xref: /openbmc/linux/fs/btrfs/extent_io.c (revision e7253313)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(buffers);
39 static LIST_HEAD(states);
40 
41 static DEFINE_SPINLOCK(leak_lock);
42 
43 static inline
44 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45 {
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&leak_lock, flags);
49 	list_add(new, head);
50 	spin_unlock_irqrestore(&leak_lock, flags);
51 }
52 
53 static inline
54 void btrfs_leak_debug_del(struct list_head *entry)
55 {
56 	unsigned long flags;
57 
58 	spin_lock_irqsave(&leak_lock, flags);
59 	list_del(entry);
60 	spin_unlock_irqrestore(&leak_lock, flags);
61 }
62 
63 static inline void btrfs_extent_buffer_leak_debug_check(void)
64 {
65 	struct extent_buffer *eb;
66 
67 	while (!list_empty(&buffers)) {
68 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
69 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
71 		list_del(&eb->leak_list);
72 		kmem_cache_free(extent_buffer_cache, eb);
73 	}
74 }
75 
76 static inline void btrfs_extent_state_leak_debug_check(void)
77 {
78 	struct extent_state *state;
79 
80 	while (!list_empty(&states)) {
81 		state = list_entry(states.next, struct extent_state, leak_list);
82 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
83 		       state->start, state->end, state->state,
84 		       extent_state_in_tree(state),
85 		       refcount_read(&state->refs));
86 		list_del(&state->leak_list);
87 		kmem_cache_free(extent_state_cache, state);
88 	}
89 }
90 
91 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
92 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
93 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
94 		struct extent_io_tree *tree, u64 start, u64 end)
95 {
96 	struct inode *inode = tree->private_data;
97 	u64 isize;
98 
99 	if (!inode || !is_data_inode(inode))
100 		return;
101 
102 	isize = i_size_read(inode);
103 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
104 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
105 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
106 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
107 	}
108 }
109 #else
110 #define btrfs_leak_debug_add(new, head)	do {} while (0)
111 #define btrfs_leak_debug_del(entry)	do {} while (0)
112 #define btrfs_extent_buffer_leak_debug_check()	do {} while (0)
113 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
114 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
115 #endif
116 
117 struct tree_entry {
118 	u64 start;
119 	u64 end;
120 	struct rb_node rb_node;
121 };
122 
123 struct extent_page_data {
124 	struct bio *bio;
125 	struct extent_io_tree *tree;
126 	/* tells writepage not to lock the state bits for this range
127 	 * it still does the unlocking
128 	 */
129 	unsigned int extent_locked:1;
130 
131 	/* tells the submit_bio code to use REQ_SYNC */
132 	unsigned int sync_io:1;
133 };
134 
135 static int add_extent_changeset(struct extent_state *state, unsigned bits,
136 				 struct extent_changeset *changeset,
137 				 int set)
138 {
139 	int ret;
140 
141 	if (!changeset)
142 		return 0;
143 	if (set && (state->state & bits) == bits)
144 		return 0;
145 	if (!set && (state->state & bits) == 0)
146 		return 0;
147 	changeset->bytes_changed += state->end - state->start + 1;
148 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
149 			GFP_ATOMIC);
150 	return ret;
151 }
152 
153 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
154 				       unsigned long bio_flags)
155 {
156 	blk_status_t ret = 0;
157 	struct extent_io_tree *tree = bio->bi_private;
158 
159 	bio->bi_private = NULL;
160 
161 	if (tree->ops)
162 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
163 						 mirror_num, bio_flags);
164 	else
165 		btrfsic_submit_bio(bio);
166 
167 	return blk_status_to_errno(ret);
168 }
169 
170 /* Cleanup unsubmitted bios */
171 static void end_write_bio(struct extent_page_data *epd, int ret)
172 {
173 	if (epd->bio) {
174 		epd->bio->bi_status = errno_to_blk_status(ret);
175 		bio_endio(epd->bio);
176 		epd->bio = NULL;
177 	}
178 }
179 
180 /*
181  * Submit bio from extent page data via submit_one_bio
182  *
183  * Return 0 if everything is OK.
184  * Return <0 for error.
185  */
186 static int __must_check flush_write_bio(struct extent_page_data *epd)
187 {
188 	int ret = 0;
189 
190 	if (epd->bio) {
191 		ret = submit_one_bio(epd->bio, 0, 0);
192 		/*
193 		 * Clean up of epd->bio is handled by its endio function.
194 		 * And endio is either triggered by successful bio execution
195 		 * or the error handler of submit bio hook.
196 		 * So at this point, no matter what happened, we don't need
197 		 * to clean up epd->bio.
198 		 */
199 		epd->bio = NULL;
200 	}
201 	return ret;
202 }
203 
204 int __init extent_state_cache_init(void)
205 {
206 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
207 			sizeof(struct extent_state), 0,
208 			SLAB_MEM_SPREAD, NULL);
209 	if (!extent_state_cache)
210 		return -ENOMEM;
211 	return 0;
212 }
213 
214 int __init extent_io_init(void)
215 {
216 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
217 			sizeof(struct extent_buffer), 0,
218 			SLAB_MEM_SPREAD, NULL);
219 	if (!extent_buffer_cache)
220 		return -ENOMEM;
221 
222 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
223 			offsetof(struct btrfs_io_bio, bio),
224 			BIOSET_NEED_BVECS))
225 		goto free_buffer_cache;
226 
227 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
228 		goto free_bioset;
229 
230 	return 0;
231 
232 free_bioset:
233 	bioset_exit(&btrfs_bioset);
234 
235 free_buffer_cache:
236 	kmem_cache_destroy(extent_buffer_cache);
237 	extent_buffer_cache = NULL;
238 	return -ENOMEM;
239 }
240 
241 void __cold extent_state_cache_exit(void)
242 {
243 	btrfs_extent_state_leak_debug_check();
244 	kmem_cache_destroy(extent_state_cache);
245 }
246 
247 void __cold extent_io_exit(void)
248 {
249 	btrfs_extent_buffer_leak_debug_check();
250 
251 	/*
252 	 * Make sure all delayed rcu free are flushed before we
253 	 * destroy caches.
254 	 */
255 	rcu_barrier();
256 	kmem_cache_destroy(extent_buffer_cache);
257 	bioset_exit(&btrfs_bioset);
258 }
259 
260 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
261 			 struct extent_io_tree *tree, unsigned int owner,
262 			 void *private_data)
263 {
264 	tree->fs_info = fs_info;
265 	tree->state = RB_ROOT;
266 	tree->ops = NULL;
267 	tree->dirty_bytes = 0;
268 	spin_lock_init(&tree->lock);
269 	tree->private_data = private_data;
270 	tree->owner = owner;
271 }
272 
273 void extent_io_tree_release(struct extent_io_tree *tree)
274 {
275 	spin_lock(&tree->lock);
276 	/*
277 	 * Do a single barrier for the waitqueue_active check here, the state
278 	 * of the waitqueue should not change once extent_io_tree_release is
279 	 * called.
280 	 */
281 	smp_mb();
282 	while (!RB_EMPTY_ROOT(&tree->state)) {
283 		struct rb_node *node;
284 		struct extent_state *state;
285 
286 		node = rb_first(&tree->state);
287 		state = rb_entry(node, struct extent_state, rb_node);
288 		rb_erase(&state->rb_node, &tree->state);
289 		RB_CLEAR_NODE(&state->rb_node);
290 		/*
291 		 * btree io trees aren't supposed to have tasks waiting for
292 		 * changes in the flags of extent states ever.
293 		 */
294 		ASSERT(!waitqueue_active(&state->wq));
295 		free_extent_state(state);
296 
297 		cond_resched_lock(&tree->lock);
298 	}
299 	spin_unlock(&tree->lock);
300 }
301 
302 static struct extent_state *alloc_extent_state(gfp_t mask)
303 {
304 	struct extent_state *state;
305 
306 	/*
307 	 * The given mask might be not appropriate for the slab allocator,
308 	 * drop the unsupported bits
309 	 */
310 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
311 	state = kmem_cache_alloc(extent_state_cache, mask);
312 	if (!state)
313 		return state;
314 	state->state = 0;
315 	state->failrec = NULL;
316 	RB_CLEAR_NODE(&state->rb_node);
317 	btrfs_leak_debug_add(&state->leak_list, &states);
318 	refcount_set(&state->refs, 1);
319 	init_waitqueue_head(&state->wq);
320 	trace_alloc_extent_state(state, mask, _RET_IP_);
321 	return state;
322 }
323 
324 void free_extent_state(struct extent_state *state)
325 {
326 	if (!state)
327 		return;
328 	if (refcount_dec_and_test(&state->refs)) {
329 		WARN_ON(extent_state_in_tree(state));
330 		btrfs_leak_debug_del(&state->leak_list);
331 		trace_free_extent_state(state, _RET_IP_);
332 		kmem_cache_free(extent_state_cache, state);
333 	}
334 }
335 
336 static struct rb_node *tree_insert(struct rb_root *root,
337 				   struct rb_node *search_start,
338 				   u64 offset,
339 				   struct rb_node *node,
340 				   struct rb_node ***p_in,
341 				   struct rb_node **parent_in)
342 {
343 	struct rb_node **p;
344 	struct rb_node *parent = NULL;
345 	struct tree_entry *entry;
346 
347 	if (p_in && parent_in) {
348 		p = *p_in;
349 		parent = *parent_in;
350 		goto do_insert;
351 	}
352 
353 	p = search_start ? &search_start : &root->rb_node;
354 	while (*p) {
355 		parent = *p;
356 		entry = rb_entry(parent, struct tree_entry, rb_node);
357 
358 		if (offset < entry->start)
359 			p = &(*p)->rb_left;
360 		else if (offset > entry->end)
361 			p = &(*p)->rb_right;
362 		else
363 			return parent;
364 	}
365 
366 do_insert:
367 	rb_link_node(node, parent, p);
368 	rb_insert_color(node, root);
369 	return NULL;
370 }
371 
372 /**
373  * __etree_search - searche @tree for an entry that contains @offset. Such
374  * entry would have entry->start <= offset && entry->end >= offset.
375  *
376  * @tree - the tree to search
377  * @offset - offset that should fall within an entry in @tree
378  * @next_ret - pointer to the first entry whose range ends after @offset
379  * @prev - pointer to the first entry whose range begins before @offset
380  * @p_ret - pointer where new node should be anchored (used when inserting an
381  *	    entry in the tree)
382  * @parent_ret - points to entry which would have been the parent of the entry,
383  *               containing @offset
384  *
385  * This function returns a pointer to the entry that contains @offset byte
386  * address. If no such entry exists, then NULL is returned and the other
387  * pointer arguments to the function are filled, otherwise the found entry is
388  * returned and other pointers are left untouched.
389  */
390 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
391 				      struct rb_node **next_ret,
392 				      struct rb_node **prev_ret,
393 				      struct rb_node ***p_ret,
394 				      struct rb_node **parent_ret)
395 {
396 	struct rb_root *root = &tree->state;
397 	struct rb_node **n = &root->rb_node;
398 	struct rb_node *prev = NULL;
399 	struct rb_node *orig_prev = NULL;
400 	struct tree_entry *entry;
401 	struct tree_entry *prev_entry = NULL;
402 
403 	while (*n) {
404 		prev = *n;
405 		entry = rb_entry(prev, struct tree_entry, rb_node);
406 		prev_entry = entry;
407 
408 		if (offset < entry->start)
409 			n = &(*n)->rb_left;
410 		else if (offset > entry->end)
411 			n = &(*n)->rb_right;
412 		else
413 			return *n;
414 	}
415 
416 	if (p_ret)
417 		*p_ret = n;
418 	if (parent_ret)
419 		*parent_ret = prev;
420 
421 	if (next_ret) {
422 		orig_prev = prev;
423 		while (prev && offset > prev_entry->end) {
424 			prev = rb_next(prev);
425 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 		}
427 		*next_ret = prev;
428 		prev = orig_prev;
429 	}
430 
431 	if (prev_ret) {
432 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
433 		while (prev && offset < prev_entry->start) {
434 			prev = rb_prev(prev);
435 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
436 		}
437 		*prev_ret = prev;
438 	}
439 	return NULL;
440 }
441 
442 static inline struct rb_node *
443 tree_search_for_insert(struct extent_io_tree *tree,
444 		       u64 offset,
445 		       struct rb_node ***p_ret,
446 		       struct rb_node **parent_ret)
447 {
448 	struct rb_node *next= NULL;
449 	struct rb_node *ret;
450 
451 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
452 	if (!ret)
453 		return next;
454 	return ret;
455 }
456 
457 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
458 					  u64 offset)
459 {
460 	return tree_search_for_insert(tree, offset, NULL, NULL);
461 }
462 
463 /*
464  * utility function to look for merge candidates inside a given range.
465  * Any extents with matching state are merged together into a single
466  * extent in the tree.  Extents with EXTENT_IO in their state field
467  * are not merged because the end_io handlers need to be able to do
468  * operations on them without sleeping (or doing allocations/splits).
469  *
470  * This should be called with the tree lock held.
471  */
472 static void merge_state(struct extent_io_tree *tree,
473 		        struct extent_state *state)
474 {
475 	struct extent_state *other;
476 	struct rb_node *other_node;
477 
478 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
479 		return;
480 
481 	other_node = rb_prev(&state->rb_node);
482 	if (other_node) {
483 		other = rb_entry(other_node, struct extent_state, rb_node);
484 		if (other->end == state->start - 1 &&
485 		    other->state == state->state) {
486 			if (tree->private_data &&
487 			    is_data_inode(tree->private_data))
488 				btrfs_merge_delalloc_extent(tree->private_data,
489 							    state, other);
490 			state->start = other->start;
491 			rb_erase(&other->rb_node, &tree->state);
492 			RB_CLEAR_NODE(&other->rb_node);
493 			free_extent_state(other);
494 		}
495 	}
496 	other_node = rb_next(&state->rb_node);
497 	if (other_node) {
498 		other = rb_entry(other_node, struct extent_state, rb_node);
499 		if (other->start == state->end + 1 &&
500 		    other->state == state->state) {
501 			if (tree->private_data &&
502 			    is_data_inode(tree->private_data))
503 				btrfs_merge_delalloc_extent(tree->private_data,
504 							    state, other);
505 			state->end = other->end;
506 			rb_erase(&other->rb_node, &tree->state);
507 			RB_CLEAR_NODE(&other->rb_node);
508 			free_extent_state(other);
509 		}
510 	}
511 }
512 
513 static void set_state_bits(struct extent_io_tree *tree,
514 			   struct extent_state *state, unsigned *bits,
515 			   struct extent_changeset *changeset);
516 
517 /*
518  * insert an extent_state struct into the tree.  'bits' are set on the
519  * struct before it is inserted.
520  *
521  * This may return -EEXIST if the extent is already there, in which case the
522  * state struct is freed.
523  *
524  * The tree lock is not taken internally.  This is a utility function and
525  * probably isn't what you want to call (see set/clear_extent_bit).
526  */
527 static int insert_state(struct extent_io_tree *tree,
528 			struct extent_state *state, u64 start, u64 end,
529 			struct rb_node ***p,
530 			struct rb_node **parent,
531 			unsigned *bits, struct extent_changeset *changeset)
532 {
533 	struct rb_node *node;
534 
535 	if (end < start) {
536 		btrfs_err(tree->fs_info,
537 			"insert state: end < start %llu %llu", end, start);
538 		WARN_ON(1);
539 	}
540 	state->start = start;
541 	state->end = end;
542 
543 	set_state_bits(tree, state, bits, changeset);
544 
545 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
546 	if (node) {
547 		struct extent_state *found;
548 		found = rb_entry(node, struct extent_state, rb_node);
549 		btrfs_err(tree->fs_info,
550 		       "found node %llu %llu on insert of %llu %llu",
551 		       found->start, found->end, start, end);
552 		return -EEXIST;
553 	}
554 	merge_state(tree, state);
555 	return 0;
556 }
557 
558 /*
559  * split a given extent state struct in two, inserting the preallocated
560  * struct 'prealloc' as the newly created second half.  'split' indicates an
561  * offset inside 'orig' where it should be split.
562  *
563  * Before calling,
564  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
565  * are two extent state structs in the tree:
566  * prealloc: [orig->start, split - 1]
567  * orig: [ split, orig->end ]
568  *
569  * The tree locks are not taken by this function. They need to be held
570  * by the caller.
571  */
572 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
573 		       struct extent_state *prealloc, u64 split)
574 {
575 	struct rb_node *node;
576 
577 	if (tree->private_data && is_data_inode(tree->private_data))
578 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
579 
580 	prealloc->start = orig->start;
581 	prealloc->end = split - 1;
582 	prealloc->state = orig->state;
583 	orig->start = split;
584 
585 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
586 			   &prealloc->rb_node, NULL, NULL);
587 	if (node) {
588 		free_extent_state(prealloc);
589 		return -EEXIST;
590 	}
591 	return 0;
592 }
593 
594 static struct extent_state *next_state(struct extent_state *state)
595 {
596 	struct rb_node *next = rb_next(&state->rb_node);
597 	if (next)
598 		return rb_entry(next, struct extent_state, rb_node);
599 	else
600 		return NULL;
601 }
602 
603 /*
604  * utility function to clear some bits in an extent state struct.
605  * it will optionally wake up anyone waiting on this state (wake == 1).
606  *
607  * If no bits are set on the state struct after clearing things, the
608  * struct is freed and removed from the tree
609  */
610 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
611 					    struct extent_state *state,
612 					    unsigned *bits, int wake,
613 					    struct extent_changeset *changeset)
614 {
615 	struct extent_state *next;
616 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
617 	int ret;
618 
619 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
620 		u64 range = state->end - state->start + 1;
621 		WARN_ON(range > tree->dirty_bytes);
622 		tree->dirty_bytes -= range;
623 	}
624 
625 	if (tree->private_data && is_data_inode(tree->private_data))
626 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
627 
628 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
629 	BUG_ON(ret < 0);
630 	state->state &= ~bits_to_clear;
631 	if (wake)
632 		wake_up(&state->wq);
633 	if (state->state == 0) {
634 		next = next_state(state);
635 		if (extent_state_in_tree(state)) {
636 			rb_erase(&state->rb_node, &tree->state);
637 			RB_CLEAR_NODE(&state->rb_node);
638 			free_extent_state(state);
639 		} else {
640 			WARN_ON(1);
641 		}
642 	} else {
643 		merge_state(tree, state);
644 		next = next_state(state);
645 	}
646 	return next;
647 }
648 
649 static struct extent_state *
650 alloc_extent_state_atomic(struct extent_state *prealloc)
651 {
652 	if (!prealloc)
653 		prealloc = alloc_extent_state(GFP_ATOMIC);
654 
655 	return prealloc;
656 }
657 
658 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
659 {
660 	struct inode *inode = tree->private_data;
661 
662 	btrfs_panic(btrfs_sb(inode->i_sb), err,
663 	"locking error: extent tree was modified by another thread while locked");
664 }
665 
666 /*
667  * clear some bits on a range in the tree.  This may require splitting
668  * or inserting elements in the tree, so the gfp mask is used to
669  * indicate which allocations or sleeping are allowed.
670  *
671  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672  * the given range from the tree regardless of state (ie for truncate).
673  *
674  * the range [start, end] is inclusive.
675  *
676  * This takes the tree lock, and returns 0 on success and < 0 on error.
677  */
678 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
679 			      unsigned bits, int wake, int delete,
680 			      struct extent_state **cached_state,
681 			      gfp_t mask, struct extent_changeset *changeset)
682 {
683 	struct extent_state *state;
684 	struct extent_state *cached;
685 	struct extent_state *prealloc = NULL;
686 	struct rb_node *node;
687 	u64 last_end;
688 	int err;
689 	int clear = 0;
690 
691 	btrfs_debug_check_extent_io_range(tree, start, end);
692 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
693 
694 	if (bits & EXTENT_DELALLOC)
695 		bits |= EXTENT_NORESERVE;
696 
697 	if (delete)
698 		bits |= ~EXTENT_CTLBITS;
699 
700 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
701 		clear = 1;
702 again:
703 	if (!prealloc && gfpflags_allow_blocking(mask)) {
704 		/*
705 		 * Don't care for allocation failure here because we might end
706 		 * up not needing the pre-allocated extent state at all, which
707 		 * is the case if we only have in the tree extent states that
708 		 * cover our input range and don't cover too any other range.
709 		 * If we end up needing a new extent state we allocate it later.
710 		 */
711 		prealloc = alloc_extent_state(mask);
712 	}
713 
714 	spin_lock(&tree->lock);
715 	if (cached_state) {
716 		cached = *cached_state;
717 
718 		if (clear) {
719 			*cached_state = NULL;
720 			cached_state = NULL;
721 		}
722 
723 		if (cached && extent_state_in_tree(cached) &&
724 		    cached->start <= start && cached->end > start) {
725 			if (clear)
726 				refcount_dec(&cached->refs);
727 			state = cached;
728 			goto hit_next;
729 		}
730 		if (clear)
731 			free_extent_state(cached);
732 	}
733 	/*
734 	 * this search will find the extents that end after
735 	 * our range starts
736 	 */
737 	node = tree_search(tree, start);
738 	if (!node)
739 		goto out;
740 	state = rb_entry(node, struct extent_state, rb_node);
741 hit_next:
742 	if (state->start > end)
743 		goto out;
744 	WARN_ON(state->end < start);
745 	last_end = state->end;
746 
747 	/* the state doesn't have the wanted bits, go ahead */
748 	if (!(state->state & bits)) {
749 		state = next_state(state);
750 		goto next;
751 	}
752 
753 	/*
754 	 *     | ---- desired range ---- |
755 	 *  | state | or
756 	 *  | ------------- state -------------- |
757 	 *
758 	 * We need to split the extent we found, and may flip
759 	 * bits on second half.
760 	 *
761 	 * If the extent we found extends past our range, we
762 	 * just split and search again.  It'll get split again
763 	 * the next time though.
764 	 *
765 	 * If the extent we found is inside our range, we clear
766 	 * the desired bit on it.
767 	 */
768 
769 	if (state->start < start) {
770 		prealloc = alloc_extent_state_atomic(prealloc);
771 		BUG_ON(!prealloc);
772 		err = split_state(tree, state, prealloc, start);
773 		if (err)
774 			extent_io_tree_panic(tree, err);
775 
776 		prealloc = NULL;
777 		if (err)
778 			goto out;
779 		if (state->end <= end) {
780 			state = clear_state_bit(tree, state, &bits, wake,
781 						changeset);
782 			goto next;
783 		}
784 		goto search_again;
785 	}
786 	/*
787 	 * | ---- desired range ---- |
788 	 *                        | state |
789 	 * We need to split the extent, and clear the bit
790 	 * on the first half
791 	 */
792 	if (state->start <= end && state->end > end) {
793 		prealloc = alloc_extent_state_atomic(prealloc);
794 		BUG_ON(!prealloc);
795 		err = split_state(tree, state, prealloc, end + 1);
796 		if (err)
797 			extent_io_tree_panic(tree, err);
798 
799 		if (wake)
800 			wake_up(&state->wq);
801 
802 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
803 
804 		prealloc = NULL;
805 		goto out;
806 	}
807 
808 	state = clear_state_bit(tree, state, &bits, wake, changeset);
809 next:
810 	if (last_end == (u64)-1)
811 		goto out;
812 	start = last_end + 1;
813 	if (start <= end && state && !need_resched())
814 		goto hit_next;
815 
816 search_again:
817 	if (start > end)
818 		goto out;
819 	spin_unlock(&tree->lock);
820 	if (gfpflags_allow_blocking(mask))
821 		cond_resched();
822 	goto again;
823 
824 out:
825 	spin_unlock(&tree->lock);
826 	if (prealloc)
827 		free_extent_state(prealloc);
828 
829 	return 0;
830 
831 }
832 
833 static void wait_on_state(struct extent_io_tree *tree,
834 			  struct extent_state *state)
835 		__releases(tree->lock)
836 		__acquires(tree->lock)
837 {
838 	DEFINE_WAIT(wait);
839 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
840 	spin_unlock(&tree->lock);
841 	schedule();
842 	spin_lock(&tree->lock);
843 	finish_wait(&state->wq, &wait);
844 }
845 
846 /*
847  * waits for one or more bits to clear on a range in the state tree.
848  * The range [start, end] is inclusive.
849  * The tree lock is taken by this function
850  */
851 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
852 			    unsigned long bits)
853 {
854 	struct extent_state *state;
855 	struct rb_node *node;
856 
857 	btrfs_debug_check_extent_io_range(tree, start, end);
858 
859 	spin_lock(&tree->lock);
860 again:
861 	while (1) {
862 		/*
863 		 * this search will find all the extents that end after
864 		 * our range starts
865 		 */
866 		node = tree_search(tree, start);
867 process_node:
868 		if (!node)
869 			break;
870 
871 		state = rb_entry(node, struct extent_state, rb_node);
872 
873 		if (state->start > end)
874 			goto out;
875 
876 		if (state->state & bits) {
877 			start = state->start;
878 			refcount_inc(&state->refs);
879 			wait_on_state(tree, state);
880 			free_extent_state(state);
881 			goto again;
882 		}
883 		start = state->end + 1;
884 
885 		if (start > end)
886 			break;
887 
888 		if (!cond_resched_lock(&tree->lock)) {
889 			node = rb_next(node);
890 			goto process_node;
891 		}
892 	}
893 out:
894 	spin_unlock(&tree->lock);
895 }
896 
897 static void set_state_bits(struct extent_io_tree *tree,
898 			   struct extent_state *state,
899 			   unsigned *bits, struct extent_changeset *changeset)
900 {
901 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
902 	int ret;
903 
904 	if (tree->private_data && is_data_inode(tree->private_data))
905 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
906 
907 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
908 		u64 range = state->end - state->start + 1;
909 		tree->dirty_bytes += range;
910 	}
911 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
912 	BUG_ON(ret < 0);
913 	state->state |= bits_to_set;
914 }
915 
916 static void cache_state_if_flags(struct extent_state *state,
917 				 struct extent_state **cached_ptr,
918 				 unsigned flags)
919 {
920 	if (cached_ptr && !(*cached_ptr)) {
921 		if (!flags || (state->state & flags)) {
922 			*cached_ptr = state;
923 			refcount_inc(&state->refs);
924 		}
925 	}
926 }
927 
928 static void cache_state(struct extent_state *state,
929 			struct extent_state **cached_ptr)
930 {
931 	return cache_state_if_flags(state, cached_ptr,
932 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
933 }
934 
935 /*
936  * set some bits on a range in the tree.  This may require allocations or
937  * sleeping, so the gfp mask is used to indicate what is allowed.
938  *
939  * If any of the exclusive bits are set, this will fail with -EEXIST if some
940  * part of the range already has the desired bits set.  The start of the
941  * existing range is returned in failed_start in this case.
942  *
943  * [start, end] is inclusive This takes the tree lock.
944  */
945 
946 static int __must_check
947 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948 		 unsigned bits, unsigned exclusive_bits,
949 		 u64 *failed_start, struct extent_state **cached_state,
950 		 gfp_t mask, struct extent_changeset *changeset)
951 {
952 	struct extent_state *state;
953 	struct extent_state *prealloc = NULL;
954 	struct rb_node *node;
955 	struct rb_node **p;
956 	struct rb_node *parent;
957 	int err = 0;
958 	u64 last_start;
959 	u64 last_end;
960 
961 	btrfs_debug_check_extent_io_range(tree, start, end);
962 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
963 
964 again:
965 	if (!prealloc && gfpflags_allow_blocking(mask)) {
966 		/*
967 		 * Don't care for allocation failure here because we might end
968 		 * up not needing the pre-allocated extent state at all, which
969 		 * is the case if we only have in the tree extent states that
970 		 * cover our input range and don't cover too any other range.
971 		 * If we end up needing a new extent state we allocate it later.
972 		 */
973 		prealloc = alloc_extent_state(mask);
974 	}
975 
976 	spin_lock(&tree->lock);
977 	if (cached_state && *cached_state) {
978 		state = *cached_state;
979 		if (state->start <= start && state->end > start &&
980 		    extent_state_in_tree(state)) {
981 			node = &state->rb_node;
982 			goto hit_next;
983 		}
984 	}
985 	/*
986 	 * this search will find all the extents that end after
987 	 * our range starts.
988 	 */
989 	node = tree_search_for_insert(tree, start, &p, &parent);
990 	if (!node) {
991 		prealloc = alloc_extent_state_atomic(prealloc);
992 		BUG_ON(!prealloc);
993 		err = insert_state(tree, prealloc, start, end,
994 				   &p, &parent, &bits, changeset);
995 		if (err)
996 			extent_io_tree_panic(tree, err);
997 
998 		cache_state(prealloc, cached_state);
999 		prealloc = NULL;
1000 		goto out;
1001 	}
1002 	state = rb_entry(node, struct extent_state, rb_node);
1003 hit_next:
1004 	last_start = state->start;
1005 	last_end = state->end;
1006 
1007 	/*
1008 	 * | ---- desired range ---- |
1009 	 * | state |
1010 	 *
1011 	 * Just lock what we found and keep going
1012 	 */
1013 	if (state->start == start && state->end <= end) {
1014 		if (state->state & exclusive_bits) {
1015 			*failed_start = state->start;
1016 			err = -EEXIST;
1017 			goto out;
1018 		}
1019 
1020 		set_state_bits(tree, state, &bits, changeset);
1021 		cache_state(state, cached_state);
1022 		merge_state(tree, state);
1023 		if (last_end == (u64)-1)
1024 			goto out;
1025 		start = last_end + 1;
1026 		state = next_state(state);
1027 		if (start < end && state && state->start == start &&
1028 		    !need_resched())
1029 			goto hit_next;
1030 		goto search_again;
1031 	}
1032 
1033 	/*
1034 	 *     | ---- desired range ---- |
1035 	 * | state |
1036 	 *   or
1037 	 * | ------------- state -------------- |
1038 	 *
1039 	 * We need to split the extent we found, and may flip bits on
1040 	 * second half.
1041 	 *
1042 	 * If the extent we found extends past our
1043 	 * range, we just split and search again.  It'll get split
1044 	 * again the next time though.
1045 	 *
1046 	 * If the extent we found is inside our range, we set the
1047 	 * desired bit on it.
1048 	 */
1049 	if (state->start < start) {
1050 		if (state->state & exclusive_bits) {
1051 			*failed_start = start;
1052 			err = -EEXIST;
1053 			goto out;
1054 		}
1055 
1056 		prealloc = alloc_extent_state_atomic(prealloc);
1057 		BUG_ON(!prealloc);
1058 		err = split_state(tree, state, prealloc, start);
1059 		if (err)
1060 			extent_io_tree_panic(tree, err);
1061 
1062 		prealloc = NULL;
1063 		if (err)
1064 			goto out;
1065 		if (state->end <= end) {
1066 			set_state_bits(tree, state, &bits, changeset);
1067 			cache_state(state, cached_state);
1068 			merge_state(tree, state);
1069 			if (last_end == (u64)-1)
1070 				goto out;
1071 			start = last_end + 1;
1072 			state = next_state(state);
1073 			if (start < end && state && state->start == start &&
1074 			    !need_resched())
1075 				goto hit_next;
1076 		}
1077 		goto search_again;
1078 	}
1079 	/*
1080 	 * | ---- desired range ---- |
1081 	 *     | state | or               | state |
1082 	 *
1083 	 * There's a hole, we need to insert something in it and
1084 	 * ignore the extent we found.
1085 	 */
1086 	if (state->start > start) {
1087 		u64 this_end;
1088 		if (end < last_start)
1089 			this_end = end;
1090 		else
1091 			this_end = last_start - 1;
1092 
1093 		prealloc = alloc_extent_state_atomic(prealloc);
1094 		BUG_ON(!prealloc);
1095 
1096 		/*
1097 		 * Avoid to free 'prealloc' if it can be merged with
1098 		 * the later extent.
1099 		 */
1100 		err = insert_state(tree, prealloc, start, this_end,
1101 				   NULL, NULL, &bits, changeset);
1102 		if (err)
1103 			extent_io_tree_panic(tree, err);
1104 
1105 		cache_state(prealloc, cached_state);
1106 		prealloc = NULL;
1107 		start = this_end + 1;
1108 		goto search_again;
1109 	}
1110 	/*
1111 	 * | ---- desired range ---- |
1112 	 *                        | state |
1113 	 * We need to split the extent, and set the bit
1114 	 * on the first half
1115 	 */
1116 	if (state->start <= end && state->end > end) {
1117 		if (state->state & exclusive_bits) {
1118 			*failed_start = start;
1119 			err = -EEXIST;
1120 			goto out;
1121 		}
1122 
1123 		prealloc = alloc_extent_state_atomic(prealloc);
1124 		BUG_ON(!prealloc);
1125 		err = split_state(tree, state, prealloc, end + 1);
1126 		if (err)
1127 			extent_io_tree_panic(tree, err);
1128 
1129 		set_state_bits(tree, prealloc, &bits, changeset);
1130 		cache_state(prealloc, cached_state);
1131 		merge_state(tree, prealloc);
1132 		prealloc = NULL;
1133 		goto out;
1134 	}
1135 
1136 search_again:
1137 	if (start > end)
1138 		goto out;
1139 	spin_unlock(&tree->lock);
1140 	if (gfpflags_allow_blocking(mask))
1141 		cond_resched();
1142 	goto again;
1143 
1144 out:
1145 	spin_unlock(&tree->lock);
1146 	if (prealloc)
1147 		free_extent_state(prealloc);
1148 
1149 	return err;
1150 
1151 }
1152 
1153 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1154 		   unsigned bits, u64 * failed_start,
1155 		   struct extent_state **cached_state, gfp_t mask)
1156 {
1157 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1158 				cached_state, mask, NULL);
1159 }
1160 
1161 
1162 /**
1163  * convert_extent_bit - convert all bits in a given range from one bit to
1164  * 			another
1165  * @tree:	the io tree to search
1166  * @start:	the start offset in bytes
1167  * @end:	the end offset in bytes (inclusive)
1168  * @bits:	the bits to set in this range
1169  * @clear_bits:	the bits to clear in this range
1170  * @cached_state:	state that we're going to cache
1171  *
1172  * This will go through and set bits for the given range.  If any states exist
1173  * already in this range they are set with the given bit and cleared of the
1174  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1175  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1176  * boundary bits like LOCK.
1177  *
1178  * All allocations are done with GFP_NOFS.
1179  */
1180 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181 		       unsigned bits, unsigned clear_bits,
1182 		       struct extent_state **cached_state)
1183 {
1184 	struct extent_state *state;
1185 	struct extent_state *prealloc = NULL;
1186 	struct rb_node *node;
1187 	struct rb_node **p;
1188 	struct rb_node *parent;
1189 	int err = 0;
1190 	u64 last_start;
1191 	u64 last_end;
1192 	bool first_iteration = true;
1193 
1194 	btrfs_debug_check_extent_io_range(tree, start, end);
1195 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1196 				       clear_bits);
1197 
1198 again:
1199 	if (!prealloc) {
1200 		/*
1201 		 * Best effort, don't worry if extent state allocation fails
1202 		 * here for the first iteration. We might have a cached state
1203 		 * that matches exactly the target range, in which case no
1204 		 * extent state allocations are needed. We'll only know this
1205 		 * after locking the tree.
1206 		 */
1207 		prealloc = alloc_extent_state(GFP_NOFS);
1208 		if (!prealloc && !first_iteration)
1209 			return -ENOMEM;
1210 	}
1211 
1212 	spin_lock(&tree->lock);
1213 	if (cached_state && *cached_state) {
1214 		state = *cached_state;
1215 		if (state->start <= start && state->end > start &&
1216 		    extent_state_in_tree(state)) {
1217 			node = &state->rb_node;
1218 			goto hit_next;
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * this search will find all the extents that end after
1224 	 * our range starts.
1225 	 */
1226 	node = tree_search_for_insert(tree, start, &p, &parent);
1227 	if (!node) {
1228 		prealloc = alloc_extent_state_atomic(prealloc);
1229 		if (!prealloc) {
1230 			err = -ENOMEM;
1231 			goto out;
1232 		}
1233 		err = insert_state(tree, prealloc, start, end,
1234 				   &p, &parent, &bits, NULL);
1235 		if (err)
1236 			extent_io_tree_panic(tree, err);
1237 		cache_state(prealloc, cached_state);
1238 		prealloc = NULL;
1239 		goto out;
1240 	}
1241 	state = rb_entry(node, struct extent_state, rb_node);
1242 hit_next:
1243 	last_start = state->start;
1244 	last_end = state->end;
1245 
1246 	/*
1247 	 * | ---- desired range ---- |
1248 	 * | state |
1249 	 *
1250 	 * Just lock what we found and keep going
1251 	 */
1252 	if (state->start == start && state->end <= end) {
1253 		set_state_bits(tree, state, &bits, NULL);
1254 		cache_state(state, cached_state);
1255 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1256 		if (last_end == (u64)-1)
1257 			goto out;
1258 		start = last_end + 1;
1259 		if (start < end && state && state->start == start &&
1260 		    !need_resched())
1261 			goto hit_next;
1262 		goto search_again;
1263 	}
1264 
1265 	/*
1266 	 *     | ---- desired range ---- |
1267 	 * | state |
1268 	 *   or
1269 	 * | ------------- state -------------- |
1270 	 *
1271 	 * We need to split the extent we found, and may flip bits on
1272 	 * second half.
1273 	 *
1274 	 * If the extent we found extends past our
1275 	 * range, we just split and search again.  It'll get split
1276 	 * again the next time though.
1277 	 *
1278 	 * If the extent we found is inside our range, we set the
1279 	 * desired bit on it.
1280 	 */
1281 	if (state->start < start) {
1282 		prealloc = alloc_extent_state_atomic(prealloc);
1283 		if (!prealloc) {
1284 			err = -ENOMEM;
1285 			goto out;
1286 		}
1287 		err = split_state(tree, state, prealloc, start);
1288 		if (err)
1289 			extent_io_tree_panic(tree, err);
1290 		prealloc = NULL;
1291 		if (err)
1292 			goto out;
1293 		if (state->end <= end) {
1294 			set_state_bits(tree, state, &bits, NULL);
1295 			cache_state(state, cached_state);
1296 			state = clear_state_bit(tree, state, &clear_bits, 0,
1297 						NULL);
1298 			if (last_end == (u64)-1)
1299 				goto out;
1300 			start = last_end + 1;
1301 			if (start < end && state && state->start == start &&
1302 			    !need_resched())
1303 				goto hit_next;
1304 		}
1305 		goto search_again;
1306 	}
1307 	/*
1308 	 * | ---- desired range ---- |
1309 	 *     | state | or               | state |
1310 	 *
1311 	 * There's a hole, we need to insert something in it and
1312 	 * ignore the extent we found.
1313 	 */
1314 	if (state->start > start) {
1315 		u64 this_end;
1316 		if (end < last_start)
1317 			this_end = end;
1318 		else
1319 			this_end = last_start - 1;
1320 
1321 		prealloc = alloc_extent_state_atomic(prealloc);
1322 		if (!prealloc) {
1323 			err = -ENOMEM;
1324 			goto out;
1325 		}
1326 
1327 		/*
1328 		 * Avoid to free 'prealloc' if it can be merged with
1329 		 * the later extent.
1330 		 */
1331 		err = insert_state(tree, prealloc, start, this_end,
1332 				   NULL, NULL, &bits, NULL);
1333 		if (err)
1334 			extent_io_tree_panic(tree, err);
1335 		cache_state(prealloc, cached_state);
1336 		prealloc = NULL;
1337 		start = this_end + 1;
1338 		goto search_again;
1339 	}
1340 	/*
1341 	 * | ---- desired range ---- |
1342 	 *                        | state |
1343 	 * We need to split the extent, and set the bit
1344 	 * on the first half
1345 	 */
1346 	if (state->start <= end && state->end > end) {
1347 		prealloc = alloc_extent_state_atomic(prealloc);
1348 		if (!prealloc) {
1349 			err = -ENOMEM;
1350 			goto out;
1351 		}
1352 
1353 		err = split_state(tree, state, prealloc, end + 1);
1354 		if (err)
1355 			extent_io_tree_panic(tree, err);
1356 
1357 		set_state_bits(tree, prealloc, &bits, NULL);
1358 		cache_state(prealloc, cached_state);
1359 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1360 		prealloc = NULL;
1361 		goto out;
1362 	}
1363 
1364 search_again:
1365 	if (start > end)
1366 		goto out;
1367 	spin_unlock(&tree->lock);
1368 	cond_resched();
1369 	first_iteration = false;
1370 	goto again;
1371 
1372 out:
1373 	spin_unlock(&tree->lock);
1374 	if (prealloc)
1375 		free_extent_state(prealloc);
1376 
1377 	return err;
1378 }
1379 
1380 /* wrappers around set/clear extent bit */
1381 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1382 			   unsigned bits, struct extent_changeset *changeset)
1383 {
1384 	/*
1385 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1386 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1387 	 * either fail with -EEXIST or changeset will record the whole
1388 	 * range.
1389 	 */
1390 	BUG_ON(bits & EXTENT_LOCKED);
1391 
1392 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1393 				changeset);
1394 }
1395 
1396 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1397 			   unsigned bits)
1398 {
1399 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1400 				GFP_NOWAIT, NULL);
1401 }
1402 
1403 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1404 		     unsigned bits, int wake, int delete,
1405 		     struct extent_state **cached)
1406 {
1407 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1408 				  cached, GFP_NOFS, NULL);
1409 }
1410 
1411 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412 		unsigned bits, struct extent_changeset *changeset)
1413 {
1414 	/*
1415 	 * Don't support EXTENT_LOCKED case, same reason as
1416 	 * set_record_extent_bits().
1417 	 */
1418 	BUG_ON(bits & EXTENT_LOCKED);
1419 
1420 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1421 				  changeset);
1422 }
1423 
1424 /*
1425  * either insert or lock state struct between start and end use mask to tell
1426  * us if waiting is desired.
1427  */
1428 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1429 		     struct extent_state **cached_state)
1430 {
1431 	int err;
1432 	u64 failed_start;
1433 
1434 	while (1) {
1435 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1436 				       EXTENT_LOCKED, &failed_start,
1437 				       cached_state, GFP_NOFS, NULL);
1438 		if (err == -EEXIST) {
1439 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1440 			start = failed_start;
1441 		} else
1442 			break;
1443 		WARN_ON(start > end);
1444 	}
1445 	return err;
1446 }
1447 
1448 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450 	int err;
1451 	u64 failed_start;
1452 
1453 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1454 			       &failed_start, NULL, GFP_NOFS, NULL);
1455 	if (err == -EEXIST) {
1456 		if (failed_start > start)
1457 			clear_extent_bit(tree, start, failed_start - 1,
1458 					 EXTENT_LOCKED, 1, 0, NULL);
1459 		return 0;
1460 	}
1461 	return 1;
1462 }
1463 
1464 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1465 {
1466 	unsigned long index = start >> PAGE_SHIFT;
1467 	unsigned long end_index = end >> PAGE_SHIFT;
1468 	struct page *page;
1469 
1470 	while (index <= end_index) {
1471 		page = find_get_page(inode->i_mapping, index);
1472 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1473 		clear_page_dirty_for_io(page);
1474 		put_page(page);
1475 		index++;
1476 	}
1477 }
1478 
1479 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1480 {
1481 	unsigned long index = start >> PAGE_SHIFT;
1482 	unsigned long end_index = end >> PAGE_SHIFT;
1483 	struct page *page;
1484 
1485 	while (index <= end_index) {
1486 		page = find_get_page(inode->i_mapping, index);
1487 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1488 		__set_page_dirty_nobuffers(page);
1489 		account_page_redirty(page);
1490 		put_page(page);
1491 		index++;
1492 	}
1493 }
1494 
1495 /* find the first state struct with 'bits' set after 'start', and
1496  * return it.  tree->lock must be held.  NULL will returned if
1497  * nothing was found after 'start'
1498  */
1499 static struct extent_state *
1500 find_first_extent_bit_state(struct extent_io_tree *tree,
1501 			    u64 start, unsigned bits)
1502 {
1503 	struct rb_node *node;
1504 	struct extent_state *state;
1505 
1506 	/*
1507 	 * this search will find all the extents that end after
1508 	 * our range starts.
1509 	 */
1510 	node = tree_search(tree, start);
1511 	if (!node)
1512 		goto out;
1513 
1514 	while (1) {
1515 		state = rb_entry(node, struct extent_state, rb_node);
1516 		if (state->end >= start && (state->state & bits))
1517 			return state;
1518 
1519 		node = rb_next(node);
1520 		if (!node)
1521 			break;
1522 	}
1523 out:
1524 	return NULL;
1525 }
1526 
1527 /*
1528  * find the first offset in the io tree with 'bits' set. zero is
1529  * returned if we find something, and *start_ret and *end_ret are
1530  * set to reflect the state struct that was found.
1531  *
1532  * If nothing was found, 1 is returned. If found something, return 0.
1533  */
1534 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1535 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1536 			  struct extent_state **cached_state)
1537 {
1538 	struct extent_state *state;
1539 	int ret = 1;
1540 
1541 	spin_lock(&tree->lock);
1542 	if (cached_state && *cached_state) {
1543 		state = *cached_state;
1544 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1545 			while ((state = next_state(state)) != NULL) {
1546 				if (state->state & bits)
1547 					goto got_it;
1548 			}
1549 			free_extent_state(*cached_state);
1550 			*cached_state = NULL;
1551 			goto out;
1552 		}
1553 		free_extent_state(*cached_state);
1554 		*cached_state = NULL;
1555 	}
1556 
1557 	state = find_first_extent_bit_state(tree, start, bits);
1558 got_it:
1559 	if (state) {
1560 		cache_state_if_flags(state, cached_state, 0);
1561 		*start_ret = state->start;
1562 		*end_ret = state->end;
1563 		ret = 0;
1564 	}
1565 out:
1566 	spin_unlock(&tree->lock);
1567 	return ret;
1568 }
1569 
1570 /**
1571  * find_first_clear_extent_bit - find the first range that has @bits not set.
1572  * This range could start before @start.
1573  *
1574  * @tree - the tree to search
1575  * @start - the offset at/after which the found extent should start
1576  * @start_ret - records the beginning of the range
1577  * @end_ret - records the end of the range (inclusive)
1578  * @bits - the set of bits which must be unset
1579  *
1580  * Since unallocated range is also considered one which doesn't have the bits
1581  * set it's possible that @end_ret contains -1, this happens in case the range
1582  * spans (last_range_end, end of device]. In this case it's up to the caller to
1583  * trim @end_ret to the appropriate size.
1584  */
1585 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1586 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1587 {
1588 	struct extent_state *state;
1589 	struct rb_node *node, *prev = NULL, *next;
1590 
1591 	spin_lock(&tree->lock);
1592 
1593 	/* Find first extent with bits cleared */
1594 	while (1) {
1595 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1596 		if (!node) {
1597 			node = next;
1598 			if (!node) {
1599 				/*
1600 				 * We are past the last allocated chunk,
1601 				 * set start at the end of the last extent. The
1602 				 * device alloc tree should never be empty so
1603 				 * prev is always set.
1604 				 */
1605 				ASSERT(prev);
1606 				state = rb_entry(prev, struct extent_state, rb_node);
1607 				*start_ret = state->end + 1;
1608 				*end_ret = -1;
1609 				goto out;
1610 			}
1611 		}
1612 		/*
1613 		 * At this point 'node' either contains 'start' or start is
1614 		 * before 'node'
1615 		 */
1616 		state = rb_entry(node, struct extent_state, rb_node);
1617 
1618 		if (in_range(start, state->start, state->end - state->start + 1)) {
1619 			if (state->state & bits) {
1620 				/*
1621 				 * |--range with bits sets--|
1622 				 *    |
1623 				 *    start
1624 				 */
1625 				start = state->end + 1;
1626 			} else {
1627 				/*
1628 				 * 'start' falls within a range that doesn't
1629 				 * have the bits set, so take its start as
1630 				 * the beginning of the desired range
1631 				 *
1632 				 * |--range with bits cleared----|
1633 				 *      |
1634 				 *      start
1635 				 */
1636 				*start_ret = state->start;
1637 				break;
1638 			}
1639 		} else {
1640 			/*
1641 			 * |---prev range---|---hole/unset---|---node range---|
1642 			 *                          |
1643 			 *                        start
1644 			 *
1645 			 *                        or
1646 			 *
1647 			 * |---hole/unset--||--first node--|
1648 			 * 0   |
1649 			 *    start
1650 			 */
1651 			if (prev) {
1652 				state = rb_entry(prev, struct extent_state,
1653 						 rb_node);
1654 				*start_ret = state->end + 1;
1655 			} else {
1656 				*start_ret = 0;
1657 			}
1658 			break;
1659 		}
1660 	}
1661 
1662 	/*
1663 	 * Find the longest stretch from start until an entry which has the
1664 	 * bits set
1665 	 */
1666 	while (1) {
1667 		state = rb_entry(node, struct extent_state, rb_node);
1668 		if (state->end >= start && !(state->state & bits)) {
1669 			*end_ret = state->end;
1670 		} else {
1671 			*end_ret = state->start - 1;
1672 			break;
1673 		}
1674 
1675 		node = rb_next(node);
1676 		if (!node)
1677 			break;
1678 	}
1679 out:
1680 	spin_unlock(&tree->lock);
1681 }
1682 
1683 /*
1684  * find a contiguous range of bytes in the file marked as delalloc, not
1685  * more than 'max_bytes'.  start and end are used to return the range,
1686  *
1687  * true is returned if we find something, false if nothing was in the tree
1688  */
1689 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1690 			       u64 *end, u64 max_bytes,
1691 			       struct extent_state **cached_state)
1692 {
1693 	struct rb_node *node;
1694 	struct extent_state *state;
1695 	u64 cur_start = *start;
1696 	bool found = false;
1697 	u64 total_bytes = 0;
1698 
1699 	spin_lock(&tree->lock);
1700 
1701 	/*
1702 	 * this search will find all the extents that end after
1703 	 * our range starts.
1704 	 */
1705 	node = tree_search(tree, cur_start);
1706 	if (!node) {
1707 		*end = (u64)-1;
1708 		goto out;
1709 	}
1710 
1711 	while (1) {
1712 		state = rb_entry(node, struct extent_state, rb_node);
1713 		if (found && (state->start != cur_start ||
1714 			      (state->state & EXTENT_BOUNDARY))) {
1715 			goto out;
1716 		}
1717 		if (!(state->state & EXTENT_DELALLOC)) {
1718 			if (!found)
1719 				*end = state->end;
1720 			goto out;
1721 		}
1722 		if (!found) {
1723 			*start = state->start;
1724 			*cached_state = state;
1725 			refcount_inc(&state->refs);
1726 		}
1727 		found = true;
1728 		*end = state->end;
1729 		cur_start = state->end + 1;
1730 		node = rb_next(node);
1731 		total_bytes += state->end - state->start + 1;
1732 		if (total_bytes >= max_bytes)
1733 			break;
1734 		if (!node)
1735 			break;
1736 	}
1737 out:
1738 	spin_unlock(&tree->lock);
1739 	return found;
1740 }
1741 
1742 static int __process_pages_contig(struct address_space *mapping,
1743 				  struct page *locked_page,
1744 				  pgoff_t start_index, pgoff_t end_index,
1745 				  unsigned long page_ops, pgoff_t *index_ret);
1746 
1747 static noinline void __unlock_for_delalloc(struct inode *inode,
1748 					   struct page *locked_page,
1749 					   u64 start, u64 end)
1750 {
1751 	unsigned long index = start >> PAGE_SHIFT;
1752 	unsigned long end_index = end >> PAGE_SHIFT;
1753 
1754 	ASSERT(locked_page);
1755 	if (index == locked_page->index && end_index == index)
1756 		return;
1757 
1758 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1759 			       PAGE_UNLOCK, NULL);
1760 }
1761 
1762 static noinline int lock_delalloc_pages(struct inode *inode,
1763 					struct page *locked_page,
1764 					u64 delalloc_start,
1765 					u64 delalloc_end)
1766 {
1767 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1768 	unsigned long index_ret = index;
1769 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1770 	int ret;
1771 
1772 	ASSERT(locked_page);
1773 	if (index == locked_page->index && index == end_index)
1774 		return 0;
1775 
1776 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1777 				     end_index, PAGE_LOCK, &index_ret);
1778 	if (ret == -EAGAIN)
1779 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1780 				      (u64)index_ret << PAGE_SHIFT);
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1786  * more than @max_bytes.  @Start and @end are used to return the range,
1787  *
1788  * Return: true if we find something
1789  *         false if nothing was in the tree
1790  */
1791 EXPORT_FOR_TESTS
1792 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1793 				    struct page *locked_page, u64 *start,
1794 				    u64 *end)
1795 {
1796 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1797 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1798 	u64 delalloc_start;
1799 	u64 delalloc_end;
1800 	bool found;
1801 	struct extent_state *cached_state = NULL;
1802 	int ret;
1803 	int loops = 0;
1804 
1805 again:
1806 	/* step one, find a bunch of delalloc bytes starting at start */
1807 	delalloc_start = *start;
1808 	delalloc_end = 0;
1809 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1810 					  max_bytes, &cached_state);
1811 	if (!found || delalloc_end <= *start) {
1812 		*start = delalloc_start;
1813 		*end = delalloc_end;
1814 		free_extent_state(cached_state);
1815 		return false;
1816 	}
1817 
1818 	/*
1819 	 * start comes from the offset of locked_page.  We have to lock
1820 	 * pages in order, so we can't process delalloc bytes before
1821 	 * locked_page
1822 	 */
1823 	if (delalloc_start < *start)
1824 		delalloc_start = *start;
1825 
1826 	/*
1827 	 * make sure to limit the number of pages we try to lock down
1828 	 */
1829 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1830 		delalloc_end = delalloc_start + max_bytes - 1;
1831 
1832 	/* step two, lock all the pages after the page that has start */
1833 	ret = lock_delalloc_pages(inode, locked_page,
1834 				  delalloc_start, delalloc_end);
1835 	ASSERT(!ret || ret == -EAGAIN);
1836 	if (ret == -EAGAIN) {
1837 		/* some of the pages are gone, lets avoid looping by
1838 		 * shortening the size of the delalloc range we're searching
1839 		 */
1840 		free_extent_state(cached_state);
1841 		cached_state = NULL;
1842 		if (!loops) {
1843 			max_bytes = PAGE_SIZE;
1844 			loops = 1;
1845 			goto again;
1846 		} else {
1847 			found = false;
1848 			goto out_failed;
1849 		}
1850 	}
1851 
1852 	/* step three, lock the state bits for the whole range */
1853 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1854 
1855 	/* then test to make sure it is all still delalloc */
1856 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1857 			     EXTENT_DELALLOC, 1, cached_state);
1858 	if (!ret) {
1859 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1860 				     &cached_state);
1861 		__unlock_for_delalloc(inode, locked_page,
1862 			      delalloc_start, delalloc_end);
1863 		cond_resched();
1864 		goto again;
1865 	}
1866 	free_extent_state(cached_state);
1867 	*start = delalloc_start;
1868 	*end = delalloc_end;
1869 out_failed:
1870 	return found;
1871 }
1872 
1873 static int __process_pages_contig(struct address_space *mapping,
1874 				  struct page *locked_page,
1875 				  pgoff_t start_index, pgoff_t end_index,
1876 				  unsigned long page_ops, pgoff_t *index_ret)
1877 {
1878 	unsigned long nr_pages = end_index - start_index + 1;
1879 	unsigned long pages_locked = 0;
1880 	pgoff_t index = start_index;
1881 	struct page *pages[16];
1882 	unsigned ret;
1883 	int err = 0;
1884 	int i;
1885 
1886 	if (page_ops & PAGE_LOCK) {
1887 		ASSERT(page_ops == PAGE_LOCK);
1888 		ASSERT(index_ret && *index_ret == start_index);
1889 	}
1890 
1891 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1892 		mapping_set_error(mapping, -EIO);
1893 
1894 	while (nr_pages > 0) {
1895 		ret = find_get_pages_contig(mapping, index,
1896 				     min_t(unsigned long,
1897 				     nr_pages, ARRAY_SIZE(pages)), pages);
1898 		if (ret == 0) {
1899 			/*
1900 			 * Only if we're going to lock these pages,
1901 			 * can we find nothing at @index.
1902 			 */
1903 			ASSERT(page_ops & PAGE_LOCK);
1904 			err = -EAGAIN;
1905 			goto out;
1906 		}
1907 
1908 		for (i = 0; i < ret; i++) {
1909 			if (page_ops & PAGE_SET_PRIVATE2)
1910 				SetPagePrivate2(pages[i]);
1911 
1912 			if (locked_page && pages[i] == locked_page) {
1913 				put_page(pages[i]);
1914 				pages_locked++;
1915 				continue;
1916 			}
1917 			if (page_ops & PAGE_CLEAR_DIRTY)
1918 				clear_page_dirty_for_io(pages[i]);
1919 			if (page_ops & PAGE_SET_WRITEBACK)
1920 				set_page_writeback(pages[i]);
1921 			if (page_ops & PAGE_SET_ERROR)
1922 				SetPageError(pages[i]);
1923 			if (page_ops & PAGE_END_WRITEBACK)
1924 				end_page_writeback(pages[i]);
1925 			if (page_ops & PAGE_UNLOCK)
1926 				unlock_page(pages[i]);
1927 			if (page_ops & PAGE_LOCK) {
1928 				lock_page(pages[i]);
1929 				if (!PageDirty(pages[i]) ||
1930 				    pages[i]->mapping != mapping) {
1931 					unlock_page(pages[i]);
1932 					put_page(pages[i]);
1933 					err = -EAGAIN;
1934 					goto out;
1935 				}
1936 			}
1937 			put_page(pages[i]);
1938 			pages_locked++;
1939 		}
1940 		nr_pages -= ret;
1941 		index += ret;
1942 		cond_resched();
1943 	}
1944 out:
1945 	if (err && index_ret)
1946 		*index_ret = start_index + pages_locked - 1;
1947 	return err;
1948 }
1949 
1950 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1951 				  struct page *locked_page,
1952 				  unsigned clear_bits,
1953 				  unsigned long page_ops)
1954 {
1955 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1956 			 NULL);
1957 
1958 	__process_pages_contig(inode->i_mapping, locked_page,
1959 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1960 			       page_ops, NULL);
1961 }
1962 
1963 /*
1964  * count the number of bytes in the tree that have a given bit(s)
1965  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1966  * cached.  The total number found is returned.
1967  */
1968 u64 count_range_bits(struct extent_io_tree *tree,
1969 		     u64 *start, u64 search_end, u64 max_bytes,
1970 		     unsigned bits, int contig)
1971 {
1972 	struct rb_node *node;
1973 	struct extent_state *state;
1974 	u64 cur_start = *start;
1975 	u64 total_bytes = 0;
1976 	u64 last = 0;
1977 	int found = 0;
1978 
1979 	if (WARN_ON(search_end <= cur_start))
1980 		return 0;
1981 
1982 	spin_lock(&tree->lock);
1983 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1984 		total_bytes = tree->dirty_bytes;
1985 		goto out;
1986 	}
1987 	/*
1988 	 * this search will find all the extents that end after
1989 	 * our range starts.
1990 	 */
1991 	node = tree_search(tree, cur_start);
1992 	if (!node)
1993 		goto out;
1994 
1995 	while (1) {
1996 		state = rb_entry(node, struct extent_state, rb_node);
1997 		if (state->start > search_end)
1998 			break;
1999 		if (contig && found && state->start > last + 1)
2000 			break;
2001 		if (state->end >= cur_start && (state->state & bits) == bits) {
2002 			total_bytes += min(search_end, state->end) + 1 -
2003 				       max(cur_start, state->start);
2004 			if (total_bytes >= max_bytes)
2005 				break;
2006 			if (!found) {
2007 				*start = max(cur_start, state->start);
2008 				found = 1;
2009 			}
2010 			last = state->end;
2011 		} else if (contig && found) {
2012 			break;
2013 		}
2014 		node = rb_next(node);
2015 		if (!node)
2016 			break;
2017 	}
2018 out:
2019 	spin_unlock(&tree->lock);
2020 	return total_bytes;
2021 }
2022 
2023 /*
2024  * set the private field for a given byte offset in the tree.  If there isn't
2025  * an extent_state there already, this does nothing.
2026  */
2027 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2028 		      struct io_failure_record *failrec)
2029 {
2030 	struct rb_node *node;
2031 	struct extent_state *state;
2032 	int ret = 0;
2033 
2034 	spin_lock(&tree->lock);
2035 	/*
2036 	 * this search will find all the extents that end after
2037 	 * our range starts.
2038 	 */
2039 	node = tree_search(tree, start);
2040 	if (!node) {
2041 		ret = -ENOENT;
2042 		goto out;
2043 	}
2044 	state = rb_entry(node, struct extent_state, rb_node);
2045 	if (state->start != start) {
2046 		ret = -ENOENT;
2047 		goto out;
2048 	}
2049 	state->failrec = failrec;
2050 out:
2051 	spin_unlock(&tree->lock);
2052 	return ret;
2053 }
2054 
2055 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2056 		      struct io_failure_record **failrec)
2057 {
2058 	struct rb_node *node;
2059 	struct extent_state *state;
2060 	int ret = 0;
2061 
2062 	spin_lock(&tree->lock);
2063 	/*
2064 	 * this search will find all the extents that end after
2065 	 * our range starts.
2066 	 */
2067 	node = tree_search(tree, start);
2068 	if (!node) {
2069 		ret = -ENOENT;
2070 		goto out;
2071 	}
2072 	state = rb_entry(node, struct extent_state, rb_node);
2073 	if (state->start != start) {
2074 		ret = -ENOENT;
2075 		goto out;
2076 	}
2077 	*failrec = state->failrec;
2078 out:
2079 	spin_unlock(&tree->lock);
2080 	return ret;
2081 }
2082 
2083 /*
2084  * searches a range in the state tree for a given mask.
2085  * If 'filled' == 1, this returns 1 only if every extent in the tree
2086  * has the bits set.  Otherwise, 1 is returned if any bit in the
2087  * range is found set.
2088  */
2089 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2090 		   unsigned bits, int filled, struct extent_state *cached)
2091 {
2092 	struct extent_state *state = NULL;
2093 	struct rb_node *node;
2094 	int bitset = 0;
2095 
2096 	spin_lock(&tree->lock);
2097 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2098 	    cached->end > start)
2099 		node = &cached->rb_node;
2100 	else
2101 		node = tree_search(tree, start);
2102 	while (node && start <= end) {
2103 		state = rb_entry(node, struct extent_state, rb_node);
2104 
2105 		if (filled && state->start > start) {
2106 			bitset = 0;
2107 			break;
2108 		}
2109 
2110 		if (state->start > end)
2111 			break;
2112 
2113 		if (state->state & bits) {
2114 			bitset = 1;
2115 			if (!filled)
2116 				break;
2117 		} else if (filled) {
2118 			bitset = 0;
2119 			break;
2120 		}
2121 
2122 		if (state->end == (u64)-1)
2123 			break;
2124 
2125 		start = state->end + 1;
2126 		if (start > end)
2127 			break;
2128 		node = rb_next(node);
2129 		if (!node) {
2130 			if (filled)
2131 				bitset = 0;
2132 			break;
2133 		}
2134 	}
2135 	spin_unlock(&tree->lock);
2136 	return bitset;
2137 }
2138 
2139 /*
2140  * helper function to set a given page up to date if all the
2141  * extents in the tree for that page are up to date
2142  */
2143 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2144 {
2145 	u64 start = page_offset(page);
2146 	u64 end = start + PAGE_SIZE - 1;
2147 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2148 		SetPageUptodate(page);
2149 }
2150 
2151 int free_io_failure(struct extent_io_tree *failure_tree,
2152 		    struct extent_io_tree *io_tree,
2153 		    struct io_failure_record *rec)
2154 {
2155 	int ret;
2156 	int err = 0;
2157 
2158 	set_state_failrec(failure_tree, rec->start, NULL);
2159 	ret = clear_extent_bits(failure_tree, rec->start,
2160 				rec->start + rec->len - 1,
2161 				EXTENT_LOCKED | EXTENT_DIRTY);
2162 	if (ret)
2163 		err = ret;
2164 
2165 	ret = clear_extent_bits(io_tree, rec->start,
2166 				rec->start + rec->len - 1,
2167 				EXTENT_DAMAGED);
2168 	if (ret && !err)
2169 		err = ret;
2170 
2171 	kfree(rec);
2172 	return err;
2173 }
2174 
2175 /*
2176  * this bypasses the standard btrfs submit functions deliberately, as
2177  * the standard behavior is to write all copies in a raid setup. here we only
2178  * want to write the one bad copy. so we do the mapping for ourselves and issue
2179  * submit_bio directly.
2180  * to avoid any synchronization issues, wait for the data after writing, which
2181  * actually prevents the read that triggered the error from finishing.
2182  * currently, there can be no more than two copies of every data bit. thus,
2183  * exactly one rewrite is required.
2184  */
2185 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2186 		      u64 length, u64 logical, struct page *page,
2187 		      unsigned int pg_offset, int mirror_num)
2188 {
2189 	struct bio *bio;
2190 	struct btrfs_device *dev;
2191 	u64 map_length = 0;
2192 	u64 sector;
2193 	struct btrfs_bio *bbio = NULL;
2194 	int ret;
2195 
2196 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2197 	BUG_ON(!mirror_num);
2198 
2199 	bio = btrfs_io_bio_alloc(1);
2200 	bio->bi_iter.bi_size = 0;
2201 	map_length = length;
2202 
2203 	/*
2204 	 * Avoid races with device replace and make sure our bbio has devices
2205 	 * associated to its stripes that don't go away while we are doing the
2206 	 * read repair operation.
2207 	 */
2208 	btrfs_bio_counter_inc_blocked(fs_info);
2209 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2210 		/*
2211 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2212 		 * to update all raid stripes, but here we just want to correct
2213 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2214 		 * stripe's dev and sector.
2215 		 */
2216 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2217 				      &map_length, &bbio, 0);
2218 		if (ret) {
2219 			btrfs_bio_counter_dec(fs_info);
2220 			bio_put(bio);
2221 			return -EIO;
2222 		}
2223 		ASSERT(bbio->mirror_num == 1);
2224 	} else {
2225 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2226 				      &map_length, &bbio, mirror_num);
2227 		if (ret) {
2228 			btrfs_bio_counter_dec(fs_info);
2229 			bio_put(bio);
2230 			return -EIO;
2231 		}
2232 		BUG_ON(mirror_num != bbio->mirror_num);
2233 	}
2234 
2235 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2236 	bio->bi_iter.bi_sector = sector;
2237 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2238 	btrfs_put_bbio(bbio);
2239 	if (!dev || !dev->bdev ||
2240 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2241 		btrfs_bio_counter_dec(fs_info);
2242 		bio_put(bio);
2243 		return -EIO;
2244 	}
2245 	bio_set_dev(bio, dev->bdev);
2246 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2247 	bio_add_page(bio, page, length, pg_offset);
2248 
2249 	if (btrfsic_submit_bio_wait(bio)) {
2250 		/* try to remap that extent elsewhere? */
2251 		btrfs_bio_counter_dec(fs_info);
2252 		bio_put(bio);
2253 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2254 		return -EIO;
2255 	}
2256 
2257 	btrfs_info_rl_in_rcu(fs_info,
2258 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2259 				  ino, start,
2260 				  rcu_str_deref(dev->name), sector);
2261 	btrfs_bio_counter_dec(fs_info);
2262 	bio_put(bio);
2263 	return 0;
2264 }
2265 
2266 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2267 {
2268 	struct btrfs_fs_info *fs_info = eb->fs_info;
2269 	u64 start = eb->start;
2270 	int i, num_pages = num_extent_pages(eb);
2271 	int ret = 0;
2272 
2273 	if (sb_rdonly(fs_info->sb))
2274 		return -EROFS;
2275 
2276 	for (i = 0; i < num_pages; i++) {
2277 		struct page *p = eb->pages[i];
2278 
2279 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2280 					start - page_offset(p), mirror_num);
2281 		if (ret)
2282 			break;
2283 		start += PAGE_SIZE;
2284 	}
2285 
2286 	return ret;
2287 }
2288 
2289 /*
2290  * each time an IO finishes, we do a fast check in the IO failure tree
2291  * to see if we need to process or clean up an io_failure_record
2292  */
2293 int clean_io_failure(struct btrfs_fs_info *fs_info,
2294 		     struct extent_io_tree *failure_tree,
2295 		     struct extent_io_tree *io_tree, u64 start,
2296 		     struct page *page, u64 ino, unsigned int pg_offset)
2297 {
2298 	u64 private;
2299 	struct io_failure_record *failrec;
2300 	struct extent_state *state;
2301 	int num_copies;
2302 	int ret;
2303 
2304 	private = 0;
2305 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2306 			       EXTENT_DIRTY, 0);
2307 	if (!ret)
2308 		return 0;
2309 
2310 	ret = get_state_failrec(failure_tree, start, &failrec);
2311 	if (ret)
2312 		return 0;
2313 
2314 	BUG_ON(!failrec->this_mirror);
2315 
2316 	if (failrec->in_validation) {
2317 		/* there was no real error, just free the record */
2318 		btrfs_debug(fs_info,
2319 			"clean_io_failure: freeing dummy error at %llu",
2320 			failrec->start);
2321 		goto out;
2322 	}
2323 	if (sb_rdonly(fs_info->sb))
2324 		goto out;
2325 
2326 	spin_lock(&io_tree->lock);
2327 	state = find_first_extent_bit_state(io_tree,
2328 					    failrec->start,
2329 					    EXTENT_LOCKED);
2330 	spin_unlock(&io_tree->lock);
2331 
2332 	if (state && state->start <= failrec->start &&
2333 	    state->end >= failrec->start + failrec->len - 1) {
2334 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2335 					      failrec->len);
2336 		if (num_copies > 1)  {
2337 			repair_io_failure(fs_info, ino, start, failrec->len,
2338 					  failrec->logical, page, pg_offset,
2339 					  failrec->failed_mirror);
2340 		}
2341 	}
2342 
2343 out:
2344 	free_io_failure(failure_tree, io_tree, failrec);
2345 
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Can be called when
2351  * - hold extent lock
2352  * - under ordered extent
2353  * - the inode is freeing
2354  */
2355 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2356 {
2357 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2358 	struct io_failure_record *failrec;
2359 	struct extent_state *state, *next;
2360 
2361 	if (RB_EMPTY_ROOT(&failure_tree->state))
2362 		return;
2363 
2364 	spin_lock(&failure_tree->lock);
2365 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2366 	while (state) {
2367 		if (state->start > end)
2368 			break;
2369 
2370 		ASSERT(state->end <= end);
2371 
2372 		next = next_state(state);
2373 
2374 		failrec = state->failrec;
2375 		free_extent_state(state);
2376 		kfree(failrec);
2377 
2378 		state = next;
2379 	}
2380 	spin_unlock(&failure_tree->lock);
2381 }
2382 
2383 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2384 		struct io_failure_record **failrec_ret)
2385 {
2386 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2387 	struct io_failure_record *failrec;
2388 	struct extent_map *em;
2389 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2390 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2391 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2392 	int ret;
2393 	u64 logical;
2394 
2395 	ret = get_state_failrec(failure_tree, start, &failrec);
2396 	if (ret) {
2397 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2398 		if (!failrec)
2399 			return -ENOMEM;
2400 
2401 		failrec->start = start;
2402 		failrec->len = end - start + 1;
2403 		failrec->this_mirror = 0;
2404 		failrec->bio_flags = 0;
2405 		failrec->in_validation = 0;
2406 
2407 		read_lock(&em_tree->lock);
2408 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2409 		if (!em) {
2410 			read_unlock(&em_tree->lock);
2411 			kfree(failrec);
2412 			return -EIO;
2413 		}
2414 
2415 		if (em->start > start || em->start + em->len <= start) {
2416 			free_extent_map(em);
2417 			em = NULL;
2418 		}
2419 		read_unlock(&em_tree->lock);
2420 		if (!em) {
2421 			kfree(failrec);
2422 			return -EIO;
2423 		}
2424 
2425 		logical = start - em->start;
2426 		logical = em->block_start + logical;
2427 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2428 			logical = em->block_start;
2429 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2430 			extent_set_compress_type(&failrec->bio_flags,
2431 						 em->compress_type);
2432 		}
2433 
2434 		btrfs_debug(fs_info,
2435 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2436 			logical, start, failrec->len);
2437 
2438 		failrec->logical = logical;
2439 		free_extent_map(em);
2440 
2441 		/* set the bits in the private failure tree */
2442 		ret = set_extent_bits(failure_tree, start, end,
2443 					EXTENT_LOCKED | EXTENT_DIRTY);
2444 		if (ret >= 0)
2445 			ret = set_state_failrec(failure_tree, start, failrec);
2446 		/* set the bits in the inode's tree */
2447 		if (ret >= 0)
2448 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2449 		if (ret < 0) {
2450 			kfree(failrec);
2451 			return ret;
2452 		}
2453 	} else {
2454 		btrfs_debug(fs_info,
2455 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2456 			failrec->logical, failrec->start, failrec->len,
2457 			failrec->in_validation);
2458 		/*
2459 		 * when data can be on disk more than twice, add to failrec here
2460 		 * (e.g. with a list for failed_mirror) to make
2461 		 * clean_io_failure() clean all those errors at once.
2462 		 */
2463 	}
2464 
2465 	*failrec_ret = failrec;
2466 
2467 	return 0;
2468 }
2469 
2470 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2471 			   struct io_failure_record *failrec, int failed_mirror)
2472 {
2473 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2474 	int num_copies;
2475 
2476 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2477 	if (num_copies == 1) {
2478 		/*
2479 		 * we only have a single copy of the data, so don't bother with
2480 		 * all the retry and error correction code that follows. no
2481 		 * matter what the error is, it is very likely to persist.
2482 		 */
2483 		btrfs_debug(fs_info,
2484 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2485 			num_copies, failrec->this_mirror, failed_mirror);
2486 		return false;
2487 	}
2488 
2489 	/*
2490 	 * there are two premises:
2491 	 *	a) deliver good data to the caller
2492 	 *	b) correct the bad sectors on disk
2493 	 */
2494 	if (failed_bio_pages > 1) {
2495 		/*
2496 		 * to fulfill b), we need to know the exact failing sectors, as
2497 		 * we don't want to rewrite any more than the failed ones. thus,
2498 		 * we need separate read requests for the failed bio
2499 		 *
2500 		 * if the following BUG_ON triggers, our validation request got
2501 		 * merged. we need separate requests for our algorithm to work.
2502 		 */
2503 		BUG_ON(failrec->in_validation);
2504 		failrec->in_validation = 1;
2505 		failrec->this_mirror = failed_mirror;
2506 	} else {
2507 		/*
2508 		 * we're ready to fulfill a) and b) alongside. get a good copy
2509 		 * of the failed sector and if we succeed, we have setup
2510 		 * everything for repair_io_failure to do the rest for us.
2511 		 */
2512 		if (failrec->in_validation) {
2513 			BUG_ON(failrec->this_mirror != failed_mirror);
2514 			failrec->in_validation = 0;
2515 			failrec->this_mirror = 0;
2516 		}
2517 		failrec->failed_mirror = failed_mirror;
2518 		failrec->this_mirror++;
2519 		if (failrec->this_mirror == failed_mirror)
2520 			failrec->this_mirror++;
2521 	}
2522 
2523 	if (failrec->this_mirror > num_copies) {
2524 		btrfs_debug(fs_info,
2525 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2526 			num_copies, failrec->this_mirror, failed_mirror);
2527 		return false;
2528 	}
2529 
2530 	return true;
2531 }
2532 
2533 
2534 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2535 				    struct io_failure_record *failrec,
2536 				    struct page *page, int pg_offset, int icsum,
2537 				    bio_end_io_t *endio_func, void *data)
2538 {
2539 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2540 	struct bio *bio;
2541 	struct btrfs_io_bio *btrfs_failed_bio;
2542 	struct btrfs_io_bio *btrfs_bio;
2543 
2544 	bio = btrfs_io_bio_alloc(1);
2545 	bio->bi_end_io = endio_func;
2546 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2547 	bio->bi_iter.bi_size = 0;
2548 	bio->bi_private = data;
2549 
2550 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2551 	if (btrfs_failed_bio->csum) {
2552 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2553 
2554 		btrfs_bio = btrfs_io_bio(bio);
2555 		btrfs_bio->csum = btrfs_bio->csum_inline;
2556 		icsum *= csum_size;
2557 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2558 		       csum_size);
2559 	}
2560 
2561 	bio_add_page(bio, page, failrec->len, pg_offset);
2562 
2563 	return bio;
2564 }
2565 
2566 /*
2567  * This is a generic handler for readpage errors. If other copies exist, read
2568  * those and write back good data to the failed position. Does not investigate
2569  * in remapping the failed extent elsewhere, hoping the device will be smart
2570  * enough to do this as needed
2571  */
2572 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2573 			      struct page *page, u64 start, u64 end,
2574 			      int failed_mirror)
2575 {
2576 	struct io_failure_record *failrec;
2577 	struct inode *inode = page->mapping->host;
2578 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2579 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2580 	struct bio *bio;
2581 	int read_mode = 0;
2582 	blk_status_t status;
2583 	int ret;
2584 	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2585 
2586 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2587 
2588 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2589 	if (ret)
2590 		return ret;
2591 
2592 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2593 				    failed_mirror)) {
2594 		free_io_failure(failure_tree, tree, failrec);
2595 		return -EIO;
2596 	}
2597 
2598 	if (failed_bio_pages > 1)
2599 		read_mode |= REQ_FAILFAST_DEV;
2600 
2601 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2602 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2603 				      start - page_offset(page),
2604 				      (int)phy_offset, failed_bio->bi_end_io,
2605 				      NULL);
2606 	bio->bi_opf = REQ_OP_READ | read_mode;
2607 
2608 	btrfs_debug(btrfs_sb(inode->i_sb),
2609 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2610 		read_mode, failrec->this_mirror, failrec->in_validation);
2611 
2612 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2613 					 failrec->bio_flags);
2614 	if (status) {
2615 		free_io_failure(failure_tree, tree, failrec);
2616 		bio_put(bio);
2617 		ret = blk_status_to_errno(status);
2618 	}
2619 
2620 	return ret;
2621 }
2622 
2623 /* lots and lots of room for performance fixes in the end_bio funcs */
2624 
2625 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2626 {
2627 	int uptodate = (err == 0);
2628 	int ret = 0;
2629 
2630 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2631 
2632 	if (!uptodate) {
2633 		ClearPageUptodate(page);
2634 		SetPageError(page);
2635 		ret = err < 0 ? err : -EIO;
2636 		mapping_set_error(page->mapping, ret);
2637 	}
2638 }
2639 
2640 /*
2641  * after a writepage IO is done, we need to:
2642  * clear the uptodate bits on error
2643  * clear the writeback bits in the extent tree for this IO
2644  * end_page_writeback if the page has no more pending IO
2645  *
2646  * Scheduling is not allowed, so the extent state tree is expected
2647  * to have one and only one object corresponding to this IO.
2648  */
2649 static void end_bio_extent_writepage(struct bio *bio)
2650 {
2651 	int error = blk_status_to_errno(bio->bi_status);
2652 	struct bio_vec *bvec;
2653 	u64 start;
2654 	u64 end;
2655 	struct bvec_iter_all iter_all;
2656 
2657 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2658 	bio_for_each_segment_all(bvec, bio, iter_all) {
2659 		struct page *page = bvec->bv_page;
2660 		struct inode *inode = page->mapping->host;
2661 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2662 
2663 		/* We always issue full-page reads, but if some block
2664 		 * in a page fails to read, blk_update_request() will
2665 		 * advance bv_offset and adjust bv_len to compensate.
2666 		 * Print a warning for nonzero offsets, and an error
2667 		 * if they don't add up to a full page.  */
2668 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2669 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2670 				btrfs_err(fs_info,
2671 				   "partial page write in btrfs with offset %u and length %u",
2672 					bvec->bv_offset, bvec->bv_len);
2673 			else
2674 				btrfs_info(fs_info,
2675 				   "incomplete page write in btrfs with offset %u and length %u",
2676 					bvec->bv_offset, bvec->bv_len);
2677 		}
2678 
2679 		start = page_offset(page);
2680 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2681 
2682 		end_extent_writepage(page, error, start, end);
2683 		end_page_writeback(page);
2684 	}
2685 
2686 	bio_put(bio);
2687 }
2688 
2689 static void
2690 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2691 			      int uptodate)
2692 {
2693 	struct extent_state *cached = NULL;
2694 	u64 end = start + len - 1;
2695 
2696 	if (uptodate && tree->track_uptodate)
2697 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2698 	unlock_extent_cached_atomic(tree, start, end, &cached);
2699 }
2700 
2701 /*
2702  * after a readpage IO is done, we need to:
2703  * clear the uptodate bits on error
2704  * set the uptodate bits if things worked
2705  * set the page up to date if all extents in the tree are uptodate
2706  * clear the lock bit in the extent tree
2707  * unlock the page if there are no other extents locked for it
2708  *
2709  * Scheduling is not allowed, so the extent state tree is expected
2710  * to have one and only one object corresponding to this IO.
2711  */
2712 static void end_bio_extent_readpage(struct bio *bio)
2713 {
2714 	struct bio_vec *bvec;
2715 	int uptodate = !bio->bi_status;
2716 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2717 	struct extent_io_tree *tree, *failure_tree;
2718 	u64 offset = 0;
2719 	u64 start;
2720 	u64 end;
2721 	u64 len;
2722 	u64 extent_start = 0;
2723 	u64 extent_len = 0;
2724 	int mirror;
2725 	int ret;
2726 	struct bvec_iter_all iter_all;
2727 
2728 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2729 	bio_for_each_segment_all(bvec, bio, iter_all) {
2730 		struct page *page = bvec->bv_page;
2731 		struct inode *inode = page->mapping->host;
2732 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2733 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2734 			!= BTRFS_BTREE_INODE_OBJECTID;
2735 
2736 		btrfs_debug(fs_info,
2737 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2738 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2739 			io_bio->mirror_num);
2740 		tree = &BTRFS_I(inode)->io_tree;
2741 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2742 
2743 		/* We always issue full-page reads, but if some block
2744 		 * in a page fails to read, blk_update_request() will
2745 		 * advance bv_offset and adjust bv_len to compensate.
2746 		 * Print a warning for nonzero offsets, and an error
2747 		 * if they don't add up to a full page.  */
2748 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2749 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2750 				btrfs_err(fs_info,
2751 					"partial page read in btrfs with offset %u and length %u",
2752 					bvec->bv_offset, bvec->bv_len);
2753 			else
2754 				btrfs_info(fs_info,
2755 					"incomplete page read in btrfs with offset %u and length %u",
2756 					bvec->bv_offset, bvec->bv_len);
2757 		}
2758 
2759 		start = page_offset(page);
2760 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2761 		len = bvec->bv_len;
2762 
2763 		mirror = io_bio->mirror_num;
2764 		if (likely(uptodate)) {
2765 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2766 							      page, start, end,
2767 							      mirror);
2768 			if (ret)
2769 				uptodate = 0;
2770 			else
2771 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2772 						 failure_tree, tree, start,
2773 						 page,
2774 						 btrfs_ino(BTRFS_I(inode)), 0);
2775 		}
2776 
2777 		if (likely(uptodate))
2778 			goto readpage_ok;
2779 
2780 		if (data_inode) {
2781 
2782 			/*
2783 			 * The generic bio_readpage_error handles errors the
2784 			 * following way: If possible, new read requests are
2785 			 * created and submitted and will end up in
2786 			 * end_bio_extent_readpage as well (if we're lucky,
2787 			 * not in the !uptodate case). In that case it returns
2788 			 * 0 and we just go on with the next page in our bio.
2789 			 * If it can't handle the error it will return -EIO and
2790 			 * we remain responsible for that page.
2791 			 */
2792 			ret = bio_readpage_error(bio, offset, page, start, end,
2793 						 mirror);
2794 			if (ret == 0) {
2795 				uptodate = !bio->bi_status;
2796 				offset += len;
2797 				continue;
2798 			}
2799 		} else {
2800 			struct extent_buffer *eb;
2801 
2802 			eb = (struct extent_buffer *)page->private;
2803 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2804 			eb->read_mirror = mirror;
2805 			atomic_dec(&eb->io_pages);
2806 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2807 					       &eb->bflags))
2808 				btree_readahead_hook(eb, -EIO);
2809 		}
2810 readpage_ok:
2811 		if (likely(uptodate)) {
2812 			loff_t i_size = i_size_read(inode);
2813 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2814 			unsigned off;
2815 
2816 			/* Zero out the end if this page straddles i_size */
2817 			off = offset_in_page(i_size);
2818 			if (page->index == end_index && off)
2819 				zero_user_segment(page, off, PAGE_SIZE);
2820 			SetPageUptodate(page);
2821 		} else {
2822 			ClearPageUptodate(page);
2823 			SetPageError(page);
2824 		}
2825 		unlock_page(page);
2826 		offset += len;
2827 
2828 		if (unlikely(!uptodate)) {
2829 			if (extent_len) {
2830 				endio_readpage_release_extent(tree,
2831 							      extent_start,
2832 							      extent_len, 1);
2833 				extent_start = 0;
2834 				extent_len = 0;
2835 			}
2836 			endio_readpage_release_extent(tree, start,
2837 						      end - start + 1, 0);
2838 		} else if (!extent_len) {
2839 			extent_start = start;
2840 			extent_len = end + 1 - start;
2841 		} else if (extent_start + extent_len == start) {
2842 			extent_len += end + 1 - start;
2843 		} else {
2844 			endio_readpage_release_extent(tree, extent_start,
2845 						      extent_len, uptodate);
2846 			extent_start = start;
2847 			extent_len = end + 1 - start;
2848 		}
2849 	}
2850 
2851 	if (extent_len)
2852 		endio_readpage_release_extent(tree, extent_start, extent_len,
2853 					      uptodate);
2854 	btrfs_io_bio_free_csum(io_bio);
2855 	bio_put(bio);
2856 }
2857 
2858 /*
2859  * Initialize the members up to but not including 'bio'. Use after allocating a
2860  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2861  * 'bio' because use of __GFP_ZERO is not supported.
2862  */
2863 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2864 {
2865 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2866 }
2867 
2868 /*
2869  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2870  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2871  * for the appropriate container_of magic
2872  */
2873 struct bio *btrfs_bio_alloc(u64 first_byte)
2874 {
2875 	struct bio *bio;
2876 
2877 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2878 	bio->bi_iter.bi_sector = first_byte >> 9;
2879 	btrfs_io_bio_init(btrfs_io_bio(bio));
2880 	return bio;
2881 }
2882 
2883 struct bio *btrfs_bio_clone(struct bio *bio)
2884 {
2885 	struct btrfs_io_bio *btrfs_bio;
2886 	struct bio *new;
2887 
2888 	/* Bio allocation backed by a bioset does not fail */
2889 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2890 	btrfs_bio = btrfs_io_bio(new);
2891 	btrfs_io_bio_init(btrfs_bio);
2892 	btrfs_bio->iter = bio->bi_iter;
2893 	return new;
2894 }
2895 
2896 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2897 {
2898 	struct bio *bio;
2899 
2900 	/* Bio allocation backed by a bioset does not fail */
2901 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2902 	btrfs_io_bio_init(btrfs_io_bio(bio));
2903 	return bio;
2904 }
2905 
2906 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2907 {
2908 	struct bio *bio;
2909 	struct btrfs_io_bio *btrfs_bio;
2910 
2911 	/* this will never fail when it's backed by a bioset */
2912 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2913 	ASSERT(bio);
2914 
2915 	btrfs_bio = btrfs_io_bio(bio);
2916 	btrfs_io_bio_init(btrfs_bio);
2917 
2918 	bio_trim(bio, offset >> 9, size >> 9);
2919 	btrfs_bio->iter = bio->bi_iter;
2920 	return bio;
2921 }
2922 
2923 /*
2924  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2925  * @tree:	tree so we can call our merge_bio hook
2926  * @wbc:	optional writeback control for io accounting
2927  * @page:	page to add to the bio
2928  * @pg_offset:	offset of the new bio or to check whether we are adding
2929  *              a contiguous page to the previous one
2930  * @size:	portion of page that we want to write
2931  * @offset:	starting offset in the page
2932  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2933  * @end_io_func:     end_io callback for new bio
2934  * @mirror_num:	     desired mirror to read/write
2935  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2936  * @bio_flags:	flags of the current bio to see if we can merge them
2937  */
2938 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2939 			      struct writeback_control *wbc,
2940 			      struct page *page, u64 offset,
2941 			      size_t size, unsigned long pg_offset,
2942 			      struct bio **bio_ret,
2943 			      bio_end_io_t end_io_func,
2944 			      int mirror_num,
2945 			      unsigned long prev_bio_flags,
2946 			      unsigned long bio_flags,
2947 			      bool force_bio_submit)
2948 {
2949 	int ret = 0;
2950 	struct bio *bio;
2951 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2952 	sector_t sector = offset >> 9;
2953 
2954 	ASSERT(bio_ret);
2955 
2956 	if (*bio_ret) {
2957 		bool contig;
2958 		bool can_merge = true;
2959 
2960 		bio = *bio_ret;
2961 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2962 			contig = bio->bi_iter.bi_sector == sector;
2963 		else
2964 			contig = bio_end_sector(bio) == sector;
2965 
2966 		ASSERT(tree->ops);
2967 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2968 			can_merge = false;
2969 
2970 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2971 		    force_bio_submit ||
2972 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2973 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2974 			if (ret < 0) {
2975 				*bio_ret = NULL;
2976 				return ret;
2977 			}
2978 			bio = NULL;
2979 		} else {
2980 			if (wbc)
2981 				wbc_account_cgroup_owner(wbc, page, page_size);
2982 			return 0;
2983 		}
2984 	}
2985 
2986 	bio = btrfs_bio_alloc(offset);
2987 	bio_add_page(bio, page, page_size, pg_offset);
2988 	bio->bi_end_io = end_io_func;
2989 	bio->bi_private = tree;
2990 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2991 	bio->bi_opf = opf;
2992 	if (wbc) {
2993 		struct block_device *bdev;
2994 
2995 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
2996 		bio_set_dev(bio, bdev);
2997 		wbc_init_bio(wbc, bio);
2998 		wbc_account_cgroup_owner(wbc, page, page_size);
2999 	}
3000 
3001 	*bio_ret = bio;
3002 
3003 	return ret;
3004 }
3005 
3006 static void attach_extent_buffer_page(struct extent_buffer *eb,
3007 				      struct page *page)
3008 {
3009 	if (!PagePrivate(page)) {
3010 		SetPagePrivate(page);
3011 		get_page(page);
3012 		set_page_private(page, (unsigned long)eb);
3013 	} else {
3014 		WARN_ON(page->private != (unsigned long)eb);
3015 	}
3016 }
3017 
3018 void set_page_extent_mapped(struct page *page)
3019 {
3020 	if (!PagePrivate(page)) {
3021 		SetPagePrivate(page);
3022 		get_page(page);
3023 		set_page_private(page, EXTENT_PAGE_PRIVATE);
3024 	}
3025 }
3026 
3027 static struct extent_map *
3028 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3029 		 u64 start, u64 len, get_extent_t *get_extent,
3030 		 struct extent_map **em_cached)
3031 {
3032 	struct extent_map *em;
3033 
3034 	if (em_cached && *em_cached) {
3035 		em = *em_cached;
3036 		if (extent_map_in_tree(em) && start >= em->start &&
3037 		    start < extent_map_end(em)) {
3038 			refcount_inc(&em->refs);
3039 			return em;
3040 		}
3041 
3042 		free_extent_map(em);
3043 		*em_cached = NULL;
3044 	}
3045 
3046 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3047 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3048 		BUG_ON(*em_cached);
3049 		refcount_inc(&em->refs);
3050 		*em_cached = em;
3051 	}
3052 	return em;
3053 }
3054 /*
3055  * basic readpage implementation.  Locked extent state structs are inserted
3056  * into the tree that are removed when the IO is done (by the end_io
3057  * handlers)
3058  * XXX JDM: This needs looking at to ensure proper page locking
3059  * return 0 on success, otherwise return error
3060  */
3061 static int __do_readpage(struct extent_io_tree *tree,
3062 			 struct page *page,
3063 			 get_extent_t *get_extent,
3064 			 struct extent_map **em_cached,
3065 			 struct bio **bio, int mirror_num,
3066 			 unsigned long *bio_flags, unsigned int read_flags,
3067 			 u64 *prev_em_start)
3068 {
3069 	struct inode *inode = page->mapping->host;
3070 	u64 start = page_offset(page);
3071 	const u64 end = start + PAGE_SIZE - 1;
3072 	u64 cur = start;
3073 	u64 extent_offset;
3074 	u64 last_byte = i_size_read(inode);
3075 	u64 block_start;
3076 	u64 cur_end;
3077 	struct extent_map *em;
3078 	int ret = 0;
3079 	int nr = 0;
3080 	size_t pg_offset = 0;
3081 	size_t iosize;
3082 	size_t disk_io_size;
3083 	size_t blocksize = inode->i_sb->s_blocksize;
3084 	unsigned long this_bio_flag = 0;
3085 
3086 	set_page_extent_mapped(page);
3087 
3088 	if (!PageUptodate(page)) {
3089 		if (cleancache_get_page(page) == 0) {
3090 			BUG_ON(blocksize != PAGE_SIZE);
3091 			unlock_extent(tree, start, end);
3092 			goto out;
3093 		}
3094 	}
3095 
3096 	if (page->index == last_byte >> PAGE_SHIFT) {
3097 		char *userpage;
3098 		size_t zero_offset = offset_in_page(last_byte);
3099 
3100 		if (zero_offset) {
3101 			iosize = PAGE_SIZE - zero_offset;
3102 			userpage = kmap_atomic(page);
3103 			memset(userpage + zero_offset, 0, iosize);
3104 			flush_dcache_page(page);
3105 			kunmap_atomic(userpage);
3106 		}
3107 	}
3108 	while (cur <= end) {
3109 		bool force_bio_submit = false;
3110 		u64 offset;
3111 
3112 		if (cur >= last_byte) {
3113 			char *userpage;
3114 			struct extent_state *cached = NULL;
3115 
3116 			iosize = PAGE_SIZE - pg_offset;
3117 			userpage = kmap_atomic(page);
3118 			memset(userpage + pg_offset, 0, iosize);
3119 			flush_dcache_page(page);
3120 			kunmap_atomic(userpage);
3121 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3122 					    &cached, GFP_NOFS);
3123 			unlock_extent_cached(tree, cur,
3124 					     cur + iosize - 1, &cached);
3125 			break;
3126 		}
3127 		em = __get_extent_map(inode, page, pg_offset, cur,
3128 				      end - cur + 1, get_extent, em_cached);
3129 		if (IS_ERR_OR_NULL(em)) {
3130 			SetPageError(page);
3131 			unlock_extent(tree, cur, end);
3132 			break;
3133 		}
3134 		extent_offset = cur - em->start;
3135 		BUG_ON(extent_map_end(em) <= cur);
3136 		BUG_ON(end < cur);
3137 
3138 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3139 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3140 			extent_set_compress_type(&this_bio_flag,
3141 						 em->compress_type);
3142 		}
3143 
3144 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3145 		cur_end = min(extent_map_end(em) - 1, end);
3146 		iosize = ALIGN(iosize, blocksize);
3147 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3148 			disk_io_size = em->block_len;
3149 			offset = em->block_start;
3150 		} else {
3151 			offset = em->block_start + extent_offset;
3152 			disk_io_size = iosize;
3153 		}
3154 		block_start = em->block_start;
3155 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3156 			block_start = EXTENT_MAP_HOLE;
3157 
3158 		/*
3159 		 * If we have a file range that points to a compressed extent
3160 		 * and it's followed by a consecutive file range that points to
3161 		 * to the same compressed extent (possibly with a different
3162 		 * offset and/or length, so it either points to the whole extent
3163 		 * or only part of it), we must make sure we do not submit a
3164 		 * single bio to populate the pages for the 2 ranges because
3165 		 * this makes the compressed extent read zero out the pages
3166 		 * belonging to the 2nd range. Imagine the following scenario:
3167 		 *
3168 		 *  File layout
3169 		 *  [0 - 8K]                     [8K - 24K]
3170 		 *    |                               |
3171 		 *    |                               |
3172 		 * points to extent X,         points to extent X,
3173 		 * offset 4K, length of 8K     offset 0, length 16K
3174 		 *
3175 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3176 		 *
3177 		 * If the bio to read the compressed extent covers both ranges,
3178 		 * it will decompress extent X into the pages belonging to the
3179 		 * first range and then it will stop, zeroing out the remaining
3180 		 * pages that belong to the other range that points to extent X.
3181 		 * So here we make sure we submit 2 bios, one for the first
3182 		 * range and another one for the third range. Both will target
3183 		 * the same physical extent from disk, but we can't currently
3184 		 * make the compressed bio endio callback populate the pages
3185 		 * for both ranges because each compressed bio is tightly
3186 		 * coupled with a single extent map, and each range can have
3187 		 * an extent map with a different offset value relative to the
3188 		 * uncompressed data of our extent and different lengths. This
3189 		 * is a corner case so we prioritize correctness over
3190 		 * non-optimal behavior (submitting 2 bios for the same extent).
3191 		 */
3192 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3193 		    prev_em_start && *prev_em_start != (u64)-1 &&
3194 		    *prev_em_start != em->start)
3195 			force_bio_submit = true;
3196 
3197 		if (prev_em_start)
3198 			*prev_em_start = em->start;
3199 
3200 		free_extent_map(em);
3201 		em = NULL;
3202 
3203 		/* we've found a hole, just zero and go on */
3204 		if (block_start == EXTENT_MAP_HOLE) {
3205 			char *userpage;
3206 			struct extent_state *cached = NULL;
3207 
3208 			userpage = kmap_atomic(page);
3209 			memset(userpage + pg_offset, 0, iosize);
3210 			flush_dcache_page(page);
3211 			kunmap_atomic(userpage);
3212 
3213 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3214 					    &cached, GFP_NOFS);
3215 			unlock_extent_cached(tree, cur,
3216 					     cur + iosize - 1, &cached);
3217 			cur = cur + iosize;
3218 			pg_offset += iosize;
3219 			continue;
3220 		}
3221 		/* the get_extent function already copied into the page */
3222 		if (test_range_bit(tree, cur, cur_end,
3223 				   EXTENT_UPTODATE, 1, NULL)) {
3224 			check_page_uptodate(tree, page);
3225 			unlock_extent(tree, cur, cur + iosize - 1);
3226 			cur = cur + iosize;
3227 			pg_offset += iosize;
3228 			continue;
3229 		}
3230 		/* we have an inline extent but it didn't get marked up
3231 		 * to date.  Error out
3232 		 */
3233 		if (block_start == EXTENT_MAP_INLINE) {
3234 			SetPageError(page);
3235 			unlock_extent(tree, cur, cur + iosize - 1);
3236 			cur = cur + iosize;
3237 			pg_offset += iosize;
3238 			continue;
3239 		}
3240 
3241 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3242 					 page, offset, disk_io_size,
3243 					 pg_offset, bio,
3244 					 end_bio_extent_readpage, mirror_num,
3245 					 *bio_flags,
3246 					 this_bio_flag,
3247 					 force_bio_submit);
3248 		if (!ret) {
3249 			nr++;
3250 			*bio_flags = this_bio_flag;
3251 		} else {
3252 			SetPageError(page);
3253 			unlock_extent(tree, cur, cur + iosize - 1);
3254 			goto out;
3255 		}
3256 		cur = cur + iosize;
3257 		pg_offset += iosize;
3258 	}
3259 out:
3260 	if (!nr) {
3261 		if (!PageError(page))
3262 			SetPageUptodate(page);
3263 		unlock_page(page);
3264 	}
3265 	return ret;
3266 }
3267 
3268 static inline void contiguous_readpages(struct extent_io_tree *tree,
3269 					     struct page *pages[], int nr_pages,
3270 					     u64 start, u64 end,
3271 					     struct extent_map **em_cached,
3272 					     struct bio **bio,
3273 					     unsigned long *bio_flags,
3274 					     u64 *prev_em_start)
3275 {
3276 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3277 	int index;
3278 
3279 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3280 
3281 	for (index = 0; index < nr_pages; index++) {
3282 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3283 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3284 		put_page(pages[index]);
3285 	}
3286 }
3287 
3288 static int __extent_read_full_page(struct extent_io_tree *tree,
3289 				   struct page *page,
3290 				   get_extent_t *get_extent,
3291 				   struct bio **bio, int mirror_num,
3292 				   unsigned long *bio_flags,
3293 				   unsigned int read_flags)
3294 {
3295 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3296 	u64 start = page_offset(page);
3297 	u64 end = start + PAGE_SIZE - 1;
3298 	int ret;
3299 
3300 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3301 
3302 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3303 			    bio_flags, read_flags, NULL);
3304 	return ret;
3305 }
3306 
3307 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3308 			    get_extent_t *get_extent, int mirror_num)
3309 {
3310 	struct bio *bio = NULL;
3311 	unsigned long bio_flags = 0;
3312 	int ret;
3313 
3314 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3315 				      &bio_flags, 0);
3316 	if (bio)
3317 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3318 	return ret;
3319 }
3320 
3321 static void update_nr_written(struct writeback_control *wbc,
3322 			      unsigned long nr_written)
3323 {
3324 	wbc->nr_to_write -= nr_written;
3325 }
3326 
3327 /*
3328  * helper for __extent_writepage, doing all of the delayed allocation setup.
3329  *
3330  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3331  * to write the page (copy into inline extent).  In this case the IO has
3332  * been started and the page is already unlocked.
3333  *
3334  * This returns 0 if all went well (page still locked)
3335  * This returns < 0 if there were errors (page still locked)
3336  */
3337 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3338 		struct page *page, struct writeback_control *wbc,
3339 		u64 delalloc_start, unsigned long *nr_written)
3340 {
3341 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3342 	bool found;
3343 	u64 delalloc_to_write = 0;
3344 	u64 delalloc_end = 0;
3345 	int ret;
3346 	int page_started = 0;
3347 
3348 
3349 	while (delalloc_end < page_end) {
3350 		found = find_lock_delalloc_range(inode, page,
3351 					       &delalloc_start,
3352 					       &delalloc_end);
3353 		if (!found) {
3354 			delalloc_start = delalloc_end + 1;
3355 			continue;
3356 		}
3357 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3358 				delalloc_end, &page_started, nr_written, wbc);
3359 		if (ret) {
3360 			SetPageError(page);
3361 			/*
3362 			 * btrfs_run_delalloc_range should return < 0 for error
3363 			 * but just in case, we use > 0 here meaning the IO is
3364 			 * started, so we don't want to return > 0 unless
3365 			 * things are going well.
3366 			 */
3367 			ret = ret < 0 ? ret : -EIO;
3368 			goto done;
3369 		}
3370 		/*
3371 		 * delalloc_end is already one less than the total length, so
3372 		 * we don't subtract one from PAGE_SIZE
3373 		 */
3374 		delalloc_to_write += (delalloc_end - delalloc_start +
3375 				      PAGE_SIZE) >> PAGE_SHIFT;
3376 		delalloc_start = delalloc_end + 1;
3377 	}
3378 	if (wbc->nr_to_write < delalloc_to_write) {
3379 		int thresh = 8192;
3380 
3381 		if (delalloc_to_write < thresh * 2)
3382 			thresh = delalloc_to_write;
3383 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3384 					 thresh);
3385 	}
3386 
3387 	/* did the fill delalloc function already unlock and start
3388 	 * the IO?
3389 	 */
3390 	if (page_started) {
3391 		/*
3392 		 * we've unlocked the page, so we can't update
3393 		 * the mapping's writeback index, just update
3394 		 * nr_to_write.
3395 		 */
3396 		wbc->nr_to_write -= *nr_written;
3397 		return 1;
3398 	}
3399 
3400 	ret = 0;
3401 
3402 done:
3403 	return ret;
3404 }
3405 
3406 /*
3407  * helper for __extent_writepage.  This calls the writepage start hooks,
3408  * and does the loop to map the page into extents and bios.
3409  *
3410  * We return 1 if the IO is started and the page is unlocked,
3411  * 0 if all went well (page still locked)
3412  * < 0 if there were errors (page still locked)
3413  */
3414 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3415 				 struct page *page,
3416 				 struct writeback_control *wbc,
3417 				 struct extent_page_data *epd,
3418 				 loff_t i_size,
3419 				 unsigned long nr_written,
3420 				 int *nr_ret)
3421 {
3422 	struct extent_io_tree *tree = epd->tree;
3423 	u64 start = page_offset(page);
3424 	u64 page_end = start + PAGE_SIZE - 1;
3425 	u64 end;
3426 	u64 cur = start;
3427 	u64 extent_offset;
3428 	u64 block_start;
3429 	u64 iosize;
3430 	struct extent_map *em;
3431 	size_t pg_offset = 0;
3432 	size_t blocksize;
3433 	int ret = 0;
3434 	int nr = 0;
3435 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3436 	bool compressed;
3437 
3438 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3439 	if (ret) {
3440 		/* Fixup worker will requeue */
3441 		if (ret == -EBUSY)
3442 			wbc->pages_skipped++;
3443 		else
3444 			redirty_page_for_writepage(wbc, page);
3445 
3446 		update_nr_written(wbc, nr_written);
3447 		unlock_page(page);
3448 		return 1;
3449 	}
3450 
3451 	/*
3452 	 * we don't want to touch the inode after unlocking the page,
3453 	 * so we update the mapping writeback index now
3454 	 */
3455 	update_nr_written(wbc, nr_written + 1);
3456 
3457 	end = page_end;
3458 	if (i_size <= start) {
3459 		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3460 		goto done;
3461 	}
3462 
3463 	blocksize = inode->i_sb->s_blocksize;
3464 
3465 	while (cur <= end) {
3466 		u64 em_end;
3467 		u64 offset;
3468 
3469 		if (cur >= i_size) {
3470 			btrfs_writepage_endio_finish_ordered(page, cur,
3471 							     page_end, 1);
3472 			break;
3473 		}
3474 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3475 				     end - cur + 1, 1);
3476 		if (IS_ERR_OR_NULL(em)) {
3477 			SetPageError(page);
3478 			ret = PTR_ERR_OR_ZERO(em);
3479 			break;
3480 		}
3481 
3482 		extent_offset = cur - em->start;
3483 		em_end = extent_map_end(em);
3484 		BUG_ON(em_end <= cur);
3485 		BUG_ON(end < cur);
3486 		iosize = min(em_end - cur, end - cur + 1);
3487 		iosize = ALIGN(iosize, blocksize);
3488 		offset = em->block_start + extent_offset;
3489 		block_start = em->block_start;
3490 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3491 		free_extent_map(em);
3492 		em = NULL;
3493 
3494 		/*
3495 		 * compressed and inline extents are written through other
3496 		 * paths in the FS
3497 		 */
3498 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3499 		    block_start == EXTENT_MAP_INLINE) {
3500 			/*
3501 			 * end_io notification does not happen here for
3502 			 * compressed extents
3503 			 */
3504 			if (!compressed)
3505 				btrfs_writepage_endio_finish_ordered(page, cur,
3506 							    cur + iosize - 1,
3507 							    1);
3508 			else if (compressed) {
3509 				/* we don't want to end_page_writeback on
3510 				 * a compressed extent.  this happens
3511 				 * elsewhere
3512 				 */
3513 				nr++;
3514 			}
3515 
3516 			cur += iosize;
3517 			pg_offset += iosize;
3518 			continue;
3519 		}
3520 
3521 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3522 		if (!PageWriteback(page)) {
3523 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3524 				   "page %lu not writeback, cur %llu end %llu",
3525 			       page->index, cur, end);
3526 		}
3527 
3528 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3529 					 page, offset, iosize, pg_offset,
3530 					 &epd->bio,
3531 					 end_bio_extent_writepage,
3532 					 0, 0, 0, false);
3533 		if (ret) {
3534 			SetPageError(page);
3535 			if (PageWriteback(page))
3536 				end_page_writeback(page);
3537 		}
3538 
3539 		cur = cur + iosize;
3540 		pg_offset += iosize;
3541 		nr++;
3542 	}
3543 done:
3544 	*nr_ret = nr;
3545 	return ret;
3546 }
3547 
3548 /*
3549  * the writepage semantics are similar to regular writepage.  extent
3550  * records are inserted to lock ranges in the tree, and as dirty areas
3551  * are found, they are marked writeback.  Then the lock bits are removed
3552  * and the end_io handler clears the writeback ranges
3553  *
3554  * Return 0 if everything goes well.
3555  * Return <0 for error.
3556  */
3557 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3558 			      struct extent_page_data *epd)
3559 {
3560 	struct inode *inode = page->mapping->host;
3561 	u64 start = page_offset(page);
3562 	u64 page_end = start + PAGE_SIZE - 1;
3563 	int ret;
3564 	int nr = 0;
3565 	size_t pg_offset = 0;
3566 	loff_t i_size = i_size_read(inode);
3567 	unsigned long end_index = i_size >> PAGE_SHIFT;
3568 	unsigned long nr_written = 0;
3569 
3570 	trace___extent_writepage(page, inode, wbc);
3571 
3572 	WARN_ON(!PageLocked(page));
3573 
3574 	ClearPageError(page);
3575 
3576 	pg_offset = offset_in_page(i_size);
3577 	if (page->index > end_index ||
3578 	   (page->index == end_index && !pg_offset)) {
3579 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3580 		unlock_page(page);
3581 		return 0;
3582 	}
3583 
3584 	if (page->index == end_index) {
3585 		char *userpage;
3586 
3587 		userpage = kmap_atomic(page);
3588 		memset(userpage + pg_offset, 0,
3589 		       PAGE_SIZE - pg_offset);
3590 		kunmap_atomic(userpage);
3591 		flush_dcache_page(page);
3592 	}
3593 
3594 	pg_offset = 0;
3595 
3596 	set_page_extent_mapped(page);
3597 
3598 	if (!epd->extent_locked) {
3599 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3600 		if (ret == 1)
3601 			goto done_unlocked;
3602 		if (ret)
3603 			goto done;
3604 	}
3605 
3606 	ret = __extent_writepage_io(inode, page, wbc, epd,
3607 				    i_size, nr_written, &nr);
3608 	if (ret == 1)
3609 		goto done_unlocked;
3610 
3611 done:
3612 	if (nr == 0) {
3613 		/* make sure the mapping tag for page dirty gets cleared */
3614 		set_page_writeback(page);
3615 		end_page_writeback(page);
3616 	}
3617 	if (PageError(page)) {
3618 		ret = ret < 0 ? ret : -EIO;
3619 		end_extent_writepage(page, ret, start, page_end);
3620 	}
3621 	unlock_page(page);
3622 	ASSERT(ret <= 0);
3623 	return ret;
3624 
3625 done_unlocked:
3626 	return 0;
3627 }
3628 
3629 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3630 {
3631 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3632 		       TASK_UNINTERRUPTIBLE);
3633 }
3634 
3635 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3636 {
3637 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3638 	smp_mb__after_atomic();
3639 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3640 }
3641 
3642 /*
3643  * Lock eb pages and flush the bio if we can't the locks
3644  *
3645  * Return  0 if nothing went wrong
3646  * Return >0 is same as 0, except bio is not submitted
3647  * Return <0 if something went wrong, no page is locked
3648  */
3649 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3650 			  struct extent_page_data *epd)
3651 {
3652 	struct btrfs_fs_info *fs_info = eb->fs_info;
3653 	int i, num_pages, failed_page_nr;
3654 	int flush = 0;
3655 	int ret = 0;
3656 
3657 	if (!btrfs_try_tree_write_lock(eb)) {
3658 		ret = flush_write_bio(epd);
3659 		if (ret < 0)
3660 			return ret;
3661 		flush = 1;
3662 		btrfs_tree_lock(eb);
3663 	}
3664 
3665 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3666 		btrfs_tree_unlock(eb);
3667 		if (!epd->sync_io)
3668 			return 0;
3669 		if (!flush) {
3670 			ret = flush_write_bio(epd);
3671 			if (ret < 0)
3672 				return ret;
3673 			flush = 1;
3674 		}
3675 		while (1) {
3676 			wait_on_extent_buffer_writeback(eb);
3677 			btrfs_tree_lock(eb);
3678 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3679 				break;
3680 			btrfs_tree_unlock(eb);
3681 		}
3682 	}
3683 
3684 	/*
3685 	 * We need to do this to prevent races in people who check if the eb is
3686 	 * under IO since we can end up having no IO bits set for a short period
3687 	 * of time.
3688 	 */
3689 	spin_lock(&eb->refs_lock);
3690 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3691 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3692 		spin_unlock(&eb->refs_lock);
3693 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3694 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3695 					 -eb->len,
3696 					 fs_info->dirty_metadata_batch);
3697 		ret = 1;
3698 	} else {
3699 		spin_unlock(&eb->refs_lock);
3700 	}
3701 
3702 	btrfs_tree_unlock(eb);
3703 
3704 	if (!ret)
3705 		return ret;
3706 
3707 	num_pages = num_extent_pages(eb);
3708 	for (i = 0; i < num_pages; i++) {
3709 		struct page *p = eb->pages[i];
3710 
3711 		if (!trylock_page(p)) {
3712 			if (!flush) {
3713 				int err;
3714 
3715 				err = flush_write_bio(epd);
3716 				if (err < 0) {
3717 					ret = err;
3718 					failed_page_nr = i;
3719 					goto err_unlock;
3720 				}
3721 				flush = 1;
3722 			}
3723 			lock_page(p);
3724 		}
3725 	}
3726 
3727 	return ret;
3728 err_unlock:
3729 	/* Unlock already locked pages */
3730 	for (i = 0; i < failed_page_nr; i++)
3731 		unlock_page(eb->pages[i]);
3732 	/*
3733 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3734 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3735 	 * be made and undo everything done before.
3736 	 */
3737 	btrfs_tree_lock(eb);
3738 	spin_lock(&eb->refs_lock);
3739 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3740 	end_extent_buffer_writeback(eb);
3741 	spin_unlock(&eb->refs_lock);
3742 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3743 				 fs_info->dirty_metadata_batch);
3744 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3745 	btrfs_tree_unlock(eb);
3746 	return ret;
3747 }
3748 
3749 static void set_btree_ioerr(struct page *page)
3750 {
3751 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3752 	struct btrfs_fs_info *fs_info;
3753 
3754 	SetPageError(page);
3755 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3756 		return;
3757 
3758 	/*
3759 	 * If we error out, we should add back the dirty_metadata_bytes
3760 	 * to make it consistent.
3761 	 */
3762 	fs_info = eb->fs_info;
3763 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3764 				 eb->len, fs_info->dirty_metadata_batch);
3765 
3766 	/*
3767 	 * If writeback for a btree extent that doesn't belong to a log tree
3768 	 * failed, increment the counter transaction->eb_write_errors.
3769 	 * We do this because while the transaction is running and before it's
3770 	 * committing (when we call filemap_fdata[write|wait]_range against
3771 	 * the btree inode), we might have
3772 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3773 	 * returns an error or an error happens during writeback, when we're
3774 	 * committing the transaction we wouldn't know about it, since the pages
3775 	 * can be no longer dirty nor marked anymore for writeback (if a
3776 	 * subsequent modification to the extent buffer didn't happen before the
3777 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3778 	 * able to find the pages tagged with SetPageError at transaction
3779 	 * commit time. So if this happens we must abort the transaction,
3780 	 * otherwise we commit a super block with btree roots that point to
3781 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3782 	 * or the content of some node/leaf from a past generation that got
3783 	 * cowed or deleted and is no longer valid.
3784 	 *
3785 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3786 	 * not be enough - we need to distinguish between log tree extents vs
3787 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3788 	 * will catch and clear such errors in the mapping - and that call might
3789 	 * be from a log sync and not from a transaction commit. Also, checking
3790 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3791 	 * not done and would not be reliable - the eb might have been released
3792 	 * from memory and reading it back again means that flag would not be
3793 	 * set (since it's a runtime flag, not persisted on disk).
3794 	 *
3795 	 * Using the flags below in the btree inode also makes us achieve the
3796 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3797 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3798 	 * is called, the writeback for all dirty pages had already finished
3799 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3800 	 * filemap_fdatawait_range() would return success, as it could not know
3801 	 * that writeback errors happened (the pages were no longer tagged for
3802 	 * writeback).
3803 	 */
3804 	switch (eb->log_index) {
3805 	case -1:
3806 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3807 		break;
3808 	case 0:
3809 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3810 		break;
3811 	case 1:
3812 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3813 		break;
3814 	default:
3815 		BUG(); /* unexpected, logic error */
3816 	}
3817 }
3818 
3819 static void end_bio_extent_buffer_writepage(struct bio *bio)
3820 {
3821 	struct bio_vec *bvec;
3822 	struct extent_buffer *eb;
3823 	int done;
3824 	struct bvec_iter_all iter_all;
3825 
3826 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3827 	bio_for_each_segment_all(bvec, bio, iter_all) {
3828 		struct page *page = bvec->bv_page;
3829 
3830 		eb = (struct extent_buffer *)page->private;
3831 		BUG_ON(!eb);
3832 		done = atomic_dec_and_test(&eb->io_pages);
3833 
3834 		if (bio->bi_status ||
3835 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3836 			ClearPageUptodate(page);
3837 			set_btree_ioerr(page);
3838 		}
3839 
3840 		end_page_writeback(page);
3841 
3842 		if (!done)
3843 			continue;
3844 
3845 		end_extent_buffer_writeback(eb);
3846 	}
3847 
3848 	bio_put(bio);
3849 }
3850 
3851 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3852 			struct writeback_control *wbc,
3853 			struct extent_page_data *epd)
3854 {
3855 	struct btrfs_fs_info *fs_info = eb->fs_info;
3856 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3857 	u64 offset = eb->start;
3858 	u32 nritems;
3859 	int i, num_pages;
3860 	unsigned long start, end;
3861 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3862 	int ret = 0;
3863 
3864 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3865 	num_pages = num_extent_pages(eb);
3866 	atomic_set(&eb->io_pages, num_pages);
3867 
3868 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3869 	nritems = btrfs_header_nritems(eb);
3870 	if (btrfs_header_level(eb) > 0) {
3871 		end = btrfs_node_key_ptr_offset(nritems);
3872 
3873 		memzero_extent_buffer(eb, end, eb->len - end);
3874 	} else {
3875 		/*
3876 		 * leaf:
3877 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3878 		 */
3879 		start = btrfs_item_nr_offset(nritems);
3880 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3881 		memzero_extent_buffer(eb, start, end - start);
3882 	}
3883 
3884 	for (i = 0; i < num_pages; i++) {
3885 		struct page *p = eb->pages[i];
3886 
3887 		clear_page_dirty_for_io(p);
3888 		set_page_writeback(p);
3889 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3890 					 p, offset, PAGE_SIZE, 0,
3891 					 &epd->bio,
3892 					 end_bio_extent_buffer_writepage,
3893 					 0, 0, 0, false);
3894 		if (ret) {
3895 			set_btree_ioerr(p);
3896 			if (PageWriteback(p))
3897 				end_page_writeback(p);
3898 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3899 				end_extent_buffer_writeback(eb);
3900 			ret = -EIO;
3901 			break;
3902 		}
3903 		offset += PAGE_SIZE;
3904 		update_nr_written(wbc, 1);
3905 		unlock_page(p);
3906 	}
3907 
3908 	if (unlikely(ret)) {
3909 		for (; i < num_pages; i++) {
3910 			struct page *p = eb->pages[i];
3911 			clear_page_dirty_for_io(p);
3912 			unlock_page(p);
3913 		}
3914 	}
3915 
3916 	return ret;
3917 }
3918 
3919 int btree_write_cache_pages(struct address_space *mapping,
3920 				   struct writeback_control *wbc)
3921 {
3922 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3923 	struct extent_buffer *eb, *prev_eb = NULL;
3924 	struct extent_page_data epd = {
3925 		.bio = NULL,
3926 		.tree = tree,
3927 		.extent_locked = 0,
3928 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3929 	};
3930 	int ret = 0;
3931 	int done = 0;
3932 	int nr_to_write_done = 0;
3933 	struct pagevec pvec;
3934 	int nr_pages;
3935 	pgoff_t index;
3936 	pgoff_t end;		/* Inclusive */
3937 	int scanned = 0;
3938 	xa_mark_t tag;
3939 
3940 	pagevec_init(&pvec);
3941 	if (wbc->range_cyclic) {
3942 		index = mapping->writeback_index; /* Start from prev offset */
3943 		end = -1;
3944 	} else {
3945 		index = wbc->range_start >> PAGE_SHIFT;
3946 		end = wbc->range_end >> PAGE_SHIFT;
3947 		scanned = 1;
3948 	}
3949 	if (wbc->sync_mode == WB_SYNC_ALL)
3950 		tag = PAGECACHE_TAG_TOWRITE;
3951 	else
3952 		tag = PAGECACHE_TAG_DIRTY;
3953 retry:
3954 	if (wbc->sync_mode == WB_SYNC_ALL)
3955 		tag_pages_for_writeback(mapping, index, end);
3956 	while (!done && !nr_to_write_done && (index <= end) &&
3957 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3958 			tag))) {
3959 		unsigned i;
3960 
3961 		scanned = 1;
3962 		for (i = 0; i < nr_pages; i++) {
3963 			struct page *page = pvec.pages[i];
3964 
3965 			if (!PagePrivate(page))
3966 				continue;
3967 
3968 			spin_lock(&mapping->private_lock);
3969 			if (!PagePrivate(page)) {
3970 				spin_unlock(&mapping->private_lock);
3971 				continue;
3972 			}
3973 
3974 			eb = (struct extent_buffer *)page->private;
3975 
3976 			/*
3977 			 * Shouldn't happen and normally this would be a BUG_ON
3978 			 * but no sense in crashing the users box for something
3979 			 * we can survive anyway.
3980 			 */
3981 			if (WARN_ON(!eb)) {
3982 				spin_unlock(&mapping->private_lock);
3983 				continue;
3984 			}
3985 
3986 			if (eb == prev_eb) {
3987 				spin_unlock(&mapping->private_lock);
3988 				continue;
3989 			}
3990 
3991 			ret = atomic_inc_not_zero(&eb->refs);
3992 			spin_unlock(&mapping->private_lock);
3993 			if (!ret)
3994 				continue;
3995 
3996 			prev_eb = eb;
3997 			ret = lock_extent_buffer_for_io(eb, &epd);
3998 			if (!ret) {
3999 				free_extent_buffer(eb);
4000 				continue;
4001 			} else if (ret < 0) {
4002 				done = 1;
4003 				free_extent_buffer(eb);
4004 				break;
4005 			}
4006 
4007 			ret = write_one_eb(eb, wbc, &epd);
4008 			if (ret) {
4009 				done = 1;
4010 				free_extent_buffer(eb);
4011 				break;
4012 			}
4013 			free_extent_buffer(eb);
4014 
4015 			/*
4016 			 * the filesystem may choose to bump up nr_to_write.
4017 			 * We have to make sure to honor the new nr_to_write
4018 			 * at any time
4019 			 */
4020 			nr_to_write_done = wbc->nr_to_write <= 0;
4021 		}
4022 		pagevec_release(&pvec);
4023 		cond_resched();
4024 	}
4025 	if (!scanned && !done) {
4026 		/*
4027 		 * We hit the last page and there is more work to be done: wrap
4028 		 * back to the start of the file
4029 		 */
4030 		scanned = 1;
4031 		index = 0;
4032 		goto retry;
4033 	}
4034 	ASSERT(ret <= 0);
4035 	if (ret < 0) {
4036 		end_write_bio(&epd, ret);
4037 		return ret;
4038 	}
4039 	ret = flush_write_bio(&epd);
4040 	return ret;
4041 }
4042 
4043 /**
4044  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4045  * @mapping: address space structure to write
4046  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4047  * @data: data passed to __extent_writepage function
4048  *
4049  * If a page is already under I/O, write_cache_pages() skips it, even
4050  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4051  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4052  * and msync() need to guarantee that all the data which was dirty at the time
4053  * the call was made get new I/O started against them.  If wbc->sync_mode is
4054  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4055  * existing IO to complete.
4056  */
4057 static int extent_write_cache_pages(struct address_space *mapping,
4058 			     struct writeback_control *wbc,
4059 			     struct extent_page_data *epd)
4060 {
4061 	struct inode *inode = mapping->host;
4062 	int ret = 0;
4063 	int done = 0;
4064 	int nr_to_write_done = 0;
4065 	struct pagevec pvec;
4066 	int nr_pages;
4067 	pgoff_t index;
4068 	pgoff_t end;		/* Inclusive */
4069 	pgoff_t done_index;
4070 	int range_whole = 0;
4071 	int scanned = 0;
4072 	xa_mark_t tag;
4073 
4074 	/*
4075 	 * We have to hold onto the inode so that ordered extents can do their
4076 	 * work when the IO finishes.  The alternative to this is failing to add
4077 	 * an ordered extent if the igrab() fails there and that is a huge pain
4078 	 * to deal with, so instead just hold onto the inode throughout the
4079 	 * writepages operation.  If it fails here we are freeing up the inode
4080 	 * anyway and we'd rather not waste our time writing out stuff that is
4081 	 * going to be truncated anyway.
4082 	 */
4083 	if (!igrab(inode))
4084 		return 0;
4085 
4086 	pagevec_init(&pvec);
4087 	if (wbc->range_cyclic) {
4088 		index = mapping->writeback_index; /* Start from prev offset */
4089 		end = -1;
4090 	} else {
4091 		index = wbc->range_start >> PAGE_SHIFT;
4092 		end = wbc->range_end >> PAGE_SHIFT;
4093 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4094 			range_whole = 1;
4095 		scanned = 1;
4096 	}
4097 
4098 	/*
4099 	 * We do the tagged writepage as long as the snapshot flush bit is set
4100 	 * and we are the first one who do the filemap_flush() on this inode.
4101 	 *
4102 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4103 	 * not race in and drop the bit.
4104 	 */
4105 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4106 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4107 			       &BTRFS_I(inode)->runtime_flags))
4108 		wbc->tagged_writepages = 1;
4109 
4110 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4111 		tag = PAGECACHE_TAG_TOWRITE;
4112 	else
4113 		tag = PAGECACHE_TAG_DIRTY;
4114 retry:
4115 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4116 		tag_pages_for_writeback(mapping, index, end);
4117 	done_index = index;
4118 	while (!done && !nr_to_write_done && (index <= end) &&
4119 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4120 						&index, end, tag))) {
4121 		unsigned i;
4122 
4123 		scanned = 1;
4124 		for (i = 0; i < nr_pages; i++) {
4125 			struct page *page = pvec.pages[i];
4126 
4127 			done_index = page->index + 1;
4128 			/*
4129 			 * At this point we hold neither the i_pages lock nor
4130 			 * the page lock: the page may be truncated or
4131 			 * invalidated (changing page->mapping to NULL),
4132 			 * or even swizzled back from swapper_space to
4133 			 * tmpfs file mapping
4134 			 */
4135 			if (!trylock_page(page)) {
4136 				ret = flush_write_bio(epd);
4137 				BUG_ON(ret < 0);
4138 				lock_page(page);
4139 			}
4140 
4141 			if (unlikely(page->mapping != mapping)) {
4142 				unlock_page(page);
4143 				continue;
4144 			}
4145 
4146 			if (wbc->sync_mode != WB_SYNC_NONE) {
4147 				if (PageWriteback(page)) {
4148 					ret = flush_write_bio(epd);
4149 					BUG_ON(ret < 0);
4150 				}
4151 				wait_on_page_writeback(page);
4152 			}
4153 
4154 			if (PageWriteback(page) ||
4155 			    !clear_page_dirty_for_io(page)) {
4156 				unlock_page(page);
4157 				continue;
4158 			}
4159 
4160 			ret = __extent_writepage(page, wbc, epd);
4161 			if (ret < 0) {
4162 				done = 1;
4163 				break;
4164 			}
4165 
4166 			/*
4167 			 * the filesystem may choose to bump up nr_to_write.
4168 			 * We have to make sure to honor the new nr_to_write
4169 			 * at any time
4170 			 */
4171 			nr_to_write_done = wbc->nr_to_write <= 0;
4172 		}
4173 		pagevec_release(&pvec);
4174 		cond_resched();
4175 	}
4176 	if (!scanned && !done) {
4177 		/*
4178 		 * We hit the last page and there is more work to be done: wrap
4179 		 * back to the start of the file
4180 		 */
4181 		scanned = 1;
4182 		index = 0;
4183 		goto retry;
4184 	}
4185 
4186 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4187 		mapping->writeback_index = done_index;
4188 
4189 	btrfs_add_delayed_iput(inode);
4190 	return ret;
4191 }
4192 
4193 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4194 {
4195 	int ret;
4196 	struct extent_page_data epd = {
4197 		.bio = NULL,
4198 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4199 		.extent_locked = 0,
4200 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4201 	};
4202 
4203 	ret = __extent_writepage(page, wbc, &epd);
4204 	ASSERT(ret <= 0);
4205 	if (ret < 0) {
4206 		end_write_bio(&epd, ret);
4207 		return ret;
4208 	}
4209 
4210 	ret = flush_write_bio(&epd);
4211 	ASSERT(ret <= 0);
4212 	return ret;
4213 }
4214 
4215 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4216 			      int mode)
4217 {
4218 	int ret = 0;
4219 	struct address_space *mapping = inode->i_mapping;
4220 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4221 	struct page *page;
4222 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4223 		PAGE_SHIFT;
4224 
4225 	struct extent_page_data epd = {
4226 		.bio = NULL,
4227 		.tree = tree,
4228 		.extent_locked = 1,
4229 		.sync_io = mode == WB_SYNC_ALL,
4230 	};
4231 	struct writeback_control wbc_writepages = {
4232 		.sync_mode	= mode,
4233 		.nr_to_write	= nr_pages * 2,
4234 		.range_start	= start,
4235 		.range_end	= end + 1,
4236 		/* We're called from an async helper function */
4237 		.punt_to_cgroup	= 1,
4238 		.no_cgroup_owner = 1,
4239 	};
4240 
4241 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4242 	while (start <= end) {
4243 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4244 		if (clear_page_dirty_for_io(page))
4245 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4246 		else {
4247 			btrfs_writepage_endio_finish_ordered(page, start,
4248 						    start + PAGE_SIZE - 1, 1);
4249 			unlock_page(page);
4250 		}
4251 		put_page(page);
4252 		start += PAGE_SIZE;
4253 	}
4254 
4255 	ASSERT(ret <= 0);
4256 	if (ret == 0)
4257 		ret = flush_write_bio(&epd);
4258 	else
4259 		end_write_bio(&epd, ret);
4260 
4261 	wbc_detach_inode(&wbc_writepages);
4262 	return ret;
4263 }
4264 
4265 int extent_writepages(struct address_space *mapping,
4266 		      struct writeback_control *wbc)
4267 {
4268 	int ret = 0;
4269 	struct extent_page_data epd = {
4270 		.bio = NULL,
4271 		.tree = &BTRFS_I(mapping->host)->io_tree,
4272 		.extent_locked = 0,
4273 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4274 	};
4275 
4276 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4277 	ASSERT(ret <= 0);
4278 	if (ret < 0) {
4279 		end_write_bio(&epd, ret);
4280 		return ret;
4281 	}
4282 	ret = flush_write_bio(&epd);
4283 	return ret;
4284 }
4285 
4286 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4287 		     unsigned nr_pages)
4288 {
4289 	struct bio *bio = NULL;
4290 	unsigned long bio_flags = 0;
4291 	struct page *pagepool[16];
4292 	struct extent_map *em_cached = NULL;
4293 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4294 	int nr = 0;
4295 	u64 prev_em_start = (u64)-1;
4296 
4297 	while (!list_empty(pages)) {
4298 		u64 contig_end = 0;
4299 
4300 		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4301 			struct page *page = lru_to_page(pages);
4302 
4303 			prefetchw(&page->flags);
4304 			list_del(&page->lru);
4305 			if (add_to_page_cache_lru(page, mapping, page->index,
4306 						readahead_gfp_mask(mapping))) {
4307 				put_page(page);
4308 				break;
4309 			}
4310 
4311 			pagepool[nr++] = page;
4312 			contig_end = page_offset(page) + PAGE_SIZE - 1;
4313 		}
4314 
4315 		if (nr) {
4316 			u64 contig_start = page_offset(pagepool[0]);
4317 
4318 			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4319 
4320 			contiguous_readpages(tree, pagepool, nr, contig_start,
4321 				     contig_end, &em_cached, &bio, &bio_flags,
4322 				     &prev_em_start);
4323 		}
4324 	}
4325 
4326 	if (em_cached)
4327 		free_extent_map(em_cached);
4328 
4329 	if (bio)
4330 		return submit_one_bio(bio, 0, bio_flags);
4331 	return 0;
4332 }
4333 
4334 /*
4335  * basic invalidatepage code, this waits on any locked or writeback
4336  * ranges corresponding to the page, and then deletes any extent state
4337  * records from the tree
4338  */
4339 int extent_invalidatepage(struct extent_io_tree *tree,
4340 			  struct page *page, unsigned long offset)
4341 {
4342 	struct extent_state *cached_state = NULL;
4343 	u64 start = page_offset(page);
4344 	u64 end = start + PAGE_SIZE - 1;
4345 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4346 
4347 	start += ALIGN(offset, blocksize);
4348 	if (start > end)
4349 		return 0;
4350 
4351 	lock_extent_bits(tree, start, end, &cached_state);
4352 	wait_on_page_writeback(page);
4353 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4354 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4355 	return 0;
4356 }
4357 
4358 /*
4359  * a helper for releasepage, this tests for areas of the page that
4360  * are locked or under IO and drops the related state bits if it is safe
4361  * to drop the page.
4362  */
4363 static int try_release_extent_state(struct extent_io_tree *tree,
4364 				    struct page *page, gfp_t mask)
4365 {
4366 	u64 start = page_offset(page);
4367 	u64 end = start + PAGE_SIZE - 1;
4368 	int ret = 1;
4369 
4370 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4371 		ret = 0;
4372 	} else {
4373 		/*
4374 		 * at this point we can safely clear everything except the
4375 		 * locked bit and the nodatasum bit
4376 		 */
4377 		ret = __clear_extent_bit(tree, start, end,
4378 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4379 				 0, 0, NULL, mask, NULL);
4380 
4381 		/* if clear_extent_bit failed for enomem reasons,
4382 		 * we can't allow the release to continue.
4383 		 */
4384 		if (ret < 0)
4385 			ret = 0;
4386 		else
4387 			ret = 1;
4388 	}
4389 	return ret;
4390 }
4391 
4392 /*
4393  * a helper for releasepage.  As long as there are no locked extents
4394  * in the range corresponding to the page, both state records and extent
4395  * map records are removed
4396  */
4397 int try_release_extent_mapping(struct page *page, gfp_t mask)
4398 {
4399 	struct extent_map *em;
4400 	u64 start = page_offset(page);
4401 	u64 end = start + PAGE_SIZE - 1;
4402 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4403 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4404 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4405 
4406 	if (gfpflags_allow_blocking(mask) &&
4407 	    page->mapping->host->i_size > SZ_16M) {
4408 		u64 len;
4409 		while (start <= end) {
4410 			len = end - start + 1;
4411 			write_lock(&map->lock);
4412 			em = lookup_extent_mapping(map, start, len);
4413 			if (!em) {
4414 				write_unlock(&map->lock);
4415 				break;
4416 			}
4417 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4418 			    em->start != start) {
4419 				write_unlock(&map->lock);
4420 				free_extent_map(em);
4421 				break;
4422 			}
4423 			if (!test_range_bit(tree, em->start,
4424 					    extent_map_end(em) - 1,
4425 					    EXTENT_LOCKED, 0, NULL)) {
4426 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4427 					&btrfs_inode->runtime_flags);
4428 				remove_extent_mapping(map, em);
4429 				/* once for the rb tree */
4430 				free_extent_map(em);
4431 			}
4432 			start = extent_map_end(em);
4433 			write_unlock(&map->lock);
4434 
4435 			/* once for us */
4436 			free_extent_map(em);
4437 		}
4438 	}
4439 	return try_release_extent_state(tree, page, mask);
4440 }
4441 
4442 /*
4443  * helper function for fiemap, which doesn't want to see any holes.
4444  * This maps until we find something past 'last'
4445  */
4446 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4447 						u64 offset, u64 last)
4448 {
4449 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4450 	struct extent_map *em;
4451 	u64 len;
4452 
4453 	if (offset >= last)
4454 		return NULL;
4455 
4456 	while (1) {
4457 		len = last - offset;
4458 		if (len == 0)
4459 			break;
4460 		len = ALIGN(len, sectorsize);
4461 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4462 		if (IS_ERR_OR_NULL(em))
4463 			return em;
4464 
4465 		/* if this isn't a hole return it */
4466 		if (em->block_start != EXTENT_MAP_HOLE)
4467 			return em;
4468 
4469 		/* this is a hole, advance to the next extent */
4470 		offset = extent_map_end(em);
4471 		free_extent_map(em);
4472 		if (offset >= last)
4473 			break;
4474 	}
4475 	return NULL;
4476 }
4477 
4478 /*
4479  * To cache previous fiemap extent
4480  *
4481  * Will be used for merging fiemap extent
4482  */
4483 struct fiemap_cache {
4484 	u64 offset;
4485 	u64 phys;
4486 	u64 len;
4487 	u32 flags;
4488 	bool cached;
4489 };
4490 
4491 /*
4492  * Helper to submit fiemap extent.
4493  *
4494  * Will try to merge current fiemap extent specified by @offset, @phys,
4495  * @len and @flags with cached one.
4496  * And only when we fails to merge, cached one will be submitted as
4497  * fiemap extent.
4498  *
4499  * Return value is the same as fiemap_fill_next_extent().
4500  */
4501 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4502 				struct fiemap_cache *cache,
4503 				u64 offset, u64 phys, u64 len, u32 flags)
4504 {
4505 	int ret = 0;
4506 
4507 	if (!cache->cached)
4508 		goto assign;
4509 
4510 	/*
4511 	 * Sanity check, extent_fiemap() should have ensured that new
4512 	 * fiemap extent won't overlap with cached one.
4513 	 * Not recoverable.
4514 	 *
4515 	 * NOTE: Physical address can overlap, due to compression
4516 	 */
4517 	if (cache->offset + cache->len > offset) {
4518 		WARN_ON(1);
4519 		return -EINVAL;
4520 	}
4521 
4522 	/*
4523 	 * Only merges fiemap extents if
4524 	 * 1) Their logical addresses are continuous
4525 	 *
4526 	 * 2) Their physical addresses are continuous
4527 	 *    So truly compressed (physical size smaller than logical size)
4528 	 *    extents won't get merged with each other
4529 	 *
4530 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4531 	 *    So regular extent won't get merged with prealloc extent
4532 	 */
4533 	if (cache->offset + cache->len  == offset &&
4534 	    cache->phys + cache->len == phys  &&
4535 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4536 			(flags & ~FIEMAP_EXTENT_LAST)) {
4537 		cache->len += len;
4538 		cache->flags |= flags;
4539 		goto try_submit_last;
4540 	}
4541 
4542 	/* Not mergeable, need to submit cached one */
4543 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4544 				      cache->len, cache->flags);
4545 	cache->cached = false;
4546 	if (ret)
4547 		return ret;
4548 assign:
4549 	cache->cached = true;
4550 	cache->offset = offset;
4551 	cache->phys = phys;
4552 	cache->len = len;
4553 	cache->flags = flags;
4554 try_submit_last:
4555 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4556 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4557 				cache->phys, cache->len, cache->flags);
4558 		cache->cached = false;
4559 	}
4560 	return ret;
4561 }
4562 
4563 /*
4564  * Emit last fiemap cache
4565  *
4566  * The last fiemap cache may still be cached in the following case:
4567  * 0		      4k		    8k
4568  * |<- Fiemap range ->|
4569  * |<------------  First extent ----------->|
4570  *
4571  * In this case, the first extent range will be cached but not emitted.
4572  * So we must emit it before ending extent_fiemap().
4573  */
4574 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4575 				  struct fiemap_cache *cache)
4576 {
4577 	int ret;
4578 
4579 	if (!cache->cached)
4580 		return 0;
4581 
4582 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4583 				      cache->len, cache->flags);
4584 	cache->cached = false;
4585 	if (ret > 0)
4586 		ret = 0;
4587 	return ret;
4588 }
4589 
4590 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4591 		__u64 start, __u64 len)
4592 {
4593 	int ret = 0;
4594 	u64 off = start;
4595 	u64 max = start + len;
4596 	u32 flags = 0;
4597 	u32 found_type;
4598 	u64 last;
4599 	u64 last_for_get_extent = 0;
4600 	u64 disko = 0;
4601 	u64 isize = i_size_read(inode);
4602 	struct btrfs_key found_key;
4603 	struct extent_map *em = NULL;
4604 	struct extent_state *cached_state = NULL;
4605 	struct btrfs_path *path;
4606 	struct btrfs_root *root = BTRFS_I(inode)->root;
4607 	struct fiemap_cache cache = { 0 };
4608 	struct ulist *roots;
4609 	struct ulist *tmp_ulist;
4610 	int end = 0;
4611 	u64 em_start = 0;
4612 	u64 em_len = 0;
4613 	u64 em_end = 0;
4614 
4615 	if (len == 0)
4616 		return -EINVAL;
4617 
4618 	path = btrfs_alloc_path();
4619 	if (!path)
4620 		return -ENOMEM;
4621 	path->leave_spinning = 1;
4622 
4623 	roots = ulist_alloc(GFP_KERNEL);
4624 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4625 	if (!roots || !tmp_ulist) {
4626 		ret = -ENOMEM;
4627 		goto out_free_ulist;
4628 	}
4629 
4630 	start = round_down(start, btrfs_inode_sectorsize(inode));
4631 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4632 
4633 	/*
4634 	 * lookup the last file extent.  We're not using i_size here
4635 	 * because there might be preallocation past i_size
4636 	 */
4637 	ret = btrfs_lookup_file_extent(NULL, root, path,
4638 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4639 	if (ret < 0) {
4640 		goto out_free_ulist;
4641 	} else {
4642 		WARN_ON(!ret);
4643 		if (ret == 1)
4644 			ret = 0;
4645 	}
4646 
4647 	path->slots[0]--;
4648 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4649 	found_type = found_key.type;
4650 
4651 	/* No extents, but there might be delalloc bits */
4652 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4653 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4654 		/* have to trust i_size as the end */
4655 		last = (u64)-1;
4656 		last_for_get_extent = isize;
4657 	} else {
4658 		/*
4659 		 * remember the start of the last extent.  There are a
4660 		 * bunch of different factors that go into the length of the
4661 		 * extent, so its much less complex to remember where it started
4662 		 */
4663 		last = found_key.offset;
4664 		last_for_get_extent = last + 1;
4665 	}
4666 	btrfs_release_path(path);
4667 
4668 	/*
4669 	 * we might have some extents allocated but more delalloc past those
4670 	 * extents.  so, we trust isize unless the start of the last extent is
4671 	 * beyond isize
4672 	 */
4673 	if (last < isize) {
4674 		last = (u64)-1;
4675 		last_for_get_extent = isize;
4676 	}
4677 
4678 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4679 			 &cached_state);
4680 
4681 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4682 	if (!em)
4683 		goto out;
4684 	if (IS_ERR(em)) {
4685 		ret = PTR_ERR(em);
4686 		goto out;
4687 	}
4688 
4689 	while (!end) {
4690 		u64 offset_in_extent = 0;
4691 
4692 		/* break if the extent we found is outside the range */
4693 		if (em->start >= max || extent_map_end(em) < off)
4694 			break;
4695 
4696 		/*
4697 		 * get_extent may return an extent that starts before our
4698 		 * requested range.  We have to make sure the ranges
4699 		 * we return to fiemap always move forward and don't
4700 		 * overlap, so adjust the offsets here
4701 		 */
4702 		em_start = max(em->start, off);
4703 
4704 		/*
4705 		 * record the offset from the start of the extent
4706 		 * for adjusting the disk offset below.  Only do this if the
4707 		 * extent isn't compressed since our in ram offset may be past
4708 		 * what we have actually allocated on disk.
4709 		 */
4710 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4711 			offset_in_extent = em_start - em->start;
4712 		em_end = extent_map_end(em);
4713 		em_len = em_end - em_start;
4714 		flags = 0;
4715 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4716 			disko = em->block_start + offset_in_extent;
4717 		else
4718 			disko = 0;
4719 
4720 		/*
4721 		 * bump off for our next call to get_extent
4722 		 */
4723 		off = extent_map_end(em);
4724 		if (off >= max)
4725 			end = 1;
4726 
4727 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4728 			end = 1;
4729 			flags |= FIEMAP_EXTENT_LAST;
4730 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4731 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4732 				  FIEMAP_EXTENT_NOT_ALIGNED);
4733 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4734 			flags |= (FIEMAP_EXTENT_DELALLOC |
4735 				  FIEMAP_EXTENT_UNKNOWN);
4736 		} else if (fieinfo->fi_extents_max) {
4737 			u64 bytenr = em->block_start -
4738 				(em->start - em->orig_start);
4739 
4740 			/*
4741 			 * As btrfs supports shared space, this information
4742 			 * can be exported to userspace tools via
4743 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4744 			 * then we're just getting a count and we can skip the
4745 			 * lookup stuff.
4746 			 */
4747 			ret = btrfs_check_shared(root,
4748 						 btrfs_ino(BTRFS_I(inode)),
4749 						 bytenr, roots, tmp_ulist);
4750 			if (ret < 0)
4751 				goto out_free;
4752 			if (ret)
4753 				flags |= FIEMAP_EXTENT_SHARED;
4754 			ret = 0;
4755 		}
4756 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4757 			flags |= FIEMAP_EXTENT_ENCODED;
4758 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4759 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4760 
4761 		free_extent_map(em);
4762 		em = NULL;
4763 		if ((em_start >= last) || em_len == (u64)-1 ||
4764 		   (last == (u64)-1 && isize <= em_end)) {
4765 			flags |= FIEMAP_EXTENT_LAST;
4766 			end = 1;
4767 		}
4768 
4769 		/* now scan forward to see if this is really the last extent. */
4770 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4771 		if (IS_ERR(em)) {
4772 			ret = PTR_ERR(em);
4773 			goto out;
4774 		}
4775 		if (!em) {
4776 			flags |= FIEMAP_EXTENT_LAST;
4777 			end = 1;
4778 		}
4779 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4780 					   em_len, flags);
4781 		if (ret) {
4782 			if (ret == 1)
4783 				ret = 0;
4784 			goto out_free;
4785 		}
4786 	}
4787 out_free:
4788 	if (!ret)
4789 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4790 	free_extent_map(em);
4791 out:
4792 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4793 			     &cached_state);
4794 
4795 out_free_ulist:
4796 	btrfs_free_path(path);
4797 	ulist_free(roots);
4798 	ulist_free(tmp_ulist);
4799 	return ret;
4800 }
4801 
4802 static void __free_extent_buffer(struct extent_buffer *eb)
4803 {
4804 	btrfs_leak_debug_del(&eb->leak_list);
4805 	kmem_cache_free(extent_buffer_cache, eb);
4806 }
4807 
4808 int extent_buffer_under_io(struct extent_buffer *eb)
4809 {
4810 	return (atomic_read(&eb->io_pages) ||
4811 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4812 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4813 }
4814 
4815 /*
4816  * Release all pages attached to the extent buffer.
4817  */
4818 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4819 {
4820 	int i;
4821 	int num_pages;
4822 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4823 
4824 	BUG_ON(extent_buffer_under_io(eb));
4825 
4826 	num_pages = num_extent_pages(eb);
4827 	for (i = 0; i < num_pages; i++) {
4828 		struct page *page = eb->pages[i];
4829 
4830 		if (!page)
4831 			continue;
4832 		if (mapped)
4833 			spin_lock(&page->mapping->private_lock);
4834 		/*
4835 		 * We do this since we'll remove the pages after we've
4836 		 * removed the eb from the radix tree, so we could race
4837 		 * and have this page now attached to the new eb.  So
4838 		 * only clear page_private if it's still connected to
4839 		 * this eb.
4840 		 */
4841 		if (PagePrivate(page) &&
4842 		    page->private == (unsigned long)eb) {
4843 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4844 			BUG_ON(PageDirty(page));
4845 			BUG_ON(PageWriteback(page));
4846 			/*
4847 			 * We need to make sure we haven't be attached
4848 			 * to a new eb.
4849 			 */
4850 			ClearPagePrivate(page);
4851 			set_page_private(page, 0);
4852 			/* One for the page private */
4853 			put_page(page);
4854 		}
4855 
4856 		if (mapped)
4857 			spin_unlock(&page->mapping->private_lock);
4858 
4859 		/* One for when we allocated the page */
4860 		put_page(page);
4861 	}
4862 }
4863 
4864 /*
4865  * Helper for releasing the extent buffer.
4866  */
4867 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4868 {
4869 	btrfs_release_extent_buffer_pages(eb);
4870 	__free_extent_buffer(eb);
4871 }
4872 
4873 static struct extent_buffer *
4874 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4875 		      unsigned long len)
4876 {
4877 	struct extent_buffer *eb = NULL;
4878 
4879 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4880 	eb->start = start;
4881 	eb->len = len;
4882 	eb->fs_info = fs_info;
4883 	eb->bflags = 0;
4884 	rwlock_init(&eb->lock);
4885 	atomic_set(&eb->blocking_readers, 0);
4886 	eb->blocking_writers = 0;
4887 	eb->lock_nested = false;
4888 	init_waitqueue_head(&eb->write_lock_wq);
4889 	init_waitqueue_head(&eb->read_lock_wq);
4890 
4891 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4892 
4893 	spin_lock_init(&eb->refs_lock);
4894 	atomic_set(&eb->refs, 1);
4895 	atomic_set(&eb->io_pages, 0);
4896 
4897 	/*
4898 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4899 	 */
4900 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4901 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4902 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4903 
4904 #ifdef CONFIG_BTRFS_DEBUG
4905 	eb->spinning_writers = 0;
4906 	atomic_set(&eb->spinning_readers, 0);
4907 	atomic_set(&eb->read_locks, 0);
4908 	eb->write_locks = 0;
4909 #endif
4910 
4911 	return eb;
4912 }
4913 
4914 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4915 {
4916 	int i;
4917 	struct page *p;
4918 	struct extent_buffer *new;
4919 	int num_pages = num_extent_pages(src);
4920 
4921 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4922 	if (new == NULL)
4923 		return NULL;
4924 
4925 	for (i = 0; i < num_pages; i++) {
4926 		p = alloc_page(GFP_NOFS);
4927 		if (!p) {
4928 			btrfs_release_extent_buffer(new);
4929 			return NULL;
4930 		}
4931 		attach_extent_buffer_page(new, p);
4932 		WARN_ON(PageDirty(p));
4933 		SetPageUptodate(p);
4934 		new->pages[i] = p;
4935 		copy_page(page_address(p), page_address(src->pages[i]));
4936 	}
4937 
4938 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4939 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4940 
4941 	return new;
4942 }
4943 
4944 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4945 						  u64 start, unsigned long len)
4946 {
4947 	struct extent_buffer *eb;
4948 	int num_pages;
4949 	int i;
4950 
4951 	eb = __alloc_extent_buffer(fs_info, start, len);
4952 	if (!eb)
4953 		return NULL;
4954 
4955 	num_pages = num_extent_pages(eb);
4956 	for (i = 0; i < num_pages; i++) {
4957 		eb->pages[i] = alloc_page(GFP_NOFS);
4958 		if (!eb->pages[i])
4959 			goto err;
4960 	}
4961 	set_extent_buffer_uptodate(eb);
4962 	btrfs_set_header_nritems(eb, 0);
4963 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4964 
4965 	return eb;
4966 err:
4967 	for (; i > 0; i--)
4968 		__free_page(eb->pages[i - 1]);
4969 	__free_extent_buffer(eb);
4970 	return NULL;
4971 }
4972 
4973 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4974 						u64 start)
4975 {
4976 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4977 }
4978 
4979 static void check_buffer_tree_ref(struct extent_buffer *eb)
4980 {
4981 	int refs;
4982 	/* the ref bit is tricky.  We have to make sure it is set
4983 	 * if we have the buffer dirty.   Otherwise the
4984 	 * code to free a buffer can end up dropping a dirty
4985 	 * page
4986 	 *
4987 	 * Once the ref bit is set, it won't go away while the
4988 	 * buffer is dirty or in writeback, and it also won't
4989 	 * go away while we have the reference count on the
4990 	 * eb bumped.
4991 	 *
4992 	 * We can't just set the ref bit without bumping the
4993 	 * ref on the eb because free_extent_buffer might
4994 	 * see the ref bit and try to clear it.  If this happens
4995 	 * free_extent_buffer might end up dropping our original
4996 	 * ref by mistake and freeing the page before we are able
4997 	 * to add one more ref.
4998 	 *
4999 	 * So bump the ref count first, then set the bit.  If someone
5000 	 * beat us to it, drop the ref we added.
5001 	 */
5002 	refs = atomic_read(&eb->refs);
5003 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5004 		return;
5005 
5006 	spin_lock(&eb->refs_lock);
5007 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5008 		atomic_inc(&eb->refs);
5009 	spin_unlock(&eb->refs_lock);
5010 }
5011 
5012 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5013 		struct page *accessed)
5014 {
5015 	int num_pages, i;
5016 
5017 	check_buffer_tree_ref(eb);
5018 
5019 	num_pages = num_extent_pages(eb);
5020 	for (i = 0; i < num_pages; i++) {
5021 		struct page *p = eb->pages[i];
5022 
5023 		if (p != accessed)
5024 			mark_page_accessed(p);
5025 	}
5026 }
5027 
5028 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5029 					 u64 start)
5030 {
5031 	struct extent_buffer *eb;
5032 
5033 	rcu_read_lock();
5034 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5035 			       start >> PAGE_SHIFT);
5036 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5037 		rcu_read_unlock();
5038 		/*
5039 		 * Lock our eb's refs_lock to avoid races with
5040 		 * free_extent_buffer. When we get our eb it might be flagged
5041 		 * with EXTENT_BUFFER_STALE and another task running
5042 		 * free_extent_buffer might have seen that flag set,
5043 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5044 		 * writeback flags not set) and it's still in the tree (flag
5045 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5046 		 * of decrementing the extent buffer's reference count twice.
5047 		 * So here we could race and increment the eb's reference count,
5048 		 * clear its stale flag, mark it as dirty and drop our reference
5049 		 * before the other task finishes executing free_extent_buffer,
5050 		 * which would later result in an attempt to free an extent
5051 		 * buffer that is dirty.
5052 		 */
5053 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5054 			spin_lock(&eb->refs_lock);
5055 			spin_unlock(&eb->refs_lock);
5056 		}
5057 		mark_extent_buffer_accessed(eb, NULL);
5058 		return eb;
5059 	}
5060 	rcu_read_unlock();
5061 
5062 	return NULL;
5063 }
5064 
5065 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5066 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5067 					u64 start)
5068 {
5069 	struct extent_buffer *eb, *exists = NULL;
5070 	int ret;
5071 
5072 	eb = find_extent_buffer(fs_info, start);
5073 	if (eb)
5074 		return eb;
5075 	eb = alloc_dummy_extent_buffer(fs_info, start);
5076 	if (!eb)
5077 		return ERR_PTR(-ENOMEM);
5078 	eb->fs_info = fs_info;
5079 again:
5080 	ret = radix_tree_preload(GFP_NOFS);
5081 	if (ret) {
5082 		exists = ERR_PTR(ret);
5083 		goto free_eb;
5084 	}
5085 	spin_lock(&fs_info->buffer_lock);
5086 	ret = radix_tree_insert(&fs_info->buffer_radix,
5087 				start >> PAGE_SHIFT, eb);
5088 	spin_unlock(&fs_info->buffer_lock);
5089 	radix_tree_preload_end();
5090 	if (ret == -EEXIST) {
5091 		exists = find_extent_buffer(fs_info, start);
5092 		if (exists)
5093 			goto free_eb;
5094 		else
5095 			goto again;
5096 	}
5097 	check_buffer_tree_ref(eb);
5098 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5099 
5100 	return eb;
5101 free_eb:
5102 	btrfs_release_extent_buffer(eb);
5103 	return exists;
5104 }
5105 #endif
5106 
5107 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5108 					  u64 start)
5109 {
5110 	unsigned long len = fs_info->nodesize;
5111 	int num_pages;
5112 	int i;
5113 	unsigned long index = start >> PAGE_SHIFT;
5114 	struct extent_buffer *eb;
5115 	struct extent_buffer *exists = NULL;
5116 	struct page *p;
5117 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5118 	int uptodate = 1;
5119 	int ret;
5120 
5121 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5122 		btrfs_err(fs_info, "bad tree block start %llu", start);
5123 		return ERR_PTR(-EINVAL);
5124 	}
5125 
5126 	eb = find_extent_buffer(fs_info, start);
5127 	if (eb)
5128 		return eb;
5129 
5130 	eb = __alloc_extent_buffer(fs_info, start, len);
5131 	if (!eb)
5132 		return ERR_PTR(-ENOMEM);
5133 
5134 	num_pages = num_extent_pages(eb);
5135 	for (i = 0; i < num_pages; i++, index++) {
5136 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5137 		if (!p) {
5138 			exists = ERR_PTR(-ENOMEM);
5139 			goto free_eb;
5140 		}
5141 
5142 		spin_lock(&mapping->private_lock);
5143 		if (PagePrivate(p)) {
5144 			/*
5145 			 * We could have already allocated an eb for this page
5146 			 * and attached one so lets see if we can get a ref on
5147 			 * the existing eb, and if we can we know it's good and
5148 			 * we can just return that one, else we know we can just
5149 			 * overwrite page->private.
5150 			 */
5151 			exists = (struct extent_buffer *)p->private;
5152 			if (atomic_inc_not_zero(&exists->refs)) {
5153 				spin_unlock(&mapping->private_lock);
5154 				unlock_page(p);
5155 				put_page(p);
5156 				mark_extent_buffer_accessed(exists, p);
5157 				goto free_eb;
5158 			}
5159 			exists = NULL;
5160 
5161 			/*
5162 			 * Do this so attach doesn't complain and we need to
5163 			 * drop the ref the old guy had.
5164 			 */
5165 			ClearPagePrivate(p);
5166 			WARN_ON(PageDirty(p));
5167 			put_page(p);
5168 		}
5169 		attach_extent_buffer_page(eb, p);
5170 		spin_unlock(&mapping->private_lock);
5171 		WARN_ON(PageDirty(p));
5172 		eb->pages[i] = p;
5173 		if (!PageUptodate(p))
5174 			uptodate = 0;
5175 
5176 		/*
5177 		 * We can't unlock the pages just yet since the extent buffer
5178 		 * hasn't been properly inserted in the radix tree, this
5179 		 * opens a race with btree_releasepage which can free a page
5180 		 * while we are still filling in all pages for the buffer and
5181 		 * we could crash.
5182 		 */
5183 	}
5184 	if (uptodate)
5185 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186 again:
5187 	ret = radix_tree_preload(GFP_NOFS);
5188 	if (ret) {
5189 		exists = ERR_PTR(ret);
5190 		goto free_eb;
5191 	}
5192 
5193 	spin_lock(&fs_info->buffer_lock);
5194 	ret = radix_tree_insert(&fs_info->buffer_radix,
5195 				start >> PAGE_SHIFT, eb);
5196 	spin_unlock(&fs_info->buffer_lock);
5197 	radix_tree_preload_end();
5198 	if (ret == -EEXIST) {
5199 		exists = find_extent_buffer(fs_info, start);
5200 		if (exists)
5201 			goto free_eb;
5202 		else
5203 			goto again;
5204 	}
5205 	/* add one reference for the tree */
5206 	check_buffer_tree_ref(eb);
5207 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5208 
5209 	/*
5210 	 * Now it's safe to unlock the pages because any calls to
5211 	 * btree_releasepage will correctly detect that a page belongs to a
5212 	 * live buffer and won't free them prematurely.
5213 	 */
5214 	for (i = 0; i < num_pages; i++)
5215 		unlock_page(eb->pages[i]);
5216 	return eb;
5217 
5218 free_eb:
5219 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5220 	for (i = 0; i < num_pages; i++) {
5221 		if (eb->pages[i])
5222 			unlock_page(eb->pages[i]);
5223 	}
5224 
5225 	btrfs_release_extent_buffer(eb);
5226 	return exists;
5227 }
5228 
5229 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5230 {
5231 	struct extent_buffer *eb =
5232 			container_of(head, struct extent_buffer, rcu_head);
5233 
5234 	__free_extent_buffer(eb);
5235 }
5236 
5237 static int release_extent_buffer(struct extent_buffer *eb)
5238 {
5239 	lockdep_assert_held(&eb->refs_lock);
5240 
5241 	WARN_ON(atomic_read(&eb->refs) == 0);
5242 	if (atomic_dec_and_test(&eb->refs)) {
5243 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5244 			struct btrfs_fs_info *fs_info = eb->fs_info;
5245 
5246 			spin_unlock(&eb->refs_lock);
5247 
5248 			spin_lock(&fs_info->buffer_lock);
5249 			radix_tree_delete(&fs_info->buffer_radix,
5250 					  eb->start >> PAGE_SHIFT);
5251 			spin_unlock(&fs_info->buffer_lock);
5252 		} else {
5253 			spin_unlock(&eb->refs_lock);
5254 		}
5255 
5256 		/* Should be safe to release our pages at this point */
5257 		btrfs_release_extent_buffer_pages(eb);
5258 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5259 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5260 			__free_extent_buffer(eb);
5261 			return 1;
5262 		}
5263 #endif
5264 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5265 		return 1;
5266 	}
5267 	spin_unlock(&eb->refs_lock);
5268 
5269 	return 0;
5270 }
5271 
5272 void free_extent_buffer(struct extent_buffer *eb)
5273 {
5274 	int refs;
5275 	int old;
5276 	if (!eb)
5277 		return;
5278 
5279 	while (1) {
5280 		refs = atomic_read(&eb->refs);
5281 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5282 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5283 			refs == 1))
5284 			break;
5285 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5286 		if (old == refs)
5287 			return;
5288 	}
5289 
5290 	spin_lock(&eb->refs_lock);
5291 	if (atomic_read(&eb->refs) == 2 &&
5292 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5293 	    !extent_buffer_under_io(eb) &&
5294 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5295 		atomic_dec(&eb->refs);
5296 
5297 	/*
5298 	 * I know this is terrible, but it's temporary until we stop tracking
5299 	 * the uptodate bits and such for the extent buffers.
5300 	 */
5301 	release_extent_buffer(eb);
5302 }
5303 
5304 void free_extent_buffer_stale(struct extent_buffer *eb)
5305 {
5306 	if (!eb)
5307 		return;
5308 
5309 	spin_lock(&eb->refs_lock);
5310 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5311 
5312 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5313 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5314 		atomic_dec(&eb->refs);
5315 	release_extent_buffer(eb);
5316 }
5317 
5318 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5319 {
5320 	int i;
5321 	int num_pages;
5322 	struct page *page;
5323 
5324 	num_pages = num_extent_pages(eb);
5325 
5326 	for (i = 0; i < num_pages; i++) {
5327 		page = eb->pages[i];
5328 		if (!PageDirty(page))
5329 			continue;
5330 
5331 		lock_page(page);
5332 		WARN_ON(!PagePrivate(page));
5333 
5334 		clear_page_dirty_for_io(page);
5335 		xa_lock_irq(&page->mapping->i_pages);
5336 		if (!PageDirty(page))
5337 			__xa_clear_mark(&page->mapping->i_pages,
5338 					page_index(page), PAGECACHE_TAG_DIRTY);
5339 		xa_unlock_irq(&page->mapping->i_pages);
5340 		ClearPageError(page);
5341 		unlock_page(page);
5342 	}
5343 	WARN_ON(atomic_read(&eb->refs) == 0);
5344 }
5345 
5346 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5347 {
5348 	int i;
5349 	int num_pages;
5350 	bool was_dirty;
5351 
5352 	check_buffer_tree_ref(eb);
5353 
5354 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5355 
5356 	num_pages = num_extent_pages(eb);
5357 	WARN_ON(atomic_read(&eb->refs) == 0);
5358 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5359 
5360 	if (!was_dirty)
5361 		for (i = 0; i < num_pages; i++)
5362 			set_page_dirty(eb->pages[i]);
5363 
5364 #ifdef CONFIG_BTRFS_DEBUG
5365 	for (i = 0; i < num_pages; i++)
5366 		ASSERT(PageDirty(eb->pages[i]));
5367 #endif
5368 
5369 	return was_dirty;
5370 }
5371 
5372 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5373 {
5374 	int i;
5375 	struct page *page;
5376 	int num_pages;
5377 
5378 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5379 	num_pages = num_extent_pages(eb);
5380 	for (i = 0; i < num_pages; i++) {
5381 		page = eb->pages[i];
5382 		if (page)
5383 			ClearPageUptodate(page);
5384 	}
5385 }
5386 
5387 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5388 {
5389 	int i;
5390 	struct page *page;
5391 	int num_pages;
5392 
5393 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5394 	num_pages = num_extent_pages(eb);
5395 	for (i = 0; i < num_pages; i++) {
5396 		page = eb->pages[i];
5397 		SetPageUptodate(page);
5398 	}
5399 }
5400 
5401 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5402 {
5403 	int i;
5404 	struct page *page;
5405 	int err;
5406 	int ret = 0;
5407 	int locked_pages = 0;
5408 	int all_uptodate = 1;
5409 	int num_pages;
5410 	unsigned long num_reads = 0;
5411 	struct bio *bio = NULL;
5412 	unsigned long bio_flags = 0;
5413 	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5414 
5415 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5416 		return 0;
5417 
5418 	num_pages = num_extent_pages(eb);
5419 	for (i = 0; i < num_pages; i++) {
5420 		page = eb->pages[i];
5421 		if (wait == WAIT_NONE) {
5422 			if (!trylock_page(page))
5423 				goto unlock_exit;
5424 		} else {
5425 			lock_page(page);
5426 		}
5427 		locked_pages++;
5428 	}
5429 	/*
5430 	 * We need to firstly lock all pages to make sure that
5431 	 * the uptodate bit of our pages won't be affected by
5432 	 * clear_extent_buffer_uptodate().
5433 	 */
5434 	for (i = 0; i < num_pages; i++) {
5435 		page = eb->pages[i];
5436 		if (!PageUptodate(page)) {
5437 			num_reads++;
5438 			all_uptodate = 0;
5439 		}
5440 	}
5441 
5442 	if (all_uptodate) {
5443 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5444 		goto unlock_exit;
5445 	}
5446 
5447 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5448 	eb->read_mirror = 0;
5449 	atomic_set(&eb->io_pages, num_reads);
5450 	for (i = 0; i < num_pages; i++) {
5451 		page = eb->pages[i];
5452 
5453 		if (!PageUptodate(page)) {
5454 			if (ret) {
5455 				atomic_dec(&eb->io_pages);
5456 				unlock_page(page);
5457 				continue;
5458 			}
5459 
5460 			ClearPageError(page);
5461 			err = __extent_read_full_page(tree, page,
5462 						      btree_get_extent, &bio,
5463 						      mirror_num, &bio_flags,
5464 						      REQ_META);
5465 			if (err) {
5466 				ret = err;
5467 				/*
5468 				 * We use &bio in above __extent_read_full_page,
5469 				 * so we ensure that if it returns error, the
5470 				 * current page fails to add itself to bio and
5471 				 * it's been unlocked.
5472 				 *
5473 				 * We must dec io_pages by ourselves.
5474 				 */
5475 				atomic_dec(&eb->io_pages);
5476 			}
5477 		} else {
5478 			unlock_page(page);
5479 		}
5480 	}
5481 
5482 	if (bio) {
5483 		err = submit_one_bio(bio, mirror_num, bio_flags);
5484 		if (err)
5485 			return err;
5486 	}
5487 
5488 	if (ret || wait != WAIT_COMPLETE)
5489 		return ret;
5490 
5491 	for (i = 0; i < num_pages; i++) {
5492 		page = eb->pages[i];
5493 		wait_on_page_locked(page);
5494 		if (!PageUptodate(page))
5495 			ret = -EIO;
5496 	}
5497 
5498 	return ret;
5499 
5500 unlock_exit:
5501 	while (locked_pages > 0) {
5502 		locked_pages--;
5503 		page = eb->pages[locked_pages];
5504 		unlock_page(page);
5505 	}
5506 	return ret;
5507 }
5508 
5509 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5510 			unsigned long start, unsigned long len)
5511 {
5512 	size_t cur;
5513 	size_t offset;
5514 	struct page *page;
5515 	char *kaddr;
5516 	char *dst = (char *)dstv;
5517 	size_t start_offset = offset_in_page(eb->start);
5518 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5519 
5520 	if (start + len > eb->len) {
5521 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5522 		     eb->start, eb->len, start, len);
5523 		memset(dst, 0, len);
5524 		return;
5525 	}
5526 
5527 	offset = offset_in_page(start_offset + start);
5528 
5529 	while (len > 0) {
5530 		page = eb->pages[i];
5531 
5532 		cur = min(len, (PAGE_SIZE - offset));
5533 		kaddr = page_address(page);
5534 		memcpy(dst, kaddr + offset, cur);
5535 
5536 		dst += cur;
5537 		len -= cur;
5538 		offset = 0;
5539 		i++;
5540 	}
5541 }
5542 
5543 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5544 			       void __user *dstv,
5545 			       unsigned long start, unsigned long len)
5546 {
5547 	size_t cur;
5548 	size_t offset;
5549 	struct page *page;
5550 	char *kaddr;
5551 	char __user *dst = (char __user *)dstv;
5552 	size_t start_offset = offset_in_page(eb->start);
5553 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5554 	int ret = 0;
5555 
5556 	WARN_ON(start > eb->len);
5557 	WARN_ON(start + len > eb->start + eb->len);
5558 
5559 	offset = offset_in_page(start_offset + start);
5560 
5561 	while (len > 0) {
5562 		page = eb->pages[i];
5563 
5564 		cur = min(len, (PAGE_SIZE - offset));
5565 		kaddr = page_address(page);
5566 		if (copy_to_user(dst, kaddr + offset, cur)) {
5567 			ret = -EFAULT;
5568 			break;
5569 		}
5570 
5571 		dst += cur;
5572 		len -= cur;
5573 		offset = 0;
5574 		i++;
5575 	}
5576 
5577 	return ret;
5578 }
5579 
5580 /*
5581  * return 0 if the item is found within a page.
5582  * return 1 if the item spans two pages.
5583  * return -EINVAL otherwise.
5584  */
5585 int map_private_extent_buffer(const struct extent_buffer *eb,
5586 			      unsigned long start, unsigned long min_len,
5587 			      char **map, unsigned long *map_start,
5588 			      unsigned long *map_len)
5589 {
5590 	size_t offset;
5591 	char *kaddr;
5592 	struct page *p;
5593 	size_t start_offset = offset_in_page(eb->start);
5594 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5595 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5596 		PAGE_SHIFT;
5597 
5598 	if (start + min_len > eb->len) {
5599 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5600 		       eb->start, eb->len, start, min_len);
5601 		return -EINVAL;
5602 	}
5603 
5604 	if (i != end_i)
5605 		return 1;
5606 
5607 	if (i == 0) {
5608 		offset = start_offset;
5609 		*map_start = 0;
5610 	} else {
5611 		offset = 0;
5612 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5613 	}
5614 
5615 	p = eb->pages[i];
5616 	kaddr = page_address(p);
5617 	*map = kaddr + offset;
5618 	*map_len = PAGE_SIZE - offset;
5619 	return 0;
5620 }
5621 
5622 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5623 			 unsigned long start, unsigned long len)
5624 {
5625 	size_t cur;
5626 	size_t offset;
5627 	struct page *page;
5628 	char *kaddr;
5629 	char *ptr = (char *)ptrv;
5630 	size_t start_offset = offset_in_page(eb->start);
5631 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5632 	int ret = 0;
5633 
5634 	WARN_ON(start > eb->len);
5635 	WARN_ON(start + len > eb->start + eb->len);
5636 
5637 	offset = offset_in_page(start_offset + start);
5638 
5639 	while (len > 0) {
5640 		page = eb->pages[i];
5641 
5642 		cur = min(len, (PAGE_SIZE - offset));
5643 
5644 		kaddr = page_address(page);
5645 		ret = memcmp(ptr, kaddr + offset, cur);
5646 		if (ret)
5647 			break;
5648 
5649 		ptr += cur;
5650 		len -= cur;
5651 		offset = 0;
5652 		i++;
5653 	}
5654 	return ret;
5655 }
5656 
5657 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5658 		const void *srcv)
5659 {
5660 	char *kaddr;
5661 
5662 	WARN_ON(!PageUptodate(eb->pages[0]));
5663 	kaddr = page_address(eb->pages[0]);
5664 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5665 			BTRFS_FSID_SIZE);
5666 }
5667 
5668 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5669 {
5670 	char *kaddr;
5671 
5672 	WARN_ON(!PageUptodate(eb->pages[0]));
5673 	kaddr = page_address(eb->pages[0]);
5674 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5675 			BTRFS_FSID_SIZE);
5676 }
5677 
5678 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5679 			 unsigned long start, unsigned long len)
5680 {
5681 	size_t cur;
5682 	size_t offset;
5683 	struct page *page;
5684 	char *kaddr;
5685 	char *src = (char *)srcv;
5686 	size_t start_offset = offset_in_page(eb->start);
5687 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5688 
5689 	WARN_ON(start > eb->len);
5690 	WARN_ON(start + len > eb->start + eb->len);
5691 
5692 	offset = offset_in_page(start_offset + start);
5693 
5694 	while (len > 0) {
5695 		page = eb->pages[i];
5696 		WARN_ON(!PageUptodate(page));
5697 
5698 		cur = min(len, PAGE_SIZE - offset);
5699 		kaddr = page_address(page);
5700 		memcpy(kaddr + offset, src, cur);
5701 
5702 		src += cur;
5703 		len -= cur;
5704 		offset = 0;
5705 		i++;
5706 	}
5707 }
5708 
5709 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5710 		unsigned long len)
5711 {
5712 	size_t cur;
5713 	size_t offset;
5714 	struct page *page;
5715 	char *kaddr;
5716 	size_t start_offset = offset_in_page(eb->start);
5717 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5718 
5719 	WARN_ON(start > eb->len);
5720 	WARN_ON(start + len > eb->start + eb->len);
5721 
5722 	offset = offset_in_page(start_offset + start);
5723 
5724 	while (len > 0) {
5725 		page = eb->pages[i];
5726 		WARN_ON(!PageUptodate(page));
5727 
5728 		cur = min(len, PAGE_SIZE - offset);
5729 		kaddr = page_address(page);
5730 		memset(kaddr + offset, 0, cur);
5731 
5732 		len -= cur;
5733 		offset = 0;
5734 		i++;
5735 	}
5736 }
5737 
5738 void copy_extent_buffer_full(struct extent_buffer *dst,
5739 			     struct extent_buffer *src)
5740 {
5741 	int i;
5742 	int num_pages;
5743 
5744 	ASSERT(dst->len == src->len);
5745 
5746 	num_pages = num_extent_pages(dst);
5747 	for (i = 0; i < num_pages; i++)
5748 		copy_page(page_address(dst->pages[i]),
5749 				page_address(src->pages[i]));
5750 }
5751 
5752 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5753 			unsigned long dst_offset, unsigned long src_offset,
5754 			unsigned long len)
5755 {
5756 	u64 dst_len = dst->len;
5757 	size_t cur;
5758 	size_t offset;
5759 	struct page *page;
5760 	char *kaddr;
5761 	size_t start_offset = offset_in_page(dst->start);
5762 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5763 
5764 	WARN_ON(src->len != dst_len);
5765 
5766 	offset = offset_in_page(start_offset + dst_offset);
5767 
5768 	while (len > 0) {
5769 		page = dst->pages[i];
5770 		WARN_ON(!PageUptodate(page));
5771 
5772 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5773 
5774 		kaddr = page_address(page);
5775 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5776 
5777 		src_offset += cur;
5778 		len -= cur;
5779 		offset = 0;
5780 		i++;
5781 	}
5782 }
5783 
5784 /*
5785  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5786  * given bit number
5787  * @eb: the extent buffer
5788  * @start: offset of the bitmap item in the extent buffer
5789  * @nr: bit number
5790  * @page_index: return index of the page in the extent buffer that contains the
5791  * given bit number
5792  * @page_offset: return offset into the page given by page_index
5793  *
5794  * This helper hides the ugliness of finding the byte in an extent buffer which
5795  * contains a given bit.
5796  */
5797 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5798 				    unsigned long start, unsigned long nr,
5799 				    unsigned long *page_index,
5800 				    size_t *page_offset)
5801 {
5802 	size_t start_offset = offset_in_page(eb->start);
5803 	size_t byte_offset = BIT_BYTE(nr);
5804 	size_t offset;
5805 
5806 	/*
5807 	 * The byte we want is the offset of the extent buffer + the offset of
5808 	 * the bitmap item in the extent buffer + the offset of the byte in the
5809 	 * bitmap item.
5810 	 */
5811 	offset = start_offset + start + byte_offset;
5812 
5813 	*page_index = offset >> PAGE_SHIFT;
5814 	*page_offset = offset_in_page(offset);
5815 }
5816 
5817 /**
5818  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5819  * @eb: the extent buffer
5820  * @start: offset of the bitmap item in the extent buffer
5821  * @nr: bit number to test
5822  */
5823 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5824 			   unsigned long nr)
5825 {
5826 	u8 *kaddr;
5827 	struct page *page;
5828 	unsigned long i;
5829 	size_t offset;
5830 
5831 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5832 	page = eb->pages[i];
5833 	WARN_ON(!PageUptodate(page));
5834 	kaddr = page_address(page);
5835 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5836 }
5837 
5838 /**
5839  * extent_buffer_bitmap_set - set an area of a bitmap
5840  * @eb: the extent buffer
5841  * @start: offset of the bitmap item in the extent buffer
5842  * @pos: bit number of the first bit
5843  * @len: number of bits to set
5844  */
5845 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5846 			      unsigned long pos, unsigned long len)
5847 {
5848 	u8 *kaddr;
5849 	struct page *page;
5850 	unsigned long i;
5851 	size_t offset;
5852 	const unsigned int size = pos + len;
5853 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5854 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5855 
5856 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5857 	page = eb->pages[i];
5858 	WARN_ON(!PageUptodate(page));
5859 	kaddr = page_address(page);
5860 
5861 	while (len >= bits_to_set) {
5862 		kaddr[offset] |= mask_to_set;
5863 		len -= bits_to_set;
5864 		bits_to_set = BITS_PER_BYTE;
5865 		mask_to_set = ~0;
5866 		if (++offset >= PAGE_SIZE && len > 0) {
5867 			offset = 0;
5868 			page = eb->pages[++i];
5869 			WARN_ON(!PageUptodate(page));
5870 			kaddr = page_address(page);
5871 		}
5872 	}
5873 	if (len) {
5874 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5875 		kaddr[offset] |= mask_to_set;
5876 	}
5877 }
5878 
5879 
5880 /**
5881  * extent_buffer_bitmap_clear - clear an area of a bitmap
5882  * @eb: the extent buffer
5883  * @start: offset of the bitmap item in the extent buffer
5884  * @pos: bit number of the first bit
5885  * @len: number of bits to clear
5886  */
5887 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5888 				unsigned long pos, unsigned long len)
5889 {
5890 	u8 *kaddr;
5891 	struct page *page;
5892 	unsigned long i;
5893 	size_t offset;
5894 	const unsigned int size = pos + len;
5895 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5896 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5897 
5898 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5899 	page = eb->pages[i];
5900 	WARN_ON(!PageUptodate(page));
5901 	kaddr = page_address(page);
5902 
5903 	while (len >= bits_to_clear) {
5904 		kaddr[offset] &= ~mask_to_clear;
5905 		len -= bits_to_clear;
5906 		bits_to_clear = BITS_PER_BYTE;
5907 		mask_to_clear = ~0;
5908 		if (++offset >= PAGE_SIZE && len > 0) {
5909 			offset = 0;
5910 			page = eb->pages[++i];
5911 			WARN_ON(!PageUptodate(page));
5912 			kaddr = page_address(page);
5913 		}
5914 	}
5915 	if (len) {
5916 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5917 		kaddr[offset] &= ~mask_to_clear;
5918 	}
5919 }
5920 
5921 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5922 {
5923 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5924 	return distance < len;
5925 }
5926 
5927 static void copy_pages(struct page *dst_page, struct page *src_page,
5928 		       unsigned long dst_off, unsigned long src_off,
5929 		       unsigned long len)
5930 {
5931 	char *dst_kaddr = page_address(dst_page);
5932 	char *src_kaddr;
5933 	int must_memmove = 0;
5934 
5935 	if (dst_page != src_page) {
5936 		src_kaddr = page_address(src_page);
5937 	} else {
5938 		src_kaddr = dst_kaddr;
5939 		if (areas_overlap(src_off, dst_off, len))
5940 			must_memmove = 1;
5941 	}
5942 
5943 	if (must_memmove)
5944 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5945 	else
5946 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5947 }
5948 
5949 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5950 			   unsigned long src_offset, unsigned long len)
5951 {
5952 	struct btrfs_fs_info *fs_info = dst->fs_info;
5953 	size_t cur;
5954 	size_t dst_off_in_page;
5955 	size_t src_off_in_page;
5956 	size_t start_offset = offset_in_page(dst->start);
5957 	unsigned long dst_i;
5958 	unsigned long src_i;
5959 
5960 	if (src_offset + len > dst->len) {
5961 		btrfs_err(fs_info,
5962 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5963 			 src_offset, len, dst->len);
5964 		BUG();
5965 	}
5966 	if (dst_offset + len > dst->len) {
5967 		btrfs_err(fs_info,
5968 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5969 			 dst_offset, len, dst->len);
5970 		BUG();
5971 	}
5972 
5973 	while (len > 0) {
5974 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5975 		src_off_in_page = offset_in_page(start_offset + src_offset);
5976 
5977 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5978 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5979 
5980 		cur = min(len, (unsigned long)(PAGE_SIZE -
5981 					       src_off_in_page));
5982 		cur = min_t(unsigned long, cur,
5983 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5984 
5985 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5986 			   dst_off_in_page, src_off_in_page, cur);
5987 
5988 		src_offset += cur;
5989 		dst_offset += cur;
5990 		len -= cur;
5991 	}
5992 }
5993 
5994 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5995 			   unsigned long src_offset, unsigned long len)
5996 {
5997 	struct btrfs_fs_info *fs_info = dst->fs_info;
5998 	size_t cur;
5999 	size_t dst_off_in_page;
6000 	size_t src_off_in_page;
6001 	unsigned long dst_end = dst_offset + len - 1;
6002 	unsigned long src_end = src_offset + len - 1;
6003 	size_t start_offset = offset_in_page(dst->start);
6004 	unsigned long dst_i;
6005 	unsigned long src_i;
6006 
6007 	if (src_offset + len > dst->len) {
6008 		btrfs_err(fs_info,
6009 			  "memmove bogus src_offset %lu move len %lu len %lu",
6010 			  src_offset, len, dst->len);
6011 		BUG();
6012 	}
6013 	if (dst_offset + len > dst->len) {
6014 		btrfs_err(fs_info,
6015 			  "memmove bogus dst_offset %lu move len %lu len %lu",
6016 			  dst_offset, len, dst->len);
6017 		BUG();
6018 	}
6019 	if (dst_offset < src_offset) {
6020 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6021 		return;
6022 	}
6023 	while (len > 0) {
6024 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6025 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
6026 
6027 		dst_off_in_page = offset_in_page(start_offset + dst_end);
6028 		src_off_in_page = offset_in_page(start_offset + src_end);
6029 
6030 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6031 		cur = min(cur, dst_off_in_page + 1);
6032 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6033 			   dst_off_in_page - cur + 1,
6034 			   src_off_in_page - cur + 1, cur);
6035 
6036 		dst_end -= cur;
6037 		src_end -= cur;
6038 		len -= cur;
6039 	}
6040 }
6041 
6042 int try_release_extent_buffer(struct page *page)
6043 {
6044 	struct extent_buffer *eb;
6045 
6046 	/*
6047 	 * We need to make sure nobody is attaching this page to an eb right
6048 	 * now.
6049 	 */
6050 	spin_lock(&page->mapping->private_lock);
6051 	if (!PagePrivate(page)) {
6052 		spin_unlock(&page->mapping->private_lock);
6053 		return 1;
6054 	}
6055 
6056 	eb = (struct extent_buffer *)page->private;
6057 	BUG_ON(!eb);
6058 
6059 	/*
6060 	 * This is a little awful but should be ok, we need to make sure that
6061 	 * the eb doesn't disappear out from under us while we're looking at
6062 	 * this page.
6063 	 */
6064 	spin_lock(&eb->refs_lock);
6065 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6066 		spin_unlock(&eb->refs_lock);
6067 		spin_unlock(&page->mapping->private_lock);
6068 		return 0;
6069 	}
6070 	spin_unlock(&page->mapping->private_lock);
6071 
6072 	/*
6073 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6074 	 * so just return, this page will likely be freed soon anyway.
6075 	 */
6076 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6077 		spin_unlock(&eb->refs_lock);
6078 		return 0;
6079 	}
6080 
6081 	return release_extent_buffer(eb);
6082 }
6083