xref: /openbmc/linux/fs/btrfs/extent_io.c (revision f6723b56)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       state->start, state->end, state->state, state->tree,
65 		       atomic_read(&state->refs));
66 		list_del(&state->leak_list);
67 		kmem_cache_free(extent_state_cache, state);
68 	}
69 
70 	while (!list_empty(&buffers)) {
71 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73 		       "refs %d\n",
74 		       eb->start, eb->len, atomic_read(&eb->refs));
75 		list_del(&eb->leak_list);
76 		kmem_cache_free(extent_buffer_cache, eb);
77 	}
78 }
79 
80 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
81 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 		struct extent_io_tree *tree, u64 start, u64 end)
84 {
85 	struct inode *inode;
86 	u64 isize;
87 
88 	if (!tree->mapping)
89 		return;
90 
91 	inode = tree->mapping->host;
92 	isize = i_size_read(inode);
93 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 		printk_ratelimited(KERN_DEBUG
95 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 				caller, btrfs_ino(inode), isize, start, end);
97 	}
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head)	do {} while (0)
101 #define btrfs_leak_debug_del(entry)	do {} while (0)
102 #define btrfs_leak_debug_check()	do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
104 #endif
105 
106 #define BUFFER_LRU_MAX 64
107 
108 struct tree_entry {
109 	u64 start;
110 	u64 end;
111 	struct rb_node rb_node;
112 };
113 
114 struct extent_page_data {
115 	struct bio *bio;
116 	struct extent_io_tree *tree;
117 	get_extent_t *get_extent;
118 	unsigned long bio_flags;
119 
120 	/* tells writepage not to lock the state bits for this range
121 	 * it still does the unlocking
122 	 */
123 	unsigned int extent_locked:1;
124 
125 	/* tells the submit_bio code to use a WRITE_SYNC */
126 	unsigned int sync_io:1;
127 };
128 
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133 	if (!tree->mapping)
134 		return NULL;
135 	return btrfs_sb(tree->mapping->host->i_sb);
136 }
137 
138 int __init extent_io_init(void)
139 {
140 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 			sizeof(struct extent_state), 0,
142 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 	if (!extent_state_cache)
144 		return -ENOMEM;
145 
146 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 			sizeof(struct extent_buffer), 0,
148 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 	if (!extent_buffer_cache)
150 		goto free_state_cache;
151 
152 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 				     offsetof(struct btrfs_io_bio, bio));
154 	if (!btrfs_bioset)
155 		goto free_buffer_cache;
156 
157 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 		goto free_bioset;
159 
160 	return 0;
161 
162 free_bioset:
163 	bioset_free(btrfs_bioset);
164 	btrfs_bioset = NULL;
165 
166 free_buffer_cache:
167 	kmem_cache_destroy(extent_buffer_cache);
168 	extent_buffer_cache = NULL;
169 
170 free_state_cache:
171 	kmem_cache_destroy(extent_state_cache);
172 	extent_state_cache = NULL;
173 	return -ENOMEM;
174 }
175 
176 void extent_io_exit(void)
177 {
178 	btrfs_leak_debug_check();
179 
180 	/*
181 	 * Make sure all delayed rcu free are flushed before we
182 	 * destroy caches.
183 	 */
184 	rcu_barrier();
185 	if (extent_state_cache)
186 		kmem_cache_destroy(extent_state_cache);
187 	if (extent_buffer_cache)
188 		kmem_cache_destroy(extent_buffer_cache);
189 	if (btrfs_bioset)
190 		bioset_free(btrfs_bioset);
191 }
192 
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 			 struct address_space *mapping)
195 {
196 	tree->state = RB_ROOT;
197 	tree->ops = NULL;
198 	tree->dirty_bytes = 0;
199 	spin_lock_init(&tree->lock);
200 	tree->mapping = mapping;
201 }
202 
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205 	struct extent_state *state;
206 
207 	state = kmem_cache_alloc(extent_state_cache, mask);
208 	if (!state)
209 		return state;
210 	state->state = 0;
211 	state->private = 0;
212 	state->tree = NULL;
213 	btrfs_leak_debug_add(&state->leak_list, &states);
214 	atomic_set(&state->refs, 1);
215 	init_waitqueue_head(&state->wq);
216 	trace_alloc_extent_state(state, mask, _RET_IP_);
217 	return state;
218 }
219 
220 void free_extent_state(struct extent_state *state)
221 {
222 	if (!state)
223 		return;
224 	if (atomic_dec_and_test(&state->refs)) {
225 		WARN_ON(state->tree);
226 		btrfs_leak_debug_del(&state->leak_list);
227 		trace_free_extent_state(state, _RET_IP_);
228 		kmem_cache_free(extent_state_cache, state);
229 	}
230 }
231 
232 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
233 				   struct rb_node *node,
234 				   struct rb_node ***p_in,
235 				   struct rb_node **parent_in)
236 {
237 	struct rb_node **p = &root->rb_node;
238 	struct rb_node *parent = NULL;
239 	struct tree_entry *entry;
240 
241 	if (p_in && parent_in) {
242 		p = *p_in;
243 		parent = *parent_in;
244 		goto do_insert;
245 	}
246 
247 	while (*p) {
248 		parent = *p;
249 		entry = rb_entry(parent, struct tree_entry, rb_node);
250 
251 		if (offset < entry->start)
252 			p = &(*p)->rb_left;
253 		else if (offset > entry->end)
254 			p = &(*p)->rb_right;
255 		else
256 			return parent;
257 	}
258 
259 do_insert:
260 	rb_link_node(node, parent, p);
261 	rb_insert_color(node, root);
262 	return NULL;
263 }
264 
265 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
266 				      struct rb_node **prev_ret,
267 				      struct rb_node **next_ret,
268 				      struct rb_node ***p_ret,
269 				      struct rb_node **parent_ret)
270 {
271 	struct rb_root *root = &tree->state;
272 	struct rb_node **n = &root->rb_node;
273 	struct rb_node *prev = NULL;
274 	struct rb_node *orig_prev = NULL;
275 	struct tree_entry *entry;
276 	struct tree_entry *prev_entry = NULL;
277 
278 	while (*n) {
279 		prev = *n;
280 		entry = rb_entry(prev, struct tree_entry, rb_node);
281 		prev_entry = entry;
282 
283 		if (offset < entry->start)
284 			n = &(*n)->rb_left;
285 		else if (offset > entry->end)
286 			n = &(*n)->rb_right;
287 		else
288 			return *n;
289 	}
290 
291 	if (p_ret)
292 		*p_ret = n;
293 	if (parent_ret)
294 		*parent_ret = prev;
295 
296 	if (prev_ret) {
297 		orig_prev = prev;
298 		while (prev && offset > prev_entry->end) {
299 			prev = rb_next(prev);
300 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
301 		}
302 		*prev_ret = prev;
303 		prev = orig_prev;
304 	}
305 
306 	if (next_ret) {
307 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
308 		while (prev && offset < prev_entry->start) {
309 			prev = rb_prev(prev);
310 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 		}
312 		*next_ret = prev;
313 	}
314 	return NULL;
315 }
316 
317 static inline struct rb_node *
318 tree_search_for_insert(struct extent_io_tree *tree,
319 		       u64 offset,
320 		       struct rb_node ***p_ret,
321 		       struct rb_node **parent_ret)
322 {
323 	struct rb_node *prev = NULL;
324 	struct rb_node *ret;
325 
326 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
327 	if (!ret)
328 		return prev;
329 	return ret;
330 }
331 
332 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
333 					  u64 offset)
334 {
335 	return tree_search_for_insert(tree, offset, NULL, NULL);
336 }
337 
338 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
339 		     struct extent_state *other)
340 {
341 	if (tree->ops && tree->ops->merge_extent_hook)
342 		tree->ops->merge_extent_hook(tree->mapping->host, new,
343 					     other);
344 }
345 
346 /*
347  * utility function to look for merge candidates inside a given range.
348  * Any extents with matching state are merged together into a single
349  * extent in the tree.  Extents with EXTENT_IO in their state field
350  * are not merged because the end_io handlers need to be able to do
351  * operations on them without sleeping (or doing allocations/splits).
352  *
353  * This should be called with the tree lock held.
354  */
355 static void merge_state(struct extent_io_tree *tree,
356 		        struct extent_state *state)
357 {
358 	struct extent_state *other;
359 	struct rb_node *other_node;
360 
361 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
362 		return;
363 
364 	other_node = rb_prev(&state->rb_node);
365 	if (other_node) {
366 		other = rb_entry(other_node, struct extent_state, rb_node);
367 		if (other->end == state->start - 1 &&
368 		    other->state == state->state) {
369 			merge_cb(tree, state, other);
370 			state->start = other->start;
371 			other->tree = NULL;
372 			rb_erase(&other->rb_node, &tree->state);
373 			free_extent_state(other);
374 		}
375 	}
376 	other_node = rb_next(&state->rb_node);
377 	if (other_node) {
378 		other = rb_entry(other_node, struct extent_state, rb_node);
379 		if (other->start == state->end + 1 &&
380 		    other->state == state->state) {
381 			merge_cb(tree, state, other);
382 			state->end = other->end;
383 			other->tree = NULL;
384 			rb_erase(&other->rb_node, &tree->state);
385 			free_extent_state(other);
386 		}
387 	}
388 }
389 
390 static void set_state_cb(struct extent_io_tree *tree,
391 			 struct extent_state *state, unsigned long *bits)
392 {
393 	if (tree->ops && tree->ops->set_bit_hook)
394 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
395 }
396 
397 static void clear_state_cb(struct extent_io_tree *tree,
398 			   struct extent_state *state, unsigned long *bits)
399 {
400 	if (tree->ops && tree->ops->clear_bit_hook)
401 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
402 }
403 
404 static void set_state_bits(struct extent_io_tree *tree,
405 			   struct extent_state *state, unsigned long *bits);
406 
407 /*
408  * insert an extent_state struct into the tree.  'bits' are set on the
409  * struct before it is inserted.
410  *
411  * This may return -EEXIST if the extent is already there, in which case the
412  * state struct is freed.
413  *
414  * The tree lock is not taken internally.  This is a utility function and
415  * probably isn't what you want to call (see set/clear_extent_bit).
416  */
417 static int insert_state(struct extent_io_tree *tree,
418 			struct extent_state *state, u64 start, u64 end,
419 			struct rb_node ***p,
420 			struct rb_node **parent,
421 			unsigned long *bits)
422 {
423 	struct rb_node *node;
424 
425 	if (end < start)
426 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
427 		       end, start);
428 	state->start = start;
429 	state->end = end;
430 
431 	set_state_bits(tree, state, bits);
432 
433 	node = tree_insert(&tree->state, end, &state->rb_node, p, parent);
434 	if (node) {
435 		struct extent_state *found;
436 		found = rb_entry(node, struct extent_state, rb_node);
437 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
438 		       "%llu %llu\n",
439 		       found->start, found->end, start, end);
440 		return -EEXIST;
441 	}
442 	state->tree = tree;
443 	merge_state(tree, state);
444 	return 0;
445 }
446 
447 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
448 		     u64 split)
449 {
450 	if (tree->ops && tree->ops->split_extent_hook)
451 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
452 }
453 
454 /*
455  * split a given extent state struct in two, inserting the preallocated
456  * struct 'prealloc' as the newly created second half.  'split' indicates an
457  * offset inside 'orig' where it should be split.
458  *
459  * Before calling,
460  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
461  * are two extent state structs in the tree:
462  * prealloc: [orig->start, split - 1]
463  * orig: [ split, orig->end ]
464  *
465  * The tree locks are not taken by this function. They need to be held
466  * by the caller.
467  */
468 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
469 		       struct extent_state *prealloc, u64 split)
470 {
471 	struct rb_node *node;
472 
473 	split_cb(tree, orig, split);
474 
475 	prealloc->start = orig->start;
476 	prealloc->end = split - 1;
477 	prealloc->state = orig->state;
478 	orig->start = split;
479 
480 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node,
481 			   NULL, NULL);
482 	if (node) {
483 		free_extent_state(prealloc);
484 		return -EEXIST;
485 	}
486 	prealloc->tree = tree;
487 	return 0;
488 }
489 
490 static struct extent_state *next_state(struct extent_state *state)
491 {
492 	struct rb_node *next = rb_next(&state->rb_node);
493 	if (next)
494 		return rb_entry(next, struct extent_state, rb_node);
495 	else
496 		return NULL;
497 }
498 
499 /*
500  * utility function to clear some bits in an extent state struct.
501  * it will optionally wake up any one waiting on this state (wake == 1).
502  *
503  * If no bits are set on the state struct after clearing things, the
504  * struct is freed and removed from the tree
505  */
506 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
507 					    struct extent_state *state,
508 					    unsigned long *bits, int wake)
509 {
510 	struct extent_state *next;
511 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
512 
513 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
514 		u64 range = state->end - state->start + 1;
515 		WARN_ON(range > tree->dirty_bytes);
516 		tree->dirty_bytes -= range;
517 	}
518 	clear_state_cb(tree, state, bits);
519 	state->state &= ~bits_to_clear;
520 	if (wake)
521 		wake_up(&state->wq);
522 	if (state->state == 0) {
523 		next = next_state(state);
524 		if (state->tree) {
525 			rb_erase(&state->rb_node, &tree->state);
526 			state->tree = NULL;
527 			free_extent_state(state);
528 		} else {
529 			WARN_ON(1);
530 		}
531 	} else {
532 		merge_state(tree, state);
533 		next = next_state(state);
534 	}
535 	return next;
536 }
537 
538 static struct extent_state *
539 alloc_extent_state_atomic(struct extent_state *prealloc)
540 {
541 	if (!prealloc)
542 		prealloc = alloc_extent_state(GFP_ATOMIC);
543 
544 	return prealloc;
545 }
546 
547 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
548 {
549 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
550 		    "Extent tree was modified by another "
551 		    "thread while locked.");
552 }
553 
554 /*
555  * clear some bits on a range in the tree.  This may require splitting
556  * or inserting elements in the tree, so the gfp mask is used to
557  * indicate which allocations or sleeping are allowed.
558  *
559  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
560  * the given range from the tree regardless of state (ie for truncate).
561  *
562  * the range [start, end] is inclusive.
563  *
564  * This takes the tree lock, and returns 0 on success and < 0 on error.
565  */
566 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
567 		     unsigned long bits, int wake, int delete,
568 		     struct extent_state **cached_state,
569 		     gfp_t mask)
570 {
571 	struct extent_state *state;
572 	struct extent_state *cached;
573 	struct extent_state *prealloc = NULL;
574 	struct rb_node *node;
575 	u64 last_end;
576 	int err;
577 	int clear = 0;
578 
579 	btrfs_debug_check_extent_io_range(tree, start, end);
580 
581 	if (bits & EXTENT_DELALLOC)
582 		bits |= EXTENT_NORESERVE;
583 
584 	if (delete)
585 		bits |= ~EXTENT_CTLBITS;
586 	bits |= EXTENT_FIRST_DELALLOC;
587 
588 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
589 		clear = 1;
590 again:
591 	if (!prealloc && (mask & __GFP_WAIT)) {
592 		prealloc = alloc_extent_state(mask);
593 		if (!prealloc)
594 			return -ENOMEM;
595 	}
596 
597 	spin_lock(&tree->lock);
598 	if (cached_state) {
599 		cached = *cached_state;
600 
601 		if (clear) {
602 			*cached_state = NULL;
603 			cached_state = NULL;
604 		}
605 
606 		if (cached && cached->tree && cached->start <= start &&
607 		    cached->end > start) {
608 			if (clear)
609 				atomic_dec(&cached->refs);
610 			state = cached;
611 			goto hit_next;
612 		}
613 		if (clear)
614 			free_extent_state(cached);
615 	}
616 	/*
617 	 * this search will find the extents that end after
618 	 * our range starts
619 	 */
620 	node = tree_search(tree, start);
621 	if (!node)
622 		goto out;
623 	state = rb_entry(node, struct extent_state, rb_node);
624 hit_next:
625 	if (state->start > end)
626 		goto out;
627 	WARN_ON(state->end < start);
628 	last_end = state->end;
629 
630 	/* the state doesn't have the wanted bits, go ahead */
631 	if (!(state->state & bits)) {
632 		state = next_state(state);
633 		goto next;
634 	}
635 
636 	/*
637 	 *     | ---- desired range ---- |
638 	 *  | state | or
639 	 *  | ------------- state -------------- |
640 	 *
641 	 * We need to split the extent we found, and may flip
642 	 * bits on second half.
643 	 *
644 	 * If the extent we found extends past our range, we
645 	 * just split and search again.  It'll get split again
646 	 * the next time though.
647 	 *
648 	 * If the extent we found is inside our range, we clear
649 	 * the desired bit on it.
650 	 */
651 
652 	if (state->start < start) {
653 		prealloc = alloc_extent_state_atomic(prealloc);
654 		BUG_ON(!prealloc);
655 		err = split_state(tree, state, prealloc, start);
656 		if (err)
657 			extent_io_tree_panic(tree, err);
658 
659 		prealloc = NULL;
660 		if (err)
661 			goto out;
662 		if (state->end <= end) {
663 			state = clear_state_bit(tree, state, &bits, wake);
664 			goto next;
665 		}
666 		goto search_again;
667 	}
668 	/*
669 	 * | ---- desired range ---- |
670 	 *                        | state |
671 	 * We need to split the extent, and clear the bit
672 	 * on the first half
673 	 */
674 	if (state->start <= end && state->end > end) {
675 		prealloc = alloc_extent_state_atomic(prealloc);
676 		BUG_ON(!prealloc);
677 		err = split_state(tree, state, prealloc, end + 1);
678 		if (err)
679 			extent_io_tree_panic(tree, err);
680 
681 		if (wake)
682 			wake_up(&state->wq);
683 
684 		clear_state_bit(tree, prealloc, &bits, wake);
685 
686 		prealloc = NULL;
687 		goto out;
688 	}
689 
690 	state = clear_state_bit(tree, state, &bits, wake);
691 next:
692 	if (last_end == (u64)-1)
693 		goto out;
694 	start = last_end + 1;
695 	if (start <= end && state && !need_resched())
696 		goto hit_next;
697 	goto search_again;
698 
699 out:
700 	spin_unlock(&tree->lock);
701 	if (prealloc)
702 		free_extent_state(prealloc);
703 
704 	return 0;
705 
706 search_again:
707 	if (start > end)
708 		goto out;
709 	spin_unlock(&tree->lock);
710 	if (mask & __GFP_WAIT)
711 		cond_resched();
712 	goto again;
713 }
714 
715 static void wait_on_state(struct extent_io_tree *tree,
716 			  struct extent_state *state)
717 		__releases(tree->lock)
718 		__acquires(tree->lock)
719 {
720 	DEFINE_WAIT(wait);
721 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
722 	spin_unlock(&tree->lock);
723 	schedule();
724 	spin_lock(&tree->lock);
725 	finish_wait(&state->wq, &wait);
726 }
727 
728 /*
729  * waits for one or more bits to clear on a range in the state tree.
730  * The range [start, end] is inclusive.
731  * The tree lock is taken by this function
732  */
733 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734 			    unsigned long bits)
735 {
736 	struct extent_state *state;
737 	struct rb_node *node;
738 
739 	btrfs_debug_check_extent_io_range(tree, start, end);
740 
741 	spin_lock(&tree->lock);
742 again:
743 	while (1) {
744 		/*
745 		 * this search will find all the extents that end after
746 		 * our range starts
747 		 */
748 		node = tree_search(tree, start);
749 		if (!node)
750 			break;
751 
752 		state = rb_entry(node, struct extent_state, rb_node);
753 
754 		if (state->start > end)
755 			goto out;
756 
757 		if (state->state & bits) {
758 			start = state->start;
759 			atomic_inc(&state->refs);
760 			wait_on_state(tree, state);
761 			free_extent_state(state);
762 			goto again;
763 		}
764 		start = state->end + 1;
765 
766 		if (start > end)
767 			break;
768 
769 		cond_resched_lock(&tree->lock);
770 	}
771 out:
772 	spin_unlock(&tree->lock);
773 }
774 
775 static void set_state_bits(struct extent_io_tree *tree,
776 			   struct extent_state *state,
777 			   unsigned long *bits)
778 {
779 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
780 
781 	set_state_cb(tree, state, bits);
782 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
783 		u64 range = state->end - state->start + 1;
784 		tree->dirty_bytes += range;
785 	}
786 	state->state |= bits_to_set;
787 }
788 
789 static void cache_state(struct extent_state *state,
790 			struct extent_state **cached_ptr)
791 {
792 	if (cached_ptr && !(*cached_ptr)) {
793 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
794 			*cached_ptr = state;
795 			atomic_inc(&state->refs);
796 		}
797 	}
798 }
799 
800 /*
801  * set some bits on a range in the tree.  This may require allocations or
802  * sleeping, so the gfp mask is used to indicate what is allowed.
803  *
804  * If any of the exclusive bits are set, this will fail with -EEXIST if some
805  * part of the range already has the desired bits set.  The start of the
806  * existing range is returned in failed_start in this case.
807  *
808  * [start, end] is inclusive This takes the tree lock.
809  */
810 
811 static int __must_check
812 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
813 		 unsigned long bits, unsigned long exclusive_bits,
814 		 u64 *failed_start, struct extent_state **cached_state,
815 		 gfp_t mask)
816 {
817 	struct extent_state *state;
818 	struct extent_state *prealloc = NULL;
819 	struct rb_node *node;
820 	struct rb_node **p;
821 	struct rb_node *parent;
822 	int err = 0;
823 	u64 last_start;
824 	u64 last_end;
825 
826 	btrfs_debug_check_extent_io_range(tree, start, end);
827 
828 	bits |= EXTENT_FIRST_DELALLOC;
829 again:
830 	if (!prealloc && (mask & __GFP_WAIT)) {
831 		prealloc = alloc_extent_state(mask);
832 		BUG_ON(!prealloc);
833 	}
834 
835 	spin_lock(&tree->lock);
836 	if (cached_state && *cached_state) {
837 		state = *cached_state;
838 		if (state->start <= start && state->end > start &&
839 		    state->tree) {
840 			node = &state->rb_node;
841 			goto hit_next;
842 		}
843 	}
844 	/*
845 	 * this search will find all the extents that end after
846 	 * our range starts.
847 	 */
848 	node = tree_search_for_insert(tree, start, &p, &parent);
849 	if (!node) {
850 		prealloc = alloc_extent_state_atomic(prealloc);
851 		BUG_ON(!prealloc);
852 		err = insert_state(tree, prealloc, start, end,
853 				   &p, &parent, &bits);
854 		if (err)
855 			extent_io_tree_panic(tree, err);
856 
857 		cache_state(prealloc, cached_state);
858 		prealloc = NULL;
859 		goto out;
860 	}
861 	state = rb_entry(node, struct extent_state, rb_node);
862 hit_next:
863 	last_start = state->start;
864 	last_end = state->end;
865 
866 	/*
867 	 * | ---- desired range ---- |
868 	 * | state |
869 	 *
870 	 * Just lock what we found and keep going
871 	 */
872 	if (state->start == start && state->end <= end) {
873 		if (state->state & exclusive_bits) {
874 			*failed_start = state->start;
875 			err = -EEXIST;
876 			goto out;
877 		}
878 
879 		set_state_bits(tree, state, &bits);
880 		cache_state(state, cached_state);
881 		merge_state(tree, state);
882 		if (last_end == (u64)-1)
883 			goto out;
884 		start = last_end + 1;
885 		state = next_state(state);
886 		if (start < end && state && state->start == start &&
887 		    !need_resched())
888 			goto hit_next;
889 		goto search_again;
890 	}
891 
892 	/*
893 	 *     | ---- desired range ---- |
894 	 * | state |
895 	 *   or
896 	 * | ------------- state -------------- |
897 	 *
898 	 * We need to split the extent we found, and may flip bits on
899 	 * second half.
900 	 *
901 	 * If the extent we found extends past our
902 	 * range, we just split and search again.  It'll get split
903 	 * again the next time though.
904 	 *
905 	 * If the extent we found is inside our range, we set the
906 	 * desired bit on it.
907 	 */
908 	if (state->start < start) {
909 		if (state->state & exclusive_bits) {
910 			*failed_start = start;
911 			err = -EEXIST;
912 			goto out;
913 		}
914 
915 		prealloc = alloc_extent_state_atomic(prealloc);
916 		BUG_ON(!prealloc);
917 		err = split_state(tree, state, prealloc, start);
918 		if (err)
919 			extent_io_tree_panic(tree, err);
920 
921 		prealloc = NULL;
922 		if (err)
923 			goto out;
924 		if (state->end <= end) {
925 			set_state_bits(tree, state, &bits);
926 			cache_state(state, cached_state);
927 			merge_state(tree, state);
928 			if (last_end == (u64)-1)
929 				goto out;
930 			start = last_end + 1;
931 			state = next_state(state);
932 			if (start < end && state && state->start == start &&
933 			    !need_resched())
934 				goto hit_next;
935 		}
936 		goto search_again;
937 	}
938 	/*
939 	 * | ---- desired range ---- |
940 	 *     | state | or               | state |
941 	 *
942 	 * There's a hole, we need to insert something in it and
943 	 * ignore the extent we found.
944 	 */
945 	if (state->start > start) {
946 		u64 this_end;
947 		if (end < last_start)
948 			this_end = end;
949 		else
950 			this_end = last_start - 1;
951 
952 		prealloc = alloc_extent_state_atomic(prealloc);
953 		BUG_ON(!prealloc);
954 
955 		/*
956 		 * Avoid to free 'prealloc' if it can be merged with
957 		 * the later extent.
958 		 */
959 		err = insert_state(tree, prealloc, start, this_end,
960 				   NULL, NULL, &bits);
961 		if (err)
962 			extent_io_tree_panic(tree, err);
963 
964 		cache_state(prealloc, cached_state);
965 		prealloc = NULL;
966 		start = this_end + 1;
967 		goto search_again;
968 	}
969 	/*
970 	 * | ---- desired range ---- |
971 	 *                        | state |
972 	 * We need to split the extent, and set the bit
973 	 * on the first half
974 	 */
975 	if (state->start <= end && state->end > end) {
976 		if (state->state & exclusive_bits) {
977 			*failed_start = start;
978 			err = -EEXIST;
979 			goto out;
980 		}
981 
982 		prealloc = alloc_extent_state_atomic(prealloc);
983 		BUG_ON(!prealloc);
984 		err = split_state(tree, state, prealloc, end + 1);
985 		if (err)
986 			extent_io_tree_panic(tree, err);
987 
988 		set_state_bits(tree, prealloc, &bits);
989 		cache_state(prealloc, cached_state);
990 		merge_state(tree, prealloc);
991 		prealloc = NULL;
992 		goto out;
993 	}
994 
995 	goto search_again;
996 
997 out:
998 	spin_unlock(&tree->lock);
999 	if (prealloc)
1000 		free_extent_state(prealloc);
1001 
1002 	return err;
1003 
1004 search_again:
1005 	if (start > end)
1006 		goto out;
1007 	spin_unlock(&tree->lock);
1008 	if (mask & __GFP_WAIT)
1009 		cond_resched();
1010 	goto again;
1011 }
1012 
1013 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1014 		   unsigned long bits, u64 * failed_start,
1015 		   struct extent_state **cached_state, gfp_t mask)
1016 {
1017 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1018 				cached_state, mask);
1019 }
1020 
1021 
1022 /**
1023  * convert_extent_bit - convert all bits in a given range from one bit to
1024  * 			another
1025  * @tree:	the io tree to search
1026  * @start:	the start offset in bytes
1027  * @end:	the end offset in bytes (inclusive)
1028  * @bits:	the bits to set in this range
1029  * @clear_bits:	the bits to clear in this range
1030  * @cached_state:	state that we're going to cache
1031  * @mask:	the allocation mask
1032  *
1033  * This will go through and set bits for the given range.  If any states exist
1034  * already in this range they are set with the given bit and cleared of the
1035  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1036  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1037  * boundary bits like LOCK.
1038  */
1039 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1040 		       unsigned long bits, unsigned long clear_bits,
1041 		       struct extent_state **cached_state, gfp_t mask)
1042 {
1043 	struct extent_state *state;
1044 	struct extent_state *prealloc = NULL;
1045 	struct rb_node *node;
1046 	struct rb_node **p;
1047 	struct rb_node *parent;
1048 	int err = 0;
1049 	u64 last_start;
1050 	u64 last_end;
1051 
1052 	btrfs_debug_check_extent_io_range(tree, start, end);
1053 
1054 again:
1055 	if (!prealloc && (mask & __GFP_WAIT)) {
1056 		prealloc = alloc_extent_state(mask);
1057 		if (!prealloc)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	spin_lock(&tree->lock);
1062 	if (cached_state && *cached_state) {
1063 		state = *cached_state;
1064 		if (state->start <= start && state->end > start &&
1065 		    state->tree) {
1066 			node = &state->rb_node;
1067 			goto hit_next;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * this search will find all the extents that end after
1073 	 * our range starts.
1074 	 */
1075 	node = tree_search_for_insert(tree, start, &p, &parent);
1076 	if (!node) {
1077 		prealloc = alloc_extent_state_atomic(prealloc);
1078 		if (!prealloc) {
1079 			err = -ENOMEM;
1080 			goto out;
1081 		}
1082 		err = insert_state(tree, prealloc, start, end,
1083 				   &p, &parent, &bits);
1084 		if (err)
1085 			extent_io_tree_panic(tree, err);
1086 		cache_state(prealloc, cached_state);
1087 		prealloc = NULL;
1088 		goto out;
1089 	}
1090 	state = rb_entry(node, struct extent_state, rb_node);
1091 hit_next:
1092 	last_start = state->start;
1093 	last_end = state->end;
1094 
1095 	/*
1096 	 * | ---- desired range ---- |
1097 	 * | state |
1098 	 *
1099 	 * Just lock what we found and keep going
1100 	 */
1101 	if (state->start == start && state->end <= end) {
1102 		set_state_bits(tree, state, &bits);
1103 		cache_state(state, cached_state);
1104 		state = clear_state_bit(tree, state, &clear_bits, 0);
1105 		if (last_end == (u64)-1)
1106 			goto out;
1107 		start = last_end + 1;
1108 		if (start < end && state && state->start == start &&
1109 		    !need_resched())
1110 			goto hit_next;
1111 		goto search_again;
1112 	}
1113 
1114 	/*
1115 	 *     | ---- desired range ---- |
1116 	 * | state |
1117 	 *   or
1118 	 * | ------------- state -------------- |
1119 	 *
1120 	 * We need to split the extent we found, and may flip bits on
1121 	 * second half.
1122 	 *
1123 	 * If the extent we found extends past our
1124 	 * range, we just split and search again.  It'll get split
1125 	 * again the next time though.
1126 	 *
1127 	 * If the extent we found is inside our range, we set the
1128 	 * desired bit on it.
1129 	 */
1130 	if (state->start < start) {
1131 		prealloc = alloc_extent_state_atomic(prealloc);
1132 		if (!prealloc) {
1133 			err = -ENOMEM;
1134 			goto out;
1135 		}
1136 		err = split_state(tree, state, prealloc, start);
1137 		if (err)
1138 			extent_io_tree_panic(tree, err);
1139 		prealloc = NULL;
1140 		if (err)
1141 			goto out;
1142 		if (state->end <= end) {
1143 			set_state_bits(tree, state, &bits);
1144 			cache_state(state, cached_state);
1145 			state = clear_state_bit(tree, state, &clear_bits, 0);
1146 			if (last_end == (u64)-1)
1147 				goto out;
1148 			start = last_end + 1;
1149 			if (start < end && state && state->start == start &&
1150 			    !need_resched())
1151 				goto hit_next;
1152 		}
1153 		goto search_again;
1154 	}
1155 	/*
1156 	 * | ---- desired range ---- |
1157 	 *     | state | or               | state |
1158 	 *
1159 	 * There's a hole, we need to insert something in it and
1160 	 * ignore the extent we found.
1161 	 */
1162 	if (state->start > start) {
1163 		u64 this_end;
1164 		if (end < last_start)
1165 			this_end = end;
1166 		else
1167 			this_end = last_start - 1;
1168 
1169 		prealloc = alloc_extent_state_atomic(prealloc);
1170 		if (!prealloc) {
1171 			err = -ENOMEM;
1172 			goto out;
1173 		}
1174 
1175 		/*
1176 		 * Avoid to free 'prealloc' if it can be merged with
1177 		 * the later extent.
1178 		 */
1179 		err = insert_state(tree, prealloc, start, this_end,
1180 				   NULL, NULL, &bits);
1181 		if (err)
1182 			extent_io_tree_panic(tree, err);
1183 		cache_state(prealloc, cached_state);
1184 		prealloc = NULL;
1185 		start = this_end + 1;
1186 		goto search_again;
1187 	}
1188 	/*
1189 	 * | ---- desired range ---- |
1190 	 *                        | state |
1191 	 * We need to split the extent, and set the bit
1192 	 * on the first half
1193 	 */
1194 	if (state->start <= end && state->end > end) {
1195 		prealloc = alloc_extent_state_atomic(prealloc);
1196 		if (!prealloc) {
1197 			err = -ENOMEM;
1198 			goto out;
1199 		}
1200 
1201 		err = split_state(tree, state, prealloc, end + 1);
1202 		if (err)
1203 			extent_io_tree_panic(tree, err);
1204 
1205 		set_state_bits(tree, prealloc, &bits);
1206 		cache_state(prealloc, cached_state);
1207 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1208 		prealloc = NULL;
1209 		goto out;
1210 	}
1211 
1212 	goto search_again;
1213 
1214 out:
1215 	spin_unlock(&tree->lock);
1216 	if (prealloc)
1217 		free_extent_state(prealloc);
1218 
1219 	return err;
1220 
1221 search_again:
1222 	if (start > end)
1223 		goto out;
1224 	spin_unlock(&tree->lock);
1225 	if (mask & __GFP_WAIT)
1226 		cond_resched();
1227 	goto again;
1228 }
1229 
1230 /* wrappers around set/clear extent bit */
1231 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1232 		     gfp_t mask)
1233 {
1234 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1235 			      NULL, mask);
1236 }
1237 
1238 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1239 		    unsigned long bits, gfp_t mask)
1240 {
1241 	return set_extent_bit(tree, start, end, bits, NULL,
1242 			      NULL, mask);
1243 }
1244 
1245 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246 		      unsigned long bits, gfp_t mask)
1247 {
1248 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1249 }
1250 
1251 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1252 			struct extent_state **cached_state, gfp_t mask)
1253 {
1254 	return set_extent_bit(tree, start, end,
1255 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1256 			      NULL, cached_state, mask);
1257 }
1258 
1259 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1260 		      struct extent_state **cached_state, gfp_t mask)
1261 {
1262 	return set_extent_bit(tree, start, end,
1263 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1264 			      NULL, cached_state, mask);
1265 }
1266 
1267 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1268 		       gfp_t mask)
1269 {
1270 	return clear_extent_bit(tree, start, end,
1271 				EXTENT_DIRTY | EXTENT_DELALLOC |
1272 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1273 }
1274 
1275 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1276 		     gfp_t mask)
1277 {
1278 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1279 			      NULL, mask);
1280 }
1281 
1282 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1283 			struct extent_state **cached_state, gfp_t mask)
1284 {
1285 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1286 			      cached_state, mask);
1287 }
1288 
1289 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290 			  struct extent_state **cached_state, gfp_t mask)
1291 {
1292 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1293 				cached_state, mask);
1294 }
1295 
1296 /*
1297  * either insert or lock state struct between start and end use mask to tell
1298  * us if waiting is desired.
1299  */
1300 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1301 		     unsigned long bits, struct extent_state **cached_state)
1302 {
1303 	int err;
1304 	u64 failed_start;
1305 	while (1) {
1306 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1307 				       EXTENT_LOCKED, &failed_start,
1308 				       cached_state, GFP_NOFS);
1309 		if (err == -EEXIST) {
1310 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1311 			start = failed_start;
1312 		} else
1313 			break;
1314 		WARN_ON(start > end);
1315 	}
1316 	return err;
1317 }
1318 
1319 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1320 {
1321 	return lock_extent_bits(tree, start, end, 0, NULL);
1322 }
1323 
1324 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1325 {
1326 	int err;
1327 	u64 failed_start;
1328 
1329 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1330 			       &failed_start, NULL, GFP_NOFS);
1331 	if (err == -EEXIST) {
1332 		if (failed_start > start)
1333 			clear_extent_bit(tree, start, failed_start - 1,
1334 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1335 		return 0;
1336 	}
1337 	return 1;
1338 }
1339 
1340 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1341 			 struct extent_state **cached, gfp_t mask)
1342 {
1343 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1344 				mask);
1345 }
1346 
1347 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1350 				GFP_NOFS);
1351 }
1352 
1353 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1354 {
1355 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1356 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1357 	struct page *page;
1358 
1359 	while (index <= end_index) {
1360 		page = find_get_page(inode->i_mapping, index);
1361 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1362 		clear_page_dirty_for_io(page);
1363 		page_cache_release(page);
1364 		index++;
1365 	}
1366 	return 0;
1367 }
1368 
1369 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1372 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1373 	struct page *page;
1374 
1375 	while (index <= end_index) {
1376 		page = find_get_page(inode->i_mapping, index);
1377 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 		account_page_redirty(page);
1379 		__set_page_dirty_nobuffers(page);
1380 		page_cache_release(page);
1381 		index++;
1382 	}
1383 	return 0;
1384 }
1385 
1386 /*
1387  * helper function to set both pages and extents in the tree writeback
1388  */
1389 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1390 {
1391 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1392 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1393 	struct page *page;
1394 
1395 	while (index <= end_index) {
1396 		page = find_get_page(tree->mapping, index);
1397 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1398 		set_page_writeback(page);
1399 		page_cache_release(page);
1400 		index++;
1401 	}
1402 	return 0;
1403 }
1404 
1405 /* find the first state struct with 'bits' set after 'start', and
1406  * return it.  tree->lock must be held.  NULL will returned if
1407  * nothing was found after 'start'
1408  */
1409 static struct extent_state *
1410 find_first_extent_bit_state(struct extent_io_tree *tree,
1411 			    u64 start, unsigned long bits)
1412 {
1413 	struct rb_node *node;
1414 	struct extent_state *state;
1415 
1416 	/*
1417 	 * this search will find all the extents that end after
1418 	 * our range starts.
1419 	 */
1420 	node = tree_search(tree, start);
1421 	if (!node)
1422 		goto out;
1423 
1424 	while (1) {
1425 		state = rb_entry(node, struct extent_state, rb_node);
1426 		if (state->end >= start && (state->state & bits))
1427 			return state;
1428 
1429 		node = rb_next(node);
1430 		if (!node)
1431 			break;
1432 	}
1433 out:
1434 	return NULL;
1435 }
1436 
1437 /*
1438  * find the first offset in the io tree with 'bits' set. zero is
1439  * returned if we find something, and *start_ret and *end_ret are
1440  * set to reflect the state struct that was found.
1441  *
1442  * If nothing was found, 1 is returned. If found something, return 0.
1443  */
1444 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1445 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1446 			  struct extent_state **cached_state)
1447 {
1448 	struct extent_state *state;
1449 	struct rb_node *n;
1450 	int ret = 1;
1451 
1452 	spin_lock(&tree->lock);
1453 	if (cached_state && *cached_state) {
1454 		state = *cached_state;
1455 		if (state->end == start - 1 && state->tree) {
1456 			n = rb_next(&state->rb_node);
1457 			while (n) {
1458 				state = rb_entry(n, struct extent_state,
1459 						 rb_node);
1460 				if (state->state & bits)
1461 					goto got_it;
1462 				n = rb_next(n);
1463 			}
1464 			free_extent_state(*cached_state);
1465 			*cached_state = NULL;
1466 			goto out;
1467 		}
1468 		free_extent_state(*cached_state);
1469 		*cached_state = NULL;
1470 	}
1471 
1472 	state = find_first_extent_bit_state(tree, start, bits);
1473 got_it:
1474 	if (state) {
1475 		cache_state(state, cached_state);
1476 		*start_ret = state->start;
1477 		*end_ret = state->end;
1478 		ret = 0;
1479 	}
1480 out:
1481 	spin_unlock(&tree->lock);
1482 	return ret;
1483 }
1484 
1485 /*
1486  * find a contiguous range of bytes in the file marked as delalloc, not
1487  * more than 'max_bytes'.  start and end are used to return the range,
1488  *
1489  * 1 is returned if we find something, 0 if nothing was in the tree
1490  */
1491 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1492 					u64 *start, u64 *end, u64 max_bytes,
1493 					struct extent_state **cached_state)
1494 {
1495 	struct rb_node *node;
1496 	struct extent_state *state;
1497 	u64 cur_start = *start;
1498 	u64 found = 0;
1499 	u64 total_bytes = 0;
1500 
1501 	spin_lock(&tree->lock);
1502 
1503 	/*
1504 	 * this search will find all the extents that end after
1505 	 * our range starts.
1506 	 */
1507 	node = tree_search(tree, cur_start);
1508 	if (!node) {
1509 		if (!found)
1510 			*end = (u64)-1;
1511 		goto out;
1512 	}
1513 
1514 	while (1) {
1515 		state = rb_entry(node, struct extent_state, rb_node);
1516 		if (found && (state->start != cur_start ||
1517 			      (state->state & EXTENT_BOUNDARY))) {
1518 			goto out;
1519 		}
1520 		if (!(state->state & EXTENT_DELALLOC)) {
1521 			if (!found)
1522 				*end = state->end;
1523 			goto out;
1524 		}
1525 		if (!found) {
1526 			*start = state->start;
1527 			*cached_state = state;
1528 			atomic_inc(&state->refs);
1529 		}
1530 		found++;
1531 		*end = state->end;
1532 		cur_start = state->end + 1;
1533 		node = rb_next(node);
1534 		total_bytes += state->end - state->start + 1;
1535 		if (total_bytes >= max_bytes)
1536 			break;
1537 		if (!node)
1538 			break;
1539 	}
1540 out:
1541 	spin_unlock(&tree->lock);
1542 	return found;
1543 }
1544 
1545 static noinline void __unlock_for_delalloc(struct inode *inode,
1546 					   struct page *locked_page,
1547 					   u64 start, u64 end)
1548 {
1549 	int ret;
1550 	struct page *pages[16];
1551 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1552 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1553 	unsigned long nr_pages = end_index - index + 1;
1554 	int i;
1555 
1556 	if (index == locked_page->index && end_index == index)
1557 		return;
1558 
1559 	while (nr_pages > 0) {
1560 		ret = find_get_pages_contig(inode->i_mapping, index,
1561 				     min_t(unsigned long, nr_pages,
1562 				     ARRAY_SIZE(pages)), pages);
1563 		for (i = 0; i < ret; i++) {
1564 			if (pages[i] != locked_page)
1565 				unlock_page(pages[i]);
1566 			page_cache_release(pages[i]);
1567 		}
1568 		nr_pages -= ret;
1569 		index += ret;
1570 		cond_resched();
1571 	}
1572 }
1573 
1574 static noinline int lock_delalloc_pages(struct inode *inode,
1575 					struct page *locked_page,
1576 					u64 delalloc_start,
1577 					u64 delalloc_end)
1578 {
1579 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1580 	unsigned long start_index = index;
1581 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1582 	unsigned long pages_locked = 0;
1583 	struct page *pages[16];
1584 	unsigned long nrpages;
1585 	int ret;
1586 	int i;
1587 
1588 	/* the caller is responsible for locking the start index */
1589 	if (index == locked_page->index && index == end_index)
1590 		return 0;
1591 
1592 	/* skip the page at the start index */
1593 	nrpages = end_index - index + 1;
1594 	while (nrpages > 0) {
1595 		ret = find_get_pages_contig(inode->i_mapping, index,
1596 				     min_t(unsigned long,
1597 				     nrpages, ARRAY_SIZE(pages)), pages);
1598 		if (ret == 0) {
1599 			ret = -EAGAIN;
1600 			goto done;
1601 		}
1602 		/* now we have an array of pages, lock them all */
1603 		for (i = 0; i < ret; i++) {
1604 			/*
1605 			 * the caller is taking responsibility for
1606 			 * locked_page
1607 			 */
1608 			if (pages[i] != locked_page) {
1609 				lock_page(pages[i]);
1610 				if (!PageDirty(pages[i]) ||
1611 				    pages[i]->mapping != inode->i_mapping) {
1612 					ret = -EAGAIN;
1613 					unlock_page(pages[i]);
1614 					page_cache_release(pages[i]);
1615 					goto done;
1616 				}
1617 			}
1618 			page_cache_release(pages[i]);
1619 			pages_locked++;
1620 		}
1621 		nrpages -= ret;
1622 		index += ret;
1623 		cond_resched();
1624 	}
1625 	ret = 0;
1626 done:
1627 	if (ret && pages_locked) {
1628 		__unlock_for_delalloc(inode, locked_page,
1629 			      delalloc_start,
1630 			      ((u64)(start_index + pages_locked - 1)) <<
1631 			      PAGE_CACHE_SHIFT);
1632 	}
1633 	return ret;
1634 }
1635 
1636 /*
1637  * find a contiguous range of bytes in the file marked as delalloc, not
1638  * more than 'max_bytes'.  start and end are used to return the range,
1639  *
1640  * 1 is returned if we find something, 0 if nothing was in the tree
1641  */
1642 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1643 				    struct extent_io_tree *tree,
1644 				    struct page *locked_page, u64 *start,
1645 				    u64 *end, u64 max_bytes)
1646 {
1647 	u64 delalloc_start;
1648 	u64 delalloc_end;
1649 	u64 found;
1650 	struct extent_state *cached_state = NULL;
1651 	int ret;
1652 	int loops = 0;
1653 
1654 again:
1655 	/* step one, find a bunch of delalloc bytes starting at start */
1656 	delalloc_start = *start;
1657 	delalloc_end = 0;
1658 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1659 				    max_bytes, &cached_state);
1660 	if (!found || delalloc_end <= *start) {
1661 		*start = delalloc_start;
1662 		*end = delalloc_end;
1663 		free_extent_state(cached_state);
1664 		return 0;
1665 	}
1666 
1667 	/*
1668 	 * start comes from the offset of locked_page.  We have to lock
1669 	 * pages in order, so we can't process delalloc bytes before
1670 	 * locked_page
1671 	 */
1672 	if (delalloc_start < *start)
1673 		delalloc_start = *start;
1674 
1675 	/*
1676 	 * make sure to limit the number of pages we try to lock down
1677 	 */
1678 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1679 		delalloc_end = delalloc_start + max_bytes - 1;
1680 
1681 	/* step two, lock all the pages after the page that has start */
1682 	ret = lock_delalloc_pages(inode, locked_page,
1683 				  delalloc_start, delalloc_end);
1684 	if (ret == -EAGAIN) {
1685 		/* some of the pages are gone, lets avoid looping by
1686 		 * shortening the size of the delalloc range we're searching
1687 		 */
1688 		free_extent_state(cached_state);
1689 		if (!loops) {
1690 			max_bytes = PAGE_CACHE_SIZE;
1691 			loops = 1;
1692 			goto again;
1693 		} else {
1694 			found = 0;
1695 			goto out_failed;
1696 		}
1697 	}
1698 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1699 
1700 	/* step three, lock the state bits for the whole range */
1701 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1702 
1703 	/* then test to make sure it is all still delalloc */
1704 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1705 			     EXTENT_DELALLOC, 1, cached_state);
1706 	if (!ret) {
1707 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1708 				     &cached_state, GFP_NOFS);
1709 		__unlock_for_delalloc(inode, locked_page,
1710 			      delalloc_start, delalloc_end);
1711 		cond_resched();
1712 		goto again;
1713 	}
1714 	free_extent_state(cached_state);
1715 	*start = delalloc_start;
1716 	*end = delalloc_end;
1717 out_failed:
1718 	return found;
1719 }
1720 
1721 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1722 				 struct page *locked_page,
1723 				 unsigned long clear_bits,
1724 				 unsigned long page_ops)
1725 {
1726 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1727 	int ret;
1728 	struct page *pages[16];
1729 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1730 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1731 	unsigned long nr_pages = end_index - index + 1;
1732 	int i;
1733 
1734 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1735 	if (page_ops == 0)
1736 		return 0;
1737 
1738 	while (nr_pages > 0) {
1739 		ret = find_get_pages_contig(inode->i_mapping, index,
1740 				     min_t(unsigned long,
1741 				     nr_pages, ARRAY_SIZE(pages)), pages);
1742 		for (i = 0; i < ret; i++) {
1743 
1744 			if (page_ops & PAGE_SET_PRIVATE2)
1745 				SetPagePrivate2(pages[i]);
1746 
1747 			if (pages[i] == locked_page) {
1748 				page_cache_release(pages[i]);
1749 				continue;
1750 			}
1751 			if (page_ops & PAGE_CLEAR_DIRTY)
1752 				clear_page_dirty_for_io(pages[i]);
1753 			if (page_ops & PAGE_SET_WRITEBACK)
1754 				set_page_writeback(pages[i]);
1755 			if (page_ops & PAGE_END_WRITEBACK)
1756 				end_page_writeback(pages[i]);
1757 			if (page_ops & PAGE_UNLOCK)
1758 				unlock_page(pages[i]);
1759 			page_cache_release(pages[i]);
1760 		}
1761 		nr_pages -= ret;
1762 		index += ret;
1763 		cond_resched();
1764 	}
1765 	return 0;
1766 }
1767 
1768 /*
1769  * count the number of bytes in the tree that have a given bit(s)
1770  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1771  * cached.  The total number found is returned.
1772  */
1773 u64 count_range_bits(struct extent_io_tree *tree,
1774 		     u64 *start, u64 search_end, u64 max_bytes,
1775 		     unsigned long bits, int contig)
1776 {
1777 	struct rb_node *node;
1778 	struct extent_state *state;
1779 	u64 cur_start = *start;
1780 	u64 total_bytes = 0;
1781 	u64 last = 0;
1782 	int found = 0;
1783 
1784 	if (WARN_ON(search_end <= cur_start))
1785 		return 0;
1786 
1787 	spin_lock(&tree->lock);
1788 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1789 		total_bytes = tree->dirty_bytes;
1790 		goto out;
1791 	}
1792 	/*
1793 	 * this search will find all the extents that end after
1794 	 * our range starts.
1795 	 */
1796 	node = tree_search(tree, cur_start);
1797 	if (!node)
1798 		goto out;
1799 
1800 	while (1) {
1801 		state = rb_entry(node, struct extent_state, rb_node);
1802 		if (state->start > search_end)
1803 			break;
1804 		if (contig && found && state->start > last + 1)
1805 			break;
1806 		if (state->end >= cur_start && (state->state & bits) == bits) {
1807 			total_bytes += min(search_end, state->end) + 1 -
1808 				       max(cur_start, state->start);
1809 			if (total_bytes >= max_bytes)
1810 				break;
1811 			if (!found) {
1812 				*start = max(cur_start, state->start);
1813 				found = 1;
1814 			}
1815 			last = state->end;
1816 		} else if (contig && found) {
1817 			break;
1818 		}
1819 		node = rb_next(node);
1820 		if (!node)
1821 			break;
1822 	}
1823 out:
1824 	spin_unlock(&tree->lock);
1825 	return total_bytes;
1826 }
1827 
1828 /*
1829  * set the private field for a given byte offset in the tree.  If there isn't
1830  * an extent_state there already, this does nothing.
1831  */
1832 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1833 {
1834 	struct rb_node *node;
1835 	struct extent_state *state;
1836 	int ret = 0;
1837 
1838 	spin_lock(&tree->lock);
1839 	/*
1840 	 * this search will find all the extents that end after
1841 	 * our range starts.
1842 	 */
1843 	node = tree_search(tree, start);
1844 	if (!node) {
1845 		ret = -ENOENT;
1846 		goto out;
1847 	}
1848 	state = rb_entry(node, struct extent_state, rb_node);
1849 	if (state->start != start) {
1850 		ret = -ENOENT;
1851 		goto out;
1852 	}
1853 	state->private = private;
1854 out:
1855 	spin_unlock(&tree->lock);
1856 	return ret;
1857 }
1858 
1859 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1860 {
1861 	struct rb_node *node;
1862 	struct extent_state *state;
1863 	int ret = 0;
1864 
1865 	spin_lock(&tree->lock);
1866 	/*
1867 	 * this search will find all the extents that end after
1868 	 * our range starts.
1869 	 */
1870 	node = tree_search(tree, start);
1871 	if (!node) {
1872 		ret = -ENOENT;
1873 		goto out;
1874 	}
1875 	state = rb_entry(node, struct extent_state, rb_node);
1876 	if (state->start != start) {
1877 		ret = -ENOENT;
1878 		goto out;
1879 	}
1880 	*private = state->private;
1881 out:
1882 	spin_unlock(&tree->lock);
1883 	return ret;
1884 }
1885 
1886 /*
1887  * searches a range in the state tree for a given mask.
1888  * If 'filled' == 1, this returns 1 only if every extent in the tree
1889  * has the bits set.  Otherwise, 1 is returned if any bit in the
1890  * range is found set.
1891  */
1892 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1893 		   unsigned long bits, int filled, struct extent_state *cached)
1894 {
1895 	struct extent_state *state = NULL;
1896 	struct rb_node *node;
1897 	int bitset = 0;
1898 
1899 	spin_lock(&tree->lock);
1900 	if (cached && cached->tree && cached->start <= start &&
1901 	    cached->end > start)
1902 		node = &cached->rb_node;
1903 	else
1904 		node = tree_search(tree, start);
1905 	while (node && start <= end) {
1906 		state = rb_entry(node, struct extent_state, rb_node);
1907 
1908 		if (filled && state->start > start) {
1909 			bitset = 0;
1910 			break;
1911 		}
1912 
1913 		if (state->start > end)
1914 			break;
1915 
1916 		if (state->state & bits) {
1917 			bitset = 1;
1918 			if (!filled)
1919 				break;
1920 		} else if (filled) {
1921 			bitset = 0;
1922 			break;
1923 		}
1924 
1925 		if (state->end == (u64)-1)
1926 			break;
1927 
1928 		start = state->end + 1;
1929 		if (start > end)
1930 			break;
1931 		node = rb_next(node);
1932 		if (!node) {
1933 			if (filled)
1934 				bitset = 0;
1935 			break;
1936 		}
1937 	}
1938 	spin_unlock(&tree->lock);
1939 	return bitset;
1940 }
1941 
1942 /*
1943  * helper function to set a given page up to date if all the
1944  * extents in the tree for that page are up to date
1945  */
1946 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1947 {
1948 	u64 start = page_offset(page);
1949 	u64 end = start + PAGE_CACHE_SIZE - 1;
1950 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1951 		SetPageUptodate(page);
1952 }
1953 
1954 /*
1955  * When IO fails, either with EIO or csum verification fails, we
1956  * try other mirrors that might have a good copy of the data.  This
1957  * io_failure_record is used to record state as we go through all the
1958  * mirrors.  If another mirror has good data, the page is set up to date
1959  * and things continue.  If a good mirror can't be found, the original
1960  * bio end_io callback is called to indicate things have failed.
1961  */
1962 struct io_failure_record {
1963 	struct page *page;
1964 	u64 start;
1965 	u64 len;
1966 	u64 logical;
1967 	unsigned long bio_flags;
1968 	int this_mirror;
1969 	int failed_mirror;
1970 	int in_validation;
1971 };
1972 
1973 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1974 				int did_repair)
1975 {
1976 	int ret;
1977 	int err = 0;
1978 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1979 
1980 	set_state_private(failure_tree, rec->start, 0);
1981 	ret = clear_extent_bits(failure_tree, rec->start,
1982 				rec->start + rec->len - 1,
1983 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1984 	if (ret)
1985 		err = ret;
1986 
1987 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1988 				rec->start + rec->len - 1,
1989 				EXTENT_DAMAGED, GFP_NOFS);
1990 	if (ret && !err)
1991 		err = ret;
1992 
1993 	kfree(rec);
1994 	return err;
1995 }
1996 
1997 /*
1998  * this bypasses the standard btrfs submit functions deliberately, as
1999  * the standard behavior is to write all copies in a raid setup. here we only
2000  * want to write the one bad copy. so we do the mapping for ourselves and issue
2001  * submit_bio directly.
2002  * to avoid any synchronization issues, wait for the data after writing, which
2003  * actually prevents the read that triggered the error from finishing.
2004  * currently, there can be no more than two copies of every data bit. thus,
2005  * exactly one rewrite is required.
2006  */
2007 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2008 			u64 length, u64 logical, struct page *page,
2009 			int mirror_num)
2010 {
2011 	struct bio *bio;
2012 	struct btrfs_device *dev;
2013 	u64 map_length = 0;
2014 	u64 sector;
2015 	struct btrfs_bio *bbio = NULL;
2016 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2017 	int ret;
2018 
2019 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2020 	BUG_ON(!mirror_num);
2021 
2022 	/* we can't repair anything in raid56 yet */
2023 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2024 		return 0;
2025 
2026 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2027 	if (!bio)
2028 		return -EIO;
2029 	bio->bi_iter.bi_size = 0;
2030 	map_length = length;
2031 
2032 	ret = btrfs_map_block(fs_info, WRITE, logical,
2033 			      &map_length, &bbio, mirror_num);
2034 	if (ret) {
2035 		bio_put(bio);
2036 		return -EIO;
2037 	}
2038 	BUG_ON(mirror_num != bbio->mirror_num);
2039 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2040 	bio->bi_iter.bi_sector = sector;
2041 	dev = bbio->stripes[mirror_num-1].dev;
2042 	kfree(bbio);
2043 	if (!dev || !dev->bdev || !dev->writeable) {
2044 		bio_put(bio);
2045 		return -EIO;
2046 	}
2047 	bio->bi_bdev = dev->bdev;
2048 	bio_add_page(bio, page, length, start - page_offset(page));
2049 
2050 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2051 		/* try to remap that extent elsewhere? */
2052 		bio_put(bio);
2053 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054 		return -EIO;
2055 	}
2056 
2057 	printk_ratelimited_in_rcu(KERN_INFO
2058 			"BTRFS: read error corrected: ino %lu off %llu "
2059 		    "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2060 		    start, rcu_str_deref(dev->name), sector);
2061 
2062 	bio_put(bio);
2063 	return 0;
2064 }
2065 
2066 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2067 			 int mirror_num)
2068 {
2069 	u64 start = eb->start;
2070 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2071 	int ret = 0;
2072 
2073 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2074 		return -EROFS;
2075 
2076 	for (i = 0; i < num_pages; i++) {
2077 		struct page *p = extent_buffer_page(eb, i);
2078 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2079 					start, p, mirror_num);
2080 		if (ret)
2081 			break;
2082 		start += PAGE_CACHE_SIZE;
2083 	}
2084 
2085 	return ret;
2086 }
2087 
2088 /*
2089  * each time an IO finishes, we do a fast check in the IO failure tree
2090  * to see if we need to process or clean up an io_failure_record
2091  */
2092 static int clean_io_failure(u64 start, struct page *page)
2093 {
2094 	u64 private;
2095 	u64 private_failure;
2096 	struct io_failure_record *failrec;
2097 	struct inode *inode = page->mapping->host;
2098 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2099 	struct extent_state *state;
2100 	int num_copies;
2101 	int did_repair = 0;
2102 	int ret;
2103 
2104 	private = 0;
2105 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2106 				(u64)-1, 1, EXTENT_DIRTY, 0);
2107 	if (!ret)
2108 		return 0;
2109 
2110 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2111 				&private_failure);
2112 	if (ret)
2113 		return 0;
2114 
2115 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2116 	BUG_ON(!failrec->this_mirror);
2117 
2118 	if (failrec->in_validation) {
2119 		/* there was no real error, just free the record */
2120 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2121 			 failrec->start);
2122 		did_repair = 1;
2123 		goto out;
2124 	}
2125 	if (fs_info->sb->s_flags & MS_RDONLY)
2126 		goto out;
2127 
2128 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2129 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2130 					    failrec->start,
2131 					    EXTENT_LOCKED);
2132 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2133 
2134 	if (state && state->start <= failrec->start &&
2135 	    state->end >= failrec->start + failrec->len - 1) {
2136 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2137 					      failrec->len);
2138 		if (num_copies > 1)  {
2139 			ret = repair_io_failure(fs_info, start, failrec->len,
2140 						failrec->logical, page,
2141 						failrec->failed_mirror);
2142 			did_repair = !ret;
2143 		}
2144 		ret = 0;
2145 	}
2146 
2147 out:
2148 	if (!ret)
2149 		ret = free_io_failure(inode, failrec, did_repair);
2150 
2151 	return ret;
2152 }
2153 
2154 /*
2155  * this is a generic handler for readpage errors (default
2156  * readpage_io_failed_hook). if other copies exist, read those and write back
2157  * good data to the failed position. does not investigate in remapping the
2158  * failed extent elsewhere, hoping the device will be smart enough to do this as
2159  * needed
2160  */
2161 
2162 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2163 			      struct page *page, u64 start, u64 end,
2164 			      int failed_mirror)
2165 {
2166 	struct io_failure_record *failrec = NULL;
2167 	u64 private;
2168 	struct extent_map *em;
2169 	struct inode *inode = page->mapping->host;
2170 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2171 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2172 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2173 	struct bio *bio;
2174 	struct btrfs_io_bio *btrfs_failed_bio;
2175 	struct btrfs_io_bio *btrfs_bio;
2176 	int num_copies;
2177 	int ret;
2178 	int read_mode;
2179 	u64 logical;
2180 
2181 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2182 
2183 	ret = get_state_private(failure_tree, start, &private);
2184 	if (ret) {
2185 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2186 		if (!failrec)
2187 			return -ENOMEM;
2188 		failrec->start = start;
2189 		failrec->len = end - start + 1;
2190 		failrec->this_mirror = 0;
2191 		failrec->bio_flags = 0;
2192 		failrec->in_validation = 0;
2193 
2194 		read_lock(&em_tree->lock);
2195 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2196 		if (!em) {
2197 			read_unlock(&em_tree->lock);
2198 			kfree(failrec);
2199 			return -EIO;
2200 		}
2201 
2202 		if (em->start > start || em->start + em->len <= start) {
2203 			free_extent_map(em);
2204 			em = NULL;
2205 		}
2206 		read_unlock(&em_tree->lock);
2207 
2208 		if (!em) {
2209 			kfree(failrec);
2210 			return -EIO;
2211 		}
2212 		logical = start - em->start;
2213 		logical = em->block_start + logical;
2214 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2215 			logical = em->block_start;
2216 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2217 			extent_set_compress_type(&failrec->bio_flags,
2218 						 em->compress_type);
2219 		}
2220 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2221 			 "len=%llu\n", logical, start, failrec->len);
2222 		failrec->logical = logical;
2223 		free_extent_map(em);
2224 
2225 		/* set the bits in the private failure tree */
2226 		ret = set_extent_bits(failure_tree, start, end,
2227 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2228 		if (ret >= 0)
2229 			ret = set_state_private(failure_tree, start,
2230 						(u64)(unsigned long)failrec);
2231 		/* set the bits in the inode's tree */
2232 		if (ret >= 0)
2233 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2234 						GFP_NOFS);
2235 		if (ret < 0) {
2236 			kfree(failrec);
2237 			return ret;
2238 		}
2239 	} else {
2240 		failrec = (struct io_failure_record *)(unsigned long)private;
2241 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2242 			 "start=%llu, len=%llu, validation=%d\n",
2243 			 failrec->logical, failrec->start, failrec->len,
2244 			 failrec->in_validation);
2245 		/*
2246 		 * when data can be on disk more than twice, add to failrec here
2247 		 * (e.g. with a list for failed_mirror) to make
2248 		 * clean_io_failure() clean all those errors at once.
2249 		 */
2250 	}
2251 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2252 				      failrec->logical, failrec->len);
2253 	if (num_copies == 1) {
2254 		/*
2255 		 * we only have a single copy of the data, so don't bother with
2256 		 * all the retry and error correction code that follows. no
2257 		 * matter what the error is, it is very likely to persist.
2258 		 */
2259 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2260 			 num_copies, failrec->this_mirror, failed_mirror);
2261 		free_io_failure(inode, failrec, 0);
2262 		return -EIO;
2263 	}
2264 
2265 	/*
2266 	 * there are two premises:
2267 	 *	a) deliver good data to the caller
2268 	 *	b) correct the bad sectors on disk
2269 	 */
2270 	if (failed_bio->bi_vcnt > 1) {
2271 		/*
2272 		 * to fulfill b), we need to know the exact failing sectors, as
2273 		 * we don't want to rewrite any more than the failed ones. thus,
2274 		 * we need separate read requests for the failed bio
2275 		 *
2276 		 * if the following BUG_ON triggers, our validation request got
2277 		 * merged. we need separate requests for our algorithm to work.
2278 		 */
2279 		BUG_ON(failrec->in_validation);
2280 		failrec->in_validation = 1;
2281 		failrec->this_mirror = failed_mirror;
2282 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2283 	} else {
2284 		/*
2285 		 * we're ready to fulfill a) and b) alongside. get a good copy
2286 		 * of the failed sector and if we succeed, we have setup
2287 		 * everything for repair_io_failure to do the rest for us.
2288 		 */
2289 		if (failrec->in_validation) {
2290 			BUG_ON(failrec->this_mirror != failed_mirror);
2291 			failrec->in_validation = 0;
2292 			failrec->this_mirror = 0;
2293 		}
2294 		failrec->failed_mirror = failed_mirror;
2295 		failrec->this_mirror++;
2296 		if (failrec->this_mirror == failed_mirror)
2297 			failrec->this_mirror++;
2298 		read_mode = READ_SYNC;
2299 	}
2300 
2301 	if (failrec->this_mirror > num_copies) {
2302 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2303 			 num_copies, failrec->this_mirror, failed_mirror);
2304 		free_io_failure(inode, failrec, 0);
2305 		return -EIO;
2306 	}
2307 
2308 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2309 	if (!bio) {
2310 		free_io_failure(inode, failrec, 0);
2311 		return -EIO;
2312 	}
2313 	bio->bi_end_io = failed_bio->bi_end_io;
2314 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2315 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2316 	bio->bi_iter.bi_size = 0;
2317 
2318 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2319 	if (btrfs_failed_bio->csum) {
2320 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2321 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2322 
2323 		btrfs_bio = btrfs_io_bio(bio);
2324 		btrfs_bio->csum = btrfs_bio->csum_inline;
2325 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2326 		phy_offset *= csum_size;
2327 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2328 		       csum_size);
2329 	}
2330 
2331 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2332 
2333 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2334 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2335 		 failrec->this_mirror, num_copies, failrec->in_validation);
2336 
2337 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2338 					 failrec->this_mirror,
2339 					 failrec->bio_flags, 0);
2340 	return ret;
2341 }
2342 
2343 /* lots and lots of room for performance fixes in the end_bio funcs */
2344 
2345 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2346 {
2347 	int uptodate = (err == 0);
2348 	struct extent_io_tree *tree;
2349 	int ret;
2350 
2351 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2352 
2353 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2354 		ret = tree->ops->writepage_end_io_hook(page, start,
2355 					       end, NULL, uptodate);
2356 		if (ret)
2357 			uptodate = 0;
2358 	}
2359 
2360 	if (!uptodate) {
2361 		ClearPageUptodate(page);
2362 		SetPageError(page);
2363 	}
2364 	return 0;
2365 }
2366 
2367 /*
2368  * after a writepage IO is done, we need to:
2369  * clear the uptodate bits on error
2370  * clear the writeback bits in the extent tree for this IO
2371  * end_page_writeback if the page has no more pending IO
2372  *
2373  * Scheduling is not allowed, so the extent state tree is expected
2374  * to have one and only one object corresponding to this IO.
2375  */
2376 static void end_bio_extent_writepage(struct bio *bio, int err)
2377 {
2378 	struct bio_vec *bvec;
2379 	u64 start;
2380 	u64 end;
2381 	int i;
2382 
2383 	bio_for_each_segment_all(bvec, bio, i) {
2384 		struct page *page = bvec->bv_page;
2385 
2386 		/* We always issue full-page reads, but if some block
2387 		 * in a page fails to read, blk_update_request() will
2388 		 * advance bv_offset and adjust bv_len to compensate.
2389 		 * Print a warning for nonzero offsets, and an error
2390 		 * if they don't add up to a full page.  */
2391 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2392 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2393 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2394 				   "partial page write in btrfs with offset %u and length %u",
2395 					bvec->bv_offset, bvec->bv_len);
2396 			else
2397 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2398 				   "incomplete page write in btrfs with offset %u and "
2399 				   "length %u",
2400 					bvec->bv_offset, bvec->bv_len);
2401 		}
2402 
2403 		start = page_offset(page);
2404 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2405 
2406 		if (end_extent_writepage(page, err, start, end))
2407 			continue;
2408 
2409 		end_page_writeback(page);
2410 	}
2411 
2412 	bio_put(bio);
2413 }
2414 
2415 static void
2416 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2417 			      int uptodate)
2418 {
2419 	struct extent_state *cached = NULL;
2420 	u64 end = start + len - 1;
2421 
2422 	if (uptodate && tree->track_uptodate)
2423 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2424 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2425 }
2426 
2427 /*
2428  * after a readpage IO is done, we need to:
2429  * clear the uptodate bits on error
2430  * set the uptodate bits if things worked
2431  * set the page up to date if all extents in the tree are uptodate
2432  * clear the lock bit in the extent tree
2433  * unlock the page if there are no other extents locked for it
2434  *
2435  * Scheduling is not allowed, so the extent state tree is expected
2436  * to have one and only one object corresponding to this IO.
2437  */
2438 static void end_bio_extent_readpage(struct bio *bio, int err)
2439 {
2440 	struct bio_vec *bvec;
2441 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2442 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2443 	struct extent_io_tree *tree;
2444 	u64 offset = 0;
2445 	u64 start;
2446 	u64 end;
2447 	u64 len;
2448 	u64 extent_start = 0;
2449 	u64 extent_len = 0;
2450 	int mirror;
2451 	int ret;
2452 	int i;
2453 
2454 	if (err)
2455 		uptodate = 0;
2456 
2457 	bio_for_each_segment_all(bvec, bio, i) {
2458 		struct page *page = bvec->bv_page;
2459 		struct inode *inode = page->mapping->host;
2460 
2461 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2462 			 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2463 			 io_bio->mirror_num);
2464 		tree = &BTRFS_I(inode)->io_tree;
2465 
2466 		/* We always issue full-page reads, but if some block
2467 		 * in a page fails to read, blk_update_request() will
2468 		 * advance bv_offset and adjust bv_len to compensate.
2469 		 * Print a warning for nonzero offsets, and an error
2470 		 * if they don't add up to a full page.  */
2471 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2472 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2473 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2474 				   "partial page read in btrfs with offset %u and length %u",
2475 					bvec->bv_offset, bvec->bv_len);
2476 			else
2477 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2478 				   "incomplete page read in btrfs with offset %u and "
2479 				   "length %u",
2480 					bvec->bv_offset, bvec->bv_len);
2481 		}
2482 
2483 		start = page_offset(page);
2484 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2485 		len = bvec->bv_len;
2486 
2487 		mirror = io_bio->mirror_num;
2488 		if (likely(uptodate && tree->ops &&
2489 			   tree->ops->readpage_end_io_hook)) {
2490 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2491 							      page, start, end,
2492 							      mirror);
2493 			if (ret)
2494 				uptodate = 0;
2495 			else
2496 				clean_io_failure(start, page);
2497 		}
2498 
2499 		if (likely(uptodate))
2500 			goto readpage_ok;
2501 
2502 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2503 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2504 			if (!ret && !err &&
2505 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2506 				uptodate = 1;
2507 		} else {
2508 			/*
2509 			 * The generic bio_readpage_error handles errors the
2510 			 * following way: If possible, new read requests are
2511 			 * created and submitted and will end up in
2512 			 * end_bio_extent_readpage as well (if we're lucky, not
2513 			 * in the !uptodate case). In that case it returns 0 and
2514 			 * we just go on with the next page in our bio. If it
2515 			 * can't handle the error it will return -EIO and we
2516 			 * remain responsible for that page.
2517 			 */
2518 			ret = bio_readpage_error(bio, offset, page, start, end,
2519 						 mirror);
2520 			if (ret == 0) {
2521 				uptodate =
2522 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2523 				if (err)
2524 					uptodate = 0;
2525 				continue;
2526 			}
2527 		}
2528 readpage_ok:
2529 		if (likely(uptodate)) {
2530 			loff_t i_size = i_size_read(inode);
2531 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2532 			unsigned offset;
2533 
2534 			/* Zero out the end if this page straddles i_size */
2535 			offset = i_size & (PAGE_CACHE_SIZE-1);
2536 			if (page->index == end_index && offset)
2537 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2538 			SetPageUptodate(page);
2539 		} else {
2540 			ClearPageUptodate(page);
2541 			SetPageError(page);
2542 		}
2543 		unlock_page(page);
2544 		offset += len;
2545 
2546 		if (unlikely(!uptodate)) {
2547 			if (extent_len) {
2548 				endio_readpage_release_extent(tree,
2549 							      extent_start,
2550 							      extent_len, 1);
2551 				extent_start = 0;
2552 				extent_len = 0;
2553 			}
2554 			endio_readpage_release_extent(tree, start,
2555 						      end - start + 1, 0);
2556 		} else if (!extent_len) {
2557 			extent_start = start;
2558 			extent_len = end + 1 - start;
2559 		} else if (extent_start + extent_len == start) {
2560 			extent_len += end + 1 - start;
2561 		} else {
2562 			endio_readpage_release_extent(tree, extent_start,
2563 						      extent_len, uptodate);
2564 			extent_start = start;
2565 			extent_len = end + 1 - start;
2566 		}
2567 	}
2568 
2569 	if (extent_len)
2570 		endio_readpage_release_extent(tree, extent_start, extent_len,
2571 					      uptodate);
2572 	if (io_bio->end_io)
2573 		io_bio->end_io(io_bio, err);
2574 	bio_put(bio);
2575 }
2576 
2577 /*
2578  * this allocates from the btrfs_bioset.  We're returning a bio right now
2579  * but you can call btrfs_io_bio for the appropriate container_of magic
2580  */
2581 struct bio *
2582 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2583 		gfp_t gfp_flags)
2584 {
2585 	struct btrfs_io_bio *btrfs_bio;
2586 	struct bio *bio;
2587 
2588 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2589 
2590 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2591 		while (!bio && (nr_vecs /= 2)) {
2592 			bio = bio_alloc_bioset(gfp_flags,
2593 					       nr_vecs, btrfs_bioset);
2594 		}
2595 	}
2596 
2597 	if (bio) {
2598 		bio->bi_bdev = bdev;
2599 		bio->bi_iter.bi_sector = first_sector;
2600 		btrfs_bio = btrfs_io_bio(bio);
2601 		btrfs_bio->csum = NULL;
2602 		btrfs_bio->csum_allocated = NULL;
2603 		btrfs_bio->end_io = NULL;
2604 	}
2605 	return bio;
2606 }
2607 
2608 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2609 {
2610 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2611 }
2612 
2613 
2614 /* this also allocates from the btrfs_bioset */
2615 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2616 {
2617 	struct btrfs_io_bio *btrfs_bio;
2618 	struct bio *bio;
2619 
2620 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2621 	if (bio) {
2622 		btrfs_bio = btrfs_io_bio(bio);
2623 		btrfs_bio->csum = NULL;
2624 		btrfs_bio->csum_allocated = NULL;
2625 		btrfs_bio->end_io = NULL;
2626 	}
2627 	return bio;
2628 }
2629 
2630 
2631 static int __must_check submit_one_bio(int rw, struct bio *bio,
2632 				       int mirror_num, unsigned long bio_flags)
2633 {
2634 	int ret = 0;
2635 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2636 	struct page *page = bvec->bv_page;
2637 	struct extent_io_tree *tree = bio->bi_private;
2638 	u64 start;
2639 
2640 	start = page_offset(page) + bvec->bv_offset;
2641 
2642 	bio->bi_private = NULL;
2643 
2644 	bio_get(bio);
2645 
2646 	if (tree->ops && tree->ops->submit_bio_hook)
2647 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2648 					   mirror_num, bio_flags, start);
2649 	else
2650 		btrfsic_submit_bio(rw, bio);
2651 
2652 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2653 		ret = -EOPNOTSUPP;
2654 	bio_put(bio);
2655 	return ret;
2656 }
2657 
2658 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2659 		     unsigned long offset, size_t size, struct bio *bio,
2660 		     unsigned long bio_flags)
2661 {
2662 	int ret = 0;
2663 	if (tree->ops && tree->ops->merge_bio_hook)
2664 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2665 						bio_flags);
2666 	BUG_ON(ret < 0);
2667 	return ret;
2668 
2669 }
2670 
2671 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2672 			      struct page *page, sector_t sector,
2673 			      size_t size, unsigned long offset,
2674 			      struct block_device *bdev,
2675 			      struct bio **bio_ret,
2676 			      unsigned long max_pages,
2677 			      bio_end_io_t end_io_func,
2678 			      int mirror_num,
2679 			      unsigned long prev_bio_flags,
2680 			      unsigned long bio_flags)
2681 {
2682 	int ret = 0;
2683 	struct bio *bio;
2684 	int nr;
2685 	int contig = 0;
2686 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2687 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2688 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2689 
2690 	if (bio_ret && *bio_ret) {
2691 		bio = *bio_ret;
2692 		if (old_compressed)
2693 			contig = bio->bi_iter.bi_sector == sector;
2694 		else
2695 			contig = bio_end_sector(bio) == sector;
2696 
2697 		if (prev_bio_flags != bio_flags || !contig ||
2698 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2699 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2700 			ret = submit_one_bio(rw, bio, mirror_num,
2701 					     prev_bio_flags);
2702 			if (ret < 0)
2703 				return ret;
2704 			bio = NULL;
2705 		} else {
2706 			return 0;
2707 		}
2708 	}
2709 	if (this_compressed)
2710 		nr = BIO_MAX_PAGES;
2711 	else
2712 		nr = bio_get_nr_vecs(bdev);
2713 
2714 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2715 	if (!bio)
2716 		return -ENOMEM;
2717 
2718 	bio_add_page(bio, page, page_size, offset);
2719 	bio->bi_end_io = end_io_func;
2720 	bio->bi_private = tree;
2721 
2722 	if (bio_ret)
2723 		*bio_ret = bio;
2724 	else
2725 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2726 
2727 	return ret;
2728 }
2729 
2730 static void attach_extent_buffer_page(struct extent_buffer *eb,
2731 				      struct page *page)
2732 {
2733 	if (!PagePrivate(page)) {
2734 		SetPagePrivate(page);
2735 		page_cache_get(page);
2736 		set_page_private(page, (unsigned long)eb);
2737 	} else {
2738 		WARN_ON(page->private != (unsigned long)eb);
2739 	}
2740 }
2741 
2742 void set_page_extent_mapped(struct page *page)
2743 {
2744 	if (!PagePrivate(page)) {
2745 		SetPagePrivate(page);
2746 		page_cache_get(page);
2747 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2748 	}
2749 }
2750 
2751 static struct extent_map *
2752 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2753 		 u64 start, u64 len, get_extent_t *get_extent,
2754 		 struct extent_map **em_cached)
2755 {
2756 	struct extent_map *em;
2757 
2758 	if (em_cached && *em_cached) {
2759 		em = *em_cached;
2760 		if (em->in_tree && start >= em->start &&
2761 		    start < extent_map_end(em)) {
2762 			atomic_inc(&em->refs);
2763 			return em;
2764 		}
2765 
2766 		free_extent_map(em);
2767 		*em_cached = NULL;
2768 	}
2769 
2770 	em = get_extent(inode, page, pg_offset, start, len, 0);
2771 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2772 		BUG_ON(*em_cached);
2773 		atomic_inc(&em->refs);
2774 		*em_cached = em;
2775 	}
2776 	return em;
2777 }
2778 /*
2779  * basic readpage implementation.  Locked extent state structs are inserted
2780  * into the tree that are removed when the IO is done (by the end_io
2781  * handlers)
2782  * XXX JDM: This needs looking at to ensure proper page locking
2783  */
2784 static int __do_readpage(struct extent_io_tree *tree,
2785 			 struct page *page,
2786 			 get_extent_t *get_extent,
2787 			 struct extent_map **em_cached,
2788 			 struct bio **bio, int mirror_num,
2789 			 unsigned long *bio_flags, int rw)
2790 {
2791 	struct inode *inode = page->mapping->host;
2792 	u64 start = page_offset(page);
2793 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2794 	u64 end;
2795 	u64 cur = start;
2796 	u64 extent_offset;
2797 	u64 last_byte = i_size_read(inode);
2798 	u64 block_start;
2799 	u64 cur_end;
2800 	sector_t sector;
2801 	struct extent_map *em;
2802 	struct block_device *bdev;
2803 	int ret;
2804 	int nr = 0;
2805 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2806 	size_t pg_offset = 0;
2807 	size_t iosize;
2808 	size_t disk_io_size;
2809 	size_t blocksize = inode->i_sb->s_blocksize;
2810 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2811 
2812 	set_page_extent_mapped(page);
2813 
2814 	end = page_end;
2815 	if (!PageUptodate(page)) {
2816 		if (cleancache_get_page(page) == 0) {
2817 			BUG_ON(blocksize != PAGE_SIZE);
2818 			unlock_extent(tree, start, end);
2819 			goto out;
2820 		}
2821 	}
2822 
2823 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2824 		char *userpage;
2825 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2826 
2827 		if (zero_offset) {
2828 			iosize = PAGE_CACHE_SIZE - zero_offset;
2829 			userpage = kmap_atomic(page);
2830 			memset(userpage + zero_offset, 0, iosize);
2831 			flush_dcache_page(page);
2832 			kunmap_atomic(userpage);
2833 		}
2834 	}
2835 	while (cur <= end) {
2836 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2837 
2838 		if (cur >= last_byte) {
2839 			char *userpage;
2840 			struct extent_state *cached = NULL;
2841 
2842 			iosize = PAGE_CACHE_SIZE - pg_offset;
2843 			userpage = kmap_atomic(page);
2844 			memset(userpage + pg_offset, 0, iosize);
2845 			flush_dcache_page(page);
2846 			kunmap_atomic(userpage);
2847 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2848 					    &cached, GFP_NOFS);
2849 			if (!parent_locked)
2850 				unlock_extent_cached(tree, cur,
2851 						     cur + iosize - 1,
2852 						     &cached, GFP_NOFS);
2853 			break;
2854 		}
2855 		em = __get_extent_map(inode, page, pg_offset, cur,
2856 				      end - cur + 1, get_extent, em_cached);
2857 		if (IS_ERR_OR_NULL(em)) {
2858 			SetPageError(page);
2859 			if (!parent_locked)
2860 				unlock_extent(tree, cur, end);
2861 			break;
2862 		}
2863 		extent_offset = cur - em->start;
2864 		BUG_ON(extent_map_end(em) <= cur);
2865 		BUG_ON(end < cur);
2866 
2867 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2868 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2869 			extent_set_compress_type(&this_bio_flag,
2870 						 em->compress_type);
2871 		}
2872 
2873 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2874 		cur_end = min(extent_map_end(em) - 1, end);
2875 		iosize = ALIGN(iosize, blocksize);
2876 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2877 			disk_io_size = em->block_len;
2878 			sector = em->block_start >> 9;
2879 		} else {
2880 			sector = (em->block_start + extent_offset) >> 9;
2881 			disk_io_size = iosize;
2882 		}
2883 		bdev = em->bdev;
2884 		block_start = em->block_start;
2885 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2886 			block_start = EXTENT_MAP_HOLE;
2887 		free_extent_map(em);
2888 		em = NULL;
2889 
2890 		/* we've found a hole, just zero and go on */
2891 		if (block_start == EXTENT_MAP_HOLE) {
2892 			char *userpage;
2893 			struct extent_state *cached = NULL;
2894 
2895 			userpage = kmap_atomic(page);
2896 			memset(userpage + pg_offset, 0, iosize);
2897 			flush_dcache_page(page);
2898 			kunmap_atomic(userpage);
2899 
2900 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2901 					    &cached, GFP_NOFS);
2902 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2903 			                     &cached, GFP_NOFS);
2904 			cur = cur + iosize;
2905 			pg_offset += iosize;
2906 			continue;
2907 		}
2908 		/* the get_extent function already copied into the page */
2909 		if (test_range_bit(tree, cur, cur_end,
2910 				   EXTENT_UPTODATE, 1, NULL)) {
2911 			check_page_uptodate(tree, page);
2912 			if (!parent_locked)
2913 				unlock_extent(tree, cur, cur + iosize - 1);
2914 			cur = cur + iosize;
2915 			pg_offset += iosize;
2916 			continue;
2917 		}
2918 		/* we have an inline extent but it didn't get marked up
2919 		 * to date.  Error out
2920 		 */
2921 		if (block_start == EXTENT_MAP_INLINE) {
2922 			SetPageError(page);
2923 			if (!parent_locked)
2924 				unlock_extent(tree, cur, cur + iosize - 1);
2925 			cur = cur + iosize;
2926 			pg_offset += iosize;
2927 			continue;
2928 		}
2929 
2930 		pnr -= page->index;
2931 		ret = submit_extent_page(rw, tree, page,
2932 					 sector, disk_io_size, pg_offset,
2933 					 bdev, bio, pnr,
2934 					 end_bio_extent_readpage, mirror_num,
2935 					 *bio_flags,
2936 					 this_bio_flag);
2937 		if (!ret) {
2938 			nr++;
2939 			*bio_flags = this_bio_flag;
2940 		} else {
2941 			SetPageError(page);
2942 			if (!parent_locked)
2943 				unlock_extent(tree, cur, cur + iosize - 1);
2944 		}
2945 		cur = cur + iosize;
2946 		pg_offset += iosize;
2947 	}
2948 out:
2949 	if (!nr) {
2950 		if (!PageError(page))
2951 			SetPageUptodate(page);
2952 		unlock_page(page);
2953 	}
2954 	return 0;
2955 }
2956 
2957 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2958 					     struct page *pages[], int nr_pages,
2959 					     u64 start, u64 end,
2960 					     get_extent_t *get_extent,
2961 					     struct extent_map **em_cached,
2962 					     struct bio **bio, int mirror_num,
2963 					     unsigned long *bio_flags, int rw)
2964 {
2965 	struct inode *inode;
2966 	struct btrfs_ordered_extent *ordered;
2967 	int index;
2968 
2969 	inode = pages[0]->mapping->host;
2970 	while (1) {
2971 		lock_extent(tree, start, end);
2972 		ordered = btrfs_lookup_ordered_range(inode, start,
2973 						     end - start + 1);
2974 		if (!ordered)
2975 			break;
2976 		unlock_extent(tree, start, end);
2977 		btrfs_start_ordered_extent(inode, ordered, 1);
2978 		btrfs_put_ordered_extent(ordered);
2979 	}
2980 
2981 	for (index = 0; index < nr_pages; index++) {
2982 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2983 			      mirror_num, bio_flags, rw);
2984 		page_cache_release(pages[index]);
2985 	}
2986 }
2987 
2988 static void __extent_readpages(struct extent_io_tree *tree,
2989 			       struct page *pages[],
2990 			       int nr_pages, get_extent_t *get_extent,
2991 			       struct extent_map **em_cached,
2992 			       struct bio **bio, int mirror_num,
2993 			       unsigned long *bio_flags, int rw)
2994 {
2995 	u64 start = 0;
2996 	u64 end = 0;
2997 	u64 page_start;
2998 	int index;
2999 	int first_index = 0;
3000 
3001 	for (index = 0; index < nr_pages; index++) {
3002 		page_start = page_offset(pages[index]);
3003 		if (!end) {
3004 			start = page_start;
3005 			end = start + PAGE_CACHE_SIZE - 1;
3006 			first_index = index;
3007 		} else if (end + 1 == page_start) {
3008 			end += PAGE_CACHE_SIZE;
3009 		} else {
3010 			__do_contiguous_readpages(tree, &pages[first_index],
3011 						  index - first_index, start,
3012 						  end, get_extent, em_cached,
3013 						  bio, mirror_num, bio_flags,
3014 						  rw);
3015 			start = page_start;
3016 			end = start + PAGE_CACHE_SIZE - 1;
3017 			first_index = index;
3018 		}
3019 	}
3020 
3021 	if (end)
3022 		__do_contiguous_readpages(tree, &pages[first_index],
3023 					  index - first_index, start,
3024 					  end, get_extent, em_cached, bio,
3025 					  mirror_num, bio_flags, rw);
3026 }
3027 
3028 static int __extent_read_full_page(struct extent_io_tree *tree,
3029 				   struct page *page,
3030 				   get_extent_t *get_extent,
3031 				   struct bio **bio, int mirror_num,
3032 				   unsigned long *bio_flags, int rw)
3033 {
3034 	struct inode *inode = page->mapping->host;
3035 	struct btrfs_ordered_extent *ordered;
3036 	u64 start = page_offset(page);
3037 	u64 end = start + PAGE_CACHE_SIZE - 1;
3038 	int ret;
3039 
3040 	while (1) {
3041 		lock_extent(tree, start, end);
3042 		ordered = btrfs_lookup_ordered_extent(inode, start);
3043 		if (!ordered)
3044 			break;
3045 		unlock_extent(tree, start, end);
3046 		btrfs_start_ordered_extent(inode, ordered, 1);
3047 		btrfs_put_ordered_extent(ordered);
3048 	}
3049 
3050 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3051 			    bio_flags, rw);
3052 	return ret;
3053 }
3054 
3055 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3056 			    get_extent_t *get_extent, int mirror_num)
3057 {
3058 	struct bio *bio = NULL;
3059 	unsigned long bio_flags = 0;
3060 	int ret;
3061 
3062 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3063 				      &bio_flags, READ);
3064 	if (bio)
3065 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3066 	return ret;
3067 }
3068 
3069 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3070 				 get_extent_t *get_extent, int mirror_num)
3071 {
3072 	struct bio *bio = NULL;
3073 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3074 	int ret;
3075 
3076 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3077 				      &bio_flags, READ);
3078 	if (bio)
3079 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3080 	return ret;
3081 }
3082 
3083 static noinline void update_nr_written(struct page *page,
3084 				      struct writeback_control *wbc,
3085 				      unsigned long nr_written)
3086 {
3087 	wbc->nr_to_write -= nr_written;
3088 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3089 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3090 		page->mapping->writeback_index = page->index + nr_written;
3091 }
3092 
3093 /*
3094  * the writepage semantics are similar to regular writepage.  extent
3095  * records are inserted to lock ranges in the tree, and as dirty areas
3096  * are found, they are marked writeback.  Then the lock bits are removed
3097  * and the end_io handler clears the writeback ranges
3098  */
3099 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3100 			      void *data)
3101 {
3102 	struct inode *inode = page->mapping->host;
3103 	struct extent_page_data *epd = data;
3104 	struct extent_io_tree *tree = epd->tree;
3105 	u64 start = page_offset(page);
3106 	u64 delalloc_start;
3107 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3108 	u64 end;
3109 	u64 cur = start;
3110 	u64 extent_offset;
3111 	u64 last_byte = i_size_read(inode);
3112 	u64 block_start;
3113 	u64 iosize;
3114 	sector_t sector;
3115 	struct extent_state *cached_state = NULL;
3116 	struct extent_map *em;
3117 	struct block_device *bdev;
3118 	int ret;
3119 	int nr = 0;
3120 	size_t pg_offset = 0;
3121 	size_t blocksize;
3122 	loff_t i_size = i_size_read(inode);
3123 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3124 	u64 nr_delalloc;
3125 	u64 delalloc_end;
3126 	int page_started;
3127 	int compressed;
3128 	int write_flags;
3129 	unsigned long nr_written = 0;
3130 	bool fill_delalloc = true;
3131 
3132 	if (wbc->sync_mode == WB_SYNC_ALL)
3133 		write_flags = WRITE_SYNC;
3134 	else
3135 		write_flags = WRITE;
3136 
3137 	trace___extent_writepage(page, inode, wbc);
3138 
3139 	WARN_ON(!PageLocked(page));
3140 
3141 	ClearPageError(page);
3142 
3143 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3144 	if (page->index > end_index ||
3145 	   (page->index == end_index && !pg_offset)) {
3146 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3147 		unlock_page(page);
3148 		return 0;
3149 	}
3150 
3151 	if (page->index == end_index) {
3152 		char *userpage;
3153 
3154 		userpage = kmap_atomic(page);
3155 		memset(userpage + pg_offset, 0,
3156 		       PAGE_CACHE_SIZE - pg_offset);
3157 		kunmap_atomic(userpage);
3158 		flush_dcache_page(page);
3159 	}
3160 	pg_offset = 0;
3161 
3162 	set_page_extent_mapped(page);
3163 
3164 	if (!tree->ops || !tree->ops->fill_delalloc)
3165 		fill_delalloc = false;
3166 
3167 	delalloc_start = start;
3168 	delalloc_end = 0;
3169 	page_started = 0;
3170 	if (!epd->extent_locked && fill_delalloc) {
3171 		u64 delalloc_to_write = 0;
3172 		/*
3173 		 * make sure the wbc mapping index is at least updated
3174 		 * to this page.
3175 		 */
3176 		update_nr_written(page, wbc, 0);
3177 
3178 		while (delalloc_end < page_end) {
3179 			nr_delalloc = find_lock_delalloc_range(inode, tree,
3180 						       page,
3181 						       &delalloc_start,
3182 						       &delalloc_end,
3183 						       128 * 1024 * 1024);
3184 			if (nr_delalloc == 0) {
3185 				delalloc_start = delalloc_end + 1;
3186 				continue;
3187 			}
3188 			ret = tree->ops->fill_delalloc(inode, page,
3189 						       delalloc_start,
3190 						       delalloc_end,
3191 						       &page_started,
3192 						       &nr_written);
3193 			/* File system has been set read-only */
3194 			if (ret) {
3195 				SetPageError(page);
3196 				goto done;
3197 			}
3198 			/*
3199 			 * delalloc_end is already one less than the total
3200 			 * length, so we don't subtract one from
3201 			 * PAGE_CACHE_SIZE
3202 			 */
3203 			delalloc_to_write += (delalloc_end - delalloc_start +
3204 					      PAGE_CACHE_SIZE) >>
3205 					      PAGE_CACHE_SHIFT;
3206 			delalloc_start = delalloc_end + 1;
3207 		}
3208 		if (wbc->nr_to_write < delalloc_to_write) {
3209 			int thresh = 8192;
3210 
3211 			if (delalloc_to_write < thresh * 2)
3212 				thresh = delalloc_to_write;
3213 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3214 						 thresh);
3215 		}
3216 
3217 		/* did the fill delalloc function already unlock and start
3218 		 * the IO?
3219 		 */
3220 		if (page_started) {
3221 			ret = 0;
3222 			/*
3223 			 * we've unlocked the page, so we can't update
3224 			 * the mapping's writeback index, just update
3225 			 * nr_to_write.
3226 			 */
3227 			wbc->nr_to_write -= nr_written;
3228 			goto done_unlocked;
3229 		}
3230 	}
3231 	if (tree->ops && tree->ops->writepage_start_hook) {
3232 		ret = tree->ops->writepage_start_hook(page, start,
3233 						      page_end);
3234 		if (ret) {
3235 			/* Fixup worker will requeue */
3236 			if (ret == -EBUSY)
3237 				wbc->pages_skipped++;
3238 			else
3239 				redirty_page_for_writepage(wbc, page);
3240 			update_nr_written(page, wbc, nr_written);
3241 			unlock_page(page);
3242 			ret = 0;
3243 			goto done_unlocked;
3244 		}
3245 	}
3246 
3247 	/*
3248 	 * we don't want to touch the inode after unlocking the page,
3249 	 * so we update the mapping writeback index now
3250 	 */
3251 	update_nr_written(page, wbc, nr_written + 1);
3252 
3253 	end = page_end;
3254 	if (last_byte <= start) {
3255 		if (tree->ops && tree->ops->writepage_end_io_hook)
3256 			tree->ops->writepage_end_io_hook(page, start,
3257 							 page_end, NULL, 1);
3258 		goto done;
3259 	}
3260 
3261 	blocksize = inode->i_sb->s_blocksize;
3262 
3263 	while (cur <= end) {
3264 		if (cur >= last_byte) {
3265 			if (tree->ops && tree->ops->writepage_end_io_hook)
3266 				tree->ops->writepage_end_io_hook(page, cur,
3267 							 page_end, NULL, 1);
3268 			break;
3269 		}
3270 		em = epd->get_extent(inode, page, pg_offset, cur,
3271 				     end - cur + 1, 1);
3272 		if (IS_ERR_OR_NULL(em)) {
3273 			SetPageError(page);
3274 			break;
3275 		}
3276 
3277 		extent_offset = cur - em->start;
3278 		BUG_ON(extent_map_end(em) <= cur);
3279 		BUG_ON(end < cur);
3280 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3281 		iosize = ALIGN(iosize, blocksize);
3282 		sector = (em->block_start + extent_offset) >> 9;
3283 		bdev = em->bdev;
3284 		block_start = em->block_start;
3285 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3286 		free_extent_map(em);
3287 		em = NULL;
3288 
3289 		/*
3290 		 * compressed and inline extents are written through other
3291 		 * paths in the FS
3292 		 */
3293 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3294 		    block_start == EXTENT_MAP_INLINE) {
3295 			/*
3296 			 * end_io notification does not happen here for
3297 			 * compressed extents
3298 			 */
3299 			if (!compressed && tree->ops &&
3300 			    tree->ops->writepage_end_io_hook)
3301 				tree->ops->writepage_end_io_hook(page, cur,
3302 							 cur + iosize - 1,
3303 							 NULL, 1);
3304 			else if (compressed) {
3305 				/* we don't want to end_page_writeback on
3306 				 * a compressed extent.  this happens
3307 				 * elsewhere
3308 				 */
3309 				nr++;
3310 			}
3311 
3312 			cur += iosize;
3313 			pg_offset += iosize;
3314 			continue;
3315 		}
3316 		/* leave this out until we have a page_mkwrite call */
3317 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3318 				   EXTENT_DIRTY, 0, NULL)) {
3319 			cur = cur + iosize;
3320 			pg_offset += iosize;
3321 			continue;
3322 		}
3323 
3324 		if (tree->ops && tree->ops->writepage_io_hook) {
3325 			ret = tree->ops->writepage_io_hook(page, cur,
3326 						cur + iosize - 1);
3327 		} else {
3328 			ret = 0;
3329 		}
3330 		if (ret) {
3331 			SetPageError(page);
3332 		} else {
3333 			unsigned long max_nr = end_index + 1;
3334 
3335 			set_range_writeback(tree, cur, cur + iosize - 1);
3336 			if (!PageWriteback(page)) {
3337 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3338 					   "page %lu not writeback, cur %llu end %llu",
3339 				       page->index, cur, end);
3340 			}
3341 
3342 			ret = submit_extent_page(write_flags, tree, page,
3343 						 sector, iosize, pg_offset,
3344 						 bdev, &epd->bio, max_nr,
3345 						 end_bio_extent_writepage,
3346 						 0, 0, 0);
3347 			if (ret)
3348 				SetPageError(page);
3349 		}
3350 		cur = cur + iosize;
3351 		pg_offset += iosize;
3352 		nr++;
3353 	}
3354 done:
3355 	if (nr == 0) {
3356 		/* make sure the mapping tag for page dirty gets cleared */
3357 		set_page_writeback(page);
3358 		end_page_writeback(page);
3359 	}
3360 	unlock_page(page);
3361 
3362 done_unlocked:
3363 
3364 	/* drop our reference on any cached states */
3365 	free_extent_state(cached_state);
3366 	return 0;
3367 }
3368 
3369 static int eb_wait(void *word)
3370 {
3371 	io_schedule();
3372 	return 0;
3373 }
3374 
3375 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3376 {
3377 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3378 		    TASK_UNINTERRUPTIBLE);
3379 }
3380 
3381 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3382 				     struct btrfs_fs_info *fs_info,
3383 				     struct extent_page_data *epd)
3384 {
3385 	unsigned long i, num_pages;
3386 	int flush = 0;
3387 	int ret = 0;
3388 
3389 	if (!btrfs_try_tree_write_lock(eb)) {
3390 		flush = 1;
3391 		flush_write_bio(epd);
3392 		btrfs_tree_lock(eb);
3393 	}
3394 
3395 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3396 		btrfs_tree_unlock(eb);
3397 		if (!epd->sync_io)
3398 			return 0;
3399 		if (!flush) {
3400 			flush_write_bio(epd);
3401 			flush = 1;
3402 		}
3403 		while (1) {
3404 			wait_on_extent_buffer_writeback(eb);
3405 			btrfs_tree_lock(eb);
3406 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3407 				break;
3408 			btrfs_tree_unlock(eb);
3409 		}
3410 	}
3411 
3412 	/*
3413 	 * We need to do this to prevent races in people who check if the eb is
3414 	 * under IO since we can end up having no IO bits set for a short period
3415 	 * of time.
3416 	 */
3417 	spin_lock(&eb->refs_lock);
3418 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3419 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3420 		spin_unlock(&eb->refs_lock);
3421 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3422 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3423 				     -eb->len,
3424 				     fs_info->dirty_metadata_batch);
3425 		ret = 1;
3426 	} else {
3427 		spin_unlock(&eb->refs_lock);
3428 	}
3429 
3430 	btrfs_tree_unlock(eb);
3431 
3432 	if (!ret)
3433 		return ret;
3434 
3435 	num_pages = num_extent_pages(eb->start, eb->len);
3436 	for (i = 0; i < num_pages; i++) {
3437 		struct page *p = extent_buffer_page(eb, i);
3438 
3439 		if (!trylock_page(p)) {
3440 			if (!flush) {
3441 				flush_write_bio(epd);
3442 				flush = 1;
3443 			}
3444 			lock_page(p);
3445 		}
3446 	}
3447 
3448 	return ret;
3449 }
3450 
3451 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3452 {
3453 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3454 	smp_mb__after_clear_bit();
3455 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3456 }
3457 
3458 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3459 {
3460 	struct bio_vec *bvec;
3461 	struct extent_buffer *eb;
3462 	int i, done;
3463 
3464 	bio_for_each_segment_all(bvec, bio, i) {
3465 		struct page *page = bvec->bv_page;
3466 
3467 		eb = (struct extent_buffer *)page->private;
3468 		BUG_ON(!eb);
3469 		done = atomic_dec_and_test(&eb->io_pages);
3470 
3471 		if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3472 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3473 			ClearPageUptodate(page);
3474 			SetPageError(page);
3475 		}
3476 
3477 		end_page_writeback(page);
3478 
3479 		if (!done)
3480 			continue;
3481 
3482 		end_extent_buffer_writeback(eb);
3483 	}
3484 
3485 	bio_put(bio);
3486 }
3487 
3488 static int write_one_eb(struct extent_buffer *eb,
3489 			struct btrfs_fs_info *fs_info,
3490 			struct writeback_control *wbc,
3491 			struct extent_page_data *epd)
3492 {
3493 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3494 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3495 	u64 offset = eb->start;
3496 	unsigned long i, num_pages;
3497 	unsigned long bio_flags = 0;
3498 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3499 	int ret = 0;
3500 
3501 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3502 	num_pages = num_extent_pages(eb->start, eb->len);
3503 	atomic_set(&eb->io_pages, num_pages);
3504 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3505 		bio_flags = EXTENT_BIO_TREE_LOG;
3506 
3507 	for (i = 0; i < num_pages; i++) {
3508 		struct page *p = extent_buffer_page(eb, i);
3509 
3510 		clear_page_dirty_for_io(p);
3511 		set_page_writeback(p);
3512 		ret = submit_extent_page(rw, tree, p, offset >> 9,
3513 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3514 					 -1, end_bio_extent_buffer_writepage,
3515 					 0, epd->bio_flags, bio_flags);
3516 		epd->bio_flags = bio_flags;
3517 		if (ret) {
3518 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3519 			SetPageError(p);
3520 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3521 				end_extent_buffer_writeback(eb);
3522 			ret = -EIO;
3523 			break;
3524 		}
3525 		offset += PAGE_CACHE_SIZE;
3526 		update_nr_written(p, wbc, 1);
3527 		unlock_page(p);
3528 	}
3529 
3530 	if (unlikely(ret)) {
3531 		for (; i < num_pages; i++) {
3532 			struct page *p = extent_buffer_page(eb, i);
3533 			unlock_page(p);
3534 		}
3535 	}
3536 
3537 	return ret;
3538 }
3539 
3540 int btree_write_cache_pages(struct address_space *mapping,
3541 				   struct writeback_control *wbc)
3542 {
3543 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3544 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3545 	struct extent_buffer *eb, *prev_eb = NULL;
3546 	struct extent_page_data epd = {
3547 		.bio = NULL,
3548 		.tree = tree,
3549 		.extent_locked = 0,
3550 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3551 		.bio_flags = 0,
3552 	};
3553 	int ret = 0;
3554 	int done = 0;
3555 	int nr_to_write_done = 0;
3556 	struct pagevec pvec;
3557 	int nr_pages;
3558 	pgoff_t index;
3559 	pgoff_t end;		/* Inclusive */
3560 	int scanned = 0;
3561 	int tag;
3562 
3563 	pagevec_init(&pvec, 0);
3564 	if (wbc->range_cyclic) {
3565 		index = mapping->writeback_index; /* Start from prev offset */
3566 		end = -1;
3567 	} else {
3568 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3569 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3570 		scanned = 1;
3571 	}
3572 	if (wbc->sync_mode == WB_SYNC_ALL)
3573 		tag = PAGECACHE_TAG_TOWRITE;
3574 	else
3575 		tag = PAGECACHE_TAG_DIRTY;
3576 retry:
3577 	if (wbc->sync_mode == WB_SYNC_ALL)
3578 		tag_pages_for_writeback(mapping, index, end);
3579 	while (!done && !nr_to_write_done && (index <= end) &&
3580 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3581 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3582 		unsigned i;
3583 
3584 		scanned = 1;
3585 		for (i = 0; i < nr_pages; i++) {
3586 			struct page *page = pvec.pages[i];
3587 
3588 			if (!PagePrivate(page))
3589 				continue;
3590 
3591 			if (!wbc->range_cyclic && page->index > end) {
3592 				done = 1;
3593 				break;
3594 			}
3595 
3596 			spin_lock(&mapping->private_lock);
3597 			if (!PagePrivate(page)) {
3598 				spin_unlock(&mapping->private_lock);
3599 				continue;
3600 			}
3601 
3602 			eb = (struct extent_buffer *)page->private;
3603 
3604 			/*
3605 			 * Shouldn't happen and normally this would be a BUG_ON
3606 			 * but no sense in crashing the users box for something
3607 			 * we can survive anyway.
3608 			 */
3609 			if (WARN_ON(!eb)) {
3610 				spin_unlock(&mapping->private_lock);
3611 				continue;
3612 			}
3613 
3614 			if (eb == prev_eb) {
3615 				spin_unlock(&mapping->private_lock);
3616 				continue;
3617 			}
3618 
3619 			ret = atomic_inc_not_zero(&eb->refs);
3620 			spin_unlock(&mapping->private_lock);
3621 			if (!ret)
3622 				continue;
3623 
3624 			prev_eb = eb;
3625 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3626 			if (!ret) {
3627 				free_extent_buffer(eb);
3628 				continue;
3629 			}
3630 
3631 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3632 			if (ret) {
3633 				done = 1;
3634 				free_extent_buffer(eb);
3635 				break;
3636 			}
3637 			free_extent_buffer(eb);
3638 
3639 			/*
3640 			 * the filesystem may choose to bump up nr_to_write.
3641 			 * We have to make sure to honor the new nr_to_write
3642 			 * at any time
3643 			 */
3644 			nr_to_write_done = wbc->nr_to_write <= 0;
3645 		}
3646 		pagevec_release(&pvec);
3647 		cond_resched();
3648 	}
3649 	if (!scanned && !done) {
3650 		/*
3651 		 * We hit the last page and there is more work to be done: wrap
3652 		 * back to the start of the file
3653 		 */
3654 		scanned = 1;
3655 		index = 0;
3656 		goto retry;
3657 	}
3658 	flush_write_bio(&epd);
3659 	return ret;
3660 }
3661 
3662 /**
3663  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3664  * @mapping: address space structure to write
3665  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3666  * @writepage: function called for each page
3667  * @data: data passed to writepage function
3668  *
3669  * If a page is already under I/O, write_cache_pages() skips it, even
3670  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3671  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3672  * and msync() need to guarantee that all the data which was dirty at the time
3673  * the call was made get new I/O started against them.  If wbc->sync_mode is
3674  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3675  * existing IO to complete.
3676  */
3677 static int extent_write_cache_pages(struct extent_io_tree *tree,
3678 			     struct address_space *mapping,
3679 			     struct writeback_control *wbc,
3680 			     writepage_t writepage, void *data,
3681 			     void (*flush_fn)(void *))
3682 {
3683 	struct inode *inode = mapping->host;
3684 	int ret = 0;
3685 	int done = 0;
3686 	int nr_to_write_done = 0;
3687 	struct pagevec pvec;
3688 	int nr_pages;
3689 	pgoff_t index;
3690 	pgoff_t end;		/* Inclusive */
3691 	int scanned = 0;
3692 	int tag;
3693 
3694 	/*
3695 	 * We have to hold onto the inode so that ordered extents can do their
3696 	 * work when the IO finishes.  The alternative to this is failing to add
3697 	 * an ordered extent if the igrab() fails there and that is a huge pain
3698 	 * to deal with, so instead just hold onto the inode throughout the
3699 	 * writepages operation.  If it fails here we are freeing up the inode
3700 	 * anyway and we'd rather not waste our time writing out stuff that is
3701 	 * going to be truncated anyway.
3702 	 */
3703 	if (!igrab(inode))
3704 		return 0;
3705 
3706 	pagevec_init(&pvec, 0);
3707 	if (wbc->range_cyclic) {
3708 		index = mapping->writeback_index; /* Start from prev offset */
3709 		end = -1;
3710 	} else {
3711 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3712 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3713 		scanned = 1;
3714 	}
3715 	if (wbc->sync_mode == WB_SYNC_ALL)
3716 		tag = PAGECACHE_TAG_TOWRITE;
3717 	else
3718 		tag = PAGECACHE_TAG_DIRTY;
3719 retry:
3720 	if (wbc->sync_mode == WB_SYNC_ALL)
3721 		tag_pages_for_writeback(mapping, index, end);
3722 	while (!done && !nr_to_write_done && (index <= end) &&
3723 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3724 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3725 		unsigned i;
3726 
3727 		scanned = 1;
3728 		for (i = 0; i < nr_pages; i++) {
3729 			struct page *page = pvec.pages[i];
3730 
3731 			/*
3732 			 * At this point we hold neither mapping->tree_lock nor
3733 			 * lock on the page itself: the page may be truncated or
3734 			 * invalidated (changing page->mapping to NULL), or even
3735 			 * swizzled back from swapper_space to tmpfs file
3736 			 * mapping
3737 			 */
3738 			if (!trylock_page(page)) {
3739 				flush_fn(data);
3740 				lock_page(page);
3741 			}
3742 
3743 			if (unlikely(page->mapping != mapping)) {
3744 				unlock_page(page);
3745 				continue;
3746 			}
3747 
3748 			if (!wbc->range_cyclic && page->index > end) {
3749 				done = 1;
3750 				unlock_page(page);
3751 				continue;
3752 			}
3753 
3754 			if (wbc->sync_mode != WB_SYNC_NONE) {
3755 				if (PageWriteback(page))
3756 					flush_fn(data);
3757 				wait_on_page_writeback(page);
3758 			}
3759 
3760 			if (PageWriteback(page) ||
3761 			    !clear_page_dirty_for_io(page)) {
3762 				unlock_page(page);
3763 				continue;
3764 			}
3765 
3766 			ret = (*writepage)(page, wbc, data);
3767 
3768 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3769 				unlock_page(page);
3770 				ret = 0;
3771 			}
3772 			if (ret)
3773 				done = 1;
3774 
3775 			/*
3776 			 * the filesystem may choose to bump up nr_to_write.
3777 			 * We have to make sure to honor the new nr_to_write
3778 			 * at any time
3779 			 */
3780 			nr_to_write_done = wbc->nr_to_write <= 0;
3781 		}
3782 		pagevec_release(&pvec);
3783 		cond_resched();
3784 	}
3785 	if (!scanned && !done) {
3786 		/*
3787 		 * We hit the last page and there is more work to be done: wrap
3788 		 * back to the start of the file
3789 		 */
3790 		scanned = 1;
3791 		index = 0;
3792 		goto retry;
3793 	}
3794 	btrfs_add_delayed_iput(inode);
3795 	return ret;
3796 }
3797 
3798 static void flush_epd_write_bio(struct extent_page_data *epd)
3799 {
3800 	if (epd->bio) {
3801 		int rw = WRITE;
3802 		int ret;
3803 
3804 		if (epd->sync_io)
3805 			rw = WRITE_SYNC;
3806 
3807 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3808 		BUG_ON(ret < 0); /* -ENOMEM */
3809 		epd->bio = NULL;
3810 	}
3811 }
3812 
3813 static noinline void flush_write_bio(void *data)
3814 {
3815 	struct extent_page_data *epd = data;
3816 	flush_epd_write_bio(epd);
3817 }
3818 
3819 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3820 			  get_extent_t *get_extent,
3821 			  struct writeback_control *wbc)
3822 {
3823 	int ret;
3824 	struct extent_page_data epd = {
3825 		.bio = NULL,
3826 		.tree = tree,
3827 		.get_extent = get_extent,
3828 		.extent_locked = 0,
3829 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3830 		.bio_flags = 0,
3831 	};
3832 
3833 	ret = __extent_writepage(page, wbc, &epd);
3834 
3835 	flush_epd_write_bio(&epd);
3836 	return ret;
3837 }
3838 
3839 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3840 			      u64 start, u64 end, get_extent_t *get_extent,
3841 			      int mode)
3842 {
3843 	int ret = 0;
3844 	struct address_space *mapping = inode->i_mapping;
3845 	struct page *page;
3846 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3847 		PAGE_CACHE_SHIFT;
3848 
3849 	struct extent_page_data epd = {
3850 		.bio = NULL,
3851 		.tree = tree,
3852 		.get_extent = get_extent,
3853 		.extent_locked = 1,
3854 		.sync_io = mode == WB_SYNC_ALL,
3855 		.bio_flags = 0,
3856 	};
3857 	struct writeback_control wbc_writepages = {
3858 		.sync_mode	= mode,
3859 		.nr_to_write	= nr_pages * 2,
3860 		.range_start	= start,
3861 		.range_end	= end + 1,
3862 	};
3863 
3864 	while (start <= end) {
3865 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3866 		if (clear_page_dirty_for_io(page))
3867 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3868 		else {
3869 			if (tree->ops && tree->ops->writepage_end_io_hook)
3870 				tree->ops->writepage_end_io_hook(page, start,
3871 						 start + PAGE_CACHE_SIZE - 1,
3872 						 NULL, 1);
3873 			unlock_page(page);
3874 		}
3875 		page_cache_release(page);
3876 		start += PAGE_CACHE_SIZE;
3877 	}
3878 
3879 	flush_epd_write_bio(&epd);
3880 	return ret;
3881 }
3882 
3883 int extent_writepages(struct extent_io_tree *tree,
3884 		      struct address_space *mapping,
3885 		      get_extent_t *get_extent,
3886 		      struct writeback_control *wbc)
3887 {
3888 	int ret = 0;
3889 	struct extent_page_data epd = {
3890 		.bio = NULL,
3891 		.tree = tree,
3892 		.get_extent = get_extent,
3893 		.extent_locked = 0,
3894 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3895 		.bio_flags = 0,
3896 	};
3897 
3898 	ret = extent_write_cache_pages(tree, mapping, wbc,
3899 				       __extent_writepage, &epd,
3900 				       flush_write_bio);
3901 	flush_epd_write_bio(&epd);
3902 	return ret;
3903 }
3904 
3905 int extent_readpages(struct extent_io_tree *tree,
3906 		     struct address_space *mapping,
3907 		     struct list_head *pages, unsigned nr_pages,
3908 		     get_extent_t get_extent)
3909 {
3910 	struct bio *bio = NULL;
3911 	unsigned page_idx;
3912 	unsigned long bio_flags = 0;
3913 	struct page *pagepool[16];
3914 	struct page *page;
3915 	struct extent_map *em_cached = NULL;
3916 	int nr = 0;
3917 
3918 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3919 		page = list_entry(pages->prev, struct page, lru);
3920 
3921 		prefetchw(&page->flags);
3922 		list_del(&page->lru);
3923 		if (add_to_page_cache_lru(page, mapping,
3924 					page->index, GFP_NOFS)) {
3925 			page_cache_release(page);
3926 			continue;
3927 		}
3928 
3929 		pagepool[nr++] = page;
3930 		if (nr < ARRAY_SIZE(pagepool))
3931 			continue;
3932 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3933 				   &bio, 0, &bio_flags, READ);
3934 		nr = 0;
3935 	}
3936 	if (nr)
3937 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3938 				   &bio, 0, &bio_flags, READ);
3939 
3940 	if (em_cached)
3941 		free_extent_map(em_cached);
3942 
3943 	BUG_ON(!list_empty(pages));
3944 	if (bio)
3945 		return submit_one_bio(READ, bio, 0, bio_flags);
3946 	return 0;
3947 }
3948 
3949 /*
3950  * basic invalidatepage code, this waits on any locked or writeback
3951  * ranges corresponding to the page, and then deletes any extent state
3952  * records from the tree
3953  */
3954 int extent_invalidatepage(struct extent_io_tree *tree,
3955 			  struct page *page, unsigned long offset)
3956 {
3957 	struct extent_state *cached_state = NULL;
3958 	u64 start = page_offset(page);
3959 	u64 end = start + PAGE_CACHE_SIZE - 1;
3960 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3961 
3962 	start += ALIGN(offset, blocksize);
3963 	if (start > end)
3964 		return 0;
3965 
3966 	lock_extent_bits(tree, start, end, 0, &cached_state);
3967 	wait_on_page_writeback(page);
3968 	clear_extent_bit(tree, start, end,
3969 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3970 			 EXTENT_DO_ACCOUNTING,
3971 			 1, 1, &cached_state, GFP_NOFS);
3972 	return 0;
3973 }
3974 
3975 /*
3976  * a helper for releasepage, this tests for areas of the page that
3977  * are locked or under IO and drops the related state bits if it is safe
3978  * to drop the page.
3979  */
3980 static int try_release_extent_state(struct extent_map_tree *map,
3981 				    struct extent_io_tree *tree,
3982 				    struct page *page, gfp_t mask)
3983 {
3984 	u64 start = page_offset(page);
3985 	u64 end = start + PAGE_CACHE_SIZE - 1;
3986 	int ret = 1;
3987 
3988 	if (test_range_bit(tree, start, end,
3989 			   EXTENT_IOBITS, 0, NULL))
3990 		ret = 0;
3991 	else {
3992 		if ((mask & GFP_NOFS) == GFP_NOFS)
3993 			mask = GFP_NOFS;
3994 		/*
3995 		 * at this point we can safely clear everything except the
3996 		 * locked bit and the nodatasum bit
3997 		 */
3998 		ret = clear_extent_bit(tree, start, end,
3999 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4000 				 0, 0, NULL, mask);
4001 
4002 		/* if clear_extent_bit failed for enomem reasons,
4003 		 * we can't allow the release to continue.
4004 		 */
4005 		if (ret < 0)
4006 			ret = 0;
4007 		else
4008 			ret = 1;
4009 	}
4010 	return ret;
4011 }
4012 
4013 /*
4014  * a helper for releasepage.  As long as there are no locked extents
4015  * in the range corresponding to the page, both state records and extent
4016  * map records are removed
4017  */
4018 int try_release_extent_mapping(struct extent_map_tree *map,
4019 			       struct extent_io_tree *tree, struct page *page,
4020 			       gfp_t mask)
4021 {
4022 	struct extent_map *em;
4023 	u64 start = page_offset(page);
4024 	u64 end = start + PAGE_CACHE_SIZE - 1;
4025 
4026 	if ((mask & __GFP_WAIT) &&
4027 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4028 		u64 len;
4029 		while (start <= end) {
4030 			len = end - start + 1;
4031 			write_lock(&map->lock);
4032 			em = lookup_extent_mapping(map, start, len);
4033 			if (!em) {
4034 				write_unlock(&map->lock);
4035 				break;
4036 			}
4037 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4038 			    em->start != start) {
4039 				write_unlock(&map->lock);
4040 				free_extent_map(em);
4041 				break;
4042 			}
4043 			if (!test_range_bit(tree, em->start,
4044 					    extent_map_end(em) - 1,
4045 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4046 					    0, NULL)) {
4047 				remove_extent_mapping(map, em);
4048 				/* once for the rb tree */
4049 				free_extent_map(em);
4050 			}
4051 			start = extent_map_end(em);
4052 			write_unlock(&map->lock);
4053 
4054 			/* once for us */
4055 			free_extent_map(em);
4056 		}
4057 	}
4058 	return try_release_extent_state(map, tree, page, mask);
4059 }
4060 
4061 /*
4062  * helper function for fiemap, which doesn't want to see any holes.
4063  * This maps until we find something past 'last'
4064  */
4065 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4066 						u64 offset,
4067 						u64 last,
4068 						get_extent_t *get_extent)
4069 {
4070 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4071 	struct extent_map *em;
4072 	u64 len;
4073 
4074 	if (offset >= last)
4075 		return NULL;
4076 
4077 	while (1) {
4078 		len = last - offset;
4079 		if (len == 0)
4080 			break;
4081 		len = ALIGN(len, sectorsize);
4082 		em = get_extent(inode, NULL, 0, offset, len, 0);
4083 		if (IS_ERR_OR_NULL(em))
4084 			return em;
4085 
4086 		/* if this isn't a hole return it */
4087 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4088 		    em->block_start != EXTENT_MAP_HOLE) {
4089 			return em;
4090 		}
4091 
4092 		/* this is a hole, advance to the next extent */
4093 		offset = extent_map_end(em);
4094 		free_extent_map(em);
4095 		if (offset >= last)
4096 			break;
4097 	}
4098 	return NULL;
4099 }
4100 
4101 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4102 {
4103 	unsigned long cnt = *((unsigned long *)ctx);
4104 
4105 	cnt++;
4106 	*((unsigned long *)ctx) = cnt;
4107 
4108 	/* Now we're sure that the extent is shared. */
4109 	if (cnt > 1)
4110 		return 1;
4111 	return 0;
4112 }
4113 
4114 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4115 		__u64 start, __u64 len, get_extent_t *get_extent)
4116 {
4117 	int ret = 0;
4118 	u64 off = start;
4119 	u64 max = start + len;
4120 	u32 flags = 0;
4121 	u32 found_type;
4122 	u64 last;
4123 	u64 last_for_get_extent = 0;
4124 	u64 disko = 0;
4125 	u64 isize = i_size_read(inode);
4126 	struct btrfs_key found_key;
4127 	struct extent_map *em = NULL;
4128 	struct extent_state *cached_state = NULL;
4129 	struct btrfs_path *path;
4130 	int end = 0;
4131 	u64 em_start = 0;
4132 	u64 em_len = 0;
4133 	u64 em_end = 0;
4134 
4135 	if (len == 0)
4136 		return -EINVAL;
4137 
4138 	path = btrfs_alloc_path();
4139 	if (!path)
4140 		return -ENOMEM;
4141 	path->leave_spinning = 1;
4142 
4143 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4144 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4145 
4146 	/*
4147 	 * lookup the last file extent.  We're not using i_size here
4148 	 * because there might be preallocation past i_size
4149 	 */
4150 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4151 				       path, btrfs_ino(inode), -1, 0);
4152 	if (ret < 0) {
4153 		btrfs_free_path(path);
4154 		return ret;
4155 	}
4156 	WARN_ON(!ret);
4157 	path->slots[0]--;
4158 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4159 	found_type = btrfs_key_type(&found_key);
4160 
4161 	/* No extents, but there might be delalloc bits */
4162 	if (found_key.objectid != btrfs_ino(inode) ||
4163 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4164 		/* have to trust i_size as the end */
4165 		last = (u64)-1;
4166 		last_for_get_extent = isize;
4167 	} else {
4168 		/*
4169 		 * remember the start of the last extent.  There are a
4170 		 * bunch of different factors that go into the length of the
4171 		 * extent, so its much less complex to remember where it started
4172 		 */
4173 		last = found_key.offset;
4174 		last_for_get_extent = last + 1;
4175 	}
4176 	btrfs_release_path(path);
4177 
4178 	/*
4179 	 * we might have some extents allocated but more delalloc past those
4180 	 * extents.  so, we trust isize unless the start of the last extent is
4181 	 * beyond isize
4182 	 */
4183 	if (last < isize) {
4184 		last = (u64)-1;
4185 		last_for_get_extent = isize;
4186 	}
4187 
4188 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4189 			 &cached_state);
4190 
4191 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4192 				   get_extent);
4193 	if (!em)
4194 		goto out;
4195 	if (IS_ERR(em)) {
4196 		ret = PTR_ERR(em);
4197 		goto out;
4198 	}
4199 
4200 	while (!end) {
4201 		u64 offset_in_extent = 0;
4202 
4203 		/* break if the extent we found is outside the range */
4204 		if (em->start >= max || extent_map_end(em) < off)
4205 			break;
4206 
4207 		/*
4208 		 * get_extent may return an extent that starts before our
4209 		 * requested range.  We have to make sure the ranges
4210 		 * we return to fiemap always move forward and don't
4211 		 * overlap, so adjust the offsets here
4212 		 */
4213 		em_start = max(em->start, off);
4214 
4215 		/*
4216 		 * record the offset from the start of the extent
4217 		 * for adjusting the disk offset below.  Only do this if the
4218 		 * extent isn't compressed since our in ram offset may be past
4219 		 * what we have actually allocated on disk.
4220 		 */
4221 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4222 			offset_in_extent = em_start - em->start;
4223 		em_end = extent_map_end(em);
4224 		em_len = em_end - em_start;
4225 		disko = 0;
4226 		flags = 0;
4227 
4228 		/*
4229 		 * bump off for our next call to get_extent
4230 		 */
4231 		off = extent_map_end(em);
4232 		if (off >= max)
4233 			end = 1;
4234 
4235 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4236 			end = 1;
4237 			flags |= FIEMAP_EXTENT_LAST;
4238 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4239 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4240 				  FIEMAP_EXTENT_NOT_ALIGNED);
4241 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4242 			flags |= (FIEMAP_EXTENT_DELALLOC |
4243 				  FIEMAP_EXTENT_UNKNOWN);
4244 		} else {
4245 			unsigned long ref_cnt = 0;
4246 
4247 			disko = em->block_start + offset_in_extent;
4248 
4249 			/*
4250 			 * As btrfs supports shared space, this information
4251 			 * can be exported to userspace tools via
4252 			 * flag FIEMAP_EXTENT_SHARED.
4253 			 */
4254 			ret = iterate_inodes_from_logical(
4255 					em->block_start,
4256 					BTRFS_I(inode)->root->fs_info,
4257 					path, count_ext_ref, &ref_cnt);
4258 			if (ret < 0 && ret != -ENOENT)
4259 				goto out_free;
4260 
4261 			if (ref_cnt > 1)
4262 				flags |= FIEMAP_EXTENT_SHARED;
4263 		}
4264 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4265 			flags |= FIEMAP_EXTENT_ENCODED;
4266 
4267 		free_extent_map(em);
4268 		em = NULL;
4269 		if ((em_start >= last) || em_len == (u64)-1 ||
4270 		   (last == (u64)-1 && isize <= em_end)) {
4271 			flags |= FIEMAP_EXTENT_LAST;
4272 			end = 1;
4273 		}
4274 
4275 		/* now scan forward to see if this is really the last extent. */
4276 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4277 					   get_extent);
4278 		if (IS_ERR(em)) {
4279 			ret = PTR_ERR(em);
4280 			goto out;
4281 		}
4282 		if (!em) {
4283 			flags |= FIEMAP_EXTENT_LAST;
4284 			end = 1;
4285 		}
4286 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4287 					      em_len, flags);
4288 		if (ret)
4289 			goto out_free;
4290 	}
4291 out_free:
4292 	free_extent_map(em);
4293 out:
4294 	btrfs_free_path(path);
4295 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4296 			     &cached_state, GFP_NOFS);
4297 	return ret;
4298 }
4299 
4300 static void __free_extent_buffer(struct extent_buffer *eb)
4301 {
4302 	btrfs_leak_debug_del(&eb->leak_list);
4303 	kmem_cache_free(extent_buffer_cache, eb);
4304 }
4305 
4306 static int extent_buffer_under_io(struct extent_buffer *eb)
4307 {
4308 	return (atomic_read(&eb->io_pages) ||
4309 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4310 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4311 }
4312 
4313 /*
4314  * Helper for releasing extent buffer page.
4315  */
4316 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4317 						unsigned long start_idx)
4318 {
4319 	unsigned long index;
4320 	unsigned long num_pages;
4321 	struct page *page;
4322 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4323 
4324 	BUG_ON(extent_buffer_under_io(eb));
4325 
4326 	num_pages = num_extent_pages(eb->start, eb->len);
4327 	index = start_idx + num_pages;
4328 	if (start_idx >= index)
4329 		return;
4330 
4331 	do {
4332 		index--;
4333 		page = extent_buffer_page(eb, index);
4334 		if (page && mapped) {
4335 			spin_lock(&page->mapping->private_lock);
4336 			/*
4337 			 * We do this since we'll remove the pages after we've
4338 			 * removed the eb from the radix tree, so we could race
4339 			 * and have this page now attached to the new eb.  So
4340 			 * only clear page_private if it's still connected to
4341 			 * this eb.
4342 			 */
4343 			if (PagePrivate(page) &&
4344 			    page->private == (unsigned long)eb) {
4345 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4346 				BUG_ON(PageDirty(page));
4347 				BUG_ON(PageWriteback(page));
4348 				/*
4349 				 * We need to make sure we haven't be attached
4350 				 * to a new eb.
4351 				 */
4352 				ClearPagePrivate(page);
4353 				set_page_private(page, 0);
4354 				/* One for the page private */
4355 				page_cache_release(page);
4356 			}
4357 			spin_unlock(&page->mapping->private_lock);
4358 
4359 		}
4360 		if (page) {
4361 			/* One for when we alloced the page */
4362 			page_cache_release(page);
4363 		}
4364 	} while (index != start_idx);
4365 }
4366 
4367 /*
4368  * Helper for releasing the extent buffer.
4369  */
4370 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4371 {
4372 	btrfs_release_extent_buffer_page(eb, 0);
4373 	__free_extent_buffer(eb);
4374 }
4375 
4376 static struct extent_buffer *
4377 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4378 		      unsigned long len, gfp_t mask)
4379 {
4380 	struct extent_buffer *eb = NULL;
4381 
4382 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4383 	if (eb == NULL)
4384 		return NULL;
4385 	eb->start = start;
4386 	eb->len = len;
4387 	eb->fs_info = fs_info;
4388 	eb->bflags = 0;
4389 	rwlock_init(&eb->lock);
4390 	atomic_set(&eb->write_locks, 0);
4391 	atomic_set(&eb->read_locks, 0);
4392 	atomic_set(&eb->blocking_readers, 0);
4393 	atomic_set(&eb->blocking_writers, 0);
4394 	atomic_set(&eb->spinning_readers, 0);
4395 	atomic_set(&eb->spinning_writers, 0);
4396 	eb->lock_nested = 0;
4397 	init_waitqueue_head(&eb->write_lock_wq);
4398 	init_waitqueue_head(&eb->read_lock_wq);
4399 
4400 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4401 
4402 	spin_lock_init(&eb->refs_lock);
4403 	atomic_set(&eb->refs, 1);
4404 	atomic_set(&eb->io_pages, 0);
4405 
4406 	/*
4407 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4408 	 */
4409 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4410 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4411 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4412 
4413 	return eb;
4414 }
4415 
4416 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4417 {
4418 	unsigned long i;
4419 	struct page *p;
4420 	struct extent_buffer *new;
4421 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4422 
4423 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4424 	if (new == NULL)
4425 		return NULL;
4426 
4427 	for (i = 0; i < num_pages; i++) {
4428 		p = alloc_page(GFP_NOFS);
4429 		if (!p) {
4430 			btrfs_release_extent_buffer(new);
4431 			return NULL;
4432 		}
4433 		attach_extent_buffer_page(new, p);
4434 		WARN_ON(PageDirty(p));
4435 		SetPageUptodate(p);
4436 		new->pages[i] = p;
4437 	}
4438 
4439 	copy_extent_buffer(new, src, 0, 0, src->len);
4440 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4441 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4442 
4443 	return new;
4444 }
4445 
4446 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4447 {
4448 	struct extent_buffer *eb;
4449 	unsigned long num_pages = num_extent_pages(0, len);
4450 	unsigned long i;
4451 
4452 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4453 	if (!eb)
4454 		return NULL;
4455 
4456 	for (i = 0; i < num_pages; i++) {
4457 		eb->pages[i] = alloc_page(GFP_NOFS);
4458 		if (!eb->pages[i])
4459 			goto err;
4460 	}
4461 	set_extent_buffer_uptodate(eb);
4462 	btrfs_set_header_nritems(eb, 0);
4463 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4464 
4465 	return eb;
4466 err:
4467 	for (; i > 0; i--)
4468 		__free_page(eb->pages[i - 1]);
4469 	__free_extent_buffer(eb);
4470 	return NULL;
4471 }
4472 
4473 static void check_buffer_tree_ref(struct extent_buffer *eb)
4474 {
4475 	int refs;
4476 	/* the ref bit is tricky.  We have to make sure it is set
4477 	 * if we have the buffer dirty.   Otherwise the
4478 	 * code to free a buffer can end up dropping a dirty
4479 	 * page
4480 	 *
4481 	 * Once the ref bit is set, it won't go away while the
4482 	 * buffer is dirty or in writeback, and it also won't
4483 	 * go away while we have the reference count on the
4484 	 * eb bumped.
4485 	 *
4486 	 * We can't just set the ref bit without bumping the
4487 	 * ref on the eb because free_extent_buffer might
4488 	 * see the ref bit and try to clear it.  If this happens
4489 	 * free_extent_buffer might end up dropping our original
4490 	 * ref by mistake and freeing the page before we are able
4491 	 * to add one more ref.
4492 	 *
4493 	 * So bump the ref count first, then set the bit.  If someone
4494 	 * beat us to it, drop the ref we added.
4495 	 */
4496 	refs = atomic_read(&eb->refs);
4497 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4498 		return;
4499 
4500 	spin_lock(&eb->refs_lock);
4501 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4502 		atomic_inc(&eb->refs);
4503 	spin_unlock(&eb->refs_lock);
4504 }
4505 
4506 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4507 {
4508 	unsigned long num_pages, i;
4509 
4510 	check_buffer_tree_ref(eb);
4511 
4512 	num_pages = num_extent_pages(eb->start, eb->len);
4513 	for (i = 0; i < num_pages; i++) {
4514 		struct page *p = extent_buffer_page(eb, i);
4515 		mark_page_accessed(p);
4516 	}
4517 }
4518 
4519 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4520 					 u64 start)
4521 {
4522 	struct extent_buffer *eb;
4523 
4524 	rcu_read_lock();
4525 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4526 			       start >> PAGE_CACHE_SHIFT);
4527 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4528 		rcu_read_unlock();
4529 		mark_extent_buffer_accessed(eb);
4530 		return eb;
4531 	}
4532 	rcu_read_unlock();
4533 
4534 	return NULL;
4535 }
4536 
4537 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4538 					  u64 start, unsigned long len)
4539 {
4540 	unsigned long num_pages = num_extent_pages(start, len);
4541 	unsigned long i;
4542 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4543 	struct extent_buffer *eb;
4544 	struct extent_buffer *exists = NULL;
4545 	struct page *p;
4546 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4547 	int uptodate = 1;
4548 	int ret;
4549 
4550 	eb = find_extent_buffer(fs_info, start);
4551 	if (eb)
4552 		return eb;
4553 
4554 	eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4555 	if (!eb)
4556 		return NULL;
4557 
4558 	for (i = 0; i < num_pages; i++, index++) {
4559 		p = find_or_create_page(mapping, index, GFP_NOFS);
4560 		if (!p)
4561 			goto free_eb;
4562 
4563 		spin_lock(&mapping->private_lock);
4564 		if (PagePrivate(p)) {
4565 			/*
4566 			 * We could have already allocated an eb for this page
4567 			 * and attached one so lets see if we can get a ref on
4568 			 * the existing eb, and if we can we know it's good and
4569 			 * we can just return that one, else we know we can just
4570 			 * overwrite page->private.
4571 			 */
4572 			exists = (struct extent_buffer *)p->private;
4573 			if (atomic_inc_not_zero(&exists->refs)) {
4574 				spin_unlock(&mapping->private_lock);
4575 				unlock_page(p);
4576 				page_cache_release(p);
4577 				mark_extent_buffer_accessed(exists);
4578 				goto free_eb;
4579 			}
4580 
4581 			/*
4582 			 * Do this so attach doesn't complain and we need to
4583 			 * drop the ref the old guy had.
4584 			 */
4585 			ClearPagePrivate(p);
4586 			WARN_ON(PageDirty(p));
4587 			page_cache_release(p);
4588 		}
4589 		attach_extent_buffer_page(eb, p);
4590 		spin_unlock(&mapping->private_lock);
4591 		WARN_ON(PageDirty(p));
4592 		mark_page_accessed(p);
4593 		eb->pages[i] = p;
4594 		if (!PageUptodate(p))
4595 			uptodate = 0;
4596 
4597 		/*
4598 		 * see below about how we avoid a nasty race with release page
4599 		 * and why we unlock later
4600 		 */
4601 	}
4602 	if (uptodate)
4603 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4604 again:
4605 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4606 	if (ret)
4607 		goto free_eb;
4608 
4609 	spin_lock(&fs_info->buffer_lock);
4610 	ret = radix_tree_insert(&fs_info->buffer_radix,
4611 				start >> PAGE_CACHE_SHIFT, eb);
4612 	spin_unlock(&fs_info->buffer_lock);
4613 	radix_tree_preload_end();
4614 	if (ret == -EEXIST) {
4615 		exists = find_extent_buffer(fs_info, start);
4616 		if (exists)
4617 			goto free_eb;
4618 		else
4619 			goto again;
4620 	}
4621 	/* add one reference for the tree */
4622 	check_buffer_tree_ref(eb);
4623 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4624 
4625 	/*
4626 	 * there is a race where release page may have
4627 	 * tried to find this extent buffer in the radix
4628 	 * but failed.  It will tell the VM it is safe to
4629 	 * reclaim the, and it will clear the page private bit.
4630 	 * We must make sure to set the page private bit properly
4631 	 * after the extent buffer is in the radix tree so
4632 	 * it doesn't get lost
4633 	 */
4634 	SetPageChecked(eb->pages[0]);
4635 	for (i = 1; i < num_pages; i++) {
4636 		p = extent_buffer_page(eb, i);
4637 		ClearPageChecked(p);
4638 		unlock_page(p);
4639 	}
4640 	unlock_page(eb->pages[0]);
4641 	return eb;
4642 
4643 free_eb:
4644 	for (i = 0; i < num_pages; i++) {
4645 		if (eb->pages[i])
4646 			unlock_page(eb->pages[i]);
4647 	}
4648 
4649 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4650 	btrfs_release_extent_buffer(eb);
4651 	return exists;
4652 }
4653 
4654 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4655 {
4656 	struct extent_buffer *eb =
4657 			container_of(head, struct extent_buffer, rcu_head);
4658 
4659 	__free_extent_buffer(eb);
4660 }
4661 
4662 /* Expects to have eb->eb_lock already held */
4663 static int release_extent_buffer(struct extent_buffer *eb)
4664 {
4665 	WARN_ON(atomic_read(&eb->refs) == 0);
4666 	if (atomic_dec_and_test(&eb->refs)) {
4667 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4668 			struct btrfs_fs_info *fs_info = eb->fs_info;
4669 
4670 			spin_unlock(&eb->refs_lock);
4671 
4672 			spin_lock(&fs_info->buffer_lock);
4673 			radix_tree_delete(&fs_info->buffer_radix,
4674 					  eb->start >> PAGE_CACHE_SHIFT);
4675 			spin_unlock(&fs_info->buffer_lock);
4676 		} else {
4677 			spin_unlock(&eb->refs_lock);
4678 		}
4679 
4680 		/* Should be safe to release our pages at this point */
4681 		btrfs_release_extent_buffer_page(eb, 0);
4682 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4683 		return 1;
4684 	}
4685 	spin_unlock(&eb->refs_lock);
4686 
4687 	return 0;
4688 }
4689 
4690 void free_extent_buffer(struct extent_buffer *eb)
4691 {
4692 	int refs;
4693 	int old;
4694 	if (!eb)
4695 		return;
4696 
4697 	while (1) {
4698 		refs = atomic_read(&eb->refs);
4699 		if (refs <= 3)
4700 			break;
4701 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4702 		if (old == refs)
4703 			return;
4704 	}
4705 
4706 	spin_lock(&eb->refs_lock);
4707 	if (atomic_read(&eb->refs) == 2 &&
4708 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4709 		atomic_dec(&eb->refs);
4710 
4711 	if (atomic_read(&eb->refs) == 2 &&
4712 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4713 	    !extent_buffer_under_io(eb) &&
4714 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4715 		atomic_dec(&eb->refs);
4716 
4717 	/*
4718 	 * I know this is terrible, but it's temporary until we stop tracking
4719 	 * the uptodate bits and such for the extent buffers.
4720 	 */
4721 	release_extent_buffer(eb);
4722 }
4723 
4724 void free_extent_buffer_stale(struct extent_buffer *eb)
4725 {
4726 	if (!eb)
4727 		return;
4728 
4729 	spin_lock(&eb->refs_lock);
4730 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4731 
4732 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4733 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4734 		atomic_dec(&eb->refs);
4735 	release_extent_buffer(eb);
4736 }
4737 
4738 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4739 {
4740 	unsigned long i;
4741 	unsigned long num_pages;
4742 	struct page *page;
4743 
4744 	num_pages = num_extent_pages(eb->start, eb->len);
4745 
4746 	for (i = 0; i < num_pages; i++) {
4747 		page = extent_buffer_page(eb, i);
4748 		if (!PageDirty(page))
4749 			continue;
4750 
4751 		lock_page(page);
4752 		WARN_ON(!PagePrivate(page));
4753 
4754 		clear_page_dirty_for_io(page);
4755 		spin_lock_irq(&page->mapping->tree_lock);
4756 		if (!PageDirty(page)) {
4757 			radix_tree_tag_clear(&page->mapping->page_tree,
4758 						page_index(page),
4759 						PAGECACHE_TAG_DIRTY);
4760 		}
4761 		spin_unlock_irq(&page->mapping->tree_lock);
4762 		ClearPageError(page);
4763 		unlock_page(page);
4764 	}
4765 	WARN_ON(atomic_read(&eb->refs) == 0);
4766 }
4767 
4768 int set_extent_buffer_dirty(struct extent_buffer *eb)
4769 {
4770 	unsigned long i;
4771 	unsigned long num_pages;
4772 	int was_dirty = 0;
4773 
4774 	check_buffer_tree_ref(eb);
4775 
4776 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4777 
4778 	num_pages = num_extent_pages(eb->start, eb->len);
4779 	WARN_ON(atomic_read(&eb->refs) == 0);
4780 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4781 
4782 	for (i = 0; i < num_pages; i++)
4783 		set_page_dirty(extent_buffer_page(eb, i));
4784 	return was_dirty;
4785 }
4786 
4787 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4788 {
4789 	unsigned long i;
4790 	struct page *page;
4791 	unsigned long num_pages;
4792 
4793 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4794 	num_pages = num_extent_pages(eb->start, eb->len);
4795 	for (i = 0; i < num_pages; i++) {
4796 		page = extent_buffer_page(eb, i);
4797 		if (page)
4798 			ClearPageUptodate(page);
4799 	}
4800 	return 0;
4801 }
4802 
4803 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4804 {
4805 	unsigned long i;
4806 	struct page *page;
4807 	unsigned long num_pages;
4808 
4809 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4810 	num_pages = num_extent_pages(eb->start, eb->len);
4811 	for (i = 0; i < num_pages; i++) {
4812 		page = extent_buffer_page(eb, i);
4813 		SetPageUptodate(page);
4814 	}
4815 	return 0;
4816 }
4817 
4818 int extent_buffer_uptodate(struct extent_buffer *eb)
4819 {
4820 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4821 }
4822 
4823 int read_extent_buffer_pages(struct extent_io_tree *tree,
4824 			     struct extent_buffer *eb, u64 start, int wait,
4825 			     get_extent_t *get_extent, int mirror_num)
4826 {
4827 	unsigned long i;
4828 	unsigned long start_i;
4829 	struct page *page;
4830 	int err;
4831 	int ret = 0;
4832 	int locked_pages = 0;
4833 	int all_uptodate = 1;
4834 	unsigned long num_pages;
4835 	unsigned long num_reads = 0;
4836 	struct bio *bio = NULL;
4837 	unsigned long bio_flags = 0;
4838 
4839 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4840 		return 0;
4841 
4842 	if (start) {
4843 		WARN_ON(start < eb->start);
4844 		start_i = (start >> PAGE_CACHE_SHIFT) -
4845 			(eb->start >> PAGE_CACHE_SHIFT);
4846 	} else {
4847 		start_i = 0;
4848 	}
4849 
4850 	num_pages = num_extent_pages(eb->start, eb->len);
4851 	for (i = start_i; i < num_pages; i++) {
4852 		page = extent_buffer_page(eb, i);
4853 		if (wait == WAIT_NONE) {
4854 			if (!trylock_page(page))
4855 				goto unlock_exit;
4856 		} else {
4857 			lock_page(page);
4858 		}
4859 		locked_pages++;
4860 		if (!PageUptodate(page)) {
4861 			num_reads++;
4862 			all_uptodate = 0;
4863 		}
4864 	}
4865 	if (all_uptodate) {
4866 		if (start_i == 0)
4867 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4868 		goto unlock_exit;
4869 	}
4870 
4871 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4872 	eb->read_mirror = 0;
4873 	atomic_set(&eb->io_pages, num_reads);
4874 	for (i = start_i; i < num_pages; i++) {
4875 		page = extent_buffer_page(eb, i);
4876 		if (!PageUptodate(page)) {
4877 			ClearPageError(page);
4878 			err = __extent_read_full_page(tree, page,
4879 						      get_extent, &bio,
4880 						      mirror_num, &bio_flags,
4881 						      READ | REQ_META);
4882 			if (err)
4883 				ret = err;
4884 		} else {
4885 			unlock_page(page);
4886 		}
4887 	}
4888 
4889 	if (bio) {
4890 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4891 				     bio_flags);
4892 		if (err)
4893 			return err;
4894 	}
4895 
4896 	if (ret || wait != WAIT_COMPLETE)
4897 		return ret;
4898 
4899 	for (i = start_i; i < num_pages; i++) {
4900 		page = extent_buffer_page(eb, i);
4901 		wait_on_page_locked(page);
4902 		if (!PageUptodate(page))
4903 			ret = -EIO;
4904 	}
4905 
4906 	return ret;
4907 
4908 unlock_exit:
4909 	i = start_i;
4910 	while (locked_pages > 0) {
4911 		page = extent_buffer_page(eb, i);
4912 		i++;
4913 		unlock_page(page);
4914 		locked_pages--;
4915 	}
4916 	return ret;
4917 }
4918 
4919 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4920 			unsigned long start,
4921 			unsigned long len)
4922 {
4923 	size_t cur;
4924 	size_t offset;
4925 	struct page *page;
4926 	char *kaddr;
4927 	char *dst = (char *)dstv;
4928 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4929 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4930 
4931 	WARN_ON(start > eb->len);
4932 	WARN_ON(start + len > eb->start + eb->len);
4933 
4934 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4935 
4936 	while (len > 0) {
4937 		page = extent_buffer_page(eb, i);
4938 
4939 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4940 		kaddr = page_address(page);
4941 		memcpy(dst, kaddr + offset, cur);
4942 
4943 		dst += cur;
4944 		len -= cur;
4945 		offset = 0;
4946 		i++;
4947 	}
4948 }
4949 
4950 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4951 			       unsigned long min_len, char **map,
4952 			       unsigned long *map_start,
4953 			       unsigned long *map_len)
4954 {
4955 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4956 	char *kaddr;
4957 	struct page *p;
4958 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4959 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4960 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4961 		PAGE_CACHE_SHIFT;
4962 
4963 	if (i != end_i)
4964 		return -EINVAL;
4965 
4966 	if (i == 0) {
4967 		offset = start_offset;
4968 		*map_start = 0;
4969 	} else {
4970 		offset = 0;
4971 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4972 	}
4973 
4974 	if (start + min_len > eb->len) {
4975 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4976 		       "wanted %lu %lu\n",
4977 		       eb->start, eb->len, start, min_len);
4978 		return -EINVAL;
4979 	}
4980 
4981 	p = extent_buffer_page(eb, i);
4982 	kaddr = page_address(p);
4983 	*map = kaddr + offset;
4984 	*map_len = PAGE_CACHE_SIZE - offset;
4985 	return 0;
4986 }
4987 
4988 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4989 			  unsigned long start,
4990 			  unsigned long len)
4991 {
4992 	size_t cur;
4993 	size_t offset;
4994 	struct page *page;
4995 	char *kaddr;
4996 	char *ptr = (char *)ptrv;
4997 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4998 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4999 	int ret = 0;
5000 
5001 	WARN_ON(start > eb->len);
5002 	WARN_ON(start + len > eb->start + eb->len);
5003 
5004 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5005 
5006 	while (len > 0) {
5007 		page = extent_buffer_page(eb, i);
5008 
5009 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5010 
5011 		kaddr = page_address(page);
5012 		ret = memcmp(ptr, kaddr + offset, cur);
5013 		if (ret)
5014 			break;
5015 
5016 		ptr += cur;
5017 		len -= cur;
5018 		offset = 0;
5019 		i++;
5020 	}
5021 	return ret;
5022 }
5023 
5024 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5025 			 unsigned long start, unsigned long len)
5026 {
5027 	size_t cur;
5028 	size_t offset;
5029 	struct page *page;
5030 	char *kaddr;
5031 	char *src = (char *)srcv;
5032 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5033 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5034 
5035 	WARN_ON(start > eb->len);
5036 	WARN_ON(start + len > eb->start + eb->len);
5037 
5038 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5039 
5040 	while (len > 0) {
5041 		page = extent_buffer_page(eb, i);
5042 		WARN_ON(!PageUptodate(page));
5043 
5044 		cur = min(len, PAGE_CACHE_SIZE - offset);
5045 		kaddr = page_address(page);
5046 		memcpy(kaddr + offset, src, cur);
5047 
5048 		src += cur;
5049 		len -= cur;
5050 		offset = 0;
5051 		i++;
5052 	}
5053 }
5054 
5055 void memset_extent_buffer(struct extent_buffer *eb, char c,
5056 			  unsigned long start, unsigned long len)
5057 {
5058 	size_t cur;
5059 	size_t offset;
5060 	struct page *page;
5061 	char *kaddr;
5062 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5063 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5064 
5065 	WARN_ON(start > eb->len);
5066 	WARN_ON(start + len > eb->start + eb->len);
5067 
5068 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5069 
5070 	while (len > 0) {
5071 		page = extent_buffer_page(eb, i);
5072 		WARN_ON(!PageUptodate(page));
5073 
5074 		cur = min(len, PAGE_CACHE_SIZE - offset);
5075 		kaddr = page_address(page);
5076 		memset(kaddr + offset, c, cur);
5077 
5078 		len -= cur;
5079 		offset = 0;
5080 		i++;
5081 	}
5082 }
5083 
5084 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5085 			unsigned long dst_offset, unsigned long src_offset,
5086 			unsigned long len)
5087 {
5088 	u64 dst_len = dst->len;
5089 	size_t cur;
5090 	size_t offset;
5091 	struct page *page;
5092 	char *kaddr;
5093 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5094 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5095 
5096 	WARN_ON(src->len != dst_len);
5097 
5098 	offset = (start_offset + dst_offset) &
5099 		(PAGE_CACHE_SIZE - 1);
5100 
5101 	while (len > 0) {
5102 		page = extent_buffer_page(dst, i);
5103 		WARN_ON(!PageUptodate(page));
5104 
5105 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5106 
5107 		kaddr = page_address(page);
5108 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5109 
5110 		src_offset += cur;
5111 		len -= cur;
5112 		offset = 0;
5113 		i++;
5114 	}
5115 }
5116 
5117 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5118 {
5119 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5120 	return distance < len;
5121 }
5122 
5123 static void copy_pages(struct page *dst_page, struct page *src_page,
5124 		       unsigned long dst_off, unsigned long src_off,
5125 		       unsigned long len)
5126 {
5127 	char *dst_kaddr = page_address(dst_page);
5128 	char *src_kaddr;
5129 	int must_memmove = 0;
5130 
5131 	if (dst_page != src_page) {
5132 		src_kaddr = page_address(src_page);
5133 	} else {
5134 		src_kaddr = dst_kaddr;
5135 		if (areas_overlap(src_off, dst_off, len))
5136 			must_memmove = 1;
5137 	}
5138 
5139 	if (must_memmove)
5140 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5141 	else
5142 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5143 }
5144 
5145 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5146 			   unsigned long src_offset, unsigned long len)
5147 {
5148 	size_t cur;
5149 	size_t dst_off_in_page;
5150 	size_t src_off_in_page;
5151 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5152 	unsigned long dst_i;
5153 	unsigned long src_i;
5154 
5155 	if (src_offset + len > dst->len) {
5156 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5157 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5158 		BUG_ON(1);
5159 	}
5160 	if (dst_offset + len > dst->len) {
5161 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5162 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5163 		BUG_ON(1);
5164 	}
5165 
5166 	while (len > 0) {
5167 		dst_off_in_page = (start_offset + dst_offset) &
5168 			(PAGE_CACHE_SIZE - 1);
5169 		src_off_in_page = (start_offset + src_offset) &
5170 			(PAGE_CACHE_SIZE - 1);
5171 
5172 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5173 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5174 
5175 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5176 					       src_off_in_page));
5177 		cur = min_t(unsigned long, cur,
5178 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5179 
5180 		copy_pages(extent_buffer_page(dst, dst_i),
5181 			   extent_buffer_page(dst, src_i),
5182 			   dst_off_in_page, src_off_in_page, cur);
5183 
5184 		src_offset += cur;
5185 		dst_offset += cur;
5186 		len -= cur;
5187 	}
5188 }
5189 
5190 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5191 			   unsigned long src_offset, unsigned long len)
5192 {
5193 	size_t cur;
5194 	size_t dst_off_in_page;
5195 	size_t src_off_in_page;
5196 	unsigned long dst_end = dst_offset + len - 1;
5197 	unsigned long src_end = src_offset + len - 1;
5198 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5199 	unsigned long dst_i;
5200 	unsigned long src_i;
5201 
5202 	if (src_offset + len > dst->len) {
5203 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5204 		       "len %lu len %lu\n", src_offset, len, dst->len);
5205 		BUG_ON(1);
5206 	}
5207 	if (dst_offset + len > dst->len) {
5208 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5209 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5210 		BUG_ON(1);
5211 	}
5212 	if (dst_offset < src_offset) {
5213 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5214 		return;
5215 	}
5216 	while (len > 0) {
5217 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5218 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5219 
5220 		dst_off_in_page = (start_offset + dst_end) &
5221 			(PAGE_CACHE_SIZE - 1);
5222 		src_off_in_page = (start_offset + src_end) &
5223 			(PAGE_CACHE_SIZE - 1);
5224 
5225 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5226 		cur = min(cur, dst_off_in_page + 1);
5227 		copy_pages(extent_buffer_page(dst, dst_i),
5228 			   extent_buffer_page(dst, src_i),
5229 			   dst_off_in_page - cur + 1,
5230 			   src_off_in_page - cur + 1, cur);
5231 
5232 		dst_end -= cur;
5233 		src_end -= cur;
5234 		len -= cur;
5235 	}
5236 }
5237 
5238 int try_release_extent_buffer(struct page *page)
5239 {
5240 	struct extent_buffer *eb;
5241 
5242 	/*
5243 	 * We need to make sure noboody is attaching this page to an eb right
5244 	 * now.
5245 	 */
5246 	spin_lock(&page->mapping->private_lock);
5247 	if (!PagePrivate(page)) {
5248 		spin_unlock(&page->mapping->private_lock);
5249 		return 1;
5250 	}
5251 
5252 	eb = (struct extent_buffer *)page->private;
5253 	BUG_ON(!eb);
5254 
5255 	/*
5256 	 * This is a little awful but should be ok, we need to make sure that
5257 	 * the eb doesn't disappear out from under us while we're looking at
5258 	 * this page.
5259 	 */
5260 	spin_lock(&eb->refs_lock);
5261 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5262 		spin_unlock(&eb->refs_lock);
5263 		spin_unlock(&page->mapping->private_lock);
5264 		return 0;
5265 	}
5266 	spin_unlock(&page->mapping->private_lock);
5267 
5268 	/*
5269 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5270 	 * so just return, this page will likely be freed soon anyway.
5271 	 */
5272 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5273 		spin_unlock(&eb->refs_lock);
5274 		return 0;
5275 	}
5276 
5277 	return release_extent_buffer(eb);
5278 }
5279