806 		rcu_read_unlock();
4807 		/*
4808 		 * Lock our eb's refs_lock to avoid races with
4809 		 * free_extent_buffer. When we get our eb it might be flagged
4810 		 * with EXTENT_BUFFER_STALE and another task running
4811 		 * free_extent_buffer might have seen that flag set,
4812 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4813 		 * writeback flags not set) and it's still in the tree (flag
4814 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4815 		 * of decrementing the extent buffer's reference count twice.
4816 		 * So here we could race and increment the eb's reference count,
4817 		 * clear its stale flag, mark it as dirty and drop our reference
4818 		 * before the other task finishes executing free_extent_buffer,
4819 		 * which would later result in an attempt to free an extent
4820 		 * buffer that is dirty.
4821 		 */
4822 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4823 			spin_lock(&eb->refs_lock);
4824 			spin_unlock(&eb->refs_lock);
4825 		}
4826 		mark_extent_buffer_accessed(eb, NULL);
4827 		return eb;
4828 	}
4829 	rcu_read_unlock();
4830 
4831 	return NULL;
4832 }
4833 
4834 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4835 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4836 					u64 start)
4837 {
4838 	struct extent_buffer *eb, *exists = NULL;
4839 	int ret;
4840 
4841 	eb = find_extent_buffer(fs_info, start);
4842 	if (eb)
4843 		return eb;
4844 	eb = alloc_dummy_extent_buffer(fs_info, start);
4845 	if (!eb)
4846 		return NULL;
4847 	eb->fs_info = fs_info;
4848 again:
4849 	ret = radix_tree_preload(GFP_NOFS);
4850 	if (ret)
4851 		goto free_eb;
4852 	spin_lock(&fs_info->buffer_lock);
4853 	ret = radix_tree_insert(&fs_info->buffer_radix,
4854 				start >> PAGE_SHIFT, eb);
4855 	spin_unlock(&fs_info->buffer_lock);
4856 	radix_tree_preload_end();
4857 	if (ret == -EEXIST) {
4858 		exists = find_extent_buffer(fs_info, start);
4859 		if (exists)
4860 			goto free_eb;
4861 		else
4862 			goto again;
4863 	}
4864 	check_buffer_tree_ref(eb);
4865 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4866 
4867 	/*
4868 	 * We will free dummy extent buffer's if they come into
4869 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4870 	 * want the buffers to stay in memory until we're done with them, so
4871 	 * bump the ref count again.
4872 	 */
4873 	atomic_inc(&eb->refs);
4874 	return eb;
4875 free_eb:
4876 	btrfs_release_extent_buffer(eb);
4877 	return exists;
4878 }
4879 #endif
4880 
4881 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4882 					  u64 start)
4883 {
4884 	unsigned long len = fs_info->nodesize;
4885 	unsigned long num_pages = num_extent_pages(start, len);
4886 	unsigned long i;
4887 	unsigned long index = start >> PAGE_SHIFT;
4888 	struct extent_buffer *eb;
4889 	struct extent_buffer *exists = NULL;
4890 	struct page *p;
4891 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4892 	int uptodate = 1;
4893 	int ret;
4894 
4895 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4896 		btrfs_err(fs_info, "bad tree block start %llu", start);
4897 		return ERR_PTR(-EINVAL);
4898 	}
4899 
4900 	eb = find_extent_buffer(fs_info, start);
4901 	if (eb)
4902 		return eb;
4903 
4904 	eb = __alloc_extent_buffer(fs_info, start, len);
4905 	if (!eb)
4906 		return ERR_PTR(-ENOMEM);
4907 
4908 	for (i = 0; i < num_pages; i++, index++) {
4909 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4910 		if (!p) {
4911 			exists = ERR_PTR(-ENOMEM);
4912 			goto free_eb;
4913 		}
4914 
4915 		spin_lock(&mapping->private_lock);
4916 		if (PagePrivate(p)) {
4917 			/*
4918 			 * We could have already allocated an eb for this page
4919 			 * and attached one so lets see if we can get a ref on
4920 			 * the existing eb, and if we can we know it's good and
4921 			 * we can just return that one, else we know we can just
4922 			 * overwrite page->private.
4923 			 */
4924 			exists = (struct extent_buffer *)p->private;
4925 			if (atomic_inc_not_zero(&exists->refs)) {
4926 				spin_unlock(&mapping->private_lock);
4927 				unlock_page(p);
4928 				put_page(p);
4929 				mark_extent_buffer_accessed(exists, p);
4930 				goto free_eb;
4931 			}
4932 			exists = NULL;
4933 
4934 			/*
4935 			 * Do this so attach doesn't complain and we need to
4936 			 * drop the ref the old guy had.
4937 			 */
4938 			ClearPagePrivate(p);
4939 			WARN_ON(PageDirty(p));
4940 			put_page(p);
4941 		}
4942 		attach_extent_buffer_page(eb, p);
4943 		spin_unlock(&mapping->private_lock);
4944 		WARN_ON(PageDirty(p));
4945 		eb->pages[i] = p;
4946 		if (!PageUptodate(p))
4947 			uptodate = 0;
4948 
4949 		/*
4950 		 * see below about how we avoid a nasty race with release page
4951 		 * and why we unlock later
4952 		 */
4953 	}
4954 	if (uptodate)
4955 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4956 again:
4957 	ret = radix_tree_preload(GFP_NOFS);
4958 	if (ret) {
4959 		exists = ERR_PTR(ret);
4960 		goto free_eb;
4961 	}
4962 
4963 	spin_lock(&fs_info->buffer_lock);
4964 	ret = radix_tree_insert(&fs_info->buffer_radix,
4965 				start >> PAGE_SHIFT, eb);
4966 	spin_unlock(&fs_info->buffer_lock);
4967 	radix_tree_preload_end();
4968 	if (ret == -EEXIST) {
4969 		exists = find_extent_buffer(fs_info, start);
4970 		if (exists)
4971 			goto free_eb;
4972 		else
4973 			goto again;
4974 	}
4975 	/* add one reference for the tree */
4976 	check_buffer_tree_ref(eb);
4977 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4978 
4979 	/*
4980 	 * there is a race where release page may have
4981 	 * tried to find this extent buffer in the radix
4982 	 * but failed.  It will tell the VM it is safe to
4983 	 * reclaim the, and it will clear the page private bit.
4984 	 * We must make sure to set the page private bit properly
4985 	 * after the extent buffer is in the radix tree so
4986 	 * it doesn't get lost
4987 	 */
4988 	SetPageChecked(eb->pages[0]);
4989 	for (i = 1; i < num_pages; i++) {
4990 		p = eb->pages[i];
4991 		ClearPageChecked(p);
4992 		unlock_page(p);
4993 	}
4994 	unlock_page(eb->pages[0]);
4995 	return eb;
4996 
4997 free_eb:
4998 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4999 	for (i = 0; i < num_pages; i++) {
5000 		if (eb->pages[i])
5001 			unlock_page(eb->pages[i]);
5002 	}
5003 
5004 	btrfs_release_extent_buffer(eb);
5005 	return exists;
5006 }
5007 
5008 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5009 {
5010 	struct extent_buffer *eb =
5011 			container_of(head, struct extent_buffer, rcu_head);
5012 
5013 	__free_extent_buffer(eb);
5014 }
5015 
5016 /* Expects to have eb->eb_lock already held */
5017 static int release_extent_buffer(struct extent_buffer *eb)
5018 {
5019 	WARN_ON(atomic_read(&eb->refs) == 0);
5020 	if (atomic_dec_and_test(&eb->refs)) {
5021 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5022 			struct btrfs_fs_info *fs_info = eb->fs_info;
5023 
5024 			spin_unlock(&eb->refs_lock);
5025 
5026 			spin_lock(&fs_info->buffer_lock);
5027 			radix_tree_delete(&fs_info->buffer_radix,
5028 					  eb->start >> PAGE_SHIFT);
5029 			spin_unlock(&fs_info->buffer_lock);
5030 		} else {
5031 			spin_unlock(&eb->refs_lock);
5032 		}
5033 
5034 		/* Should be safe to release our pages at this point */
5035 		btrfs_release_extent_buffer_page(eb);
5036 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5037 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5038 			__free_extent_buffer(eb);
5039 			return 1;
5040 		}
5041 #endif
5042 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5043 		return 1;
5044 	}
5045 	spin_unlock(&eb->refs_lock);
5046 
5047 	return 0;
5048 }
5049 
5050 void free_extent_buffer(struct extent_buffer *eb)
5051 {
5052 	int refs;
5053 	int old;
5054 	if (!eb)
5055 		return;
5056 
5057 	while (1) {
5058 		refs = atomic_read(&eb->refs);
5059 		if (refs <= 3)
5060 			break;
5061 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5062 		if (old == refs)
5063 			return;
5064 	}
5065 
5066 	spin_lock(&eb->refs_lock);
5067 	if (atomic_read(&eb->refs) == 2 &&
5068 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5069 		atomic_dec(&eb->refs);
5070 
5071 	if (atomic_read(&eb->refs) == 2 &&
5072 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5073 	    !extent_buffer_under_io(eb) &&
5074 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 		atomic_dec(&eb->refs);
5076 
5077 	/*
5078 	 * I know this is terrible, but it's temporary until we stop tracking
5079 	 * the uptodate bits and such for the extent buffers.
5080 	 */
5081 	release_extent_buffer(eb);
5082 }
5083 
5084 void free_extent_buffer_stale(struct extent_buffer *eb)
5085 {
5086 	if (!eb)
5087 		return;
5088 
5089 	spin_lock(&eb->refs_lock);
5090 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5091 
5092 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5093 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 		atomic_dec(&eb->refs);
5095 	release_extent_buffer(eb);
5096 }
5097 
5098 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5099 {
5100 	unsigned long i;
5101 	unsigned long num_pages;
5102 	struct page *page;
5103 
5104 	num_pages = num_extent_pages(eb->start, eb->len);
5105 
5106 	for (i = 0; i < num_pages; i++) {
5107 		page = eb->pages[i];
5108 		if (!PageDirty(page))
5109 			continue;
5110 
5111 		lock_page(page);
5112 		WARN_ON(!PagePrivate(page));
5113 
5114 		clear_page_dirty_for_io(page);
5115 		spin_lock_irq(&page->mapping->tree_lock);
5116 		if (!PageDirty(page)) {
5117 			radix_tree_tag_clear(&page->mapping->page_tree,
5118 						page_index(page),
5119 						PAGECACHE_TAG_DIRTY);
5120 		}
5121 		spin_unlock_irq(&page->mapping->tree_lock);
5122 		ClearPageError(page);
5123 		unlock_page(page);
5124 	}
5125 	WARN_ON(atomic_read(&eb->refs) == 0);
5126 }
5127 
5128 int set_extent_buffer_dirty(struct extent_buffer *eb)
5129 {
5130 	unsigned long i;
5131 	unsigned long num_pages;
5132 	int was_dirty = 0;
5133 
5134 	check_buffer_tree_ref(eb);
5135 
5136 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5137 
5138 	num_pages = num_extent_pages(eb->start, eb->len);
5139 	WARN_ON(atomic_read(&eb->refs) == 0);
5140 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5141 
5142 	for (i = 0; i < num_pages; i++)
5143 		set_page_dirty(eb->pages[i]);
5144 	return was_dirty;
5145 }
5146 
5147 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5148 {
5149 	unsigned long i;
5150 	struct page *page;
5151 	unsigned long num_pages;
5152 
5153 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5154 	num_pages = num_extent_pages(eb->start, eb->len);
5155 	for (i = 0; i < num_pages; i++) {
5156 		page = eb->pages[i];
5157 		if (page)
5158 			ClearPageUptodate(page);
5159 	}
5160 }
5161 
5162 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5163 {
5164 	unsigned long i;
5165 	struct page *page;
5166 	unsigned long num_pages;
5167 
5168 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5169 	num_pages = num_extent_pages(eb->start, eb->len);
5170 	for (i = 0; i < num_pages; i++) {
5171 		page = eb->pages[i];
5172 		SetPageUptodate(page);
5173 	}
5174 }
5175 
5176 int extent_buffer_uptodate(struct extent_buffer *eb)
5177 {
5178 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5179 }
5180 
5181 int read_extent_buffer_pages(struct extent_io_tree *tree,
5182 			     struct extent_buffer *eb, int wait,
5183 			     get_extent_t *get_extent, int mirror_num)
5184 {
5185 	unsigned long i;
5186 	struct page *page;
5187 	int err;
5188 	int ret = 0;
5189 	int locked_pages = 0;
5190 	int all_uptodate = 1;
5191 	unsigned long num_pages;
5192 	unsigned long num_reads = 0;
5193 	struct bio *bio = NULL;
5194 	unsigned long bio_flags = 0;
5195 
5196 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5197 		return 0;
5198 
5199 	num_pages = num_extent_pages(eb->start, eb->len);
5200 	for (i = 0; i < num_pages; i++) {
5201 		page = eb->pages[i];
5202 		if (wait == WAIT_NONE) {
5203 			if (!trylock_page(page))
5204 				goto unlock_exit;
5205 		} else {
5206 			lock_page(page);
5207 		}
5208 		locked_pages++;
5209 	}
5210 	/*
5211 	 * We need to firstly lock all pages to make sure that
5212 	 * the uptodate bit of our pages won't be affected by
5213 	 * clear_extent_buffer_uptodate().
5214 	 */
5215 	for (i = 0; i < num_pages; i++) {
5216 		page = eb->pages[i];
5217 		if (!PageUptodate(page)) {
5218 			num_reads++;
5219 			all_uptodate = 0;
5220 		}
5221 	}
5222 
5223 	if (all_uptodate) {
5224 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5225 		goto unlock_exit;
5226 	}
5227 
5228 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5229 	eb->read_mirror = 0;
5230 	atomic_set(&eb->io_pages, num_reads);
5231 	for (i = 0; i < num_pages; i++) {
5232 		page = eb->pages[i];
5233 
5234 		if (!PageUptodate(page)) {
5235 			if (ret) {
5236 				atomic_dec(&eb->io_pages);
5237 				unlock_page(page);
5238 				continue;
5239 			}
5240 
5241 			ClearPageError(page);
5242 			err = __extent_read_full_page(tree, page,
5243 						      get_extent, &bio,
5244 						      mirror_num, &bio_flags,
5245 						      REQ_META);
5246 			if (err) {
5247 				ret = err;
5248 				/*
5249 				 * We use &bio in above __extent_read_full_page,
5250 				 * so we ensure that if it returns error, the
5251 				 * current page fails to add itself to bio and
5252 				 * it's been unlocked.
5253 				 *
5254 				 * We must dec io_pages by ourselves.
5255 				 */
5256 				atomic_dec(&eb->io_pages);
5257 			}
5258 		} else {
5259 			unlock_page(page);
5260 		}
5261 	}
5262 
5263 	if (bio) {
5264 		err = submit_one_bio(bio, mirror_num, bio_flags);
5265 		if (err)
5266 			return err;
5267 	}
5268 
5269 	if (ret || wait != WAIT_COMPLETE)
5270 		return ret;
5271 
5272 	for (i = 0; i < num_pages; i++) {
5273 		page = eb->pages[i];
5274 		wait_on_page_locked(page);
5275 		if (!PageUptodate(page))
5276 			ret = -EIO;
5277 	}
5278 
5279 	return ret;
5280 
5281 unlock_exit:
5282 	while (locked_pages > 0) {
5283 		locked_pages--;
5284 		page = eb->pages[locked_pages];
5285 		unlock_page(page);
5286 	}
5287 	return ret;
5288 }
5289 
5290 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5291 			unsigned long start,
5292 			unsigned long len)
5293 {
5294 	size_t cur;
5295 	size_t offset;
5296 	struct page *page;
5297 	char *kaddr;
5298 	char *dst = (char *)dstv;
5299 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5300 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5301 
5302 	WARN_ON(start > eb->len);
5303 	WARN_ON(start + len > eb->start + eb->len);
5304 
5305 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5306 
5307 	while (len > 0) {
5308 		page = eb->pages[i];
5309 
5310 		cur = min(len, (PAGE_SIZE - offset));
5311 		kaddr = page_address(page);
5312 		memcpy(dst, kaddr + offset, cur);
5313 
5314 		dst += cur;
5315 		len -= cur;
5316 		offset = 0;
5317 		i++;
5318 	}
5319 }
5320 
5321 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5322 			unsigned long start,
5323 			unsigned long len)
5324 {
5325 	size_t cur;
5326 	size_t offset;
5327 	struct page *page;
5328 	char *kaddr;
5329 	char __user *dst = (char __user *)dstv;
5330 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5331 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5332 	int ret = 0;
5333 
5334 	WARN_ON(start > eb->len);
5335 	WARN_ON(start + len > eb->start + eb->len);
5336 
5337 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5338 
5339 	while (len > 0) {
5340 		page = eb->pages[i];
5341 
5342 		cur = min(len, (PAGE_SIZE - offset));
5343 		kaddr = page_address(page);
5344 		if (copy_to_user(dst, kaddr + offset, cur)) {
5345 			ret = -EFAULT;
5346 			break;
5347 		}
5348 
5349 		dst += cur;
5350 		len -= cur;
5351 		offset = 0;
5352 		i++;
5353 	}
5354 
5355 	return ret;
5356 }
5357 
5358 /*
5359  * return 0 if the item is found within a page.
5360  * return 1 if the item spans two pages.
5361  * return -EINVAL otherwise.
5362  */
5363 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5364 			       unsigned long min_len, char **map,
5365 			       unsigned long *map_start,
5366 			       unsigned long *map_len)
5367 {
5368 	size_t offset = start & (PAGE_SIZE - 1);
5369 	char *kaddr;
5370 	struct page *p;
5371 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5372 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5373 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5374 		PAGE_SHIFT;
5375 
5376 	if (i != end_i)
5377 		return 1;
5378 
5379 	if (i == 0) {
5380 		offset = start_offset;
5381 		*map_start = 0;
5382 	} else {
5383 		offset = 0;
5384 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5385 	}
5386 
5387 	if (start + min_len > eb->len) {
5388 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5389 		       eb->start, eb->len, start, min_len);
5390 		return -EINVAL;
5391 	}
5392 
5393 	p = eb->pages[i];
5394 	kaddr = page_address(p);
5395 	*map = kaddr + offset;
5396 	*map_len = PAGE_SIZE - offset;
5397 	return 0;
5398 }
5399 
5400 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5401 			  unsigned long start,
5402 			  unsigned long len)
5403 {
5404 	size_t cur;
5405 	size_t offset;
5406 	struct page *page;
5407 	char *kaddr;
5408 	char *ptr = (char *)ptrv;
5409 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5410 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5411 	int ret = 0;
5412 
5413 	WARN_ON(start > eb->len);
5414 	WARN_ON(start + len > eb->start + eb->len);
5415 
5416 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5417 
5418 	while (len > 0) {
5419 		page = eb->pages[i];
5420 
5421 		cur = min(len, (PAGE_SIZE - offset));
5422 
5423 		kaddr = page_address(page);
5424 		ret = memcmp(ptr, kaddr + offset, cur);
5425 		if (ret)
5426 			break;
5427 
5428 		ptr += cur;
5429 		len -= cur;
5430 		offset = 0;
5431 		i++;
5432 	}
5433 	return ret;
5434 }
5435 
5436 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5437 		const void *srcv)
5438 {
5439 	char *kaddr;
5440 
5441 	WARN_ON(!PageUptodate(eb->pages[0]));
5442 	kaddr = page_address(eb->pages[0]);
5443 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5444 			BTRFS_FSID_SIZE);
5445 }
5446 
5447 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5448 {
5449 	char *kaddr;
5450 
5451 	WARN_ON(!PageUptodate(eb->pages[0]));
5452 	kaddr = page_address(eb->pages[0]);
5453 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5454 			BTRFS_FSID_SIZE);
5455 }
5456 
5457 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5458 			 unsigned long start, unsigned long len)
5459 {
5460 	size_t cur;
5461 	size_t offset;
5462 	struct page *page;
5463 	char *kaddr;
5464 	char *src = (char *)srcv;
5465 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5466 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5467 
5468 	WARN_ON(start > eb->len);
5469 	WARN_ON(start + len > eb->start + eb->len);
5470 
5471 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5472 
5473 	while (len > 0) {
5474 		page = eb->pages[i];
5475 		WARN_ON(!PageUptodate(page));
5476 
5477 		cur = min(len, PAGE_SIZE - offset);
5478 		kaddr = page_address(page);
5479 		memcpy(kaddr + offset, src, cur);
5480 
5481 		src += cur;
5482 		len -= cur;
5483 		offset = 0;
5484 		i++;
5485 	}
5486 }
5487 
5488 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5489 		unsigned long len)
5490 {
5491 	size_t cur;
5492 	size_t offset;
5493 	struct page *page;
5494 	char *kaddr;
5495 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5496 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5497 
5498 	WARN_ON(start > eb->len);
5499 	WARN_ON(start + len > eb->start + eb->len);
5500 
5501 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5502 
5503 	while (len > 0) {
5504 		page = eb->pages[i];
5505 		WARN_ON(!PageUptodate(page));
5506 
5507 		cur = min(len, PAGE_SIZE - offset);
5508 		kaddr = page_address(page);
5509 		memset(kaddr + offset, 0, cur);
5510 
5511 		len -= cur;
5512 		offset = 0;
5513 		i++;
5514 	}
5515 }
5516 
5517 void copy_extent_buffer_full(struct extent_buffer *dst,
5518 			     struct extent_buffer *src)
5519 {
5520 	int i;
5521 	unsigned num_pages;
5522 
5523 	ASSERT(dst->len == src->len);
5524 
5525 	num_pages = num_extent_pages(dst->start, dst->len);
5526 	for (i = 0; i < num_pages; i++)
5527 		copy_page(page_address(dst->pages[i]),
5528 				page_address(src->pages[i]));
5529 }
5530 
5531 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5532 			unsigned long dst_offset, unsigned long src_offset,
5533 			unsigned long len)
5534 {
5535 	u64 dst_len = dst->len;
5536 	size_t cur;
5537 	size_t offset;
5538 	struct page *page;
5539 	char *kaddr;
5540 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5541 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5542 
5543 	WARN_ON(src->len != dst_len);
5544 
5545 	offset = (start_offset + dst_offset) &
5546 		(PAGE_SIZE - 1);
5547 
5548 	while (len > 0) {
5549 		page = dst->pages[i];
5550 		WARN_ON(!PageUptodate(page));
5551 
5552 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5553 
5554 		kaddr = page_address(page);
5555 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5556 
5557 		src_offset += cur;
5558 		len -= cur;
5559 		offset = 0;
5560 		i++;
5561 	}
5562 }
5563 
5564 void le_bitmap_set(u8 *map, unsigned int start, int len)
5565 {
5566 	u8 *p = map + BIT_BYTE(start);
5567 	const unsigned int size = start + len;
5568 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5569 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5570 
5571 	while (len - bits_to_set >= 0) {
5572 		*p |= mask_to_set;
5573 		len -= bits_to_set;
5574 		bits_to_set = BITS_PER_BYTE;
5575 		mask_to_set = ~0;
5576 		p++;
5577 	}
5578 	if (len) {
5579 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5580 		*p |= mask_to_set;
5581 	}
5582 }
5583 
5584 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5585 {
5586 	u8 *p = map + BIT_BYTE(start);
5587 	const unsigned int size = start + len;
5588 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5589 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5590 
5591 	while (len - bits_to_clear >= 0) {
5592 		*p &= ~mask_to_clear;
5593 		len -= bits_to_clear;
5594 		bits_to_clear = BITS_PER_BYTE;
5595 		mask_to_clear = ~0;
5596 		p++;
5597 	}
5598 	if (len) {
5599 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5600 		*p &= ~mask_to_clear;
5601 	}
5602 }
5603 
5604 /*
5605  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5606  * given bit number
5607  * @eb: the extent buffer
5608  * @start: offset of the bitmap item in the extent buffer
5609  * @nr: bit number
5610  * @page_index: return index of the page in the extent buffer that contains the
5611  * given bit number
5612  * @page_offset: return offset into the page given by page_index
5613  *
5614  * This helper hides the ugliness of finding the byte in an extent buffer which
5615  * contains a given bit.
5616  */
5617 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5618 				    unsigned long start, unsigned long nr,
5619 				    unsigned long *page_index,
5620 				    size_t *page_offset)
5621 {
5622 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5623 	size_t byte_offset = BIT_BYTE(nr);
5624 	size_t offset;
5625 
5626 	/*
5627 	 * The byte we want is the offset of the extent buffer + the offset of
5628 	 * the bitmap item in the extent buffer + the offset of the byte in the
5629 	 * bitmap item.
5630 	 */
5631 	offset = start_offset + start + byte_offset;
5632 
5633 	*page_index = offset >> PAGE_SHIFT;
5634 	*page_offset = offset & (PAGE_SIZE - 1);
5635 }
5636 
5637 /**
5638  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5639  * @eb: the extent buffer
5640  * @start: offset of the bitmap item in the extent buffer
5641  * @nr: bit number to test
5642  */
5643 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5644 			   unsigned long nr)
5645 {
5646 	u8 *kaddr;
5647 	struct page *page;
5648 	unsigned long i;
5649 	size_t offset;
5650 
5651 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5652 	page = eb->pages[i];
5653 	WARN_ON(!PageUptodate(page));
5654 	kaddr = page_address(page);
5655 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5656 }
5657 
5658 /**
5659  * extent_buffer_bitmap_set - set an area of a bitmap
5660  * @eb: the extent buffer
5661  * @start: offset of the bitmap item in the extent buffer
5662  * @pos: bit number of the first bit
5663  * @len: number of bits to set
5664  */
5665 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5666 			      unsigned long pos, unsigned long len)
5667 {
5668 	u8 *kaddr;
5669 	struct page *page;
5670 	unsigned long i;
5671 	size_t offset;
5672 	const unsigned int size = pos + len;
5673 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5674 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5675 
5676 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5677 	page = eb->pages[i];
5678 	WARN_ON(!PageUptodate(page));
5679 	kaddr = page_address(page);
5680 
5681 	while (len >= bits_to_set) {
5682 		kaddr[offset] |= mask_to_set;
5683 		len -= bits_to_set;
5684 		bits_to_set = BITS_PER_BYTE;
5685 		mask_to_set = ~0;
5686 		if (++offset >= PAGE_SIZE && len > 0) {
5687 			offset = 0;
5688 			page = eb->pages[++i];
5689 			WARN_ON(!PageUptodate(page));
5690 			kaddr = page_address(page);
5691 		}
5692 	}
5693 	if (len) {
5694 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5695 		kaddr[offset] |= mask_to_set;
5696 	}
5697 }
5698 
5699 
5700 /**
5701  * extent_buffer_bitmap_clear - clear an area of a bitmap
5702  * @eb: the extent buffer
5703  * @start: offset of the bitmap item in the extent buffer
5704  * @pos: bit number of the first bit
5705  * @len: number of bits to clear
5706  */
5707 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5708 				unsigned long pos, unsigned long len)
5709 {
5710 	u8 *kaddr;
5711 	struct page *page;
5712 	unsigned long i;
5713 	size_t offset;
5714 	const unsigned int size = pos + len;
5715 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5716 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5717 
5718 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5719 	page = eb->pages[i];
5720 	WARN_ON(!PageUptodate(page));
5721 	kaddr = page_address(page);
5722 
5723 	while (len >= bits_to_clear) {
5724 		kaddr[offset] &= ~mask_to_clear;
5725 		len -= bits_to_clear;
5726 		bits_to_clear = BITS_PER_BYTE;
5727 		mask_to_clear = ~0;
5728 		if (++offset >= PAGE_SIZE && len > 0) {
5729 			offset = 0;
5730 			page = eb->pages[++i];
5731 			WARN_ON(!PageUptodate(page));
5732 			kaddr = page_address(page);
5733 		}
5734 	}
5735 	if (len) {
5736 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5737 		kaddr[offset] &= ~mask_to_clear;
5738 	}
5739 }
5740 
5741 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5742 {
5743 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5744 	return distance < len;
5745 }
5746 
5747 static void copy_pages(struct page *dst_page, struct page *src_page,
5748 		       unsigned long dst_off, unsigned long src_off,
5749 		       unsigned long len)
5750 {
5751 	char *dst_kaddr = page_address(dst_page);
5752 	char *src_kaddr;
5753 	int must_memmove = 0;
5754 
5755 	if (dst_page != src_page) {
5756 		src_kaddr = page_address(src_page);
5757 	} else {
5758 		src_kaddr = dst_kaddr;
5759 		if (areas_overlap(src_off, dst_off, len))
5760 			must_memmove = 1;
5761 	}
5762 
5763 	if (must_memmove)
5764 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5765 	else
5766 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5767 }
5768 
5769 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5770 			   unsigned long src_offset, unsigned long len)
5771 {
5772 	struct btrfs_fs_info *fs_info = dst->fs_info;
5773 	size_t cur;
5774 	size_t dst_off_in_page;
5775 	size_t src_off_in_page;
5776 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5777 	unsigned long dst_i;
5778 	unsigned long src_i;
5779 
5780 	if (src_offset + len > dst->len) {
5781 		btrfs_err(fs_info,
5782 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5783 			 src_offset, len, dst->len);
5784 		BUG_ON(1);
5785 	}
5786 	if (dst_offset + len > dst->len) {
5787 		btrfs_err(fs_info,
5788 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5789 			 dst_offset, len, dst->len);
5790 		BUG_ON(1);
5791 	}
5792 
5793 	while (len > 0) {
5794 		dst_off_in_page = (start_offset + dst_offset) &
5795 			(PAGE_SIZE - 1);
5796 		src_off_in_page = (start_offset + src_offset) &
5797 			(PAGE_SIZE - 1);
5798 
5799 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5800 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5801 
5802 		cur = min(len, (unsigned long)(PAGE_SIZE -
5803 					       src_off_in_page));
5804 		cur = min_t(unsigned long, cur,
5805 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5806 
5807 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5808 			   dst_off_in_page, src_off_in_page, cur);
5809 
5810 		src_offset += cur;
5811 		dst_offset += cur;
5812 		len -= cur;
5813 	}
5814 }
5815 
5816 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5817 			   unsigned long src_offset, unsigned long len)
5818 {
5819 	struct btrfs_fs_info *fs_info = dst->fs_info;
5820 	size_t cur;
5821 	size_t dst_off_in_page;
5822 	size_t src_off_in_page;
5823 	unsigned long dst_end = dst_offset + len - 1;
5824 	unsigned long src_end = src_offset + len - 1;
5825 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5826 	unsigned long dst_i;
5827 	unsigned long src_i;
5828 
5829 	if (src_offset + len > dst->len) {
5830 		btrfs_err(fs_info,
5831 			  "memmove bogus src_offset %lu move len %lu len %lu",
5832 			  src_offset, len, dst->len);
5833 		BUG_ON(1);
5834 	}
5835 	if (dst_offset + len > dst->len) {
5836 		btrfs_err(fs_info,
5837 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5838 			  dst_offset, len, dst->len);
5839 		BUG_ON(1);
5840 	}
5841 	if (dst_offset < src_offset) {
5842 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5843 		return;
5844 	}
5845 	while (len > 0) {
5846 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5847 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5848 
5849 		dst_off_in_page = (start_offset + dst_end) &
5850 			(PAGE_SIZE - 1);
5851 		src_off_in_page = (start_offset + src_end) &
5852 			(PAGE_SIZE - 1);
5853 
5854 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5855 		cur = min(cur, dst_off_in_page + 1);
5856 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5857 			   dst_off_in_page - cur + 1,
5858 			   src_off_in_page - cur + 1, cur);
5859 
5860 		dst_end -= cur;
5861 		src_end -= cur;
5862 		len -= cur;
5863 	}
5864 }
5865 
5866 int try_release_extent_buffer(struct page *page)
5867 {
5868 	struct extent_buffer *eb;
5869 
5870 	/*
5871 	 * We need to make sure nobody is attaching this page to an eb right
5872 	 * now.
5873 	 */
5874 	spin_lock(&page->mapping->private_lock);
5875 	if (!PagePrivate(page)) {
5876 		spin_unlock(&page->mapping->private_lock);
5877 		return 1;
5878 	}
5879 
5880 	eb = (struct extent_buffer *)page->private;
5881 	BUG_ON(!eb);
5882 
5883 	/*
5884 	 * This is a little awful but should be ok, we need to make sure that
5885 	 * the eb doesn't disappear out from under us while we're looking at
5886 	 * this page.
5887 	 */
5888 	spin_lock(&eb->refs_lock);
5889 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5890 		spin_unlock(&eb->refs_lock);
5891 		spin_unlock(&page->mapping->private_lock);
5892 		return 0;
5893 	}
5894 	spin_unlock(&page->mapping->private_lock);
5895 
5896 	/*
5897 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5898 	 * so just return, this page will likely be freed soon anyway.
5899 	 */
5900 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5901 		spin_unlock(&eb->refs_lock);
5902 		return 0;
5903 	}
5904 
5905 	return release_extent_buffer(eb);
5906 }
5907