1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/gfp.h> 6 #include <linux/pagemap.h> 7 #include <linux/page-flags.h> 8 #include <linux/module.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 20 static struct kmem_cache *extent_state_cache; 21 static struct kmem_cache *extent_buffer_cache; 22 23 static LIST_HEAD(buffers); 24 static LIST_HEAD(states); 25 26 #define LEAK_DEBUG 0 27 #if LEAK_DEBUG 28 static DEFINE_SPINLOCK(leak_lock); 29 #endif 30 31 #define BUFFER_LRU_MAX 64 32 33 struct tree_entry { 34 u64 start; 35 u64 end; 36 struct rb_node rb_node; 37 }; 38 39 struct extent_page_data { 40 struct bio *bio; 41 struct extent_io_tree *tree; 42 get_extent_t *get_extent; 43 44 /* tells writepage not to lock the state bits for this range 45 * it still does the unlocking 46 */ 47 unsigned int extent_locked:1; 48 49 /* tells the submit_bio code to use a WRITE_SYNC */ 50 unsigned int sync_io:1; 51 }; 52 53 int __init extent_io_init(void) 54 { 55 extent_state_cache = kmem_cache_create("extent_state", 56 sizeof(struct extent_state), 0, 57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 58 if (!extent_state_cache) 59 return -ENOMEM; 60 61 extent_buffer_cache = kmem_cache_create("extent_buffers", 62 sizeof(struct extent_buffer), 0, 63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 64 if (!extent_buffer_cache) 65 goto free_state_cache; 66 return 0; 67 68 free_state_cache: 69 kmem_cache_destroy(extent_state_cache); 70 return -ENOMEM; 71 } 72 73 void extent_io_exit(void) 74 { 75 struct extent_state *state; 76 struct extent_buffer *eb; 77 78 while (!list_empty(&states)) { 79 state = list_entry(states.next, struct extent_state, leak_list); 80 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 81 "state %lu in tree %p refs %d\n", 82 (unsigned long long)state->start, 83 (unsigned long long)state->end, 84 state->state, state->tree, atomic_read(&state->refs)); 85 list_del(&state->leak_list); 86 kmem_cache_free(extent_state_cache, state); 87 88 } 89 90 while (!list_empty(&buffers)) { 91 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 93 "refs %d\n", (unsigned long long)eb->start, 94 eb->len, atomic_read(&eb->refs)); 95 list_del(&eb->leak_list); 96 kmem_cache_free(extent_buffer_cache, eb); 97 } 98 if (extent_state_cache) 99 kmem_cache_destroy(extent_state_cache); 100 if (extent_buffer_cache) 101 kmem_cache_destroy(extent_buffer_cache); 102 } 103 104 void extent_io_tree_init(struct extent_io_tree *tree, 105 struct address_space *mapping, gfp_t mask) 106 { 107 tree->state.rb_node = NULL; 108 tree->buffer.rb_node = NULL; 109 tree->ops = NULL; 110 tree->dirty_bytes = 0; 111 spin_lock_init(&tree->lock); 112 spin_lock_init(&tree->buffer_lock); 113 tree->mapping = mapping; 114 } 115 116 static struct extent_state *alloc_extent_state(gfp_t mask) 117 { 118 struct extent_state *state; 119 #if LEAK_DEBUG 120 unsigned long flags; 121 #endif 122 123 state = kmem_cache_alloc(extent_state_cache, mask); 124 if (!state) 125 return state; 126 state->state = 0; 127 state->private = 0; 128 state->tree = NULL; 129 #if LEAK_DEBUG 130 spin_lock_irqsave(&leak_lock, flags); 131 list_add(&state->leak_list, &states); 132 spin_unlock_irqrestore(&leak_lock, flags); 133 #endif 134 atomic_set(&state->refs, 1); 135 init_waitqueue_head(&state->wq); 136 return state; 137 } 138 139 static void free_extent_state(struct extent_state *state) 140 { 141 if (!state) 142 return; 143 if (atomic_dec_and_test(&state->refs)) { 144 #if LEAK_DEBUG 145 unsigned long flags; 146 #endif 147 WARN_ON(state->tree); 148 #if LEAK_DEBUG 149 spin_lock_irqsave(&leak_lock, flags); 150 list_del(&state->leak_list); 151 spin_unlock_irqrestore(&leak_lock, flags); 152 #endif 153 kmem_cache_free(extent_state_cache, state); 154 } 155 } 156 157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 158 struct rb_node *node) 159 { 160 struct rb_node **p = &root->rb_node; 161 struct rb_node *parent = NULL; 162 struct tree_entry *entry; 163 164 while (*p) { 165 parent = *p; 166 entry = rb_entry(parent, struct tree_entry, rb_node); 167 168 if (offset < entry->start) 169 p = &(*p)->rb_left; 170 else if (offset > entry->end) 171 p = &(*p)->rb_right; 172 else 173 return parent; 174 } 175 176 entry = rb_entry(node, struct tree_entry, rb_node); 177 rb_link_node(node, parent, p); 178 rb_insert_color(node, root); 179 return NULL; 180 } 181 182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 183 struct rb_node **prev_ret, 184 struct rb_node **next_ret) 185 { 186 struct rb_root *root = &tree->state; 187 struct rb_node *n = root->rb_node; 188 struct rb_node *prev = NULL; 189 struct rb_node *orig_prev = NULL; 190 struct tree_entry *entry; 191 struct tree_entry *prev_entry = NULL; 192 193 while (n) { 194 entry = rb_entry(n, struct tree_entry, rb_node); 195 prev = n; 196 prev_entry = entry; 197 198 if (offset < entry->start) 199 n = n->rb_left; 200 else if (offset > entry->end) 201 n = n->rb_right; 202 else 203 return n; 204 } 205 206 if (prev_ret) { 207 orig_prev = prev; 208 while (prev && offset > prev_entry->end) { 209 prev = rb_next(prev); 210 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 211 } 212 *prev_ret = prev; 213 prev = orig_prev; 214 } 215 216 if (next_ret) { 217 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 218 while (prev && offset < prev_entry->start) { 219 prev = rb_prev(prev); 220 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 221 } 222 *next_ret = prev; 223 } 224 return NULL; 225 } 226 227 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 228 u64 offset) 229 { 230 struct rb_node *prev = NULL; 231 struct rb_node *ret; 232 233 ret = __etree_search(tree, offset, &prev, NULL); 234 if (!ret) 235 return prev; 236 return ret; 237 } 238 239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree, 240 u64 offset, struct rb_node *node) 241 { 242 struct rb_root *root = &tree->buffer; 243 struct rb_node **p = &root->rb_node; 244 struct rb_node *parent = NULL; 245 struct extent_buffer *eb; 246 247 while (*p) { 248 parent = *p; 249 eb = rb_entry(parent, struct extent_buffer, rb_node); 250 251 if (offset < eb->start) 252 p = &(*p)->rb_left; 253 else if (offset > eb->start) 254 p = &(*p)->rb_right; 255 else 256 return eb; 257 } 258 259 rb_link_node(node, parent, p); 260 rb_insert_color(node, root); 261 return NULL; 262 } 263 264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree, 265 u64 offset) 266 { 267 struct rb_root *root = &tree->buffer; 268 struct rb_node *n = root->rb_node; 269 struct extent_buffer *eb; 270 271 while (n) { 272 eb = rb_entry(n, struct extent_buffer, rb_node); 273 if (offset < eb->start) 274 n = n->rb_left; 275 else if (offset > eb->start) 276 n = n->rb_right; 277 else 278 return eb; 279 } 280 return NULL; 281 } 282 283 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 284 struct extent_state *other) 285 { 286 if (tree->ops && tree->ops->merge_extent_hook) 287 tree->ops->merge_extent_hook(tree->mapping->host, new, 288 other); 289 } 290 291 /* 292 * utility function to look for merge candidates inside a given range. 293 * Any extents with matching state are merged together into a single 294 * extent in the tree. Extents with EXTENT_IO in their state field 295 * are not merged because the end_io handlers need to be able to do 296 * operations on them without sleeping (or doing allocations/splits). 297 * 298 * This should be called with the tree lock held. 299 */ 300 static int merge_state(struct extent_io_tree *tree, 301 struct extent_state *state) 302 { 303 struct extent_state *other; 304 struct rb_node *other_node; 305 306 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 307 return 0; 308 309 other_node = rb_prev(&state->rb_node); 310 if (other_node) { 311 other = rb_entry(other_node, struct extent_state, rb_node); 312 if (other->end == state->start - 1 && 313 other->state == state->state) { 314 merge_cb(tree, state, other); 315 state->start = other->start; 316 other->tree = NULL; 317 rb_erase(&other->rb_node, &tree->state); 318 free_extent_state(other); 319 } 320 } 321 other_node = rb_next(&state->rb_node); 322 if (other_node) { 323 other = rb_entry(other_node, struct extent_state, rb_node); 324 if (other->start == state->end + 1 && 325 other->state == state->state) { 326 merge_cb(tree, state, other); 327 other->start = state->start; 328 state->tree = NULL; 329 rb_erase(&state->rb_node, &tree->state); 330 free_extent_state(state); 331 state = NULL; 332 } 333 } 334 335 return 0; 336 } 337 338 static int set_state_cb(struct extent_io_tree *tree, 339 struct extent_state *state, 340 unsigned long bits) 341 { 342 if (tree->ops && tree->ops->set_bit_hook) { 343 return tree->ops->set_bit_hook(tree->mapping->host, 344 state->start, state->end, 345 state->state, bits); 346 } 347 348 return 0; 349 } 350 351 static void clear_state_cb(struct extent_io_tree *tree, 352 struct extent_state *state, 353 unsigned long bits) 354 { 355 if (tree->ops && tree->ops->clear_bit_hook) 356 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 357 } 358 359 /* 360 * insert an extent_state struct into the tree. 'bits' are set on the 361 * struct before it is inserted. 362 * 363 * This may return -EEXIST if the extent is already there, in which case the 364 * state struct is freed. 365 * 366 * The tree lock is not taken internally. This is a utility function and 367 * probably isn't what you want to call (see set/clear_extent_bit). 368 */ 369 static int insert_state(struct extent_io_tree *tree, 370 struct extent_state *state, u64 start, u64 end, 371 int bits) 372 { 373 struct rb_node *node; 374 int ret; 375 376 if (end < start) { 377 printk(KERN_ERR "btrfs end < start %llu %llu\n", 378 (unsigned long long)end, 379 (unsigned long long)start); 380 WARN_ON(1); 381 } 382 state->start = start; 383 state->end = end; 384 ret = set_state_cb(tree, state, bits); 385 if (ret) 386 return ret; 387 388 if (bits & EXTENT_DIRTY) 389 tree->dirty_bytes += end - start + 1; 390 state->state |= bits; 391 node = tree_insert(&tree->state, end, &state->rb_node); 392 if (node) { 393 struct extent_state *found; 394 found = rb_entry(node, struct extent_state, rb_node); 395 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 396 "%llu %llu\n", (unsigned long long)found->start, 397 (unsigned long long)found->end, 398 (unsigned long long)start, (unsigned long long)end); 399 free_extent_state(state); 400 return -EEXIST; 401 } 402 state->tree = tree; 403 merge_state(tree, state); 404 return 0; 405 } 406 407 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig, 408 u64 split) 409 { 410 if (tree->ops && tree->ops->split_extent_hook) 411 return tree->ops->split_extent_hook(tree->mapping->host, 412 orig, split); 413 return 0; 414 } 415 416 /* 417 * split a given extent state struct in two, inserting the preallocated 418 * struct 'prealloc' as the newly created second half. 'split' indicates an 419 * offset inside 'orig' where it should be split. 420 * 421 * Before calling, 422 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 423 * are two extent state structs in the tree: 424 * prealloc: [orig->start, split - 1] 425 * orig: [ split, orig->end ] 426 * 427 * The tree locks are not taken by this function. They need to be held 428 * by the caller. 429 */ 430 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 431 struct extent_state *prealloc, u64 split) 432 { 433 struct rb_node *node; 434 435 split_cb(tree, orig, split); 436 437 prealloc->start = orig->start; 438 prealloc->end = split - 1; 439 prealloc->state = orig->state; 440 orig->start = split; 441 442 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 443 if (node) { 444 free_extent_state(prealloc); 445 return -EEXIST; 446 } 447 prealloc->tree = tree; 448 return 0; 449 } 450 451 /* 452 * utility function to clear some bits in an extent state struct. 453 * it will optionally wake up any one waiting on this state (wake == 1), or 454 * forcibly remove the state from the tree (delete == 1). 455 * 456 * If no bits are set on the state struct after clearing things, the 457 * struct is freed and removed from the tree 458 */ 459 static int clear_state_bit(struct extent_io_tree *tree, 460 struct extent_state *state, int bits, int wake, 461 int delete) 462 { 463 int ret = state->state & bits; 464 465 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 466 u64 range = state->end - state->start + 1; 467 WARN_ON(range > tree->dirty_bytes); 468 tree->dirty_bytes -= range; 469 } 470 clear_state_cb(tree, state, bits); 471 state->state &= ~bits; 472 if (wake) 473 wake_up(&state->wq); 474 if (delete || state->state == 0) { 475 if (state->tree) { 476 clear_state_cb(tree, state, state->state); 477 rb_erase(&state->rb_node, &tree->state); 478 state->tree = NULL; 479 free_extent_state(state); 480 } else { 481 WARN_ON(1); 482 } 483 } else { 484 merge_state(tree, state); 485 } 486 return ret; 487 } 488 489 /* 490 * clear some bits on a range in the tree. This may require splitting 491 * or inserting elements in the tree, so the gfp mask is used to 492 * indicate which allocations or sleeping are allowed. 493 * 494 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 495 * the given range from the tree regardless of state (ie for truncate). 496 * 497 * the range [start, end] is inclusive. 498 * 499 * This takes the tree lock, and returns < 0 on error, > 0 if any of the 500 * bits were already set, or zero if none of the bits were already set. 501 */ 502 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 503 int bits, int wake, int delete, 504 struct extent_state **cached_state, 505 gfp_t mask) 506 { 507 struct extent_state *state; 508 struct extent_state *cached; 509 struct extent_state *prealloc = NULL; 510 struct rb_node *next_node; 511 struct rb_node *node; 512 u64 last_end; 513 int err; 514 int set = 0; 515 516 again: 517 if (!prealloc && (mask & __GFP_WAIT)) { 518 prealloc = alloc_extent_state(mask); 519 if (!prealloc) 520 return -ENOMEM; 521 } 522 523 spin_lock(&tree->lock); 524 if (cached_state) { 525 cached = *cached_state; 526 *cached_state = NULL; 527 cached_state = NULL; 528 if (cached && cached->tree && cached->start == start) { 529 atomic_dec(&cached->refs); 530 state = cached; 531 goto hit_next; 532 } 533 free_extent_state(cached); 534 } 535 /* 536 * this search will find the extents that end after 537 * our range starts 538 */ 539 node = tree_search(tree, start); 540 if (!node) 541 goto out; 542 state = rb_entry(node, struct extent_state, rb_node); 543 hit_next: 544 if (state->start > end) 545 goto out; 546 WARN_ON(state->end < start); 547 last_end = state->end; 548 549 /* 550 * | ---- desired range ---- | 551 * | state | or 552 * | ------------- state -------------- | 553 * 554 * We need to split the extent we found, and may flip 555 * bits on second half. 556 * 557 * If the extent we found extends past our range, we 558 * just split and search again. It'll get split again 559 * the next time though. 560 * 561 * If the extent we found is inside our range, we clear 562 * the desired bit on it. 563 */ 564 565 if (state->start < start) { 566 if (!prealloc) 567 prealloc = alloc_extent_state(GFP_ATOMIC); 568 err = split_state(tree, state, prealloc, start); 569 BUG_ON(err == -EEXIST); 570 prealloc = NULL; 571 if (err) 572 goto out; 573 if (state->end <= end) { 574 set |= clear_state_bit(tree, state, bits, wake, 575 delete); 576 if (last_end == (u64)-1) 577 goto out; 578 start = last_end + 1; 579 } 580 goto search_again; 581 } 582 /* 583 * | ---- desired range ---- | 584 * | state | 585 * We need to split the extent, and clear the bit 586 * on the first half 587 */ 588 if (state->start <= end && state->end > end) { 589 if (!prealloc) 590 prealloc = alloc_extent_state(GFP_ATOMIC); 591 err = split_state(tree, state, prealloc, end + 1); 592 BUG_ON(err == -EEXIST); 593 if (wake) 594 wake_up(&state->wq); 595 596 set |= clear_state_bit(tree, prealloc, bits, wake, delete); 597 598 prealloc = NULL; 599 goto out; 600 } 601 602 if (state->end < end && prealloc && !need_resched()) 603 next_node = rb_next(&state->rb_node); 604 else 605 next_node = NULL; 606 607 set |= clear_state_bit(tree, state, bits, wake, delete); 608 if (last_end == (u64)-1) 609 goto out; 610 start = last_end + 1; 611 if (start <= end && next_node) { 612 state = rb_entry(next_node, struct extent_state, 613 rb_node); 614 if (state->start == start) 615 goto hit_next; 616 } 617 goto search_again; 618 619 out: 620 spin_unlock(&tree->lock); 621 if (prealloc) 622 free_extent_state(prealloc); 623 624 return set; 625 626 search_again: 627 if (start > end) 628 goto out; 629 spin_unlock(&tree->lock); 630 if (mask & __GFP_WAIT) 631 cond_resched(); 632 goto again; 633 } 634 635 static int wait_on_state(struct extent_io_tree *tree, 636 struct extent_state *state) 637 __releases(tree->lock) 638 __acquires(tree->lock) 639 { 640 DEFINE_WAIT(wait); 641 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 642 spin_unlock(&tree->lock); 643 schedule(); 644 spin_lock(&tree->lock); 645 finish_wait(&state->wq, &wait); 646 return 0; 647 } 648 649 /* 650 * waits for one or more bits to clear on a range in the state tree. 651 * The range [start, end] is inclusive. 652 * The tree lock is taken by this function 653 */ 654 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 655 { 656 struct extent_state *state; 657 struct rb_node *node; 658 659 spin_lock(&tree->lock); 660 again: 661 while (1) { 662 /* 663 * this search will find all the extents that end after 664 * our range starts 665 */ 666 node = tree_search(tree, start); 667 if (!node) 668 break; 669 670 state = rb_entry(node, struct extent_state, rb_node); 671 672 if (state->start > end) 673 goto out; 674 675 if (state->state & bits) { 676 start = state->start; 677 atomic_inc(&state->refs); 678 wait_on_state(tree, state); 679 free_extent_state(state); 680 goto again; 681 } 682 start = state->end + 1; 683 684 if (start > end) 685 break; 686 687 if (need_resched()) { 688 spin_unlock(&tree->lock); 689 cond_resched(); 690 spin_lock(&tree->lock); 691 } 692 } 693 out: 694 spin_unlock(&tree->lock); 695 return 0; 696 } 697 698 static int set_state_bits(struct extent_io_tree *tree, 699 struct extent_state *state, 700 int bits) 701 { 702 int ret; 703 704 ret = set_state_cb(tree, state, bits); 705 if (ret) 706 return ret; 707 708 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 709 u64 range = state->end - state->start + 1; 710 tree->dirty_bytes += range; 711 } 712 state->state |= bits; 713 714 return 0; 715 } 716 717 static void cache_state(struct extent_state *state, 718 struct extent_state **cached_ptr) 719 { 720 if (cached_ptr && !(*cached_ptr)) { 721 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 722 *cached_ptr = state; 723 atomic_inc(&state->refs); 724 } 725 } 726 } 727 728 /* 729 * set some bits on a range in the tree. This may require allocations or 730 * sleeping, so the gfp mask is used to indicate what is allowed. 731 * 732 * If any of the exclusive bits are set, this will fail with -EEXIST if some 733 * part of the range already has the desired bits set. The start of the 734 * existing range is returned in failed_start in this case. 735 * 736 * [start, end] is inclusive This takes the tree lock. 737 */ 738 739 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 740 int bits, int exclusive_bits, u64 *failed_start, 741 struct extent_state **cached_state, 742 gfp_t mask) 743 { 744 struct extent_state *state; 745 struct extent_state *prealloc = NULL; 746 struct rb_node *node; 747 int err = 0; 748 u64 last_start; 749 u64 last_end; 750 751 again: 752 if (!prealloc && (mask & __GFP_WAIT)) { 753 prealloc = alloc_extent_state(mask); 754 if (!prealloc) 755 return -ENOMEM; 756 } 757 758 spin_lock(&tree->lock); 759 if (cached_state && *cached_state) { 760 state = *cached_state; 761 if (state->start == start && state->tree) { 762 node = &state->rb_node; 763 goto hit_next; 764 } 765 } 766 /* 767 * this search will find all the extents that end after 768 * our range starts. 769 */ 770 node = tree_search(tree, start); 771 if (!node) { 772 err = insert_state(tree, prealloc, start, end, bits); 773 prealloc = NULL; 774 BUG_ON(err == -EEXIST); 775 goto out; 776 } 777 state = rb_entry(node, struct extent_state, rb_node); 778 hit_next: 779 last_start = state->start; 780 last_end = state->end; 781 782 /* 783 * | ---- desired range ---- | 784 * | state | 785 * 786 * Just lock what we found and keep going 787 */ 788 if (state->start == start && state->end <= end) { 789 struct rb_node *next_node; 790 if (state->state & exclusive_bits) { 791 *failed_start = state->start; 792 err = -EEXIST; 793 goto out; 794 } 795 796 err = set_state_bits(tree, state, bits); 797 if (err) 798 goto out; 799 800 cache_state(state, cached_state); 801 merge_state(tree, state); 802 if (last_end == (u64)-1) 803 goto out; 804 805 start = last_end + 1; 806 if (start < end && prealloc && !need_resched()) { 807 next_node = rb_next(node); 808 if (next_node) { 809 state = rb_entry(next_node, struct extent_state, 810 rb_node); 811 if (state->start == start) 812 goto hit_next; 813 } 814 } 815 goto search_again; 816 } 817 818 /* 819 * | ---- desired range ---- | 820 * | state | 821 * or 822 * | ------------- state -------------- | 823 * 824 * We need to split the extent we found, and may flip bits on 825 * second half. 826 * 827 * If the extent we found extends past our 828 * range, we just split and search again. It'll get split 829 * again the next time though. 830 * 831 * If the extent we found is inside our range, we set the 832 * desired bit on it. 833 */ 834 if (state->start < start) { 835 if (state->state & exclusive_bits) { 836 *failed_start = start; 837 err = -EEXIST; 838 goto out; 839 } 840 err = split_state(tree, state, prealloc, start); 841 BUG_ON(err == -EEXIST); 842 prealloc = NULL; 843 if (err) 844 goto out; 845 if (state->end <= end) { 846 err = set_state_bits(tree, state, bits); 847 if (err) 848 goto out; 849 cache_state(state, cached_state); 850 merge_state(tree, state); 851 if (last_end == (u64)-1) 852 goto out; 853 start = last_end + 1; 854 } 855 goto search_again; 856 } 857 /* 858 * | ---- desired range ---- | 859 * | state | or | state | 860 * 861 * There's a hole, we need to insert something in it and 862 * ignore the extent we found. 863 */ 864 if (state->start > start) { 865 u64 this_end; 866 if (end < last_start) 867 this_end = end; 868 else 869 this_end = last_start - 1; 870 err = insert_state(tree, prealloc, start, this_end, 871 bits); 872 BUG_ON(err == -EEXIST); 873 if (err) { 874 prealloc = NULL; 875 goto out; 876 } 877 cache_state(prealloc, cached_state); 878 prealloc = NULL; 879 start = this_end + 1; 880 goto search_again; 881 } 882 /* 883 * | ---- desired range ---- | 884 * | state | 885 * We need to split the extent, and set the bit 886 * on the first half 887 */ 888 if (state->start <= end && state->end > end) { 889 if (state->state & exclusive_bits) { 890 *failed_start = start; 891 err = -EEXIST; 892 goto out; 893 } 894 err = split_state(tree, state, prealloc, end + 1); 895 BUG_ON(err == -EEXIST); 896 897 err = set_state_bits(tree, prealloc, bits); 898 if (err) { 899 prealloc = NULL; 900 goto out; 901 } 902 cache_state(prealloc, cached_state); 903 merge_state(tree, prealloc); 904 prealloc = NULL; 905 goto out; 906 } 907 908 goto search_again; 909 910 out: 911 spin_unlock(&tree->lock); 912 if (prealloc) 913 free_extent_state(prealloc); 914 915 return err; 916 917 search_again: 918 if (start > end) 919 goto out; 920 spin_unlock(&tree->lock); 921 if (mask & __GFP_WAIT) 922 cond_resched(); 923 goto again; 924 } 925 926 /* wrappers around set/clear extent bit */ 927 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 928 gfp_t mask) 929 { 930 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, 931 NULL, mask); 932 } 933 934 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 935 int bits, gfp_t mask) 936 { 937 return set_extent_bit(tree, start, end, bits, 0, NULL, 938 NULL, mask); 939 } 940 941 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 942 int bits, gfp_t mask) 943 { 944 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 945 } 946 947 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 948 gfp_t mask) 949 { 950 return set_extent_bit(tree, start, end, 951 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE, 952 0, NULL, NULL, mask); 953 } 954 955 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 956 gfp_t mask) 957 { 958 return clear_extent_bit(tree, start, end, 959 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, 960 NULL, mask); 961 } 962 963 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 964 gfp_t mask) 965 { 966 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, 967 NULL, mask); 968 } 969 970 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 971 gfp_t mask) 972 { 973 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, 974 NULL, mask); 975 } 976 977 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 978 gfp_t mask) 979 { 980 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, 981 NULL, mask); 982 } 983 984 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, 985 u64 end, gfp_t mask) 986 { 987 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 988 NULL, mask); 989 } 990 991 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) 992 { 993 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); 994 } 995 996 /* 997 * either insert or lock state struct between start and end use mask to tell 998 * us if waiting is desired. 999 */ 1000 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1001 int bits, struct extent_state **cached_state, gfp_t mask) 1002 { 1003 int err; 1004 u64 failed_start; 1005 while (1) { 1006 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1007 EXTENT_LOCKED, &failed_start, 1008 cached_state, mask); 1009 if (err == -EEXIST && (mask & __GFP_WAIT)) { 1010 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1011 start = failed_start; 1012 } else { 1013 break; 1014 } 1015 WARN_ON(start > end); 1016 } 1017 return err; 1018 } 1019 1020 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) 1021 { 1022 return lock_extent_bits(tree, start, end, 0, NULL, mask); 1023 } 1024 1025 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, 1026 gfp_t mask) 1027 { 1028 int err; 1029 u64 failed_start; 1030 1031 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1032 &failed_start, NULL, mask); 1033 if (err == -EEXIST) { 1034 if (failed_start > start) 1035 clear_extent_bit(tree, start, failed_start - 1, 1036 EXTENT_LOCKED, 1, 0, NULL, mask); 1037 return 0; 1038 } 1039 return 1; 1040 } 1041 1042 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1043 struct extent_state **cached, gfp_t mask) 1044 { 1045 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1046 mask); 1047 } 1048 1049 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, 1050 gfp_t mask) 1051 { 1052 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1053 mask); 1054 } 1055 1056 /* 1057 * helper function to set pages and extents in the tree dirty 1058 */ 1059 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) 1060 { 1061 unsigned long index = start >> PAGE_CACHE_SHIFT; 1062 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1063 struct page *page; 1064 1065 while (index <= end_index) { 1066 page = find_get_page(tree->mapping, index); 1067 BUG_ON(!page); 1068 __set_page_dirty_nobuffers(page); 1069 page_cache_release(page); 1070 index++; 1071 } 1072 return 0; 1073 } 1074 1075 /* 1076 * helper function to set both pages and extents in the tree writeback 1077 */ 1078 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1079 { 1080 unsigned long index = start >> PAGE_CACHE_SHIFT; 1081 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1082 struct page *page; 1083 1084 while (index <= end_index) { 1085 page = find_get_page(tree->mapping, index); 1086 BUG_ON(!page); 1087 set_page_writeback(page); 1088 page_cache_release(page); 1089 index++; 1090 } 1091 return 0; 1092 } 1093 1094 /* 1095 * find the first offset in the io tree with 'bits' set. zero is 1096 * returned if we find something, and *start_ret and *end_ret are 1097 * set to reflect the state struct that was found. 1098 * 1099 * If nothing was found, 1 is returned, < 0 on error 1100 */ 1101 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1102 u64 *start_ret, u64 *end_ret, int bits) 1103 { 1104 struct rb_node *node; 1105 struct extent_state *state; 1106 int ret = 1; 1107 1108 spin_lock(&tree->lock); 1109 /* 1110 * this search will find all the extents that end after 1111 * our range starts. 1112 */ 1113 node = tree_search(tree, start); 1114 if (!node) 1115 goto out; 1116 1117 while (1) { 1118 state = rb_entry(node, struct extent_state, rb_node); 1119 if (state->end >= start && (state->state & bits)) { 1120 *start_ret = state->start; 1121 *end_ret = state->end; 1122 ret = 0; 1123 break; 1124 } 1125 node = rb_next(node); 1126 if (!node) 1127 break; 1128 } 1129 out: 1130 spin_unlock(&tree->lock); 1131 return ret; 1132 } 1133 1134 /* find the first state struct with 'bits' set after 'start', and 1135 * return it. tree->lock must be held. NULL will returned if 1136 * nothing was found after 'start' 1137 */ 1138 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1139 u64 start, int bits) 1140 { 1141 struct rb_node *node; 1142 struct extent_state *state; 1143 1144 /* 1145 * this search will find all the extents that end after 1146 * our range starts. 1147 */ 1148 node = tree_search(tree, start); 1149 if (!node) 1150 goto out; 1151 1152 while (1) { 1153 state = rb_entry(node, struct extent_state, rb_node); 1154 if (state->end >= start && (state->state & bits)) 1155 return state; 1156 1157 node = rb_next(node); 1158 if (!node) 1159 break; 1160 } 1161 out: 1162 return NULL; 1163 } 1164 1165 /* 1166 * find a contiguous range of bytes in the file marked as delalloc, not 1167 * more than 'max_bytes'. start and end are used to return the range, 1168 * 1169 * 1 is returned if we find something, 0 if nothing was in the tree 1170 */ 1171 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1172 u64 *start, u64 *end, u64 max_bytes) 1173 { 1174 struct rb_node *node; 1175 struct extent_state *state; 1176 u64 cur_start = *start; 1177 u64 found = 0; 1178 u64 total_bytes = 0; 1179 1180 spin_lock(&tree->lock); 1181 1182 /* 1183 * this search will find all the extents that end after 1184 * our range starts. 1185 */ 1186 node = tree_search(tree, cur_start); 1187 if (!node) { 1188 if (!found) 1189 *end = (u64)-1; 1190 goto out; 1191 } 1192 1193 while (1) { 1194 state = rb_entry(node, struct extent_state, rb_node); 1195 if (found && (state->start != cur_start || 1196 (state->state & EXTENT_BOUNDARY))) { 1197 goto out; 1198 } 1199 if (!(state->state & EXTENT_DELALLOC)) { 1200 if (!found) 1201 *end = state->end; 1202 goto out; 1203 } 1204 if (!found) 1205 *start = state->start; 1206 found++; 1207 *end = state->end; 1208 cur_start = state->end + 1; 1209 node = rb_next(node); 1210 if (!node) 1211 break; 1212 total_bytes += state->end - state->start + 1; 1213 if (total_bytes >= max_bytes) 1214 break; 1215 } 1216 out: 1217 spin_unlock(&tree->lock); 1218 return found; 1219 } 1220 1221 static noinline int __unlock_for_delalloc(struct inode *inode, 1222 struct page *locked_page, 1223 u64 start, u64 end) 1224 { 1225 int ret; 1226 struct page *pages[16]; 1227 unsigned long index = start >> PAGE_CACHE_SHIFT; 1228 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1229 unsigned long nr_pages = end_index - index + 1; 1230 int i; 1231 1232 if (index == locked_page->index && end_index == index) 1233 return 0; 1234 1235 while (nr_pages > 0) { 1236 ret = find_get_pages_contig(inode->i_mapping, index, 1237 min_t(unsigned long, nr_pages, 1238 ARRAY_SIZE(pages)), pages); 1239 for (i = 0; i < ret; i++) { 1240 if (pages[i] != locked_page) 1241 unlock_page(pages[i]); 1242 page_cache_release(pages[i]); 1243 } 1244 nr_pages -= ret; 1245 index += ret; 1246 cond_resched(); 1247 } 1248 return 0; 1249 } 1250 1251 static noinline int lock_delalloc_pages(struct inode *inode, 1252 struct page *locked_page, 1253 u64 delalloc_start, 1254 u64 delalloc_end) 1255 { 1256 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1257 unsigned long start_index = index; 1258 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1259 unsigned long pages_locked = 0; 1260 struct page *pages[16]; 1261 unsigned long nrpages; 1262 int ret; 1263 int i; 1264 1265 /* the caller is responsible for locking the start index */ 1266 if (index == locked_page->index && index == end_index) 1267 return 0; 1268 1269 /* skip the page at the start index */ 1270 nrpages = end_index - index + 1; 1271 while (nrpages > 0) { 1272 ret = find_get_pages_contig(inode->i_mapping, index, 1273 min_t(unsigned long, 1274 nrpages, ARRAY_SIZE(pages)), pages); 1275 if (ret == 0) { 1276 ret = -EAGAIN; 1277 goto done; 1278 } 1279 /* now we have an array of pages, lock them all */ 1280 for (i = 0; i < ret; i++) { 1281 /* 1282 * the caller is taking responsibility for 1283 * locked_page 1284 */ 1285 if (pages[i] != locked_page) { 1286 lock_page(pages[i]); 1287 if (!PageDirty(pages[i]) || 1288 pages[i]->mapping != inode->i_mapping) { 1289 ret = -EAGAIN; 1290 unlock_page(pages[i]); 1291 page_cache_release(pages[i]); 1292 goto done; 1293 } 1294 } 1295 page_cache_release(pages[i]); 1296 pages_locked++; 1297 } 1298 nrpages -= ret; 1299 index += ret; 1300 cond_resched(); 1301 } 1302 ret = 0; 1303 done: 1304 if (ret && pages_locked) { 1305 __unlock_for_delalloc(inode, locked_page, 1306 delalloc_start, 1307 ((u64)(start_index + pages_locked - 1)) << 1308 PAGE_CACHE_SHIFT); 1309 } 1310 return ret; 1311 } 1312 1313 /* 1314 * find a contiguous range of bytes in the file marked as delalloc, not 1315 * more than 'max_bytes'. start and end are used to return the range, 1316 * 1317 * 1 is returned if we find something, 0 if nothing was in the tree 1318 */ 1319 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1320 struct extent_io_tree *tree, 1321 struct page *locked_page, 1322 u64 *start, u64 *end, 1323 u64 max_bytes) 1324 { 1325 u64 delalloc_start; 1326 u64 delalloc_end; 1327 u64 found; 1328 struct extent_state *cached_state = NULL; 1329 int ret; 1330 int loops = 0; 1331 1332 again: 1333 /* step one, find a bunch of delalloc bytes starting at start */ 1334 delalloc_start = *start; 1335 delalloc_end = 0; 1336 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1337 max_bytes); 1338 if (!found || delalloc_end <= *start) { 1339 *start = delalloc_start; 1340 *end = delalloc_end; 1341 return found; 1342 } 1343 1344 /* 1345 * start comes from the offset of locked_page. We have to lock 1346 * pages in order, so we can't process delalloc bytes before 1347 * locked_page 1348 */ 1349 if (delalloc_start < *start) 1350 delalloc_start = *start; 1351 1352 /* 1353 * make sure to limit the number of pages we try to lock down 1354 * if we're looping. 1355 */ 1356 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1357 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1358 1359 /* step two, lock all the pages after the page that has start */ 1360 ret = lock_delalloc_pages(inode, locked_page, 1361 delalloc_start, delalloc_end); 1362 if (ret == -EAGAIN) { 1363 /* some of the pages are gone, lets avoid looping by 1364 * shortening the size of the delalloc range we're searching 1365 */ 1366 free_extent_state(cached_state); 1367 if (!loops) { 1368 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1369 max_bytes = PAGE_CACHE_SIZE - offset; 1370 loops = 1; 1371 goto again; 1372 } else { 1373 found = 0; 1374 goto out_failed; 1375 } 1376 } 1377 BUG_ON(ret); 1378 1379 /* step three, lock the state bits for the whole range */ 1380 lock_extent_bits(tree, delalloc_start, delalloc_end, 1381 0, &cached_state, GFP_NOFS); 1382 1383 /* then test to make sure it is all still delalloc */ 1384 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1385 EXTENT_DELALLOC, 1, cached_state); 1386 if (!ret) { 1387 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1388 &cached_state, GFP_NOFS); 1389 __unlock_for_delalloc(inode, locked_page, 1390 delalloc_start, delalloc_end); 1391 cond_resched(); 1392 goto again; 1393 } 1394 free_extent_state(cached_state); 1395 *start = delalloc_start; 1396 *end = delalloc_end; 1397 out_failed: 1398 return found; 1399 } 1400 1401 int extent_clear_unlock_delalloc(struct inode *inode, 1402 struct extent_io_tree *tree, 1403 u64 start, u64 end, struct page *locked_page, 1404 int unlock_pages, 1405 int clear_unlock, 1406 int clear_delalloc, int clear_dirty, 1407 int set_writeback, 1408 int end_writeback, 1409 int set_private2) 1410 { 1411 int ret; 1412 struct page *pages[16]; 1413 unsigned long index = start >> PAGE_CACHE_SHIFT; 1414 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1415 unsigned long nr_pages = end_index - index + 1; 1416 int i; 1417 int clear_bits = 0; 1418 1419 if (clear_unlock) 1420 clear_bits |= EXTENT_LOCKED; 1421 if (clear_dirty) 1422 clear_bits |= EXTENT_DIRTY; 1423 1424 if (clear_delalloc) 1425 clear_bits |= EXTENT_DELALLOC; 1426 1427 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1428 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback || 1429 set_private2)) 1430 return 0; 1431 1432 while (nr_pages > 0) { 1433 ret = find_get_pages_contig(inode->i_mapping, index, 1434 min_t(unsigned long, 1435 nr_pages, ARRAY_SIZE(pages)), pages); 1436 for (i = 0; i < ret; i++) { 1437 1438 if (set_private2) 1439 SetPagePrivate2(pages[i]); 1440 1441 if (pages[i] == locked_page) { 1442 page_cache_release(pages[i]); 1443 continue; 1444 } 1445 if (clear_dirty) 1446 clear_page_dirty_for_io(pages[i]); 1447 if (set_writeback) 1448 set_page_writeback(pages[i]); 1449 if (end_writeback) 1450 end_page_writeback(pages[i]); 1451 if (unlock_pages) 1452 unlock_page(pages[i]); 1453 page_cache_release(pages[i]); 1454 } 1455 nr_pages -= ret; 1456 index += ret; 1457 cond_resched(); 1458 } 1459 return 0; 1460 } 1461 1462 /* 1463 * count the number of bytes in the tree that have a given bit(s) 1464 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1465 * cached. The total number found is returned. 1466 */ 1467 u64 count_range_bits(struct extent_io_tree *tree, 1468 u64 *start, u64 search_end, u64 max_bytes, 1469 unsigned long bits) 1470 { 1471 struct rb_node *node; 1472 struct extent_state *state; 1473 u64 cur_start = *start; 1474 u64 total_bytes = 0; 1475 int found = 0; 1476 1477 if (search_end <= cur_start) { 1478 WARN_ON(1); 1479 return 0; 1480 } 1481 1482 spin_lock(&tree->lock); 1483 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1484 total_bytes = tree->dirty_bytes; 1485 goto out; 1486 } 1487 /* 1488 * this search will find all the extents that end after 1489 * our range starts. 1490 */ 1491 node = tree_search(tree, cur_start); 1492 if (!node) 1493 goto out; 1494 1495 while (1) { 1496 state = rb_entry(node, struct extent_state, rb_node); 1497 if (state->start > search_end) 1498 break; 1499 if (state->end >= cur_start && (state->state & bits)) { 1500 total_bytes += min(search_end, state->end) + 1 - 1501 max(cur_start, state->start); 1502 if (total_bytes >= max_bytes) 1503 break; 1504 if (!found) { 1505 *start = state->start; 1506 found = 1; 1507 } 1508 } 1509 node = rb_next(node); 1510 if (!node) 1511 break; 1512 } 1513 out: 1514 spin_unlock(&tree->lock); 1515 return total_bytes; 1516 } 1517 1518 /* 1519 * set the private field for a given byte offset in the tree. If there isn't 1520 * an extent_state there already, this does nothing. 1521 */ 1522 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1523 { 1524 struct rb_node *node; 1525 struct extent_state *state; 1526 int ret = 0; 1527 1528 spin_lock(&tree->lock); 1529 /* 1530 * this search will find all the extents that end after 1531 * our range starts. 1532 */ 1533 node = tree_search(tree, start); 1534 if (!node) { 1535 ret = -ENOENT; 1536 goto out; 1537 } 1538 state = rb_entry(node, struct extent_state, rb_node); 1539 if (state->start != start) { 1540 ret = -ENOENT; 1541 goto out; 1542 } 1543 state->private = private; 1544 out: 1545 spin_unlock(&tree->lock); 1546 return ret; 1547 } 1548 1549 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1550 { 1551 struct rb_node *node; 1552 struct extent_state *state; 1553 int ret = 0; 1554 1555 spin_lock(&tree->lock); 1556 /* 1557 * this search will find all the extents that end after 1558 * our range starts. 1559 */ 1560 node = tree_search(tree, start); 1561 if (!node) { 1562 ret = -ENOENT; 1563 goto out; 1564 } 1565 state = rb_entry(node, struct extent_state, rb_node); 1566 if (state->start != start) { 1567 ret = -ENOENT; 1568 goto out; 1569 } 1570 *private = state->private; 1571 out: 1572 spin_unlock(&tree->lock); 1573 return ret; 1574 } 1575 1576 /* 1577 * searches a range in the state tree for a given mask. 1578 * If 'filled' == 1, this returns 1 only if every extent in the tree 1579 * has the bits set. Otherwise, 1 is returned if any bit in the 1580 * range is found set. 1581 */ 1582 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1583 int bits, int filled, struct extent_state *cached) 1584 { 1585 struct extent_state *state = NULL; 1586 struct rb_node *node; 1587 int bitset = 0; 1588 1589 spin_lock(&tree->lock); 1590 if (cached && cached->tree && cached->start == start) 1591 node = &cached->rb_node; 1592 else 1593 node = tree_search(tree, start); 1594 while (node && start <= end) { 1595 state = rb_entry(node, struct extent_state, rb_node); 1596 1597 if (filled && state->start > start) { 1598 bitset = 0; 1599 break; 1600 } 1601 1602 if (state->start > end) 1603 break; 1604 1605 if (state->state & bits) { 1606 bitset = 1; 1607 if (!filled) 1608 break; 1609 } else if (filled) { 1610 bitset = 0; 1611 break; 1612 } 1613 1614 if (state->end == (u64)-1) 1615 break; 1616 1617 start = state->end + 1; 1618 if (start > end) 1619 break; 1620 node = rb_next(node); 1621 if (!node) { 1622 if (filled) 1623 bitset = 0; 1624 break; 1625 } 1626 } 1627 spin_unlock(&tree->lock); 1628 return bitset; 1629 } 1630 1631 /* 1632 * helper function to set a given page up to date if all the 1633 * extents in the tree for that page are up to date 1634 */ 1635 static int check_page_uptodate(struct extent_io_tree *tree, 1636 struct page *page) 1637 { 1638 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1639 u64 end = start + PAGE_CACHE_SIZE - 1; 1640 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1641 SetPageUptodate(page); 1642 return 0; 1643 } 1644 1645 /* 1646 * helper function to unlock a page if all the extents in the tree 1647 * for that page are unlocked 1648 */ 1649 static int check_page_locked(struct extent_io_tree *tree, 1650 struct page *page) 1651 { 1652 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1653 u64 end = start + PAGE_CACHE_SIZE - 1; 1654 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) 1655 unlock_page(page); 1656 return 0; 1657 } 1658 1659 /* 1660 * helper function to end page writeback if all the extents 1661 * in the tree for that page are done with writeback 1662 */ 1663 static int check_page_writeback(struct extent_io_tree *tree, 1664 struct page *page) 1665 { 1666 end_page_writeback(page); 1667 return 0; 1668 } 1669 1670 /* lots and lots of room for performance fixes in the end_bio funcs */ 1671 1672 /* 1673 * after a writepage IO is done, we need to: 1674 * clear the uptodate bits on error 1675 * clear the writeback bits in the extent tree for this IO 1676 * end_page_writeback if the page has no more pending IO 1677 * 1678 * Scheduling is not allowed, so the extent state tree is expected 1679 * to have one and only one object corresponding to this IO. 1680 */ 1681 static void end_bio_extent_writepage(struct bio *bio, int err) 1682 { 1683 int uptodate = err == 0; 1684 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1685 struct extent_io_tree *tree; 1686 u64 start; 1687 u64 end; 1688 int whole_page; 1689 int ret; 1690 1691 do { 1692 struct page *page = bvec->bv_page; 1693 tree = &BTRFS_I(page->mapping->host)->io_tree; 1694 1695 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1696 bvec->bv_offset; 1697 end = start + bvec->bv_len - 1; 1698 1699 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1700 whole_page = 1; 1701 else 1702 whole_page = 0; 1703 1704 if (--bvec >= bio->bi_io_vec) 1705 prefetchw(&bvec->bv_page->flags); 1706 if (tree->ops && tree->ops->writepage_end_io_hook) { 1707 ret = tree->ops->writepage_end_io_hook(page, start, 1708 end, NULL, uptodate); 1709 if (ret) 1710 uptodate = 0; 1711 } 1712 1713 if (!uptodate && tree->ops && 1714 tree->ops->writepage_io_failed_hook) { 1715 ret = tree->ops->writepage_io_failed_hook(bio, page, 1716 start, end, NULL); 1717 if (ret == 0) { 1718 uptodate = (err == 0); 1719 continue; 1720 } 1721 } 1722 1723 if (!uptodate) { 1724 clear_extent_uptodate(tree, start, end, GFP_NOFS); 1725 ClearPageUptodate(page); 1726 SetPageError(page); 1727 } 1728 1729 if (whole_page) 1730 end_page_writeback(page); 1731 else 1732 check_page_writeback(tree, page); 1733 } while (bvec >= bio->bi_io_vec); 1734 1735 bio_put(bio); 1736 } 1737 1738 /* 1739 * after a readpage IO is done, we need to: 1740 * clear the uptodate bits on error 1741 * set the uptodate bits if things worked 1742 * set the page up to date if all extents in the tree are uptodate 1743 * clear the lock bit in the extent tree 1744 * unlock the page if there are no other extents locked for it 1745 * 1746 * Scheduling is not allowed, so the extent state tree is expected 1747 * to have one and only one object corresponding to this IO. 1748 */ 1749 static void end_bio_extent_readpage(struct bio *bio, int err) 1750 { 1751 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1752 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1753 struct extent_io_tree *tree; 1754 u64 start; 1755 u64 end; 1756 int whole_page; 1757 int ret; 1758 1759 if (err) 1760 uptodate = 0; 1761 1762 do { 1763 struct page *page = bvec->bv_page; 1764 tree = &BTRFS_I(page->mapping->host)->io_tree; 1765 1766 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1767 bvec->bv_offset; 1768 end = start + bvec->bv_len - 1; 1769 1770 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1771 whole_page = 1; 1772 else 1773 whole_page = 0; 1774 1775 if (--bvec >= bio->bi_io_vec) 1776 prefetchw(&bvec->bv_page->flags); 1777 1778 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 1779 ret = tree->ops->readpage_end_io_hook(page, start, end, 1780 NULL); 1781 if (ret) 1782 uptodate = 0; 1783 } 1784 if (!uptodate && tree->ops && 1785 tree->ops->readpage_io_failed_hook) { 1786 ret = tree->ops->readpage_io_failed_hook(bio, page, 1787 start, end, NULL); 1788 if (ret == 0) { 1789 uptodate = 1790 test_bit(BIO_UPTODATE, &bio->bi_flags); 1791 if (err) 1792 uptodate = 0; 1793 continue; 1794 } 1795 } 1796 1797 if (uptodate) { 1798 set_extent_uptodate(tree, start, end, 1799 GFP_ATOMIC); 1800 } 1801 unlock_extent(tree, start, end, GFP_ATOMIC); 1802 1803 if (whole_page) { 1804 if (uptodate) { 1805 SetPageUptodate(page); 1806 } else { 1807 ClearPageUptodate(page); 1808 SetPageError(page); 1809 } 1810 unlock_page(page); 1811 } else { 1812 if (uptodate) { 1813 check_page_uptodate(tree, page); 1814 } else { 1815 ClearPageUptodate(page); 1816 SetPageError(page); 1817 } 1818 check_page_locked(tree, page); 1819 } 1820 } while (bvec >= bio->bi_io_vec); 1821 1822 bio_put(bio); 1823 } 1824 1825 /* 1826 * IO done from prepare_write is pretty simple, we just unlock 1827 * the structs in the extent tree when done, and set the uptodate bits 1828 * as appropriate. 1829 */ 1830 static void end_bio_extent_preparewrite(struct bio *bio, int err) 1831 { 1832 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1833 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1834 struct extent_io_tree *tree; 1835 u64 start; 1836 u64 end; 1837 1838 do { 1839 struct page *page = bvec->bv_page; 1840 tree = &BTRFS_I(page->mapping->host)->io_tree; 1841 1842 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1843 bvec->bv_offset; 1844 end = start + bvec->bv_len - 1; 1845 1846 if (--bvec >= bio->bi_io_vec) 1847 prefetchw(&bvec->bv_page->flags); 1848 1849 if (uptodate) { 1850 set_extent_uptodate(tree, start, end, GFP_ATOMIC); 1851 } else { 1852 ClearPageUptodate(page); 1853 SetPageError(page); 1854 } 1855 1856 unlock_extent(tree, start, end, GFP_ATOMIC); 1857 1858 } while (bvec >= bio->bi_io_vec); 1859 1860 bio_put(bio); 1861 } 1862 1863 static struct bio * 1864 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 1865 gfp_t gfp_flags) 1866 { 1867 struct bio *bio; 1868 1869 bio = bio_alloc(gfp_flags, nr_vecs); 1870 1871 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 1872 while (!bio && (nr_vecs /= 2)) 1873 bio = bio_alloc(gfp_flags, nr_vecs); 1874 } 1875 1876 if (bio) { 1877 bio->bi_size = 0; 1878 bio->bi_bdev = bdev; 1879 bio->bi_sector = first_sector; 1880 } 1881 return bio; 1882 } 1883 1884 static int submit_one_bio(int rw, struct bio *bio, int mirror_num, 1885 unsigned long bio_flags) 1886 { 1887 int ret = 0; 1888 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1889 struct page *page = bvec->bv_page; 1890 struct extent_io_tree *tree = bio->bi_private; 1891 u64 start; 1892 u64 end; 1893 1894 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 1895 end = start + bvec->bv_len - 1; 1896 1897 bio->bi_private = NULL; 1898 1899 bio_get(bio); 1900 1901 if (tree->ops && tree->ops->submit_bio_hook) 1902 tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 1903 mirror_num, bio_flags); 1904 else 1905 submit_bio(rw, bio); 1906 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 1907 ret = -EOPNOTSUPP; 1908 bio_put(bio); 1909 return ret; 1910 } 1911 1912 static int submit_extent_page(int rw, struct extent_io_tree *tree, 1913 struct page *page, sector_t sector, 1914 size_t size, unsigned long offset, 1915 struct block_device *bdev, 1916 struct bio **bio_ret, 1917 unsigned long max_pages, 1918 bio_end_io_t end_io_func, 1919 int mirror_num, 1920 unsigned long prev_bio_flags, 1921 unsigned long bio_flags) 1922 { 1923 int ret = 0; 1924 struct bio *bio; 1925 int nr; 1926 int contig = 0; 1927 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 1928 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 1929 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 1930 1931 if (bio_ret && *bio_ret) { 1932 bio = *bio_ret; 1933 if (old_compressed) 1934 contig = bio->bi_sector == sector; 1935 else 1936 contig = bio->bi_sector + (bio->bi_size >> 9) == 1937 sector; 1938 1939 if (prev_bio_flags != bio_flags || !contig || 1940 (tree->ops && tree->ops->merge_bio_hook && 1941 tree->ops->merge_bio_hook(page, offset, page_size, bio, 1942 bio_flags)) || 1943 bio_add_page(bio, page, page_size, offset) < page_size) { 1944 ret = submit_one_bio(rw, bio, mirror_num, 1945 prev_bio_flags); 1946 bio = NULL; 1947 } else { 1948 return 0; 1949 } 1950 } 1951 if (this_compressed) 1952 nr = BIO_MAX_PAGES; 1953 else 1954 nr = bio_get_nr_vecs(bdev); 1955 1956 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 1957 1958 bio_add_page(bio, page, page_size, offset); 1959 bio->bi_end_io = end_io_func; 1960 bio->bi_private = tree; 1961 1962 if (bio_ret) 1963 *bio_ret = bio; 1964 else 1965 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 1966 1967 return ret; 1968 } 1969 1970 void set_page_extent_mapped(struct page *page) 1971 { 1972 if (!PagePrivate(page)) { 1973 SetPagePrivate(page); 1974 page_cache_get(page); 1975 set_page_private(page, EXTENT_PAGE_PRIVATE); 1976 } 1977 } 1978 1979 static void set_page_extent_head(struct page *page, unsigned long len) 1980 { 1981 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); 1982 } 1983 1984 /* 1985 * basic readpage implementation. Locked extent state structs are inserted 1986 * into the tree that are removed when the IO is done (by the end_io 1987 * handlers) 1988 */ 1989 static int __extent_read_full_page(struct extent_io_tree *tree, 1990 struct page *page, 1991 get_extent_t *get_extent, 1992 struct bio **bio, int mirror_num, 1993 unsigned long *bio_flags) 1994 { 1995 struct inode *inode = page->mapping->host; 1996 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1997 u64 page_end = start + PAGE_CACHE_SIZE - 1; 1998 u64 end; 1999 u64 cur = start; 2000 u64 extent_offset; 2001 u64 last_byte = i_size_read(inode); 2002 u64 block_start; 2003 u64 cur_end; 2004 sector_t sector; 2005 struct extent_map *em; 2006 struct block_device *bdev; 2007 int ret; 2008 int nr = 0; 2009 size_t page_offset = 0; 2010 size_t iosize; 2011 size_t disk_io_size; 2012 size_t blocksize = inode->i_sb->s_blocksize; 2013 unsigned long this_bio_flag = 0; 2014 2015 set_page_extent_mapped(page); 2016 2017 end = page_end; 2018 lock_extent(tree, start, end, GFP_NOFS); 2019 2020 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2021 char *userpage; 2022 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2023 2024 if (zero_offset) { 2025 iosize = PAGE_CACHE_SIZE - zero_offset; 2026 userpage = kmap_atomic(page, KM_USER0); 2027 memset(userpage + zero_offset, 0, iosize); 2028 flush_dcache_page(page); 2029 kunmap_atomic(userpage, KM_USER0); 2030 } 2031 } 2032 while (cur <= end) { 2033 if (cur >= last_byte) { 2034 char *userpage; 2035 iosize = PAGE_CACHE_SIZE - page_offset; 2036 userpage = kmap_atomic(page, KM_USER0); 2037 memset(userpage + page_offset, 0, iosize); 2038 flush_dcache_page(page); 2039 kunmap_atomic(userpage, KM_USER0); 2040 set_extent_uptodate(tree, cur, cur + iosize - 1, 2041 GFP_NOFS); 2042 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2043 break; 2044 } 2045 em = get_extent(inode, page, page_offset, cur, 2046 end - cur + 1, 0); 2047 if (IS_ERR(em) || !em) { 2048 SetPageError(page); 2049 unlock_extent(tree, cur, end, GFP_NOFS); 2050 break; 2051 } 2052 extent_offset = cur - em->start; 2053 BUG_ON(extent_map_end(em) <= cur); 2054 BUG_ON(end < cur); 2055 2056 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 2057 this_bio_flag = EXTENT_BIO_COMPRESSED; 2058 2059 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2060 cur_end = min(extent_map_end(em) - 1, end); 2061 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2062 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2063 disk_io_size = em->block_len; 2064 sector = em->block_start >> 9; 2065 } else { 2066 sector = (em->block_start + extent_offset) >> 9; 2067 disk_io_size = iosize; 2068 } 2069 bdev = em->bdev; 2070 block_start = em->block_start; 2071 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2072 block_start = EXTENT_MAP_HOLE; 2073 free_extent_map(em); 2074 em = NULL; 2075 2076 /* we've found a hole, just zero and go on */ 2077 if (block_start == EXTENT_MAP_HOLE) { 2078 char *userpage; 2079 userpage = kmap_atomic(page, KM_USER0); 2080 memset(userpage + page_offset, 0, iosize); 2081 flush_dcache_page(page); 2082 kunmap_atomic(userpage, KM_USER0); 2083 2084 set_extent_uptodate(tree, cur, cur + iosize - 1, 2085 GFP_NOFS); 2086 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2087 cur = cur + iosize; 2088 page_offset += iosize; 2089 continue; 2090 } 2091 /* the get_extent function already copied into the page */ 2092 if (test_range_bit(tree, cur, cur_end, 2093 EXTENT_UPTODATE, 1, NULL)) { 2094 check_page_uptodate(tree, page); 2095 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2096 cur = cur + iosize; 2097 page_offset += iosize; 2098 continue; 2099 } 2100 /* we have an inline extent but it didn't get marked up 2101 * to date. Error out 2102 */ 2103 if (block_start == EXTENT_MAP_INLINE) { 2104 SetPageError(page); 2105 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2106 cur = cur + iosize; 2107 page_offset += iosize; 2108 continue; 2109 } 2110 2111 ret = 0; 2112 if (tree->ops && tree->ops->readpage_io_hook) { 2113 ret = tree->ops->readpage_io_hook(page, cur, 2114 cur + iosize - 1); 2115 } 2116 if (!ret) { 2117 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2118 pnr -= page->index; 2119 ret = submit_extent_page(READ, tree, page, 2120 sector, disk_io_size, page_offset, 2121 bdev, bio, pnr, 2122 end_bio_extent_readpage, mirror_num, 2123 *bio_flags, 2124 this_bio_flag); 2125 nr++; 2126 *bio_flags = this_bio_flag; 2127 } 2128 if (ret) 2129 SetPageError(page); 2130 cur = cur + iosize; 2131 page_offset += iosize; 2132 } 2133 if (!nr) { 2134 if (!PageError(page)) 2135 SetPageUptodate(page); 2136 unlock_page(page); 2137 } 2138 return 0; 2139 } 2140 2141 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2142 get_extent_t *get_extent) 2143 { 2144 struct bio *bio = NULL; 2145 unsigned long bio_flags = 0; 2146 int ret; 2147 2148 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, 2149 &bio_flags); 2150 if (bio) 2151 submit_one_bio(READ, bio, 0, bio_flags); 2152 return ret; 2153 } 2154 2155 static noinline void update_nr_written(struct page *page, 2156 struct writeback_control *wbc, 2157 unsigned long nr_written) 2158 { 2159 wbc->nr_to_write -= nr_written; 2160 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2161 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2162 page->mapping->writeback_index = page->index + nr_written; 2163 } 2164 2165 /* 2166 * the writepage semantics are similar to regular writepage. extent 2167 * records are inserted to lock ranges in the tree, and as dirty areas 2168 * are found, they are marked writeback. Then the lock bits are removed 2169 * and the end_io handler clears the writeback ranges 2170 */ 2171 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2172 void *data) 2173 { 2174 struct inode *inode = page->mapping->host; 2175 struct extent_page_data *epd = data; 2176 struct extent_io_tree *tree = epd->tree; 2177 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2178 u64 delalloc_start; 2179 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2180 u64 end; 2181 u64 cur = start; 2182 u64 extent_offset; 2183 u64 last_byte = i_size_read(inode); 2184 u64 block_start; 2185 u64 iosize; 2186 u64 unlock_start; 2187 sector_t sector; 2188 struct extent_state *cached_state = NULL; 2189 struct extent_map *em; 2190 struct block_device *bdev; 2191 int ret; 2192 int nr = 0; 2193 size_t pg_offset = 0; 2194 size_t blocksize; 2195 loff_t i_size = i_size_read(inode); 2196 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2197 u64 nr_delalloc; 2198 u64 delalloc_end; 2199 int page_started; 2200 int compressed; 2201 int write_flags; 2202 unsigned long nr_written = 0; 2203 2204 if (wbc->sync_mode == WB_SYNC_ALL) 2205 write_flags = WRITE_SYNC_PLUG; 2206 else 2207 write_flags = WRITE; 2208 2209 WARN_ON(!PageLocked(page)); 2210 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2211 if (page->index > end_index || 2212 (page->index == end_index && !pg_offset)) { 2213 page->mapping->a_ops->invalidatepage(page, 0); 2214 unlock_page(page); 2215 return 0; 2216 } 2217 2218 if (page->index == end_index) { 2219 char *userpage; 2220 2221 userpage = kmap_atomic(page, KM_USER0); 2222 memset(userpage + pg_offset, 0, 2223 PAGE_CACHE_SIZE - pg_offset); 2224 kunmap_atomic(userpage, KM_USER0); 2225 flush_dcache_page(page); 2226 } 2227 pg_offset = 0; 2228 2229 set_page_extent_mapped(page); 2230 2231 delalloc_start = start; 2232 delalloc_end = 0; 2233 page_started = 0; 2234 if (!epd->extent_locked) { 2235 u64 delalloc_to_write = 0; 2236 /* 2237 * make sure the wbc mapping index is at least updated 2238 * to this page. 2239 */ 2240 update_nr_written(page, wbc, 0); 2241 2242 while (delalloc_end < page_end) { 2243 nr_delalloc = find_lock_delalloc_range(inode, tree, 2244 page, 2245 &delalloc_start, 2246 &delalloc_end, 2247 128 * 1024 * 1024); 2248 if (nr_delalloc == 0) { 2249 delalloc_start = delalloc_end + 1; 2250 continue; 2251 } 2252 tree->ops->fill_delalloc(inode, page, delalloc_start, 2253 delalloc_end, &page_started, 2254 &nr_written); 2255 /* 2256 * delalloc_end is already one less than the total 2257 * length, so we don't subtract one from 2258 * PAGE_CACHE_SIZE 2259 */ 2260 delalloc_to_write += (delalloc_end - delalloc_start + 2261 PAGE_CACHE_SIZE) >> 2262 PAGE_CACHE_SHIFT; 2263 delalloc_start = delalloc_end + 1; 2264 } 2265 if (wbc->nr_to_write < delalloc_to_write) { 2266 int thresh = 8192; 2267 2268 if (delalloc_to_write < thresh * 2) 2269 thresh = delalloc_to_write; 2270 wbc->nr_to_write = min_t(u64, delalloc_to_write, 2271 thresh); 2272 } 2273 2274 /* did the fill delalloc function already unlock and start 2275 * the IO? 2276 */ 2277 if (page_started) { 2278 ret = 0; 2279 /* 2280 * we've unlocked the page, so we can't update 2281 * the mapping's writeback index, just update 2282 * nr_to_write. 2283 */ 2284 wbc->nr_to_write -= nr_written; 2285 goto done_unlocked; 2286 } 2287 } 2288 if (tree->ops && tree->ops->writepage_start_hook) { 2289 ret = tree->ops->writepage_start_hook(page, start, 2290 page_end); 2291 if (ret == -EAGAIN) { 2292 redirty_page_for_writepage(wbc, page); 2293 update_nr_written(page, wbc, nr_written); 2294 unlock_page(page); 2295 ret = 0; 2296 goto done_unlocked; 2297 } 2298 } 2299 2300 /* 2301 * we don't want to touch the inode after unlocking the page, 2302 * so we update the mapping writeback index now 2303 */ 2304 update_nr_written(page, wbc, nr_written + 1); 2305 2306 end = page_end; 2307 if (last_byte <= start) { 2308 if (tree->ops && tree->ops->writepage_end_io_hook) 2309 tree->ops->writepage_end_io_hook(page, start, 2310 page_end, NULL, 1); 2311 unlock_start = page_end + 1; 2312 goto done; 2313 } 2314 2315 blocksize = inode->i_sb->s_blocksize; 2316 2317 while (cur <= end) { 2318 if (cur >= last_byte) { 2319 if (tree->ops && tree->ops->writepage_end_io_hook) 2320 tree->ops->writepage_end_io_hook(page, cur, 2321 page_end, NULL, 1); 2322 unlock_start = page_end + 1; 2323 break; 2324 } 2325 em = epd->get_extent(inode, page, pg_offset, cur, 2326 end - cur + 1, 1); 2327 if (IS_ERR(em) || !em) { 2328 SetPageError(page); 2329 break; 2330 } 2331 2332 extent_offset = cur - em->start; 2333 BUG_ON(extent_map_end(em) <= cur); 2334 BUG_ON(end < cur); 2335 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2336 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2337 sector = (em->block_start + extent_offset) >> 9; 2338 bdev = em->bdev; 2339 block_start = em->block_start; 2340 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2341 free_extent_map(em); 2342 em = NULL; 2343 2344 /* 2345 * compressed and inline extents are written through other 2346 * paths in the FS 2347 */ 2348 if (compressed || block_start == EXTENT_MAP_HOLE || 2349 block_start == EXTENT_MAP_INLINE) { 2350 /* 2351 * end_io notification does not happen here for 2352 * compressed extents 2353 */ 2354 if (!compressed && tree->ops && 2355 tree->ops->writepage_end_io_hook) 2356 tree->ops->writepage_end_io_hook(page, cur, 2357 cur + iosize - 1, 2358 NULL, 1); 2359 else if (compressed) { 2360 /* we don't want to end_page_writeback on 2361 * a compressed extent. this happens 2362 * elsewhere 2363 */ 2364 nr++; 2365 } 2366 2367 cur += iosize; 2368 pg_offset += iosize; 2369 unlock_start = cur; 2370 continue; 2371 } 2372 /* leave this out until we have a page_mkwrite call */ 2373 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2374 EXTENT_DIRTY, 0, NULL)) { 2375 cur = cur + iosize; 2376 pg_offset += iosize; 2377 continue; 2378 } 2379 2380 if (tree->ops && tree->ops->writepage_io_hook) { 2381 ret = tree->ops->writepage_io_hook(page, cur, 2382 cur + iosize - 1); 2383 } else { 2384 ret = 0; 2385 } 2386 if (ret) { 2387 SetPageError(page); 2388 } else { 2389 unsigned long max_nr = end_index + 1; 2390 2391 set_range_writeback(tree, cur, cur + iosize - 1); 2392 if (!PageWriteback(page)) { 2393 printk(KERN_ERR "btrfs warning page %lu not " 2394 "writeback, cur %llu end %llu\n", 2395 page->index, (unsigned long long)cur, 2396 (unsigned long long)end); 2397 } 2398 2399 ret = submit_extent_page(write_flags, tree, page, 2400 sector, iosize, pg_offset, 2401 bdev, &epd->bio, max_nr, 2402 end_bio_extent_writepage, 2403 0, 0, 0); 2404 if (ret) 2405 SetPageError(page); 2406 } 2407 cur = cur + iosize; 2408 pg_offset += iosize; 2409 nr++; 2410 } 2411 done: 2412 if (nr == 0) { 2413 /* make sure the mapping tag for page dirty gets cleared */ 2414 set_page_writeback(page); 2415 end_page_writeback(page); 2416 } 2417 unlock_page(page); 2418 2419 done_unlocked: 2420 2421 /* drop our reference on any cached states */ 2422 free_extent_state(cached_state); 2423 return 0; 2424 } 2425 2426 /** 2427 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2428 * @mapping: address space structure to write 2429 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2430 * @writepage: function called for each page 2431 * @data: data passed to writepage function 2432 * 2433 * If a page is already under I/O, write_cache_pages() skips it, even 2434 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2435 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2436 * and msync() need to guarantee that all the data which was dirty at the time 2437 * the call was made get new I/O started against them. If wbc->sync_mode is 2438 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2439 * existing IO to complete. 2440 */ 2441 static int extent_write_cache_pages(struct extent_io_tree *tree, 2442 struct address_space *mapping, 2443 struct writeback_control *wbc, 2444 writepage_t writepage, void *data, 2445 void (*flush_fn)(void *)) 2446 { 2447 int ret = 0; 2448 int done = 0; 2449 int nr_to_write_done = 0; 2450 struct pagevec pvec; 2451 int nr_pages; 2452 pgoff_t index; 2453 pgoff_t end; /* Inclusive */ 2454 int scanned = 0; 2455 int range_whole = 0; 2456 2457 pagevec_init(&pvec, 0); 2458 if (wbc->range_cyclic) { 2459 index = mapping->writeback_index; /* Start from prev offset */ 2460 end = -1; 2461 } else { 2462 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2463 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2464 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2465 range_whole = 1; 2466 scanned = 1; 2467 } 2468 retry: 2469 while (!done && !nr_to_write_done && (index <= end) && 2470 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2471 PAGECACHE_TAG_DIRTY, min(end - index, 2472 (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 2473 unsigned i; 2474 2475 scanned = 1; 2476 for (i = 0; i < nr_pages; i++) { 2477 struct page *page = pvec.pages[i]; 2478 2479 /* 2480 * At this point we hold neither mapping->tree_lock nor 2481 * lock on the page itself: the page may be truncated or 2482 * invalidated (changing page->mapping to NULL), or even 2483 * swizzled back from swapper_space to tmpfs file 2484 * mapping 2485 */ 2486 if (tree->ops && tree->ops->write_cache_pages_lock_hook) 2487 tree->ops->write_cache_pages_lock_hook(page); 2488 else 2489 lock_page(page); 2490 2491 if (unlikely(page->mapping != mapping)) { 2492 unlock_page(page); 2493 continue; 2494 } 2495 2496 if (!wbc->range_cyclic && page->index > end) { 2497 done = 1; 2498 unlock_page(page); 2499 continue; 2500 } 2501 2502 if (wbc->sync_mode != WB_SYNC_NONE) { 2503 if (PageWriteback(page)) 2504 flush_fn(data); 2505 wait_on_page_writeback(page); 2506 } 2507 2508 if (PageWriteback(page) || 2509 !clear_page_dirty_for_io(page)) { 2510 unlock_page(page); 2511 continue; 2512 } 2513 2514 ret = (*writepage)(page, wbc, data); 2515 2516 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 2517 unlock_page(page); 2518 ret = 0; 2519 } 2520 if (ret) 2521 done = 1; 2522 2523 /* 2524 * the filesystem may choose to bump up nr_to_write. 2525 * We have to make sure to honor the new nr_to_write 2526 * at any time 2527 */ 2528 nr_to_write_done = wbc->nr_to_write <= 0; 2529 } 2530 pagevec_release(&pvec); 2531 cond_resched(); 2532 } 2533 if (!scanned && !done) { 2534 /* 2535 * We hit the last page and there is more work to be done: wrap 2536 * back to the start of the file 2537 */ 2538 scanned = 1; 2539 index = 0; 2540 goto retry; 2541 } 2542 return ret; 2543 } 2544 2545 static void flush_epd_write_bio(struct extent_page_data *epd) 2546 { 2547 if (epd->bio) { 2548 if (epd->sync_io) 2549 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0); 2550 else 2551 submit_one_bio(WRITE, epd->bio, 0, 0); 2552 epd->bio = NULL; 2553 } 2554 } 2555 2556 static noinline void flush_write_bio(void *data) 2557 { 2558 struct extent_page_data *epd = data; 2559 flush_epd_write_bio(epd); 2560 } 2561 2562 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 2563 get_extent_t *get_extent, 2564 struct writeback_control *wbc) 2565 { 2566 int ret; 2567 struct address_space *mapping = page->mapping; 2568 struct extent_page_data epd = { 2569 .bio = NULL, 2570 .tree = tree, 2571 .get_extent = get_extent, 2572 .extent_locked = 0, 2573 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2574 }; 2575 struct writeback_control wbc_writepages = { 2576 .bdi = wbc->bdi, 2577 .sync_mode = wbc->sync_mode, 2578 .older_than_this = NULL, 2579 .nr_to_write = 64, 2580 .range_start = page_offset(page) + PAGE_CACHE_SIZE, 2581 .range_end = (loff_t)-1, 2582 }; 2583 2584 ret = __extent_writepage(page, wbc, &epd); 2585 2586 extent_write_cache_pages(tree, mapping, &wbc_writepages, 2587 __extent_writepage, &epd, flush_write_bio); 2588 flush_epd_write_bio(&epd); 2589 return ret; 2590 } 2591 2592 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 2593 u64 start, u64 end, get_extent_t *get_extent, 2594 int mode) 2595 { 2596 int ret = 0; 2597 struct address_space *mapping = inode->i_mapping; 2598 struct page *page; 2599 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 2600 PAGE_CACHE_SHIFT; 2601 2602 struct extent_page_data epd = { 2603 .bio = NULL, 2604 .tree = tree, 2605 .get_extent = get_extent, 2606 .extent_locked = 1, 2607 .sync_io = mode == WB_SYNC_ALL, 2608 }; 2609 struct writeback_control wbc_writepages = { 2610 .bdi = inode->i_mapping->backing_dev_info, 2611 .sync_mode = mode, 2612 .older_than_this = NULL, 2613 .nr_to_write = nr_pages * 2, 2614 .range_start = start, 2615 .range_end = end + 1, 2616 }; 2617 2618 while (start <= end) { 2619 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 2620 if (clear_page_dirty_for_io(page)) 2621 ret = __extent_writepage(page, &wbc_writepages, &epd); 2622 else { 2623 if (tree->ops && tree->ops->writepage_end_io_hook) 2624 tree->ops->writepage_end_io_hook(page, start, 2625 start + PAGE_CACHE_SIZE - 1, 2626 NULL, 1); 2627 unlock_page(page); 2628 } 2629 page_cache_release(page); 2630 start += PAGE_CACHE_SIZE; 2631 } 2632 2633 flush_epd_write_bio(&epd); 2634 return ret; 2635 } 2636 2637 int extent_writepages(struct extent_io_tree *tree, 2638 struct address_space *mapping, 2639 get_extent_t *get_extent, 2640 struct writeback_control *wbc) 2641 { 2642 int ret = 0; 2643 struct extent_page_data epd = { 2644 .bio = NULL, 2645 .tree = tree, 2646 .get_extent = get_extent, 2647 .extent_locked = 0, 2648 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2649 }; 2650 2651 ret = extent_write_cache_pages(tree, mapping, wbc, 2652 __extent_writepage, &epd, 2653 flush_write_bio); 2654 flush_epd_write_bio(&epd); 2655 return ret; 2656 } 2657 2658 int extent_readpages(struct extent_io_tree *tree, 2659 struct address_space *mapping, 2660 struct list_head *pages, unsigned nr_pages, 2661 get_extent_t get_extent) 2662 { 2663 struct bio *bio = NULL; 2664 unsigned page_idx; 2665 struct pagevec pvec; 2666 unsigned long bio_flags = 0; 2667 2668 pagevec_init(&pvec, 0); 2669 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 2670 struct page *page = list_entry(pages->prev, struct page, lru); 2671 2672 prefetchw(&page->flags); 2673 list_del(&page->lru); 2674 /* 2675 * what we want to do here is call add_to_page_cache_lru, 2676 * but that isn't exported, so we reproduce it here 2677 */ 2678 if (!add_to_page_cache(page, mapping, 2679 page->index, GFP_KERNEL)) { 2680 2681 /* open coding of lru_cache_add, also not exported */ 2682 page_cache_get(page); 2683 if (!pagevec_add(&pvec, page)) 2684 __pagevec_lru_add_file(&pvec); 2685 __extent_read_full_page(tree, page, get_extent, 2686 &bio, 0, &bio_flags); 2687 } 2688 page_cache_release(page); 2689 } 2690 if (pagevec_count(&pvec)) 2691 __pagevec_lru_add_file(&pvec); 2692 BUG_ON(!list_empty(pages)); 2693 if (bio) 2694 submit_one_bio(READ, bio, 0, bio_flags); 2695 return 0; 2696 } 2697 2698 /* 2699 * basic invalidatepage code, this waits on any locked or writeback 2700 * ranges corresponding to the page, and then deletes any extent state 2701 * records from the tree 2702 */ 2703 int extent_invalidatepage(struct extent_io_tree *tree, 2704 struct page *page, unsigned long offset) 2705 { 2706 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 2707 u64 end = start + PAGE_CACHE_SIZE - 1; 2708 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 2709 2710 start += (offset + blocksize - 1) & ~(blocksize - 1); 2711 if (start > end) 2712 return 0; 2713 2714 lock_extent(tree, start, end, GFP_NOFS); 2715 wait_on_page_writeback(page); 2716 clear_extent_bit(tree, start, end, 2717 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC, 2718 1, 1, NULL, GFP_NOFS); 2719 return 0; 2720 } 2721 2722 /* 2723 * simple commit_write call, set_range_dirty is used to mark both 2724 * the pages and the extent records as dirty 2725 */ 2726 int extent_commit_write(struct extent_io_tree *tree, 2727 struct inode *inode, struct page *page, 2728 unsigned from, unsigned to) 2729 { 2730 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2731 2732 set_page_extent_mapped(page); 2733 set_page_dirty(page); 2734 2735 if (pos > inode->i_size) { 2736 i_size_write(inode, pos); 2737 mark_inode_dirty(inode); 2738 } 2739 return 0; 2740 } 2741 2742 int extent_prepare_write(struct extent_io_tree *tree, 2743 struct inode *inode, struct page *page, 2744 unsigned from, unsigned to, get_extent_t *get_extent) 2745 { 2746 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 2747 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 2748 u64 block_start; 2749 u64 orig_block_start; 2750 u64 block_end; 2751 u64 cur_end; 2752 struct extent_map *em; 2753 unsigned blocksize = 1 << inode->i_blkbits; 2754 size_t page_offset = 0; 2755 size_t block_off_start; 2756 size_t block_off_end; 2757 int err = 0; 2758 int iocount = 0; 2759 int ret = 0; 2760 int isnew; 2761 2762 set_page_extent_mapped(page); 2763 2764 block_start = (page_start + from) & ~((u64)blocksize - 1); 2765 block_end = (page_start + to - 1) | (blocksize - 1); 2766 orig_block_start = block_start; 2767 2768 lock_extent(tree, page_start, page_end, GFP_NOFS); 2769 while (block_start <= block_end) { 2770 em = get_extent(inode, page, page_offset, block_start, 2771 block_end - block_start + 1, 1); 2772 if (IS_ERR(em) || !em) 2773 goto err; 2774 2775 cur_end = min(block_end, extent_map_end(em) - 1); 2776 block_off_start = block_start & (PAGE_CACHE_SIZE - 1); 2777 block_off_end = block_off_start + blocksize; 2778 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); 2779 2780 if (!PageUptodate(page) && isnew && 2781 (block_off_end > to || block_off_start < from)) { 2782 void *kaddr; 2783 2784 kaddr = kmap_atomic(page, KM_USER0); 2785 if (block_off_end > to) 2786 memset(kaddr + to, 0, block_off_end - to); 2787 if (block_off_start < from) 2788 memset(kaddr + block_off_start, 0, 2789 from - block_off_start); 2790 flush_dcache_page(page); 2791 kunmap_atomic(kaddr, KM_USER0); 2792 } 2793 if ((em->block_start != EXTENT_MAP_HOLE && 2794 em->block_start != EXTENT_MAP_INLINE) && 2795 !isnew && !PageUptodate(page) && 2796 (block_off_end > to || block_off_start < from) && 2797 !test_range_bit(tree, block_start, cur_end, 2798 EXTENT_UPTODATE, 1, NULL)) { 2799 u64 sector; 2800 u64 extent_offset = block_start - em->start; 2801 size_t iosize; 2802 sector = (em->block_start + extent_offset) >> 9; 2803 iosize = (cur_end - block_start + blocksize) & 2804 ~((u64)blocksize - 1); 2805 /* 2806 * we've already got the extent locked, but we 2807 * need to split the state such that our end_bio 2808 * handler can clear the lock. 2809 */ 2810 set_extent_bit(tree, block_start, 2811 block_start + iosize - 1, 2812 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS); 2813 ret = submit_extent_page(READ, tree, page, 2814 sector, iosize, page_offset, em->bdev, 2815 NULL, 1, 2816 end_bio_extent_preparewrite, 0, 2817 0, 0); 2818 iocount++; 2819 block_start = block_start + iosize; 2820 } else { 2821 set_extent_uptodate(tree, block_start, cur_end, 2822 GFP_NOFS); 2823 unlock_extent(tree, block_start, cur_end, GFP_NOFS); 2824 block_start = cur_end + 1; 2825 } 2826 page_offset = block_start & (PAGE_CACHE_SIZE - 1); 2827 free_extent_map(em); 2828 } 2829 if (iocount) { 2830 wait_extent_bit(tree, orig_block_start, 2831 block_end, EXTENT_LOCKED); 2832 } 2833 check_page_uptodate(tree, page); 2834 err: 2835 /* FIXME, zero out newly allocated blocks on error */ 2836 return err; 2837 } 2838 2839 /* 2840 * a helper for releasepage, this tests for areas of the page that 2841 * are locked or under IO and drops the related state bits if it is safe 2842 * to drop the page. 2843 */ 2844 int try_release_extent_state(struct extent_map_tree *map, 2845 struct extent_io_tree *tree, struct page *page, 2846 gfp_t mask) 2847 { 2848 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2849 u64 end = start + PAGE_CACHE_SIZE - 1; 2850 int ret = 1; 2851 2852 if (test_range_bit(tree, start, end, 2853 EXTENT_IOBITS, 0, NULL)) 2854 ret = 0; 2855 else { 2856 if ((mask & GFP_NOFS) == GFP_NOFS) 2857 mask = GFP_NOFS; 2858 /* 2859 * at this point we can safely clear everything except the 2860 * locked bit and the nodatasum bit 2861 */ 2862 clear_extent_bit(tree, start, end, 2863 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 2864 0, 0, NULL, mask); 2865 } 2866 return ret; 2867 } 2868 2869 /* 2870 * a helper for releasepage. As long as there are no locked extents 2871 * in the range corresponding to the page, both state records and extent 2872 * map records are removed 2873 */ 2874 int try_release_extent_mapping(struct extent_map_tree *map, 2875 struct extent_io_tree *tree, struct page *page, 2876 gfp_t mask) 2877 { 2878 struct extent_map *em; 2879 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2880 u64 end = start + PAGE_CACHE_SIZE - 1; 2881 2882 if ((mask & __GFP_WAIT) && 2883 page->mapping->host->i_size > 16 * 1024 * 1024) { 2884 u64 len; 2885 while (start <= end) { 2886 len = end - start + 1; 2887 write_lock(&map->lock); 2888 em = lookup_extent_mapping(map, start, len); 2889 if (!em || IS_ERR(em)) { 2890 write_unlock(&map->lock); 2891 break; 2892 } 2893 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2894 em->start != start) { 2895 write_unlock(&map->lock); 2896 free_extent_map(em); 2897 break; 2898 } 2899 if (!test_range_bit(tree, em->start, 2900 extent_map_end(em) - 1, 2901 EXTENT_LOCKED | EXTENT_WRITEBACK, 2902 0, NULL)) { 2903 remove_extent_mapping(map, em); 2904 /* once for the rb tree */ 2905 free_extent_map(em); 2906 } 2907 start = extent_map_end(em); 2908 write_unlock(&map->lock); 2909 2910 /* once for us */ 2911 free_extent_map(em); 2912 } 2913 } 2914 return try_release_extent_state(map, tree, page, mask); 2915 } 2916 2917 sector_t extent_bmap(struct address_space *mapping, sector_t iblock, 2918 get_extent_t *get_extent) 2919 { 2920 struct inode *inode = mapping->host; 2921 u64 start = iblock << inode->i_blkbits; 2922 sector_t sector = 0; 2923 size_t blksize = (1 << inode->i_blkbits); 2924 struct extent_map *em; 2925 2926 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, 2927 GFP_NOFS); 2928 em = get_extent(inode, NULL, 0, start, blksize, 0); 2929 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1, 2930 GFP_NOFS); 2931 if (!em || IS_ERR(em)) 2932 return 0; 2933 2934 if (em->block_start > EXTENT_MAP_LAST_BYTE) 2935 goto out; 2936 2937 sector = (em->block_start + start - em->start) >> inode->i_blkbits; 2938 out: 2939 free_extent_map(em); 2940 return sector; 2941 } 2942 2943 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2944 __u64 start, __u64 len, get_extent_t *get_extent) 2945 { 2946 int ret; 2947 u64 off = start; 2948 u64 max = start + len; 2949 u32 flags = 0; 2950 u64 disko = 0; 2951 struct extent_map *em = NULL; 2952 int end = 0; 2953 u64 em_start = 0, em_len = 0; 2954 unsigned long emflags; 2955 ret = 0; 2956 2957 if (len == 0) 2958 return -EINVAL; 2959 2960 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len, 2961 GFP_NOFS); 2962 em = get_extent(inode, NULL, 0, off, max - off, 0); 2963 if (!em) 2964 goto out; 2965 if (IS_ERR(em)) { 2966 ret = PTR_ERR(em); 2967 goto out; 2968 } 2969 while (!end) { 2970 off = em->start + em->len; 2971 if (off >= max) 2972 end = 1; 2973 2974 em_start = em->start; 2975 em_len = em->len; 2976 2977 disko = 0; 2978 flags = 0; 2979 2980 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 2981 end = 1; 2982 flags |= FIEMAP_EXTENT_LAST; 2983 } else if (em->block_start == EXTENT_MAP_HOLE) { 2984 flags |= FIEMAP_EXTENT_UNWRITTEN; 2985 } else if (em->block_start == EXTENT_MAP_INLINE) { 2986 flags |= (FIEMAP_EXTENT_DATA_INLINE | 2987 FIEMAP_EXTENT_NOT_ALIGNED); 2988 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 2989 flags |= (FIEMAP_EXTENT_DELALLOC | 2990 FIEMAP_EXTENT_UNKNOWN); 2991 } else { 2992 disko = em->block_start; 2993 } 2994 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 2995 flags |= FIEMAP_EXTENT_ENCODED; 2996 2997 emflags = em->flags; 2998 free_extent_map(em); 2999 em = NULL; 3000 3001 if (!end) { 3002 em = get_extent(inode, NULL, 0, off, max - off, 0); 3003 if (!em) 3004 goto out; 3005 if (IS_ERR(em)) { 3006 ret = PTR_ERR(em); 3007 goto out; 3008 } 3009 emflags = em->flags; 3010 } 3011 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) { 3012 flags |= FIEMAP_EXTENT_LAST; 3013 end = 1; 3014 } 3015 3016 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 3017 em_len, flags); 3018 if (ret) 3019 goto out_free; 3020 } 3021 out_free: 3022 free_extent_map(em); 3023 out: 3024 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len, 3025 GFP_NOFS); 3026 return ret; 3027 } 3028 3029 static inline struct page *extent_buffer_page(struct extent_buffer *eb, 3030 unsigned long i) 3031 { 3032 struct page *p; 3033 struct address_space *mapping; 3034 3035 if (i == 0) 3036 return eb->first_page; 3037 i += eb->start >> PAGE_CACHE_SHIFT; 3038 mapping = eb->first_page->mapping; 3039 if (!mapping) 3040 return NULL; 3041 3042 /* 3043 * extent_buffer_page is only called after pinning the page 3044 * by increasing the reference count. So we know the page must 3045 * be in the radix tree. 3046 */ 3047 rcu_read_lock(); 3048 p = radix_tree_lookup(&mapping->page_tree, i); 3049 rcu_read_unlock(); 3050 3051 return p; 3052 } 3053 3054 static inline unsigned long num_extent_pages(u64 start, u64 len) 3055 { 3056 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 3057 (start >> PAGE_CACHE_SHIFT); 3058 } 3059 3060 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3061 u64 start, 3062 unsigned long len, 3063 gfp_t mask) 3064 { 3065 struct extent_buffer *eb = NULL; 3066 #if LEAK_DEBUG 3067 unsigned long flags; 3068 #endif 3069 3070 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3071 eb->start = start; 3072 eb->len = len; 3073 spin_lock_init(&eb->lock); 3074 init_waitqueue_head(&eb->lock_wq); 3075 3076 #if LEAK_DEBUG 3077 spin_lock_irqsave(&leak_lock, flags); 3078 list_add(&eb->leak_list, &buffers); 3079 spin_unlock_irqrestore(&leak_lock, flags); 3080 #endif 3081 atomic_set(&eb->refs, 1); 3082 3083 return eb; 3084 } 3085 3086 static void __free_extent_buffer(struct extent_buffer *eb) 3087 { 3088 #if LEAK_DEBUG 3089 unsigned long flags; 3090 spin_lock_irqsave(&leak_lock, flags); 3091 list_del(&eb->leak_list); 3092 spin_unlock_irqrestore(&leak_lock, flags); 3093 #endif 3094 kmem_cache_free(extent_buffer_cache, eb); 3095 } 3096 3097 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 3098 u64 start, unsigned long len, 3099 struct page *page0, 3100 gfp_t mask) 3101 { 3102 unsigned long num_pages = num_extent_pages(start, len); 3103 unsigned long i; 3104 unsigned long index = start >> PAGE_CACHE_SHIFT; 3105 struct extent_buffer *eb; 3106 struct extent_buffer *exists = NULL; 3107 struct page *p; 3108 struct address_space *mapping = tree->mapping; 3109 int uptodate = 1; 3110 3111 spin_lock(&tree->buffer_lock); 3112 eb = buffer_search(tree, start); 3113 if (eb) { 3114 atomic_inc(&eb->refs); 3115 spin_unlock(&tree->buffer_lock); 3116 mark_page_accessed(eb->first_page); 3117 return eb; 3118 } 3119 spin_unlock(&tree->buffer_lock); 3120 3121 eb = __alloc_extent_buffer(tree, start, len, mask); 3122 if (!eb) 3123 return NULL; 3124 3125 if (page0) { 3126 eb->first_page = page0; 3127 i = 1; 3128 index++; 3129 page_cache_get(page0); 3130 mark_page_accessed(page0); 3131 set_page_extent_mapped(page0); 3132 set_page_extent_head(page0, len); 3133 uptodate = PageUptodate(page0); 3134 } else { 3135 i = 0; 3136 } 3137 for (; i < num_pages; i++, index++) { 3138 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); 3139 if (!p) { 3140 WARN_ON(1); 3141 goto free_eb; 3142 } 3143 set_page_extent_mapped(p); 3144 mark_page_accessed(p); 3145 if (i == 0) { 3146 eb->first_page = p; 3147 set_page_extent_head(p, len); 3148 } else { 3149 set_page_private(p, EXTENT_PAGE_PRIVATE); 3150 } 3151 if (!PageUptodate(p)) 3152 uptodate = 0; 3153 unlock_page(p); 3154 } 3155 if (uptodate) 3156 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3157 3158 spin_lock(&tree->buffer_lock); 3159 exists = buffer_tree_insert(tree, start, &eb->rb_node); 3160 if (exists) { 3161 /* add one reference for the caller */ 3162 atomic_inc(&exists->refs); 3163 spin_unlock(&tree->buffer_lock); 3164 goto free_eb; 3165 } 3166 spin_unlock(&tree->buffer_lock); 3167 3168 /* add one reference for the tree */ 3169 atomic_inc(&eb->refs); 3170 return eb; 3171 3172 free_eb: 3173 if (!atomic_dec_and_test(&eb->refs)) 3174 return exists; 3175 for (index = 1; index < i; index++) 3176 page_cache_release(extent_buffer_page(eb, index)); 3177 page_cache_release(extent_buffer_page(eb, 0)); 3178 __free_extent_buffer(eb); 3179 return exists; 3180 } 3181 3182 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 3183 u64 start, unsigned long len, 3184 gfp_t mask) 3185 { 3186 struct extent_buffer *eb; 3187 3188 spin_lock(&tree->buffer_lock); 3189 eb = buffer_search(tree, start); 3190 if (eb) 3191 atomic_inc(&eb->refs); 3192 spin_unlock(&tree->buffer_lock); 3193 3194 if (eb) 3195 mark_page_accessed(eb->first_page); 3196 3197 return eb; 3198 } 3199 3200 void free_extent_buffer(struct extent_buffer *eb) 3201 { 3202 if (!eb) 3203 return; 3204 3205 if (!atomic_dec_and_test(&eb->refs)) 3206 return; 3207 3208 WARN_ON(1); 3209 } 3210 3211 int clear_extent_buffer_dirty(struct extent_io_tree *tree, 3212 struct extent_buffer *eb) 3213 { 3214 unsigned long i; 3215 unsigned long num_pages; 3216 struct page *page; 3217 3218 num_pages = num_extent_pages(eb->start, eb->len); 3219 3220 for (i = 0; i < num_pages; i++) { 3221 page = extent_buffer_page(eb, i); 3222 if (!PageDirty(page)) 3223 continue; 3224 3225 lock_page(page); 3226 if (i == 0) 3227 set_page_extent_head(page, eb->len); 3228 else 3229 set_page_private(page, EXTENT_PAGE_PRIVATE); 3230 3231 clear_page_dirty_for_io(page); 3232 spin_lock_irq(&page->mapping->tree_lock); 3233 if (!PageDirty(page)) { 3234 radix_tree_tag_clear(&page->mapping->page_tree, 3235 page_index(page), 3236 PAGECACHE_TAG_DIRTY); 3237 } 3238 spin_unlock_irq(&page->mapping->tree_lock); 3239 unlock_page(page); 3240 } 3241 return 0; 3242 } 3243 3244 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, 3245 struct extent_buffer *eb) 3246 { 3247 return wait_on_extent_writeback(tree, eb->start, 3248 eb->start + eb->len - 1); 3249 } 3250 3251 int set_extent_buffer_dirty(struct extent_io_tree *tree, 3252 struct extent_buffer *eb) 3253 { 3254 unsigned long i; 3255 unsigned long num_pages; 3256 int was_dirty = 0; 3257 3258 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3259 num_pages = num_extent_pages(eb->start, eb->len); 3260 for (i = 0; i < num_pages; i++) 3261 __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); 3262 return was_dirty; 3263 } 3264 3265 int clear_extent_buffer_uptodate(struct extent_io_tree *tree, 3266 struct extent_buffer *eb) 3267 { 3268 unsigned long i; 3269 struct page *page; 3270 unsigned long num_pages; 3271 3272 num_pages = num_extent_pages(eb->start, eb->len); 3273 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3274 3275 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3276 GFP_NOFS); 3277 for (i = 0; i < num_pages; i++) { 3278 page = extent_buffer_page(eb, i); 3279 if (page) 3280 ClearPageUptodate(page); 3281 } 3282 return 0; 3283 } 3284 3285 int set_extent_buffer_uptodate(struct extent_io_tree *tree, 3286 struct extent_buffer *eb) 3287 { 3288 unsigned long i; 3289 struct page *page; 3290 unsigned long num_pages; 3291 3292 num_pages = num_extent_pages(eb->start, eb->len); 3293 3294 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3295 GFP_NOFS); 3296 for (i = 0; i < num_pages; i++) { 3297 page = extent_buffer_page(eb, i); 3298 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || 3299 ((i == num_pages - 1) && 3300 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { 3301 check_page_uptodate(tree, page); 3302 continue; 3303 } 3304 SetPageUptodate(page); 3305 } 3306 return 0; 3307 } 3308 3309 int extent_range_uptodate(struct extent_io_tree *tree, 3310 u64 start, u64 end) 3311 { 3312 struct page *page; 3313 int ret; 3314 int pg_uptodate = 1; 3315 int uptodate; 3316 unsigned long index; 3317 3318 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL); 3319 if (ret) 3320 return 1; 3321 while (start <= end) { 3322 index = start >> PAGE_CACHE_SHIFT; 3323 page = find_get_page(tree->mapping, index); 3324 uptodate = PageUptodate(page); 3325 page_cache_release(page); 3326 if (!uptodate) { 3327 pg_uptodate = 0; 3328 break; 3329 } 3330 start += PAGE_CACHE_SIZE; 3331 } 3332 return pg_uptodate; 3333 } 3334 3335 int extent_buffer_uptodate(struct extent_io_tree *tree, 3336 struct extent_buffer *eb) 3337 { 3338 int ret = 0; 3339 unsigned long num_pages; 3340 unsigned long i; 3341 struct page *page; 3342 int pg_uptodate = 1; 3343 3344 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3345 return 1; 3346 3347 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3348 EXTENT_UPTODATE, 1, NULL); 3349 if (ret) 3350 return ret; 3351 3352 num_pages = num_extent_pages(eb->start, eb->len); 3353 for (i = 0; i < num_pages; i++) { 3354 page = extent_buffer_page(eb, i); 3355 if (!PageUptodate(page)) { 3356 pg_uptodate = 0; 3357 break; 3358 } 3359 } 3360 return pg_uptodate; 3361 } 3362 3363 int read_extent_buffer_pages(struct extent_io_tree *tree, 3364 struct extent_buffer *eb, 3365 u64 start, int wait, 3366 get_extent_t *get_extent, int mirror_num) 3367 { 3368 unsigned long i; 3369 unsigned long start_i; 3370 struct page *page; 3371 int err; 3372 int ret = 0; 3373 int locked_pages = 0; 3374 int all_uptodate = 1; 3375 int inc_all_pages = 0; 3376 unsigned long num_pages; 3377 struct bio *bio = NULL; 3378 unsigned long bio_flags = 0; 3379 3380 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3381 return 0; 3382 3383 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3384 EXTENT_UPTODATE, 1, NULL)) { 3385 return 0; 3386 } 3387 3388 if (start) { 3389 WARN_ON(start < eb->start); 3390 start_i = (start >> PAGE_CACHE_SHIFT) - 3391 (eb->start >> PAGE_CACHE_SHIFT); 3392 } else { 3393 start_i = 0; 3394 } 3395 3396 num_pages = num_extent_pages(eb->start, eb->len); 3397 for (i = start_i; i < num_pages; i++) { 3398 page = extent_buffer_page(eb, i); 3399 if (!wait) { 3400 if (!trylock_page(page)) 3401 goto unlock_exit; 3402 } else { 3403 lock_page(page); 3404 } 3405 locked_pages++; 3406 if (!PageUptodate(page)) 3407 all_uptodate = 0; 3408 } 3409 if (all_uptodate) { 3410 if (start_i == 0) 3411 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3412 goto unlock_exit; 3413 } 3414 3415 for (i = start_i; i < num_pages; i++) { 3416 page = extent_buffer_page(eb, i); 3417 if (inc_all_pages) 3418 page_cache_get(page); 3419 if (!PageUptodate(page)) { 3420 if (start_i == 0) 3421 inc_all_pages = 1; 3422 ClearPageError(page); 3423 err = __extent_read_full_page(tree, page, 3424 get_extent, &bio, 3425 mirror_num, &bio_flags); 3426 if (err) 3427 ret = err; 3428 } else { 3429 unlock_page(page); 3430 } 3431 } 3432 3433 if (bio) 3434 submit_one_bio(READ, bio, mirror_num, bio_flags); 3435 3436 if (ret || !wait) 3437 return ret; 3438 3439 for (i = start_i; i < num_pages; i++) { 3440 page = extent_buffer_page(eb, i); 3441 wait_on_page_locked(page); 3442 if (!PageUptodate(page)) 3443 ret = -EIO; 3444 } 3445 3446 if (!ret) 3447 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3448 return ret; 3449 3450 unlock_exit: 3451 i = start_i; 3452 while (locked_pages > 0) { 3453 page = extent_buffer_page(eb, i); 3454 i++; 3455 unlock_page(page); 3456 locked_pages--; 3457 } 3458 return ret; 3459 } 3460 3461 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 3462 unsigned long start, 3463 unsigned long len) 3464 { 3465 size_t cur; 3466 size_t offset; 3467 struct page *page; 3468 char *kaddr; 3469 char *dst = (char *)dstv; 3470 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3471 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3472 3473 WARN_ON(start > eb->len); 3474 WARN_ON(start + len > eb->start + eb->len); 3475 3476 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3477 3478 while (len > 0) { 3479 page = extent_buffer_page(eb, i); 3480 3481 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3482 kaddr = kmap_atomic(page, KM_USER1); 3483 memcpy(dst, kaddr + offset, cur); 3484 kunmap_atomic(kaddr, KM_USER1); 3485 3486 dst += cur; 3487 len -= cur; 3488 offset = 0; 3489 i++; 3490 } 3491 } 3492 3493 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 3494 unsigned long min_len, char **token, char **map, 3495 unsigned long *map_start, 3496 unsigned long *map_len, int km) 3497 { 3498 size_t offset = start & (PAGE_CACHE_SIZE - 1); 3499 char *kaddr; 3500 struct page *p; 3501 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3502 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3503 unsigned long end_i = (start_offset + start + min_len - 1) >> 3504 PAGE_CACHE_SHIFT; 3505 3506 if (i != end_i) 3507 return -EINVAL; 3508 3509 if (i == 0) { 3510 offset = start_offset; 3511 *map_start = 0; 3512 } else { 3513 offset = 0; 3514 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 3515 } 3516 3517 if (start + min_len > eb->len) { 3518 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 3519 "wanted %lu %lu\n", (unsigned long long)eb->start, 3520 eb->len, start, min_len); 3521 WARN_ON(1); 3522 } 3523 3524 p = extent_buffer_page(eb, i); 3525 kaddr = kmap_atomic(p, km); 3526 *token = kaddr; 3527 *map = kaddr + offset; 3528 *map_len = PAGE_CACHE_SIZE - offset; 3529 return 0; 3530 } 3531 3532 int map_extent_buffer(struct extent_buffer *eb, unsigned long start, 3533 unsigned long min_len, 3534 char **token, char **map, 3535 unsigned long *map_start, 3536 unsigned long *map_len, int km) 3537 { 3538 int err; 3539 int save = 0; 3540 if (eb->map_token) { 3541 unmap_extent_buffer(eb, eb->map_token, km); 3542 eb->map_token = NULL; 3543 save = 1; 3544 } 3545 err = map_private_extent_buffer(eb, start, min_len, token, map, 3546 map_start, map_len, km); 3547 if (!err && save) { 3548 eb->map_token = *token; 3549 eb->kaddr = *map; 3550 eb->map_start = *map_start; 3551 eb->map_len = *map_len; 3552 } 3553 return err; 3554 } 3555 3556 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) 3557 { 3558 kunmap_atomic(token, km); 3559 } 3560 3561 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 3562 unsigned long start, 3563 unsigned long len) 3564 { 3565 size_t cur; 3566 size_t offset; 3567 struct page *page; 3568 char *kaddr; 3569 char *ptr = (char *)ptrv; 3570 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3571 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3572 int ret = 0; 3573 3574 WARN_ON(start > eb->len); 3575 WARN_ON(start + len > eb->start + eb->len); 3576 3577 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3578 3579 while (len > 0) { 3580 page = extent_buffer_page(eb, i); 3581 3582 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3583 3584 kaddr = kmap_atomic(page, KM_USER0); 3585 ret = memcmp(ptr, kaddr + offset, cur); 3586 kunmap_atomic(kaddr, KM_USER0); 3587 if (ret) 3588 break; 3589 3590 ptr += cur; 3591 len -= cur; 3592 offset = 0; 3593 i++; 3594 } 3595 return ret; 3596 } 3597 3598 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 3599 unsigned long start, unsigned long len) 3600 { 3601 size_t cur; 3602 size_t offset; 3603 struct page *page; 3604 char *kaddr; 3605 char *src = (char *)srcv; 3606 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3607 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3608 3609 WARN_ON(start > eb->len); 3610 WARN_ON(start + len > eb->start + eb->len); 3611 3612 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3613 3614 while (len > 0) { 3615 page = extent_buffer_page(eb, i); 3616 WARN_ON(!PageUptodate(page)); 3617 3618 cur = min(len, PAGE_CACHE_SIZE - offset); 3619 kaddr = kmap_atomic(page, KM_USER1); 3620 memcpy(kaddr + offset, src, cur); 3621 kunmap_atomic(kaddr, KM_USER1); 3622 3623 src += cur; 3624 len -= cur; 3625 offset = 0; 3626 i++; 3627 } 3628 } 3629 3630 void memset_extent_buffer(struct extent_buffer *eb, char c, 3631 unsigned long start, unsigned long len) 3632 { 3633 size_t cur; 3634 size_t offset; 3635 struct page *page; 3636 char *kaddr; 3637 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3638 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3639 3640 WARN_ON(start > eb->len); 3641 WARN_ON(start + len > eb->start + eb->len); 3642 3643 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3644 3645 while (len > 0) { 3646 page = extent_buffer_page(eb, i); 3647 WARN_ON(!PageUptodate(page)); 3648 3649 cur = min(len, PAGE_CACHE_SIZE - offset); 3650 kaddr = kmap_atomic(page, KM_USER0); 3651 memset(kaddr + offset, c, cur); 3652 kunmap_atomic(kaddr, KM_USER0); 3653 3654 len -= cur; 3655 offset = 0; 3656 i++; 3657 } 3658 } 3659 3660 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 3661 unsigned long dst_offset, unsigned long src_offset, 3662 unsigned long len) 3663 { 3664 u64 dst_len = dst->len; 3665 size_t cur; 3666 size_t offset; 3667 struct page *page; 3668 char *kaddr; 3669 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3670 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3671 3672 WARN_ON(src->len != dst_len); 3673 3674 offset = (start_offset + dst_offset) & 3675 ((unsigned long)PAGE_CACHE_SIZE - 1); 3676 3677 while (len > 0) { 3678 page = extent_buffer_page(dst, i); 3679 WARN_ON(!PageUptodate(page)); 3680 3681 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 3682 3683 kaddr = kmap_atomic(page, KM_USER0); 3684 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3685 kunmap_atomic(kaddr, KM_USER0); 3686 3687 src_offset += cur; 3688 len -= cur; 3689 offset = 0; 3690 i++; 3691 } 3692 } 3693 3694 static void move_pages(struct page *dst_page, struct page *src_page, 3695 unsigned long dst_off, unsigned long src_off, 3696 unsigned long len) 3697 { 3698 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3699 if (dst_page == src_page) { 3700 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 3701 } else { 3702 char *src_kaddr = kmap_atomic(src_page, KM_USER1); 3703 char *p = dst_kaddr + dst_off + len; 3704 char *s = src_kaddr + src_off + len; 3705 3706 while (len--) 3707 *--p = *--s; 3708 3709 kunmap_atomic(src_kaddr, KM_USER1); 3710 } 3711 kunmap_atomic(dst_kaddr, KM_USER0); 3712 } 3713 3714 static void copy_pages(struct page *dst_page, struct page *src_page, 3715 unsigned long dst_off, unsigned long src_off, 3716 unsigned long len) 3717 { 3718 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3719 char *src_kaddr; 3720 3721 if (dst_page != src_page) 3722 src_kaddr = kmap_atomic(src_page, KM_USER1); 3723 else 3724 src_kaddr = dst_kaddr; 3725 3726 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 3727 kunmap_atomic(dst_kaddr, KM_USER0); 3728 if (dst_page != src_page) 3729 kunmap_atomic(src_kaddr, KM_USER1); 3730 } 3731 3732 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3733 unsigned long src_offset, unsigned long len) 3734 { 3735 size_t cur; 3736 size_t dst_off_in_page; 3737 size_t src_off_in_page; 3738 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3739 unsigned long dst_i; 3740 unsigned long src_i; 3741 3742 if (src_offset + len > dst->len) { 3743 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3744 "len %lu dst len %lu\n", src_offset, len, dst->len); 3745 BUG_ON(1); 3746 } 3747 if (dst_offset + len > dst->len) { 3748 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3749 "len %lu dst len %lu\n", dst_offset, len, dst->len); 3750 BUG_ON(1); 3751 } 3752 3753 while (len > 0) { 3754 dst_off_in_page = (start_offset + dst_offset) & 3755 ((unsigned long)PAGE_CACHE_SIZE - 1); 3756 src_off_in_page = (start_offset + src_offset) & 3757 ((unsigned long)PAGE_CACHE_SIZE - 1); 3758 3759 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3760 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 3761 3762 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 3763 src_off_in_page)); 3764 cur = min_t(unsigned long, cur, 3765 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 3766 3767 copy_pages(extent_buffer_page(dst, dst_i), 3768 extent_buffer_page(dst, src_i), 3769 dst_off_in_page, src_off_in_page, cur); 3770 3771 src_offset += cur; 3772 dst_offset += cur; 3773 len -= cur; 3774 } 3775 } 3776 3777 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3778 unsigned long src_offset, unsigned long len) 3779 { 3780 size_t cur; 3781 size_t dst_off_in_page; 3782 size_t src_off_in_page; 3783 unsigned long dst_end = dst_offset + len - 1; 3784 unsigned long src_end = src_offset + len - 1; 3785 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3786 unsigned long dst_i; 3787 unsigned long src_i; 3788 3789 if (src_offset + len > dst->len) { 3790 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3791 "len %lu len %lu\n", src_offset, len, dst->len); 3792 BUG_ON(1); 3793 } 3794 if (dst_offset + len > dst->len) { 3795 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3796 "len %lu len %lu\n", dst_offset, len, dst->len); 3797 BUG_ON(1); 3798 } 3799 if (dst_offset < src_offset) { 3800 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 3801 return; 3802 } 3803 while (len > 0) { 3804 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 3805 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 3806 3807 dst_off_in_page = (start_offset + dst_end) & 3808 ((unsigned long)PAGE_CACHE_SIZE - 1); 3809 src_off_in_page = (start_offset + src_end) & 3810 ((unsigned long)PAGE_CACHE_SIZE - 1); 3811 3812 cur = min_t(unsigned long, len, src_off_in_page + 1); 3813 cur = min(cur, dst_off_in_page + 1); 3814 move_pages(extent_buffer_page(dst, dst_i), 3815 extent_buffer_page(dst, src_i), 3816 dst_off_in_page - cur + 1, 3817 src_off_in_page - cur + 1, cur); 3818 3819 dst_end -= cur; 3820 src_end -= cur; 3821 len -= cur; 3822 } 3823 } 3824 3825 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page) 3826 { 3827 u64 start = page_offset(page); 3828 struct extent_buffer *eb; 3829 int ret = 1; 3830 unsigned long i; 3831 unsigned long num_pages; 3832 3833 spin_lock(&tree->buffer_lock); 3834 eb = buffer_search(tree, start); 3835 if (!eb) 3836 goto out; 3837 3838 if (atomic_read(&eb->refs) > 1) { 3839 ret = 0; 3840 goto out; 3841 } 3842 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3843 ret = 0; 3844 goto out; 3845 } 3846 /* at this point we can safely release the extent buffer */ 3847 num_pages = num_extent_pages(eb->start, eb->len); 3848 for (i = 0; i < num_pages; i++) 3849 page_cache_release(extent_buffer_page(eb, i)); 3850 rb_erase(&eb->rb_node, &tree->buffer); 3851 __free_extent_buffer(eb); 3852 out: 3853 spin_unlock(&tree->buffer_lock); 3854 return ret; 3855 } 3856