xref: /openbmc/linux/fs/btrfs/extent_io.c (revision e6dec923)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28 
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 	return !RB_EMPTY_NODE(&state->rb_node);
32 }
33 
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37 
38 static DEFINE_SPINLOCK(leak_lock);
39 
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&leak_lock, flags);
46 	list_add(new, head);
47 	spin_unlock_irqrestore(&leak_lock, flags);
48 }
49 
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&leak_lock, flags);
56 	list_del(entry);
57 	spin_unlock_irqrestore(&leak_lock, flags);
58 }
59 
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 	struct extent_state *state;
64 	struct extent_buffer *eb;
65 
66 	while (!list_empty(&states)) {
67 		state = list_entry(states.next, struct extent_state, leak_list);
68 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 		       state->start, state->end, state->state,
70 		       extent_state_in_tree(state),
71 		       refcount_read(&state->refs));
72 		list_del(&state->leak_list);
73 		kmem_cache_free(extent_state_cache, state);
74 	}
75 
76 	while (!list_empty(&buffers)) {
77 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	if (tree->ops && tree->ops->check_extent_io_range)
91 		tree->ops->check_extent_io_range(tree->private_data, caller,
92 						 start, end);
93 }
94 #else
95 #define btrfs_leak_debug_add(new, head)	do {} while (0)
96 #define btrfs_leak_debug_del(entry)	do {} while (0)
97 #define btrfs_leak_debug_check()	do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
99 #endif
100 
101 #define BUFFER_LRU_MAX 64
102 
103 struct tree_entry {
104 	u64 start;
105 	u64 end;
106 	struct rb_node rb_node;
107 };
108 
109 struct extent_page_data {
110 	struct bio *bio;
111 	struct extent_io_tree *tree;
112 	get_extent_t *get_extent;
113 	unsigned long bio_flags;
114 
115 	/* tells writepage not to lock the state bits for this range
116 	 * it still does the unlocking
117 	 */
118 	unsigned int extent_locked:1;
119 
120 	/* tells the submit_bio code to use REQ_SYNC */
121 	unsigned int sync_io:1;
122 };
123 
124 static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 				 struct extent_changeset *changeset,
126 				 int set)
127 {
128 	int ret;
129 
130 	if (!changeset)
131 		return;
132 	if (set && (state->state & bits) == bits)
133 		return;
134 	if (!set && (state->state & bits) == 0)
135 		return;
136 	changeset->bytes_changed += state->end - state->start + 1;
137 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
138 			GFP_ATOMIC);
139 	/* ENOMEM */
140 	BUG_ON(ret < 0);
141 }
142 
143 static noinline void flush_write_bio(void *data);
144 static inline struct btrfs_fs_info *
145 tree_fs_info(struct extent_io_tree *tree)
146 {
147 	if (tree->ops)
148 		return tree->ops->tree_fs_info(tree->private_data);
149 	return NULL;
150 }
151 
152 int __init extent_io_init(void)
153 {
154 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 			sizeof(struct extent_state), 0,
156 			SLAB_MEM_SPREAD, NULL);
157 	if (!extent_state_cache)
158 		return -ENOMEM;
159 
160 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 			sizeof(struct extent_buffer), 0,
162 			SLAB_MEM_SPREAD, NULL);
163 	if (!extent_buffer_cache)
164 		goto free_state_cache;
165 
166 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 				     offsetof(struct btrfs_io_bio, bio),
168 				     BIOSET_NEED_BVECS);
169 	if (!btrfs_bioset)
170 		goto free_buffer_cache;
171 
172 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
173 		goto free_bioset;
174 
175 	return 0;
176 
177 free_bioset:
178 	bioset_free(btrfs_bioset);
179 	btrfs_bioset = NULL;
180 
181 free_buffer_cache:
182 	kmem_cache_destroy(extent_buffer_cache);
183 	extent_buffer_cache = NULL;
184 
185 free_state_cache:
186 	kmem_cache_destroy(extent_state_cache);
187 	extent_state_cache = NULL;
188 	return -ENOMEM;
189 }
190 
191 void extent_io_exit(void)
192 {
193 	btrfs_leak_debug_check();
194 
195 	/*
196 	 * Make sure all delayed rcu free are flushed before we
197 	 * destroy caches.
198 	 */
199 	rcu_barrier();
200 	kmem_cache_destroy(extent_state_cache);
201 	kmem_cache_destroy(extent_buffer_cache);
202 	if (btrfs_bioset)
203 		bioset_free(btrfs_bioset);
204 }
205 
206 void extent_io_tree_init(struct extent_io_tree *tree,
207 			 void *private_data)
208 {
209 	tree->state = RB_ROOT;
210 	tree->ops = NULL;
211 	tree->dirty_bytes = 0;
212 	spin_lock_init(&tree->lock);
213 	tree->private_data = private_data;
214 }
215 
216 static struct extent_state *alloc_extent_state(gfp_t mask)
217 {
218 	struct extent_state *state;
219 
220 	/*
221 	 * The given mask might be not appropriate for the slab allocator,
222 	 * drop the unsupported bits
223 	 */
224 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
225 	state = kmem_cache_alloc(extent_state_cache, mask);
226 	if (!state)
227 		return state;
228 	state->state = 0;
229 	state->failrec = NULL;
230 	RB_CLEAR_NODE(&state->rb_node);
231 	btrfs_leak_debug_add(&state->leak_list, &states);
232 	refcount_set(&state->refs, 1);
233 	init_waitqueue_head(&state->wq);
234 	trace_alloc_extent_state(state, mask, _RET_IP_);
235 	return state;
236 }
237 
238 void free_extent_state(struct extent_state *state)
239 {
240 	if (!state)
241 		return;
242 	if (refcount_dec_and_test(&state->refs)) {
243 		WARN_ON(extent_state_in_tree(state));
244 		btrfs_leak_debug_del(&state->leak_list);
245 		trace_free_extent_state(state, _RET_IP_);
246 		kmem_cache_free(extent_state_cache, state);
247 	}
248 }
249 
250 static struct rb_node *tree_insert(struct rb_root *root,
251 				   struct rb_node *search_start,
252 				   u64 offset,
253 				   struct rb_node *node,
254 				   struct rb_node ***p_in,
255 				   struct rb_node **parent_in)
256 {
257 	struct rb_node **p;
258 	struct rb_node *parent = NULL;
259 	struct tree_entry *entry;
260 
261 	if (p_in && parent_in) {
262 		p = *p_in;
263 		parent = *parent_in;
264 		goto do_insert;
265 	}
266 
267 	p = search_start ? &search_start : &root->rb_node;
268 	while (*p) {
269 		parent = *p;
270 		entry = rb_entry(parent, struct tree_entry, rb_node);
271 
272 		if (offset < entry->start)
273 			p = &(*p)->rb_left;
274 		else if (offset > entry->end)
275 			p = &(*p)->rb_right;
276 		else
277 			return parent;
278 	}
279 
280 do_insert:
281 	rb_link_node(node, parent, p);
282 	rb_insert_color(node, root);
283 	return NULL;
284 }
285 
286 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
287 				      struct rb_node **prev_ret,
288 				      struct rb_node **next_ret,
289 				      struct rb_node ***p_ret,
290 				      struct rb_node **parent_ret)
291 {
292 	struct rb_root *root = &tree->state;
293 	struct rb_node **n = &root->rb_node;
294 	struct rb_node *prev = NULL;
295 	struct rb_node *orig_prev = NULL;
296 	struct tree_entry *entry;
297 	struct tree_entry *prev_entry = NULL;
298 
299 	while (*n) {
300 		prev = *n;
301 		entry = rb_entry(prev, struct tree_entry, rb_node);
302 		prev_entry = entry;
303 
304 		if (offset < entry->start)
305 			n = &(*n)->rb_left;
306 		else if (offset > entry->end)
307 			n = &(*n)->rb_right;
308 		else
309 			return *n;
310 	}
311 
312 	if (p_ret)
313 		*p_ret = n;
314 	if (parent_ret)
315 		*parent_ret = prev;
316 
317 	if (prev_ret) {
318 		orig_prev = prev;
319 		while (prev && offset > prev_entry->end) {
320 			prev = rb_next(prev);
321 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
322 		}
323 		*prev_ret = prev;
324 		prev = orig_prev;
325 	}
326 
327 	if (next_ret) {
328 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 		while (prev && offset < prev_entry->start) {
330 			prev = rb_prev(prev);
331 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
332 		}
333 		*next_ret = prev;
334 	}
335 	return NULL;
336 }
337 
338 static inline struct rb_node *
339 tree_search_for_insert(struct extent_io_tree *tree,
340 		       u64 offset,
341 		       struct rb_node ***p_ret,
342 		       struct rb_node **parent_ret)
343 {
344 	struct rb_node *prev = NULL;
345 	struct rb_node *ret;
346 
347 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
348 	if (!ret)
349 		return prev;
350 	return ret;
351 }
352 
353 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
354 					  u64 offset)
355 {
356 	return tree_search_for_insert(tree, offset, NULL, NULL);
357 }
358 
359 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
360 		     struct extent_state *other)
361 {
362 	if (tree->ops && tree->ops->merge_extent_hook)
363 		tree->ops->merge_extent_hook(tree->private_data, new, other);
364 }
365 
366 /*
367  * utility function to look for merge candidates inside a given range.
368  * Any extents with matching state are merged together into a single
369  * extent in the tree.  Extents with EXTENT_IO in their state field
370  * are not merged because the end_io handlers need to be able to do
371  * operations on them without sleeping (or doing allocations/splits).
372  *
373  * This should be called with the tree lock held.
374  */
375 static void merge_state(struct extent_io_tree *tree,
376 		        struct extent_state *state)
377 {
378 	struct extent_state *other;
379 	struct rb_node *other_node;
380 
381 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
382 		return;
383 
384 	other_node = rb_prev(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->end == state->start - 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->start = other->start;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 	other_node = rb_next(&state->rb_node);
397 	if (other_node) {
398 		other = rb_entry(other_node, struct extent_state, rb_node);
399 		if (other->start == state->end + 1 &&
400 		    other->state == state->state) {
401 			merge_cb(tree, state, other);
402 			state->end = other->end;
403 			rb_erase(&other->rb_node, &tree->state);
404 			RB_CLEAR_NODE(&other->rb_node);
405 			free_extent_state(other);
406 		}
407 	}
408 }
409 
410 static void set_state_cb(struct extent_io_tree *tree,
411 			 struct extent_state *state, unsigned *bits)
412 {
413 	if (tree->ops && tree->ops->set_bit_hook)
414 		tree->ops->set_bit_hook(tree->private_data, state, bits);
415 }
416 
417 static void clear_state_cb(struct extent_io_tree *tree,
418 			   struct extent_state *state, unsigned *bits)
419 {
420 	if (tree->ops && tree->ops->clear_bit_hook)
421 		tree->ops->clear_bit_hook(tree->private_data, state, bits);
422 }
423 
424 static void set_state_bits(struct extent_io_tree *tree,
425 			   struct extent_state *state, unsigned *bits,
426 			   struct extent_changeset *changeset);
427 
428 /*
429  * insert an extent_state struct into the tree.  'bits' are set on the
430  * struct before it is inserted.
431  *
432  * This may return -EEXIST if the extent is already there, in which case the
433  * state struct is freed.
434  *
435  * The tree lock is not taken internally.  This is a utility function and
436  * probably isn't what you want to call (see set/clear_extent_bit).
437  */
438 static int insert_state(struct extent_io_tree *tree,
439 			struct extent_state *state, u64 start, u64 end,
440 			struct rb_node ***p,
441 			struct rb_node **parent,
442 			unsigned *bits, struct extent_changeset *changeset)
443 {
444 	struct rb_node *node;
445 
446 	if (end < start)
447 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
448 		       end, start);
449 	state->start = start;
450 	state->end = end;
451 
452 	set_state_bits(tree, state, bits, changeset);
453 
454 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
455 	if (node) {
456 		struct extent_state *found;
457 		found = rb_entry(node, struct extent_state, rb_node);
458 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
459 		       found->start, found->end, start, end);
460 		return -EEXIST;
461 	}
462 	merge_state(tree, state);
463 	return 0;
464 }
465 
466 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
467 		     u64 split)
468 {
469 	if (tree->ops && tree->ops->split_extent_hook)
470 		tree->ops->split_extent_hook(tree->private_data, orig, split);
471 }
472 
473 /*
474  * split a given extent state struct in two, inserting the preallocated
475  * struct 'prealloc' as the newly created second half.  'split' indicates an
476  * offset inside 'orig' where it should be split.
477  *
478  * Before calling,
479  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
480  * are two extent state structs in the tree:
481  * prealloc: [orig->start, split - 1]
482  * orig: [ split, orig->end ]
483  *
484  * The tree locks are not taken by this function. They need to be held
485  * by the caller.
486  */
487 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
488 		       struct extent_state *prealloc, u64 split)
489 {
490 	struct rb_node *node;
491 
492 	split_cb(tree, orig, split);
493 
494 	prealloc->start = orig->start;
495 	prealloc->end = split - 1;
496 	prealloc->state = orig->state;
497 	orig->start = split;
498 
499 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
500 			   &prealloc->rb_node, NULL, NULL);
501 	if (node) {
502 		free_extent_state(prealloc);
503 		return -EEXIST;
504 	}
505 	return 0;
506 }
507 
508 static struct extent_state *next_state(struct extent_state *state)
509 {
510 	struct rb_node *next = rb_next(&state->rb_node);
511 	if (next)
512 		return rb_entry(next, struct extent_state, rb_node);
513 	else
514 		return NULL;
515 }
516 
517 /*
518  * utility function to clear some bits in an extent state struct.
519  * it will optionally wake up any one waiting on this state (wake == 1).
520  *
521  * If no bits are set on the state struct after clearing things, the
522  * struct is freed and removed from the tree
523  */
524 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
525 					    struct extent_state *state,
526 					    unsigned *bits, int wake,
527 					    struct extent_changeset *changeset)
528 {
529 	struct extent_state *next;
530 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
531 
532 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 		u64 range = state->end - state->start + 1;
534 		WARN_ON(range > tree->dirty_bytes);
535 		tree->dirty_bytes -= range;
536 	}
537 	clear_state_cb(tree, state, bits);
538 	add_extent_changeset(state, bits_to_clear, changeset, 0);
539 	state->state &= ~bits_to_clear;
540 	if (wake)
541 		wake_up(&state->wq);
542 	if (state->state == 0) {
543 		next = next_state(state);
544 		if (extent_state_in_tree(state)) {
545 			rb_erase(&state->rb_node, &tree->state);
546 			RB_CLEAR_NODE(&state->rb_node);
547 			free_extent_state(state);
548 		} else {
549 			WARN_ON(1);
550 		}
551 	} else {
552 		merge_state(tree, state);
553 		next = next_state(state);
554 	}
555 	return next;
556 }
557 
558 static struct extent_state *
559 alloc_extent_state_atomic(struct extent_state *prealloc)
560 {
561 	if (!prealloc)
562 		prealloc = alloc_extent_state(GFP_ATOMIC);
563 
564 	return prealloc;
565 }
566 
567 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
568 {
569 	btrfs_panic(tree_fs_info(tree), err,
570 		    "Locking error: Extent tree was modified by another thread while locked.");
571 }
572 
573 /*
574  * clear some bits on a range in the tree.  This may require splitting
575  * or inserting elements in the tree, so the gfp mask is used to
576  * indicate which allocations or sleeping are allowed.
577  *
578  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
579  * the given range from the tree regardless of state (ie for truncate).
580  *
581  * the range [start, end] is inclusive.
582  *
583  * This takes the tree lock, and returns 0 on success and < 0 on error.
584  */
585 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
586 			      unsigned bits, int wake, int delete,
587 			      struct extent_state **cached_state,
588 			      gfp_t mask, struct extent_changeset *changeset)
589 {
590 	struct extent_state *state;
591 	struct extent_state *cached;
592 	struct extent_state *prealloc = NULL;
593 	struct rb_node *node;
594 	u64 last_end;
595 	int err;
596 	int clear = 0;
597 
598 	btrfs_debug_check_extent_io_range(tree, start, end);
599 
600 	if (bits & EXTENT_DELALLOC)
601 		bits |= EXTENT_NORESERVE;
602 
603 	if (delete)
604 		bits |= ~EXTENT_CTLBITS;
605 	bits |= EXTENT_FIRST_DELALLOC;
606 
607 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
608 		clear = 1;
609 again:
610 	if (!prealloc && gfpflags_allow_blocking(mask)) {
611 		/*
612 		 * Don't care for allocation failure here because we might end
613 		 * up not needing the pre-allocated extent state at all, which
614 		 * is the case if we only have in the tree extent states that
615 		 * cover our input range and don't cover too any other range.
616 		 * If we end up needing a new extent state we allocate it later.
617 		 */
618 		prealloc = alloc_extent_state(mask);
619 	}
620 
621 	spin_lock(&tree->lock);
622 	if (cached_state) {
623 		cached = *cached_state;
624 
625 		if (clear) {
626 			*cached_state = NULL;
627 			cached_state = NULL;
628 		}
629 
630 		if (cached && extent_state_in_tree(cached) &&
631 		    cached->start <= start && cached->end > start) {
632 			if (clear)
633 				refcount_dec(&cached->refs);
634 			state = cached;
635 			goto hit_next;
636 		}
637 		if (clear)
638 			free_extent_state(cached);
639 	}
640 	/*
641 	 * this search will find the extents that end after
642 	 * our range starts
643 	 */
644 	node = tree_search(tree, start);
645 	if (!node)
646 		goto out;
647 	state = rb_entry(node, struct extent_state, rb_node);
648 hit_next:
649 	if (state->start > end)
650 		goto out;
651 	WARN_ON(state->end < start);
652 	last_end = state->end;
653 
654 	/* the state doesn't have the wanted bits, go ahead */
655 	if (!(state->state & bits)) {
656 		state = next_state(state);
657 		goto next;
658 	}
659 
660 	/*
661 	 *     | ---- desired range ---- |
662 	 *  | state | or
663 	 *  | ------------- state -------------- |
664 	 *
665 	 * We need to split the extent we found, and may flip
666 	 * bits on second half.
667 	 *
668 	 * If the extent we found extends past our range, we
669 	 * just split and search again.  It'll get split again
670 	 * the next time though.
671 	 *
672 	 * If the extent we found is inside our range, we clear
673 	 * the desired bit on it.
674 	 */
675 
676 	if (state->start < start) {
677 		prealloc = alloc_extent_state_atomic(prealloc);
678 		BUG_ON(!prealloc);
679 		err = split_state(tree, state, prealloc, start);
680 		if (err)
681 			extent_io_tree_panic(tree, err);
682 
683 		prealloc = NULL;
684 		if (err)
685 			goto out;
686 		if (state->end <= end) {
687 			state = clear_state_bit(tree, state, &bits, wake,
688 						changeset);
689 			goto next;
690 		}
691 		goto search_again;
692 	}
693 	/*
694 	 * | ---- desired range ---- |
695 	 *                        | state |
696 	 * We need to split the extent, and clear the bit
697 	 * on the first half
698 	 */
699 	if (state->start <= end && state->end > end) {
700 		prealloc = alloc_extent_state_atomic(prealloc);
701 		BUG_ON(!prealloc);
702 		err = split_state(tree, state, prealloc, end + 1);
703 		if (err)
704 			extent_io_tree_panic(tree, err);
705 
706 		if (wake)
707 			wake_up(&state->wq);
708 
709 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
710 
711 		prealloc = NULL;
712 		goto out;
713 	}
714 
715 	state = clear_state_bit(tree, state, &bits, wake, changeset);
716 next:
717 	if (last_end == (u64)-1)
718 		goto out;
719 	start = last_end + 1;
720 	if (start <= end && state && !need_resched())
721 		goto hit_next;
722 
723 search_again:
724 	if (start > end)
725 		goto out;
726 	spin_unlock(&tree->lock);
727 	if (gfpflags_allow_blocking(mask))
728 		cond_resched();
729 	goto again;
730 
731 out:
732 	spin_unlock(&tree->lock);
733 	if (prealloc)
734 		free_extent_state(prealloc);
735 
736 	return 0;
737 
738 }
739 
740 static void wait_on_state(struct extent_io_tree *tree,
741 			  struct extent_state *state)
742 		__releases(tree->lock)
743 		__acquires(tree->lock)
744 {
745 	DEFINE_WAIT(wait);
746 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
747 	spin_unlock(&tree->lock);
748 	schedule();
749 	spin_lock(&tree->lock);
750 	finish_wait(&state->wq, &wait);
751 }
752 
753 /*
754  * waits for one or more bits to clear on a range in the state tree.
755  * The range [start, end] is inclusive.
756  * The tree lock is taken by this function
757  */
758 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
759 			    unsigned long bits)
760 {
761 	struct extent_state *state;
762 	struct rb_node *node;
763 
764 	btrfs_debug_check_extent_io_range(tree, start, end);
765 
766 	spin_lock(&tree->lock);
767 again:
768 	while (1) {
769 		/*
770 		 * this search will find all the extents that end after
771 		 * our range starts
772 		 */
773 		node = tree_search(tree, start);
774 process_node:
775 		if (!node)
776 			break;
777 
778 		state = rb_entry(node, struct extent_state, rb_node);
779 
780 		if (state->start > end)
781 			goto out;
782 
783 		if (state->state & bits) {
784 			start = state->start;
785 			refcount_inc(&state->refs);
786 			wait_on_state(tree, state);
787 			free_extent_state(state);
788 			goto again;
789 		}
790 		start = state->end + 1;
791 
792 		if (start > end)
793 			break;
794 
795 		if (!cond_resched_lock(&tree->lock)) {
796 			node = rb_next(node);
797 			goto process_node;
798 		}
799 	}
800 out:
801 	spin_unlock(&tree->lock);
802 }
803 
804 static void set_state_bits(struct extent_io_tree *tree,
805 			   struct extent_state *state,
806 			   unsigned *bits, struct extent_changeset *changeset)
807 {
808 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
809 
810 	set_state_cb(tree, state, bits);
811 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
812 		u64 range = state->end - state->start + 1;
813 		tree->dirty_bytes += range;
814 	}
815 	add_extent_changeset(state, bits_to_set, changeset, 1);
816 	state->state |= bits_to_set;
817 }
818 
819 static void cache_state_if_flags(struct extent_state *state,
820 				 struct extent_state **cached_ptr,
821 				 unsigned flags)
822 {
823 	if (cached_ptr && !(*cached_ptr)) {
824 		if (!flags || (state->state & flags)) {
825 			*cached_ptr = state;
826 			refcount_inc(&state->refs);
827 		}
828 	}
829 }
830 
831 static void cache_state(struct extent_state *state,
832 			struct extent_state **cached_ptr)
833 {
834 	return cache_state_if_flags(state, cached_ptr,
835 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
836 }
837 
838 /*
839  * set some bits on a range in the tree.  This may require allocations or
840  * sleeping, so the gfp mask is used to indicate what is allowed.
841  *
842  * If any of the exclusive bits are set, this will fail with -EEXIST if some
843  * part of the range already has the desired bits set.  The start of the
844  * existing range is returned in failed_start in this case.
845  *
846  * [start, end] is inclusive This takes the tree lock.
847  */
848 
849 static int __must_check
850 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
851 		 unsigned bits, unsigned exclusive_bits,
852 		 u64 *failed_start, struct extent_state **cached_state,
853 		 gfp_t mask, struct extent_changeset *changeset)
854 {
855 	struct extent_state *state;
856 	struct extent_state *prealloc = NULL;
857 	struct rb_node *node;
858 	struct rb_node **p;
859 	struct rb_node *parent;
860 	int err = 0;
861 	u64 last_start;
862 	u64 last_end;
863 
864 	btrfs_debug_check_extent_io_range(tree, start, end);
865 
866 	bits |= EXTENT_FIRST_DELALLOC;
867 again:
868 	if (!prealloc && gfpflags_allow_blocking(mask)) {
869 		/*
870 		 * Don't care for allocation failure here because we might end
871 		 * up not needing the pre-allocated extent state at all, which
872 		 * is the case if we only have in the tree extent states that
873 		 * cover our input range and don't cover too any other range.
874 		 * If we end up needing a new extent state we allocate it later.
875 		 */
876 		prealloc = alloc_extent_state(mask);
877 	}
878 
879 	spin_lock(&tree->lock);
880 	if (cached_state && *cached_state) {
881 		state = *cached_state;
882 		if (state->start <= start && state->end > start &&
883 		    extent_state_in_tree(state)) {
884 			node = &state->rb_node;
885 			goto hit_next;
886 		}
887 	}
888 	/*
889 	 * this search will find all the extents that end after
890 	 * our range starts.
891 	 */
892 	node = tree_search_for_insert(tree, start, &p, &parent);
893 	if (!node) {
894 		prealloc = alloc_extent_state_atomic(prealloc);
895 		BUG_ON(!prealloc);
896 		err = insert_state(tree, prealloc, start, end,
897 				   &p, &parent, &bits, changeset);
898 		if (err)
899 			extent_io_tree_panic(tree, err);
900 
901 		cache_state(prealloc, cached_state);
902 		prealloc = NULL;
903 		goto out;
904 	}
905 	state = rb_entry(node, struct extent_state, rb_node);
906 hit_next:
907 	last_start = state->start;
908 	last_end = state->end;
909 
910 	/*
911 	 * | ---- desired range ---- |
912 	 * | state |
913 	 *
914 	 * Just lock what we found and keep going
915 	 */
916 	if (state->start == start && state->end <= end) {
917 		if (state->state & exclusive_bits) {
918 			*failed_start = state->start;
919 			err = -EEXIST;
920 			goto out;
921 		}
922 
923 		set_state_bits(tree, state, &bits, changeset);
924 		cache_state(state, cached_state);
925 		merge_state(tree, state);
926 		if (last_end == (u64)-1)
927 			goto out;
928 		start = last_end + 1;
929 		state = next_state(state);
930 		if (start < end && state && state->start == start &&
931 		    !need_resched())
932 			goto hit_next;
933 		goto search_again;
934 	}
935 
936 	/*
937 	 *     | ---- desired range ---- |
938 	 * | state |
939 	 *   or
940 	 * | ------------- state -------------- |
941 	 *
942 	 * We need to split the extent we found, and may flip bits on
943 	 * second half.
944 	 *
945 	 * If the extent we found extends past our
946 	 * range, we just split and search again.  It'll get split
947 	 * again the next time though.
948 	 *
949 	 * If the extent we found is inside our range, we set the
950 	 * desired bit on it.
951 	 */
952 	if (state->start < start) {
953 		if (state->state & exclusive_bits) {
954 			*failed_start = start;
955 			err = -EEXIST;
956 			goto out;
957 		}
958 
959 		prealloc = alloc_extent_state_atomic(prealloc);
960 		BUG_ON(!prealloc);
961 		err = split_state(tree, state, prealloc, start);
962 		if (err)
963 			extent_io_tree_panic(tree, err);
964 
965 		prealloc = NULL;
966 		if (err)
967 			goto out;
968 		if (state->end <= end) {
969 			set_state_bits(tree, state, &bits, changeset);
970 			cache_state(state, cached_state);
971 			merge_state(tree, state);
972 			if (last_end == (u64)-1)
973 				goto out;
974 			start = last_end + 1;
975 			state = next_state(state);
976 			if (start < end && state && state->start == start &&
977 			    !need_resched())
978 				goto hit_next;
979 		}
980 		goto search_again;
981 	}
982 	/*
983 	 * | ---- desired range ---- |
984 	 *     | state | or               | state |
985 	 *
986 	 * There's a hole, we need to insert something in it and
987 	 * ignore the extent we found.
988 	 */
989 	if (state->start > start) {
990 		u64 this_end;
991 		if (end < last_start)
992 			this_end = end;
993 		else
994 			this_end = last_start - 1;
995 
996 		prealloc = alloc_extent_state_atomic(prealloc);
997 		BUG_ON(!prealloc);
998 
999 		/*
1000 		 * Avoid to free 'prealloc' if it can be merged with
1001 		 * the later extent.
1002 		 */
1003 		err = insert_state(tree, prealloc, start, this_end,
1004 				   NULL, NULL, &bits, changeset);
1005 		if (err)
1006 			extent_io_tree_panic(tree, err);
1007 
1008 		cache_state(prealloc, cached_state);
1009 		prealloc = NULL;
1010 		start = this_end + 1;
1011 		goto search_again;
1012 	}
1013 	/*
1014 	 * | ---- desired range ---- |
1015 	 *                        | state |
1016 	 * We need to split the extent, and set the bit
1017 	 * on the first half
1018 	 */
1019 	if (state->start <= end && state->end > end) {
1020 		if (state->state & exclusive_bits) {
1021 			*failed_start = start;
1022 			err = -EEXIST;
1023 			goto out;
1024 		}
1025 
1026 		prealloc = alloc_extent_state_atomic(prealloc);
1027 		BUG_ON(!prealloc);
1028 		err = split_state(tree, state, prealloc, end + 1);
1029 		if (err)
1030 			extent_io_tree_panic(tree, err);
1031 
1032 		set_state_bits(tree, prealloc, &bits, changeset);
1033 		cache_state(prealloc, cached_state);
1034 		merge_state(tree, prealloc);
1035 		prealloc = NULL;
1036 		goto out;
1037 	}
1038 
1039 search_again:
1040 	if (start > end)
1041 		goto out;
1042 	spin_unlock(&tree->lock);
1043 	if (gfpflags_allow_blocking(mask))
1044 		cond_resched();
1045 	goto again;
1046 
1047 out:
1048 	spin_unlock(&tree->lock);
1049 	if (prealloc)
1050 		free_extent_state(prealloc);
1051 
1052 	return err;
1053 
1054 }
1055 
1056 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1057 		   unsigned bits, u64 * failed_start,
1058 		   struct extent_state **cached_state, gfp_t mask)
1059 {
1060 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1061 				cached_state, mask, NULL);
1062 }
1063 
1064 
1065 /**
1066  * convert_extent_bit - convert all bits in a given range from one bit to
1067  * 			another
1068  * @tree:	the io tree to search
1069  * @start:	the start offset in bytes
1070  * @end:	the end offset in bytes (inclusive)
1071  * @bits:	the bits to set in this range
1072  * @clear_bits:	the bits to clear in this range
1073  * @cached_state:	state that we're going to cache
1074  *
1075  * This will go through and set bits for the given range.  If any states exist
1076  * already in this range they are set with the given bit and cleared of the
1077  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1078  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1079  * boundary bits like LOCK.
1080  *
1081  * All allocations are done with GFP_NOFS.
1082  */
1083 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1084 		       unsigned bits, unsigned clear_bits,
1085 		       struct extent_state **cached_state)
1086 {
1087 	struct extent_state *state;
1088 	struct extent_state *prealloc = NULL;
1089 	struct rb_node *node;
1090 	struct rb_node **p;
1091 	struct rb_node *parent;
1092 	int err = 0;
1093 	u64 last_start;
1094 	u64 last_end;
1095 	bool first_iteration = true;
1096 
1097 	btrfs_debug_check_extent_io_range(tree, start, end);
1098 
1099 again:
1100 	if (!prealloc) {
1101 		/*
1102 		 * Best effort, don't worry if extent state allocation fails
1103 		 * here for the first iteration. We might have a cached state
1104 		 * that matches exactly the target range, in which case no
1105 		 * extent state allocations are needed. We'll only know this
1106 		 * after locking the tree.
1107 		 */
1108 		prealloc = alloc_extent_state(GFP_NOFS);
1109 		if (!prealloc && !first_iteration)
1110 			return -ENOMEM;
1111 	}
1112 
1113 	spin_lock(&tree->lock);
1114 	if (cached_state && *cached_state) {
1115 		state = *cached_state;
1116 		if (state->start <= start && state->end > start &&
1117 		    extent_state_in_tree(state)) {
1118 			node = &state->rb_node;
1119 			goto hit_next;
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * this search will find all the extents that end after
1125 	 * our range starts.
1126 	 */
1127 	node = tree_search_for_insert(tree, start, &p, &parent);
1128 	if (!node) {
1129 		prealloc = alloc_extent_state_atomic(prealloc);
1130 		if (!prealloc) {
1131 			err = -ENOMEM;
1132 			goto out;
1133 		}
1134 		err = insert_state(tree, prealloc, start, end,
1135 				   &p, &parent, &bits, NULL);
1136 		if (err)
1137 			extent_io_tree_panic(tree, err);
1138 		cache_state(prealloc, cached_state);
1139 		prealloc = NULL;
1140 		goto out;
1141 	}
1142 	state = rb_entry(node, struct extent_state, rb_node);
1143 hit_next:
1144 	last_start = state->start;
1145 	last_end = state->end;
1146 
1147 	/*
1148 	 * | ---- desired range ---- |
1149 	 * | state |
1150 	 *
1151 	 * Just lock what we found and keep going
1152 	 */
1153 	if (state->start == start && state->end <= end) {
1154 		set_state_bits(tree, state, &bits, NULL);
1155 		cache_state(state, cached_state);
1156 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1157 		if (last_end == (u64)-1)
1158 			goto out;
1159 		start = last_end + 1;
1160 		if (start < end && state && state->start == start &&
1161 		    !need_resched())
1162 			goto hit_next;
1163 		goto search_again;
1164 	}
1165 
1166 	/*
1167 	 *     | ---- desired range ---- |
1168 	 * | state |
1169 	 *   or
1170 	 * | ------------- state -------------- |
1171 	 *
1172 	 * We need to split the extent we found, and may flip bits on
1173 	 * second half.
1174 	 *
1175 	 * If the extent we found extends past our
1176 	 * range, we just split and search again.  It'll get split
1177 	 * again the next time though.
1178 	 *
1179 	 * If the extent we found is inside our range, we set the
1180 	 * desired bit on it.
1181 	 */
1182 	if (state->start < start) {
1183 		prealloc = alloc_extent_state_atomic(prealloc);
1184 		if (!prealloc) {
1185 			err = -ENOMEM;
1186 			goto out;
1187 		}
1188 		err = split_state(tree, state, prealloc, start);
1189 		if (err)
1190 			extent_io_tree_panic(tree, err);
1191 		prealloc = NULL;
1192 		if (err)
1193 			goto out;
1194 		if (state->end <= end) {
1195 			set_state_bits(tree, state, &bits, NULL);
1196 			cache_state(state, cached_state);
1197 			state = clear_state_bit(tree, state, &clear_bits, 0,
1198 						NULL);
1199 			if (last_end == (u64)-1)
1200 				goto out;
1201 			start = last_end + 1;
1202 			if (start < end && state && state->start == start &&
1203 			    !need_resched())
1204 				goto hit_next;
1205 		}
1206 		goto search_again;
1207 	}
1208 	/*
1209 	 * | ---- desired range ---- |
1210 	 *     | state | or               | state |
1211 	 *
1212 	 * There's a hole, we need to insert something in it and
1213 	 * ignore the extent we found.
1214 	 */
1215 	if (state->start > start) {
1216 		u64 this_end;
1217 		if (end < last_start)
1218 			this_end = end;
1219 		else
1220 			this_end = last_start - 1;
1221 
1222 		prealloc = alloc_extent_state_atomic(prealloc);
1223 		if (!prealloc) {
1224 			err = -ENOMEM;
1225 			goto out;
1226 		}
1227 
1228 		/*
1229 		 * Avoid to free 'prealloc' if it can be merged with
1230 		 * the later extent.
1231 		 */
1232 		err = insert_state(tree, prealloc, start, this_end,
1233 				   NULL, NULL, &bits, NULL);
1234 		if (err)
1235 			extent_io_tree_panic(tree, err);
1236 		cache_state(prealloc, cached_state);
1237 		prealloc = NULL;
1238 		start = this_end + 1;
1239 		goto search_again;
1240 	}
1241 	/*
1242 	 * | ---- desired range ---- |
1243 	 *                        | state |
1244 	 * We need to split the extent, and set the bit
1245 	 * on the first half
1246 	 */
1247 	if (state->start <= end && state->end > end) {
1248 		prealloc = alloc_extent_state_atomic(prealloc);
1249 		if (!prealloc) {
1250 			err = -ENOMEM;
1251 			goto out;
1252 		}
1253 
1254 		err = split_state(tree, state, prealloc, end + 1);
1255 		if (err)
1256 			extent_io_tree_panic(tree, err);
1257 
1258 		set_state_bits(tree, prealloc, &bits, NULL);
1259 		cache_state(prealloc, cached_state);
1260 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1261 		prealloc = NULL;
1262 		goto out;
1263 	}
1264 
1265 search_again:
1266 	if (start > end)
1267 		goto out;
1268 	spin_unlock(&tree->lock);
1269 	cond_resched();
1270 	first_iteration = false;
1271 	goto again;
1272 
1273 out:
1274 	spin_unlock(&tree->lock);
1275 	if (prealloc)
1276 		free_extent_state(prealloc);
1277 
1278 	return err;
1279 }
1280 
1281 /* wrappers around set/clear extent bit */
1282 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1283 			   unsigned bits, struct extent_changeset *changeset)
1284 {
1285 	/*
1286 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1287 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1288 	 * either fail with -EEXIST or changeset will record the whole
1289 	 * range.
1290 	 */
1291 	BUG_ON(bits & EXTENT_LOCKED);
1292 
1293 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1294 				changeset);
1295 }
1296 
1297 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1298 		     unsigned bits, int wake, int delete,
1299 		     struct extent_state **cached, gfp_t mask)
1300 {
1301 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1302 				  cached, mask, NULL);
1303 }
1304 
1305 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1306 		unsigned bits, struct extent_changeset *changeset)
1307 {
1308 	/*
1309 	 * Don't support EXTENT_LOCKED case, same reason as
1310 	 * set_record_extent_bits().
1311 	 */
1312 	BUG_ON(bits & EXTENT_LOCKED);
1313 
1314 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1315 				  changeset);
1316 }
1317 
1318 /*
1319  * either insert or lock state struct between start and end use mask to tell
1320  * us if waiting is desired.
1321  */
1322 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 		     struct extent_state **cached_state)
1324 {
1325 	int err;
1326 	u64 failed_start;
1327 
1328 	while (1) {
1329 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1330 				       EXTENT_LOCKED, &failed_start,
1331 				       cached_state, GFP_NOFS, NULL);
1332 		if (err == -EEXIST) {
1333 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1334 			start = failed_start;
1335 		} else
1336 			break;
1337 		WARN_ON(start > end);
1338 	}
1339 	return err;
1340 }
1341 
1342 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1343 {
1344 	int err;
1345 	u64 failed_start;
1346 
1347 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348 			       &failed_start, NULL, GFP_NOFS, NULL);
1349 	if (err == -EEXIST) {
1350 		if (failed_start > start)
1351 			clear_extent_bit(tree, start, failed_start - 1,
1352 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1353 		return 0;
1354 	}
1355 	return 1;
1356 }
1357 
1358 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359 {
1360 	unsigned long index = start >> PAGE_SHIFT;
1361 	unsigned long end_index = end >> PAGE_SHIFT;
1362 	struct page *page;
1363 
1364 	while (index <= end_index) {
1365 		page = find_get_page(inode->i_mapping, index);
1366 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1367 		clear_page_dirty_for_io(page);
1368 		put_page(page);
1369 		index++;
1370 	}
1371 }
1372 
1373 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374 {
1375 	unsigned long index = start >> PAGE_SHIFT;
1376 	unsigned long end_index = end >> PAGE_SHIFT;
1377 	struct page *page;
1378 
1379 	while (index <= end_index) {
1380 		page = find_get_page(inode->i_mapping, index);
1381 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1382 		__set_page_dirty_nobuffers(page);
1383 		account_page_redirty(page);
1384 		put_page(page);
1385 		index++;
1386 	}
1387 }
1388 
1389 /*
1390  * helper function to set both pages and extents in the tree writeback
1391  */
1392 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393 {
1394 	tree->ops->set_range_writeback(tree->private_data, start, end);
1395 }
1396 
1397 /* find the first state struct with 'bits' set after 'start', and
1398  * return it.  tree->lock must be held.  NULL will returned if
1399  * nothing was found after 'start'
1400  */
1401 static struct extent_state *
1402 find_first_extent_bit_state(struct extent_io_tree *tree,
1403 			    u64 start, unsigned bits)
1404 {
1405 	struct rb_node *node;
1406 	struct extent_state *state;
1407 
1408 	/*
1409 	 * this search will find all the extents that end after
1410 	 * our range starts.
1411 	 */
1412 	node = tree_search(tree, start);
1413 	if (!node)
1414 		goto out;
1415 
1416 	while (1) {
1417 		state = rb_entry(node, struct extent_state, rb_node);
1418 		if (state->end >= start && (state->state & bits))
1419 			return state;
1420 
1421 		node = rb_next(node);
1422 		if (!node)
1423 			break;
1424 	}
1425 out:
1426 	return NULL;
1427 }
1428 
1429 /*
1430  * find the first offset in the io tree with 'bits' set. zero is
1431  * returned if we find something, and *start_ret and *end_ret are
1432  * set to reflect the state struct that was found.
1433  *
1434  * If nothing was found, 1 is returned. If found something, return 0.
1435  */
1436 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1437 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1438 			  struct extent_state **cached_state)
1439 {
1440 	struct extent_state *state;
1441 	struct rb_node *n;
1442 	int ret = 1;
1443 
1444 	spin_lock(&tree->lock);
1445 	if (cached_state && *cached_state) {
1446 		state = *cached_state;
1447 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1448 			n = rb_next(&state->rb_node);
1449 			while (n) {
1450 				state = rb_entry(n, struct extent_state,
1451 						 rb_node);
1452 				if (state->state & bits)
1453 					goto got_it;
1454 				n = rb_next(n);
1455 			}
1456 			free_extent_state(*cached_state);
1457 			*cached_state = NULL;
1458 			goto out;
1459 		}
1460 		free_extent_state(*cached_state);
1461 		*cached_state = NULL;
1462 	}
1463 
1464 	state = find_first_extent_bit_state(tree, start, bits);
1465 got_it:
1466 	if (state) {
1467 		cache_state_if_flags(state, cached_state, 0);
1468 		*start_ret = state->start;
1469 		*end_ret = state->end;
1470 		ret = 0;
1471 	}
1472 out:
1473 	spin_unlock(&tree->lock);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * find a contiguous range of bytes in the file marked as delalloc, not
1479  * more than 'max_bytes'.  start and end are used to return the range,
1480  *
1481  * 1 is returned if we find something, 0 if nothing was in the tree
1482  */
1483 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1484 					u64 *start, u64 *end, u64 max_bytes,
1485 					struct extent_state **cached_state)
1486 {
1487 	struct rb_node *node;
1488 	struct extent_state *state;
1489 	u64 cur_start = *start;
1490 	u64 found = 0;
1491 	u64 total_bytes = 0;
1492 
1493 	spin_lock(&tree->lock);
1494 
1495 	/*
1496 	 * this search will find all the extents that end after
1497 	 * our range starts.
1498 	 */
1499 	node = tree_search(tree, cur_start);
1500 	if (!node) {
1501 		if (!found)
1502 			*end = (u64)-1;
1503 		goto out;
1504 	}
1505 
1506 	while (1) {
1507 		state = rb_entry(node, struct extent_state, rb_node);
1508 		if (found && (state->start != cur_start ||
1509 			      (state->state & EXTENT_BOUNDARY))) {
1510 			goto out;
1511 		}
1512 		if (!(state->state & EXTENT_DELALLOC)) {
1513 			if (!found)
1514 				*end = state->end;
1515 			goto out;
1516 		}
1517 		if (!found) {
1518 			*start = state->start;
1519 			*cached_state = state;
1520 			refcount_inc(&state->refs);
1521 		}
1522 		found++;
1523 		*end = state->end;
1524 		cur_start = state->end + 1;
1525 		node = rb_next(node);
1526 		total_bytes += state->end - state->start + 1;
1527 		if (total_bytes >= max_bytes)
1528 			break;
1529 		if (!node)
1530 			break;
1531 	}
1532 out:
1533 	spin_unlock(&tree->lock);
1534 	return found;
1535 }
1536 
1537 static int __process_pages_contig(struct address_space *mapping,
1538 				  struct page *locked_page,
1539 				  pgoff_t start_index, pgoff_t end_index,
1540 				  unsigned long page_ops, pgoff_t *index_ret);
1541 
1542 static noinline void __unlock_for_delalloc(struct inode *inode,
1543 					   struct page *locked_page,
1544 					   u64 start, u64 end)
1545 {
1546 	unsigned long index = start >> PAGE_SHIFT;
1547 	unsigned long end_index = end >> PAGE_SHIFT;
1548 
1549 	ASSERT(locked_page);
1550 	if (index == locked_page->index && end_index == index)
1551 		return;
1552 
1553 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1554 			       PAGE_UNLOCK, NULL);
1555 }
1556 
1557 static noinline int lock_delalloc_pages(struct inode *inode,
1558 					struct page *locked_page,
1559 					u64 delalloc_start,
1560 					u64 delalloc_end)
1561 {
1562 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1563 	unsigned long index_ret = index;
1564 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1565 	int ret;
1566 
1567 	ASSERT(locked_page);
1568 	if (index == locked_page->index && index == end_index)
1569 		return 0;
1570 
1571 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1572 				     end_index, PAGE_LOCK, &index_ret);
1573 	if (ret == -EAGAIN)
1574 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1575 				      (u64)index_ret << PAGE_SHIFT);
1576 	return ret;
1577 }
1578 
1579 /*
1580  * find a contiguous range of bytes in the file marked as delalloc, not
1581  * more than 'max_bytes'.  start and end are used to return the range,
1582  *
1583  * 1 is returned if we find something, 0 if nothing was in the tree
1584  */
1585 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1586 				    struct extent_io_tree *tree,
1587 				    struct page *locked_page, u64 *start,
1588 				    u64 *end, u64 max_bytes)
1589 {
1590 	u64 delalloc_start;
1591 	u64 delalloc_end;
1592 	u64 found;
1593 	struct extent_state *cached_state = NULL;
1594 	int ret;
1595 	int loops = 0;
1596 
1597 again:
1598 	/* step one, find a bunch of delalloc bytes starting at start */
1599 	delalloc_start = *start;
1600 	delalloc_end = 0;
1601 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1602 				    max_bytes, &cached_state);
1603 	if (!found || delalloc_end <= *start) {
1604 		*start = delalloc_start;
1605 		*end = delalloc_end;
1606 		free_extent_state(cached_state);
1607 		return 0;
1608 	}
1609 
1610 	/*
1611 	 * start comes from the offset of locked_page.  We have to lock
1612 	 * pages in order, so we can't process delalloc bytes before
1613 	 * locked_page
1614 	 */
1615 	if (delalloc_start < *start)
1616 		delalloc_start = *start;
1617 
1618 	/*
1619 	 * make sure to limit the number of pages we try to lock down
1620 	 */
1621 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1622 		delalloc_end = delalloc_start + max_bytes - 1;
1623 
1624 	/* step two, lock all the pages after the page that has start */
1625 	ret = lock_delalloc_pages(inode, locked_page,
1626 				  delalloc_start, delalloc_end);
1627 	if (ret == -EAGAIN) {
1628 		/* some of the pages are gone, lets avoid looping by
1629 		 * shortening the size of the delalloc range we're searching
1630 		 */
1631 		free_extent_state(cached_state);
1632 		cached_state = NULL;
1633 		if (!loops) {
1634 			max_bytes = PAGE_SIZE;
1635 			loops = 1;
1636 			goto again;
1637 		} else {
1638 			found = 0;
1639 			goto out_failed;
1640 		}
1641 	}
1642 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643 
1644 	/* step three, lock the state bits for the whole range */
1645 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646 
1647 	/* then test to make sure it is all still delalloc */
1648 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1649 			     EXTENT_DELALLOC, 1, cached_state);
1650 	if (!ret) {
1651 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1652 				     &cached_state, GFP_NOFS);
1653 		__unlock_for_delalloc(inode, locked_page,
1654 			      delalloc_start, delalloc_end);
1655 		cond_resched();
1656 		goto again;
1657 	}
1658 	free_extent_state(cached_state);
1659 	*start = delalloc_start;
1660 	*end = delalloc_end;
1661 out_failed:
1662 	return found;
1663 }
1664 
1665 static int __process_pages_contig(struct address_space *mapping,
1666 				  struct page *locked_page,
1667 				  pgoff_t start_index, pgoff_t end_index,
1668 				  unsigned long page_ops, pgoff_t *index_ret)
1669 {
1670 	unsigned long nr_pages = end_index - start_index + 1;
1671 	unsigned long pages_locked = 0;
1672 	pgoff_t index = start_index;
1673 	struct page *pages[16];
1674 	unsigned ret;
1675 	int err = 0;
1676 	int i;
1677 
1678 	if (page_ops & PAGE_LOCK) {
1679 		ASSERT(page_ops == PAGE_LOCK);
1680 		ASSERT(index_ret && *index_ret == start_index);
1681 	}
1682 
1683 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1684 		mapping_set_error(mapping, -EIO);
1685 
1686 	while (nr_pages > 0) {
1687 		ret = find_get_pages_contig(mapping, index,
1688 				     min_t(unsigned long,
1689 				     nr_pages, ARRAY_SIZE(pages)), pages);
1690 		if (ret == 0) {
1691 			/*
1692 			 * Only if we're going to lock these pages,
1693 			 * can we find nothing at @index.
1694 			 */
1695 			ASSERT(page_ops & PAGE_LOCK);
1696 			err = -EAGAIN;
1697 			goto out;
1698 		}
1699 
1700 		for (i = 0; i < ret; i++) {
1701 			if (page_ops & PAGE_SET_PRIVATE2)
1702 				SetPagePrivate2(pages[i]);
1703 
1704 			if (pages[i] == locked_page) {
1705 				put_page(pages[i]);
1706 				pages_locked++;
1707 				continue;
1708 			}
1709 			if (page_ops & PAGE_CLEAR_DIRTY)
1710 				clear_page_dirty_for_io(pages[i]);
1711 			if (page_ops & PAGE_SET_WRITEBACK)
1712 				set_page_writeback(pages[i]);
1713 			if (page_ops & PAGE_SET_ERROR)
1714 				SetPageError(pages[i]);
1715 			if (page_ops & PAGE_END_WRITEBACK)
1716 				end_page_writeback(pages[i]);
1717 			if (page_ops & PAGE_UNLOCK)
1718 				unlock_page(pages[i]);
1719 			if (page_ops & PAGE_LOCK) {
1720 				lock_page(pages[i]);
1721 				if (!PageDirty(pages[i]) ||
1722 				    pages[i]->mapping != mapping) {
1723 					unlock_page(pages[i]);
1724 					put_page(pages[i]);
1725 					err = -EAGAIN;
1726 					goto out;
1727 				}
1728 			}
1729 			put_page(pages[i]);
1730 			pages_locked++;
1731 		}
1732 		nr_pages -= ret;
1733 		index += ret;
1734 		cond_resched();
1735 	}
1736 out:
1737 	if (err && index_ret)
1738 		*index_ret = start_index + pages_locked - 1;
1739 	return err;
1740 }
1741 
1742 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1743 				 u64 delalloc_end, struct page *locked_page,
1744 				 unsigned clear_bits,
1745 				 unsigned long page_ops)
1746 {
1747 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1748 			 NULL, GFP_NOFS);
1749 
1750 	__process_pages_contig(inode->i_mapping, locked_page,
1751 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1752 			       page_ops, NULL);
1753 }
1754 
1755 /*
1756  * count the number of bytes in the tree that have a given bit(s)
1757  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1758  * cached.  The total number found is returned.
1759  */
1760 u64 count_range_bits(struct extent_io_tree *tree,
1761 		     u64 *start, u64 search_end, u64 max_bytes,
1762 		     unsigned bits, int contig)
1763 {
1764 	struct rb_node *node;
1765 	struct extent_state *state;
1766 	u64 cur_start = *start;
1767 	u64 total_bytes = 0;
1768 	u64 last = 0;
1769 	int found = 0;
1770 
1771 	if (WARN_ON(search_end <= cur_start))
1772 		return 0;
1773 
1774 	spin_lock(&tree->lock);
1775 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1776 		total_bytes = tree->dirty_bytes;
1777 		goto out;
1778 	}
1779 	/*
1780 	 * this search will find all the extents that end after
1781 	 * our range starts.
1782 	 */
1783 	node = tree_search(tree, cur_start);
1784 	if (!node)
1785 		goto out;
1786 
1787 	while (1) {
1788 		state = rb_entry(node, struct extent_state, rb_node);
1789 		if (state->start > search_end)
1790 			break;
1791 		if (contig && found && state->start > last + 1)
1792 			break;
1793 		if (state->end >= cur_start && (state->state & bits) == bits) {
1794 			total_bytes += min(search_end, state->end) + 1 -
1795 				       max(cur_start, state->start);
1796 			if (total_bytes >= max_bytes)
1797 				break;
1798 			if (!found) {
1799 				*start = max(cur_start, state->start);
1800 				found = 1;
1801 			}
1802 			last = state->end;
1803 		} else if (contig && found) {
1804 			break;
1805 		}
1806 		node = rb_next(node);
1807 		if (!node)
1808 			break;
1809 	}
1810 out:
1811 	spin_unlock(&tree->lock);
1812 	return total_bytes;
1813 }
1814 
1815 /*
1816  * set the private field for a given byte offset in the tree.  If there isn't
1817  * an extent_state there already, this does nothing.
1818  */
1819 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1820 		struct io_failure_record *failrec)
1821 {
1822 	struct rb_node *node;
1823 	struct extent_state *state;
1824 	int ret = 0;
1825 
1826 	spin_lock(&tree->lock);
1827 	/*
1828 	 * this search will find all the extents that end after
1829 	 * our range starts.
1830 	 */
1831 	node = tree_search(tree, start);
1832 	if (!node) {
1833 		ret = -ENOENT;
1834 		goto out;
1835 	}
1836 	state = rb_entry(node, struct extent_state, rb_node);
1837 	if (state->start != start) {
1838 		ret = -ENOENT;
1839 		goto out;
1840 	}
1841 	state->failrec = failrec;
1842 out:
1843 	spin_unlock(&tree->lock);
1844 	return ret;
1845 }
1846 
1847 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1848 		struct io_failure_record **failrec)
1849 {
1850 	struct rb_node *node;
1851 	struct extent_state *state;
1852 	int ret = 0;
1853 
1854 	spin_lock(&tree->lock);
1855 	/*
1856 	 * this search will find all the extents that end after
1857 	 * our range starts.
1858 	 */
1859 	node = tree_search(tree, start);
1860 	if (!node) {
1861 		ret = -ENOENT;
1862 		goto out;
1863 	}
1864 	state = rb_entry(node, struct extent_state, rb_node);
1865 	if (state->start != start) {
1866 		ret = -ENOENT;
1867 		goto out;
1868 	}
1869 	*failrec = state->failrec;
1870 out:
1871 	spin_unlock(&tree->lock);
1872 	return ret;
1873 }
1874 
1875 /*
1876  * searches a range in the state tree for a given mask.
1877  * If 'filled' == 1, this returns 1 only if every extent in the tree
1878  * has the bits set.  Otherwise, 1 is returned if any bit in the
1879  * range is found set.
1880  */
1881 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1882 		   unsigned bits, int filled, struct extent_state *cached)
1883 {
1884 	struct extent_state *state = NULL;
1885 	struct rb_node *node;
1886 	int bitset = 0;
1887 
1888 	spin_lock(&tree->lock);
1889 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1890 	    cached->end > start)
1891 		node = &cached->rb_node;
1892 	else
1893 		node = tree_search(tree, start);
1894 	while (node && start <= end) {
1895 		state = rb_entry(node, struct extent_state, rb_node);
1896 
1897 		if (filled && state->start > start) {
1898 			bitset = 0;
1899 			break;
1900 		}
1901 
1902 		if (state->start > end)
1903 			break;
1904 
1905 		if (state->state & bits) {
1906 			bitset = 1;
1907 			if (!filled)
1908 				break;
1909 		} else if (filled) {
1910 			bitset = 0;
1911 			break;
1912 		}
1913 
1914 		if (state->end == (u64)-1)
1915 			break;
1916 
1917 		start = state->end + 1;
1918 		if (start > end)
1919 			break;
1920 		node = rb_next(node);
1921 		if (!node) {
1922 			if (filled)
1923 				bitset = 0;
1924 			break;
1925 		}
1926 	}
1927 	spin_unlock(&tree->lock);
1928 	return bitset;
1929 }
1930 
1931 /*
1932  * helper function to set a given page up to date if all the
1933  * extents in the tree for that page are up to date
1934  */
1935 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1936 {
1937 	u64 start = page_offset(page);
1938 	u64 end = start + PAGE_SIZE - 1;
1939 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1940 		SetPageUptodate(page);
1941 }
1942 
1943 int free_io_failure(struct extent_io_tree *failure_tree,
1944 		    struct extent_io_tree *io_tree,
1945 		    struct io_failure_record *rec)
1946 {
1947 	int ret;
1948 	int err = 0;
1949 
1950 	set_state_failrec(failure_tree, rec->start, NULL);
1951 	ret = clear_extent_bits(failure_tree, rec->start,
1952 				rec->start + rec->len - 1,
1953 				EXTENT_LOCKED | EXTENT_DIRTY);
1954 	if (ret)
1955 		err = ret;
1956 
1957 	ret = clear_extent_bits(io_tree, rec->start,
1958 				rec->start + rec->len - 1,
1959 				EXTENT_DAMAGED);
1960 	if (ret && !err)
1961 		err = ret;
1962 
1963 	kfree(rec);
1964 	return err;
1965 }
1966 
1967 /*
1968  * this bypasses the standard btrfs submit functions deliberately, as
1969  * the standard behavior is to write all copies in a raid setup. here we only
1970  * want to write the one bad copy. so we do the mapping for ourselves and issue
1971  * submit_bio directly.
1972  * to avoid any synchronization issues, wait for the data after writing, which
1973  * actually prevents the read that triggered the error from finishing.
1974  * currently, there can be no more than two copies of every data bit. thus,
1975  * exactly one rewrite is required.
1976  */
1977 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1978 		      u64 length, u64 logical, struct page *page,
1979 		      unsigned int pg_offset, int mirror_num)
1980 {
1981 	struct bio *bio;
1982 	struct btrfs_device *dev;
1983 	u64 map_length = 0;
1984 	u64 sector;
1985 	struct btrfs_bio *bbio = NULL;
1986 	int ret;
1987 
1988 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1989 	BUG_ON(!mirror_num);
1990 
1991 	bio = btrfs_io_bio_alloc(1);
1992 	bio->bi_iter.bi_size = 0;
1993 	map_length = length;
1994 
1995 	/*
1996 	 * Avoid races with device replace and make sure our bbio has devices
1997 	 * associated to its stripes that don't go away while we are doing the
1998 	 * read repair operation.
1999 	 */
2000 	btrfs_bio_counter_inc_blocked(fs_info);
2001 	if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2002 		/*
2003 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004 		 * to update all raid stripes, but here we just want to correct
2005 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006 		 * stripe's dev and sector.
2007 		 */
2008 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2009 				      &map_length, &bbio, 0);
2010 		if (ret) {
2011 			btrfs_bio_counter_dec(fs_info);
2012 			bio_put(bio);
2013 			return -EIO;
2014 		}
2015 		ASSERT(bbio->mirror_num == 1);
2016 	} else {
2017 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2018 				      &map_length, &bbio, mirror_num);
2019 		if (ret) {
2020 			btrfs_bio_counter_dec(fs_info);
2021 			bio_put(bio);
2022 			return -EIO;
2023 		}
2024 		BUG_ON(mirror_num != bbio->mirror_num);
2025 	}
2026 
2027 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2028 	bio->bi_iter.bi_sector = sector;
2029 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2030 	btrfs_put_bbio(bbio);
2031 	if (!dev || !dev->bdev || !dev->writeable) {
2032 		btrfs_bio_counter_dec(fs_info);
2033 		bio_put(bio);
2034 		return -EIO;
2035 	}
2036 	bio->bi_bdev = dev->bdev;
2037 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2038 	bio_add_page(bio, page, length, pg_offset);
2039 
2040 	if (btrfsic_submit_bio_wait(bio)) {
2041 		/* try to remap that extent elsewhere? */
2042 		btrfs_bio_counter_dec(fs_info);
2043 		bio_put(bio);
2044 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2045 		return -EIO;
2046 	}
2047 
2048 	btrfs_info_rl_in_rcu(fs_info,
2049 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2050 				  ino, start,
2051 				  rcu_str_deref(dev->name), sector);
2052 	btrfs_bio_counter_dec(fs_info);
2053 	bio_put(bio);
2054 	return 0;
2055 }
2056 
2057 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 			 struct extent_buffer *eb, int mirror_num)
2059 {
2060 	u64 start = eb->start;
2061 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2062 	int ret = 0;
2063 
2064 	if (fs_info->sb->s_flags & MS_RDONLY)
2065 		return -EROFS;
2066 
2067 	for (i = 0; i < num_pages; i++) {
2068 		struct page *p = eb->pages[i];
2069 
2070 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2071 					start - page_offset(p), mirror_num);
2072 		if (ret)
2073 			break;
2074 		start += PAGE_SIZE;
2075 	}
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * each time an IO finishes, we do a fast check in the IO failure tree
2082  * to see if we need to process or clean up an io_failure_record
2083  */
2084 int clean_io_failure(struct btrfs_fs_info *fs_info,
2085 		     struct extent_io_tree *failure_tree,
2086 		     struct extent_io_tree *io_tree, u64 start,
2087 		     struct page *page, u64 ino, unsigned int pg_offset)
2088 {
2089 	u64 private;
2090 	struct io_failure_record *failrec;
2091 	struct extent_state *state;
2092 	int num_copies;
2093 	int ret;
2094 
2095 	private = 0;
2096 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2097 			       EXTENT_DIRTY, 0);
2098 	if (!ret)
2099 		return 0;
2100 
2101 	ret = get_state_failrec(failure_tree, start, &failrec);
2102 	if (ret)
2103 		return 0;
2104 
2105 	BUG_ON(!failrec->this_mirror);
2106 
2107 	if (failrec->in_validation) {
2108 		/* there was no real error, just free the record */
2109 		btrfs_debug(fs_info,
2110 			"clean_io_failure: freeing dummy error at %llu",
2111 			failrec->start);
2112 		goto out;
2113 	}
2114 	if (fs_info->sb->s_flags & MS_RDONLY)
2115 		goto out;
2116 
2117 	spin_lock(&io_tree->lock);
2118 	state = find_first_extent_bit_state(io_tree,
2119 					    failrec->start,
2120 					    EXTENT_LOCKED);
2121 	spin_unlock(&io_tree->lock);
2122 
2123 	if (state && state->start <= failrec->start &&
2124 	    state->end >= failrec->start + failrec->len - 1) {
2125 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 					      failrec->len);
2127 		if (num_copies > 1)  {
2128 			repair_io_failure(fs_info, ino, start, failrec->len,
2129 					  failrec->logical, page, pg_offset,
2130 					  failrec->failed_mirror);
2131 		}
2132 	}
2133 
2134 out:
2135 	free_io_failure(failure_tree, io_tree, failrec);
2136 
2137 	return 0;
2138 }
2139 
2140 /*
2141  * Can be called when
2142  * - hold extent lock
2143  * - under ordered extent
2144  * - the inode is freeing
2145  */
2146 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2147 {
2148 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2149 	struct io_failure_record *failrec;
2150 	struct extent_state *state, *next;
2151 
2152 	if (RB_EMPTY_ROOT(&failure_tree->state))
2153 		return;
2154 
2155 	spin_lock(&failure_tree->lock);
2156 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 	while (state) {
2158 		if (state->start > end)
2159 			break;
2160 
2161 		ASSERT(state->end <= end);
2162 
2163 		next = next_state(state);
2164 
2165 		failrec = state->failrec;
2166 		free_extent_state(state);
2167 		kfree(failrec);
2168 
2169 		state = next;
2170 	}
2171 	spin_unlock(&failure_tree->lock);
2172 }
2173 
2174 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2175 		struct io_failure_record **failrec_ret)
2176 {
2177 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2178 	struct io_failure_record *failrec;
2179 	struct extent_map *em;
2180 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2183 	int ret;
2184 	u64 logical;
2185 
2186 	ret = get_state_failrec(failure_tree, start, &failrec);
2187 	if (ret) {
2188 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 		if (!failrec)
2190 			return -ENOMEM;
2191 
2192 		failrec->start = start;
2193 		failrec->len = end - start + 1;
2194 		failrec->this_mirror = 0;
2195 		failrec->bio_flags = 0;
2196 		failrec->in_validation = 0;
2197 
2198 		read_lock(&em_tree->lock);
2199 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 		if (!em) {
2201 			read_unlock(&em_tree->lock);
2202 			kfree(failrec);
2203 			return -EIO;
2204 		}
2205 
2206 		if (em->start > start || em->start + em->len <= start) {
2207 			free_extent_map(em);
2208 			em = NULL;
2209 		}
2210 		read_unlock(&em_tree->lock);
2211 		if (!em) {
2212 			kfree(failrec);
2213 			return -EIO;
2214 		}
2215 
2216 		logical = start - em->start;
2217 		logical = em->block_start + logical;
2218 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 			logical = em->block_start;
2220 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 			extent_set_compress_type(&failrec->bio_flags,
2222 						 em->compress_type);
2223 		}
2224 
2225 		btrfs_debug(fs_info,
2226 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 			logical, start, failrec->len);
2228 
2229 		failrec->logical = logical;
2230 		free_extent_map(em);
2231 
2232 		/* set the bits in the private failure tree */
2233 		ret = set_extent_bits(failure_tree, start, end,
2234 					EXTENT_LOCKED | EXTENT_DIRTY);
2235 		if (ret >= 0)
2236 			ret = set_state_failrec(failure_tree, start, failrec);
2237 		/* set the bits in the inode's tree */
2238 		if (ret >= 0)
2239 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2240 		if (ret < 0) {
2241 			kfree(failrec);
2242 			return ret;
2243 		}
2244 	} else {
2245 		btrfs_debug(fs_info,
2246 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 			failrec->logical, failrec->start, failrec->len,
2248 			failrec->in_validation);
2249 		/*
2250 		 * when data can be on disk more than twice, add to failrec here
2251 		 * (e.g. with a list for failed_mirror) to make
2252 		 * clean_io_failure() clean all those errors at once.
2253 		 */
2254 	}
2255 
2256 	*failrec_ret = failrec;
2257 
2258 	return 0;
2259 }
2260 
2261 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2262 			   struct io_failure_record *failrec, int failed_mirror)
2263 {
2264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265 	int num_copies;
2266 
2267 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2268 	if (num_copies == 1) {
2269 		/*
2270 		 * we only have a single copy of the data, so don't bother with
2271 		 * all the retry and error correction code that follows. no
2272 		 * matter what the error is, it is very likely to persist.
2273 		 */
2274 		btrfs_debug(fs_info,
2275 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 			num_copies, failrec->this_mirror, failed_mirror);
2277 		return false;
2278 	}
2279 
2280 	/*
2281 	 * there are two premises:
2282 	 *	a) deliver good data to the caller
2283 	 *	b) correct the bad sectors on disk
2284 	 */
2285 	if (failed_bio->bi_vcnt > 1) {
2286 		/*
2287 		 * to fulfill b), we need to know the exact failing sectors, as
2288 		 * we don't want to rewrite any more than the failed ones. thus,
2289 		 * we need separate read requests for the failed bio
2290 		 *
2291 		 * if the following BUG_ON triggers, our validation request got
2292 		 * merged. we need separate requests for our algorithm to work.
2293 		 */
2294 		BUG_ON(failrec->in_validation);
2295 		failrec->in_validation = 1;
2296 		failrec->this_mirror = failed_mirror;
2297 	} else {
2298 		/*
2299 		 * we're ready to fulfill a) and b) alongside. get a good copy
2300 		 * of the failed sector and if we succeed, we have setup
2301 		 * everything for repair_io_failure to do the rest for us.
2302 		 */
2303 		if (failrec->in_validation) {
2304 			BUG_ON(failrec->this_mirror != failed_mirror);
2305 			failrec->in_validation = 0;
2306 			failrec->this_mirror = 0;
2307 		}
2308 		failrec->failed_mirror = failed_mirror;
2309 		failrec->this_mirror++;
2310 		if (failrec->this_mirror == failed_mirror)
2311 			failrec->this_mirror++;
2312 	}
2313 
2314 	if (failrec->this_mirror > num_copies) {
2315 		btrfs_debug(fs_info,
2316 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 			num_copies, failrec->this_mirror, failed_mirror);
2318 		return false;
2319 	}
2320 
2321 	return true;
2322 }
2323 
2324 
2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 				    struct io_failure_record *failrec,
2327 				    struct page *page, int pg_offset, int icsum,
2328 				    bio_end_io_t *endio_func, void *data)
2329 {
2330 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2331 	struct bio *bio;
2332 	struct btrfs_io_bio *btrfs_failed_bio;
2333 	struct btrfs_io_bio *btrfs_bio;
2334 
2335 	bio = btrfs_io_bio_alloc(1);
2336 	bio->bi_end_io = endio_func;
2337 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2338 	bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2339 	bio->bi_iter.bi_size = 0;
2340 	bio->bi_private = data;
2341 
2342 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2343 	if (btrfs_failed_bio->csum) {
2344 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345 
2346 		btrfs_bio = btrfs_io_bio(bio);
2347 		btrfs_bio->csum = btrfs_bio->csum_inline;
2348 		icsum *= csum_size;
2349 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2350 		       csum_size);
2351 	}
2352 
2353 	bio_add_page(bio, page, failrec->len, pg_offset);
2354 
2355 	return bio;
2356 }
2357 
2358 /*
2359  * this is a generic handler for readpage errors (default
2360  * readpage_io_failed_hook). if other copies exist, read those and write back
2361  * good data to the failed position. does not investigate in remapping the
2362  * failed extent elsewhere, hoping the device will be smart enough to do this as
2363  * needed
2364  */
2365 
2366 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 			      struct page *page, u64 start, u64 end,
2368 			      int failed_mirror)
2369 {
2370 	struct io_failure_record *failrec;
2371 	struct inode *inode = page->mapping->host;
2372 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2373 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2374 	struct bio *bio;
2375 	int read_mode = 0;
2376 	blk_status_t status;
2377 	int ret;
2378 
2379 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2380 
2381 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 	if (ret)
2383 		return ret;
2384 
2385 	if (!btrfs_check_repairable(inode, failed_bio, failrec,
2386 				    failed_mirror)) {
2387 		free_io_failure(failure_tree, tree, failrec);
2388 		return -EIO;
2389 	}
2390 
2391 	if (failed_bio->bi_vcnt > 1)
2392 		read_mode |= REQ_FAILFAST_DEV;
2393 
2394 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2395 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2396 				      start - page_offset(page),
2397 				      (int)phy_offset, failed_bio->bi_end_io,
2398 				      NULL);
2399 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2400 
2401 	btrfs_debug(btrfs_sb(inode->i_sb),
2402 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2403 		read_mode, failrec->this_mirror, failrec->in_validation);
2404 
2405 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2406 					 failrec->bio_flags, 0);
2407 	if (status) {
2408 		free_io_failure(failure_tree, tree, failrec);
2409 		bio_put(bio);
2410 		ret = blk_status_to_errno(status);
2411 	}
2412 
2413 	return ret;
2414 }
2415 
2416 /* lots and lots of room for performance fixes in the end_bio funcs */
2417 
2418 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2419 {
2420 	int uptodate = (err == 0);
2421 	struct extent_io_tree *tree;
2422 	int ret = 0;
2423 
2424 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2425 
2426 	if (tree->ops && tree->ops->writepage_end_io_hook)
2427 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2428 				uptodate);
2429 
2430 	if (!uptodate) {
2431 		ClearPageUptodate(page);
2432 		SetPageError(page);
2433 		ret = err < 0 ? err : -EIO;
2434 		mapping_set_error(page->mapping, ret);
2435 	}
2436 }
2437 
2438 /*
2439  * after a writepage IO is done, we need to:
2440  * clear the uptodate bits on error
2441  * clear the writeback bits in the extent tree for this IO
2442  * end_page_writeback if the page has no more pending IO
2443  *
2444  * Scheduling is not allowed, so the extent state tree is expected
2445  * to have one and only one object corresponding to this IO.
2446  */
2447 static void end_bio_extent_writepage(struct bio *bio)
2448 {
2449 	int error = blk_status_to_errno(bio->bi_status);
2450 	struct bio_vec *bvec;
2451 	u64 start;
2452 	u64 end;
2453 	int i;
2454 
2455 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2456 	bio_for_each_segment_all(bvec, bio, i) {
2457 		struct page *page = bvec->bv_page;
2458 		struct inode *inode = page->mapping->host;
2459 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2460 
2461 		/* We always issue full-page reads, but if some block
2462 		 * in a page fails to read, blk_update_request() will
2463 		 * advance bv_offset and adjust bv_len to compensate.
2464 		 * Print a warning for nonzero offsets, and an error
2465 		 * if they don't add up to a full page.  */
2466 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2467 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2468 				btrfs_err(fs_info,
2469 				   "partial page write in btrfs with offset %u and length %u",
2470 					bvec->bv_offset, bvec->bv_len);
2471 			else
2472 				btrfs_info(fs_info,
2473 				   "incomplete page write in btrfs with offset %u and length %u",
2474 					bvec->bv_offset, bvec->bv_len);
2475 		}
2476 
2477 		start = page_offset(page);
2478 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2479 
2480 		end_extent_writepage(page, error, start, end);
2481 		end_page_writeback(page);
2482 	}
2483 
2484 	bio_put(bio);
2485 }
2486 
2487 static void
2488 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2489 			      int uptodate)
2490 {
2491 	struct extent_state *cached = NULL;
2492 	u64 end = start + len - 1;
2493 
2494 	if (uptodate && tree->track_uptodate)
2495 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2496 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2497 }
2498 
2499 /*
2500  * after a readpage IO is done, we need to:
2501  * clear the uptodate bits on error
2502  * set the uptodate bits if things worked
2503  * set the page up to date if all extents in the tree are uptodate
2504  * clear the lock bit in the extent tree
2505  * unlock the page if there are no other extents locked for it
2506  *
2507  * Scheduling is not allowed, so the extent state tree is expected
2508  * to have one and only one object corresponding to this IO.
2509  */
2510 static void end_bio_extent_readpage(struct bio *bio)
2511 {
2512 	struct bio_vec *bvec;
2513 	int uptodate = !bio->bi_status;
2514 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2515 	struct extent_io_tree *tree, *failure_tree;
2516 	u64 offset = 0;
2517 	u64 start;
2518 	u64 end;
2519 	u64 len;
2520 	u64 extent_start = 0;
2521 	u64 extent_len = 0;
2522 	int mirror;
2523 	int ret;
2524 	int i;
2525 
2526 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2527 	bio_for_each_segment_all(bvec, bio, i) {
2528 		struct page *page = bvec->bv_page;
2529 		struct inode *inode = page->mapping->host;
2530 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2531 
2532 		btrfs_debug(fs_info,
2533 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2534 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2535 			io_bio->mirror_num);
2536 		tree = &BTRFS_I(inode)->io_tree;
2537 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2538 
2539 		/* We always issue full-page reads, but if some block
2540 		 * in a page fails to read, blk_update_request() will
2541 		 * advance bv_offset and adjust bv_len to compensate.
2542 		 * Print a warning for nonzero offsets, and an error
2543 		 * if they don't add up to a full page.  */
2544 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 				btrfs_err(fs_info,
2547 					"partial page read in btrfs with offset %u and length %u",
2548 					bvec->bv_offset, bvec->bv_len);
2549 			else
2550 				btrfs_info(fs_info,
2551 					"incomplete page read in btrfs with offset %u and length %u",
2552 					bvec->bv_offset, bvec->bv_len);
2553 		}
2554 
2555 		start = page_offset(page);
2556 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2557 		len = bvec->bv_len;
2558 
2559 		mirror = io_bio->mirror_num;
2560 		if (likely(uptodate && tree->ops)) {
2561 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2562 							      page, start, end,
2563 							      mirror);
2564 			if (ret)
2565 				uptodate = 0;
2566 			else
2567 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2568 						 failure_tree, tree, start,
2569 						 page,
2570 						 btrfs_ino(BTRFS_I(inode)), 0);
2571 		}
2572 
2573 		if (likely(uptodate))
2574 			goto readpage_ok;
2575 
2576 		if (tree->ops) {
2577 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2578 			if (ret == -EAGAIN) {
2579 				/*
2580 				 * Data inode's readpage_io_failed_hook() always
2581 				 * returns -EAGAIN.
2582 				 *
2583 				 * The generic bio_readpage_error handles errors
2584 				 * the following way: If possible, new read
2585 				 * requests are created and submitted and will
2586 				 * end up in end_bio_extent_readpage as well (if
2587 				 * we're lucky, not in the !uptodate case). In
2588 				 * that case it returns 0 and we just go on with
2589 				 * the next page in our bio. If it can't handle
2590 				 * the error it will return -EIO and we remain
2591 				 * responsible for that page.
2592 				 */
2593 				ret = bio_readpage_error(bio, offset, page,
2594 							 start, end, mirror);
2595 				if (ret == 0) {
2596 					uptodate = !bio->bi_status;
2597 					offset += len;
2598 					continue;
2599 				}
2600 			}
2601 
2602 			/*
2603 			 * metadata's readpage_io_failed_hook() always returns
2604 			 * -EIO and fixes nothing.  -EIO is also returned if
2605 			 * data inode error could not be fixed.
2606 			 */
2607 			ASSERT(ret == -EIO);
2608 		}
2609 readpage_ok:
2610 		if (likely(uptodate)) {
2611 			loff_t i_size = i_size_read(inode);
2612 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2613 			unsigned off;
2614 
2615 			/* Zero out the end if this page straddles i_size */
2616 			off = i_size & (PAGE_SIZE-1);
2617 			if (page->index == end_index && off)
2618 				zero_user_segment(page, off, PAGE_SIZE);
2619 			SetPageUptodate(page);
2620 		} else {
2621 			ClearPageUptodate(page);
2622 			SetPageError(page);
2623 		}
2624 		unlock_page(page);
2625 		offset += len;
2626 
2627 		if (unlikely(!uptodate)) {
2628 			if (extent_len) {
2629 				endio_readpage_release_extent(tree,
2630 							      extent_start,
2631 							      extent_len, 1);
2632 				extent_start = 0;
2633 				extent_len = 0;
2634 			}
2635 			endio_readpage_release_extent(tree, start,
2636 						      end - start + 1, 0);
2637 		} else if (!extent_len) {
2638 			extent_start = start;
2639 			extent_len = end + 1 - start;
2640 		} else if (extent_start + extent_len == start) {
2641 			extent_len += end + 1 - start;
2642 		} else {
2643 			endio_readpage_release_extent(tree, extent_start,
2644 						      extent_len, uptodate);
2645 			extent_start = start;
2646 			extent_len = end + 1 - start;
2647 		}
2648 	}
2649 
2650 	if (extent_len)
2651 		endio_readpage_release_extent(tree, extent_start, extent_len,
2652 					      uptodate);
2653 	if (io_bio->end_io)
2654 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2655 	bio_put(bio);
2656 }
2657 
2658 /*
2659  * Initialize the members up to but not including 'bio'. Use after allocating a
2660  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2661  * 'bio' because use of __GFP_ZERO is not supported.
2662  */
2663 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2664 {
2665 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2666 }
2667 
2668 /*
2669  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2670  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2671  * for the appropriate container_of magic
2672  */
2673 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2674 {
2675 	struct bio *bio;
2676 
2677 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2678 	bio->bi_bdev = bdev;
2679 	bio->bi_iter.bi_sector = first_byte >> 9;
2680 	btrfs_io_bio_init(btrfs_io_bio(bio));
2681 	return bio;
2682 }
2683 
2684 struct bio *btrfs_bio_clone(struct bio *bio)
2685 {
2686 	struct btrfs_io_bio *btrfs_bio;
2687 	struct bio *new;
2688 
2689 	/* Bio allocation backed by a bioset does not fail */
2690 	new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2691 	btrfs_bio = btrfs_io_bio(new);
2692 	btrfs_io_bio_init(btrfs_bio);
2693 	btrfs_bio->iter = bio->bi_iter;
2694 	return new;
2695 }
2696 
2697 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2698 {
2699 	struct bio *bio;
2700 
2701 	/* Bio allocation backed by a bioset does not fail */
2702 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2703 	btrfs_io_bio_init(btrfs_io_bio(bio));
2704 	return bio;
2705 }
2706 
2707 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2708 {
2709 	struct bio *bio;
2710 	struct btrfs_io_bio *btrfs_bio;
2711 
2712 	/* this will never fail when it's backed by a bioset */
2713 	bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2714 	ASSERT(bio);
2715 
2716 	btrfs_bio = btrfs_io_bio(bio);
2717 	btrfs_io_bio_init(btrfs_bio);
2718 
2719 	bio_trim(bio, offset >> 9, size >> 9);
2720 	btrfs_bio->iter = bio->bi_iter;
2721 	return bio;
2722 }
2723 
2724 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2725 				       unsigned long bio_flags)
2726 {
2727 	blk_status_t ret = 0;
2728 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2729 	struct page *page = bvec->bv_page;
2730 	struct extent_io_tree *tree = bio->bi_private;
2731 	u64 start;
2732 
2733 	start = page_offset(page) + bvec->bv_offset;
2734 
2735 	bio->bi_private = NULL;
2736 	bio_get(bio);
2737 
2738 	if (tree->ops)
2739 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2740 					   mirror_num, bio_flags, start);
2741 	else
2742 		btrfsic_submit_bio(bio);
2743 
2744 	bio_put(bio);
2745 	return blk_status_to_errno(ret);
2746 }
2747 
2748 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2749 		     unsigned long offset, size_t size, struct bio *bio,
2750 		     unsigned long bio_flags)
2751 {
2752 	int ret = 0;
2753 	if (tree->ops)
2754 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2755 						bio_flags);
2756 	return ret;
2757 
2758 }
2759 
2760 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2761 			      struct writeback_control *wbc,
2762 			      struct page *page, sector_t sector,
2763 			      size_t size, unsigned long offset,
2764 			      struct block_device *bdev,
2765 			      struct bio **bio_ret,
2766 			      bio_end_io_t end_io_func,
2767 			      int mirror_num,
2768 			      unsigned long prev_bio_flags,
2769 			      unsigned long bio_flags,
2770 			      bool force_bio_submit)
2771 {
2772 	int ret = 0;
2773 	struct bio *bio;
2774 	int contig = 0;
2775 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2776 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2777 
2778 	if (bio_ret && *bio_ret) {
2779 		bio = *bio_ret;
2780 		if (old_compressed)
2781 			contig = bio->bi_iter.bi_sector == sector;
2782 		else
2783 			contig = bio_end_sector(bio) == sector;
2784 
2785 		if (prev_bio_flags != bio_flags || !contig ||
2786 		    force_bio_submit ||
2787 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2788 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2789 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2790 			if (ret < 0) {
2791 				*bio_ret = NULL;
2792 				return ret;
2793 			}
2794 			bio = NULL;
2795 		} else {
2796 			if (wbc)
2797 				wbc_account_io(wbc, page, page_size);
2798 			return 0;
2799 		}
2800 	}
2801 
2802 	bio = btrfs_bio_alloc(bdev, sector << 9);
2803 	bio_add_page(bio, page, page_size, offset);
2804 	bio->bi_end_io = end_io_func;
2805 	bio->bi_private = tree;
2806 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2807 	bio_set_op_attrs(bio, op, op_flags);
2808 	if (wbc) {
2809 		wbc_init_bio(wbc, bio);
2810 		wbc_account_io(wbc, page, page_size);
2811 	}
2812 
2813 	if (bio_ret)
2814 		*bio_ret = bio;
2815 	else
2816 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2817 
2818 	return ret;
2819 }
2820 
2821 static void attach_extent_buffer_page(struct extent_buffer *eb,
2822 				      struct page *page)
2823 {
2824 	if (!PagePrivate(page)) {
2825 		SetPagePrivate(page);
2826 		get_page(page);
2827 		set_page_private(page, (unsigned long)eb);
2828 	} else {
2829 		WARN_ON(page->private != (unsigned long)eb);
2830 	}
2831 }
2832 
2833 void set_page_extent_mapped(struct page *page)
2834 {
2835 	if (!PagePrivate(page)) {
2836 		SetPagePrivate(page);
2837 		get_page(page);
2838 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2839 	}
2840 }
2841 
2842 static struct extent_map *
2843 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2844 		 u64 start, u64 len, get_extent_t *get_extent,
2845 		 struct extent_map **em_cached)
2846 {
2847 	struct extent_map *em;
2848 
2849 	if (em_cached && *em_cached) {
2850 		em = *em_cached;
2851 		if (extent_map_in_tree(em) && start >= em->start &&
2852 		    start < extent_map_end(em)) {
2853 			refcount_inc(&em->refs);
2854 			return em;
2855 		}
2856 
2857 		free_extent_map(em);
2858 		*em_cached = NULL;
2859 	}
2860 
2861 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2862 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2863 		BUG_ON(*em_cached);
2864 		refcount_inc(&em->refs);
2865 		*em_cached = em;
2866 	}
2867 	return em;
2868 }
2869 /*
2870  * basic readpage implementation.  Locked extent state structs are inserted
2871  * into the tree that are removed when the IO is done (by the end_io
2872  * handlers)
2873  * XXX JDM: This needs looking at to ensure proper page locking
2874  * return 0 on success, otherwise return error
2875  */
2876 static int __do_readpage(struct extent_io_tree *tree,
2877 			 struct page *page,
2878 			 get_extent_t *get_extent,
2879 			 struct extent_map **em_cached,
2880 			 struct bio **bio, int mirror_num,
2881 			 unsigned long *bio_flags, int read_flags,
2882 			 u64 *prev_em_start)
2883 {
2884 	struct inode *inode = page->mapping->host;
2885 	u64 start = page_offset(page);
2886 	u64 page_end = start + PAGE_SIZE - 1;
2887 	u64 end;
2888 	u64 cur = start;
2889 	u64 extent_offset;
2890 	u64 last_byte = i_size_read(inode);
2891 	u64 block_start;
2892 	u64 cur_end;
2893 	sector_t sector;
2894 	struct extent_map *em;
2895 	struct block_device *bdev;
2896 	int ret = 0;
2897 	int nr = 0;
2898 	size_t pg_offset = 0;
2899 	size_t iosize;
2900 	size_t disk_io_size;
2901 	size_t blocksize = inode->i_sb->s_blocksize;
2902 	unsigned long this_bio_flag = 0;
2903 
2904 	set_page_extent_mapped(page);
2905 
2906 	end = page_end;
2907 	if (!PageUptodate(page)) {
2908 		if (cleancache_get_page(page) == 0) {
2909 			BUG_ON(blocksize != PAGE_SIZE);
2910 			unlock_extent(tree, start, end);
2911 			goto out;
2912 		}
2913 	}
2914 
2915 	if (page->index == last_byte >> PAGE_SHIFT) {
2916 		char *userpage;
2917 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2918 
2919 		if (zero_offset) {
2920 			iosize = PAGE_SIZE - zero_offset;
2921 			userpage = kmap_atomic(page);
2922 			memset(userpage + zero_offset, 0, iosize);
2923 			flush_dcache_page(page);
2924 			kunmap_atomic(userpage);
2925 		}
2926 	}
2927 	while (cur <= end) {
2928 		bool force_bio_submit = false;
2929 
2930 		if (cur >= last_byte) {
2931 			char *userpage;
2932 			struct extent_state *cached = NULL;
2933 
2934 			iosize = PAGE_SIZE - pg_offset;
2935 			userpage = kmap_atomic(page);
2936 			memset(userpage + pg_offset, 0, iosize);
2937 			flush_dcache_page(page);
2938 			kunmap_atomic(userpage);
2939 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2940 					    &cached, GFP_NOFS);
2941 			unlock_extent_cached(tree, cur,
2942 					     cur + iosize - 1,
2943 					     &cached, GFP_NOFS);
2944 			break;
2945 		}
2946 		em = __get_extent_map(inode, page, pg_offset, cur,
2947 				      end - cur + 1, get_extent, em_cached);
2948 		if (IS_ERR_OR_NULL(em)) {
2949 			SetPageError(page);
2950 			unlock_extent(tree, cur, end);
2951 			break;
2952 		}
2953 		extent_offset = cur - em->start;
2954 		BUG_ON(extent_map_end(em) <= cur);
2955 		BUG_ON(end < cur);
2956 
2957 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2958 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2959 			extent_set_compress_type(&this_bio_flag,
2960 						 em->compress_type);
2961 		}
2962 
2963 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2964 		cur_end = min(extent_map_end(em) - 1, end);
2965 		iosize = ALIGN(iosize, blocksize);
2966 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2967 			disk_io_size = em->block_len;
2968 			sector = em->block_start >> 9;
2969 		} else {
2970 			sector = (em->block_start + extent_offset) >> 9;
2971 			disk_io_size = iosize;
2972 		}
2973 		bdev = em->bdev;
2974 		block_start = em->block_start;
2975 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2976 			block_start = EXTENT_MAP_HOLE;
2977 
2978 		/*
2979 		 * If we have a file range that points to a compressed extent
2980 		 * and it's followed by a consecutive file range that points to
2981 		 * to the same compressed extent (possibly with a different
2982 		 * offset and/or length, so it either points to the whole extent
2983 		 * or only part of it), we must make sure we do not submit a
2984 		 * single bio to populate the pages for the 2 ranges because
2985 		 * this makes the compressed extent read zero out the pages
2986 		 * belonging to the 2nd range. Imagine the following scenario:
2987 		 *
2988 		 *  File layout
2989 		 *  [0 - 8K]                     [8K - 24K]
2990 		 *    |                               |
2991 		 *    |                               |
2992 		 * points to extent X,         points to extent X,
2993 		 * offset 4K, length of 8K     offset 0, length 16K
2994 		 *
2995 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2996 		 *
2997 		 * If the bio to read the compressed extent covers both ranges,
2998 		 * it will decompress extent X into the pages belonging to the
2999 		 * first range and then it will stop, zeroing out the remaining
3000 		 * pages that belong to the other range that points to extent X.
3001 		 * So here we make sure we submit 2 bios, one for the first
3002 		 * range and another one for the third range. Both will target
3003 		 * the same physical extent from disk, but we can't currently
3004 		 * make the compressed bio endio callback populate the pages
3005 		 * for both ranges because each compressed bio is tightly
3006 		 * coupled with a single extent map, and each range can have
3007 		 * an extent map with a different offset value relative to the
3008 		 * uncompressed data of our extent and different lengths. This
3009 		 * is a corner case so we prioritize correctness over
3010 		 * non-optimal behavior (submitting 2 bios for the same extent).
3011 		 */
3012 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3013 		    prev_em_start && *prev_em_start != (u64)-1 &&
3014 		    *prev_em_start != em->orig_start)
3015 			force_bio_submit = true;
3016 
3017 		if (prev_em_start)
3018 			*prev_em_start = em->orig_start;
3019 
3020 		free_extent_map(em);
3021 		em = NULL;
3022 
3023 		/* we've found a hole, just zero and go on */
3024 		if (block_start == EXTENT_MAP_HOLE) {
3025 			char *userpage;
3026 			struct extent_state *cached = NULL;
3027 
3028 			userpage = kmap_atomic(page);
3029 			memset(userpage + pg_offset, 0, iosize);
3030 			flush_dcache_page(page);
3031 			kunmap_atomic(userpage);
3032 
3033 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3034 					    &cached, GFP_NOFS);
3035 			unlock_extent_cached(tree, cur,
3036 					     cur + iosize - 1,
3037 					     &cached, GFP_NOFS);
3038 			cur = cur + iosize;
3039 			pg_offset += iosize;
3040 			continue;
3041 		}
3042 		/* the get_extent function already copied into the page */
3043 		if (test_range_bit(tree, cur, cur_end,
3044 				   EXTENT_UPTODATE, 1, NULL)) {
3045 			check_page_uptodate(tree, page);
3046 			unlock_extent(tree, cur, cur + iosize - 1);
3047 			cur = cur + iosize;
3048 			pg_offset += iosize;
3049 			continue;
3050 		}
3051 		/* we have an inline extent but it didn't get marked up
3052 		 * to date.  Error out
3053 		 */
3054 		if (block_start == EXTENT_MAP_INLINE) {
3055 			SetPageError(page);
3056 			unlock_extent(tree, cur, cur + iosize - 1);
3057 			cur = cur + iosize;
3058 			pg_offset += iosize;
3059 			continue;
3060 		}
3061 
3062 		ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3063 					 page, sector, disk_io_size, pg_offset,
3064 					 bdev, bio,
3065 					 end_bio_extent_readpage, mirror_num,
3066 					 *bio_flags,
3067 					 this_bio_flag,
3068 					 force_bio_submit);
3069 		if (!ret) {
3070 			nr++;
3071 			*bio_flags = this_bio_flag;
3072 		} else {
3073 			SetPageError(page);
3074 			unlock_extent(tree, cur, cur + iosize - 1);
3075 			goto out;
3076 		}
3077 		cur = cur + iosize;
3078 		pg_offset += iosize;
3079 	}
3080 out:
3081 	if (!nr) {
3082 		if (!PageError(page))
3083 			SetPageUptodate(page);
3084 		unlock_page(page);
3085 	}
3086 	return ret;
3087 }
3088 
3089 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3090 					     struct page *pages[], int nr_pages,
3091 					     u64 start, u64 end,
3092 					     get_extent_t *get_extent,
3093 					     struct extent_map **em_cached,
3094 					     struct bio **bio, int mirror_num,
3095 					     unsigned long *bio_flags,
3096 					     u64 *prev_em_start)
3097 {
3098 	struct inode *inode;
3099 	struct btrfs_ordered_extent *ordered;
3100 	int index;
3101 
3102 	inode = pages[0]->mapping->host;
3103 	while (1) {
3104 		lock_extent(tree, start, end);
3105 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3106 						     end - start + 1);
3107 		if (!ordered)
3108 			break;
3109 		unlock_extent(tree, start, end);
3110 		btrfs_start_ordered_extent(inode, ordered, 1);
3111 		btrfs_put_ordered_extent(ordered);
3112 	}
3113 
3114 	for (index = 0; index < nr_pages; index++) {
3115 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3116 			      mirror_num, bio_flags, 0, prev_em_start);
3117 		put_page(pages[index]);
3118 	}
3119 }
3120 
3121 static void __extent_readpages(struct extent_io_tree *tree,
3122 			       struct page *pages[],
3123 			       int nr_pages, get_extent_t *get_extent,
3124 			       struct extent_map **em_cached,
3125 			       struct bio **bio, int mirror_num,
3126 			       unsigned long *bio_flags,
3127 			       u64 *prev_em_start)
3128 {
3129 	u64 start = 0;
3130 	u64 end = 0;
3131 	u64 page_start;
3132 	int index;
3133 	int first_index = 0;
3134 
3135 	for (index = 0; index < nr_pages; index++) {
3136 		page_start = page_offset(pages[index]);
3137 		if (!end) {
3138 			start = page_start;
3139 			end = start + PAGE_SIZE - 1;
3140 			first_index = index;
3141 		} else if (end + 1 == page_start) {
3142 			end += PAGE_SIZE;
3143 		} else {
3144 			__do_contiguous_readpages(tree, &pages[first_index],
3145 						  index - first_index, start,
3146 						  end, get_extent, em_cached,
3147 						  bio, mirror_num, bio_flags,
3148 						  prev_em_start);
3149 			start = page_start;
3150 			end = start + PAGE_SIZE - 1;
3151 			first_index = index;
3152 		}
3153 	}
3154 
3155 	if (end)
3156 		__do_contiguous_readpages(tree, &pages[first_index],
3157 					  index - first_index, start,
3158 					  end, get_extent, em_cached, bio,
3159 					  mirror_num, bio_flags,
3160 					  prev_em_start);
3161 }
3162 
3163 static int __extent_read_full_page(struct extent_io_tree *tree,
3164 				   struct page *page,
3165 				   get_extent_t *get_extent,
3166 				   struct bio **bio, int mirror_num,
3167 				   unsigned long *bio_flags, int read_flags)
3168 {
3169 	struct inode *inode = page->mapping->host;
3170 	struct btrfs_ordered_extent *ordered;
3171 	u64 start = page_offset(page);
3172 	u64 end = start + PAGE_SIZE - 1;
3173 	int ret;
3174 
3175 	while (1) {
3176 		lock_extent(tree, start, end);
3177 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3178 						PAGE_SIZE);
3179 		if (!ordered)
3180 			break;
3181 		unlock_extent(tree, start, end);
3182 		btrfs_start_ordered_extent(inode, ordered, 1);
3183 		btrfs_put_ordered_extent(ordered);
3184 	}
3185 
3186 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3187 			    bio_flags, read_flags, NULL);
3188 	return ret;
3189 }
3190 
3191 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3192 			    get_extent_t *get_extent, int mirror_num)
3193 {
3194 	struct bio *bio = NULL;
3195 	unsigned long bio_flags = 0;
3196 	int ret;
3197 
3198 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3199 				      &bio_flags, 0);
3200 	if (bio)
3201 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3202 	return ret;
3203 }
3204 
3205 static void update_nr_written(struct writeback_control *wbc,
3206 			      unsigned long nr_written)
3207 {
3208 	wbc->nr_to_write -= nr_written;
3209 }
3210 
3211 /*
3212  * helper for __extent_writepage, doing all of the delayed allocation setup.
3213  *
3214  * This returns 1 if our fill_delalloc function did all the work required
3215  * to write the page (copy into inline extent).  In this case the IO has
3216  * been started and the page is already unlocked.
3217  *
3218  * This returns 0 if all went well (page still locked)
3219  * This returns < 0 if there were errors (page still locked)
3220  */
3221 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3222 			      struct page *page, struct writeback_control *wbc,
3223 			      struct extent_page_data *epd,
3224 			      u64 delalloc_start,
3225 			      unsigned long *nr_written)
3226 {
3227 	struct extent_io_tree *tree = epd->tree;
3228 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3229 	u64 nr_delalloc;
3230 	u64 delalloc_to_write = 0;
3231 	u64 delalloc_end = 0;
3232 	int ret;
3233 	int page_started = 0;
3234 
3235 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3236 		return 0;
3237 
3238 	while (delalloc_end < page_end) {
3239 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3240 					       page,
3241 					       &delalloc_start,
3242 					       &delalloc_end,
3243 					       BTRFS_MAX_EXTENT_SIZE);
3244 		if (nr_delalloc == 0) {
3245 			delalloc_start = delalloc_end + 1;
3246 			continue;
3247 		}
3248 		ret = tree->ops->fill_delalloc(inode, page,
3249 					       delalloc_start,
3250 					       delalloc_end,
3251 					       &page_started,
3252 					       nr_written);
3253 		/* File system has been set read-only */
3254 		if (ret) {
3255 			SetPageError(page);
3256 			/* fill_delalloc should be return < 0 for error
3257 			 * but just in case, we use > 0 here meaning the
3258 			 * IO is started, so we don't want to return > 0
3259 			 * unless things are going well.
3260 			 */
3261 			ret = ret < 0 ? ret : -EIO;
3262 			goto done;
3263 		}
3264 		/*
3265 		 * delalloc_end is already one less than the total length, so
3266 		 * we don't subtract one from PAGE_SIZE
3267 		 */
3268 		delalloc_to_write += (delalloc_end - delalloc_start +
3269 				      PAGE_SIZE) >> PAGE_SHIFT;
3270 		delalloc_start = delalloc_end + 1;
3271 	}
3272 	if (wbc->nr_to_write < delalloc_to_write) {
3273 		int thresh = 8192;
3274 
3275 		if (delalloc_to_write < thresh * 2)
3276 			thresh = delalloc_to_write;
3277 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3278 					 thresh);
3279 	}
3280 
3281 	/* did the fill delalloc function already unlock and start
3282 	 * the IO?
3283 	 */
3284 	if (page_started) {
3285 		/*
3286 		 * we've unlocked the page, so we can't update
3287 		 * the mapping's writeback index, just update
3288 		 * nr_to_write.
3289 		 */
3290 		wbc->nr_to_write -= *nr_written;
3291 		return 1;
3292 	}
3293 
3294 	ret = 0;
3295 
3296 done:
3297 	return ret;
3298 }
3299 
3300 /*
3301  * helper for __extent_writepage.  This calls the writepage start hooks,
3302  * and does the loop to map the page into extents and bios.
3303  *
3304  * We return 1 if the IO is started and the page is unlocked,
3305  * 0 if all went well (page still locked)
3306  * < 0 if there were errors (page still locked)
3307  */
3308 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3309 				 struct page *page,
3310 				 struct writeback_control *wbc,
3311 				 struct extent_page_data *epd,
3312 				 loff_t i_size,
3313 				 unsigned long nr_written,
3314 				 int write_flags, int *nr_ret)
3315 {
3316 	struct extent_io_tree *tree = epd->tree;
3317 	u64 start = page_offset(page);
3318 	u64 page_end = start + PAGE_SIZE - 1;
3319 	u64 end;
3320 	u64 cur = start;
3321 	u64 extent_offset;
3322 	u64 block_start;
3323 	u64 iosize;
3324 	sector_t sector;
3325 	struct extent_map *em;
3326 	struct block_device *bdev;
3327 	size_t pg_offset = 0;
3328 	size_t blocksize;
3329 	int ret = 0;
3330 	int nr = 0;
3331 	bool compressed;
3332 
3333 	if (tree->ops && tree->ops->writepage_start_hook) {
3334 		ret = tree->ops->writepage_start_hook(page, start,
3335 						      page_end);
3336 		if (ret) {
3337 			/* Fixup worker will requeue */
3338 			if (ret == -EBUSY)
3339 				wbc->pages_skipped++;
3340 			else
3341 				redirty_page_for_writepage(wbc, page);
3342 
3343 			update_nr_written(wbc, nr_written);
3344 			unlock_page(page);
3345 			return 1;
3346 		}
3347 	}
3348 
3349 	/*
3350 	 * we don't want to touch the inode after unlocking the page,
3351 	 * so we update the mapping writeback index now
3352 	 */
3353 	update_nr_written(wbc, nr_written + 1);
3354 
3355 	end = page_end;
3356 	if (i_size <= start) {
3357 		if (tree->ops && tree->ops->writepage_end_io_hook)
3358 			tree->ops->writepage_end_io_hook(page, start,
3359 							 page_end, NULL, 1);
3360 		goto done;
3361 	}
3362 
3363 	blocksize = inode->i_sb->s_blocksize;
3364 
3365 	while (cur <= end) {
3366 		u64 em_end;
3367 
3368 		if (cur >= i_size) {
3369 			if (tree->ops && tree->ops->writepage_end_io_hook)
3370 				tree->ops->writepage_end_io_hook(page, cur,
3371 							 page_end, NULL, 1);
3372 			break;
3373 		}
3374 		em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3375 				     end - cur + 1, 1);
3376 		if (IS_ERR_OR_NULL(em)) {
3377 			SetPageError(page);
3378 			ret = PTR_ERR_OR_ZERO(em);
3379 			break;
3380 		}
3381 
3382 		extent_offset = cur - em->start;
3383 		em_end = extent_map_end(em);
3384 		BUG_ON(em_end <= cur);
3385 		BUG_ON(end < cur);
3386 		iosize = min(em_end - cur, end - cur + 1);
3387 		iosize = ALIGN(iosize, blocksize);
3388 		sector = (em->block_start + extent_offset) >> 9;
3389 		bdev = em->bdev;
3390 		block_start = em->block_start;
3391 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3392 		free_extent_map(em);
3393 		em = NULL;
3394 
3395 		/*
3396 		 * compressed and inline extents are written through other
3397 		 * paths in the FS
3398 		 */
3399 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3400 		    block_start == EXTENT_MAP_INLINE) {
3401 			/*
3402 			 * end_io notification does not happen here for
3403 			 * compressed extents
3404 			 */
3405 			if (!compressed && tree->ops &&
3406 			    tree->ops->writepage_end_io_hook)
3407 				tree->ops->writepage_end_io_hook(page, cur,
3408 							 cur + iosize - 1,
3409 							 NULL, 1);
3410 			else if (compressed) {
3411 				/* we don't want to end_page_writeback on
3412 				 * a compressed extent.  this happens
3413 				 * elsewhere
3414 				 */
3415 				nr++;
3416 			}
3417 
3418 			cur += iosize;
3419 			pg_offset += iosize;
3420 			continue;
3421 		}
3422 
3423 		set_range_writeback(tree, cur, cur + iosize - 1);
3424 		if (!PageWriteback(page)) {
3425 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3426 				   "page %lu not writeback, cur %llu end %llu",
3427 			       page->index, cur, end);
3428 		}
3429 
3430 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3431 					 page, sector, iosize, pg_offset,
3432 					 bdev, &epd->bio,
3433 					 end_bio_extent_writepage,
3434 					 0, 0, 0, false);
3435 		if (ret) {
3436 			SetPageError(page);
3437 			if (PageWriteback(page))
3438 				end_page_writeback(page);
3439 		}
3440 
3441 		cur = cur + iosize;
3442 		pg_offset += iosize;
3443 		nr++;
3444 	}
3445 done:
3446 	*nr_ret = nr;
3447 	return ret;
3448 }
3449 
3450 /*
3451  * the writepage semantics are similar to regular writepage.  extent
3452  * records are inserted to lock ranges in the tree, and as dirty areas
3453  * are found, they are marked writeback.  Then the lock bits are removed
3454  * and the end_io handler clears the writeback ranges
3455  */
3456 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3457 			      void *data)
3458 {
3459 	struct inode *inode = page->mapping->host;
3460 	struct extent_page_data *epd = data;
3461 	u64 start = page_offset(page);
3462 	u64 page_end = start + PAGE_SIZE - 1;
3463 	int ret;
3464 	int nr = 0;
3465 	size_t pg_offset = 0;
3466 	loff_t i_size = i_size_read(inode);
3467 	unsigned long end_index = i_size >> PAGE_SHIFT;
3468 	int write_flags = 0;
3469 	unsigned long nr_written = 0;
3470 
3471 	if (wbc->sync_mode == WB_SYNC_ALL)
3472 		write_flags = REQ_SYNC;
3473 
3474 	trace___extent_writepage(page, inode, wbc);
3475 
3476 	WARN_ON(!PageLocked(page));
3477 
3478 	ClearPageError(page);
3479 
3480 	pg_offset = i_size & (PAGE_SIZE - 1);
3481 	if (page->index > end_index ||
3482 	   (page->index == end_index && !pg_offset)) {
3483 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3484 		unlock_page(page);
3485 		return 0;
3486 	}
3487 
3488 	if (page->index == end_index) {
3489 		char *userpage;
3490 
3491 		userpage = kmap_atomic(page);
3492 		memset(userpage + pg_offset, 0,
3493 		       PAGE_SIZE - pg_offset);
3494 		kunmap_atomic(userpage);
3495 		flush_dcache_page(page);
3496 	}
3497 
3498 	pg_offset = 0;
3499 
3500 	set_page_extent_mapped(page);
3501 
3502 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3503 	if (ret == 1)
3504 		goto done_unlocked;
3505 	if (ret)
3506 		goto done;
3507 
3508 	ret = __extent_writepage_io(inode, page, wbc, epd,
3509 				    i_size, nr_written, write_flags, &nr);
3510 	if (ret == 1)
3511 		goto done_unlocked;
3512 
3513 done:
3514 	if (nr == 0) {
3515 		/* make sure the mapping tag for page dirty gets cleared */
3516 		set_page_writeback(page);
3517 		end_page_writeback(page);
3518 	}
3519 	if (PageError(page)) {
3520 		ret = ret < 0 ? ret : -EIO;
3521 		end_extent_writepage(page, ret, start, page_end);
3522 	}
3523 	unlock_page(page);
3524 	return ret;
3525 
3526 done_unlocked:
3527 	return 0;
3528 }
3529 
3530 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3531 {
3532 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3533 		       TASK_UNINTERRUPTIBLE);
3534 }
3535 
3536 static noinline_for_stack int
3537 lock_extent_buffer_for_io(struct extent_buffer *eb,
3538 			  struct btrfs_fs_info *fs_info,
3539 			  struct extent_page_data *epd)
3540 {
3541 	unsigned long i, num_pages;
3542 	int flush = 0;
3543 	int ret = 0;
3544 
3545 	if (!btrfs_try_tree_write_lock(eb)) {
3546 		flush = 1;
3547 		flush_write_bio(epd);
3548 		btrfs_tree_lock(eb);
3549 	}
3550 
3551 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3552 		btrfs_tree_unlock(eb);
3553 		if (!epd->sync_io)
3554 			return 0;
3555 		if (!flush) {
3556 			flush_write_bio(epd);
3557 			flush = 1;
3558 		}
3559 		while (1) {
3560 			wait_on_extent_buffer_writeback(eb);
3561 			btrfs_tree_lock(eb);
3562 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3563 				break;
3564 			btrfs_tree_unlock(eb);
3565 		}
3566 	}
3567 
3568 	/*
3569 	 * We need to do this to prevent races in people who check if the eb is
3570 	 * under IO since we can end up having no IO bits set for a short period
3571 	 * of time.
3572 	 */
3573 	spin_lock(&eb->refs_lock);
3574 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3575 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3576 		spin_unlock(&eb->refs_lock);
3577 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3578 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3579 					 -eb->len,
3580 					 fs_info->dirty_metadata_batch);
3581 		ret = 1;
3582 	} else {
3583 		spin_unlock(&eb->refs_lock);
3584 	}
3585 
3586 	btrfs_tree_unlock(eb);
3587 
3588 	if (!ret)
3589 		return ret;
3590 
3591 	num_pages = num_extent_pages(eb->start, eb->len);
3592 	for (i = 0; i < num_pages; i++) {
3593 		struct page *p = eb->pages[i];
3594 
3595 		if (!trylock_page(p)) {
3596 			if (!flush) {
3597 				flush_write_bio(epd);
3598 				flush = 1;
3599 			}
3600 			lock_page(p);
3601 		}
3602 	}
3603 
3604 	return ret;
3605 }
3606 
3607 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3608 {
3609 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3610 	smp_mb__after_atomic();
3611 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3612 }
3613 
3614 static void set_btree_ioerr(struct page *page)
3615 {
3616 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3617 
3618 	SetPageError(page);
3619 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3620 		return;
3621 
3622 	/*
3623 	 * If writeback for a btree extent that doesn't belong to a log tree
3624 	 * failed, increment the counter transaction->eb_write_errors.
3625 	 * We do this because while the transaction is running and before it's
3626 	 * committing (when we call filemap_fdata[write|wait]_range against
3627 	 * the btree inode), we might have
3628 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3629 	 * returns an error or an error happens during writeback, when we're
3630 	 * committing the transaction we wouldn't know about it, since the pages
3631 	 * can be no longer dirty nor marked anymore for writeback (if a
3632 	 * subsequent modification to the extent buffer didn't happen before the
3633 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3634 	 * able to find the pages tagged with SetPageError at transaction
3635 	 * commit time. So if this happens we must abort the transaction,
3636 	 * otherwise we commit a super block with btree roots that point to
3637 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3638 	 * or the content of some node/leaf from a past generation that got
3639 	 * cowed or deleted and is no longer valid.
3640 	 *
3641 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3642 	 * not be enough - we need to distinguish between log tree extents vs
3643 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3644 	 * will catch and clear such errors in the mapping - and that call might
3645 	 * be from a log sync and not from a transaction commit. Also, checking
3646 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3647 	 * not done and would not be reliable - the eb might have been released
3648 	 * from memory and reading it back again means that flag would not be
3649 	 * set (since it's a runtime flag, not persisted on disk).
3650 	 *
3651 	 * Using the flags below in the btree inode also makes us achieve the
3652 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3653 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3654 	 * is called, the writeback for all dirty pages had already finished
3655 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3656 	 * filemap_fdatawait_range() would return success, as it could not know
3657 	 * that writeback errors happened (the pages were no longer tagged for
3658 	 * writeback).
3659 	 */
3660 	switch (eb->log_index) {
3661 	case -1:
3662 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3663 		break;
3664 	case 0:
3665 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3666 		break;
3667 	case 1:
3668 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3669 		break;
3670 	default:
3671 		BUG(); /* unexpected, logic error */
3672 	}
3673 }
3674 
3675 static void end_bio_extent_buffer_writepage(struct bio *bio)
3676 {
3677 	struct bio_vec *bvec;
3678 	struct extent_buffer *eb;
3679 	int i, done;
3680 
3681 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3682 	bio_for_each_segment_all(bvec, bio, i) {
3683 		struct page *page = bvec->bv_page;
3684 
3685 		eb = (struct extent_buffer *)page->private;
3686 		BUG_ON(!eb);
3687 		done = atomic_dec_and_test(&eb->io_pages);
3688 
3689 		if (bio->bi_status ||
3690 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3691 			ClearPageUptodate(page);
3692 			set_btree_ioerr(page);
3693 		}
3694 
3695 		end_page_writeback(page);
3696 
3697 		if (!done)
3698 			continue;
3699 
3700 		end_extent_buffer_writeback(eb);
3701 	}
3702 
3703 	bio_put(bio);
3704 }
3705 
3706 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3707 			struct btrfs_fs_info *fs_info,
3708 			struct writeback_control *wbc,
3709 			struct extent_page_data *epd)
3710 {
3711 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3712 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3713 	u64 offset = eb->start;
3714 	u32 nritems;
3715 	unsigned long i, num_pages;
3716 	unsigned long bio_flags = 0;
3717 	unsigned long start, end;
3718 	int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3719 	int ret = 0;
3720 
3721 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3722 	num_pages = num_extent_pages(eb->start, eb->len);
3723 	atomic_set(&eb->io_pages, num_pages);
3724 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3725 		bio_flags = EXTENT_BIO_TREE_LOG;
3726 
3727 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3728 	nritems = btrfs_header_nritems(eb);
3729 	if (btrfs_header_level(eb) > 0) {
3730 		end = btrfs_node_key_ptr_offset(nritems);
3731 
3732 		memzero_extent_buffer(eb, end, eb->len - end);
3733 	} else {
3734 		/*
3735 		 * leaf:
3736 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737 		 */
3738 		start = btrfs_item_nr_offset(nritems);
3739 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3740 		memzero_extent_buffer(eb, start, end - start);
3741 	}
3742 
3743 	for (i = 0; i < num_pages; i++) {
3744 		struct page *p = eb->pages[i];
3745 
3746 		clear_page_dirty_for_io(p);
3747 		set_page_writeback(p);
3748 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3749 					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3750 					 &epd->bio,
3751 					 end_bio_extent_buffer_writepage,
3752 					 0, epd->bio_flags, bio_flags, false);
3753 		epd->bio_flags = bio_flags;
3754 		if (ret) {
3755 			set_btree_ioerr(p);
3756 			if (PageWriteback(p))
3757 				end_page_writeback(p);
3758 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3759 				end_extent_buffer_writeback(eb);
3760 			ret = -EIO;
3761 			break;
3762 		}
3763 		offset += PAGE_SIZE;
3764 		update_nr_written(wbc, 1);
3765 		unlock_page(p);
3766 	}
3767 
3768 	if (unlikely(ret)) {
3769 		for (; i < num_pages; i++) {
3770 			struct page *p = eb->pages[i];
3771 			clear_page_dirty_for_io(p);
3772 			unlock_page(p);
3773 		}
3774 	}
3775 
3776 	return ret;
3777 }
3778 
3779 int btree_write_cache_pages(struct address_space *mapping,
3780 				   struct writeback_control *wbc)
3781 {
3782 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3783 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3784 	struct extent_buffer *eb, *prev_eb = NULL;
3785 	struct extent_page_data epd = {
3786 		.bio = NULL,
3787 		.tree = tree,
3788 		.extent_locked = 0,
3789 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3790 		.bio_flags = 0,
3791 	};
3792 	int ret = 0;
3793 	int done = 0;
3794 	int nr_to_write_done = 0;
3795 	struct pagevec pvec;
3796 	int nr_pages;
3797 	pgoff_t index;
3798 	pgoff_t end;		/* Inclusive */
3799 	int scanned = 0;
3800 	int tag;
3801 
3802 	pagevec_init(&pvec, 0);
3803 	if (wbc->range_cyclic) {
3804 		index = mapping->writeback_index; /* Start from prev offset */
3805 		end = -1;
3806 	} else {
3807 		index = wbc->range_start >> PAGE_SHIFT;
3808 		end = wbc->range_end >> PAGE_SHIFT;
3809 		scanned = 1;
3810 	}
3811 	if (wbc->sync_mode == WB_SYNC_ALL)
3812 		tag = PAGECACHE_TAG_TOWRITE;
3813 	else
3814 		tag = PAGECACHE_TAG_DIRTY;
3815 retry:
3816 	if (wbc->sync_mode == WB_SYNC_ALL)
3817 		tag_pages_for_writeback(mapping, index, end);
3818 	while (!done && !nr_to_write_done && (index <= end) &&
3819 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3820 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3821 		unsigned i;
3822 
3823 		scanned = 1;
3824 		for (i = 0; i < nr_pages; i++) {
3825 			struct page *page = pvec.pages[i];
3826 
3827 			if (!PagePrivate(page))
3828 				continue;
3829 
3830 			if (!wbc->range_cyclic && page->index > end) {
3831 				done = 1;
3832 				break;
3833 			}
3834 
3835 			spin_lock(&mapping->private_lock);
3836 			if (!PagePrivate(page)) {
3837 				spin_unlock(&mapping->private_lock);
3838 				continue;
3839 			}
3840 
3841 			eb = (struct extent_buffer *)page->private;
3842 
3843 			/*
3844 			 * Shouldn't happen and normally this would be a BUG_ON
3845 			 * but no sense in crashing the users box for something
3846 			 * we can survive anyway.
3847 			 */
3848 			if (WARN_ON(!eb)) {
3849 				spin_unlock(&mapping->private_lock);
3850 				continue;
3851 			}
3852 
3853 			if (eb == prev_eb) {
3854 				spin_unlock(&mapping->private_lock);
3855 				continue;
3856 			}
3857 
3858 			ret = atomic_inc_not_zero(&eb->refs);
3859 			spin_unlock(&mapping->private_lock);
3860 			if (!ret)
3861 				continue;
3862 
3863 			prev_eb = eb;
3864 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3865 			if (!ret) {
3866 				free_extent_buffer(eb);
3867 				continue;
3868 			}
3869 
3870 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3871 			if (ret) {
3872 				done = 1;
3873 				free_extent_buffer(eb);
3874 				break;
3875 			}
3876 			free_extent_buffer(eb);
3877 
3878 			/*
3879 			 * the filesystem may choose to bump up nr_to_write.
3880 			 * We have to make sure to honor the new nr_to_write
3881 			 * at any time
3882 			 */
3883 			nr_to_write_done = wbc->nr_to_write <= 0;
3884 		}
3885 		pagevec_release(&pvec);
3886 		cond_resched();
3887 	}
3888 	if (!scanned && !done) {
3889 		/*
3890 		 * We hit the last page and there is more work to be done: wrap
3891 		 * back to the start of the file
3892 		 */
3893 		scanned = 1;
3894 		index = 0;
3895 		goto retry;
3896 	}
3897 	flush_write_bio(&epd);
3898 	return ret;
3899 }
3900 
3901 /**
3902  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3903  * @mapping: address space structure to write
3904  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3905  * @writepage: function called for each page
3906  * @data: data passed to writepage function
3907  *
3908  * If a page is already under I/O, write_cache_pages() skips it, even
3909  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3910  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3911  * and msync() need to guarantee that all the data which was dirty at the time
3912  * the call was made get new I/O started against them.  If wbc->sync_mode is
3913  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3914  * existing IO to complete.
3915  */
3916 static int extent_write_cache_pages(struct address_space *mapping,
3917 			     struct writeback_control *wbc,
3918 			     writepage_t writepage, void *data,
3919 			     void (*flush_fn)(void *))
3920 {
3921 	struct inode *inode = mapping->host;
3922 	int ret = 0;
3923 	int done = 0;
3924 	int nr_to_write_done = 0;
3925 	struct pagevec pvec;
3926 	int nr_pages;
3927 	pgoff_t index;
3928 	pgoff_t end;		/* Inclusive */
3929 	pgoff_t done_index;
3930 	int range_whole = 0;
3931 	int scanned = 0;
3932 	int tag;
3933 
3934 	/*
3935 	 * We have to hold onto the inode so that ordered extents can do their
3936 	 * work when the IO finishes.  The alternative to this is failing to add
3937 	 * an ordered extent if the igrab() fails there and that is a huge pain
3938 	 * to deal with, so instead just hold onto the inode throughout the
3939 	 * writepages operation.  If it fails here we are freeing up the inode
3940 	 * anyway and we'd rather not waste our time writing out stuff that is
3941 	 * going to be truncated anyway.
3942 	 */
3943 	if (!igrab(inode))
3944 		return 0;
3945 
3946 	pagevec_init(&pvec, 0);
3947 	if (wbc->range_cyclic) {
3948 		index = mapping->writeback_index; /* Start from prev offset */
3949 		end = -1;
3950 	} else {
3951 		index = wbc->range_start >> PAGE_SHIFT;
3952 		end = wbc->range_end >> PAGE_SHIFT;
3953 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3954 			range_whole = 1;
3955 		scanned = 1;
3956 	}
3957 	if (wbc->sync_mode == WB_SYNC_ALL)
3958 		tag = PAGECACHE_TAG_TOWRITE;
3959 	else
3960 		tag = PAGECACHE_TAG_DIRTY;
3961 retry:
3962 	if (wbc->sync_mode == WB_SYNC_ALL)
3963 		tag_pages_for_writeback(mapping, index, end);
3964 	done_index = index;
3965 	while (!done && !nr_to_write_done && (index <= end) &&
3966 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3967 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3968 		unsigned i;
3969 
3970 		scanned = 1;
3971 		for (i = 0; i < nr_pages; i++) {
3972 			struct page *page = pvec.pages[i];
3973 
3974 			done_index = page->index;
3975 			/*
3976 			 * At this point we hold neither mapping->tree_lock nor
3977 			 * lock on the page itself: the page may be truncated or
3978 			 * invalidated (changing page->mapping to NULL), or even
3979 			 * swizzled back from swapper_space to tmpfs file
3980 			 * mapping
3981 			 */
3982 			if (!trylock_page(page)) {
3983 				flush_fn(data);
3984 				lock_page(page);
3985 			}
3986 
3987 			if (unlikely(page->mapping != mapping)) {
3988 				unlock_page(page);
3989 				continue;
3990 			}
3991 
3992 			if (!wbc->range_cyclic && page->index > end) {
3993 				done = 1;
3994 				unlock_page(page);
3995 				continue;
3996 			}
3997 
3998 			if (wbc->sync_mode != WB_SYNC_NONE) {
3999 				if (PageWriteback(page))
4000 					flush_fn(data);
4001 				wait_on_page_writeback(page);
4002 			}
4003 
4004 			if (PageWriteback(page) ||
4005 			    !clear_page_dirty_for_io(page)) {
4006 				unlock_page(page);
4007 				continue;
4008 			}
4009 
4010 			ret = (*writepage)(page, wbc, data);
4011 
4012 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4013 				unlock_page(page);
4014 				ret = 0;
4015 			}
4016 			if (ret < 0) {
4017 				/*
4018 				 * done_index is set past this page,
4019 				 * so media errors will not choke
4020 				 * background writeout for the entire
4021 				 * file. This has consequences for
4022 				 * range_cyclic semantics (ie. it may
4023 				 * not be suitable for data integrity
4024 				 * writeout).
4025 				 */
4026 				done_index = page->index + 1;
4027 				done = 1;
4028 				break;
4029 			}
4030 
4031 			/*
4032 			 * the filesystem may choose to bump up nr_to_write.
4033 			 * We have to make sure to honor the new nr_to_write
4034 			 * at any time
4035 			 */
4036 			nr_to_write_done = wbc->nr_to_write <= 0;
4037 		}
4038 		pagevec_release(&pvec);
4039 		cond_resched();
4040 	}
4041 	if (!scanned && !done) {
4042 		/*
4043 		 * We hit the last page and there is more work to be done: wrap
4044 		 * back to the start of the file
4045 		 */
4046 		scanned = 1;
4047 		index = 0;
4048 		goto retry;
4049 	}
4050 
4051 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4052 		mapping->writeback_index = done_index;
4053 
4054 	btrfs_add_delayed_iput(inode);
4055 	return ret;
4056 }
4057 
4058 static void flush_epd_write_bio(struct extent_page_data *epd)
4059 {
4060 	if (epd->bio) {
4061 		int ret;
4062 
4063 		bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4064 				 epd->sync_io ? REQ_SYNC : 0);
4065 
4066 		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4067 		BUG_ON(ret < 0); /* -ENOMEM */
4068 		epd->bio = NULL;
4069 	}
4070 }
4071 
4072 static noinline void flush_write_bio(void *data)
4073 {
4074 	struct extent_page_data *epd = data;
4075 	flush_epd_write_bio(epd);
4076 }
4077 
4078 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4079 			  get_extent_t *get_extent,
4080 			  struct writeback_control *wbc)
4081 {
4082 	int ret;
4083 	struct extent_page_data epd = {
4084 		.bio = NULL,
4085 		.tree = tree,
4086 		.get_extent = get_extent,
4087 		.extent_locked = 0,
4088 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4089 		.bio_flags = 0,
4090 	};
4091 
4092 	ret = __extent_writepage(page, wbc, &epd);
4093 
4094 	flush_epd_write_bio(&epd);
4095 	return ret;
4096 }
4097 
4098 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4099 			      u64 start, u64 end, get_extent_t *get_extent,
4100 			      int mode)
4101 {
4102 	int ret = 0;
4103 	struct address_space *mapping = inode->i_mapping;
4104 	struct page *page;
4105 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4106 		PAGE_SHIFT;
4107 
4108 	struct extent_page_data epd = {
4109 		.bio = NULL,
4110 		.tree = tree,
4111 		.get_extent = get_extent,
4112 		.extent_locked = 1,
4113 		.sync_io = mode == WB_SYNC_ALL,
4114 		.bio_flags = 0,
4115 	};
4116 	struct writeback_control wbc_writepages = {
4117 		.sync_mode	= mode,
4118 		.nr_to_write	= nr_pages * 2,
4119 		.range_start	= start,
4120 		.range_end	= end + 1,
4121 	};
4122 
4123 	while (start <= end) {
4124 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4125 		if (clear_page_dirty_for_io(page))
4126 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4127 		else {
4128 			if (tree->ops && tree->ops->writepage_end_io_hook)
4129 				tree->ops->writepage_end_io_hook(page, start,
4130 						 start + PAGE_SIZE - 1,
4131 						 NULL, 1);
4132 			unlock_page(page);
4133 		}
4134 		put_page(page);
4135 		start += PAGE_SIZE;
4136 	}
4137 
4138 	flush_epd_write_bio(&epd);
4139 	return ret;
4140 }
4141 
4142 int extent_writepages(struct extent_io_tree *tree,
4143 		      struct address_space *mapping,
4144 		      get_extent_t *get_extent,
4145 		      struct writeback_control *wbc)
4146 {
4147 	int ret = 0;
4148 	struct extent_page_data epd = {
4149 		.bio = NULL,
4150 		.tree = tree,
4151 		.get_extent = get_extent,
4152 		.extent_locked = 0,
4153 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4154 		.bio_flags = 0,
4155 	};
4156 
4157 	ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4158 				       flush_write_bio);
4159 	flush_epd_write_bio(&epd);
4160 	return ret;
4161 }
4162 
4163 int extent_readpages(struct extent_io_tree *tree,
4164 		     struct address_space *mapping,
4165 		     struct list_head *pages, unsigned nr_pages,
4166 		     get_extent_t get_extent)
4167 {
4168 	struct bio *bio = NULL;
4169 	unsigned page_idx;
4170 	unsigned long bio_flags = 0;
4171 	struct page *pagepool[16];
4172 	struct page *page;
4173 	struct extent_map *em_cached = NULL;
4174 	int nr = 0;
4175 	u64 prev_em_start = (u64)-1;
4176 
4177 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4178 		page = list_entry(pages->prev, struct page, lru);
4179 
4180 		prefetchw(&page->flags);
4181 		list_del(&page->lru);
4182 		if (add_to_page_cache_lru(page, mapping,
4183 					page->index,
4184 					readahead_gfp_mask(mapping))) {
4185 			put_page(page);
4186 			continue;
4187 		}
4188 
4189 		pagepool[nr++] = page;
4190 		if (nr < ARRAY_SIZE(pagepool))
4191 			continue;
4192 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4193 				   &bio, 0, &bio_flags, &prev_em_start);
4194 		nr = 0;
4195 	}
4196 	if (nr)
4197 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4198 				   &bio, 0, &bio_flags, &prev_em_start);
4199 
4200 	if (em_cached)
4201 		free_extent_map(em_cached);
4202 
4203 	BUG_ON(!list_empty(pages));
4204 	if (bio)
4205 		return submit_one_bio(bio, 0, bio_flags);
4206 	return 0;
4207 }
4208 
4209 /*
4210  * basic invalidatepage code, this waits on any locked or writeback
4211  * ranges corresponding to the page, and then deletes any extent state
4212  * records from the tree
4213  */
4214 int extent_invalidatepage(struct extent_io_tree *tree,
4215 			  struct page *page, unsigned long offset)
4216 {
4217 	struct extent_state *cached_state = NULL;
4218 	u64 start = page_offset(page);
4219 	u64 end = start + PAGE_SIZE - 1;
4220 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4221 
4222 	start += ALIGN(offset, blocksize);
4223 	if (start > end)
4224 		return 0;
4225 
4226 	lock_extent_bits(tree, start, end, &cached_state);
4227 	wait_on_page_writeback(page);
4228 	clear_extent_bit(tree, start, end,
4229 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4230 			 EXTENT_DO_ACCOUNTING,
4231 			 1, 1, &cached_state, GFP_NOFS);
4232 	return 0;
4233 }
4234 
4235 /*
4236  * a helper for releasepage, this tests for areas of the page that
4237  * are locked or under IO and drops the related state bits if it is safe
4238  * to drop the page.
4239  */
4240 static int try_release_extent_state(struct extent_map_tree *map,
4241 				    struct extent_io_tree *tree,
4242 				    struct page *page, gfp_t mask)
4243 {
4244 	u64 start = page_offset(page);
4245 	u64 end = start + PAGE_SIZE - 1;
4246 	int ret = 1;
4247 
4248 	if (test_range_bit(tree, start, end,
4249 			   EXTENT_IOBITS, 0, NULL))
4250 		ret = 0;
4251 	else {
4252 		/*
4253 		 * at this point we can safely clear everything except the
4254 		 * locked bit and the nodatasum bit
4255 		 */
4256 		ret = clear_extent_bit(tree, start, end,
4257 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4258 				 0, 0, NULL, mask);
4259 
4260 		/* if clear_extent_bit failed for enomem reasons,
4261 		 * we can't allow the release to continue.
4262 		 */
4263 		if (ret < 0)
4264 			ret = 0;
4265 		else
4266 			ret = 1;
4267 	}
4268 	return ret;
4269 }
4270 
4271 /*
4272  * a helper for releasepage.  As long as there are no locked extents
4273  * in the range corresponding to the page, both state records and extent
4274  * map records are removed
4275  */
4276 int try_release_extent_mapping(struct extent_map_tree *map,
4277 			       struct extent_io_tree *tree, struct page *page,
4278 			       gfp_t mask)
4279 {
4280 	struct extent_map *em;
4281 	u64 start = page_offset(page);
4282 	u64 end = start + PAGE_SIZE - 1;
4283 
4284 	if (gfpflags_allow_blocking(mask) &&
4285 	    page->mapping->host->i_size > SZ_16M) {
4286 		u64 len;
4287 		while (start <= end) {
4288 			len = end - start + 1;
4289 			write_lock(&map->lock);
4290 			em = lookup_extent_mapping(map, start, len);
4291 			if (!em) {
4292 				write_unlock(&map->lock);
4293 				break;
4294 			}
4295 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4296 			    em->start != start) {
4297 				write_unlock(&map->lock);
4298 				free_extent_map(em);
4299 				break;
4300 			}
4301 			if (!test_range_bit(tree, em->start,
4302 					    extent_map_end(em) - 1,
4303 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4304 					    0, NULL)) {
4305 				remove_extent_mapping(map, em);
4306 				/* once for the rb tree */
4307 				free_extent_map(em);
4308 			}
4309 			start = extent_map_end(em);
4310 			write_unlock(&map->lock);
4311 
4312 			/* once for us */
4313 			free_extent_map(em);
4314 		}
4315 	}
4316 	return try_release_extent_state(map, tree, page, mask);
4317 }
4318 
4319 /*
4320  * helper function for fiemap, which doesn't want to see any holes.
4321  * This maps until we find something past 'last'
4322  */
4323 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4324 						u64 offset,
4325 						u64 last,
4326 						get_extent_t *get_extent)
4327 {
4328 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4329 	struct extent_map *em;
4330 	u64 len;
4331 
4332 	if (offset >= last)
4333 		return NULL;
4334 
4335 	while (1) {
4336 		len = last - offset;
4337 		if (len == 0)
4338 			break;
4339 		len = ALIGN(len, sectorsize);
4340 		em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4341 		if (IS_ERR_OR_NULL(em))
4342 			return em;
4343 
4344 		/* if this isn't a hole return it */
4345 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4346 		    em->block_start != EXTENT_MAP_HOLE) {
4347 			return em;
4348 		}
4349 
4350 		/* this is a hole, advance to the next extent */
4351 		offset = extent_map_end(em);
4352 		free_extent_map(em);
4353 		if (offset >= last)
4354 			break;
4355 	}
4356 	return NULL;
4357 }
4358 
4359 /*
4360  * To cache previous fiemap extent
4361  *
4362  * Will be used for merging fiemap extent
4363  */
4364 struct fiemap_cache {
4365 	u64 offset;
4366 	u64 phys;
4367 	u64 len;
4368 	u32 flags;
4369 	bool cached;
4370 };
4371 
4372 /*
4373  * Helper to submit fiemap extent.
4374  *
4375  * Will try to merge current fiemap extent specified by @offset, @phys,
4376  * @len and @flags with cached one.
4377  * And only when we fails to merge, cached one will be submitted as
4378  * fiemap extent.
4379  *
4380  * Return value is the same as fiemap_fill_next_extent().
4381  */
4382 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4383 				struct fiemap_cache *cache,
4384 				u64 offset, u64 phys, u64 len, u32 flags)
4385 {
4386 	int ret = 0;
4387 
4388 	if (!cache->cached)
4389 		goto assign;
4390 
4391 	/*
4392 	 * Sanity check, extent_fiemap() should have ensured that new
4393 	 * fiemap extent won't overlap with cahced one.
4394 	 * Not recoverable.
4395 	 *
4396 	 * NOTE: Physical address can overlap, due to compression
4397 	 */
4398 	if (cache->offset + cache->len > offset) {
4399 		WARN_ON(1);
4400 		return -EINVAL;
4401 	}
4402 
4403 	/*
4404 	 * Only merges fiemap extents if
4405 	 * 1) Their logical addresses are continuous
4406 	 *
4407 	 * 2) Their physical addresses are continuous
4408 	 *    So truly compressed (physical size smaller than logical size)
4409 	 *    extents won't get merged with each other
4410 	 *
4411 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4412 	 *    So regular extent won't get merged with prealloc extent
4413 	 */
4414 	if (cache->offset + cache->len  == offset &&
4415 	    cache->phys + cache->len == phys  &&
4416 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4417 			(flags & ~FIEMAP_EXTENT_LAST)) {
4418 		cache->len += len;
4419 		cache->flags |= flags;
4420 		goto try_submit_last;
4421 	}
4422 
4423 	/* Not mergeable, need to submit cached one */
4424 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4425 				      cache->len, cache->flags);
4426 	cache->cached = false;
4427 	if (ret)
4428 		return ret;
4429 assign:
4430 	cache->cached = true;
4431 	cache->offset = offset;
4432 	cache->phys = phys;
4433 	cache->len = len;
4434 	cache->flags = flags;
4435 try_submit_last:
4436 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4437 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4438 				cache->phys, cache->len, cache->flags);
4439 		cache->cached = false;
4440 	}
4441 	return ret;
4442 }
4443 
4444 /*
4445  * Emit last fiemap cache
4446  *
4447  * The last fiemap cache may still be cached in the following case:
4448  * 0		      4k		    8k
4449  * |<- Fiemap range ->|
4450  * |<------------  First extent ----------->|
4451  *
4452  * In this case, the first extent range will be cached but not emitted.
4453  * So we must emit it before ending extent_fiemap().
4454  */
4455 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4456 				  struct fiemap_extent_info *fieinfo,
4457 				  struct fiemap_cache *cache)
4458 {
4459 	int ret;
4460 
4461 	if (!cache->cached)
4462 		return 0;
4463 
4464 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4465 				      cache->len, cache->flags);
4466 	cache->cached = false;
4467 	if (ret > 0)
4468 		ret = 0;
4469 	return ret;
4470 }
4471 
4472 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4473 		__u64 start, __u64 len, get_extent_t *get_extent)
4474 {
4475 	int ret = 0;
4476 	u64 off = start;
4477 	u64 max = start + len;
4478 	u32 flags = 0;
4479 	u32 found_type;
4480 	u64 last;
4481 	u64 last_for_get_extent = 0;
4482 	u64 disko = 0;
4483 	u64 isize = i_size_read(inode);
4484 	struct btrfs_key found_key;
4485 	struct extent_map *em = NULL;
4486 	struct extent_state *cached_state = NULL;
4487 	struct btrfs_path *path;
4488 	struct btrfs_root *root = BTRFS_I(inode)->root;
4489 	struct fiemap_cache cache = { 0 };
4490 	int end = 0;
4491 	u64 em_start = 0;
4492 	u64 em_len = 0;
4493 	u64 em_end = 0;
4494 
4495 	if (len == 0)
4496 		return -EINVAL;
4497 
4498 	path = btrfs_alloc_path();
4499 	if (!path)
4500 		return -ENOMEM;
4501 	path->leave_spinning = 1;
4502 
4503 	start = round_down(start, btrfs_inode_sectorsize(inode));
4504 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4505 
4506 	/*
4507 	 * lookup the last file extent.  We're not using i_size here
4508 	 * because there might be preallocation past i_size
4509 	 */
4510 	ret = btrfs_lookup_file_extent(NULL, root, path,
4511 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4512 	if (ret < 0) {
4513 		btrfs_free_path(path);
4514 		return ret;
4515 	} else {
4516 		WARN_ON(!ret);
4517 		if (ret == 1)
4518 			ret = 0;
4519 	}
4520 
4521 	path->slots[0]--;
4522 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4523 	found_type = found_key.type;
4524 
4525 	/* No extents, but there might be delalloc bits */
4526 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4527 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4528 		/* have to trust i_size as the end */
4529 		last = (u64)-1;
4530 		last_for_get_extent = isize;
4531 	} else {
4532 		/*
4533 		 * remember the start of the last extent.  There are a
4534 		 * bunch of different factors that go into the length of the
4535 		 * extent, so its much less complex to remember where it started
4536 		 */
4537 		last = found_key.offset;
4538 		last_for_get_extent = last + 1;
4539 	}
4540 	btrfs_release_path(path);
4541 
4542 	/*
4543 	 * we might have some extents allocated but more delalloc past those
4544 	 * extents.  so, we trust isize unless the start of the last extent is
4545 	 * beyond isize
4546 	 */
4547 	if (last < isize) {
4548 		last = (u64)-1;
4549 		last_for_get_extent = isize;
4550 	}
4551 
4552 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4553 			 &cached_state);
4554 
4555 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4556 				   get_extent);
4557 	if (!em)
4558 		goto out;
4559 	if (IS_ERR(em)) {
4560 		ret = PTR_ERR(em);
4561 		goto out;
4562 	}
4563 
4564 	while (!end) {
4565 		u64 offset_in_extent = 0;
4566 
4567 		/* break if the extent we found is outside the range */
4568 		if (em->start >= max || extent_map_end(em) < off)
4569 			break;
4570 
4571 		/*
4572 		 * get_extent may return an extent that starts before our
4573 		 * requested range.  We have to make sure the ranges
4574 		 * we return to fiemap always move forward and don't
4575 		 * overlap, so adjust the offsets here
4576 		 */
4577 		em_start = max(em->start, off);
4578 
4579 		/*
4580 		 * record the offset from the start of the extent
4581 		 * for adjusting the disk offset below.  Only do this if the
4582 		 * extent isn't compressed since our in ram offset may be past
4583 		 * what we have actually allocated on disk.
4584 		 */
4585 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4586 			offset_in_extent = em_start - em->start;
4587 		em_end = extent_map_end(em);
4588 		em_len = em_end - em_start;
4589 		disko = 0;
4590 		flags = 0;
4591 
4592 		/*
4593 		 * bump off for our next call to get_extent
4594 		 */
4595 		off = extent_map_end(em);
4596 		if (off >= max)
4597 			end = 1;
4598 
4599 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4600 			end = 1;
4601 			flags |= FIEMAP_EXTENT_LAST;
4602 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4603 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4604 				  FIEMAP_EXTENT_NOT_ALIGNED);
4605 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4606 			flags |= (FIEMAP_EXTENT_DELALLOC |
4607 				  FIEMAP_EXTENT_UNKNOWN);
4608 		} else if (fieinfo->fi_extents_max) {
4609 			struct btrfs_trans_handle *trans;
4610 
4611 			u64 bytenr = em->block_start -
4612 				(em->start - em->orig_start);
4613 
4614 			disko = em->block_start + offset_in_extent;
4615 
4616 			/*
4617 			 * We need a trans handle to get delayed refs
4618 			 */
4619 			trans = btrfs_join_transaction(root);
4620 			/*
4621 			 * It's OK if we can't start a trans we can still check
4622 			 * from commit_root
4623 			 */
4624 			if (IS_ERR(trans))
4625 				trans = NULL;
4626 
4627 			/*
4628 			 * As btrfs supports shared space, this information
4629 			 * can be exported to userspace tools via
4630 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4631 			 * then we're just getting a count and we can skip the
4632 			 * lookup stuff.
4633 			 */
4634 			ret = btrfs_check_shared(trans, root->fs_info,
4635 					root->objectid,
4636 					btrfs_ino(BTRFS_I(inode)), bytenr);
4637 			if (trans)
4638 				btrfs_end_transaction(trans);
4639 			if (ret < 0)
4640 				goto out_free;
4641 			if (ret)
4642 				flags |= FIEMAP_EXTENT_SHARED;
4643 			ret = 0;
4644 		}
4645 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4646 			flags |= FIEMAP_EXTENT_ENCODED;
4647 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4648 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4649 
4650 		free_extent_map(em);
4651 		em = NULL;
4652 		if ((em_start >= last) || em_len == (u64)-1 ||
4653 		   (last == (u64)-1 && isize <= em_end)) {
4654 			flags |= FIEMAP_EXTENT_LAST;
4655 			end = 1;
4656 		}
4657 
4658 		/* now scan forward to see if this is really the last extent. */
4659 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4660 					   get_extent);
4661 		if (IS_ERR(em)) {
4662 			ret = PTR_ERR(em);
4663 			goto out;
4664 		}
4665 		if (!em) {
4666 			flags |= FIEMAP_EXTENT_LAST;
4667 			end = 1;
4668 		}
4669 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4670 					   em_len, flags);
4671 		if (ret) {
4672 			if (ret == 1)
4673 				ret = 0;
4674 			goto out_free;
4675 		}
4676 	}
4677 out_free:
4678 	if (!ret)
4679 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4680 	free_extent_map(em);
4681 out:
4682 	btrfs_free_path(path);
4683 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4684 			     &cached_state, GFP_NOFS);
4685 	return ret;
4686 }
4687 
4688 static void __free_extent_buffer(struct extent_buffer *eb)
4689 {
4690 	btrfs_leak_debug_del(&eb->leak_list);
4691 	kmem_cache_free(extent_buffer_cache, eb);
4692 }
4693 
4694 int extent_buffer_under_io(struct extent_buffer *eb)
4695 {
4696 	return (atomic_read(&eb->io_pages) ||
4697 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4698 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4699 }
4700 
4701 /*
4702  * Helper for releasing extent buffer page.
4703  */
4704 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4705 {
4706 	unsigned long index;
4707 	struct page *page;
4708 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4709 
4710 	BUG_ON(extent_buffer_under_io(eb));
4711 
4712 	index = num_extent_pages(eb->start, eb->len);
4713 	if (index == 0)
4714 		return;
4715 
4716 	do {
4717 		index--;
4718 		page = eb->pages[index];
4719 		if (!page)
4720 			continue;
4721 		if (mapped)
4722 			spin_lock(&page->mapping->private_lock);
4723 		/*
4724 		 * We do this since we'll remove the pages after we've
4725 		 * removed the eb from the radix tree, so we could race
4726 		 * and have this page now attached to the new eb.  So
4727 		 * only clear page_private if it's still connected to
4728 		 * this eb.
4729 		 */
4730 		if (PagePrivate(page) &&
4731 		    page->private == (unsigned long)eb) {
4732 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4733 			BUG_ON(PageDirty(page));
4734 			BUG_ON(PageWriteback(page));
4735 			/*
4736 			 * We need to make sure we haven't be attached
4737 			 * to a new eb.
4738 			 */
4739 			ClearPagePrivate(page);
4740 			set_page_private(page, 0);
4741 			/* One for the page private */
4742 			put_page(page);
4743 		}
4744 
4745 		if (mapped)
4746 			spin_unlock(&page->mapping->private_lock);
4747 
4748 		/* One for when we allocated the page */
4749 		put_page(page);
4750 	} while (index != 0);
4751 }
4752 
4753 /*
4754  * Helper for releasing the extent buffer.
4755  */
4756 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4757 {
4758 	btrfs_release_extent_buffer_page(eb);
4759 	__free_extent_buffer(eb);
4760 }
4761 
4762 static struct extent_buffer *
4763 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4764 		      unsigned long len)
4765 {
4766 	struct extent_buffer *eb = NULL;
4767 
4768 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4769 	eb->start = start;
4770 	eb->len = len;
4771 	eb->fs_info = fs_info;
4772 	eb->bflags = 0;
4773 	rwlock_init(&eb->lock);
4774 	atomic_set(&eb->write_locks, 0);
4775 	atomic_set(&eb->read_locks, 0);
4776 	atomic_set(&eb->blocking_readers, 0);
4777 	atomic_set(&eb->blocking_writers, 0);
4778 	atomic_set(&eb->spinning_readers, 0);
4779 	atomic_set(&eb->spinning_writers, 0);
4780 	eb->lock_nested = 0;
4781 	init_waitqueue_head(&eb->write_lock_wq);
4782 	init_waitqueue_head(&eb->read_lock_wq);
4783 
4784 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4785 
4786 	spin_lock_init(&eb->refs_lock);
4787 	atomic_set(&eb->refs, 1);
4788 	atomic_set(&eb->io_pages, 0);
4789 
4790 	/*
4791 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4792 	 */
4793 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4794 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4795 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4796 
4797 	return eb;
4798 }
4799 
4800 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4801 {
4802 	unsigned long i;
4803 	struct page *p;
4804 	struct extent_buffer *new;
4805 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4806 
4807 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4808 	if (new == NULL)
4809 		return NULL;
4810 
4811 	for (i = 0; i < num_pages; i++) {
4812 		p = alloc_page(GFP_NOFS);
4813 		if (!p) {
4814 			btrfs_release_extent_buffer(new);
4815 			return NULL;
4816 		}
4817 		attach_extent_buffer_page(new, p);
4818 		WARN_ON(PageDirty(p));
4819 		SetPageUptodate(p);
4820 		new->pages[i] = p;
4821 		copy_page(page_address(p), page_address(src->pages[i]));
4822 	}
4823 
4824 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4825 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4826 
4827 	return new;
4828 }
4829 
4830 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4831 						  u64 start, unsigned long len)
4832 {
4833 	struct extent_buffer *eb;
4834 	unsigned long num_pages;
4835 	unsigned long i;
4836 
4837 	num_pages = num_extent_pages(start, len);
4838 
4839 	eb = __alloc_extent_buffer(fs_info, start, len);
4840 	if (!eb)
4841 		return NULL;
4842 
4843 	for (i = 0; i < num_pages; i++) {
4844 		eb->pages[i] = alloc_page(GFP_NOFS);
4845 		if (!eb->pages[i])
4846 			goto err;
4847 	}
4848 	set_extent_buffer_uptodate(eb);
4849 	btrfs_set_header_nritems(eb, 0);
4850 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4851 
4852 	return eb;
4853 err:
4854 	for (; i > 0; i--)
4855 		__free_page(eb->pages[i - 1]);
4856 	__free_extent_buffer(eb);
4857 	return NULL;
4858 }
4859 
4860 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4861 						u64 start)
4862 {
4863 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4864 }
4865 
4866 static void check_buffer_tree_ref(struct extent_buffer *eb)
4867 {
4868 	int refs;
4869 	/* the ref bit is tricky.  We have to make sure it is set
4870 	 * if we have the buffer dirty.   Otherwise the
4871 	 * code to free a buffer can end up dropping a dirty
4872 	 * page
4873 	 *
4874 	 * Once the ref bit is set, it won't go away while the
4875 	 * buffer is dirty or in writeback, and it also won't
4876 	 * go away while we have the reference count on the
4877 	 * eb bumped.
4878 	 *
4879 	 * We can't just set the ref bit without bumping the
4880 	 * ref on the eb because free_extent_buffer might
4881 	 * see the ref bit and try to clear it.  If this happens
4882 	 * free_extent_buffer might end up dropping our original
4883 	 * ref by mistake and freeing the page before we are able
4884 	 * to add one more ref.
4885 	 *
4886 	 * So bump the ref count first, then set the bit.  If someone
4887 	 * beat us to it, drop the ref we added.
4888 	 */
4889 	refs = atomic_read(&eb->refs);
4890 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4891 		return;
4892 
4893 	spin_lock(&eb->refs_lock);
4894 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4895 		atomic_inc(&eb->refs);
4896 	spin_unlock(&eb->refs_lock);
4897 }
4898 
4899 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4900 		struct page *accessed)
4901 {
4902 	unsigned long num_pages, i;
4903 
4904 	check_buffer_tree_ref(eb);
4905 
4906 	num_pages = num_extent_pages(eb->start, eb->len);
4907 	for (i = 0; i < num_pages; i++) {
4908 		struct page *p = eb->pages[i];
4909 
4910 		if (p != accessed)
4911 			mark_page_accessed(p);
4912 	}
4913 }
4914 
4915 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4916 					 u64 start)
4917 {
4918 	struct extent_buffer *eb;
4919 
4920 	rcu_read_lock();
4921 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4922 			       start >> PAGE_SHIFT);
4923 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4924 		rcu_read_unlock();
4925 		/*
4926 		 * Lock our eb's refs_lock to avoid races with
4927 		 * free_extent_buffer. When we get our eb it might be flagged
4928 		 * with EXTENT_BUFFER_STALE and another task running
4929 		 * free_extent_buffer might have seen that flag set,
4930 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4931 		 * writeback flags not set) and it's still in the tree (flag
4932 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4933 		 * of decrementing the extent buffer's reference count twice.
4934 		 * So here we could race and increment the eb's reference count,
4935 		 * clear its stale flag, mark it as dirty and drop our reference
4936 		 * before the other task finishes executing free_extent_buffer,
4937 		 * which would later result in an attempt to free an extent
4938 		 * buffer that is dirty.
4939 		 */
4940 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4941 			spin_lock(&eb->refs_lock);
4942 			spin_unlock(&eb->refs_lock);
4943 		}
4944 		mark_extent_buffer_accessed(eb, NULL);
4945 		return eb;
4946 	}
4947 	rcu_read_unlock();
4948 
4949 	return NULL;
4950 }
4951 
4952 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4953 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4954 					u64 start)
4955 {
4956 	struct extent_buffer *eb, *exists = NULL;
4957 	int ret;
4958 
4959 	eb = find_extent_buffer(fs_info, start);
4960 	if (eb)
4961 		return eb;
4962 	eb = alloc_dummy_extent_buffer(fs_info, start);
4963 	if (!eb)
4964 		return NULL;
4965 	eb->fs_info = fs_info;
4966 again:
4967 	ret = radix_tree_preload(GFP_NOFS);
4968 	if (ret)
4969 		goto free_eb;
4970 	spin_lock(&fs_info->buffer_lock);
4971 	ret = radix_tree_insert(&fs_info->buffer_radix,
4972 				start >> PAGE_SHIFT, eb);
4973 	spin_unlock(&fs_info->buffer_lock);
4974 	radix_tree_preload_end();
4975 	if (ret == -EEXIST) {
4976 		exists = find_extent_buffer(fs_info, start);
4977 		if (exists)
4978 			goto free_eb;
4979 		else
4980 			goto again;
4981 	}
4982 	check_buffer_tree_ref(eb);
4983 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4984 
4985 	/*
4986 	 * We will free dummy extent buffer's if they come into
4987 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4988 	 * want the buffers to stay in memory until we're done with them, so
4989 	 * bump the ref count again.
4990 	 */
4991 	atomic_inc(&eb->refs);
4992 	return eb;
4993 free_eb:
4994 	btrfs_release_extent_buffer(eb);
4995 	return exists;
4996 }
4997 #endif
4998 
4999 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5000 					  u64 start)
5001 {
5002 	unsigned long len = fs_info->nodesize;
5003 	unsigned long num_pages = num_extent_pages(start, len);
5004 	unsigned long i;
5005 	unsigned long index = start >> PAGE_SHIFT;
5006 	struct extent_buffer *eb;
5007 	struct extent_buffer *exists = NULL;
5008 	struct page *p;
5009 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5010 	int uptodate = 1;
5011 	int ret;
5012 
5013 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5014 		btrfs_err(fs_info, "bad tree block start %llu", start);
5015 		return ERR_PTR(-EINVAL);
5016 	}
5017 
5018 	eb = find_extent_buffer(fs_info, start);
5019 	if (eb)
5020 		return eb;
5021 
5022 	eb = __alloc_extent_buffer(fs_info, start, len);
5023 	if (!eb)
5024 		return ERR_PTR(-ENOMEM);
5025 
5026 	for (i = 0; i < num_pages; i++, index++) {
5027 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5028 		if (!p) {
5029 			exists = ERR_PTR(-ENOMEM);
5030 			goto free_eb;
5031 		}
5032 
5033 		spin_lock(&mapping->private_lock);
5034 		if (PagePrivate(p)) {
5035 			/*
5036 			 * We could have already allocated an eb for this page
5037 			 * and attached one so lets see if we can get a ref on
5038 			 * the existing eb, and if we can we know it's good and
5039 			 * we can just return that one, else we know we can just
5040 			 * overwrite page->private.
5041 			 */
5042 			exists = (struct extent_buffer *)p->private;
5043 			if (atomic_inc_not_zero(&exists->refs)) {
5044 				spin_unlock(&mapping->private_lock);
5045 				unlock_page(p);
5046 				put_page(p);
5047 				mark_extent_buffer_accessed(exists, p);
5048 				goto free_eb;
5049 			}
5050 			exists = NULL;
5051 
5052 			/*
5053 			 * Do this so attach doesn't complain and we need to
5054 			 * drop the ref the old guy had.
5055 			 */
5056 			ClearPagePrivate(p);
5057 			WARN_ON(PageDirty(p));
5058 			put_page(p);
5059 		}
5060 		attach_extent_buffer_page(eb, p);
5061 		spin_unlock(&mapping->private_lock);
5062 		WARN_ON(PageDirty(p));
5063 		eb->pages[i] = p;
5064 		if (!PageUptodate(p))
5065 			uptodate = 0;
5066 
5067 		/*
5068 		 * see below about how we avoid a nasty race with release page
5069 		 * and why we unlock later
5070 		 */
5071 	}
5072 	if (uptodate)
5073 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5074 again:
5075 	ret = radix_tree_preload(GFP_NOFS);
5076 	if (ret) {
5077 		exists = ERR_PTR(ret);
5078 		goto free_eb;
5079 	}
5080 
5081 	spin_lock(&fs_info->buffer_lock);
5082 	ret = radix_tree_insert(&fs_info->buffer_radix,
5083 				start >> PAGE_SHIFT, eb);
5084 	spin_unlock(&fs_info->buffer_lock);
5085 	radix_tree_preload_end();
5086 	if (ret == -EEXIST) {
5087 		exists = find_extent_buffer(fs_info, start);
5088 		if (exists)
5089 			goto free_eb;
5090 		else
5091 			goto again;
5092 	}
5093 	/* add one reference for the tree */
5094 	check_buffer_tree_ref(eb);
5095 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5096 
5097 	/*
5098 	 * there is a race where release page may have
5099 	 * tried to find this extent buffer in the radix
5100 	 * but failed.  It will tell the VM it is safe to
5101 	 * reclaim the, and it will clear the page private bit.
5102 	 * We must make sure to set the page private bit properly
5103 	 * after the extent buffer is in the radix tree so
5104 	 * it doesn't get lost
5105 	 */
5106 	SetPageChecked(eb->pages[0]);
5107 	for (i = 1; i < num_pages; i++) {
5108 		p = eb->pages[i];
5109 		ClearPageChecked(p);
5110 		unlock_page(p);
5111 	}
5112 	unlock_page(eb->pages[0]);
5113 	return eb;
5114 
5115 free_eb:
5116 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5117 	for (i = 0; i < num_pages; i++) {
5118 		if (eb->pages[i])
5119 			unlock_page(eb->pages[i]);
5120 	}
5121 
5122 	btrfs_release_extent_buffer(eb);
5123 	return exists;
5124 }
5125 
5126 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5127 {
5128 	struct extent_buffer *eb =
5129 			container_of(head, struct extent_buffer, rcu_head);
5130 
5131 	__free_extent_buffer(eb);
5132 }
5133 
5134 /* Expects to have eb->eb_lock already held */
5135 static int release_extent_buffer(struct extent_buffer *eb)
5136 {
5137 	WARN_ON(atomic_read(&eb->refs) == 0);
5138 	if (atomic_dec_and_test(&eb->refs)) {
5139 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5140 			struct btrfs_fs_info *fs_info = eb->fs_info;
5141 
5142 			spin_unlock(&eb->refs_lock);
5143 
5144 			spin_lock(&fs_info->buffer_lock);
5145 			radix_tree_delete(&fs_info->buffer_radix,
5146 					  eb->start >> PAGE_SHIFT);
5147 			spin_unlock(&fs_info->buffer_lock);
5148 		} else {
5149 			spin_unlock(&eb->refs_lock);
5150 		}
5151 
5152 		/* Should be safe to release our pages at this point */
5153 		btrfs_release_extent_buffer_page(eb);
5154 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5155 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5156 			__free_extent_buffer(eb);
5157 			return 1;
5158 		}
5159 #endif
5160 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5161 		return 1;
5162 	}
5163 	spin_unlock(&eb->refs_lock);
5164 
5165 	return 0;
5166 }
5167 
5168 void free_extent_buffer(struct extent_buffer *eb)
5169 {
5170 	int refs;
5171 	int old;
5172 	if (!eb)
5173 		return;
5174 
5175 	while (1) {
5176 		refs = atomic_read(&eb->refs);
5177 		if (refs <= 3)
5178 			break;
5179 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5180 		if (old == refs)
5181 			return;
5182 	}
5183 
5184 	spin_lock(&eb->refs_lock);
5185 	if (atomic_read(&eb->refs) == 2 &&
5186 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5187 		atomic_dec(&eb->refs);
5188 
5189 	if (atomic_read(&eb->refs) == 2 &&
5190 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5191 	    !extent_buffer_under_io(eb) &&
5192 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5193 		atomic_dec(&eb->refs);
5194 
5195 	/*
5196 	 * I know this is terrible, but it's temporary until we stop tracking
5197 	 * the uptodate bits and such for the extent buffers.
5198 	 */
5199 	release_extent_buffer(eb);
5200 }
5201 
5202 void free_extent_buffer_stale(struct extent_buffer *eb)
5203 {
5204 	if (!eb)
5205 		return;
5206 
5207 	spin_lock(&eb->refs_lock);
5208 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5209 
5210 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5211 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5212 		atomic_dec(&eb->refs);
5213 	release_extent_buffer(eb);
5214 }
5215 
5216 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5217 {
5218 	unsigned long i;
5219 	unsigned long num_pages;
5220 	struct page *page;
5221 
5222 	num_pages = num_extent_pages(eb->start, eb->len);
5223 
5224 	for (i = 0; i < num_pages; i++) {
5225 		page = eb->pages[i];
5226 		if (!PageDirty(page))
5227 			continue;
5228 
5229 		lock_page(page);
5230 		WARN_ON(!PagePrivate(page));
5231 
5232 		clear_page_dirty_for_io(page);
5233 		spin_lock_irq(&page->mapping->tree_lock);
5234 		if (!PageDirty(page)) {
5235 			radix_tree_tag_clear(&page->mapping->page_tree,
5236 						page_index(page),
5237 						PAGECACHE_TAG_DIRTY);
5238 		}
5239 		spin_unlock_irq(&page->mapping->tree_lock);
5240 		ClearPageError(page);
5241 		unlock_page(page);
5242 	}
5243 	WARN_ON(atomic_read(&eb->refs) == 0);
5244 }
5245 
5246 int set_extent_buffer_dirty(struct extent_buffer *eb)
5247 {
5248 	unsigned long i;
5249 	unsigned long num_pages;
5250 	int was_dirty = 0;
5251 
5252 	check_buffer_tree_ref(eb);
5253 
5254 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5255 
5256 	num_pages = num_extent_pages(eb->start, eb->len);
5257 	WARN_ON(atomic_read(&eb->refs) == 0);
5258 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5259 
5260 	for (i = 0; i < num_pages; i++)
5261 		set_page_dirty(eb->pages[i]);
5262 	return was_dirty;
5263 }
5264 
5265 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5266 {
5267 	unsigned long i;
5268 	struct page *page;
5269 	unsigned long num_pages;
5270 
5271 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5272 	num_pages = num_extent_pages(eb->start, eb->len);
5273 	for (i = 0; i < num_pages; i++) {
5274 		page = eb->pages[i];
5275 		if (page)
5276 			ClearPageUptodate(page);
5277 	}
5278 }
5279 
5280 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5281 {
5282 	unsigned long i;
5283 	struct page *page;
5284 	unsigned long num_pages;
5285 
5286 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5287 	num_pages = num_extent_pages(eb->start, eb->len);
5288 	for (i = 0; i < num_pages; i++) {
5289 		page = eb->pages[i];
5290 		SetPageUptodate(page);
5291 	}
5292 }
5293 
5294 int extent_buffer_uptodate(struct extent_buffer *eb)
5295 {
5296 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5297 }
5298 
5299 int read_extent_buffer_pages(struct extent_io_tree *tree,
5300 			     struct extent_buffer *eb, int wait,
5301 			     get_extent_t *get_extent, int mirror_num)
5302 {
5303 	unsigned long i;
5304 	struct page *page;
5305 	int err;
5306 	int ret = 0;
5307 	int locked_pages = 0;
5308 	int all_uptodate = 1;
5309 	unsigned long num_pages;
5310 	unsigned long num_reads = 0;
5311 	struct bio *bio = NULL;
5312 	unsigned long bio_flags = 0;
5313 
5314 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5315 		return 0;
5316 
5317 	num_pages = num_extent_pages(eb->start, eb->len);
5318 	for (i = 0; i < num_pages; i++) {
5319 		page = eb->pages[i];
5320 		if (wait == WAIT_NONE) {
5321 			if (!trylock_page(page))
5322 				goto unlock_exit;
5323 		} else {
5324 			lock_page(page);
5325 		}
5326 		locked_pages++;
5327 	}
5328 	/*
5329 	 * We need to firstly lock all pages to make sure that
5330 	 * the uptodate bit of our pages won't be affected by
5331 	 * clear_extent_buffer_uptodate().
5332 	 */
5333 	for (i = 0; i < num_pages; i++) {
5334 		page = eb->pages[i];
5335 		if (!PageUptodate(page)) {
5336 			num_reads++;
5337 			all_uptodate = 0;
5338 		}
5339 	}
5340 
5341 	if (all_uptodate) {
5342 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5343 		goto unlock_exit;
5344 	}
5345 
5346 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5347 	eb->read_mirror = 0;
5348 	atomic_set(&eb->io_pages, num_reads);
5349 	for (i = 0; i < num_pages; i++) {
5350 		page = eb->pages[i];
5351 
5352 		if (!PageUptodate(page)) {
5353 			if (ret) {
5354 				atomic_dec(&eb->io_pages);
5355 				unlock_page(page);
5356 				continue;
5357 			}
5358 
5359 			ClearPageError(page);
5360 			err = __extent_read_full_page(tree, page,
5361 						      get_extent, &bio,
5362 						      mirror_num, &bio_flags,
5363 						      REQ_META);
5364 			if (err) {
5365 				ret = err;
5366 				/*
5367 				 * We use &bio in above __extent_read_full_page,
5368 				 * so we ensure that if it returns error, the
5369 				 * current page fails to add itself to bio and
5370 				 * it's been unlocked.
5371 				 *
5372 				 * We must dec io_pages by ourselves.
5373 				 */
5374 				atomic_dec(&eb->io_pages);
5375 			}
5376 		} else {
5377 			unlock_page(page);
5378 		}
5379 	}
5380 
5381 	if (bio) {
5382 		err = submit_one_bio(bio, mirror_num, bio_flags);
5383 		if (err)
5384 			return err;
5385 	}
5386 
5387 	if (ret || wait != WAIT_COMPLETE)
5388 		return ret;
5389 
5390 	for (i = 0; i < num_pages; i++) {
5391 		page = eb->pages[i];
5392 		wait_on_page_locked(page);
5393 		if (!PageUptodate(page))
5394 			ret = -EIO;
5395 	}
5396 
5397 	return ret;
5398 
5399 unlock_exit:
5400 	while (locked_pages > 0) {
5401 		locked_pages--;
5402 		page = eb->pages[locked_pages];
5403 		unlock_page(page);
5404 	}
5405 	return ret;
5406 }
5407 
5408 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5409 			unsigned long start,
5410 			unsigned long len)
5411 {
5412 	size_t cur;
5413 	size_t offset;
5414 	struct page *page;
5415 	char *kaddr;
5416 	char *dst = (char *)dstv;
5417 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5418 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5419 
5420 	WARN_ON(start > eb->len);
5421 	WARN_ON(start + len > eb->start + eb->len);
5422 
5423 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5424 
5425 	while (len > 0) {
5426 		page = eb->pages[i];
5427 
5428 		cur = min(len, (PAGE_SIZE - offset));
5429 		kaddr = page_address(page);
5430 		memcpy(dst, kaddr + offset, cur);
5431 
5432 		dst += cur;
5433 		len -= cur;
5434 		offset = 0;
5435 		i++;
5436 	}
5437 }
5438 
5439 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5440 			unsigned long start,
5441 			unsigned long len)
5442 {
5443 	size_t cur;
5444 	size_t offset;
5445 	struct page *page;
5446 	char *kaddr;
5447 	char __user *dst = (char __user *)dstv;
5448 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5449 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5450 	int ret = 0;
5451 
5452 	WARN_ON(start > eb->len);
5453 	WARN_ON(start + len > eb->start + eb->len);
5454 
5455 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5456 
5457 	while (len > 0) {
5458 		page = eb->pages[i];
5459 
5460 		cur = min(len, (PAGE_SIZE - offset));
5461 		kaddr = page_address(page);
5462 		if (copy_to_user(dst, kaddr + offset, cur)) {
5463 			ret = -EFAULT;
5464 			break;
5465 		}
5466 
5467 		dst += cur;
5468 		len -= cur;
5469 		offset = 0;
5470 		i++;
5471 	}
5472 
5473 	return ret;
5474 }
5475 
5476 /*
5477  * return 0 if the item is found within a page.
5478  * return 1 if the item spans two pages.
5479  * return -EINVAL otherwise.
5480  */
5481 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5482 			       unsigned long min_len, char **map,
5483 			       unsigned long *map_start,
5484 			       unsigned long *map_len)
5485 {
5486 	size_t offset = start & (PAGE_SIZE - 1);
5487 	char *kaddr;
5488 	struct page *p;
5489 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5490 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5491 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5492 		PAGE_SHIFT;
5493 
5494 	if (i != end_i)
5495 		return 1;
5496 
5497 	if (i == 0) {
5498 		offset = start_offset;
5499 		*map_start = 0;
5500 	} else {
5501 		offset = 0;
5502 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5503 	}
5504 
5505 	if (start + min_len > eb->len) {
5506 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5507 		       eb->start, eb->len, start, min_len);
5508 		return -EINVAL;
5509 	}
5510 
5511 	p = eb->pages[i];
5512 	kaddr = page_address(p);
5513 	*map = kaddr + offset;
5514 	*map_len = PAGE_SIZE - offset;
5515 	return 0;
5516 }
5517 
5518 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5519 			  unsigned long start,
5520 			  unsigned long len)
5521 {
5522 	size_t cur;
5523 	size_t offset;
5524 	struct page *page;
5525 	char *kaddr;
5526 	char *ptr = (char *)ptrv;
5527 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5528 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5529 	int ret = 0;
5530 
5531 	WARN_ON(start > eb->len);
5532 	WARN_ON(start + len > eb->start + eb->len);
5533 
5534 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5535 
5536 	while (len > 0) {
5537 		page = eb->pages[i];
5538 
5539 		cur = min(len, (PAGE_SIZE - offset));
5540 
5541 		kaddr = page_address(page);
5542 		ret = memcmp(ptr, kaddr + offset, cur);
5543 		if (ret)
5544 			break;
5545 
5546 		ptr += cur;
5547 		len -= cur;
5548 		offset = 0;
5549 		i++;
5550 	}
5551 	return ret;
5552 }
5553 
5554 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5555 		const void *srcv)
5556 {
5557 	char *kaddr;
5558 
5559 	WARN_ON(!PageUptodate(eb->pages[0]));
5560 	kaddr = page_address(eb->pages[0]);
5561 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5562 			BTRFS_FSID_SIZE);
5563 }
5564 
5565 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5566 {
5567 	char *kaddr;
5568 
5569 	WARN_ON(!PageUptodate(eb->pages[0]));
5570 	kaddr = page_address(eb->pages[0]);
5571 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5572 			BTRFS_FSID_SIZE);
5573 }
5574 
5575 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5576 			 unsigned long start, unsigned long len)
5577 {
5578 	size_t cur;
5579 	size_t offset;
5580 	struct page *page;
5581 	char *kaddr;
5582 	char *src = (char *)srcv;
5583 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5584 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5585 
5586 	WARN_ON(start > eb->len);
5587 	WARN_ON(start + len > eb->start + eb->len);
5588 
5589 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5590 
5591 	while (len > 0) {
5592 		page = eb->pages[i];
5593 		WARN_ON(!PageUptodate(page));
5594 
5595 		cur = min(len, PAGE_SIZE - offset);
5596 		kaddr = page_address(page);
5597 		memcpy(kaddr + offset, src, cur);
5598 
5599 		src += cur;
5600 		len -= cur;
5601 		offset = 0;
5602 		i++;
5603 	}
5604 }
5605 
5606 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5607 		unsigned long len)
5608 {
5609 	size_t cur;
5610 	size_t offset;
5611 	struct page *page;
5612 	char *kaddr;
5613 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5614 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5615 
5616 	WARN_ON(start > eb->len);
5617 	WARN_ON(start + len > eb->start + eb->len);
5618 
5619 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5620 
5621 	while (len > 0) {
5622 		page = eb->pages[i];
5623 		WARN_ON(!PageUptodate(page));
5624 
5625 		cur = min(len, PAGE_SIZE - offset);
5626 		kaddr = page_address(page);
5627 		memset(kaddr + offset, 0, cur);
5628 
5629 		len -= cur;
5630 		offset = 0;
5631 		i++;
5632 	}
5633 }
5634 
5635 void copy_extent_buffer_full(struct extent_buffer *dst,
5636 			     struct extent_buffer *src)
5637 {
5638 	int i;
5639 	unsigned num_pages;
5640 
5641 	ASSERT(dst->len == src->len);
5642 
5643 	num_pages = num_extent_pages(dst->start, dst->len);
5644 	for (i = 0; i < num_pages; i++)
5645 		copy_page(page_address(dst->pages[i]),
5646 				page_address(src->pages[i]));
5647 }
5648 
5649 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5650 			unsigned long dst_offset, unsigned long src_offset,
5651 			unsigned long len)
5652 {
5653 	u64 dst_len = dst->len;
5654 	size_t cur;
5655 	size_t offset;
5656 	struct page *page;
5657 	char *kaddr;
5658 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5659 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5660 
5661 	WARN_ON(src->len != dst_len);
5662 
5663 	offset = (start_offset + dst_offset) &
5664 		(PAGE_SIZE - 1);
5665 
5666 	while (len > 0) {
5667 		page = dst->pages[i];
5668 		WARN_ON(!PageUptodate(page));
5669 
5670 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5671 
5672 		kaddr = page_address(page);
5673 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5674 
5675 		src_offset += cur;
5676 		len -= cur;
5677 		offset = 0;
5678 		i++;
5679 	}
5680 }
5681 
5682 void le_bitmap_set(u8 *map, unsigned int start, int len)
5683 {
5684 	u8 *p = map + BIT_BYTE(start);
5685 	const unsigned int size = start + len;
5686 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5687 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5688 
5689 	while (len - bits_to_set >= 0) {
5690 		*p |= mask_to_set;
5691 		len -= bits_to_set;
5692 		bits_to_set = BITS_PER_BYTE;
5693 		mask_to_set = ~0;
5694 		p++;
5695 	}
5696 	if (len) {
5697 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5698 		*p |= mask_to_set;
5699 	}
5700 }
5701 
5702 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5703 {
5704 	u8 *p = map + BIT_BYTE(start);
5705 	const unsigned int size = start + len;
5706 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5707 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5708 
5709 	while (len - bits_to_clear >= 0) {
5710 		*p &= ~mask_to_clear;
5711 		len -= bits_to_clear;
5712 		bits_to_clear = BITS_PER_BYTE;
5713 		mask_to_clear = ~0;
5714 		p++;
5715 	}
5716 	if (len) {
5717 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5718 		*p &= ~mask_to_clear;
5719 	}
5720 }
5721 
5722 /*
5723  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5724  * given bit number
5725  * @eb: the extent buffer
5726  * @start: offset of the bitmap item in the extent buffer
5727  * @nr: bit number
5728  * @page_index: return index of the page in the extent buffer that contains the
5729  * given bit number
5730  * @page_offset: return offset into the page given by page_index
5731  *
5732  * This helper hides the ugliness of finding the byte in an extent buffer which
5733  * contains a given bit.
5734  */
5735 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5736 				    unsigned long start, unsigned long nr,
5737 				    unsigned long *page_index,
5738 				    size_t *page_offset)
5739 {
5740 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5741 	size_t byte_offset = BIT_BYTE(nr);
5742 	size_t offset;
5743 
5744 	/*
5745 	 * The byte we want is the offset of the extent buffer + the offset of
5746 	 * the bitmap item in the extent buffer + the offset of the byte in the
5747 	 * bitmap item.
5748 	 */
5749 	offset = start_offset + start + byte_offset;
5750 
5751 	*page_index = offset >> PAGE_SHIFT;
5752 	*page_offset = offset & (PAGE_SIZE - 1);
5753 }
5754 
5755 /**
5756  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5757  * @eb: the extent buffer
5758  * @start: offset of the bitmap item in the extent buffer
5759  * @nr: bit number to test
5760  */
5761 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5762 			   unsigned long nr)
5763 {
5764 	u8 *kaddr;
5765 	struct page *page;
5766 	unsigned long i;
5767 	size_t offset;
5768 
5769 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5770 	page = eb->pages[i];
5771 	WARN_ON(!PageUptodate(page));
5772 	kaddr = page_address(page);
5773 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5774 }
5775 
5776 /**
5777  * extent_buffer_bitmap_set - set an area of a bitmap
5778  * @eb: the extent buffer
5779  * @start: offset of the bitmap item in the extent buffer
5780  * @pos: bit number of the first bit
5781  * @len: number of bits to set
5782  */
5783 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5784 			      unsigned long pos, unsigned long len)
5785 {
5786 	u8 *kaddr;
5787 	struct page *page;
5788 	unsigned long i;
5789 	size_t offset;
5790 	const unsigned int size = pos + len;
5791 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5792 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5793 
5794 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5795 	page = eb->pages[i];
5796 	WARN_ON(!PageUptodate(page));
5797 	kaddr = page_address(page);
5798 
5799 	while (len >= bits_to_set) {
5800 		kaddr[offset] |= mask_to_set;
5801 		len -= bits_to_set;
5802 		bits_to_set = BITS_PER_BYTE;
5803 		mask_to_set = ~0;
5804 		if (++offset >= PAGE_SIZE && len > 0) {
5805 			offset = 0;
5806 			page = eb->pages[++i];
5807 			WARN_ON(!PageUptodate(page));
5808 			kaddr = page_address(page);
5809 		}
5810 	}
5811 	if (len) {
5812 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5813 		kaddr[offset] |= mask_to_set;
5814 	}
5815 }
5816 
5817 
5818 /**
5819  * extent_buffer_bitmap_clear - clear an area of a bitmap
5820  * @eb: the extent buffer
5821  * @start: offset of the bitmap item in the extent buffer
5822  * @pos: bit number of the first bit
5823  * @len: number of bits to clear
5824  */
5825 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5826 				unsigned long pos, unsigned long len)
5827 {
5828 	u8 *kaddr;
5829 	struct page *page;
5830 	unsigned long i;
5831 	size_t offset;
5832 	const unsigned int size = pos + len;
5833 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5834 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5835 
5836 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5837 	page = eb->pages[i];
5838 	WARN_ON(!PageUptodate(page));
5839 	kaddr = page_address(page);
5840 
5841 	while (len >= bits_to_clear) {
5842 		kaddr[offset] &= ~mask_to_clear;
5843 		len -= bits_to_clear;
5844 		bits_to_clear = BITS_PER_BYTE;
5845 		mask_to_clear = ~0;
5846 		if (++offset >= PAGE_SIZE && len > 0) {
5847 			offset = 0;
5848 			page = eb->pages[++i];
5849 			WARN_ON(!PageUptodate(page));
5850 			kaddr = page_address(page);
5851 		}
5852 	}
5853 	if (len) {
5854 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5855 		kaddr[offset] &= ~mask_to_clear;
5856 	}
5857 }
5858 
5859 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5860 {
5861 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5862 	return distance < len;
5863 }
5864 
5865 static void copy_pages(struct page *dst_page, struct page *src_page,
5866 		       unsigned long dst_off, unsigned long src_off,
5867 		       unsigned long len)
5868 {
5869 	char *dst_kaddr = page_address(dst_page);
5870 	char *src_kaddr;
5871 	int must_memmove = 0;
5872 
5873 	if (dst_page != src_page) {
5874 		src_kaddr = page_address(src_page);
5875 	} else {
5876 		src_kaddr = dst_kaddr;
5877 		if (areas_overlap(src_off, dst_off, len))
5878 			must_memmove = 1;
5879 	}
5880 
5881 	if (must_memmove)
5882 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5883 	else
5884 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5885 }
5886 
5887 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5888 			   unsigned long src_offset, unsigned long len)
5889 {
5890 	struct btrfs_fs_info *fs_info = dst->fs_info;
5891 	size_t cur;
5892 	size_t dst_off_in_page;
5893 	size_t src_off_in_page;
5894 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5895 	unsigned long dst_i;
5896 	unsigned long src_i;
5897 
5898 	if (src_offset + len > dst->len) {
5899 		btrfs_err(fs_info,
5900 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5901 			 src_offset, len, dst->len);
5902 		BUG_ON(1);
5903 	}
5904 	if (dst_offset + len > dst->len) {
5905 		btrfs_err(fs_info,
5906 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5907 			 dst_offset, len, dst->len);
5908 		BUG_ON(1);
5909 	}
5910 
5911 	while (len > 0) {
5912 		dst_off_in_page = (start_offset + dst_offset) &
5913 			(PAGE_SIZE - 1);
5914 		src_off_in_page = (start_offset + src_offset) &
5915 			(PAGE_SIZE - 1);
5916 
5917 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5918 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5919 
5920 		cur = min(len, (unsigned long)(PAGE_SIZE -
5921 					       src_off_in_page));
5922 		cur = min_t(unsigned long, cur,
5923 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5924 
5925 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5926 			   dst_off_in_page, src_off_in_page, cur);
5927 
5928 		src_offset += cur;
5929 		dst_offset += cur;
5930 		len -= cur;
5931 	}
5932 }
5933 
5934 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5935 			   unsigned long src_offset, unsigned long len)
5936 {
5937 	struct btrfs_fs_info *fs_info = dst->fs_info;
5938 	size_t cur;
5939 	size_t dst_off_in_page;
5940 	size_t src_off_in_page;
5941 	unsigned long dst_end = dst_offset + len - 1;
5942 	unsigned long src_end = src_offset + len - 1;
5943 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5944 	unsigned long dst_i;
5945 	unsigned long src_i;
5946 
5947 	if (src_offset + len > dst->len) {
5948 		btrfs_err(fs_info,
5949 			  "memmove bogus src_offset %lu move len %lu len %lu",
5950 			  src_offset, len, dst->len);
5951 		BUG_ON(1);
5952 	}
5953 	if (dst_offset + len > dst->len) {
5954 		btrfs_err(fs_info,
5955 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5956 			  dst_offset, len, dst->len);
5957 		BUG_ON(1);
5958 	}
5959 	if (dst_offset < src_offset) {
5960 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5961 		return;
5962 	}
5963 	while (len > 0) {
5964 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5965 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5966 
5967 		dst_off_in_page = (start_offset + dst_end) &
5968 			(PAGE_SIZE - 1);
5969 		src_off_in_page = (start_offset + src_end) &
5970 			(PAGE_SIZE - 1);
5971 
5972 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5973 		cur = min(cur, dst_off_in_page + 1);
5974 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5975 			   dst_off_in_page - cur + 1,
5976 			   src_off_in_page - cur + 1, cur);
5977 
5978 		dst_end -= cur;
5979 		src_end -= cur;
5980 		len -= cur;
5981 	}
5982 }
5983 
5984 int try_release_extent_buffer(struct page *page)
5985 {
5986 	struct extent_buffer *eb;
5987 
5988 	/*
5989 	 * We need to make sure nobody is attaching this page to an eb right
5990 	 * now.
5991 	 */
5992 	spin_lock(&page->mapping->private_lock);
5993 	if (!PagePrivate(page)) {
5994 		spin_unlock(&page->mapping->private_lock);
5995 		return 1;
5996 	}
5997 
5998 	eb = (struct extent_buffer *)page->private;
5999 	BUG_ON(!eb);
6000 
6001 	/*
6002 	 * This is a little awful but should be ok, we need to make sure that
6003 	 * the eb doesn't disappear out from under us while we're looking at
6004 	 * this page.
6005 	 */
6006 	spin_lock(&eb->refs_lock);
6007 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6008 		spin_unlock(&eb->refs_lock);
6009 		spin_unlock(&page->mapping->private_lock);
6010 		return 0;
6011 	}
6012 	spin_unlock(&page->mapping->private_lock);
6013 
6014 	/*
6015 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6016 	 * so just return, this page will likely be freed soon anyway.
6017 	 */
6018 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6019 		spin_unlock(&eb->refs_lock);
6020 		return 0;
6021 	}
6022 
6023 	return release_extent_buffer(eb);
6024 }
6025