1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 34 static struct kmem_cache *extent_state_cache; 35 static struct kmem_cache *extent_buffer_cache; 36 static struct bio_set btrfs_bioset; 37 38 static inline bool extent_state_in_tree(const struct extent_state *state) 39 { 40 return !RB_EMPTY_NODE(&state->rb_node); 41 } 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static LIST_HEAD(states); 45 static DEFINE_SPINLOCK(leak_lock); 46 47 static inline void btrfs_leak_debug_add(spinlock_t *lock, 48 struct list_head *new, 49 struct list_head *head) 50 { 51 unsigned long flags; 52 53 spin_lock_irqsave(lock, flags); 54 list_add(new, head); 55 spin_unlock_irqrestore(lock, flags); 56 } 57 58 static inline void btrfs_leak_debug_del(spinlock_t *lock, 59 struct list_head *entry) 60 { 61 unsigned long flags; 62 63 spin_lock_irqsave(lock, flags); 64 list_del(entry); 65 spin_unlock_irqrestore(lock, flags); 66 } 67 68 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 69 { 70 struct extent_buffer *eb; 71 unsigned long flags; 72 73 /* 74 * If we didn't get into open_ctree our allocated_ebs will not be 75 * initialized, so just skip this. 76 */ 77 if (!fs_info->allocated_ebs.next) 78 return; 79 80 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 81 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 82 while (!list_empty(&fs_info->allocated_ebs)) { 83 eb = list_first_entry(&fs_info->allocated_ebs, 84 struct extent_buffer, leak_list); 85 pr_err( 86 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 87 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 88 btrfs_header_owner(eb)); 89 list_del(&eb->leak_list); 90 kmem_cache_free(extent_buffer_cache, eb); 91 } 92 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 93 } 94 95 static inline void btrfs_extent_state_leak_debug_check(void) 96 { 97 struct extent_state *state; 98 99 while (!list_empty(&states)) { 100 state = list_entry(states.next, struct extent_state, leak_list); 101 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 102 state->start, state->end, state->state, 103 extent_state_in_tree(state), 104 refcount_read(&state->refs)); 105 list_del(&state->leak_list); 106 kmem_cache_free(extent_state_cache, state); 107 } 108 } 109 110 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 111 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 112 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 113 struct extent_io_tree *tree, u64 start, u64 end) 114 { 115 struct inode *inode = tree->private_data; 116 u64 isize; 117 118 if (!inode || !is_data_inode(inode)) 119 return; 120 121 isize = i_size_read(inode); 122 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 123 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 124 "%s: ino %llu isize %llu odd range [%llu,%llu]", 125 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 126 } 127 } 128 #else 129 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 130 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 131 #define btrfs_extent_state_leak_debug_check() do {} while (0) 132 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 133 #endif 134 135 struct tree_entry { 136 u64 start; 137 u64 end; 138 struct rb_node rb_node; 139 }; 140 141 /* 142 * Structure to record info about the bio being assembled, and other info like 143 * how many bytes are there before stripe/ordered extent boundary. 144 */ 145 struct btrfs_bio_ctrl { 146 struct bio *bio; 147 enum btrfs_compression_type compress_type; 148 u32 len_to_stripe_boundary; 149 u32 len_to_oe_boundary; 150 }; 151 152 struct extent_page_data { 153 struct btrfs_bio_ctrl bio_ctrl; 154 /* tells writepage not to lock the state bits for this range 155 * it still does the unlocking 156 */ 157 unsigned int extent_locked:1; 158 159 /* tells the submit_bio code to use REQ_SYNC */ 160 unsigned int sync_io:1; 161 }; 162 163 static int add_extent_changeset(struct extent_state *state, u32 bits, 164 struct extent_changeset *changeset, 165 int set) 166 { 167 int ret; 168 169 if (!changeset) 170 return 0; 171 if (set && (state->state & bits) == bits) 172 return 0; 173 if (!set && (state->state & bits) == 0) 174 return 0; 175 changeset->bytes_changed += state->end - state->start + 1; 176 ret = ulist_add(&changeset->range_changed, state->start, state->end, 177 GFP_ATOMIC); 178 return ret; 179 } 180 181 static void submit_one_bio(struct bio *bio, int mirror_num, 182 enum btrfs_compression_type compress_type) 183 { 184 struct extent_io_tree *tree = bio->bi_private; 185 186 bio->bi_private = NULL; 187 188 /* Caller should ensure the bio has at least some range added */ 189 ASSERT(bio->bi_iter.bi_size); 190 191 if (is_data_inode(tree->private_data)) 192 btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 193 compress_type); 194 else 195 btrfs_submit_metadata_bio(tree->private_data, bio, mirror_num); 196 /* 197 * Above submission hooks will handle the error by ending the bio, 198 * which will do the cleanup properly. So here we should not return 199 * any error, or the caller of submit_extent_page() will do cleanup 200 * again, causing problems. 201 */ 202 } 203 204 /* Cleanup unsubmitted bios */ 205 static void end_write_bio(struct extent_page_data *epd, int ret) 206 { 207 struct bio *bio = epd->bio_ctrl.bio; 208 209 if (bio) { 210 bio->bi_status = errno_to_blk_status(ret); 211 bio_endio(bio); 212 epd->bio_ctrl.bio = NULL; 213 } 214 } 215 216 /* 217 * Submit bio from extent page data via submit_one_bio 218 * 219 * Return 0 if everything is OK. 220 * Return <0 for error. 221 */ 222 static void flush_write_bio(struct extent_page_data *epd) 223 { 224 struct bio *bio = epd->bio_ctrl.bio; 225 226 if (bio) { 227 submit_one_bio(bio, 0, 0); 228 /* 229 * Clean up of epd->bio is handled by its endio function. 230 * And endio is either triggered by successful bio execution 231 * or the error handler of submit bio hook. 232 * So at this point, no matter what happened, we don't need 233 * to clean up epd->bio. 234 */ 235 epd->bio_ctrl.bio = NULL; 236 } 237 } 238 239 int __init extent_state_cache_init(void) 240 { 241 extent_state_cache = kmem_cache_create("btrfs_extent_state", 242 sizeof(struct extent_state), 0, 243 SLAB_MEM_SPREAD, NULL); 244 if (!extent_state_cache) 245 return -ENOMEM; 246 return 0; 247 } 248 249 int __init extent_io_init(void) 250 { 251 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 252 sizeof(struct extent_buffer), 0, 253 SLAB_MEM_SPREAD, NULL); 254 if (!extent_buffer_cache) 255 return -ENOMEM; 256 257 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 258 offsetof(struct btrfs_bio, bio), 259 BIOSET_NEED_BVECS)) 260 goto free_buffer_cache; 261 262 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 263 goto free_bioset; 264 265 return 0; 266 267 free_bioset: 268 bioset_exit(&btrfs_bioset); 269 270 free_buffer_cache: 271 kmem_cache_destroy(extent_buffer_cache); 272 extent_buffer_cache = NULL; 273 return -ENOMEM; 274 } 275 276 void __cold extent_state_cache_exit(void) 277 { 278 btrfs_extent_state_leak_debug_check(); 279 kmem_cache_destroy(extent_state_cache); 280 } 281 282 void __cold extent_io_exit(void) 283 { 284 /* 285 * Make sure all delayed rcu free are flushed before we 286 * destroy caches. 287 */ 288 rcu_barrier(); 289 kmem_cache_destroy(extent_buffer_cache); 290 bioset_exit(&btrfs_bioset); 291 } 292 293 /* 294 * For the file_extent_tree, we want to hold the inode lock when we lookup and 295 * update the disk_i_size, but lockdep will complain because our io_tree we hold 296 * the tree lock and get the inode lock when setting delalloc. These two things 297 * are unrelated, so make a class for the file_extent_tree so we don't get the 298 * two locking patterns mixed up. 299 */ 300 static struct lock_class_key file_extent_tree_class; 301 302 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 303 struct extent_io_tree *tree, unsigned int owner, 304 void *private_data) 305 { 306 tree->fs_info = fs_info; 307 tree->state = RB_ROOT; 308 tree->dirty_bytes = 0; 309 spin_lock_init(&tree->lock); 310 tree->private_data = private_data; 311 tree->owner = owner; 312 if (owner == IO_TREE_INODE_FILE_EXTENT) 313 lockdep_set_class(&tree->lock, &file_extent_tree_class); 314 } 315 316 void extent_io_tree_release(struct extent_io_tree *tree) 317 { 318 spin_lock(&tree->lock); 319 /* 320 * Do a single barrier for the waitqueue_active check here, the state 321 * of the waitqueue should not change once extent_io_tree_release is 322 * called. 323 */ 324 smp_mb(); 325 while (!RB_EMPTY_ROOT(&tree->state)) { 326 struct rb_node *node; 327 struct extent_state *state; 328 329 node = rb_first(&tree->state); 330 state = rb_entry(node, struct extent_state, rb_node); 331 rb_erase(&state->rb_node, &tree->state); 332 RB_CLEAR_NODE(&state->rb_node); 333 /* 334 * btree io trees aren't supposed to have tasks waiting for 335 * changes in the flags of extent states ever. 336 */ 337 ASSERT(!waitqueue_active(&state->wq)); 338 free_extent_state(state); 339 340 cond_resched_lock(&tree->lock); 341 } 342 spin_unlock(&tree->lock); 343 } 344 345 static struct extent_state *alloc_extent_state(gfp_t mask) 346 { 347 struct extent_state *state; 348 349 /* 350 * The given mask might be not appropriate for the slab allocator, 351 * drop the unsupported bits 352 */ 353 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 354 state = kmem_cache_alloc(extent_state_cache, mask); 355 if (!state) 356 return state; 357 state->state = 0; 358 state->failrec = NULL; 359 RB_CLEAR_NODE(&state->rb_node); 360 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 361 refcount_set(&state->refs, 1); 362 init_waitqueue_head(&state->wq); 363 trace_alloc_extent_state(state, mask, _RET_IP_); 364 return state; 365 } 366 367 void free_extent_state(struct extent_state *state) 368 { 369 if (!state) 370 return; 371 if (refcount_dec_and_test(&state->refs)) { 372 WARN_ON(extent_state_in_tree(state)); 373 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 374 trace_free_extent_state(state, _RET_IP_); 375 kmem_cache_free(extent_state_cache, state); 376 } 377 } 378 379 static struct rb_node *tree_insert(struct rb_root *root, 380 struct rb_node *search_start, 381 u64 offset, 382 struct rb_node *node, 383 struct rb_node ***p_in, 384 struct rb_node **parent_in) 385 { 386 struct rb_node **p; 387 struct rb_node *parent = NULL; 388 struct tree_entry *entry; 389 390 if (p_in && parent_in) { 391 p = *p_in; 392 parent = *parent_in; 393 goto do_insert; 394 } 395 396 p = search_start ? &search_start : &root->rb_node; 397 while (*p) { 398 parent = *p; 399 entry = rb_entry(parent, struct tree_entry, rb_node); 400 401 if (offset < entry->start) 402 p = &(*p)->rb_left; 403 else if (offset > entry->end) 404 p = &(*p)->rb_right; 405 else 406 return parent; 407 } 408 409 do_insert: 410 rb_link_node(node, parent, p); 411 rb_insert_color(node, root); 412 return NULL; 413 } 414 415 /** 416 * Search @tree for an entry that contains @offset. Such entry would have 417 * entry->start <= offset && entry->end >= offset. 418 * 419 * @tree: the tree to search 420 * @offset: offset that should fall within an entry in @tree 421 * @next_ret: pointer to the first entry whose range ends after @offset 422 * @prev_ret: pointer to the first entry whose range begins before @offset 423 * @p_ret: pointer where new node should be anchored (used when inserting an 424 * entry in the tree) 425 * @parent_ret: points to entry which would have been the parent of the entry, 426 * containing @offset 427 * 428 * This function returns a pointer to the entry that contains @offset byte 429 * address. If no such entry exists, then NULL is returned and the other 430 * pointer arguments to the function are filled, otherwise the found entry is 431 * returned and other pointers are left untouched. 432 */ 433 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 434 struct rb_node **next_ret, 435 struct rb_node **prev_ret, 436 struct rb_node ***p_ret, 437 struct rb_node **parent_ret) 438 { 439 struct rb_root *root = &tree->state; 440 struct rb_node **n = &root->rb_node; 441 struct rb_node *prev = NULL; 442 struct rb_node *orig_prev = NULL; 443 struct tree_entry *entry; 444 struct tree_entry *prev_entry = NULL; 445 446 while (*n) { 447 prev = *n; 448 entry = rb_entry(prev, struct tree_entry, rb_node); 449 prev_entry = entry; 450 451 if (offset < entry->start) 452 n = &(*n)->rb_left; 453 else if (offset > entry->end) 454 n = &(*n)->rb_right; 455 else 456 return *n; 457 } 458 459 if (p_ret) 460 *p_ret = n; 461 if (parent_ret) 462 *parent_ret = prev; 463 464 if (next_ret) { 465 orig_prev = prev; 466 while (prev && offset > prev_entry->end) { 467 prev = rb_next(prev); 468 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 469 } 470 *next_ret = prev; 471 prev = orig_prev; 472 } 473 474 if (prev_ret) { 475 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 476 while (prev && offset < prev_entry->start) { 477 prev = rb_prev(prev); 478 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 479 } 480 *prev_ret = prev; 481 } 482 return NULL; 483 } 484 485 static inline struct rb_node * 486 tree_search_for_insert(struct extent_io_tree *tree, 487 u64 offset, 488 struct rb_node ***p_ret, 489 struct rb_node **parent_ret) 490 { 491 struct rb_node *next= NULL; 492 struct rb_node *ret; 493 494 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 495 if (!ret) 496 return next; 497 return ret; 498 } 499 500 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 501 u64 offset) 502 { 503 return tree_search_for_insert(tree, offset, NULL, NULL); 504 } 505 506 /* 507 * utility function to look for merge candidates inside a given range. 508 * Any extents with matching state are merged together into a single 509 * extent in the tree. Extents with EXTENT_IO in their state field 510 * are not merged because the end_io handlers need to be able to do 511 * operations on them without sleeping (or doing allocations/splits). 512 * 513 * This should be called with the tree lock held. 514 */ 515 static void merge_state(struct extent_io_tree *tree, 516 struct extent_state *state) 517 { 518 struct extent_state *other; 519 struct rb_node *other_node; 520 521 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 522 return; 523 524 other_node = rb_prev(&state->rb_node); 525 if (other_node) { 526 other = rb_entry(other_node, struct extent_state, rb_node); 527 if (other->end == state->start - 1 && 528 other->state == state->state) { 529 if (tree->private_data && 530 is_data_inode(tree->private_data)) 531 btrfs_merge_delalloc_extent(tree->private_data, 532 state, other); 533 state->start = other->start; 534 rb_erase(&other->rb_node, &tree->state); 535 RB_CLEAR_NODE(&other->rb_node); 536 free_extent_state(other); 537 } 538 } 539 other_node = rb_next(&state->rb_node); 540 if (other_node) { 541 other = rb_entry(other_node, struct extent_state, rb_node); 542 if (other->start == state->end + 1 && 543 other->state == state->state) { 544 if (tree->private_data && 545 is_data_inode(tree->private_data)) 546 btrfs_merge_delalloc_extent(tree->private_data, 547 state, other); 548 state->end = other->end; 549 rb_erase(&other->rb_node, &tree->state); 550 RB_CLEAR_NODE(&other->rb_node); 551 free_extent_state(other); 552 } 553 } 554 } 555 556 static void set_state_bits(struct extent_io_tree *tree, 557 struct extent_state *state, u32 *bits, 558 struct extent_changeset *changeset); 559 560 /* 561 * insert an extent_state struct into the tree. 'bits' are set on the 562 * struct before it is inserted. 563 * 564 * This may return -EEXIST if the extent is already there, in which case the 565 * state struct is freed. 566 * 567 * The tree lock is not taken internally. This is a utility function and 568 * probably isn't what you want to call (see set/clear_extent_bit). 569 */ 570 static int insert_state(struct extent_io_tree *tree, 571 struct extent_state *state, u64 start, u64 end, 572 struct rb_node ***p, 573 struct rb_node **parent, 574 u32 *bits, struct extent_changeset *changeset) 575 { 576 struct rb_node *node; 577 578 if (end < start) { 579 btrfs_err(tree->fs_info, 580 "insert state: end < start %llu %llu", end, start); 581 WARN_ON(1); 582 } 583 state->start = start; 584 state->end = end; 585 586 set_state_bits(tree, state, bits, changeset); 587 588 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 589 if (node) { 590 struct extent_state *found; 591 found = rb_entry(node, struct extent_state, rb_node); 592 btrfs_err(tree->fs_info, 593 "found node %llu %llu on insert of %llu %llu", 594 found->start, found->end, start, end); 595 return -EEXIST; 596 } 597 merge_state(tree, state); 598 return 0; 599 } 600 601 /* 602 * split a given extent state struct in two, inserting the preallocated 603 * struct 'prealloc' as the newly created second half. 'split' indicates an 604 * offset inside 'orig' where it should be split. 605 * 606 * Before calling, 607 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 608 * are two extent state structs in the tree: 609 * prealloc: [orig->start, split - 1] 610 * orig: [ split, orig->end ] 611 * 612 * The tree locks are not taken by this function. They need to be held 613 * by the caller. 614 */ 615 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 616 struct extent_state *prealloc, u64 split) 617 { 618 struct rb_node *node; 619 620 if (tree->private_data && is_data_inode(tree->private_data)) 621 btrfs_split_delalloc_extent(tree->private_data, orig, split); 622 623 prealloc->start = orig->start; 624 prealloc->end = split - 1; 625 prealloc->state = orig->state; 626 orig->start = split; 627 628 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 629 &prealloc->rb_node, NULL, NULL); 630 if (node) { 631 free_extent_state(prealloc); 632 return -EEXIST; 633 } 634 return 0; 635 } 636 637 static struct extent_state *next_state(struct extent_state *state) 638 { 639 struct rb_node *next = rb_next(&state->rb_node); 640 if (next) 641 return rb_entry(next, struct extent_state, rb_node); 642 else 643 return NULL; 644 } 645 646 /* 647 * utility function to clear some bits in an extent state struct. 648 * it will optionally wake up anyone waiting on this state (wake == 1). 649 * 650 * If no bits are set on the state struct after clearing things, the 651 * struct is freed and removed from the tree 652 */ 653 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 654 struct extent_state *state, 655 u32 *bits, int wake, 656 struct extent_changeset *changeset) 657 { 658 struct extent_state *next; 659 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 660 int ret; 661 662 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 663 u64 range = state->end - state->start + 1; 664 WARN_ON(range > tree->dirty_bytes); 665 tree->dirty_bytes -= range; 666 } 667 668 if (tree->private_data && is_data_inode(tree->private_data)) 669 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 670 671 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 672 BUG_ON(ret < 0); 673 state->state &= ~bits_to_clear; 674 if (wake) 675 wake_up(&state->wq); 676 if (state->state == 0) { 677 next = next_state(state); 678 if (extent_state_in_tree(state)) { 679 rb_erase(&state->rb_node, &tree->state); 680 RB_CLEAR_NODE(&state->rb_node); 681 free_extent_state(state); 682 } else { 683 WARN_ON(1); 684 } 685 } else { 686 merge_state(tree, state); 687 next = next_state(state); 688 } 689 return next; 690 } 691 692 static struct extent_state * 693 alloc_extent_state_atomic(struct extent_state *prealloc) 694 { 695 if (!prealloc) 696 prealloc = alloc_extent_state(GFP_ATOMIC); 697 698 return prealloc; 699 } 700 701 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 702 { 703 btrfs_panic(tree->fs_info, err, 704 "locking error: extent tree was modified by another thread while locked"); 705 } 706 707 /* 708 * clear some bits on a range in the tree. This may require splitting 709 * or inserting elements in the tree, so the gfp mask is used to 710 * indicate which allocations or sleeping are allowed. 711 * 712 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 713 * the given range from the tree regardless of state (ie for truncate). 714 * 715 * the range [start, end] is inclusive. 716 * 717 * This takes the tree lock, and returns 0 on success and < 0 on error. 718 */ 719 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 720 u32 bits, int wake, int delete, 721 struct extent_state **cached_state, 722 gfp_t mask, struct extent_changeset *changeset) 723 { 724 struct extent_state *state; 725 struct extent_state *cached; 726 struct extent_state *prealloc = NULL; 727 struct rb_node *node; 728 u64 last_end; 729 int err; 730 int clear = 0; 731 732 btrfs_debug_check_extent_io_range(tree, start, end); 733 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 734 735 if (bits & EXTENT_DELALLOC) 736 bits |= EXTENT_NORESERVE; 737 738 if (delete) 739 bits |= ~EXTENT_CTLBITS; 740 741 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 742 clear = 1; 743 again: 744 if (!prealloc && gfpflags_allow_blocking(mask)) { 745 /* 746 * Don't care for allocation failure here because we might end 747 * up not needing the pre-allocated extent state at all, which 748 * is the case if we only have in the tree extent states that 749 * cover our input range and don't cover too any other range. 750 * If we end up needing a new extent state we allocate it later. 751 */ 752 prealloc = alloc_extent_state(mask); 753 } 754 755 spin_lock(&tree->lock); 756 if (cached_state) { 757 cached = *cached_state; 758 759 if (clear) { 760 *cached_state = NULL; 761 cached_state = NULL; 762 } 763 764 if (cached && extent_state_in_tree(cached) && 765 cached->start <= start && cached->end > start) { 766 if (clear) 767 refcount_dec(&cached->refs); 768 state = cached; 769 goto hit_next; 770 } 771 if (clear) 772 free_extent_state(cached); 773 } 774 /* 775 * this search will find the extents that end after 776 * our range starts 777 */ 778 node = tree_search(tree, start); 779 if (!node) 780 goto out; 781 state = rb_entry(node, struct extent_state, rb_node); 782 hit_next: 783 if (state->start > end) 784 goto out; 785 WARN_ON(state->end < start); 786 last_end = state->end; 787 788 /* the state doesn't have the wanted bits, go ahead */ 789 if (!(state->state & bits)) { 790 state = next_state(state); 791 goto next; 792 } 793 794 /* 795 * | ---- desired range ---- | 796 * | state | or 797 * | ------------- state -------------- | 798 * 799 * We need to split the extent we found, and may flip 800 * bits on second half. 801 * 802 * If the extent we found extends past our range, we 803 * just split and search again. It'll get split again 804 * the next time though. 805 * 806 * If the extent we found is inside our range, we clear 807 * the desired bit on it. 808 */ 809 810 if (state->start < start) { 811 prealloc = alloc_extent_state_atomic(prealloc); 812 BUG_ON(!prealloc); 813 err = split_state(tree, state, prealloc, start); 814 if (err) 815 extent_io_tree_panic(tree, err); 816 817 prealloc = NULL; 818 if (err) 819 goto out; 820 if (state->end <= end) { 821 state = clear_state_bit(tree, state, &bits, wake, 822 changeset); 823 goto next; 824 } 825 goto search_again; 826 } 827 /* 828 * | ---- desired range ---- | 829 * | state | 830 * We need to split the extent, and clear the bit 831 * on the first half 832 */ 833 if (state->start <= end && state->end > end) { 834 prealloc = alloc_extent_state_atomic(prealloc); 835 BUG_ON(!prealloc); 836 err = split_state(tree, state, prealloc, end + 1); 837 if (err) 838 extent_io_tree_panic(tree, err); 839 840 if (wake) 841 wake_up(&state->wq); 842 843 clear_state_bit(tree, prealloc, &bits, wake, changeset); 844 845 prealloc = NULL; 846 goto out; 847 } 848 849 state = clear_state_bit(tree, state, &bits, wake, changeset); 850 next: 851 if (last_end == (u64)-1) 852 goto out; 853 start = last_end + 1; 854 if (start <= end && state && !need_resched()) 855 goto hit_next; 856 857 search_again: 858 if (start > end) 859 goto out; 860 spin_unlock(&tree->lock); 861 if (gfpflags_allow_blocking(mask)) 862 cond_resched(); 863 goto again; 864 865 out: 866 spin_unlock(&tree->lock); 867 if (prealloc) 868 free_extent_state(prealloc); 869 870 return 0; 871 872 } 873 874 static void wait_on_state(struct extent_io_tree *tree, 875 struct extent_state *state) 876 __releases(tree->lock) 877 __acquires(tree->lock) 878 { 879 DEFINE_WAIT(wait); 880 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 881 spin_unlock(&tree->lock); 882 schedule(); 883 spin_lock(&tree->lock); 884 finish_wait(&state->wq, &wait); 885 } 886 887 /* 888 * waits for one or more bits to clear on a range in the state tree. 889 * The range [start, end] is inclusive. 890 * The tree lock is taken by this function 891 */ 892 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 893 u32 bits) 894 { 895 struct extent_state *state; 896 struct rb_node *node; 897 898 btrfs_debug_check_extent_io_range(tree, start, end); 899 900 spin_lock(&tree->lock); 901 again: 902 while (1) { 903 /* 904 * this search will find all the extents that end after 905 * our range starts 906 */ 907 node = tree_search(tree, start); 908 process_node: 909 if (!node) 910 break; 911 912 state = rb_entry(node, struct extent_state, rb_node); 913 914 if (state->start > end) 915 goto out; 916 917 if (state->state & bits) { 918 start = state->start; 919 refcount_inc(&state->refs); 920 wait_on_state(tree, state); 921 free_extent_state(state); 922 goto again; 923 } 924 start = state->end + 1; 925 926 if (start > end) 927 break; 928 929 if (!cond_resched_lock(&tree->lock)) { 930 node = rb_next(node); 931 goto process_node; 932 } 933 } 934 out: 935 spin_unlock(&tree->lock); 936 } 937 938 static void set_state_bits(struct extent_io_tree *tree, 939 struct extent_state *state, 940 u32 *bits, struct extent_changeset *changeset) 941 { 942 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 943 int ret; 944 945 if (tree->private_data && is_data_inode(tree->private_data)) 946 btrfs_set_delalloc_extent(tree->private_data, state, bits); 947 948 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 949 u64 range = state->end - state->start + 1; 950 tree->dirty_bytes += range; 951 } 952 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 953 BUG_ON(ret < 0); 954 state->state |= bits_to_set; 955 } 956 957 static void cache_state_if_flags(struct extent_state *state, 958 struct extent_state **cached_ptr, 959 unsigned flags) 960 { 961 if (cached_ptr && !(*cached_ptr)) { 962 if (!flags || (state->state & flags)) { 963 *cached_ptr = state; 964 refcount_inc(&state->refs); 965 } 966 } 967 } 968 969 static void cache_state(struct extent_state *state, 970 struct extent_state **cached_ptr) 971 { 972 return cache_state_if_flags(state, cached_ptr, 973 EXTENT_LOCKED | EXTENT_BOUNDARY); 974 } 975 976 /* 977 * set some bits on a range in the tree. This may require allocations or 978 * sleeping, so the gfp mask is used to indicate what is allowed. 979 * 980 * If any of the exclusive bits are set, this will fail with -EEXIST if some 981 * part of the range already has the desired bits set. The start of the 982 * existing range is returned in failed_start in this case. 983 * 984 * [start, end] is inclusive This takes the tree lock. 985 */ 986 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 987 u32 exclusive_bits, u64 *failed_start, 988 struct extent_state **cached_state, gfp_t mask, 989 struct extent_changeset *changeset) 990 { 991 struct extent_state *state; 992 struct extent_state *prealloc = NULL; 993 struct rb_node *node; 994 struct rb_node **p; 995 struct rb_node *parent; 996 int err = 0; 997 u64 last_start; 998 u64 last_end; 999 1000 btrfs_debug_check_extent_io_range(tree, start, end); 1001 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 1002 1003 if (exclusive_bits) 1004 ASSERT(failed_start); 1005 else 1006 ASSERT(failed_start == NULL); 1007 again: 1008 if (!prealloc && gfpflags_allow_blocking(mask)) { 1009 /* 1010 * Don't care for allocation failure here because we might end 1011 * up not needing the pre-allocated extent state at all, which 1012 * is the case if we only have in the tree extent states that 1013 * cover our input range and don't cover too any other range. 1014 * If we end up needing a new extent state we allocate it later. 1015 */ 1016 prealloc = alloc_extent_state(mask); 1017 } 1018 1019 spin_lock(&tree->lock); 1020 if (cached_state && *cached_state) { 1021 state = *cached_state; 1022 if (state->start <= start && state->end > start && 1023 extent_state_in_tree(state)) { 1024 node = &state->rb_node; 1025 goto hit_next; 1026 } 1027 } 1028 /* 1029 * this search will find all the extents that end after 1030 * our range starts. 1031 */ 1032 node = tree_search_for_insert(tree, start, &p, &parent); 1033 if (!node) { 1034 prealloc = alloc_extent_state_atomic(prealloc); 1035 BUG_ON(!prealloc); 1036 err = insert_state(tree, prealloc, start, end, 1037 &p, &parent, &bits, changeset); 1038 if (err) 1039 extent_io_tree_panic(tree, err); 1040 1041 cache_state(prealloc, cached_state); 1042 prealloc = NULL; 1043 goto out; 1044 } 1045 state = rb_entry(node, struct extent_state, rb_node); 1046 hit_next: 1047 last_start = state->start; 1048 last_end = state->end; 1049 1050 /* 1051 * | ---- desired range ---- | 1052 * | state | 1053 * 1054 * Just lock what we found and keep going 1055 */ 1056 if (state->start == start && state->end <= end) { 1057 if (state->state & exclusive_bits) { 1058 *failed_start = state->start; 1059 err = -EEXIST; 1060 goto out; 1061 } 1062 1063 set_state_bits(tree, state, &bits, changeset); 1064 cache_state(state, cached_state); 1065 merge_state(tree, state); 1066 if (last_end == (u64)-1) 1067 goto out; 1068 start = last_end + 1; 1069 state = next_state(state); 1070 if (start < end && state && state->start == start && 1071 !need_resched()) 1072 goto hit_next; 1073 goto search_again; 1074 } 1075 1076 /* 1077 * | ---- desired range ---- | 1078 * | state | 1079 * or 1080 * | ------------- state -------------- | 1081 * 1082 * We need to split the extent we found, and may flip bits on 1083 * second half. 1084 * 1085 * If the extent we found extends past our 1086 * range, we just split and search again. It'll get split 1087 * again the next time though. 1088 * 1089 * If the extent we found is inside our range, we set the 1090 * desired bit on it. 1091 */ 1092 if (state->start < start) { 1093 if (state->state & exclusive_bits) { 1094 *failed_start = start; 1095 err = -EEXIST; 1096 goto out; 1097 } 1098 1099 /* 1100 * If this extent already has all the bits we want set, then 1101 * skip it, not necessary to split it or do anything with it. 1102 */ 1103 if ((state->state & bits) == bits) { 1104 start = state->end + 1; 1105 cache_state(state, cached_state); 1106 goto search_again; 1107 } 1108 1109 prealloc = alloc_extent_state_atomic(prealloc); 1110 BUG_ON(!prealloc); 1111 err = split_state(tree, state, prealloc, start); 1112 if (err) 1113 extent_io_tree_panic(tree, err); 1114 1115 prealloc = NULL; 1116 if (err) 1117 goto out; 1118 if (state->end <= end) { 1119 set_state_bits(tree, state, &bits, changeset); 1120 cache_state(state, cached_state); 1121 merge_state(tree, state); 1122 if (last_end == (u64)-1) 1123 goto out; 1124 start = last_end + 1; 1125 state = next_state(state); 1126 if (start < end && state && state->start == start && 1127 !need_resched()) 1128 goto hit_next; 1129 } 1130 goto search_again; 1131 } 1132 /* 1133 * | ---- desired range ---- | 1134 * | state | or | state | 1135 * 1136 * There's a hole, we need to insert something in it and 1137 * ignore the extent we found. 1138 */ 1139 if (state->start > start) { 1140 u64 this_end; 1141 if (end < last_start) 1142 this_end = end; 1143 else 1144 this_end = last_start - 1; 1145 1146 prealloc = alloc_extent_state_atomic(prealloc); 1147 BUG_ON(!prealloc); 1148 1149 /* 1150 * Avoid to free 'prealloc' if it can be merged with 1151 * the later extent. 1152 */ 1153 err = insert_state(tree, prealloc, start, this_end, 1154 NULL, NULL, &bits, changeset); 1155 if (err) 1156 extent_io_tree_panic(tree, err); 1157 1158 cache_state(prealloc, cached_state); 1159 prealloc = NULL; 1160 start = this_end + 1; 1161 goto search_again; 1162 } 1163 /* 1164 * | ---- desired range ---- | 1165 * | state | 1166 * We need to split the extent, and set the bit 1167 * on the first half 1168 */ 1169 if (state->start <= end && state->end > end) { 1170 if (state->state & exclusive_bits) { 1171 *failed_start = start; 1172 err = -EEXIST; 1173 goto out; 1174 } 1175 1176 prealloc = alloc_extent_state_atomic(prealloc); 1177 BUG_ON(!prealloc); 1178 err = split_state(tree, state, prealloc, end + 1); 1179 if (err) 1180 extent_io_tree_panic(tree, err); 1181 1182 set_state_bits(tree, prealloc, &bits, changeset); 1183 cache_state(prealloc, cached_state); 1184 merge_state(tree, prealloc); 1185 prealloc = NULL; 1186 goto out; 1187 } 1188 1189 search_again: 1190 if (start > end) 1191 goto out; 1192 spin_unlock(&tree->lock); 1193 if (gfpflags_allow_blocking(mask)) 1194 cond_resched(); 1195 goto again; 1196 1197 out: 1198 spin_unlock(&tree->lock); 1199 if (prealloc) 1200 free_extent_state(prealloc); 1201 1202 return err; 1203 1204 } 1205 1206 /** 1207 * convert_extent_bit - convert all bits in a given range from one bit to 1208 * another 1209 * @tree: the io tree to search 1210 * @start: the start offset in bytes 1211 * @end: the end offset in bytes (inclusive) 1212 * @bits: the bits to set in this range 1213 * @clear_bits: the bits to clear in this range 1214 * @cached_state: state that we're going to cache 1215 * 1216 * This will go through and set bits for the given range. If any states exist 1217 * already in this range they are set with the given bit and cleared of the 1218 * clear_bits. This is only meant to be used by things that are mergeable, ie 1219 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1220 * boundary bits like LOCK. 1221 * 1222 * All allocations are done with GFP_NOFS. 1223 */ 1224 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1225 u32 bits, u32 clear_bits, 1226 struct extent_state **cached_state) 1227 { 1228 struct extent_state *state; 1229 struct extent_state *prealloc = NULL; 1230 struct rb_node *node; 1231 struct rb_node **p; 1232 struct rb_node *parent; 1233 int err = 0; 1234 u64 last_start; 1235 u64 last_end; 1236 bool first_iteration = true; 1237 1238 btrfs_debug_check_extent_io_range(tree, start, end); 1239 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1240 clear_bits); 1241 1242 again: 1243 if (!prealloc) { 1244 /* 1245 * Best effort, don't worry if extent state allocation fails 1246 * here for the first iteration. We might have a cached state 1247 * that matches exactly the target range, in which case no 1248 * extent state allocations are needed. We'll only know this 1249 * after locking the tree. 1250 */ 1251 prealloc = alloc_extent_state(GFP_NOFS); 1252 if (!prealloc && !first_iteration) 1253 return -ENOMEM; 1254 } 1255 1256 spin_lock(&tree->lock); 1257 if (cached_state && *cached_state) { 1258 state = *cached_state; 1259 if (state->start <= start && state->end > start && 1260 extent_state_in_tree(state)) { 1261 node = &state->rb_node; 1262 goto hit_next; 1263 } 1264 } 1265 1266 /* 1267 * this search will find all the extents that end after 1268 * our range starts. 1269 */ 1270 node = tree_search_for_insert(tree, start, &p, &parent); 1271 if (!node) { 1272 prealloc = alloc_extent_state_atomic(prealloc); 1273 if (!prealloc) { 1274 err = -ENOMEM; 1275 goto out; 1276 } 1277 err = insert_state(tree, prealloc, start, end, 1278 &p, &parent, &bits, NULL); 1279 if (err) 1280 extent_io_tree_panic(tree, err); 1281 cache_state(prealloc, cached_state); 1282 prealloc = NULL; 1283 goto out; 1284 } 1285 state = rb_entry(node, struct extent_state, rb_node); 1286 hit_next: 1287 last_start = state->start; 1288 last_end = state->end; 1289 1290 /* 1291 * | ---- desired range ---- | 1292 * | state | 1293 * 1294 * Just lock what we found and keep going 1295 */ 1296 if (state->start == start && state->end <= end) { 1297 set_state_bits(tree, state, &bits, NULL); 1298 cache_state(state, cached_state); 1299 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1300 if (last_end == (u64)-1) 1301 goto out; 1302 start = last_end + 1; 1303 if (start < end && state && state->start == start && 1304 !need_resched()) 1305 goto hit_next; 1306 goto search_again; 1307 } 1308 1309 /* 1310 * | ---- desired range ---- | 1311 * | state | 1312 * or 1313 * | ------------- state -------------- | 1314 * 1315 * We need to split the extent we found, and may flip bits on 1316 * second half. 1317 * 1318 * If the extent we found extends past our 1319 * range, we just split and search again. It'll get split 1320 * again the next time though. 1321 * 1322 * If the extent we found is inside our range, we set the 1323 * desired bit on it. 1324 */ 1325 if (state->start < start) { 1326 prealloc = alloc_extent_state_atomic(prealloc); 1327 if (!prealloc) { 1328 err = -ENOMEM; 1329 goto out; 1330 } 1331 err = split_state(tree, state, prealloc, start); 1332 if (err) 1333 extent_io_tree_panic(tree, err); 1334 prealloc = NULL; 1335 if (err) 1336 goto out; 1337 if (state->end <= end) { 1338 set_state_bits(tree, state, &bits, NULL); 1339 cache_state(state, cached_state); 1340 state = clear_state_bit(tree, state, &clear_bits, 0, 1341 NULL); 1342 if (last_end == (u64)-1) 1343 goto out; 1344 start = last_end + 1; 1345 if (start < end && state && state->start == start && 1346 !need_resched()) 1347 goto hit_next; 1348 } 1349 goto search_again; 1350 } 1351 /* 1352 * | ---- desired range ---- | 1353 * | state | or | state | 1354 * 1355 * There's a hole, we need to insert something in it and 1356 * ignore the extent we found. 1357 */ 1358 if (state->start > start) { 1359 u64 this_end; 1360 if (end < last_start) 1361 this_end = end; 1362 else 1363 this_end = last_start - 1; 1364 1365 prealloc = alloc_extent_state_atomic(prealloc); 1366 if (!prealloc) { 1367 err = -ENOMEM; 1368 goto out; 1369 } 1370 1371 /* 1372 * Avoid to free 'prealloc' if it can be merged with 1373 * the later extent. 1374 */ 1375 err = insert_state(tree, prealloc, start, this_end, 1376 NULL, NULL, &bits, NULL); 1377 if (err) 1378 extent_io_tree_panic(tree, err); 1379 cache_state(prealloc, cached_state); 1380 prealloc = NULL; 1381 start = this_end + 1; 1382 goto search_again; 1383 } 1384 /* 1385 * | ---- desired range ---- | 1386 * | state | 1387 * We need to split the extent, and set the bit 1388 * on the first half 1389 */ 1390 if (state->start <= end && state->end > end) { 1391 prealloc = alloc_extent_state_atomic(prealloc); 1392 if (!prealloc) { 1393 err = -ENOMEM; 1394 goto out; 1395 } 1396 1397 err = split_state(tree, state, prealloc, end + 1); 1398 if (err) 1399 extent_io_tree_panic(tree, err); 1400 1401 set_state_bits(tree, prealloc, &bits, NULL); 1402 cache_state(prealloc, cached_state); 1403 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1404 prealloc = NULL; 1405 goto out; 1406 } 1407 1408 search_again: 1409 if (start > end) 1410 goto out; 1411 spin_unlock(&tree->lock); 1412 cond_resched(); 1413 first_iteration = false; 1414 goto again; 1415 1416 out: 1417 spin_unlock(&tree->lock); 1418 if (prealloc) 1419 free_extent_state(prealloc); 1420 1421 return err; 1422 } 1423 1424 /* wrappers around set/clear extent bit */ 1425 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1426 u32 bits, struct extent_changeset *changeset) 1427 { 1428 /* 1429 * We don't support EXTENT_LOCKED yet, as current changeset will 1430 * record any bits changed, so for EXTENT_LOCKED case, it will 1431 * either fail with -EEXIST or changeset will record the whole 1432 * range. 1433 */ 1434 BUG_ON(bits & EXTENT_LOCKED); 1435 1436 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1437 changeset); 1438 } 1439 1440 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1441 u32 bits) 1442 { 1443 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1444 GFP_NOWAIT, NULL); 1445 } 1446 1447 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1448 u32 bits, int wake, int delete, 1449 struct extent_state **cached) 1450 { 1451 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1452 cached, GFP_NOFS, NULL); 1453 } 1454 1455 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1456 u32 bits, struct extent_changeset *changeset) 1457 { 1458 /* 1459 * Don't support EXTENT_LOCKED case, same reason as 1460 * set_record_extent_bits(). 1461 */ 1462 BUG_ON(bits & EXTENT_LOCKED); 1463 1464 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1465 changeset); 1466 } 1467 1468 /* 1469 * either insert or lock state struct between start and end use mask to tell 1470 * us if waiting is desired. 1471 */ 1472 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1473 struct extent_state **cached_state) 1474 { 1475 int err; 1476 u64 failed_start; 1477 1478 while (1) { 1479 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1480 EXTENT_LOCKED, &failed_start, 1481 cached_state, GFP_NOFS, NULL); 1482 if (err == -EEXIST) { 1483 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1484 start = failed_start; 1485 } else 1486 break; 1487 WARN_ON(start > end); 1488 } 1489 return err; 1490 } 1491 1492 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1493 { 1494 int err; 1495 u64 failed_start; 1496 1497 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1498 &failed_start, NULL, GFP_NOFS, NULL); 1499 if (err == -EEXIST) { 1500 if (failed_start > start) 1501 clear_extent_bit(tree, start, failed_start - 1, 1502 EXTENT_LOCKED, 1, 0, NULL); 1503 return 0; 1504 } 1505 return 1; 1506 } 1507 1508 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1509 { 1510 unsigned long index = start >> PAGE_SHIFT; 1511 unsigned long end_index = end >> PAGE_SHIFT; 1512 struct page *page; 1513 1514 while (index <= end_index) { 1515 page = find_get_page(inode->i_mapping, index); 1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1517 clear_page_dirty_for_io(page); 1518 put_page(page); 1519 index++; 1520 } 1521 } 1522 1523 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1524 { 1525 struct address_space *mapping = inode->i_mapping; 1526 unsigned long index = start >> PAGE_SHIFT; 1527 unsigned long end_index = end >> PAGE_SHIFT; 1528 struct folio *folio; 1529 1530 while (index <= end_index) { 1531 folio = filemap_get_folio(mapping, index); 1532 filemap_dirty_folio(mapping, folio); 1533 folio_account_redirty(folio); 1534 index += folio_nr_pages(folio); 1535 folio_put(folio); 1536 } 1537 } 1538 1539 /* find the first state struct with 'bits' set after 'start', and 1540 * return it. tree->lock must be held. NULL will returned if 1541 * nothing was found after 'start' 1542 */ 1543 static struct extent_state * 1544 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1545 { 1546 struct rb_node *node; 1547 struct extent_state *state; 1548 1549 /* 1550 * this search will find all the extents that end after 1551 * our range starts. 1552 */ 1553 node = tree_search(tree, start); 1554 if (!node) 1555 goto out; 1556 1557 while (1) { 1558 state = rb_entry(node, struct extent_state, rb_node); 1559 if (state->end >= start && (state->state & bits)) 1560 return state; 1561 1562 node = rb_next(node); 1563 if (!node) 1564 break; 1565 } 1566 out: 1567 return NULL; 1568 } 1569 1570 /* 1571 * Find the first offset in the io tree with one or more @bits set. 1572 * 1573 * Note: If there are multiple bits set in @bits, any of them will match. 1574 * 1575 * Return 0 if we find something, and update @start_ret and @end_ret. 1576 * Return 1 if we found nothing. 1577 */ 1578 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1579 u64 *start_ret, u64 *end_ret, u32 bits, 1580 struct extent_state **cached_state) 1581 { 1582 struct extent_state *state; 1583 int ret = 1; 1584 1585 spin_lock(&tree->lock); 1586 if (cached_state && *cached_state) { 1587 state = *cached_state; 1588 if (state->end == start - 1 && extent_state_in_tree(state)) { 1589 while ((state = next_state(state)) != NULL) { 1590 if (state->state & bits) 1591 goto got_it; 1592 } 1593 free_extent_state(*cached_state); 1594 *cached_state = NULL; 1595 goto out; 1596 } 1597 free_extent_state(*cached_state); 1598 *cached_state = NULL; 1599 } 1600 1601 state = find_first_extent_bit_state(tree, start, bits); 1602 got_it: 1603 if (state) { 1604 cache_state_if_flags(state, cached_state, 0); 1605 *start_ret = state->start; 1606 *end_ret = state->end; 1607 ret = 0; 1608 } 1609 out: 1610 spin_unlock(&tree->lock); 1611 return ret; 1612 } 1613 1614 /** 1615 * Find a contiguous area of bits 1616 * 1617 * @tree: io tree to check 1618 * @start: offset to start the search from 1619 * @start_ret: the first offset we found with the bits set 1620 * @end_ret: the final contiguous range of the bits that were set 1621 * @bits: bits to look for 1622 * 1623 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1624 * to set bits appropriately, and then merge them again. During this time it 1625 * will drop the tree->lock, so use this helper if you want to find the actual 1626 * contiguous area for given bits. We will search to the first bit we find, and 1627 * then walk down the tree until we find a non-contiguous area. The area 1628 * returned will be the full contiguous area with the bits set. 1629 */ 1630 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1631 u64 *start_ret, u64 *end_ret, u32 bits) 1632 { 1633 struct extent_state *state; 1634 int ret = 1; 1635 1636 spin_lock(&tree->lock); 1637 state = find_first_extent_bit_state(tree, start, bits); 1638 if (state) { 1639 *start_ret = state->start; 1640 *end_ret = state->end; 1641 while ((state = next_state(state)) != NULL) { 1642 if (state->start > (*end_ret + 1)) 1643 break; 1644 *end_ret = state->end; 1645 } 1646 ret = 0; 1647 } 1648 spin_unlock(&tree->lock); 1649 return ret; 1650 } 1651 1652 /** 1653 * Find the first range that has @bits not set. This range could start before 1654 * @start. 1655 * 1656 * @tree: the tree to search 1657 * @start: offset at/after which the found extent should start 1658 * @start_ret: records the beginning of the range 1659 * @end_ret: records the end of the range (inclusive) 1660 * @bits: the set of bits which must be unset 1661 * 1662 * Since unallocated range is also considered one which doesn't have the bits 1663 * set it's possible that @end_ret contains -1, this happens in case the range 1664 * spans (last_range_end, end of device]. In this case it's up to the caller to 1665 * trim @end_ret to the appropriate size. 1666 */ 1667 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1668 u64 *start_ret, u64 *end_ret, u32 bits) 1669 { 1670 struct extent_state *state; 1671 struct rb_node *node, *prev = NULL, *next; 1672 1673 spin_lock(&tree->lock); 1674 1675 /* Find first extent with bits cleared */ 1676 while (1) { 1677 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1678 if (!node && !next && !prev) { 1679 /* 1680 * Tree is completely empty, send full range and let 1681 * caller deal with it 1682 */ 1683 *start_ret = 0; 1684 *end_ret = -1; 1685 goto out; 1686 } else if (!node && !next) { 1687 /* 1688 * We are past the last allocated chunk, set start at 1689 * the end of the last extent. 1690 */ 1691 state = rb_entry(prev, struct extent_state, rb_node); 1692 *start_ret = state->end + 1; 1693 *end_ret = -1; 1694 goto out; 1695 } else if (!node) { 1696 node = next; 1697 } 1698 /* 1699 * At this point 'node' either contains 'start' or start is 1700 * before 'node' 1701 */ 1702 state = rb_entry(node, struct extent_state, rb_node); 1703 1704 if (in_range(start, state->start, state->end - state->start + 1)) { 1705 if (state->state & bits) { 1706 /* 1707 * |--range with bits sets--| 1708 * | 1709 * start 1710 */ 1711 start = state->end + 1; 1712 } else { 1713 /* 1714 * 'start' falls within a range that doesn't 1715 * have the bits set, so take its start as 1716 * the beginning of the desired range 1717 * 1718 * |--range with bits cleared----| 1719 * | 1720 * start 1721 */ 1722 *start_ret = state->start; 1723 break; 1724 } 1725 } else { 1726 /* 1727 * |---prev range---|---hole/unset---|---node range---| 1728 * | 1729 * start 1730 * 1731 * or 1732 * 1733 * |---hole/unset--||--first node--| 1734 * 0 | 1735 * start 1736 */ 1737 if (prev) { 1738 state = rb_entry(prev, struct extent_state, 1739 rb_node); 1740 *start_ret = state->end + 1; 1741 } else { 1742 *start_ret = 0; 1743 } 1744 break; 1745 } 1746 } 1747 1748 /* 1749 * Find the longest stretch from start until an entry which has the 1750 * bits set 1751 */ 1752 while (1) { 1753 state = rb_entry(node, struct extent_state, rb_node); 1754 if (state->end >= start && !(state->state & bits)) { 1755 *end_ret = state->end; 1756 } else { 1757 *end_ret = state->start - 1; 1758 break; 1759 } 1760 1761 node = rb_next(node); 1762 if (!node) 1763 break; 1764 } 1765 out: 1766 spin_unlock(&tree->lock); 1767 } 1768 1769 /* 1770 * find a contiguous range of bytes in the file marked as delalloc, not 1771 * more than 'max_bytes'. start and end are used to return the range, 1772 * 1773 * true is returned if we find something, false if nothing was in the tree 1774 */ 1775 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1776 u64 *end, u64 max_bytes, 1777 struct extent_state **cached_state) 1778 { 1779 struct rb_node *node; 1780 struct extent_state *state; 1781 u64 cur_start = *start; 1782 bool found = false; 1783 u64 total_bytes = 0; 1784 1785 spin_lock(&tree->lock); 1786 1787 /* 1788 * this search will find all the extents that end after 1789 * our range starts. 1790 */ 1791 node = tree_search(tree, cur_start); 1792 if (!node) { 1793 *end = (u64)-1; 1794 goto out; 1795 } 1796 1797 while (1) { 1798 state = rb_entry(node, struct extent_state, rb_node); 1799 if (found && (state->start != cur_start || 1800 (state->state & EXTENT_BOUNDARY))) { 1801 goto out; 1802 } 1803 if (!(state->state & EXTENT_DELALLOC)) { 1804 if (!found) 1805 *end = state->end; 1806 goto out; 1807 } 1808 if (!found) { 1809 *start = state->start; 1810 *cached_state = state; 1811 refcount_inc(&state->refs); 1812 } 1813 found = true; 1814 *end = state->end; 1815 cur_start = state->end + 1; 1816 node = rb_next(node); 1817 total_bytes += state->end - state->start + 1; 1818 if (total_bytes >= max_bytes) 1819 break; 1820 if (!node) 1821 break; 1822 } 1823 out: 1824 spin_unlock(&tree->lock); 1825 return found; 1826 } 1827 1828 /* 1829 * Process one page for __process_pages_contig(). 1830 * 1831 * Return >0 if we hit @page == @locked_page. 1832 * Return 0 if we updated the page status. 1833 * Return -EGAIN if the we need to try again. 1834 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1835 */ 1836 static int process_one_page(struct btrfs_fs_info *fs_info, 1837 struct address_space *mapping, 1838 struct page *page, struct page *locked_page, 1839 unsigned long page_ops, u64 start, u64 end) 1840 { 1841 u32 len; 1842 1843 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1844 len = end + 1 - start; 1845 1846 if (page_ops & PAGE_SET_ORDERED) 1847 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1848 if (page_ops & PAGE_SET_ERROR) 1849 btrfs_page_clamp_set_error(fs_info, page, start, len); 1850 if (page_ops & PAGE_START_WRITEBACK) { 1851 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1852 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1853 } 1854 if (page_ops & PAGE_END_WRITEBACK) 1855 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1856 1857 if (page == locked_page) 1858 return 1; 1859 1860 if (page_ops & PAGE_LOCK) { 1861 int ret; 1862 1863 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1864 if (ret) 1865 return ret; 1866 if (!PageDirty(page) || page->mapping != mapping) { 1867 btrfs_page_end_writer_lock(fs_info, page, start, len); 1868 return -EAGAIN; 1869 } 1870 } 1871 if (page_ops & PAGE_UNLOCK) 1872 btrfs_page_end_writer_lock(fs_info, page, start, len); 1873 return 0; 1874 } 1875 1876 static int __process_pages_contig(struct address_space *mapping, 1877 struct page *locked_page, 1878 u64 start, u64 end, unsigned long page_ops, 1879 u64 *processed_end) 1880 { 1881 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1882 pgoff_t start_index = start >> PAGE_SHIFT; 1883 pgoff_t end_index = end >> PAGE_SHIFT; 1884 pgoff_t index = start_index; 1885 unsigned long nr_pages = end_index - start_index + 1; 1886 unsigned long pages_processed = 0; 1887 struct page *pages[16]; 1888 int err = 0; 1889 int i; 1890 1891 if (page_ops & PAGE_LOCK) { 1892 ASSERT(page_ops == PAGE_LOCK); 1893 ASSERT(processed_end && *processed_end == start); 1894 } 1895 1896 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1897 mapping_set_error(mapping, -EIO); 1898 1899 while (nr_pages > 0) { 1900 int found_pages; 1901 1902 found_pages = find_get_pages_contig(mapping, index, 1903 min_t(unsigned long, 1904 nr_pages, ARRAY_SIZE(pages)), pages); 1905 if (found_pages == 0) { 1906 /* 1907 * Only if we're going to lock these pages, we can find 1908 * nothing at @index. 1909 */ 1910 ASSERT(page_ops & PAGE_LOCK); 1911 err = -EAGAIN; 1912 goto out; 1913 } 1914 1915 for (i = 0; i < found_pages; i++) { 1916 int process_ret; 1917 1918 process_ret = process_one_page(fs_info, mapping, 1919 pages[i], locked_page, page_ops, 1920 start, end); 1921 if (process_ret < 0) { 1922 for (; i < found_pages; i++) 1923 put_page(pages[i]); 1924 err = -EAGAIN; 1925 goto out; 1926 } 1927 put_page(pages[i]); 1928 pages_processed++; 1929 } 1930 nr_pages -= found_pages; 1931 index += found_pages; 1932 cond_resched(); 1933 } 1934 out: 1935 if (err && processed_end) { 1936 /* 1937 * Update @processed_end. I know this is awful since it has 1938 * two different return value patterns (inclusive vs exclusive). 1939 * 1940 * But the exclusive pattern is necessary if @start is 0, or we 1941 * underflow and check against processed_end won't work as 1942 * expected. 1943 */ 1944 if (pages_processed) 1945 *processed_end = min(end, 1946 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1947 else 1948 *processed_end = start; 1949 } 1950 return err; 1951 } 1952 1953 static noinline void __unlock_for_delalloc(struct inode *inode, 1954 struct page *locked_page, 1955 u64 start, u64 end) 1956 { 1957 unsigned long index = start >> PAGE_SHIFT; 1958 unsigned long end_index = end >> PAGE_SHIFT; 1959 1960 ASSERT(locked_page); 1961 if (index == locked_page->index && end_index == index) 1962 return; 1963 1964 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1965 PAGE_UNLOCK, NULL); 1966 } 1967 1968 static noinline int lock_delalloc_pages(struct inode *inode, 1969 struct page *locked_page, 1970 u64 delalloc_start, 1971 u64 delalloc_end) 1972 { 1973 unsigned long index = delalloc_start >> PAGE_SHIFT; 1974 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1975 u64 processed_end = delalloc_start; 1976 int ret; 1977 1978 ASSERT(locked_page); 1979 if (index == locked_page->index && index == end_index) 1980 return 0; 1981 1982 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 1983 delalloc_end, PAGE_LOCK, &processed_end); 1984 if (ret == -EAGAIN && processed_end > delalloc_start) 1985 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1986 processed_end); 1987 return ret; 1988 } 1989 1990 /* 1991 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1992 * more than @max_bytes. 1993 * 1994 * @start: The original start bytenr to search. 1995 * Will store the extent range start bytenr. 1996 * @end: The original end bytenr of the search range 1997 * Will store the extent range end bytenr. 1998 * 1999 * Return true if we find a delalloc range which starts inside the original 2000 * range, and @start/@end will store the delalloc range start/end. 2001 * 2002 * Return false if we can't find any delalloc range which starts inside the 2003 * original range, and @start/@end will be the non-delalloc range start/end. 2004 */ 2005 EXPORT_FOR_TESTS 2006 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 2007 struct page *locked_page, u64 *start, 2008 u64 *end) 2009 { 2010 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2011 const u64 orig_start = *start; 2012 const u64 orig_end = *end; 2013 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 2014 u64 delalloc_start; 2015 u64 delalloc_end; 2016 bool found; 2017 struct extent_state *cached_state = NULL; 2018 int ret; 2019 int loops = 0; 2020 2021 /* Caller should pass a valid @end to indicate the search range end */ 2022 ASSERT(orig_end > orig_start); 2023 2024 /* The range should at least cover part of the page */ 2025 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 2026 orig_end <= page_offset(locked_page))); 2027 again: 2028 /* step one, find a bunch of delalloc bytes starting at start */ 2029 delalloc_start = *start; 2030 delalloc_end = 0; 2031 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2032 max_bytes, &cached_state); 2033 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 2034 *start = delalloc_start; 2035 2036 /* @delalloc_end can be -1, never go beyond @orig_end */ 2037 *end = min(delalloc_end, orig_end); 2038 free_extent_state(cached_state); 2039 return false; 2040 } 2041 2042 /* 2043 * start comes from the offset of locked_page. We have to lock 2044 * pages in order, so we can't process delalloc bytes before 2045 * locked_page 2046 */ 2047 if (delalloc_start < *start) 2048 delalloc_start = *start; 2049 2050 /* 2051 * make sure to limit the number of pages we try to lock down 2052 */ 2053 if (delalloc_end + 1 - delalloc_start > max_bytes) 2054 delalloc_end = delalloc_start + max_bytes - 1; 2055 2056 /* step two, lock all the pages after the page that has start */ 2057 ret = lock_delalloc_pages(inode, locked_page, 2058 delalloc_start, delalloc_end); 2059 ASSERT(!ret || ret == -EAGAIN); 2060 if (ret == -EAGAIN) { 2061 /* some of the pages are gone, lets avoid looping by 2062 * shortening the size of the delalloc range we're searching 2063 */ 2064 free_extent_state(cached_state); 2065 cached_state = NULL; 2066 if (!loops) { 2067 max_bytes = PAGE_SIZE; 2068 loops = 1; 2069 goto again; 2070 } else { 2071 found = false; 2072 goto out_failed; 2073 } 2074 } 2075 2076 /* step three, lock the state bits for the whole range */ 2077 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2078 2079 /* then test to make sure it is all still delalloc */ 2080 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2081 EXTENT_DELALLOC, 1, cached_state); 2082 if (!ret) { 2083 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2084 &cached_state); 2085 __unlock_for_delalloc(inode, locked_page, 2086 delalloc_start, delalloc_end); 2087 cond_resched(); 2088 goto again; 2089 } 2090 free_extent_state(cached_state); 2091 *start = delalloc_start; 2092 *end = delalloc_end; 2093 out_failed: 2094 return found; 2095 } 2096 2097 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2098 struct page *locked_page, 2099 u32 clear_bits, unsigned long page_ops) 2100 { 2101 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2102 2103 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2104 start, end, page_ops, NULL); 2105 } 2106 2107 /* 2108 * count the number of bytes in the tree that have a given bit(s) 2109 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2110 * cached. The total number found is returned. 2111 */ 2112 u64 count_range_bits(struct extent_io_tree *tree, 2113 u64 *start, u64 search_end, u64 max_bytes, 2114 u32 bits, int contig) 2115 { 2116 struct rb_node *node; 2117 struct extent_state *state; 2118 u64 cur_start = *start; 2119 u64 total_bytes = 0; 2120 u64 last = 0; 2121 int found = 0; 2122 2123 if (WARN_ON(search_end <= cur_start)) 2124 return 0; 2125 2126 spin_lock(&tree->lock); 2127 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2128 total_bytes = tree->dirty_bytes; 2129 goto out; 2130 } 2131 /* 2132 * this search will find all the extents that end after 2133 * our range starts. 2134 */ 2135 node = tree_search(tree, cur_start); 2136 if (!node) 2137 goto out; 2138 2139 while (1) { 2140 state = rb_entry(node, struct extent_state, rb_node); 2141 if (state->start > search_end) 2142 break; 2143 if (contig && found && state->start > last + 1) 2144 break; 2145 if (state->end >= cur_start && (state->state & bits) == bits) { 2146 total_bytes += min(search_end, state->end) + 1 - 2147 max(cur_start, state->start); 2148 if (total_bytes >= max_bytes) 2149 break; 2150 if (!found) { 2151 *start = max(cur_start, state->start); 2152 found = 1; 2153 } 2154 last = state->end; 2155 } else if (contig && found) { 2156 break; 2157 } 2158 node = rb_next(node); 2159 if (!node) 2160 break; 2161 } 2162 out: 2163 spin_unlock(&tree->lock); 2164 return total_bytes; 2165 } 2166 2167 /* 2168 * set the private field for a given byte offset in the tree. If there isn't 2169 * an extent_state there already, this does nothing. 2170 */ 2171 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2172 struct io_failure_record *failrec) 2173 { 2174 struct rb_node *node; 2175 struct extent_state *state; 2176 int ret = 0; 2177 2178 spin_lock(&tree->lock); 2179 /* 2180 * this search will find all the extents that end after 2181 * our range starts. 2182 */ 2183 node = tree_search(tree, start); 2184 if (!node) { 2185 ret = -ENOENT; 2186 goto out; 2187 } 2188 state = rb_entry(node, struct extent_state, rb_node); 2189 if (state->start != start) { 2190 ret = -ENOENT; 2191 goto out; 2192 } 2193 state->failrec = failrec; 2194 out: 2195 spin_unlock(&tree->lock); 2196 return ret; 2197 } 2198 2199 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2200 { 2201 struct rb_node *node; 2202 struct extent_state *state; 2203 struct io_failure_record *failrec; 2204 2205 spin_lock(&tree->lock); 2206 /* 2207 * this search will find all the extents that end after 2208 * our range starts. 2209 */ 2210 node = tree_search(tree, start); 2211 if (!node) { 2212 failrec = ERR_PTR(-ENOENT); 2213 goto out; 2214 } 2215 state = rb_entry(node, struct extent_state, rb_node); 2216 if (state->start != start) { 2217 failrec = ERR_PTR(-ENOENT); 2218 goto out; 2219 } 2220 2221 failrec = state->failrec; 2222 out: 2223 spin_unlock(&tree->lock); 2224 return failrec; 2225 } 2226 2227 /* 2228 * searches a range in the state tree for a given mask. 2229 * If 'filled' == 1, this returns 1 only if every extent in the tree 2230 * has the bits set. Otherwise, 1 is returned if any bit in the 2231 * range is found set. 2232 */ 2233 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2234 u32 bits, int filled, struct extent_state *cached) 2235 { 2236 struct extent_state *state = NULL; 2237 struct rb_node *node; 2238 int bitset = 0; 2239 2240 spin_lock(&tree->lock); 2241 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2242 cached->end > start) 2243 node = &cached->rb_node; 2244 else 2245 node = tree_search(tree, start); 2246 while (node && start <= end) { 2247 state = rb_entry(node, struct extent_state, rb_node); 2248 2249 if (filled && state->start > start) { 2250 bitset = 0; 2251 break; 2252 } 2253 2254 if (state->start > end) 2255 break; 2256 2257 if (state->state & bits) { 2258 bitset = 1; 2259 if (!filled) 2260 break; 2261 } else if (filled) { 2262 bitset = 0; 2263 break; 2264 } 2265 2266 if (state->end == (u64)-1) 2267 break; 2268 2269 start = state->end + 1; 2270 if (start > end) 2271 break; 2272 node = rb_next(node); 2273 if (!node) { 2274 if (filled) 2275 bitset = 0; 2276 break; 2277 } 2278 } 2279 spin_unlock(&tree->lock); 2280 return bitset; 2281 } 2282 2283 int free_io_failure(struct extent_io_tree *failure_tree, 2284 struct extent_io_tree *io_tree, 2285 struct io_failure_record *rec) 2286 { 2287 int ret; 2288 int err = 0; 2289 2290 set_state_failrec(failure_tree, rec->start, NULL); 2291 ret = clear_extent_bits(failure_tree, rec->start, 2292 rec->start + rec->len - 1, 2293 EXTENT_LOCKED | EXTENT_DIRTY); 2294 if (ret) 2295 err = ret; 2296 2297 ret = clear_extent_bits(io_tree, rec->start, 2298 rec->start + rec->len - 1, 2299 EXTENT_DAMAGED); 2300 if (ret && !err) 2301 err = ret; 2302 2303 kfree(rec); 2304 return err; 2305 } 2306 2307 /* 2308 * this bypasses the standard btrfs submit functions deliberately, as 2309 * the standard behavior is to write all copies in a raid setup. here we only 2310 * want to write the one bad copy. so we do the mapping for ourselves and issue 2311 * submit_bio directly. 2312 * to avoid any synchronization issues, wait for the data after writing, which 2313 * actually prevents the read that triggered the error from finishing. 2314 * currently, there can be no more than two copies of every data bit. thus, 2315 * exactly one rewrite is required. 2316 */ 2317 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2318 u64 length, u64 logical, struct page *page, 2319 unsigned int pg_offset, int mirror_num) 2320 { 2321 struct btrfs_device *dev; 2322 struct bio_vec bvec; 2323 struct bio bio; 2324 u64 map_length = 0; 2325 u64 sector; 2326 struct btrfs_io_context *bioc = NULL; 2327 int ret = 0; 2328 2329 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2330 BUG_ON(!mirror_num); 2331 2332 if (btrfs_repair_one_zone(fs_info, logical)) 2333 return 0; 2334 2335 map_length = length; 2336 2337 /* 2338 * Avoid races with device replace and make sure our bioc has devices 2339 * associated to its stripes that don't go away while we are doing the 2340 * read repair operation. 2341 */ 2342 btrfs_bio_counter_inc_blocked(fs_info); 2343 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2344 /* 2345 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2346 * to update all raid stripes, but here we just want to correct 2347 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2348 * stripe's dev and sector. 2349 */ 2350 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2351 &map_length, &bioc, 0); 2352 if (ret) 2353 goto out_counter_dec; 2354 ASSERT(bioc->mirror_num == 1); 2355 } else { 2356 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2357 &map_length, &bioc, mirror_num); 2358 if (ret) 2359 goto out_counter_dec; 2360 BUG_ON(mirror_num != bioc->mirror_num); 2361 } 2362 2363 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 2364 dev = bioc->stripes[bioc->mirror_num - 1].dev; 2365 btrfs_put_bioc(bioc); 2366 2367 if (!dev || !dev->bdev || 2368 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2369 ret = -EIO; 2370 goto out_counter_dec; 2371 } 2372 2373 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 2374 bio.bi_iter.bi_sector = sector; 2375 __bio_add_page(&bio, page, length, pg_offset); 2376 2377 btrfsic_check_bio(&bio); 2378 ret = submit_bio_wait(&bio); 2379 if (ret) { 2380 /* try to remap that extent elsewhere? */ 2381 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2382 goto out_bio_uninit; 2383 } 2384 2385 btrfs_info_rl_in_rcu(fs_info, 2386 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2387 ino, start, 2388 rcu_str_deref(dev->name), sector); 2389 ret = 0; 2390 2391 out_bio_uninit: 2392 bio_uninit(&bio); 2393 out_counter_dec: 2394 btrfs_bio_counter_dec(fs_info); 2395 return ret; 2396 } 2397 2398 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2399 { 2400 struct btrfs_fs_info *fs_info = eb->fs_info; 2401 u64 start = eb->start; 2402 int i, num_pages = num_extent_pages(eb); 2403 int ret = 0; 2404 2405 if (sb_rdonly(fs_info->sb)) 2406 return -EROFS; 2407 2408 for (i = 0; i < num_pages; i++) { 2409 struct page *p = eb->pages[i]; 2410 2411 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2412 start - page_offset(p), mirror_num); 2413 if (ret) 2414 break; 2415 start += PAGE_SIZE; 2416 } 2417 2418 return ret; 2419 } 2420 2421 /* 2422 * each time an IO finishes, we do a fast check in the IO failure tree 2423 * to see if we need to process or clean up an io_failure_record 2424 */ 2425 int clean_io_failure(struct btrfs_fs_info *fs_info, 2426 struct extent_io_tree *failure_tree, 2427 struct extent_io_tree *io_tree, u64 start, 2428 struct page *page, u64 ino, unsigned int pg_offset) 2429 { 2430 u64 private; 2431 struct io_failure_record *failrec; 2432 struct extent_state *state; 2433 int num_copies; 2434 int ret; 2435 2436 private = 0; 2437 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2438 EXTENT_DIRTY, 0); 2439 if (!ret) 2440 return 0; 2441 2442 failrec = get_state_failrec(failure_tree, start); 2443 if (IS_ERR(failrec)) 2444 return 0; 2445 2446 BUG_ON(!failrec->this_mirror); 2447 2448 if (sb_rdonly(fs_info->sb)) 2449 goto out; 2450 2451 spin_lock(&io_tree->lock); 2452 state = find_first_extent_bit_state(io_tree, 2453 failrec->start, 2454 EXTENT_LOCKED); 2455 spin_unlock(&io_tree->lock); 2456 2457 if (state && state->start <= failrec->start && 2458 state->end >= failrec->start + failrec->len - 1) { 2459 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2460 failrec->len); 2461 if (num_copies > 1) { 2462 repair_io_failure(fs_info, ino, start, failrec->len, 2463 failrec->logical, page, pg_offset, 2464 failrec->failed_mirror); 2465 } 2466 } 2467 2468 out: 2469 free_io_failure(failure_tree, io_tree, failrec); 2470 2471 return 0; 2472 } 2473 2474 /* 2475 * Can be called when 2476 * - hold extent lock 2477 * - under ordered extent 2478 * - the inode is freeing 2479 */ 2480 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2481 { 2482 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2483 struct io_failure_record *failrec; 2484 struct extent_state *state, *next; 2485 2486 if (RB_EMPTY_ROOT(&failure_tree->state)) 2487 return; 2488 2489 spin_lock(&failure_tree->lock); 2490 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2491 while (state) { 2492 if (state->start > end) 2493 break; 2494 2495 ASSERT(state->end <= end); 2496 2497 next = next_state(state); 2498 2499 failrec = state->failrec; 2500 free_extent_state(state); 2501 kfree(failrec); 2502 2503 state = next; 2504 } 2505 spin_unlock(&failure_tree->lock); 2506 } 2507 2508 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2509 u64 start) 2510 { 2511 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2512 struct io_failure_record *failrec; 2513 struct extent_map *em; 2514 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2515 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2516 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2517 const u32 sectorsize = fs_info->sectorsize; 2518 int ret; 2519 u64 logical; 2520 2521 failrec = get_state_failrec(failure_tree, start); 2522 if (!IS_ERR(failrec)) { 2523 btrfs_debug(fs_info, 2524 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2525 failrec->logical, failrec->start, failrec->len); 2526 /* 2527 * when data can be on disk more than twice, add to failrec here 2528 * (e.g. with a list for failed_mirror) to make 2529 * clean_io_failure() clean all those errors at once. 2530 */ 2531 2532 return failrec; 2533 } 2534 2535 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2536 if (!failrec) 2537 return ERR_PTR(-ENOMEM); 2538 2539 failrec->start = start; 2540 failrec->len = sectorsize; 2541 failrec->this_mirror = 0; 2542 failrec->compress_type = BTRFS_COMPRESS_NONE; 2543 2544 read_lock(&em_tree->lock); 2545 em = lookup_extent_mapping(em_tree, start, failrec->len); 2546 if (!em) { 2547 read_unlock(&em_tree->lock); 2548 kfree(failrec); 2549 return ERR_PTR(-EIO); 2550 } 2551 2552 if (em->start > start || em->start + em->len <= start) { 2553 free_extent_map(em); 2554 em = NULL; 2555 } 2556 read_unlock(&em_tree->lock); 2557 if (!em) { 2558 kfree(failrec); 2559 return ERR_PTR(-EIO); 2560 } 2561 2562 logical = start - em->start; 2563 logical = em->block_start + logical; 2564 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2565 logical = em->block_start; 2566 failrec->compress_type = em->compress_type; 2567 } 2568 2569 btrfs_debug(fs_info, 2570 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2571 logical, start, failrec->len); 2572 2573 failrec->logical = logical; 2574 free_extent_map(em); 2575 2576 /* Set the bits in the private failure tree */ 2577 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2578 EXTENT_LOCKED | EXTENT_DIRTY); 2579 if (ret >= 0) { 2580 ret = set_state_failrec(failure_tree, start, failrec); 2581 /* Set the bits in the inode's tree */ 2582 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2583 EXTENT_DAMAGED); 2584 } else if (ret < 0) { 2585 kfree(failrec); 2586 return ERR_PTR(ret); 2587 } 2588 2589 return failrec; 2590 } 2591 2592 static bool btrfs_check_repairable(struct inode *inode, 2593 struct io_failure_record *failrec, 2594 int failed_mirror) 2595 { 2596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2597 int num_copies; 2598 2599 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2600 if (num_copies == 1) { 2601 /* 2602 * we only have a single copy of the data, so don't bother with 2603 * all the retry and error correction code that follows. no 2604 * matter what the error is, it is very likely to persist. 2605 */ 2606 btrfs_debug(fs_info, 2607 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2608 num_copies, failrec->this_mirror, failed_mirror); 2609 return false; 2610 } 2611 2612 /* The failure record should only contain one sector */ 2613 ASSERT(failrec->len == fs_info->sectorsize); 2614 2615 /* 2616 * There are two premises: 2617 * a) deliver good data to the caller 2618 * b) correct the bad sectors on disk 2619 * 2620 * Since we're only doing repair for one sector, we only need to get 2621 * a good copy of the failed sector and if we succeed, we have setup 2622 * everything for repair_io_failure to do the rest for us. 2623 */ 2624 ASSERT(failed_mirror); 2625 failrec->failed_mirror = failed_mirror; 2626 failrec->this_mirror++; 2627 if (failrec->this_mirror == failed_mirror) 2628 failrec->this_mirror++; 2629 2630 if (failrec->this_mirror > num_copies) { 2631 btrfs_debug(fs_info, 2632 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2633 num_copies, failrec->this_mirror, failed_mirror); 2634 return false; 2635 } 2636 2637 return true; 2638 } 2639 2640 int btrfs_repair_one_sector(struct inode *inode, 2641 struct bio *failed_bio, u32 bio_offset, 2642 struct page *page, unsigned int pgoff, 2643 u64 start, int failed_mirror, 2644 submit_bio_hook_t *submit_bio_hook) 2645 { 2646 struct io_failure_record *failrec; 2647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2648 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2649 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2650 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio); 2651 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2652 struct bio *repair_bio; 2653 struct btrfs_bio *repair_bbio; 2654 2655 btrfs_debug(fs_info, 2656 "repair read error: read error at %llu", start); 2657 2658 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2659 2660 failrec = btrfs_get_io_failure_record(inode, start); 2661 if (IS_ERR(failrec)) 2662 return PTR_ERR(failrec); 2663 2664 2665 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { 2666 free_io_failure(failure_tree, tree, failrec); 2667 return -EIO; 2668 } 2669 2670 repair_bio = btrfs_bio_alloc(1); 2671 repair_bbio = btrfs_bio(repair_bio); 2672 repair_bbio->file_offset = start; 2673 repair_bio->bi_opf = REQ_OP_READ; 2674 repair_bio->bi_end_io = failed_bio->bi_end_io; 2675 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2676 repair_bio->bi_private = failed_bio->bi_private; 2677 2678 if (failed_bbio->csum) { 2679 const u32 csum_size = fs_info->csum_size; 2680 2681 repair_bbio->csum = repair_bbio->csum_inline; 2682 memcpy(repair_bbio->csum, 2683 failed_bbio->csum + csum_size * icsum, csum_size); 2684 } 2685 2686 bio_add_page(repair_bio, page, failrec->len, pgoff); 2687 repair_bbio->iter = repair_bio->bi_iter; 2688 2689 btrfs_debug(btrfs_sb(inode->i_sb), 2690 "repair read error: submitting new read to mirror %d", 2691 failrec->this_mirror); 2692 2693 /* 2694 * At this point we have a bio, so any errors from submit_bio_hook() 2695 * will be handled by the endio on the repair_bio, so we can't return an 2696 * error here. 2697 */ 2698 submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type); 2699 return BLK_STS_OK; 2700 } 2701 2702 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2703 { 2704 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2705 2706 ASSERT(page_offset(page) <= start && 2707 start + len <= page_offset(page) + PAGE_SIZE); 2708 2709 if (uptodate) { 2710 if (fsverity_active(page->mapping->host) && 2711 !PageError(page) && 2712 !PageUptodate(page) && 2713 start < i_size_read(page->mapping->host) && 2714 !fsverity_verify_page(page)) { 2715 btrfs_page_set_error(fs_info, page, start, len); 2716 } else { 2717 btrfs_page_set_uptodate(fs_info, page, start, len); 2718 } 2719 } else { 2720 btrfs_page_clear_uptodate(fs_info, page, start, len); 2721 btrfs_page_set_error(fs_info, page, start, len); 2722 } 2723 2724 if (!btrfs_is_subpage(fs_info, page)) 2725 unlock_page(page); 2726 else 2727 btrfs_subpage_end_reader(fs_info, page, start, len); 2728 } 2729 2730 static blk_status_t submit_data_read_repair(struct inode *inode, 2731 struct bio *failed_bio, 2732 u32 bio_offset, struct page *page, 2733 unsigned int pgoff, 2734 u64 start, u64 end, 2735 int failed_mirror, 2736 unsigned int error_bitmap) 2737 { 2738 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2739 const u32 sectorsize = fs_info->sectorsize; 2740 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2741 int error = 0; 2742 int i; 2743 2744 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2745 2746 /* This repair is only for data */ 2747 ASSERT(is_data_inode(inode)); 2748 2749 /* We're here because we had some read errors or csum mismatch */ 2750 ASSERT(error_bitmap); 2751 2752 /* 2753 * We only get called on buffered IO, thus page must be mapped and bio 2754 * must not be cloned. 2755 */ 2756 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); 2757 2758 /* Iterate through all the sectors in the range */ 2759 for (i = 0; i < nr_bits; i++) { 2760 const unsigned int offset = i * sectorsize; 2761 struct extent_state *cached = NULL; 2762 bool uptodate = false; 2763 int ret; 2764 2765 if (!(error_bitmap & (1U << i))) { 2766 /* 2767 * This sector has no error, just end the page read 2768 * and unlock the range. 2769 */ 2770 uptodate = true; 2771 goto next; 2772 } 2773 2774 ret = btrfs_repair_one_sector(inode, failed_bio, 2775 bio_offset + offset, 2776 page, pgoff + offset, start + offset, 2777 failed_mirror, btrfs_submit_data_bio); 2778 if (!ret) { 2779 /* 2780 * We have submitted the read repair, the page release 2781 * will be handled by the endio function of the 2782 * submitted repair bio. 2783 * Thus we don't need to do any thing here. 2784 */ 2785 continue; 2786 } 2787 /* 2788 * Repair failed, just record the error but still continue. 2789 * Or the remaining sectors will not be properly unlocked. 2790 */ 2791 if (!error) 2792 error = ret; 2793 next: 2794 end_page_read(page, uptodate, start + offset, sectorsize); 2795 if (uptodate) 2796 set_extent_uptodate(&BTRFS_I(inode)->io_tree, 2797 start + offset, 2798 start + offset + sectorsize - 1, 2799 &cached, GFP_ATOMIC); 2800 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, 2801 start + offset, 2802 start + offset + sectorsize - 1, 2803 &cached); 2804 } 2805 return errno_to_blk_status(error); 2806 } 2807 2808 /* lots and lots of room for performance fixes in the end_bio funcs */ 2809 2810 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2811 { 2812 struct btrfs_inode *inode; 2813 const bool uptodate = (err == 0); 2814 int ret = 0; 2815 2816 ASSERT(page && page->mapping); 2817 inode = BTRFS_I(page->mapping->host); 2818 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2819 2820 if (!uptodate) { 2821 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2822 u32 len; 2823 2824 ASSERT(end + 1 - start <= U32_MAX); 2825 len = end + 1 - start; 2826 2827 btrfs_page_clear_uptodate(fs_info, page, start, len); 2828 btrfs_page_set_error(fs_info, page, start, len); 2829 ret = err < 0 ? err : -EIO; 2830 mapping_set_error(page->mapping, ret); 2831 } 2832 } 2833 2834 /* 2835 * after a writepage IO is done, we need to: 2836 * clear the uptodate bits on error 2837 * clear the writeback bits in the extent tree for this IO 2838 * end_page_writeback if the page has no more pending IO 2839 * 2840 * Scheduling is not allowed, so the extent state tree is expected 2841 * to have one and only one object corresponding to this IO. 2842 */ 2843 static void end_bio_extent_writepage(struct bio *bio) 2844 { 2845 int error = blk_status_to_errno(bio->bi_status); 2846 struct bio_vec *bvec; 2847 u64 start; 2848 u64 end; 2849 struct bvec_iter_all iter_all; 2850 bool first_bvec = true; 2851 2852 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2853 bio_for_each_segment_all(bvec, bio, iter_all) { 2854 struct page *page = bvec->bv_page; 2855 struct inode *inode = page->mapping->host; 2856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2857 const u32 sectorsize = fs_info->sectorsize; 2858 2859 /* Our read/write should always be sector aligned. */ 2860 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2861 btrfs_err(fs_info, 2862 "partial page write in btrfs with offset %u and length %u", 2863 bvec->bv_offset, bvec->bv_len); 2864 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2865 btrfs_info(fs_info, 2866 "incomplete page write with offset %u and length %u", 2867 bvec->bv_offset, bvec->bv_len); 2868 2869 start = page_offset(page) + bvec->bv_offset; 2870 end = start + bvec->bv_len - 1; 2871 2872 if (first_bvec) { 2873 btrfs_record_physical_zoned(inode, start, bio); 2874 first_bvec = false; 2875 } 2876 2877 end_extent_writepage(page, error, start, end); 2878 2879 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2880 } 2881 2882 bio_put(bio); 2883 } 2884 2885 /* 2886 * Record previously processed extent range 2887 * 2888 * For endio_readpage_release_extent() to handle a full extent range, reducing 2889 * the extent io operations. 2890 */ 2891 struct processed_extent { 2892 struct btrfs_inode *inode; 2893 /* Start of the range in @inode */ 2894 u64 start; 2895 /* End of the range in @inode */ 2896 u64 end; 2897 bool uptodate; 2898 }; 2899 2900 /* 2901 * Try to release processed extent range 2902 * 2903 * May not release the extent range right now if the current range is 2904 * contiguous to processed extent. 2905 * 2906 * Will release processed extent when any of @inode, @uptodate, the range is 2907 * no longer contiguous to the processed range. 2908 * 2909 * Passing @inode == NULL will force processed extent to be released. 2910 */ 2911 static void endio_readpage_release_extent(struct processed_extent *processed, 2912 struct btrfs_inode *inode, u64 start, u64 end, 2913 bool uptodate) 2914 { 2915 struct extent_state *cached = NULL; 2916 struct extent_io_tree *tree; 2917 2918 /* The first extent, initialize @processed */ 2919 if (!processed->inode) 2920 goto update; 2921 2922 /* 2923 * Contiguous to processed extent, just uptodate the end. 2924 * 2925 * Several things to notice: 2926 * 2927 * - bio can be merged as long as on-disk bytenr is contiguous 2928 * This means we can have page belonging to other inodes, thus need to 2929 * check if the inode still matches. 2930 * - bvec can contain range beyond current page for multi-page bvec 2931 * Thus we need to do processed->end + 1 >= start check 2932 */ 2933 if (processed->inode == inode && processed->uptodate == uptodate && 2934 processed->end + 1 >= start && end >= processed->end) { 2935 processed->end = end; 2936 return; 2937 } 2938 2939 tree = &processed->inode->io_tree; 2940 /* 2941 * Now we don't have range contiguous to the processed range, release 2942 * the processed range now. 2943 */ 2944 if (processed->uptodate && tree->track_uptodate) 2945 set_extent_uptodate(tree, processed->start, processed->end, 2946 &cached, GFP_ATOMIC); 2947 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2948 &cached); 2949 2950 update: 2951 /* Update processed to current range */ 2952 processed->inode = inode; 2953 processed->start = start; 2954 processed->end = end; 2955 processed->uptodate = uptodate; 2956 } 2957 2958 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2959 { 2960 ASSERT(PageLocked(page)); 2961 if (!btrfs_is_subpage(fs_info, page)) 2962 return; 2963 2964 ASSERT(PagePrivate(page)); 2965 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2966 } 2967 2968 /* 2969 * Find extent buffer for a given bytenr. 2970 * 2971 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2972 * in endio context. 2973 */ 2974 static struct extent_buffer *find_extent_buffer_readpage( 2975 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2976 { 2977 struct extent_buffer *eb; 2978 2979 /* 2980 * For regular sectorsize, we can use page->private to grab extent 2981 * buffer 2982 */ 2983 if (fs_info->nodesize >= PAGE_SIZE) { 2984 ASSERT(PagePrivate(page) && page->private); 2985 return (struct extent_buffer *)page->private; 2986 } 2987 2988 /* For subpage case, we need to lookup extent buffer xarray */ 2989 eb = xa_load(&fs_info->extent_buffers, 2990 bytenr >> fs_info->sectorsize_bits); 2991 ASSERT(eb); 2992 return eb; 2993 } 2994 2995 /* 2996 * after a readpage IO is done, we need to: 2997 * clear the uptodate bits on error 2998 * set the uptodate bits if things worked 2999 * set the page up to date if all extents in the tree are uptodate 3000 * clear the lock bit in the extent tree 3001 * unlock the page if there are no other extents locked for it 3002 * 3003 * Scheduling is not allowed, so the extent state tree is expected 3004 * to have one and only one object corresponding to this IO. 3005 */ 3006 static void end_bio_extent_readpage(struct bio *bio) 3007 { 3008 struct bio_vec *bvec; 3009 struct btrfs_bio *bbio = btrfs_bio(bio); 3010 struct extent_io_tree *tree, *failure_tree; 3011 struct processed_extent processed = { 0 }; 3012 /* 3013 * The offset to the beginning of a bio, since one bio can never be 3014 * larger than UINT_MAX, u32 here is enough. 3015 */ 3016 u32 bio_offset = 0; 3017 int mirror; 3018 int ret; 3019 struct bvec_iter_all iter_all; 3020 3021 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3022 bio_for_each_segment_all(bvec, bio, iter_all) { 3023 bool uptodate = !bio->bi_status; 3024 struct page *page = bvec->bv_page; 3025 struct inode *inode = page->mapping->host; 3026 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3027 const u32 sectorsize = fs_info->sectorsize; 3028 unsigned int error_bitmap = (unsigned int)-1; 3029 u64 start; 3030 u64 end; 3031 u32 len; 3032 3033 btrfs_debug(fs_info, 3034 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3035 bio->bi_iter.bi_sector, bio->bi_status, 3036 bbio->mirror_num); 3037 tree = &BTRFS_I(inode)->io_tree; 3038 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3039 3040 /* 3041 * We always issue full-sector reads, but if some block in a 3042 * page fails to read, blk_update_request() will advance 3043 * bv_offset and adjust bv_len to compensate. Print a warning 3044 * for unaligned offsets, and an error if they don't add up to 3045 * a full sector. 3046 */ 3047 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3048 btrfs_err(fs_info, 3049 "partial page read in btrfs with offset %u and length %u", 3050 bvec->bv_offset, bvec->bv_len); 3051 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3052 sectorsize)) 3053 btrfs_info(fs_info, 3054 "incomplete page read with offset %u and length %u", 3055 bvec->bv_offset, bvec->bv_len); 3056 3057 start = page_offset(page) + bvec->bv_offset; 3058 end = start + bvec->bv_len - 1; 3059 len = bvec->bv_len; 3060 3061 mirror = bbio->mirror_num; 3062 if (likely(uptodate)) { 3063 if (is_data_inode(inode)) { 3064 error_bitmap = btrfs_verify_data_csum(bbio, 3065 bio_offset, page, start, end); 3066 ret = error_bitmap; 3067 } else { 3068 ret = btrfs_validate_metadata_buffer(bbio, 3069 page, start, end, mirror); 3070 } 3071 if (ret) 3072 uptodate = false; 3073 else 3074 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3075 failure_tree, tree, start, 3076 page, 3077 btrfs_ino(BTRFS_I(inode)), 0); 3078 } 3079 3080 if (likely(uptodate)) 3081 goto readpage_ok; 3082 3083 if (is_data_inode(inode)) { 3084 /* 3085 * If we failed to submit the IO at all we'll have a 3086 * mirror_num == 0, in which case we need to just mark 3087 * the page with an error and unlock it and carry on. 3088 */ 3089 if (mirror == 0) 3090 goto readpage_ok; 3091 3092 /* 3093 * submit_data_read_repair() will handle all the good 3094 * and bad sectors, we just continue to the next bvec. 3095 */ 3096 submit_data_read_repair(inode, bio, bio_offset, page, 3097 start - page_offset(page), 3098 start, end, mirror, 3099 error_bitmap); 3100 3101 ASSERT(bio_offset + len > bio_offset); 3102 bio_offset += len; 3103 continue; 3104 } else { 3105 struct extent_buffer *eb; 3106 3107 eb = find_extent_buffer_readpage(fs_info, page, start); 3108 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3109 eb->read_mirror = mirror; 3110 atomic_dec(&eb->io_pages); 3111 } 3112 readpage_ok: 3113 if (likely(uptodate)) { 3114 loff_t i_size = i_size_read(inode); 3115 pgoff_t end_index = i_size >> PAGE_SHIFT; 3116 3117 /* 3118 * Zero out the remaining part if this range straddles 3119 * i_size. 3120 * 3121 * Here we should only zero the range inside the bvec, 3122 * not touch anything else. 3123 * 3124 * NOTE: i_size is exclusive while end is inclusive. 3125 */ 3126 if (page->index == end_index && i_size <= end) { 3127 u32 zero_start = max(offset_in_page(i_size), 3128 offset_in_page(start)); 3129 3130 zero_user_segment(page, zero_start, 3131 offset_in_page(end) + 1); 3132 } 3133 } 3134 ASSERT(bio_offset + len > bio_offset); 3135 bio_offset += len; 3136 3137 /* Update page status and unlock */ 3138 end_page_read(page, uptodate, start, len); 3139 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3140 start, end, PageUptodate(page)); 3141 } 3142 /* Release the last extent */ 3143 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3144 btrfs_bio_free_csum(bbio); 3145 bio_put(bio); 3146 } 3147 3148 /** 3149 * Populate every free slot in a provided array with pages. 3150 * 3151 * @nr_pages: number of pages to allocate 3152 * @page_array: the array to fill with pages; any existing non-null entries in 3153 * the array will be skipped 3154 * 3155 * Return: 0 if all pages were able to be allocated; 3156 * -ENOMEM otherwise, and the caller is responsible for freeing all 3157 * non-null page pointers in the array. 3158 */ 3159 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 3160 { 3161 unsigned int allocated; 3162 3163 for (allocated = 0; allocated < nr_pages;) { 3164 unsigned int last = allocated; 3165 3166 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 3167 3168 if (allocated == nr_pages) 3169 return 0; 3170 3171 /* 3172 * During this iteration, no page could be allocated, even 3173 * though alloc_pages_bulk_array() falls back to alloc_page() 3174 * if it could not bulk-allocate. So we must be out of memory. 3175 */ 3176 if (allocated == last) 3177 return -ENOMEM; 3178 3179 memalloc_retry_wait(GFP_NOFS); 3180 } 3181 return 0; 3182 } 3183 3184 /* 3185 * Initialize the members up to but not including 'bio'. Use after allocating a 3186 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3187 * 'bio' because use of __GFP_ZERO is not supported. 3188 */ 3189 static inline void btrfs_bio_init(struct btrfs_bio *bbio) 3190 { 3191 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 3192 } 3193 3194 /* 3195 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. 3196 * 3197 * The bio allocation is backed by bioset and does not fail. 3198 */ 3199 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) 3200 { 3201 struct bio *bio; 3202 3203 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); 3204 bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset); 3205 btrfs_bio_init(btrfs_bio(bio)); 3206 return bio; 3207 } 3208 3209 struct bio *btrfs_bio_clone(struct block_device *bdev, struct bio *bio) 3210 { 3211 struct btrfs_bio *bbio; 3212 struct bio *new; 3213 3214 /* Bio allocation backed by a bioset does not fail */ 3215 new = bio_alloc_clone(bdev, bio, GFP_NOFS, &btrfs_bioset); 3216 bbio = btrfs_bio(new); 3217 btrfs_bio_init(bbio); 3218 bbio->iter = bio->bi_iter; 3219 return new; 3220 } 3221 3222 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3223 { 3224 struct bio *bio; 3225 struct btrfs_bio *bbio; 3226 3227 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3228 3229 /* this will never fail when it's backed by a bioset */ 3230 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); 3231 ASSERT(bio); 3232 3233 bbio = btrfs_bio(bio); 3234 btrfs_bio_init(bbio); 3235 3236 bio_trim(bio, offset >> 9, size >> 9); 3237 bbio->iter = bio->bi_iter; 3238 return bio; 3239 } 3240 3241 /** 3242 * Attempt to add a page to bio 3243 * 3244 * @bio_ctrl: record both the bio, and its bio_flags 3245 * @page: page to add to the bio 3246 * @disk_bytenr: offset of the new bio or to check whether we are adding 3247 * a contiguous page to the previous one 3248 * @size: portion of page that we want to write 3249 * @pg_offset: starting offset in the page 3250 * @compress_type: compression type of the current bio to see if we can merge them 3251 * 3252 * Attempt to add a page to bio considering stripe alignment etc. 3253 * 3254 * Return >= 0 for the number of bytes added to the bio. 3255 * Can return 0 if the current bio is already at stripe/zone boundary. 3256 * Return <0 for error. 3257 */ 3258 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3259 struct page *page, 3260 u64 disk_bytenr, unsigned int size, 3261 unsigned int pg_offset, 3262 enum btrfs_compression_type compress_type) 3263 { 3264 struct bio *bio = bio_ctrl->bio; 3265 u32 bio_size = bio->bi_iter.bi_size; 3266 u32 real_size; 3267 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3268 bool contig; 3269 int ret; 3270 3271 ASSERT(bio); 3272 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3273 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3274 if (bio_ctrl->compress_type != compress_type) 3275 return 0; 3276 3277 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 3278 contig = bio->bi_iter.bi_sector == sector; 3279 else 3280 contig = bio_end_sector(bio) == sector; 3281 if (!contig) 3282 return 0; 3283 3284 real_size = min(bio_ctrl->len_to_oe_boundary, 3285 bio_ctrl->len_to_stripe_boundary) - bio_size; 3286 real_size = min(real_size, size); 3287 3288 /* 3289 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3290 * bio will still execute its endio function on the page! 3291 */ 3292 if (real_size == 0) 3293 return 0; 3294 3295 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3296 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3297 else 3298 ret = bio_add_page(bio, page, real_size, pg_offset); 3299 3300 return ret; 3301 } 3302 3303 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3304 struct btrfs_inode *inode, u64 file_offset) 3305 { 3306 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3307 struct btrfs_io_geometry geom; 3308 struct btrfs_ordered_extent *ordered; 3309 struct extent_map *em; 3310 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3311 int ret; 3312 3313 /* 3314 * Pages for compressed extent are never submitted to disk directly, 3315 * thus it has no real boundary, just set them to U32_MAX. 3316 * 3317 * The split happens for real compressed bio, which happens in 3318 * btrfs_submit_compressed_read/write(). 3319 */ 3320 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 3321 bio_ctrl->len_to_oe_boundary = U32_MAX; 3322 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3323 return 0; 3324 } 3325 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3326 if (IS_ERR(em)) 3327 return PTR_ERR(em); 3328 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3329 logical, &geom); 3330 free_extent_map(em); 3331 if (ret < 0) { 3332 return ret; 3333 } 3334 if (geom.len > U32_MAX) 3335 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3336 else 3337 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3338 3339 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3340 bio_ctrl->len_to_oe_boundary = U32_MAX; 3341 return 0; 3342 } 3343 3344 /* Ordered extent not yet created, so we're good */ 3345 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3346 if (!ordered) { 3347 bio_ctrl->len_to_oe_boundary = U32_MAX; 3348 return 0; 3349 } 3350 3351 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3352 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3353 btrfs_put_ordered_extent(ordered); 3354 return 0; 3355 } 3356 3357 static int alloc_new_bio(struct btrfs_inode *inode, 3358 struct btrfs_bio_ctrl *bio_ctrl, 3359 struct writeback_control *wbc, 3360 unsigned int opf, 3361 bio_end_io_t end_io_func, 3362 u64 disk_bytenr, u32 offset, u64 file_offset, 3363 enum btrfs_compression_type compress_type) 3364 { 3365 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3366 struct bio *bio; 3367 int ret; 3368 3369 bio = btrfs_bio_alloc(BIO_MAX_VECS); 3370 /* 3371 * For compressed page range, its disk_bytenr is always @disk_bytenr 3372 * passed in, no matter if we have added any range into previous bio. 3373 */ 3374 if (compress_type != BTRFS_COMPRESS_NONE) 3375 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 3376 else 3377 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 3378 bio_ctrl->bio = bio; 3379 bio_ctrl->compress_type = compress_type; 3380 bio->bi_end_io = end_io_func; 3381 bio->bi_private = &inode->io_tree; 3382 bio->bi_opf = opf; 3383 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3384 if (ret < 0) 3385 goto error; 3386 3387 if (wbc) { 3388 /* 3389 * For Zone append we need the correct block_device that we are 3390 * going to write to set in the bio to be able to respect the 3391 * hardware limitation. Look it up here: 3392 */ 3393 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3394 struct btrfs_device *dev; 3395 3396 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 3397 fs_info->sectorsize); 3398 if (IS_ERR(dev)) { 3399 ret = PTR_ERR(dev); 3400 goto error; 3401 } 3402 3403 bio_set_dev(bio, dev->bdev); 3404 } else { 3405 /* 3406 * Otherwise pick the last added device to support 3407 * cgroup writeback. For multi-device file systems this 3408 * means blk-cgroup policies have to always be set on the 3409 * last added/replaced device. This is a bit odd but has 3410 * been like that for a long time. 3411 */ 3412 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 3413 } 3414 wbc_init_bio(wbc, bio); 3415 } else { 3416 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 3417 } 3418 return 0; 3419 error: 3420 bio_ctrl->bio = NULL; 3421 bio->bi_status = errno_to_blk_status(ret); 3422 bio_endio(bio); 3423 return ret; 3424 } 3425 3426 /* 3427 * @opf: bio REQ_OP_* and REQ_* flags as one value 3428 * @wbc: optional writeback control for io accounting 3429 * @page: page to add to the bio 3430 * @disk_bytenr: logical bytenr where the write will be 3431 * @size: portion of page that we want to write to 3432 * @pg_offset: offset of the new bio or to check whether we are adding 3433 * a contiguous page to the previous one 3434 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3435 * @end_io_func: end_io callback for new bio 3436 * @mirror_num: desired mirror to read/write 3437 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3438 * @compress_type: compress type for current bio 3439 */ 3440 static int submit_extent_page(unsigned int opf, 3441 struct writeback_control *wbc, 3442 struct btrfs_bio_ctrl *bio_ctrl, 3443 struct page *page, u64 disk_bytenr, 3444 size_t size, unsigned long pg_offset, 3445 bio_end_io_t end_io_func, 3446 int mirror_num, 3447 enum btrfs_compression_type compress_type, 3448 bool force_bio_submit) 3449 { 3450 int ret = 0; 3451 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3452 unsigned int cur = pg_offset; 3453 3454 ASSERT(bio_ctrl); 3455 3456 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3457 pg_offset + size <= PAGE_SIZE); 3458 if (force_bio_submit && bio_ctrl->bio) { 3459 submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type); 3460 bio_ctrl->bio = NULL; 3461 } 3462 3463 while (cur < pg_offset + size) { 3464 u32 offset = cur - pg_offset; 3465 int added; 3466 3467 /* Allocate new bio if needed */ 3468 if (!bio_ctrl->bio) { 3469 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3470 end_io_func, disk_bytenr, offset, 3471 page_offset(page) + cur, 3472 compress_type); 3473 if (ret < 0) 3474 return ret; 3475 } 3476 /* 3477 * We must go through btrfs_bio_add_page() to ensure each 3478 * page range won't cross various boundaries. 3479 */ 3480 if (compress_type != BTRFS_COMPRESS_NONE) 3481 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3482 size - offset, pg_offset + offset, 3483 compress_type); 3484 else 3485 added = btrfs_bio_add_page(bio_ctrl, page, 3486 disk_bytenr + offset, size - offset, 3487 pg_offset + offset, compress_type); 3488 3489 /* Metadata page range should never be split */ 3490 if (!is_data_inode(&inode->vfs_inode)) 3491 ASSERT(added == 0 || added == size - offset); 3492 3493 /* At least we added some page, update the account */ 3494 if (wbc && added) 3495 wbc_account_cgroup_owner(wbc, page, added); 3496 3497 /* We have reached boundary, submit right now */ 3498 if (added < size - offset) { 3499 /* The bio should contain some page(s) */ 3500 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3501 submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type); 3502 bio_ctrl->bio = NULL; 3503 } 3504 cur += added; 3505 } 3506 return 0; 3507 } 3508 3509 static int attach_extent_buffer_page(struct extent_buffer *eb, 3510 struct page *page, 3511 struct btrfs_subpage *prealloc) 3512 { 3513 struct btrfs_fs_info *fs_info = eb->fs_info; 3514 int ret = 0; 3515 3516 /* 3517 * If the page is mapped to btree inode, we should hold the private 3518 * lock to prevent race. 3519 * For cloned or dummy extent buffers, their pages are not mapped and 3520 * will not race with any other ebs. 3521 */ 3522 if (page->mapping) 3523 lockdep_assert_held(&page->mapping->private_lock); 3524 3525 if (fs_info->nodesize >= PAGE_SIZE) { 3526 if (!PagePrivate(page)) 3527 attach_page_private(page, eb); 3528 else 3529 WARN_ON(page->private != (unsigned long)eb); 3530 return 0; 3531 } 3532 3533 /* Already mapped, just free prealloc */ 3534 if (PagePrivate(page)) { 3535 btrfs_free_subpage(prealloc); 3536 return 0; 3537 } 3538 3539 if (prealloc) 3540 /* Has preallocated memory for subpage */ 3541 attach_page_private(page, prealloc); 3542 else 3543 /* Do new allocation to attach subpage */ 3544 ret = btrfs_attach_subpage(fs_info, page, 3545 BTRFS_SUBPAGE_METADATA); 3546 return ret; 3547 } 3548 3549 int set_page_extent_mapped(struct page *page) 3550 { 3551 struct btrfs_fs_info *fs_info; 3552 3553 ASSERT(page->mapping); 3554 3555 if (PagePrivate(page)) 3556 return 0; 3557 3558 fs_info = btrfs_sb(page->mapping->host->i_sb); 3559 3560 if (btrfs_is_subpage(fs_info, page)) 3561 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3562 3563 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3564 return 0; 3565 } 3566 3567 void clear_page_extent_mapped(struct page *page) 3568 { 3569 struct btrfs_fs_info *fs_info; 3570 3571 ASSERT(page->mapping); 3572 3573 if (!PagePrivate(page)) 3574 return; 3575 3576 fs_info = btrfs_sb(page->mapping->host->i_sb); 3577 if (btrfs_is_subpage(fs_info, page)) 3578 return btrfs_detach_subpage(fs_info, page); 3579 3580 detach_page_private(page); 3581 } 3582 3583 static struct extent_map * 3584 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3585 u64 start, u64 len, struct extent_map **em_cached) 3586 { 3587 struct extent_map *em; 3588 3589 if (em_cached && *em_cached) { 3590 em = *em_cached; 3591 if (extent_map_in_tree(em) && start >= em->start && 3592 start < extent_map_end(em)) { 3593 refcount_inc(&em->refs); 3594 return em; 3595 } 3596 3597 free_extent_map(em); 3598 *em_cached = NULL; 3599 } 3600 3601 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3602 if (em_cached && !IS_ERR(em)) { 3603 BUG_ON(*em_cached); 3604 refcount_inc(&em->refs); 3605 *em_cached = em; 3606 } 3607 return em; 3608 } 3609 /* 3610 * basic readpage implementation. Locked extent state structs are inserted 3611 * into the tree that are removed when the IO is done (by the end_io 3612 * handlers) 3613 * XXX JDM: This needs looking at to ensure proper page locking 3614 * return 0 on success, otherwise return error 3615 */ 3616 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3617 struct btrfs_bio_ctrl *bio_ctrl, 3618 unsigned int read_flags, u64 *prev_em_start) 3619 { 3620 struct inode *inode = page->mapping->host; 3621 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3622 u64 start = page_offset(page); 3623 const u64 end = start + PAGE_SIZE - 1; 3624 u64 cur = start; 3625 u64 extent_offset; 3626 u64 last_byte = i_size_read(inode); 3627 u64 block_start; 3628 u64 cur_end; 3629 struct extent_map *em; 3630 int ret = 0; 3631 size_t pg_offset = 0; 3632 size_t iosize; 3633 size_t blocksize = inode->i_sb->s_blocksize; 3634 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3635 3636 ret = set_page_extent_mapped(page); 3637 if (ret < 0) { 3638 unlock_extent(tree, start, end); 3639 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3640 unlock_page(page); 3641 goto out; 3642 } 3643 3644 if (page->index == last_byte >> PAGE_SHIFT) { 3645 size_t zero_offset = offset_in_page(last_byte); 3646 3647 if (zero_offset) { 3648 iosize = PAGE_SIZE - zero_offset; 3649 memzero_page(page, zero_offset, iosize); 3650 flush_dcache_page(page); 3651 } 3652 } 3653 begin_page_read(fs_info, page); 3654 while (cur <= end) { 3655 unsigned long this_bio_flag = 0; 3656 bool force_bio_submit = false; 3657 u64 disk_bytenr; 3658 3659 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 3660 if (cur >= last_byte) { 3661 struct extent_state *cached = NULL; 3662 3663 iosize = PAGE_SIZE - pg_offset; 3664 memzero_page(page, pg_offset, iosize); 3665 flush_dcache_page(page); 3666 set_extent_uptodate(tree, cur, cur + iosize - 1, 3667 &cached, GFP_NOFS); 3668 unlock_extent_cached(tree, cur, 3669 cur + iosize - 1, &cached); 3670 end_page_read(page, true, cur, iosize); 3671 break; 3672 } 3673 em = __get_extent_map(inode, page, pg_offset, cur, 3674 end - cur + 1, em_cached); 3675 if (IS_ERR(em)) { 3676 unlock_extent(tree, cur, end); 3677 end_page_read(page, false, cur, end + 1 - cur); 3678 ret = PTR_ERR(em); 3679 break; 3680 } 3681 extent_offset = cur - em->start; 3682 BUG_ON(extent_map_end(em) <= cur); 3683 BUG_ON(end < cur); 3684 3685 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3686 this_bio_flag = em->compress_type; 3687 3688 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3689 cur_end = min(extent_map_end(em) - 1, end); 3690 iosize = ALIGN(iosize, blocksize); 3691 if (this_bio_flag != BTRFS_COMPRESS_NONE) 3692 disk_bytenr = em->block_start; 3693 else 3694 disk_bytenr = em->block_start + extent_offset; 3695 block_start = em->block_start; 3696 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3697 block_start = EXTENT_MAP_HOLE; 3698 3699 /* 3700 * If we have a file range that points to a compressed extent 3701 * and it's followed by a consecutive file range that points 3702 * to the same compressed extent (possibly with a different 3703 * offset and/or length, so it either points to the whole extent 3704 * or only part of it), we must make sure we do not submit a 3705 * single bio to populate the pages for the 2 ranges because 3706 * this makes the compressed extent read zero out the pages 3707 * belonging to the 2nd range. Imagine the following scenario: 3708 * 3709 * File layout 3710 * [0 - 8K] [8K - 24K] 3711 * | | 3712 * | | 3713 * points to extent X, points to extent X, 3714 * offset 4K, length of 8K offset 0, length 16K 3715 * 3716 * [extent X, compressed length = 4K uncompressed length = 16K] 3717 * 3718 * If the bio to read the compressed extent covers both ranges, 3719 * it will decompress extent X into the pages belonging to the 3720 * first range and then it will stop, zeroing out the remaining 3721 * pages that belong to the other range that points to extent X. 3722 * So here we make sure we submit 2 bios, one for the first 3723 * range and another one for the third range. Both will target 3724 * the same physical extent from disk, but we can't currently 3725 * make the compressed bio endio callback populate the pages 3726 * for both ranges because each compressed bio is tightly 3727 * coupled with a single extent map, and each range can have 3728 * an extent map with a different offset value relative to the 3729 * uncompressed data of our extent and different lengths. This 3730 * is a corner case so we prioritize correctness over 3731 * non-optimal behavior (submitting 2 bios for the same extent). 3732 */ 3733 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3734 prev_em_start && *prev_em_start != (u64)-1 && 3735 *prev_em_start != em->start) 3736 force_bio_submit = true; 3737 3738 if (prev_em_start) 3739 *prev_em_start = em->start; 3740 3741 free_extent_map(em); 3742 em = NULL; 3743 3744 /* we've found a hole, just zero and go on */ 3745 if (block_start == EXTENT_MAP_HOLE) { 3746 struct extent_state *cached = NULL; 3747 3748 memzero_page(page, pg_offset, iosize); 3749 flush_dcache_page(page); 3750 3751 set_extent_uptodate(tree, cur, cur + iosize - 1, 3752 &cached, GFP_NOFS); 3753 unlock_extent_cached(tree, cur, 3754 cur + iosize - 1, &cached); 3755 end_page_read(page, true, cur, iosize); 3756 cur = cur + iosize; 3757 pg_offset += iosize; 3758 continue; 3759 } 3760 /* the get_extent function already copied into the page */ 3761 if (test_range_bit(tree, cur, cur_end, 3762 EXTENT_UPTODATE, 1, NULL)) { 3763 unlock_extent(tree, cur, cur + iosize - 1); 3764 end_page_read(page, true, cur, iosize); 3765 cur = cur + iosize; 3766 pg_offset += iosize; 3767 continue; 3768 } 3769 /* we have an inline extent but it didn't get marked up 3770 * to date. Error out 3771 */ 3772 if (block_start == EXTENT_MAP_INLINE) { 3773 unlock_extent(tree, cur, cur + iosize - 1); 3774 end_page_read(page, false, cur, iosize); 3775 cur = cur + iosize; 3776 pg_offset += iosize; 3777 continue; 3778 } 3779 3780 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3781 bio_ctrl, page, disk_bytenr, iosize, 3782 pg_offset, 3783 end_bio_extent_readpage, 0, 3784 this_bio_flag, 3785 force_bio_submit); 3786 if (ret) { 3787 /* 3788 * We have to unlock the remaining range, or the page 3789 * will never be unlocked. 3790 */ 3791 unlock_extent(tree, cur, end); 3792 end_page_read(page, false, cur, end + 1 - cur); 3793 goto out; 3794 } 3795 cur = cur + iosize; 3796 pg_offset += iosize; 3797 } 3798 out: 3799 return ret; 3800 } 3801 3802 int btrfs_read_folio(struct file *file, struct folio *folio) 3803 { 3804 struct page *page = &folio->page; 3805 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3806 u64 start = page_offset(page); 3807 u64 end = start + PAGE_SIZE - 1; 3808 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 3809 int ret; 3810 3811 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3812 3813 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 3814 /* 3815 * If btrfs_do_readpage() failed we will want to submit the assembled 3816 * bio to do the cleanup. 3817 */ 3818 if (bio_ctrl.bio) 3819 submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type); 3820 return ret; 3821 } 3822 3823 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3824 u64 start, u64 end, 3825 struct extent_map **em_cached, 3826 struct btrfs_bio_ctrl *bio_ctrl, 3827 u64 *prev_em_start) 3828 { 3829 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3830 int index; 3831 3832 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3833 3834 for (index = 0; index < nr_pages; index++) { 3835 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3836 REQ_RAHEAD, prev_em_start); 3837 put_page(pages[index]); 3838 } 3839 } 3840 3841 /* 3842 * helper for __extent_writepage, doing all of the delayed allocation setup. 3843 * 3844 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3845 * to write the page (copy into inline extent). In this case the IO has 3846 * been started and the page is already unlocked. 3847 * 3848 * This returns 0 if all went well (page still locked) 3849 * This returns < 0 if there were errors (page still locked) 3850 */ 3851 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3852 struct page *page, struct writeback_control *wbc) 3853 { 3854 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 3855 u64 delalloc_start = page_offset(page); 3856 u64 delalloc_to_write = 0; 3857 /* How many pages are started by btrfs_run_delalloc_range() */ 3858 unsigned long nr_written = 0; 3859 int ret; 3860 int page_started = 0; 3861 3862 while (delalloc_start < page_end) { 3863 u64 delalloc_end = page_end; 3864 bool found; 3865 3866 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3867 &delalloc_start, 3868 &delalloc_end); 3869 if (!found) { 3870 delalloc_start = delalloc_end + 1; 3871 continue; 3872 } 3873 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3874 delalloc_end, &page_started, &nr_written, wbc); 3875 if (ret) { 3876 btrfs_page_set_error(inode->root->fs_info, page, 3877 page_offset(page), PAGE_SIZE); 3878 return ret; 3879 } 3880 /* 3881 * delalloc_end is already one less than the total length, so 3882 * we don't subtract one from PAGE_SIZE 3883 */ 3884 delalloc_to_write += (delalloc_end - delalloc_start + 3885 PAGE_SIZE) >> PAGE_SHIFT; 3886 delalloc_start = delalloc_end + 1; 3887 } 3888 if (wbc->nr_to_write < delalloc_to_write) { 3889 int thresh = 8192; 3890 3891 if (delalloc_to_write < thresh * 2) 3892 thresh = delalloc_to_write; 3893 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3894 thresh); 3895 } 3896 3897 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 3898 if (page_started) { 3899 /* 3900 * We've unlocked the page, so we can't update the mapping's 3901 * writeback index, just update nr_to_write. 3902 */ 3903 wbc->nr_to_write -= nr_written; 3904 return 1; 3905 } 3906 3907 return 0; 3908 } 3909 3910 /* 3911 * Find the first byte we need to write. 3912 * 3913 * For subpage, one page can contain several sectors, and 3914 * __extent_writepage_io() will just grab all extent maps in the page 3915 * range and try to submit all non-inline/non-compressed extents. 3916 * 3917 * This is a big problem for subpage, we shouldn't re-submit already written 3918 * data at all. 3919 * This function will lookup subpage dirty bit to find which range we really 3920 * need to submit. 3921 * 3922 * Return the next dirty range in [@start, @end). 3923 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3924 */ 3925 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3926 struct page *page, u64 *start, u64 *end) 3927 { 3928 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3929 struct btrfs_subpage_info *spi = fs_info->subpage_info; 3930 u64 orig_start = *start; 3931 /* Declare as unsigned long so we can use bitmap ops */ 3932 unsigned long flags; 3933 int range_start_bit; 3934 int range_end_bit; 3935 3936 /* 3937 * For regular sector size == page size case, since one page only 3938 * contains one sector, we return the page offset directly. 3939 */ 3940 if (!btrfs_is_subpage(fs_info, page)) { 3941 *start = page_offset(page); 3942 *end = page_offset(page) + PAGE_SIZE; 3943 return; 3944 } 3945 3946 range_start_bit = spi->dirty_offset + 3947 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 3948 3949 /* We should have the page locked, but just in case */ 3950 spin_lock_irqsave(&subpage->lock, flags); 3951 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 3952 spi->dirty_offset + spi->bitmap_nr_bits); 3953 spin_unlock_irqrestore(&subpage->lock, flags); 3954 3955 range_start_bit -= spi->dirty_offset; 3956 range_end_bit -= spi->dirty_offset; 3957 3958 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3959 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3960 } 3961 3962 /* 3963 * helper for __extent_writepage. This calls the writepage start hooks, 3964 * and does the loop to map the page into extents and bios. 3965 * 3966 * We return 1 if the IO is started and the page is unlocked, 3967 * 0 if all went well (page still locked) 3968 * < 0 if there were errors (page still locked) 3969 */ 3970 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3971 struct page *page, 3972 struct writeback_control *wbc, 3973 struct extent_page_data *epd, 3974 loff_t i_size, 3975 int *nr_ret) 3976 { 3977 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3978 u64 cur = page_offset(page); 3979 u64 end = cur + PAGE_SIZE - 1; 3980 u64 extent_offset; 3981 u64 block_start; 3982 struct extent_map *em; 3983 int saved_ret = 0; 3984 int ret = 0; 3985 int nr = 0; 3986 u32 opf = REQ_OP_WRITE; 3987 const unsigned int write_flags = wbc_to_write_flags(wbc); 3988 bool has_error = false; 3989 bool compressed; 3990 3991 ret = btrfs_writepage_cow_fixup(page); 3992 if (ret) { 3993 /* Fixup worker will requeue */ 3994 redirty_page_for_writepage(wbc, page); 3995 unlock_page(page); 3996 return 1; 3997 } 3998 3999 /* 4000 * we don't want to touch the inode after unlocking the page, 4001 * so we update the mapping writeback index now 4002 */ 4003 wbc->nr_to_write--; 4004 4005 while (cur <= end) { 4006 u64 disk_bytenr; 4007 u64 em_end; 4008 u64 dirty_range_start = cur; 4009 u64 dirty_range_end; 4010 u32 iosize; 4011 4012 if (cur >= i_size) { 4013 btrfs_writepage_endio_finish_ordered(inode, page, cur, 4014 end, true); 4015 /* 4016 * This range is beyond i_size, thus we don't need to 4017 * bother writing back. 4018 * But we still need to clear the dirty subpage bit, or 4019 * the next time the page gets dirtied, we will try to 4020 * writeback the sectors with subpage dirty bits, 4021 * causing writeback without ordered extent. 4022 */ 4023 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 4024 break; 4025 } 4026 4027 find_next_dirty_byte(fs_info, page, &dirty_range_start, 4028 &dirty_range_end); 4029 if (cur < dirty_range_start) { 4030 cur = dirty_range_start; 4031 continue; 4032 } 4033 4034 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 4035 if (IS_ERR(em)) { 4036 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 4037 ret = PTR_ERR_OR_ZERO(em); 4038 has_error = true; 4039 if (!saved_ret) 4040 saved_ret = ret; 4041 break; 4042 } 4043 4044 extent_offset = cur - em->start; 4045 em_end = extent_map_end(em); 4046 ASSERT(cur <= em_end); 4047 ASSERT(cur < end); 4048 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 4049 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 4050 block_start = em->block_start; 4051 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4052 disk_bytenr = em->block_start + extent_offset; 4053 4054 /* 4055 * Note that em_end from extent_map_end() and dirty_range_end from 4056 * find_next_dirty_byte() are all exclusive 4057 */ 4058 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 4059 4060 if (btrfs_use_zone_append(inode, em->block_start)) 4061 opf = REQ_OP_ZONE_APPEND; 4062 4063 free_extent_map(em); 4064 em = NULL; 4065 4066 /* 4067 * compressed and inline extents are written through other 4068 * paths in the FS 4069 */ 4070 if (compressed || block_start == EXTENT_MAP_HOLE || 4071 block_start == EXTENT_MAP_INLINE) { 4072 if (compressed) 4073 nr++; 4074 else 4075 btrfs_writepage_endio_finish_ordered(inode, 4076 page, cur, cur + iosize - 1, true); 4077 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4078 cur += iosize; 4079 continue; 4080 } 4081 4082 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 4083 if (!PageWriteback(page)) { 4084 btrfs_err(inode->root->fs_info, 4085 "page %lu not writeback, cur %llu end %llu", 4086 page->index, cur, end); 4087 } 4088 4089 /* 4090 * Although the PageDirty bit is cleared before entering this 4091 * function, subpage dirty bit is not cleared. 4092 * So clear subpage dirty bit here so next time we won't submit 4093 * page for range already written to disk. 4094 */ 4095 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4096 4097 ret = submit_extent_page(opf | write_flags, wbc, 4098 &epd->bio_ctrl, page, 4099 disk_bytenr, iosize, 4100 cur - page_offset(page), 4101 end_bio_extent_writepage, 4102 0, 0, false); 4103 if (ret) { 4104 has_error = true; 4105 if (!saved_ret) 4106 saved_ret = ret; 4107 4108 btrfs_page_set_error(fs_info, page, cur, iosize); 4109 if (PageWriteback(page)) 4110 btrfs_page_clear_writeback(fs_info, page, cur, 4111 iosize); 4112 } 4113 4114 cur += iosize; 4115 nr++; 4116 } 4117 /* 4118 * If we finish without problem, we should not only clear page dirty, 4119 * but also empty subpage dirty bits 4120 */ 4121 if (!has_error) 4122 btrfs_page_assert_not_dirty(fs_info, page); 4123 else 4124 ret = saved_ret; 4125 *nr_ret = nr; 4126 return ret; 4127 } 4128 4129 /* 4130 * the writepage semantics are similar to regular writepage. extent 4131 * records are inserted to lock ranges in the tree, and as dirty areas 4132 * are found, they are marked writeback. Then the lock bits are removed 4133 * and the end_io handler clears the writeback ranges 4134 * 4135 * Return 0 if everything goes well. 4136 * Return <0 for error. 4137 */ 4138 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4139 struct extent_page_data *epd) 4140 { 4141 struct folio *folio = page_folio(page); 4142 struct inode *inode = page->mapping->host; 4143 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4144 const u64 page_start = page_offset(page); 4145 const u64 page_end = page_start + PAGE_SIZE - 1; 4146 int ret; 4147 int nr = 0; 4148 size_t pg_offset; 4149 loff_t i_size = i_size_read(inode); 4150 unsigned long end_index = i_size >> PAGE_SHIFT; 4151 4152 trace___extent_writepage(page, inode, wbc); 4153 4154 WARN_ON(!PageLocked(page)); 4155 4156 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4157 page_offset(page), PAGE_SIZE); 4158 4159 pg_offset = offset_in_page(i_size); 4160 if (page->index > end_index || 4161 (page->index == end_index && !pg_offset)) { 4162 folio_invalidate(folio, 0, folio_size(folio)); 4163 folio_unlock(folio); 4164 return 0; 4165 } 4166 4167 if (page->index == end_index) { 4168 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4169 flush_dcache_page(page); 4170 } 4171 4172 ret = set_page_extent_mapped(page); 4173 if (ret < 0) { 4174 SetPageError(page); 4175 goto done; 4176 } 4177 4178 if (!epd->extent_locked) { 4179 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 4180 if (ret == 1) 4181 return 0; 4182 if (ret) 4183 goto done; 4184 } 4185 4186 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4187 &nr); 4188 if (ret == 1) 4189 return 0; 4190 4191 done: 4192 if (nr == 0) { 4193 /* make sure the mapping tag for page dirty gets cleared */ 4194 set_page_writeback(page); 4195 end_page_writeback(page); 4196 } 4197 /* 4198 * Here we used to have a check for PageError() and then set @ret and 4199 * call end_extent_writepage(). 4200 * 4201 * But in fact setting @ret here will cause different error paths 4202 * between subpage and regular sectorsize. 4203 * 4204 * For regular page size, we never submit current page, but only add 4205 * current page to current bio. 4206 * The bio submission can only happen in next page. 4207 * Thus if we hit the PageError() branch, @ret is already set to 4208 * non-zero value and will not get updated for regular sectorsize. 4209 * 4210 * But for subpage case, it's possible we submit part of current page, 4211 * thus can get PageError() set by submitted bio of the same page, 4212 * while our @ret is still 0. 4213 * 4214 * So here we unify the behavior and don't set @ret. 4215 * Error can still be properly passed to higher layer as page will 4216 * be set error, here we just don't handle the IO failure. 4217 * 4218 * NOTE: This is just a hotfix for subpage. 4219 * The root fix will be properly ending ordered extent when we hit 4220 * an error during writeback. 4221 * 4222 * But that needs a bigger refactoring, as we not only need to grab the 4223 * submitted OE, but also need to know exactly at which bytenr we hit 4224 * the error. 4225 * Currently the full page based __extent_writepage_io() is not 4226 * capable of that. 4227 */ 4228 if (PageError(page)) 4229 end_extent_writepage(page, ret, page_start, page_end); 4230 if (epd->extent_locked) { 4231 /* 4232 * If epd->extent_locked, it's from extent_write_locked_range(), 4233 * the page can either be locked by lock_page() or 4234 * process_one_page(). 4235 * Let btrfs_page_unlock_writer() handle both cases. 4236 */ 4237 ASSERT(wbc); 4238 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 4239 wbc->range_end + 1 - wbc->range_start); 4240 } else { 4241 unlock_page(page); 4242 } 4243 ASSERT(ret <= 0); 4244 return ret; 4245 } 4246 4247 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4248 { 4249 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4250 TASK_UNINTERRUPTIBLE); 4251 } 4252 4253 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4254 { 4255 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4256 smp_mb__after_atomic(); 4257 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4258 } 4259 4260 /* 4261 * Lock extent buffer status and pages for writeback. 4262 * 4263 * May try to flush write bio if we can't get the lock. 4264 * 4265 * Return 0 if the extent buffer doesn't need to be submitted. 4266 * (E.g. the extent buffer is not dirty) 4267 * Return >0 is the extent buffer is submitted to bio. 4268 * Return <0 if something went wrong, no page is locked. 4269 */ 4270 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4271 struct extent_page_data *epd) 4272 { 4273 struct btrfs_fs_info *fs_info = eb->fs_info; 4274 int i, num_pages; 4275 int flush = 0; 4276 int ret = 0; 4277 4278 if (!btrfs_try_tree_write_lock(eb)) { 4279 flush_write_bio(epd); 4280 flush = 1; 4281 btrfs_tree_lock(eb); 4282 } 4283 4284 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4285 btrfs_tree_unlock(eb); 4286 if (!epd->sync_io) 4287 return 0; 4288 if (!flush) { 4289 flush_write_bio(epd); 4290 flush = 1; 4291 } 4292 while (1) { 4293 wait_on_extent_buffer_writeback(eb); 4294 btrfs_tree_lock(eb); 4295 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4296 break; 4297 btrfs_tree_unlock(eb); 4298 } 4299 } 4300 4301 /* 4302 * We need to do this to prevent races in people who check if the eb is 4303 * under IO since we can end up having no IO bits set for a short period 4304 * of time. 4305 */ 4306 spin_lock(&eb->refs_lock); 4307 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4308 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4309 spin_unlock(&eb->refs_lock); 4310 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4311 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4312 -eb->len, 4313 fs_info->dirty_metadata_batch); 4314 ret = 1; 4315 } else { 4316 spin_unlock(&eb->refs_lock); 4317 } 4318 4319 btrfs_tree_unlock(eb); 4320 4321 /* 4322 * Either we don't need to submit any tree block, or we're submitting 4323 * subpage eb. 4324 * Subpage metadata doesn't use page locking at all, so we can skip 4325 * the page locking. 4326 */ 4327 if (!ret || fs_info->nodesize < PAGE_SIZE) 4328 return ret; 4329 4330 num_pages = num_extent_pages(eb); 4331 for (i = 0; i < num_pages; i++) { 4332 struct page *p = eb->pages[i]; 4333 4334 if (!trylock_page(p)) { 4335 if (!flush) { 4336 flush_write_bio(epd); 4337 flush = 1; 4338 } 4339 lock_page(p); 4340 } 4341 } 4342 4343 return ret; 4344 } 4345 4346 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4347 { 4348 struct btrfs_fs_info *fs_info = eb->fs_info; 4349 4350 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4351 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4352 return; 4353 4354 /* 4355 * A read may stumble upon this buffer later, make sure that it gets an 4356 * error and knows there was an error. 4357 */ 4358 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4359 4360 /* 4361 * We need to set the mapping with the io error as well because a write 4362 * error will flip the file system readonly, and then syncfs() will 4363 * return a 0 because we are readonly if we don't modify the err seq for 4364 * the superblock. 4365 */ 4366 mapping_set_error(page->mapping, -EIO); 4367 4368 /* 4369 * If we error out, we should add back the dirty_metadata_bytes 4370 * to make it consistent. 4371 */ 4372 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4373 eb->len, fs_info->dirty_metadata_batch); 4374 4375 /* 4376 * If writeback for a btree extent that doesn't belong to a log tree 4377 * failed, increment the counter transaction->eb_write_errors. 4378 * We do this because while the transaction is running and before it's 4379 * committing (when we call filemap_fdata[write|wait]_range against 4380 * the btree inode), we might have 4381 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4382 * returns an error or an error happens during writeback, when we're 4383 * committing the transaction we wouldn't know about it, since the pages 4384 * can be no longer dirty nor marked anymore for writeback (if a 4385 * subsequent modification to the extent buffer didn't happen before the 4386 * transaction commit), which makes filemap_fdata[write|wait]_range not 4387 * able to find the pages tagged with SetPageError at transaction 4388 * commit time. So if this happens we must abort the transaction, 4389 * otherwise we commit a super block with btree roots that point to 4390 * btree nodes/leafs whose content on disk is invalid - either garbage 4391 * or the content of some node/leaf from a past generation that got 4392 * cowed or deleted and is no longer valid. 4393 * 4394 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4395 * not be enough - we need to distinguish between log tree extents vs 4396 * non-log tree extents, and the next filemap_fdatawait_range() call 4397 * will catch and clear such errors in the mapping - and that call might 4398 * be from a log sync and not from a transaction commit. Also, checking 4399 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4400 * not done and would not be reliable - the eb might have been released 4401 * from memory and reading it back again means that flag would not be 4402 * set (since it's a runtime flag, not persisted on disk). 4403 * 4404 * Using the flags below in the btree inode also makes us achieve the 4405 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4406 * writeback for all dirty pages and before filemap_fdatawait_range() 4407 * is called, the writeback for all dirty pages had already finished 4408 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4409 * filemap_fdatawait_range() would return success, as it could not know 4410 * that writeback errors happened (the pages were no longer tagged for 4411 * writeback). 4412 */ 4413 switch (eb->log_index) { 4414 case -1: 4415 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4416 break; 4417 case 0: 4418 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4419 break; 4420 case 1: 4421 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4422 break; 4423 default: 4424 BUG(); /* unexpected, logic error */ 4425 } 4426 } 4427 4428 /* 4429 * The endio specific version which won't touch any unsafe spinlock in endio 4430 * context. 4431 */ 4432 static struct extent_buffer *find_extent_buffer_nolock( 4433 struct btrfs_fs_info *fs_info, u64 start) 4434 { 4435 struct extent_buffer *eb; 4436 4437 rcu_read_lock(); 4438 eb = xa_load(&fs_info->extent_buffers, 4439 start >> fs_info->sectorsize_bits); 4440 if (eb && atomic_inc_not_zero(&eb->refs)) { 4441 rcu_read_unlock(); 4442 return eb; 4443 } 4444 rcu_read_unlock(); 4445 return NULL; 4446 } 4447 4448 /* 4449 * The endio function for subpage extent buffer write. 4450 * 4451 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4452 * after all extent buffers in the page has finished their writeback. 4453 */ 4454 static void end_bio_subpage_eb_writepage(struct bio *bio) 4455 { 4456 struct btrfs_fs_info *fs_info; 4457 struct bio_vec *bvec; 4458 struct bvec_iter_all iter_all; 4459 4460 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4461 ASSERT(fs_info->nodesize < PAGE_SIZE); 4462 4463 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4464 bio_for_each_segment_all(bvec, bio, iter_all) { 4465 struct page *page = bvec->bv_page; 4466 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4467 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4468 u64 cur_bytenr = bvec_start; 4469 4470 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4471 4472 /* Iterate through all extent buffers in the range */ 4473 while (cur_bytenr <= bvec_end) { 4474 struct extent_buffer *eb; 4475 int done; 4476 4477 /* 4478 * Here we can't use find_extent_buffer(), as it may 4479 * try to lock eb->refs_lock, which is not safe in endio 4480 * context. 4481 */ 4482 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4483 ASSERT(eb); 4484 4485 cur_bytenr = eb->start + eb->len; 4486 4487 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4488 done = atomic_dec_and_test(&eb->io_pages); 4489 ASSERT(done); 4490 4491 if (bio->bi_status || 4492 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4493 ClearPageUptodate(page); 4494 set_btree_ioerr(page, eb); 4495 } 4496 4497 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4498 eb->len); 4499 end_extent_buffer_writeback(eb); 4500 /* 4501 * free_extent_buffer() will grab spinlock which is not 4502 * safe in endio context. Thus here we manually dec 4503 * the ref. 4504 */ 4505 atomic_dec(&eb->refs); 4506 } 4507 } 4508 bio_put(bio); 4509 } 4510 4511 static void end_bio_extent_buffer_writepage(struct bio *bio) 4512 { 4513 struct bio_vec *bvec; 4514 struct extent_buffer *eb; 4515 int done; 4516 struct bvec_iter_all iter_all; 4517 4518 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4519 bio_for_each_segment_all(bvec, bio, iter_all) { 4520 struct page *page = bvec->bv_page; 4521 4522 eb = (struct extent_buffer *)page->private; 4523 BUG_ON(!eb); 4524 done = atomic_dec_and_test(&eb->io_pages); 4525 4526 if (bio->bi_status || 4527 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4528 ClearPageUptodate(page); 4529 set_btree_ioerr(page, eb); 4530 } 4531 4532 end_page_writeback(page); 4533 4534 if (!done) 4535 continue; 4536 4537 end_extent_buffer_writeback(eb); 4538 } 4539 4540 bio_put(bio); 4541 } 4542 4543 static void prepare_eb_write(struct extent_buffer *eb) 4544 { 4545 u32 nritems; 4546 unsigned long start; 4547 unsigned long end; 4548 4549 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4550 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4551 4552 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4553 nritems = btrfs_header_nritems(eb); 4554 if (btrfs_header_level(eb) > 0) { 4555 end = btrfs_node_key_ptr_offset(nritems); 4556 memzero_extent_buffer(eb, end, eb->len - end); 4557 } else { 4558 /* 4559 * Leaf: 4560 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4561 */ 4562 start = btrfs_item_nr_offset(nritems); 4563 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4564 memzero_extent_buffer(eb, start, end - start); 4565 } 4566 } 4567 4568 /* 4569 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4570 * Page locking is only utilized at minimum to keep the VMM code happy. 4571 */ 4572 static int write_one_subpage_eb(struct extent_buffer *eb, 4573 struct writeback_control *wbc, 4574 struct extent_page_data *epd) 4575 { 4576 struct btrfs_fs_info *fs_info = eb->fs_info; 4577 struct page *page = eb->pages[0]; 4578 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4579 bool no_dirty_ebs = false; 4580 int ret; 4581 4582 prepare_eb_write(eb); 4583 4584 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4585 lock_page(page); 4586 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4587 4588 /* Check if this is the last dirty bit to update nr_written */ 4589 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4590 eb->start, eb->len); 4591 if (no_dirty_ebs) 4592 clear_page_dirty_for_io(page); 4593 4594 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4595 &epd->bio_ctrl, page, eb->start, eb->len, 4596 eb->start - page_offset(page), 4597 end_bio_subpage_eb_writepage, 0, 0, false); 4598 if (ret) { 4599 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4600 set_btree_ioerr(page, eb); 4601 unlock_page(page); 4602 4603 if (atomic_dec_and_test(&eb->io_pages)) 4604 end_extent_buffer_writeback(eb); 4605 return -EIO; 4606 } 4607 unlock_page(page); 4608 /* 4609 * Submission finished without problem, if no range of the page is 4610 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4611 */ 4612 if (no_dirty_ebs) 4613 wbc->nr_to_write--; 4614 return ret; 4615 } 4616 4617 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4618 struct writeback_control *wbc, 4619 struct extent_page_data *epd) 4620 { 4621 u64 disk_bytenr = eb->start; 4622 int i, num_pages; 4623 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4624 int ret = 0; 4625 4626 prepare_eb_write(eb); 4627 4628 num_pages = num_extent_pages(eb); 4629 for (i = 0; i < num_pages; i++) { 4630 struct page *p = eb->pages[i]; 4631 4632 clear_page_dirty_for_io(p); 4633 set_page_writeback(p); 4634 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4635 &epd->bio_ctrl, p, disk_bytenr, 4636 PAGE_SIZE, 0, 4637 end_bio_extent_buffer_writepage, 4638 0, 0, false); 4639 if (ret) { 4640 set_btree_ioerr(p, eb); 4641 if (PageWriteback(p)) 4642 end_page_writeback(p); 4643 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4644 end_extent_buffer_writeback(eb); 4645 ret = -EIO; 4646 break; 4647 } 4648 disk_bytenr += PAGE_SIZE; 4649 wbc->nr_to_write--; 4650 unlock_page(p); 4651 } 4652 4653 if (unlikely(ret)) { 4654 for (; i < num_pages; i++) { 4655 struct page *p = eb->pages[i]; 4656 clear_page_dirty_for_io(p); 4657 unlock_page(p); 4658 } 4659 } 4660 4661 return ret; 4662 } 4663 4664 /* 4665 * Submit one subpage btree page. 4666 * 4667 * The main difference to submit_eb_page() is: 4668 * - Page locking 4669 * For subpage, we don't rely on page locking at all. 4670 * 4671 * - Flush write bio 4672 * We only flush bio if we may be unable to fit current extent buffers into 4673 * current bio. 4674 * 4675 * Return >=0 for the number of submitted extent buffers. 4676 * Return <0 for fatal error. 4677 */ 4678 static int submit_eb_subpage(struct page *page, 4679 struct writeback_control *wbc, 4680 struct extent_page_data *epd) 4681 { 4682 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4683 int submitted = 0; 4684 u64 page_start = page_offset(page); 4685 int bit_start = 0; 4686 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4687 int ret; 4688 4689 /* Lock and write each dirty extent buffers in the range */ 4690 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 4691 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4692 struct extent_buffer *eb; 4693 unsigned long flags; 4694 u64 start; 4695 4696 /* 4697 * Take private lock to ensure the subpage won't be detached 4698 * in the meantime. 4699 */ 4700 spin_lock(&page->mapping->private_lock); 4701 if (!PagePrivate(page)) { 4702 spin_unlock(&page->mapping->private_lock); 4703 break; 4704 } 4705 spin_lock_irqsave(&subpage->lock, flags); 4706 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 4707 subpage->bitmaps)) { 4708 spin_unlock_irqrestore(&subpage->lock, flags); 4709 spin_unlock(&page->mapping->private_lock); 4710 bit_start++; 4711 continue; 4712 } 4713 4714 start = page_start + bit_start * fs_info->sectorsize; 4715 bit_start += sectors_per_node; 4716 4717 /* 4718 * Here we just want to grab the eb without touching extra 4719 * spin locks, so call find_extent_buffer_nolock(). 4720 */ 4721 eb = find_extent_buffer_nolock(fs_info, start); 4722 spin_unlock_irqrestore(&subpage->lock, flags); 4723 spin_unlock(&page->mapping->private_lock); 4724 4725 /* 4726 * The eb has already reached 0 refs thus find_extent_buffer() 4727 * doesn't return it. We don't need to write back such eb 4728 * anyway. 4729 */ 4730 if (!eb) 4731 continue; 4732 4733 ret = lock_extent_buffer_for_io(eb, epd); 4734 if (ret == 0) { 4735 free_extent_buffer(eb); 4736 continue; 4737 } 4738 if (ret < 0) { 4739 free_extent_buffer(eb); 4740 goto cleanup; 4741 } 4742 ret = write_one_subpage_eb(eb, wbc, epd); 4743 free_extent_buffer(eb); 4744 if (ret < 0) 4745 goto cleanup; 4746 submitted++; 4747 } 4748 return submitted; 4749 4750 cleanup: 4751 /* We hit error, end bio for the submitted extent buffers */ 4752 end_write_bio(epd, ret); 4753 return ret; 4754 } 4755 4756 /* 4757 * Submit all page(s) of one extent buffer. 4758 * 4759 * @page: the page of one extent buffer 4760 * @eb_context: to determine if we need to submit this page, if current page 4761 * belongs to this eb, we don't need to submit 4762 * 4763 * The caller should pass each page in their bytenr order, and here we use 4764 * @eb_context to determine if we have submitted pages of one extent buffer. 4765 * 4766 * If we have, we just skip until we hit a new page that doesn't belong to 4767 * current @eb_context. 4768 * 4769 * If not, we submit all the page(s) of the extent buffer. 4770 * 4771 * Return >0 if we have submitted the extent buffer successfully. 4772 * Return 0 if we don't need to submit the page, as it's already submitted by 4773 * previous call. 4774 * Return <0 for fatal error. 4775 */ 4776 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4777 struct extent_page_data *epd, 4778 struct extent_buffer **eb_context) 4779 { 4780 struct address_space *mapping = page->mapping; 4781 struct btrfs_block_group *cache = NULL; 4782 struct extent_buffer *eb; 4783 int ret; 4784 4785 if (!PagePrivate(page)) 4786 return 0; 4787 4788 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4789 return submit_eb_subpage(page, wbc, epd); 4790 4791 spin_lock(&mapping->private_lock); 4792 if (!PagePrivate(page)) { 4793 spin_unlock(&mapping->private_lock); 4794 return 0; 4795 } 4796 4797 eb = (struct extent_buffer *)page->private; 4798 4799 /* 4800 * Shouldn't happen and normally this would be a BUG_ON but no point 4801 * crashing the machine for something we can survive anyway. 4802 */ 4803 if (WARN_ON(!eb)) { 4804 spin_unlock(&mapping->private_lock); 4805 return 0; 4806 } 4807 4808 if (eb == *eb_context) { 4809 spin_unlock(&mapping->private_lock); 4810 return 0; 4811 } 4812 ret = atomic_inc_not_zero(&eb->refs); 4813 spin_unlock(&mapping->private_lock); 4814 if (!ret) 4815 return 0; 4816 4817 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4818 /* 4819 * If for_sync, this hole will be filled with 4820 * trasnsaction commit. 4821 */ 4822 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4823 ret = -EAGAIN; 4824 else 4825 ret = 0; 4826 free_extent_buffer(eb); 4827 return ret; 4828 } 4829 4830 *eb_context = eb; 4831 4832 ret = lock_extent_buffer_for_io(eb, epd); 4833 if (ret <= 0) { 4834 btrfs_revert_meta_write_pointer(cache, eb); 4835 if (cache) 4836 btrfs_put_block_group(cache); 4837 free_extent_buffer(eb); 4838 return ret; 4839 } 4840 if (cache) { 4841 /* 4842 * Implies write in zoned mode. Mark the last eb in a block group. 4843 */ 4844 btrfs_schedule_zone_finish_bg(cache, eb); 4845 btrfs_put_block_group(cache); 4846 } 4847 ret = write_one_eb(eb, wbc, epd); 4848 free_extent_buffer(eb); 4849 if (ret < 0) 4850 return ret; 4851 return 1; 4852 } 4853 4854 int btree_write_cache_pages(struct address_space *mapping, 4855 struct writeback_control *wbc) 4856 { 4857 struct extent_buffer *eb_context = NULL; 4858 struct extent_page_data epd = { 4859 .bio_ctrl = { 0 }, 4860 .extent_locked = 0, 4861 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4862 }; 4863 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4864 int ret = 0; 4865 int done = 0; 4866 int nr_to_write_done = 0; 4867 struct pagevec pvec; 4868 int nr_pages; 4869 pgoff_t index; 4870 pgoff_t end; /* Inclusive */ 4871 int scanned = 0; 4872 xa_mark_t tag; 4873 4874 pagevec_init(&pvec); 4875 if (wbc->range_cyclic) { 4876 index = mapping->writeback_index; /* Start from prev offset */ 4877 end = -1; 4878 /* 4879 * Start from the beginning does not need to cycle over the 4880 * range, mark it as scanned. 4881 */ 4882 scanned = (index == 0); 4883 } else { 4884 index = wbc->range_start >> PAGE_SHIFT; 4885 end = wbc->range_end >> PAGE_SHIFT; 4886 scanned = 1; 4887 } 4888 if (wbc->sync_mode == WB_SYNC_ALL) 4889 tag = PAGECACHE_TAG_TOWRITE; 4890 else 4891 tag = PAGECACHE_TAG_DIRTY; 4892 btrfs_zoned_meta_io_lock(fs_info); 4893 retry: 4894 if (wbc->sync_mode == WB_SYNC_ALL) 4895 tag_pages_for_writeback(mapping, index, end); 4896 while (!done && !nr_to_write_done && (index <= end) && 4897 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4898 tag))) { 4899 unsigned i; 4900 4901 for (i = 0; i < nr_pages; i++) { 4902 struct page *page = pvec.pages[i]; 4903 4904 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4905 if (ret == 0) 4906 continue; 4907 if (ret < 0) { 4908 done = 1; 4909 break; 4910 } 4911 4912 /* 4913 * the filesystem may choose to bump up nr_to_write. 4914 * We have to make sure to honor the new nr_to_write 4915 * at any time 4916 */ 4917 nr_to_write_done = wbc->nr_to_write <= 0; 4918 } 4919 pagevec_release(&pvec); 4920 cond_resched(); 4921 } 4922 if (!scanned && !done) { 4923 /* 4924 * We hit the last page and there is more work to be done: wrap 4925 * back to the start of the file 4926 */ 4927 scanned = 1; 4928 index = 0; 4929 goto retry; 4930 } 4931 if (ret < 0) { 4932 end_write_bio(&epd, ret); 4933 goto out; 4934 } 4935 /* 4936 * If something went wrong, don't allow any metadata write bio to be 4937 * submitted. 4938 * 4939 * This would prevent use-after-free if we had dirty pages not 4940 * cleaned up, which can still happen by fuzzed images. 4941 * 4942 * - Bad extent tree 4943 * Allowing existing tree block to be allocated for other trees. 4944 * 4945 * - Log tree operations 4946 * Exiting tree blocks get allocated to log tree, bumps its 4947 * generation, then get cleaned in tree re-balance. 4948 * Such tree block will not be written back, since it's clean, 4949 * thus no WRITTEN flag set. 4950 * And after log writes back, this tree block is not traced by 4951 * any dirty extent_io_tree. 4952 * 4953 * - Offending tree block gets re-dirtied from its original owner 4954 * Since it has bumped generation, no WRITTEN flag, it can be 4955 * reused without COWing. This tree block will not be traced 4956 * by btrfs_transaction::dirty_pages. 4957 * 4958 * Now such dirty tree block will not be cleaned by any dirty 4959 * extent io tree. Thus we don't want to submit such wild eb 4960 * if the fs already has error. 4961 */ 4962 if (!BTRFS_FS_ERROR(fs_info)) { 4963 flush_write_bio(&epd); 4964 } else { 4965 ret = -EROFS; 4966 end_write_bio(&epd, ret); 4967 } 4968 out: 4969 btrfs_zoned_meta_io_unlock(fs_info); 4970 /* 4971 * We can get ret > 0 from submit_extent_page() indicating how many ebs 4972 * were submitted. Reset it to 0 to avoid false alerts for the caller. 4973 */ 4974 if (ret > 0) 4975 ret = 0; 4976 return ret; 4977 } 4978 4979 /** 4980 * Walk the list of dirty pages of the given address space and write all of them. 4981 * 4982 * @mapping: address space structure to write 4983 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4984 * @epd: holds context for the write, namely the bio 4985 * 4986 * If a page is already under I/O, write_cache_pages() skips it, even 4987 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4988 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4989 * and msync() need to guarantee that all the data which was dirty at the time 4990 * the call was made get new I/O started against them. If wbc->sync_mode is 4991 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4992 * existing IO to complete. 4993 */ 4994 static int extent_write_cache_pages(struct address_space *mapping, 4995 struct writeback_control *wbc, 4996 struct extent_page_data *epd) 4997 { 4998 struct inode *inode = mapping->host; 4999 int ret = 0; 5000 int done = 0; 5001 int nr_to_write_done = 0; 5002 struct pagevec pvec; 5003 int nr_pages; 5004 pgoff_t index; 5005 pgoff_t end; /* Inclusive */ 5006 pgoff_t done_index; 5007 int range_whole = 0; 5008 int scanned = 0; 5009 xa_mark_t tag; 5010 5011 /* 5012 * We have to hold onto the inode so that ordered extents can do their 5013 * work when the IO finishes. The alternative to this is failing to add 5014 * an ordered extent if the igrab() fails there and that is a huge pain 5015 * to deal with, so instead just hold onto the inode throughout the 5016 * writepages operation. If it fails here we are freeing up the inode 5017 * anyway and we'd rather not waste our time writing out stuff that is 5018 * going to be truncated anyway. 5019 */ 5020 if (!igrab(inode)) 5021 return 0; 5022 5023 pagevec_init(&pvec); 5024 if (wbc->range_cyclic) { 5025 index = mapping->writeback_index; /* Start from prev offset */ 5026 end = -1; 5027 /* 5028 * Start from the beginning does not need to cycle over the 5029 * range, mark it as scanned. 5030 */ 5031 scanned = (index == 0); 5032 } else { 5033 index = wbc->range_start >> PAGE_SHIFT; 5034 end = wbc->range_end >> PAGE_SHIFT; 5035 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 5036 range_whole = 1; 5037 scanned = 1; 5038 } 5039 5040 /* 5041 * We do the tagged writepage as long as the snapshot flush bit is set 5042 * and we are the first one who do the filemap_flush() on this inode. 5043 * 5044 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 5045 * not race in and drop the bit. 5046 */ 5047 if (range_whole && wbc->nr_to_write == LONG_MAX && 5048 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 5049 &BTRFS_I(inode)->runtime_flags)) 5050 wbc->tagged_writepages = 1; 5051 5052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5053 tag = PAGECACHE_TAG_TOWRITE; 5054 else 5055 tag = PAGECACHE_TAG_DIRTY; 5056 retry: 5057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5058 tag_pages_for_writeback(mapping, index, end); 5059 done_index = index; 5060 while (!done && !nr_to_write_done && (index <= end) && 5061 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 5062 &index, end, tag))) { 5063 unsigned i; 5064 5065 for (i = 0; i < nr_pages; i++) { 5066 struct page *page = pvec.pages[i]; 5067 5068 done_index = page->index + 1; 5069 /* 5070 * At this point we hold neither the i_pages lock nor 5071 * the page lock: the page may be truncated or 5072 * invalidated (changing page->mapping to NULL), 5073 * or even swizzled back from swapper_space to 5074 * tmpfs file mapping 5075 */ 5076 if (!trylock_page(page)) { 5077 flush_write_bio(epd); 5078 lock_page(page); 5079 } 5080 5081 if (unlikely(page->mapping != mapping)) { 5082 unlock_page(page); 5083 continue; 5084 } 5085 5086 if (wbc->sync_mode != WB_SYNC_NONE) { 5087 if (PageWriteback(page)) 5088 flush_write_bio(epd); 5089 wait_on_page_writeback(page); 5090 } 5091 5092 if (PageWriteback(page) || 5093 !clear_page_dirty_for_io(page)) { 5094 unlock_page(page); 5095 continue; 5096 } 5097 5098 ret = __extent_writepage(page, wbc, epd); 5099 if (ret < 0) { 5100 done = 1; 5101 break; 5102 } 5103 5104 /* 5105 * the filesystem may choose to bump up nr_to_write. 5106 * We have to make sure to honor the new nr_to_write 5107 * at any time 5108 */ 5109 nr_to_write_done = wbc->nr_to_write <= 0; 5110 } 5111 pagevec_release(&pvec); 5112 cond_resched(); 5113 } 5114 if (!scanned && !done) { 5115 /* 5116 * We hit the last page and there is more work to be done: wrap 5117 * back to the start of the file 5118 */ 5119 scanned = 1; 5120 index = 0; 5121 5122 /* 5123 * If we're looping we could run into a page that is locked by a 5124 * writer and that writer could be waiting on writeback for a 5125 * page in our current bio, and thus deadlock, so flush the 5126 * write bio here. 5127 */ 5128 flush_write_bio(epd); 5129 goto retry; 5130 } 5131 5132 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5133 mapping->writeback_index = done_index; 5134 5135 btrfs_add_delayed_iput(inode); 5136 return ret; 5137 } 5138 5139 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 5140 { 5141 int ret; 5142 struct extent_page_data epd = { 5143 .bio_ctrl = { 0 }, 5144 .extent_locked = 0, 5145 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5146 }; 5147 5148 ret = __extent_writepage(page, wbc, &epd); 5149 ASSERT(ret <= 0); 5150 if (ret < 0) { 5151 end_write_bio(&epd, ret); 5152 return ret; 5153 } 5154 5155 flush_write_bio(&epd); 5156 return ret; 5157 } 5158 5159 /* 5160 * Submit the pages in the range to bio for call sites which delalloc range has 5161 * already been ran (aka, ordered extent inserted) and all pages are still 5162 * locked. 5163 */ 5164 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 5165 { 5166 bool found_error = false; 5167 int first_error = 0; 5168 int ret = 0; 5169 struct address_space *mapping = inode->i_mapping; 5170 struct page *page; 5171 u64 cur = start; 5172 unsigned long nr_pages; 5173 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 5174 struct extent_page_data epd = { 5175 .bio_ctrl = { 0 }, 5176 .extent_locked = 1, 5177 .sync_io = 1, 5178 }; 5179 struct writeback_control wbc_writepages = { 5180 .sync_mode = WB_SYNC_ALL, 5181 .range_start = start, 5182 .range_end = end + 1, 5183 /* We're called from an async helper function */ 5184 .punt_to_cgroup = 1, 5185 .no_cgroup_owner = 1, 5186 }; 5187 5188 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 5189 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 5190 PAGE_SHIFT; 5191 wbc_writepages.nr_to_write = nr_pages * 2; 5192 5193 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5194 while (cur <= end) { 5195 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 5196 5197 page = find_get_page(mapping, cur >> PAGE_SHIFT); 5198 /* 5199 * All pages in the range are locked since 5200 * btrfs_run_delalloc_range(), thus there is no way to clear 5201 * the page dirty flag. 5202 */ 5203 ASSERT(PageLocked(page)); 5204 ASSERT(PageDirty(page)); 5205 clear_page_dirty_for_io(page); 5206 ret = __extent_writepage(page, &wbc_writepages, &epd); 5207 ASSERT(ret <= 0); 5208 if (ret < 0) { 5209 found_error = true; 5210 first_error = ret; 5211 } 5212 put_page(page); 5213 cur = cur_end + 1; 5214 } 5215 5216 if (!found_error) 5217 flush_write_bio(&epd); 5218 else 5219 end_write_bio(&epd, ret); 5220 5221 wbc_detach_inode(&wbc_writepages); 5222 if (found_error) 5223 return first_error; 5224 return ret; 5225 } 5226 5227 int extent_writepages(struct address_space *mapping, 5228 struct writeback_control *wbc) 5229 { 5230 struct inode *inode = mapping->host; 5231 int ret = 0; 5232 struct extent_page_data epd = { 5233 .bio_ctrl = { 0 }, 5234 .extent_locked = 0, 5235 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5236 }; 5237 5238 /* 5239 * Allow only a single thread to do the reloc work in zoned mode to 5240 * protect the write pointer updates. 5241 */ 5242 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 5243 ret = extent_write_cache_pages(mapping, wbc, &epd); 5244 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 5245 ASSERT(ret <= 0); 5246 if (ret < 0) { 5247 end_write_bio(&epd, ret); 5248 return ret; 5249 } 5250 flush_write_bio(&epd); 5251 return ret; 5252 } 5253 5254 void extent_readahead(struct readahead_control *rac) 5255 { 5256 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5257 struct page *pagepool[16]; 5258 struct extent_map *em_cached = NULL; 5259 u64 prev_em_start = (u64)-1; 5260 int nr; 5261 5262 while ((nr = readahead_page_batch(rac, pagepool))) { 5263 u64 contig_start = readahead_pos(rac); 5264 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5265 5266 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5267 &em_cached, &bio_ctrl, &prev_em_start); 5268 } 5269 5270 if (em_cached) 5271 free_extent_map(em_cached); 5272 5273 if (bio_ctrl.bio) 5274 submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type); 5275 } 5276 5277 /* 5278 * basic invalidate_folio code, this waits on any locked or writeback 5279 * ranges corresponding to the folio, and then deletes any extent state 5280 * records from the tree 5281 */ 5282 int extent_invalidate_folio(struct extent_io_tree *tree, 5283 struct folio *folio, size_t offset) 5284 { 5285 struct extent_state *cached_state = NULL; 5286 u64 start = folio_pos(folio); 5287 u64 end = start + folio_size(folio) - 1; 5288 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 5289 5290 /* This function is only called for the btree inode */ 5291 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5292 5293 start += ALIGN(offset, blocksize); 5294 if (start > end) 5295 return 0; 5296 5297 lock_extent_bits(tree, start, end, &cached_state); 5298 folio_wait_writeback(folio); 5299 5300 /* 5301 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5302 * so here we only need to unlock the extent range to free any 5303 * existing extent state. 5304 */ 5305 unlock_extent_cached(tree, start, end, &cached_state); 5306 return 0; 5307 } 5308 5309 /* 5310 * a helper for release_folio, this tests for areas of the page that 5311 * are locked or under IO and drops the related state bits if it is safe 5312 * to drop the page. 5313 */ 5314 static int try_release_extent_state(struct extent_io_tree *tree, 5315 struct page *page, gfp_t mask) 5316 { 5317 u64 start = page_offset(page); 5318 u64 end = start + PAGE_SIZE - 1; 5319 int ret = 1; 5320 5321 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5322 ret = 0; 5323 } else { 5324 /* 5325 * At this point we can safely clear everything except the 5326 * locked bit, the nodatasum bit and the delalloc new bit. 5327 * The delalloc new bit will be cleared by ordered extent 5328 * completion. 5329 */ 5330 ret = __clear_extent_bit(tree, start, end, 5331 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5332 0, 0, NULL, mask, NULL); 5333 5334 /* if clear_extent_bit failed for enomem reasons, 5335 * we can't allow the release to continue. 5336 */ 5337 if (ret < 0) 5338 ret = 0; 5339 else 5340 ret = 1; 5341 } 5342 return ret; 5343 } 5344 5345 /* 5346 * a helper for release_folio. As long as there are no locked extents 5347 * in the range corresponding to the page, both state records and extent 5348 * map records are removed 5349 */ 5350 int try_release_extent_mapping(struct page *page, gfp_t mask) 5351 { 5352 struct extent_map *em; 5353 u64 start = page_offset(page); 5354 u64 end = start + PAGE_SIZE - 1; 5355 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5356 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5357 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5358 5359 if (gfpflags_allow_blocking(mask) && 5360 page->mapping->host->i_size > SZ_16M) { 5361 u64 len; 5362 while (start <= end) { 5363 struct btrfs_fs_info *fs_info; 5364 u64 cur_gen; 5365 5366 len = end - start + 1; 5367 write_lock(&map->lock); 5368 em = lookup_extent_mapping(map, start, len); 5369 if (!em) { 5370 write_unlock(&map->lock); 5371 break; 5372 } 5373 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5374 em->start != start) { 5375 write_unlock(&map->lock); 5376 free_extent_map(em); 5377 break; 5378 } 5379 if (test_range_bit(tree, em->start, 5380 extent_map_end(em) - 1, 5381 EXTENT_LOCKED, 0, NULL)) 5382 goto next; 5383 /* 5384 * If it's not in the list of modified extents, used 5385 * by a fast fsync, we can remove it. If it's being 5386 * logged we can safely remove it since fsync took an 5387 * extra reference on the em. 5388 */ 5389 if (list_empty(&em->list) || 5390 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5391 goto remove_em; 5392 /* 5393 * If it's in the list of modified extents, remove it 5394 * only if its generation is older then the current one, 5395 * in which case we don't need it for a fast fsync. 5396 * Otherwise don't remove it, we could be racing with an 5397 * ongoing fast fsync that could miss the new extent. 5398 */ 5399 fs_info = btrfs_inode->root->fs_info; 5400 spin_lock(&fs_info->trans_lock); 5401 cur_gen = fs_info->generation; 5402 spin_unlock(&fs_info->trans_lock); 5403 if (em->generation >= cur_gen) 5404 goto next; 5405 remove_em: 5406 /* 5407 * We only remove extent maps that are not in the list of 5408 * modified extents or that are in the list but with a 5409 * generation lower then the current generation, so there 5410 * is no need to set the full fsync flag on the inode (it 5411 * hurts the fsync performance for workloads with a data 5412 * size that exceeds or is close to the system's memory). 5413 */ 5414 remove_extent_mapping(map, em); 5415 /* once for the rb tree */ 5416 free_extent_map(em); 5417 next: 5418 start = extent_map_end(em); 5419 write_unlock(&map->lock); 5420 5421 /* once for us */ 5422 free_extent_map(em); 5423 5424 cond_resched(); /* Allow large-extent preemption. */ 5425 } 5426 } 5427 return try_release_extent_state(tree, page, mask); 5428 } 5429 5430 /* 5431 * helper function for fiemap, which doesn't want to see any holes. 5432 * This maps until we find something past 'last' 5433 */ 5434 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5435 u64 offset, u64 last) 5436 { 5437 u64 sectorsize = btrfs_inode_sectorsize(inode); 5438 struct extent_map *em; 5439 u64 len; 5440 5441 if (offset >= last) 5442 return NULL; 5443 5444 while (1) { 5445 len = last - offset; 5446 if (len == 0) 5447 break; 5448 len = ALIGN(len, sectorsize); 5449 em = btrfs_get_extent_fiemap(inode, offset, len); 5450 if (IS_ERR(em)) 5451 return em; 5452 5453 /* if this isn't a hole return it */ 5454 if (em->block_start != EXTENT_MAP_HOLE) 5455 return em; 5456 5457 /* this is a hole, advance to the next extent */ 5458 offset = extent_map_end(em); 5459 free_extent_map(em); 5460 if (offset >= last) 5461 break; 5462 } 5463 return NULL; 5464 } 5465 5466 /* 5467 * To cache previous fiemap extent 5468 * 5469 * Will be used for merging fiemap extent 5470 */ 5471 struct fiemap_cache { 5472 u64 offset; 5473 u64 phys; 5474 u64 len; 5475 u32 flags; 5476 bool cached; 5477 }; 5478 5479 /* 5480 * Helper to submit fiemap extent. 5481 * 5482 * Will try to merge current fiemap extent specified by @offset, @phys, 5483 * @len and @flags with cached one. 5484 * And only when we fails to merge, cached one will be submitted as 5485 * fiemap extent. 5486 * 5487 * Return value is the same as fiemap_fill_next_extent(). 5488 */ 5489 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5490 struct fiemap_cache *cache, 5491 u64 offset, u64 phys, u64 len, u32 flags) 5492 { 5493 int ret = 0; 5494 5495 if (!cache->cached) 5496 goto assign; 5497 5498 /* 5499 * Sanity check, extent_fiemap() should have ensured that new 5500 * fiemap extent won't overlap with cached one. 5501 * Not recoverable. 5502 * 5503 * NOTE: Physical address can overlap, due to compression 5504 */ 5505 if (cache->offset + cache->len > offset) { 5506 WARN_ON(1); 5507 return -EINVAL; 5508 } 5509 5510 /* 5511 * Only merges fiemap extents if 5512 * 1) Their logical addresses are continuous 5513 * 5514 * 2) Their physical addresses are continuous 5515 * So truly compressed (physical size smaller than logical size) 5516 * extents won't get merged with each other 5517 * 5518 * 3) Share same flags except FIEMAP_EXTENT_LAST 5519 * So regular extent won't get merged with prealloc extent 5520 */ 5521 if (cache->offset + cache->len == offset && 5522 cache->phys + cache->len == phys && 5523 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5524 (flags & ~FIEMAP_EXTENT_LAST)) { 5525 cache->len += len; 5526 cache->flags |= flags; 5527 goto try_submit_last; 5528 } 5529 5530 /* Not mergeable, need to submit cached one */ 5531 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5532 cache->len, cache->flags); 5533 cache->cached = false; 5534 if (ret) 5535 return ret; 5536 assign: 5537 cache->cached = true; 5538 cache->offset = offset; 5539 cache->phys = phys; 5540 cache->len = len; 5541 cache->flags = flags; 5542 try_submit_last: 5543 if (cache->flags & FIEMAP_EXTENT_LAST) { 5544 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5545 cache->phys, cache->len, cache->flags); 5546 cache->cached = false; 5547 } 5548 return ret; 5549 } 5550 5551 /* 5552 * Emit last fiemap cache 5553 * 5554 * The last fiemap cache may still be cached in the following case: 5555 * 0 4k 8k 5556 * |<- Fiemap range ->| 5557 * |<------------ First extent ----------->| 5558 * 5559 * In this case, the first extent range will be cached but not emitted. 5560 * So we must emit it before ending extent_fiemap(). 5561 */ 5562 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5563 struct fiemap_cache *cache) 5564 { 5565 int ret; 5566 5567 if (!cache->cached) 5568 return 0; 5569 5570 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5571 cache->len, cache->flags); 5572 cache->cached = false; 5573 if (ret > 0) 5574 ret = 0; 5575 return ret; 5576 } 5577 5578 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5579 u64 start, u64 len) 5580 { 5581 int ret = 0; 5582 u64 off; 5583 u64 max = start + len; 5584 u32 flags = 0; 5585 u32 found_type; 5586 u64 last; 5587 u64 last_for_get_extent = 0; 5588 u64 disko = 0; 5589 u64 isize = i_size_read(&inode->vfs_inode); 5590 struct btrfs_key found_key; 5591 struct extent_map *em = NULL; 5592 struct extent_state *cached_state = NULL; 5593 struct btrfs_path *path; 5594 struct btrfs_root *root = inode->root; 5595 struct fiemap_cache cache = { 0 }; 5596 struct ulist *roots; 5597 struct ulist *tmp_ulist; 5598 int end = 0; 5599 u64 em_start = 0; 5600 u64 em_len = 0; 5601 u64 em_end = 0; 5602 5603 if (len == 0) 5604 return -EINVAL; 5605 5606 path = btrfs_alloc_path(); 5607 if (!path) 5608 return -ENOMEM; 5609 5610 roots = ulist_alloc(GFP_KERNEL); 5611 tmp_ulist = ulist_alloc(GFP_KERNEL); 5612 if (!roots || !tmp_ulist) { 5613 ret = -ENOMEM; 5614 goto out_free_ulist; 5615 } 5616 5617 /* 5618 * We can't initialize that to 'start' as this could miss extents due 5619 * to extent item merging 5620 */ 5621 off = 0; 5622 start = round_down(start, btrfs_inode_sectorsize(inode)); 5623 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5624 5625 /* 5626 * lookup the last file extent. We're not using i_size here 5627 * because there might be preallocation past i_size 5628 */ 5629 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5630 0); 5631 if (ret < 0) { 5632 goto out_free_ulist; 5633 } else { 5634 WARN_ON(!ret); 5635 if (ret == 1) 5636 ret = 0; 5637 } 5638 5639 path->slots[0]--; 5640 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5641 found_type = found_key.type; 5642 5643 /* No extents, but there might be delalloc bits */ 5644 if (found_key.objectid != btrfs_ino(inode) || 5645 found_type != BTRFS_EXTENT_DATA_KEY) { 5646 /* have to trust i_size as the end */ 5647 last = (u64)-1; 5648 last_for_get_extent = isize; 5649 } else { 5650 /* 5651 * remember the start of the last extent. There are a 5652 * bunch of different factors that go into the length of the 5653 * extent, so its much less complex to remember where it started 5654 */ 5655 last = found_key.offset; 5656 last_for_get_extent = last + 1; 5657 } 5658 btrfs_release_path(path); 5659 5660 /* 5661 * we might have some extents allocated but more delalloc past those 5662 * extents. so, we trust isize unless the start of the last extent is 5663 * beyond isize 5664 */ 5665 if (last < isize) { 5666 last = (u64)-1; 5667 last_for_get_extent = isize; 5668 } 5669 5670 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5671 &cached_state); 5672 5673 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5674 if (!em) 5675 goto out; 5676 if (IS_ERR(em)) { 5677 ret = PTR_ERR(em); 5678 goto out; 5679 } 5680 5681 while (!end) { 5682 u64 offset_in_extent = 0; 5683 5684 /* break if the extent we found is outside the range */ 5685 if (em->start >= max || extent_map_end(em) < off) 5686 break; 5687 5688 /* 5689 * get_extent may return an extent that starts before our 5690 * requested range. We have to make sure the ranges 5691 * we return to fiemap always move forward and don't 5692 * overlap, so adjust the offsets here 5693 */ 5694 em_start = max(em->start, off); 5695 5696 /* 5697 * record the offset from the start of the extent 5698 * for adjusting the disk offset below. Only do this if the 5699 * extent isn't compressed since our in ram offset may be past 5700 * what we have actually allocated on disk. 5701 */ 5702 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5703 offset_in_extent = em_start - em->start; 5704 em_end = extent_map_end(em); 5705 em_len = em_end - em_start; 5706 flags = 0; 5707 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5708 disko = em->block_start + offset_in_extent; 5709 else 5710 disko = 0; 5711 5712 /* 5713 * bump off for our next call to get_extent 5714 */ 5715 off = extent_map_end(em); 5716 if (off >= max) 5717 end = 1; 5718 5719 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5720 end = 1; 5721 flags |= FIEMAP_EXTENT_LAST; 5722 } else if (em->block_start == EXTENT_MAP_INLINE) { 5723 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5724 FIEMAP_EXTENT_NOT_ALIGNED); 5725 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5726 flags |= (FIEMAP_EXTENT_DELALLOC | 5727 FIEMAP_EXTENT_UNKNOWN); 5728 } else if (fieinfo->fi_extents_max) { 5729 u64 bytenr = em->block_start - 5730 (em->start - em->orig_start); 5731 5732 /* 5733 * As btrfs supports shared space, this information 5734 * can be exported to userspace tools via 5735 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5736 * then we're just getting a count and we can skip the 5737 * lookup stuff. 5738 */ 5739 ret = btrfs_check_shared(root, btrfs_ino(inode), 5740 bytenr, roots, tmp_ulist); 5741 if (ret < 0) 5742 goto out_free; 5743 if (ret) 5744 flags |= FIEMAP_EXTENT_SHARED; 5745 ret = 0; 5746 } 5747 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5748 flags |= FIEMAP_EXTENT_ENCODED; 5749 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5750 flags |= FIEMAP_EXTENT_UNWRITTEN; 5751 5752 free_extent_map(em); 5753 em = NULL; 5754 if ((em_start >= last) || em_len == (u64)-1 || 5755 (last == (u64)-1 && isize <= em_end)) { 5756 flags |= FIEMAP_EXTENT_LAST; 5757 end = 1; 5758 } 5759 5760 /* now scan forward to see if this is really the last extent. */ 5761 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5762 if (IS_ERR(em)) { 5763 ret = PTR_ERR(em); 5764 goto out; 5765 } 5766 if (!em) { 5767 flags |= FIEMAP_EXTENT_LAST; 5768 end = 1; 5769 } 5770 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5771 em_len, flags); 5772 if (ret) { 5773 if (ret == 1) 5774 ret = 0; 5775 goto out_free; 5776 } 5777 } 5778 out_free: 5779 if (!ret) 5780 ret = emit_last_fiemap_cache(fieinfo, &cache); 5781 free_extent_map(em); 5782 out: 5783 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5784 &cached_state); 5785 5786 out_free_ulist: 5787 btrfs_free_path(path); 5788 ulist_free(roots); 5789 ulist_free(tmp_ulist); 5790 return ret; 5791 } 5792 5793 static void __free_extent_buffer(struct extent_buffer *eb) 5794 { 5795 kmem_cache_free(extent_buffer_cache, eb); 5796 } 5797 5798 int extent_buffer_under_io(const struct extent_buffer *eb) 5799 { 5800 return (atomic_read(&eb->io_pages) || 5801 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5802 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5803 } 5804 5805 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5806 { 5807 struct btrfs_subpage *subpage; 5808 5809 lockdep_assert_held(&page->mapping->private_lock); 5810 5811 if (PagePrivate(page)) { 5812 subpage = (struct btrfs_subpage *)page->private; 5813 if (atomic_read(&subpage->eb_refs)) 5814 return true; 5815 /* 5816 * Even there is no eb refs here, we may still have 5817 * end_page_read() call relying on page::private. 5818 */ 5819 if (atomic_read(&subpage->readers)) 5820 return true; 5821 } 5822 return false; 5823 } 5824 5825 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5826 { 5827 struct btrfs_fs_info *fs_info = eb->fs_info; 5828 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5829 5830 /* 5831 * For mapped eb, we're going to change the page private, which should 5832 * be done under the private_lock. 5833 */ 5834 if (mapped) 5835 spin_lock(&page->mapping->private_lock); 5836 5837 if (!PagePrivate(page)) { 5838 if (mapped) 5839 spin_unlock(&page->mapping->private_lock); 5840 return; 5841 } 5842 5843 if (fs_info->nodesize >= PAGE_SIZE) { 5844 /* 5845 * We do this since we'll remove the pages after we've 5846 * removed the eb from the radix tree, so we could race 5847 * and have this page now attached to the new eb. So 5848 * only clear page_private if it's still connected to 5849 * this eb. 5850 */ 5851 if (PagePrivate(page) && 5852 page->private == (unsigned long)eb) { 5853 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5854 BUG_ON(PageDirty(page)); 5855 BUG_ON(PageWriteback(page)); 5856 /* 5857 * We need to make sure we haven't be attached 5858 * to a new eb. 5859 */ 5860 detach_page_private(page); 5861 } 5862 if (mapped) 5863 spin_unlock(&page->mapping->private_lock); 5864 return; 5865 } 5866 5867 /* 5868 * For subpage, we can have dummy eb with page private. In this case, 5869 * we can directly detach the private as such page is only attached to 5870 * one dummy eb, no sharing. 5871 */ 5872 if (!mapped) { 5873 btrfs_detach_subpage(fs_info, page); 5874 return; 5875 } 5876 5877 btrfs_page_dec_eb_refs(fs_info, page); 5878 5879 /* 5880 * We can only detach the page private if there are no other ebs in the 5881 * page range and no unfinished IO. 5882 */ 5883 if (!page_range_has_eb(fs_info, page)) 5884 btrfs_detach_subpage(fs_info, page); 5885 5886 spin_unlock(&page->mapping->private_lock); 5887 } 5888 5889 /* Release all pages attached to the extent buffer */ 5890 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5891 { 5892 int i; 5893 int num_pages; 5894 5895 ASSERT(!extent_buffer_under_io(eb)); 5896 5897 num_pages = num_extent_pages(eb); 5898 for (i = 0; i < num_pages; i++) { 5899 struct page *page = eb->pages[i]; 5900 5901 if (!page) 5902 continue; 5903 5904 detach_extent_buffer_page(eb, page); 5905 5906 /* One for when we allocated the page */ 5907 put_page(page); 5908 } 5909 } 5910 5911 /* 5912 * Helper for releasing the extent buffer. 5913 */ 5914 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5915 { 5916 btrfs_release_extent_buffer_pages(eb); 5917 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5918 __free_extent_buffer(eb); 5919 } 5920 5921 static struct extent_buffer * 5922 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5923 unsigned long len) 5924 { 5925 struct extent_buffer *eb = NULL; 5926 5927 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5928 eb->start = start; 5929 eb->len = len; 5930 eb->fs_info = fs_info; 5931 eb->bflags = 0; 5932 init_rwsem(&eb->lock); 5933 5934 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5935 &fs_info->allocated_ebs); 5936 INIT_LIST_HEAD(&eb->release_list); 5937 5938 spin_lock_init(&eb->refs_lock); 5939 atomic_set(&eb->refs, 1); 5940 atomic_set(&eb->io_pages, 0); 5941 5942 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5943 5944 return eb; 5945 } 5946 5947 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5948 { 5949 int i; 5950 struct extent_buffer *new; 5951 int num_pages = num_extent_pages(src); 5952 int ret; 5953 5954 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5955 if (new == NULL) 5956 return NULL; 5957 5958 /* 5959 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5960 * btrfs_release_extent_buffer() have different behavior for 5961 * UNMAPPED subpage extent buffer. 5962 */ 5963 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5964 5965 memset(new->pages, 0, sizeof(*new->pages) * num_pages); 5966 ret = btrfs_alloc_page_array(num_pages, new->pages); 5967 if (ret) { 5968 btrfs_release_extent_buffer(new); 5969 return NULL; 5970 } 5971 5972 for (i = 0; i < num_pages; i++) { 5973 int ret; 5974 struct page *p = new->pages[i]; 5975 5976 ret = attach_extent_buffer_page(new, p, NULL); 5977 if (ret < 0) { 5978 btrfs_release_extent_buffer(new); 5979 return NULL; 5980 } 5981 WARN_ON(PageDirty(p)); 5982 copy_page(page_address(p), page_address(src->pages[i])); 5983 } 5984 set_extent_buffer_uptodate(new); 5985 5986 return new; 5987 } 5988 5989 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5990 u64 start, unsigned long len) 5991 { 5992 struct extent_buffer *eb; 5993 int num_pages; 5994 int i; 5995 int ret; 5996 5997 eb = __alloc_extent_buffer(fs_info, start, len); 5998 if (!eb) 5999 return NULL; 6000 6001 num_pages = num_extent_pages(eb); 6002 ret = btrfs_alloc_page_array(num_pages, eb->pages); 6003 if (ret) 6004 goto err; 6005 6006 for (i = 0; i < num_pages; i++) { 6007 struct page *p = eb->pages[i]; 6008 6009 ret = attach_extent_buffer_page(eb, p, NULL); 6010 if (ret < 0) 6011 goto err; 6012 } 6013 6014 set_extent_buffer_uptodate(eb); 6015 btrfs_set_header_nritems(eb, 0); 6016 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 6017 6018 return eb; 6019 err: 6020 for (i = 0; i < num_pages; i++) { 6021 if (eb->pages[i]) { 6022 detach_extent_buffer_page(eb, eb->pages[i]); 6023 __free_page(eb->pages[i]); 6024 } 6025 } 6026 __free_extent_buffer(eb); 6027 return NULL; 6028 } 6029 6030 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 6031 u64 start) 6032 { 6033 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 6034 } 6035 6036 static void check_buffer_tree_ref(struct extent_buffer *eb) 6037 { 6038 int refs; 6039 /* 6040 * The TREE_REF bit is first set when the extent_buffer is added 6041 * to the radix tree. It is also reset, if unset, when a new reference 6042 * is created by find_extent_buffer. 6043 * 6044 * It is only cleared in two cases: freeing the last non-tree 6045 * reference to the extent_buffer when its STALE bit is set or 6046 * calling release_folio when the tree reference is the only reference. 6047 * 6048 * In both cases, care is taken to ensure that the extent_buffer's 6049 * pages are not under io. However, release_folio can be concurrently 6050 * called with creating new references, which is prone to race 6051 * conditions between the calls to check_buffer_tree_ref in those 6052 * codepaths and clearing TREE_REF in try_release_extent_buffer. 6053 * 6054 * The actual lifetime of the extent_buffer in the radix tree is 6055 * adequately protected by the refcount, but the TREE_REF bit and 6056 * its corresponding reference are not. To protect against this 6057 * class of races, we call check_buffer_tree_ref from the codepaths 6058 * which trigger io after they set eb->io_pages. Note that once io is 6059 * initiated, TREE_REF can no longer be cleared, so that is the 6060 * moment at which any such race is best fixed. 6061 */ 6062 refs = atomic_read(&eb->refs); 6063 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6064 return; 6065 6066 spin_lock(&eb->refs_lock); 6067 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6068 atomic_inc(&eb->refs); 6069 spin_unlock(&eb->refs_lock); 6070 } 6071 6072 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 6073 struct page *accessed) 6074 { 6075 int num_pages, i; 6076 6077 check_buffer_tree_ref(eb); 6078 6079 num_pages = num_extent_pages(eb); 6080 for (i = 0; i < num_pages; i++) { 6081 struct page *p = eb->pages[i]; 6082 6083 if (p != accessed) 6084 mark_page_accessed(p); 6085 } 6086 } 6087 6088 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 6089 u64 start) 6090 { 6091 struct extent_buffer *eb; 6092 6093 eb = find_extent_buffer_nolock(fs_info, start); 6094 if (!eb) 6095 return NULL; 6096 /* 6097 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 6098 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 6099 * another task running free_extent_buffer() might have seen that flag 6100 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 6101 * writeback flags not set) and it's still in the tree (flag 6102 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 6103 * decrementing the extent buffer's reference count twice. So here we 6104 * could race and increment the eb's reference count, clear its stale 6105 * flag, mark it as dirty and drop our reference before the other task 6106 * finishes executing free_extent_buffer, which would later result in 6107 * an attempt to free an extent buffer that is dirty. 6108 */ 6109 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 6110 spin_lock(&eb->refs_lock); 6111 spin_unlock(&eb->refs_lock); 6112 } 6113 mark_extent_buffer_accessed(eb, NULL); 6114 return eb; 6115 } 6116 6117 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6118 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6119 u64 start) 6120 { 6121 struct extent_buffer *eb, *exists = NULL; 6122 int ret; 6123 6124 eb = find_extent_buffer(fs_info, start); 6125 if (eb) 6126 return eb; 6127 eb = alloc_dummy_extent_buffer(fs_info, start); 6128 if (!eb) 6129 return ERR_PTR(-ENOMEM); 6130 eb->fs_info = fs_info; 6131 6132 do { 6133 ret = xa_insert(&fs_info->extent_buffers, 6134 start >> fs_info->sectorsize_bits, 6135 eb, GFP_NOFS); 6136 if (ret == -ENOMEM) { 6137 exists = ERR_PTR(ret); 6138 goto free_eb; 6139 } 6140 if (ret == -EBUSY) { 6141 exists = find_extent_buffer(fs_info, start); 6142 if (exists) 6143 goto free_eb; 6144 } 6145 } while (ret); 6146 6147 check_buffer_tree_ref(eb); 6148 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6149 6150 return eb; 6151 free_eb: 6152 btrfs_release_extent_buffer(eb); 6153 return exists; 6154 } 6155 #endif 6156 6157 static struct extent_buffer *grab_extent_buffer( 6158 struct btrfs_fs_info *fs_info, struct page *page) 6159 { 6160 struct extent_buffer *exists; 6161 6162 /* 6163 * For subpage case, we completely rely on radix tree to ensure we 6164 * don't try to insert two ebs for the same bytenr. So here we always 6165 * return NULL and just continue. 6166 */ 6167 if (fs_info->nodesize < PAGE_SIZE) 6168 return NULL; 6169 6170 /* Page not yet attached to an extent buffer */ 6171 if (!PagePrivate(page)) 6172 return NULL; 6173 6174 /* 6175 * We could have already allocated an eb for this page and attached one 6176 * so lets see if we can get a ref on the existing eb, and if we can we 6177 * know it's good and we can just return that one, else we know we can 6178 * just overwrite page->private. 6179 */ 6180 exists = (struct extent_buffer *)page->private; 6181 if (atomic_inc_not_zero(&exists->refs)) 6182 return exists; 6183 6184 WARN_ON(PageDirty(page)); 6185 detach_page_private(page); 6186 return NULL; 6187 } 6188 6189 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 6190 { 6191 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6192 btrfs_err(fs_info, "bad tree block start %llu", start); 6193 return -EINVAL; 6194 } 6195 6196 if (fs_info->nodesize < PAGE_SIZE && 6197 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 6198 btrfs_err(fs_info, 6199 "tree block crosses page boundary, start %llu nodesize %u", 6200 start, fs_info->nodesize); 6201 return -EINVAL; 6202 } 6203 if (fs_info->nodesize >= PAGE_SIZE && 6204 !IS_ALIGNED(start, PAGE_SIZE)) { 6205 btrfs_err(fs_info, 6206 "tree block is not page aligned, start %llu nodesize %u", 6207 start, fs_info->nodesize); 6208 return -EINVAL; 6209 } 6210 return 0; 6211 } 6212 6213 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6214 u64 start, u64 owner_root, int level) 6215 { 6216 unsigned long len = fs_info->nodesize; 6217 int num_pages; 6218 int i; 6219 unsigned long index = start >> PAGE_SHIFT; 6220 struct extent_buffer *eb; 6221 struct extent_buffer *exists = NULL; 6222 struct page *p; 6223 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6224 int uptodate = 1; 6225 int ret; 6226 6227 if (check_eb_alignment(fs_info, start)) 6228 return ERR_PTR(-EINVAL); 6229 6230 #if BITS_PER_LONG == 32 6231 if (start >= MAX_LFS_FILESIZE) { 6232 btrfs_err_rl(fs_info, 6233 "extent buffer %llu is beyond 32bit page cache limit", start); 6234 btrfs_err_32bit_limit(fs_info); 6235 return ERR_PTR(-EOVERFLOW); 6236 } 6237 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6238 btrfs_warn_32bit_limit(fs_info); 6239 #endif 6240 6241 eb = find_extent_buffer(fs_info, start); 6242 if (eb) 6243 return eb; 6244 6245 eb = __alloc_extent_buffer(fs_info, start, len); 6246 if (!eb) 6247 return ERR_PTR(-ENOMEM); 6248 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 6249 6250 num_pages = num_extent_pages(eb); 6251 for (i = 0; i < num_pages; i++, index++) { 6252 struct btrfs_subpage *prealloc = NULL; 6253 6254 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6255 if (!p) { 6256 exists = ERR_PTR(-ENOMEM); 6257 goto free_eb; 6258 } 6259 6260 /* 6261 * Preallocate page->private for subpage case, so that we won't 6262 * allocate memory with private_lock hold. The memory will be 6263 * freed by attach_extent_buffer_page() or freed manually if 6264 * we exit earlier. 6265 * 6266 * Although we have ensured one subpage eb can only have one 6267 * page, but it may change in the future for 16K page size 6268 * support, so we still preallocate the memory in the loop. 6269 */ 6270 if (fs_info->nodesize < PAGE_SIZE) { 6271 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 6272 if (IS_ERR(prealloc)) { 6273 ret = PTR_ERR(prealloc); 6274 unlock_page(p); 6275 put_page(p); 6276 exists = ERR_PTR(ret); 6277 goto free_eb; 6278 } 6279 } 6280 6281 spin_lock(&mapping->private_lock); 6282 exists = grab_extent_buffer(fs_info, p); 6283 if (exists) { 6284 spin_unlock(&mapping->private_lock); 6285 unlock_page(p); 6286 put_page(p); 6287 mark_extent_buffer_accessed(exists, p); 6288 btrfs_free_subpage(prealloc); 6289 goto free_eb; 6290 } 6291 /* Should not fail, as we have preallocated the memory */ 6292 ret = attach_extent_buffer_page(eb, p, prealloc); 6293 ASSERT(!ret); 6294 /* 6295 * To inform we have extra eb under allocation, so that 6296 * detach_extent_buffer_page() won't release the page private 6297 * when the eb hasn't yet been inserted into radix tree. 6298 * 6299 * The ref will be decreased when the eb released the page, in 6300 * detach_extent_buffer_page(). 6301 * Thus needs no special handling in error path. 6302 */ 6303 btrfs_page_inc_eb_refs(fs_info, p); 6304 spin_unlock(&mapping->private_lock); 6305 6306 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6307 eb->pages[i] = p; 6308 if (!PageUptodate(p)) 6309 uptodate = 0; 6310 6311 /* 6312 * We can't unlock the pages just yet since the extent buffer 6313 * hasn't been properly inserted in the radix tree, this 6314 * opens a race with btree_release_folio which can free a page 6315 * while we are still filling in all pages for the buffer and 6316 * we could crash. 6317 */ 6318 } 6319 if (uptodate) 6320 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6321 6322 do { 6323 ret = xa_insert(&fs_info->extent_buffers, 6324 start >> fs_info->sectorsize_bits, 6325 eb, GFP_NOFS); 6326 if (ret == -ENOMEM) { 6327 exists = ERR_PTR(ret); 6328 goto free_eb; 6329 } 6330 if (ret == -EBUSY) { 6331 exists = find_extent_buffer(fs_info, start); 6332 if (exists) 6333 goto free_eb; 6334 } 6335 } while (ret); 6336 6337 /* add one reference for the tree */ 6338 check_buffer_tree_ref(eb); 6339 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6340 6341 /* 6342 * Now it's safe to unlock the pages because any calls to 6343 * btree_release_folio will correctly detect that a page belongs to a 6344 * live buffer and won't free them prematurely. 6345 */ 6346 for (i = 0; i < num_pages; i++) 6347 unlock_page(eb->pages[i]); 6348 return eb; 6349 6350 free_eb: 6351 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6352 for (i = 0; i < num_pages; i++) { 6353 if (eb->pages[i]) 6354 unlock_page(eb->pages[i]); 6355 } 6356 6357 btrfs_release_extent_buffer(eb); 6358 return exists; 6359 } 6360 6361 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6362 { 6363 struct extent_buffer *eb = 6364 container_of(head, struct extent_buffer, rcu_head); 6365 6366 __free_extent_buffer(eb); 6367 } 6368 6369 static int release_extent_buffer(struct extent_buffer *eb) 6370 __releases(&eb->refs_lock) 6371 { 6372 lockdep_assert_held(&eb->refs_lock); 6373 6374 WARN_ON(atomic_read(&eb->refs) == 0); 6375 if (atomic_dec_and_test(&eb->refs)) { 6376 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6377 struct btrfs_fs_info *fs_info = eb->fs_info; 6378 6379 spin_unlock(&eb->refs_lock); 6380 6381 xa_erase(&fs_info->extent_buffers, 6382 eb->start >> fs_info->sectorsize_bits); 6383 } else { 6384 spin_unlock(&eb->refs_lock); 6385 } 6386 6387 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6388 /* Should be safe to release our pages at this point */ 6389 btrfs_release_extent_buffer_pages(eb); 6390 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6391 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6392 __free_extent_buffer(eb); 6393 return 1; 6394 } 6395 #endif 6396 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6397 return 1; 6398 } 6399 spin_unlock(&eb->refs_lock); 6400 6401 return 0; 6402 } 6403 6404 void free_extent_buffer(struct extent_buffer *eb) 6405 { 6406 int refs; 6407 int old; 6408 if (!eb) 6409 return; 6410 6411 while (1) { 6412 refs = atomic_read(&eb->refs); 6413 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6414 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6415 refs == 1)) 6416 break; 6417 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6418 if (old == refs) 6419 return; 6420 } 6421 6422 spin_lock(&eb->refs_lock); 6423 if (atomic_read(&eb->refs) == 2 && 6424 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6425 !extent_buffer_under_io(eb) && 6426 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6427 atomic_dec(&eb->refs); 6428 6429 /* 6430 * I know this is terrible, but it's temporary until we stop tracking 6431 * the uptodate bits and such for the extent buffers. 6432 */ 6433 release_extent_buffer(eb); 6434 } 6435 6436 void free_extent_buffer_stale(struct extent_buffer *eb) 6437 { 6438 if (!eb) 6439 return; 6440 6441 spin_lock(&eb->refs_lock); 6442 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6443 6444 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6445 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6446 atomic_dec(&eb->refs); 6447 release_extent_buffer(eb); 6448 } 6449 6450 static void btree_clear_page_dirty(struct page *page) 6451 { 6452 ASSERT(PageDirty(page)); 6453 ASSERT(PageLocked(page)); 6454 clear_page_dirty_for_io(page); 6455 xa_lock_irq(&page->mapping->i_pages); 6456 if (!PageDirty(page)) 6457 __xa_clear_mark(&page->mapping->i_pages, 6458 page_index(page), PAGECACHE_TAG_DIRTY); 6459 xa_unlock_irq(&page->mapping->i_pages); 6460 } 6461 6462 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6463 { 6464 struct btrfs_fs_info *fs_info = eb->fs_info; 6465 struct page *page = eb->pages[0]; 6466 bool last; 6467 6468 /* btree_clear_page_dirty() needs page locked */ 6469 lock_page(page); 6470 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6471 eb->len); 6472 if (last) 6473 btree_clear_page_dirty(page); 6474 unlock_page(page); 6475 WARN_ON(atomic_read(&eb->refs) == 0); 6476 } 6477 6478 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6479 { 6480 int i; 6481 int num_pages; 6482 struct page *page; 6483 6484 if (eb->fs_info->nodesize < PAGE_SIZE) 6485 return clear_subpage_extent_buffer_dirty(eb); 6486 6487 num_pages = num_extent_pages(eb); 6488 6489 for (i = 0; i < num_pages; i++) { 6490 page = eb->pages[i]; 6491 if (!PageDirty(page)) 6492 continue; 6493 lock_page(page); 6494 btree_clear_page_dirty(page); 6495 ClearPageError(page); 6496 unlock_page(page); 6497 } 6498 WARN_ON(atomic_read(&eb->refs) == 0); 6499 } 6500 6501 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6502 { 6503 int i; 6504 int num_pages; 6505 bool was_dirty; 6506 6507 check_buffer_tree_ref(eb); 6508 6509 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6510 6511 num_pages = num_extent_pages(eb); 6512 WARN_ON(atomic_read(&eb->refs) == 0); 6513 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6514 6515 if (!was_dirty) { 6516 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 6517 6518 /* 6519 * For subpage case, we can have other extent buffers in the 6520 * same page, and in clear_subpage_extent_buffer_dirty() we 6521 * have to clear page dirty without subpage lock held. 6522 * This can cause race where our page gets dirty cleared after 6523 * we just set it. 6524 * 6525 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6526 * its page for other reasons, we can use page lock to prevent 6527 * the above race. 6528 */ 6529 if (subpage) 6530 lock_page(eb->pages[0]); 6531 for (i = 0; i < num_pages; i++) 6532 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6533 eb->start, eb->len); 6534 if (subpage) 6535 unlock_page(eb->pages[0]); 6536 } 6537 #ifdef CONFIG_BTRFS_DEBUG 6538 for (i = 0; i < num_pages; i++) 6539 ASSERT(PageDirty(eb->pages[i])); 6540 #endif 6541 6542 return was_dirty; 6543 } 6544 6545 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6546 { 6547 struct btrfs_fs_info *fs_info = eb->fs_info; 6548 struct page *page; 6549 int num_pages; 6550 int i; 6551 6552 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6553 num_pages = num_extent_pages(eb); 6554 for (i = 0; i < num_pages; i++) { 6555 page = eb->pages[i]; 6556 if (!page) 6557 continue; 6558 6559 /* 6560 * This is special handling for metadata subpage, as regular 6561 * btrfs_is_subpage() can not handle cloned/dummy metadata. 6562 */ 6563 if (fs_info->nodesize >= PAGE_SIZE) 6564 ClearPageUptodate(page); 6565 else 6566 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 6567 eb->len); 6568 } 6569 } 6570 6571 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6572 { 6573 struct btrfs_fs_info *fs_info = eb->fs_info; 6574 struct page *page; 6575 int num_pages; 6576 int i; 6577 6578 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6579 num_pages = num_extent_pages(eb); 6580 for (i = 0; i < num_pages; i++) { 6581 page = eb->pages[i]; 6582 6583 /* 6584 * This is special handling for metadata subpage, as regular 6585 * btrfs_is_subpage() can not handle cloned/dummy metadata. 6586 */ 6587 if (fs_info->nodesize >= PAGE_SIZE) 6588 SetPageUptodate(page); 6589 else 6590 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 6591 eb->len); 6592 } 6593 } 6594 6595 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6596 int mirror_num) 6597 { 6598 struct btrfs_fs_info *fs_info = eb->fs_info; 6599 struct extent_io_tree *io_tree; 6600 struct page *page = eb->pages[0]; 6601 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6602 int ret = 0; 6603 6604 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6605 ASSERT(PagePrivate(page)); 6606 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6607 6608 if (wait == WAIT_NONE) { 6609 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6610 return -EAGAIN; 6611 } else { 6612 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6613 if (ret < 0) 6614 return ret; 6615 } 6616 6617 ret = 0; 6618 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6619 PageUptodate(page) || 6620 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6621 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6622 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6623 return ret; 6624 } 6625 6626 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6627 eb->read_mirror = 0; 6628 atomic_set(&eb->io_pages, 1); 6629 check_buffer_tree_ref(eb); 6630 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6631 6632 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6633 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, 6634 page, eb->start, eb->len, 6635 eb->start - page_offset(page), 6636 end_bio_extent_readpage, mirror_num, 0, 6637 true); 6638 if (ret) { 6639 /* 6640 * In the endio function, if we hit something wrong we will 6641 * increase the io_pages, so here we need to decrease it for 6642 * error path. 6643 */ 6644 atomic_dec(&eb->io_pages); 6645 } 6646 if (bio_ctrl.bio) { 6647 submit_one_bio(bio_ctrl.bio, mirror_num, 0); 6648 bio_ctrl.bio = NULL; 6649 } 6650 if (ret || wait != WAIT_COMPLETE) 6651 return ret; 6652 6653 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6654 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6655 ret = -EIO; 6656 return ret; 6657 } 6658 6659 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6660 { 6661 int i; 6662 struct page *page; 6663 int err; 6664 int ret = 0; 6665 int locked_pages = 0; 6666 int all_uptodate = 1; 6667 int num_pages; 6668 unsigned long num_reads = 0; 6669 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6670 6671 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6672 return 0; 6673 6674 /* 6675 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 6676 * operation, which could potentially still be in flight. In this case 6677 * we simply want to return an error. 6678 */ 6679 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 6680 return -EIO; 6681 6682 if (eb->fs_info->nodesize < PAGE_SIZE) 6683 return read_extent_buffer_subpage(eb, wait, mirror_num); 6684 6685 num_pages = num_extent_pages(eb); 6686 for (i = 0; i < num_pages; i++) { 6687 page = eb->pages[i]; 6688 if (wait == WAIT_NONE) { 6689 /* 6690 * WAIT_NONE is only utilized by readahead. If we can't 6691 * acquire the lock atomically it means either the eb 6692 * is being read out or under modification. 6693 * Either way the eb will be or has been cached, 6694 * readahead can exit safely. 6695 */ 6696 if (!trylock_page(page)) 6697 goto unlock_exit; 6698 } else { 6699 lock_page(page); 6700 } 6701 locked_pages++; 6702 } 6703 /* 6704 * We need to firstly lock all pages to make sure that 6705 * the uptodate bit of our pages won't be affected by 6706 * clear_extent_buffer_uptodate(). 6707 */ 6708 for (i = 0; i < num_pages; i++) { 6709 page = eb->pages[i]; 6710 if (!PageUptodate(page)) { 6711 num_reads++; 6712 all_uptodate = 0; 6713 } 6714 } 6715 6716 if (all_uptodate) { 6717 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6718 goto unlock_exit; 6719 } 6720 6721 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6722 eb->read_mirror = 0; 6723 atomic_set(&eb->io_pages, num_reads); 6724 /* 6725 * It is possible for release_folio to clear the TREE_REF bit before we 6726 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6727 */ 6728 check_buffer_tree_ref(eb); 6729 for (i = 0; i < num_pages; i++) { 6730 page = eb->pages[i]; 6731 6732 if (!PageUptodate(page)) { 6733 if (ret) { 6734 atomic_dec(&eb->io_pages); 6735 unlock_page(page); 6736 continue; 6737 } 6738 6739 ClearPageError(page); 6740 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6741 &bio_ctrl, page, page_offset(page), 6742 PAGE_SIZE, 0, end_bio_extent_readpage, 6743 mirror_num, 0, false); 6744 if (err) { 6745 /* 6746 * We failed to submit the bio so it's the 6747 * caller's responsibility to perform cleanup 6748 * i.e unlock page/set error bit. 6749 */ 6750 ret = err; 6751 SetPageError(page); 6752 unlock_page(page); 6753 atomic_dec(&eb->io_pages); 6754 } 6755 } else { 6756 unlock_page(page); 6757 } 6758 } 6759 6760 if (bio_ctrl.bio) { 6761 submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.compress_type); 6762 bio_ctrl.bio = NULL; 6763 } 6764 6765 if (ret || wait != WAIT_COMPLETE) 6766 return ret; 6767 6768 for (i = 0; i < num_pages; i++) { 6769 page = eb->pages[i]; 6770 wait_on_page_locked(page); 6771 if (!PageUptodate(page)) 6772 ret = -EIO; 6773 } 6774 6775 return ret; 6776 6777 unlock_exit: 6778 while (locked_pages > 0) { 6779 locked_pages--; 6780 page = eb->pages[locked_pages]; 6781 unlock_page(page); 6782 } 6783 return ret; 6784 } 6785 6786 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6787 unsigned long len) 6788 { 6789 btrfs_warn(eb->fs_info, 6790 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6791 eb->start, eb->len, start, len); 6792 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6793 6794 return true; 6795 } 6796 6797 /* 6798 * Check if the [start, start + len) range is valid before reading/writing 6799 * the eb. 6800 * NOTE: @start and @len are offset inside the eb, not logical address. 6801 * 6802 * Caller should not touch the dst/src memory if this function returns error. 6803 */ 6804 static inline int check_eb_range(const struct extent_buffer *eb, 6805 unsigned long start, unsigned long len) 6806 { 6807 unsigned long offset; 6808 6809 /* start, start + len should not go beyond eb->len nor overflow */ 6810 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6811 return report_eb_range(eb, start, len); 6812 6813 return false; 6814 } 6815 6816 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6817 unsigned long start, unsigned long len) 6818 { 6819 size_t cur; 6820 size_t offset; 6821 struct page *page; 6822 char *kaddr; 6823 char *dst = (char *)dstv; 6824 unsigned long i = get_eb_page_index(start); 6825 6826 if (check_eb_range(eb, start, len)) 6827 return; 6828 6829 offset = get_eb_offset_in_page(eb, start); 6830 6831 while (len > 0) { 6832 page = eb->pages[i]; 6833 6834 cur = min(len, (PAGE_SIZE - offset)); 6835 kaddr = page_address(page); 6836 memcpy(dst, kaddr + offset, cur); 6837 6838 dst += cur; 6839 len -= cur; 6840 offset = 0; 6841 i++; 6842 } 6843 } 6844 6845 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6846 void __user *dstv, 6847 unsigned long start, unsigned long len) 6848 { 6849 size_t cur; 6850 size_t offset; 6851 struct page *page; 6852 char *kaddr; 6853 char __user *dst = (char __user *)dstv; 6854 unsigned long i = get_eb_page_index(start); 6855 int ret = 0; 6856 6857 WARN_ON(start > eb->len); 6858 WARN_ON(start + len > eb->start + eb->len); 6859 6860 offset = get_eb_offset_in_page(eb, start); 6861 6862 while (len > 0) { 6863 page = eb->pages[i]; 6864 6865 cur = min(len, (PAGE_SIZE - offset)); 6866 kaddr = page_address(page); 6867 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6868 ret = -EFAULT; 6869 break; 6870 } 6871 6872 dst += cur; 6873 len -= cur; 6874 offset = 0; 6875 i++; 6876 } 6877 6878 return ret; 6879 } 6880 6881 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6882 unsigned long start, unsigned long len) 6883 { 6884 size_t cur; 6885 size_t offset; 6886 struct page *page; 6887 char *kaddr; 6888 char *ptr = (char *)ptrv; 6889 unsigned long i = get_eb_page_index(start); 6890 int ret = 0; 6891 6892 if (check_eb_range(eb, start, len)) 6893 return -EINVAL; 6894 6895 offset = get_eb_offset_in_page(eb, start); 6896 6897 while (len > 0) { 6898 page = eb->pages[i]; 6899 6900 cur = min(len, (PAGE_SIZE - offset)); 6901 6902 kaddr = page_address(page); 6903 ret = memcmp(ptr, kaddr + offset, cur); 6904 if (ret) 6905 break; 6906 6907 ptr += cur; 6908 len -= cur; 6909 offset = 0; 6910 i++; 6911 } 6912 return ret; 6913 } 6914 6915 /* 6916 * Check that the extent buffer is uptodate. 6917 * 6918 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6919 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6920 */ 6921 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6922 struct page *page) 6923 { 6924 struct btrfs_fs_info *fs_info = eb->fs_info; 6925 6926 /* 6927 * If we are using the commit root we could potentially clear a page 6928 * Uptodate while we're using the extent buffer that we've previously 6929 * looked up. We don't want to complain in this case, as the page was 6930 * valid before, we just didn't write it out. Instead we want to catch 6931 * the case where we didn't actually read the block properly, which 6932 * would have !PageUptodate && !PageError, as we clear PageError before 6933 * reading. 6934 */ 6935 if (fs_info->nodesize < PAGE_SIZE) { 6936 bool uptodate, error; 6937 6938 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6939 eb->start, eb->len); 6940 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 6941 WARN_ON(!uptodate && !error); 6942 } else { 6943 WARN_ON(!PageUptodate(page) && !PageError(page)); 6944 } 6945 } 6946 6947 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6948 const void *srcv) 6949 { 6950 char *kaddr; 6951 6952 assert_eb_page_uptodate(eb, eb->pages[0]); 6953 kaddr = page_address(eb->pages[0]) + 6954 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6955 chunk_tree_uuid)); 6956 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6957 } 6958 6959 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6960 { 6961 char *kaddr; 6962 6963 assert_eb_page_uptodate(eb, eb->pages[0]); 6964 kaddr = page_address(eb->pages[0]) + 6965 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6966 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6967 } 6968 6969 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6970 unsigned long start, unsigned long len) 6971 { 6972 size_t cur; 6973 size_t offset; 6974 struct page *page; 6975 char *kaddr; 6976 char *src = (char *)srcv; 6977 unsigned long i = get_eb_page_index(start); 6978 6979 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6980 6981 if (check_eb_range(eb, start, len)) 6982 return; 6983 6984 offset = get_eb_offset_in_page(eb, start); 6985 6986 while (len > 0) { 6987 page = eb->pages[i]; 6988 assert_eb_page_uptodate(eb, page); 6989 6990 cur = min(len, PAGE_SIZE - offset); 6991 kaddr = page_address(page); 6992 memcpy(kaddr + offset, src, cur); 6993 6994 src += cur; 6995 len -= cur; 6996 offset = 0; 6997 i++; 6998 } 6999 } 7000 7001 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 7002 unsigned long len) 7003 { 7004 size_t cur; 7005 size_t offset; 7006 struct page *page; 7007 char *kaddr; 7008 unsigned long i = get_eb_page_index(start); 7009 7010 if (check_eb_range(eb, start, len)) 7011 return; 7012 7013 offset = get_eb_offset_in_page(eb, start); 7014 7015 while (len > 0) { 7016 page = eb->pages[i]; 7017 assert_eb_page_uptodate(eb, page); 7018 7019 cur = min(len, PAGE_SIZE - offset); 7020 kaddr = page_address(page); 7021 memset(kaddr + offset, 0, cur); 7022 7023 len -= cur; 7024 offset = 0; 7025 i++; 7026 } 7027 } 7028 7029 void copy_extent_buffer_full(const struct extent_buffer *dst, 7030 const struct extent_buffer *src) 7031 { 7032 int i; 7033 int num_pages; 7034 7035 ASSERT(dst->len == src->len); 7036 7037 if (dst->fs_info->nodesize >= PAGE_SIZE) { 7038 num_pages = num_extent_pages(dst); 7039 for (i = 0; i < num_pages; i++) 7040 copy_page(page_address(dst->pages[i]), 7041 page_address(src->pages[i])); 7042 } else { 7043 size_t src_offset = get_eb_offset_in_page(src, 0); 7044 size_t dst_offset = get_eb_offset_in_page(dst, 0); 7045 7046 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 7047 memcpy(page_address(dst->pages[0]) + dst_offset, 7048 page_address(src->pages[0]) + src_offset, 7049 src->len); 7050 } 7051 } 7052 7053 void copy_extent_buffer(const struct extent_buffer *dst, 7054 const struct extent_buffer *src, 7055 unsigned long dst_offset, unsigned long src_offset, 7056 unsigned long len) 7057 { 7058 u64 dst_len = dst->len; 7059 size_t cur; 7060 size_t offset; 7061 struct page *page; 7062 char *kaddr; 7063 unsigned long i = get_eb_page_index(dst_offset); 7064 7065 if (check_eb_range(dst, dst_offset, len) || 7066 check_eb_range(src, src_offset, len)) 7067 return; 7068 7069 WARN_ON(src->len != dst_len); 7070 7071 offset = get_eb_offset_in_page(dst, dst_offset); 7072 7073 while (len > 0) { 7074 page = dst->pages[i]; 7075 assert_eb_page_uptodate(dst, page); 7076 7077 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 7078 7079 kaddr = page_address(page); 7080 read_extent_buffer(src, kaddr + offset, src_offset, cur); 7081 7082 src_offset += cur; 7083 len -= cur; 7084 offset = 0; 7085 i++; 7086 } 7087 } 7088 7089 /* 7090 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 7091 * given bit number 7092 * @eb: the extent buffer 7093 * @start: offset of the bitmap item in the extent buffer 7094 * @nr: bit number 7095 * @page_index: return index of the page in the extent buffer that contains the 7096 * given bit number 7097 * @page_offset: return offset into the page given by page_index 7098 * 7099 * This helper hides the ugliness of finding the byte in an extent buffer which 7100 * contains a given bit. 7101 */ 7102 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 7103 unsigned long start, unsigned long nr, 7104 unsigned long *page_index, 7105 size_t *page_offset) 7106 { 7107 size_t byte_offset = BIT_BYTE(nr); 7108 size_t offset; 7109 7110 /* 7111 * The byte we want is the offset of the extent buffer + the offset of 7112 * the bitmap item in the extent buffer + the offset of the byte in the 7113 * bitmap item. 7114 */ 7115 offset = start + offset_in_page(eb->start) + byte_offset; 7116 7117 *page_index = offset >> PAGE_SHIFT; 7118 *page_offset = offset_in_page(offset); 7119 } 7120 7121 /** 7122 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 7123 * @eb: the extent buffer 7124 * @start: offset of the bitmap item in the extent buffer 7125 * @nr: bit number to test 7126 */ 7127 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 7128 unsigned long nr) 7129 { 7130 u8 *kaddr; 7131 struct page *page; 7132 unsigned long i; 7133 size_t offset; 7134 7135 eb_bitmap_offset(eb, start, nr, &i, &offset); 7136 page = eb->pages[i]; 7137 assert_eb_page_uptodate(eb, page); 7138 kaddr = page_address(page); 7139 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 7140 } 7141 7142 /** 7143 * extent_buffer_bitmap_set - set an area of a bitmap 7144 * @eb: the extent buffer 7145 * @start: offset of the bitmap item in the extent buffer 7146 * @pos: bit number of the first bit 7147 * @len: number of bits to set 7148 */ 7149 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 7150 unsigned long pos, unsigned long len) 7151 { 7152 u8 *kaddr; 7153 struct page *page; 7154 unsigned long i; 7155 size_t offset; 7156 const unsigned int size = pos + len; 7157 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7158 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7159 7160 eb_bitmap_offset(eb, start, pos, &i, &offset); 7161 page = eb->pages[i]; 7162 assert_eb_page_uptodate(eb, page); 7163 kaddr = page_address(page); 7164 7165 while (len >= bits_to_set) { 7166 kaddr[offset] |= mask_to_set; 7167 len -= bits_to_set; 7168 bits_to_set = BITS_PER_BYTE; 7169 mask_to_set = ~0; 7170 if (++offset >= PAGE_SIZE && len > 0) { 7171 offset = 0; 7172 page = eb->pages[++i]; 7173 assert_eb_page_uptodate(eb, page); 7174 kaddr = page_address(page); 7175 } 7176 } 7177 if (len) { 7178 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7179 kaddr[offset] |= mask_to_set; 7180 } 7181 } 7182 7183 7184 /** 7185 * extent_buffer_bitmap_clear - clear an area of a bitmap 7186 * @eb: the extent buffer 7187 * @start: offset of the bitmap item in the extent buffer 7188 * @pos: bit number of the first bit 7189 * @len: number of bits to clear 7190 */ 7191 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7192 unsigned long start, unsigned long pos, 7193 unsigned long len) 7194 { 7195 u8 *kaddr; 7196 struct page *page; 7197 unsigned long i; 7198 size_t offset; 7199 const unsigned int size = pos + len; 7200 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7201 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7202 7203 eb_bitmap_offset(eb, start, pos, &i, &offset); 7204 page = eb->pages[i]; 7205 assert_eb_page_uptodate(eb, page); 7206 kaddr = page_address(page); 7207 7208 while (len >= bits_to_clear) { 7209 kaddr[offset] &= ~mask_to_clear; 7210 len -= bits_to_clear; 7211 bits_to_clear = BITS_PER_BYTE; 7212 mask_to_clear = ~0; 7213 if (++offset >= PAGE_SIZE && len > 0) { 7214 offset = 0; 7215 page = eb->pages[++i]; 7216 assert_eb_page_uptodate(eb, page); 7217 kaddr = page_address(page); 7218 } 7219 } 7220 if (len) { 7221 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7222 kaddr[offset] &= ~mask_to_clear; 7223 } 7224 } 7225 7226 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7227 { 7228 unsigned long distance = (src > dst) ? src - dst : dst - src; 7229 return distance < len; 7230 } 7231 7232 static void copy_pages(struct page *dst_page, struct page *src_page, 7233 unsigned long dst_off, unsigned long src_off, 7234 unsigned long len) 7235 { 7236 char *dst_kaddr = page_address(dst_page); 7237 char *src_kaddr; 7238 int must_memmove = 0; 7239 7240 if (dst_page != src_page) { 7241 src_kaddr = page_address(src_page); 7242 } else { 7243 src_kaddr = dst_kaddr; 7244 if (areas_overlap(src_off, dst_off, len)) 7245 must_memmove = 1; 7246 } 7247 7248 if (must_memmove) 7249 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7250 else 7251 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7252 } 7253 7254 void memcpy_extent_buffer(const struct extent_buffer *dst, 7255 unsigned long dst_offset, unsigned long src_offset, 7256 unsigned long len) 7257 { 7258 size_t cur; 7259 size_t dst_off_in_page; 7260 size_t src_off_in_page; 7261 unsigned long dst_i; 7262 unsigned long src_i; 7263 7264 if (check_eb_range(dst, dst_offset, len) || 7265 check_eb_range(dst, src_offset, len)) 7266 return; 7267 7268 while (len > 0) { 7269 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7270 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7271 7272 dst_i = get_eb_page_index(dst_offset); 7273 src_i = get_eb_page_index(src_offset); 7274 7275 cur = min(len, (unsigned long)(PAGE_SIZE - 7276 src_off_in_page)); 7277 cur = min_t(unsigned long, cur, 7278 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7279 7280 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7281 dst_off_in_page, src_off_in_page, cur); 7282 7283 src_offset += cur; 7284 dst_offset += cur; 7285 len -= cur; 7286 } 7287 } 7288 7289 void memmove_extent_buffer(const struct extent_buffer *dst, 7290 unsigned long dst_offset, unsigned long src_offset, 7291 unsigned long len) 7292 { 7293 size_t cur; 7294 size_t dst_off_in_page; 7295 size_t src_off_in_page; 7296 unsigned long dst_end = dst_offset + len - 1; 7297 unsigned long src_end = src_offset + len - 1; 7298 unsigned long dst_i; 7299 unsigned long src_i; 7300 7301 if (check_eb_range(dst, dst_offset, len) || 7302 check_eb_range(dst, src_offset, len)) 7303 return; 7304 if (dst_offset < src_offset) { 7305 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7306 return; 7307 } 7308 while (len > 0) { 7309 dst_i = get_eb_page_index(dst_end); 7310 src_i = get_eb_page_index(src_end); 7311 7312 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7313 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7314 7315 cur = min_t(unsigned long, len, src_off_in_page + 1); 7316 cur = min(cur, dst_off_in_page + 1); 7317 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7318 dst_off_in_page - cur + 1, 7319 src_off_in_page - cur + 1, cur); 7320 7321 dst_end -= cur; 7322 src_end -= cur; 7323 len -= cur; 7324 } 7325 } 7326 7327 static struct extent_buffer *get_next_extent_buffer( 7328 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7329 { 7330 struct extent_buffer *eb; 7331 unsigned long index; 7332 u64 page_start = page_offset(page); 7333 7334 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7335 lockdep_assert_held(&fs_info->buffer_lock); 7336 7337 xa_for_each_start(&fs_info->extent_buffers, index, eb, 7338 page_start >> fs_info->sectorsize_bits) { 7339 if (in_range(eb->start, page_start, PAGE_SIZE)) 7340 return eb; 7341 else if (eb->start >= page_start + PAGE_SIZE) 7342 /* Already beyond page end */ 7343 return NULL; 7344 } 7345 return NULL; 7346 } 7347 7348 static int try_release_subpage_extent_buffer(struct page *page) 7349 { 7350 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7351 u64 cur = page_offset(page); 7352 const u64 end = page_offset(page) + PAGE_SIZE; 7353 int ret; 7354 7355 while (cur < end) { 7356 struct extent_buffer *eb = NULL; 7357 7358 /* 7359 * Unlike try_release_extent_buffer() which uses page->private 7360 * to grab buffer, for subpage case we rely on radix tree, thus 7361 * we need to ensure radix tree consistency. 7362 * 7363 * We also want an atomic snapshot of the radix tree, thus go 7364 * with spinlock rather than RCU. 7365 */ 7366 spin_lock(&fs_info->buffer_lock); 7367 eb = get_next_extent_buffer(fs_info, page, cur); 7368 if (!eb) { 7369 /* No more eb in the page range after or at cur */ 7370 spin_unlock(&fs_info->buffer_lock); 7371 break; 7372 } 7373 cur = eb->start + eb->len; 7374 7375 /* 7376 * The same as try_release_extent_buffer(), to ensure the eb 7377 * won't disappear out from under us. 7378 */ 7379 spin_lock(&eb->refs_lock); 7380 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7381 spin_unlock(&eb->refs_lock); 7382 spin_unlock(&fs_info->buffer_lock); 7383 break; 7384 } 7385 spin_unlock(&fs_info->buffer_lock); 7386 7387 /* 7388 * If tree ref isn't set then we know the ref on this eb is a 7389 * real ref, so just return, this eb will likely be freed soon 7390 * anyway. 7391 */ 7392 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7393 spin_unlock(&eb->refs_lock); 7394 break; 7395 } 7396 7397 /* 7398 * Here we don't care about the return value, we will always 7399 * check the page private at the end. And 7400 * release_extent_buffer() will release the refs_lock. 7401 */ 7402 release_extent_buffer(eb); 7403 } 7404 /* 7405 * Finally to check if we have cleared page private, as if we have 7406 * released all ebs in the page, the page private should be cleared now. 7407 */ 7408 spin_lock(&page->mapping->private_lock); 7409 if (!PagePrivate(page)) 7410 ret = 1; 7411 else 7412 ret = 0; 7413 spin_unlock(&page->mapping->private_lock); 7414 return ret; 7415 7416 } 7417 7418 int try_release_extent_buffer(struct page *page) 7419 { 7420 struct extent_buffer *eb; 7421 7422 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 7423 return try_release_subpage_extent_buffer(page); 7424 7425 /* 7426 * We need to make sure nobody is changing page->private, as we rely on 7427 * page->private as the pointer to extent buffer. 7428 */ 7429 spin_lock(&page->mapping->private_lock); 7430 if (!PagePrivate(page)) { 7431 spin_unlock(&page->mapping->private_lock); 7432 return 1; 7433 } 7434 7435 eb = (struct extent_buffer *)page->private; 7436 BUG_ON(!eb); 7437 7438 /* 7439 * This is a little awful but should be ok, we need to make sure that 7440 * the eb doesn't disappear out from under us while we're looking at 7441 * this page. 7442 */ 7443 spin_lock(&eb->refs_lock); 7444 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7445 spin_unlock(&eb->refs_lock); 7446 spin_unlock(&page->mapping->private_lock); 7447 return 0; 7448 } 7449 spin_unlock(&page->mapping->private_lock); 7450 7451 /* 7452 * If tree ref isn't set then we know the ref on this eb is a real ref, 7453 * so just return, this page will likely be freed soon anyway. 7454 */ 7455 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7456 spin_unlock(&eb->refs_lock); 7457 return 0; 7458 } 7459 7460 return release_extent_buffer(eb); 7461 } 7462 7463 /* 7464 * btrfs_readahead_tree_block - attempt to readahead a child block 7465 * @fs_info: the fs_info 7466 * @bytenr: bytenr to read 7467 * @owner_root: objectid of the root that owns this eb 7468 * @gen: generation for the uptodate check, can be 0 7469 * @level: level for the eb 7470 * 7471 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7472 * normal uptodate check of the eb, without checking the generation. If we have 7473 * to read the block we will not block on anything. 7474 */ 7475 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7476 u64 bytenr, u64 owner_root, u64 gen, int level) 7477 { 7478 struct extent_buffer *eb; 7479 int ret; 7480 7481 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7482 if (IS_ERR(eb)) 7483 return; 7484 7485 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7486 free_extent_buffer(eb); 7487 return; 7488 } 7489 7490 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7491 if (ret < 0) 7492 free_extent_buffer_stale(eb); 7493 else 7494 free_extent_buffer(eb); 7495 } 7496 7497 /* 7498 * btrfs_readahead_node_child - readahead a node's child block 7499 * @node: parent node we're reading from 7500 * @slot: slot in the parent node for the child we want to read 7501 * 7502 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7503 * the slot in the node provided. 7504 */ 7505 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7506 { 7507 btrfs_readahead_tree_block(node->fs_info, 7508 btrfs_node_blockptr(node, slot), 7509 btrfs_header_owner(node), 7510 btrfs_node_ptr_generation(node, slot), 7511 btrfs_header_level(node) - 1); 7512 } 7513