1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 40 static struct kmem_cache *extent_buffer_cache; 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 44 { 45 struct btrfs_fs_info *fs_info = eb->fs_info; 46 unsigned long flags; 47 48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 49 list_add(&eb->leak_list, &fs_info->allocated_ebs); 50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 51 } 52 53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 54 { 55 struct btrfs_fs_info *fs_info = eb->fs_info; 56 unsigned long flags; 57 58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 59 list_del(&eb->leak_list); 60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 61 } 62 63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 64 { 65 struct extent_buffer *eb; 66 unsigned long flags; 67 68 /* 69 * If we didn't get into open_ctree our allocated_ebs will not be 70 * initialized, so just skip this. 71 */ 72 if (!fs_info->allocated_ebs.next) 73 return; 74 75 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 77 while (!list_empty(&fs_info->allocated_ebs)) { 78 eb = list_first_entry(&fs_info->allocated_ebs, 79 struct extent_buffer, leak_list); 80 pr_err( 81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 83 btrfs_header_owner(eb)); 84 list_del(&eb->leak_list); 85 kmem_cache_free(extent_buffer_cache, eb); 86 } 87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 88 } 89 #else 90 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 91 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 92 #endif 93 94 /* 95 * Structure to record info about the bio being assembled, and other info like 96 * how many bytes are there before stripe/ordered extent boundary. 97 */ 98 struct btrfs_bio_ctrl { 99 struct bio *bio; 100 int mirror_num; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_stripe_boundary; 103 u32 len_to_oe_boundary; 104 btrfs_bio_end_io_t end_io_func; 105 106 /* 107 * Tell writepage not to lock the state bits for this range, it still 108 * does the unlocking. 109 */ 110 bool extent_locked; 111 112 /* Tell the submit_bio code to use REQ_SYNC */ 113 bool sync_io; 114 }; 115 116 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 117 { 118 struct bio *bio; 119 struct bio_vec *bv; 120 struct btrfs_inode *inode; 121 int mirror_num; 122 123 if (!bio_ctrl->bio) 124 return; 125 126 bio = bio_ctrl->bio; 127 bv = bio_first_bvec_all(bio); 128 inode = BTRFS_I(bv->bv_page->mapping->host); 129 mirror_num = bio_ctrl->mirror_num; 130 131 /* Caller should ensure the bio has at least some range added */ 132 ASSERT(bio->bi_iter.bi_size); 133 134 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset; 135 136 if (!is_data_inode(&inode->vfs_inode)) 137 btrfs_submit_metadata_bio(inode, bio, mirror_num); 138 else if (btrfs_op(bio) == BTRFS_MAP_WRITE) 139 btrfs_submit_data_write_bio(inode, bio, mirror_num); 140 else 141 btrfs_submit_data_read_bio(inode, bio, mirror_num, 142 bio_ctrl->compress_type); 143 144 /* The bio is owned by the end_io handler now */ 145 bio_ctrl->bio = NULL; 146 } 147 148 /* 149 * Submit or fail the current bio in the bio_ctrl structure. 150 */ 151 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 152 { 153 struct bio *bio = bio_ctrl->bio; 154 155 if (!bio) 156 return; 157 158 if (ret) { 159 ASSERT(ret < 0); 160 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 161 /* The bio is owned by the end_io handler now */ 162 bio_ctrl->bio = NULL; 163 } else { 164 submit_one_bio(bio_ctrl); 165 } 166 } 167 168 int __init extent_buffer_init_cachep(void) 169 { 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 return -ENOMEM; 175 176 return 0; 177 } 178 179 void __cold extent_buffer_free_cachep(void) 180 { 181 /* 182 * Make sure all delayed rcu free are flushed before we 183 * destroy caches. 184 */ 185 rcu_barrier(); 186 kmem_cache_destroy(extent_buffer_cache); 187 } 188 189 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 190 { 191 unsigned long index = start >> PAGE_SHIFT; 192 unsigned long end_index = end >> PAGE_SHIFT; 193 struct page *page; 194 195 while (index <= end_index) { 196 page = find_get_page(inode->i_mapping, index); 197 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 198 clear_page_dirty_for_io(page); 199 put_page(page); 200 index++; 201 } 202 } 203 204 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 205 { 206 struct address_space *mapping = inode->i_mapping; 207 unsigned long index = start >> PAGE_SHIFT; 208 unsigned long end_index = end >> PAGE_SHIFT; 209 struct folio *folio; 210 211 while (index <= end_index) { 212 folio = filemap_get_folio(mapping, index); 213 filemap_dirty_folio(mapping, folio); 214 folio_account_redirty(folio); 215 index += folio_nr_pages(folio); 216 folio_put(folio); 217 } 218 } 219 220 /* 221 * Process one page for __process_pages_contig(). 222 * 223 * Return >0 if we hit @page == @locked_page. 224 * Return 0 if we updated the page status. 225 * Return -EGAIN if the we need to try again. 226 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 227 */ 228 static int process_one_page(struct btrfs_fs_info *fs_info, 229 struct address_space *mapping, 230 struct page *page, struct page *locked_page, 231 unsigned long page_ops, u64 start, u64 end) 232 { 233 u32 len; 234 235 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 236 len = end + 1 - start; 237 238 if (page_ops & PAGE_SET_ORDERED) 239 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 240 if (page_ops & PAGE_SET_ERROR) 241 btrfs_page_clamp_set_error(fs_info, page, start, len); 242 if (page_ops & PAGE_START_WRITEBACK) { 243 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 244 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 245 } 246 if (page_ops & PAGE_END_WRITEBACK) 247 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 248 249 if (page == locked_page) 250 return 1; 251 252 if (page_ops & PAGE_LOCK) { 253 int ret; 254 255 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 256 if (ret) 257 return ret; 258 if (!PageDirty(page) || page->mapping != mapping) { 259 btrfs_page_end_writer_lock(fs_info, page, start, len); 260 return -EAGAIN; 261 } 262 } 263 if (page_ops & PAGE_UNLOCK) 264 btrfs_page_end_writer_lock(fs_info, page, start, len); 265 return 0; 266 } 267 268 static int __process_pages_contig(struct address_space *mapping, 269 struct page *locked_page, 270 u64 start, u64 end, unsigned long page_ops, 271 u64 *processed_end) 272 { 273 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 274 pgoff_t start_index = start >> PAGE_SHIFT; 275 pgoff_t end_index = end >> PAGE_SHIFT; 276 pgoff_t index = start_index; 277 unsigned long pages_processed = 0; 278 struct folio_batch fbatch; 279 int err = 0; 280 int i; 281 282 if (page_ops & PAGE_LOCK) { 283 ASSERT(page_ops == PAGE_LOCK); 284 ASSERT(processed_end && *processed_end == start); 285 } 286 287 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index) 288 mapping_set_error(mapping, -EIO); 289 290 folio_batch_init(&fbatch); 291 while (index <= end_index) { 292 int found_folios; 293 294 found_folios = filemap_get_folios_contig(mapping, &index, 295 end_index, &fbatch); 296 297 if (found_folios == 0) { 298 /* 299 * Only if we're going to lock these pages, we can find 300 * nothing at @index. 301 */ 302 ASSERT(page_ops & PAGE_LOCK); 303 err = -EAGAIN; 304 goto out; 305 } 306 307 for (i = 0; i < found_folios; i++) { 308 int process_ret; 309 struct folio *folio = fbatch.folios[i]; 310 process_ret = process_one_page(fs_info, mapping, 311 &folio->page, locked_page, page_ops, 312 start, end); 313 if (process_ret < 0) { 314 err = -EAGAIN; 315 folio_batch_release(&fbatch); 316 goto out; 317 } 318 pages_processed += folio_nr_pages(folio); 319 } 320 folio_batch_release(&fbatch); 321 cond_resched(); 322 } 323 out: 324 if (err && processed_end) { 325 /* 326 * Update @processed_end. I know this is awful since it has 327 * two different return value patterns (inclusive vs exclusive). 328 * 329 * But the exclusive pattern is necessary if @start is 0, or we 330 * underflow and check against processed_end won't work as 331 * expected. 332 */ 333 if (pages_processed) 334 *processed_end = min(end, 335 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 336 else 337 *processed_end = start; 338 } 339 return err; 340 } 341 342 static noinline void __unlock_for_delalloc(struct inode *inode, 343 struct page *locked_page, 344 u64 start, u64 end) 345 { 346 unsigned long index = start >> PAGE_SHIFT; 347 unsigned long end_index = end >> PAGE_SHIFT; 348 349 ASSERT(locked_page); 350 if (index == locked_page->index && end_index == index) 351 return; 352 353 __process_pages_contig(inode->i_mapping, locked_page, start, end, 354 PAGE_UNLOCK, NULL); 355 } 356 357 static noinline int lock_delalloc_pages(struct inode *inode, 358 struct page *locked_page, 359 u64 delalloc_start, 360 u64 delalloc_end) 361 { 362 unsigned long index = delalloc_start >> PAGE_SHIFT; 363 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 364 u64 processed_end = delalloc_start; 365 int ret; 366 367 ASSERT(locked_page); 368 if (index == locked_page->index && index == end_index) 369 return 0; 370 371 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 372 delalloc_end, PAGE_LOCK, &processed_end); 373 if (ret == -EAGAIN && processed_end > delalloc_start) 374 __unlock_for_delalloc(inode, locked_page, delalloc_start, 375 processed_end); 376 return ret; 377 } 378 379 /* 380 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 381 * more than @max_bytes. 382 * 383 * @start: The original start bytenr to search. 384 * Will store the extent range start bytenr. 385 * @end: The original end bytenr of the search range 386 * Will store the extent range end bytenr. 387 * 388 * Return true if we find a delalloc range which starts inside the original 389 * range, and @start/@end will store the delalloc range start/end. 390 * 391 * Return false if we can't find any delalloc range which starts inside the 392 * original range, and @start/@end will be the non-delalloc range start/end. 393 */ 394 EXPORT_FOR_TESTS 395 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 396 struct page *locked_page, u64 *start, 397 u64 *end) 398 { 399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 400 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 401 const u64 orig_start = *start; 402 const u64 orig_end = *end; 403 /* The sanity tests may not set a valid fs_info. */ 404 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 405 u64 delalloc_start; 406 u64 delalloc_end; 407 bool found; 408 struct extent_state *cached_state = NULL; 409 int ret; 410 int loops = 0; 411 412 /* Caller should pass a valid @end to indicate the search range end */ 413 ASSERT(orig_end > orig_start); 414 415 /* The range should at least cover part of the page */ 416 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 417 orig_end <= page_offset(locked_page))); 418 again: 419 /* step one, find a bunch of delalloc bytes starting at start */ 420 delalloc_start = *start; 421 delalloc_end = 0; 422 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 423 max_bytes, &cached_state); 424 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 425 *start = delalloc_start; 426 427 /* @delalloc_end can be -1, never go beyond @orig_end */ 428 *end = min(delalloc_end, orig_end); 429 free_extent_state(cached_state); 430 return false; 431 } 432 433 /* 434 * start comes from the offset of locked_page. We have to lock 435 * pages in order, so we can't process delalloc bytes before 436 * locked_page 437 */ 438 if (delalloc_start < *start) 439 delalloc_start = *start; 440 441 /* 442 * make sure to limit the number of pages we try to lock down 443 */ 444 if (delalloc_end + 1 - delalloc_start > max_bytes) 445 delalloc_end = delalloc_start + max_bytes - 1; 446 447 /* step two, lock all the pages after the page that has start */ 448 ret = lock_delalloc_pages(inode, locked_page, 449 delalloc_start, delalloc_end); 450 ASSERT(!ret || ret == -EAGAIN); 451 if (ret == -EAGAIN) { 452 /* some of the pages are gone, lets avoid looping by 453 * shortening the size of the delalloc range we're searching 454 */ 455 free_extent_state(cached_state); 456 cached_state = NULL; 457 if (!loops) { 458 max_bytes = PAGE_SIZE; 459 loops = 1; 460 goto again; 461 } else { 462 found = false; 463 goto out_failed; 464 } 465 } 466 467 /* step three, lock the state bits for the whole range */ 468 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 469 470 /* then test to make sure it is all still delalloc */ 471 ret = test_range_bit(tree, delalloc_start, delalloc_end, 472 EXTENT_DELALLOC, 1, cached_state); 473 if (!ret) { 474 unlock_extent(tree, delalloc_start, delalloc_end, 475 &cached_state); 476 __unlock_for_delalloc(inode, locked_page, 477 delalloc_start, delalloc_end); 478 cond_resched(); 479 goto again; 480 } 481 free_extent_state(cached_state); 482 *start = delalloc_start; 483 *end = delalloc_end; 484 out_failed: 485 return found; 486 } 487 488 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 489 struct page *locked_page, 490 u32 clear_bits, unsigned long page_ops) 491 { 492 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 493 494 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 495 start, end, page_ops, NULL); 496 } 497 498 static int insert_failrec(struct btrfs_inode *inode, 499 struct io_failure_record *failrec) 500 { 501 struct rb_node *exist; 502 503 spin_lock(&inode->io_failure_lock); 504 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr, 505 &failrec->rb_node); 506 spin_unlock(&inode->io_failure_lock); 507 508 return (exist == NULL) ? 0 : -EEXIST; 509 } 510 511 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start) 512 { 513 struct rb_node *node; 514 struct io_failure_record *failrec = ERR_PTR(-ENOENT); 515 516 spin_lock(&inode->io_failure_lock); 517 node = rb_simple_search(&inode->io_failure_tree, start); 518 if (node) 519 failrec = rb_entry(node, struct io_failure_record, rb_node); 520 spin_unlock(&inode->io_failure_lock); 521 return failrec; 522 } 523 524 static void free_io_failure(struct btrfs_inode *inode, 525 struct io_failure_record *rec) 526 { 527 spin_lock(&inode->io_failure_lock); 528 rb_erase(&rec->rb_node, &inode->io_failure_tree); 529 spin_unlock(&inode->io_failure_lock); 530 531 kfree(rec); 532 } 533 534 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror) 535 { 536 if (cur_mirror == failrec->num_copies) 537 return cur_mirror + 1 - failrec->num_copies; 538 return cur_mirror + 1; 539 } 540 541 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror) 542 { 543 if (cur_mirror == 1) 544 return failrec->num_copies; 545 return cur_mirror - 1; 546 } 547 548 /* 549 * each time an IO finishes, we do a fast check in the IO failure tree 550 * to see if we need to process or clean up an io_failure_record 551 */ 552 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start, 553 struct page *page, unsigned int pg_offset) 554 { 555 struct btrfs_fs_info *fs_info = inode->root->fs_info; 556 struct extent_io_tree *io_tree = &inode->io_tree; 557 u64 ino = btrfs_ino(inode); 558 u64 locked_start, locked_end; 559 struct io_failure_record *failrec; 560 int mirror; 561 int ret; 562 563 failrec = get_failrec(inode, start); 564 if (IS_ERR(failrec)) 565 return 0; 566 567 BUG_ON(!failrec->this_mirror); 568 569 if (sb_rdonly(fs_info->sb)) 570 goto out; 571 572 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start, 573 &locked_end, EXTENT_LOCKED, NULL); 574 if (ret || locked_start > failrec->bytenr || 575 locked_end < failrec->bytenr + failrec->len - 1) 576 goto out; 577 578 mirror = failrec->this_mirror; 579 do { 580 mirror = prev_mirror(failrec, mirror); 581 btrfs_repair_io_failure(fs_info, ino, start, failrec->len, 582 failrec->logical, page, pg_offset, mirror); 583 } while (mirror != failrec->failed_mirror); 584 585 out: 586 free_io_failure(inode, failrec); 587 return 0; 588 } 589 590 /* 591 * Can be called when 592 * - hold extent lock 593 * - under ordered extent 594 * - the inode is freeing 595 */ 596 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 597 { 598 struct io_failure_record *failrec; 599 struct rb_node *node, *next; 600 601 if (RB_EMPTY_ROOT(&inode->io_failure_tree)) 602 return; 603 604 spin_lock(&inode->io_failure_lock); 605 node = rb_simple_search_first(&inode->io_failure_tree, start); 606 while (node) { 607 failrec = rb_entry(node, struct io_failure_record, rb_node); 608 if (failrec->bytenr > end) 609 break; 610 611 next = rb_next(node); 612 rb_erase(&failrec->rb_node, &inode->io_failure_tree); 613 kfree(failrec); 614 615 node = next; 616 } 617 spin_unlock(&inode->io_failure_lock); 618 } 619 620 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 621 struct btrfs_bio *bbio, 622 unsigned int bio_offset) 623 { 624 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 625 u64 start = bbio->file_offset + bio_offset; 626 struct io_failure_record *failrec; 627 const u32 sectorsize = fs_info->sectorsize; 628 int ret; 629 630 failrec = get_failrec(BTRFS_I(inode), start); 631 if (!IS_ERR(failrec)) { 632 btrfs_debug(fs_info, 633 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 634 failrec->logical, failrec->bytenr, failrec->len); 635 /* 636 * when data can be on disk more than twice, add to failrec here 637 * (e.g. with a list for failed_mirror) to make 638 * clean_io_failure() clean all those errors at once. 639 */ 640 ASSERT(failrec->this_mirror == bbio->mirror_num); 641 ASSERT(failrec->len == fs_info->sectorsize); 642 return failrec; 643 } 644 645 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 646 if (!failrec) 647 return ERR_PTR(-ENOMEM); 648 649 RB_CLEAR_NODE(&failrec->rb_node); 650 failrec->bytenr = start; 651 failrec->len = sectorsize; 652 failrec->failed_mirror = bbio->mirror_num; 653 failrec->this_mirror = bbio->mirror_num; 654 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset; 655 656 btrfs_debug(fs_info, 657 "new io failure record logical %llu start %llu", 658 failrec->logical, start); 659 660 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize); 661 if (failrec->num_copies == 1) { 662 /* 663 * We only have a single copy of the data, so don't bother with 664 * all the retry and error correction code that follows. No 665 * matter what the error is, it is very likely to persist. 666 */ 667 btrfs_debug(fs_info, 668 "cannot repair logical %llu num_copies %d", 669 failrec->logical, failrec->num_copies); 670 kfree(failrec); 671 return ERR_PTR(-EIO); 672 } 673 674 /* Set the bits in the private failure tree */ 675 ret = insert_failrec(BTRFS_I(inode), failrec); 676 if (ret) { 677 kfree(failrec); 678 return ERR_PTR(ret); 679 } 680 681 return failrec; 682 } 683 684 int btrfs_repair_one_sector(struct btrfs_inode *inode, struct btrfs_bio *failed_bbio, 685 u32 bio_offset, struct page *page, unsigned int pgoff, 686 bool submit_buffered) 687 { 688 u64 start = failed_bbio->file_offset + bio_offset; 689 struct io_failure_record *failrec; 690 struct btrfs_fs_info *fs_info = inode->root->fs_info; 691 struct bio *failed_bio = &failed_bbio->bio; 692 const int icsum = bio_offset >> fs_info->sectorsize_bits; 693 struct bio *repair_bio; 694 struct btrfs_bio *repair_bbio; 695 696 btrfs_debug(fs_info, 697 "repair read error: read error at %llu", start); 698 699 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 700 701 failrec = btrfs_get_io_failure_record(&inode->vfs_inode, failed_bbio, bio_offset); 702 if (IS_ERR(failrec)) 703 return PTR_ERR(failrec); 704 705 /* 706 * There are two premises: 707 * a) deliver good data to the caller 708 * b) correct the bad sectors on disk 709 * 710 * Since we're only doing repair for one sector, we only need to get 711 * a good copy of the failed sector and if we succeed, we have setup 712 * everything for btrfs_repair_io_failure to do the rest for us. 713 */ 714 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror); 715 if (failrec->this_mirror == failrec->failed_mirror) { 716 btrfs_debug(fs_info, 717 "failed to repair num_copies %d this_mirror %d failed_mirror %d", 718 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror); 719 free_io_failure(inode, failrec); 720 return -EIO; 721 } 722 723 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io, 724 failed_bbio->private); 725 repair_bbio = btrfs_bio(repair_bio); 726 repair_bbio->file_offset = start; 727 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 728 729 if (failed_bbio->csum) { 730 const u32 csum_size = fs_info->csum_size; 731 732 repair_bbio->csum = repair_bbio->csum_inline; 733 memcpy(repair_bbio->csum, 734 failed_bbio->csum + csum_size * icsum, csum_size); 735 } 736 737 bio_add_page(repair_bio, page, failrec->len, pgoff); 738 repair_bbio->iter = repair_bio->bi_iter; 739 740 btrfs_debug(fs_info, 741 "repair read error: submitting new read to mirror %d", 742 failrec->this_mirror); 743 744 /* 745 * At this point we have a bio, so any errors from bio submission will 746 * be handled by the endio on the repair_bio, so we can't return an 747 * error here. 748 */ 749 if (submit_buffered) 750 btrfs_submit_data_read_bio(inode, repair_bio, 751 failrec->this_mirror, 0); 752 else 753 btrfs_submit_dio_repair_bio(inode, repair_bio, failrec->this_mirror); 754 755 return BLK_STS_OK; 756 } 757 758 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 759 { 760 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 761 762 ASSERT(page_offset(page) <= start && 763 start + len <= page_offset(page) + PAGE_SIZE); 764 765 if (uptodate) { 766 if (fsverity_active(page->mapping->host) && 767 !PageError(page) && 768 !PageUptodate(page) && 769 start < i_size_read(page->mapping->host) && 770 !fsverity_verify_page(page)) { 771 btrfs_page_set_error(fs_info, page, start, len); 772 } else { 773 btrfs_page_set_uptodate(fs_info, page, start, len); 774 } 775 } else { 776 btrfs_page_clear_uptodate(fs_info, page, start, len); 777 btrfs_page_set_error(fs_info, page, start, len); 778 } 779 780 if (!btrfs_is_subpage(fs_info, page)) 781 unlock_page(page); 782 else 783 btrfs_subpage_end_reader(fs_info, page, start, len); 784 } 785 786 static void end_sector_io(struct page *page, u64 offset, bool uptodate) 787 { 788 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 789 const u32 sectorsize = inode->root->fs_info->sectorsize; 790 791 end_page_read(page, uptodate, offset, sectorsize); 792 unlock_extent(&inode->io_tree, offset, offset + sectorsize - 1, NULL); 793 } 794 795 static void submit_data_read_repair(struct inode *inode, 796 struct btrfs_bio *failed_bbio, 797 u32 bio_offset, const struct bio_vec *bvec, 798 unsigned int error_bitmap) 799 { 800 const unsigned int pgoff = bvec->bv_offset; 801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 802 struct page *page = bvec->bv_page; 803 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset; 804 const u64 end = start + bvec->bv_len - 1; 805 const u32 sectorsize = fs_info->sectorsize; 806 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 807 int i; 808 809 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE); 810 811 /* This repair is only for data */ 812 ASSERT(is_data_inode(inode)); 813 814 /* We're here because we had some read errors or csum mismatch */ 815 ASSERT(error_bitmap); 816 817 /* 818 * We only get called on buffered IO, thus page must be mapped and bio 819 * must not be cloned. 820 */ 821 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED)); 822 823 /* Iterate through all the sectors in the range */ 824 for (i = 0; i < nr_bits; i++) { 825 const unsigned int offset = i * sectorsize; 826 bool uptodate = false; 827 int ret; 828 829 if (!(error_bitmap & (1U << i))) { 830 /* 831 * This sector has no error, just end the page read 832 * and unlock the range. 833 */ 834 uptodate = true; 835 goto next; 836 } 837 838 ret = btrfs_repair_one_sector(BTRFS_I(inode), failed_bbio, 839 bio_offset + offset, page, pgoff + offset, 840 true); 841 if (!ret) { 842 /* 843 * We have submitted the read repair, the page release 844 * will be handled by the endio function of the 845 * submitted repair bio. 846 * Thus we don't need to do any thing here. 847 */ 848 continue; 849 } 850 /* 851 * Continue on failed repair, otherwise the remaining sectors 852 * will not be properly unlocked. 853 */ 854 next: 855 end_sector_io(page, start + offset, uptodate); 856 } 857 } 858 859 /* lots and lots of room for performance fixes in the end_bio funcs */ 860 861 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 862 { 863 struct btrfs_inode *inode; 864 const bool uptodate = (err == 0); 865 int ret = 0; 866 867 ASSERT(page && page->mapping); 868 inode = BTRFS_I(page->mapping->host); 869 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 870 871 if (!uptodate) { 872 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 873 u32 len; 874 875 ASSERT(end + 1 - start <= U32_MAX); 876 len = end + 1 - start; 877 878 btrfs_page_clear_uptodate(fs_info, page, start, len); 879 btrfs_page_set_error(fs_info, page, start, len); 880 ret = err < 0 ? err : -EIO; 881 mapping_set_error(page->mapping, ret); 882 } 883 } 884 885 /* 886 * after a writepage IO is done, we need to: 887 * clear the uptodate bits on error 888 * clear the writeback bits in the extent tree for this IO 889 * end_page_writeback if the page has no more pending IO 890 * 891 * Scheduling is not allowed, so the extent state tree is expected 892 * to have one and only one object corresponding to this IO. 893 */ 894 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 895 { 896 struct bio *bio = &bbio->bio; 897 int error = blk_status_to_errno(bio->bi_status); 898 struct bio_vec *bvec; 899 u64 start; 900 u64 end; 901 struct bvec_iter_all iter_all; 902 bool first_bvec = true; 903 904 ASSERT(!bio_flagged(bio, BIO_CLONED)); 905 bio_for_each_segment_all(bvec, bio, iter_all) { 906 struct page *page = bvec->bv_page; 907 struct inode *inode = page->mapping->host; 908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 909 const u32 sectorsize = fs_info->sectorsize; 910 911 /* Our read/write should always be sector aligned. */ 912 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 913 btrfs_err(fs_info, 914 "partial page write in btrfs with offset %u and length %u", 915 bvec->bv_offset, bvec->bv_len); 916 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 917 btrfs_info(fs_info, 918 "incomplete page write with offset %u and length %u", 919 bvec->bv_offset, bvec->bv_len); 920 921 start = page_offset(page) + bvec->bv_offset; 922 end = start + bvec->bv_len - 1; 923 924 if (first_bvec) { 925 btrfs_record_physical_zoned(inode, start, bio); 926 first_bvec = false; 927 } 928 929 end_extent_writepage(page, error, start, end); 930 931 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 932 } 933 934 bio_put(bio); 935 } 936 937 /* 938 * Record previously processed extent range 939 * 940 * For endio_readpage_release_extent() to handle a full extent range, reducing 941 * the extent io operations. 942 */ 943 struct processed_extent { 944 struct btrfs_inode *inode; 945 /* Start of the range in @inode */ 946 u64 start; 947 /* End of the range in @inode */ 948 u64 end; 949 bool uptodate; 950 }; 951 952 /* 953 * Try to release processed extent range 954 * 955 * May not release the extent range right now if the current range is 956 * contiguous to processed extent. 957 * 958 * Will release processed extent when any of @inode, @uptodate, the range is 959 * no longer contiguous to the processed range. 960 * 961 * Passing @inode == NULL will force processed extent to be released. 962 */ 963 static void endio_readpage_release_extent(struct processed_extent *processed, 964 struct btrfs_inode *inode, u64 start, u64 end, 965 bool uptodate) 966 { 967 struct extent_state *cached = NULL; 968 struct extent_io_tree *tree; 969 970 /* The first extent, initialize @processed */ 971 if (!processed->inode) 972 goto update; 973 974 /* 975 * Contiguous to processed extent, just uptodate the end. 976 * 977 * Several things to notice: 978 * 979 * - bio can be merged as long as on-disk bytenr is contiguous 980 * This means we can have page belonging to other inodes, thus need to 981 * check if the inode still matches. 982 * - bvec can contain range beyond current page for multi-page bvec 983 * Thus we need to do processed->end + 1 >= start check 984 */ 985 if (processed->inode == inode && processed->uptodate == uptodate && 986 processed->end + 1 >= start && end >= processed->end) { 987 processed->end = end; 988 return; 989 } 990 991 tree = &processed->inode->io_tree; 992 /* 993 * Now we don't have range contiguous to the processed range, release 994 * the processed range now. 995 */ 996 unlock_extent(tree, processed->start, processed->end, &cached); 997 998 update: 999 /* Update processed to current range */ 1000 processed->inode = inode; 1001 processed->start = start; 1002 processed->end = end; 1003 processed->uptodate = uptodate; 1004 } 1005 1006 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 1007 { 1008 ASSERT(PageLocked(page)); 1009 if (!btrfs_is_subpage(fs_info, page)) 1010 return; 1011 1012 ASSERT(PagePrivate(page)); 1013 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 1014 } 1015 1016 /* 1017 * Find extent buffer for a givne bytenr. 1018 * 1019 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 1020 * in endio context. 1021 */ 1022 static struct extent_buffer *find_extent_buffer_readpage( 1023 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 1024 { 1025 struct extent_buffer *eb; 1026 1027 /* 1028 * For regular sectorsize, we can use page->private to grab extent 1029 * buffer 1030 */ 1031 if (fs_info->nodesize >= PAGE_SIZE) { 1032 ASSERT(PagePrivate(page) && page->private); 1033 return (struct extent_buffer *)page->private; 1034 } 1035 1036 /* For subpage case, we need to lookup buffer radix tree */ 1037 rcu_read_lock(); 1038 eb = radix_tree_lookup(&fs_info->buffer_radix, 1039 bytenr >> fs_info->sectorsize_bits); 1040 rcu_read_unlock(); 1041 ASSERT(eb); 1042 return eb; 1043 } 1044 1045 /* 1046 * after a readpage IO is done, we need to: 1047 * clear the uptodate bits on error 1048 * set the uptodate bits if things worked 1049 * set the page up to date if all extents in the tree are uptodate 1050 * clear the lock bit in the extent tree 1051 * unlock the page if there are no other extents locked for it 1052 * 1053 * Scheduling is not allowed, so the extent state tree is expected 1054 * to have one and only one object corresponding to this IO. 1055 */ 1056 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 1057 { 1058 struct bio *bio = &bbio->bio; 1059 struct bio_vec *bvec; 1060 struct processed_extent processed = { 0 }; 1061 /* 1062 * The offset to the beginning of a bio, since one bio can never be 1063 * larger than UINT_MAX, u32 here is enough. 1064 */ 1065 u32 bio_offset = 0; 1066 int mirror; 1067 struct bvec_iter_all iter_all; 1068 1069 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1070 bio_for_each_segment_all(bvec, bio, iter_all) { 1071 bool uptodate = !bio->bi_status; 1072 struct page *page = bvec->bv_page; 1073 struct inode *inode = page->mapping->host; 1074 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1075 const u32 sectorsize = fs_info->sectorsize; 1076 unsigned int error_bitmap = (unsigned int)-1; 1077 bool repair = false; 1078 u64 start; 1079 u64 end; 1080 u32 len; 1081 1082 btrfs_debug(fs_info, 1083 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 1084 bio->bi_iter.bi_sector, bio->bi_status, 1085 bbio->mirror_num); 1086 1087 /* 1088 * We always issue full-sector reads, but if some block in a 1089 * page fails to read, blk_update_request() will advance 1090 * bv_offset and adjust bv_len to compensate. Print a warning 1091 * for unaligned offsets, and an error if they don't add up to 1092 * a full sector. 1093 */ 1094 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 1095 btrfs_err(fs_info, 1096 "partial page read in btrfs with offset %u and length %u", 1097 bvec->bv_offset, bvec->bv_len); 1098 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 1099 sectorsize)) 1100 btrfs_info(fs_info, 1101 "incomplete page read with offset %u and length %u", 1102 bvec->bv_offset, bvec->bv_len); 1103 1104 start = page_offset(page) + bvec->bv_offset; 1105 end = start + bvec->bv_len - 1; 1106 len = bvec->bv_len; 1107 1108 mirror = bbio->mirror_num; 1109 if (likely(uptodate)) { 1110 if (is_data_inode(inode)) { 1111 error_bitmap = btrfs_verify_data_csum(bbio, 1112 bio_offset, page, start, end); 1113 if (error_bitmap) 1114 uptodate = false; 1115 } else { 1116 if (btrfs_validate_metadata_buffer(bbio, 1117 page, start, end, mirror)) 1118 uptodate = false; 1119 } 1120 } 1121 1122 if (likely(uptodate)) { 1123 loff_t i_size = i_size_read(inode); 1124 pgoff_t end_index = i_size >> PAGE_SHIFT; 1125 1126 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0); 1127 1128 /* 1129 * Zero out the remaining part if this range straddles 1130 * i_size. 1131 * 1132 * Here we should only zero the range inside the bvec, 1133 * not touch anything else. 1134 * 1135 * NOTE: i_size is exclusive while end is inclusive. 1136 */ 1137 if (page->index == end_index && i_size <= end) { 1138 u32 zero_start = max(offset_in_page(i_size), 1139 offset_in_page(start)); 1140 1141 zero_user_segment(page, zero_start, 1142 offset_in_page(end) + 1); 1143 } 1144 } else if (is_data_inode(inode)) { 1145 /* 1146 * Only try to repair bios that actually made it to a 1147 * device. If the bio failed to be submitted mirror 1148 * is 0 and we need to fail it without retrying. 1149 * 1150 * This also includes the high level bios for compressed 1151 * extents - these never make it to a device and repair 1152 * is already handled on the lower compressed bio. 1153 */ 1154 if (mirror > 0) 1155 repair = true; 1156 } else { 1157 struct extent_buffer *eb; 1158 1159 eb = find_extent_buffer_readpage(fs_info, page, start); 1160 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 1161 eb->read_mirror = mirror; 1162 atomic_dec(&eb->io_pages); 1163 } 1164 1165 if (repair) { 1166 /* 1167 * submit_data_read_repair() will handle all the good 1168 * and bad sectors, we just continue to the next bvec. 1169 */ 1170 submit_data_read_repair(inode, bbio, bio_offset, bvec, 1171 error_bitmap); 1172 } else { 1173 /* Update page status and unlock */ 1174 end_page_read(page, uptodate, start, len); 1175 endio_readpage_release_extent(&processed, BTRFS_I(inode), 1176 start, end, PageUptodate(page)); 1177 } 1178 1179 ASSERT(bio_offset + len > bio_offset); 1180 bio_offset += len; 1181 1182 } 1183 /* Release the last extent */ 1184 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 1185 btrfs_bio_free_csum(bbio); 1186 bio_put(bio); 1187 } 1188 1189 /* 1190 * Populate every free slot in a provided array with pages. 1191 * 1192 * @nr_pages: number of pages to allocate 1193 * @page_array: the array to fill with pages; any existing non-null entries in 1194 * the array will be skipped 1195 * 1196 * Return: 0 if all pages were able to be allocated; 1197 * -ENOMEM otherwise, and the caller is responsible for freeing all 1198 * non-null page pointers in the array. 1199 */ 1200 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 1201 { 1202 unsigned int allocated; 1203 1204 for (allocated = 0; allocated < nr_pages;) { 1205 unsigned int last = allocated; 1206 1207 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 1208 1209 if (allocated == nr_pages) 1210 return 0; 1211 1212 /* 1213 * During this iteration, no page could be allocated, even 1214 * though alloc_pages_bulk_array() falls back to alloc_page() 1215 * if it could not bulk-allocate. So we must be out of memory. 1216 */ 1217 if (allocated == last) 1218 return -ENOMEM; 1219 1220 memalloc_retry_wait(GFP_NOFS); 1221 } 1222 return 0; 1223 } 1224 1225 /* 1226 * Attempt to add a page to bio. 1227 * 1228 * @bio_ctrl: record both the bio, and its bio_flags 1229 * @page: page to add to the bio 1230 * @disk_bytenr: offset of the new bio or to check whether we are adding 1231 * a contiguous page to the previous one 1232 * @size: portion of page that we want to write 1233 * @pg_offset: starting offset in the page 1234 * @compress_type: compression type of the current bio to see if we can merge them 1235 * 1236 * Attempt to add a page to bio considering stripe alignment etc. 1237 * 1238 * Return >= 0 for the number of bytes added to the bio. 1239 * Can return 0 if the current bio is already at stripe/zone boundary. 1240 * Return <0 for error. 1241 */ 1242 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 1243 struct page *page, 1244 u64 disk_bytenr, unsigned int size, 1245 unsigned int pg_offset, 1246 enum btrfs_compression_type compress_type) 1247 { 1248 struct bio *bio = bio_ctrl->bio; 1249 u32 bio_size = bio->bi_iter.bi_size; 1250 u32 real_size; 1251 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 1252 bool contig = false; 1253 int ret; 1254 1255 ASSERT(bio); 1256 /* The limit should be calculated when bio_ctrl->bio is allocated */ 1257 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 1258 if (bio_ctrl->compress_type != compress_type) 1259 return 0; 1260 1261 1262 if (bio->bi_iter.bi_size == 0) { 1263 /* We can always add a page into an empty bio. */ 1264 contig = true; 1265 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { 1266 struct bio_vec *bvec = bio_last_bvec_all(bio); 1267 1268 /* 1269 * The contig check requires the following conditions to be met: 1270 * 1) The pages are belonging to the same inode 1271 * This is implied by the call chain. 1272 * 1273 * 2) The range has adjacent logical bytenr 1274 * 1275 * 3) The range has adjacent file offset 1276 * This is required for the usage of btrfs_bio->file_offset. 1277 */ 1278 if (bio_end_sector(bio) == sector && 1279 page_offset(bvec->bv_page) + bvec->bv_offset + 1280 bvec->bv_len == page_offset(page) + pg_offset) 1281 contig = true; 1282 } else { 1283 /* 1284 * For compression, all IO should have its logical bytenr 1285 * set to the starting bytenr of the compressed extent. 1286 */ 1287 contig = bio->bi_iter.bi_sector == sector; 1288 } 1289 1290 if (!contig) 1291 return 0; 1292 1293 real_size = min(bio_ctrl->len_to_oe_boundary, 1294 bio_ctrl->len_to_stripe_boundary) - bio_size; 1295 real_size = min(real_size, size); 1296 1297 /* 1298 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 1299 * bio will still execute its endio function on the page! 1300 */ 1301 if (real_size == 0) 1302 return 0; 1303 1304 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1305 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 1306 else 1307 ret = bio_add_page(bio, page, real_size, pg_offset); 1308 1309 return ret; 1310 } 1311 1312 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 1313 struct btrfs_inode *inode, u64 file_offset) 1314 { 1315 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1316 struct btrfs_io_geometry geom; 1317 struct btrfs_ordered_extent *ordered; 1318 struct extent_map *em; 1319 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 1320 int ret; 1321 1322 /* 1323 * Pages for compressed extent are never submitted to disk directly, 1324 * thus it has no real boundary, just set them to U32_MAX. 1325 * 1326 * The split happens for real compressed bio, which happens in 1327 * btrfs_submit_compressed_read/write(). 1328 */ 1329 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 1330 bio_ctrl->len_to_oe_boundary = U32_MAX; 1331 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1332 return 0; 1333 } 1334 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 1335 if (IS_ERR(em)) 1336 return PTR_ERR(em); 1337 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 1338 logical, &geom); 1339 free_extent_map(em); 1340 if (ret < 0) { 1341 return ret; 1342 } 1343 if (geom.len > U32_MAX) 1344 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1345 else 1346 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 1347 1348 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 1349 bio_ctrl->len_to_oe_boundary = U32_MAX; 1350 return 0; 1351 } 1352 1353 /* Ordered extent not yet created, so we're good */ 1354 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 1355 if (!ordered) { 1356 bio_ctrl->len_to_oe_boundary = U32_MAX; 1357 return 0; 1358 } 1359 1360 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 1361 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 1362 btrfs_put_ordered_extent(ordered); 1363 return 0; 1364 } 1365 1366 static int alloc_new_bio(struct btrfs_inode *inode, 1367 struct btrfs_bio_ctrl *bio_ctrl, 1368 struct writeback_control *wbc, 1369 blk_opf_t opf, 1370 u64 disk_bytenr, u32 offset, u64 file_offset, 1371 enum btrfs_compression_type compress_type) 1372 { 1373 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1374 struct bio *bio; 1375 int ret; 1376 1377 ASSERT(bio_ctrl->end_io_func); 1378 1379 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL); 1380 /* 1381 * For compressed page range, its disk_bytenr is always @disk_bytenr 1382 * passed in, no matter if we have added any range into previous bio. 1383 */ 1384 if (compress_type != BTRFS_COMPRESS_NONE) 1385 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 1386 else 1387 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 1388 bio_ctrl->bio = bio; 1389 bio_ctrl->compress_type = compress_type; 1390 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 1391 if (ret < 0) 1392 goto error; 1393 1394 if (wbc) { 1395 /* 1396 * For Zone append we need the correct block_device that we are 1397 * going to write to set in the bio to be able to respect the 1398 * hardware limitation. Look it up here: 1399 */ 1400 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1401 struct btrfs_device *dev; 1402 1403 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 1404 fs_info->sectorsize); 1405 if (IS_ERR(dev)) { 1406 ret = PTR_ERR(dev); 1407 goto error; 1408 } 1409 1410 bio_set_dev(bio, dev->bdev); 1411 } else { 1412 /* 1413 * Otherwise pick the last added device to support 1414 * cgroup writeback. For multi-device file systems this 1415 * means blk-cgroup policies have to always be set on the 1416 * last added/replaced device. This is a bit odd but has 1417 * been like that for a long time. 1418 */ 1419 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 1420 } 1421 wbc_init_bio(wbc, bio); 1422 } else { 1423 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 1424 } 1425 return 0; 1426 error: 1427 bio_ctrl->bio = NULL; 1428 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 1429 return ret; 1430 } 1431 1432 /* 1433 * @opf: bio REQ_OP_* and REQ_* flags as one value 1434 * @wbc: optional writeback control for io accounting 1435 * @disk_bytenr: logical bytenr where the write will be 1436 * @page: page to add to the bio 1437 * @size: portion of page that we want to write to 1438 * @pg_offset: offset of the new bio or to check whether we are adding 1439 * a contiguous page to the previous one 1440 * @compress_type: compress type for current bio 1441 * 1442 * The will either add the page into the existing @bio_ctrl->bio, or allocate a 1443 * new one in @bio_ctrl->bio. 1444 * The mirror number for this IO should already be initizlied in 1445 * @bio_ctrl->mirror_num. 1446 */ 1447 static int submit_extent_page(blk_opf_t opf, 1448 struct writeback_control *wbc, 1449 struct btrfs_bio_ctrl *bio_ctrl, 1450 u64 disk_bytenr, struct page *page, 1451 size_t size, unsigned long pg_offset, 1452 enum btrfs_compression_type compress_type, 1453 bool force_bio_submit) 1454 { 1455 int ret = 0; 1456 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1457 unsigned int cur = pg_offset; 1458 1459 ASSERT(bio_ctrl); 1460 1461 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 1462 pg_offset + size <= PAGE_SIZE); 1463 1464 ASSERT(bio_ctrl->end_io_func); 1465 1466 if (force_bio_submit) 1467 submit_one_bio(bio_ctrl); 1468 1469 while (cur < pg_offset + size) { 1470 u32 offset = cur - pg_offset; 1471 int added; 1472 1473 /* Allocate new bio if needed */ 1474 if (!bio_ctrl->bio) { 1475 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 1476 disk_bytenr, offset, 1477 page_offset(page) + cur, 1478 compress_type); 1479 if (ret < 0) 1480 return ret; 1481 } 1482 /* 1483 * We must go through btrfs_bio_add_page() to ensure each 1484 * page range won't cross various boundaries. 1485 */ 1486 if (compress_type != BTRFS_COMPRESS_NONE) 1487 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 1488 size - offset, pg_offset + offset, 1489 compress_type); 1490 else 1491 added = btrfs_bio_add_page(bio_ctrl, page, 1492 disk_bytenr + offset, size - offset, 1493 pg_offset + offset, compress_type); 1494 1495 /* Metadata page range should never be split */ 1496 if (!is_data_inode(&inode->vfs_inode)) 1497 ASSERT(added == 0 || added == size - offset); 1498 1499 /* At least we added some page, update the account */ 1500 if (wbc && added) 1501 wbc_account_cgroup_owner(wbc, page, added); 1502 1503 /* We have reached boundary, submit right now */ 1504 if (added < size - offset) { 1505 /* The bio should contain some page(s) */ 1506 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 1507 submit_one_bio(bio_ctrl); 1508 } 1509 cur += added; 1510 } 1511 return 0; 1512 } 1513 1514 static int attach_extent_buffer_page(struct extent_buffer *eb, 1515 struct page *page, 1516 struct btrfs_subpage *prealloc) 1517 { 1518 struct btrfs_fs_info *fs_info = eb->fs_info; 1519 int ret = 0; 1520 1521 /* 1522 * If the page is mapped to btree inode, we should hold the private 1523 * lock to prevent race. 1524 * For cloned or dummy extent buffers, their pages are not mapped and 1525 * will not race with any other ebs. 1526 */ 1527 if (page->mapping) 1528 lockdep_assert_held(&page->mapping->private_lock); 1529 1530 if (fs_info->nodesize >= PAGE_SIZE) { 1531 if (!PagePrivate(page)) 1532 attach_page_private(page, eb); 1533 else 1534 WARN_ON(page->private != (unsigned long)eb); 1535 return 0; 1536 } 1537 1538 /* Already mapped, just free prealloc */ 1539 if (PagePrivate(page)) { 1540 btrfs_free_subpage(prealloc); 1541 return 0; 1542 } 1543 1544 if (prealloc) 1545 /* Has preallocated memory for subpage */ 1546 attach_page_private(page, prealloc); 1547 else 1548 /* Do new allocation to attach subpage */ 1549 ret = btrfs_attach_subpage(fs_info, page, 1550 BTRFS_SUBPAGE_METADATA); 1551 return ret; 1552 } 1553 1554 int set_page_extent_mapped(struct page *page) 1555 { 1556 struct btrfs_fs_info *fs_info; 1557 1558 ASSERT(page->mapping); 1559 1560 if (PagePrivate(page)) 1561 return 0; 1562 1563 fs_info = btrfs_sb(page->mapping->host->i_sb); 1564 1565 if (btrfs_is_subpage(fs_info, page)) 1566 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 1567 1568 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 1569 return 0; 1570 } 1571 1572 void clear_page_extent_mapped(struct page *page) 1573 { 1574 struct btrfs_fs_info *fs_info; 1575 1576 ASSERT(page->mapping); 1577 1578 if (!PagePrivate(page)) 1579 return; 1580 1581 fs_info = btrfs_sb(page->mapping->host->i_sb); 1582 if (btrfs_is_subpage(fs_info, page)) 1583 return btrfs_detach_subpage(fs_info, page); 1584 1585 detach_page_private(page); 1586 } 1587 1588 static struct extent_map * 1589 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1590 u64 start, u64 len, struct extent_map **em_cached) 1591 { 1592 struct extent_map *em; 1593 1594 if (em_cached && *em_cached) { 1595 em = *em_cached; 1596 if (extent_map_in_tree(em) && start >= em->start && 1597 start < extent_map_end(em)) { 1598 refcount_inc(&em->refs); 1599 return em; 1600 } 1601 1602 free_extent_map(em); 1603 *em_cached = NULL; 1604 } 1605 1606 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1607 if (em_cached && !IS_ERR(em)) { 1608 BUG_ON(*em_cached); 1609 refcount_inc(&em->refs); 1610 *em_cached = em; 1611 } 1612 return em; 1613 } 1614 /* 1615 * basic readpage implementation. Locked extent state structs are inserted 1616 * into the tree that are removed when the IO is done (by the end_io 1617 * handlers) 1618 * XXX JDM: This needs looking at to ensure proper page locking 1619 * return 0 on success, otherwise return error 1620 */ 1621 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1622 struct btrfs_bio_ctrl *bio_ctrl, 1623 blk_opf_t read_flags, u64 *prev_em_start) 1624 { 1625 struct inode *inode = page->mapping->host; 1626 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1627 u64 start = page_offset(page); 1628 const u64 end = start + PAGE_SIZE - 1; 1629 u64 cur = start; 1630 u64 extent_offset; 1631 u64 last_byte = i_size_read(inode); 1632 u64 block_start; 1633 struct extent_map *em; 1634 int ret = 0; 1635 size_t pg_offset = 0; 1636 size_t iosize; 1637 size_t blocksize = inode->i_sb->s_blocksize; 1638 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1639 1640 ret = set_page_extent_mapped(page); 1641 if (ret < 0) { 1642 unlock_extent(tree, start, end, NULL); 1643 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 1644 unlock_page(page); 1645 goto out; 1646 } 1647 1648 if (page->index == last_byte >> PAGE_SHIFT) { 1649 size_t zero_offset = offset_in_page(last_byte); 1650 1651 if (zero_offset) { 1652 iosize = PAGE_SIZE - zero_offset; 1653 memzero_page(page, zero_offset, iosize); 1654 } 1655 } 1656 bio_ctrl->end_io_func = end_bio_extent_readpage; 1657 begin_page_read(fs_info, page); 1658 while (cur <= end) { 1659 unsigned long this_bio_flag = 0; 1660 bool force_bio_submit = false; 1661 u64 disk_bytenr; 1662 1663 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1664 if (cur >= last_byte) { 1665 iosize = PAGE_SIZE - pg_offset; 1666 memzero_page(page, pg_offset, iosize); 1667 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1668 end_page_read(page, true, cur, iosize); 1669 break; 1670 } 1671 em = __get_extent_map(inode, page, pg_offset, cur, 1672 end - cur + 1, em_cached); 1673 if (IS_ERR(em)) { 1674 unlock_extent(tree, cur, end, NULL); 1675 end_page_read(page, false, cur, end + 1 - cur); 1676 ret = PTR_ERR(em); 1677 break; 1678 } 1679 extent_offset = cur - em->start; 1680 BUG_ON(extent_map_end(em) <= cur); 1681 BUG_ON(end < cur); 1682 1683 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1684 this_bio_flag = em->compress_type; 1685 1686 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1687 iosize = ALIGN(iosize, blocksize); 1688 if (this_bio_flag != BTRFS_COMPRESS_NONE) 1689 disk_bytenr = em->block_start; 1690 else 1691 disk_bytenr = em->block_start + extent_offset; 1692 block_start = em->block_start; 1693 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1694 block_start = EXTENT_MAP_HOLE; 1695 1696 /* 1697 * If we have a file range that points to a compressed extent 1698 * and it's followed by a consecutive file range that points 1699 * to the same compressed extent (possibly with a different 1700 * offset and/or length, so it either points to the whole extent 1701 * or only part of it), we must make sure we do not submit a 1702 * single bio to populate the pages for the 2 ranges because 1703 * this makes the compressed extent read zero out the pages 1704 * belonging to the 2nd range. Imagine the following scenario: 1705 * 1706 * File layout 1707 * [0 - 8K] [8K - 24K] 1708 * | | 1709 * | | 1710 * points to extent X, points to extent X, 1711 * offset 4K, length of 8K offset 0, length 16K 1712 * 1713 * [extent X, compressed length = 4K uncompressed length = 16K] 1714 * 1715 * If the bio to read the compressed extent covers both ranges, 1716 * it will decompress extent X into the pages belonging to the 1717 * first range and then it will stop, zeroing out the remaining 1718 * pages that belong to the other range that points to extent X. 1719 * So here we make sure we submit 2 bios, one for the first 1720 * range and another one for the third range. Both will target 1721 * the same physical extent from disk, but we can't currently 1722 * make the compressed bio endio callback populate the pages 1723 * for both ranges because each compressed bio is tightly 1724 * coupled with a single extent map, and each range can have 1725 * an extent map with a different offset value relative to the 1726 * uncompressed data of our extent and different lengths. This 1727 * is a corner case so we prioritize correctness over 1728 * non-optimal behavior (submitting 2 bios for the same extent). 1729 */ 1730 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1731 prev_em_start && *prev_em_start != (u64)-1 && 1732 *prev_em_start != em->start) 1733 force_bio_submit = true; 1734 1735 if (prev_em_start) 1736 *prev_em_start = em->start; 1737 1738 free_extent_map(em); 1739 em = NULL; 1740 1741 /* we've found a hole, just zero and go on */ 1742 if (block_start == EXTENT_MAP_HOLE) { 1743 memzero_page(page, pg_offset, iosize); 1744 1745 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1746 end_page_read(page, true, cur, iosize); 1747 cur = cur + iosize; 1748 pg_offset += iosize; 1749 continue; 1750 } 1751 /* the get_extent function already copied into the page */ 1752 if (block_start == EXTENT_MAP_INLINE) { 1753 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1754 end_page_read(page, true, cur, iosize); 1755 cur = cur + iosize; 1756 pg_offset += iosize; 1757 continue; 1758 } 1759 1760 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 1761 bio_ctrl, disk_bytenr, page, iosize, 1762 pg_offset, this_bio_flag, 1763 force_bio_submit); 1764 if (ret) { 1765 /* 1766 * We have to unlock the remaining range, or the page 1767 * will never be unlocked. 1768 */ 1769 unlock_extent(tree, cur, end, NULL); 1770 end_page_read(page, false, cur, end + 1 - cur); 1771 goto out; 1772 } 1773 cur = cur + iosize; 1774 pg_offset += iosize; 1775 } 1776 out: 1777 return ret; 1778 } 1779 1780 int btrfs_read_folio(struct file *file, struct folio *folio) 1781 { 1782 struct page *page = &folio->page; 1783 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1784 u64 start = page_offset(page); 1785 u64 end = start + PAGE_SIZE - 1; 1786 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 1787 int ret; 1788 1789 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1790 1791 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 1792 /* 1793 * If btrfs_do_readpage() failed we will want to submit the assembled 1794 * bio to do the cleanup. 1795 */ 1796 submit_one_bio(&bio_ctrl); 1797 return ret; 1798 } 1799 1800 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1801 u64 start, u64 end, 1802 struct extent_map **em_cached, 1803 struct btrfs_bio_ctrl *bio_ctrl, 1804 u64 *prev_em_start) 1805 { 1806 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1807 int index; 1808 1809 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1810 1811 for (index = 0; index < nr_pages; index++) { 1812 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1813 REQ_RAHEAD, prev_em_start); 1814 put_page(pages[index]); 1815 } 1816 } 1817 1818 /* 1819 * helper for __extent_writepage, doing all of the delayed allocation setup. 1820 * 1821 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1822 * to write the page (copy into inline extent). In this case the IO has 1823 * been started and the page is already unlocked. 1824 * 1825 * This returns 0 if all went well (page still locked) 1826 * This returns < 0 if there were errors (page still locked) 1827 */ 1828 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1829 struct page *page, struct writeback_control *wbc) 1830 { 1831 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1832 u64 delalloc_start = page_offset(page); 1833 u64 delalloc_to_write = 0; 1834 /* How many pages are started by btrfs_run_delalloc_range() */ 1835 unsigned long nr_written = 0; 1836 int ret; 1837 int page_started = 0; 1838 1839 while (delalloc_start < page_end) { 1840 u64 delalloc_end = page_end; 1841 bool found; 1842 1843 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1844 &delalloc_start, 1845 &delalloc_end); 1846 if (!found) { 1847 delalloc_start = delalloc_end + 1; 1848 continue; 1849 } 1850 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1851 delalloc_end, &page_started, &nr_written, wbc); 1852 if (ret) { 1853 btrfs_page_set_error(inode->root->fs_info, page, 1854 page_offset(page), PAGE_SIZE); 1855 return ret; 1856 } 1857 /* 1858 * delalloc_end is already one less than the total length, so 1859 * we don't subtract one from PAGE_SIZE 1860 */ 1861 delalloc_to_write += (delalloc_end - delalloc_start + 1862 PAGE_SIZE) >> PAGE_SHIFT; 1863 delalloc_start = delalloc_end + 1; 1864 } 1865 if (wbc->nr_to_write < delalloc_to_write) { 1866 int thresh = 8192; 1867 1868 if (delalloc_to_write < thresh * 2) 1869 thresh = delalloc_to_write; 1870 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1871 thresh); 1872 } 1873 1874 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1875 if (page_started) { 1876 /* 1877 * We've unlocked the page, so we can't update the mapping's 1878 * writeback index, just update nr_to_write. 1879 */ 1880 wbc->nr_to_write -= nr_written; 1881 return 1; 1882 } 1883 1884 return 0; 1885 } 1886 1887 /* 1888 * Find the first byte we need to write. 1889 * 1890 * For subpage, one page can contain several sectors, and 1891 * __extent_writepage_io() will just grab all extent maps in the page 1892 * range and try to submit all non-inline/non-compressed extents. 1893 * 1894 * This is a big problem for subpage, we shouldn't re-submit already written 1895 * data at all. 1896 * This function will lookup subpage dirty bit to find which range we really 1897 * need to submit. 1898 * 1899 * Return the next dirty range in [@start, @end). 1900 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1901 */ 1902 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1903 struct page *page, u64 *start, u64 *end) 1904 { 1905 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1906 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1907 u64 orig_start = *start; 1908 /* Declare as unsigned long so we can use bitmap ops */ 1909 unsigned long flags; 1910 int range_start_bit; 1911 int range_end_bit; 1912 1913 /* 1914 * For regular sector size == page size case, since one page only 1915 * contains one sector, we return the page offset directly. 1916 */ 1917 if (!btrfs_is_subpage(fs_info, page)) { 1918 *start = page_offset(page); 1919 *end = page_offset(page) + PAGE_SIZE; 1920 return; 1921 } 1922 1923 range_start_bit = spi->dirty_offset + 1924 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1925 1926 /* We should have the page locked, but just in case */ 1927 spin_lock_irqsave(&subpage->lock, flags); 1928 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1929 spi->dirty_offset + spi->bitmap_nr_bits); 1930 spin_unlock_irqrestore(&subpage->lock, flags); 1931 1932 range_start_bit -= spi->dirty_offset; 1933 range_end_bit -= spi->dirty_offset; 1934 1935 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1936 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1937 } 1938 1939 /* 1940 * helper for __extent_writepage. This calls the writepage start hooks, 1941 * and does the loop to map the page into extents and bios. 1942 * 1943 * We return 1 if the IO is started and the page is unlocked, 1944 * 0 if all went well (page still locked) 1945 * < 0 if there were errors (page still locked) 1946 */ 1947 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1948 struct page *page, 1949 struct writeback_control *wbc, 1950 struct btrfs_bio_ctrl *bio_ctrl, 1951 loff_t i_size, 1952 int *nr_ret) 1953 { 1954 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1955 u64 cur = page_offset(page); 1956 u64 end = cur + PAGE_SIZE - 1; 1957 u64 extent_offset; 1958 u64 block_start; 1959 struct extent_map *em; 1960 int saved_ret = 0; 1961 int ret = 0; 1962 int nr = 0; 1963 enum req_op op = REQ_OP_WRITE; 1964 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1965 bool has_error = false; 1966 bool compressed; 1967 1968 ret = btrfs_writepage_cow_fixup(page); 1969 if (ret) { 1970 /* Fixup worker will requeue */ 1971 redirty_page_for_writepage(wbc, page); 1972 unlock_page(page); 1973 return 1; 1974 } 1975 1976 /* 1977 * we don't want to touch the inode after unlocking the page, 1978 * so we update the mapping writeback index now 1979 */ 1980 wbc->nr_to_write--; 1981 1982 bio_ctrl->end_io_func = end_bio_extent_writepage; 1983 while (cur <= end) { 1984 u64 disk_bytenr; 1985 u64 em_end; 1986 u64 dirty_range_start = cur; 1987 u64 dirty_range_end; 1988 u32 iosize; 1989 1990 if (cur >= i_size) { 1991 btrfs_writepage_endio_finish_ordered(inode, page, cur, 1992 end, true); 1993 /* 1994 * This range is beyond i_size, thus we don't need to 1995 * bother writing back. 1996 * But we still need to clear the dirty subpage bit, or 1997 * the next time the page gets dirtied, we will try to 1998 * writeback the sectors with subpage dirty bits, 1999 * causing writeback without ordered extent. 2000 */ 2001 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 2002 break; 2003 } 2004 2005 find_next_dirty_byte(fs_info, page, &dirty_range_start, 2006 &dirty_range_end); 2007 if (cur < dirty_range_start) { 2008 cur = dirty_range_start; 2009 continue; 2010 } 2011 2012 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 2013 if (IS_ERR(em)) { 2014 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 2015 ret = PTR_ERR_OR_ZERO(em); 2016 has_error = true; 2017 if (!saved_ret) 2018 saved_ret = ret; 2019 break; 2020 } 2021 2022 extent_offset = cur - em->start; 2023 em_end = extent_map_end(em); 2024 ASSERT(cur <= em_end); 2025 ASSERT(cur < end); 2026 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 2027 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 2028 block_start = em->block_start; 2029 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2030 disk_bytenr = em->block_start + extent_offset; 2031 2032 /* 2033 * Note that em_end from extent_map_end() and dirty_range_end from 2034 * find_next_dirty_byte() are all exclusive 2035 */ 2036 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 2037 2038 if (btrfs_use_zone_append(inode, em->block_start)) 2039 op = REQ_OP_ZONE_APPEND; 2040 2041 free_extent_map(em); 2042 em = NULL; 2043 2044 /* 2045 * compressed and inline extents are written through other 2046 * paths in the FS 2047 */ 2048 if (compressed || block_start == EXTENT_MAP_HOLE || 2049 block_start == EXTENT_MAP_INLINE) { 2050 if (compressed) 2051 nr++; 2052 else 2053 btrfs_writepage_endio_finish_ordered(inode, 2054 page, cur, cur + iosize - 1, true); 2055 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2056 cur += iosize; 2057 continue; 2058 } 2059 2060 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 2061 if (!PageWriteback(page)) { 2062 btrfs_err(inode->root->fs_info, 2063 "page %lu not writeback, cur %llu end %llu", 2064 page->index, cur, end); 2065 } 2066 2067 /* 2068 * Although the PageDirty bit is cleared before entering this 2069 * function, subpage dirty bit is not cleared. 2070 * So clear subpage dirty bit here so next time we won't submit 2071 * page for range already written to disk. 2072 */ 2073 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2074 2075 ret = submit_extent_page(op | write_flags, wbc, 2076 bio_ctrl, disk_bytenr, 2077 page, iosize, 2078 cur - page_offset(page), 2079 0, false); 2080 if (ret) { 2081 has_error = true; 2082 if (!saved_ret) 2083 saved_ret = ret; 2084 2085 btrfs_page_set_error(fs_info, page, cur, iosize); 2086 if (PageWriteback(page)) 2087 btrfs_page_clear_writeback(fs_info, page, cur, 2088 iosize); 2089 } 2090 2091 cur += iosize; 2092 nr++; 2093 } 2094 /* 2095 * If we finish without problem, we should not only clear page dirty, 2096 * but also empty subpage dirty bits 2097 */ 2098 if (!has_error) 2099 btrfs_page_assert_not_dirty(fs_info, page); 2100 else 2101 ret = saved_ret; 2102 *nr_ret = nr; 2103 return ret; 2104 } 2105 2106 /* 2107 * the writepage semantics are similar to regular writepage. extent 2108 * records are inserted to lock ranges in the tree, and as dirty areas 2109 * are found, they are marked writeback. Then the lock bits are removed 2110 * and the end_io handler clears the writeback ranges 2111 * 2112 * Return 0 if everything goes well. 2113 * Return <0 for error. 2114 */ 2115 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2116 struct btrfs_bio_ctrl *bio_ctrl) 2117 { 2118 struct folio *folio = page_folio(page); 2119 struct inode *inode = page->mapping->host; 2120 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2121 const u64 page_start = page_offset(page); 2122 const u64 page_end = page_start + PAGE_SIZE - 1; 2123 int ret; 2124 int nr = 0; 2125 size_t pg_offset; 2126 loff_t i_size = i_size_read(inode); 2127 unsigned long end_index = i_size >> PAGE_SHIFT; 2128 2129 trace___extent_writepage(page, inode, wbc); 2130 2131 WARN_ON(!PageLocked(page)); 2132 2133 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 2134 page_offset(page), PAGE_SIZE); 2135 2136 pg_offset = offset_in_page(i_size); 2137 if (page->index > end_index || 2138 (page->index == end_index && !pg_offset)) { 2139 folio_invalidate(folio, 0, folio_size(folio)); 2140 folio_unlock(folio); 2141 return 0; 2142 } 2143 2144 if (page->index == end_index) 2145 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 2146 2147 ret = set_page_extent_mapped(page); 2148 if (ret < 0) { 2149 SetPageError(page); 2150 goto done; 2151 } 2152 2153 if (!bio_ctrl->extent_locked) { 2154 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 2155 if (ret == 1) 2156 return 0; 2157 if (ret) 2158 goto done; 2159 } 2160 2161 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size, 2162 &nr); 2163 if (ret == 1) 2164 return 0; 2165 2166 done: 2167 if (nr == 0) { 2168 /* make sure the mapping tag for page dirty gets cleared */ 2169 set_page_writeback(page); 2170 end_page_writeback(page); 2171 } 2172 /* 2173 * Here we used to have a check for PageError() and then set @ret and 2174 * call end_extent_writepage(). 2175 * 2176 * But in fact setting @ret here will cause different error paths 2177 * between subpage and regular sectorsize. 2178 * 2179 * For regular page size, we never submit current page, but only add 2180 * current page to current bio. 2181 * The bio submission can only happen in next page. 2182 * Thus if we hit the PageError() branch, @ret is already set to 2183 * non-zero value and will not get updated for regular sectorsize. 2184 * 2185 * But for subpage case, it's possible we submit part of current page, 2186 * thus can get PageError() set by submitted bio of the same page, 2187 * while our @ret is still 0. 2188 * 2189 * So here we unify the behavior and don't set @ret. 2190 * Error can still be properly passed to higher layer as page will 2191 * be set error, here we just don't handle the IO failure. 2192 * 2193 * NOTE: This is just a hotfix for subpage. 2194 * The root fix will be properly ending ordered extent when we hit 2195 * an error during writeback. 2196 * 2197 * But that needs a bigger refactoring, as we not only need to grab the 2198 * submitted OE, but also need to know exactly at which bytenr we hit 2199 * the error. 2200 * Currently the full page based __extent_writepage_io() is not 2201 * capable of that. 2202 */ 2203 if (PageError(page)) 2204 end_extent_writepage(page, ret, page_start, page_end); 2205 if (bio_ctrl->extent_locked) { 2206 /* 2207 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(), 2208 * the page can either be locked by lock_page() or 2209 * process_one_page(). 2210 * Let btrfs_page_unlock_writer() handle both cases. 2211 */ 2212 ASSERT(wbc); 2213 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 2214 wbc->range_end + 1 - wbc->range_start); 2215 } else { 2216 unlock_page(page); 2217 } 2218 ASSERT(ret <= 0); 2219 return ret; 2220 } 2221 2222 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 2223 { 2224 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 2225 TASK_UNINTERRUPTIBLE); 2226 } 2227 2228 static void end_extent_buffer_writeback(struct extent_buffer *eb) 2229 { 2230 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2231 smp_mb__after_atomic(); 2232 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 2233 } 2234 2235 /* 2236 * Lock extent buffer status and pages for writeback. 2237 * 2238 * May try to flush write bio if we can't get the lock. 2239 * 2240 * Return 0 if the extent buffer doesn't need to be submitted. 2241 * (E.g. the extent buffer is not dirty) 2242 * Return >0 is the extent buffer is submitted to bio. 2243 * Return <0 if something went wrong, no page is locked. 2244 */ 2245 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 2246 struct btrfs_bio_ctrl *bio_ctrl) 2247 { 2248 struct btrfs_fs_info *fs_info = eb->fs_info; 2249 int i, num_pages; 2250 int flush = 0; 2251 int ret = 0; 2252 2253 if (!btrfs_try_tree_write_lock(eb)) { 2254 submit_write_bio(bio_ctrl, 0); 2255 flush = 1; 2256 btrfs_tree_lock(eb); 2257 } 2258 2259 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 2260 btrfs_tree_unlock(eb); 2261 if (!bio_ctrl->sync_io) 2262 return 0; 2263 if (!flush) { 2264 submit_write_bio(bio_ctrl, 0); 2265 flush = 1; 2266 } 2267 while (1) { 2268 wait_on_extent_buffer_writeback(eb); 2269 btrfs_tree_lock(eb); 2270 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 2271 break; 2272 btrfs_tree_unlock(eb); 2273 } 2274 } 2275 2276 /* 2277 * We need to do this to prevent races in people who check if the eb is 2278 * under IO since we can end up having no IO bits set for a short period 2279 * of time. 2280 */ 2281 spin_lock(&eb->refs_lock); 2282 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2283 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2284 spin_unlock(&eb->refs_lock); 2285 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2286 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2287 -eb->len, 2288 fs_info->dirty_metadata_batch); 2289 ret = 1; 2290 } else { 2291 spin_unlock(&eb->refs_lock); 2292 } 2293 2294 btrfs_tree_unlock(eb); 2295 2296 /* 2297 * Either we don't need to submit any tree block, or we're submitting 2298 * subpage eb. 2299 * Subpage metadata doesn't use page locking at all, so we can skip 2300 * the page locking. 2301 */ 2302 if (!ret || fs_info->nodesize < PAGE_SIZE) 2303 return ret; 2304 2305 num_pages = num_extent_pages(eb); 2306 for (i = 0; i < num_pages; i++) { 2307 struct page *p = eb->pages[i]; 2308 2309 if (!trylock_page(p)) { 2310 if (!flush) { 2311 submit_write_bio(bio_ctrl, 0); 2312 flush = 1; 2313 } 2314 lock_page(p); 2315 } 2316 } 2317 2318 return ret; 2319 } 2320 2321 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 2322 { 2323 struct btrfs_fs_info *fs_info = eb->fs_info; 2324 2325 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 2326 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 2327 return; 2328 2329 /* 2330 * A read may stumble upon this buffer later, make sure that it gets an 2331 * error and knows there was an error. 2332 */ 2333 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 2334 2335 /* 2336 * We need to set the mapping with the io error as well because a write 2337 * error will flip the file system readonly, and then syncfs() will 2338 * return a 0 because we are readonly if we don't modify the err seq for 2339 * the superblock. 2340 */ 2341 mapping_set_error(page->mapping, -EIO); 2342 2343 /* 2344 * If we error out, we should add back the dirty_metadata_bytes 2345 * to make it consistent. 2346 */ 2347 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2348 eb->len, fs_info->dirty_metadata_batch); 2349 2350 /* 2351 * If writeback for a btree extent that doesn't belong to a log tree 2352 * failed, increment the counter transaction->eb_write_errors. 2353 * We do this because while the transaction is running and before it's 2354 * committing (when we call filemap_fdata[write|wait]_range against 2355 * the btree inode), we might have 2356 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 2357 * returns an error or an error happens during writeback, when we're 2358 * committing the transaction we wouldn't know about it, since the pages 2359 * can be no longer dirty nor marked anymore for writeback (if a 2360 * subsequent modification to the extent buffer didn't happen before the 2361 * transaction commit), which makes filemap_fdata[write|wait]_range not 2362 * able to find the pages tagged with SetPageError at transaction 2363 * commit time. So if this happens we must abort the transaction, 2364 * otherwise we commit a super block with btree roots that point to 2365 * btree nodes/leafs whose content on disk is invalid - either garbage 2366 * or the content of some node/leaf from a past generation that got 2367 * cowed or deleted and is no longer valid. 2368 * 2369 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 2370 * not be enough - we need to distinguish between log tree extents vs 2371 * non-log tree extents, and the next filemap_fdatawait_range() call 2372 * will catch and clear such errors in the mapping - and that call might 2373 * be from a log sync and not from a transaction commit. Also, checking 2374 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 2375 * not done and would not be reliable - the eb might have been released 2376 * from memory and reading it back again means that flag would not be 2377 * set (since it's a runtime flag, not persisted on disk). 2378 * 2379 * Using the flags below in the btree inode also makes us achieve the 2380 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 2381 * writeback for all dirty pages and before filemap_fdatawait_range() 2382 * is called, the writeback for all dirty pages had already finished 2383 * with errors - because we were not using AS_EIO/AS_ENOSPC, 2384 * filemap_fdatawait_range() would return success, as it could not know 2385 * that writeback errors happened (the pages were no longer tagged for 2386 * writeback). 2387 */ 2388 switch (eb->log_index) { 2389 case -1: 2390 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 2391 break; 2392 case 0: 2393 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2394 break; 2395 case 1: 2396 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2397 break; 2398 default: 2399 BUG(); /* unexpected, logic error */ 2400 } 2401 } 2402 2403 /* 2404 * The endio specific version which won't touch any unsafe spinlock in endio 2405 * context. 2406 */ 2407 static struct extent_buffer *find_extent_buffer_nolock( 2408 struct btrfs_fs_info *fs_info, u64 start) 2409 { 2410 struct extent_buffer *eb; 2411 2412 rcu_read_lock(); 2413 eb = radix_tree_lookup(&fs_info->buffer_radix, 2414 start >> fs_info->sectorsize_bits); 2415 if (eb && atomic_inc_not_zero(&eb->refs)) { 2416 rcu_read_unlock(); 2417 return eb; 2418 } 2419 rcu_read_unlock(); 2420 return NULL; 2421 } 2422 2423 /* 2424 * The endio function for subpage extent buffer write. 2425 * 2426 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 2427 * after all extent buffers in the page has finished their writeback. 2428 */ 2429 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) 2430 { 2431 struct bio *bio = &bbio->bio; 2432 struct btrfs_fs_info *fs_info; 2433 struct bio_vec *bvec; 2434 struct bvec_iter_all iter_all; 2435 2436 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 2437 ASSERT(fs_info->nodesize < PAGE_SIZE); 2438 2439 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2440 bio_for_each_segment_all(bvec, bio, iter_all) { 2441 struct page *page = bvec->bv_page; 2442 u64 bvec_start = page_offset(page) + bvec->bv_offset; 2443 u64 bvec_end = bvec_start + bvec->bv_len - 1; 2444 u64 cur_bytenr = bvec_start; 2445 2446 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 2447 2448 /* Iterate through all extent buffers in the range */ 2449 while (cur_bytenr <= bvec_end) { 2450 struct extent_buffer *eb; 2451 int done; 2452 2453 /* 2454 * Here we can't use find_extent_buffer(), as it may 2455 * try to lock eb->refs_lock, which is not safe in endio 2456 * context. 2457 */ 2458 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 2459 ASSERT(eb); 2460 2461 cur_bytenr = eb->start + eb->len; 2462 2463 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 2464 done = atomic_dec_and_test(&eb->io_pages); 2465 ASSERT(done); 2466 2467 if (bio->bi_status || 2468 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2469 ClearPageUptodate(page); 2470 set_btree_ioerr(page, eb); 2471 } 2472 2473 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 2474 eb->len); 2475 end_extent_buffer_writeback(eb); 2476 /* 2477 * free_extent_buffer() will grab spinlock which is not 2478 * safe in endio context. Thus here we manually dec 2479 * the ref. 2480 */ 2481 atomic_dec(&eb->refs); 2482 } 2483 } 2484 bio_put(bio); 2485 } 2486 2487 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) 2488 { 2489 struct bio *bio = &bbio->bio; 2490 struct bio_vec *bvec; 2491 struct extent_buffer *eb; 2492 int done; 2493 struct bvec_iter_all iter_all; 2494 2495 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2496 bio_for_each_segment_all(bvec, bio, iter_all) { 2497 struct page *page = bvec->bv_page; 2498 2499 eb = (struct extent_buffer *)page->private; 2500 BUG_ON(!eb); 2501 done = atomic_dec_and_test(&eb->io_pages); 2502 2503 if (bio->bi_status || 2504 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2505 ClearPageUptodate(page); 2506 set_btree_ioerr(page, eb); 2507 } 2508 2509 end_page_writeback(page); 2510 2511 if (!done) 2512 continue; 2513 2514 end_extent_buffer_writeback(eb); 2515 } 2516 2517 bio_put(bio); 2518 } 2519 2520 static void prepare_eb_write(struct extent_buffer *eb) 2521 { 2522 u32 nritems; 2523 unsigned long start; 2524 unsigned long end; 2525 2526 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2527 atomic_set(&eb->io_pages, num_extent_pages(eb)); 2528 2529 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2530 nritems = btrfs_header_nritems(eb); 2531 if (btrfs_header_level(eb) > 0) { 2532 end = btrfs_node_key_ptr_offset(eb, nritems); 2533 memzero_extent_buffer(eb, end, eb->len - end); 2534 } else { 2535 /* 2536 * Leaf: 2537 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2538 */ 2539 start = btrfs_item_nr_offset(eb, nritems); 2540 end = btrfs_item_nr_offset(eb, 0); 2541 if (nritems == 0) 2542 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2543 else 2544 end += btrfs_item_offset(eb, nritems - 1); 2545 memzero_extent_buffer(eb, start, end - start); 2546 } 2547 } 2548 2549 /* 2550 * Unlike the work in write_one_eb(), we rely completely on extent locking. 2551 * Page locking is only utilized at minimum to keep the VMM code happy. 2552 */ 2553 static int write_one_subpage_eb(struct extent_buffer *eb, 2554 struct writeback_control *wbc, 2555 struct btrfs_bio_ctrl *bio_ctrl) 2556 { 2557 struct btrfs_fs_info *fs_info = eb->fs_info; 2558 struct page *page = eb->pages[0]; 2559 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2560 bool no_dirty_ebs = false; 2561 int ret; 2562 2563 prepare_eb_write(eb); 2564 2565 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 2566 lock_page(page); 2567 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 2568 2569 /* Check if this is the last dirty bit to update nr_written */ 2570 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 2571 eb->start, eb->len); 2572 if (no_dirty_ebs) 2573 clear_page_dirty_for_io(page); 2574 2575 bio_ctrl->end_io_func = end_bio_subpage_eb_writepage; 2576 2577 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2578 bio_ctrl, eb->start, page, eb->len, 2579 eb->start - page_offset(page), 0, false); 2580 if (ret) { 2581 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 2582 set_btree_ioerr(page, eb); 2583 unlock_page(page); 2584 2585 if (atomic_dec_and_test(&eb->io_pages)) 2586 end_extent_buffer_writeback(eb); 2587 return -EIO; 2588 } 2589 unlock_page(page); 2590 /* 2591 * Submission finished without problem, if no range of the page is 2592 * dirty anymore, we have submitted a page. Update nr_written in wbc. 2593 */ 2594 if (no_dirty_ebs) 2595 wbc->nr_to_write--; 2596 return ret; 2597 } 2598 2599 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 2600 struct writeback_control *wbc, 2601 struct btrfs_bio_ctrl *bio_ctrl) 2602 { 2603 u64 disk_bytenr = eb->start; 2604 int i, num_pages; 2605 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2606 int ret = 0; 2607 2608 prepare_eb_write(eb); 2609 2610 bio_ctrl->end_io_func = end_bio_extent_buffer_writepage; 2611 2612 num_pages = num_extent_pages(eb); 2613 for (i = 0; i < num_pages; i++) { 2614 struct page *p = eb->pages[i]; 2615 2616 clear_page_dirty_for_io(p); 2617 set_page_writeback(p); 2618 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2619 bio_ctrl, disk_bytenr, p, 2620 PAGE_SIZE, 0, 0, false); 2621 if (ret) { 2622 set_btree_ioerr(p, eb); 2623 if (PageWriteback(p)) 2624 end_page_writeback(p); 2625 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 2626 end_extent_buffer_writeback(eb); 2627 ret = -EIO; 2628 break; 2629 } 2630 disk_bytenr += PAGE_SIZE; 2631 wbc->nr_to_write--; 2632 unlock_page(p); 2633 } 2634 2635 if (unlikely(ret)) { 2636 for (; i < num_pages; i++) { 2637 struct page *p = eb->pages[i]; 2638 clear_page_dirty_for_io(p); 2639 unlock_page(p); 2640 } 2641 } 2642 2643 return ret; 2644 } 2645 2646 /* 2647 * Submit one subpage btree page. 2648 * 2649 * The main difference to submit_eb_page() is: 2650 * - Page locking 2651 * For subpage, we don't rely on page locking at all. 2652 * 2653 * - Flush write bio 2654 * We only flush bio if we may be unable to fit current extent buffers into 2655 * current bio. 2656 * 2657 * Return >=0 for the number of submitted extent buffers. 2658 * Return <0 for fatal error. 2659 */ 2660 static int submit_eb_subpage(struct page *page, 2661 struct writeback_control *wbc, 2662 struct btrfs_bio_ctrl *bio_ctrl) 2663 { 2664 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2665 int submitted = 0; 2666 u64 page_start = page_offset(page); 2667 int bit_start = 0; 2668 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2669 int ret; 2670 2671 /* Lock and write each dirty extent buffers in the range */ 2672 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 2673 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2674 struct extent_buffer *eb; 2675 unsigned long flags; 2676 u64 start; 2677 2678 /* 2679 * Take private lock to ensure the subpage won't be detached 2680 * in the meantime. 2681 */ 2682 spin_lock(&page->mapping->private_lock); 2683 if (!PagePrivate(page)) { 2684 spin_unlock(&page->mapping->private_lock); 2685 break; 2686 } 2687 spin_lock_irqsave(&subpage->lock, flags); 2688 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 2689 subpage->bitmaps)) { 2690 spin_unlock_irqrestore(&subpage->lock, flags); 2691 spin_unlock(&page->mapping->private_lock); 2692 bit_start++; 2693 continue; 2694 } 2695 2696 start = page_start + bit_start * fs_info->sectorsize; 2697 bit_start += sectors_per_node; 2698 2699 /* 2700 * Here we just want to grab the eb without touching extra 2701 * spin locks, so call find_extent_buffer_nolock(). 2702 */ 2703 eb = find_extent_buffer_nolock(fs_info, start); 2704 spin_unlock_irqrestore(&subpage->lock, flags); 2705 spin_unlock(&page->mapping->private_lock); 2706 2707 /* 2708 * The eb has already reached 0 refs thus find_extent_buffer() 2709 * doesn't return it. We don't need to write back such eb 2710 * anyway. 2711 */ 2712 if (!eb) 2713 continue; 2714 2715 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2716 if (ret == 0) { 2717 free_extent_buffer(eb); 2718 continue; 2719 } 2720 if (ret < 0) { 2721 free_extent_buffer(eb); 2722 goto cleanup; 2723 } 2724 ret = write_one_subpage_eb(eb, wbc, bio_ctrl); 2725 free_extent_buffer(eb); 2726 if (ret < 0) 2727 goto cleanup; 2728 submitted++; 2729 } 2730 return submitted; 2731 2732 cleanup: 2733 /* We hit error, end bio for the submitted extent buffers */ 2734 submit_write_bio(bio_ctrl, ret); 2735 return ret; 2736 } 2737 2738 /* 2739 * Submit all page(s) of one extent buffer. 2740 * 2741 * @page: the page of one extent buffer 2742 * @eb_context: to determine if we need to submit this page, if current page 2743 * belongs to this eb, we don't need to submit 2744 * 2745 * The caller should pass each page in their bytenr order, and here we use 2746 * @eb_context to determine if we have submitted pages of one extent buffer. 2747 * 2748 * If we have, we just skip until we hit a new page that doesn't belong to 2749 * current @eb_context. 2750 * 2751 * If not, we submit all the page(s) of the extent buffer. 2752 * 2753 * Return >0 if we have submitted the extent buffer successfully. 2754 * Return 0 if we don't need to submit the page, as it's already submitted by 2755 * previous call. 2756 * Return <0 for fatal error. 2757 */ 2758 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 2759 struct btrfs_bio_ctrl *bio_ctrl, 2760 struct extent_buffer **eb_context) 2761 { 2762 struct address_space *mapping = page->mapping; 2763 struct btrfs_block_group *cache = NULL; 2764 struct extent_buffer *eb; 2765 int ret; 2766 2767 if (!PagePrivate(page)) 2768 return 0; 2769 2770 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 2771 return submit_eb_subpage(page, wbc, bio_ctrl); 2772 2773 spin_lock(&mapping->private_lock); 2774 if (!PagePrivate(page)) { 2775 spin_unlock(&mapping->private_lock); 2776 return 0; 2777 } 2778 2779 eb = (struct extent_buffer *)page->private; 2780 2781 /* 2782 * Shouldn't happen and normally this would be a BUG_ON but no point 2783 * crashing the machine for something we can survive anyway. 2784 */ 2785 if (WARN_ON(!eb)) { 2786 spin_unlock(&mapping->private_lock); 2787 return 0; 2788 } 2789 2790 if (eb == *eb_context) { 2791 spin_unlock(&mapping->private_lock); 2792 return 0; 2793 } 2794 ret = atomic_inc_not_zero(&eb->refs); 2795 spin_unlock(&mapping->private_lock); 2796 if (!ret) 2797 return 0; 2798 2799 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 2800 /* 2801 * If for_sync, this hole will be filled with 2802 * trasnsaction commit. 2803 */ 2804 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 2805 ret = -EAGAIN; 2806 else 2807 ret = 0; 2808 free_extent_buffer(eb); 2809 return ret; 2810 } 2811 2812 *eb_context = eb; 2813 2814 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2815 if (ret <= 0) { 2816 btrfs_revert_meta_write_pointer(cache, eb); 2817 if (cache) 2818 btrfs_put_block_group(cache); 2819 free_extent_buffer(eb); 2820 return ret; 2821 } 2822 if (cache) { 2823 /* 2824 * Implies write in zoned mode. Mark the last eb in a block group. 2825 */ 2826 btrfs_schedule_zone_finish_bg(cache, eb); 2827 btrfs_put_block_group(cache); 2828 } 2829 ret = write_one_eb(eb, wbc, bio_ctrl); 2830 free_extent_buffer(eb); 2831 if (ret < 0) 2832 return ret; 2833 return 1; 2834 } 2835 2836 int btree_write_cache_pages(struct address_space *mapping, 2837 struct writeback_control *wbc) 2838 { 2839 struct extent_buffer *eb_context = NULL; 2840 struct btrfs_bio_ctrl bio_ctrl = { 2841 .extent_locked = 0, 2842 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 2843 }; 2844 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 2845 int ret = 0; 2846 int done = 0; 2847 int nr_to_write_done = 0; 2848 struct pagevec pvec; 2849 int nr_pages; 2850 pgoff_t index; 2851 pgoff_t end; /* Inclusive */ 2852 int scanned = 0; 2853 xa_mark_t tag; 2854 2855 pagevec_init(&pvec); 2856 if (wbc->range_cyclic) { 2857 index = mapping->writeback_index; /* Start from prev offset */ 2858 end = -1; 2859 /* 2860 * Start from the beginning does not need to cycle over the 2861 * range, mark it as scanned. 2862 */ 2863 scanned = (index == 0); 2864 } else { 2865 index = wbc->range_start >> PAGE_SHIFT; 2866 end = wbc->range_end >> PAGE_SHIFT; 2867 scanned = 1; 2868 } 2869 if (wbc->sync_mode == WB_SYNC_ALL) 2870 tag = PAGECACHE_TAG_TOWRITE; 2871 else 2872 tag = PAGECACHE_TAG_DIRTY; 2873 btrfs_zoned_meta_io_lock(fs_info); 2874 retry: 2875 if (wbc->sync_mode == WB_SYNC_ALL) 2876 tag_pages_for_writeback(mapping, index, end); 2877 while (!done && !nr_to_write_done && (index <= end) && 2878 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2879 tag))) { 2880 unsigned i; 2881 2882 for (i = 0; i < nr_pages; i++) { 2883 struct page *page = pvec.pages[i]; 2884 2885 ret = submit_eb_page(page, wbc, &bio_ctrl, &eb_context); 2886 if (ret == 0) 2887 continue; 2888 if (ret < 0) { 2889 done = 1; 2890 break; 2891 } 2892 2893 /* 2894 * the filesystem may choose to bump up nr_to_write. 2895 * We have to make sure to honor the new nr_to_write 2896 * at any time 2897 */ 2898 nr_to_write_done = wbc->nr_to_write <= 0; 2899 } 2900 pagevec_release(&pvec); 2901 cond_resched(); 2902 } 2903 if (!scanned && !done) { 2904 /* 2905 * We hit the last page and there is more work to be done: wrap 2906 * back to the start of the file 2907 */ 2908 scanned = 1; 2909 index = 0; 2910 goto retry; 2911 } 2912 /* 2913 * If something went wrong, don't allow any metadata write bio to be 2914 * submitted. 2915 * 2916 * This would prevent use-after-free if we had dirty pages not 2917 * cleaned up, which can still happen by fuzzed images. 2918 * 2919 * - Bad extent tree 2920 * Allowing existing tree block to be allocated for other trees. 2921 * 2922 * - Log tree operations 2923 * Exiting tree blocks get allocated to log tree, bumps its 2924 * generation, then get cleaned in tree re-balance. 2925 * Such tree block will not be written back, since it's clean, 2926 * thus no WRITTEN flag set. 2927 * And after log writes back, this tree block is not traced by 2928 * any dirty extent_io_tree. 2929 * 2930 * - Offending tree block gets re-dirtied from its original owner 2931 * Since it has bumped generation, no WRITTEN flag, it can be 2932 * reused without COWing. This tree block will not be traced 2933 * by btrfs_transaction::dirty_pages. 2934 * 2935 * Now such dirty tree block will not be cleaned by any dirty 2936 * extent io tree. Thus we don't want to submit such wild eb 2937 * if the fs already has error. 2938 * 2939 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2940 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2941 */ 2942 if (ret > 0) 2943 ret = 0; 2944 if (!ret && BTRFS_FS_ERROR(fs_info)) 2945 ret = -EROFS; 2946 submit_write_bio(&bio_ctrl, ret); 2947 2948 btrfs_zoned_meta_io_unlock(fs_info); 2949 return ret; 2950 } 2951 2952 /* 2953 * Walk the list of dirty pages of the given address space and write all of them. 2954 * 2955 * @mapping: address space structure to write 2956 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2957 * @bio_ctrl: holds context for the write, namely the bio 2958 * 2959 * If a page is already under I/O, write_cache_pages() skips it, even 2960 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2961 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2962 * and msync() need to guarantee that all the data which was dirty at the time 2963 * the call was made get new I/O started against them. If wbc->sync_mode is 2964 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2965 * existing IO to complete. 2966 */ 2967 static int extent_write_cache_pages(struct address_space *mapping, 2968 struct writeback_control *wbc, 2969 struct btrfs_bio_ctrl *bio_ctrl) 2970 { 2971 struct inode *inode = mapping->host; 2972 int ret = 0; 2973 int done = 0; 2974 int nr_to_write_done = 0; 2975 struct pagevec pvec; 2976 int nr_pages; 2977 pgoff_t index; 2978 pgoff_t end; /* Inclusive */ 2979 pgoff_t done_index; 2980 int range_whole = 0; 2981 int scanned = 0; 2982 xa_mark_t tag; 2983 2984 /* 2985 * We have to hold onto the inode so that ordered extents can do their 2986 * work when the IO finishes. The alternative to this is failing to add 2987 * an ordered extent if the igrab() fails there and that is a huge pain 2988 * to deal with, so instead just hold onto the inode throughout the 2989 * writepages operation. If it fails here we are freeing up the inode 2990 * anyway and we'd rather not waste our time writing out stuff that is 2991 * going to be truncated anyway. 2992 */ 2993 if (!igrab(inode)) 2994 return 0; 2995 2996 pagevec_init(&pvec); 2997 if (wbc->range_cyclic) { 2998 index = mapping->writeback_index; /* Start from prev offset */ 2999 end = -1; 3000 /* 3001 * Start from the beginning does not need to cycle over the 3002 * range, mark it as scanned. 3003 */ 3004 scanned = (index == 0); 3005 } else { 3006 index = wbc->range_start >> PAGE_SHIFT; 3007 end = wbc->range_end >> PAGE_SHIFT; 3008 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3009 range_whole = 1; 3010 scanned = 1; 3011 } 3012 3013 /* 3014 * We do the tagged writepage as long as the snapshot flush bit is set 3015 * and we are the first one who do the filemap_flush() on this inode. 3016 * 3017 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 3018 * not race in and drop the bit. 3019 */ 3020 if (range_whole && wbc->nr_to_write == LONG_MAX && 3021 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 3022 &BTRFS_I(inode)->runtime_flags)) 3023 wbc->tagged_writepages = 1; 3024 3025 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3026 tag = PAGECACHE_TAG_TOWRITE; 3027 else 3028 tag = PAGECACHE_TAG_DIRTY; 3029 retry: 3030 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3031 tag_pages_for_writeback(mapping, index, end); 3032 done_index = index; 3033 while (!done && !nr_to_write_done && (index <= end) && 3034 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3035 &index, end, tag))) { 3036 unsigned i; 3037 3038 for (i = 0; i < nr_pages; i++) { 3039 struct page *page = pvec.pages[i]; 3040 3041 done_index = page->index + 1; 3042 /* 3043 * At this point we hold neither the i_pages lock nor 3044 * the page lock: the page may be truncated or 3045 * invalidated (changing page->mapping to NULL), 3046 * or even swizzled back from swapper_space to 3047 * tmpfs file mapping 3048 */ 3049 if (!trylock_page(page)) { 3050 submit_write_bio(bio_ctrl, 0); 3051 lock_page(page); 3052 } 3053 3054 if (unlikely(page->mapping != mapping)) { 3055 unlock_page(page); 3056 continue; 3057 } 3058 3059 if (wbc->sync_mode != WB_SYNC_NONE) { 3060 if (PageWriteback(page)) 3061 submit_write_bio(bio_ctrl, 0); 3062 wait_on_page_writeback(page); 3063 } 3064 3065 if (PageWriteback(page) || 3066 !clear_page_dirty_for_io(page)) { 3067 unlock_page(page); 3068 continue; 3069 } 3070 3071 ret = __extent_writepage(page, wbc, bio_ctrl); 3072 if (ret < 0) { 3073 done = 1; 3074 break; 3075 } 3076 3077 /* 3078 * the filesystem may choose to bump up nr_to_write. 3079 * We have to make sure to honor the new nr_to_write 3080 * at any time 3081 */ 3082 nr_to_write_done = wbc->nr_to_write <= 0; 3083 } 3084 pagevec_release(&pvec); 3085 cond_resched(); 3086 } 3087 if (!scanned && !done) { 3088 /* 3089 * We hit the last page and there is more work to be done: wrap 3090 * back to the start of the file 3091 */ 3092 scanned = 1; 3093 index = 0; 3094 3095 /* 3096 * If we're looping we could run into a page that is locked by a 3097 * writer and that writer could be waiting on writeback for a 3098 * page in our current bio, and thus deadlock, so flush the 3099 * write bio here. 3100 */ 3101 submit_write_bio(bio_ctrl, 0); 3102 goto retry; 3103 } 3104 3105 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 3106 mapping->writeback_index = done_index; 3107 3108 btrfs_add_delayed_iput(BTRFS_I(inode)); 3109 return ret; 3110 } 3111 3112 /* 3113 * Submit the pages in the range to bio for call sites which delalloc range has 3114 * already been ran (aka, ordered extent inserted) and all pages are still 3115 * locked. 3116 */ 3117 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 3118 { 3119 bool found_error = false; 3120 int first_error = 0; 3121 int ret = 0; 3122 struct address_space *mapping = inode->i_mapping; 3123 struct page *page; 3124 u64 cur = start; 3125 unsigned long nr_pages; 3126 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 3127 struct btrfs_bio_ctrl bio_ctrl = { 3128 .extent_locked = 1, 3129 .sync_io = 1, 3130 }; 3131 struct writeback_control wbc_writepages = { 3132 .sync_mode = WB_SYNC_ALL, 3133 .range_start = start, 3134 .range_end = end + 1, 3135 /* We're called from an async helper function */ 3136 .punt_to_cgroup = 1, 3137 .no_cgroup_owner = 1, 3138 }; 3139 3140 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 3141 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 3142 PAGE_SHIFT; 3143 wbc_writepages.nr_to_write = nr_pages * 2; 3144 3145 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 3146 while (cur <= end) { 3147 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 3148 3149 page = find_get_page(mapping, cur >> PAGE_SHIFT); 3150 /* 3151 * All pages in the range are locked since 3152 * btrfs_run_delalloc_range(), thus there is no way to clear 3153 * the page dirty flag. 3154 */ 3155 ASSERT(PageLocked(page)); 3156 ASSERT(PageDirty(page)); 3157 clear_page_dirty_for_io(page); 3158 ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl); 3159 ASSERT(ret <= 0); 3160 if (ret < 0) { 3161 found_error = true; 3162 first_error = ret; 3163 } 3164 put_page(page); 3165 cur = cur_end + 1; 3166 } 3167 3168 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 3169 3170 wbc_detach_inode(&wbc_writepages); 3171 if (found_error) 3172 return first_error; 3173 return ret; 3174 } 3175 3176 int extent_writepages(struct address_space *mapping, 3177 struct writeback_control *wbc) 3178 { 3179 struct inode *inode = mapping->host; 3180 int ret = 0; 3181 struct btrfs_bio_ctrl bio_ctrl = { 3182 .extent_locked = 0, 3183 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 3184 }; 3185 3186 /* 3187 * Allow only a single thread to do the reloc work in zoned mode to 3188 * protect the write pointer updates. 3189 */ 3190 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 3191 ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl); 3192 submit_write_bio(&bio_ctrl, ret); 3193 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 3194 return ret; 3195 } 3196 3197 void extent_readahead(struct readahead_control *rac) 3198 { 3199 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 3200 struct page *pagepool[16]; 3201 struct extent_map *em_cached = NULL; 3202 u64 prev_em_start = (u64)-1; 3203 int nr; 3204 3205 while ((nr = readahead_page_batch(rac, pagepool))) { 3206 u64 contig_start = readahead_pos(rac); 3207 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 3208 3209 contiguous_readpages(pagepool, nr, contig_start, contig_end, 3210 &em_cached, &bio_ctrl, &prev_em_start); 3211 } 3212 3213 if (em_cached) 3214 free_extent_map(em_cached); 3215 submit_one_bio(&bio_ctrl); 3216 } 3217 3218 /* 3219 * basic invalidate_folio code, this waits on any locked or writeback 3220 * ranges corresponding to the folio, and then deletes any extent state 3221 * records from the tree 3222 */ 3223 int extent_invalidate_folio(struct extent_io_tree *tree, 3224 struct folio *folio, size_t offset) 3225 { 3226 struct extent_state *cached_state = NULL; 3227 u64 start = folio_pos(folio); 3228 u64 end = start + folio_size(folio) - 1; 3229 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 3230 3231 /* This function is only called for the btree inode */ 3232 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 3233 3234 start += ALIGN(offset, blocksize); 3235 if (start > end) 3236 return 0; 3237 3238 lock_extent(tree, start, end, &cached_state); 3239 folio_wait_writeback(folio); 3240 3241 /* 3242 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 3243 * so here we only need to unlock the extent range to free any 3244 * existing extent state. 3245 */ 3246 unlock_extent(tree, start, end, &cached_state); 3247 return 0; 3248 } 3249 3250 /* 3251 * a helper for release_folio, this tests for areas of the page that 3252 * are locked or under IO and drops the related state bits if it is safe 3253 * to drop the page. 3254 */ 3255 static int try_release_extent_state(struct extent_io_tree *tree, 3256 struct page *page, gfp_t mask) 3257 { 3258 u64 start = page_offset(page); 3259 u64 end = start + PAGE_SIZE - 1; 3260 int ret = 1; 3261 3262 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 3263 ret = 0; 3264 } else { 3265 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 3266 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 3267 3268 /* 3269 * At this point we can safely clear everything except the 3270 * locked bit, the nodatasum bit and the delalloc new bit. 3271 * The delalloc new bit will be cleared by ordered extent 3272 * completion. 3273 */ 3274 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, 3275 mask, NULL); 3276 3277 /* if clear_extent_bit failed for enomem reasons, 3278 * we can't allow the release to continue. 3279 */ 3280 if (ret < 0) 3281 ret = 0; 3282 else 3283 ret = 1; 3284 } 3285 return ret; 3286 } 3287 3288 /* 3289 * a helper for release_folio. As long as there are no locked extents 3290 * in the range corresponding to the page, both state records and extent 3291 * map records are removed 3292 */ 3293 int try_release_extent_mapping(struct page *page, gfp_t mask) 3294 { 3295 struct extent_map *em; 3296 u64 start = page_offset(page); 3297 u64 end = start + PAGE_SIZE - 1; 3298 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 3299 struct extent_io_tree *tree = &btrfs_inode->io_tree; 3300 struct extent_map_tree *map = &btrfs_inode->extent_tree; 3301 3302 if (gfpflags_allow_blocking(mask) && 3303 page->mapping->host->i_size > SZ_16M) { 3304 u64 len; 3305 while (start <= end) { 3306 struct btrfs_fs_info *fs_info; 3307 u64 cur_gen; 3308 3309 len = end - start + 1; 3310 write_lock(&map->lock); 3311 em = lookup_extent_mapping(map, start, len); 3312 if (!em) { 3313 write_unlock(&map->lock); 3314 break; 3315 } 3316 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3317 em->start != start) { 3318 write_unlock(&map->lock); 3319 free_extent_map(em); 3320 break; 3321 } 3322 if (test_range_bit(tree, em->start, 3323 extent_map_end(em) - 1, 3324 EXTENT_LOCKED, 0, NULL)) 3325 goto next; 3326 /* 3327 * If it's not in the list of modified extents, used 3328 * by a fast fsync, we can remove it. If it's being 3329 * logged we can safely remove it since fsync took an 3330 * extra reference on the em. 3331 */ 3332 if (list_empty(&em->list) || 3333 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 3334 goto remove_em; 3335 /* 3336 * If it's in the list of modified extents, remove it 3337 * only if its generation is older then the current one, 3338 * in which case we don't need it for a fast fsync. 3339 * Otherwise don't remove it, we could be racing with an 3340 * ongoing fast fsync that could miss the new extent. 3341 */ 3342 fs_info = btrfs_inode->root->fs_info; 3343 spin_lock(&fs_info->trans_lock); 3344 cur_gen = fs_info->generation; 3345 spin_unlock(&fs_info->trans_lock); 3346 if (em->generation >= cur_gen) 3347 goto next; 3348 remove_em: 3349 /* 3350 * We only remove extent maps that are not in the list of 3351 * modified extents or that are in the list but with a 3352 * generation lower then the current generation, so there 3353 * is no need to set the full fsync flag on the inode (it 3354 * hurts the fsync performance for workloads with a data 3355 * size that exceeds or is close to the system's memory). 3356 */ 3357 remove_extent_mapping(map, em); 3358 /* once for the rb tree */ 3359 free_extent_map(em); 3360 next: 3361 start = extent_map_end(em); 3362 write_unlock(&map->lock); 3363 3364 /* once for us */ 3365 free_extent_map(em); 3366 3367 cond_resched(); /* Allow large-extent preemption. */ 3368 } 3369 } 3370 return try_release_extent_state(tree, page, mask); 3371 } 3372 3373 /* 3374 * To cache previous fiemap extent 3375 * 3376 * Will be used for merging fiemap extent 3377 */ 3378 struct fiemap_cache { 3379 u64 offset; 3380 u64 phys; 3381 u64 len; 3382 u32 flags; 3383 bool cached; 3384 }; 3385 3386 /* 3387 * Helper to submit fiemap extent. 3388 * 3389 * Will try to merge current fiemap extent specified by @offset, @phys, 3390 * @len and @flags with cached one. 3391 * And only when we fails to merge, cached one will be submitted as 3392 * fiemap extent. 3393 * 3394 * Return value is the same as fiemap_fill_next_extent(). 3395 */ 3396 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 3397 struct fiemap_cache *cache, 3398 u64 offset, u64 phys, u64 len, u32 flags) 3399 { 3400 int ret = 0; 3401 3402 /* Set at the end of extent_fiemap(). */ 3403 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 3404 3405 if (!cache->cached) 3406 goto assign; 3407 3408 /* 3409 * Sanity check, extent_fiemap() should have ensured that new 3410 * fiemap extent won't overlap with cached one. 3411 * Not recoverable. 3412 * 3413 * NOTE: Physical address can overlap, due to compression 3414 */ 3415 if (cache->offset + cache->len > offset) { 3416 WARN_ON(1); 3417 return -EINVAL; 3418 } 3419 3420 /* 3421 * Only merges fiemap extents if 3422 * 1) Their logical addresses are continuous 3423 * 3424 * 2) Their physical addresses are continuous 3425 * So truly compressed (physical size smaller than logical size) 3426 * extents won't get merged with each other 3427 * 3428 * 3) Share same flags 3429 */ 3430 if (cache->offset + cache->len == offset && 3431 cache->phys + cache->len == phys && 3432 cache->flags == flags) { 3433 cache->len += len; 3434 return 0; 3435 } 3436 3437 /* Not mergeable, need to submit cached one */ 3438 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3439 cache->len, cache->flags); 3440 cache->cached = false; 3441 if (ret) 3442 return ret; 3443 assign: 3444 cache->cached = true; 3445 cache->offset = offset; 3446 cache->phys = phys; 3447 cache->len = len; 3448 cache->flags = flags; 3449 3450 return 0; 3451 } 3452 3453 /* 3454 * Emit last fiemap cache 3455 * 3456 * The last fiemap cache may still be cached in the following case: 3457 * 0 4k 8k 3458 * |<- Fiemap range ->| 3459 * |<------------ First extent ----------->| 3460 * 3461 * In this case, the first extent range will be cached but not emitted. 3462 * So we must emit it before ending extent_fiemap(). 3463 */ 3464 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 3465 struct fiemap_cache *cache) 3466 { 3467 int ret; 3468 3469 if (!cache->cached) 3470 return 0; 3471 3472 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3473 cache->len, cache->flags); 3474 cache->cached = false; 3475 if (ret > 0) 3476 ret = 0; 3477 return ret; 3478 } 3479 3480 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 3481 { 3482 struct extent_buffer *clone; 3483 struct btrfs_key key; 3484 int slot; 3485 int ret; 3486 3487 path->slots[0]++; 3488 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 3489 return 0; 3490 3491 ret = btrfs_next_leaf(inode->root, path); 3492 if (ret != 0) 3493 return ret; 3494 3495 /* 3496 * Don't bother with cloning if there are no more file extent items for 3497 * our inode. 3498 */ 3499 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3500 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 3501 return 1; 3502 3503 /* See the comment at fiemap_search_slot() about why we clone. */ 3504 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3505 if (!clone) 3506 return -ENOMEM; 3507 3508 slot = path->slots[0]; 3509 btrfs_release_path(path); 3510 path->nodes[0] = clone; 3511 path->slots[0] = slot; 3512 3513 return 0; 3514 } 3515 3516 /* 3517 * Search for the first file extent item that starts at a given file offset or 3518 * the one that starts immediately before that offset. 3519 * Returns: 0 on success, < 0 on error, 1 if not found. 3520 */ 3521 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 3522 u64 file_offset) 3523 { 3524 const u64 ino = btrfs_ino(inode); 3525 struct btrfs_root *root = inode->root; 3526 struct extent_buffer *clone; 3527 struct btrfs_key key; 3528 int slot; 3529 int ret; 3530 3531 key.objectid = ino; 3532 key.type = BTRFS_EXTENT_DATA_KEY; 3533 key.offset = file_offset; 3534 3535 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3536 if (ret < 0) 3537 return ret; 3538 3539 if (ret > 0 && path->slots[0] > 0) { 3540 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3541 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3542 path->slots[0]--; 3543 } 3544 3545 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3546 ret = btrfs_next_leaf(root, path); 3547 if (ret != 0) 3548 return ret; 3549 3550 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3551 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3552 return 1; 3553 } 3554 3555 /* 3556 * We clone the leaf and use it during fiemap. This is because while 3557 * using the leaf we do expensive things like checking if an extent is 3558 * shared, which can take a long time. In order to prevent blocking 3559 * other tasks for too long, we use a clone of the leaf. We have locked 3560 * the file range in the inode's io tree, so we know none of our file 3561 * extent items can change. This way we avoid blocking other tasks that 3562 * want to insert items for other inodes in the same leaf or b+tree 3563 * rebalance operations (triggered for example when someone is trying 3564 * to push items into this leaf when trying to insert an item in a 3565 * neighbour leaf). 3566 * We also need the private clone because holding a read lock on an 3567 * extent buffer of the subvolume's b+tree will make lockdep unhappy 3568 * when we call fiemap_fill_next_extent(), because that may cause a page 3569 * fault when filling the user space buffer with fiemap data. 3570 */ 3571 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3572 if (!clone) 3573 return -ENOMEM; 3574 3575 slot = path->slots[0]; 3576 btrfs_release_path(path); 3577 path->nodes[0] = clone; 3578 path->slots[0] = slot; 3579 3580 return 0; 3581 } 3582 3583 /* 3584 * Process a range which is a hole or a prealloc extent in the inode's subvolume 3585 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 3586 * extent. The end offset (@end) is inclusive. 3587 */ 3588 static int fiemap_process_hole(struct btrfs_inode *inode, 3589 struct fiemap_extent_info *fieinfo, 3590 struct fiemap_cache *cache, 3591 struct extent_state **delalloc_cached_state, 3592 struct btrfs_backref_share_check_ctx *backref_ctx, 3593 u64 disk_bytenr, u64 extent_offset, 3594 u64 extent_gen, 3595 u64 start, u64 end) 3596 { 3597 const u64 i_size = i_size_read(&inode->vfs_inode); 3598 u64 cur_offset = start; 3599 u64 last_delalloc_end = 0; 3600 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 3601 bool checked_extent_shared = false; 3602 int ret; 3603 3604 /* 3605 * There can be no delalloc past i_size, so don't waste time looking for 3606 * it beyond i_size. 3607 */ 3608 while (cur_offset < end && cur_offset < i_size) { 3609 u64 delalloc_start; 3610 u64 delalloc_end; 3611 u64 prealloc_start; 3612 u64 prealloc_len = 0; 3613 bool delalloc; 3614 3615 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 3616 delalloc_cached_state, 3617 &delalloc_start, 3618 &delalloc_end); 3619 if (!delalloc) 3620 break; 3621 3622 /* 3623 * If this is a prealloc extent we have to report every section 3624 * of it that has no delalloc. 3625 */ 3626 if (disk_bytenr != 0) { 3627 if (last_delalloc_end == 0) { 3628 prealloc_start = start; 3629 prealloc_len = delalloc_start - start; 3630 } else { 3631 prealloc_start = last_delalloc_end + 1; 3632 prealloc_len = delalloc_start - prealloc_start; 3633 } 3634 } 3635 3636 if (prealloc_len > 0) { 3637 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3638 ret = btrfs_is_data_extent_shared(inode, 3639 disk_bytenr, 3640 extent_gen, 3641 backref_ctx); 3642 if (ret < 0) 3643 return ret; 3644 else if (ret > 0) 3645 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3646 3647 checked_extent_shared = true; 3648 } 3649 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3650 disk_bytenr + extent_offset, 3651 prealloc_len, prealloc_flags); 3652 if (ret) 3653 return ret; 3654 extent_offset += prealloc_len; 3655 } 3656 3657 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 3658 delalloc_end + 1 - delalloc_start, 3659 FIEMAP_EXTENT_DELALLOC | 3660 FIEMAP_EXTENT_UNKNOWN); 3661 if (ret) 3662 return ret; 3663 3664 last_delalloc_end = delalloc_end; 3665 cur_offset = delalloc_end + 1; 3666 extent_offset += cur_offset - delalloc_start; 3667 cond_resched(); 3668 } 3669 3670 /* 3671 * Either we found no delalloc for the whole prealloc extent or we have 3672 * a prealloc extent that spans i_size or starts at or after i_size. 3673 */ 3674 if (disk_bytenr != 0 && last_delalloc_end < end) { 3675 u64 prealloc_start; 3676 u64 prealloc_len; 3677 3678 if (last_delalloc_end == 0) { 3679 prealloc_start = start; 3680 prealloc_len = end + 1 - start; 3681 } else { 3682 prealloc_start = last_delalloc_end + 1; 3683 prealloc_len = end + 1 - prealloc_start; 3684 } 3685 3686 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3687 ret = btrfs_is_data_extent_shared(inode, 3688 disk_bytenr, 3689 extent_gen, 3690 backref_ctx); 3691 if (ret < 0) 3692 return ret; 3693 else if (ret > 0) 3694 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3695 } 3696 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3697 disk_bytenr + extent_offset, 3698 prealloc_len, prealloc_flags); 3699 if (ret) 3700 return ret; 3701 } 3702 3703 return 0; 3704 } 3705 3706 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3707 struct btrfs_path *path, 3708 u64 *last_extent_end_ret) 3709 { 3710 const u64 ino = btrfs_ino(inode); 3711 struct btrfs_root *root = inode->root; 3712 struct extent_buffer *leaf; 3713 struct btrfs_file_extent_item *ei; 3714 struct btrfs_key key; 3715 u64 disk_bytenr; 3716 int ret; 3717 3718 /* 3719 * Lookup the last file extent. We're not using i_size here because 3720 * there might be preallocation past i_size. 3721 */ 3722 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3723 /* There can't be a file extent item at offset (u64)-1 */ 3724 ASSERT(ret != 0); 3725 if (ret < 0) 3726 return ret; 3727 3728 /* 3729 * For a non-existing key, btrfs_search_slot() always leaves us at a 3730 * slot > 0, except if the btree is empty, which is impossible because 3731 * at least it has the inode item for this inode and all the items for 3732 * the root inode 256. 3733 */ 3734 ASSERT(path->slots[0] > 0); 3735 path->slots[0]--; 3736 leaf = path->nodes[0]; 3737 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3738 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3739 /* No file extent items in the subvolume tree. */ 3740 *last_extent_end_ret = 0; 3741 return 0; 3742 } 3743 3744 /* 3745 * For an inline extent, the disk_bytenr is where inline data starts at, 3746 * so first check if we have an inline extent item before checking if we 3747 * have an implicit hole (disk_bytenr == 0). 3748 */ 3749 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3750 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3751 *last_extent_end_ret = btrfs_file_extent_end(path); 3752 return 0; 3753 } 3754 3755 /* 3756 * Find the last file extent item that is not a hole (when NO_HOLES is 3757 * not enabled). This should take at most 2 iterations in the worst 3758 * case: we have one hole file extent item at slot 0 of a leaf and 3759 * another hole file extent item as the last item in the previous leaf. 3760 * This is because we merge file extent items that represent holes. 3761 */ 3762 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3763 while (disk_bytenr == 0) { 3764 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3765 if (ret < 0) { 3766 return ret; 3767 } else if (ret > 0) { 3768 /* No file extent items that are not holes. */ 3769 *last_extent_end_ret = 0; 3770 return 0; 3771 } 3772 leaf = path->nodes[0]; 3773 ei = btrfs_item_ptr(leaf, path->slots[0], 3774 struct btrfs_file_extent_item); 3775 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3776 } 3777 3778 *last_extent_end_ret = btrfs_file_extent_end(path); 3779 return 0; 3780 } 3781 3782 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3783 u64 start, u64 len) 3784 { 3785 const u64 ino = btrfs_ino(inode); 3786 struct extent_state *cached_state = NULL; 3787 struct extent_state *delalloc_cached_state = NULL; 3788 struct btrfs_path *path; 3789 struct fiemap_cache cache = { 0 }; 3790 struct btrfs_backref_share_check_ctx *backref_ctx; 3791 u64 last_extent_end; 3792 u64 prev_extent_end; 3793 u64 lockstart; 3794 u64 lockend; 3795 bool stopped = false; 3796 int ret; 3797 3798 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3799 path = btrfs_alloc_path(); 3800 if (!backref_ctx || !path) { 3801 ret = -ENOMEM; 3802 goto out; 3803 } 3804 3805 lockstart = round_down(start, inode->root->fs_info->sectorsize); 3806 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 3807 prev_extent_end = lockstart; 3808 3809 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3810 3811 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3812 if (ret < 0) 3813 goto out_unlock; 3814 btrfs_release_path(path); 3815 3816 path->reada = READA_FORWARD; 3817 ret = fiemap_search_slot(inode, path, lockstart); 3818 if (ret < 0) { 3819 goto out_unlock; 3820 } else if (ret > 0) { 3821 /* 3822 * No file extent item found, but we may have delalloc between 3823 * the current offset and i_size. So check for that. 3824 */ 3825 ret = 0; 3826 goto check_eof_delalloc; 3827 } 3828 3829 while (prev_extent_end < lockend) { 3830 struct extent_buffer *leaf = path->nodes[0]; 3831 struct btrfs_file_extent_item *ei; 3832 struct btrfs_key key; 3833 u64 extent_end; 3834 u64 extent_len; 3835 u64 extent_offset = 0; 3836 u64 extent_gen; 3837 u64 disk_bytenr = 0; 3838 u64 flags = 0; 3839 int extent_type; 3840 u8 compression; 3841 3842 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3843 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3844 break; 3845 3846 extent_end = btrfs_file_extent_end(path); 3847 3848 /* 3849 * The first iteration can leave us at an extent item that ends 3850 * before our range's start. Move to the next item. 3851 */ 3852 if (extent_end <= lockstart) 3853 goto next_item; 3854 3855 backref_ctx->curr_leaf_bytenr = leaf->start; 3856 3857 /* We have in implicit hole (NO_HOLES feature enabled). */ 3858 if (prev_extent_end < key.offset) { 3859 const u64 range_end = min(key.offset, lockend) - 1; 3860 3861 ret = fiemap_process_hole(inode, fieinfo, &cache, 3862 &delalloc_cached_state, 3863 backref_ctx, 0, 0, 0, 3864 prev_extent_end, range_end); 3865 if (ret < 0) { 3866 goto out_unlock; 3867 } else if (ret > 0) { 3868 /* fiemap_fill_next_extent() told us to stop. */ 3869 stopped = true; 3870 break; 3871 } 3872 3873 /* We've reached the end of the fiemap range, stop. */ 3874 if (key.offset >= lockend) { 3875 stopped = true; 3876 break; 3877 } 3878 } 3879 3880 extent_len = extent_end - key.offset; 3881 ei = btrfs_item_ptr(leaf, path->slots[0], 3882 struct btrfs_file_extent_item); 3883 compression = btrfs_file_extent_compression(leaf, ei); 3884 extent_type = btrfs_file_extent_type(leaf, ei); 3885 extent_gen = btrfs_file_extent_generation(leaf, ei); 3886 3887 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3888 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3889 if (compression == BTRFS_COMPRESS_NONE) 3890 extent_offset = btrfs_file_extent_offset(leaf, ei); 3891 } 3892 3893 if (compression != BTRFS_COMPRESS_NONE) 3894 flags |= FIEMAP_EXTENT_ENCODED; 3895 3896 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3897 flags |= FIEMAP_EXTENT_DATA_INLINE; 3898 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3899 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3900 extent_len, flags); 3901 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3902 ret = fiemap_process_hole(inode, fieinfo, &cache, 3903 &delalloc_cached_state, 3904 backref_ctx, 3905 disk_bytenr, extent_offset, 3906 extent_gen, key.offset, 3907 extent_end - 1); 3908 } else if (disk_bytenr == 0) { 3909 /* We have an explicit hole. */ 3910 ret = fiemap_process_hole(inode, fieinfo, &cache, 3911 &delalloc_cached_state, 3912 backref_ctx, 0, 0, 0, 3913 key.offset, extent_end - 1); 3914 } else { 3915 /* We have a regular extent. */ 3916 if (fieinfo->fi_extents_max) { 3917 ret = btrfs_is_data_extent_shared(inode, 3918 disk_bytenr, 3919 extent_gen, 3920 backref_ctx); 3921 if (ret < 0) 3922 goto out_unlock; 3923 else if (ret > 0) 3924 flags |= FIEMAP_EXTENT_SHARED; 3925 } 3926 3927 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3928 disk_bytenr + extent_offset, 3929 extent_len, flags); 3930 } 3931 3932 if (ret < 0) { 3933 goto out_unlock; 3934 } else if (ret > 0) { 3935 /* fiemap_fill_next_extent() told us to stop. */ 3936 stopped = true; 3937 break; 3938 } 3939 3940 prev_extent_end = extent_end; 3941 next_item: 3942 if (fatal_signal_pending(current)) { 3943 ret = -EINTR; 3944 goto out_unlock; 3945 } 3946 3947 ret = fiemap_next_leaf_item(inode, path); 3948 if (ret < 0) { 3949 goto out_unlock; 3950 } else if (ret > 0) { 3951 /* No more file extent items for this inode. */ 3952 break; 3953 } 3954 cond_resched(); 3955 } 3956 3957 check_eof_delalloc: 3958 /* 3959 * Release (and free) the path before emitting any final entries to 3960 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3961 * once we find no more file extent items exist, we may have a 3962 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3963 * faults when copying data to the user space buffer. 3964 */ 3965 btrfs_free_path(path); 3966 path = NULL; 3967 3968 if (!stopped && prev_extent_end < lockend) { 3969 ret = fiemap_process_hole(inode, fieinfo, &cache, 3970 &delalloc_cached_state, backref_ctx, 3971 0, 0, 0, prev_extent_end, lockend - 1); 3972 if (ret < 0) 3973 goto out_unlock; 3974 prev_extent_end = lockend; 3975 } 3976 3977 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3978 const u64 i_size = i_size_read(&inode->vfs_inode); 3979 3980 if (prev_extent_end < i_size) { 3981 u64 delalloc_start; 3982 u64 delalloc_end; 3983 bool delalloc; 3984 3985 delalloc = btrfs_find_delalloc_in_range(inode, 3986 prev_extent_end, 3987 i_size - 1, 3988 &delalloc_cached_state, 3989 &delalloc_start, 3990 &delalloc_end); 3991 if (!delalloc) 3992 cache.flags |= FIEMAP_EXTENT_LAST; 3993 } else { 3994 cache.flags |= FIEMAP_EXTENT_LAST; 3995 } 3996 } 3997 3998 ret = emit_last_fiemap_cache(fieinfo, &cache); 3999 4000 out_unlock: 4001 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 4002 out: 4003 free_extent_state(delalloc_cached_state); 4004 btrfs_free_backref_share_ctx(backref_ctx); 4005 btrfs_free_path(path); 4006 return ret; 4007 } 4008 4009 static void __free_extent_buffer(struct extent_buffer *eb) 4010 { 4011 kmem_cache_free(extent_buffer_cache, eb); 4012 } 4013 4014 int extent_buffer_under_io(const struct extent_buffer *eb) 4015 { 4016 return (atomic_read(&eb->io_pages) || 4017 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4018 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4019 } 4020 4021 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 4022 { 4023 struct btrfs_subpage *subpage; 4024 4025 lockdep_assert_held(&page->mapping->private_lock); 4026 4027 if (PagePrivate(page)) { 4028 subpage = (struct btrfs_subpage *)page->private; 4029 if (atomic_read(&subpage->eb_refs)) 4030 return true; 4031 /* 4032 * Even there is no eb refs here, we may still have 4033 * end_page_read() call relying on page::private. 4034 */ 4035 if (atomic_read(&subpage->readers)) 4036 return true; 4037 } 4038 return false; 4039 } 4040 4041 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 4042 { 4043 struct btrfs_fs_info *fs_info = eb->fs_info; 4044 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4045 4046 /* 4047 * For mapped eb, we're going to change the page private, which should 4048 * be done under the private_lock. 4049 */ 4050 if (mapped) 4051 spin_lock(&page->mapping->private_lock); 4052 4053 if (!PagePrivate(page)) { 4054 if (mapped) 4055 spin_unlock(&page->mapping->private_lock); 4056 return; 4057 } 4058 4059 if (fs_info->nodesize >= PAGE_SIZE) { 4060 /* 4061 * We do this since we'll remove the pages after we've 4062 * removed the eb from the radix tree, so we could race 4063 * and have this page now attached to the new eb. So 4064 * only clear page_private if it's still connected to 4065 * this eb. 4066 */ 4067 if (PagePrivate(page) && 4068 page->private == (unsigned long)eb) { 4069 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4070 BUG_ON(PageDirty(page)); 4071 BUG_ON(PageWriteback(page)); 4072 /* 4073 * We need to make sure we haven't be attached 4074 * to a new eb. 4075 */ 4076 detach_page_private(page); 4077 } 4078 if (mapped) 4079 spin_unlock(&page->mapping->private_lock); 4080 return; 4081 } 4082 4083 /* 4084 * For subpage, we can have dummy eb with page private. In this case, 4085 * we can directly detach the private as such page is only attached to 4086 * one dummy eb, no sharing. 4087 */ 4088 if (!mapped) { 4089 btrfs_detach_subpage(fs_info, page); 4090 return; 4091 } 4092 4093 btrfs_page_dec_eb_refs(fs_info, page); 4094 4095 /* 4096 * We can only detach the page private if there are no other ebs in the 4097 * page range and no unfinished IO. 4098 */ 4099 if (!page_range_has_eb(fs_info, page)) 4100 btrfs_detach_subpage(fs_info, page); 4101 4102 spin_unlock(&page->mapping->private_lock); 4103 } 4104 4105 /* Release all pages attached to the extent buffer */ 4106 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4107 { 4108 int i; 4109 int num_pages; 4110 4111 ASSERT(!extent_buffer_under_io(eb)); 4112 4113 num_pages = num_extent_pages(eb); 4114 for (i = 0; i < num_pages; i++) { 4115 struct page *page = eb->pages[i]; 4116 4117 if (!page) 4118 continue; 4119 4120 detach_extent_buffer_page(eb, page); 4121 4122 /* One for when we allocated the page */ 4123 put_page(page); 4124 } 4125 } 4126 4127 /* 4128 * Helper for releasing the extent buffer. 4129 */ 4130 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4131 { 4132 btrfs_release_extent_buffer_pages(eb); 4133 btrfs_leak_debug_del_eb(eb); 4134 __free_extent_buffer(eb); 4135 } 4136 4137 static struct extent_buffer * 4138 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4139 unsigned long len) 4140 { 4141 struct extent_buffer *eb = NULL; 4142 4143 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4144 eb->start = start; 4145 eb->len = len; 4146 eb->fs_info = fs_info; 4147 init_rwsem(&eb->lock); 4148 4149 btrfs_leak_debug_add_eb(eb); 4150 INIT_LIST_HEAD(&eb->release_list); 4151 4152 spin_lock_init(&eb->refs_lock); 4153 atomic_set(&eb->refs, 1); 4154 atomic_set(&eb->io_pages, 0); 4155 4156 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 4157 4158 return eb; 4159 } 4160 4161 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 4162 { 4163 int i; 4164 struct extent_buffer *new; 4165 int num_pages = num_extent_pages(src); 4166 int ret; 4167 4168 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4169 if (new == NULL) 4170 return NULL; 4171 4172 /* 4173 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 4174 * btrfs_release_extent_buffer() have different behavior for 4175 * UNMAPPED subpage extent buffer. 4176 */ 4177 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4178 4179 ret = btrfs_alloc_page_array(num_pages, new->pages); 4180 if (ret) { 4181 btrfs_release_extent_buffer(new); 4182 return NULL; 4183 } 4184 4185 for (i = 0; i < num_pages; i++) { 4186 int ret; 4187 struct page *p = new->pages[i]; 4188 4189 ret = attach_extent_buffer_page(new, p, NULL); 4190 if (ret < 0) { 4191 btrfs_release_extent_buffer(new); 4192 return NULL; 4193 } 4194 WARN_ON(PageDirty(p)); 4195 copy_page(page_address(p), page_address(src->pages[i])); 4196 } 4197 set_extent_buffer_uptodate(new); 4198 4199 return new; 4200 } 4201 4202 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4203 u64 start, unsigned long len) 4204 { 4205 struct extent_buffer *eb; 4206 int num_pages; 4207 int i; 4208 int ret; 4209 4210 eb = __alloc_extent_buffer(fs_info, start, len); 4211 if (!eb) 4212 return NULL; 4213 4214 num_pages = num_extent_pages(eb); 4215 ret = btrfs_alloc_page_array(num_pages, eb->pages); 4216 if (ret) 4217 goto err; 4218 4219 for (i = 0; i < num_pages; i++) { 4220 struct page *p = eb->pages[i]; 4221 4222 ret = attach_extent_buffer_page(eb, p, NULL); 4223 if (ret < 0) 4224 goto err; 4225 } 4226 4227 set_extent_buffer_uptodate(eb); 4228 btrfs_set_header_nritems(eb, 0); 4229 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4230 4231 return eb; 4232 err: 4233 for (i = 0; i < num_pages; i++) { 4234 if (eb->pages[i]) { 4235 detach_extent_buffer_page(eb, eb->pages[i]); 4236 __free_page(eb->pages[i]); 4237 } 4238 } 4239 __free_extent_buffer(eb); 4240 return NULL; 4241 } 4242 4243 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4244 u64 start) 4245 { 4246 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4247 } 4248 4249 static void check_buffer_tree_ref(struct extent_buffer *eb) 4250 { 4251 int refs; 4252 /* 4253 * The TREE_REF bit is first set when the extent_buffer is added 4254 * to the radix tree. It is also reset, if unset, when a new reference 4255 * is created by find_extent_buffer. 4256 * 4257 * It is only cleared in two cases: freeing the last non-tree 4258 * reference to the extent_buffer when its STALE bit is set or 4259 * calling release_folio when the tree reference is the only reference. 4260 * 4261 * In both cases, care is taken to ensure that the extent_buffer's 4262 * pages are not under io. However, release_folio can be concurrently 4263 * called with creating new references, which is prone to race 4264 * conditions between the calls to check_buffer_tree_ref in those 4265 * codepaths and clearing TREE_REF in try_release_extent_buffer. 4266 * 4267 * The actual lifetime of the extent_buffer in the radix tree is 4268 * adequately protected by the refcount, but the TREE_REF bit and 4269 * its corresponding reference are not. To protect against this 4270 * class of races, we call check_buffer_tree_ref from the codepaths 4271 * which trigger io after they set eb->io_pages. Note that once io is 4272 * initiated, TREE_REF can no longer be cleared, so that is the 4273 * moment at which any such race is best fixed. 4274 */ 4275 refs = atomic_read(&eb->refs); 4276 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4277 return; 4278 4279 spin_lock(&eb->refs_lock); 4280 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4281 atomic_inc(&eb->refs); 4282 spin_unlock(&eb->refs_lock); 4283 } 4284 4285 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4286 struct page *accessed) 4287 { 4288 int num_pages, i; 4289 4290 check_buffer_tree_ref(eb); 4291 4292 num_pages = num_extent_pages(eb); 4293 for (i = 0; i < num_pages; i++) { 4294 struct page *p = eb->pages[i]; 4295 4296 if (p != accessed) 4297 mark_page_accessed(p); 4298 } 4299 } 4300 4301 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4302 u64 start) 4303 { 4304 struct extent_buffer *eb; 4305 4306 eb = find_extent_buffer_nolock(fs_info, start); 4307 if (!eb) 4308 return NULL; 4309 /* 4310 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 4311 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 4312 * another task running free_extent_buffer() might have seen that flag 4313 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 4314 * writeback flags not set) and it's still in the tree (flag 4315 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 4316 * decrementing the extent buffer's reference count twice. So here we 4317 * could race and increment the eb's reference count, clear its stale 4318 * flag, mark it as dirty and drop our reference before the other task 4319 * finishes executing free_extent_buffer, which would later result in 4320 * an attempt to free an extent buffer that is dirty. 4321 */ 4322 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4323 spin_lock(&eb->refs_lock); 4324 spin_unlock(&eb->refs_lock); 4325 } 4326 mark_extent_buffer_accessed(eb, NULL); 4327 return eb; 4328 } 4329 4330 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4331 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4332 u64 start) 4333 { 4334 struct extent_buffer *eb, *exists = NULL; 4335 int ret; 4336 4337 eb = find_extent_buffer(fs_info, start); 4338 if (eb) 4339 return eb; 4340 eb = alloc_dummy_extent_buffer(fs_info, start); 4341 if (!eb) 4342 return ERR_PTR(-ENOMEM); 4343 eb->fs_info = fs_info; 4344 again: 4345 ret = radix_tree_preload(GFP_NOFS); 4346 if (ret) { 4347 exists = ERR_PTR(ret); 4348 goto free_eb; 4349 } 4350 spin_lock(&fs_info->buffer_lock); 4351 ret = radix_tree_insert(&fs_info->buffer_radix, 4352 start >> fs_info->sectorsize_bits, eb); 4353 spin_unlock(&fs_info->buffer_lock); 4354 radix_tree_preload_end(); 4355 if (ret == -EEXIST) { 4356 exists = find_extent_buffer(fs_info, start); 4357 if (exists) 4358 goto free_eb; 4359 else 4360 goto again; 4361 } 4362 check_buffer_tree_ref(eb); 4363 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4364 4365 return eb; 4366 free_eb: 4367 btrfs_release_extent_buffer(eb); 4368 return exists; 4369 } 4370 #endif 4371 4372 static struct extent_buffer *grab_extent_buffer( 4373 struct btrfs_fs_info *fs_info, struct page *page) 4374 { 4375 struct extent_buffer *exists; 4376 4377 /* 4378 * For subpage case, we completely rely on radix tree to ensure we 4379 * don't try to insert two ebs for the same bytenr. So here we always 4380 * return NULL and just continue. 4381 */ 4382 if (fs_info->nodesize < PAGE_SIZE) 4383 return NULL; 4384 4385 /* Page not yet attached to an extent buffer */ 4386 if (!PagePrivate(page)) 4387 return NULL; 4388 4389 /* 4390 * We could have already allocated an eb for this page and attached one 4391 * so lets see if we can get a ref on the existing eb, and if we can we 4392 * know it's good and we can just return that one, else we know we can 4393 * just overwrite page->private. 4394 */ 4395 exists = (struct extent_buffer *)page->private; 4396 if (atomic_inc_not_zero(&exists->refs)) 4397 return exists; 4398 4399 WARN_ON(PageDirty(page)); 4400 detach_page_private(page); 4401 return NULL; 4402 } 4403 4404 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 4405 { 4406 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4407 btrfs_err(fs_info, "bad tree block start %llu", start); 4408 return -EINVAL; 4409 } 4410 4411 if (fs_info->nodesize < PAGE_SIZE && 4412 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 4413 btrfs_err(fs_info, 4414 "tree block crosses page boundary, start %llu nodesize %u", 4415 start, fs_info->nodesize); 4416 return -EINVAL; 4417 } 4418 if (fs_info->nodesize >= PAGE_SIZE && 4419 !PAGE_ALIGNED(start)) { 4420 btrfs_err(fs_info, 4421 "tree block is not page aligned, start %llu nodesize %u", 4422 start, fs_info->nodesize); 4423 return -EINVAL; 4424 } 4425 return 0; 4426 } 4427 4428 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4429 u64 start, u64 owner_root, int level) 4430 { 4431 unsigned long len = fs_info->nodesize; 4432 int num_pages; 4433 int i; 4434 unsigned long index = start >> PAGE_SHIFT; 4435 struct extent_buffer *eb; 4436 struct extent_buffer *exists = NULL; 4437 struct page *p; 4438 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4439 u64 lockdep_owner = owner_root; 4440 int uptodate = 1; 4441 int ret; 4442 4443 if (check_eb_alignment(fs_info, start)) 4444 return ERR_PTR(-EINVAL); 4445 4446 #if BITS_PER_LONG == 32 4447 if (start >= MAX_LFS_FILESIZE) { 4448 btrfs_err_rl(fs_info, 4449 "extent buffer %llu is beyond 32bit page cache limit", start); 4450 btrfs_err_32bit_limit(fs_info); 4451 return ERR_PTR(-EOVERFLOW); 4452 } 4453 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 4454 btrfs_warn_32bit_limit(fs_info); 4455 #endif 4456 4457 eb = find_extent_buffer(fs_info, start); 4458 if (eb) 4459 return eb; 4460 4461 eb = __alloc_extent_buffer(fs_info, start, len); 4462 if (!eb) 4463 return ERR_PTR(-ENOMEM); 4464 4465 /* 4466 * The reloc trees are just snapshots, so we need them to appear to be 4467 * just like any other fs tree WRT lockdep. 4468 */ 4469 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 4470 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4471 4472 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 4473 4474 num_pages = num_extent_pages(eb); 4475 for (i = 0; i < num_pages; i++, index++) { 4476 struct btrfs_subpage *prealloc = NULL; 4477 4478 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4479 if (!p) { 4480 exists = ERR_PTR(-ENOMEM); 4481 goto free_eb; 4482 } 4483 4484 /* 4485 * Preallocate page->private for subpage case, so that we won't 4486 * allocate memory with private_lock hold. The memory will be 4487 * freed by attach_extent_buffer_page() or freed manually if 4488 * we exit earlier. 4489 * 4490 * Although we have ensured one subpage eb can only have one 4491 * page, but it may change in the future for 16K page size 4492 * support, so we still preallocate the memory in the loop. 4493 */ 4494 if (fs_info->nodesize < PAGE_SIZE) { 4495 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 4496 if (IS_ERR(prealloc)) { 4497 ret = PTR_ERR(prealloc); 4498 unlock_page(p); 4499 put_page(p); 4500 exists = ERR_PTR(ret); 4501 goto free_eb; 4502 } 4503 } 4504 4505 spin_lock(&mapping->private_lock); 4506 exists = grab_extent_buffer(fs_info, p); 4507 if (exists) { 4508 spin_unlock(&mapping->private_lock); 4509 unlock_page(p); 4510 put_page(p); 4511 mark_extent_buffer_accessed(exists, p); 4512 btrfs_free_subpage(prealloc); 4513 goto free_eb; 4514 } 4515 /* Should not fail, as we have preallocated the memory */ 4516 ret = attach_extent_buffer_page(eb, p, prealloc); 4517 ASSERT(!ret); 4518 /* 4519 * To inform we have extra eb under allocation, so that 4520 * detach_extent_buffer_page() won't release the page private 4521 * when the eb hasn't yet been inserted into radix tree. 4522 * 4523 * The ref will be decreased when the eb released the page, in 4524 * detach_extent_buffer_page(). 4525 * Thus needs no special handling in error path. 4526 */ 4527 btrfs_page_inc_eb_refs(fs_info, p); 4528 spin_unlock(&mapping->private_lock); 4529 4530 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 4531 eb->pages[i] = p; 4532 if (!PageUptodate(p)) 4533 uptodate = 0; 4534 4535 /* 4536 * We can't unlock the pages just yet since the extent buffer 4537 * hasn't been properly inserted in the radix tree, this 4538 * opens a race with btree_release_folio which can free a page 4539 * while we are still filling in all pages for the buffer and 4540 * we could crash. 4541 */ 4542 } 4543 if (uptodate) 4544 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4545 again: 4546 ret = radix_tree_preload(GFP_NOFS); 4547 if (ret) { 4548 exists = ERR_PTR(ret); 4549 goto free_eb; 4550 } 4551 4552 spin_lock(&fs_info->buffer_lock); 4553 ret = radix_tree_insert(&fs_info->buffer_radix, 4554 start >> fs_info->sectorsize_bits, eb); 4555 spin_unlock(&fs_info->buffer_lock); 4556 radix_tree_preload_end(); 4557 if (ret == -EEXIST) { 4558 exists = find_extent_buffer(fs_info, start); 4559 if (exists) 4560 goto free_eb; 4561 else 4562 goto again; 4563 } 4564 /* add one reference for the tree */ 4565 check_buffer_tree_ref(eb); 4566 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4567 4568 /* 4569 * Now it's safe to unlock the pages because any calls to 4570 * btree_release_folio will correctly detect that a page belongs to a 4571 * live buffer and won't free them prematurely. 4572 */ 4573 for (i = 0; i < num_pages; i++) 4574 unlock_page(eb->pages[i]); 4575 return eb; 4576 4577 free_eb: 4578 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4579 for (i = 0; i < num_pages; i++) { 4580 if (eb->pages[i]) 4581 unlock_page(eb->pages[i]); 4582 } 4583 4584 btrfs_release_extent_buffer(eb); 4585 return exists; 4586 } 4587 4588 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4589 { 4590 struct extent_buffer *eb = 4591 container_of(head, struct extent_buffer, rcu_head); 4592 4593 __free_extent_buffer(eb); 4594 } 4595 4596 static int release_extent_buffer(struct extent_buffer *eb) 4597 __releases(&eb->refs_lock) 4598 { 4599 lockdep_assert_held(&eb->refs_lock); 4600 4601 WARN_ON(atomic_read(&eb->refs) == 0); 4602 if (atomic_dec_and_test(&eb->refs)) { 4603 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4604 struct btrfs_fs_info *fs_info = eb->fs_info; 4605 4606 spin_unlock(&eb->refs_lock); 4607 4608 spin_lock(&fs_info->buffer_lock); 4609 radix_tree_delete(&fs_info->buffer_radix, 4610 eb->start >> fs_info->sectorsize_bits); 4611 spin_unlock(&fs_info->buffer_lock); 4612 } else { 4613 spin_unlock(&eb->refs_lock); 4614 } 4615 4616 btrfs_leak_debug_del_eb(eb); 4617 /* Should be safe to release our pages at this point */ 4618 btrfs_release_extent_buffer_pages(eb); 4619 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4620 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4621 __free_extent_buffer(eb); 4622 return 1; 4623 } 4624 #endif 4625 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4626 return 1; 4627 } 4628 spin_unlock(&eb->refs_lock); 4629 4630 return 0; 4631 } 4632 4633 void free_extent_buffer(struct extent_buffer *eb) 4634 { 4635 int refs; 4636 if (!eb) 4637 return; 4638 4639 refs = atomic_read(&eb->refs); 4640 while (1) { 4641 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4642 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4643 refs == 1)) 4644 break; 4645 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4646 return; 4647 } 4648 4649 spin_lock(&eb->refs_lock); 4650 if (atomic_read(&eb->refs) == 2 && 4651 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4652 !extent_buffer_under_io(eb) && 4653 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4654 atomic_dec(&eb->refs); 4655 4656 /* 4657 * I know this is terrible, but it's temporary until we stop tracking 4658 * the uptodate bits and such for the extent buffers. 4659 */ 4660 release_extent_buffer(eb); 4661 } 4662 4663 void free_extent_buffer_stale(struct extent_buffer *eb) 4664 { 4665 if (!eb) 4666 return; 4667 4668 spin_lock(&eb->refs_lock); 4669 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4670 4671 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4672 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4673 atomic_dec(&eb->refs); 4674 release_extent_buffer(eb); 4675 } 4676 4677 static void btree_clear_page_dirty(struct page *page) 4678 { 4679 ASSERT(PageDirty(page)); 4680 ASSERT(PageLocked(page)); 4681 clear_page_dirty_for_io(page); 4682 xa_lock_irq(&page->mapping->i_pages); 4683 if (!PageDirty(page)) 4684 __xa_clear_mark(&page->mapping->i_pages, 4685 page_index(page), PAGECACHE_TAG_DIRTY); 4686 xa_unlock_irq(&page->mapping->i_pages); 4687 } 4688 4689 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4690 { 4691 struct btrfs_fs_info *fs_info = eb->fs_info; 4692 struct page *page = eb->pages[0]; 4693 bool last; 4694 4695 /* btree_clear_page_dirty() needs page locked */ 4696 lock_page(page); 4697 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 4698 eb->len); 4699 if (last) 4700 btree_clear_page_dirty(page); 4701 unlock_page(page); 4702 WARN_ON(atomic_read(&eb->refs) == 0); 4703 } 4704 4705 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 4706 { 4707 int i; 4708 int num_pages; 4709 struct page *page; 4710 4711 if (eb->fs_info->nodesize < PAGE_SIZE) 4712 return clear_subpage_extent_buffer_dirty(eb); 4713 4714 num_pages = num_extent_pages(eb); 4715 4716 for (i = 0; i < num_pages; i++) { 4717 page = eb->pages[i]; 4718 if (!PageDirty(page)) 4719 continue; 4720 lock_page(page); 4721 btree_clear_page_dirty(page); 4722 ClearPageError(page); 4723 unlock_page(page); 4724 } 4725 WARN_ON(atomic_read(&eb->refs) == 0); 4726 } 4727 4728 bool set_extent_buffer_dirty(struct extent_buffer *eb) 4729 { 4730 int i; 4731 int num_pages; 4732 bool was_dirty; 4733 4734 check_buffer_tree_ref(eb); 4735 4736 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4737 4738 num_pages = num_extent_pages(eb); 4739 WARN_ON(atomic_read(&eb->refs) == 0); 4740 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4741 4742 if (!was_dirty) { 4743 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4744 4745 /* 4746 * For subpage case, we can have other extent buffers in the 4747 * same page, and in clear_subpage_extent_buffer_dirty() we 4748 * have to clear page dirty without subpage lock held. 4749 * This can cause race where our page gets dirty cleared after 4750 * we just set it. 4751 * 4752 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4753 * its page for other reasons, we can use page lock to prevent 4754 * the above race. 4755 */ 4756 if (subpage) 4757 lock_page(eb->pages[0]); 4758 for (i = 0; i < num_pages; i++) 4759 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4760 eb->start, eb->len); 4761 if (subpage) 4762 unlock_page(eb->pages[0]); 4763 } 4764 #ifdef CONFIG_BTRFS_DEBUG 4765 for (i = 0; i < num_pages; i++) 4766 ASSERT(PageDirty(eb->pages[i])); 4767 #endif 4768 4769 return was_dirty; 4770 } 4771 4772 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4773 { 4774 struct btrfs_fs_info *fs_info = eb->fs_info; 4775 struct page *page; 4776 int num_pages; 4777 int i; 4778 4779 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4780 num_pages = num_extent_pages(eb); 4781 for (i = 0; i < num_pages; i++) { 4782 page = eb->pages[i]; 4783 if (!page) 4784 continue; 4785 4786 /* 4787 * This is special handling for metadata subpage, as regular 4788 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4789 */ 4790 if (fs_info->nodesize >= PAGE_SIZE) 4791 ClearPageUptodate(page); 4792 else 4793 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4794 eb->len); 4795 } 4796 } 4797 4798 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4799 { 4800 struct btrfs_fs_info *fs_info = eb->fs_info; 4801 struct page *page; 4802 int num_pages; 4803 int i; 4804 4805 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4806 num_pages = num_extent_pages(eb); 4807 for (i = 0; i < num_pages; i++) { 4808 page = eb->pages[i]; 4809 4810 /* 4811 * This is special handling for metadata subpage, as regular 4812 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4813 */ 4814 if (fs_info->nodesize >= PAGE_SIZE) 4815 SetPageUptodate(page); 4816 else 4817 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4818 eb->len); 4819 } 4820 } 4821 4822 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 4823 int mirror_num, 4824 struct btrfs_tree_parent_check *check) 4825 { 4826 struct btrfs_fs_info *fs_info = eb->fs_info; 4827 struct extent_io_tree *io_tree; 4828 struct page *page = eb->pages[0]; 4829 struct extent_state *cached_state = NULL; 4830 struct btrfs_bio_ctrl bio_ctrl = { 4831 .mirror_num = mirror_num, 4832 }; 4833 int ret = 0; 4834 4835 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 4836 ASSERT(PagePrivate(page)); 4837 ASSERT(check); 4838 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 4839 4840 if (wait == WAIT_NONE) { 4841 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4842 &cached_state)) 4843 return -EAGAIN; 4844 } else { 4845 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4846 &cached_state); 4847 if (ret < 0) 4848 return ret; 4849 } 4850 4851 ret = 0; 4852 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 4853 PageUptodate(page) || 4854 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 4855 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4856 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4857 &cached_state); 4858 return ret; 4859 } 4860 4861 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4862 eb->read_mirror = 0; 4863 atomic_set(&eb->io_pages, 1); 4864 check_buffer_tree_ref(eb); 4865 bio_ctrl.end_io_func = end_bio_extent_readpage; 4866 4867 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 4868 4869 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 4870 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, 4871 eb->start, page, eb->len, 4872 eb->start - page_offset(page), 0, true); 4873 if (ret) { 4874 /* 4875 * In the endio function, if we hit something wrong we will 4876 * increase the io_pages, so here we need to decrease it for 4877 * error path. 4878 */ 4879 atomic_dec(&eb->io_pages); 4880 } 4881 memcpy(&btrfs_bio(bio_ctrl.bio)->parent_check, check, sizeof(*check)); 4882 submit_one_bio(&bio_ctrl); 4883 if (ret || wait != WAIT_COMPLETE) { 4884 free_extent_state(cached_state); 4885 return ret; 4886 } 4887 4888 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, 4889 EXTENT_LOCKED, &cached_state); 4890 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4891 ret = -EIO; 4892 return ret; 4893 } 4894 4895 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4896 struct btrfs_tree_parent_check *check) 4897 { 4898 int i; 4899 struct page *page; 4900 int err; 4901 int ret = 0; 4902 int locked_pages = 0; 4903 int all_uptodate = 1; 4904 int num_pages; 4905 unsigned long num_reads = 0; 4906 struct btrfs_bio_ctrl bio_ctrl = { 4907 .mirror_num = mirror_num, 4908 }; 4909 4910 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4911 return 0; 4912 4913 /* 4914 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4915 * operation, which could potentially still be in flight. In this case 4916 * we simply want to return an error. 4917 */ 4918 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4919 return -EIO; 4920 4921 if (eb->fs_info->nodesize < PAGE_SIZE) 4922 return read_extent_buffer_subpage(eb, wait, mirror_num, check); 4923 4924 num_pages = num_extent_pages(eb); 4925 for (i = 0; i < num_pages; i++) { 4926 page = eb->pages[i]; 4927 if (wait == WAIT_NONE) { 4928 /* 4929 * WAIT_NONE is only utilized by readahead. If we can't 4930 * acquire the lock atomically it means either the eb 4931 * is being read out or under modification. 4932 * Either way the eb will be or has been cached, 4933 * readahead can exit safely. 4934 */ 4935 if (!trylock_page(page)) 4936 goto unlock_exit; 4937 } else { 4938 lock_page(page); 4939 } 4940 locked_pages++; 4941 } 4942 /* 4943 * We need to firstly lock all pages to make sure that 4944 * the uptodate bit of our pages won't be affected by 4945 * clear_extent_buffer_uptodate(). 4946 */ 4947 for (i = 0; i < num_pages; i++) { 4948 page = eb->pages[i]; 4949 if (!PageUptodate(page)) { 4950 num_reads++; 4951 all_uptodate = 0; 4952 } 4953 } 4954 4955 if (all_uptodate) { 4956 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4957 goto unlock_exit; 4958 } 4959 4960 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4961 eb->read_mirror = 0; 4962 atomic_set(&eb->io_pages, num_reads); 4963 /* 4964 * It is possible for release_folio to clear the TREE_REF bit before we 4965 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 4966 */ 4967 check_buffer_tree_ref(eb); 4968 bio_ctrl.end_io_func = end_bio_extent_readpage; 4969 for (i = 0; i < num_pages; i++) { 4970 page = eb->pages[i]; 4971 4972 if (!PageUptodate(page)) { 4973 if (ret) { 4974 atomic_dec(&eb->io_pages); 4975 unlock_page(page); 4976 continue; 4977 } 4978 4979 ClearPageError(page); 4980 err = submit_extent_page(REQ_OP_READ, NULL, 4981 &bio_ctrl, page_offset(page), page, 4982 PAGE_SIZE, 0, 0, false); 4983 if (err) { 4984 /* 4985 * We failed to submit the bio so it's the 4986 * caller's responsibility to perform cleanup 4987 * i.e unlock page/set error bit. 4988 */ 4989 ret = err; 4990 SetPageError(page); 4991 unlock_page(page); 4992 atomic_dec(&eb->io_pages); 4993 } 4994 } else { 4995 unlock_page(page); 4996 } 4997 } 4998 4999 memcpy(&btrfs_bio(bio_ctrl.bio)->parent_check, check, sizeof(*check)); 5000 submit_one_bio(&bio_ctrl); 5001 5002 if (ret || wait != WAIT_COMPLETE) 5003 return ret; 5004 5005 for (i = 0; i < num_pages; i++) { 5006 page = eb->pages[i]; 5007 wait_on_page_locked(page); 5008 if (!PageUptodate(page)) 5009 ret = -EIO; 5010 } 5011 5012 return ret; 5013 5014 unlock_exit: 5015 while (locked_pages > 0) { 5016 locked_pages--; 5017 page = eb->pages[locked_pages]; 5018 unlock_page(page); 5019 } 5020 return ret; 5021 } 5022 5023 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5024 unsigned long len) 5025 { 5026 btrfs_warn(eb->fs_info, 5027 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5028 eb->start, eb->len, start, len); 5029 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5030 5031 return true; 5032 } 5033 5034 /* 5035 * Check if the [start, start + len) range is valid before reading/writing 5036 * the eb. 5037 * NOTE: @start and @len are offset inside the eb, not logical address. 5038 * 5039 * Caller should not touch the dst/src memory if this function returns error. 5040 */ 5041 static inline int check_eb_range(const struct extent_buffer *eb, 5042 unsigned long start, unsigned long len) 5043 { 5044 unsigned long offset; 5045 5046 /* start, start + len should not go beyond eb->len nor overflow */ 5047 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5048 return report_eb_range(eb, start, len); 5049 5050 return false; 5051 } 5052 5053 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5054 unsigned long start, unsigned long len) 5055 { 5056 size_t cur; 5057 size_t offset; 5058 struct page *page; 5059 char *kaddr; 5060 char *dst = (char *)dstv; 5061 unsigned long i = get_eb_page_index(start); 5062 5063 if (check_eb_range(eb, start, len)) 5064 return; 5065 5066 offset = get_eb_offset_in_page(eb, start); 5067 5068 while (len > 0) { 5069 page = eb->pages[i]; 5070 5071 cur = min(len, (PAGE_SIZE - offset)); 5072 kaddr = page_address(page); 5073 memcpy(dst, kaddr + offset, cur); 5074 5075 dst += cur; 5076 len -= cur; 5077 offset = 0; 5078 i++; 5079 } 5080 } 5081 5082 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5083 void __user *dstv, 5084 unsigned long start, unsigned long len) 5085 { 5086 size_t cur; 5087 size_t offset; 5088 struct page *page; 5089 char *kaddr; 5090 char __user *dst = (char __user *)dstv; 5091 unsigned long i = get_eb_page_index(start); 5092 int ret = 0; 5093 5094 WARN_ON(start > eb->len); 5095 WARN_ON(start + len > eb->start + eb->len); 5096 5097 offset = get_eb_offset_in_page(eb, start); 5098 5099 while (len > 0) { 5100 page = eb->pages[i]; 5101 5102 cur = min(len, (PAGE_SIZE - offset)); 5103 kaddr = page_address(page); 5104 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5105 ret = -EFAULT; 5106 break; 5107 } 5108 5109 dst += cur; 5110 len -= cur; 5111 offset = 0; 5112 i++; 5113 } 5114 5115 return ret; 5116 } 5117 5118 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5119 unsigned long start, unsigned long len) 5120 { 5121 size_t cur; 5122 size_t offset; 5123 struct page *page; 5124 char *kaddr; 5125 char *ptr = (char *)ptrv; 5126 unsigned long i = get_eb_page_index(start); 5127 int ret = 0; 5128 5129 if (check_eb_range(eb, start, len)) 5130 return -EINVAL; 5131 5132 offset = get_eb_offset_in_page(eb, start); 5133 5134 while (len > 0) { 5135 page = eb->pages[i]; 5136 5137 cur = min(len, (PAGE_SIZE - offset)); 5138 5139 kaddr = page_address(page); 5140 ret = memcmp(ptr, kaddr + offset, cur); 5141 if (ret) 5142 break; 5143 5144 ptr += cur; 5145 len -= cur; 5146 offset = 0; 5147 i++; 5148 } 5149 return ret; 5150 } 5151 5152 /* 5153 * Check that the extent buffer is uptodate. 5154 * 5155 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 5156 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 5157 */ 5158 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 5159 struct page *page) 5160 { 5161 struct btrfs_fs_info *fs_info = eb->fs_info; 5162 5163 /* 5164 * If we are using the commit root we could potentially clear a page 5165 * Uptodate while we're using the extent buffer that we've previously 5166 * looked up. We don't want to complain in this case, as the page was 5167 * valid before, we just didn't write it out. Instead we want to catch 5168 * the case where we didn't actually read the block properly, which 5169 * would have !PageUptodate && !PageError, as we clear PageError before 5170 * reading. 5171 */ 5172 if (fs_info->nodesize < PAGE_SIZE) { 5173 bool uptodate, error; 5174 5175 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 5176 eb->start, eb->len); 5177 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 5178 WARN_ON(!uptodate && !error); 5179 } else { 5180 WARN_ON(!PageUptodate(page) && !PageError(page)); 5181 } 5182 } 5183 5184 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5185 const void *srcv) 5186 { 5187 char *kaddr; 5188 5189 assert_eb_page_uptodate(eb, eb->pages[0]); 5190 kaddr = page_address(eb->pages[0]) + 5191 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 5192 chunk_tree_uuid)); 5193 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5194 } 5195 5196 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5197 { 5198 char *kaddr; 5199 5200 assert_eb_page_uptodate(eb, eb->pages[0]); 5201 kaddr = page_address(eb->pages[0]) + 5202 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 5203 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5204 } 5205 5206 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5207 unsigned long start, unsigned long len) 5208 { 5209 size_t cur; 5210 size_t offset; 5211 struct page *page; 5212 char *kaddr; 5213 char *src = (char *)srcv; 5214 unsigned long i = get_eb_page_index(start); 5215 5216 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 5217 5218 if (check_eb_range(eb, start, len)) 5219 return; 5220 5221 offset = get_eb_offset_in_page(eb, start); 5222 5223 while (len > 0) { 5224 page = eb->pages[i]; 5225 assert_eb_page_uptodate(eb, page); 5226 5227 cur = min(len, PAGE_SIZE - offset); 5228 kaddr = page_address(page); 5229 memcpy(kaddr + offset, src, cur); 5230 5231 src += cur; 5232 len -= cur; 5233 offset = 0; 5234 i++; 5235 } 5236 } 5237 5238 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5239 unsigned long len) 5240 { 5241 size_t cur; 5242 size_t offset; 5243 struct page *page; 5244 char *kaddr; 5245 unsigned long i = get_eb_page_index(start); 5246 5247 if (check_eb_range(eb, start, len)) 5248 return; 5249 5250 offset = get_eb_offset_in_page(eb, start); 5251 5252 while (len > 0) { 5253 page = eb->pages[i]; 5254 assert_eb_page_uptodate(eb, page); 5255 5256 cur = min(len, PAGE_SIZE - offset); 5257 kaddr = page_address(page); 5258 memset(kaddr + offset, 0, cur); 5259 5260 len -= cur; 5261 offset = 0; 5262 i++; 5263 } 5264 } 5265 5266 void copy_extent_buffer_full(const struct extent_buffer *dst, 5267 const struct extent_buffer *src) 5268 { 5269 int i; 5270 int num_pages; 5271 5272 ASSERT(dst->len == src->len); 5273 5274 if (dst->fs_info->nodesize >= PAGE_SIZE) { 5275 num_pages = num_extent_pages(dst); 5276 for (i = 0; i < num_pages; i++) 5277 copy_page(page_address(dst->pages[i]), 5278 page_address(src->pages[i])); 5279 } else { 5280 size_t src_offset = get_eb_offset_in_page(src, 0); 5281 size_t dst_offset = get_eb_offset_in_page(dst, 0); 5282 5283 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 5284 memcpy(page_address(dst->pages[0]) + dst_offset, 5285 page_address(src->pages[0]) + src_offset, 5286 src->len); 5287 } 5288 } 5289 5290 void copy_extent_buffer(const struct extent_buffer *dst, 5291 const struct extent_buffer *src, 5292 unsigned long dst_offset, unsigned long src_offset, 5293 unsigned long len) 5294 { 5295 u64 dst_len = dst->len; 5296 size_t cur; 5297 size_t offset; 5298 struct page *page; 5299 char *kaddr; 5300 unsigned long i = get_eb_page_index(dst_offset); 5301 5302 if (check_eb_range(dst, dst_offset, len) || 5303 check_eb_range(src, src_offset, len)) 5304 return; 5305 5306 WARN_ON(src->len != dst_len); 5307 5308 offset = get_eb_offset_in_page(dst, dst_offset); 5309 5310 while (len > 0) { 5311 page = dst->pages[i]; 5312 assert_eb_page_uptodate(dst, page); 5313 5314 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5315 5316 kaddr = page_address(page); 5317 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5318 5319 src_offset += cur; 5320 len -= cur; 5321 offset = 0; 5322 i++; 5323 } 5324 } 5325 5326 /* 5327 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5328 * given bit number 5329 * @eb: the extent buffer 5330 * @start: offset of the bitmap item in the extent buffer 5331 * @nr: bit number 5332 * @page_index: return index of the page in the extent buffer that contains the 5333 * given bit number 5334 * @page_offset: return offset into the page given by page_index 5335 * 5336 * This helper hides the ugliness of finding the byte in an extent buffer which 5337 * contains a given bit. 5338 */ 5339 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5340 unsigned long start, unsigned long nr, 5341 unsigned long *page_index, 5342 size_t *page_offset) 5343 { 5344 size_t byte_offset = BIT_BYTE(nr); 5345 size_t offset; 5346 5347 /* 5348 * The byte we want is the offset of the extent buffer + the offset of 5349 * the bitmap item in the extent buffer + the offset of the byte in the 5350 * bitmap item. 5351 */ 5352 offset = start + offset_in_page(eb->start) + byte_offset; 5353 5354 *page_index = offset >> PAGE_SHIFT; 5355 *page_offset = offset_in_page(offset); 5356 } 5357 5358 /* 5359 * Determine whether a bit in a bitmap item is set. 5360 * 5361 * @eb: the extent buffer 5362 * @start: offset of the bitmap item in the extent buffer 5363 * @nr: bit number to test 5364 */ 5365 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5366 unsigned long nr) 5367 { 5368 u8 *kaddr; 5369 struct page *page; 5370 unsigned long i; 5371 size_t offset; 5372 5373 eb_bitmap_offset(eb, start, nr, &i, &offset); 5374 page = eb->pages[i]; 5375 assert_eb_page_uptodate(eb, page); 5376 kaddr = page_address(page); 5377 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5378 } 5379 5380 /* 5381 * Set an area of a bitmap to 1. 5382 * 5383 * @eb: the extent buffer 5384 * @start: offset of the bitmap item in the extent buffer 5385 * @pos: bit number of the first bit 5386 * @len: number of bits to set 5387 */ 5388 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5389 unsigned long pos, unsigned long len) 5390 { 5391 u8 *kaddr; 5392 struct page *page; 5393 unsigned long i; 5394 size_t offset; 5395 const unsigned int size = pos + len; 5396 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5397 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5398 5399 eb_bitmap_offset(eb, start, pos, &i, &offset); 5400 page = eb->pages[i]; 5401 assert_eb_page_uptodate(eb, page); 5402 kaddr = page_address(page); 5403 5404 while (len >= bits_to_set) { 5405 kaddr[offset] |= mask_to_set; 5406 len -= bits_to_set; 5407 bits_to_set = BITS_PER_BYTE; 5408 mask_to_set = ~0; 5409 if (++offset >= PAGE_SIZE && len > 0) { 5410 offset = 0; 5411 page = eb->pages[++i]; 5412 assert_eb_page_uptodate(eb, page); 5413 kaddr = page_address(page); 5414 } 5415 } 5416 if (len) { 5417 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5418 kaddr[offset] |= mask_to_set; 5419 } 5420 } 5421 5422 5423 /* 5424 * Clear an area of a bitmap. 5425 * 5426 * @eb: the extent buffer 5427 * @start: offset of the bitmap item in the extent buffer 5428 * @pos: bit number of the first bit 5429 * @len: number of bits to clear 5430 */ 5431 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5432 unsigned long start, unsigned long pos, 5433 unsigned long len) 5434 { 5435 u8 *kaddr; 5436 struct page *page; 5437 unsigned long i; 5438 size_t offset; 5439 const unsigned int size = pos + len; 5440 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5441 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5442 5443 eb_bitmap_offset(eb, start, pos, &i, &offset); 5444 page = eb->pages[i]; 5445 assert_eb_page_uptodate(eb, page); 5446 kaddr = page_address(page); 5447 5448 while (len >= bits_to_clear) { 5449 kaddr[offset] &= ~mask_to_clear; 5450 len -= bits_to_clear; 5451 bits_to_clear = BITS_PER_BYTE; 5452 mask_to_clear = ~0; 5453 if (++offset >= PAGE_SIZE && len > 0) { 5454 offset = 0; 5455 page = eb->pages[++i]; 5456 assert_eb_page_uptodate(eb, page); 5457 kaddr = page_address(page); 5458 } 5459 } 5460 if (len) { 5461 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5462 kaddr[offset] &= ~mask_to_clear; 5463 } 5464 } 5465 5466 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5467 { 5468 unsigned long distance = (src > dst) ? src - dst : dst - src; 5469 return distance < len; 5470 } 5471 5472 static void copy_pages(struct page *dst_page, struct page *src_page, 5473 unsigned long dst_off, unsigned long src_off, 5474 unsigned long len) 5475 { 5476 char *dst_kaddr = page_address(dst_page); 5477 char *src_kaddr; 5478 int must_memmove = 0; 5479 5480 if (dst_page != src_page) { 5481 src_kaddr = page_address(src_page); 5482 } else { 5483 src_kaddr = dst_kaddr; 5484 if (areas_overlap(src_off, dst_off, len)) 5485 must_memmove = 1; 5486 } 5487 5488 if (must_memmove) 5489 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5490 else 5491 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5492 } 5493 5494 void memcpy_extent_buffer(const struct extent_buffer *dst, 5495 unsigned long dst_offset, unsigned long src_offset, 5496 unsigned long len) 5497 { 5498 size_t cur; 5499 size_t dst_off_in_page; 5500 size_t src_off_in_page; 5501 unsigned long dst_i; 5502 unsigned long src_i; 5503 5504 if (check_eb_range(dst, dst_offset, len) || 5505 check_eb_range(dst, src_offset, len)) 5506 return; 5507 5508 while (len > 0) { 5509 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 5510 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 5511 5512 dst_i = get_eb_page_index(dst_offset); 5513 src_i = get_eb_page_index(src_offset); 5514 5515 cur = min(len, (unsigned long)(PAGE_SIZE - 5516 src_off_in_page)); 5517 cur = min_t(unsigned long, cur, 5518 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5519 5520 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5521 dst_off_in_page, src_off_in_page, cur); 5522 5523 src_offset += cur; 5524 dst_offset += cur; 5525 len -= cur; 5526 } 5527 } 5528 5529 void memmove_extent_buffer(const struct extent_buffer *dst, 5530 unsigned long dst_offset, unsigned long src_offset, 5531 unsigned long len) 5532 { 5533 size_t cur; 5534 size_t dst_off_in_page; 5535 size_t src_off_in_page; 5536 unsigned long dst_end = dst_offset + len - 1; 5537 unsigned long src_end = src_offset + len - 1; 5538 unsigned long dst_i; 5539 unsigned long src_i; 5540 5541 if (check_eb_range(dst, dst_offset, len) || 5542 check_eb_range(dst, src_offset, len)) 5543 return; 5544 if (dst_offset < src_offset) { 5545 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5546 return; 5547 } 5548 while (len > 0) { 5549 dst_i = get_eb_page_index(dst_end); 5550 src_i = get_eb_page_index(src_end); 5551 5552 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 5553 src_off_in_page = get_eb_offset_in_page(dst, src_end); 5554 5555 cur = min_t(unsigned long, len, src_off_in_page + 1); 5556 cur = min(cur, dst_off_in_page + 1); 5557 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5558 dst_off_in_page - cur + 1, 5559 src_off_in_page - cur + 1, cur); 5560 5561 dst_end -= cur; 5562 src_end -= cur; 5563 len -= cur; 5564 } 5565 } 5566 5567 #define GANG_LOOKUP_SIZE 16 5568 static struct extent_buffer *get_next_extent_buffer( 5569 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 5570 { 5571 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 5572 struct extent_buffer *found = NULL; 5573 u64 page_start = page_offset(page); 5574 u64 cur = page_start; 5575 5576 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 5577 lockdep_assert_held(&fs_info->buffer_lock); 5578 5579 while (cur < page_start + PAGE_SIZE) { 5580 int ret; 5581 int i; 5582 5583 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 5584 (void **)gang, cur >> fs_info->sectorsize_bits, 5585 min_t(unsigned int, GANG_LOOKUP_SIZE, 5586 PAGE_SIZE / fs_info->nodesize)); 5587 if (ret == 0) 5588 goto out; 5589 for (i = 0; i < ret; i++) { 5590 /* Already beyond page end */ 5591 if (gang[i]->start >= page_start + PAGE_SIZE) 5592 goto out; 5593 /* Found one */ 5594 if (gang[i]->start >= bytenr) { 5595 found = gang[i]; 5596 goto out; 5597 } 5598 } 5599 cur = gang[ret - 1]->start + gang[ret - 1]->len; 5600 } 5601 out: 5602 return found; 5603 } 5604 5605 static int try_release_subpage_extent_buffer(struct page *page) 5606 { 5607 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 5608 u64 cur = page_offset(page); 5609 const u64 end = page_offset(page) + PAGE_SIZE; 5610 int ret; 5611 5612 while (cur < end) { 5613 struct extent_buffer *eb = NULL; 5614 5615 /* 5616 * Unlike try_release_extent_buffer() which uses page->private 5617 * to grab buffer, for subpage case we rely on radix tree, thus 5618 * we need to ensure radix tree consistency. 5619 * 5620 * We also want an atomic snapshot of the radix tree, thus go 5621 * with spinlock rather than RCU. 5622 */ 5623 spin_lock(&fs_info->buffer_lock); 5624 eb = get_next_extent_buffer(fs_info, page, cur); 5625 if (!eb) { 5626 /* No more eb in the page range after or at cur */ 5627 spin_unlock(&fs_info->buffer_lock); 5628 break; 5629 } 5630 cur = eb->start + eb->len; 5631 5632 /* 5633 * The same as try_release_extent_buffer(), to ensure the eb 5634 * won't disappear out from under us. 5635 */ 5636 spin_lock(&eb->refs_lock); 5637 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5638 spin_unlock(&eb->refs_lock); 5639 spin_unlock(&fs_info->buffer_lock); 5640 break; 5641 } 5642 spin_unlock(&fs_info->buffer_lock); 5643 5644 /* 5645 * If tree ref isn't set then we know the ref on this eb is a 5646 * real ref, so just return, this eb will likely be freed soon 5647 * anyway. 5648 */ 5649 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5650 spin_unlock(&eb->refs_lock); 5651 break; 5652 } 5653 5654 /* 5655 * Here we don't care about the return value, we will always 5656 * check the page private at the end. And 5657 * release_extent_buffer() will release the refs_lock. 5658 */ 5659 release_extent_buffer(eb); 5660 } 5661 /* 5662 * Finally to check if we have cleared page private, as if we have 5663 * released all ebs in the page, the page private should be cleared now. 5664 */ 5665 spin_lock(&page->mapping->private_lock); 5666 if (!PagePrivate(page)) 5667 ret = 1; 5668 else 5669 ret = 0; 5670 spin_unlock(&page->mapping->private_lock); 5671 return ret; 5672 5673 } 5674 5675 int try_release_extent_buffer(struct page *page) 5676 { 5677 struct extent_buffer *eb; 5678 5679 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 5680 return try_release_subpage_extent_buffer(page); 5681 5682 /* 5683 * We need to make sure nobody is changing page->private, as we rely on 5684 * page->private as the pointer to extent buffer. 5685 */ 5686 spin_lock(&page->mapping->private_lock); 5687 if (!PagePrivate(page)) { 5688 spin_unlock(&page->mapping->private_lock); 5689 return 1; 5690 } 5691 5692 eb = (struct extent_buffer *)page->private; 5693 BUG_ON(!eb); 5694 5695 /* 5696 * This is a little awful but should be ok, we need to make sure that 5697 * the eb doesn't disappear out from under us while we're looking at 5698 * this page. 5699 */ 5700 spin_lock(&eb->refs_lock); 5701 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5702 spin_unlock(&eb->refs_lock); 5703 spin_unlock(&page->mapping->private_lock); 5704 return 0; 5705 } 5706 spin_unlock(&page->mapping->private_lock); 5707 5708 /* 5709 * If tree ref isn't set then we know the ref on this eb is a real ref, 5710 * so just return, this page will likely be freed soon anyway. 5711 */ 5712 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5713 spin_unlock(&eb->refs_lock); 5714 return 0; 5715 } 5716 5717 return release_extent_buffer(eb); 5718 } 5719 5720 /* 5721 * btrfs_readahead_tree_block - attempt to readahead a child block 5722 * @fs_info: the fs_info 5723 * @bytenr: bytenr to read 5724 * @owner_root: objectid of the root that owns this eb 5725 * @gen: generation for the uptodate check, can be 0 5726 * @level: level for the eb 5727 * 5728 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5729 * normal uptodate check of the eb, without checking the generation. If we have 5730 * to read the block we will not block on anything. 5731 */ 5732 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5733 u64 bytenr, u64 owner_root, u64 gen, int level) 5734 { 5735 struct btrfs_tree_parent_check check = { 5736 .has_first_key = 0, 5737 .level = level, 5738 .transid = gen 5739 }; 5740 struct extent_buffer *eb; 5741 int ret; 5742 5743 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5744 if (IS_ERR(eb)) 5745 return; 5746 5747 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5748 free_extent_buffer(eb); 5749 return; 5750 } 5751 5752 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5753 if (ret < 0) 5754 free_extent_buffer_stale(eb); 5755 else 5756 free_extent_buffer(eb); 5757 } 5758 5759 /* 5760 * btrfs_readahead_node_child - readahead a node's child block 5761 * @node: parent node we're reading from 5762 * @slot: slot in the parent node for the child we want to read 5763 * 5764 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5765 * the slot in the node provided. 5766 */ 5767 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5768 { 5769 btrfs_readahead_tree_block(node->fs_info, 5770 btrfs_node_blockptr(node, slot), 5771 btrfs_header_owner(node), 5772 btrfs_node_ptr_generation(node, slot), 5773 btrfs_header_level(node) - 1); 5774 } 5775