1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 #ifdef CONFIG_BTRFS_DEBUG 29 static LIST_HEAD(buffers); 30 static LIST_HEAD(states); 31 32 static DEFINE_SPINLOCK(leak_lock); 33 34 static inline 35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 36 { 37 unsigned long flags; 38 39 spin_lock_irqsave(&leak_lock, flags); 40 list_add(new, head); 41 spin_unlock_irqrestore(&leak_lock, flags); 42 } 43 44 static inline 45 void btrfs_leak_debug_del(struct list_head *entry) 46 { 47 unsigned long flags; 48 49 spin_lock_irqsave(&leak_lock, flags); 50 list_del(entry); 51 spin_unlock_irqrestore(&leak_lock, flags); 52 } 53 54 static inline 55 void btrfs_leak_debug_check(void) 56 { 57 struct extent_state *state; 58 struct extent_buffer *eb; 59 60 while (!list_empty(&states)) { 61 state = list_entry(states.next, struct extent_state, leak_list); 62 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 63 "state %lu in tree %p refs %d\n", 64 state->start, state->end, state->state, state->tree, 65 atomic_read(&state->refs)); 66 list_del(&state->leak_list); 67 kmem_cache_free(extent_state_cache, state); 68 } 69 70 while (!list_empty(&buffers)) { 71 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 73 "refs %d\n", 74 eb->start, eb->len, atomic_read(&eb->refs)); 75 list_del(&eb->leak_list); 76 kmem_cache_free(extent_buffer_cache, eb); 77 } 78 } 79 80 #define btrfs_debug_check_extent_io_range(inode, start, end) \ 81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end)) 82 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 83 struct inode *inode, u64 start, u64 end) 84 { 85 u64 isize = i_size_read(inode); 86 87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 88 printk_ratelimited(KERN_DEBUG 89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 90 caller, btrfs_ino(inode), isize, start, end); 91 } 92 } 93 #else 94 #define btrfs_leak_debug_add(new, head) do {} while (0) 95 #define btrfs_leak_debug_del(entry) do {} while (0) 96 #define btrfs_leak_debug_check() do {} while (0) 97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 98 #endif 99 100 #define BUFFER_LRU_MAX 64 101 102 struct tree_entry { 103 u64 start; 104 u64 end; 105 struct rb_node rb_node; 106 }; 107 108 struct extent_page_data { 109 struct bio *bio; 110 struct extent_io_tree *tree; 111 get_extent_t *get_extent; 112 unsigned long bio_flags; 113 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use a WRITE_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static noinline void flush_write_bio(void *data); 124 static inline struct btrfs_fs_info * 125 tree_fs_info(struct extent_io_tree *tree) 126 { 127 return btrfs_sb(tree->mapping->host->i_sb); 128 } 129 130 int __init extent_io_init(void) 131 { 132 extent_state_cache = kmem_cache_create("btrfs_extent_state", 133 sizeof(struct extent_state), 0, 134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 135 if (!extent_state_cache) 136 return -ENOMEM; 137 138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 139 sizeof(struct extent_buffer), 0, 140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 141 if (!extent_buffer_cache) 142 goto free_state_cache; 143 144 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 145 offsetof(struct btrfs_io_bio, bio)); 146 if (!btrfs_bioset) 147 goto free_buffer_cache; 148 149 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 150 goto free_bioset; 151 152 return 0; 153 154 free_bioset: 155 bioset_free(btrfs_bioset); 156 btrfs_bioset = NULL; 157 158 free_buffer_cache: 159 kmem_cache_destroy(extent_buffer_cache); 160 extent_buffer_cache = NULL; 161 162 free_state_cache: 163 kmem_cache_destroy(extent_state_cache); 164 extent_state_cache = NULL; 165 return -ENOMEM; 166 } 167 168 void extent_io_exit(void) 169 { 170 btrfs_leak_debug_check(); 171 172 /* 173 * Make sure all delayed rcu free are flushed before we 174 * destroy caches. 175 */ 176 rcu_barrier(); 177 if (extent_state_cache) 178 kmem_cache_destroy(extent_state_cache); 179 if (extent_buffer_cache) 180 kmem_cache_destroy(extent_buffer_cache); 181 if (btrfs_bioset) 182 bioset_free(btrfs_bioset); 183 } 184 185 void extent_io_tree_init(struct extent_io_tree *tree, 186 struct address_space *mapping) 187 { 188 tree->state = RB_ROOT; 189 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 190 tree->ops = NULL; 191 tree->dirty_bytes = 0; 192 spin_lock_init(&tree->lock); 193 spin_lock_init(&tree->buffer_lock); 194 tree->mapping = mapping; 195 } 196 197 static struct extent_state *alloc_extent_state(gfp_t mask) 198 { 199 struct extent_state *state; 200 201 state = kmem_cache_alloc(extent_state_cache, mask); 202 if (!state) 203 return state; 204 state->state = 0; 205 state->private = 0; 206 state->tree = NULL; 207 btrfs_leak_debug_add(&state->leak_list, &states); 208 atomic_set(&state->refs, 1); 209 init_waitqueue_head(&state->wq); 210 trace_alloc_extent_state(state, mask, _RET_IP_); 211 return state; 212 } 213 214 void free_extent_state(struct extent_state *state) 215 { 216 if (!state) 217 return; 218 if (atomic_dec_and_test(&state->refs)) { 219 WARN_ON(state->tree); 220 btrfs_leak_debug_del(&state->leak_list); 221 trace_free_extent_state(state, _RET_IP_); 222 kmem_cache_free(extent_state_cache, state); 223 } 224 } 225 226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 227 struct rb_node *node) 228 { 229 struct rb_node **p = &root->rb_node; 230 struct rb_node *parent = NULL; 231 struct tree_entry *entry; 232 233 while (*p) { 234 parent = *p; 235 entry = rb_entry(parent, struct tree_entry, rb_node); 236 237 if (offset < entry->start) 238 p = &(*p)->rb_left; 239 else if (offset > entry->end) 240 p = &(*p)->rb_right; 241 else 242 return parent; 243 } 244 245 rb_link_node(node, parent, p); 246 rb_insert_color(node, root); 247 return NULL; 248 } 249 250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 251 struct rb_node **prev_ret, 252 struct rb_node **next_ret) 253 { 254 struct rb_root *root = &tree->state; 255 struct rb_node *n = root->rb_node; 256 struct rb_node *prev = NULL; 257 struct rb_node *orig_prev = NULL; 258 struct tree_entry *entry; 259 struct tree_entry *prev_entry = NULL; 260 261 while (n) { 262 entry = rb_entry(n, struct tree_entry, rb_node); 263 prev = n; 264 prev_entry = entry; 265 266 if (offset < entry->start) 267 n = n->rb_left; 268 else if (offset > entry->end) 269 n = n->rb_right; 270 else 271 return n; 272 } 273 274 if (prev_ret) { 275 orig_prev = prev; 276 while (prev && offset > prev_entry->end) { 277 prev = rb_next(prev); 278 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 279 } 280 *prev_ret = prev; 281 prev = orig_prev; 282 } 283 284 if (next_ret) { 285 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 286 while (prev && offset < prev_entry->start) { 287 prev = rb_prev(prev); 288 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 289 } 290 *next_ret = prev; 291 } 292 return NULL; 293 } 294 295 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 296 u64 offset) 297 { 298 struct rb_node *prev = NULL; 299 struct rb_node *ret; 300 301 ret = __etree_search(tree, offset, &prev, NULL); 302 if (!ret) 303 return prev; 304 return ret; 305 } 306 307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 308 struct extent_state *other) 309 { 310 if (tree->ops && tree->ops->merge_extent_hook) 311 tree->ops->merge_extent_hook(tree->mapping->host, new, 312 other); 313 } 314 315 /* 316 * utility function to look for merge candidates inside a given range. 317 * Any extents with matching state are merged together into a single 318 * extent in the tree. Extents with EXTENT_IO in their state field 319 * are not merged because the end_io handlers need to be able to do 320 * operations on them without sleeping (or doing allocations/splits). 321 * 322 * This should be called with the tree lock held. 323 */ 324 static void merge_state(struct extent_io_tree *tree, 325 struct extent_state *state) 326 { 327 struct extent_state *other; 328 struct rb_node *other_node; 329 330 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 331 return; 332 333 other_node = rb_prev(&state->rb_node); 334 if (other_node) { 335 other = rb_entry(other_node, struct extent_state, rb_node); 336 if (other->end == state->start - 1 && 337 other->state == state->state) { 338 merge_cb(tree, state, other); 339 state->start = other->start; 340 other->tree = NULL; 341 rb_erase(&other->rb_node, &tree->state); 342 free_extent_state(other); 343 } 344 } 345 other_node = rb_next(&state->rb_node); 346 if (other_node) { 347 other = rb_entry(other_node, struct extent_state, rb_node); 348 if (other->start == state->end + 1 && 349 other->state == state->state) { 350 merge_cb(tree, state, other); 351 state->end = other->end; 352 other->tree = NULL; 353 rb_erase(&other->rb_node, &tree->state); 354 free_extent_state(other); 355 } 356 } 357 } 358 359 static void set_state_cb(struct extent_io_tree *tree, 360 struct extent_state *state, unsigned long *bits) 361 { 362 if (tree->ops && tree->ops->set_bit_hook) 363 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 364 } 365 366 static void clear_state_cb(struct extent_io_tree *tree, 367 struct extent_state *state, unsigned long *bits) 368 { 369 if (tree->ops && tree->ops->clear_bit_hook) 370 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 371 } 372 373 static void set_state_bits(struct extent_io_tree *tree, 374 struct extent_state *state, unsigned long *bits); 375 376 /* 377 * insert an extent_state struct into the tree. 'bits' are set on the 378 * struct before it is inserted. 379 * 380 * This may return -EEXIST if the extent is already there, in which case the 381 * state struct is freed. 382 * 383 * The tree lock is not taken internally. This is a utility function and 384 * probably isn't what you want to call (see set/clear_extent_bit). 385 */ 386 static int insert_state(struct extent_io_tree *tree, 387 struct extent_state *state, u64 start, u64 end, 388 unsigned long *bits) 389 { 390 struct rb_node *node; 391 392 if (end < start) 393 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n", 394 end, start); 395 state->start = start; 396 state->end = end; 397 398 set_state_bits(tree, state, bits); 399 400 node = tree_insert(&tree->state, end, &state->rb_node); 401 if (node) { 402 struct extent_state *found; 403 found = rb_entry(node, struct extent_state, rb_node); 404 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 405 "%llu %llu\n", 406 found->start, found->end, start, end); 407 return -EEXIST; 408 } 409 state->tree = tree; 410 merge_state(tree, state); 411 return 0; 412 } 413 414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 415 u64 split) 416 { 417 if (tree->ops && tree->ops->split_extent_hook) 418 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 419 } 420 421 /* 422 * split a given extent state struct in two, inserting the preallocated 423 * struct 'prealloc' as the newly created second half. 'split' indicates an 424 * offset inside 'orig' where it should be split. 425 * 426 * Before calling, 427 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 428 * are two extent state structs in the tree: 429 * prealloc: [orig->start, split - 1] 430 * orig: [ split, orig->end ] 431 * 432 * The tree locks are not taken by this function. They need to be held 433 * by the caller. 434 */ 435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 436 struct extent_state *prealloc, u64 split) 437 { 438 struct rb_node *node; 439 440 split_cb(tree, orig, split); 441 442 prealloc->start = orig->start; 443 prealloc->end = split - 1; 444 prealloc->state = orig->state; 445 orig->start = split; 446 447 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 448 if (node) { 449 free_extent_state(prealloc); 450 return -EEXIST; 451 } 452 prealloc->tree = tree; 453 return 0; 454 } 455 456 static struct extent_state *next_state(struct extent_state *state) 457 { 458 struct rb_node *next = rb_next(&state->rb_node); 459 if (next) 460 return rb_entry(next, struct extent_state, rb_node); 461 else 462 return NULL; 463 } 464 465 /* 466 * utility function to clear some bits in an extent state struct. 467 * it will optionally wake up any one waiting on this state (wake == 1). 468 * 469 * If no bits are set on the state struct after clearing things, the 470 * struct is freed and removed from the tree 471 */ 472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 473 struct extent_state *state, 474 unsigned long *bits, int wake) 475 { 476 struct extent_state *next; 477 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 478 479 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 480 u64 range = state->end - state->start + 1; 481 WARN_ON(range > tree->dirty_bytes); 482 tree->dirty_bytes -= range; 483 } 484 clear_state_cb(tree, state, bits); 485 state->state &= ~bits_to_clear; 486 if (wake) 487 wake_up(&state->wq); 488 if (state->state == 0) { 489 next = next_state(state); 490 if (state->tree) { 491 rb_erase(&state->rb_node, &tree->state); 492 state->tree = NULL; 493 free_extent_state(state); 494 } else { 495 WARN_ON(1); 496 } 497 } else { 498 merge_state(tree, state); 499 next = next_state(state); 500 } 501 return next; 502 } 503 504 static struct extent_state * 505 alloc_extent_state_atomic(struct extent_state *prealloc) 506 { 507 if (!prealloc) 508 prealloc = alloc_extent_state(GFP_ATOMIC); 509 510 return prealloc; 511 } 512 513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 514 { 515 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 516 "Extent tree was modified by another " 517 "thread while locked."); 518 } 519 520 /* 521 * clear some bits on a range in the tree. This may require splitting 522 * or inserting elements in the tree, so the gfp mask is used to 523 * indicate which allocations or sleeping are allowed. 524 * 525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 526 * the given range from the tree regardless of state (ie for truncate). 527 * 528 * the range [start, end] is inclusive. 529 * 530 * This takes the tree lock, and returns 0 on success and < 0 on error. 531 */ 532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 533 unsigned long bits, int wake, int delete, 534 struct extent_state **cached_state, 535 gfp_t mask) 536 { 537 struct extent_state *state; 538 struct extent_state *cached; 539 struct extent_state *prealloc = NULL; 540 struct rb_node *node; 541 u64 last_end; 542 int err; 543 int clear = 0; 544 545 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 546 547 if (bits & EXTENT_DELALLOC) 548 bits |= EXTENT_NORESERVE; 549 550 if (delete) 551 bits |= ~EXTENT_CTLBITS; 552 bits |= EXTENT_FIRST_DELALLOC; 553 554 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 555 clear = 1; 556 again: 557 if (!prealloc && (mask & __GFP_WAIT)) { 558 prealloc = alloc_extent_state(mask); 559 if (!prealloc) 560 return -ENOMEM; 561 } 562 563 spin_lock(&tree->lock); 564 if (cached_state) { 565 cached = *cached_state; 566 567 if (clear) { 568 *cached_state = NULL; 569 cached_state = NULL; 570 } 571 572 if (cached && cached->tree && cached->start <= start && 573 cached->end > start) { 574 if (clear) 575 atomic_dec(&cached->refs); 576 state = cached; 577 goto hit_next; 578 } 579 if (clear) 580 free_extent_state(cached); 581 } 582 /* 583 * this search will find the extents that end after 584 * our range starts 585 */ 586 node = tree_search(tree, start); 587 if (!node) 588 goto out; 589 state = rb_entry(node, struct extent_state, rb_node); 590 hit_next: 591 if (state->start > end) 592 goto out; 593 WARN_ON(state->end < start); 594 last_end = state->end; 595 596 /* the state doesn't have the wanted bits, go ahead */ 597 if (!(state->state & bits)) { 598 state = next_state(state); 599 goto next; 600 } 601 602 /* 603 * | ---- desired range ---- | 604 * | state | or 605 * | ------------- state -------------- | 606 * 607 * We need to split the extent we found, and may flip 608 * bits on second half. 609 * 610 * If the extent we found extends past our range, we 611 * just split and search again. It'll get split again 612 * the next time though. 613 * 614 * If the extent we found is inside our range, we clear 615 * the desired bit on it. 616 */ 617 618 if (state->start < start) { 619 prealloc = alloc_extent_state_atomic(prealloc); 620 BUG_ON(!prealloc); 621 err = split_state(tree, state, prealloc, start); 622 if (err) 623 extent_io_tree_panic(tree, err); 624 625 prealloc = NULL; 626 if (err) 627 goto out; 628 if (state->end <= end) { 629 state = clear_state_bit(tree, state, &bits, wake); 630 goto next; 631 } 632 goto search_again; 633 } 634 /* 635 * | ---- desired range ---- | 636 * | state | 637 * We need to split the extent, and clear the bit 638 * on the first half 639 */ 640 if (state->start <= end && state->end > end) { 641 prealloc = alloc_extent_state_atomic(prealloc); 642 BUG_ON(!prealloc); 643 err = split_state(tree, state, prealloc, end + 1); 644 if (err) 645 extent_io_tree_panic(tree, err); 646 647 if (wake) 648 wake_up(&state->wq); 649 650 clear_state_bit(tree, prealloc, &bits, wake); 651 652 prealloc = NULL; 653 goto out; 654 } 655 656 state = clear_state_bit(tree, state, &bits, wake); 657 next: 658 if (last_end == (u64)-1) 659 goto out; 660 start = last_end + 1; 661 if (start <= end && state && !need_resched()) 662 goto hit_next; 663 goto search_again; 664 665 out: 666 spin_unlock(&tree->lock); 667 if (prealloc) 668 free_extent_state(prealloc); 669 670 return 0; 671 672 search_again: 673 if (start > end) 674 goto out; 675 spin_unlock(&tree->lock); 676 if (mask & __GFP_WAIT) 677 cond_resched(); 678 goto again; 679 } 680 681 static void wait_on_state(struct extent_io_tree *tree, 682 struct extent_state *state) 683 __releases(tree->lock) 684 __acquires(tree->lock) 685 { 686 DEFINE_WAIT(wait); 687 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 688 spin_unlock(&tree->lock); 689 schedule(); 690 spin_lock(&tree->lock); 691 finish_wait(&state->wq, &wait); 692 } 693 694 /* 695 * waits for one or more bits to clear on a range in the state tree. 696 * The range [start, end] is inclusive. 697 * The tree lock is taken by this function 698 */ 699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 700 unsigned long bits) 701 { 702 struct extent_state *state; 703 struct rb_node *node; 704 705 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 706 707 spin_lock(&tree->lock); 708 again: 709 while (1) { 710 /* 711 * this search will find all the extents that end after 712 * our range starts 713 */ 714 node = tree_search(tree, start); 715 if (!node) 716 break; 717 718 state = rb_entry(node, struct extent_state, rb_node); 719 720 if (state->start > end) 721 goto out; 722 723 if (state->state & bits) { 724 start = state->start; 725 atomic_inc(&state->refs); 726 wait_on_state(tree, state); 727 free_extent_state(state); 728 goto again; 729 } 730 start = state->end + 1; 731 732 if (start > end) 733 break; 734 735 cond_resched_lock(&tree->lock); 736 } 737 out: 738 spin_unlock(&tree->lock); 739 } 740 741 static void set_state_bits(struct extent_io_tree *tree, 742 struct extent_state *state, 743 unsigned long *bits) 744 { 745 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 746 747 set_state_cb(tree, state, bits); 748 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 749 u64 range = state->end - state->start + 1; 750 tree->dirty_bytes += range; 751 } 752 state->state |= bits_to_set; 753 } 754 755 static void cache_state(struct extent_state *state, 756 struct extent_state **cached_ptr) 757 { 758 if (cached_ptr && !(*cached_ptr)) { 759 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 760 *cached_ptr = state; 761 atomic_inc(&state->refs); 762 } 763 } 764 } 765 766 /* 767 * set some bits on a range in the tree. This may require allocations or 768 * sleeping, so the gfp mask is used to indicate what is allowed. 769 * 770 * If any of the exclusive bits are set, this will fail with -EEXIST if some 771 * part of the range already has the desired bits set. The start of the 772 * existing range is returned in failed_start in this case. 773 * 774 * [start, end] is inclusive This takes the tree lock. 775 */ 776 777 static int __must_check 778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 779 unsigned long bits, unsigned long exclusive_bits, 780 u64 *failed_start, struct extent_state **cached_state, 781 gfp_t mask) 782 { 783 struct extent_state *state; 784 struct extent_state *prealloc = NULL; 785 struct rb_node *node; 786 int err = 0; 787 u64 last_start; 788 u64 last_end; 789 790 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 791 792 bits |= EXTENT_FIRST_DELALLOC; 793 again: 794 if (!prealloc && (mask & __GFP_WAIT)) { 795 prealloc = alloc_extent_state(mask); 796 BUG_ON(!prealloc); 797 } 798 799 spin_lock(&tree->lock); 800 if (cached_state && *cached_state) { 801 state = *cached_state; 802 if (state->start <= start && state->end > start && 803 state->tree) { 804 node = &state->rb_node; 805 goto hit_next; 806 } 807 } 808 /* 809 * this search will find all the extents that end after 810 * our range starts. 811 */ 812 node = tree_search(tree, start); 813 if (!node) { 814 prealloc = alloc_extent_state_atomic(prealloc); 815 BUG_ON(!prealloc); 816 err = insert_state(tree, prealloc, start, end, &bits); 817 if (err) 818 extent_io_tree_panic(tree, err); 819 820 prealloc = NULL; 821 goto out; 822 } 823 state = rb_entry(node, struct extent_state, rb_node); 824 hit_next: 825 last_start = state->start; 826 last_end = state->end; 827 828 /* 829 * | ---- desired range ---- | 830 * | state | 831 * 832 * Just lock what we found and keep going 833 */ 834 if (state->start == start && state->end <= end) { 835 if (state->state & exclusive_bits) { 836 *failed_start = state->start; 837 err = -EEXIST; 838 goto out; 839 } 840 841 set_state_bits(tree, state, &bits); 842 cache_state(state, cached_state); 843 merge_state(tree, state); 844 if (last_end == (u64)-1) 845 goto out; 846 start = last_end + 1; 847 state = next_state(state); 848 if (start < end && state && state->start == start && 849 !need_resched()) 850 goto hit_next; 851 goto search_again; 852 } 853 854 /* 855 * | ---- desired range ---- | 856 * | state | 857 * or 858 * | ------------- state -------------- | 859 * 860 * We need to split the extent we found, and may flip bits on 861 * second half. 862 * 863 * If the extent we found extends past our 864 * range, we just split and search again. It'll get split 865 * again the next time though. 866 * 867 * If the extent we found is inside our range, we set the 868 * desired bit on it. 869 */ 870 if (state->start < start) { 871 if (state->state & exclusive_bits) { 872 *failed_start = start; 873 err = -EEXIST; 874 goto out; 875 } 876 877 prealloc = alloc_extent_state_atomic(prealloc); 878 BUG_ON(!prealloc); 879 err = split_state(tree, state, prealloc, start); 880 if (err) 881 extent_io_tree_panic(tree, err); 882 883 prealloc = NULL; 884 if (err) 885 goto out; 886 if (state->end <= end) { 887 set_state_bits(tree, state, &bits); 888 cache_state(state, cached_state); 889 merge_state(tree, state); 890 if (last_end == (u64)-1) 891 goto out; 892 start = last_end + 1; 893 state = next_state(state); 894 if (start < end && state && state->start == start && 895 !need_resched()) 896 goto hit_next; 897 } 898 goto search_again; 899 } 900 /* 901 * | ---- desired range ---- | 902 * | state | or | state | 903 * 904 * There's a hole, we need to insert something in it and 905 * ignore the extent we found. 906 */ 907 if (state->start > start) { 908 u64 this_end; 909 if (end < last_start) 910 this_end = end; 911 else 912 this_end = last_start - 1; 913 914 prealloc = alloc_extent_state_atomic(prealloc); 915 BUG_ON(!prealloc); 916 917 /* 918 * Avoid to free 'prealloc' if it can be merged with 919 * the later extent. 920 */ 921 err = insert_state(tree, prealloc, start, this_end, 922 &bits); 923 if (err) 924 extent_io_tree_panic(tree, err); 925 926 cache_state(prealloc, cached_state); 927 prealloc = NULL; 928 start = this_end + 1; 929 goto search_again; 930 } 931 /* 932 * | ---- desired range ---- | 933 * | state | 934 * We need to split the extent, and set the bit 935 * on the first half 936 */ 937 if (state->start <= end && state->end > end) { 938 if (state->state & exclusive_bits) { 939 *failed_start = start; 940 err = -EEXIST; 941 goto out; 942 } 943 944 prealloc = alloc_extent_state_atomic(prealloc); 945 BUG_ON(!prealloc); 946 err = split_state(tree, state, prealloc, end + 1); 947 if (err) 948 extent_io_tree_panic(tree, err); 949 950 set_state_bits(tree, prealloc, &bits); 951 cache_state(prealloc, cached_state); 952 merge_state(tree, prealloc); 953 prealloc = NULL; 954 goto out; 955 } 956 957 goto search_again; 958 959 out: 960 spin_unlock(&tree->lock); 961 if (prealloc) 962 free_extent_state(prealloc); 963 964 return err; 965 966 search_again: 967 if (start > end) 968 goto out; 969 spin_unlock(&tree->lock); 970 if (mask & __GFP_WAIT) 971 cond_resched(); 972 goto again; 973 } 974 975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 976 unsigned long bits, u64 * failed_start, 977 struct extent_state **cached_state, gfp_t mask) 978 { 979 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 980 cached_state, mask); 981 } 982 983 984 /** 985 * convert_extent_bit - convert all bits in a given range from one bit to 986 * another 987 * @tree: the io tree to search 988 * @start: the start offset in bytes 989 * @end: the end offset in bytes (inclusive) 990 * @bits: the bits to set in this range 991 * @clear_bits: the bits to clear in this range 992 * @cached_state: state that we're going to cache 993 * @mask: the allocation mask 994 * 995 * This will go through and set bits for the given range. If any states exist 996 * already in this range they are set with the given bit and cleared of the 997 * clear_bits. This is only meant to be used by things that are mergeable, ie 998 * converting from say DELALLOC to DIRTY. This is not meant to be used with 999 * boundary bits like LOCK. 1000 */ 1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1002 unsigned long bits, unsigned long clear_bits, 1003 struct extent_state **cached_state, gfp_t mask) 1004 { 1005 struct extent_state *state; 1006 struct extent_state *prealloc = NULL; 1007 struct rb_node *node; 1008 int err = 0; 1009 u64 last_start; 1010 u64 last_end; 1011 1012 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 1013 1014 again: 1015 if (!prealloc && (mask & __GFP_WAIT)) { 1016 prealloc = alloc_extent_state(mask); 1017 if (!prealloc) 1018 return -ENOMEM; 1019 } 1020 1021 spin_lock(&tree->lock); 1022 if (cached_state && *cached_state) { 1023 state = *cached_state; 1024 if (state->start <= start && state->end > start && 1025 state->tree) { 1026 node = &state->rb_node; 1027 goto hit_next; 1028 } 1029 } 1030 1031 /* 1032 * this search will find all the extents that end after 1033 * our range starts. 1034 */ 1035 node = tree_search(tree, start); 1036 if (!node) { 1037 prealloc = alloc_extent_state_atomic(prealloc); 1038 if (!prealloc) { 1039 err = -ENOMEM; 1040 goto out; 1041 } 1042 err = insert_state(tree, prealloc, start, end, &bits); 1043 prealloc = NULL; 1044 if (err) 1045 extent_io_tree_panic(tree, err); 1046 goto out; 1047 } 1048 state = rb_entry(node, struct extent_state, rb_node); 1049 hit_next: 1050 last_start = state->start; 1051 last_end = state->end; 1052 1053 /* 1054 * | ---- desired range ---- | 1055 * | state | 1056 * 1057 * Just lock what we found and keep going 1058 */ 1059 if (state->start == start && state->end <= end) { 1060 set_state_bits(tree, state, &bits); 1061 cache_state(state, cached_state); 1062 state = clear_state_bit(tree, state, &clear_bits, 0); 1063 if (last_end == (u64)-1) 1064 goto out; 1065 start = last_end + 1; 1066 if (start < end && state && state->start == start && 1067 !need_resched()) 1068 goto hit_next; 1069 goto search_again; 1070 } 1071 1072 /* 1073 * | ---- desired range ---- | 1074 * | state | 1075 * or 1076 * | ------------- state -------------- | 1077 * 1078 * We need to split the extent we found, and may flip bits on 1079 * second half. 1080 * 1081 * If the extent we found extends past our 1082 * range, we just split and search again. It'll get split 1083 * again the next time though. 1084 * 1085 * If the extent we found is inside our range, we set the 1086 * desired bit on it. 1087 */ 1088 if (state->start < start) { 1089 prealloc = alloc_extent_state_atomic(prealloc); 1090 if (!prealloc) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 err = split_state(tree, state, prealloc, start); 1095 if (err) 1096 extent_io_tree_panic(tree, err); 1097 prealloc = NULL; 1098 if (err) 1099 goto out; 1100 if (state->end <= end) { 1101 set_state_bits(tree, state, &bits); 1102 cache_state(state, cached_state); 1103 state = clear_state_bit(tree, state, &clear_bits, 0); 1104 if (last_end == (u64)-1) 1105 goto out; 1106 start = last_end + 1; 1107 if (start < end && state && state->start == start && 1108 !need_resched()) 1109 goto hit_next; 1110 } 1111 goto search_again; 1112 } 1113 /* 1114 * | ---- desired range ---- | 1115 * | state | or | state | 1116 * 1117 * There's a hole, we need to insert something in it and 1118 * ignore the extent we found. 1119 */ 1120 if (state->start > start) { 1121 u64 this_end; 1122 if (end < last_start) 1123 this_end = end; 1124 else 1125 this_end = last_start - 1; 1126 1127 prealloc = alloc_extent_state_atomic(prealloc); 1128 if (!prealloc) { 1129 err = -ENOMEM; 1130 goto out; 1131 } 1132 1133 /* 1134 * Avoid to free 'prealloc' if it can be merged with 1135 * the later extent. 1136 */ 1137 err = insert_state(tree, prealloc, start, this_end, 1138 &bits); 1139 if (err) 1140 extent_io_tree_panic(tree, err); 1141 cache_state(prealloc, cached_state); 1142 prealloc = NULL; 1143 start = this_end + 1; 1144 goto search_again; 1145 } 1146 /* 1147 * | ---- desired range ---- | 1148 * | state | 1149 * We need to split the extent, and set the bit 1150 * on the first half 1151 */ 1152 if (state->start <= end && state->end > end) { 1153 prealloc = alloc_extent_state_atomic(prealloc); 1154 if (!prealloc) { 1155 err = -ENOMEM; 1156 goto out; 1157 } 1158 1159 err = split_state(tree, state, prealloc, end + 1); 1160 if (err) 1161 extent_io_tree_panic(tree, err); 1162 1163 set_state_bits(tree, prealloc, &bits); 1164 cache_state(prealloc, cached_state); 1165 clear_state_bit(tree, prealloc, &clear_bits, 0); 1166 prealloc = NULL; 1167 goto out; 1168 } 1169 1170 goto search_again; 1171 1172 out: 1173 spin_unlock(&tree->lock); 1174 if (prealloc) 1175 free_extent_state(prealloc); 1176 1177 return err; 1178 1179 search_again: 1180 if (start > end) 1181 goto out; 1182 spin_unlock(&tree->lock); 1183 if (mask & __GFP_WAIT) 1184 cond_resched(); 1185 goto again; 1186 } 1187 1188 /* wrappers around set/clear extent bit */ 1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1190 gfp_t mask) 1191 { 1192 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1193 NULL, mask); 1194 } 1195 1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1197 unsigned long bits, gfp_t mask) 1198 { 1199 return set_extent_bit(tree, start, end, bits, NULL, 1200 NULL, mask); 1201 } 1202 1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1204 unsigned long bits, gfp_t mask) 1205 { 1206 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1207 } 1208 1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1210 struct extent_state **cached_state, gfp_t mask) 1211 { 1212 return set_extent_bit(tree, start, end, 1213 EXTENT_DELALLOC | EXTENT_UPTODATE, 1214 NULL, cached_state, mask); 1215 } 1216 1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1218 struct extent_state **cached_state, gfp_t mask) 1219 { 1220 return set_extent_bit(tree, start, end, 1221 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1222 NULL, cached_state, mask); 1223 } 1224 1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1226 gfp_t mask) 1227 { 1228 return clear_extent_bit(tree, start, end, 1229 EXTENT_DIRTY | EXTENT_DELALLOC | 1230 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1231 } 1232 1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1234 gfp_t mask) 1235 { 1236 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1237 NULL, mask); 1238 } 1239 1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1241 struct extent_state **cached_state, gfp_t mask) 1242 { 1243 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1244 cached_state, mask); 1245 } 1246 1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1248 struct extent_state **cached_state, gfp_t mask) 1249 { 1250 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1251 cached_state, mask); 1252 } 1253 1254 /* 1255 * either insert or lock state struct between start and end use mask to tell 1256 * us if waiting is desired. 1257 */ 1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1259 unsigned long bits, struct extent_state **cached_state) 1260 { 1261 int err; 1262 u64 failed_start; 1263 while (1) { 1264 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1265 EXTENT_LOCKED, &failed_start, 1266 cached_state, GFP_NOFS); 1267 if (err == -EEXIST) { 1268 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1269 start = failed_start; 1270 } else 1271 break; 1272 WARN_ON(start > end); 1273 } 1274 return err; 1275 } 1276 1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1278 { 1279 return lock_extent_bits(tree, start, end, 0, NULL); 1280 } 1281 1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1283 { 1284 int err; 1285 u64 failed_start; 1286 1287 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1288 &failed_start, NULL, GFP_NOFS); 1289 if (err == -EEXIST) { 1290 if (failed_start > start) 1291 clear_extent_bit(tree, start, failed_start - 1, 1292 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1293 return 0; 1294 } 1295 return 1; 1296 } 1297 1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1299 struct extent_state **cached, gfp_t mask) 1300 { 1301 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1302 mask); 1303 } 1304 1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1306 { 1307 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1308 GFP_NOFS); 1309 } 1310 1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1312 { 1313 unsigned long index = start >> PAGE_CACHE_SHIFT; 1314 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1315 struct page *page; 1316 1317 while (index <= end_index) { 1318 page = find_get_page(inode->i_mapping, index); 1319 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1320 clear_page_dirty_for_io(page); 1321 page_cache_release(page); 1322 index++; 1323 } 1324 return 0; 1325 } 1326 1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1328 { 1329 unsigned long index = start >> PAGE_CACHE_SHIFT; 1330 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1331 struct page *page; 1332 1333 while (index <= end_index) { 1334 page = find_get_page(inode->i_mapping, index); 1335 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1336 account_page_redirty(page); 1337 __set_page_dirty_nobuffers(page); 1338 page_cache_release(page); 1339 index++; 1340 } 1341 return 0; 1342 } 1343 1344 /* 1345 * helper function to set both pages and extents in the tree writeback 1346 */ 1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1348 { 1349 unsigned long index = start >> PAGE_CACHE_SHIFT; 1350 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1351 struct page *page; 1352 1353 while (index <= end_index) { 1354 page = find_get_page(tree->mapping, index); 1355 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1356 set_page_writeback(page); 1357 page_cache_release(page); 1358 index++; 1359 } 1360 return 0; 1361 } 1362 1363 /* find the first state struct with 'bits' set after 'start', and 1364 * return it. tree->lock must be held. NULL will returned if 1365 * nothing was found after 'start' 1366 */ 1367 static struct extent_state * 1368 find_first_extent_bit_state(struct extent_io_tree *tree, 1369 u64 start, unsigned long bits) 1370 { 1371 struct rb_node *node; 1372 struct extent_state *state; 1373 1374 /* 1375 * this search will find all the extents that end after 1376 * our range starts. 1377 */ 1378 node = tree_search(tree, start); 1379 if (!node) 1380 goto out; 1381 1382 while (1) { 1383 state = rb_entry(node, struct extent_state, rb_node); 1384 if (state->end >= start && (state->state & bits)) 1385 return state; 1386 1387 node = rb_next(node); 1388 if (!node) 1389 break; 1390 } 1391 out: 1392 return NULL; 1393 } 1394 1395 /* 1396 * find the first offset in the io tree with 'bits' set. zero is 1397 * returned if we find something, and *start_ret and *end_ret are 1398 * set to reflect the state struct that was found. 1399 * 1400 * If nothing was found, 1 is returned. If found something, return 0. 1401 */ 1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1403 u64 *start_ret, u64 *end_ret, unsigned long bits, 1404 struct extent_state **cached_state) 1405 { 1406 struct extent_state *state; 1407 struct rb_node *n; 1408 int ret = 1; 1409 1410 spin_lock(&tree->lock); 1411 if (cached_state && *cached_state) { 1412 state = *cached_state; 1413 if (state->end == start - 1 && state->tree) { 1414 n = rb_next(&state->rb_node); 1415 while (n) { 1416 state = rb_entry(n, struct extent_state, 1417 rb_node); 1418 if (state->state & bits) 1419 goto got_it; 1420 n = rb_next(n); 1421 } 1422 free_extent_state(*cached_state); 1423 *cached_state = NULL; 1424 goto out; 1425 } 1426 free_extent_state(*cached_state); 1427 *cached_state = NULL; 1428 } 1429 1430 state = find_first_extent_bit_state(tree, start, bits); 1431 got_it: 1432 if (state) { 1433 cache_state(state, cached_state); 1434 *start_ret = state->start; 1435 *end_ret = state->end; 1436 ret = 0; 1437 } 1438 out: 1439 spin_unlock(&tree->lock); 1440 return ret; 1441 } 1442 1443 /* 1444 * find a contiguous range of bytes in the file marked as delalloc, not 1445 * more than 'max_bytes'. start and end are used to return the range, 1446 * 1447 * 1 is returned if we find something, 0 if nothing was in the tree 1448 */ 1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1450 u64 *start, u64 *end, u64 max_bytes, 1451 struct extent_state **cached_state) 1452 { 1453 struct rb_node *node; 1454 struct extent_state *state; 1455 u64 cur_start = *start; 1456 u64 found = 0; 1457 u64 total_bytes = 0; 1458 1459 spin_lock(&tree->lock); 1460 1461 /* 1462 * this search will find all the extents that end after 1463 * our range starts. 1464 */ 1465 node = tree_search(tree, cur_start); 1466 if (!node) { 1467 if (!found) 1468 *end = (u64)-1; 1469 goto out; 1470 } 1471 1472 while (1) { 1473 state = rb_entry(node, struct extent_state, rb_node); 1474 if (found && (state->start != cur_start || 1475 (state->state & EXTENT_BOUNDARY))) { 1476 goto out; 1477 } 1478 if (!(state->state & EXTENT_DELALLOC)) { 1479 if (!found) 1480 *end = state->end; 1481 goto out; 1482 } 1483 if (!found) { 1484 *start = state->start; 1485 *cached_state = state; 1486 atomic_inc(&state->refs); 1487 } 1488 found++; 1489 *end = state->end; 1490 cur_start = state->end + 1; 1491 node = rb_next(node); 1492 total_bytes += state->end - state->start + 1; 1493 if (total_bytes >= max_bytes) 1494 break; 1495 if (!node) 1496 break; 1497 } 1498 out: 1499 spin_unlock(&tree->lock); 1500 return found; 1501 } 1502 1503 static noinline void __unlock_for_delalloc(struct inode *inode, 1504 struct page *locked_page, 1505 u64 start, u64 end) 1506 { 1507 int ret; 1508 struct page *pages[16]; 1509 unsigned long index = start >> PAGE_CACHE_SHIFT; 1510 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1511 unsigned long nr_pages = end_index - index + 1; 1512 int i; 1513 1514 if (index == locked_page->index && end_index == index) 1515 return; 1516 1517 while (nr_pages > 0) { 1518 ret = find_get_pages_contig(inode->i_mapping, index, 1519 min_t(unsigned long, nr_pages, 1520 ARRAY_SIZE(pages)), pages); 1521 for (i = 0; i < ret; i++) { 1522 if (pages[i] != locked_page) 1523 unlock_page(pages[i]); 1524 page_cache_release(pages[i]); 1525 } 1526 nr_pages -= ret; 1527 index += ret; 1528 cond_resched(); 1529 } 1530 } 1531 1532 static noinline int lock_delalloc_pages(struct inode *inode, 1533 struct page *locked_page, 1534 u64 delalloc_start, 1535 u64 delalloc_end) 1536 { 1537 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1538 unsigned long start_index = index; 1539 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1540 unsigned long pages_locked = 0; 1541 struct page *pages[16]; 1542 unsigned long nrpages; 1543 int ret; 1544 int i; 1545 1546 /* the caller is responsible for locking the start index */ 1547 if (index == locked_page->index && index == end_index) 1548 return 0; 1549 1550 /* skip the page at the start index */ 1551 nrpages = end_index - index + 1; 1552 while (nrpages > 0) { 1553 ret = find_get_pages_contig(inode->i_mapping, index, 1554 min_t(unsigned long, 1555 nrpages, ARRAY_SIZE(pages)), pages); 1556 if (ret == 0) { 1557 ret = -EAGAIN; 1558 goto done; 1559 } 1560 /* now we have an array of pages, lock them all */ 1561 for (i = 0; i < ret; i++) { 1562 /* 1563 * the caller is taking responsibility for 1564 * locked_page 1565 */ 1566 if (pages[i] != locked_page) { 1567 lock_page(pages[i]); 1568 if (!PageDirty(pages[i]) || 1569 pages[i]->mapping != inode->i_mapping) { 1570 ret = -EAGAIN; 1571 unlock_page(pages[i]); 1572 page_cache_release(pages[i]); 1573 goto done; 1574 } 1575 } 1576 page_cache_release(pages[i]); 1577 pages_locked++; 1578 } 1579 nrpages -= ret; 1580 index += ret; 1581 cond_resched(); 1582 } 1583 ret = 0; 1584 done: 1585 if (ret && pages_locked) { 1586 __unlock_for_delalloc(inode, locked_page, 1587 delalloc_start, 1588 ((u64)(start_index + pages_locked - 1)) << 1589 PAGE_CACHE_SHIFT); 1590 } 1591 return ret; 1592 } 1593 1594 /* 1595 * find a contiguous range of bytes in the file marked as delalloc, not 1596 * more than 'max_bytes'. start and end are used to return the range, 1597 * 1598 * 1 is returned if we find something, 0 if nothing was in the tree 1599 */ 1600 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1601 struct extent_io_tree *tree, 1602 struct page *locked_page, 1603 u64 *start, u64 *end, 1604 u64 max_bytes) 1605 { 1606 u64 delalloc_start; 1607 u64 delalloc_end; 1608 u64 found; 1609 struct extent_state *cached_state = NULL; 1610 int ret; 1611 int loops = 0; 1612 1613 again: 1614 /* step one, find a bunch of delalloc bytes starting at start */ 1615 delalloc_start = *start; 1616 delalloc_end = 0; 1617 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1618 max_bytes, &cached_state); 1619 if (!found || delalloc_end <= *start) { 1620 *start = delalloc_start; 1621 *end = delalloc_end; 1622 free_extent_state(cached_state); 1623 return 0; 1624 } 1625 1626 /* 1627 * start comes from the offset of locked_page. We have to lock 1628 * pages in order, so we can't process delalloc bytes before 1629 * locked_page 1630 */ 1631 if (delalloc_start < *start) 1632 delalloc_start = *start; 1633 1634 /* 1635 * make sure to limit the number of pages we try to lock down 1636 */ 1637 if (delalloc_end + 1 - delalloc_start > max_bytes) 1638 delalloc_end = delalloc_start + max_bytes - 1; 1639 1640 /* step two, lock all the pages after the page that has start */ 1641 ret = lock_delalloc_pages(inode, locked_page, 1642 delalloc_start, delalloc_end); 1643 if (ret == -EAGAIN) { 1644 /* some of the pages are gone, lets avoid looping by 1645 * shortening the size of the delalloc range we're searching 1646 */ 1647 free_extent_state(cached_state); 1648 if (!loops) { 1649 max_bytes = PAGE_CACHE_SIZE; 1650 loops = 1; 1651 goto again; 1652 } else { 1653 found = 0; 1654 goto out_failed; 1655 } 1656 } 1657 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1658 1659 /* step three, lock the state bits for the whole range */ 1660 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1661 1662 /* then test to make sure it is all still delalloc */ 1663 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1664 EXTENT_DELALLOC, 1, cached_state); 1665 if (!ret) { 1666 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1667 &cached_state, GFP_NOFS); 1668 __unlock_for_delalloc(inode, locked_page, 1669 delalloc_start, delalloc_end); 1670 cond_resched(); 1671 goto again; 1672 } 1673 free_extent_state(cached_state); 1674 *start = delalloc_start; 1675 *end = delalloc_end; 1676 out_failed: 1677 return found; 1678 } 1679 1680 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1681 struct page *locked_page, 1682 unsigned long clear_bits, 1683 unsigned long page_ops) 1684 { 1685 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1686 int ret; 1687 struct page *pages[16]; 1688 unsigned long index = start >> PAGE_CACHE_SHIFT; 1689 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1690 unsigned long nr_pages = end_index - index + 1; 1691 int i; 1692 1693 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1694 if (page_ops == 0) 1695 return 0; 1696 1697 while (nr_pages > 0) { 1698 ret = find_get_pages_contig(inode->i_mapping, index, 1699 min_t(unsigned long, 1700 nr_pages, ARRAY_SIZE(pages)), pages); 1701 for (i = 0; i < ret; i++) { 1702 1703 if (page_ops & PAGE_SET_PRIVATE2) 1704 SetPagePrivate2(pages[i]); 1705 1706 if (pages[i] == locked_page) { 1707 page_cache_release(pages[i]); 1708 continue; 1709 } 1710 if (page_ops & PAGE_CLEAR_DIRTY) 1711 clear_page_dirty_for_io(pages[i]); 1712 if (page_ops & PAGE_SET_WRITEBACK) 1713 set_page_writeback(pages[i]); 1714 if (page_ops & PAGE_END_WRITEBACK) 1715 end_page_writeback(pages[i]); 1716 if (page_ops & PAGE_UNLOCK) 1717 unlock_page(pages[i]); 1718 page_cache_release(pages[i]); 1719 } 1720 nr_pages -= ret; 1721 index += ret; 1722 cond_resched(); 1723 } 1724 return 0; 1725 } 1726 1727 /* 1728 * count the number of bytes in the tree that have a given bit(s) 1729 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1730 * cached. The total number found is returned. 1731 */ 1732 u64 count_range_bits(struct extent_io_tree *tree, 1733 u64 *start, u64 search_end, u64 max_bytes, 1734 unsigned long bits, int contig) 1735 { 1736 struct rb_node *node; 1737 struct extent_state *state; 1738 u64 cur_start = *start; 1739 u64 total_bytes = 0; 1740 u64 last = 0; 1741 int found = 0; 1742 1743 if (search_end <= cur_start) { 1744 WARN_ON(1); 1745 return 0; 1746 } 1747 1748 spin_lock(&tree->lock); 1749 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1750 total_bytes = tree->dirty_bytes; 1751 goto out; 1752 } 1753 /* 1754 * this search will find all the extents that end after 1755 * our range starts. 1756 */ 1757 node = tree_search(tree, cur_start); 1758 if (!node) 1759 goto out; 1760 1761 while (1) { 1762 state = rb_entry(node, struct extent_state, rb_node); 1763 if (state->start > search_end) 1764 break; 1765 if (contig && found && state->start > last + 1) 1766 break; 1767 if (state->end >= cur_start && (state->state & bits) == bits) { 1768 total_bytes += min(search_end, state->end) + 1 - 1769 max(cur_start, state->start); 1770 if (total_bytes >= max_bytes) 1771 break; 1772 if (!found) { 1773 *start = max(cur_start, state->start); 1774 found = 1; 1775 } 1776 last = state->end; 1777 } else if (contig && found) { 1778 break; 1779 } 1780 node = rb_next(node); 1781 if (!node) 1782 break; 1783 } 1784 out: 1785 spin_unlock(&tree->lock); 1786 return total_bytes; 1787 } 1788 1789 /* 1790 * set the private field for a given byte offset in the tree. If there isn't 1791 * an extent_state there already, this does nothing. 1792 */ 1793 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1794 { 1795 struct rb_node *node; 1796 struct extent_state *state; 1797 int ret = 0; 1798 1799 spin_lock(&tree->lock); 1800 /* 1801 * this search will find all the extents that end after 1802 * our range starts. 1803 */ 1804 node = tree_search(tree, start); 1805 if (!node) { 1806 ret = -ENOENT; 1807 goto out; 1808 } 1809 state = rb_entry(node, struct extent_state, rb_node); 1810 if (state->start != start) { 1811 ret = -ENOENT; 1812 goto out; 1813 } 1814 state->private = private; 1815 out: 1816 spin_unlock(&tree->lock); 1817 return ret; 1818 } 1819 1820 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1821 { 1822 struct rb_node *node; 1823 struct extent_state *state; 1824 int ret = 0; 1825 1826 spin_lock(&tree->lock); 1827 /* 1828 * this search will find all the extents that end after 1829 * our range starts. 1830 */ 1831 node = tree_search(tree, start); 1832 if (!node) { 1833 ret = -ENOENT; 1834 goto out; 1835 } 1836 state = rb_entry(node, struct extent_state, rb_node); 1837 if (state->start != start) { 1838 ret = -ENOENT; 1839 goto out; 1840 } 1841 *private = state->private; 1842 out: 1843 spin_unlock(&tree->lock); 1844 return ret; 1845 } 1846 1847 /* 1848 * searches a range in the state tree for a given mask. 1849 * If 'filled' == 1, this returns 1 only if every extent in the tree 1850 * has the bits set. Otherwise, 1 is returned if any bit in the 1851 * range is found set. 1852 */ 1853 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1854 unsigned long bits, int filled, struct extent_state *cached) 1855 { 1856 struct extent_state *state = NULL; 1857 struct rb_node *node; 1858 int bitset = 0; 1859 1860 spin_lock(&tree->lock); 1861 if (cached && cached->tree && cached->start <= start && 1862 cached->end > start) 1863 node = &cached->rb_node; 1864 else 1865 node = tree_search(tree, start); 1866 while (node && start <= end) { 1867 state = rb_entry(node, struct extent_state, rb_node); 1868 1869 if (filled && state->start > start) { 1870 bitset = 0; 1871 break; 1872 } 1873 1874 if (state->start > end) 1875 break; 1876 1877 if (state->state & bits) { 1878 bitset = 1; 1879 if (!filled) 1880 break; 1881 } else if (filled) { 1882 bitset = 0; 1883 break; 1884 } 1885 1886 if (state->end == (u64)-1) 1887 break; 1888 1889 start = state->end + 1; 1890 if (start > end) 1891 break; 1892 node = rb_next(node); 1893 if (!node) { 1894 if (filled) 1895 bitset = 0; 1896 break; 1897 } 1898 } 1899 spin_unlock(&tree->lock); 1900 return bitset; 1901 } 1902 1903 /* 1904 * helper function to set a given page up to date if all the 1905 * extents in the tree for that page are up to date 1906 */ 1907 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1908 { 1909 u64 start = page_offset(page); 1910 u64 end = start + PAGE_CACHE_SIZE - 1; 1911 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1912 SetPageUptodate(page); 1913 } 1914 1915 /* 1916 * When IO fails, either with EIO or csum verification fails, we 1917 * try other mirrors that might have a good copy of the data. This 1918 * io_failure_record is used to record state as we go through all the 1919 * mirrors. If another mirror has good data, the page is set up to date 1920 * and things continue. If a good mirror can't be found, the original 1921 * bio end_io callback is called to indicate things have failed. 1922 */ 1923 struct io_failure_record { 1924 struct page *page; 1925 u64 start; 1926 u64 len; 1927 u64 logical; 1928 unsigned long bio_flags; 1929 int this_mirror; 1930 int failed_mirror; 1931 int in_validation; 1932 }; 1933 1934 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1935 int did_repair) 1936 { 1937 int ret; 1938 int err = 0; 1939 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1940 1941 set_state_private(failure_tree, rec->start, 0); 1942 ret = clear_extent_bits(failure_tree, rec->start, 1943 rec->start + rec->len - 1, 1944 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1945 if (ret) 1946 err = ret; 1947 1948 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1949 rec->start + rec->len - 1, 1950 EXTENT_DAMAGED, GFP_NOFS); 1951 if (ret && !err) 1952 err = ret; 1953 1954 kfree(rec); 1955 return err; 1956 } 1957 1958 static void repair_io_failure_callback(struct bio *bio, int err) 1959 { 1960 complete(bio->bi_private); 1961 } 1962 1963 /* 1964 * this bypasses the standard btrfs submit functions deliberately, as 1965 * the standard behavior is to write all copies in a raid setup. here we only 1966 * want to write the one bad copy. so we do the mapping for ourselves and issue 1967 * submit_bio directly. 1968 * to avoid any synchronization issues, wait for the data after writing, which 1969 * actually prevents the read that triggered the error from finishing. 1970 * currently, there can be no more than two copies of every data bit. thus, 1971 * exactly one rewrite is required. 1972 */ 1973 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 1974 u64 length, u64 logical, struct page *page, 1975 int mirror_num) 1976 { 1977 struct bio *bio; 1978 struct btrfs_device *dev; 1979 DECLARE_COMPLETION_ONSTACK(compl); 1980 u64 map_length = 0; 1981 u64 sector; 1982 struct btrfs_bio *bbio = NULL; 1983 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 1984 int ret; 1985 1986 BUG_ON(!mirror_num); 1987 1988 /* we can't repair anything in raid56 yet */ 1989 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 1990 return 0; 1991 1992 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1993 if (!bio) 1994 return -EIO; 1995 bio->bi_private = &compl; 1996 bio->bi_end_io = repair_io_failure_callback; 1997 bio->bi_size = 0; 1998 map_length = length; 1999 2000 ret = btrfs_map_block(fs_info, WRITE, logical, 2001 &map_length, &bbio, mirror_num); 2002 if (ret) { 2003 bio_put(bio); 2004 return -EIO; 2005 } 2006 BUG_ON(mirror_num != bbio->mirror_num); 2007 sector = bbio->stripes[mirror_num-1].physical >> 9; 2008 bio->bi_sector = sector; 2009 dev = bbio->stripes[mirror_num-1].dev; 2010 kfree(bbio); 2011 if (!dev || !dev->bdev || !dev->writeable) { 2012 bio_put(bio); 2013 return -EIO; 2014 } 2015 bio->bi_bdev = dev->bdev; 2016 bio_add_page(bio, page, length, start - page_offset(page)); 2017 btrfsic_submit_bio(WRITE_SYNC, bio); 2018 wait_for_completion(&compl); 2019 2020 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2021 /* try to remap that extent elsewhere? */ 2022 bio_put(bio); 2023 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2024 return -EIO; 2025 } 2026 2027 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 2028 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2029 start, rcu_str_deref(dev->name), sector); 2030 2031 bio_put(bio); 2032 return 0; 2033 } 2034 2035 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2036 int mirror_num) 2037 { 2038 u64 start = eb->start; 2039 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2040 int ret = 0; 2041 2042 for (i = 0; i < num_pages; i++) { 2043 struct page *p = extent_buffer_page(eb, i); 2044 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2045 start, p, mirror_num); 2046 if (ret) 2047 break; 2048 start += PAGE_CACHE_SIZE; 2049 } 2050 2051 return ret; 2052 } 2053 2054 /* 2055 * each time an IO finishes, we do a fast check in the IO failure tree 2056 * to see if we need to process or clean up an io_failure_record 2057 */ 2058 static int clean_io_failure(u64 start, struct page *page) 2059 { 2060 u64 private; 2061 u64 private_failure; 2062 struct io_failure_record *failrec; 2063 struct btrfs_fs_info *fs_info; 2064 struct extent_state *state; 2065 int num_copies; 2066 int did_repair = 0; 2067 int ret; 2068 struct inode *inode = page->mapping->host; 2069 2070 private = 0; 2071 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2072 (u64)-1, 1, EXTENT_DIRTY, 0); 2073 if (!ret) 2074 return 0; 2075 2076 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2077 &private_failure); 2078 if (ret) 2079 return 0; 2080 2081 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2082 BUG_ON(!failrec->this_mirror); 2083 2084 if (failrec->in_validation) { 2085 /* there was no real error, just free the record */ 2086 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2087 failrec->start); 2088 did_repair = 1; 2089 goto out; 2090 } 2091 2092 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2093 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2094 failrec->start, 2095 EXTENT_LOCKED); 2096 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2097 2098 if (state && state->start <= failrec->start && 2099 state->end >= failrec->start + failrec->len - 1) { 2100 fs_info = BTRFS_I(inode)->root->fs_info; 2101 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2102 failrec->len); 2103 if (num_copies > 1) { 2104 ret = repair_io_failure(fs_info, start, failrec->len, 2105 failrec->logical, page, 2106 failrec->failed_mirror); 2107 did_repair = !ret; 2108 } 2109 ret = 0; 2110 } 2111 2112 out: 2113 if (!ret) 2114 ret = free_io_failure(inode, failrec, did_repair); 2115 2116 return ret; 2117 } 2118 2119 /* 2120 * this is a generic handler for readpage errors (default 2121 * readpage_io_failed_hook). if other copies exist, read those and write back 2122 * good data to the failed position. does not investigate in remapping the 2123 * failed extent elsewhere, hoping the device will be smart enough to do this as 2124 * needed 2125 */ 2126 2127 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2128 struct page *page, u64 start, u64 end, 2129 int failed_mirror) 2130 { 2131 struct io_failure_record *failrec = NULL; 2132 u64 private; 2133 struct extent_map *em; 2134 struct inode *inode = page->mapping->host; 2135 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2136 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2137 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2138 struct bio *bio; 2139 struct btrfs_io_bio *btrfs_failed_bio; 2140 struct btrfs_io_bio *btrfs_bio; 2141 int num_copies; 2142 int ret; 2143 int read_mode; 2144 u64 logical; 2145 2146 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2147 2148 ret = get_state_private(failure_tree, start, &private); 2149 if (ret) { 2150 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2151 if (!failrec) 2152 return -ENOMEM; 2153 failrec->start = start; 2154 failrec->len = end - start + 1; 2155 failrec->this_mirror = 0; 2156 failrec->bio_flags = 0; 2157 failrec->in_validation = 0; 2158 2159 read_lock(&em_tree->lock); 2160 em = lookup_extent_mapping(em_tree, start, failrec->len); 2161 if (!em) { 2162 read_unlock(&em_tree->lock); 2163 kfree(failrec); 2164 return -EIO; 2165 } 2166 2167 if (em->start > start || em->start + em->len < start) { 2168 free_extent_map(em); 2169 em = NULL; 2170 } 2171 read_unlock(&em_tree->lock); 2172 2173 if (!em) { 2174 kfree(failrec); 2175 return -EIO; 2176 } 2177 logical = start - em->start; 2178 logical = em->block_start + logical; 2179 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2180 logical = em->block_start; 2181 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2182 extent_set_compress_type(&failrec->bio_flags, 2183 em->compress_type); 2184 } 2185 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2186 "len=%llu\n", logical, start, failrec->len); 2187 failrec->logical = logical; 2188 free_extent_map(em); 2189 2190 /* set the bits in the private failure tree */ 2191 ret = set_extent_bits(failure_tree, start, end, 2192 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2193 if (ret >= 0) 2194 ret = set_state_private(failure_tree, start, 2195 (u64)(unsigned long)failrec); 2196 /* set the bits in the inode's tree */ 2197 if (ret >= 0) 2198 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2199 GFP_NOFS); 2200 if (ret < 0) { 2201 kfree(failrec); 2202 return ret; 2203 } 2204 } else { 2205 failrec = (struct io_failure_record *)(unsigned long)private; 2206 pr_debug("bio_readpage_error: (found) logical=%llu, " 2207 "start=%llu, len=%llu, validation=%d\n", 2208 failrec->logical, failrec->start, failrec->len, 2209 failrec->in_validation); 2210 /* 2211 * when data can be on disk more than twice, add to failrec here 2212 * (e.g. with a list for failed_mirror) to make 2213 * clean_io_failure() clean all those errors at once. 2214 */ 2215 } 2216 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2217 failrec->logical, failrec->len); 2218 if (num_copies == 1) { 2219 /* 2220 * we only have a single copy of the data, so don't bother with 2221 * all the retry and error correction code that follows. no 2222 * matter what the error is, it is very likely to persist. 2223 */ 2224 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2225 num_copies, failrec->this_mirror, failed_mirror); 2226 free_io_failure(inode, failrec, 0); 2227 return -EIO; 2228 } 2229 2230 /* 2231 * there are two premises: 2232 * a) deliver good data to the caller 2233 * b) correct the bad sectors on disk 2234 */ 2235 if (failed_bio->bi_vcnt > 1) { 2236 /* 2237 * to fulfill b), we need to know the exact failing sectors, as 2238 * we don't want to rewrite any more than the failed ones. thus, 2239 * we need separate read requests for the failed bio 2240 * 2241 * if the following BUG_ON triggers, our validation request got 2242 * merged. we need separate requests for our algorithm to work. 2243 */ 2244 BUG_ON(failrec->in_validation); 2245 failrec->in_validation = 1; 2246 failrec->this_mirror = failed_mirror; 2247 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2248 } else { 2249 /* 2250 * we're ready to fulfill a) and b) alongside. get a good copy 2251 * of the failed sector and if we succeed, we have setup 2252 * everything for repair_io_failure to do the rest for us. 2253 */ 2254 if (failrec->in_validation) { 2255 BUG_ON(failrec->this_mirror != failed_mirror); 2256 failrec->in_validation = 0; 2257 failrec->this_mirror = 0; 2258 } 2259 failrec->failed_mirror = failed_mirror; 2260 failrec->this_mirror++; 2261 if (failrec->this_mirror == failed_mirror) 2262 failrec->this_mirror++; 2263 read_mode = READ_SYNC; 2264 } 2265 2266 if (failrec->this_mirror > num_copies) { 2267 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2268 num_copies, failrec->this_mirror, failed_mirror); 2269 free_io_failure(inode, failrec, 0); 2270 return -EIO; 2271 } 2272 2273 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2274 if (!bio) { 2275 free_io_failure(inode, failrec, 0); 2276 return -EIO; 2277 } 2278 bio->bi_end_io = failed_bio->bi_end_io; 2279 bio->bi_sector = failrec->logical >> 9; 2280 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2281 bio->bi_size = 0; 2282 2283 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2284 if (btrfs_failed_bio->csum) { 2285 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2287 2288 btrfs_bio = btrfs_io_bio(bio); 2289 btrfs_bio->csum = btrfs_bio->csum_inline; 2290 phy_offset >>= inode->i_sb->s_blocksize_bits; 2291 phy_offset *= csum_size; 2292 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset, 2293 csum_size); 2294 } 2295 2296 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2297 2298 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2299 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2300 failrec->this_mirror, num_copies, failrec->in_validation); 2301 2302 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2303 failrec->this_mirror, 2304 failrec->bio_flags, 0); 2305 return ret; 2306 } 2307 2308 /* lots and lots of room for performance fixes in the end_bio funcs */ 2309 2310 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2311 { 2312 int uptodate = (err == 0); 2313 struct extent_io_tree *tree; 2314 int ret; 2315 2316 tree = &BTRFS_I(page->mapping->host)->io_tree; 2317 2318 if (tree->ops && tree->ops->writepage_end_io_hook) { 2319 ret = tree->ops->writepage_end_io_hook(page, start, 2320 end, NULL, uptodate); 2321 if (ret) 2322 uptodate = 0; 2323 } 2324 2325 if (!uptodate) { 2326 ClearPageUptodate(page); 2327 SetPageError(page); 2328 } 2329 return 0; 2330 } 2331 2332 /* 2333 * after a writepage IO is done, we need to: 2334 * clear the uptodate bits on error 2335 * clear the writeback bits in the extent tree for this IO 2336 * end_page_writeback if the page has no more pending IO 2337 * 2338 * Scheduling is not allowed, so the extent state tree is expected 2339 * to have one and only one object corresponding to this IO. 2340 */ 2341 static void end_bio_extent_writepage(struct bio *bio, int err) 2342 { 2343 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2344 struct extent_io_tree *tree; 2345 u64 start; 2346 u64 end; 2347 2348 do { 2349 struct page *page = bvec->bv_page; 2350 tree = &BTRFS_I(page->mapping->host)->io_tree; 2351 2352 /* We always issue full-page reads, but if some block 2353 * in a page fails to read, blk_update_request() will 2354 * advance bv_offset and adjust bv_len to compensate. 2355 * Print a warning for nonzero offsets, and an error 2356 * if they don't add up to a full page. */ 2357 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2358 printk("%s page write in btrfs with offset %u and length %u\n", 2359 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2360 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2361 bvec->bv_offset, bvec->bv_len); 2362 2363 start = page_offset(page); 2364 end = start + bvec->bv_offset + bvec->bv_len - 1; 2365 2366 if (--bvec >= bio->bi_io_vec) 2367 prefetchw(&bvec->bv_page->flags); 2368 2369 if (end_extent_writepage(page, err, start, end)) 2370 continue; 2371 2372 end_page_writeback(page); 2373 } while (bvec >= bio->bi_io_vec); 2374 2375 bio_put(bio); 2376 } 2377 2378 static void 2379 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2380 int uptodate) 2381 { 2382 struct extent_state *cached = NULL; 2383 u64 end = start + len - 1; 2384 2385 if (uptodate && tree->track_uptodate) 2386 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2387 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2388 } 2389 2390 /* 2391 * after a readpage IO is done, we need to: 2392 * clear the uptodate bits on error 2393 * set the uptodate bits if things worked 2394 * set the page up to date if all extents in the tree are uptodate 2395 * clear the lock bit in the extent tree 2396 * unlock the page if there are no other extents locked for it 2397 * 2398 * Scheduling is not allowed, so the extent state tree is expected 2399 * to have one and only one object corresponding to this IO. 2400 */ 2401 static void end_bio_extent_readpage(struct bio *bio, int err) 2402 { 2403 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2404 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2405 struct bio_vec *bvec = bio->bi_io_vec; 2406 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2407 struct extent_io_tree *tree; 2408 u64 offset = 0; 2409 u64 start; 2410 u64 end; 2411 u64 len; 2412 u64 extent_start = 0; 2413 u64 extent_len = 0; 2414 int mirror; 2415 int ret; 2416 2417 if (err) 2418 uptodate = 0; 2419 2420 do { 2421 struct page *page = bvec->bv_page; 2422 struct inode *inode = page->mapping->host; 2423 2424 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2425 "mirror=%lu\n", (u64)bio->bi_sector, err, 2426 io_bio->mirror_num); 2427 tree = &BTRFS_I(inode)->io_tree; 2428 2429 /* We always issue full-page reads, but if some block 2430 * in a page fails to read, blk_update_request() will 2431 * advance bv_offset and adjust bv_len to compensate. 2432 * Print a warning for nonzero offsets, and an error 2433 * if they don't add up to a full page. */ 2434 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2435 printk("%s page read in btrfs with offset %u and length %u\n", 2436 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2437 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2438 bvec->bv_offset, bvec->bv_len); 2439 2440 start = page_offset(page); 2441 end = start + bvec->bv_offset + bvec->bv_len - 1; 2442 len = bvec->bv_len; 2443 2444 if (++bvec <= bvec_end) 2445 prefetchw(&bvec->bv_page->flags); 2446 2447 mirror = io_bio->mirror_num; 2448 if (likely(uptodate && tree->ops && 2449 tree->ops->readpage_end_io_hook)) { 2450 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2451 page, start, end, 2452 mirror); 2453 if (ret) 2454 uptodate = 0; 2455 else 2456 clean_io_failure(start, page); 2457 } 2458 2459 if (likely(uptodate)) 2460 goto readpage_ok; 2461 2462 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2463 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2464 if (!ret && !err && 2465 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2466 uptodate = 1; 2467 } else { 2468 /* 2469 * The generic bio_readpage_error handles errors the 2470 * following way: If possible, new read requests are 2471 * created and submitted and will end up in 2472 * end_bio_extent_readpage as well (if we're lucky, not 2473 * in the !uptodate case). In that case it returns 0 and 2474 * we just go on with the next page in our bio. If it 2475 * can't handle the error it will return -EIO and we 2476 * remain responsible for that page. 2477 */ 2478 ret = bio_readpage_error(bio, offset, page, start, end, 2479 mirror); 2480 if (ret == 0) { 2481 uptodate = 2482 test_bit(BIO_UPTODATE, &bio->bi_flags); 2483 if (err) 2484 uptodate = 0; 2485 continue; 2486 } 2487 } 2488 readpage_ok: 2489 if (likely(uptodate)) { 2490 loff_t i_size = i_size_read(inode); 2491 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2492 unsigned offset; 2493 2494 /* Zero out the end if this page straddles i_size */ 2495 offset = i_size & (PAGE_CACHE_SIZE-1); 2496 if (page->index == end_index && offset) 2497 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2498 SetPageUptodate(page); 2499 } else { 2500 ClearPageUptodate(page); 2501 SetPageError(page); 2502 } 2503 unlock_page(page); 2504 offset += len; 2505 2506 if (unlikely(!uptodate)) { 2507 if (extent_len) { 2508 endio_readpage_release_extent(tree, 2509 extent_start, 2510 extent_len, 1); 2511 extent_start = 0; 2512 extent_len = 0; 2513 } 2514 endio_readpage_release_extent(tree, start, 2515 end - start + 1, 0); 2516 } else if (!extent_len) { 2517 extent_start = start; 2518 extent_len = end + 1 - start; 2519 } else if (extent_start + extent_len == start) { 2520 extent_len += end + 1 - start; 2521 } else { 2522 endio_readpage_release_extent(tree, extent_start, 2523 extent_len, uptodate); 2524 extent_start = start; 2525 extent_len = end + 1 - start; 2526 } 2527 } while (bvec <= bvec_end); 2528 2529 if (extent_len) 2530 endio_readpage_release_extent(tree, extent_start, extent_len, 2531 uptodate); 2532 if (io_bio->end_io) 2533 io_bio->end_io(io_bio, err); 2534 bio_put(bio); 2535 } 2536 2537 /* 2538 * this allocates from the btrfs_bioset. We're returning a bio right now 2539 * but you can call btrfs_io_bio for the appropriate container_of magic 2540 */ 2541 struct bio * 2542 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2543 gfp_t gfp_flags) 2544 { 2545 struct btrfs_io_bio *btrfs_bio; 2546 struct bio *bio; 2547 2548 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2549 2550 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2551 while (!bio && (nr_vecs /= 2)) { 2552 bio = bio_alloc_bioset(gfp_flags, 2553 nr_vecs, btrfs_bioset); 2554 } 2555 } 2556 2557 if (bio) { 2558 bio->bi_size = 0; 2559 bio->bi_bdev = bdev; 2560 bio->bi_sector = first_sector; 2561 btrfs_bio = btrfs_io_bio(bio); 2562 btrfs_bio->csum = NULL; 2563 btrfs_bio->csum_allocated = NULL; 2564 btrfs_bio->end_io = NULL; 2565 } 2566 return bio; 2567 } 2568 2569 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2570 { 2571 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2572 } 2573 2574 2575 /* this also allocates from the btrfs_bioset */ 2576 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2577 { 2578 struct btrfs_io_bio *btrfs_bio; 2579 struct bio *bio; 2580 2581 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2582 if (bio) { 2583 btrfs_bio = btrfs_io_bio(bio); 2584 btrfs_bio->csum = NULL; 2585 btrfs_bio->csum_allocated = NULL; 2586 btrfs_bio->end_io = NULL; 2587 } 2588 return bio; 2589 } 2590 2591 2592 static int __must_check submit_one_bio(int rw, struct bio *bio, 2593 int mirror_num, unsigned long bio_flags) 2594 { 2595 int ret = 0; 2596 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2597 struct page *page = bvec->bv_page; 2598 struct extent_io_tree *tree = bio->bi_private; 2599 u64 start; 2600 2601 start = page_offset(page) + bvec->bv_offset; 2602 2603 bio->bi_private = NULL; 2604 2605 bio_get(bio); 2606 2607 if (tree->ops && tree->ops->submit_bio_hook) 2608 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2609 mirror_num, bio_flags, start); 2610 else 2611 btrfsic_submit_bio(rw, bio); 2612 2613 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2614 ret = -EOPNOTSUPP; 2615 bio_put(bio); 2616 return ret; 2617 } 2618 2619 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2620 unsigned long offset, size_t size, struct bio *bio, 2621 unsigned long bio_flags) 2622 { 2623 int ret = 0; 2624 if (tree->ops && tree->ops->merge_bio_hook) 2625 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2626 bio_flags); 2627 BUG_ON(ret < 0); 2628 return ret; 2629 2630 } 2631 2632 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2633 struct page *page, sector_t sector, 2634 size_t size, unsigned long offset, 2635 struct block_device *bdev, 2636 struct bio **bio_ret, 2637 unsigned long max_pages, 2638 bio_end_io_t end_io_func, 2639 int mirror_num, 2640 unsigned long prev_bio_flags, 2641 unsigned long bio_flags) 2642 { 2643 int ret = 0; 2644 struct bio *bio; 2645 int nr; 2646 int contig = 0; 2647 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2648 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2649 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2650 2651 if (bio_ret && *bio_ret) { 2652 bio = *bio_ret; 2653 if (old_compressed) 2654 contig = bio->bi_sector == sector; 2655 else 2656 contig = bio_end_sector(bio) == sector; 2657 2658 if (prev_bio_flags != bio_flags || !contig || 2659 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2660 bio_add_page(bio, page, page_size, offset) < page_size) { 2661 ret = submit_one_bio(rw, bio, mirror_num, 2662 prev_bio_flags); 2663 if (ret < 0) 2664 return ret; 2665 bio = NULL; 2666 } else { 2667 return 0; 2668 } 2669 } 2670 if (this_compressed) 2671 nr = BIO_MAX_PAGES; 2672 else 2673 nr = bio_get_nr_vecs(bdev); 2674 2675 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2676 if (!bio) 2677 return -ENOMEM; 2678 2679 bio_add_page(bio, page, page_size, offset); 2680 bio->bi_end_io = end_io_func; 2681 bio->bi_private = tree; 2682 2683 if (bio_ret) 2684 *bio_ret = bio; 2685 else 2686 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2687 2688 return ret; 2689 } 2690 2691 static void attach_extent_buffer_page(struct extent_buffer *eb, 2692 struct page *page) 2693 { 2694 if (!PagePrivate(page)) { 2695 SetPagePrivate(page); 2696 page_cache_get(page); 2697 set_page_private(page, (unsigned long)eb); 2698 } else { 2699 WARN_ON(page->private != (unsigned long)eb); 2700 } 2701 } 2702 2703 void set_page_extent_mapped(struct page *page) 2704 { 2705 if (!PagePrivate(page)) { 2706 SetPagePrivate(page); 2707 page_cache_get(page); 2708 set_page_private(page, EXTENT_PAGE_PRIVATE); 2709 } 2710 } 2711 2712 static struct extent_map * 2713 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2714 u64 start, u64 len, get_extent_t *get_extent, 2715 struct extent_map **em_cached) 2716 { 2717 struct extent_map *em; 2718 2719 if (em_cached && *em_cached) { 2720 em = *em_cached; 2721 if (em->in_tree && start >= em->start && 2722 start < extent_map_end(em)) { 2723 atomic_inc(&em->refs); 2724 return em; 2725 } 2726 2727 free_extent_map(em); 2728 *em_cached = NULL; 2729 } 2730 2731 em = get_extent(inode, page, pg_offset, start, len, 0); 2732 if (em_cached && !IS_ERR_OR_NULL(em)) { 2733 BUG_ON(*em_cached); 2734 atomic_inc(&em->refs); 2735 *em_cached = em; 2736 } 2737 return em; 2738 } 2739 /* 2740 * basic readpage implementation. Locked extent state structs are inserted 2741 * into the tree that are removed when the IO is done (by the end_io 2742 * handlers) 2743 * XXX JDM: This needs looking at to ensure proper page locking 2744 */ 2745 static int __do_readpage(struct extent_io_tree *tree, 2746 struct page *page, 2747 get_extent_t *get_extent, 2748 struct extent_map **em_cached, 2749 struct bio **bio, int mirror_num, 2750 unsigned long *bio_flags, int rw) 2751 { 2752 struct inode *inode = page->mapping->host; 2753 u64 start = page_offset(page); 2754 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2755 u64 end; 2756 u64 cur = start; 2757 u64 extent_offset; 2758 u64 last_byte = i_size_read(inode); 2759 u64 block_start; 2760 u64 cur_end; 2761 sector_t sector; 2762 struct extent_map *em; 2763 struct block_device *bdev; 2764 int ret; 2765 int nr = 0; 2766 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2767 size_t pg_offset = 0; 2768 size_t iosize; 2769 size_t disk_io_size; 2770 size_t blocksize = inode->i_sb->s_blocksize; 2771 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2772 2773 set_page_extent_mapped(page); 2774 2775 end = page_end; 2776 if (!PageUptodate(page)) { 2777 if (cleancache_get_page(page) == 0) { 2778 BUG_ON(blocksize != PAGE_SIZE); 2779 unlock_extent(tree, start, end); 2780 goto out; 2781 } 2782 } 2783 2784 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2785 char *userpage; 2786 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2787 2788 if (zero_offset) { 2789 iosize = PAGE_CACHE_SIZE - zero_offset; 2790 userpage = kmap_atomic(page); 2791 memset(userpage + zero_offset, 0, iosize); 2792 flush_dcache_page(page); 2793 kunmap_atomic(userpage); 2794 } 2795 } 2796 while (cur <= end) { 2797 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2798 2799 if (cur >= last_byte) { 2800 char *userpage; 2801 struct extent_state *cached = NULL; 2802 2803 iosize = PAGE_CACHE_SIZE - pg_offset; 2804 userpage = kmap_atomic(page); 2805 memset(userpage + pg_offset, 0, iosize); 2806 flush_dcache_page(page); 2807 kunmap_atomic(userpage); 2808 set_extent_uptodate(tree, cur, cur + iosize - 1, 2809 &cached, GFP_NOFS); 2810 if (!parent_locked) 2811 unlock_extent_cached(tree, cur, 2812 cur + iosize - 1, 2813 &cached, GFP_NOFS); 2814 break; 2815 } 2816 em = __get_extent_map(inode, page, pg_offset, cur, 2817 end - cur + 1, get_extent, em_cached); 2818 if (IS_ERR_OR_NULL(em)) { 2819 SetPageError(page); 2820 if (!parent_locked) 2821 unlock_extent(tree, cur, end); 2822 break; 2823 } 2824 extent_offset = cur - em->start; 2825 BUG_ON(extent_map_end(em) <= cur); 2826 BUG_ON(end < cur); 2827 2828 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2829 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2830 extent_set_compress_type(&this_bio_flag, 2831 em->compress_type); 2832 } 2833 2834 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2835 cur_end = min(extent_map_end(em) - 1, end); 2836 iosize = ALIGN(iosize, blocksize); 2837 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2838 disk_io_size = em->block_len; 2839 sector = em->block_start >> 9; 2840 } else { 2841 sector = (em->block_start + extent_offset) >> 9; 2842 disk_io_size = iosize; 2843 } 2844 bdev = em->bdev; 2845 block_start = em->block_start; 2846 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2847 block_start = EXTENT_MAP_HOLE; 2848 free_extent_map(em); 2849 em = NULL; 2850 2851 /* we've found a hole, just zero and go on */ 2852 if (block_start == EXTENT_MAP_HOLE) { 2853 char *userpage; 2854 struct extent_state *cached = NULL; 2855 2856 userpage = kmap_atomic(page); 2857 memset(userpage + pg_offset, 0, iosize); 2858 flush_dcache_page(page); 2859 kunmap_atomic(userpage); 2860 2861 set_extent_uptodate(tree, cur, cur + iosize - 1, 2862 &cached, GFP_NOFS); 2863 unlock_extent_cached(tree, cur, cur + iosize - 1, 2864 &cached, GFP_NOFS); 2865 cur = cur + iosize; 2866 pg_offset += iosize; 2867 continue; 2868 } 2869 /* the get_extent function already copied into the page */ 2870 if (test_range_bit(tree, cur, cur_end, 2871 EXTENT_UPTODATE, 1, NULL)) { 2872 check_page_uptodate(tree, page); 2873 if (!parent_locked) 2874 unlock_extent(tree, cur, cur + iosize - 1); 2875 cur = cur + iosize; 2876 pg_offset += iosize; 2877 continue; 2878 } 2879 /* we have an inline extent but it didn't get marked up 2880 * to date. Error out 2881 */ 2882 if (block_start == EXTENT_MAP_INLINE) { 2883 SetPageError(page); 2884 if (!parent_locked) 2885 unlock_extent(tree, cur, cur + iosize - 1); 2886 cur = cur + iosize; 2887 pg_offset += iosize; 2888 continue; 2889 } 2890 2891 pnr -= page->index; 2892 ret = submit_extent_page(rw, tree, page, 2893 sector, disk_io_size, pg_offset, 2894 bdev, bio, pnr, 2895 end_bio_extent_readpage, mirror_num, 2896 *bio_flags, 2897 this_bio_flag); 2898 if (!ret) { 2899 nr++; 2900 *bio_flags = this_bio_flag; 2901 } else { 2902 SetPageError(page); 2903 if (!parent_locked) 2904 unlock_extent(tree, cur, cur + iosize - 1); 2905 } 2906 cur = cur + iosize; 2907 pg_offset += iosize; 2908 } 2909 out: 2910 if (!nr) { 2911 if (!PageError(page)) 2912 SetPageUptodate(page); 2913 unlock_page(page); 2914 } 2915 return 0; 2916 } 2917 2918 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 2919 struct page *pages[], int nr_pages, 2920 u64 start, u64 end, 2921 get_extent_t *get_extent, 2922 struct extent_map **em_cached, 2923 struct bio **bio, int mirror_num, 2924 unsigned long *bio_flags, int rw) 2925 { 2926 struct inode *inode; 2927 struct btrfs_ordered_extent *ordered; 2928 int index; 2929 2930 inode = pages[0]->mapping->host; 2931 while (1) { 2932 lock_extent(tree, start, end); 2933 ordered = btrfs_lookup_ordered_range(inode, start, 2934 end - start + 1); 2935 if (!ordered) 2936 break; 2937 unlock_extent(tree, start, end); 2938 btrfs_start_ordered_extent(inode, ordered, 1); 2939 btrfs_put_ordered_extent(ordered); 2940 } 2941 2942 for (index = 0; index < nr_pages; index++) { 2943 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 2944 mirror_num, bio_flags, rw); 2945 page_cache_release(pages[index]); 2946 } 2947 } 2948 2949 static void __extent_readpages(struct extent_io_tree *tree, 2950 struct page *pages[], 2951 int nr_pages, get_extent_t *get_extent, 2952 struct extent_map **em_cached, 2953 struct bio **bio, int mirror_num, 2954 unsigned long *bio_flags, int rw) 2955 { 2956 u64 start = 0; 2957 u64 end = 0; 2958 u64 page_start; 2959 int index; 2960 int first_index = 0; 2961 2962 for (index = 0; index < nr_pages; index++) { 2963 page_start = page_offset(pages[index]); 2964 if (!end) { 2965 start = page_start; 2966 end = start + PAGE_CACHE_SIZE - 1; 2967 first_index = index; 2968 } else if (end + 1 == page_start) { 2969 end += PAGE_CACHE_SIZE; 2970 } else { 2971 __do_contiguous_readpages(tree, &pages[first_index], 2972 index - first_index, start, 2973 end, get_extent, em_cached, 2974 bio, mirror_num, bio_flags, 2975 rw); 2976 start = page_start; 2977 end = start + PAGE_CACHE_SIZE - 1; 2978 first_index = index; 2979 } 2980 } 2981 2982 if (end) 2983 __do_contiguous_readpages(tree, &pages[first_index], 2984 index - first_index, start, 2985 end, get_extent, em_cached, bio, 2986 mirror_num, bio_flags, rw); 2987 } 2988 2989 static int __extent_read_full_page(struct extent_io_tree *tree, 2990 struct page *page, 2991 get_extent_t *get_extent, 2992 struct bio **bio, int mirror_num, 2993 unsigned long *bio_flags, int rw) 2994 { 2995 struct inode *inode = page->mapping->host; 2996 struct btrfs_ordered_extent *ordered; 2997 u64 start = page_offset(page); 2998 u64 end = start + PAGE_CACHE_SIZE - 1; 2999 int ret; 3000 3001 while (1) { 3002 lock_extent(tree, start, end); 3003 ordered = btrfs_lookup_ordered_extent(inode, start); 3004 if (!ordered) 3005 break; 3006 unlock_extent(tree, start, end); 3007 btrfs_start_ordered_extent(inode, ordered, 1); 3008 btrfs_put_ordered_extent(ordered); 3009 } 3010 3011 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3012 bio_flags, rw); 3013 return ret; 3014 } 3015 3016 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3017 get_extent_t *get_extent, int mirror_num) 3018 { 3019 struct bio *bio = NULL; 3020 unsigned long bio_flags = 0; 3021 int ret; 3022 3023 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3024 &bio_flags, READ); 3025 if (bio) 3026 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3027 return ret; 3028 } 3029 3030 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3031 get_extent_t *get_extent, int mirror_num) 3032 { 3033 struct bio *bio = NULL; 3034 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3035 int ret; 3036 3037 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3038 &bio_flags, READ); 3039 if (bio) 3040 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3041 return ret; 3042 } 3043 3044 static noinline void update_nr_written(struct page *page, 3045 struct writeback_control *wbc, 3046 unsigned long nr_written) 3047 { 3048 wbc->nr_to_write -= nr_written; 3049 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3050 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3051 page->mapping->writeback_index = page->index + nr_written; 3052 } 3053 3054 /* 3055 * the writepage semantics are similar to regular writepage. extent 3056 * records are inserted to lock ranges in the tree, and as dirty areas 3057 * are found, they are marked writeback. Then the lock bits are removed 3058 * and the end_io handler clears the writeback ranges 3059 */ 3060 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3061 void *data) 3062 { 3063 struct inode *inode = page->mapping->host; 3064 struct extent_page_data *epd = data; 3065 struct extent_io_tree *tree = epd->tree; 3066 u64 start = page_offset(page); 3067 u64 delalloc_start; 3068 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3069 u64 end; 3070 u64 cur = start; 3071 u64 extent_offset; 3072 u64 last_byte = i_size_read(inode); 3073 u64 block_start; 3074 u64 iosize; 3075 sector_t sector; 3076 struct extent_state *cached_state = NULL; 3077 struct extent_map *em; 3078 struct block_device *bdev; 3079 int ret; 3080 int nr = 0; 3081 size_t pg_offset = 0; 3082 size_t blocksize; 3083 loff_t i_size = i_size_read(inode); 3084 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3085 u64 nr_delalloc; 3086 u64 delalloc_end; 3087 int page_started; 3088 int compressed; 3089 int write_flags; 3090 unsigned long nr_written = 0; 3091 bool fill_delalloc = true; 3092 3093 if (wbc->sync_mode == WB_SYNC_ALL) 3094 write_flags = WRITE_SYNC; 3095 else 3096 write_flags = WRITE; 3097 3098 trace___extent_writepage(page, inode, wbc); 3099 3100 WARN_ON(!PageLocked(page)); 3101 3102 ClearPageError(page); 3103 3104 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3105 if (page->index > end_index || 3106 (page->index == end_index && !pg_offset)) { 3107 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3108 unlock_page(page); 3109 return 0; 3110 } 3111 3112 if (page->index == end_index) { 3113 char *userpage; 3114 3115 userpage = kmap_atomic(page); 3116 memset(userpage + pg_offset, 0, 3117 PAGE_CACHE_SIZE - pg_offset); 3118 kunmap_atomic(userpage); 3119 flush_dcache_page(page); 3120 } 3121 pg_offset = 0; 3122 3123 set_page_extent_mapped(page); 3124 3125 if (!tree->ops || !tree->ops->fill_delalloc) 3126 fill_delalloc = false; 3127 3128 delalloc_start = start; 3129 delalloc_end = 0; 3130 page_started = 0; 3131 if (!epd->extent_locked && fill_delalloc) { 3132 u64 delalloc_to_write = 0; 3133 /* 3134 * make sure the wbc mapping index is at least updated 3135 * to this page. 3136 */ 3137 update_nr_written(page, wbc, 0); 3138 3139 while (delalloc_end < page_end) { 3140 nr_delalloc = find_lock_delalloc_range(inode, tree, 3141 page, 3142 &delalloc_start, 3143 &delalloc_end, 3144 128 * 1024 * 1024); 3145 if (nr_delalloc == 0) { 3146 delalloc_start = delalloc_end + 1; 3147 continue; 3148 } 3149 ret = tree->ops->fill_delalloc(inode, page, 3150 delalloc_start, 3151 delalloc_end, 3152 &page_started, 3153 &nr_written); 3154 /* File system has been set read-only */ 3155 if (ret) { 3156 SetPageError(page); 3157 goto done; 3158 } 3159 /* 3160 * delalloc_end is already one less than the total 3161 * length, so we don't subtract one from 3162 * PAGE_CACHE_SIZE 3163 */ 3164 delalloc_to_write += (delalloc_end - delalloc_start + 3165 PAGE_CACHE_SIZE) >> 3166 PAGE_CACHE_SHIFT; 3167 delalloc_start = delalloc_end + 1; 3168 } 3169 if (wbc->nr_to_write < delalloc_to_write) { 3170 int thresh = 8192; 3171 3172 if (delalloc_to_write < thresh * 2) 3173 thresh = delalloc_to_write; 3174 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3175 thresh); 3176 } 3177 3178 /* did the fill delalloc function already unlock and start 3179 * the IO? 3180 */ 3181 if (page_started) { 3182 ret = 0; 3183 /* 3184 * we've unlocked the page, so we can't update 3185 * the mapping's writeback index, just update 3186 * nr_to_write. 3187 */ 3188 wbc->nr_to_write -= nr_written; 3189 goto done_unlocked; 3190 } 3191 } 3192 if (tree->ops && tree->ops->writepage_start_hook) { 3193 ret = tree->ops->writepage_start_hook(page, start, 3194 page_end); 3195 if (ret) { 3196 /* Fixup worker will requeue */ 3197 if (ret == -EBUSY) 3198 wbc->pages_skipped++; 3199 else 3200 redirty_page_for_writepage(wbc, page); 3201 update_nr_written(page, wbc, nr_written); 3202 unlock_page(page); 3203 ret = 0; 3204 goto done_unlocked; 3205 } 3206 } 3207 3208 /* 3209 * we don't want to touch the inode after unlocking the page, 3210 * so we update the mapping writeback index now 3211 */ 3212 update_nr_written(page, wbc, nr_written + 1); 3213 3214 end = page_end; 3215 if (last_byte <= start) { 3216 if (tree->ops && tree->ops->writepage_end_io_hook) 3217 tree->ops->writepage_end_io_hook(page, start, 3218 page_end, NULL, 1); 3219 goto done; 3220 } 3221 3222 blocksize = inode->i_sb->s_blocksize; 3223 3224 while (cur <= end) { 3225 if (cur >= last_byte) { 3226 if (tree->ops && tree->ops->writepage_end_io_hook) 3227 tree->ops->writepage_end_io_hook(page, cur, 3228 page_end, NULL, 1); 3229 break; 3230 } 3231 em = epd->get_extent(inode, page, pg_offset, cur, 3232 end - cur + 1, 1); 3233 if (IS_ERR_OR_NULL(em)) { 3234 SetPageError(page); 3235 break; 3236 } 3237 3238 extent_offset = cur - em->start; 3239 BUG_ON(extent_map_end(em) <= cur); 3240 BUG_ON(end < cur); 3241 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3242 iosize = ALIGN(iosize, blocksize); 3243 sector = (em->block_start + extent_offset) >> 9; 3244 bdev = em->bdev; 3245 block_start = em->block_start; 3246 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3247 free_extent_map(em); 3248 em = NULL; 3249 3250 /* 3251 * compressed and inline extents are written through other 3252 * paths in the FS 3253 */ 3254 if (compressed || block_start == EXTENT_MAP_HOLE || 3255 block_start == EXTENT_MAP_INLINE) { 3256 /* 3257 * end_io notification does not happen here for 3258 * compressed extents 3259 */ 3260 if (!compressed && tree->ops && 3261 tree->ops->writepage_end_io_hook) 3262 tree->ops->writepage_end_io_hook(page, cur, 3263 cur + iosize - 1, 3264 NULL, 1); 3265 else if (compressed) { 3266 /* we don't want to end_page_writeback on 3267 * a compressed extent. this happens 3268 * elsewhere 3269 */ 3270 nr++; 3271 } 3272 3273 cur += iosize; 3274 pg_offset += iosize; 3275 continue; 3276 } 3277 /* leave this out until we have a page_mkwrite call */ 3278 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3279 EXTENT_DIRTY, 0, NULL)) { 3280 cur = cur + iosize; 3281 pg_offset += iosize; 3282 continue; 3283 } 3284 3285 if (tree->ops && tree->ops->writepage_io_hook) { 3286 ret = tree->ops->writepage_io_hook(page, cur, 3287 cur + iosize - 1); 3288 } else { 3289 ret = 0; 3290 } 3291 if (ret) { 3292 SetPageError(page); 3293 } else { 3294 unsigned long max_nr = end_index + 1; 3295 3296 set_range_writeback(tree, cur, cur + iosize - 1); 3297 if (!PageWriteback(page)) { 3298 printk(KERN_ERR "btrfs warning page %lu not " 3299 "writeback, cur %llu end %llu\n", 3300 page->index, cur, end); 3301 } 3302 3303 ret = submit_extent_page(write_flags, tree, page, 3304 sector, iosize, pg_offset, 3305 bdev, &epd->bio, max_nr, 3306 end_bio_extent_writepage, 3307 0, 0, 0); 3308 if (ret) 3309 SetPageError(page); 3310 } 3311 cur = cur + iosize; 3312 pg_offset += iosize; 3313 nr++; 3314 } 3315 done: 3316 if (nr == 0) { 3317 /* make sure the mapping tag for page dirty gets cleared */ 3318 set_page_writeback(page); 3319 end_page_writeback(page); 3320 } 3321 unlock_page(page); 3322 3323 done_unlocked: 3324 3325 /* drop our reference on any cached states */ 3326 free_extent_state(cached_state); 3327 return 0; 3328 } 3329 3330 static int eb_wait(void *word) 3331 { 3332 io_schedule(); 3333 return 0; 3334 } 3335 3336 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3337 { 3338 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3339 TASK_UNINTERRUPTIBLE); 3340 } 3341 3342 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3343 struct btrfs_fs_info *fs_info, 3344 struct extent_page_data *epd) 3345 { 3346 unsigned long i, num_pages; 3347 int flush = 0; 3348 int ret = 0; 3349 3350 if (!btrfs_try_tree_write_lock(eb)) { 3351 flush = 1; 3352 flush_write_bio(epd); 3353 btrfs_tree_lock(eb); 3354 } 3355 3356 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3357 btrfs_tree_unlock(eb); 3358 if (!epd->sync_io) 3359 return 0; 3360 if (!flush) { 3361 flush_write_bio(epd); 3362 flush = 1; 3363 } 3364 while (1) { 3365 wait_on_extent_buffer_writeback(eb); 3366 btrfs_tree_lock(eb); 3367 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3368 break; 3369 btrfs_tree_unlock(eb); 3370 } 3371 } 3372 3373 /* 3374 * We need to do this to prevent races in people who check if the eb is 3375 * under IO since we can end up having no IO bits set for a short period 3376 * of time. 3377 */ 3378 spin_lock(&eb->refs_lock); 3379 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3380 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3381 spin_unlock(&eb->refs_lock); 3382 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3383 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3384 -eb->len, 3385 fs_info->dirty_metadata_batch); 3386 ret = 1; 3387 } else { 3388 spin_unlock(&eb->refs_lock); 3389 } 3390 3391 btrfs_tree_unlock(eb); 3392 3393 if (!ret) 3394 return ret; 3395 3396 num_pages = num_extent_pages(eb->start, eb->len); 3397 for (i = 0; i < num_pages; i++) { 3398 struct page *p = extent_buffer_page(eb, i); 3399 3400 if (!trylock_page(p)) { 3401 if (!flush) { 3402 flush_write_bio(epd); 3403 flush = 1; 3404 } 3405 lock_page(p); 3406 } 3407 } 3408 3409 return ret; 3410 } 3411 3412 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3413 { 3414 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3415 smp_mb__after_clear_bit(); 3416 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3417 } 3418 3419 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3420 { 3421 int uptodate = err == 0; 3422 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3423 struct extent_buffer *eb; 3424 int done; 3425 3426 do { 3427 struct page *page = bvec->bv_page; 3428 3429 bvec--; 3430 eb = (struct extent_buffer *)page->private; 3431 BUG_ON(!eb); 3432 done = atomic_dec_and_test(&eb->io_pages); 3433 3434 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3435 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3436 ClearPageUptodate(page); 3437 SetPageError(page); 3438 } 3439 3440 end_page_writeback(page); 3441 3442 if (!done) 3443 continue; 3444 3445 end_extent_buffer_writeback(eb); 3446 } while (bvec >= bio->bi_io_vec); 3447 3448 bio_put(bio); 3449 3450 } 3451 3452 static int write_one_eb(struct extent_buffer *eb, 3453 struct btrfs_fs_info *fs_info, 3454 struct writeback_control *wbc, 3455 struct extent_page_data *epd) 3456 { 3457 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3458 u64 offset = eb->start; 3459 unsigned long i, num_pages; 3460 unsigned long bio_flags = 0; 3461 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3462 int ret = 0; 3463 3464 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3465 num_pages = num_extent_pages(eb->start, eb->len); 3466 atomic_set(&eb->io_pages, num_pages); 3467 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3468 bio_flags = EXTENT_BIO_TREE_LOG; 3469 3470 for (i = 0; i < num_pages; i++) { 3471 struct page *p = extent_buffer_page(eb, i); 3472 3473 clear_page_dirty_for_io(p); 3474 set_page_writeback(p); 3475 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3476 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3477 -1, end_bio_extent_buffer_writepage, 3478 0, epd->bio_flags, bio_flags); 3479 epd->bio_flags = bio_flags; 3480 if (ret) { 3481 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3482 SetPageError(p); 3483 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3484 end_extent_buffer_writeback(eb); 3485 ret = -EIO; 3486 break; 3487 } 3488 offset += PAGE_CACHE_SIZE; 3489 update_nr_written(p, wbc, 1); 3490 unlock_page(p); 3491 } 3492 3493 if (unlikely(ret)) { 3494 for (; i < num_pages; i++) { 3495 struct page *p = extent_buffer_page(eb, i); 3496 unlock_page(p); 3497 } 3498 } 3499 3500 return ret; 3501 } 3502 3503 int btree_write_cache_pages(struct address_space *mapping, 3504 struct writeback_control *wbc) 3505 { 3506 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3507 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3508 struct extent_buffer *eb, *prev_eb = NULL; 3509 struct extent_page_data epd = { 3510 .bio = NULL, 3511 .tree = tree, 3512 .extent_locked = 0, 3513 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3514 .bio_flags = 0, 3515 }; 3516 int ret = 0; 3517 int done = 0; 3518 int nr_to_write_done = 0; 3519 struct pagevec pvec; 3520 int nr_pages; 3521 pgoff_t index; 3522 pgoff_t end; /* Inclusive */ 3523 int scanned = 0; 3524 int tag; 3525 3526 pagevec_init(&pvec, 0); 3527 if (wbc->range_cyclic) { 3528 index = mapping->writeback_index; /* Start from prev offset */ 3529 end = -1; 3530 } else { 3531 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3532 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3533 scanned = 1; 3534 } 3535 if (wbc->sync_mode == WB_SYNC_ALL) 3536 tag = PAGECACHE_TAG_TOWRITE; 3537 else 3538 tag = PAGECACHE_TAG_DIRTY; 3539 retry: 3540 if (wbc->sync_mode == WB_SYNC_ALL) 3541 tag_pages_for_writeback(mapping, index, end); 3542 while (!done && !nr_to_write_done && (index <= end) && 3543 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3545 unsigned i; 3546 3547 scanned = 1; 3548 for (i = 0; i < nr_pages; i++) { 3549 struct page *page = pvec.pages[i]; 3550 3551 if (!PagePrivate(page)) 3552 continue; 3553 3554 if (!wbc->range_cyclic && page->index > end) { 3555 done = 1; 3556 break; 3557 } 3558 3559 spin_lock(&mapping->private_lock); 3560 if (!PagePrivate(page)) { 3561 spin_unlock(&mapping->private_lock); 3562 continue; 3563 } 3564 3565 eb = (struct extent_buffer *)page->private; 3566 3567 /* 3568 * Shouldn't happen and normally this would be a BUG_ON 3569 * but no sense in crashing the users box for something 3570 * we can survive anyway. 3571 */ 3572 if (!eb) { 3573 spin_unlock(&mapping->private_lock); 3574 WARN_ON(1); 3575 continue; 3576 } 3577 3578 if (eb == prev_eb) { 3579 spin_unlock(&mapping->private_lock); 3580 continue; 3581 } 3582 3583 ret = atomic_inc_not_zero(&eb->refs); 3584 spin_unlock(&mapping->private_lock); 3585 if (!ret) 3586 continue; 3587 3588 prev_eb = eb; 3589 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3590 if (!ret) { 3591 free_extent_buffer(eb); 3592 continue; 3593 } 3594 3595 ret = write_one_eb(eb, fs_info, wbc, &epd); 3596 if (ret) { 3597 done = 1; 3598 free_extent_buffer(eb); 3599 break; 3600 } 3601 free_extent_buffer(eb); 3602 3603 /* 3604 * the filesystem may choose to bump up nr_to_write. 3605 * We have to make sure to honor the new nr_to_write 3606 * at any time 3607 */ 3608 nr_to_write_done = wbc->nr_to_write <= 0; 3609 } 3610 pagevec_release(&pvec); 3611 cond_resched(); 3612 } 3613 if (!scanned && !done) { 3614 /* 3615 * We hit the last page and there is more work to be done: wrap 3616 * back to the start of the file 3617 */ 3618 scanned = 1; 3619 index = 0; 3620 goto retry; 3621 } 3622 flush_write_bio(&epd); 3623 return ret; 3624 } 3625 3626 /** 3627 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3628 * @mapping: address space structure to write 3629 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3630 * @writepage: function called for each page 3631 * @data: data passed to writepage function 3632 * 3633 * If a page is already under I/O, write_cache_pages() skips it, even 3634 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3635 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3636 * and msync() need to guarantee that all the data which was dirty at the time 3637 * the call was made get new I/O started against them. If wbc->sync_mode is 3638 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3639 * existing IO to complete. 3640 */ 3641 static int extent_write_cache_pages(struct extent_io_tree *tree, 3642 struct address_space *mapping, 3643 struct writeback_control *wbc, 3644 writepage_t writepage, void *data, 3645 void (*flush_fn)(void *)) 3646 { 3647 struct inode *inode = mapping->host; 3648 int ret = 0; 3649 int done = 0; 3650 int nr_to_write_done = 0; 3651 struct pagevec pvec; 3652 int nr_pages; 3653 pgoff_t index; 3654 pgoff_t end; /* Inclusive */ 3655 int scanned = 0; 3656 int tag; 3657 3658 /* 3659 * We have to hold onto the inode so that ordered extents can do their 3660 * work when the IO finishes. The alternative to this is failing to add 3661 * an ordered extent if the igrab() fails there and that is a huge pain 3662 * to deal with, so instead just hold onto the inode throughout the 3663 * writepages operation. If it fails here we are freeing up the inode 3664 * anyway and we'd rather not waste our time writing out stuff that is 3665 * going to be truncated anyway. 3666 */ 3667 if (!igrab(inode)) 3668 return 0; 3669 3670 pagevec_init(&pvec, 0); 3671 if (wbc->range_cyclic) { 3672 index = mapping->writeback_index; /* Start from prev offset */ 3673 end = -1; 3674 } else { 3675 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3676 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3677 scanned = 1; 3678 } 3679 if (wbc->sync_mode == WB_SYNC_ALL) 3680 tag = PAGECACHE_TAG_TOWRITE; 3681 else 3682 tag = PAGECACHE_TAG_DIRTY; 3683 retry: 3684 if (wbc->sync_mode == WB_SYNC_ALL) 3685 tag_pages_for_writeback(mapping, index, end); 3686 while (!done && !nr_to_write_done && (index <= end) && 3687 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3688 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3689 unsigned i; 3690 3691 scanned = 1; 3692 for (i = 0; i < nr_pages; i++) { 3693 struct page *page = pvec.pages[i]; 3694 3695 /* 3696 * At this point we hold neither mapping->tree_lock nor 3697 * lock on the page itself: the page may be truncated or 3698 * invalidated (changing page->mapping to NULL), or even 3699 * swizzled back from swapper_space to tmpfs file 3700 * mapping 3701 */ 3702 if (!trylock_page(page)) { 3703 flush_fn(data); 3704 lock_page(page); 3705 } 3706 3707 if (unlikely(page->mapping != mapping)) { 3708 unlock_page(page); 3709 continue; 3710 } 3711 3712 if (!wbc->range_cyclic && page->index > end) { 3713 done = 1; 3714 unlock_page(page); 3715 continue; 3716 } 3717 3718 if (wbc->sync_mode != WB_SYNC_NONE) { 3719 if (PageWriteback(page)) 3720 flush_fn(data); 3721 wait_on_page_writeback(page); 3722 } 3723 3724 if (PageWriteback(page) || 3725 !clear_page_dirty_for_io(page)) { 3726 unlock_page(page); 3727 continue; 3728 } 3729 3730 ret = (*writepage)(page, wbc, data); 3731 3732 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3733 unlock_page(page); 3734 ret = 0; 3735 } 3736 if (ret) 3737 done = 1; 3738 3739 /* 3740 * the filesystem may choose to bump up nr_to_write. 3741 * We have to make sure to honor the new nr_to_write 3742 * at any time 3743 */ 3744 nr_to_write_done = wbc->nr_to_write <= 0; 3745 } 3746 pagevec_release(&pvec); 3747 cond_resched(); 3748 } 3749 if (!scanned && !done) { 3750 /* 3751 * We hit the last page and there is more work to be done: wrap 3752 * back to the start of the file 3753 */ 3754 scanned = 1; 3755 index = 0; 3756 goto retry; 3757 } 3758 btrfs_add_delayed_iput(inode); 3759 return ret; 3760 } 3761 3762 static void flush_epd_write_bio(struct extent_page_data *epd) 3763 { 3764 if (epd->bio) { 3765 int rw = WRITE; 3766 int ret; 3767 3768 if (epd->sync_io) 3769 rw = WRITE_SYNC; 3770 3771 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3772 BUG_ON(ret < 0); /* -ENOMEM */ 3773 epd->bio = NULL; 3774 } 3775 } 3776 3777 static noinline void flush_write_bio(void *data) 3778 { 3779 struct extent_page_data *epd = data; 3780 flush_epd_write_bio(epd); 3781 } 3782 3783 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3784 get_extent_t *get_extent, 3785 struct writeback_control *wbc) 3786 { 3787 int ret; 3788 struct extent_page_data epd = { 3789 .bio = NULL, 3790 .tree = tree, 3791 .get_extent = get_extent, 3792 .extent_locked = 0, 3793 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3794 .bio_flags = 0, 3795 }; 3796 3797 ret = __extent_writepage(page, wbc, &epd); 3798 3799 flush_epd_write_bio(&epd); 3800 return ret; 3801 } 3802 3803 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3804 u64 start, u64 end, get_extent_t *get_extent, 3805 int mode) 3806 { 3807 int ret = 0; 3808 struct address_space *mapping = inode->i_mapping; 3809 struct page *page; 3810 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3811 PAGE_CACHE_SHIFT; 3812 3813 struct extent_page_data epd = { 3814 .bio = NULL, 3815 .tree = tree, 3816 .get_extent = get_extent, 3817 .extent_locked = 1, 3818 .sync_io = mode == WB_SYNC_ALL, 3819 .bio_flags = 0, 3820 }; 3821 struct writeback_control wbc_writepages = { 3822 .sync_mode = mode, 3823 .nr_to_write = nr_pages * 2, 3824 .range_start = start, 3825 .range_end = end + 1, 3826 }; 3827 3828 while (start <= end) { 3829 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3830 if (clear_page_dirty_for_io(page)) 3831 ret = __extent_writepage(page, &wbc_writepages, &epd); 3832 else { 3833 if (tree->ops && tree->ops->writepage_end_io_hook) 3834 tree->ops->writepage_end_io_hook(page, start, 3835 start + PAGE_CACHE_SIZE - 1, 3836 NULL, 1); 3837 unlock_page(page); 3838 } 3839 page_cache_release(page); 3840 start += PAGE_CACHE_SIZE; 3841 } 3842 3843 flush_epd_write_bio(&epd); 3844 return ret; 3845 } 3846 3847 int extent_writepages(struct extent_io_tree *tree, 3848 struct address_space *mapping, 3849 get_extent_t *get_extent, 3850 struct writeback_control *wbc) 3851 { 3852 int ret = 0; 3853 struct extent_page_data epd = { 3854 .bio = NULL, 3855 .tree = tree, 3856 .get_extent = get_extent, 3857 .extent_locked = 0, 3858 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3859 .bio_flags = 0, 3860 }; 3861 3862 ret = extent_write_cache_pages(tree, mapping, wbc, 3863 __extent_writepage, &epd, 3864 flush_write_bio); 3865 flush_epd_write_bio(&epd); 3866 return ret; 3867 } 3868 3869 int extent_readpages(struct extent_io_tree *tree, 3870 struct address_space *mapping, 3871 struct list_head *pages, unsigned nr_pages, 3872 get_extent_t get_extent) 3873 { 3874 struct bio *bio = NULL; 3875 unsigned page_idx; 3876 unsigned long bio_flags = 0; 3877 struct page *pagepool[16]; 3878 struct page *page; 3879 struct extent_map *em_cached = NULL; 3880 int nr = 0; 3881 3882 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3883 page = list_entry(pages->prev, struct page, lru); 3884 3885 prefetchw(&page->flags); 3886 list_del(&page->lru); 3887 if (add_to_page_cache_lru(page, mapping, 3888 page->index, GFP_NOFS)) { 3889 page_cache_release(page); 3890 continue; 3891 } 3892 3893 pagepool[nr++] = page; 3894 if (nr < ARRAY_SIZE(pagepool)) 3895 continue; 3896 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3897 &bio, 0, &bio_flags, READ); 3898 nr = 0; 3899 } 3900 if (nr) 3901 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3902 &bio, 0, &bio_flags, READ); 3903 3904 if (em_cached) 3905 free_extent_map(em_cached); 3906 3907 BUG_ON(!list_empty(pages)); 3908 if (bio) 3909 return submit_one_bio(READ, bio, 0, bio_flags); 3910 return 0; 3911 } 3912 3913 /* 3914 * basic invalidatepage code, this waits on any locked or writeback 3915 * ranges corresponding to the page, and then deletes any extent state 3916 * records from the tree 3917 */ 3918 int extent_invalidatepage(struct extent_io_tree *tree, 3919 struct page *page, unsigned long offset) 3920 { 3921 struct extent_state *cached_state = NULL; 3922 u64 start = page_offset(page); 3923 u64 end = start + PAGE_CACHE_SIZE - 1; 3924 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3925 3926 start += ALIGN(offset, blocksize); 3927 if (start > end) 3928 return 0; 3929 3930 lock_extent_bits(tree, start, end, 0, &cached_state); 3931 wait_on_page_writeback(page); 3932 clear_extent_bit(tree, start, end, 3933 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3934 EXTENT_DO_ACCOUNTING, 3935 1, 1, &cached_state, GFP_NOFS); 3936 return 0; 3937 } 3938 3939 /* 3940 * a helper for releasepage, this tests for areas of the page that 3941 * are locked or under IO and drops the related state bits if it is safe 3942 * to drop the page. 3943 */ 3944 static int try_release_extent_state(struct extent_map_tree *map, 3945 struct extent_io_tree *tree, 3946 struct page *page, gfp_t mask) 3947 { 3948 u64 start = page_offset(page); 3949 u64 end = start + PAGE_CACHE_SIZE - 1; 3950 int ret = 1; 3951 3952 if (test_range_bit(tree, start, end, 3953 EXTENT_IOBITS, 0, NULL)) 3954 ret = 0; 3955 else { 3956 if ((mask & GFP_NOFS) == GFP_NOFS) 3957 mask = GFP_NOFS; 3958 /* 3959 * at this point we can safely clear everything except the 3960 * locked bit and the nodatasum bit 3961 */ 3962 ret = clear_extent_bit(tree, start, end, 3963 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3964 0, 0, NULL, mask); 3965 3966 /* if clear_extent_bit failed for enomem reasons, 3967 * we can't allow the release to continue. 3968 */ 3969 if (ret < 0) 3970 ret = 0; 3971 else 3972 ret = 1; 3973 } 3974 return ret; 3975 } 3976 3977 /* 3978 * a helper for releasepage. As long as there are no locked extents 3979 * in the range corresponding to the page, both state records and extent 3980 * map records are removed 3981 */ 3982 int try_release_extent_mapping(struct extent_map_tree *map, 3983 struct extent_io_tree *tree, struct page *page, 3984 gfp_t mask) 3985 { 3986 struct extent_map *em; 3987 u64 start = page_offset(page); 3988 u64 end = start + PAGE_CACHE_SIZE - 1; 3989 3990 if ((mask & __GFP_WAIT) && 3991 page->mapping->host->i_size > 16 * 1024 * 1024) { 3992 u64 len; 3993 while (start <= end) { 3994 len = end - start + 1; 3995 write_lock(&map->lock); 3996 em = lookup_extent_mapping(map, start, len); 3997 if (!em) { 3998 write_unlock(&map->lock); 3999 break; 4000 } 4001 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4002 em->start != start) { 4003 write_unlock(&map->lock); 4004 free_extent_map(em); 4005 break; 4006 } 4007 if (!test_range_bit(tree, em->start, 4008 extent_map_end(em) - 1, 4009 EXTENT_LOCKED | EXTENT_WRITEBACK, 4010 0, NULL)) { 4011 remove_extent_mapping(map, em); 4012 /* once for the rb tree */ 4013 free_extent_map(em); 4014 } 4015 start = extent_map_end(em); 4016 write_unlock(&map->lock); 4017 4018 /* once for us */ 4019 free_extent_map(em); 4020 } 4021 } 4022 return try_release_extent_state(map, tree, page, mask); 4023 } 4024 4025 /* 4026 * helper function for fiemap, which doesn't want to see any holes. 4027 * This maps until we find something past 'last' 4028 */ 4029 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4030 u64 offset, 4031 u64 last, 4032 get_extent_t *get_extent) 4033 { 4034 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4035 struct extent_map *em; 4036 u64 len; 4037 4038 if (offset >= last) 4039 return NULL; 4040 4041 while(1) { 4042 len = last - offset; 4043 if (len == 0) 4044 break; 4045 len = ALIGN(len, sectorsize); 4046 em = get_extent(inode, NULL, 0, offset, len, 0); 4047 if (IS_ERR_OR_NULL(em)) 4048 return em; 4049 4050 /* if this isn't a hole return it */ 4051 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4052 em->block_start != EXTENT_MAP_HOLE) { 4053 return em; 4054 } 4055 4056 /* this is a hole, advance to the next extent */ 4057 offset = extent_map_end(em); 4058 free_extent_map(em); 4059 if (offset >= last) 4060 break; 4061 } 4062 return NULL; 4063 } 4064 4065 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4066 __u64 start, __u64 len, get_extent_t *get_extent) 4067 { 4068 int ret = 0; 4069 u64 off = start; 4070 u64 max = start + len; 4071 u32 flags = 0; 4072 u32 found_type; 4073 u64 last; 4074 u64 last_for_get_extent = 0; 4075 u64 disko = 0; 4076 u64 isize = i_size_read(inode); 4077 struct btrfs_key found_key; 4078 struct extent_map *em = NULL; 4079 struct extent_state *cached_state = NULL; 4080 struct btrfs_path *path; 4081 struct btrfs_file_extent_item *item; 4082 int end = 0; 4083 u64 em_start = 0; 4084 u64 em_len = 0; 4085 u64 em_end = 0; 4086 unsigned long emflags; 4087 4088 if (len == 0) 4089 return -EINVAL; 4090 4091 path = btrfs_alloc_path(); 4092 if (!path) 4093 return -ENOMEM; 4094 path->leave_spinning = 1; 4095 4096 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 4097 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 4098 4099 /* 4100 * lookup the last file extent. We're not using i_size here 4101 * because there might be preallocation past i_size 4102 */ 4103 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 4104 path, btrfs_ino(inode), -1, 0); 4105 if (ret < 0) { 4106 btrfs_free_path(path); 4107 return ret; 4108 } 4109 WARN_ON(!ret); 4110 path->slots[0]--; 4111 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4112 struct btrfs_file_extent_item); 4113 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4114 found_type = btrfs_key_type(&found_key); 4115 4116 /* No extents, but there might be delalloc bits */ 4117 if (found_key.objectid != btrfs_ino(inode) || 4118 found_type != BTRFS_EXTENT_DATA_KEY) { 4119 /* have to trust i_size as the end */ 4120 last = (u64)-1; 4121 last_for_get_extent = isize; 4122 } else { 4123 /* 4124 * remember the start of the last extent. There are a 4125 * bunch of different factors that go into the length of the 4126 * extent, so its much less complex to remember where it started 4127 */ 4128 last = found_key.offset; 4129 last_for_get_extent = last + 1; 4130 } 4131 btrfs_free_path(path); 4132 4133 /* 4134 * we might have some extents allocated but more delalloc past those 4135 * extents. so, we trust isize unless the start of the last extent is 4136 * beyond isize 4137 */ 4138 if (last < isize) { 4139 last = (u64)-1; 4140 last_for_get_extent = isize; 4141 } 4142 4143 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4144 &cached_state); 4145 4146 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4147 get_extent); 4148 if (!em) 4149 goto out; 4150 if (IS_ERR(em)) { 4151 ret = PTR_ERR(em); 4152 goto out; 4153 } 4154 4155 while (!end) { 4156 u64 offset_in_extent = 0; 4157 4158 /* break if the extent we found is outside the range */ 4159 if (em->start >= max || extent_map_end(em) < off) 4160 break; 4161 4162 /* 4163 * get_extent may return an extent that starts before our 4164 * requested range. We have to make sure the ranges 4165 * we return to fiemap always move forward and don't 4166 * overlap, so adjust the offsets here 4167 */ 4168 em_start = max(em->start, off); 4169 4170 /* 4171 * record the offset from the start of the extent 4172 * for adjusting the disk offset below. Only do this if the 4173 * extent isn't compressed since our in ram offset may be past 4174 * what we have actually allocated on disk. 4175 */ 4176 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4177 offset_in_extent = em_start - em->start; 4178 em_end = extent_map_end(em); 4179 em_len = em_end - em_start; 4180 emflags = em->flags; 4181 disko = 0; 4182 flags = 0; 4183 4184 /* 4185 * bump off for our next call to get_extent 4186 */ 4187 off = extent_map_end(em); 4188 if (off >= max) 4189 end = 1; 4190 4191 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4192 end = 1; 4193 flags |= FIEMAP_EXTENT_LAST; 4194 } else if (em->block_start == EXTENT_MAP_INLINE) { 4195 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4196 FIEMAP_EXTENT_NOT_ALIGNED); 4197 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4198 flags |= (FIEMAP_EXTENT_DELALLOC | 4199 FIEMAP_EXTENT_UNKNOWN); 4200 } else { 4201 disko = em->block_start + offset_in_extent; 4202 } 4203 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4204 flags |= FIEMAP_EXTENT_ENCODED; 4205 4206 free_extent_map(em); 4207 em = NULL; 4208 if ((em_start >= last) || em_len == (u64)-1 || 4209 (last == (u64)-1 && isize <= em_end)) { 4210 flags |= FIEMAP_EXTENT_LAST; 4211 end = 1; 4212 } 4213 4214 /* now scan forward to see if this is really the last extent. */ 4215 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4216 get_extent); 4217 if (IS_ERR(em)) { 4218 ret = PTR_ERR(em); 4219 goto out; 4220 } 4221 if (!em) { 4222 flags |= FIEMAP_EXTENT_LAST; 4223 end = 1; 4224 } 4225 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4226 em_len, flags); 4227 if (ret) 4228 goto out_free; 4229 } 4230 out_free: 4231 free_extent_map(em); 4232 out: 4233 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4234 &cached_state, GFP_NOFS); 4235 return ret; 4236 } 4237 4238 static void __free_extent_buffer(struct extent_buffer *eb) 4239 { 4240 btrfs_leak_debug_del(&eb->leak_list); 4241 kmem_cache_free(extent_buffer_cache, eb); 4242 } 4243 4244 static int extent_buffer_under_io(struct extent_buffer *eb) 4245 { 4246 return (atomic_read(&eb->io_pages) || 4247 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4248 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4249 } 4250 4251 /* 4252 * Helper for releasing extent buffer page. 4253 */ 4254 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4255 unsigned long start_idx) 4256 { 4257 unsigned long index; 4258 unsigned long num_pages; 4259 struct page *page; 4260 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4261 4262 BUG_ON(extent_buffer_under_io(eb)); 4263 4264 num_pages = num_extent_pages(eb->start, eb->len); 4265 index = start_idx + num_pages; 4266 if (start_idx >= index) 4267 return; 4268 4269 do { 4270 index--; 4271 page = extent_buffer_page(eb, index); 4272 if (page && mapped) { 4273 spin_lock(&page->mapping->private_lock); 4274 /* 4275 * We do this since we'll remove the pages after we've 4276 * removed the eb from the radix tree, so we could race 4277 * and have this page now attached to the new eb. So 4278 * only clear page_private if it's still connected to 4279 * this eb. 4280 */ 4281 if (PagePrivate(page) && 4282 page->private == (unsigned long)eb) { 4283 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4284 BUG_ON(PageDirty(page)); 4285 BUG_ON(PageWriteback(page)); 4286 /* 4287 * We need to make sure we haven't be attached 4288 * to a new eb. 4289 */ 4290 ClearPagePrivate(page); 4291 set_page_private(page, 0); 4292 /* One for the page private */ 4293 page_cache_release(page); 4294 } 4295 spin_unlock(&page->mapping->private_lock); 4296 4297 } 4298 if (page) { 4299 /* One for when we alloced the page */ 4300 page_cache_release(page); 4301 } 4302 } while (index != start_idx); 4303 } 4304 4305 /* 4306 * Helper for releasing the extent buffer. 4307 */ 4308 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4309 { 4310 btrfs_release_extent_buffer_page(eb, 0); 4311 __free_extent_buffer(eb); 4312 } 4313 4314 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 4315 u64 start, 4316 unsigned long len, 4317 gfp_t mask) 4318 { 4319 struct extent_buffer *eb = NULL; 4320 4321 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4322 if (eb == NULL) 4323 return NULL; 4324 eb->start = start; 4325 eb->len = len; 4326 eb->tree = tree; 4327 eb->bflags = 0; 4328 rwlock_init(&eb->lock); 4329 atomic_set(&eb->write_locks, 0); 4330 atomic_set(&eb->read_locks, 0); 4331 atomic_set(&eb->blocking_readers, 0); 4332 atomic_set(&eb->blocking_writers, 0); 4333 atomic_set(&eb->spinning_readers, 0); 4334 atomic_set(&eb->spinning_writers, 0); 4335 eb->lock_nested = 0; 4336 init_waitqueue_head(&eb->write_lock_wq); 4337 init_waitqueue_head(&eb->read_lock_wq); 4338 4339 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4340 4341 spin_lock_init(&eb->refs_lock); 4342 atomic_set(&eb->refs, 1); 4343 atomic_set(&eb->io_pages, 0); 4344 4345 /* 4346 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4347 */ 4348 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4349 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4350 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4351 4352 return eb; 4353 } 4354 4355 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4356 { 4357 unsigned long i; 4358 struct page *p; 4359 struct extent_buffer *new; 4360 unsigned long num_pages = num_extent_pages(src->start, src->len); 4361 4362 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4363 if (new == NULL) 4364 return NULL; 4365 4366 for (i = 0; i < num_pages; i++) { 4367 p = alloc_page(GFP_NOFS); 4368 if (!p) { 4369 btrfs_release_extent_buffer(new); 4370 return NULL; 4371 } 4372 attach_extent_buffer_page(new, p); 4373 WARN_ON(PageDirty(p)); 4374 SetPageUptodate(p); 4375 new->pages[i] = p; 4376 } 4377 4378 copy_extent_buffer(new, src, 0, 0, src->len); 4379 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4380 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4381 4382 return new; 4383 } 4384 4385 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4386 { 4387 struct extent_buffer *eb; 4388 unsigned long num_pages = num_extent_pages(0, len); 4389 unsigned long i; 4390 4391 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4392 if (!eb) 4393 return NULL; 4394 4395 for (i = 0; i < num_pages; i++) { 4396 eb->pages[i] = alloc_page(GFP_NOFS); 4397 if (!eb->pages[i]) 4398 goto err; 4399 } 4400 set_extent_buffer_uptodate(eb); 4401 btrfs_set_header_nritems(eb, 0); 4402 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4403 4404 return eb; 4405 err: 4406 for (; i > 0; i--) 4407 __free_page(eb->pages[i - 1]); 4408 __free_extent_buffer(eb); 4409 return NULL; 4410 } 4411 4412 static void check_buffer_tree_ref(struct extent_buffer *eb) 4413 { 4414 int refs; 4415 /* the ref bit is tricky. We have to make sure it is set 4416 * if we have the buffer dirty. Otherwise the 4417 * code to free a buffer can end up dropping a dirty 4418 * page 4419 * 4420 * Once the ref bit is set, it won't go away while the 4421 * buffer is dirty or in writeback, and it also won't 4422 * go away while we have the reference count on the 4423 * eb bumped. 4424 * 4425 * We can't just set the ref bit without bumping the 4426 * ref on the eb because free_extent_buffer might 4427 * see the ref bit and try to clear it. If this happens 4428 * free_extent_buffer might end up dropping our original 4429 * ref by mistake and freeing the page before we are able 4430 * to add one more ref. 4431 * 4432 * So bump the ref count first, then set the bit. If someone 4433 * beat us to it, drop the ref we added. 4434 */ 4435 refs = atomic_read(&eb->refs); 4436 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4437 return; 4438 4439 spin_lock(&eb->refs_lock); 4440 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4441 atomic_inc(&eb->refs); 4442 spin_unlock(&eb->refs_lock); 4443 } 4444 4445 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4446 { 4447 unsigned long num_pages, i; 4448 4449 check_buffer_tree_ref(eb); 4450 4451 num_pages = num_extent_pages(eb->start, eb->len); 4452 for (i = 0; i < num_pages; i++) { 4453 struct page *p = extent_buffer_page(eb, i); 4454 mark_page_accessed(p); 4455 } 4456 } 4457 4458 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4459 u64 start, unsigned long len) 4460 { 4461 unsigned long num_pages = num_extent_pages(start, len); 4462 unsigned long i; 4463 unsigned long index = start >> PAGE_CACHE_SHIFT; 4464 struct extent_buffer *eb; 4465 struct extent_buffer *exists = NULL; 4466 struct page *p; 4467 struct address_space *mapping = tree->mapping; 4468 int uptodate = 1; 4469 int ret; 4470 4471 rcu_read_lock(); 4472 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4473 if (eb && atomic_inc_not_zero(&eb->refs)) { 4474 rcu_read_unlock(); 4475 mark_extent_buffer_accessed(eb); 4476 return eb; 4477 } 4478 rcu_read_unlock(); 4479 4480 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4481 if (!eb) 4482 return NULL; 4483 4484 for (i = 0; i < num_pages; i++, index++) { 4485 p = find_or_create_page(mapping, index, GFP_NOFS); 4486 if (!p) 4487 goto free_eb; 4488 4489 spin_lock(&mapping->private_lock); 4490 if (PagePrivate(p)) { 4491 /* 4492 * We could have already allocated an eb for this page 4493 * and attached one so lets see if we can get a ref on 4494 * the existing eb, and if we can we know it's good and 4495 * we can just return that one, else we know we can just 4496 * overwrite page->private. 4497 */ 4498 exists = (struct extent_buffer *)p->private; 4499 if (atomic_inc_not_zero(&exists->refs)) { 4500 spin_unlock(&mapping->private_lock); 4501 unlock_page(p); 4502 page_cache_release(p); 4503 mark_extent_buffer_accessed(exists); 4504 goto free_eb; 4505 } 4506 4507 /* 4508 * Do this so attach doesn't complain and we need to 4509 * drop the ref the old guy had. 4510 */ 4511 ClearPagePrivate(p); 4512 WARN_ON(PageDirty(p)); 4513 page_cache_release(p); 4514 } 4515 attach_extent_buffer_page(eb, p); 4516 spin_unlock(&mapping->private_lock); 4517 WARN_ON(PageDirty(p)); 4518 mark_page_accessed(p); 4519 eb->pages[i] = p; 4520 if (!PageUptodate(p)) 4521 uptodate = 0; 4522 4523 /* 4524 * see below about how we avoid a nasty race with release page 4525 * and why we unlock later 4526 */ 4527 } 4528 if (uptodate) 4529 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4530 again: 4531 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4532 if (ret) 4533 goto free_eb; 4534 4535 spin_lock(&tree->buffer_lock); 4536 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4537 if (ret == -EEXIST) { 4538 exists = radix_tree_lookup(&tree->buffer, 4539 start >> PAGE_CACHE_SHIFT); 4540 if (!atomic_inc_not_zero(&exists->refs)) { 4541 spin_unlock(&tree->buffer_lock); 4542 radix_tree_preload_end(); 4543 exists = NULL; 4544 goto again; 4545 } 4546 spin_unlock(&tree->buffer_lock); 4547 radix_tree_preload_end(); 4548 mark_extent_buffer_accessed(exists); 4549 goto free_eb; 4550 } 4551 /* add one reference for the tree */ 4552 check_buffer_tree_ref(eb); 4553 spin_unlock(&tree->buffer_lock); 4554 radix_tree_preload_end(); 4555 4556 /* 4557 * there is a race where release page may have 4558 * tried to find this extent buffer in the radix 4559 * but failed. It will tell the VM it is safe to 4560 * reclaim the, and it will clear the page private bit. 4561 * We must make sure to set the page private bit properly 4562 * after the extent buffer is in the radix tree so 4563 * it doesn't get lost 4564 */ 4565 SetPageChecked(eb->pages[0]); 4566 for (i = 1; i < num_pages; i++) { 4567 p = extent_buffer_page(eb, i); 4568 ClearPageChecked(p); 4569 unlock_page(p); 4570 } 4571 unlock_page(eb->pages[0]); 4572 return eb; 4573 4574 free_eb: 4575 for (i = 0; i < num_pages; i++) { 4576 if (eb->pages[i]) 4577 unlock_page(eb->pages[i]); 4578 } 4579 4580 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4581 btrfs_release_extent_buffer(eb); 4582 return exists; 4583 } 4584 4585 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4586 u64 start, unsigned long len) 4587 { 4588 struct extent_buffer *eb; 4589 4590 rcu_read_lock(); 4591 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4592 if (eb && atomic_inc_not_zero(&eb->refs)) { 4593 rcu_read_unlock(); 4594 mark_extent_buffer_accessed(eb); 4595 return eb; 4596 } 4597 rcu_read_unlock(); 4598 4599 return NULL; 4600 } 4601 4602 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4603 { 4604 struct extent_buffer *eb = 4605 container_of(head, struct extent_buffer, rcu_head); 4606 4607 __free_extent_buffer(eb); 4608 } 4609 4610 /* Expects to have eb->eb_lock already held */ 4611 static int release_extent_buffer(struct extent_buffer *eb) 4612 { 4613 WARN_ON(atomic_read(&eb->refs) == 0); 4614 if (atomic_dec_and_test(&eb->refs)) { 4615 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4616 spin_unlock(&eb->refs_lock); 4617 } else { 4618 struct extent_io_tree *tree = eb->tree; 4619 4620 spin_unlock(&eb->refs_lock); 4621 4622 spin_lock(&tree->buffer_lock); 4623 radix_tree_delete(&tree->buffer, 4624 eb->start >> PAGE_CACHE_SHIFT); 4625 spin_unlock(&tree->buffer_lock); 4626 } 4627 4628 /* Should be safe to release our pages at this point */ 4629 btrfs_release_extent_buffer_page(eb, 0); 4630 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4631 return 1; 4632 } 4633 spin_unlock(&eb->refs_lock); 4634 4635 return 0; 4636 } 4637 4638 void free_extent_buffer(struct extent_buffer *eb) 4639 { 4640 int refs; 4641 int old; 4642 if (!eb) 4643 return; 4644 4645 while (1) { 4646 refs = atomic_read(&eb->refs); 4647 if (refs <= 3) 4648 break; 4649 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4650 if (old == refs) 4651 return; 4652 } 4653 4654 spin_lock(&eb->refs_lock); 4655 if (atomic_read(&eb->refs) == 2 && 4656 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4657 atomic_dec(&eb->refs); 4658 4659 if (atomic_read(&eb->refs) == 2 && 4660 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4661 !extent_buffer_under_io(eb) && 4662 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4663 atomic_dec(&eb->refs); 4664 4665 /* 4666 * I know this is terrible, but it's temporary until we stop tracking 4667 * the uptodate bits and such for the extent buffers. 4668 */ 4669 release_extent_buffer(eb); 4670 } 4671 4672 void free_extent_buffer_stale(struct extent_buffer *eb) 4673 { 4674 if (!eb) 4675 return; 4676 4677 spin_lock(&eb->refs_lock); 4678 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4679 4680 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4681 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4682 atomic_dec(&eb->refs); 4683 release_extent_buffer(eb); 4684 } 4685 4686 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4687 { 4688 unsigned long i; 4689 unsigned long num_pages; 4690 struct page *page; 4691 4692 num_pages = num_extent_pages(eb->start, eb->len); 4693 4694 for (i = 0; i < num_pages; i++) { 4695 page = extent_buffer_page(eb, i); 4696 if (!PageDirty(page)) 4697 continue; 4698 4699 lock_page(page); 4700 WARN_ON(!PagePrivate(page)); 4701 4702 clear_page_dirty_for_io(page); 4703 spin_lock_irq(&page->mapping->tree_lock); 4704 if (!PageDirty(page)) { 4705 radix_tree_tag_clear(&page->mapping->page_tree, 4706 page_index(page), 4707 PAGECACHE_TAG_DIRTY); 4708 } 4709 spin_unlock_irq(&page->mapping->tree_lock); 4710 ClearPageError(page); 4711 unlock_page(page); 4712 } 4713 WARN_ON(atomic_read(&eb->refs) == 0); 4714 } 4715 4716 int set_extent_buffer_dirty(struct extent_buffer *eb) 4717 { 4718 unsigned long i; 4719 unsigned long num_pages; 4720 int was_dirty = 0; 4721 4722 check_buffer_tree_ref(eb); 4723 4724 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4725 4726 num_pages = num_extent_pages(eb->start, eb->len); 4727 WARN_ON(atomic_read(&eb->refs) == 0); 4728 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4729 4730 for (i = 0; i < num_pages; i++) 4731 set_page_dirty(extent_buffer_page(eb, i)); 4732 return was_dirty; 4733 } 4734 4735 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4736 { 4737 unsigned long i; 4738 struct page *page; 4739 unsigned long num_pages; 4740 4741 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4742 num_pages = num_extent_pages(eb->start, eb->len); 4743 for (i = 0; i < num_pages; i++) { 4744 page = extent_buffer_page(eb, i); 4745 if (page) 4746 ClearPageUptodate(page); 4747 } 4748 return 0; 4749 } 4750 4751 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4752 { 4753 unsigned long i; 4754 struct page *page; 4755 unsigned long num_pages; 4756 4757 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4758 num_pages = num_extent_pages(eb->start, eb->len); 4759 for (i = 0; i < num_pages; i++) { 4760 page = extent_buffer_page(eb, i); 4761 SetPageUptodate(page); 4762 } 4763 return 0; 4764 } 4765 4766 int extent_buffer_uptodate(struct extent_buffer *eb) 4767 { 4768 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4769 } 4770 4771 int read_extent_buffer_pages(struct extent_io_tree *tree, 4772 struct extent_buffer *eb, u64 start, int wait, 4773 get_extent_t *get_extent, int mirror_num) 4774 { 4775 unsigned long i; 4776 unsigned long start_i; 4777 struct page *page; 4778 int err; 4779 int ret = 0; 4780 int locked_pages = 0; 4781 int all_uptodate = 1; 4782 unsigned long num_pages; 4783 unsigned long num_reads = 0; 4784 struct bio *bio = NULL; 4785 unsigned long bio_flags = 0; 4786 4787 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4788 return 0; 4789 4790 if (start) { 4791 WARN_ON(start < eb->start); 4792 start_i = (start >> PAGE_CACHE_SHIFT) - 4793 (eb->start >> PAGE_CACHE_SHIFT); 4794 } else { 4795 start_i = 0; 4796 } 4797 4798 num_pages = num_extent_pages(eb->start, eb->len); 4799 for (i = start_i; i < num_pages; i++) { 4800 page = extent_buffer_page(eb, i); 4801 if (wait == WAIT_NONE) { 4802 if (!trylock_page(page)) 4803 goto unlock_exit; 4804 } else { 4805 lock_page(page); 4806 } 4807 locked_pages++; 4808 if (!PageUptodate(page)) { 4809 num_reads++; 4810 all_uptodate = 0; 4811 } 4812 } 4813 if (all_uptodate) { 4814 if (start_i == 0) 4815 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4816 goto unlock_exit; 4817 } 4818 4819 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4820 eb->read_mirror = 0; 4821 atomic_set(&eb->io_pages, num_reads); 4822 for (i = start_i; i < num_pages; i++) { 4823 page = extent_buffer_page(eb, i); 4824 if (!PageUptodate(page)) { 4825 ClearPageError(page); 4826 err = __extent_read_full_page(tree, page, 4827 get_extent, &bio, 4828 mirror_num, &bio_flags, 4829 READ | REQ_META); 4830 if (err) 4831 ret = err; 4832 } else { 4833 unlock_page(page); 4834 } 4835 } 4836 4837 if (bio) { 4838 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 4839 bio_flags); 4840 if (err) 4841 return err; 4842 } 4843 4844 if (ret || wait != WAIT_COMPLETE) 4845 return ret; 4846 4847 for (i = start_i; i < num_pages; i++) { 4848 page = extent_buffer_page(eb, i); 4849 wait_on_page_locked(page); 4850 if (!PageUptodate(page)) 4851 ret = -EIO; 4852 } 4853 4854 return ret; 4855 4856 unlock_exit: 4857 i = start_i; 4858 while (locked_pages > 0) { 4859 page = extent_buffer_page(eb, i); 4860 i++; 4861 unlock_page(page); 4862 locked_pages--; 4863 } 4864 return ret; 4865 } 4866 4867 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4868 unsigned long start, 4869 unsigned long len) 4870 { 4871 size_t cur; 4872 size_t offset; 4873 struct page *page; 4874 char *kaddr; 4875 char *dst = (char *)dstv; 4876 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4877 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4878 4879 WARN_ON(start > eb->len); 4880 WARN_ON(start + len > eb->start + eb->len); 4881 4882 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4883 4884 while (len > 0) { 4885 page = extent_buffer_page(eb, i); 4886 4887 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4888 kaddr = page_address(page); 4889 memcpy(dst, kaddr + offset, cur); 4890 4891 dst += cur; 4892 len -= cur; 4893 offset = 0; 4894 i++; 4895 } 4896 } 4897 4898 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4899 unsigned long min_len, char **map, 4900 unsigned long *map_start, 4901 unsigned long *map_len) 4902 { 4903 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4904 char *kaddr; 4905 struct page *p; 4906 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4907 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4908 unsigned long end_i = (start_offset + start + min_len - 1) >> 4909 PAGE_CACHE_SHIFT; 4910 4911 if (i != end_i) 4912 return -EINVAL; 4913 4914 if (i == 0) { 4915 offset = start_offset; 4916 *map_start = 0; 4917 } else { 4918 offset = 0; 4919 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4920 } 4921 4922 if (start + min_len > eb->len) { 4923 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4924 "wanted %lu %lu\n", 4925 eb->start, eb->len, start, min_len); 4926 return -EINVAL; 4927 } 4928 4929 p = extent_buffer_page(eb, i); 4930 kaddr = page_address(p); 4931 *map = kaddr + offset; 4932 *map_len = PAGE_CACHE_SIZE - offset; 4933 return 0; 4934 } 4935 4936 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4937 unsigned long start, 4938 unsigned long len) 4939 { 4940 size_t cur; 4941 size_t offset; 4942 struct page *page; 4943 char *kaddr; 4944 char *ptr = (char *)ptrv; 4945 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4946 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4947 int ret = 0; 4948 4949 WARN_ON(start > eb->len); 4950 WARN_ON(start + len > eb->start + eb->len); 4951 4952 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4953 4954 while (len > 0) { 4955 page = extent_buffer_page(eb, i); 4956 4957 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4958 4959 kaddr = page_address(page); 4960 ret = memcmp(ptr, kaddr + offset, cur); 4961 if (ret) 4962 break; 4963 4964 ptr += cur; 4965 len -= cur; 4966 offset = 0; 4967 i++; 4968 } 4969 return ret; 4970 } 4971 4972 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4973 unsigned long start, unsigned long len) 4974 { 4975 size_t cur; 4976 size_t offset; 4977 struct page *page; 4978 char *kaddr; 4979 char *src = (char *)srcv; 4980 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4981 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4982 4983 WARN_ON(start > eb->len); 4984 WARN_ON(start + len > eb->start + eb->len); 4985 4986 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4987 4988 while (len > 0) { 4989 page = extent_buffer_page(eb, i); 4990 WARN_ON(!PageUptodate(page)); 4991 4992 cur = min(len, PAGE_CACHE_SIZE - offset); 4993 kaddr = page_address(page); 4994 memcpy(kaddr + offset, src, cur); 4995 4996 src += cur; 4997 len -= cur; 4998 offset = 0; 4999 i++; 5000 } 5001 } 5002 5003 void memset_extent_buffer(struct extent_buffer *eb, char c, 5004 unsigned long start, unsigned long len) 5005 { 5006 size_t cur; 5007 size_t offset; 5008 struct page *page; 5009 char *kaddr; 5010 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5011 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5012 5013 WARN_ON(start > eb->len); 5014 WARN_ON(start + len > eb->start + eb->len); 5015 5016 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5017 5018 while (len > 0) { 5019 page = extent_buffer_page(eb, i); 5020 WARN_ON(!PageUptodate(page)); 5021 5022 cur = min(len, PAGE_CACHE_SIZE - offset); 5023 kaddr = page_address(page); 5024 memset(kaddr + offset, c, cur); 5025 5026 len -= cur; 5027 offset = 0; 5028 i++; 5029 } 5030 } 5031 5032 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5033 unsigned long dst_offset, unsigned long src_offset, 5034 unsigned long len) 5035 { 5036 u64 dst_len = dst->len; 5037 size_t cur; 5038 size_t offset; 5039 struct page *page; 5040 char *kaddr; 5041 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5042 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5043 5044 WARN_ON(src->len != dst_len); 5045 5046 offset = (start_offset + dst_offset) & 5047 (PAGE_CACHE_SIZE - 1); 5048 5049 while (len > 0) { 5050 page = extent_buffer_page(dst, i); 5051 WARN_ON(!PageUptodate(page)); 5052 5053 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5054 5055 kaddr = page_address(page); 5056 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5057 5058 src_offset += cur; 5059 len -= cur; 5060 offset = 0; 5061 i++; 5062 } 5063 } 5064 5065 static void move_pages(struct page *dst_page, struct page *src_page, 5066 unsigned long dst_off, unsigned long src_off, 5067 unsigned long len) 5068 { 5069 char *dst_kaddr = page_address(dst_page); 5070 if (dst_page == src_page) { 5071 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 5072 } else { 5073 char *src_kaddr = page_address(src_page); 5074 char *p = dst_kaddr + dst_off + len; 5075 char *s = src_kaddr + src_off + len; 5076 5077 while (len--) 5078 *--p = *--s; 5079 } 5080 } 5081 5082 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5083 { 5084 unsigned long distance = (src > dst) ? src - dst : dst - src; 5085 return distance < len; 5086 } 5087 5088 static void copy_pages(struct page *dst_page, struct page *src_page, 5089 unsigned long dst_off, unsigned long src_off, 5090 unsigned long len) 5091 { 5092 char *dst_kaddr = page_address(dst_page); 5093 char *src_kaddr; 5094 int must_memmove = 0; 5095 5096 if (dst_page != src_page) { 5097 src_kaddr = page_address(src_page); 5098 } else { 5099 src_kaddr = dst_kaddr; 5100 if (areas_overlap(src_off, dst_off, len)) 5101 must_memmove = 1; 5102 } 5103 5104 if (must_memmove) 5105 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5106 else 5107 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5108 } 5109 5110 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5111 unsigned long src_offset, unsigned long len) 5112 { 5113 size_t cur; 5114 size_t dst_off_in_page; 5115 size_t src_off_in_page; 5116 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5117 unsigned long dst_i; 5118 unsigned long src_i; 5119 5120 if (src_offset + len > dst->len) { 5121 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5122 "len %lu dst len %lu\n", src_offset, len, dst->len); 5123 BUG_ON(1); 5124 } 5125 if (dst_offset + len > dst->len) { 5126 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5127 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5128 BUG_ON(1); 5129 } 5130 5131 while (len > 0) { 5132 dst_off_in_page = (start_offset + dst_offset) & 5133 (PAGE_CACHE_SIZE - 1); 5134 src_off_in_page = (start_offset + src_offset) & 5135 (PAGE_CACHE_SIZE - 1); 5136 5137 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5138 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5139 5140 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5141 src_off_in_page)); 5142 cur = min_t(unsigned long, cur, 5143 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5144 5145 copy_pages(extent_buffer_page(dst, dst_i), 5146 extent_buffer_page(dst, src_i), 5147 dst_off_in_page, src_off_in_page, cur); 5148 5149 src_offset += cur; 5150 dst_offset += cur; 5151 len -= cur; 5152 } 5153 } 5154 5155 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5156 unsigned long src_offset, unsigned long len) 5157 { 5158 size_t cur; 5159 size_t dst_off_in_page; 5160 size_t src_off_in_page; 5161 unsigned long dst_end = dst_offset + len - 1; 5162 unsigned long src_end = src_offset + len - 1; 5163 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5164 unsigned long dst_i; 5165 unsigned long src_i; 5166 5167 if (src_offset + len > dst->len) { 5168 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5169 "len %lu len %lu\n", src_offset, len, dst->len); 5170 BUG_ON(1); 5171 } 5172 if (dst_offset + len > dst->len) { 5173 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5174 "len %lu len %lu\n", dst_offset, len, dst->len); 5175 BUG_ON(1); 5176 } 5177 if (dst_offset < src_offset) { 5178 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5179 return; 5180 } 5181 while (len > 0) { 5182 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5183 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5184 5185 dst_off_in_page = (start_offset + dst_end) & 5186 (PAGE_CACHE_SIZE - 1); 5187 src_off_in_page = (start_offset + src_end) & 5188 (PAGE_CACHE_SIZE - 1); 5189 5190 cur = min_t(unsigned long, len, src_off_in_page + 1); 5191 cur = min(cur, dst_off_in_page + 1); 5192 move_pages(extent_buffer_page(dst, dst_i), 5193 extent_buffer_page(dst, src_i), 5194 dst_off_in_page - cur + 1, 5195 src_off_in_page - cur + 1, cur); 5196 5197 dst_end -= cur; 5198 src_end -= cur; 5199 len -= cur; 5200 } 5201 } 5202 5203 int try_release_extent_buffer(struct page *page) 5204 { 5205 struct extent_buffer *eb; 5206 5207 /* 5208 * We need to make sure noboody is attaching this page to an eb right 5209 * now. 5210 */ 5211 spin_lock(&page->mapping->private_lock); 5212 if (!PagePrivate(page)) { 5213 spin_unlock(&page->mapping->private_lock); 5214 return 1; 5215 } 5216 5217 eb = (struct extent_buffer *)page->private; 5218 BUG_ON(!eb); 5219 5220 /* 5221 * This is a little awful but should be ok, we need to make sure that 5222 * the eb doesn't disappear out from under us while we're looking at 5223 * this page. 5224 */ 5225 spin_lock(&eb->refs_lock); 5226 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5227 spin_unlock(&eb->refs_lock); 5228 spin_unlock(&page->mapping->private_lock); 5229 return 0; 5230 } 5231 spin_unlock(&page->mapping->private_lock); 5232 5233 /* 5234 * If tree ref isn't set then we know the ref on this eb is a real ref, 5235 * so just return, this page will likely be freed soon anyway. 5236 */ 5237 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5238 spin_unlock(&eb->refs_lock); 5239 return 0; 5240 } 5241 5242 return release_extent_buffer(eb); 5243 } 5244