xref: /openbmc/linux/fs/btrfs/extent_io.c (revision f7777dcc)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       state->start, state->end, state->state, state->tree,
65 		       atomic_read(&state->refs));
66 		list_del(&state->leak_list);
67 		kmem_cache_free(extent_state_cache, state);
68 	}
69 
70 	while (!list_empty(&buffers)) {
71 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 		       "refs %d\n",
74 		       eb->start, eb->len, atomic_read(&eb->refs));
75 		list_del(&eb->leak_list);
76 		kmem_cache_free(extent_buffer_cache, eb);
77 	}
78 }
79 
80 #define btrfs_debug_check_extent_io_range(inode, start, end)		\
81 	__btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 		struct inode *inode, u64 start, u64 end)
84 {
85 	u64 isize = i_size_read(inode);
86 
87 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 		printk_ratelimited(KERN_DEBUG
89 		    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
90 				caller, btrfs_ino(inode), isize, start, end);
91 	}
92 }
93 #else
94 #define btrfs_leak_debug_add(new, head)	do {} while (0)
95 #define btrfs_leak_debug_del(entry)	do {} while (0)
96 #define btrfs_leak_debug_check()	do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
98 #endif
99 
100 #define BUFFER_LRU_MAX 64
101 
102 struct tree_entry {
103 	u64 start;
104 	u64 end;
105 	struct rb_node rb_node;
106 };
107 
108 struct extent_page_data {
109 	struct bio *bio;
110 	struct extent_io_tree *tree;
111 	get_extent_t *get_extent;
112 	unsigned long bio_flags;
113 
114 	/* tells writepage not to lock the state bits for this range
115 	 * it still does the unlocking
116 	 */
117 	unsigned int extent_locked:1;
118 
119 	/* tells the submit_bio code to use a WRITE_SYNC */
120 	unsigned int sync_io:1;
121 };
122 
123 static noinline void flush_write_bio(void *data);
124 static inline struct btrfs_fs_info *
125 tree_fs_info(struct extent_io_tree *tree)
126 {
127 	return btrfs_sb(tree->mapping->host->i_sb);
128 }
129 
130 int __init extent_io_init(void)
131 {
132 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
133 			sizeof(struct extent_state), 0,
134 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
135 	if (!extent_state_cache)
136 		return -ENOMEM;
137 
138 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
139 			sizeof(struct extent_buffer), 0,
140 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
141 	if (!extent_buffer_cache)
142 		goto free_state_cache;
143 
144 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 				     offsetof(struct btrfs_io_bio, bio));
146 	if (!btrfs_bioset)
147 		goto free_buffer_cache;
148 
149 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
150 		goto free_bioset;
151 
152 	return 0;
153 
154 free_bioset:
155 	bioset_free(btrfs_bioset);
156 	btrfs_bioset = NULL;
157 
158 free_buffer_cache:
159 	kmem_cache_destroy(extent_buffer_cache);
160 	extent_buffer_cache = NULL;
161 
162 free_state_cache:
163 	kmem_cache_destroy(extent_state_cache);
164 	extent_state_cache = NULL;
165 	return -ENOMEM;
166 }
167 
168 void extent_io_exit(void)
169 {
170 	btrfs_leak_debug_check();
171 
172 	/*
173 	 * Make sure all delayed rcu free are flushed before we
174 	 * destroy caches.
175 	 */
176 	rcu_barrier();
177 	if (extent_state_cache)
178 		kmem_cache_destroy(extent_state_cache);
179 	if (extent_buffer_cache)
180 		kmem_cache_destroy(extent_buffer_cache);
181 	if (btrfs_bioset)
182 		bioset_free(btrfs_bioset);
183 }
184 
185 void extent_io_tree_init(struct extent_io_tree *tree,
186 			 struct address_space *mapping)
187 {
188 	tree->state = RB_ROOT;
189 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
190 	tree->ops = NULL;
191 	tree->dirty_bytes = 0;
192 	spin_lock_init(&tree->lock);
193 	spin_lock_init(&tree->buffer_lock);
194 	tree->mapping = mapping;
195 }
196 
197 static struct extent_state *alloc_extent_state(gfp_t mask)
198 {
199 	struct extent_state *state;
200 
201 	state = kmem_cache_alloc(extent_state_cache, mask);
202 	if (!state)
203 		return state;
204 	state->state = 0;
205 	state->private = 0;
206 	state->tree = NULL;
207 	btrfs_leak_debug_add(&state->leak_list, &states);
208 	atomic_set(&state->refs, 1);
209 	init_waitqueue_head(&state->wq);
210 	trace_alloc_extent_state(state, mask, _RET_IP_);
211 	return state;
212 }
213 
214 void free_extent_state(struct extent_state *state)
215 {
216 	if (!state)
217 		return;
218 	if (atomic_dec_and_test(&state->refs)) {
219 		WARN_ON(state->tree);
220 		btrfs_leak_debug_del(&state->leak_list);
221 		trace_free_extent_state(state, _RET_IP_);
222 		kmem_cache_free(extent_state_cache, state);
223 	}
224 }
225 
226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
227 				   struct rb_node *node)
228 {
229 	struct rb_node **p = &root->rb_node;
230 	struct rb_node *parent = NULL;
231 	struct tree_entry *entry;
232 
233 	while (*p) {
234 		parent = *p;
235 		entry = rb_entry(parent, struct tree_entry, rb_node);
236 
237 		if (offset < entry->start)
238 			p = &(*p)->rb_left;
239 		else if (offset > entry->end)
240 			p = &(*p)->rb_right;
241 		else
242 			return parent;
243 	}
244 
245 	rb_link_node(node, parent, p);
246 	rb_insert_color(node, root);
247 	return NULL;
248 }
249 
250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
251 				     struct rb_node **prev_ret,
252 				     struct rb_node **next_ret)
253 {
254 	struct rb_root *root = &tree->state;
255 	struct rb_node *n = root->rb_node;
256 	struct rb_node *prev = NULL;
257 	struct rb_node *orig_prev = NULL;
258 	struct tree_entry *entry;
259 	struct tree_entry *prev_entry = NULL;
260 
261 	while (n) {
262 		entry = rb_entry(n, struct tree_entry, rb_node);
263 		prev = n;
264 		prev_entry = entry;
265 
266 		if (offset < entry->start)
267 			n = n->rb_left;
268 		else if (offset > entry->end)
269 			n = n->rb_right;
270 		else
271 			return n;
272 	}
273 
274 	if (prev_ret) {
275 		orig_prev = prev;
276 		while (prev && offset > prev_entry->end) {
277 			prev = rb_next(prev);
278 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
279 		}
280 		*prev_ret = prev;
281 		prev = orig_prev;
282 	}
283 
284 	if (next_ret) {
285 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 		while (prev && offset < prev_entry->start) {
287 			prev = rb_prev(prev);
288 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
289 		}
290 		*next_ret = prev;
291 	}
292 	return NULL;
293 }
294 
295 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
296 					  u64 offset)
297 {
298 	struct rb_node *prev = NULL;
299 	struct rb_node *ret;
300 
301 	ret = __etree_search(tree, offset, &prev, NULL);
302 	if (!ret)
303 		return prev;
304 	return ret;
305 }
306 
307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
308 		     struct extent_state *other)
309 {
310 	if (tree->ops && tree->ops->merge_extent_hook)
311 		tree->ops->merge_extent_hook(tree->mapping->host, new,
312 					     other);
313 }
314 
315 /*
316  * utility function to look for merge candidates inside a given range.
317  * Any extents with matching state are merged together into a single
318  * extent in the tree.  Extents with EXTENT_IO in their state field
319  * are not merged because the end_io handlers need to be able to do
320  * operations on them without sleeping (or doing allocations/splits).
321  *
322  * This should be called with the tree lock held.
323  */
324 static void merge_state(struct extent_io_tree *tree,
325 		        struct extent_state *state)
326 {
327 	struct extent_state *other;
328 	struct rb_node *other_node;
329 
330 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
331 		return;
332 
333 	other_node = rb_prev(&state->rb_node);
334 	if (other_node) {
335 		other = rb_entry(other_node, struct extent_state, rb_node);
336 		if (other->end == state->start - 1 &&
337 		    other->state == state->state) {
338 			merge_cb(tree, state, other);
339 			state->start = other->start;
340 			other->tree = NULL;
341 			rb_erase(&other->rb_node, &tree->state);
342 			free_extent_state(other);
343 		}
344 	}
345 	other_node = rb_next(&state->rb_node);
346 	if (other_node) {
347 		other = rb_entry(other_node, struct extent_state, rb_node);
348 		if (other->start == state->end + 1 &&
349 		    other->state == state->state) {
350 			merge_cb(tree, state, other);
351 			state->end = other->end;
352 			other->tree = NULL;
353 			rb_erase(&other->rb_node, &tree->state);
354 			free_extent_state(other);
355 		}
356 	}
357 }
358 
359 static void set_state_cb(struct extent_io_tree *tree,
360 			 struct extent_state *state, unsigned long *bits)
361 {
362 	if (tree->ops && tree->ops->set_bit_hook)
363 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
364 }
365 
366 static void clear_state_cb(struct extent_io_tree *tree,
367 			   struct extent_state *state, unsigned long *bits)
368 {
369 	if (tree->ops && tree->ops->clear_bit_hook)
370 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
371 }
372 
373 static void set_state_bits(struct extent_io_tree *tree,
374 			   struct extent_state *state, unsigned long *bits);
375 
376 /*
377  * insert an extent_state struct into the tree.  'bits' are set on the
378  * struct before it is inserted.
379  *
380  * This may return -EEXIST if the extent is already there, in which case the
381  * state struct is freed.
382  *
383  * The tree lock is not taken internally.  This is a utility function and
384  * probably isn't what you want to call (see set/clear_extent_bit).
385  */
386 static int insert_state(struct extent_io_tree *tree,
387 			struct extent_state *state, u64 start, u64 end,
388 			unsigned long *bits)
389 {
390 	struct rb_node *node;
391 
392 	if (end < start)
393 		WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
394 		       end, start);
395 	state->start = start;
396 	state->end = end;
397 
398 	set_state_bits(tree, state, bits);
399 
400 	node = tree_insert(&tree->state, end, &state->rb_node);
401 	if (node) {
402 		struct extent_state *found;
403 		found = rb_entry(node, struct extent_state, rb_node);
404 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
405 		       "%llu %llu\n",
406 		       found->start, found->end, start, end);
407 		return -EEXIST;
408 	}
409 	state->tree = tree;
410 	merge_state(tree, state);
411 	return 0;
412 }
413 
414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
415 		     u64 split)
416 {
417 	if (tree->ops && tree->ops->split_extent_hook)
418 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
419 }
420 
421 /*
422  * split a given extent state struct in two, inserting the preallocated
423  * struct 'prealloc' as the newly created second half.  'split' indicates an
424  * offset inside 'orig' where it should be split.
425  *
426  * Before calling,
427  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
428  * are two extent state structs in the tree:
429  * prealloc: [orig->start, split - 1]
430  * orig: [ split, orig->end ]
431  *
432  * The tree locks are not taken by this function. They need to be held
433  * by the caller.
434  */
435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
436 		       struct extent_state *prealloc, u64 split)
437 {
438 	struct rb_node *node;
439 
440 	split_cb(tree, orig, split);
441 
442 	prealloc->start = orig->start;
443 	prealloc->end = split - 1;
444 	prealloc->state = orig->state;
445 	orig->start = split;
446 
447 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
448 	if (node) {
449 		free_extent_state(prealloc);
450 		return -EEXIST;
451 	}
452 	prealloc->tree = tree;
453 	return 0;
454 }
455 
456 static struct extent_state *next_state(struct extent_state *state)
457 {
458 	struct rb_node *next = rb_next(&state->rb_node);
459 	if (next)
460 		return rb_entry(next, struct extent_state, rb_node);
461 	else
462 		return NULL;
463 }
464 
465 /*
466  * utility function to clear some bits in an extent state struct.
467  * it will optionally wake up any one waiting on this state (wake == 1).
468  *
469  * If no bits are set on the state struct after clearing things, the
470  * struct is freed and removed from the tree
471  */
472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
473 					    struct extent_state *state,
474 					    unsigned long *bits, int wake)
475 {
476 	struct extent_state *next;
477 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
478 
479 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
480 		u64 range = state->end - state->start + 1;
481 		WARN_ON(range > tree->dirty_bytes);
482 		tree->dirty_bytes -= range;
483 	}
484 	clear_state_cb(tree, state, bits);
485 	state->state &= ~bits_to_clear;
486 	if (wake)
487 		wake_up(&state->wq);
488 	if (state->state == 0) {
489 		next = next_state(state);
490 		if (state->tree) {
491 			rb_erase(&state->rb_node, &tree->state);
492 			state->tree = NULL;
493 			free_extent_state(state);
494 		} else {
495 			WARN_ON(1);
496 		}
497 	} else {
498 		merge_state(tree, state);
499 		next = next_state(state);
500 	}
501 	return next;
502 }
503 
504 static struct extent_state *
505 alloc_extent_state_atomic(struct extent_state *prealloc)
506 {
507 	if (!prealloc)
508 		prealloc = alloc_extent_state(GFP_ATOMIC);
509 
510 	return prealloc;
511 }
512 
513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
514 {
515 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
516 		    "Extent tree was modified by another "
517 		    "thread while locked.");
518 }
519 
520 /*
521  * clear some bits on a range in the tree.  This may require splitting
522  * or inserting elements in the tree, so the gfp mask is used to
523  * indicate which allocations or sleeping are allowed.
524  *
525  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
526  * the given range from the tree regardless of state (ie for truncate).
527  *
528  * the range [start, end] is inclusive.
529  *
530  * This takes the tree lock, and returns 0 on success and < 0 on error.
531  */
532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
533 		     unsigned long bits, int wake, int delete,
534 		     struct extent_state **cached_state,
535 		     gfp_t mask)
536 {
537 	struct extent_state *state;
538 	struct extent_state *cached;
539 	struct extent_state *prealloc = NULL;
540 	struct rb_node *node;
541 	u64 last_end;
542 	int err;
543 	int clear = 0;
544 
545 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
546 
547 	if (bits & EXTENT_DELALLOC)
548 		bits |= EXTENT_NORESERVE;
549 
550 	if (delete)
551 		bits |= ~EXTENT_CTLBITS;
552 	bits |= EXTENT_FIRST_DELALLOC;
553 
554 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
555 		clear = 1;
556 again:
557 	if (!prealloc && (mask & __GFP_WAIT)) {
558 		prealloc = alloc_extent_state(mask);
559 		if (!prealloc)
560 			return -ENOMEM;
561 	}
562 
563 	spin_lock(&tree->lock);
564 	if (cached_state) {
565 		cached = *cached_state;
566 
567 		if (clear) {
568 			*cached_state = NULL;
569 			cached_state = NULL;
570 		}
571 
572 		if (cached && cached->tree && cached->start <= start &&
573 		    cached->end > start) {
574 			if (clear)
575 				atomic_dec(&cached->refs);
576 			state = cached;
577 			goto hit_next;
578 		}
579 		if (clear)
580 			free_extent_state(cached);
581 	}
582 	/*
583 	 * this search will find the extents that end after
584 	 * our range starts
585 	 */
586 	node = tree_search(tree, start);
587 	if (!node)
588 		goto out;
589 	state = rb_entry(node, struct extent_state, rb_node);
590 hit_next:
591 	if (state->start > end)
592 		goto out;
593 	WARN_ON(state->end < start);
594 	last_end = state->end;
595 
596 	/* the state doesn't have the wanted bits, go ahead */
597 	if (!(state->state & bits)) {
598 		state = next_state(state);
599 		goto next;
600 	}
601 
602 	/*
603 	 *     | ---- desired range ---- |
604 	 *  | state | or
605 	 *  | ------------- state -------------- |
606 	 *
607 	 * We need to split the extent we found, and may flip
608 	 * bits on second half.
609 	 *
610 	 * If the extent we found extends past our range, we
611 	 * just split and search again.  It'll get split again
612 	 * the next time though.
613 	 *
614 	 * If the extent we found is inside our range, we clear
615 	 * the desired bit on it.
616 	 */
617 
618 	if (state->start < start) {
619 		prealloc = alloc_extent_state_atomic(prealloc);
620 		BUG_ON(!prealloc);
621 		err = split_state(tree, state, prealloc, start);
622 		if (err)
623 			extent_io_tree_panic(tree, err);
624 
625 		prealloc = NULL;
626 		if (err)
627 			goto out;
628 		if (state->end <= end) {
629 			state = clear_state_bit(tree, state, &bits, wake);
630 			goto next;
631 		}
632 		goto search_again;
633 	}
634 	/*
635 	 * | ---- desired range ---- |
636 	 *                        | state |
637 	 * We need to split the extent, and clear the bit
638 	 * on the first half
639 	 */
640 	if (state->start <= end && state->end > end) {
641 		prealloc = alloc_extent_state_atomic(prealloc);
642 		BUG_ON(!prealloc);
643 		err = split_state(tree, state, prealloc, end + 1);
644 		if (err)
645 			extent_io_tree_panic(tree, err);
646 
647 		if (wake)
648 			wake_up(&state->wq);
649 
650 		clear_state_bit(tree, prealloc, &bits, wake);
651 
652 		prealloc = NULL;
653 		goto out;
654 	}
655 
656 	state = clear_state_bit(tree, state, &bits, wake);
657 next:
658 	if (last_end == (u64)-1)
659 		goto out;
660 	start = last_end + 1;
661 	if (start <= end && state && !need_resched())
662 		goto hit_next;
663 	goto search_again;
664 
665 out:
666 	spin_unlock(&tree->lock);
667 	if (prealloc)
668 		free_extent_state(prealloc);
669 
670 	return 0;
671 
672 search_again:
673 	if (start > end)
674 		goto out;
675 	spin_unlock(&tree->lock);
676 	if (mask & __GFP_WAIT)
677 		cond_resched();
678 	goto again;
679 }
680 
681 static void wait_on_state(struct extent_io_tree *tree,
682 			  struct extent_state *state)
683 		__releases(tree->lock)
684 		__acquires(tree->lock)
685 {
686 	DEFINE_WAIT(wait);
687 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
688 	spin_unlock(&tree->lock);
689 	schedule();
690 	spin_lock(&tree->lock);
691 	finish_wait(&state->wq, &wait);
692 }
693 
694 /*
695  * waits for one or more bits to clear on a range in the state tree.
696  * The range [start, end] is inclusive.
697  * The tree lock is taken by this function
698  */
699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700 			    unsigned long bits)
701 {
702 	struct extent_state *state;
703 	struct rb_node *node;
704 
705 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
706 
707 	spin_lock(&tree->lock);
708 again:
709 	while (1) {
710 		/*
711 		 * this search will find all the extents that end after
712 		 * our range starts
713 		 */
714 		node = tree_search(tree, start);
715 		if (!node)
716 			break;
717 
718 		state = rb_entry(node, struct extent_state, rb_node);
719 
720 		if (state->start > end)
721 			goto out;
722 
723 		if (state->state & bits) {
724 			start = state->start;
725 			atomic_inc(&state->refs);
726 			wait_on_state(tree, state);
727 			free_extent_state(state);
728 			goto again;
729 		}
730 		start = state->end + 1;
731 
732 		if (start > end)
733 			break;
734 
735 		cond_resched_lock(&tree->lock);
736 	}
737 out:
738 	spin_unlock(&tree->lock);
739 }
740 
741 static void set_state_bits(struct extent_io_tree *tree,
742 			   struct extent_state *state,
743 			   unsigned long *bits)
744 {
745 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
746 
747 	set_state_cb(tree, state, bits);
748 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
749 		u64 range = state->end - state->start + 1;
750 		tree->dirty_bytes += range;
751 	}
752 	state->state |= bits_to_set;
753 }
754 
755 static void cache_state(struct extent_state *state,
756 			struct extent_state **cached_ptr)
757 {
758 	if (cached_ptr && !(*cached_ptr)) {
759 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
760 			*cached_ptr = state;
761 			atomic_inc(&state->refs);
762 		}
763 	}
764 }
765 
766 /*
767  * set some bits on a range in the tree.  This may require allocations or
768  * sleeping, so the gfp mask is used to indicate what is allowed.
769  *
770  * If any of the exclusive bits are set, this will fail with -EEXIST if some
771  * part of the range already has the desired bits set.  The start of the
772  * existing range is returned in failed_start in this case.
773  *
774  * [start, end] is inclusive This takes the tree lock.
775  */
776 
777 static int __must_check
778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
779 		 unsigned long bits, unsigned long exclusive_bits,
780 		 u64 *failed_start, struct extent_state **cached_state,
781 		 gfp_t mask)
782 {
783 	struct extent_state *state;
784 	struct extent_state *prealloc = NULL;
785 	struct rb_node *node;
786 	int err = 0;
787 	u64 last_start;
788 	u64 last_end;
789 
790 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
791 
792 	bits |= EXTENT_FIRST_DELALLOC;
793 again:
794 	if (!prealloc && (mask & __GFP_WAIT)) {
795 		prealloc = alloc_extent_state(mask);
796 		BUG_ON(!prealloc);
797 	}
798 
799 	spin_lock(&tree->lock);
800 	if (cached_state && *cached_state) {
801 		state = *cached_state;
802 		if (state->start <= start && state->end > start &&
803 		    state->tree) {
804 			node = &state->rb_node;
805 			goto hit_next;
806 		}
807 	}
808 	/*
809 	 * this search will find all the extents that end after
810 	 * our range starts.
811 	 */
812 	node = tree_search(tree, start);
813 	if (!node) {
814 		prealloc = alloc_extent_state_atomic(prealloc);
815 		BUG_ON(!prealloc);
816 		err = insert_state(tree, prealloc, start, end, &bits);
817 		if (err)
818 			extent_io_tree_panic(tree, err);
819 
820 		prealloc = NULL;
821 		goto out;
822 	}
823 	state = rb_entry(node, struct extent_state, rb_node);
824 hit_next:
825 	last_start = state->start;
826 	last_end = state->end;
827 
828 	/*
829 	 * | ---- desired range ---- |
830 	 * | state |
831 	 *
832 	 * Just lock what we found and keep going
833 	 */
834 	if (state->start == start && state->end <= end) {
835 		if (state->state & exclusive_bits) {
836 			*failed_start = state->start;
837 			err = -EEXIST;
838 			goto out;
839 		}
840 
841 		set_state_bits(tree, state, &bits);
842 		cache_state(state, cached_state);
843 		merge_state(tree, state);
844 		if (last_end == (u64)-1)
845 			goto out;
846 		start = last_end + 1;
847 		state = next_state(state);
848 		if (start < end && state && state->start == start &&
849 		    !need_resched())
850 			goto hit_next;
851 		goto search_again;
852 	}
853 
854 	/*
855 	 *     | ---- desired range ---- |
856 	 * | state |
857 	 *   or
858 	 * | ------------- state -------------- |
859 	 *
860 	 * We need to split the extent we found, and may flip bits on
861 	 * second half.
862 	 *
863 	 * If the extent we found extends past our
864 	 * range, we just split and search again.  It'll get split
865 	 * again the next time though.
866 	 *
867 	 * If the extent we found is inside our range, we set the
868 	 * desired bit on it.
869 	 */
870 	if (state->start < start) {
871 		if (state->state & exclusive_bits) {
872 			*failed_start = start;
873 			err = -EEXIST;
874 			goto out;
875 		}
876 
877 		prealloc = alloc_extent_state_atomic(prealloc);
878 		BUG_ON(!prealloc);
879 		err = split_state(tree, state, prealloc, start);
880 		if (err)
881 			extent_io_tree_panic(tree, err);
882 
883 		prealloc = NULL;
884 		if (err)
885 			goto out;
886 		if (state->end <= end) {
887 			set_state_bits(tree, state, &bits);
888 			cache_state(state, cached_state);
889 			merge_state(tree, state);
890 			if (last_end == (u64)-1)
891 				goto out;
892 			start = last_end + 1;
893 			state = next_state(state);
894 			if (start < end && state && state->start == start &&
895 			    !need_resched())
896 				goto hit_next;
897 		}
898 		goto search_again;
899 	}
900 	/*
901 	 * | ---- desired range ---- |
902 	 *     | state | or               | state |
903 	 *
904 	 * There's a hole, we need to insert something in it and
905 	 * ignore the extent we found.
906 	 */
907 	if (state->start > start) {
908 		u64 this_end;
909 		if (end < last_start)
910 			this_end = end;
911 		else
912 			this_end = last_start - 1;
913 
914 		prealloc = alloc_extent_state_atomic(prealloc);
915 		BUG_ON(!prealloc);
916 
917 		/*
918 		 * Avoid to free 'prealloc' if it can be merged with
919 		 * the later extent.
920 		 */
921 		err = insert_state(tree, prealloc, start, this_end,
922 				   &bits);
923 		if (err)
924 			extent_io_tree_panic(tree, err);
925 
926 		cache_state(prealloc, cached_state);
927 		prealloc = NULL;
928 		start = this_end + 1;
929 		goto search_again;
930 	}
931 	/*
932 	 * | ---- desired range ---- |
933 	 *                        | state |
934 	 * We need to split the extent, and set the bit
935 	 * on the first half
936 	 */
937 	if (state->start <= end && state->end > end) {
938 		if (state->state & exclusive_bits) {
939 			*failed_start = start;
940 			err = -EEXIST;
941 			goto out;
942 		}
943 
944 		prealloc = alloc_extent_state_atomic(prealloc);
945 		BUG_ON(!prealloc);
946 		err = split_state(tree, state, prealloc, end + 1);
947 		if (err)
948 			extent_io_tree_panic(tree, err);
949 
950 		set_state_bits(tree, prealloc, &bits);
951 		cache_state(prealloc, cached_state);
952 		merge_state(tree, prealloc);
953 		prealloc = NULL;
954 		goto out;
955 	}
956 
957 	goto search_again;
958 
959 out:
960 	spin_unlock(&tree->lock);
961 	if (prealloc)
962 		free_extent_state(prealloc);
963 
964 	return err;
965 
966 search_again:
967 	if (start > end)
968 		goto out;
969 	spin_unlock(&tree->lock);
970 	if (mask & __GFP_WAIT)
971 		cond_resched();
972 	goto again;
973 }
974 
975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
976 		   unsigned long bits, u64 * failed_start,
977 		   struct extent_state **cached_state, gfp_t mask)
978 {
979 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
980 				cached_state, mask);
981 }
982 
983 
984 /**
985  * convert_extent_bit - convert all bits in a given range from one bit to
986  * 			another
987  * @tree:	the io tree to search
988  * @start:	the start offset in bytes
989  * @end:	the end offset in bytes (inclusive)
990  * @bits:	the bits to set in this range
991  * @clear_bits:	the bits to clear in this range
992  * @cached_state:	state that we're going to cache
993  * @mask:	the allocation mask
994  *
995  * This will go through and set bits for the given range.  If any states exist
996  * already in this range they are set with the given bit and cleared of the
997  * clear_bits.  This is only meant to be used by things that are mergeable, ie
998  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
999  * boundary bits like LOCK.
1000  */
1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1002 		       unsigned long bits, unsigned long clear_bits,
1003 		       struct extent_state **cached_state, gfp_t mask)
1004 {
1005 	struct extent_state *state;
1006 	struct extent_state *prealloc = NULL;
1007 	struct rb_node *node;
1008 	int err = 0;
1009 	u64 last_start;
1010 	u64 last_end;
1011 
1012 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1013 
1014 again:
1015 	if (!prealloc && (mask & __GFP_WAIT)) {
1016 		prealloc = alloc_extent_state(mask);
1017 		if (!prealloc)
1018 			return -ENOMEM;
1019 	}
1020 
1021 	spin_lock(&tree->lock);
1022 	if (cached_state && *cached_state) {
1023 		state = *cached_state;
1024 		if (state->start <= start && state->end > start &&
1025 		    state->tree) {
1026 			node = &state->rb_node;
1027 			goto hit_next;
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * this search will find all the extents that end after
1033 	 * our range starts.
1034 	 */
1035 	node = tree_search(tree, start);
1036 	if (!node) {
1037 		prealloc = alloc_extent_state_atomic(prealloc);
1038 		if (!prealloc) {
1039 			err = -ENOMEM;
1040 			goto out;
1041 		}
1042 		err = insert_state(tree, prealloc, start, end, &bits);
1043 		prealloc = NULL;
1044 		if (err)
1045 			extent_io_tree_panic(tree, err);
1046 		goto out;
1047 	}
1048 	state = rb_entry(node, struct extent_state, rb_node);
1049 hit_next:
1050 	last_start = state->start;
1051 	last_end = state->end;
1052 
1053 	/*
1054 	 * | ---- desired range ---- |
1055 	 * | state |
1056 	 *
1057 	 * Just lock what we found and keep going
1058 	 */
1059 	if (state->start == start && state->end <= end) {
1060 		set_state_bits(tree, state, &bits);
1061 		cache_state(state, cached_state);
1062 		state = clear_state_bit(tree, state, &clear_bits, 0);
1063 		if (last_end == (u64)-1)
1064 			goto out;
1065 		start = last_end + 1;
1066 		if (start < end && state && state->start == start &&
1067 		    !need_resched())
1068 			goto hit_next;
1069 		goto search_again;
1070 	}
1071 
1072 	/*
1073 	 *     | ---- desired range ---- |
1074 	 * | state |
1075 	 *   or
1076 	 * | ------------- state -------------- |
1077 	 *
1078 	 * We need to split the extent we found, and may flip bits on
1079 	 * second half.
1080 	 *
1081 	 * If the extent we found extends past our
1082 	 * range, we just split and search again.  It'll get split
1083 	 * again the next time though.
1084 	 *
1085 	 * If the extent we found is inside our range, we set the
1086 	 * desired bit on it.
1087 	 */
1088 	if (state->start < start) {
1089 		prealloc = alloc_extent_state_atomic(prealloc);
1090 		if (!prealloc) {
1091 			err = -ENOMEM;
1092 			goto out;
1093 		}
1094 		err = split_state(tree, state, prealloc, start);
1095 		if (err)
1096 			extent_io_tree_panic(tree, err);
1097 		prealloc = NULL;
1098 		if (err)
1099 			goto out;
1100 		if (state->end <= end) {
1101 			set_state_bits(tree, state, &bits);
1102 			cache_state(state, cached_state);
1103 			state = clear_state_bit(tree, state, &clear_bits, 0);
1104 			if (last_end == (u64)-1)
1105 				goto out;
1106 			start = last_end + 1;
1107 			if (start < end && state && state->start == start &&
1108 			    !need_resched())
1109 				goto hit_next;
1110 		}
1111 		goto search_again;
1112 	}
1113 	/*
1114 	 * | ---- desired range ---- |
1115 	 *     | state | or               | state |
1116 	 *
1117 	 * There's a hole, we need to insert something in it and
1118 	 * ignore the extent we found.
1119 	 */
1120 	if (state->start > start) {
1121 		u64 this_end;
1122 		if (end < last_start)
1123 			this_end = end;
1124 		else
1125 			this_end = last_start - 1;
1126 
1127 		prealloc = alloc_extent_state_atomic(prealloc);
1128 		if (!prealloc) {
1129 			err = -ENOMEM;
1130 			goto out;
1131 		}
1132 
1133 		/*
1134 		 * Avoid to free 'prealloc' if it can be merged with
1135 		 * the later extent.
1136 		 */
1137 		err = insert_state(tree, prealloc, start, this_end,
1138 				   &bits);
1139 		if (err)
1140 			extent_io_tree_panic(tree, err);
1141 		cache_state(prealloc, cached_state);
1142 		prealloc = NULL;
1143 		start = this_end + 1;
1144 		goto search_again;
1145 	}
1146 	/*
1147 	 * | ---- desired range ---- |
1148 	 *                        | state |
1149 	 * We need to split the extent, and set the bit
1150 	 * on the first half
1151 	 */
1152 	if (state->start <= end && state->end > end) {
1153 		prealloc = alloc_extent_state_atomic(prealloc);
1154 		if (!prealloc) {
1155 			err = -ENOMEM;
1156 			goto out;
1157 		}
1158 
1159 		err = split_state(tree, state, prealloc, end + 1);
1160 		if (err)
1161 			extent_io_tree_panic(tree, err);
1162 
1163 		set_state_bits(tree, prealloc, &bits);
1164 		cache_state(prealloc, cached_state);
1165 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1166 		prealloc = NULL;
1167 		goto out;
1168 	}
1169 
1170 	goto search_again;
1171 
1172 out:
1173 	spin_unlock(&tree->lock);
1174 	if (prealloc)
1175 		free_extent_state(prealloc);
1176 
1177 	return err;
1178 
1179 search_again:
1180 	if (start > end)
1181 		goto out;
1182 	spin_unlock(&tree->lock);
1183 	if (mask & __GFP_WAIT)
1184 		cond_resched();
1185 	goto again;
1186 }
1187 
1188 /* wrappers around set/clear extent bit */
1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190 		     gfp_t mask)
1191 {
1192 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1193 			      NULL, mask);
1194 }
1195 
1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1197 		    unsigned long bits, gfp_t mask)
1198 {
1199 	return set_extent_bit(tree, start, end, bits, NULL,
1200 			      NULL, mask);
1201 }
1202 
1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1204 		      unsigned long bits, gfp_t mask)
1205 {
1206 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1207 }
1208 
1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1210 			struct extent_state **cached_state, gfp_t mask)
1211 {
1212 	return set_extent_bit(tree, start, end,
1213 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1214 			      NULL, cached_state, mask);
1215 }
1216 
1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1218 		      struct extent_state **cached_state, gfp_t mask)
1219 {
1220 	return set_extent_bit(tree, start, end,
1221 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1222 			      NULL, cached_state, mask);
1223 }
1224 
1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1226 		       gfp_t mask)
1227 {
1228 	return clear_extent_bit(tree, start, end,
1229 				EXTENT_DIRTY | EXTENT_DELALLOC |
1230 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1231 }
1232 
1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1234 		     gfp_t mask)
1235 {
1236 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1237 			      NULL, mask);
1238 }
1239 
1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1241 			struct extent_state **cached_state, gfp_t mask)
1242 {
1243 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1244 			      cached_state, mask);
1245 }
1246 
1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1248 			  struct extent_state **cached_state, gfp_t mask)
1249 {
1250 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1251 				cached_state, mask);
1252 }
1253 
1254 /*
1255  * either insert or lock state struct between start and end use mask to tell
1256  * us if waiting is desired.
1257  */
1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1259 		     unsigned long bits, struct extent_state **cached_state)
1260 {
1261 	int err;
1262 	u64 failed_start;
1263 	while (1) {
1264 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1265 				       EXTENT_LOCKED, &failed_start,
1266 				       cached_state, GFP_NOFS);
1267 		if (err == -EEXIST) {
1268 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1269 			start = failed_start;
1270 		} else
1271 			break;
1272 		WARN_ON(start > end);
1273 	}
1274 	return err;
1275 }
1276 
1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1278 {
1279 	return lock_extent_bits(tree, start, end, 0, NULL);
1280 }
1281 
1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1283 {
1284 	int err;
1285 	u64 failed_start;
1286 
1287 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1288 			       &failed_start, NULL, GFP_NOFS);
1289 	if (err == -EEXIST) {
1290 		if (failed_start > start)
1291 			clear_extent_bit(tree, start, failed_start - 1,
1292 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1293 		return 0;
1294 	}
1295 	return 1;
1296 }
1297 
1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1299 			 struct extent_state **cached, gfp_t mask)
1300 {
1301 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1302 				mask);
1303 }
1304 
1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1306 {
1307 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1308 				GFP_NOFS);
1309 }
1310 
1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1312 {
1313 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1314 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315 	struct page *page;
1316 
1317 	while (index <= end_index) {
1318 		page = find_get_page(inode->i_mapping, index);
1319 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320 		clear_page_dirty_for_io(page);
1321 		page_cache_release(page);
1322 		index++;
1323 	}
1324 	return 0;
1325 }
1326 
1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1328 {
1329 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1330 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331 	struct page *page;
1332 
1333 	while (index <= end_index) {
1334 		page = find_get_page(inode->i_mapping, index);
1335 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1336 		account_page_redirty(page);
1337 		__set_page_dirty_nobuffers(page);
1338 		page_cache_release(page);
1339 		index++;
1340 	}
1341 	return 0;
1342 }
1343 
1344 /*
1345  * helper function to set both pages and extents in the tree writeback
1346  */
1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1350 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1351 	struct page *page;
1352 
1353 	while (index <= end_index) {
1354 		page = find_get_page(tree->mapping, index);
1355 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1356 		set_page_writeback(page);
1357 		page_cache_release(page);
1358 		index++;
1359 	}
1360 	return 0;
1361 }
1362 
1363 /* find the first state struct with 'bits' set after 'start', and
1364  * return it.  tree->lock must be held.  NULL will returned if
1365  * nothing was found after 'start'
1366  */
1367 static struct extent_state *
1368 find_first_extent_bit_state(struct extent_io_tree *tree,
1369 			    u64 start, unsigned long bits)
1370 {
1371 	struct rb_node *node;
1372 	struct extent_state *state;
1373 
1374 	/*
1375 	 * this search will find all the extents that end after
1376 	 * our range starts.
1377 	 */
1378 	node = tree_search(tree, start);
1379 	if (!node)
1380 		goto out;
1381 
1382 	while (1) {
1383 		state = rb_entry(node, struct extent_state, rb_node);
1384 		if (state->end >= start && (state->state & bits))
1385 			return state;
1386 
1387 		node = rb_next(node);
1388 		if (!node)
1389 			break;
1390 	}
1391 out:
1392 	return NULL;
1393 }
1394 
1395 /*
1396  * find the first offset in the io tree with 'bits' set. zero is
1397  * returned if we find something, and *start_ret and *end_ret are
1398  * set to reflect the state struct that was found.
1399  *
1400  * If nothing was found, 1 is returned. If found something, return 0.
1401  */
1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1403 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1404 			  struct extent_state **cached_state)
1405 {
1406 	struct extent_state *state;
1407 	struct rb_node *n;
1408 	int ret = 1;
1409 
1410 	spin_lock(&tree->lock);
1411 	if (cached_state && *cached_state) {
1412 		state = *cached_state;
1413 		if (state->end == start - 1 && state->tree) {
1414 			n = rb_next(&state->rb_node);
1415 			while (n) {
1416 				state = rb_entry(n, struct extent_state,
1417 						 rb_node);
1418 				if (state->state & bits)
1419 					goto got_it;
1420 				n = rb_next(n);
1421 			}
1422 			free_extent_state(*cached_state);
1423 			*cached_state = NULL;
1424 			goto out;
1425 		}
1426 		free_extent_state(*cached_state);
1427 		*cached_state = NULL;
1428 	}
1429 
1430 	state = find_first_extent_bit_state(tree, start, bits);
1431 got_it:
1432 	if (state) {
1433 		cache_state(state, cached_state);
1434 		*start_ret = state->start;
1435 		*end_ret = state->end;
1436 		ret = 0;
1437 	}
1438 out:
1439 	spin_unlock(&tree->lock);
1440 	return ret;
1441 }
1442 
1443 /*
1444  * find a contiguous range of bytes in the file marked as delalloc, not
1445  * more than 'max_bytes'.  start and end are used to return the range,
1446  *
1447  * 1 is returned if we find something, 0 if nothing was in the tree
1448  */
1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1450 					u64 *start, u64 *end, u64 max_bytes,
1451 					struct extent_state **cached_state)
1452 {
1453 	struct rb_node *node;
1454 	struct extent_state *state;
1455 	u64 cur_start = *start;
1456 	u64 found = 0;
1457 	u64 total_bytes = 0;
1458 
1459 	spin_lock(&tree->lock);
1460 
1461 	/*
1462 	 * this search will find all the extents that end after
1463 	 * our range starts.
1464 	 */
1465 	node = tree_search(tree, cur_start);
1466 	if (!node) {
1467 		if (!found)
1468 			*end = (u64)-1;
1469 		goto out;
1470 	}
1471 
1472 	while (1) {
1473 		state = rb_entry(node, struct extent_state, rb_node);
1474 		if (found && (state->start != cur_start ||
1475 			      (state->state & EXTENT_BOUNDARY))) {
1476 			goto out;
1477 		}
1478 		if (!(state->state & EXTENT_DELALLOC)) {
1479 			if (!found)
1480 				*end = state->end;
1481 			goto out;
1482 		}
1483 		if (!found) {
1484 			*start = state->start;
1485 			*cached_state = state;
1486 			atomic_inc(&state->refs);
1487 		}
1488 		found++;
1489 		*end = state->end;
1490 		cur_start = state->end + 1;
1491 		node = rb_next(node);
1492 		total_bytes += state->end - state->start + 1;
1493 		if (total_bytes >= max_bytes)
1494 			break;
1495 		if (!node)
1496 			break;
1497 	}
1498 out:
1499 	spin_unlock(&tree->lock);
1500 	return found;
1501 }
1502 
1503 static noinline void __unlock_for_delalloc(struct inode *inode,
1504 					   struct page *locked_page,
1505 					   u64 start, u64 end)
1506 {
1507 	int ret;
1508 	struct page *pages[16];
1509 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1510 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1511 	unsigned long nr_pages = end_index - index + 1;
1512 	int i;
1513 
1514 	if (index == locked_page->index && end_index == index)
1515 		return;
1516 
1517 	while (nr_pages > 0) {
1518 		ret = find_get_pages_contig(inode->i_mapping, index,
1519 				     min_t(unsigned long, nr_pages,
1520 				     ARRAY_SIZE(pages)), pages);
1521 		for (i = 0; i < ret; i++) {
1522 			if (pages[i] != locked_page)
1523 				unlock_page(pages[i]);
1524 			page_cache_release(pages[i]);
1525 		}
1526 		nr_pages -= ret;
1527 		index += ret;
1528 		cond_resched();
1529 	}
1530 }
1531 
1532 static noinline int lock_delalloc_pages(struct inode *inode,
1533 					struct page *locked_page,
1534 					u64 delalloc_start,
1535 					u64 delalloc_end)
1536 {
1537 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1538 	unsigned long start_index = index;
1539 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1540 	unsigned long pages_locked = 0;
1541 	struct page *pages[16];
1542 	unsigned long nrpages;
1543 	int ret;
1544 	int i;
1545 
1546 	/* the caller is responsible for locking the start index */
1547 	if (index == locked_page->index && index == end_index)
1548 		return 0;
1549 
1550 	/* skip the page at the start index */
1551 	nrpages = end_index - index + 1;
1552 	while (nrpages > 0) {
1553 		ret = find_get_pages_contig(inode->i_mapping, index,
1554 				     min_t(unsigned long,
1555 				     nrpages, ARRAY_SIZE(pages)), pages);
1556 		if (ret == 0) {
1557 			ret = -EAGAIN;
1558 			goto done;
1559 		}
1560 		/* now we have an array of pages, lock them all */
1561 		for (i = 0; i < ret; i++) {
1562 			/*
1563 			 * the caller is taking responsibility for
1564 			 * locked_page
1565 			 */
1566 			if (pages[i] != locked_page) {
1567 				lock_page(pages[i]);
1568 				if (!PageDirty(pages[i]) ||
1569 				    pages[i]->mapping != inode->i_mapping) {
1570 					ret = -EAGAIN;
1571 					unlock_page(pages[i]);
1572 					page_cache_release(pages[i]);
1573 					goto done;
1574 				}
1575 			}
1576 			page_cache_release(pages[i]);
1577 			pages_locked++;
1578 		}
1579 		nrpages -= ret;
1580 		index += ret;
1581 		cond_resched();
1582 	}
1583 	ret = 0;
1584 done:
1585 	if (ret && pages_locked) {
1586 		__unlock_for_delalloc(inode, locked_page,
1587 			      delalloc_start,
1588 			      ((u64)(start_index + pages_locked - 1)) <<
1589 			      PAGE_CACHE_SHIFT);
1590 	}
1591 	return ret;
1592 }
1593 
1594 /*
1595  * find a contiguous range of bytes in the file marked as delalloc, not
1596  * more than 'max_bytes'.  start and end are used to return the range,
1597  *
1598  * 1 is returned if we find something, 0 if nothing was in the tree
1599  */
1600 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1601 					     struct extent_io_tree *tree,
1602 					     struct page *locked_page,
1603 					     u64 *start, u64 *end,
1604 					     u64 max_bytes)
1605 {
1606 	u64 delalloc_start;
1607 	u64 delalloc_end;
1608 	u64 found;
1609 	struct extent_state *cached_state = NULL;
1610 	int ret;
1611 	int loops = 0;
1612 
1613 again:
1614 	/* step one, find a bunch of delalloc bytes starting at start */
1615 	delalloc_start = *start;
1616 	delalloc_end = 0;
1617 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1618 				    max_bytes, &cached_state);
1619 	if (!found || delalloc_end <= *start) {
1620 		*start = delalloc_start;
1621 		*end = delalloc_end;
1622 		free_extent_state(cached_state);
1623 		return 0;
1624 	}
1625 
1626 	/*
1627 	 * start comes from the offset of locked_page.  We have to lock
1628 	 * pages in order, so we can't process delalloc bytes before
1629 	 * locked_page
1630 	 */
1631 	if (delalloc_start < *start)
1632 		delalloc_start = *start;
1633 
1634 	/*
1635 	 * make sure to limit the number of pages we try to lock down
1636 	 */
1637 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1638 		delalloc_end = delalloc_start + max_bytes - 1;
1639 
1640 	/* step two, lock all the pages after the page that has start */
1641 	ret = lock_delalloc_pages(inode, locked_page,
1642 				  delalloc_start, delalloc_end);
1643 	if (ret == -EAGAIN) {
1644 		/* some of the pages are gone, lets avoid looping by
1645 		 * shortening the size of the delalloc range we're searching
1646 		 */
1647 		free_extent_state(cached_state);
1648 		if (!loops) {
1649 			max_bytes = PAGE_CACHE_SIZE;
1650 			loops = 1;
1651 			goto again;
1652 		} else {
1653 			found = 0;
1654 			goto out_failed;
1655 		}
1656 	}
1657 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1658 
1659 	/* step three, lock the state bits for the whole range */
1660 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1661 
1662 	/* then test to make sure it is all still delalloc */
1663 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1664 			     EXTENT_DELALLOC, 1, cached_state);
1665 	if (!ret) {
1666 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1667 				     &cached_state, GFP_NOFS);
1668 		__unlock_for_delalloc(inode, locked_page,
1669 			      delalloc_start, delalloc_end);
1670 		cond_resched();
1671 		goto again;
1672 	}
1673 	free_extent_state(cached_state);
1674 	*start = delalloc_start;
1675 	*end = delalloc_end;
1676 out_failed:
1677 	return found;
1678 }
1679 
1680 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1681 				 struct page *locked_page,
1682 				 unsigned long clear_bits,
1683 				 unsigned long page_ops)
1684 {
1685 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1686 	int ret;
1687 	struct page *pages[16];
1688 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1689 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1690 	unsigned long nr_pages = end_index - index + 1;
1691 	int i;
1692 
1693 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1694 	if (page_ops == 0)
1695 		return 0;
1696 
1697 	while (nr_pages > 0) {
1698 		ret = find_get_pages_contig(inode->i_mapping, index,
1699 				     min_t(unsigned long,
1700 				     nr_pages, ARRAY_SIZE(pages)), pages);
1701 		for (i = 0; i < ret; i++) {
1702 
1703 			if (page_ops & PAGE_SET_PRIVATE2)
1704 				SetPagePrivate2(pages[i]);
1705 
1706 			if (pages[i] == locked_page) {
1707 				page_cache_release(pages[i]);
1708 				continue;
1709 			}
1710 			if (page_ops & PAGE_CLEAR_DIRTY)
1711 				clear_page_dirty_for_io(pages[i]);
1712 			if (page_ops & PAGE_SET_WRITEBACK)
1713 				set_page_writeback(pages[i]);
1714 			if (page_ops & PAGE_END_WRITEBACK)
1715 				end_page_writeback(pages[i]);
1716 			if (page_ops & PAGE_UNLOCK)
1717 				unlock_page(pages[i]);
1718 			page_cache_release(pages[i]);
1719 		}
1720 		nr_pages -= ret;
1721 		index += ret;
1722 		cond_resched();
1723 	}
1724 	return 0;
1725 }
1726 
1727 /*
1728  * count the number of bytes in the tree that have a given bit(s)
1729  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1730  * cached.  The total number found is returned.
1731  */
1732 u64 count_range_bits(struct extent_io_tree *tree,
1733 		     u64 *start, u64 search_end, u64 max_bytes,
1734 		     unsigned long bits, int contig)
1735 {
1736 	struct rb_node *node;
1737 	struct extent_state *state;
1738 	u64 cur_start = *start;
1739 	u64 total_bytes = 0;
1740 	u64 last = 0;
1741 	int found = 0;
1742 
1743 	if (search_end <= cur_start) {
1744 		WARN_ON(1);
1745 		return 0;
1746 	}
1747 
1748 	spin_lock(&tree->lock);
1749 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1750 		total_bytes = tree->dirty_bytes;
1751 		goto out;
1752 	}
1753 	/*
1754 	 * this search will find all the extents that end after
1755 	 * our range starts.
1756 	 */
1757 	node = tree_search(tree, cur_start);
1758 	if (!node)
1759 		goto out;
1760 
1761 	while (1) {
1762 		state = rb_entry(node, struct extent_state, rb_node);
1763 		if (state->start > search_end)
1764 			break;
1765 		if (contig && found && state->start > last + 1)
1766 			break;
1767 		if (state->end >= cur_start && (state->state & bits) == bits) {
1768 			total_bytes += min(search_end, state->end) + 1 -
1769 				       max(cur_start, state->start);
1770 			if (total_bytes >= max_bytes)
1771 				break;
1772 			if (!found) {
1773 				*start = max(cur_start, state->start);
1774 				found = 1;
1775 			}
1776 			last = state->end;
1777 		} else if (contig && found) {
1778 			break;
1779 		}
1780 		node = rb_next(node);
1781 		if (!node)
1782 			break;
1783 	}
1784 out:
1785 	spin_unlock(&tree->lock);
1786 	return total_bytes;
1787 }
1788 
1789 /*
1790  * set the private field for a given byte offset in the tree.  If there isn't
1791  * an extent_state there already, this does nothing.
1792  */
1793 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1794 {
1795 	struct rb_node *node;
1796 	struct extent_state *state;
1797 	int ret = 0;
1798 
1799 	spin_lock(&tree->lock);
1800 	/*
1801 	 * this search will find all the extents that end after
1802 	 * our range starts.
1803 	 */
1804 	node = tree_search(tree, start);
1805 	if (!node) {
1806 		ret = -ENOENT;
1807 		goto out;
1808 	}
1809 	state = rb_entry(node, struct extent_state, rb_node);
1810 	if (state->start != start) {
1811 		ret = -ENOENT;
1812 		goto out;
1813 	}
1814 	state->private = private;
1815 out:
1816 	spin_unlock(&tree->lock);
1817 	return ret;
1818 }
1819 
1820 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1821 {
1822 	struct rb_node *node;
1823 	struct extent_state *state;
1824 	int ret = 0;
1825 
1826 	spin_lock(&tree->lock);
1827 	/*
1828 	 * this search will find all the extents that end after
1829 	 * our range starts.
1830 	 */
1831 	node = tree_search(tree, start);
1832 	if (!node) {
1833 		ret = -ENOENT;
1834 		goto out;
1835 	}
1836 	state = rb_entry(node, struct extent_state, rb_node);
1837 	if (state->start != start) {
1838 		ret = -ENOENT;
1839 		goto out;
1840 	}
1841 	*private = state->private;
1842 out:
1843 	spin_unlock(&tree->lock);
1844 	return ret;
1845 }
1846 
1847 /*
1848  * searches a range in the state tree for a given mask.
1849  * If 'filled' == 1, this returns 1 only if every extent in the tree
1850  * has the bits set.  Otherwise, 1 is returned if any bit in the
1851  * range is found set.
1852  */
1853 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1854 		   unsigned long bits, int filled, struct extent_state *cached)
1855 {
1856 	struct extent_state *state = NULL;
1857 	struct rb_node *node;
1858 	int bitset = 0;
1859 
1860 	spin_lock(&tree->lock);
1861 	if (cached && cached->tree && cached->start <= start &&
1862 	    cached->end > start)
1863 		node = &cached->rb_node;
1864 	else
1865 		node = tree_search(tree, start);
1866 	while (node && start <= end) {
1867 		state = rb_entry(node, struct extent_state, rb_node);
1868 
1869 		if (filled && state->start > start) {
1870 			bitset = 0;
1871 			break;
1872 		}
1873 
1874 		if (state->start > end)
1875 			break;
1876 
1877 		if (state->state & bits) {
1878 			bitset = 1;
1879 			if (!filled)
1880 				break;
1881 		} else if (filled) {
1882 			bitset = 0;
1883 			break;
1884 		}
1885 
1886 		if (state->end == (u64)-1)
1887 			break;
1888 
1889 		start = state->end + 1;
1890 		if (start > end)
1891 			break;
1892 		node = rb_next(node);
1893 		if (!node) {
1894 			if (filled)
1895 				bitset = 0;
1896 			break;
1897 		}
1898 	}
1899 	spin_unlock(&tree->lock);
1900 	return bitset;
1901 }
1902 
1903 /*
1904  * helper function to set a given page up to date if all the
1905  * extents in the tree for that page are up to date
1906  */
1907 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1908 {
1909 	u64 start = page_offset(page);
1910 	u64 end = start + PAGE_CACHE_SIZE - 1;
1911 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1912 		SetPageUptodate(page);
1913 }
1914 
1915 /*
1916  * When IO fails, either with EIO or csum verification fails, we
1917  * try other mirrors that might have a good copy of the data.  This
1918  * io_failure_record is used to record state as we go through all the
1919  * mirrors.  If another mirror has good data, the page is set up to date
1920  * and things continue.  If a good mirror can't be found, the original
1921  * bio end_io callback is called to indicate things have failed.
1922  */
1923 struct io_failure_record {
1924 	struct page *page;
1925 	u64 start;
1926 	u64 len;
1927 	u64 logical;
1928 	unsigned long bio_flags;
1929 	int this_mirror;
1930 	int failed_mirror;
1931 	int in_validation;
1932 };
1933 
1934 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1935 				int did_repair)
1936 {
1937 	int ret;
1938 	int err = 0;
1939 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1940 
1941 	set_state_private(failure_tree, rec->start, 0);
1942 	ret = clear_extent_bits(failure_tree, rec->start,
1943 				rec->start + rec->len - 1,
1944 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1945 	if (ret)
1946 		err = ret;
1947 
1948 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1949 				rec->start + rec->len - 1,
1950 				EXTENT_DAMAGED, GFP_NOFS);
1951 	if (ret && !err)
1952 		err = ret;
1953 
1954 	kfree(rec);
1955 	return err;
1956 }
1957 
1958 static void repair_io_failure_callback(struct bio *bio, int err)
1959 {
1960 	complete(bio->bi_private);
1961 }
1962 
1963 /*
1964  * this bypasses the standard btrfs submit functions deliberately, as
1965  * the standard behavior is to write all copies in a raid setup. here we only
1966  * want to write the one bad copy. so we do the mapping for ourselves and issue
1967  * submit_bio directly.
1968  * to avoid any synchronization issues, wait for the data after writing, which
1969  * actually prevents the read that triggered the error from finishing.
1970  * currently, there can be no more than two copies of every data bit. thus,
1971  * exactly one rewrite is required.
1972  */
1973 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1974 			u64 length, u64 logical, struct page *page,
1975 			int mirror_num)
1976 {
1977 	struct bio *bio;
1978 	struct btrfs_device *dev;
1979 	DECLARE_COMPLETION_ONSTACK(compl);
1980 	u64 map_length = 0;
1981 	u64 sector;
1982 	struct btrfs_bio *bbio = NULL;
1983 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1984 	int ret;
1985 
1986 	BUG_ON(!mirror_num);
1987 
1988 	/* we can't repair anything in raid56 yet */
1989 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1990 		return 0;
1991 
1992 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1993 	if (!bio)
1994 		return -EIO;
1995 	bio->bi_private = &compl;
1996 	bio->bi_end_io = repair_io_failure_callback;
1997 	bio->bi_size = 0;
1998 	map_length = length;
1999 
2000 	ret = btrfs_map_block(fs_info, WRITE, logical,
2001 			      &map_length, &bbio, mirror_num);
2002 	if (ret) {
2003 		bio_put(bio);
2004 		return -EIO;
2005 	}
2006 	BUG_ON(mirror_num != bbio->mirror_num);
2007 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2008 	bio->bi_sector = sector;
2009 	dev = bbio->stripes[mirror_num-1].dev;
2010 	kfree(bbio);
2011 	if (!dev || !dev->bdev || !dev->writeable) {
2012 		bio_put(bio);
2013 		return -EIO;
2014 	}
2015 	bio->bi_bdev = dev->bdev;
2016 	bio_add_page(bio, page, length, start - page_offset(page));
2017 	btrfsic_submit_bio(WRITE_SYNC, bio);
2018 	wait_for_completion(&compl);
2019 
2020 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2021 		/* try to remap that extent elsewhere? */
2022 		bio_put(bio);
2023 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2024 		return -EIO;
2025 	}
2026 
2027 	printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2028 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2029 		      start, rcu_str_deref(dev->name), sector);
2030 
2031 	bio_put(bio);
2032 	return 0;
2033 }
2034 
2035 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2036 			 int mirror_num)
2037 {
2038 	u64 start = eb->start;
2039 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2040 	int ret = 0;
2041 
2042 	for (i = 0; i < num_pages; i++) {
2043 		struct page *p = extent_buffer_page(eb, i);
2044 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2045 					start, p, mirror_num);
2046 		if (ret)
2047 			break;
2048 		start += PAGE_CACHE_SIZE;
2049 	}
2050 
2051 	return ret;
2052 }
2053 
2054 /*
2055  * each time an IO finishes, we do a fast check in the IO failure tree
2056  * to see if we need to process or clean up an io_failure_record
2057  */
2058 static int clean_io_failure(u64 start, struct page *page)
2059 {
2060 	u64 private;
2061 	u64 private_failure;
2062 	struct io_failure_record *failrec;
2063 	struct btrfs_fs_info *fs_info;
2064 	struct extent_state *state;
2065 	int num_copies;
2066 	int did_repair = 0;
2067 	int ret;
2068 	struct inode *inode = page->mapping->host;
2069 
2070 	private = 0;
2071 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2072 				(u64)-1, 1, EXTENT_DIRTY, 0);
2073 	if (!ret)
2074 		return 0;
2075 
2076 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2077 				&private_failure);
2078 	if (ret)
2079 		return 0;
2080 
2081 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2082 	BUG_ON(!failrec->this_mirror);
2083 
2084 	if (failrec->in_validation) {
2085 		/* there was no real error, just free the record */
2086 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2087 			 failrec->start);
2088 		did_repair = 1;
2089 		goto out;
2090 	}
2091 
2092 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2093 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2094 					    failrec->start,
2095 					    EXTENT_LOCKED);
2096 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2097 
2098 	if (state && state->start <= failrec->start &&
2099 	    state->end >= failrec->start + failrec->len - 1) {
2100 		fs_info = BTRFS_I(inode)->root->fs_info;
2101 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2102 					      failrec->len);
2103 		if (num_copies > 1)  {
2104 			ret = repair_io_failure(fs_info, start, failrec->len,
2105 						failrec->logical, page,
2106 						failrec->failed_mirror);
2107 			did_repair = !ret;
2108 		}
2109 		ret = 0;
2110 	}
2111 
2112 out:
2113 	if (!ret)
2114 		ret = free_io_failure(inode, failrec, did_repair);
2115 
2116 	return ret;
2117 }
2118 
2119 /*
2120  * this is a generic handler for readpage errors (default
2121  * readpage_io_failed_hook). if other copies exist, read those and write back
2122  * good data to the failed position. does not investigate in remapping the
2123  * failed extent elsewhere, hoping the device will be smart enough to do this as
2124  * needed
2125  */
2126 
2127 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2128 			      struct page *page, u64 start, u64 end,
2129 			      int failed_mirror)
2130 {
2131 	struct io_failure_record *failrec = NULL;
2132 	u64 private;
2133 	struct extent_map *em;
2134 	struct inode *inode = page->mapping->host;
2135 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2136 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2137 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2138 	struct bio *bio;
2139 	struct btrfs_io_bio *btrfs_failed_bio;
2140 	struct btrfs_io_bio *btrfs_bio;
2141 	int num_copies;
2142 	int ret;
2143 	int read_mode;
2144 	u64 logical;
2145 
2146 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2147 
2148 	ret = get_state_private(failure_tree, start, &private);
2149 	if (ret) {
2150 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2151 		if (!failrec)
2152 			return -ENOMEM;
2153 		failrec->start = start;
2154 		failrec->len = end - start + 1;
2155 		failrec->this_mirror = 0;
2156 		failrec->bio_flags = 0;
2157 		failrec->in_validation = 0;
2158 
2159 		read_lock(&em_tree->lock);
2160 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2161 		if (!em) {
2162 			read_unlock(&em_tree->lock);
2163 			kfree(failrec);
2164 			return -EIO;
2165 		}
2166 
2167 		if (em->start > start || em->start + em->len < start) {
2168 			free_extent_map(em);
2169 			em = NULL;
2170 		}
2171 		read_unlock(&em_tree->lock);
2172 
2173 		if (!em) {
2174 			kfree(failrec);
2175 			return -EIO;
2176 		}
2177 		logical = start - em->start;
2178 		logical = em->block_start + logical;
2179 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2180 			logical = em->block_start;
2181 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2182 			extent_set_compress_type(&failrec->bio_flags,
2183 						 em->compress_type);
2184 		}
2185 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2186 			 "len=%llu\n", logical, start, failrec->len);
2187 		failrec->logical = logical;
2188 		free_extent_map(em);
2189 
2190 		/* set the bits in the private failure tree */
2191 		ret = set_extent_bits(failure_tree, start, end,
2192 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2193 		if (ret >= 0)
2194 			ret = set_state_private(failure_tree, start,
2195 						(u64)(unsigned long)failrec);
2196 		/* set the bits in the inode's tree */
2197 		if (ret >= 0)
2198 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2199 						GFP_NOFS);
2200 		if (ret < 0) {
2201 			kfree(failrec);
2202 			return ret;
2203 		}
2204 	} else {
2205 		failrec = (struct io_failure_record *)(unsigned long)private;
2206 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2207 			 "start=%llu, len=%llu, validation=%d\n",
2208 			 failrec->logical, failrec->start, failrec->len,
2209 			 failrec->in_validation);
2210 		/*
2211 		 * when data can be on disk more than twice, add to failrec here
2212 		 * (e.g. with a list for failed_mirror) to make
2213 		 * clean_io_failure() clean all those errors at once.
2214 		 */
2215 	}
2216 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2217 				      failrec->logical, failrec->len);
2218 	if (num_copies == 1) {
2219 		/*
2220 		 * we only have a single copy of the data, so don't bother with
2221 		 * all the retry and error correction code that follows. no
2222 		 * matter what the error is, it is very likely to persist.
2223 		 */
2224 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2225 			 num_copies, failrec->this_mirror, failed_mirror);
2226 		free_io_failure(inode, failrec, 0);
2227 		return -EIO;
2228 	}
2229 
2230 	/*
2231 	 * there are two premises:
2232 	 *	a) deliver good data to the caller
2233 	 *	b) correct the bad sectors on disk
2234 	 */
2235 	if (failed_bio->bi_vcnt > 1) {
2236 		/*
2237 		 * to fulfill b), we need to know the exact failing sectors, as
2238 		 * we don't want to rewrite any more than the failed ones. thus,
2239 		 * we need separate read requests for the failed bio
2240 		 *
2241 		 * if the following BUG_ON triggers, our validation request got
2242 		 * merged. we need separate requests for our algorithm to work.
2243 		 */
2244 		BUG_ON(failrec->in_validation);
2245 		failrec->in_validation = 1;
2246 		failrec->this_mirror = failed_mirror;
2247 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2248 	} else {
2249 		/*
2250 		 * we're ready to fulfill a) and b) alongside. get a good copy
2251 		 * of the failed sector and if we succeed, we have setup
2252 		 * everything for repair_io_failure to do the rest for us.
2253 		 */
2254 		if (failrec->in_validation) {
2255 			BUG_ON(failrec->this_mirror != failed_mirror);
2256 			failrec->in_validation = 0;
2257 			failrec->this_mirror = 0;
2258 		}
2259 		failrec->failed_mirror = failed_mirror;
2260 		failrec->this_mirror++;
2261 		if (failrec->this_mirror == failed_mirror)
2262 			failrec->this_mirror++;
2263 		read_mode = READ_SYNC;
2264 	}
2265 
2266 	if (failrec->this_mirror > num_copies) {
2267 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2268 			 num_copies, failrec->this_mirror, failed_mirror);
2269 		free_io_failure(inode, failrec, 0);
2270 		return -EIO;
2271 	}
2272 
2273 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2274 	if (!bio) {
2275 		free_io_failure(inode, failrec, 0);
2276 		return -EIO;
2277 	}
2278 	bio->bi_end_io = failed_bio->bi_end_io;
2279 	bio->bi_sector = failrec->logical >> 9;
2280 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2281 	bio->bi_size = 0;
2282 
2283 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2284 	if (btrfs_failed_bio->csum) {
2285 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2286 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2287 
2288 		btrfs_bio = btrfs_io_bio(bio);
2289 		btrfs_bio->csum = btrfs_bio->csum_inline;
2290 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2291 		phy_offset *= csum_size;
2292 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2293 		       csum_size);
2294 	}
2295 
2296 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2297 
2298 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2299 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2300 		 failrec->this_mirror, num_copies, failrec->in_validation);
2301 
2302 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2303 					 failrec->this_mirror,
2304 					 failrec->bio_flags, 0);
2305 	return ret;
2306 }
2307 
2308 /* lots and lots of room for performance fixes in the end_bio funcs */
2309 
2310 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2311 {
2312 	int uptodate = (err == 0);
2313 	struct extent_io_tree *tree;
2314 	int ret;
2315 
2316 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2317 
2318 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2319 		ret = tree->ops->writepage_end_io_hook(page, start,
2320 					       end, NULL, uptodate);
2321 		if (ret)
2322 			uptodate = 0;
2323 	}
2324 
2325 	if (!uptodate) {
2326 		ClearPageUptodate(page);
2327 		SetPageError(page);
2328 	}
2329 	return 0;
2330 }
2331 
2332 /*
2333  * after a writepage IO is done, we need to:
2334  * clear the uptodate bits on error
2335  * clear the writeback bits in the extent tree for this IO
2336  * end_page_writeback if the page has no more pending IO
2337  *
2338  * Scheduling is not allowed, so the extent state tree is expected
2339  * to have one and only one object corresponding to this IO.
2340  */
2341 static void end_bio_extent_writepage(struct bio *bio, int err)
2342 {
2343 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2344 	struct extent_io_tree *tree;
2345 	u64 start;
2346 	u64 end;
2347 
2348 	do {
2349 		struct page *page = bvec->bv_page;
2350 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2351 
2352 		/* We always issue full-page reads, but if some block
2353 		 * in a page fails to read, blk_update_request() will
2354 		 * advance bv_offset and adjust bv_len to compensate.
2355 		 * Print a warning for nonzero offsets, and an error
2356 		 * if they don't add up to a full page.  */
2357 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2358 			printk("%s page write in btrfs with offset %u and length %u\n",
2359 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2360 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2361 			       bvec->bv_offset, bvec->bv_len);
2362 
2363 		start = page_offset(page);
2364 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2365 
2366 		if (--bvec >= bio->bi_io_vec)
2367 			prefetchw(&bvec->bv_page->flags);
2368 
2369 		if (end_extent_writepage(page, err, start, end))
2370 			continue;
2371 
2372 		end_page_writeback(page);
2373 	} while (bvec >= bio->bi_io_vec);
2374 
2375 	bio_put(bio);
2376 }
2377 
2378 static void
2379 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2380 			      int uptodate)
2381 {
2382 	struct extent_state *cached = NULL;
2383 	u64 end = start + len - 1;
2384 
2385 	if (uptodate && tree->track_uptodate)
2386 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2387 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2388 }
2389 
2390 /*
2391  * after a readpage IO is done, we need to:
2392  * clear the uptodate bits on error
2393  * set the uptodate bits if things worked
2394  * set the page up to date if all extents in the tree are uptodate
2395  * clear the lock bit in the extent tree
2396  * unlock the page if there are no other extents locked for it
2397  *
2398  * Scheduling is not allowed, so the extent state tree is expected
2399  * to have one and only one object corresponding to this IO.
2400  */
2401 static void end_bio_extent_readpage(struct bio *bio, int err)
2402 {
2403 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2404 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2405 	struct bio_vec *bvec = bio->bi_io_vec;
2406 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2407 	struct extent_io_tree *tree;
2408 	u64 offset = 0;
2409 	u64 start;
2410 	u64 end;
2411 	u64 len;
2412 	u64 extent_start = 0;
2413 	u64 extent_len = 0;
2414 	int mirror;
2415 	int ret;
2416 
2417 	if (err)
2418 		uptodate = 0;
2419 
2420 	do {
2421 		struct page *page = bvec->bv_page;
2422 		struct inode *inode = page->mapping->host;
2423 
2424 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2425 			 "mirror=%lu\n", (u64)bio->bi_sector, err,
2426 			 io_bio->mirror_num);
2427 		tree = &BTRFS_I(inode)->io_tree;
2428 
2429 		/* We always issue full-page reads, but if some block
2430 		 * in a page fails to read, blk_update_request() will
2431 		 * advance bv_offset and adjust bv_len to compensate.
2432 		 * Print a warning for nonzero offsets, and an error
2433 		 * if they don't add up to a full page.  */
2434 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2435 			printk("%s page read in btrfs with offset %u and length %u\n",
2436 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2437 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2438 			       bvec->bv_offset, bvec->bv_len);
2439 
2440 		start = page_offset(page);
2441 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2442 		len = bvec->bv_len;
2443 
2444 		if (++bvec <= bvec_end)
2445 			prefetchw(&bvec->bv_page->flags);
2446 
2447 		mirror = io_bio->mirror_num;
2448 		if (likely(uptodate && tree->ops &&
2449 			   tree->ops->readpage_end_io_hook)) {
2450 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2451 							      page, start, end,
2452 							      mirror);
2453 			if (ret)
2454 				uptodate = 0;
2455 			else
2456 				clean_io_failure(start, page);
2457 		}
2458 
2459 		if (likely(uptodate))
2460 			goto readpage_ok;
2461 
2462 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2463 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2464 			if (!ret && !err &&
2465 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2466 				uptodate = 1;
2467 		} else {
2468 			/*
2469 			 * The generic bio_readpage_error handles errors the
2470 			 * following way: If possible, new read requests are
2471 			 * created and submitted and will end up in
2472 			 * end_bio_extent_readpage as well (if we're lucky, not
2473 			 * in the !uptodate case). In that case it returns 0 and
2474 			 * we just go on with the next page in our bio. If it
2475 			 * can't handle the error it will return -EIO and we
2476 			 * remain responsible for that page.
2477 			 */
2478 			ret = bio_readpage_error(bio, offset, page, start, end,
2479 						 mirror);
2480 			if (ret == 0) {
2481 				uptodate =
2482 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2483 				if (err)
2484 					uptodate = 0;
2485 				continue;
2486 			}
2487 		}
2488 readpage_ok:
2489 		if (likely(uptodate)) {
2490 			loff_t i_size = i_size_read(inode);
2491 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2492 			unsigned offset;
2493 
2494 			/* Zero out the end if this page straddles i_size */
2495 			offset = i_size & (PAGE_CACHE_SIZE-1);
2496 			if (page->index == end_index && offset)
2497 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2498 			SetPageUptodate(page);
2499 		} else {
2500 			ClearPageUptodate(page);
2501 			SetPageError(page);
2502 		}
2503 		unlock_page(page);
2504 		offset += len;
2505 
2506 		if (unlikely(!uptodate)) {
2507 			if (extent_len) {
2508 				endio_readpage_release_extent(tree,
2509 							      extent_start,
2510 							      extent_len, 1);
2511 				extent_start = 0;
2512 				extent_len = 0;
2513 			}
2514 			endio_readpage_release_extent(tree, start,
2515 						      end - start + 1, 0);
2516 		} else if (!extent_len) {
2517 			extent_start = start;
2518 			extent_len = end + 1 - start;
2519 		} else if (extent_start + extent_len == start) {
2520 			extent_len += end + 1 - start;
2521 		} else {
2522 			endio_readpage_release_extent(tree, extent_start,
2523 						      extent_len, uptodate);
2524 			extent_start = start;
2525 			extent_len = end + 1 - start;
2526 		}
2527 	} while (bvec <= bvec_end);
2528 
2529 	if (extent_len)
2530 		endio_readpage_release_extent(tree, extent_start, extent_len,
2531 					      uptodate);
2532 	if (io_bio->end_io)
2533 		io_bio->end_io(io_bio, err);
2534 	bio_put(bio);
2535 }
2536 
2537 /*
2538  * this allocates from the btrfs_bioset.  We're returning a bio right now
2539  * but you can call btrfs_io_bio for the appropriate container_of magic
2540  */
2541 struct bio *
2542 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2543 		gfp_t gfp_flags)
2544 {
2545 	struct btrfs_io_bio *btrfs_bio;
2546 	struct bio *bio;
2547 
2548 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2549 
2550 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2551 		while (!bio && (nr_vecs /= 2)) {
2552 			bio = bio_alloc_bioset(gfp_flags,
2553 					       nr_vecs, btrfs_bioset);
2554 		}
2555 	}
2556 
2557 	if (bio) {
2558 		bio->bi_size = 0;
2559 		bio->bi_bdev = bdev;
2560 		bio->bi_sector = first_sector;
2561 		btrfs_bio = btrfs_io_bio(bio);
2562 		btrfs_bio->csum = NULL;
2563 		btrfs_bio->csum_allocated = NULL;
2564 		btrfs_bio->end_io = NULL;
2565 	}
2566 	return bio;
2567 }
2568 
2569 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570 {
2571 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572 }
2573 
2574 
2575 /* this also allocates from the btrfs_bioset */
2576 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577 {
2578 	struct btrfs_io_bio *btrfs_bio;
2579 	struct bio *bio;
2580 
2581 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2582 	if (bio) {
2583 		btrfs_bio = btrfs_io_bio(bio);
2584 		btrfs_bio->csum = NULL;
2585 		btrfs_bio->csum_allocated = NULL;
2586 		btrfs_bio->end_io = NULL;
2587 	}
2588 	return bio;
2589 }
2590 
2591 
2592 static int __must_check submit_one_bio(int rw, struct bio *bio,
2593 				       int mirror_num, unsigned long bio_flags)
2594 {
2595 	int ret = 0;
2596 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2597 	struct page *page = bvec->bv_page;
2598 	struct extent_io_tree *tree = bio->bi_private;
2599 	u64 start;
2600 
2601 	start = page_offset(page) + bvec->bv_offset;
2602 
2603 	bio->bi_private = NULL;
2604 
2605 	bio_get(bio);
2606 
2607 	if (tree->ops && tree->ops->submit_bio_hook)
2608 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2609 					   mirror_num, bio_flags, start);
2610 	else
2611 		btrfsic_submit_bio(rw, bio);
2612 
2613 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2614 		ret = -EOPNOTSUPP;
2615 	bio_put(bio);
2616 	return ret;
2617 }
2618 
2619 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2620 		     unsigned long offset, size_t size, struct bio *bio,
2621 		     unsigned long bio_flags)
2622 {
2623 	int ret = 0;
2624 	if (tree->ops && tree->ops->merge_bio_hook)
2625 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2626 						bio_flags);
2627 	BUG_ON(ret < 0);
2628 	return ret;
2629 
2630 }
2631 
2632 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2633 			      struct page *page, sector_t sector,
2634 			      size_t size, unsigned long offset,
2635 			      struct block_device *bdev,
2636 			      struct bio **bio_ret,
2637 			      unsigned long max_pages,
2638 			      bio_end_io_t end_io_func,
2639 			      int mirror_num,
2640 			      unsigned long prev_bio_flags,
2641 			      unsigned long bio_flags)
2642 {
2643 	int ret = 0;
2644 	struct bio *bio;
2645 	int nr;
2646 	int contig = 0;
2647 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2648 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2649 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2650 
2651 	if (bio_ret && *bio_ret) {
2652 		bio = *bio_ret;
2653 		if (old_compressed)
2654 			contig = bio->bi_sector == sector;
2655 		else
2656 			contig = bio_end_sector(bio) == sector;
2657 
2658 		if (prev_bio_flags != bio_flags || !contig ||
2659 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2660 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2661 			ret = submit_one_bio(rw, bio, mirror_num,
2662 					     prev_bio_flags);
2663 			if (ret < 0)
2664 				return ret;
2665 			bio = NULL;
2666 		} else {
2667 			return 0;
2668 		}
2669 	}
2670 	if (this_compressed)
2671 		nr = BIO_MAX_PAGES;
2672 	else
2673 		nr = bio_get_nr_vecs(bdev);
2674 
2675 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2676 	if (!bio)
2677 		return -ENOMEM;
2678 
2679 	bio_add_page(bio, page, page_size, offset);
2680 	bio->bi_end_io = end_io_func;
2681 	bio->bi_private = tree;
2682 
2683 	if (bio_ret)
2684 		*bio_ret = bio;
2685 	else
2686 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2687 
2688 	return ret;
2689 }
2690 
2691 static void attach_extent_buffer_page(struct extent_buffer *eb,
2692 				      struct page *page)
2693 {
2694 	if (!PagePrivate(page)) {
2695 		SetPagePrivate(page);
2696 		page_cache_get(page);
2697 		set_page_private(page, (unsigned long)eb);
2698 	} else {
2699 		WARN_ON(page->private != (unsigned long)eb);
2700 	}
2701 }
2702 
2703 void set_page_extent_mapped(struct page *page)
2704 {
2705 	if (!PagePrivate(page)) {
2706 		SetPagePrivate(page);
2707 		page_cache_get(page);
2708 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2709 	}
2710 }
2711 
2712 static struct extent_map *
2713 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2714 		 u64 start, u64 len, get_extent_t *get_extent,
2715 		 struct extent_map **em_cached)
2716 {
2717 	struct extent_map *em;
2718 
2719 	if (em_cached && *em_cached) {
2720 		em = *em_cached;
2721 		if (em->in_tree && start >= em->start &&
2722 		    start < extent_map_end(em)) {
2723 			atomic_inc(&em->refs);
2724 			return em;
2725 		}
2726 
2727 		free_extent_map(em);
2728 		*em_cached = NULL;
2729 	}
2730 
2731 	em = get_extent(inode, page, pg_offset, start, len, 0);
2732 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2733 		BUG_ON(*em_cached);
2734 		atomic_inc(&em->refs);
2735 		*em_cached = em;
2736 	}
2737 	return em;
2738 }
2739 /*
2740  * basic readpage implementation.  Locked extent state structs are inserted
2741  * into the tree that are removed when the IO is done (by the end_io
2742  * handlers)
2743  * XXX JDM: This needs looking at to ensure proper page locking
2744  */
2745 static int __do_readpage(struct extent_io_tree *tree,
2746 			 struct page *page,
2747 			 get_extent_t *get_extent,
2748 			 struct extent_map **em_cached,
2749 			 struct bio **bio, int mirror_num,
2750 			 unsigned long *bio_flags, int rw)
2751 {
2752 	struct inode *inode = page->mapping->host;
2753 	u64 start = page_offset(page);
2754 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2755 	u64 end;
2756 	u64 cur = start;
2757 	u64 extent_offset;
2758 	u64 last_byte = i_size_read(inode);
2759 	u64 block_start;
2760 	u64 cur_end;
2761 	sector_t sector;
2762 	struct extent_map *em;
2763 	struct block_device *bdev;
2764 	int ret;
2765 	int nr = 0;
2766 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2767 	size_t pg_offset = 0;
2768 	size_t iosize;
2769 	size_t disk_io_size;
2770 	size_t blocksize = inode->i_sb->s_blocksize;
2771 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2772 
2773 	set_page_extent_mapped(page);
2774 
2775 	end = page_end;
2776 	if (!PageUptodate(page)) {
2777 		if (cleancache_get_page(page) == 0) {
2778 			BUG_ON(blocksize != PAGE_SIZE);
2779 			unlock_extent(tree, start, end);
2780 			goto out;
2781 		}
2782 	}
2783 
2784 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2785 		char *userpage;
2786 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2787 
2788 		if (zero_offset) {
2789 			iosize = PAGE_CACHE_SIZE - zero_offset;
2790 			userpage = kmap_atomic(page);
2791 			memset(userpage + zero_offset, 0, iosize);
2792 			flush_dcache_page(page);
2793 			kunmap_atomic(userpage);
2794 		}
2795 	}
2796 	while (cur <= end) {
2797 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2798 
2799 		if (cur >= last_byte) {
2800 			char *userpage;
2801 			struct extent_state *cached = NULL;
2802 
2803 			iosize = PAGE_CACHE_SIZE - pg_offset;
2804 			userpage = kmap_atomic(page);
2805 			memset(userpage + pg_offset, 0, iosize);
2806 			flush_dcache_page(page);
2807 			kunmap_atomic(userpage);
2808 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2809 					    &cached, GFP_NOFS);
2810 			if (!parent_locked)
2811 				unlock_extent_cached(tree, cur,
2812 						     cur + iosize - 1,
2813 						     &cached, GFP_NOFS);
2814 			break;
2815 		}
2816 		em = __get_extent_map(inode, page, pg_offset, cur,
2817 				      end - cur + 1, get_extent, em_cached);
2818 		if (IS_ERR_OR_NULL(em)) {
2819 			SetPageError(page);
2820 			if (!parent_locked)
2821 				unlock_extent(tree, cur, end);
2822 			break;
2823 		}
2824 		extent_offset = cur - em->start;
2825 		BUG_ON(extent_map_end(em) <= cur);
2826 		BUG_ON(end < cur);
2827 
2828 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2829 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2830 			extent_set_compress_type(&this_bio_flag,
2831 						 em->compress_type);
2832 		}
2833 
2834 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2835 		cur_end = min(extent_map_end(em) - 1, end);
2836 		iosize = ALIGN(iosize, blocksize);
2837 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2838 			disk_io_size = em->block_len;
2839 			sector = em->block_start >> 9;
2840 		} else {
2841 			sector = (em->block_start + extent_offset) >> 9;
2842 			disk_io_size = iosize;
2843 		}
2844 		bdev = em->bdev;
2845 		block_start = em->block_start;
2846 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2847 			block_start = EXTENT_MAP_HOLE;
2848 		free_extent_map(em);
2849 		em = NULL;
2850 
2851 		/* we've found a hole, just zero and go on */
2852 		if (block_start == EXTENT_MAP_HOLE) {
2853 			char *userpage;
2854 			struct extent_state *cached = NULL;
2855 
2856 			userpage = kmap_atomic(page);
2857 			memset(userpage + pg_offset, 0, iosize);
2858 			flush_dcache_page(page);
2859 			kunmap_atomic(userpage);
2860 
2861 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2862 					    &cached, GFP_NOFS);
2863 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2864 			                     &cached, GFP_NOFS);
2865 			cur = cur + iosize;
2866 			pg_offset += iosize;
2867 			continue;
2868 		}
2869 		/* the get_extent function already copied into the page */
2870 		if (test_range_bit(tree, cur, cur_end,
2871 				   EXTENT_UPTODATE, 1, NULL)) {
2872 			check_page_uptodate(tree, page);
2873 			if (!parent_locked)
2874 				unlock_extent(tree, cur, cur + iosize - 1);
2875 			cur = cur + iosize;
2876 			pg_offset += iosize;
2877 			continue;
2878 		}
2879 		/* we have an inline extent but it didn't get marked up
2880 		 * to date.  Error out
2881 		 */
2882 		if (block_start == EXTENT_MAP_INLINE) {
2883 			SetPageError(page);
2884 			if (!parent_locked)
2885 				unlock_extent(tree, cur, cur + iosize - 1);
2886 			cur = cur + iosize;
2887 			pg_offset += iosize;
2888 			continue;
2889 		}
2890 
2891 		pnr -= page->index;
2892 		ret = submit_extent_page(rw, tree, page,
2893 					 sector, disk_io_size, pg_offset,
2894 					 bdev, bio, pnr,
2895 					 end_bio_extent_readpage, mirror_num,
2896 					 *bio_flags,
2897 					 this_bio_flag);
2898 		if (!ret) {
2899 			nr++;
2900 			*bio_flags = this_bio_flag;
2901 		} else {
2902 			SetPageError(page);
2903 			if (!parent_locked)
2904 				unlock_extent(tree, cur, cur + iosize - 1);
2905 		}
2906 		cur = cur + iosize;
2907 		pg_offset += iosize;
2908 	}
2909 out:
2910 	if (!nr) {
2911 		if (!PageError(page))
2912 			SetPageUptodate(page);
2913 		unlock_page(page);
2914 	}
2915 	return 0;
2916 }
2917 
2918 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2919 					     struct page *pages[], int nr_pages,
2920 					     u64 start, u64 end,
2921 					     get_extent_t *get_extent,
2922 					     struct extent_map **em_cached,
2923 					     struct bio **bio, int mirror_num,
2924 					     unsigned long *bio_flags, int rw)
2925 {
2926 	struct inode *inode;
2927 	struct btrfs_ordered_extent *ordered;
2928 	int index;
2929 
2930 	inode = pages[0]->mapping->host;
2931 	while (1) {
2932 		lock_extent(tree, start, end);
2933 		ordered = btrfs_lookup_ordered_range(inode, start,
2934 						     end - start + 1);
2935 		if (!ordered)
2936 			break;
2937 		unlock_extent(tree, start, end);
2938 		btrfs_start_ordered_extent(inode, ordered, 1);
2939 		btrfs_put_ordered_extent(ordered);
2940 	}
2941 
2942 	for (index = 0; index < nr_pages; index++) {
2943 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2944 			      mirror_num, bio_flags, rw);
2945 		page_cache_release(pages[index]);
2946 	}
2947 }
2948 
2949 static void __extent_readpages(struct extent_io_tree *tree,
2950 			       struct page *pages[],
2951 			       int nr_pages, get_extent_t *get_extent,
2952 			       struct extent_map **em_cached,
2953 			       struct bio **bio, int mirror_num,
2954 			       unsigned long *bio_flags, int rw)
2955 {
2956 	u64 start = 0;
2957 	u64 end = 0;
2958 	u64 page_start;
2959 	int index;
2960 	int first_index = 0;
2961 
2962 	for (index = 0; index < nr_pages; index++) {
2963 		page_start = page_offset(pages[index]);
2964 		if (!end) {
2965 			start = page_start;
2966 			end = start + PAGE_CACHE_SIZE - 1;
2967 			first_index = index;
2968 		} else if (end + 1 == page_start) {
2969 			end += PAGE_CACHE_SIZE;
2970 		} else {
2971 			__do_contiguous_readpages(tree, &pages[first_index],
2972 						  index - first_index, start,
2973 						  end, get_extent, em_cached,
2974 						  bio, mirror_num, bio_flags,
2975 						  rw);
2976 			start = page_start;
2977 			end = start + PAGE_CACHE_SIZE - 1;
2978 			first_index = index;
2979 		}
2980 	}
2981 
2982 	if (end)
2983 		__do_contiguous_readpages(tree, &pages[first_index],
2984 					  index - first_index, start,
2985 					  end, get_extent, em_cached, bio,
2986 					  mirror_num, bio_flags, rw);
2987 }
2988 
2989 static int __extent_read_full_page(struct extent_io_tree *tree,
2990 				   struct page *page,
2991 				   get_extent_t *get_extent,
2992 				   struct bio **bio, int mirror_num,
2993 				   unsigned long *bio_flags, int rw)
2994 {
2995 	struct inode *inode = page->mapping->host;
2996 	struct btrfs_ordered_extent *ordered;
2997 	u64 start = page_offset(page);
2998 	u64 end = start + PAGE_CACHE_SIZE - 1;
2999 	int ret;
3000 
3001 	while (1) {
3002 		lock_extent(tree, start, end);
3003 		ordered = btrfs_lookup_ordered_extent(inode, start);
3004 		if (!ordered)
3005 			break;
3006 		unlock_extent(tree, start, end);
3007 		btrfs_start_ordered_extent(inode, ordered, 1);
3008 		btrfs_put_ordered_extent(ordered);
3009 	}
3010 
3011 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3012 			    bio_flags, rw);
3013 	return ret;
3014 }
3015 
3016 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3017 			    get_extent_t *get_extent, int mirror_num)
3018 {
3019 	struct bio *bio = NULL;
3020 	unsigned long bio_flags = 0;
3021 	int ret;
3022 
3023 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3024 				      &bio_flags, READ);
3025 	if (bio)
3026 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3027 	return ret;
3028 }
3029 
3030 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3031 				 get_extent_t *get_extent, int mirror_num)
3032 {
3033 	struct bio *bio = NULL;
3034 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3035 	int ret;
3036 
3037 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3038 				      &bio_flags, READ);
3039 	if (bio)
3040 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3041 	return ret;
3042 }
3043 
3044 static noinline void update_nr_written(struct page *page,
3045 				      struct writeback_control *wbc,
3046 				      unsigned long nr_written)
3047 {
3048 	wbc->nr_to_write -= nr_written;
3049 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3050 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3051 		page->mapping->writeback_index = page->index + nr_written;
3052 }
3053 
3054 /*
3055  * the writepage semantics are similar to regular writepage.  extent
3056  * records are inserted to lock ranges in the tree, and as dirty areas
3057  * are found, they are marked writeback.  Then the lock bits are removed
3058  * and the end_io handler clears the writeback ranges
3059  */
3060 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3061 			      void *data)
3062 {
3063 	struct inode *inode = page->mapping->host;
3064 	struct extent_page_data *epd = data;
3065 	struct extent_io_tree *tree = epd->tree;
3066 	u64 start = page_offset(page);
3067 	u64 delalloc_start;
3068 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3069 	u64 end;
3070 	u64 cur = start;
3071 	u64 extent_offset;
3072 	u64 last_byte = i_size_read(inode);
3073 	u64 block_start;
3074 	u64 iosize;
3075 	sector_t sector;
3076 	struct extent_state *cached_state = NULL;
3077 	struct extent_map *em;
3078 	struct block_device *bdev;
3079 	int ret;
3080 	int nr = 0;
3081 	size_t pg_offset = 0;
3082 	size_t blocksize;
3083 	loff_t i_size = i_size_read(inode);
3084 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3085 	u64 nr_delalloc;
3086 	u64 delalloc_end;
3087 	int page_started;
3088 	int compressed;
3089 	int write_flags;
3090 	unsigned long nr_written = 0;
3091 	bool fill_delalloc = true;
3092 
3093 	if (wbc->sync_mode == WB_SYNC_ALL)
3094 		write_flags = WRITE_SYNC;
3095 	else
3096 		write_flags = WRITE;
3097 
3098 	trace___extent_writepage(page, inode, wbc);
3099 
3100 	WARN_ON(!PageLocked(page));
3101 
3102 	ClearPageError(page);
3103 
3104 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3105 	if (page->index > end_index ||
3106 	   (page->index == end_index && !pg_offset)) {
3107 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3108 		unlock_page(page);
3109 		return 0;
3110 	}
3111 
3112 	if (page->index == end_index) {
3113 		char *userpage;
3114 
3115 		userpage = kmap_atomic(page);
3116 		memset(userpage + pg_offset, 0,
3117 		       PAGE_CACHE_SIZE - pg_offset);
3118 		kunmap_atomic(userpage);
3119 		flush_dcache_page(page);
3120 	}
3121 	pg_offset = 0;
3122 
3123 	set_page_extent_mapped(page);
3124 
3125 	if (!tree->ops || !tree->ops->fill_delalloc)
3126 		fill_delalloc = false;
3127 
3128 	delalloc_start = start;
3129 	delalloc_end = 0;
3130 	page_started = 0;
3131 	if (!epd->extent_locked && fill_delalloc) {
3132 		u64 delalloc_to_write = 0;
3133 		/*
3134 		 * make sure the wbc mapping index is at least updated
3135 		 * to this page.
3136 		 */
3137 		update_nr_written(page, wbc, 0);
3138 
3139 		while (delalloc_end < page_end) {
3140 			nr_delalloc = find_lock_delalloc_range(inode, tree,
3141 						       page,
3142 						       &delalloc_start,
3143 						       &delalloc_end,
3144 						       128 * 1024 * 1024);
3145 			if (nr_delalloc == 0) {
3146 				delalloc_start = delalloc_end + 1;
3147 				continue;
3148 			}
3149 			ret = tree->ops->fill_delalloc(inode, page,
3150 						       delalloc_start,
3151 						       delalloc_end,
3152 						       &page_started,
3153 						       &nr_written);
3154 			/* File system has been set read-only */
3155 			if (ret) {
3156 				SetPageError(page);
3157 				goto done;
3158 			}
3159 			/*
3160 			 * delalloc_end is already one less than the total
3161 			 * length, so we don't subtract one from
3162 			 * PAGE_CACHE_SIZE
3163 			 */
3164 			delalloc_to_write += (delalloc_end - delalloc_start +
3165 					      PAGE_CACHE_SIZE) >>
3166 					      PAGE_CACHE_SHIFT;
3167 			delalloc_start = delalloc_end + 1;
3168 		}
3169 		if (wbc->nr_to_write < delalloc_to_write) {
3170 			int thresh = 8192;
3171 
3172 			if (delalloc_to_write < thresh * 2)
3173 				thresh = delalloc_to_write;
3174 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3175 						 thresh);
3176 		}
3177 
3178 		/* did the fill delalloc function already unlock and start
3179 		 * the IO?
3180 		 */
3181 		if (page_started) {
3182 			ret = 0;
3183 			/*
3184 			 * we've unlocked the page, so we can't update
3185 			 * the mapping's writeback index, just update
3186 			 * nr_to_write.
3187 			 */
3188 			wbc->nr_to_write -= nr_written;
3189 			goto done_unlocked;
3190 		}
3191 	}
3192 	if (tree->ops && tree->ops->writepage_start_hook) {
3193 		ret = tree->ops->writepage_start_hook(page, start,
3194 						      page_end);
3195 		if (ret) {
3196 			/* Fixup worker will requeue */
3197 			if (ret == -EBUSY)
3198 				wbc->pages_skipped++;
3199 			else
3200 				redirty_page_for_writepage(wbc, page);
3201 			update_nr_written(page, wbc, nr_written);
3202 			unlock_page(page);
3203 			ret = 0;
3204 			goto done_unlocked;
3205 		}
3206 	}
3207 
3208 	/*
3209 	 * we don't want to touch the inode after unlocking the page,
3210 	 * so we update the mapping writeback index now
3211 	 */
3212 	update_nr_written(page, wbc, nr_written + 1);
3213 
3214 	end = page_end;
3215 	if (last_byte <= start) {
3216 		if (tree->ops && tree->ops->writepage_end_io_hook)
3217 			tree->ops->writepage_end_io_hook(page, start,
3218 							 page_end, NULL, 1);
3219 		goto done;
3220 	}
3221 
3222 	blocksize = inode->i_sb->s_blocksize;
3223 
3224 	while (cur <= end) {
3225 		if (cur >= last_byte) {
3226 			if (tree->ops && tree->ops->writepage_end_io_hook)
3227 				tree->ops->writepage_end_io_hook(page, cur,
3228 							 page_end, NULL, 1);
3229 			break;
3230 		}
3231 		em = epd->get_extent(inode, page, pg_offset, cur,
3232 				     end - cur + 1, 1);
3233 		if (IS_ERR_OR_NULL(em)) {
3234 			SetPageError(page);
3235 			break;
3236 		}
3237 
3238 		extent_offset = cur - em->start;
3239 		BUG_ON(extent_map_end(em) <= cur);
3240 		BUG_ON(end < cur);
3241 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3242 		iosize = ALIGN(iosize, blocksize);
3243 		sector = (em->block_start + extent_offset) >> 9;
3244 		bdev = em->bdev;
3245 		block_start = em->block_start;
3246 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3247 		free_extent_map(em);
3248 		em = NULL;
3249 
3250 		/*
3251 		 * compressed and inline extents are written through other
3252 		 * paths in the FS
3253 		 */
3254 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3255 		    block_start == EXTENT_MAP_INLINE) {
3256 			/*
3257 			 * end_io notification does not happen here for
3258 			 * compressed extents
3259 			 */
3260 			if (!compressed && tree->ops &&
3261 			    tree->ops->writepage_end_io_hook)
3262 				tree->ops->writepage_end_io_hook(page, cur,
3263 							 cur + iosize - 1,
3264 							 NULL, 1);
3265 			else if (compressed) {
3266 				/* we don't want to end_page_writeback on
3267 				 * a compressed extent.  this happens
3268 				 * elsewhere
3269 				 */
3270 				nr++;
3271 			}
3272 
3273 			cur += iosize;
3274 			pg_offset += iosize;
3275 			continue;
3276 		}
3277 		/* leave this out until we have a page_mkwrite call */
3278 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3279 				   EXTENT_DIRTY, 0, NULL)) {
3280 			cur = cur + iosize;
3281 			pg_offset += iosize;
3282 			continue;
3283 		}
3284 
3285 		if (tree->ops && tree->ops->writepage_io_hook) {
3286 			ret = tree->ops->writepage_io_hook(page, cur,
3287 						cur + iosize - 1);
3288 		} else {
3289 			ret = 0;
3290 		}
3291 		if (ret) {
3292 			SetPageError(page);
3293 		} else {
3294 			unsigned long max_nr = end_index + 1;
3295 
3296 			set_range_writeback(tree, cur, cur + iosize - 1);
3297 			if (!PageWriteback(page)) {
3298 				printk(KERN_ERR "btrfs warning page %lu not "
3299 				       "writeback, cur %llu end %llu\n",
3300 				       page->index, cur, end);
3301 			}
3302 
3303 			ret = submit_extent_page(write_flags, tree, page,
3304 						 sector, iosize, pg_offset,
3305 						 bdev, &epd->bio, max_nr,
3306 						 end_bio_extent_writepage,
3307 						 0, 0, 0);
3308 			if (ret)
3309 				SetPageError(page);
3310 		}
3311 		cur = cur + iosize;
3312 		pg_offset += iosize;
3313 		nr++;
3314 	}
3315 done:
3316 	if (nr == 0) {
3317 		/* make sure the mapping tag for page dirty gets cleared */
3318 		set_page_writeback(page);
3319 		end_page_writeback(page);
3320 	}
3321 	unlock_page(page);
3322 
3323 done_unlocked:
3324 
3325 	/* drop our reference on any cached states */
3326 	free_extent_state(cached_state);
3327 	return 0;
3328 }
3329 
3330 static int eb_wait(void *word)
3331 {
3332 	io_schedule();
3333 	return 0;
3334 }
3335 
3336 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3337 {
3338 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3339 		    TASK_UNINTERRUPTIBLE);
3340 }
3341 
3342 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3343 				     struct btrfs_fs_info *fs_info,
3344 				     struct extent_page_data *epd)
3345 {
3346 	unsigned long i, num_pages;
3347 	int flush = 0;
3348 	int ret = 0;
3349 
3350 	if (!btrfs_try_tree_write_lock(eb)) {
3351 		flush = 1;
3352 		flush_write_bio(epd);
3353 		btrfs_tree_lock(eb);
3354 	}
3355 
3356 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3357 		btrfs_tree_unlock(eb);
3358 		if (!epd->sync_io)
3359 			return 0;
3360 		if (!flush) {
3361 			flush_write_bio(epd);
3362 			flush = 1;
3363 		}
3364 		while (1) {
3365 			wait_on_extent_buffer_writeback(eb);
3366 			btrfs_tree_lock(eb);
3367 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3368 				break;
3369 			btrfs_tree_unlock(eb);
3370 		}
3371 	}
3372 
3373 	/*
3374 	 * We need to do this to prevent races in people who check if the eb is
3375 	 * under IO since we can end up having no IO bits set for a short period
3376 	 * of time.
3377 	 */
3378 	spin_lock(&eb->refs_lock);
3379 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3380 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3381 		spin_unlock(&eb->refs_lock);
3382 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3383 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3384 				     -eb->len,
3385 				     fs_info->dirty_metadata_batch);
3386 		ret = 1;
3387 	} else {
3388 		spin_unlock(&eb->refs_lock);
3389 	}
3390 
3391 	btrfs_tree_unlock(eb);
3392 
3393 	if (!ret)
3394 		return ret;
3395 
3396 	num_pages = num_extent_pages(eb->start, eb->len);
3397 	for (i = 0; i < num_pages; i++) {
3398 		struct page *p = extent_buffer_page(eb, i);
3399 
3400 		if (!trylock_page(p)) {
3401 			if (!flush) {
3402 				flush_write_bio(epd);
3403 				flush = 1;
3404 			}
3405 			lock_page(p);
3406 		}
3407 	}
3408 
3409 	return ret;
3410 }
3411 
3412 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3413 {
3414 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3415 	smp_mb__after_clear_bit();
3416 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3417 }
3418 
3419 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3420 {
3421 	int uptodate = err == 0;
3422 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3423 	struct extent_buffer *eb;
3424 	int done;
3425 
3426 	do {
3427 		struct page *page = bvec->bv_page;
3428 
3429 		bvec--;
3430 		eb = (struct extent_buffer *)page->private;
3431 		BUG_ON(!eb);
3432 		done = atomic_dec_and_test(&eb->io_pages);
3433 
3434 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3435 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3436 			ClearPageUptodate(page);
3437 			SetPageError(page);
3438 		}
3439 
3440 		end_page_writeback(page);
3441 
3442 		if (!done)
3443 			continue;
3444 
3445 		end_extent_buffer_writeback(eb);
3446 	} while (bvec >= bio->bi_io_vec);
3447 
3448 	bio_put(bio);
3449 
3450 }
3451 
3452 static int write_one_eb(struct extent_buffer *eb,
3453 			struct btrfs_fs_info *fs_info,
3454 			struct writeback_control *wbc,
3455 			struct extent_page_data *epd)
3456 {
3457 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3458 	u64 offset = eb->start;
3459 	unsigned long i, num_pages;
3460 	unsigned long bio_flags = 0;
3461 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3462 	int ret = 0;
3463 
3464 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3465 	num_pages = num_extent_pages(eb->start, eb->len);
3466 	atomic_set(&eb->io_pages, num_pages);
3467 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3468 		bio_flags = EXTENT_BIO_TREE_LOG;
3469 
3470 	for (i = 0; i < num_pages; i++) {
3471 		struct page *p = extent_buffer_page(eb, i);
3472 
3473 		clear_page_dirty_for_io(p);
3474 		set_page_writeback(p);
3475 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3476 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3477 					 -1, end_bio_extent_buffer_writepage,
3478 					 0, epd->bio_flags, bio_flags);
3479 		epd->bio_flags = bio_flags;
3480 		if (ret) {
3481 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3482 			SetPageError(p);
3483 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3484 				end_extent_buffer_writeback(eb);
3485 			ret = -EIO;
3486 			break;
3487 		}
3488 		offset += PAGE_CACHE_SIZE;
3489 		update_nr_written(p, wbc, 1);
3490 		unlock_page(p);
3491 	}
3492 
3493 	if (unlikely(ret)) {
3494 		for (; i < num_pages; i++) {
3495 			struct page *p = extent_buffer_page(eb, i);
3496 			unlock_page(p);
3497 		}
3498 	}
3499 
3500 	return ret;
3501 }
3502 
3503 int btree_write_cache_pages(struct address_space *mapping,
3504 				   struct writeback_control *wbc)
3505 {
3506 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3507 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3508 	struct extent_buffer *eb, *prev_eb = NULL;
3509 	struct extent_page_data epd = {
3510 		.bio = NULL,
3511 		.tree = tree,
3512 		.extent_locked = 0,
3513 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3514 		.bio_flags = 0,
3515 	};
3516 	int ret = 0;
3517 	int done = 0;
3518 	int nr_to_write_done = 0;
3519 	struct pagevec pvec;
3520 	int nr_pages;
3521 	pgoff_t index;
3522 	pgoff_t end;		/* Inclusive */
3523 	int scanned = 0;
3524 	int tag;
3525 
3526 	pagevec_init(&pvec, 0);
3527 	if (wbc->range_cyclic) {
3528 		index = mapping->writeback_index; /* Start from prev offset */
3529 		end = -1;
3530 	} else {
3531 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3532 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3533 		scanned = 1;
3534 	}
3535 	if (wbc->sync_mode == WB_SYNC_ALL)
3536 		tag = PAGECACHE_TAG_TOWRITE;
3537 	else
3538 		tag = PAGECACHE_TAG_DIRTY;
3539 retry:
3540 	if (wbc->sync_mode == WB_SYNC_ALL)
3541 		tag_pages_for_writeback(mapping, index, end);
3542 	while (!done && !nr_to_write_done && (index <= end) &&
3543 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3544 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3545 		unsigned i;
3546 
3547 		scanned = 1;
3548 		for (i = 0; i < nr_pages; i++) {
3549 			struct page *page = pvec.pages[i];
3550 
3551 			if (!PagePrivate(page))
3552 				continue;
3553 
3554 			if (!wbc->range_cyclic && page->index > end) {
3555 				done = 1;
3556 				break;
3557 			}
3558 
3559 			spin_lock(&mapping->private_lock);
3560 			if (!PagePrivate(page)) {
3561 				spin_unlock(&mapping->private_lock);
3562 				continue;
3563 			}
3564 
3565 			eb = (struct extent_buffer *)page->private;
3566 
3567 			/*
3568 			 * Shouldn't happen and normally this would be a BUG_ON
3569 			 * but no sense in crashing the users box for something
3570 			 * we can survive anyway.
3571 			 */
3572 			if (!eb) {
3573 				spin_unlock(&mapping->private_lock);
3574 				WARN_ON(1);
3575 				continue;
3576 			}
3577 
3578 			if (eb == prev_eb) {
3579 				spin_unlock(&mapping->private_lock);
3580 				continue;
3581 			}
3582 
3583 			ret = atomic_inc_not_zero(&eb->refs);
3584 			spin_unlock(&mapping->private_lock);
3585 			if (!ret)
3586 				continue;
3587 
3588 			prev_eb = eb;
3589 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3590 			if (!ret) {
3591 				free_extent_buffer(eb);
3592 				continue;
3593 			}
3594 
3595 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3596 			if (ret) {
3597 				done = 1;
3598 				free_extent_buffer(eb);
3599 				break;
3600 			}
3601 			free_extent_buffer(eb);
3602 
3603 			/*
3604 			 * the filesystem may choose to bump up nr_to_write.
3605 			 * We have to make sure to honor the new nr_to_write
3606 			 * at any time
3607 			 */
3608 			nr_to_write_done = wbc->nr_to_write <= 0;
3609 		}
3610 		pagevec_release(&pvec);
3611 		cond_resched();
3612 	}
3613 	if (!scanned && !done) {
3614 		/*
3615 		 * We hit the last page and there is more work to be done: wrap
3616 		 * back to the start of the file
3617 		 */
3618 		scanned = 1;
3619 		index = 0;
3620 		goto retry;
3621 	}
3622 	flush_write_bio(&epd);
3623 	return ret;
3624 }
3625 
3626 /**
3627  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3628  * @mapping: address space structure to write
3629  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3630  * @writepage: function called for each page
3631  * @data: data passed to writepage function
3632  *
3633  * If a page is already under I/O, write_cache_pages() skips it, even
3634  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3635  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3636  * and msync() need to guarantee that all the data which was dirty at the time
3637  * the call was made get new I/O started against them.  If wbc->sync_mode is
3638  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3639  * existing IO to complete.
3640  */
3641 static int extent_write_cache_pages(struct extent_io_tree *tree,
3642 			     struct address_space *mapping,
3643 			     struct writeback_control *wbc,
3644 			     writepage_t writepage, void *data,
3645 			     void (*flush_fn)(void *))
3646 {
3647 	struct inode *inode = mapping->host;
3648 	int ret = 0;
3649 	int done = 0;
3650 	int nr_to_write_done = 0;
3651 	struct pagevec pvec;
3652 	int nr_pages;
3653 	pgoff_t index;
3654 	pgoff_t end;		/* Inclusive */
3655 	int scanned = 0;
3656 	int tag;
3657 
3658 	/*
3659 	 * We have to hold onto the inode so that ordered extents can do their
3660 	 * work when the IO finishes.  The alternative to this is failing to add
3661 	 * an ordered extent if the igrab() fails there and that is a huge pain
3662 	 * to deal with, so instead just hold onto the inode throughout the
3663 	 * writepages operation.  If it fails here we are freeing up the inode
3664 	 * anyway and we'd rather not waste our time writing out stuff that is
3665 	 * going to be truncated anyway.
3666 	 */
3667 	if (!igrab(inode))
3668 		return 0;
3669 
3670 	pagevec_init(&pvec, 0);
3671 	if (wbc->range_cyclic) {
3672 		index = mapping->writeback_index; /* Start from prev offset */
3673 		end = -1;
3674 	} else {
3675 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3676 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3677 		scanned = 1;
3678 	}
3679 	if (wbc->sync_mode == WB_SYNC_ALL)
3680 		tag = PAGECACHE_TAG_TOWRITE;
3681 	else
3682 		tag = PAGECACHE_TAG_DIRTY;
3683 retry:
3684 	if (wbc->sync_mode == WB_SYNC_ALL)
3685 		tag_pages_for_writeback(mapping, index, end);
3686 	while (!done && !nr_to_write_done && (index <= end) &&
3687 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3688 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3689 		unsigned i;
3690 
3691 		scanned = 1;
3692 		for (i = 0; i < nr_pages; i++) {
3693 			struct page *page = pvec.pages[i];
3694 
3695 			/*
3696 			 * At this point we hold neither mapping->tree_lock nor
3697 			 * lock on the page itself: the page may be truncated or
3698 			 * invalidated (changing page->mapping to NULL), or even
3699 			 * swizzled back from swapper_space to tmpfs file
3700 			 * mapping
3701 			 */
3702 			if (!trylock_page(page)) {
3703 				flush_fn(data);
3704 				lock_page(page);
3705 			}
3706 
3707 			if (unlikely(page->mapping != mapping)) {
3708 				unlock_page(page);
3709 				continue;
3710 			}
3711 
3712 			if (!wbc->range_cyclic && page->index > end) {
3713 				done = 1;
3714 				unlock_page(page);
3715 				continue;
3716 			}
3717 
3718 			if (wbc->sync_mode != WB_SYNC_NONE) {
3719 				if (PageWriteback(page))
3720 					flush_fn(data);
3721 				wait_on_page_writeback(page);
3722 			}
3723 
3724 			if (PageWriteback(page) ||
3725 			    !clear_page_dirty_for_io(page)) {
3726 				unlock_page(page);
3727 				continue;
3728 			}
3729 
3730 			ret = (*writepage)(page, wbc, data);
3731 
3732 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3733 				unlock_page(page);
3734 				ret = 0;
3735 			}
3736 			if (ret)
3737 				done = 1;
3738 
3739 			/*
3740 			 * the filesystem may choose to bump up nr_to_write.
3741 			 * We have to make sure to honor the new nr_to_write
3742 			 * at any time
3743 			 */
3744 			nr_to_write_done = wbc->nr_to_write <= 0;
3745 		}
3746 		pagevec_release(&pvec);
3747 		cond_resched();
3748 	}
3749 	if (!scanned && !done) {
3750 		/*
3751 		 * We hit the last page and there is more work to be done: wrap
3752 		 * back to the start of the file
3753 		 */
3754 		scanned = 1;
3755 		index = 0;
3756 		goto retry;
3757 	}
3758 	btrfs_add_delayed_iput(inode);
3759 	return ret;
3760 }
3761 
3762 static void flush_epd_write_bio(struct extent_page_data *epd)
3763 {
3764 	if (epd->bio) {
3765 		int rw = WRITE;
3766 		int ret;
3767 
3768 		if (epd->sync_io)
3769 			rw = WRITE_SYNC;
3770 
3771 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3772 		BUG_ON(ret < 0); /* -ENOMEM */
3773 		epd->bio = NULL;
3774 	}
3775 }
3776 
3777 static noinline void flush_write_bio(void *data)
3778 {
3779 	struct extent_page_data *epd = data;
3780 	flush_epd_write_bio(epd);
3781 }
3782 
3783 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3784 			  get_extent_t *get_extent,
3785 			  struct writeback_control *wbc)
3786 {
3787 	int ret;
3788 	struct extent_page_data epd = {
3789 		.bio = NULL,
3790 		.tree = tree,
3791 		.get_extent = get_extent,
3792 		.extent_locked = 0,
3793 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3794 		.bio_flags = 0,
3795 	};
3796 
3797 	ret = __extent_writepage(page, wbc, &epd);
3798 
3799 	flush_epd_write_bio(&epd);
3800 	return ret;
3801 }
3802 
3803 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3804 			      u64 start, u64 end, get_extent_t *get_extent,
3805 			      int mode)
3806 {
3807 	int ret = 0;
3808 	struct address_space *mapping = inode->i_mapping;
3809 	struct page *page;
3810 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3811 		PAGE_CACHE_SHIFT;
3812 
3813 	struct extent_page_data epd = {
3814 		.bio = NULL,
3815 		.tree = tree,
3816 		.get_extent = get_extent,
3817 		.extent_locked = 1,
3818 		.sync_io = mode == WB_SYNC_ALL,
3819 		.bio_flags = 0,
3820 	};
3821 	struct writeback_control wbc_writepages = {
3822 		.sync_mode	= mode,
3823 		.nr_to_write	= nr_pages * 2,
3824 		.range_start	= start,
3825 		.range_end	= end + 1,
3826 	};
3827 
3828 	while (start <= end) {
3829 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3830 		if (clear_page_dirty_for_io(page))
3831 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3832 		else {
3833 			if (tree->ops && tree->ops->writepage_end_io_hook)
3834 				tree->ops->writepage_end_io_hook(page, start,
3835 						 start + PAGE_CACHE_SIZE - 1,
3836 						 NULL, 1);
3837 			unlock_page(page);
3838 		}
3839 		page_cache_release(page);
3840 		start += PAGE_CACHE_SIZE;
3841 	}
3842 
3843 	flush_epd_write_bio(&epd);
3844 	return ret;
3845 }
3846 
3847 int extent_writepages(struct extent_io_tree *tree,
3848 		      struct address_space *mapping,
3849 		      get_extent_t *get_extent,
3850 		      struct writeback_control *wbc)
3851 {
3852 	int ret = 0;
3853 	struct extent_page_data epd = {
3854 		.bio = NULL,
3855 		.tree = tree,
3856 		.get_extent = get_extent,
3857 		.extent_locked = 0,
3858 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3859 		.bio_flags = 0,
3860 	};
3861 
3862 	ret = extent_write_cache_pages(tree, mapping, wbc,
3863 				       __extent_writepage, &epd,
3864 				       flush_write_bio);
3865 	flush_epd_write_bio(&epd);
3866 	return ret;
3867 }
3868 
3869 int extent_readpages(struct extent_io_tree *tree,
3870 		     struct address_space *mapping,
3871 		     struct list_head *pages, unsigned nr_pages,
3872 		     get_extent_t get_extent)
3873 {
3874 	struct bio *bio = NULL;
3875 	unsigned page_idx;
3876 	unsigned long bio_flags = 0;
3877 	struct page *pagepool[16];
3878 	struct page *page;
3879 	struct extent_map *em_cached = NULL;
3880 	int nr = 0;
3881 
3882 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3883 		page = list_entry(pages->prev, struct page, lru);
3884 
3885 		prefetchw(&page->flags);
3886 		list_del(&page->lru);
3887 		if (add_to_page_cache_lru(page, mapping,
3888 					page->index, GFP_NOFS)) {
3889 			page_cache_release(page);
3890 			continue;
3891 		}
3892 
3893 		pagepool[nr++] = page;
3894 		if (nr < ARRAY_SIZE(pagepool))
3895 			continue;
3896 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3897 				   &bio, 0, &bio_flags, READ);
3898 		nr = 0;
3899 	}
3900 	if (nr)
3901 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3902 				   &bio, 0, &bio_flags, READ);
3903 
3904 	if (em_cached)
3905 		free_extent_map(em_cached);
3906 
3907 	BUG_ON(!list_empty(pages));
3908 	if (bio)
3909 		return submit_one_bio(READ, bio, 0, bio_flags);
3910 	return 0;
3911 }
3912 
3913 /*
3914  * basic invalidatepage code, this waits on any locked or writeback
3915  * ranges corresponding to the page, and then deletes any extent state
3916  * records from the tree
3917  */
3918 int extent_invalidatepage(struct extent_io_tree *tree,
3919 			  struct page *page, unsigned long offset)
3920 {
3921 	struct extent_state *cached_state = NULL;
3922 	u64 start = page_offset(page);
3923 	u64 end = start + PAGE_CACHE_SIZE - 1;
3924 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3925 
3926 	start += ALIGN(offset, blocksize);
3927 	if (start > end)
3928 		return 0;
3929 
3930 	lock_extent_bits(tree, start, end, 0, &cached_state);
3931 	wait_on_page_writeback(page);
3932 	clear_extent_bit(tree, start, end,
3933 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3934 			 EXTENT_DO_ACCOUNTING,
3935 			 1, 1, &cached_state, GFP_NOFS);
3936 	return 0;
3937 }
3938 
3939 /*
3940  * a helper for releasepage, this tests for areas of the page that
3941  * are locked or under IO and drops the related state bits if it is safe
3942  * to drop the page.
3943  */
3944 static int try_release_extent_state(struct extent_map_tree *map,
3945 				    struct extent_io_tree *tree,
3946 				    struct page *page, gfp_t mask)
3947 {
3948 	u64 start = page_offset(page);
3949 	u64 end = start + PAGE_CACHE_SIZE - 1;
3950 	int ret = 1;
3951 
3952 	if (test_range_bit(tree, start, end,
3953 			   EXTENT_IOBITS, 0, NULL))
3954 		ret = 0;
3955 	else {
3956 		if ((mask & GFP_NOFS) == GFP_NOFS)
3957 			mask = GFP_NOFS;
3958 		/*
3959 		 * at this point we can safely clear everything except the
3960 		 * locked bit and the nodatasum bit
3961 		 */
3962 		ret = clear_extent_bit(tree, start, end,
3963 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3964 				 0, 0, NULL, mask);
3965 
3966 		/* if clear_extent_bit failed for enomem reasons,
3967 		 * we can't allow the release to continue.
3968 		 */
3969 		if (ret < 0)
3970 			ret = 0;
3971 		else
3972 			ret = 1;
3973 	}
3974 	return ret;
3975 }
3976 
3977 /*
3978  * a helper for releasepage.  As long as there are no locked extents
3979  * in the range corresponding to the page, both state records and extent
3980  * map records are removed
3981  */
3982 int try_release_extent_mapping(struct extent_map_tree *map,
3983 			       struct extent_io_tree *tree, struct page *page,
3984 			       gfp_t mask)
3985 {
3986 	struct extent_map *em;
3987 	u64 start = page_offset(page);
3988 	u64 end = start + PAGE_CACHE_SIZE - 1;
3989 
3990 	if ((mask & __GFP_WAIT) &&
3991 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3992 		u64 len;
3993 		while (start <= end) {
3994 			len = end - start + 1;
3995 			write_lock(&map->lock);
3996 			em = lookup_extent_mapping(map, start, len);
3997 			if (!em) {
3998 				write_unlock(&map->lock);
3999 				break;
4000 			}
4001 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4002 			    em->start != start) {
4003 				write_unlock(&map->lock);
4004 				free_extent_map(em);
4005 				break;
4006 			}
4007 			if (!test_range_bit(tree, em->start,
4008 					    extent_map_end(em) - 1,
4009 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4010 					    0, NULL)) {
4011 				remove_extent_mapping(map, em);
4012 				/* once for the rb tree */
4013 				free_extent_map(em);
4014 			}
4015 			start = extent_map_end(em);
4016 			write_unlock(&map->lock);
4017 
4018 			/* once for us */
4019 			free_extent_map(em);
4020 		}
4021 	}
4022 	return try_release_extent_state(map, tree, page, mask);
4023 }
4024 
4025 /*
4026  * helper function for fiemap, which doesn't want to see any holes.
4027  * This maps until we find something past 'last'
4028  */
4029 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4030 						u64 offset,
4031 						u64 last,
4032 						get_extent_t *get_extent)
4033 {
4034 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4035 	struct extent_map *em;
4036 	u64 len;
4037 
4038 	if (offset >= last)
4039 		return NULL;
4040 
4041 	while(1) {
4042 		len = last - offset;
4043 		if (len == 0)
4044 			break;
4045 		len = ALIGN(len, sectorsize);
4046 		em = get_extent(inode, NULL, 0, offset, len, 0);
4047 		if (IS_ERR_OR_NULL(em))
4048 			return em;
4049 
4050 		/* if this isn't a hole return it */
4051 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4052 		    em->block_start != EXTENT_MAP_HOLE) {
4053 			return em;
4054 		}
4055 
4056 		/* this is a hole, advance to the next extent */
4057 		offset = extent_map_end(em);
4058 		free_extent_map(em);
4059 		if (offset >= last)
4060 			break;
4061 	}
4062 	return NULL;
4063 }
4064 
4065 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4066 		__u64 start, __u64 len, get_extent_t *get_extent)
4067 {
4068 	int ret = 0;
4069 	u64 off = start;
4070 	u64 max = start + len;
4071 	u32 flags = 0;
4072 	u32 found_type;
4073 	u64 last;
4074 	u64 last_for_get_extent = 0;
4075 	u64 disko = 0;
4076 	u64 isize = i_size_read(inode);
4077 	struct btrfs_key found_key;
4078 	struct extent_map *em = NULL;
4079 	struct extent_state *cached_state = NULL;
4080 	struct btrfs_path *path;
4081 	struct btrfs_file_extent_item *item;
4082 	int end = 0;
4083 	u64 em_start = 0;
4084 	u64 em_len = 0;
4085 	u64 em_end = 0;
4086 	unsigned long emflags;
4087 
4088 	if (len == 0)
4089 		return -EINVAL;
4090 
4091 	path = btrfs_alloc_path();
4092 	if (!path)
4093 		return -ENOMEM;
4094 	path->leave_spinning = 1;
4095 
4096 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4097 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4098 
4099 	/*
4100 	 * lookup the last file extent.  We're not using i_size here
4101 	 * because there might be preallocation past i_size
4102 	 */
4103 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4104 				       path, btrfs_ino(inode), -1, 0);
4105 	if (ret < 0) {
4106 		btrfs_free_path(path);
4107 		return ret;
4108 	}
4109 	WARN_ON(!ret);
4110 	path->slots[0]--;
4111 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4112 			      struct btrfs_file_extent_item);
4113 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4114 	found_type = btrfs_key_type(&found_key);
4115 
4116 	/* No extents, but there might be delalloc bits */
4117 	if (found_key.objectid != btrfs_ino(inode) ||
4118 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4119 		/* have to trust i_size as the end */
4120 		last = (u64)-1;
4121 		last_for_get_extent = isize;
4122 	} else {
4123 		/*
4124 		 * remember the start of the last extent.  There are a
4125 		 * bunch of different factors that go into the length of the
4126 		 * extent, so its much less complex to remember where it started
4127 		 */
4128 		last = found_key.offset;
4129 		last_for_get_extent = last + 1;
4130 	}
4131 	btrfs_free_path(path);
4132 
4133 	/*
4134 	 * we might have some extents allocated but more delalloc past those
4135 	 * extents.  so, we trust isize unless the start of the last extent is
4136 	 * beyond isize
4137 	 */
4138 	if (last < isize) {
4139 		last = (u64)-1;
4140 		last_for_get_extent = isize;
4141 	}
4142 
4143 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4144 			 &cached_state);
4145 
4146 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4147 				   get_extent);
4148 	if (!em)
4149 		goto out;
4150 	if (IS_ERR(em)) {
4151 		ret = PTR_ERR(em);
4152 		goto out;
4153 	}
4154 
4155 	while (!end) {
4156 		u64 offset_in_extent = 0;
4157 
4158 		/* break if the extent we found is outside the range */
4159 		if (em->start >= max || extent_map_end(em) < off)
4160 			break;
4161 
4162 		/*
4163 		 * get_extent may return an extent that starts before our
4164 		 * requested range.  We have to make sure the ranges
4165 		 * we return to fiemap always move forward and don't
4166 		 * overlap, so adjust the offsets here
4167 		 */
4168 		em_start = max(em->start, off);
4169 
4170 		/*
4171 		 * record the offset from the start of the extent
4172 		 * for adjusting the disk offset below.  Only do this if the
4173 		 * extent isn't compressed since our in ram offset may be past
4174 		 * what we have actually allocated on disk.
4175 		 */
4176 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4177 			offset_in_extent = em_start - em->start;
4178 		em_end = extent_map_end(em);
4179 		em_len = em_end - em_start;
4180 		emflags = em->flags;
4181 		disko = 0;
4182 		flags = 0;
4183 
4184 		/*
4185 		 * bump off for our next call to get_extent
4186 		 */
4187 		off = extent_map_end(em);
4188 		if (off >= max)
4189 			end = 1;
4190 
4191 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4192 			end = 1;
4193 			flags |= FIEMAP_EXTENT_LAST;
4194 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4195 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4196 				  FIEMAP_EXTENT_NOT_ALIGNED);
4197 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4198 			flags |= (FIEMAP_EXTENT_DELALLOC |
4199 				  FIEMAP_EXTENT_UNKNOWN);
4200 		} else {
4201 			disko = em->block_start + offset_in_extent;
4202 		}
4203 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4204 			flags |= FIEMAP_EXTENT_ENCODED;
4205 
4206 		free_extent_map(em);
4207 		em = NULL;
4208 		if ((em_start >= last) || em_len == (u64)-1 ||
4209 		   (last == (u64)-1 && isize <= em_end)) {
4210 			flags |= FIEMAP_EXTENT_LAST;
4211 			end = 1;
4212 		}
4213 
4214 		/* now scan forward to see if this is really the last extent. */
4215 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4216 					   get_extent);
4217 		if (IS_ERR(em)) {
4218 			ret = PTR_ERR(em);
4219 			goto out;
4220 		}
4221 		if (!em) {
4222 			flags |= FIEMAP_EXTENT_LAST;
4223 			end = 1;
4224 		}
4225 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4226 					      em_len, flags);
4227 		if (ret)
4228 			goto out_free;
4229 	}
4230 out_free:
4231 	free_extent_map(em);
4232 out:
4233 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4234 			     &cached_state, GFP_NOFS);
4235 	return ret;
4236 }
4237 
4238 static void __free_extent_buffer(struct extent_buffer *eb)
4239 {
4240 	btrfs_leak_debug_del(&eb->leak_list);
4241 	kmem_cache_free(extent_buffer_cache, eb);
4242 }
4243 
4244 static int extent_buffer_under_io(struct extent_buffer *eb)
4245 {
4246 	return (atomic_read(&eb->io_pages) ||
4247 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4248 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4249 }
4250 
4251 /*
4252  * Helper for releasing extent buffer page.
4253  */
4254 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4255 						unsigned long start_idx)
4256 {
4257 	unsigned long index;
4258 	unsigned long num_pages;
4259 	struct page *page;
4260 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4261 
4262 	BUG_ON(extent_buffer_under_io(eb));
4263 
4264 	num_pages = num_extent_pages(eb->start, eb->len);
4265 	index = start_idx + num_pages;
4266 	if (start_idx >= index)
4267 		return;
4268 
4269 	do {
4270 		index--;
4271 		page = extent_buffer_page(eb, index);
4272 		if (page && mapped) {
4273 			spin_lock(&page->mapping->private_lock);
4274 			/*
4275 			 * We do this since we'll remove the pages after we've
4276 			 * removed the eb from the radix tree, so we could race
4277 			 * and have this page now attached to the new eb.  So
4278 			 * only clear page_private if it's still connected to
4279 			 * this eb.
4280 			 */
4281 			if (PagePrivate(page) &&
4282 			    page->private == (unsigned long)eb) {
4283 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4284 				BUG_ON(PageDirty(page));
4285 				BUG_ON(PageWriteback(page));
4286 				/*
4287 				 * We need to make sure we haven't be attached
4288 				 * to a new eb.
4289 				 */
4290 				ClearPagePrivate(page);
4291 				set_page_private(page, 0);
4292 				/* One for the page private */
4293 				page_cache_release(page);
4294 			}
4295 			spin_unlock(&page->mapping->private_lock);
4296 
4297 		}
4298 		if (page) {
4299 			/* One for when we alloced the page */
4300 			page_cache_release(page);
4301 		}
4302 	} while (index != start_idx);
4303 }
4304 
4305 /*
4306  * Helper for releasing the extent buffer.
4307  */
4308 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4309 {
4310 	btrfs_release_extent_buffer_page(eb, 0);
4311 	__free_extent_buffer(eb);
4312 }
4313 
4314 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4315 						   u64 start,
4316 						   unsigned long len,
4317 						   gfp_t mask)
4318 {
4319 	struct extent_buffer *eb = NULL;
4320 
4321 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4322 	if (eb == NULL)
4323 		return NULL;
4324 	eb->start = start;
4325 	eb->len = len;
4326 	eb->tree = tree;
4327 	eb->bflags = 0;
4328 	rwlock_init(&eb->lock);
4329 	atomic_set(&eb->write_locks, 0);
4330 	atomic_set(&eb->read_locks, 0);
4331 	atomic_set(&eb->blocking_readers, 0);
4332 	atomic_set(&eb->blocking_writers, 0);
4333 	atomic_set(&eb->spinning_readers, 0);
4334 	atomic_set(&eb->spinning_writers, 0);
4335 	eb->lock_nested = 0;
4336 	init_waitqueue_head(&eb->write_lock_wq);
4337 	init_waitqueue_head(&eb->read_lock_wq);
4338 
4339 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4340 
4341 	spin_lock_init(&eb->refs_lock);
4342 	atomic_set(&eb->refs, 1);
4343 	atomic_set(&eb->io_pages, 0);
4344 
4345 	/*
4346 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4347 	 */
4348 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4349 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4350 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4351 
4352 	return eb;
4353 }
4354 
4355 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4356 {
4357 	unsigned long i;
4358 	struct page *p;
4359 	struct extent_buffer *new;
4360 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4361 
4362 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4363 	if (new == NULL)
4364 		return NULL;
4365 
4366 	for (i = 0; i < num_pages; i++) {
4367 		p = alloc_page(GFP_NOFS);
4368 		if (!p) {
4369 			btrfs_release_extent_buffer(new);
4370 			return NULL;
4371 		}
4372 		attach_extent_buffer_page(new, p);
4373 		WARN_ON(PageDirty(p));
4374 		SetPageUptodate(p);
4375 		new->pages[i] = p;
4376 	}
4377 
4378 	copy_extent_buffer(new, src, 0, 0, src->len);
4379 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4380 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4381 
4382 	return new;
4383 }
4384 
4385 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4386 {
4387 	struct extent_buffer *eb;
4388 	unsigned long num_pages = num_extent_pages(0, len);
4389 	unsigned long i;
4390 
4391 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4392 	if (!eb)
4393 		return NULL;
4394 
4395 	for (i = 0; i < num_pages; i++) {
4396 		eb->pages[i] = alloc_page(GFP_NOFS);
4397 		if (!eb->pages[i])
4398 			goto err;
4399 	}
4400 	set_extent_buffer_uptodate(eb);
4401 	btrfs_set_header_nritems(eb, 0);
4402 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4403 
4404 	return eb;
4405 err:
4406 	for (; i > 0; i--)
4407 		__free_page(eb->pages[i - 1]);
4408 	__free_extent_buffer(eb);
4409 	return NULL;
4410 }
4411 
4412 static void check_buffer_tree_ref(struct extent_buffer *eb)
4413 {
4414 	int refs;
4415 	/* the ref bit is tricky.  We have to make sure it is set
4416 	 * if we have the buffer dirty.   Otherwise the
4417 	 * code to free a buffer can end up dropping a dirty
4418 	 * page
4419 	 *
4420 	 * Once the ref bit is set, it won't go away while the
4421 	 * buffer is dirty or in writeback, and it also won't
4422 	 * go away while we have the reference count on the
4423 	 * eb bumped.
4424 	 *
4425 	 * We can't just set the ref bit without bumping the
4426 	 * ref on the eb because free_extent_buffer might
4427 	 * see the ref bit and try to clear it.  If this happens
4428 	 * free_extent_buffer might end up dropping our original
4429 	 * ref by mistake and freeing the page before we are able
4430 	 * to add one more ref.
4431 	 *
4432 	 * So bump the ref count first, then set the bit.  If someone
4433 	 * beat us to it, drop the ref we added.
4434 	 */
4435 	refs = atomic_read(&eb->refs);
4436 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4437 		return;
4438 
4439 	spin_lock(&eb->refs_lock);
4440 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4441 		atomic_inc(&eb->refs);
4442 	spin_unlock(&eb->refs_lock);
4443 }
4444 
4445 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4446 {
4447 	unsigned long num_pages, i;
4448 
4449 	check_buffer_tree_ref(eb);
4450 
4451 	num_pages = num_extent_pages(eb->start, eb->len);
4452 	for (i = 0; i < num_pages; i++) {
4453 		struct page *p = extent_buffer_page(eb, i);
4454 		mark_page_accessed(p);
4455 	}
4456 }
4457 
4458 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4459 					  u64 start, unsigned long len)
4460 {
4461 	unsigned long num_pages = num_extent_pages(start, len);
4462 	unsigned long i;
4463 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4464 	struct extent_buffer *eb;
4465 	struct extent_buffer *exists = NULL;
4466 	struct page *p;
4467 	struct address_space *mapping = tree->mapping;
4468 	int uptodate = 1;
4469 	int ret;
4470 
4471 	rcu_read_lock();
4472 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4473 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4474 		rcu_read_unlock();
4475 		mark_extent_buffer_accessed(eb);
4476 		return eb;
4477 	}
4478 	rcu_read_unlock();
4479 
4480 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4481 	if (!eb)
4482 		return NULL;
4483 
4484 	for (i = 0; i < num_pages; i++, index++) {
4485 		p = find_or_create_page(mapping, index, GFP_NOFS);
4486 		if (!p)
4487 			goto free_eb;
4488 
4489 		spin_lock(&mapping->private_lock);
4490 		if (PagePrivate(p)) {
4491 			/*
4492 			 * We could have already allocated an eb for this page
4493 			 * and attached one so lets see if we can get a ref on
4494 			 * the existing eb, and if we can we know it's good and
4495 			 * we can just return that one, else we know we can just
4496 			 * overwrite page->private.
4497 			 */
4498 			exists = (struct extent_buffer *)p->private;
4499 			if (atomic_inc_not_zero(&exists->refs)) {
4500 				spin_unlock(&mapping->private_lock);
4501 				unlock_page(p);
4502 				page_cache_release(p);
4503 				mark_extent_buffer_accessed(exists);
4504 				goto free_eb;
4505 			}
4506 
4507 			/*
4508 			 * Do this so attach doesn't complain and we need to
4509 			 * drop the ref the old guy had.
4510 			 */
4511 			ClearPagePrivate(p);
4512 			WARN_ON(PageDirty(p));
4513 			page_cache_release(p);
4514 		}
4515 		attach_extent_buffer_page(eb, p);
4516 		spin_unlock(&mapping->private_lock);
4517 		WARN_ON(PageDirty(p));
4518 		mark_page_accessed(p);
4519 		eb->pages[i] = p;
4520 		if (!PageUptodate(p))
4521 			uptodate = 0;
4522 
4523 		/*
4524 		 * see below about how we avoid a nasty race with release page
4525 		 * and why we unlock later
4526 		 */
4527 	}
4528 	if (uptodate)
4529 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4530 again:
4531 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4532 	if (ret)
4533 		goto free_eb;
4534 
4535 	spin_lock(&tree->buffer_lock);
4536 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4537 	if (ret == -EEXIST) {
4538 		exists = radix_tree_lookup(&tree->buffer,
4539 						start >> PAGE_CACHE_SHIFT);
4540 		if (!atomic_inc_not_zero(&exists->refs)) {
4541 			spin_unlock(&tree->buffer_lock);
4542 			radix_tree_preload_end();
4543 			exists = NULL;
4544 			goto again;
4545 		}
4546 		spin_unlock(&tree->buffer_lock);
4547 		radix_tree_preload_end();
4548 		mark_extent_buffer_accessed(exists);
4549 		goto free_eb;
4550 	}
4551 	/* add one reference for the tree */
4552 	check_buffer_tree_ref(eb);
4553 	spin_unlock(&tree->buffer_lock);
4554 	radix_tree_preload_end();
4555 
4556 	/*
4557 	 * there is a race where release page may have
4558 	 * tried to find this extent buffer in the radix
4559 	 * but failed.  It will tell the VM it is safe to
4560 	 * reclaim the, and it will clear the page private bit.
4561 	 * We must make sure to set the page private bit properly
4562 	 * after the extent buffer is in the radix tree so
4563 	 * it doesn't get lost
4564 	 */
4565 	SetPageChecked(eb->pages[0]);
4566 	for (i = 1; i < num_pages; i++) {
4567 		p = extent_buffer_page(eb, i);
4568 		ClearPageChecked(p);
4569 		unlock_page(p);
4570 	}
4571 	unlock_page(eb->pages[0]);
4572 	return eb;
4573 
4574 free_eb:
4575 	for (i = 0; i < num_pages; i++) {
4576 		if (eb->pages[i])
4577 			unlock_page(eb->pages[i]);
4578 	}
4579 
4580 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4581 	btrfs_release_extent_buffer(eb);
4582 	return exists;
4583 }
4584 
4585 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4586 					 u64 start, unsigned long len)
4587 {
4588 	struct extent_buffer *eb;
4589 
4590 	rcu_read_lock();
4591 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4592 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4593 		rcu_read_unlock();
4594 		mark_extent_buffer_accessed(eb);
4595 		return eb;
4596 	}
4597 	rcu_read_unlock();
4598 
4599 	return NULL;
4600 }
4601 
4602 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4603 {
4604 	struct extent_buffer *eb =
4605 			container_of(head, struct extent_buffer, rcu_head);
4606 
4607 	__free_extent_buffer(eb);
4608 }
4609 
4610 /* Expects to have eb->eb_lock already held */
4611 static int release_extent_buffer(struct extent_buffer *eb)
4612 {
4613 	WARN_ON(atomic_read(&eb->refs) == 0);
4614 	if (atomic_dec_and_test(&eb->refs)) {
4615 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4616 			spin_unlock(&eb->refs_lock);
4617 		} else {
4618 			struct extent_io_tree *tree = eb->tree;
4619 
4620 			spin_unlock(&eb->refs_lock);
4621 
4622 			spin_lock(&tree->buffer_lock);
4623 			radix_tree_delete(&tree->buffer,
4624 					  eb->start >> PAGE_CACHE_SHIFT);
4625 			spin_unlock(&tree->buffer_lock);
4626 		}
4627 
4628 		/* Should be safe to release our pages at this point */
4629 		btrfs_release_extent_buffer_page(eb, 0);
4630 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4631 		return 1;
4632 	}
4633 	spin_unlock(&eb->refs_lock);
4634 
4635 	return 0;
4636 }
4637 
4638 void free_extent_buffer(struct extent_buffer *eb)
4639 {
4640 	int refs;
4641 	int old;
4642 	if (!eb)
4643 		return;
4644 
4645 	while (1) {
4646 		refs = atomic_read(&eb->refs);
4647 		if (refs <= 3)
4648 			break;
4649 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4650 		if (old == refs)
4651 			return;
4652 	}
4653 
4654 	spin_lock(&eb->refs_lock);
4655 	if (atomic_read(&eb->refs) == 2 &&
4656 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4657 		atomic_dec(&eb->refs);
4658 
4659 	if (atomic_read(&eb->refs) == 2 &&
4660 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4661 	    !extent_buffer_under_io(eb) &&
4662 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4663 		atomic_dec(&eb->refs);
4664 
4665 	/*
4666 	 * I know this is terrible, but it's temporary until we stop tracking
4667 	 * the uptodate bits and such for the extent buffers.
4668 	 */
4669 	release_extent_buffer(eb);
4670 }
4671 
4672 void free_extent_buffer_stale(struct extent_buffer *eb)
4673 {
4674 	if (!eb)
4675 		return;
4676 
4677 	spin_lock(&eb->refs_lock);
4678 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4679 
4680 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4681 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4682 		atomic_dec(&eb->refs);
4683 	release_extent_buffer(eb);
4684 }
4685 
4686 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4687 {
4688 	unsigned long i;
4689 	unsigned long num_pages;
4690 	struct page *page;
4691 
4692 	num_pages = num_extent_pages(eb->start, eb->len);
4693 
4694 	for (i = 0; i < num_pages; i++) {
4695 		page = extent_buffer_page(eb, i);
4696 		if (!PageDirty(page))
4697 			continue;
4698 
4699 		lock_page(page);
4700 		WARN_ON(!PagePrivate(page));
4701 
4702 		clear_page_dirty_for_io(page);
4703 		spin_lock_irq(&page->mapping->tree_lock);
4704 		if (!PageDirty(page)) {
4705 			radix_tree_tag_clear(&page->mapping->page_tree,
4706 						page_index(page),
4707 						PAGECACHE_TAG_DIRTY);
4708 		}
4709 		spin_unlock_irq(&page->mapping->tree_lock);
4710 		ClearPageError(page);
4711 		unlock_page(page);
4712 	}
4713 	WARN_ON(atomic_read(&eb->refs) == 0);
4714 }
4715 
4716 int set_extent_buffer_dirty(struct extent_buffer *eb)
4717 {
4718 	unsigned long i;
4719 	unsigned long num_pages;
4720 	int was_dirty = 0;
4721 
4722 	check_buffer_tree_ref(eb);
4723 
4724 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4725 
4726 	num_pages = num_extent_pages(eb->start, eb->len);
4727 	WARN_ON(atomic_read(&eb->refs) == 0);
4728 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4729 
4730 	for (i = 0; i < num_pages; i++)
4731 		set_page_dirty(extent_buffer_page(eb, i));
4732 	return was_dirty;
4733 }
4734 
4735 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4736 {
4737 	unsigned long i;
4738 	struct page *page;
4739 	unsigned long num_pages;
4740 
4741 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4742 	num_pages = num_extent_pages(eb->start, eb->len);
4743 	for (i = 0; i < num_pages; i++) {
4744 		page = extent_buffer_page(eb, i);
4745 		if (page)
4746 			ClearPageUptodate(page);
4747 	}
4748 	return 0;
4749 }
4750 
4751 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4752 {
4753 	unsigned long i;
4754 	struct page *page;
4755 	unsigned long num_pages;
4756 
4757 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4758 	num_pages = num_extent_pages(eb->start, eb->len);
4759 	for (i = 0; i < num_pages; i++) {
4760 		page = extent_buffer_page(eb, i);
4761 		SetPageUptodate(page);
4762 	}
4763 	return 0;
4764 }
4765 
4766 int extent_buffer_uptodate(struct extent_buffer *eb)
4767 {
4768 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4769 }
4770 
4771 int read_extent_buffer_pages(struct extent_io_tree *tree,
4772 			     struct extent_buffer *eb, u64 start, int wait,
4773 			     get_extent_t *get_extent, int mirror_num)
4774 {
4775 	unsigned long i;
4776 	unsigned long start_i;
4777 	struct page *page;
4778 	int err;
4779 	int ret = 0;
4780 	int locked_pages = 0;
4781 	int all_uptodate = 1;
4782 	unsigned long num_pages;
4783 	unsigned long num_reads = 0;
4784 	struct bio *bio = NULL;
4785 	unsigned long bio_flags = 0;
4786 
4787 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4788 		return 0;
4789 
4790 	if (start) {
4791 		WARN_ON(start < eb->start);
4792 		start_i = (start >> PAGE_CACHE_SHIFT) -
4793 			(eb->start >> PAGE_CACHE_SHIFT);
4794 	} else {
4795 		start_i = 0;
4796 	}
4797 
4798 	num_pages = num_extent_pages(eb->start, eb->len);
4799 	for (i = start_i; i < num_pages; i++) {
4800 		page = extent_buffer_page(eb, i);
4801 		if (wait == WAIT_NONE) {
4802 			if (!trylock_page(page))
4803 				goto unlock_exit;
4804 		} else {
4805 			lock_page(page);
4806 		}
4807 		locked_pages++;
4808 		if (!PageUptodate(page)) {
4809 			num_reads++;
4810 			all_uptodate = 0;
4811 		}
4812 	}
4813 	if (all_uptodate) {
4814 		if (start_i == 0)
4815 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4816 		goto unlock_exit;
4817 	}
4818 
4819 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4820 	eb->read_mirror = 0;
4821 	atomic_set(&eb->io_pages, num_reads);
4822 	for (i = start_i; i < num_pages; i++) {
4823 		page = extent_buffer_page(eb, i);
4824 		if (!PageUptodate(page)) {
4825 			ClearPageError(page);
4826 			err = __extent_read_full_page(tree, page,
4827 						      get_extent, &bio,
4828 						      mirror_num, &bio_flags,
4829 						      READ | REQ_META);
4830 			if (err)
4831 				ret = err;
4832 		} else {
4833 			unlock_page(page);
4834 		}
4835 	}
4836 
4837 	if (bio) {
4838 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4839 				     bio_flags);
4840 		if (err)
4841 			return err;
4842 	}
4843 
4844 	if (ret || wait != WAIT_COMPLETE)
4845 		return ret;
4846 
4847 	for (i = start_i; i < num_pages; i++) {
4848 		page = extent_buffer_page(eb, i);
4849 		wait_on_page_locked(page);
4850 		if (!PageUptodate(page))
4851 			ret = -EIO;
4852 	}
4853 
4854 	return ret;
4855 
4856 unlock_exit:
4857 	i = start_i;
4858 	while (locked_pages > 0) {
4859 		page = extent_buffer_page(eb, i);
4860 		i++;
4861 		unlock_page(page);
4862 		locked_pages--;
4863 	}
4864 	return ret;
4865 }
4866 
4867 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4868 			unsigned long start,
4869 			unsigned long len)
4870 {
4871 	size_t cur;
4872 	size_t offset;
4873 	struct page *page;
4874 	char *kaddr;
4875 	char *dst = (char *)dstv;
4876 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4877 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4878 
4879 	WARN_ON(start > eb->len);
4880 	WARN_ON(start + len > eb->start + eb->len);
4881 
4882 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4883 
4884 	while (len > 0) {
4885 		page = extent_buffer_page(eb, i);
4886 
4887 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4888 		kaddr = page_address(page);
4889 		memcpy(dst, kaddr + offset, cur);
4890 
4891 		dst += cur;
4892 		len -= cur;
4893 		offset = 0;
4894 		i++;
4895 	}
4896 }
4897 
4898 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4899 			       unsigned long min_len, char **map,
4900 			       unsigned long *map_start,
4901 			       unsigned long *map_len)
4902 {
4903 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4904 	char *kaddr;
4905 	struct page *p;
4906 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4907 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4908 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4909 		PAGE_CACHE_SHIFT;
4910 
4911 	if (i != end_i)
4912 		return -EINVAL;
4913 
4914 	if (i == 0) {
4915 		offset = start_offset;
4916 		*map_start = 0;
4917 	} else {
4918 		offset = 0;
4919 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4920 	}
4921 
4922 	if (start + min_len > eb->len) {
4923 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4924 		       "wanted %lu %lu\n",
4925 		       eb->start, eb->len, start, min_len);
4926 		return -EINVAL;
4927 	}
4928 
4929 	p = extent_buffer_page(eb, i);
4930 	kaddr = page_address(p);
4931 	*map = kaddr + offset;
4932 	*map_len = PAGE_CACHE_SIZE - offset;
4933 	return 0;
4934 }
4935 
4936 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4937 			  unsigned long start,
4938 			  unsigned long len)
4939 {
4940 	size_t cur;
4941 	size_t offset;
4942 	struct page *page;
4943 	char *kaddr;
4944 	char *ptr = (char *)ptrv;
4945 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4946 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4947 	int ret = 0;
4948 
4949 	WARN_ON(start > eb->len);
4950 	WARN_ON(start + len > eb->start + eb->len);
4951 
4952 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4953 
4954 	while (len > 0) {
4955 		page = extent_buffer_page(eb, i);
4956 
4957 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4958 
4959 		kaddr = page_address(page);
4960 		ret = memcmp(ptr, kaddr + offset, cur);
4961 		if (ret)
4962 			break;
4963 
4964 		ptr += cur;
4965 		len -= cur;
4966 		offset = 0;
4967 		i++;
4968 	}
4969 	return ret;
4970 }
4971 
4972 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4973 			 unsigned long start, unsigned long len)
4974 {
4975 	size_t cur;
4976 	size_t offset;
4977 	struct page *page;
4978 	char *kaddr;
4979 	char *src = (char *)srcv;
4980 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4981 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4982 
4983 	WARN_ON(start > eb->len);
4984 	WARN_ON(start + len > eb->start + eb->len);
4985 
4986 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4987 
4988 	while (len > 0) {
4989 		page = extent_buffer_page(eb, i);
4990 		WARN_ON(!PageUptodate(page));
4991 
4992 		cur = min(len, PAGE_CACHE_SIZE - offset);
4993 		kaddr = page_address(page);
4994 		memcpy(kaddr + offset, src, cur);
4995 
4996 		src += cur;
4997 		len -= cur;
4998 		offset = 0;
4999 		i++;
5000 	}
5001 }
5002 
5003 void memset_extent_buffer(struct extent_buffer *eb, char c,
5004 			  unsigned long start, unsigned long len)
5005 {
5006 	size_t cur;
5007 	size_t offset;
5008 	struct page *page;
5009 	char *kaddr;
5010 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5011 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5012 
5013 	WARN_ON(start > eb->len);
5014 	WARN_ON(start + len > eb->start + eb->len);
5015 
5016 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5017 
5018 	while (len > 0) {
5019 		page = extent_buffer_page(eb, i);
5020 		WARN_ON(!PageUptodate(page));
5021 
5022 		cur = min(len, PAGE_CACHE_SIZE - offset);
5023 		kaddr = page_address(page);
5024 		memset(kaddr + offset, c, cur);
5025 
5026 		len -= cur;
5027 		offset = 0;
5028 		i++;
5029 	}
5030 }
5031 
5032 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5033 			unsigned long dst_offset, unsigned long src_offset,
5034 			unsigned long len)
5035 {
5036 	u64 dst_len = dst->len;
5037 	size_t cur;
5038 	size_t offset;
5039 	struct page *page;
5040 	char *kaddr;
5041 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5042 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5043 
5044 	WARN_ON(src->len != dst_len);
5045 
5046 	offset = (start_offset + dst_offset) &
5047 		(PAGE_CACHE_SIZE - 1);
5048 
5049 	while (len > 0) {
5050 		page = extent_buffer_page(dst, i);
5051 		WARN_ON(!PageUptodate(page));
5052 
5053 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5054 
5055 		kaddr = page_address(page);
5056 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5057 
5058 		src_offset += cur;
5059 		len -= cur;
5060 		offset = 0;
5061 		i++;
5062 	}
5063 }
5064 
5065 static void move_pages(struct page *dst_page, struct page *src_page,
5066 		       unsigned long dst_off, unsigned long src_off,
5067 		       unsigned long len)
5068 {
5069 	char *dst_kaddr = page_address(dst_page);
5070 	if (dst_page == src_page) {
5071 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5072 	} else {
5073 		char *src_kaddr = page_address(src_page);
5074 		char *p = dst_kaddr + dst_off + len;
5075 		char *s = src_kaddr + src_off + len;
5076 
5077 		while (len--)
5078 			*--p = *--s;
5079 	}
5080 }
5081 
5082 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5083 {
5084 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5085 	return distance < len;
5086 }
5087 
5088 static void copy_pages(struct page *dst_page, struct page *src_page,
5089 		       unsigned long dst_off, unsigned long src_off,
5090 		       unsigned long len)
5091 {
5092 	char *dst_kaddr = page_address(dst_page);
5093 	char *src_kaddr;
5094 	int must_memmove = 0;
5095 
5096 	if (dst_page != src_page) {
5097 		src_kaddr = page_address(src_page);
5098 	} else {
5099 		src_kaddr = dst_kaddr;
5100 		if (areas_overlap(src_off, dst_off, len))
5101 			must_memmove = 1;
5102 	}
5103 
5104 	if (must_memmove)
5105 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5106 	else
5107 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5108 }
5109 
5110 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5111 			   unsigned long src_offset, unsigned long len)
5112 {
5113 	size_t cur;
5114 	size_t dst_off_in_page;
5115 	size_t src_off_in_page;
5116 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5117 	unsigned long dst_i;
5118 	unsigned long src_i;
5119 
5120 	if (src_offset + len > dst->len) {
5121 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5122 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5123 		BUG_ON(1);
5124 	}
5125 	if (dst_offset + len > dst->len) {
5126 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5127 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5128 		BUG_ON(1);
5129 	}
5130 
5131 	while (len > 0) {
5132 		dst_off_in_page = (start_offset + dst_offset) &
5133 			(PAGE_CACHE_SIZE - 1);
5134 		src_off_in_page = (start_offset + src_offset) &
5135 			(PAGE_CACHE_SIZE - 1);
5136 
5137 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5138 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5139 
5140 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5141 					       src_off_in_page));
5142 		cur = min_t(unsigned long, cur,
5143 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5144 
5145 		copy_pages(extent_buffer_page(dst, dst_i),
5146 			   extent_buffer_page(dst, src_i),
5147 			   dst_off_in_page, src_off_in_page, cur);
5148 
5149 		src_offset += cur;
5150 		dst_offset += cur;
5151 		len -= cur;
5152 	}
5153 }
5154 
5155 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5156 			   unsigned long src_offset, unsigned long len)
5157 {
5158 	size_t cur;
5159 	size_t dst_off_in_page;
5160 	size_t src_off_in_page;
5161 	unsigned long dst_end = dst_offset + len - 1;
5162 	unsigned long src_end = src_offset + len - 1;
5163 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5164 	unsigned long dst_i;
5165 	unsigned long src_i;
5166 
5167 	if (src_offset + len > dst->len) {
5168 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5169 		       "len %lu len %lu\n", src_offset, len, dst->len);
5170 		BUG_ON(1);
5171 	}
5172 	if (dst_offset + len > dst->len) {
5173 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5174 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5175 		BUG_ON(1);
5176 	}
5177 	if (dst_offset < src_offset) {
5178 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5179 		return;
5180 	}
5181 	while (len > 0) {
5182 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5183 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5184 
5185 		dst_off_in_page = (start_offset + dst_end) &
5186 			(PAGE_CACHE_SIZE - 1);
5187 		src_off_in_page = (start_offset + src_end) &
5188 			(PAGE_CACHE_SIZE - 1);
5189 
5190 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5191 		cur = min(cur, dst_off_in_page + 1);
5192 		move_pages(extent_buffer_page(dst, dst_i),
5193 			   extent_buffer_page(dst, src_i),
5194 			   dst_off_in_page - cur + 1,
5195 			   src_off_in_page - cur + 1, cur);
5196 
5197 		dst_end -= cur;
5198 		src_end -= cur;
5199 		len -= cur;
5200 	}
5201 }
5202 
5203 int try_release_extent_buffer(struct page *page)
5204 {
5205 	struct extent_buffer *eb;
5206 
5207 	/*
5208 	 * We need to make sure noboody is attaching this page to an eb right
5209 	 * now.
5210 	 */
5211 	spin_lock(&page->mapping->private_lock);
5212 	if (!PagePrivate(page)) {
5213 		spin_unlock(&page->mapping->private_lock);
5214 		return 1;
5215 	}
5216 
5217 	eb = (struct extent_buffer *)page->private;
5218 	BUG_ON(!eb);
5219 
5220 	/*
5221 	 * This is a little awful but should be ok, we need to make sure that
5222 	 * the eb doesn't disappear out from under us while we're looking at
5223 	 * this page.
5224 	 */
5225 	spin_lock(&eb->refs_lock);
5226 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5227 		spin_unlock(&eb->refs_lock);
5228 		spin_unlock(&page->mapping->private_lock);
5229 		return 0;
5230 	}
5231 	spin_unlock(&page->mapping->private_lock);
5232 
5233 	/*
5234 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5235 	 * so just return, this page will likely be freed soon anyway.
5236 	 */
5237 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5238 		spin_unlock(&eb->refs_lock);
5239 		return 0;
5240 	}
5241 
5242 	return release_extent_buffer(eb);
5243 }
5244