1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 /* 599 * Don't care for allocation failure here because we might end 600 * up not needing the pre-allocated extent state at all, which 601 * is the case if we only have in the tree extent states that 602 * cover our input range and don't cover too any other range. 603 * If we end up needing a new extent state we allocate it later. 604 */ 605 prealloc = alloc_extent_state(mask); 606 } 607 608 spin_lock(&tree->lock); 609 if (cached_state) { 610 cached = *cached_state; 611 612 if (clear) { 613 *cached_state = NULL; 614 cached_state = NULL; 615 } 616 617 if (cached && extent_state_in_tree(cached) && 618 cached->start <= start && cached->end > start) { 619 if (clear) 620 atomic_dec(&cached->refs); 621 state = cached; 622 goto hit_next; 623 } 624 if (clear) 625 free_extent_state(cached); 626 } 627 /* 628 * this search will find the extents that end after 629 * our range starts 630 */ 631 node = tree_search(tree, start); 632 if (!node) 633 goto out; 634 state = rb_entry(node, struct extent_state, rb_node); 635 hit_next: 636 if (state->start > end) 637 goto out; 638 WARN_ON(state->end < start); 639 last_end = state->end; 640 641 /* the state doesn't have the wanted bits, go ahead */ 642 if (!(state->state & bits)) { 643 state = next_state(state); 644 goto next; 645 } 646 647 /* 648 * | ---- desired range ---- | 649 * | state | or 650 * | ------------- state -------------- | 651 * 652 * We need to split the extent we found, and may flip 653 * bits on second half. 654 * 655 * If the extent we found extends past our range, we 656 * just split and search again. It'll get split again 657 * the next time though. 658 * 659 * If the extent we found is inside our range, we clear 660 * the desired bit on it. 661 */ 662 663 if (state->start < start) { 664 prealloc = alloc_extent_state_atomic(prealloc); 665 BUG_ON(!prealloc); 666 err = split_state(tree, state, prealloc, start); 667 if (err) 668 extent_io_tree_panic(tree, err); 669 670 prealloc = NULL; 671 if (err) 672 goto out; 673 if (state->end <= end) { 674 state = clear_state_bit(tree, state, &bits, wake); 675 goto next; 676 } 677 goto search_again; 678 } 679 /* 680 * | ---- desired range ---- | 681 * | state | 682 * We need to split the extent, and clear the bit 683 * on the first half 684 */ 685 if (state->start <= end && state->end > end) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, end + 1); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 if (wake) 693 wake_up(&state->wq); 694 695 clear_state_bit(tree, prealloc, &bits, wake); 696 697 prealloc = NULL; 698 goto out; 699 } 700 701 state = clear_state_bit(tree, state, &bits, wake); 702 next: 703 if (last_end == (u64)-1) 704 goto out; 705 start = last_end + 1; 706 if (start <= end && state && !need_resched()) 707 goto hit_next; 708 goto search_again; 709 710 out: 711 spin_unlock(&tree->lock); 712 if (prealloc) 713 free_extent_state(prealloc); 714 715 return 0; 716 717 search_again: 718 if (start > end) 719 goto out; 720 spin_unlock(&tree->lock); 721 if (mask & __GFP_WAIT) 722 cond_resched(); 723 goto again; 724 } 725 726 static void wait_on_state(struct extent_io_tree *tree, 727 struct extent_state *state) 728 __releases(tree->lock) 729 __acquires(tree->lock) 730 { 731 DEFINE_WAIT(wait); 732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 733 spin_unlock(&tree->lock); 734 schedule(); 735 spin_lock(&tree->lock); 736 finish_wait(&state->wq, &wait); 737 } 738 739 /* 740 * waits for one or more bits to clear on a range in the state tree. 741 * The range [start, end] is inclusive. 742 * The tree lock is taken by this function 743 */ 744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 745 unsigned long bits) 746 { 747 struct extent_state *state; 748 struct rb_node *node; 749 750 btrfs_debug_check_extent_io_range(tree, start, end); 751 752 spin_lock(&tree->lock); 753 again: 754 while (1) { 755 /* 756 * this search will find all the extents that end after 757 * our range starts 758 */ 759 node = tree_search(tree, start); 760 process_node: 761 if (!node) 762 break; 763 764 state = rb_entry(node, struct extent_state, rb_node); 765 766 if (state->start > end) 767 goto out; 768 769 if (state->state & bits) { 770 start = state->start; 771 atomic_inc(&state->refs); 772 wait_on_state(tree, state); 773 free_extent_state(state); 774 goto again; 775 } 776 start = state->end + 1; 777 778 if (start > end) 779 break; 780 781 if (!cond_resched_lock(&tree->lock)) { 782 node = rb_next(node); 783 goto process_node; 784 } 785 } 786 out: 787 spin_unlock(&tree->lock); 788 } 789 790 static void set_state_bits(struct extent_io_tree *tree, 791 struct extent_state *state, 792 unsigned *bits) 793 { 794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 795 796 set_state_cb(tree, state, bits); 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 state->state |= bits_to_set; 802 } 803 804 static void cache_state_if_flags(struct extent_state *state, 805 struct extent_state **cached_ptr, 806 unsigned flags) 807 { 808 if (cached_ptr && !(*cached_ptr)) { 809 if (!flags || (state->state & flags)) { 810 *cached_ptr = state; 811 atomic_inc(&state->refs); 812 } 813 } 814 } 815 816 static void cache_state(struct extent_state *state, 817 struct extent_state **cached_ptr) 818 { 819 return cache_state_if_flags(state, cached_ptr, 820 EXTENT_IOBITS | EXTENT_BOUNDARY); 821 } 822 823 /* 824 * set some bits on a range in the tree. This may require allocations or 825 * sleeping, so the gfp mask is used to indicate what is allowed. 826 * 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some 828 * part of the range already has the desired bits set. The start of the 829 * existing range is returned in failed_start in this case. 830 * 831 * [start, end] is inclusive This takes the tree lock. 832 */ 833 834 static int __must_check 835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 836 unsigned bits, unsigned exclusive_bits, 837 u64 *failed_start, struct extent_state **cached_state, 838 gfp_t mask) 839 { 840 struct extent_state *state; 841 struct extent_state *prealloc = NULL; 842 struct rb_node *node; 843 struct rb_node **p; 844 struct rb_node *parent; 845 int err = 0; 846 u64 last_start; 847 u64 last_end; 848 849 btrfs_debug_check_extent_io_range(tree, start, end); 850 851 bits |= EXTENT_FIRST_DELALLOC; 852 again: 853 if (!prealloc && (mask & __GFP_WAIT)) { 854 prealloc = alloc_extent_state(mask); 855 BUG_ON(!prealloc); 856 } 857 858 spin_lock(&tree->lock); 859 if (cached_state && *cached_state) { 860 state = *cached_state; 861 if (state->start <= start && state->end > start && 862 extent_state_in_tree(state)) { 863 node = &state->rb_node; 864 goto hit_next; 865 } 866 } 867 /* 868 * this search will find all the extents that end after 869 * our range starts. 870 */ 871 node = tree_search_for_insert(tree, start, &p, &parent); 872 if (!node) { 873 prealloc = alloc_extent_state_atomic(prealloc); 874 BUG_ON(!prealloc); 875 err = insert_state(tree, prealloc, start, end, 876 &p, &parent, &bits); 877 if (err) 878 extent_io_tree_panic(tree, err); 879 880 cache_state(prealloc, cached_state); 881 prealloc = NULL; 882 goto out; 883 } 884 state = rb_entry(node, struct extent_state, rb_node); 885 hit_next: 886 last_start = state->start; 887 last_end = state->end; 888 889 /* 890 * | ---- desired range ---- | 891 * | state | 892 * 893 * Just lock what we found and keep going 894 */ 895 if (state->start == start && state->end <= end) { 896 if (state->state & exclusive_bits) { 897 *failed_start = state->start; 898 err = -EEXIST; 899 goto out; 900 } 901 902 set_state_bits(tree, state, &bits); 903 cache_state(state, cached_state); 904 merge_state(tree, state); 905 if (last_end == (u64)-1) 906 goto out; 907 start = last_end + 1; 908 state = next_state(state); 909 if (start < end && state && state->start == start && 910 !need_resched()) 911 goto hit_next; 912 goto search_again; 913 } 914 915 /* 916 * | ---- desired range ---- | 917 * | state | 918 * or 919 * | ------------- state -------------- | 920 * 921 * We need to split the extent we found, and may flip bits on 922 * second half. 923 * 924 * If the extent we found extends past our 925 * range, we just split and search again. It'll get split 926 * again the next time though. 927 * 928 * If the extent we found is inside our range, we set the 929 * desired bit on it. 930 */ 931 if (state->start < start) { 932 if (state->state & exclusive_bits) { 933 *failed_start = start; 934 err = -EEXIST; 935 goto out; 936 } 937 938 prealloc = alloc_extent_state_atomic(prealloc); 939 BUG_ON(!prealloc); 940 err = split_state(tree, state, prealloc, start); 941 if (err) 942 extent_io_tree_panic(tree, err); 943 944 prealloc = NULL; 945 if (err) 946 goto out; 947 if (state->end <= end) { 948 set_state_bits(tree, state, &bits); 949 cache_state(state, cached_state); 950 merge_state(tree, state); 951 if (last_end == (u64)-1) 952 goto out; 953 start = last_end + 1; 954 state = next_state(state); 955 if (start < end && state && state->start == start && 956 !need_resched()) 957 goto hit_next; 958 } 959 goto search_again; 960 } 961 /* 962 * | ---- desired range ---- | 963 * | state | or | state | 964 * 965 * There's a hole, we need to insert something in it and 966 * ignore the extent we found. 967 */ 968 if (state->start > start) { 969 u64 this_end; 970 if (end < last_start) 971 this_end = end; 972 else 973 this_end = last_start - 1; 974 975 prealloc = alloc_extent_state_atomic(prealloc); 976 BUG_ON(!prealloc); 977 978 /* 979 * Avoid to free 'prealloc' if it can be merged with 980 * the later extent. 981 */ 982 err = insert_state(tree, prealloc, start, this_end, 983 NULL, NULL, &bits); 984 if (err) 985 extent_io_tree_panic(tree, err); 986 987 cache_state(prealloc, cached_state); 988 prealloc = NULL; 989 start = this_end + 1; 990 goto search_again; 991 } 992 /* 993 * | ---- desired range ---- | 994 * | state | 995 * We need to split the extent, and set the bit 996 * on the first half 997 */ 998 if (state->start <= end && state->end > end) { 999 if (state->state & exclusive_bits) { 1000 *failed_start = start; 1001 err = -EEXIST; 1002 goto out; 1003 } 1004 1005 prealloc = alloc_extent_state_atomic(prealloc); 1006 BUG_ON(!prealloc); 1007 err = split_state(tree, state, prealloc, end + 1); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 set_state_bits(tree, prealloc, &bits); 1012 cache_state(prealloc, cached_state); 1013 merge_state(tree, prealloc); 1014 prealloc = NULL; 1015 goto out; 1016 } 1017 1018 goto search_again; 1019 1020 out: 1021 spin_unlock(&tree->lock); 1022 if (prealloc) 1023 free_extent_state(prealloc); 1024 1025 return err; 1026 1027 search_again: 1028 if (start > end) 1029 goto out; 1030 spin_unlock(&tree->lock); 1031 if (mask & __GFP_WAIT) 1032 cond_resched(); 1033 goto again; 1034 } 1035 1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1037 unsigned bits, u64 * failed_start, 1038 struct extent_state **cached_state, gfp_t mask) 1039 { 1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1041 cached_state, mask); 1042 } 1043 1044 1045 /** 1046 * convert_extent_bit - convert all bits in a given range from one bit to 1047 * another 1048 * @tree: the io tree to search 1049 * @start: the start offset in bytes 1050 * @end: the end offset in bytes (inclusive) 1051 * @bits: the bits to set in this range 1052 * @clear_bits: the bits to clear in this range 1053 * @cached_state: state that we're going to cache 1054 * @mask: the allocation mask 1055 * 1056 * This will go through and set bits for the given range. If any states exist 1057 * already in this range they are set with the given bit and cleared of the 1058 * clear_bits. This is only meant to be used by things that are mergeable, ie 1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1060 * boundary bits like LOCK. 1061 */ 1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1063 unsigned bits, unsigned clear_bits, 1064 struct extent_state **cached_state, gfp_t mask) 1065 { 1066 struct extent_state *state; 1067 struct extent_state *prealloc = NULL; 1068 struct rb_node *node; 1069 struct rb_node **p; 1070 struct rb_node *parent; 1071 int err = 0; 1072 u64 last_start; 1073 u64 last_end; 1074 bool first_iteration = true; 1075 1076 btrfs_debug_check_extent_io_range(tree, start, end); 1077 1078 again: 1079 if (!prealloc && (mask & __GFP_WAIT)) { 1080 /* 1081 * Best effort, don't worry if extent state allocation fails 1082 * here for the first iteration. We might have a cached state 1083 * that matches exactly the target range, in which case no 1084 * extent state allocations are needed. We'll only know this 1085 * after locking the tree. 1086 */ 1087 prealloc = alloc_extent_state(mask); 1088 if (!prealloc && !first_iteration) 1089 return -ENOMEM; 1090 } 1091 1092 spin_lock(&tree->lock); 1093 if (cached_state && *cached_state) { 1094 state = *cached_state; 1095 if (state->start <= start && state->end > start && 1096 extent_state_in_tree(state)) { 1097 node = &state->rb_node; 1098 goto hit_next; 1099 } 1100 } 1101 1102 /* 1103 * this search will find all the extents that end after 1104 * our range starts. 1105 */ 1106 node = tree_search_for_insert(tree, start, &p, &parent); 1107 if (!node) { 1108 prealloc = alloc_extent_state_atomic(prealloc); 1109 if (!prealloc) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 err = insert_state(tree, prealloc, start, end, 1114 &p, &parent, &bits); 1115 if (err) 1116 extent_io_tree_panic(tree, err); 1117 cache_state(prealloc, cached_state); 1118 prealloc = NULL; 1119 goto out; 1120 } 1121 state = rb_entry(node, struct extent_state, rb_node); 1122 hit_next: 1123 last_start = state->start; 1124 last_end = state->end; 1125 1126 /* 1127 * | ---- desired range ---- | 1128 * | state | 1129 * 1130 * Just lock what we found and keep going 1131 */ 1132 if (state->start == start && state->end <= end) { 1133 set_state_bits(tree, state, &bits); 1134 cache_state(state, cached_state); 1135 state = clear_state_bit(tree, state, &clear_bits, 0); 1136 if (last_end == (u64)-1) 1137 goto out; 1138 start = last_end + 1; 1139 if (start < end && state && state->start == start && 1140 !need_resched()) 1141 goto hit_next; 1142 goto search_again; 1143 } 1144 1145 /* 1146 * | ---- desired range ---- | 1147 * | state | 1148 * or 1149 * | ------------- state -------------- | 1150 * 1151 * We need to split the extent we found, and may flip bits on 1152 * second half. 1153 * 1154 * If the extent we found extends past our 1155 * range, we just split and search again. It'll get split 1156 * again the next time though. 1157 * 1158 * If the extent we found is inside our range, we set the 1159 * desired bit on it. 1160 */ 1161 if (state->start < start) { 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 if (!prealloc) { 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 err = split_state(tree, state, prealloc, start); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 prealloc = NULL; 1171 if (err) 1172 goto out; 1173 if (state->end <= end) { 1174 set_state_bits(tree, state, &bits); 1175 cache_state(state, cached_state); 1176 state = clear_state_bit(tree, state, &clear_bits, 0); 1177 if (last_end == (u64)-1) 1178 goto out; 1179 start = last_end + 1; 1180 if (start < end && state && state->start == start && 1181 !need_resched()) 1182 goto hit_next; 1183 } 1184 goto search_again; 1185 } 1186 /* 1187 * | ---- desired range ---- | 1188 * | state | or | state | 1189 * 1190 * There's a hole, we need to insert something in it and 1191 * ignore the extent we found. 1192 */ 1193 if (state->start > start) { 1194 u64 this_end; 1195 if (end < last_start) 1196 this_end = end; 1197 else 1198 this_end = last_start - 1; 1199 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 1206 /* 1207 * Avoid to free 'prealloc' if it can be merged with 1208 * the later extent. 1209 */ 1210 err = insert_state(tree, prealloc, start, this_end, 1211 NULL, NULL, &bits); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 cache_state(prealloc, cached_state); 1215 prealloc = NULL; 1216 start = this_end + 1; 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | 1222 * We need to split the extent, and set the bit 1223 * on the first half 1224 */ 1225 if (state->start <= end && state->end > end) { 1226 prealloc = alloc_extent_state_atomic(prealloc); 1227 if (!prealloc) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 err = split_state(tree, state, prealloc, end + 1); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 1236 set_state_bits(tree, prealloc, &bits); 1237 cache_state(prealloc, cached_state); 1238 clear_state_bit(tree, prealloc, &clear_bits, 0); 1239 prealloc = NULL; 1240 goto out; 1241 } 1242 1243 goto search_again; 1244 1245 out: 1246 spin_unlock(&tree->lock); 1247 if (prealloc) 1248 free_extent_state(prealloc); 1249 1250 return err; 1251 1252 search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 if (mask & __GFP_WAIT) 1257 cond_resched(); 1258 first_iteration = false; 1259 goto again; 1260 } 1261 1262 /* wrappers around set/clear extent bit */ 1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1264 gfp_t mask) 1265 { 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1267 NULL, mask); 1268 } 1269 1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1271 unsigned bits, gfp_t mask) 1272 { 1273 return set_extent_bit(tree, start, end, bits, NULL, 1274 NULL, mask); 1275 } 1276 1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1278 unsigned bits, gfp_t mask) 1279 { 1280 int wake = 0; 1281 1282 if (bits & EXTENT_LOCKED) 1283 wake = 1; 1284 1285 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask); 1286 } 1287 1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1289 struct extent_state **cached_state, gfp_t mask) 1290 { 1291 return set_extent_bit(tree, start, end, 1292 EXTENT_DELALLOC | EXTENT_UPTODATE, 1293 NULL, cached_state, mask); 1294 } 1295 1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1297 struct extent_state **cached_state, gfp_t mask) 1298 { 1299 return set_extent_bit(tree, start, end, 1300 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1301 NULL, cached_state, mask); 1302 } 1303 1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1305 gfp_t mask) 1306 { 1307 return clear_extent_bit(tree, start, end, 1308 EXTENT_DIRTY | EXTENT_DELALLOC | 1309 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1310 } 1311 1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1313 gfp_t mask) 1314 { 1315 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1316 NULL, mask); 1317 } 1318 1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1320 struct extent_state **cached_state, gfp_t mask) 1321 { 1322 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1323 cached_state, mask); 1324 } 1325 1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1327 struct extent_state **cached_state, gfp_t mask) 1328 { 1329 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1330 cached_state, mask); 1331 } 1332 1333 /* 1334 * either insert or lock state struct between start and end use mask to tell 1335 * us if waiting is desired. 1336 */ 1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1338 unsigned bits, struct extent_state **cached_state) 1339 { 1340 int err; 1341 u64 failed_start; 1342 1343 while (1) { 1344 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1345 EXTENT_LOCKED, &failed_start, 1346 cached_state, GFP_NOFS); 1347 if (err == -EEXIST) { 1348 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1349 start = failed_start; 1350 } else 1351 break; 1352 WARN_ON(start > end); 1353 } 1354 return err; 1355 } 1356 1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358 { 1359 return lock_extent_bits(tree, start, end, 0, NULL); 1360 } 1361 1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1363 { 1364 int err; 1365 u64 failed_start; 1366 1367 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1368 &failed_start, NULL, GFP_NOFS); 1369 if (err == -EEXIST) { 1370 if (failed_start > start) 1371 clear_extent_bit(tree, start, failed_start - 1, 1372 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1373 return 0; 1374 } 1375 return 1; 1376 } 1377 1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1379 struct extent_state **cached, gfp_t mask) 1380 { 1381 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1382 mask); 1383 } 1384 1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1386 { 1387 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1388 GFP_NOFS); 1389 } 1390 1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1392 { 1393 unsigned long index = start >> PAGE_CACHE_SHIFT; 1394 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1395 struct page *page; 1396 1397 while (index <= end_index) { 1398 page = find_get_page(inode->i_mapping, index); 1399 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1400 clear_page_dirty_for_io(page); 1401 page_cache_release(page); 1402 index++; 1403 } 1404 return 0; 1405 } 1406 1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1408 { 1409 unsigned long index = start >> PAGE_CACHE_SHIFT; 1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1411 struct page *page; 1412 1413 while (index <= end_index) { 1414 page = find_get_page(inode->i_mapping, index); 1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1416 __set_page_dirty_nobuffers(page); 1417 account_page_redirty(page); 1418 page_cache_release(page); 1419 index++; 1420 } 1421 return 0; 1422 } 1423 1424 /* 1425 * helper function to set both pages and extents in the tree writeback 1426 */ 1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1428 { 1429 unsigned long index = start >> PAGE_CACHE_SHIFT; 1430 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1431 struct page *page; 1432 1433 while (index <= end_index) { 1434 page = find_get_page(tree->mapping, index); 1435 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1436 set_page_writeback(page); 1437 page_cache_release(page); 1438 index++; 1439 } 1440 return 0; 1441 } 1442 1443 /* find the first state struct with 'bits' set after 'start', and 1444 * return it. tree->lock must be held. NULL will returned if 1445 * nothing was found after 'start' 1446 */ 1447 static struct extent_state * 1448 find_first_extent_bit_state(struct extent_io_tree *tree, 1449 u64 start, unsigned bits) 1450 { 1451 struct rb_node *node; 1452 struct extent_state *state; 1453 1454 /* 1455 * this search will find all the extents that end after 1456 * our range starts. 1457 */ 1458 node = tree_search(tree, start); 1459 if (!node) 1460 goto out; 1461 1462 while (1) { 1463 state = rb_entry(node, struct extent_state, rb_node); 1464 if (state->end >= start && (state->state & bits)) 1465 return state; 1466 1467 node = rb_next(node); 1468 if (!node) 1469 break; 1470 } 1471 out: 1472 return NULL; 1473 } 1474 1475 /* 1476 * find the first offset in the io tree with 'bits' set. zero is 1477 * returned if we find something, and *start_ret and *end_ret are 1478 * set to reflect the state struct that was found. 1479 * 1480 * If nothing was found, 1 is returned. If found something, return 0. 1481 */ 1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1483 u64 *start_ret, u64 *end_ret, unsigned bits, 1484 struct extent_state **cached_state) 1485 { 1486 struct extent_state *state; 1487 struct rb_node *n; 1488 int ret = 1; 1489 1490 spin_lock(&tree->lock); 1491 if (cached_state && *cached_state) { 1492 state = *cached_state; 1493 if (state->end == start - 1 && extent_state_in_tree(state)) { 1494 n = rb_next(&state->rb_node); 1495 while (n) { 1496 state = rb_entry(n, struct extent_state, 1497 rb_node); 1498 if (state->state & bits) 1499 goto got_it; 1500 n = rb_next(n); 1501 } 1502 free_extent_state(*cached_state); 1503 *cached_state = NULL; 1504 goto out; 1505 } 1506 free_extent_state(*cached_state); 1507 *cached_state = NULL; 1508 } 1509 1510 state = find_first_extent_bit_state(tree, start, bits); 1511 got_it: 1512 if (state) { 1513 cache_state_if_flags(state, cached_state, 0); 1514 *start_ret = state->start; 1515 *end_ret = state->end; 1516 ret = 0; 1517 } 1518 out: 1519 spin_unlock(&tree->lock); 1520 return ret; 1521 } 1522 1523 /* 1524 * find a contiguous range of bytes in the file marked as delalloc, not 1525 * more than 'max_bytes'. start and end are used to return the range, 1526 * 1527 * 1 is returned if we find something, 0 if nothing was in the tree 1528 */ 1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1530 u64 *start, u64 *end, u64 max_bytes, 1531 struct extent_state **cached_state) 1532 { 1533 struct rb_node *node; 1534 struct extent_state *state; 1535 u64 cur_start = *start; 1536 u64 found = 0; 1537 u64 total_bytes = 0; 1538 1539 spin_lock(&tree->lock); 1540 1541 /* 1542 * this search will find all the extents that end after 1543 * our range starts. 1544 */ 1545 node = tree_search(tree, cur_start); 1546 if (!node) { 1547 if (!found) 1548 *end = (u64)-1; 1549 goto out; 1550 } 1551 1552 while (1) { 1553 state = rb_entry(node, struct extent_state, rb_node); 1554 if (found && (state->start != cur_start || 1555 (state->state & EXTENT_BOUNDARY))) { 1556 goto out; 1557 } 1558 if (!(state->state & EXTENT_DELALLOC)) { 1559 if (!found) 1560 *end = state->end; 1561 goto out; 1562 } 1563 if (!found) { 1564 *start = state->start; 1565 *cached_state = state; 1566 atomic_inc(&state->refs); 1567 } 1568 found++; 1569 *end = state->end; 1570 cur_start = state->end + 1; 1571 node = rb_next(node); 1572 total_bytes += state->end - state->start + 1; 1573 if (total_bytes >= max_bytes) 1574 break; 1575 if (!node) 1576 break; 1577 } 1578 out: 1579 spin_unlock(&tree->lock); 1580 return found; 1581 } 1582 1583 static noinline void __unlock_for_delalloc(struct inode *inode, 1584 struct page *locked_page, 1585 u64 start, u64 end) 1586 { 1587 int ret; 1588 struct page *pages[16]; 1589 unsigned long index = start >> PAGE_CACHE_SHIFT; 1590 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1591 unsigned long nr_pages = end_index - index + 1; 1592 int i; 1593 1594 if (index == locked_page->index && end_index == index) 1595 return; 1596 1597 while (nr_pages > 0) { 1598 ret = find_get_pages_contig(inode->i_mapping, index, 1599 min_t(unsigned long, nr_pages, 1600 ARRAY_SIZE(pages)), pages); 1601 for (i = 0; i < ret; i++) { 1602 if (pages[i] != locked_page) 1603 unlock_page(pages[i]); 1604 page_cache_release(pages[i]); 1605 } 1606 nr_pages -= ret; 1607 index += ret; 1608 cond_resched(); 1609 } 1610 } 1611 1612 static noinline int lock_delalloc_pages(struct inode *inode, 1613 struct page *locked_page, 1614 u64 delalloc_start, 1615 u64 delalloc_end) 1616 { 1617 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1618 unsigned long start_index = index; 1619 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1620 unsigned long pages_locked = 0; 1621 struct page *pages[16]; 1622 unsigned long nrpages; 1623 int ret; 1624 int i; 1625 1626 /* the caller is responsible for locking the start index */ 1627 if (index == locked_page->index && index == end_index) 1628 return 0; 1629 1630 /* skip the page at the start index */ 1631 nrpages = end_index - index + 1; 1632 while (nrpages > 0) { 1633 ret = find_get_pages_contig(inode->i_mapping, index, 1634 min_t(unsigned long, 1635 nrpages, ARRAY_SIZE(pages)), pages); 1636 if (ret == 0) { 1637 ret = -EAGAIN; 1638 goto done; 1639 } 1640 /* now we have an array of pages, lock them all */ 1641 for (i = 0; i < ret; i++) { 1642 /* 1643 * the caller is taking responsibility for 1644 * locked_page 1645 */ 1646 if (pages[i] != locked_page) { 1647 lock_page(pages[i]); 1648 if (!PageDirty(pages[i]) || 1649 pages[i]->mapping != inode->i_mapping) { 1650 ret = -EAGAIN; 1651 unlock_page(pages[i]); 1652 page_cache_release(pages[i]); 1653 goto done; 1654 } 1655 } 1656 page_cache_release(pages[i]); 1657 pages_locked++; 1658 } 1659 nrpages -= ret; 1660 index += ret; 1661 cond_resched(); 1662 } 1663 ret = 0; 1664 done: 1665 if (ret && pages_locked) { 1666 __unlock_for_delalloc(inode, locked_page, 1667 delalloc_start, 1668 ((u64)(start_index + pages_locked - 1)) << 1669 PAGE_CACHE_SHIFT); 1670 } 1671 return ret; 1672 } 1673 1674 /* 1675 * find a contiguous range of bytes in the file marked as delalloc, not 1676 * more than 'max_bytes'. start and end are used to return the range, 1677 * 1678 * 1 is returned if we find something, 0 if nothing was in the tree 1679 */ 1680 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1681 struct extent_io_tree *tree, 1682 struct page *locked_page, u64 *start, 1683 u64 *end, u64 max_bytes) 1684 { 1685 u64 delalloc_start; 1686 u64 delalloc_end; 1687 u64 found; 1688 struct extent_state *cached_state = NULL; 1689 int ret; 1690 int loops = 0; 1691 1692 again: 1693 /* step one, find a bunch of delalloc bytes starting at start */ 1694 delalloc_start = *start; 1695 delalloc_end = 0; 1696 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1697 max_bytes, &cached_state); 1698 if (!found || delalloc_end <= *start) { 1699 *start = delalloc_start; 1700 *end = delalloc_end; 1701 free_extent_state(cached_state); 1702 return 0; 1703 } 1704 1705 /* 1706 * start comes from the offset of locked_page. We have to lock 1707 * pages in order, so we can't process delalloc bytes before 1708 * locked_page 1709 */ 1710 if (delalloc_start < *start) 1711 delalloc_start = *start; 1712 1713 /* 1714 * make sure to limit the number of pages we try to lock down 1715 */ 1716 if (delalloc_end + 1 - delalloc_start > max_bytes) 1717 delalloc_end = delalloc_start + max_bytes - 1; 1718 1719 /* step two, lock all the pages after the page that has start */ 1720 ret = lock_delalloc_pages(inode, locked_page, 1721 delalloc_start, delalloc_end); 1722 if (ret == -EAGAIN) { 1723 /* some of the pages are gone, lets avoid looping by 1724 * shortening the size of the delalloc range we're searching 1725 */ 1726 free_extent_state(cached_state); 1727 cached_state = NULL; 1728 if (!loops) { 1729 max_bytes = PAGE_CACHE_SIZE; 1730 loops = 1; 1731 goto again; 1732 } else { 1733 found = 0; 1734 goto out_failed; 1735 } 1736 } 1737 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1738 1739 /* step three, lock the state bits for the whole range */ 1740 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1741 1742 /* then test to make sure it is all still delalloc */ 1743 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1744 EXTENT_DELALLOC, 1, cached_state); 1745 if (!ret) { 1746 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1747 &cached_state, GFP_NOFS); 1748 __unlock_for_delalloc(inode, locked_page, 1749 delalloc_start, delalloc_end); 1750 cond_resched(); 1751 goto again; 1752 } 1753 free_extent_state(cached_state); 1754 *start = delalloc_start; 1755 *end = delalloc_end; 1756 out_failed: 1757 return found; 1758 } 1759 1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1761 struct page *locked_page, 1762 unsigned clear_bits, 1763 unsigned long page_ops) 1764 { 1765 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1766 int ret; 1767 struct page *pages[16]; 1768 unsigned long index = start >> PAGE_CACHE_SHIFT; 1769 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1770 unsigned long nr_pages = end_index - index + 1; 1771 int i; 1772 1773 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1774 if (page_ops == 0) 1775 return 0; 1776 1777 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1778 mapping_set_error(inode->i_mapping, -EIO); 1779 1780 while (nr_pages > 0) { 1781 ret = find_get_pages_contig(inode->i_mapping, index, 1782 min_t(unsigned long, 1783 nr_pages, ARRAY_SIZE(pages)), pages); 1784 for (i = 0; i < ret; i++) { 1785 1786 if (page_ops & PAGE_SET_PRIVATE2) 1787 SetPagePrivate2(pages[i]); 1788 1789 if (pages[i] == locked_page) { 1790 page_cache_release(pages[i]); 1791 continue; 1792 } 1793 if (page_ops & PAGE_CLEAR_DIRTY) 1794 clear_page_dirty_for_io(pages[i]); 1795 if (page_ops & PAGE_SET_WRITEBACK) 1796 set_page_writeback(pages[i]); 1797 if (page_ops & PAGE_SET_ERROR) 1798 SetPageError(pages[i]); 1799 if (page_ops & PAGE_END_WRITEBACK) 1800 end_page_writeback(pages[i]); 1801 if (page_ops & PAGE_UNLOCK) 1802 unlock_page(pages[i]); 1803 page_cache_release(pages[i]); 1804 } 1805 nr_pages -= ret; 1806 index += ret; 1807 cond_resched(); 1808 } 1809 return 0; 1810 } 1811 1812 /* 1813 * count the number of bytes in the tree that have a given bit(s) 1814 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1815 * cached. The total number found is returned. 1816 */ 1817 u64 count_range_bits(struct extent_io_tree *tree, 1818 u64 *start, u64 search_end, u64 max_bytes, 1819 unsigned bits, int contig) 1820 { 1821 struct rb_node *node; 1822 struct extent_state *state; 1823 u64 cur_start = *start; 1824 u64 total_bytes = 0; 1825 u64 last = 0; 1826 int found = 0; 1827 1828 if (WARN_ON(search_end <= cur_start)) 1829 return 0; 1830 1831 spin_lock(&tree->lock); 1832 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1833 total_bytes = tree->dirty_bytes; 1834 goto out; 1835 } 1836 /* 1837 * this search will find all the extents that end after 1838 * our range starts. 1839 */ 1840 node = tree_search(tree, cur_start); 1841 if (!node) 1842 goto out; 1843 1844 while (1) { 1845 state = rb_entry(node, struct extent_state, rb_node); 1846 if (state->start > search_end) 1847 break; 1848 if (contig && found && state->start > last + 1) 1849 break; 1850 if (state->end >= cur_start && (state->state & bits) == bits) { 1851 total_bytes += min(search_end, state->end) + 1 - 1852 max(cur_start, state->start); 1853 if (total_bytes >= max_bytes) 1854 break; 1855 if (!found) { 1856 *start = max(cur_start, state->start); 1857 found = 1; 1858 } 1859 last = state->end; 1860 } else if (contig && found) { 1861 break; 1862 } 1863 node = rb_next(node); 1864 if (!node) 1865 break; 1866 } 1867 out: 1868 spin_unlock(&tree->lock); 1869 return total_bytes; 1870 } 1871 1872 /* 1873 * set the private field for a given byte offset in the tree. If there isn't 1874 * an extent_state there already, this does nothing. 1875 */ 1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1877 { 1878 struct rb_node *node; 1879 struct extent_state *state; 1880 int ret = 0; 1881 1882 spin_lock(&tree->lock); 1883 /* 1884 * this search will find all the extents that end after 1885 * our range starts. 1886 */ 1887 node = tree_search(tree, start); 1888 if (!node) { 1889 ret = -ENOENT; 1890 goto out; 1891 } 1892 state = rb_entry(node, struct extent_state, rb_node); 1893 if (state->start != start) { 1894 ret = -ENOENT; 1895 goto out; 1896 } 1897 state->private = private; 1898 out: 1899 spin_unlock(&tree->lock); 1900 return ret; 1901 } 1902 1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1904 { 1905 struct rb_node *node; 1906 struct extent_state *state; 1907 int ret = 0; 1908 1909 spin_lock(&tree->lock); 1910 /* 1911 * this search will find all the extents that end after 1912 * our range starts. 1913 */ 1914 node = tree_search(tree, start); 1915 if (!node) { 1916 ret = -ENOENT; 1917 goto out; 1918 } 1919 state = rb_entry(node, struct extent_state, rb_node); 1920 if (state->start != start) { 1921 ret = -ENOENT; 1922 goto out; 1923 } 1924 *private = state->private; 1925 out: 1926 spin_unlock(&tree->lock); 1927 return ret; 1928 } 1929 1930 /* 1931 * searches a range in the state tree for a given mask. 1932 * If 'filled' == 1, this returns 1 only if every extent in the tree 1933 * has the bits set. Otherwise, 1 is returned if any bit in the 1934 * range is found set. 1935 */ 1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1937 unsigned bits, int filled, struct extent_state *cached) 1938 { 1939 struct extent_state *state = NULL; 1940 struct rb_node *node; 1941 int bitset = 0; 1942 1943 spin_lock(&tree->lock); 1944 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1945 cached->end > start) 1946 node = &cached->rb_node; 1947 else 1948 node = tree_search(tree, start); 1949 while (node && start <= end) { 1950 state = rb_entry(node, struct extent_state, rb_node); 1951 1952 if (filled && state->start > start) { 1953 bitset = 0; 1954 break; 1955 } 1956 1957 if (state->start > end) 1958 break; 1959 1960 if (state->state & bits) { 1961 bitset = 1; 1962 if (!filled) 1963 break; 1964 } else if (filled) { 1965 bitset = 0; 1966 break; 1967 } 1968 1969 if (state->end == (u64)-1) 1970 break; 1971 1972 start = state->end + 1; 1973 if (start > end) 1974 break; 1975 node = rb_next(node); 1976 if (!node) { 1977 if (filled) 1978 bitset = 0; 1979 break; 1980 } 1981 } 1982 spin_unlock(&tree->lock); 1983 return bitset; 1984 } 1985 1986 /* 1987 * helper function to set a given page up to date if all the 1988 * extents in the tree for that page are up to date 1989 */ 1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1991 { 1992 u64 start = page_offset(page); 1993 u64 end = start + PAGE_CACHE_SIZE - 1; 1994 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1995 SetPageUptodate(page); 1996 } 1997 1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1999 { 2000 int ret; 2001 int err = 0; 2002 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2003 2004 set_state_private(failure_tree, rec->start, 0); 2005 ret = clear_extent_bits(failure_tree, rec->start, 2006 rec->start + rec->len - 1, 2007 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2008 if (ret) 2009 err = ret; 2010 2011 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2012 rec->start + rec->len - 1, 2013 EXTENT_DAMAGED, GFP_NOFS); 2014 if (ret && !err) 2015 err = ret; 2016 2017 kfree(rec); 2018 return err; 2019 } 2020 2021 /* 2022 * this bypasses the standard btrfs submit functions deliberately, as 2023 * the standard behavior is to write all copies in a raid setup. here we only 2024 * want to write the one bad copy. so we do the mapping for ourselves and issue 2025 * submit_bio directly. 2026 * to avoid any synchronization issues, wait for the data after writing, which 2027 * actually prevents the read that triggered the error from finishing. 2028 * currently, there can be no more than two copies of every data bit. thus, 2029 * exactly one rewrite is required. 2030 */ 2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2032 struct page *page, unsigned int pg_offset, int mirror_num) 2033 { 2034 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2035 struct bio *bio; 2036 struct btrfs_device *dev; 2037 u64 map_length = 0; 2038 u64 sector; 2039 struct btrfs_bio *bbio = NULL; 2040 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2041 int ret; 2042 2043 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2044 BUG_ON(!mirror_num); 2045 2046 /* we can't repair anything in raid56 yet */ 2047 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2048 return 0; 2049 2050 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2051 if (!bio) 2052 return -EIO; 2053 bio->bi_iter.bi_size = 0; 2054 map_length = length; 2055 2056 ret = btrfs_map_block(fs_info, WRITE, logical, 2057 &map_length, &bbio, mirror_num); 2058 if (ret) { 2059 bio_put(bio); 2060 return -EIO; 2061 } 2062 BUG_ON(mirror_num != bbio->mirror_num); 2063 sector = bbio->stripes[mirror_num-1].physical >> 9; 2064 bio->bi_iter.bi_sector = sector; 2065 dev = bbio->stripes[mirror_num-1].dev; 2066 btrfs_put_bbio(bbio); 2067 if (!dev || !dev->bdev || !dev->writeable) { 2068 bio_put(bio); 2069 return -EIO; 2070 } 2071 bio->bi_bdev = dev->bdev; 2072 bio_add_page(bio, page, length, pg_offset); 2073 2074 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2075 /* try to remap that extent elsewhere? */ 2076 bio_put(bio); 2077 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2078 return -EIO; 2079 } 2080 2081 printk_ratelimited_in_rcu(KERN_INFO 2082 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2083 btrfs_ino(inode), start, 2084 rcu_str_deref(dev->name), sector); 2085 bio_put(bio); 2086 return 0; 2087 } 2088 2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2090 int mirror_num) 2091 { 2092 u64 start = eb->start; 2093 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2094 int ret = 0; 2095 2096 if (root->fs_info->sb->s_flags & MS_RDONLY) 2097 return -EROFS; 2098 2099 for (i = 0; i < num_pages; i++) { 2100 struct page *p = eb->pages[i]; 2101 2102 ret = repair_io_failure(root->fs_info->btree_inode, start, 2103 PAGE_CACHE_SIZE, start, p, 2104 start - page_offset(p), mirror_num); 2105 if (ret) 2106 break; 2107 start += PAGE_CACHE_SIZE; 2108 } 2109 2110 return ret; 2111 } 2112 2113 /* 2114 * each time an IO finishes, we do a fast check in the IO failure tree 2115 * to see if we need to process or clean up an io_failure_record 2116 */ 2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2118 unsigned int pg_offset) 2119 { 2120 u64 private; 2121 u64 private_failure; 2122 struct io_failure_record *failrec; 2123 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2124 struct extent_state *state; 2125 int num_copies; 2126 int ret; 2127 2128 private = 0; 2129 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2130 (u64)-1, 1, EXTENT_DIRTY, 0); 2131 if (!ret) 2132 return 0; 2133 2134 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2135 &private_failure); 2136 if (ret) 2137 return 0; 2138 2139 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2140 BUG_ON(!failrec->this_mirror); 2141 2142 if (failrec->in_validation) { 2143 /* there was no real error, just free the record */ 2144 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2145 failrec->start); 2146 goto out; 2147 } 2148 if (fs_info->sb->s_flags & MS_RDONLY) 2149 goto out; 2150 2151 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2152 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2153 failrec->start, 2154 EXTENT_LOCKED); 2155 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2156 2157 if (state && state->start <= failrec->start && 2158 state->end >= failrec->start + failrec->len - 1) { 2159 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2160 failrec->len); 2161 if (num_copies > 1) { 2162 repair_io_failure(inode, start, failrec->len, 2163 failrec->logical, page, 2164 pg_offset, failrec->failed_mirror); 2165 } 2166 } 2167 2168 out: 2169 free_io_failure(inode, failrec); 2170 2171 return 0; 2172 } 2173 2174 /* 2175 * Can be called when 2176 * - hold extent lock 2177 * - under ordered extent 2178 * - the inode is freeing 2179 */ 2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2181 { 2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2183 struct io_failure_record *failrec; 2184 struct extent_state *state, *next; 2185 2186 if (RB_EMPTY_ROOT(&failure_tree->state)) 2187 return; 2188 2189 spin_lock(&failure_tree->lock); 2190 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2191 while (state) { 2192 if (state->start > end) 2193 break; 2194 2195 ASSERT(state->end <= end); 2196 2197 next = next_state(state); 2198 2199 failrec = (struct io_failure_record *)(unsigned long)state->private; 2200 free_extent_state(state); 2201 kfree(failrec); 2202 2203 state = next; 2204 } 2205 spin_unlock(&failure_tree->lock); 2206 } 2207 2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2209 struct io_failure_record **failrec_ret) 2210 { 2211 struct io_failure_record *failrec; 2212 u64 private; 2213 struct extent_map *em; 2214 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2215 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2216 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2217 int ret; 2218 u64 logical; 2219 2220 ret = get_state_private(failure_tree, start, &private); 2221 if (ret) { 2222 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2223 if (!failrec) 2224 return -ENOMEM; 2225 2226 failrec->start = start; 2227 failrec->len = end - start + 1; 2228 failrec->this_mirror = 0; 2229 failrec->bio_flags = 0; 2230 failrec->in_validation = 0; 2231 2232 read_lock(&em_tree->lock); 2233 em = lookup_extent_mapping(em_tree, start, failrec->len); 2234 if (!em) { 2235 read_unlock(&em_tree->lock); 2236 kfree(failrec); 2237 return -EIO; 2238 } 2239 2240 if (em->start > start || em->start + em->len <= start) { 2241 free_extent_map(em); 2242 em = NULL; 2243 } 2244 read_unlock(&em_tree->lock); 2245 if (!em) { 2246 kfree(failrec); 2247 return -EIO; 2248 } 2249 2250 logical = start - em->start; 2251 logical = em->block_start + logical; 2252 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2253 logical = em->block_start; 2254 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2255 extent_set_compress_type(&failrec->bio_flags, 2256 em->compress_type); 2257 } 2258 2259 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2260 logical, start, failrec->len); 2261 2262 failrec->logical = logical; 2263 free_extent_map(em); 2264 2265 /* set the bits in the private failure tree */ 2266 ret = set_extent_bits(failure_tree, start, end, 2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2268 if (ret >= 0) 2269 ret = set_state_private(failure_tree, start, 2270 (u64)(unsigned long)failrec); 2271 /* set the bits in the inode's tree */ 2272 if (ret >= 0) 2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2274 GFP_NOFS); 2275 if (ret < 0) { 2276 kfree(failrec); 2277 return ret; 2278 } 2279 } else { 2280 failrec = (struct io_failure_record *)(unsigned long)private; 2281 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2282 failrec->logical, failrec->start, failrec->len, 2283 failrec->in_validation); 2284 /* 2285 * when data can be on disk more than twice, add to failrec here 2286 * (e.g. with a list for failed_mirror) to make 2287 * clean_io_failure() clean all those errors at once. 2288 */ 2289 } 2290 2291 *failrec_ret = failrec; 2292 2293 return 0; 2294 } 2295 2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2297 struct io_failure_record *failrec, int failed_mirror) 2298 { 2299 int num_copies; 2300 2301 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2302 failrec->logical, failrec->len); 2303 if (num_copies == 1) { 2304 /* 2305 * we only have a single copy of the data, so don't bother with 2306 * all the retry and error correction code that follows. no 2307 * matter what the error is, it is very likely to persist. 2308 */ 2309 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2310 num_copies, failrec->this_mirror, failed_mirror); 2311 return 0; 2312 } 2313 2314 /* 2315 * there are two premises: 2316 * a) deliver good data to the caller 2317 * b) correct the bad sectors on disk 2318 */ 2319 if (failed_bio->bi_vcnt > 1) { 2320 /* 2321 * to fulfill b), we need to know the exact failing sectors, as 2322 * we don't want to rewrite any more than the failed ones. thus, 2323 * we need separate read requests for the failed bio 2324 * 2325 * if the following BUG_ON triggers, our validation request got 2326 * merged. we need separate requests for our algorithm to work. 2327 */ 2328 BUG_ON(failrec->in_validation); 2329 failrec->in_validation = 1; 2330 failrec->this_mirror = failed_mirror; 2331 } else { 2332 /* 2333 * we're ready to fulfill a) and b) alongside. get a good copy 2334 * of the failed sector and if we succeed, we have setup 2335 * everything for repair_io_failure to do the rest for us. 2336 */ 2337 if (failrec->in_validation) { 2338 BUG_ON(failrec->this_mirror != failed_mirror); 2339 failrec->in_validation = 0; 2340 failrec->this_mirror = 0; 2341 } 2342 failrec->failed_mirror = failed_mirror; 2343 failrec->this_mirror++; 2344 if (failrec->this_mirror == failed_mirror) 2345 failrec->this_mirror++; 2346 } 2347 2348 if (failrec->this_mirror > num_copies) { 2349 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2350 num_copies, failrec->this_mirror, failed_mirror); 2351 return 0; 2352 } 2353 2354 return 1; 2355 } 2356 2357 2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2359 struct io_failure_record *failrec, 2360 struct page *page, int pg_offset, int icsum, 2361 bio_end_io_t *endio_func, void *data) 2362 { 2363 struct bio *bio; 2364 struct btrfs_io_bio *btrfs_failed_bio; 2365 struct btrfs_io_bio *btrfs_bio; 2366 2367 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2368 if (!bio) 2369 return NULL; 2370 2371 bio->bi_end_io = endio_func; 2372 bio->bi_iter.bi_sector = failrec->logical >> 9; 2373 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2374 bio->bi_iter.bi_size = 0; 2375 bio->bi_private = data; 2376 2377 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2378 if (btrfs_failed_bio->csum) { 2379 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2380 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2381 2382 btrfs_bio = btrfs_io_bio(bio); 2383 btrfs_bio->csum = btrfs_bio->csum_inline; 2384 icsum *= csum_size; 2385 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2386 csum_size); 2387 } 2388 2389 bio_add_page(bio, page, failrec->len, pg_offset); 2390 2391 return bio; 2392 } 2393 2394 /* 2395 * this is a generic handler for readpage errors (default 2396 * readpage_io_failed_hook). if other copies exist, read those and write back 2397 * good data to the failed position. does not investigate in remapping the 2398 * failed extent elsewhere, hoping the device will be smart enough to do this as 2399 * needed 2400 */ 2401 2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2403 struct page *page, u64 start, u64 end, 2404 int failed_mirror) 2405 { 2406 struct io_failure_record *failrec; 2407 struct inode *inode = page->mapping->host; 2408 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2409 struct bio *bio; 2410 int read_mode; 2411 int ret; 2412 2413 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2414 2415 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2416 if (ret) 2417 return ret; 2418 2419 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2420 if (!ret) { 2421 free_io_failure(inode, failrec); 2422 return -EIO; 2423 } 2424 2425 if (failed_bio->bi_vcnt > 1) 2426 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2427 else 2428 read_mode = READ_SYNC; 2429 2430 phy_offset >>= inode->i_sb->s_blocksize_bits; 2431 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2432 start - page_offset(page), 2433 (int)phy_offset, failed_bio->bi_end_io, 2434 NULL); 2435 if (!bio) { 2436 free_io_failure(inode, failrec); 2437 return -EIO; 2438 } 2439 2440 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2441 read_mode, failrec->this_mirror, failrec->in_validation); 2442 2443 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2444 failrec->this_mirror, 2445 failrec->bio_flags, 0); 2446 if (ret) { 2447 free_io_failure(inode, failrec); 2448 bio_put(bio); 2449 } 2450 2451 return ret; 2452 } 2453 2454 /* lots and lots of room for performance fixes in the end_bio funcs */ 2455 2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2457 { 2458 int uptodate = (err == 0); 2459 struct extent_io_tree *tree; 2460 int ret = 0; 2461 2462 tree = &BTRFS_I(page->mapping->host)->io_tree; 2463 2464 if (tree->ops && tree->ops->writepage_end_io_hook) { 2465 ret = tree->ops->writepage_end_io_hook(page, start, 2466 end, NULL, uptodate); 2467 if (ret) 2468 uptodate = 0; 2469 } 2470 2471 if (!uptodate) { 2472 ClearPageUptodate(page); 2473 SetPageError(page); 2474 ret = ret < 0 ? ret : -EIO; 2475 mapping_set_error(page->mapping, ret); 2476 } 2477 return 0; 2478 } 2479 2480 /* 2481 * after a writepage IO is done, we need to: 2482 * clear the uptodate bits on error 2483 * clear the writeback bits in the extent tree for this IO 2484 * end_page_writeback if the page has no more pending IO 2485 * 2486 * Scheduling is not allowed, so the extent state tree is expected 2487 * to have one and only one object corresponding to this IO. 2488 */ 2489 static void end_bio_extent_writepage(struct bio *bio) 2490 { 2491 struct bio_vec *bvec; 2492 u64 start; 2493 u64 end; 2494 int i; 2495 2496 bio_for_each_segment_all(bvec, bio, i) { 2497 struct page *page = bvec->bv_page; 2498 2499 /* We always issue full-page reads, but if some block 2500 * in a page fails to read, blk_update_request() will 2501 * advance bv_offset and adjust bv_len to compensate. 2502 * Print a warning for nonzero offsets, and an error 2503 * if they don't add up to a full page. */ 2504 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2505 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2506 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2507 "partial page write in btrfs with offset %u and length %u", 2508 bvec->bv_offset, bvec->bv_len); 2509 else 2510 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2511 "incomplete page write in btrfs with offset %u and " 2512 "length %u", 2513 bvec->bv_offset, bvec->bv_len); 2514 } 2515 2516 start = page_offset(page); 2517 end = start + bvec->bv_offset + bvec->bv_len - 1; 2518 2519 if (end_extent_writepage(page, bio->bi_error, start, end)) 2520 continue; 2521 2522 end_page_writeback(page); 2523 } 2524 2525 bio_put(bio); 2526 } 2527 2528 static void 2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2530 int uptodate) 2531 { 2532 struct extent_state *cached = NULL; 2533 u64 end = start + len - 1; 2534 2535 if (uptodate && tree->track_uptodate) 2536 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2537 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2538 } 2539 2540 /* 2541 * after a readpage IO is done, we need to: 2542 * clear the uptodate bits on error 2543 * set the uptodate bits if things worked 2544 * set the page up to date if all extents in the tree are uptodate 2545 * clear the lock bit in the extent tree 2546 * unlock the page if there are no other extents locked for it 2547 * 2548 * Scheduling is not allowed, so the extent state tree is expected 2549 * to have one and only one object corresponding to this IO. 2550 */ 2551 static void end_bio_extent_readpage(struct bio *bio) 2552 { 2553 struct bio_vec *bvec; 2554 int uptodate = !bio->bi_error; 2555 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2556 struct extent_io_tree *tree; 2557 u64 offset = 0; 2558 u64 start; 2559 u64 end; 2560 u64 len; 2561 u64 extent_start = 0; 2562 u64 extent_len = 0; 2563 int mirror; 2564 int ret; 2565 int i; 2566 2567 bio_for_each_segment_all(bvec, bio, i) { 2568 struct page *page = bvec->bv_page; 2569 struct inode *inode = page->mapping->host; 2570 2571 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2572 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2573 bio->bi_error, io_bio->mirror_num); 2574 tree = &BTRFS_I(inode)->io_tree; 2575 2576 /* We always issue full-page reads, but if some block 2577 * in a page fails to read, blk_update_request() will 2578 * advance bv_offset and adjust bv_len to compensate. 2579 * Print a warning for nonzero offsets, and an error 2580 * if they don't add up to a full page. */ 2581 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2582 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2583 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2584 "partial page read in btrfs with offset %u and length %u", 2585 bvec->bv_offset, bvec->bv_len); 2586 else 2587 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2588 "incomplete page read in btrfs with offset %u and " 2589 "length %u", 2590 bvec->bv_offset, bvec->bv_len); 2591 } 2592 2593 start = page_offset(page); 2594 end = start + bvec->bv_offset + bvec->bv_len - 1; 2595 len = bvec->bv_len; 2596 2597 mirror = io_bio->mirror_num; 2598 if (likely(uptodate && tree->ops && 2599 tree->ops->readpage_end_io_hook)) { 2600 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2601 page, start, end, 2602 mirror); 2603 if (ret) 2604 uptodate = 0; 2605 else 2606 clean_io_failure(inode, start, page, 0); 2607 } 2608 2609 if (likely(uptodate)) 2610 goto readpage_ok; 2611 2612 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2613 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2614 if (!ret && !bio->bi_error) 2615 uptodate = 1; 2616 } else { 2617 /* 2618 * The generic bio_readpage_error handles errors the 2619 * following way: If possible, new read requests are 2620 * created and submitted and will end up in 2621 * end_bio_extent_readpage as well (if we're lucky, not 2622 * in the !uptodate case). In that case it returns 0 and 2623 * we just go on with the next page in our bio. If it 2624 * can't handle the error it will return -EIO and we 2625 * remain responsible for that page. 2626 */ 2627 ret = bio_readpage_error(bio, offset, page, start, end, 2628 mirror); 2629 if (ret == 0) { 2630 uptodate = !bio->bi_error; 2631 offset += len; 2632 continue; 2633 } 2634 } 2635 readpage_ok: 2636 if (likely(uptodate)) { 2637 loff_t i_size = i_size_read(inode); 2638 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2639 unsigned off; 2640 2641 /* Zero out the end if this page straddles i_size */ 2642 off = i_size & (PAGE_CACHE_SIZE-1); 2643 if (page->index == end_index && off) 2644 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2645 SetPageUptodate(page); 2646 } else { 2647 ClearPageUptodate(page); 2648 SetPageError(page); 2649 } 2650 unlock_page(page); 2651 offset += len; 2652 2653 if (unlikely(!uptodate)) { 2654 if (extent_len) { 2655 endio_readpage_release_extent(tree, 2656 extent_start, 2657 extent_len, 1); 2658 extent_start = 0; 2659 extent_len = 0; 2660 } 2661 endio_readpage_release_extent(tree, start, 2662 end - start + 1, 0); 2663 } else if (!extent_len) { 2664 extent_start = start; 2665 extent_len = end + 1 - start; 2666 } else if (extent_start + extent_len == start) { 2667 extent_len += end + 1 - start; 2668 } else { 2669 endio_readpage_release_extent(tree, extent_start, 2670 extent_len, uptodate); 2671 extent_start = start; 2672 extent_len = end + 1 - start; 2673 } 2674 } 2675 2676 if (extent_len) 2677 endio_readpage_release_extent(tree, extent_start, extent_len, 2678 uptodate); 2679 if (io_bio->end_io) 2680 io_bio->end_io(io_bio, bio->bi_error); 2681 bio_put(bio); 2682 } 2683 2684 /* 2685 * this allocates from the btrfs_bioset. We're returning a bio right now 2686 * but you can call btrfs_io_bio for the appropriate container_of magic 2687 */ 2688 struct bio * 2689 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2690 gfp_t gfp_flags) 2691 { 2692 struct btrfs_io_bio *btrfs_bio; 2693 struct bio *bio; 2694 2695 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2696 2697 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2698 while (!bio && (nr_vecs /= 2)) { 2699 bio = bio_alloc_bioset(gfp_flags, 2700 nr_vecs, btrfs_bioset); 2701 } 2702 } 2703 2704 if (bio) { 2705 bio->bi_bdev = bdev; 2706 bio->bi_iter.bi_sector = first_sector; 2707 btrfs_bio = btrfs_io_bio(bio); 2708 btrfs_bio->csum = NULL; 2709 btrfs_bio->csum_allocated = NULL; 2710 btrfs_bio->end_io = NULL; 2711 } 2712 return bio; 2713 } 2714 2715 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2716 { 2717 struct btrfs_io_bio *btrfs_bio; 2718 struct bio *new; 2719 2720 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2721 if (new) { 2722 btrfs_bio = btrfs_io_bio(new); 2723 btrfs_bio->csum = NULL; 2724 btrfs_bio->csum_allocated = NULL; 2725 btrfs_bio->end_io = NULL; 2726 2727 #ifdef CONFIG_BLK_CGROUP 2728 /* FIXME, put this into bio_clone_bioset */ 2729 if (bio->bi_css) 2730 bio_associate_blkcg(new, bio->bi_css); 2731 #endif 2732 } 2733 return new; 2734 } 2735 2736 /* this also allocates from the btrfs_bioset */ 2737 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2738 { 2739 struct btrfs_io_bio *btrfs_bio; 2740 struct bio *bio; 2741 2742 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2743 if (bio) { 2744 btrfs_bio = btrfs_io_bio(bio); 2745 btrfs_bio->csum = NULL; 2746 btrfs_bio->csum_allocated = NULL; 2747 btrfs_bio->end_io = NULL; 2748 } 2749 return bio; 2750 } 2751 2752 2753 static int __must_check submit_one_bio(int rw, struct bio *bio, 2754 int mirror_num, unsigned long bio_flags) 2755 { 2756 int ret = 0; 2757 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2758 struct page *page = bvec->bv_page; 2759 struct extent_io_tree *tree = bio->bi_private; 2760 u64 start; 2761 2762 start = page_offset(page) + bvec->bv_offset; 2763 2764 bio->bi_private = NULL; 2765 2766 bio_get(bio); 2767 2768 if (tree->ops && tree->ops->submit_bio_hook) 2769 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2770 mirror_num, bio_flags, start); 2771 else 2772 btrfsic_submit_bio(rw, bio); 2773 2774 bio_put(bio); 2775 return ret; 2776 } 2777 2778 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2779 unsigned long offset, size_t size, struct bio *bio, 2780 unsigned long bio_flags) 2781 { 2782 int ret = 0; 2783 if (tree->ops && tree->ops->merge_bio_hook) 2784 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2785 bio_flags); 2786 BUG_ON(ret < 0); 2787 return ret; 2788 2789 } 2790 2791 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2792 struct writeback_control *wbc, 2793 struct page *page, sector_t sector, 2794 size_t size, unsigned long offset, 2795 struct block_device *bdev, 2796 struct bio **bio_ret, 2797 unsigned long max_pages, 2798 bio_end_io_t end_io_func, 2799 int mirror_num, 2800 unsigned long prev_bio_flags, 2801 unsigned long bio_flags, 2802 bool force_bio_submit) 2803 { 2804 int ret = 0; 2805 struct bio *bio; 2806 int contig = 0; 2807 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2808 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2809 2810 if (bio_ret && *bio_ret) { 2811 bio = *bio_ret; 2812 if (old_compressed) 2813 contig = bio->bi_iter.bi_sector == sector; 2814 else 2815 contig = bio_end_sector(bio) == sector; 2816 2817 if (prev_bio_flags != bio_flags || !contig || 2818 force_bio_submit || 2819 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2820 bio_add_page(bio, page, page_size, offset) < page_size) { 2821 ret = submit_one_bio(rw, bio, mirror_num, 2822 prev_bio_flags); 2823 if (ret < 0) { 2824 *bio_ret = NULL; 2825 return ret; 2826 } 2827 bio = NULL; 2828 } else { 2829 if (wbc) 2830 wbc_account_io(wbc, page, page_size); 2831 return 0; 2832 } 2833 } 2834 2835 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2836 GFP_NOFS | __GFP_HIGH); 2837 if (!bio) 2838 return -ENOMEM; 2839 2840 bio_add_page(bio, page, page_size, offset); 2841 bio->bi_end_io = end_io_func; 2842 bio->bi_private = tree; 2843 if (wbc) { 2844 wbc_init_bio(wbc, bio); 2845 wbc_account_io(wbc, page, page_size); 2846 } 2847 2848 if (bio_ret) 2849 *bio_ret = bio; 2850 else 2851 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2852 2853 return ret; 2854 } 2855 2856 static void attach_extent_buffer_page(struct extent_buffer *eb, 2857 struct page *page) 2858 { 2859 if (!PagePrivate(page)) { 2860 SetPagePrivate(page); 2861 page_cache_get(page); 2862 set_page_private(page, (unsigned long)eb); 2863 } else { 2864 WARN_ON(page->private != (unsigned long)eb); 2865 } 2866 } 2867 2868 void set_page_extent_mapped(struct page *page) 2869 { 2870 if (!PagePrivate(page)) { 2871 SetPagePrivate(page); 2872 page_cache_get(page); 2873 set_page_private(page, EXTENT_PAGE_PRIVATE); 2874 } 2875 } 2876 2877 static struct extent_map * 2878 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2879 u64 start, u64 len, get_extent_t *get_extent, 2880 struct extent_map **em_cached) 2881 { 2882 struct extent_map *em; 2883 2884 if (em_cached && *em_cached) { 2885 em = *em_cached; 2886 if (extent_map_in_tree(em) && start >= em->start && 2887 start < extent_map_end(em)) { 2888 atomic_inc(&em->refs); 2889 return em; 2890 } 2891 2892 free_extent_map(em); 2893 *em_cached = NULL; 2894 } 2895 2896 em = get_extent(inode, page, pg_offset, start, len, 0); 2897 if (em_cached && !IS_ERR_OR_NULL(em)) { 2898 BUG_ON(*em_cached); 2899 atomic_inc(&em->refs); 2900 *em_cached = em; 2901 } 2902 return em; 2903 } 2904 /* 2905 * basic readpage implementation. Locked extent state structs are inserted 2906 * into the tree that are removed when the IO is done (by the end_io 2907 * handlers) 2908 * XXX JDM: This needs looking at to ensure proper page locking 2909 */ 2910 static int __do_readpage(struct extent_io_tree *tree, 2911 struct page *page, 2912 get_extent_t *get_extent, 2913 struct extent_map **em_cached, 2914 struct bio **bio, int mirror_num, 2915 unsigned long *bio_flags, int rw, 2916 u64 *prev_em_start) 2917 { 2918 struct inode *inode = page->mapping->host; 2919 u64 start = page_offset(page); 2920 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2921 u64 end; 2922 u64 cur = start; 2923 u64 extent_offset; 2924 u64 last_byte = i_size_read(inode); 2925 u64 block_start; 2926 u64 cur_end; 2927 sector_t sector; 2928 struct extent_map *em; 2929 struct block_device *bdev; 2930 int ret; 2931 int nr = 0; 2932 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2933 size_t pg_offset = 0; 2934 size_t iosize; 2935 size_t disk_io_size; 2936 size_t blocksize = inode->i_sb->s_blocksize; 2937 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2938 2939 set_page_extent_mapped(page); 2940 2941 end = page_end; 2942 if (!PageUptodate(page)) { 2943 if (cleancache_get_page(page) == 0) { 2944 BUG_ON(blocksize != PAGE_SIZE); 2945 unlock_extent(tree, start, end); 2946 goto out; 2947 } 2948 } 2949 2950 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2951 char *userpage; 2952 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2953 2954 if (zero_offset) { 2955 iosize = PAGE_CACHE_SIZE - zero_offset; 2956 userpage = kmap_atomic(page); 2957 memset(userpage + zero_offset, 0, iosize); 2958 flush_dcache_page(page); 2959 kunmap_atomic(userpage); 2960 } 2961 } 2962 while (cur <= end) { 2963 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2964 bool force_bio_submit = false; 2965 2966 if (cur >= last_byte) { 2967 char *userpage; 2968 struct extent_state *cached = NULL; 2969 2970 iosize = PAGE_CACHE_SIZE - pg_offset; 2971 userpage = kmap_atomic(page); 2972 memset(userpage + pg_offset, 0, iosize); 2973 flush_dcache_page(page); 2974 kunmap_atomic(userpage); 2975 set_extent_uptodate(tree, cur, cur + iosize - 1, 2976 &cached, GFP_NOFS); 2977 if (!parent_locked) 2978 unlock_extent_cached(tree, cur, 2979 cur + iosize - 1, 2980 &cached, GFP_NOFS); 2981 break; 2982 } 2983 em = __get_extent_map(inode, page, pg_offset, cur, 2984 end - cur + 1, get_extent, em_cached); 2985 if (IS_ERR_OR_NULL(em)) { 2986 SetPageError(page); 2987 if (!parent_locked) 2988 unlock_extent(tree, cur, end); 2989 break; 2990 } 2991 extent_offset = cur - em->start; 2992 BUG_ON(extent_map_end(em) <= cur); 2993 BUG_ON(end < cur); 2994 2995 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2996 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2997 extent_set_compress_type(&this_bio_flag, 2998 em->compress_type); 2999 } 3000 3001 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3002 cur_end = min(extent_map_end(em) - 1, end); 3003 iosize = ALIGN(iosize, blocksize); 3004 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3005 disk_io_size = em->block_len; 3006 sector = em->block_start >> 9; 3007 } else { 3008 sector = (em->block_start + extent_offset) >> 9; 3009 disk_io_size = iosize; 3010 } 3011 bdev = em->bdev; 3012 block_start = em->block_start; 3013 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3014 block_start = EXTENT_MAP_HOLE; 3015 3016 /* 3017 * If we have a file range that points to a compressed extent 3018 * and it's followed by a consecutive file range that points to 3019 * to the same compressed extent (possibly with a different 3020 * offset and/or length, so it either points to the whole extent 3021 * or only part of it), we must make sure we do not submit a 3022 * single bio to populate the pages for the 2 ranges because 3023 * this makes the compressed extent read zero out the pages 3024 * belonging to the 2nd range. Imagine the following scenario: 3025 * 3026 * File layout 3027 * [0 - 8K] [8K - 24K] 3028 * | | 3029 * | | 3030 * points to extent X, points to extent X, 3031 * offset 4K, length of 8K offset 0, length 16K 3032 * 3033 * [extent X, compressed length = 4K uncompressed length = 16K] 3034 * 3035 * If the bio to read the compressed extent covers both ranges, 3036 * it will decompress extent X into the pages belonging to the 3037 * first range and then it will stop, zeroing out the remaining 3038 * pages that belong to the other range that points to extent X. 3039 * So here we make sure we submit 2 bios, one for the first 3040 * range and another one for the third range. Both will target 3041 * the same physical extent from disk, but we can't currently 3042 * make the compressed bio endio callback populate the pages 3043 * for both ranges because each compressed bio is tightly 3044 * coupled with a single extent map, and each range can have 3045 * an extent map with a different offset value relative to the 3046 * uncompressed data of our extent and different lengths. This 3047 * is a corner case so we prioritize correctness over 3048 * non-optimal behavior (submitting 2 bios for the same extent). 3049 */ 3050 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3051 prev_em_start && *prev_em_start != (u64)-1 && 3052 *prev_em_start != em->orig_start) 3053 force_bio_submit = true; 3054 3055 if (prev_em_start) 3056 *prev_em_start = em->orig_start; 3057 3058 free_extent_map(em); 3059 em = NULL; 3060 3061 /* we've found a hole, just zero and go on */ 3062 if (block_start == EXTENT_MAP_HOLE) { 3063 char *userpage; 3064 struct extent_state *cached = NULL; 3065 3066 userpage = kmap_atomic(page); 3067 memset(userpage + pg_offset, 0, iosize); 3068 flush_dcache_page(page); 3069 kunmap_atomic(userpage); 3070 3071 set_extent_uptodate(tree, cur, cur + iosize - 1, 3072 &cached, GFP_NOFS); 3073 unlock_extent_cached(tree, cur, cur + iosize - 1, 3074 &cached, GFP_NOFS); 3075 cur = cur + iosize; 3076 pg_offset += iosize; 3077 continue; 3078 } 3079 /* the get_extent function already copied into the page */ 3080 if (test_range_bit(tree, cur, cur_end, 3081 EXTENT_UPTODATE, 1, NULL)) { 3082 check_page_uptodate(tree, page); 3083 if (!parent_locked) 3084 unlock_extent(tree, cur, cur + iosize - 1); 3085 cur = cur + iosize; 3086 pg_offset += iosize; 3087 continue; 3088 } 3089 /* we have an inline extent but it didn't get marked up 3090 * to date. Error out 3091 */ 3092 if (block_start == EXTENT_MAP_INLINE) { 3093 SetPageError(page); 3094 if (!parent_locked) 3095 unlock_extent(tree, cur, cur + iosize - 1); 3096 cur = cur + iosize; 3097 pg_offset += iosize; 3098 continue; 3099 } 3100 3101 pnr -= page->index; 3102 ret = submit_extent_page(rw, tree, NULL, page, 3103 sector, disk_io_size, pg_offset, 3104 bdev, bio, pnr, 3105 end_bio_extent_readpage, mirror_num, 3106 *bio_flags, 3107 this_bio_flag, 3108 force_bio_submit); 3109 if (!ret) { 3110 nr++; 3111 *bio_flags = this_bio_flag; 3112 } else { 3113 SetPageError(page); 3114 if (!parent_locked) 3115 unlock_extent(tree, cur, cur + iosize - 1); 3116 } 3117 cur = cur + iosize; 3118 pg_offset += iosize; 3119 } 3120 out: 3121 if (!nr) { 3122 if (!PageError(page)) 3123 SetPageUptodate(page); 3124 unlock_page(page); 3125 } 3126 return 0; 3127 } 3128 3129 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3130 struct page *pages[], int nr_pages, 3131 u64 start, u64 end, 3132 get_extent_t *get_extent, 3133 struct extent_map **em_cached, 3134 struct bio **bio, int mirror_num, 3135 unsigned long *bio_flags, int rw) 3136 { 3137 struct inode *inode; 3138 struct btrfs_ordered_extent *ordered; 3139 int index; 3140 u64 prev_em_start = (u64)-1; 3141 3142 inode = pages[0]->mapping->host; 3143 while (1) { 3144 lock_extent(tree, start, end); 3145 ordered = btrfs_lookup_ordered_range(inode, start, 3146 end - start + 1); 3147 if (!ordered) 3148 break; 3149 unlock_extent(tree, start, end); 3150 btrfs_start_ordered_extent(inode, ordered, 1); 3151 btrfs_put_ordered_extent(ordered); 3152 } 3153 3154 for (index = 0; index < nr_pages; index++) { 3155 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3156 mirror_num, bio_flags, rw, &prev_em_start); 3157 page_cache_release(pages[index]); 3158 } 3159 } 3160 3161 static void __extent_readpages(struct extent_io_tree *tree, 3162 struct page *pages[], 3163 int nr_pages, get_extent_t *get_extent, 3164 struct extent_map **em_cached, 3165 struct bio **bio, int mirror_num, 3166 unsigned long *bio_flags, int rw) 3167 { 3168 u64 start = 0; 3169 u64 end = 0; 3170 u64 page_start; 3171 int index; 3172 int first_index = 0; 3173 3174 for (index = 0; index < nr_pages; index++) { 3175 page_start = page_offset(pages[index]); 3176 if (!end) { 3177 start = page_start; 3178 end = start + PAGE_CACHE_SIZE - 1; 3179 first_index = index; 3180 } else if (end + 1 == page_start) { 3181 end += PAGE_CACHE_SIZE; 3182 } else { 3183 __do_contiguous_readpages(tree, &pages[first_index], 3184 index - first_index, start, 3185 end, get_extent, em_cached, 3186 bio, mirror_num, bio_flags, 3187 rw); 3188 start = page_start; 3189 end = start + PAGE_CACHE_SIZE - 1; 3190 first_index = index; 3191 } 3192 } 3193 3194 if (end) 3195 __do_contiguous_readpages(tree, &pages[first_index], 3196 index - first_index, start, 3197 end, get_extent, em_cached, bio, 3198 mirror_num, bio_flags, rw); 3199 } 3200 3201 static int __extent_read_full_page(struct extent_io_tree *tree, 3202 struct page *page, 3203 get_extent_t *get_extent, 3204 struct bio **bio, int mirror_num, 3205 unsigned long *bio_flags, int rw) 3206 { 3207 struct inode *inode = page->mapping->host; 3208 struct btrfs_ordered_extent *ordered; 3209 u64 start = page_offset(page); 3210 u64 end = start + PAGE_CACHE_SIZE - 1; 3211 int ret; 3212 3213 while (1) { 3214 lock_extent(tree, start, end); 3215 ordered = btrfs_lookup_ordered_extent(inode, start); 3216 if (!ordered) 3217 break; 3218 unlock_extent(tree, start, end); 3219 btrfs_start_ordered_extent(inode, ordered, 1); 3220 btrfs_put_ordered_extent(ordered); 3221 } 3222 3223 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3224 bio_flags, rw, NULL); 3225 return ret; 3226 } 3227 3228 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3229 get_extent_t *get_extent, int mirror_num) 3230 { 3231 struct bio *bio = NULL; 3232 unsigned long bio_flags = 0; 3233 int ret; 3234 3235 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3236 &bio_flags, READ); 3237 if (bio) 3238 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3239 return ret; 3240 } 3241 3242 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3243 get_extent_t *get_extent, int mirror_num) 3244 { 3245 struct bio *bio = NULL; 3246 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3247 int ret; 3248 3249 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3250 &bio_flags, READ, NULL); 3251 if (bio) 3252 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3253 return ret; 3254 } 3255 3256 static noinline void update_nr_written(struct page *page, 3257 struct writeback_control *wbc, 3258 unsigned long nr_written) 3259 { 3260 wbc->nr_to_write -= nr_written; 3261 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3262 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3263 page->mapping->writeback_index = page->index + nr_written; 3264 } 3265 3266 /* 3267 * helper for __extent_writepage, doing all of the delayed allocation setup. 3268 * 3269 * This returns 1 if our fill_delalloc function did all the work required 3270 * to write the page (copy into inline extent). In this case the IO has 3271 * been started and the page is already unlocked. 3272 * 3273 * This returns 0 if all went well (page still locked) 3274 * This returns < 0 if there were errors (page still locked) 3275 */ 3276 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3277 struct page *page, struct writeback_control *wbc, 3278 struct extent_page_data *epd, 3279 u64 delalloc_start, 3280 unsigned long *nr_written) 3281 { 3282 struct extent_io_tree *tree = epd->tree; 3283 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3284 u64 nr_delalloc; 3285 u64 delalloc_to_write = 0; 3286 u64 delalloc_end = 0; 3287 int ret; 3288 int page_started = 0; 3289 3290 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3291 return 0; 3292 3293 while (delalloc_end < page_end) { 3294 nr_delalloc = find_lock_delalloc_range(inode, tree, 3295 page, 3296 &delalloc_start, 3297 &delalloc_end, 3298 BTRFS_MAX_EXTENT_SIZE); 3299 if (nr_delalloc == 0) { 3300 delalloc_start = delalloc_end + 1; 3301 continue; 3302 } 3303 ret = tree->ops->fill_delalloc(inode, page, 3304 delalloc_start, 3305 delalloc_end, 3306 &page_started, 3307 nr_written); 3308 /* File system has been set read-only */ 3309 if (ret) { 3310 SetPageError(page); 3311 /* fill_delalloc should be return < 0 for error 3312 * but just in case, we use > 0 here meaning the 3313 * IO is started, so we don't want to return > 0 3314 * unless things are going well. 3315 */ 3316 ret = ret < 0 ? ret : -EIO; 3317 goto done; 3318 } 3319 /* 3320 * delalloc_end is already one less than the total 3321 * length, so we don't subtract one from 3322 * PAGE_CACHE_SIZE 3323 */ 3324 delalloc_to_write += (delalloc_end - delalloc_start + 3325 PAGE_CACHE_SIZE) >> 3326 PAGE_CACHE_SHIFT; 3327 delalloc_start = delalloc_end + 1; 3328 } 3329 if (wbc->nr_to_write < delalloc_to_write) { 3330 int thresh = 8192; 3331 3332 if (delalloc_to_write < thresh * 2) 3333 thresh = delalloc_to_write; 3334 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3335 thresh); 3336 } 3337 3338 /* did the fill delalloc function already unlock and start 3339 * the IO? 3340 */ 3341 if (page_started) { 3342 /* 3343 * we've unlocked the page, so we can't update 3344 * the mapping's writeback index, just update 3345 * nr_to_write. 3346 */ 3347 wbc->nr_to_write -= *nr_written; 3348 return 1; 3349 } 3350 3351 ret = 0; 3352 3353 done: 3354 return ret; 3355 } 3356 3357 /* 3358 * helper for __extent_writepage. This calls the writepage start hooks, 3359 * and does the loop to map the page into extents and bios. 3360 * 3361 * We return 1 if the IO is started and the page is unlocked, 3362 * 0 if all went well (page still locked) 3363 * < 0 if there were errors (page still locked) 3364 */ 3365 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3366 struct page *page, 3367 struct writeback_control *wbc, 3368 struct extent_page_data *epd, 3369 loff_t i_size, 3370 unsigned long nr_written, 3371 int write_flags, int *nr_ret) 3372 { 3373 struct extent_io_tree *tree = epd->tree; 3374 u64 start = page_offset(page); 3375 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3376 u64 end; 3377 u64 cur = start; 3378 u64 extent_offset; 3379 u64 block_start; 3380 u64 iosize; 3381 sector_t sector; 3382 struct extent_state *cached_state = NULL; 3383 struct extent_map *em; 3384 struct block_device *bdev; 3385 size_t pg_offset = 0; 3386 size_t blocksize; 3387 int ret = 0; 3388 int nr = 0; 3389 bool compressed; 3390 3391 if (tree->ops && tree->ops->writepage_start_hook) { 3392 ret = tree->ops->writepage_start_hook(page, start, 3393 page_end); 3394 if (ret) { 3395 /* Fixup worker will requeue */ 3396 if (ret == -EBUSY) 3397 wbc->pages_skipped++; 3398 else 3399 redirty_page_for_writepage(wbc, page); 3400 3401 update_nr_written(page, wbc, nr_written); 3402 unlock_page(page); 3403 ret = 1; 3404 goto done_unlocked; 3405 } 3406 } 3407 3408 /* 3409 * we don't want to touch the inode after unlocking the page, 3410 * so we update the mapping writeback index now 3411 */ 3412 update_nr_written(page, wbc, nr_written + 1); 3413 3414 end = page_end; 3415 if (i_size <= start) { 3416 if (tree->ops && tree->ops->writepage_end_io_hook) 3417 tree->ops->writepage_end_io_hook(page, start, 3418 page_end, NULL, 1); 3419 goto done; 3420 } 3421 3422 blocksize = inode->i_sb->s_blocksize; 3423 3424 while (cur <= end) { 3425 u64 em_end; 3426 if (cur >= i_size) { 3427 if (tree->ops && tree->ops->writepage_end_io_hook) 3428 tree->ops->writepage_end_io_hook(page, cur, 3429 page_end, NULL, 1); 3430 break; 3431 } 3432 em = epd->get_extent(inode, page, pg_offset, cur, 3433 end - cur + 1, 1); 3434 if (IS_ERR_OR_NULL(em)) { 3435 SetPageError(page); 3436 ret = PTR_ERR_OR_ZERO(em); 3437 break; 3438 } 3439 3440 extent_offset = cur - em->start; 3441 em_end = extent_map_end(em); 3442 BUG_ON(em_end <= cur); 3443 BUG_ON(end < cur); 3444 iosize = min(em_end - cur, end - cur + 1); 3445 iosize = ALIGN(iosize, blocksize); 3446 sector = (em->block_start + extent_offset) >> 9; 3447 bdev = em->bdev; 3448 block_start = em->block_start; 3449 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3450 free_extent_map(em); 3451 em = NULL; 3452 3453 /* 3454 * compressed and inline extents are written through other 3455 * paths in the FS 3456 */ 3457 if (compressed || block_start == EXTENT_MAP_HOLE || 3458 block_start == EXTENT_MAP_INLINE) { 3459 /* 3460 * end_io notification does not happen here for 3461 * compressed extents 3462 */ 3463 if (!compressed && tree->ops && 3464 tree->ops->writepage_end_io_hook) 3465 tree->ops->writepage_end_io_hook(page, cur, 3466 cur + iosize - 1, 3467 NULL, 1); 3468 else if (compressed) { 3469 /* we don't want to end_page_writeback on 3470 * a compressed extent. this happens 3471 * elsewhere 3472 */ 3473 nr++; 3474 } 3475 3476 cur += iosize; 3477 pg_offset += iosize; 3478 continue; 3479 } 3480 3481 if (tree->ops && tree->ops->writepage_io_hook) { 3482 ret = tree->ops->writepage_io_hook(page, cur, 3483 cur + iosize - 1); 3484 } else { 3485 ret = 0; 3486 } 3487 if (ret) { 3488 SetPageError(page); 3489 } else { 3490 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3491 3492 set_range_writeback(tree, cur, cur + iosize - 1); 3493 if (!PageWriteback(page)) { 3494 btrfs_err(BTRFS_I(inode)->root->fs_info, 3495 "page %lu not writeback, cur %llu end %llu", 3496 page->index, cur, end); 3497 } 3498 3499 ret = submit_extent_page(write_flags, tree, wbc, page, 3500 sector, iosize, pg_offset, 3501 bdev, &epd->bio, max_nr, 3502 end_bio_extent_writepage, 3503 0, 0, 0, false); 3504 if (ret) 3505 SetPageError(page); 3506 } 3507 cur = cur + iosize; 3508 pg_offset += iosize; 3509 nr++; 3510 } 3511 done: 3512 *nr_ret = nr; 3513 3514 done_unlocked: 3515 3516 /* drop our reference on any cached states */ 3517 free_extent_state(cached_state); 3518 return ret; 3519 } 3520 3521 /* 3522 * the writepage semantics are similar to regular writepage. extent 3523 * records are inserted to lock ranges in the tree, and as dirty areas 3524 * are found, they are marked writeback. Then the lock bits are removed 3525 * and the end_io handler clears the writeback ranges 3526 */ 3527 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3528 void *data) 3529 { 3530 struct inode *inode = page->mapping->host; 3531 struct extent_page_data *epd = data; 3532 u64 start = page_offset(page); 3533 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3534 int ret; 3535 int nr = 0; 3536 size_t pg_offset = 0; 3537 loff_t i_size = i_size_read(inode); 3538 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3539 int write_flags; 3540 unsigned long nr_written = 0; 3541 3542 if (wbc->sync_mode == WB_SYNC_ALL) 3543 write_flags = WRITE_SYNC; 3544 else 3545 write_flags = WRITE; 3546 3547 trace___extent_writepage(page, inode, wbc); 3548 3549 WARN_ON(!PageLocked(page)); 3550 3551 ClearPageError(page); 3552 3553 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3554 if (page->index > end_index || 3555 (page->index == end_index && !pg_offset)) { 3556 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3557 unlock_page(page); 3558 return 0; 3559 } 3560 3561 if (page->index == end_index) { 3562 char *userpage; 3563 3564 userpage = kmap_atomic(page); 3565 memset(userpage + pg_offset, 0, 3566 PAGE_CACHE_SIZE - pg_offset); 3567 kunmap_atomic(userpage); 3568 flush_dcache_page(page); 3569 } 3570 3571 pg_offset = 0; 3572 3573 set_page_extent_mapped(page); 3574 3575 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3576 if (ret == 1) 3577 goto done_unlocked; 3578 if (ret) 3579 goto done; 3580 3581 ret = __extent_writepage_io(inode, page, wbc, epd, 3582 i_size, nr_written, write_flags, &nr); 3583 if (ret == 1) 3584 goto done_unlocked; 3585 3586 done: 3587 if (nr == 0) { 3588 /* make sure the mapping tag for page dirty gets cleared */ 3589 set_page_writeback(page); 3590 end_page_writeback(page); 3591 } 3592 if (PageError(page)) { 3593 ret = ret < 0 ? ret : -EIO; 3594 end_extent_writepage(page, ret, start, page_end); 3595 } 3596 unlock_page(page); 3597 return ret; 3598 3599 done_unlocked: 3600 return 0; 3601 } 3602 3603 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3604 { 3605 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3606 TASK_UNINTERRUPTIBLE); 3607 } 3608 3609 static noinline_for_stack int 3610 lock_extent_buffer_for_io(struct extent_buffer *eb, 3611 struct btrfs_fs_info *fs_info, 3612 struct extent_page_data *epd) 3613 { 3614 unsigned long i, num_pages; 3615 int flush = 0; 3616 int ret = 0; 3617 3618 if (!btrfs_try_tree_write_lock(eb)) { 3619 flush = 1; 3620 flush_write_bio(epd); 3621 btrfs_tree_lock(eb); 3622 } 3623 3624 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3625 btrfs_tree_unlock(eb); 3626 if (!epd->sync_io) 3627 return 0; 3628 if (!flush) { 3629 flush_write_bio(epd); 3630 flush = 1; 3631 } 3632 while (1) { 3633 wait_on_extent_buffer_writeback(eb); 3634 btrfs_tree_lock(eb); 3635 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3636 break; 3637 btrfs_tree_unlock(eb); 3638 } 3639 } 3640 3641 /* 3642 * We need to do this to prevent races in people who check if the eb is 3643 * under IO since we can end up having no IO bits set for a short period 3644 * of time. 3645 */ 3646 spin_lock(&eb->refs_lock); 3647 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3648 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3649 spin_unlock(&eb->refs_lock); 3650 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3651 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3652 -eb->len, 3653 fs_info->dirty_metadata_batch); 3654 ret = 1; 3655 } else { 3656 spin_unlock(&eb->refs_lock); 3657 } 3658 3659 btrfs_tree_unlock(eb); 3660 3661 if (!ret) 3662 return ret; 3663 3664 num_pages = num_extent_pages(eb->start, eb->len); 3665 for (i = 0; i < num_pages; i++) { 3666 struct page *p = eb->pages[i]; 3667 3668 if (!trylock_page(p)) { 3669 if (!flush) { 3670 flush_write_bio(epd); 3671 flush = 1; 3672 } 3673 lock_page(p); 3674 } 3675 } 3676 3677 return ret; 3678 } 3679 3680 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3681 { 3682 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3683 smp_mb__after_atomic(); 3684 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3685 } 3686 3687 static void set_btree_ioerr(struct page *page) 3688 { 3689 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3690 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3691 3692 SetPageError(page); 3693 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3694 return; 3695 3696 /* 3697 * If writeback for a btree extent that doesn't belong to a log tree 3698 * failed, increment the counter transaction->eb_write_errors. 3699 * We do this because while the transaction is running and before it's 3700 * committing (when we call filemap_fdata[write|wait]_range against 3701 * the btree inode), we might have 3702 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3703 * returns an error or an error happens during writeback, when we're 3704 * committing the transaction we wouldn't know about it, since the pages 3705 * can be no longer dirty nor marked anymore for writeback (if a 3706 * subsequent modification to the extent buffer didn't happen before the 3707 * transaction commit), which makes filemap_fdata[write|wait]_range not 3708 * able to find the pages tagged with SetPageError at transaction 3709 * commit time. So if this happens we must abort the transaction, 3710 * otherwise we commit a super block with btree roots that point to 3711 * btree nodes/leafs whose content on disk is invalid - either garbage 3712 * or the content of some node/leaf from a past generation that got 3713 * cowed or deleted and is no longer valid. 3714 * 3715 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3716 * not be enough - we need to distinguish between log tree extents vs 3717 * non-log tree extents, and the next filemap_fdatawait_range() call 3718 * will catch and clear such errors in the mapping - and that call might 3719 * be from a log sync and not from a transaction commit. Also, checking 3720 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3721 * not done and would not be reliable - the eb might have been released 3722 * from memory and reading it back again means that flag would not be 3723 * set (since it's a runtime flag, not persisted on disk). 3724 * 3725 * Using the flags below in the btree inode also makes us achieve the 3726 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3727 * writeback for all dirty pages and before filemap_fdatawait_range() 3728 * is called, the writeback for all dirty pages had already finished 3729 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3730 * filemap_fdatawait_range() would return success, as it could not know 3731 * that writeback errors happened (the pages were no longer tagged for 3732 * writeback). 3733 */ 3734 switch (eb->log_index) { 3735 case -1: 3736 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3737 break; 3738 case 0: 3739 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3740 break; 3741 case 1: 3742 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3743 break; 3744 default: 3745 BUG(); /* unexpected, logic error */ 3746 } 3747 } 3748 3749 static void end_bio_extent_buffer_writepage(struct bio *bio) 3750 { 3751 struct bio_vec *bvec; 3752 struct extent_buffer *eb; 3753 int i, done; 3754 3755 bio_for_each_segment_all(bvec, bio, i) { 3756 struct page *page = bvec->bv_page; 3757 3758 eb = (struct extent_buffer *)page->private; 3759 BUG_ON(!eb); 3760 done = atomic_dec_and_test(&eb->io_pages); 3761 3762 if (bio->bi_error || 3763 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3764 ClearPageUptodate(page); 3765 set_btree_ioerr(page); 3766 } 3767 3768 end_page_writeback(page); 3769 3770 if (!done) 3771 continue; 3772 3773 end_extent_buffer_writeback(eb); 3774 } 3775 3776 bio_put(bio); 3777 } 3778 3779 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3780 struct btrfs_fs_info *fs_info, 3781 struct writeback_control *wbc, 3782 struct extent_page_data *epd) 3783 { 3784 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3785 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3786 u64 offset = eb->start; 3787 unsigned long i, num_pages; 3788 unsigned long bio_flags = 0; 3789 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3790 int ret = 0; 3791 3792 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3793 num_pages = num_extent_pages(eb->start, eb->len); 3794 atomic_set(&eb->io_pages, num_pages); 3795 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3796 bio_flags = EXTENT_BIO_TREE_LOG; 3797 3798 for (i = 0; i < num_pages; i++) { 3799 struct page *p = eb->pages[i]; 3800 3801 clear_page_dirty_for_io(p); 3802 set_page_writeback(p); 3803 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9, 3804 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3805 -1, end_bio_extent_buffer_writepage, 3806 0, epd->bio_flags, bio_flags, false); 3807 epd->bio_flags = bio_flags; 3808 if (ret) { 3809 set_btree_ioerr(p); 3810 end_page_writeback(p); 3811 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3812 end_extent_buffer_writeback(eb); 3813 ret = -EIO; 3814 break; 3815 } 3816 offset += PAGE_CACHE_SIZE; 3817 update_nr_written(p, wbc, 1); 3818 unlock_page(p); 3819 } 3820 3821 if (unlikely(ret)) { 3822 for (; i < num_pages; i++) { 3823 struct page *p = eb->pages[i]; 3824 clear_page_dirty_for_io(p); 3825 unlock_page(p); 3826 } 3827 } 3828 3829 return ret; 3830 } 3831 3832 int btree_write_cache_pages(struct address_space *mapping, 3833 struct writeback_control *wbc) 3834 { 3835 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3836 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3837 struct extent_buffer *eb, *prev_eb = NULL; 3838 struct extent_page_data epd = { 3839 .bio = NULL, 3840 .tree = tree, 3841 .extent_locked = 0, 3842 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3843 .bio_flags = 0, 3844 }; 3845 int ret = 0; 3846 int done = 0; 3847 int nr_to_write_done = 0; 3848 struct pagevec pvec; 3849 int nr_pages; 3850 pgoff_t index; 3851 pgoff_t end; /* Inclusive */ 3852 int scanned = 0; 3853 int tag; 3854 3855 pagevec_init(&pvec, 0); 3856 if (wbc->range_cyclic) { 3857 index = mapping->writeback_index; /* Start from prev offset */ 3858 end = -1; 3859 } else { 3860 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3861 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3862 scanned = 1; 3863 } 3864 if (wbc->sync_mode == WB_SYNC_ALL) 3865 tag = PAGECACHE_TAG_TOWRITE; 3866 else 3867 tag = PAGECACHE_TAG_DIRTY; 3868 retry: 3869 if (wbc->sync_mode == WB_SYNC_ALL) 3870 tag_pages_for_writeback(mapping, index, end); 3871 while (!done && !nr_to_write_done && (index <= end) && 3872 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3873 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3874 unsigned i; 3875 3876 scanned = 1; 3877 for (i = 0; i < nr_pages; i++) { 3878 struct page *page = pvec.pages[i]; 3879 3880 if (!PagePrivate(page)) 3881 continue; 3882 3883 if (!wbc->range_cyclic && page->index > end) { 3884 done = 1; 3885 break; 3886 } 3887 3888 spin_lock(&mapping->private_lock); 3889 if (!PagePrivate(page)) { 3890 spin_unlock(&mapping->private_lock); 3891 continue; 3892 } 3893 3894 eb = (struct extent_buffer *)page->private; 3895 3896 /* 3897 * Shouldn't happen and normally this would be a BUG_ON 3898 * but no sense in crashing the users box for something 3899 * we can survive anyway. 3900 */ 3901 if (WARN_ON(!eb)) { 3902 spin_unlock(&mapping->private_lock); 3903 continue; 3904 } 3905 3906 if (eb == prev_eb) { 3907 spin_unlock(&mapping->private_lock); 3908 continue; 3909 } 3910 3911 ret = atomic_inc_not_zero(&eb->refs); 3912 spin_unlock(&mapping->private_lock); 3913 if (!ret) 3914 continue; 3915 3916 prev_eb = eb; 3917 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3918 if (!ret) { 3919 free_extent_buffer(eb); 3920 continue; 3921 } 3922 3923 ret = write_one_eb(eb, fs_info, wbc, &epd); 3924 if (ret) { 3925 done = 1; 3926 free_extent_buffer(eb); 3927 break; 3928 } 3929 free_extent_buffer(eb); 3930 3931 /* 3932 * the filesystem may choose to bump up nr_to_write. 3933 * We have to make sure to honor the new nr_to_write 3934 * at any time 3935 */ 3936 nr_to_write_done = wbc->nr_to_write <= 0; 3937 } 3938 pagevec_release(&pvec); 3939 cond_resched(); 3940 } 3941 if (!scanned && !done) { 3942 /* 3943 * We hit the last page and there is more work to be done: wrap 3944 * back to the start of the file 3945 */ 3946 scanned = 1; 3947 index = 0; 3948 goto retry; 3949 } 3950 flush_write_bio(&epd); 3951 return ret; 3952 } 3953 3954 /** 3955 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3956 * @mapping: address space structure to write 3957 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3958 * @writepage: function called for each page 3959 * @data: data passed to writepage function 3960 * 3961 * If a page is already under I/O, write_cache_pages() skips it, even 3962 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3963 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3964 * and msync() need to guarantee that all the data which was dirty at the time 3965 * the call was made get new I/O started against them. If wbc->sync_mode is 3966 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3967 * existing IO to complete. 3968 */ 3969 static int extent_write_cache_pages(struct extent_io_tree *tree, 3970 struct address_space *mapping, 3971 struct writeback_control *wbc, 3972 writepage_t writepage, void *data, 3973 void (*flush_fn)(void *)) 3974 { 3975 struct inode *inode = mapping->host; 3976 int ret = 0; 3977 int done = 0; 3978 int err = 0; 3979 int nr_to_write_done = 0; 3980 struct pagevec pvec; 3981 int nr_pages; 3982 pgoff_t index; 3983 pgoff_t end; /* Inclusive */ 3984 int scanned = 0; 3985 int tag; 3986 3987 /* 3988 * We have to hold onto the inode so that ordered extents can do their 3989 * work when the IO finishes. The alternative to this is failing to add 3990 * an ordered extent if the igrab() fails there and that is a huge pain 3991 * to deal with, so instead just hold onto the inode throughout the 3992 * writepages operation. If it fails here we are freeing up the inode 3993 * anyway and we'd rather not waste our time writing out stuff that is 3994 * going to be truncated anyway. 3995 */ 3996 if (!igrab(inode)) 3997 return 0; 3998 3999 pagevec_init(&pvec, 0); 4000 if (wbc->range_cyclic) { 4001 index = mapping->writeback_index; /* Start from prev offset */ 4002 end = -1; 4003 } else { 4004 index = wbc->range_start >> PAGE_CACHE_SHIFT; 4005 end = wbc->range_end >> PAGE_CACHE_SHIFT; 4006 scanned = 1; 4007 } 4008 if (wbc->sync_mode == WB_SYNC_ALL) 4009 tag = PAGECACHE_TAG_TOWRITE; 4010 else 4011 tag = PAGECACHE_TAG_DIRTY; 4012 retry: 4013 if (wbc->sync_mode == WB_SYNC_ALL) 4014 tag_pages_for_writeback(mapping, index, end); 4015 while (!done && !nr_to_write_done && (index <= end) && 4016 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 4017 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 4018 unsigned i; 4019 4020 scanned = 1; 4021 for (i = 0; i < nr_pages; i++) { 4022 struct page *page = pvec.pages[i]; 4023 4024 /* 4025 * At this point we hold neither mapping->tree_lock nor 4026 * lock on the page itself: the page may be truncated or 4027 * invalidated (changing page->mapping to NULL), or even 4028 * swizzled back from swapper_space to tmpfs file 4029 * mapping 4030 */ 4031 if (!trylock_page(page)) { 4032 flush_fn(data); 4033 lock_page(page); 4034 } 4035 4036 if (unlikely(page->mapping != mapping)) { 4037 unlock_page(page); 4038 continue; 4039 } 4040 4041 if (!wbc->range_cyclic && page->index > end) { 4042 done = 1; 4043 unlock_page(page); 4044 continue; 4045 } 4046 4047 if (wbc->sync_mode != WB_SYNC_NONE) { 4048 if (PageWriteback(page)) 4049 flush_fn(data); 4050 wait_on_page_writeback(page); 4051 } 4052 4053 if (PageWriteback(page) || 4054 !clear_page_dirty_for_io(page)) { 4055 unlock_page(page); 4056 continue; 4057 } 4058 4059 ret = (*writepage)(page, wbc, data); 4060 4061 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4062 unlock_page(page); 4063 ret = 0; 4064 } 4065 if (!err && ret < 0) 4066 err = ret; 4067 4068 /* 4069 * the filesystem may choose to bump up nr_to_write. 4070 * We have to make sure to honor the new nr_to_write 4071 * at any time 4072 */ 4073 nr_to_write_done = wbc->nr_to_write <= 0; 4074 } 4075 pagevec_release(&pvec); 4076 cond_resched(); 4077 } 4078 if (!scanned && !done && !err) { 4079 /* 4080 * We hit the last page and there is more work to be done: wrap 4081 * back to the start of the file 4082 */ 4083 scanned = 1; 4084 index = 0; 4085 goto retry; 4086 } 4087 btrfs_add_delayed_iput(inode); 4088 return err; 4089 } 4090 4091 static void flush_epd_write_bio(struct extent_page_data *epd) 4092 { 4093 if (epd->bio) { 4094 int rw = WRITE; 4095 int ret; 4096 4097 if (epd->sync_io) 4098 rw = WRITE_SYNC; 4099 4100 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4101 BUG_ON(ret < 0); /* -ENOMEM */ 4102 epd->bio = NULL; 4103 } 4104 } 4105 4106 static noinline void flush_write_bio(void *data) 4107 { 4108 struct extent_page_data *epd = data; 4109 flush_epd_write_bio(epd); 4110 } 4111 4112 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4113 get_extent_t *get_extent, 4114 struct writeback_control *wbc) 4115 { 4116 int ret; 4117 struct extent_page_data epd = { 4118 .bio = NULL, 4119 .tree = tree, 4120 .get_extent = get_extent, 4121 .extent_locked = 0, 4122 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4123 .bio_flags = 0, 4124 }; 4125 4126 ret = __extent_writepage(page, wbc, &epd); 4127 4128 flush_epd_write_bio(&epd); 4129 return ret; 4130 } 4131 4132 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4133 u64 start, u64 end, get_extent_t *get_extent, 4134 int mode) 4135 { 4136 int ret = 0; 4137 struct address_space *mapping = inode->i_mapping; 4138 struct page *page; 4139 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4140 PAGE_CACHE_SHIFT; 4141 4142 struct extent_page_data epd = { 4143 .bio = NULL, 4144 .tree = tree, 4145 .get_extent = get_extent, 4146 .extent_locked = 1, 4147 .sync_io = mode == WB_SYNC_ALL, 4148 .bio_flags = 0, 4149 }; 4150 struct writeback_control wbc_writepages = { 4151 .sync_mode = mode, 4152 .nr_to_write = nr_pages * 2, 4153 .range_start = start, 4154 .range_end = end + 1, 4155 }; 4156 4157 while (start <= end) { 4158 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4159 if (clear_page_dirty_for_io(page)) 4160 ret = __extent_writepage(page, &wbc_writepages, &epd); 4161 else { 4162 if (tree->ops && tree->ops->writepage_end_io_hook) 4163 tree->ops->writepage_end_io_hook(page, start, 4164 start + PAGE_CACHE_SIZE - 1, 4165 NULL, 1); 4166 unlock_page(page); 4167 } 4168 page_cache_release(page); 4169 start += PAGE_CACHE_SIZE; 4170 } 4171 4172 flush_epd_write_bio(&epd); 4173 return ret; 4174 } 4175 4176 int extent_writepages(struct extent_io_tree *tree, 4177 struct address_space *mapping, 4178 get_extent_t *get_extent, 4179 struct writeback_control *wbc) 4180 { 4181 int ret = 0; 4182 struct extent_page_data epd = { 4183 .bio = NULL, 4184 .tree = tree, 4185 .get_extent = get_extent, 4186 .extent_locked = 0, 4187 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4188 .bio_flags = 0, 4189 }; 4190 4191 ret = extent_write_cache_pages(tree, mapping, wbc, 4192 __extent_writepage, &epd, 4193 flush_write_bio); 4194 flush_epd_write_bio(&epd); 4195 return ret; 4196 } 4197 4198 int extent_readpages(struct extent_io_tree *tree, 4199 struct address_space *mapping, 4200 struct list_head *pages, unsigned nr_pages, 4201 get_extent_t get_extent) 4202 { 4203 struct bio *bio = NULL; 4204 unsigned page_idx; 4205 unsigned long bio_flags = 0; 4206 struct page *pagepool[16]; 4207 struct page *page; 4208 struct extent_map *em_cached = NULL; 4209 int nr = 0; 4210 4211 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4212 page = list_entry(pages->prev, struct page, lru); 4213 4214 prefetchw(&page->flags); 4215 list_del(&page->lru); 4216 if (add_to_page_cache_lru(page, mapping, 4217 page->index, GFP_NOFS)) { 4218 page_cache_release(page); 4219 continue; 4220 } 4221 4222 pagepool[nr++] = page; 4223 if (nr < ARRAY_SIZE(pagepool)) 4224 continue; 4225 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4226 &bio, 0, &bio_flags, READ); 4227 nr = 0; 4228 } 4229 if (nr) 4230 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4231 &bio, 0, &bio_flags, READ); 4232 4233 if (em_cached) 4234 free_extent_map(em_cached); 4235 4236 BUG_ON(!list_empty(pages)); 4237 if (bio) 4238 return submit_one_bio(READ, bio, 0, bio_flags); 4239 return 0; 4240 } 4241 4242 /* 4243 * basic invalidatepage code, this waits on any locked or writeback 4244 * ranges corresponding to the page, and then deletes any extent state 4245 * records from the tree 4246 */ 4247 int extent_invalidatepage(struct extent_io_tree *tree, 4248 struct page *page, unsigned long offset) 4249 { 4250 struct extent_state *cached_state = NULL; 4251 u64 start = page_offset(page); 4252 u64 end = start + PAGE_CACHE_SIZE - 1; 4253 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4254 4255 start += ALIGN(offset, blocksize); 4256 if (start > end) 4257 return 0; 4258 4259 lock_extent_bits(tree, start, end, 0, &cached_state); 4260 wait_on_page_writeback(page); 4261 clear_extent_bit(tree, start, end, 4262 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4263 EXTENT_DO_ACCOUNTING, 4264 1, 1, &cached_state, GFP_NOFS); 4265 return 0; 4266 } 4267 4268 /* 4269 * a helper for releasepage, this tests for areas of the page that 4270 * are locked or under IO and drops the related state bits if it is safe 4271 * to drop the page. 4272 */ 4273 static int try_release_extent_state(struct extent_map_tree *map, 4274 struct extent_io_tree *tree, 4275 struct page *page, gfp_t mask) 4276 { 4277 u64 start = page_offset(page); 4278 u64 end = start + PAGE_CACHE_SIZE - 1; 4279 int ret = 1; 4280 4281 if (test_range_bit(tree, start, end, 4282 EXTENT_IOBITS, 0, NULL)) 4283 ret = 0; 4284 else { 4285 if ((mask & GFP_NOFS) == GFP_NOFS) 4286 mask = GFP_NOFS; 4287 /* 4288 * at this point we can safely clear everything except the 4289 * locked bit and the nodatasum bit 4290 */ 4291 ret = clear_extent_bit(tree, start, end, 4292 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4293 0, 0, NULL, mask); 4294 4295 /* if clear_extent_bit failed for enomem reasons, 4296 * we can't allow the release to continue. 4297 */ 4298 if (ret < 0) 4299 ret = 0; 4300 else 4301 ret = 1; 4302 } 4303 return ret; 4304 } 4305 4306 /* 4307 * a helper for releasepage. As long as there are no locked extents 4308 * in the range corresponding to the page, both state records and extent 4309 * map records are removed 4310 */ 4311 int try_release_extent_mapping(struct extent_map_tree *map, 4312 struct extent_io_tree *tree, struct page *page, 4313 gfp_t mask) 4314 { 4315 struct extent_map *em; 4316 u64 start = page_offset(page); 4317 u64 end = start + PAGE_CACHE_SIZE - 1; 4318 4319 if ((mask & __GFP_WAIT) && 4320 page->mapping->host->i_size > 16 * 1024 * 1024) { 4321 u64 len; 4322 while (start <= end) { 4323 len = end - start + 1; 4324 write_lock(&map->lock); 4325 em = lookup_extent_mapping(map, start, len); 4326 if (!em) { 4327 write_unlock(&map->lock); 4328 break; 4329 } 4330 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4331 em->start != start) { 4332 write_unlock(&map->lock); 4333 free_extent_map(em); 4334 break; 4335 } 4336 if (!test_range_bit(tree, em->start, 4337 extent_map_end(em) - 1, 4338 EXTENT_LOCKED | EXTENT_WRITEBACK, 4339 0, NULL)) { 4340 remove_extent_mapping(map, em); 4341 /* once for the rb tree */ 4342 free_extent_map(em); 4343 } 4344 start = extent_map_end(em); 4345 write_unlock(&map->lock); 4346 4347 /* once for us */ 4348 free_extent_map(em); 4349 } 4350 } 4351 return try_release_extent_state(map, tree, page, mask); 4352 } 4353 4354 /* 4355 * helper function for fiemap, which doesn't want to see any holes. 4356 * This maps until we find something past 'last' 4357 */ 4358 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4359 u64 offset, 4360 u64 last, 4361 get_extent_t *get_extent) 4362 { 4363 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4364 struct extent_map *em; 4365 u64 len; 4366 4367 if (offset >= last) 4368 return NULL; 4369 4370 while (1) { 4371 len = last - offset; 4372 if (len == 0) 4373 break; 4374 len = ALIGN(len, sectorsize); 4375 em = get_extent(inode, NULL, 0, offset, len, 0); 4376 if (IS_ERR_OR_NULL(em)) 4377 return em; 4378 4379 /* if this isn't a hole return it */ 4380 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4381 em->block_start != EXTENT_MAP_HOLE) { 4382 return em; 4383 } 4384 4385 /* this is a hole, advance to the next extent */ 4386 offset = extent_map_end(em); 4387 free_extent_map(em); 4388 if (offset >= last) 4389 break; 4390 } 4391 return NULL; 4392 } 4393 4394 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4395 __u64 start, __u64 len, get_extent_t *get_extent) 4396 { 4397 int ret = 0; 4398 u64 off = start; 4399 u64 max = start + len; 4400 u32 flags = 0; 4401 u32 found_type; 4402 u64 last; 4403 u64 last_for_get_extent = 0; 4404 u64 disko = 0; 4405 u64 isize = i_size_read(inode); 4406 struct btrfs_key found_key; 4407 struct extent_map *em = NULL; 4408 struct extent_state *cached_state = NULL; 4409 struct btrfs_path *path; 4410 struct btrfs_root *root = BTRFS_I(inode)->root; 4411 int end = 0; 4412 u64 em_start = 0; 4413 u64 em_len = 0; 4414 u64 em_end = 0; 4415 4416 if (len == 0) 4417 return -EINVAL; 4418 4419 path = btrfs_alloc_path(); 4420 if (!path) 4421 return -ENOMEM; 4422 path->leave_spinning = 1; 4423 4424 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4425 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4426 4427 /* 4428 * lookup the last file extent. We're not using i_size here 4429 * because there might be preallocation past i_size 4430 */ 4431 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4432 0); 4433 if (ret < 0) { 4434 btrfs_free_path(path); 4435 return ret; 4436 } 4437 WARN_ON(!ret); 4438 path->slots[0]--; 4439 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4440 found_type = found_key.type; 4441 4442 /* No extents, but there might be delalloc bits */ 4443 if (found_key.objectid != btrfs_ino(inode) || 4444 found_type != BTRFS_EXTENT_DATA_KEY) { 4445 /* have to trust i_size as the end */ 4446 last = (u64)-1; 4447 last_for_get_extent = isize; 4448 } else { 4449 /* 4450 * remember the start of the last extent. There are a 4451 * bunch of different factors that go into the length of the 4452 * extent, so its much less complex to remember where it started 4453 */ 4454 last = found_key.offset; 4455 last_for_get_extent = last + 1; 4456 } 4457 btrfs_release_path(path); 4458 4459 /* 4460 * we might have some extents allocated but more delalloc past those 4461 * extents. so, we trust isize unless the start of the last extent is 4462 * beyond isize 4463 */ 4464 if (last < isize) { 4465 last = (u64)-1; 4466 last_for_get_extent = isize; 4467 } 4468 4469 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4470 &cached_state); 4471 4472 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4473 get_extent); 4474 if (!em) 4475 goto out; 4476 if (IS_ERR(em)) { 4477 ret = PTR_ERR(em); 4478 goto out; 4479 } 4480 4481 while (!end) { 4482 u64 offset_in_extent = 0; 4483 4484 /* break if the extent we found is outside the range */ 4485 if (em->start >= max || extent_map_end(em) < off) 4486 break; 4487 4488 /* 4489 * get_extent may return an extent that starts before our 4490 * requested range. We have to make sure the ranges 4491 * we return to fiemap always move forward and don't 4492 * overlap, so adjust the offsets here 4493 */ 4494 em_start = max(em->start, off); 4495 4496 /* 4497 * record the offset from the start of the extent 4498 * for adjusting the disk offset below. Only do this if the 4499 * extent isn't compressed since our in ram offset may be past 4500 * what we have actually allocated on disk. 4501 */ 4502 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4503 offset_in_extent = em_start - em->start; 4504 em_end = extent_map_end(em); 4505 em_len = em_end - em_start; 4506 disko = 0; 4507 flags = 0; 4508 4509 /* 4510 * bump off for our next call to get_extent 4511 */ 4512 off = extent_map_end(em); 4513 if (off >= max) 4514 end = 1; 4515 4516 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4517 end = 1; 4518 flags |= FIEMAP_EXTENT_LAST; 4519 } else if (em->block_start == EXTENT_MAP_INLINE) { 4520 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4521 FIEMAP_EXTENT_NOT_ALIGNED); 4522 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4523 flags |= (FIEMAP_EXTENT_DELALLOC | 4524 FIEMAP_EXTENT_UNKNOWN); 4525 } else if (fieinfo->fi_extents_max) { 4526 u64 bytenr = em->block_start - 4527 (em->start - em->orig_start); 4528 4529 disko = em->block_start + offset_in_extent; 4530 4531 /* 4532 * As btrfs supports shared space, this information 4533 * can be exported to userspace tools via 4534 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4535 * then we're just getting a count and we can skip the 4536 * lookup stuff. 4537 */ 4538 ret = btrfs_check_shared(NULL, root->fs_info, 4539 root->objectid, 4540 btrfs_ino(inode), bytenr); 4541 if (ret < 0) 4542 goto out_free; 4543 if (ret) 4544 flags |= FIEMAP_EXTENT_SHARED; 4545 ret = 0; 4546 } 4547 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4548 flags |= FIEMAP_EXTENT_ENCODED; 4549 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4550 flags |= FIEMAP_EXTENT_UNWRITTEN; 4551 4552 free_extent_map(em); 4553 em = NULL; 4554 if ((em_start >= last) || em_len == (u64)-1 || 4555 (last == (u64)-1 && isize <= em_end)) { 4556 flags |= FIEMAP_EXTENT_LAST; 4557 end = 1; 4558 } 4559 4560 /* now scan forward to see if this is really the last extent. */ 4561 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4562 get_extent); 4563 if (IS_ERR(em)) { 4564 ret = PTR_ERR(em); 4565 goto out; 4566 } 4567 if (!em) { 4568 flags |= FIEMAP_EXTENT_LAST; 4569 end = 1; 4570 } 4571 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4572 em_len, flags); 4573 if (ret) { 4574 if (ret == 1) 4575 ret = 0; 4576 goto out_free; 4577 } 4578 } 4579 out_free: 4580 free_extent_map(em); 4581 out: 4582 btrfs_free_path(path); 4583 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4584 &cached_state, GFP_NOFS); 4585 return ret; 4586 } 4587 4588 static void __free_extent_buffer(struct extent_buffer *eb) 4589 { 4590 btrfs_leak_debug_del(&eb->leak_list); 4591 kmem_cache_free(extent_buffer_cache, eb); 4592 } 4593 4594 int extent_buffer_under_io(struct extent_buffer *eb) 4595 { 4596 return (atomic_read(&eb->io_pages) || 4597 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4598 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4599 } 4600 4601 /* 4602 * Helper for releasing extent buffer page. 4603 */ 4604 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4605 { 4606 unsigned long index; 4607 struct page *page; 4608 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4609 4610 BUG_ON(extent_buffer_under_io(eb)); 4611 4612 index = num_extent_pages(eb->start, eb->len); 4613 if (index == 0) 4614 return; 4615 4616 do { 4617 index--; 4618 page = eb->pages[index]; 4619 if (!page) 4620 continue; 4621 if (mapped) 4622 spin_lock(&page->mapping->private_lock); 4623 /* 4624 * We do this since we'll remove the pages after we've 4625 * removed the eb from the radix tree, so we could race 4626 * and have this page now attached to the new eb. So 4627 * only clear page_private if it's still connected to 4628 * this eb. 4629 */ 4630 if (PagePrivate(page) && 4631 page->private == (unsigned long)eb) { 4632 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4633 BUG_ON(PageDirty(page)); 4634 BUG_ON(PageWriteback(page)); 4635 /* 4636 * We need to make sure we haven't be attached 4637 * to a new eb. 4638 */ 4639 ClearPagePrivate(page); 4640 set_page_private(page, 0); 4641 /* One for the page private */ 4642 page_cache_release(page); 4643 } 4644 4645 if (mapped) 4646 spin_unlock(&page->mapping->private_lock); 4647 4648 /* One for when we alloced the page */ 4649 page_cache_release(page); 4650 } while (index != 0); 4651 } 4652 4653 /* 4654 * Helper for releasing the extent buffer. 4655 */ 4656 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4657 { 4658 btrfs_release_extent_buffer_page(eb); 4659 __free_extent_buffer(eb); 4660 } 4661 4662 static struct extent_buffer * 4663 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4664 unsigned long len) 4665 { 4666 struct extent_buffer *eb = NULL; 4667 4668 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4669 eb->start = start; 4670 eb->len = len; 4671 eb->fs_info = fs_info; 4672 eb->bflags = 0; 4673 rwlock_init(&eb->lock); 4674 atomic_set(&eb->write_locks, 0); 4675 atomic_set(&eb->read_locks, 0); 4676 atomic_set(&eb->blocking_readers, 0); 4677 atomic_set(&eb->blocking_writers, 0); 4678 atomic_set(&eb->spinning_readers, 0); 4679 atomic_set(&eb->spinning_writers, 0); 4680 eb->lock_nested = 0; 4681 init_waitqueue_head(&eb->write_lock_wq); 4682 init_waitqueue_head(&eb->read_lock_wq); 4683 4684 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4685 4686 spin_lock_init(&eb->refs_lock); 4687 atomic_set(&eb->refs, 1); 4688 atomic_set(&eb->io_pages, 0); 4689 4690 /* 4691 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4692 */ 4693 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4694 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4695 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4696 4697 return eb; 4698 } 4699 4700 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4701 { 4702 unsigned long i; 4703 struct page *p; 4704 struct extent_buffer *new; 4705 unsigned long num_pages = num_extent_pages(src->start, src->len); 4706 4707 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4708 if (new == NULL) 4709 return NULL; 4710 4711 for (i = 0; i < num_pages; i++) { 4712 p = alloc_page(GFP_NOFS); 4713 if (!p) { 4714 btrfs_release_extent_buffer(new); 4715 return NULL; 4716 } 4717 attach_extent_buffer_page(new, p); 4718 WARN_ON(PageDirty(p)); 4719 SetPageUptodate(p); 4720 new->pages[i] = p; 4721 } 4722 4723 copy_extent_buffer(new, src, 0, 0, src->len); 4724 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4725 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4726 4727 return new; 4728 } 4729 4730 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4731 u64 start) 4732 { 4733 struct extent_buffer *eb; 4734 unsigned long len; 4735 unsigned long num_pages; 4736 unsigned long i; 4737 4738 if (!fs_info) { 4739 /* 4740 * Called only from tests that don't always have a fs_info 4741 * available, but we know that nodesize is 4096 4742 */ 4743 len = 4096; 4744 } else { 4745 len = fs_info->tree_root->nodesize; 4746 } 4747 num_pages = num_extent_pages(0, len); 4748 4749 eb = __alloc_extent_buffer(fs_info, start, len); 4750 if (!eb) 4751 return NULL; 4752 4753 for (i = 0; i < num_pages; i++) { 4754 eb->pages[i] = alloc_page(GFP_NOFS); 4755 if (!eb->pages[i]) 4756 goto err; 4757 } 4758 set_extent_buffer_uptodate(eb); 4759 btrfs_set_header_nritems(eb, 0); 4760 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4761 4762 return eb; 4763 err: 4764 for (; i > 0; i--) 4765 __free_page(eb->pages[i - 1]); 4766 __free_extent_buffer(eb); 4767 return NULL; 4768 } 4769 4770 static void check_buffer_tree_ref(struct extent_buffer *eb) 4771 { 4772 int refs; 4773 /* the ref bit is tricky. We have to make sure it is set 4774 * if we have the buffer dirty. Otherwise the 4775 * code to free a buffer can end up dropping a dirty 4776 * page 4777 * 4778 * Once the ref bit is set, it won't go away while the 4779 * buffer is dirty or in writeback, and it also won't 4780 * go away while we have the reference count on the 4781 * eb bumped. 4782 * 4783 * We can't just set the ref bit without bumping the 4784 * ref on the eb because free_extent_buffer might 4785 * see the ref bit and try to clear it. If this happens 4786 * free_extent_buffer might end up dropping our original 4787 * ref by mistake and freeing the page before we are able 4788 * to add one more ref. 4789 * 4790 * So bump the ref count first, then set the bit. If someone 4791 * beat us to it, drop the ref we added. 4792 */ 4793 refs = atomic_read(&eb->refs); 4794 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4795 return; 4796 4797 spin_lock(&eb->refs_lock); 4798 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4799 atomic_inc(&eb->refs); 4800 spin_unlock(&eb->refs_lock); 4801 } 4802 4803 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4804 struct page *accessed) 4805 { 4806 unsigned long num_pages, i; 4807 4808 check_buffer_tree_ref(eb); 4809 4810 num_pages = num_extent_pages(eb->start, eb->len); 4811 for (i = 0; i < num_pages; i++) { 4812 struct page *p = eb->pages[i]; 4813 4814 if (p != accessed) 4815 mark_page_accessed(p); 4816 } 4817 } 4818 4819 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4820 u64 start) 4821 { 4822 struct extent_buffer *eb; 4823 4824 rcu_read_lock(); 4825 eb = radix_tree_lookup(&fs_info->buffer_radix, 4826 start >> PAGE_CACHE_SHIFT); 4827 if (eb && atomic_inc_not_zero(&eb->refs)) { 4828 rcu_read_unlock(); 4829 /* 4830 * Lock our eb's refs_lock to avoid races with 4831 * free_extent_buffer. When we get our eb it might be flagged 4832 * with EXTENT_BUFFER_STALE and another task running 4833 * free_extent_buffer might have seen that flag set, 4834 * eb->refs == 2, that the buffer isn't under IO (dirty and 4835 * writeback flags not set) and it's still in the tree (flag 4836 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4837 * of decrementing the extent buffer's reference count twice. 4838 * So here we could race and increment the eb's reference count, 4839 * clear its stale flag, mark it as dirty and drop our reference 4840 * before the other task finishes executing free_extent_buffer, 4841 * which would later result in an attempt to free an extent 4842 * buffer that is dirty. 4843 */ 4844 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4845 spin_lock(&eb->refs_lock); 4846 spin_unlock(&eb->refs_lock); 4847 } 4848 mark_extent_buffer_accessed(eb, NULL); 4849 return eb; 4850 } 4851 rcu_read_unlock(); 4852 4853 return NULL; 4854 } 4855 4856 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4857 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4858 u64 start) 4859 { 4860 struct extent_buffer *eb, *exists = NULL; 4861 int ret; 4862 4863 eb = find_extent_buffer(fs_info, start); 4864 if (eb) 4865 return eb; 4866 eb = alloc_dummy_extent_buffer(fs_info, start); 4867 if (!eb) 4868 return NULL; 4869 eb->fs_info = fs_info; 4870 again: 4871 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4872 if (ret) 4873 goto free_eb; 4874 spin_lock(&fs_info->buffer_lock); 4875 ret = radix_tree_insert(&fs_info->buffer_radix, 4876 start >> PAGE_CACHE_SHIFT, eb); 4877 spin_unlock(&fs_info->buffer_lock); 4878 radix_tree_preload_end(); 4879 if (ret == -EEXIST) { 4880 exists = find_extent_buffer(fs_info, start); 4881 if (exists) 4882 goto free_eb; 4883 else 4884 goto again; 4885 } 4886 check_buffer_tree_ref(eb); 4887 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4888 4889 /* 4890 * We will free dummy extent buffer's if they come into 4891 * free_extent_buffer with a ref count of 2, but if we are using this we 4892 * want the buffers to stay in memory until we're done with them, so 4893 * bump the ref count again. 4894 */ 4895 atomic_inc(&eb->refs); 4896 return eb; 4897 free_eb: 4898 btrfs_release_extent_buffer(eb); 4899 return exists; 4900 } 4901 #endif 4902 4903 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4904 u64 start) 4905 { 4906 unsigned long len = fs_info->tree_root->nodesize; 4907 unsigned long num_pages = num_extent_pages(start, len); 4908 unsigned long i; 4909 unsigned long index = start >> PAGE_CACHE_SHIFT; 4910 struct extent_buffer *eb; 4911 struct extent_buffer *exists = NULL; 4912 struct page *p; 4913 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4914 int uptodate = 1; 4915 int ret; 4916 4917 eb = find_extent_buffer(fs_info, start); 4918 if (eb) 4919 return eb; 4920 4921 eb = __alloc_extent_buffer(fs_info, start, len); 4922 if (!eb) 4923 return NULL; 4924 4925 for (i = 0; i < num_pages; i++, index++) { 4926 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4927 if (!p) 4928 goto free_eb; 4929 4930 spin_lock(&mapping->private_lock); 4931 if (PagePrivate(p)) { 4932 /* 4933 * We could have already allocated an eb for this page 4934 * and attached one so lets see if we can get a ref on 4935 * the existing eb, and if we can we know it's good and 4936 * we can just return that one, else we know we can just 4937 * overwrite page->private. 4938 */ 4939 exists = (struct extent_buffer *)p->private; 4940 if (atomic_inc_not_zero(&exists->refs)) { 4941 spin_unlock(&mapping->private_lock); 4942 unlock_page(p); 4943 page_cache_release(p); 4944 mark_extent_buffer_accessed(exists, p); 4945 goto free_eb; 4946 } 4947 exists = NULL; 4948 4949 /* 4950 * Do this so attach doesn't complain and we need to 4951 * drop the ref the old guy had. 4952 */ 4953 ClearPagePrivate(p); 4954 WARN_ON(PageDirty(p)); 4955 page_cache_release(p); 4956 } 4957 attach_extent_buffer_page(eb, p); 4958 spin_unlock(&mapping->private_lock); 4959 WARN_ON(PageDirty(p)); 4960 eb->pages[i] = p; 4961 if (!PageUptodate(p)) 4962 uptodate = 0; 4963 4964 /* 4965 * see below about how we avoid a nasty race with release page 4966 * and why we unlock later 4967 */ 4968 } 4969 if (uptodate) 4970 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4971 again: 4972 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4973 if (ret) 4974 goto free_eb; 4975 4976 spin_lock(&fs_info->buffer_lock); 4977 ret = radix_tree_insert(&fs_info->buffer_radix, 4978 start >> PAGE_CACHE_SHIFT, eb); 4979 spin_unlock(&fs_info->buffer_lock); 4980 radix_tree_preload_end(); 4981 if (ret == -EEXIST) { 4982 exists = find_extent_buffer(fs_info, start); 4983 if (exists) 4984 goto free_eb; 4985 else 4986 goto again; 4987 } 4988 /* add one reference for the tree */ 4989 check_buffer_tree_ref(eb); 4990 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4991 4992 /* 4993 * there is a race where release page may have 4994 * tried to find this extent buffer in the radix 4995 * but failed. It will tell the VM it is safe to 4996 * reclaim the, and it will clear the page private bit. 4997 * We must make sure to set the page private bit properly 4998 * after the extent buffer is in the radix tree so 4999 * it doesn't get lost 5000 */ 5001 SetPageChecked(eb->pages[0]); 5002 for (i = 1; i < num_pages; i++) { 5003 p = eb->pages[i]; 5004 ClearPageChecked(p); 5005 unlock_page(p); 5006 } 5007 unlock_page(eb->pages[0]); 5008 return eb; 5009 5010 free_eb: 5011 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5012 for (i = 0; i < num_pages; i++) { 5013 if (eb->pages[i]) 5014 unlock_page(eb->pages[i]); 5015 } 5016 5017 btrfs_release_extent_buffer(eb); 5018 return exists; 5019 } 5020 5021 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5022 { 5023 struct extent_buffer *eb = 5024 container_of(head, struct extent_buffer, rcu_head); 5025 5026 __free_extent_buffer(eb); 5027 } 5028 5029 /* Expects to have eb->eb_lock already held */ 5030 static int release_extent_buffer(struct extent_buffer *eb) 5031 { 5032 WARN_ON(atomic_read(&eb->refs) == 0); 5033 if (atomic_dec_and_test(&eb->refs)) { 5034 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5035 struct btrfs_fs_info *fs_info = eb->fs_info; 5036 5037 spin_unlock(&eb->refs_lock); 5038 5039 spin_lock(&fs_info->buffer_lock); 5040 radix_tree_delete(&fs_info->buffer_radix, 5041 eb->start >> PAGE_CACHE_SHIFT); 5042 spin_unlock(&fs_info->buffer_lock); 5043 } else { 5044 spin_unlock(&eb->refs_lock); 5045 } 5046 5047 /* Should be safe to release our pages at this point */ 5048 btrfs_release_extent_buffer_page(eb); 5049 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5050 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5051 __free_extent_buffer(eb); 5052 return 1; 5053 } 5054 #endif 5055 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5056 return 1; 5057 } 5058 spin_unlock(&eb->refs_lock); 5059 5060 return 0; 5061 } 5062 5063 void free_extent_buffer(struct extent_buffer *eb) 5064 { 5065 int refs; 5066 int old; 5067 if (!eb) 5068 return; 5069 5070 while (1) { 5071 refs = atomic_read(&eb->refs); 5072 if (refs <= 3) 5073 break; 5074 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5075 if (old == refs) 5076 return; 5077 } 5078 5079 spin_lock(&eb->refs_lock); 5080 if (atomic_read(&eb->refs) == 2 && 5081 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5082 atomic_dec(&eb->refs); 5083 5084 if (atomic_read(&eb->refs) == 2 && 5085 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5086 !extent_buffer_under_io(eb) && 5087 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5088 atomic_dec(&eb->refs); 5089 5090 /* 5091 * I know this is terrible, but it's temporary until we stop tracking 5092 * the uptodate bits and such for the extent buffers. 5093 */ 5094 release_extent_buffer(eb); 5095 } 5096 5097 void free_extent_buffer_stale(struct extent_buffer *eb) 5098 { 5099 if (!eb) 5100 return; 5101 5102 spin_lock(&eb->refs_lock); 5103 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5104 5105 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5106 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5107 atomic_dec(&eb->refs); 5108 release_extent_buffer(eb); 5109 } 5110 5111 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5112 { 5113 unsigned long i; 5114 unsigned long num_pages; 5115 struct page *page; 5116 5117 num_pages = num_extent_pages(eb->start, eb->len); 5118 5119 for (i = 0; i < num_pages; i++) { 5120 page = eb->pages[i]; 5121 if (!PageDirty(page)) 5122 continue; 5123 5124 lock_page(page); 5125 WARN_ON(!PagePrivate(page)); 5126 5127 clear_page_dirty_for_io(page); 5128 spin_lock_irq(&page->mapping->tree_lock); 5129 if (!PageDirty(page)) { 5130 radix_tree_tag_clear(&page->mapping->page_tree, 5131 page_index(page), 5132 PAGECACHE_TAG_DIRTY); 5133 } 5134 spin_unlock_irq(&page->mapping->tree_lock); 5135 ClearPageError(page); 5136 unlock_page(page); 5137 } 5138 WARN_ON(atomic_read(&eb->refs) == 0); 5139 } 5140 5141 int set_extent_buffer_dirty(struct extent_buffer *eb) 5142 { 5143 unsigned long i; 5144 unsigned long num_pages; 5145 int was_dirty = 0; 5146 5147 check_buffer_tree_ref(eb); 5148 5149 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5150 5151 num_pages = num_extent_pages(eb->start, eb->len); 5152 WARN_ON(atomic_read(&eb->refs) == 0); 5153 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5154 5155 for (i = 0; i < num_pages; i++) 5156 set_page_dirty(eb->pages[i]); 5157 return was_dirty; 5158 } 5159 5160 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5161 { 5162 unsigned long i; 5163 struct page *page; 5164 unsigned long num_pages; 5165 5166 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5167 num_pages = num_extent_pages(eb->start, eb->len); 5168 for (i = 0; i < num_pages; i++) { 5169 page = eb->pages[i]; 5170 if (page) 5171 ClearPageUptodate(page); 5172 } 5173 return 0; 5174 } 5175 5176 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5177 { 5178 unsigned long i; 5179 struct page *page; 5180 unsigned long num_pages; 5181 5182 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5183 num_pages = num_extent_pages(eb->start, eb->len); 5184 for (i = 0; i < num_pages; i++) { 5185 page = eb->pages[i]; 5186 SetPageUptodate(page); 5187 } 5188 return 0; 5189 } 5190 5191 int extent_buffer_uptodate(struct extent_buffer *eb) 5192 { 5193 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5194 } 5195 5196 int read_extent_buffer_pages(struct extent_io_tree *tree, 5197 struct extent_buffer *eb, u64 start, int wait, 5198 get_extent_t *get_extent, int mirror_num) 5199 { 5200 unsigned long i; 5201 unsigned long start_i; 5202 struct page *page; 5203 int err; 5204 int ret = 0; 5205 int locked_pages = 0; 5206 int all_uptodate = 1; 5207 unsigned long num_pages; 5208 unsigned long num_reads = 0; 5209 struct bio *bio = NULL; 5210 unsigned long bio_flags = 0; 5211 5212 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5213 return 0; 5214 5215 if (start) { 5216 WARN_ON(start < eb->start); 5217 start_i = (start >> PAGE_CACHE_SHIFT) - 5218 (eb->start >> PAGE_CACHE_SHIFT); 5219 } else { 5220 start_i = 0; 5221 } 5222 5223 num_pages = num_extent_pages(eb->start, eb->len); 5224 for (i = start_i; i < num_pages; i++) { 5225 page = eb->pages[i]; 5226 if (wait == WAIT_NONE) { 5227 if (!trylock_page(page)) 5228 goto unlock_exit; 5229 } else { 5230 lock_page(page); 5231 } 5232 locked_pages++; 5233 if (!PageUptodate(page)) { 5234 num_reads++; 5235 all_uptodate = 0; 5236 } 5237 } 5238 if (all_uptodate) { 5239 if (start_i == 0) 5240 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5241 goto unlock_exit; 5242 } 5243 5244 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5245 eb->read_mirror = 0; 5246 atomic_set(&eb->io_pages, num_reads); 5247 for (i = start_i; i < num_pages; i++) { 5248 page = eb->pages[i]; 5249 if (!PageUptodate(page)) { 5250 ClearPageError(page); 5251 err = __extent_read_full_page(tree, page, 5252 get_extent, &bio, 5253 mirror_num, &bio_flags, 5254 READ | REQ_META); 5255 if (err) 5256 ret = err; 5257 } else { 5258 unlock_page(page); 5259 } 5260 } 5261 5262 if (bio) { 5263 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5264 bio_flags); 5265 if (err) 5266 return err; 5267 } 5268 5269 if (ret || wait != WAIT_COMPLETE) 5270 return ret; 5271 5272 for (i = start_i; i < num_pages; i++) { 5273 page = eb->pages[i]; 5274 wait_on_page_locked(page); 5275 if (!PageUptodate(page)) 5276 ret = -EIO; 5277 } 5278 5279 return ret; 5280 5281 unlock_exit: 5282 i = start_i; 5283 while (locked_pages > 0) { 5284 page = eb->pages[i]; 5285 i++; 5286 unlock_page(page); 5287 locked_pages--; 5288 } 5289 return ret; 5290 } 5291 5292 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5293 unsigned long start, 5294 unsigned long len) 5295 { 5296 size_t cur; 5297 size_t offset; 5298 struct page *page; 5299 char *kaddr; 5300 char *dst = (char *)dstv; 5301 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5302 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5303 5304 WARN_ON(start > eb->len); 5305 WARN_ON(start + len > eb->start + eb->len); 5306 5307 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5308 5309 while (len > 0) { 5310 page = eb->pages[i]; 5311 5312 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5313 kaddr = page_address(page); 5314 memcpy(dst, kaddr + offset, cur); 5315 5316 dst += cur; 5317 len -= cur; 5318 offset = 0; 5319 i++; 5320 } 5321 } 5322 5323 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5324 unsigned long start, 5325 unsigned long len) 5326 { 5327 size_t cur; 5328 size_t offset; 5329 struct page *page; 5330 char *kaddr; 5331 char __user *dst = (char __user *)dstv; 5332 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5333 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5334 int ret = 0; 5335 5336 WARN_ON(start > eb->len); 5337 WARN_ON(start + len > eb->start + eb->len); 5338 5339 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5340 5341 while (len > 0) { 5342 page = eb->pages[i]; 5343 5344 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5345 kaddr = page_address(page); 5346 if (copy_to_user(dst, kaddr + offset, cur)) { 5347 ret = -EFAULT; 5348 break; 5349 } 5350 5351 dst += cur; 5352 len -= cur; 5353 offset = 0; 5354 i++; 5355 } 5356 5357 return ret; 5358 } 5359 5360 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5361 unsigned long min_len, char **map, 5362 unsigned long *map_start, 5363 unsigned long *map_len) 5364 { 5365 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5366 char *kaddr; 5367 struct page *p; 5368 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5369 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5370 unsigned long end_i = (start_offset + start + min_len - 1) >> 5371 PAGE_CACHE_SHIFT; 5372 5373 if (i != end_i) 5374 return -EINVAL; 5375 5376 if (i == 0) { 5377 offset = start_offset; 5378 *map_start = 0; 5379 } else { 5380 offset = 0; 5381 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5382 } 5383 5384 if (start + min_len > eb->len) { 5385 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5386 "wanted %lu %lu\n", 5387 eb->start, eb->len, start, min_len); 5388 return -EINVAL; 5389 } 5390 5391 p = eb->pages[i]; 5392 kaddr = page_address(p); 5393 *map = kaddr + offset; 5394 *map_len = PAGE_CACHE_SIZE - offset; 5395 return 0; 5396 } 5397 5398 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5399 unsigned long start, 5400 unsigned long len) 5401 { 5402 size_t cur; 5403 size_t offset; 5404 struct page *page; 5405 char *kaddr; 5406 char *ptr = (char *)ptrv; 5407 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5408 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5409 int ret = 0; 5410 5411 WARN_ON(start > eb->len); 5412 WARN_ON(start + len > eb->start + eb->len); 5413 5414 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5415 5416 while (len > 0) { 5417 page = eb->pages[i]; 5418 5419 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5420 5421 kaddr = page_address(page); 5422 ret = memcmp(ptr, kaddr + offset, cur); 5423 if (ret) 5424 break; 5425 5426 ptr += cur; 5427 len -= cur; 5428 offset = 0; 5429 i++; 5430 } 5431 return ret; 5432 } 5433 5434 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5435 unsigned long start, unsigned long len) 5436 { 5437 size_t cur; 5438 size_t offset; 5439 struct page *page; 5440 char *kaddr; 5441 char *src = (char *)srcv; 5442 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5443 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5444 5445 WARN_ON(start > eb->len); 5446 WARN_ON(start + len > eb->start + eb->len); 5447 5448 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5449 5450 while (len > 0) { 5451 page = eb->pages[i]; 5452 WARN_ON(!PageUptodate(page)); 5453 5454 cur = min(len, PAGE_CACHE_SIZE - offset); 5455 kaddr = page_address(page); 5456 memcpy(kaddr + offset, src, cur); 5457 5458 src += cur; 5459 len -= cur; 5460 offset = 0; 5461 i++; 5462 } 5463 } 5464 5465 void memset_extent_buffer(struct extent_buffer *eb, char c, 5466 unsigned long start, unsigned long len) 5467 { 5468 size_t cur; 5469 size_t offset; 5470 struct page *page; 5471 char *kaddr; 5472 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5473 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5474 5475 WARN_ON(start > eb->len); 5476 WARN_ON(start + len > eb->start + eb->len); 5477 5478 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5479 5480 while (len > 0) { 5481 page = eb->pages[i]; 5482 WARN_ON(!PageUptodate(page)); 5483 5484 cur = min(len, PAGE_CACHE_SIZE - offset); 5485 kaddr = page_address(page); 5486 memset(kaddr + offset, c, cur); 5487 5488 len -= cur; 5489 offset = 0; 5490 i++; 5491 } 5492 } 5493 5494 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5495 unsigned long dst_offset, unsigned long src_offset, 5496 unsigned long len) 5497 { 5498 u64 dst_len = dst->len; 5499 size_t cur; 5500 size_t offset; 5501 struct page *page; 5502 char *kaddr; 5503 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5504 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5505 5506 WARN_ON(src->len != dst_len); 5507 5508 offset = (start_offset + dst_offset) & 5509 (PAGE_CACHE_SIZE - 1); 5510 5511 while (len > 0) { 5512 page = dst->pages[i]; 5513 WARN_ON(!PageUptodate(page)); 5514 5515 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5516 5517 kaddr = page_address(page); 5518 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5519 5520 src_offset += cur; 5521 len -= cur; 5522 offset = 0; 5523 i++; 5524 } 5525 } 5526 5527 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5528 { 5529 unsigned long distance = (src > dst) ? src - dst : dst - src; 5530 return distance < len; 5531 } 5532 5533 static void copy_pages(struct page *dst_page, struct page *src_page, 5534 unsigned long dst_off, unsigned long src_off, 5535 unsigned long len) 5536 { 5537 char *dst_kaddr = page_address(dst_page); 5538 char *src_kaddr; 5539 int must_memmove = 0; 5540 5541 if (dst_page != src_page) { 5542 src_kaddr = page_address(src_page); 5543 } else { 5544 src_kaddr = dst_kaddr; 5545 if (areas_overlap(src_off, dst_off, len)) 5546 must_memmove = 1; 5547 } 5548 5549 if (must_memmove) 5550 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5551 else 5552 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5553 } 5554 5555 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5556 unsigned long src_offset, unsigned long len) 5557 { 5558 size_t cur; 5559 size_t dst_off_in_page; 5560 size_t src_off_in_page; 5561 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5562 unsigned long dst_i; 5563 unsigned long src_i; 5564 5565 if (src_offset + len > dst->len) { 5566 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5567 "len %lu dst len %lu\n", src_offset, len, dst->len); 5568 BUG_ON(1); 5569 } 5570 if (dst_offset + len > dst->len) { 5571 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5572 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5573 BUG_ON(1); 5574 } 5575 5576 while (len > 0) { 5577 dst_off_in_page = (start_offset + dst_offset) & 5578 (PAGE_CACHE_SIZE - 1); 5579 src_off_in_page = (start_offset + src_offset) & 5580 (PAGE_CACHE_SIZE - 1); 5581 5582 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5583 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5584 5585 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5586 src_off_in_page)); 5587 cur = min_t(unsigned long, cur, 5588 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5589 5590 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5591 dst_off_in_page, src_off_in_page, cur); 5592 5593 src_offset += cur; 5594 dst_offset += cur; 5595 len -= cur; 5596 } 5597 } 5598 5599 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5600 unsigned long src_offset, unsigned long len) 5601 { 5602 size_t cur; 5603 size_t dst_off_in_page; 5604 size_t src_off_in_page; 5605 unsigned long dst_end = dst_offset + len - 1; 5606 unsigned long src_end = src_offset + len - 1; 5607 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5608 unsigned long dst_i; 5609 unsigned long src_i; 5610 5611 if (src_offset + len > dst->len) { 5612 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5613 "len %lu len %lu\n", src_offset, len, dst->len); 5614 BUG_ON(1); 5615 } 5616 if (dst_offset + len > dst->len) { 5617 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5618 "len %lu len %lu\n", dst_offset, len, dst->len); 5619 BUG_ON(1); 5620 } 5621 if (dst_offset < src_offset) { 5622 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5623 return; 5624 } 5625 while (len > 0) { 5626 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5627 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5628 5629 dst_off_in_page = (start_offset + dst_end) & 5630 (PAGE_CACHE_SIZE - 1); 5631 src_off_in_page = (start_offset + src_end) & 5632 (PAGE_CACHE_SIZE - 1); 5633 5634 cur = min_t(unsigned long, len, src_off_in_page + 1); 5635 cur = min(cur, dst_off_in_page + 1); 5636 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5637 dst_off_in_page - cur + 1, 5638 src_off_in_page - cur + 1, cur); 5639 5640 dst_end -= cur; 5641 src_end -= cur; 5642 len -= cur; 5643 } 5644 } 5645 5646 int try_release_extent_buffer(struct page *page) 5647 { 5648 struct extent_buffer *eb; 5649 5650 /* 5651 * We need to make sure noboody is attaching this page to an eb right 5652 * now. 5653 */ 5654 spin_lock(&page->mapping->private_lock); 5655 if (!PagePrivate(page)) { 5656 spin_unlock(&page->mapping->private_lock); 5657 return 1; 5658 } 5659 5660 eb = (struct extent_buffer *)page->private; 5661 BUG_ON(!eb); 5662 5663 /* 5664 * This is a little awful but should be ok, we need to make sure that 5665 * the eb doesn't disappear out from under us while we're looking at 5666 * this page. 5667 */ 5668 spin_lock(&eb->refs_lock); 5669 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5670 spin_unlock(&eb->refs_lock); 5671 spin_unlock(&page->mapping->private_lock); 5672 return 0; 5673 } 5674 spin_unlock(&page->mapping->private_lock); 5675 5676 /* 5677 * If tree ref isn't set then we know the ref on this eb is a real ref, 5678 * so just return, this page will likely be freed soon anyway. 5679 */ 5680 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5681 spin_unlock(&eb->refs_lock); 5682 return 0; 5683 } 5684 5685 return release_extent_buffer(eb); 5686 } 5687