1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 if (tree->ops && tree->ops->check_extent_io_range) 93 tree->ops->check_extent_io_range(tree->private_data, caller, 94 start, end); 95 } 96 #else 97 #define btrfs_leak_debug_add(new, head) do {} while (0) 98 #define btrfs_leak_debug_del(entry) do {} while (0) 99 #define btrfs_leak_debug_check() do {} while (0) 100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 101 #endif 102 103 #define BUFFER_LRU_MAX 64 104 105 struct tree_entry { 106 u64 start; 107 u64 end; 108 struct rb_node rb_node; 109 }; 110 111 struct extent_page_data { 112 struct bio *bio; 113 struct extent_io_tree *tree; 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use REQ_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static int add_extent_changeset(struct extent_state *state, unsigned bits, 124 struct extent_changeset *changeset, 125 int set) 126 { 127 int ret; 128 129 if (!changeset) 130 return 0; 131 if (set && (state->state & bits) == bits) 132 return 0; 133 if (!set && (state->state & bits) == 0) 134 return 0; 135 changeset->bytes_changed += state->end - state->start + 1; 136 ret = ulist_add(&changeset->range_changed, state->start, state->end, 137 GFP_ATOMIC); 138 return ret; 139 } 140 141 static void flush_write_bio(struct extent_page_data *epd); 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio), 159 BIOSET_NEED_BVECS)) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_exit(&btrfs_bioset); 169 170 free_buffer_cache: 171 kmem_cache_destroy(extent_buffer_cache); 172 extent_buffer_cache = NULL; 173 174 free_state_cache: 175 kmem_cache_destroy(extent_state_cache); 176 extent_state_cache = NULL; 177 return -ENOMEM; 178 } 179 180 void __cold extent_io_exit(void) 181 { 182 btrfs_leak_debug_check(); 183 184 /* 185 * Make sure all delayed rcu free are flushed before we 186 * destroy caches. 187 */ 188 rcu_barrier(); 189 kmem_cache_destroy(extent_state_cache); 190 kmem_cache_destroy(extent_buffer_cache); 191 bioset_exit(&btrfs_bioset); 192 } 193 194 void extent_io_tree_init(struct extent_io_tree *tree, 195 void *private_data) 196 { 197 tree->state = RB_ROOT; 198 tree->ops = NULL; 199 tree->dirty_bytes = 0; 200 spin_lock_init(&tree->lock); 201 tree->private_data = private_data; 202 } 203 204 static struct extent_state *alloc_extent_state(gfp_t mask) 205 { 206 struct extent_state *state; 207 208 /* 209 * The given mask might be not appropriate for the slab allocator, 210 * drop the unsupported bits 211 */ 212 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 213 state = kmem_cache_alloc(extent_state_cache, mask); 214 if (!state) 215 return state; 216 state->state = 0; 217 state->failrec = NULL; 218 RB_CLEAR_NODE(&state->rb_node); 219 btrfs_leak_debug_add(&state->leak_list, &states); 220 refcount_set(&state->refs, 1); 221 init_waitqueue_head(&state->wq); 222 trace_alloc_extent_state(state, mask, _RET_IP_); 223 return state; 224 } 225 226 void free_extent_state(struct extent_state *state) 227 { 228 if (!state) 229 return; 230 if (refcount_dec_and_test(&state->refs)) { 231 WARN_ON(extent_state_in_tree(state)); 232 btrfs_leak_debug_del(&state->leak_list); 233 trace_free_extent_state(state, _RET_IP_); 234 kmem_cache_free(extent_state_cache, state); 235 } 236 } 237 238 static struct rb_node *tree_insert(struct rb_root *root, 239 struct rb_node *search_start, 240 u64 offset, 241 struct rb_node *node, 242 struct rb_node ***p_in, 243 struct rb_node **parent_in) 244 { 245 struct rb_node **p; 246 struct rb_node *parent = NULL; 247 struct tree_entry *entry; 248 249 if (p_in && parent_in) { 250 p = *p_in; 251 parent = *parent_in; 252 goto do_insert; 253 } 254 255 p = search_start ? &search_start : &root->rb_node; 256 while (*p) { 257 parent = *p; 258 entry = rb_entry(parent, struct tree_entry, rb_node); 259 260 if (offset < entry->start) 261 p = &(*p)->rb_left; 262 else if (offset > entry->end) 263 p = &(*p)->rb_right; 264 else 265 return parent; 266 } 267 268 do_insert: 269 rb_link_node(node, parent, p); 270 rb_insert_color(node, root); 271 return NULL; 272 } 273 274 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 275 struct rb_node **prev_ret, 276 struct rb_node **next_ret, 277 struct rb_node ***p_ret, 278 struct rb_node **parent_ret) 279 { 280 struct rb_root *root = &tree->state; 281 struct rb_node **n = &root->rb_node; 282 struct rb_node *prev = NULL; 283 struct rb_node *orig_prev = NULL; 284 struct tree_entry *entry; 285 struct tree_entry *prev_entry = NULL; 286 287 while (*n) { 288 prev = *n; 289 entry = rb_entry(prev, struct tree_entry, rb_node); 290 prev_entry = entry; 291 292 if (offset < entry->start) 293 n = &(*n)->rb_left; 294 else if (offset > entry->end) 295 n = &(*n)->rb_right; 296 else 297 return *n; 298 } 299 300 if (p_ret) 301 *p_ret = n; 302 if (parent_ret) 303 *parent_ret = prev; 304 305 if (prev_ret) { 306 orig_prev = prev; 307 while (prev && offset > prev_entry->end) { 308 prev = rb_next(prev); 309 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 310 } 311 *prev_ret = prev; 312 prev = orig_prev; 313 } 314 315 if (next_ret) { 316 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 317 while (prev && offset < prev_entry->start) { 318 prev = rb_prev(prev); 319 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 320 } 321 *next_ret = prev; 322 } 323 return NULL; 324 } 325 326 static inline struct rb_node * 327 tree_search_for_insert(struct extent_io_tree *tree, 328 u64 offset, 329 struct rb_node ***p_ret, 330 struct rb_node **parent_ret) 331 { 332 struct rb_node *prev = NULL; 333 struct rb_node *ret; 334 335 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 336 if (!ret) 337 return prev; 338 return ret; 339 } 340 341 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 342 u64 offset) 343 { 344 return tree_search_for_insert(tree, offset, NULL, NULL); 345 } 346 347 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 348 struct extent_state *other) 349 { 350 if (tree->ops && tree->ops->merge_extent_hook) 351 tree->ops->merge_extent_hook(tree->private_data, new, other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->private_data, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->private_data, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits, 414 struct extent_changeset *changeset); 415 416 /* 417 * insert an extent_state struct into the tree. 'bits' are set on the 418 * struct before it is inserted. 419 * 420 * This may return -EEXIST if the extent is already there, in which case the 421 * state struct is freed. 422 * 423 * The tree lock is not taken internally. This is a utility function and 424 * probably isn't what you want to call (see set/clear_extent_bit). 425 */ 426 static int insert_state(struct extent_io_tree *tree, 427 struct extent_state *state, u64 start, u64 end, 428 struct rb_node ***p, 429 struct rb_node **parent, 430 unsigned *bits, struct extent_changeset *changeset) 431 { 432 struct rb_node *node; 433 434 if (end < start) 435 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 436 end, start); 437 state->start = start; 438 state->end = end; 439 440 set_state_bits(tree, state, bits, changeset); 441 442 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 443 if (node) { 444 struct extent_state *found; 445 found = rb_entry(node, struct extent_state, rb_node); 446 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->private_data, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake, 515 struct extent_changeset *changeset) 516 { 517 struct extent_state *next; 518 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 519 int ret; 520 521 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 522 u64 range = state->end - state->start + 1; 523 WARN_ON(range > tree->dirty_bytes); 524 tree->dirty_bytes -= range; 525 } 526 clear_state_cb(tree, state, bits); 527 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 528 BUG_ON(ret < 0); 529 state->state &= ~bits_to_clear; 530 if (wake) 531 wake_up(&state->wq); 532 if (state->state == 0) { 533 next = next_state(state); 534 if (extent_state_in_tree(state)) { 535 rb_erase(&state->rb_node, &tree->state); 536 RB_CLEAR_NODE(&state->rb_node); 537 free_extent_state(state); 538 } else { 539 WARN_ON(1); 540 } 541 } else { 542 merge_state(tree, state); 543 next = next_state(state); 544 } 545 return next; 546 } 547 548 static struct extent_state * 549 alloc_extent_state_atomic(struct extent_state *prealloc) 550 { 551 if (!prealloc) 552 prealloc = alloc_extent_state(GFP_ATOMIC); 553 554 return prealloc; 555 } 556 557 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 558 { 559 struct inode *inode = tree->private_data; 560 561 btrfs_panic(btrfs_sb(inode->i_sb), err, 562 "locking error: extent tree was modified by another thread while locked"); 563 } 564 565 /* 566 * clear some bits on a range in the tree. This may require splitting 567 * or inserting elements in the tree, so the gfp mask is used to 568 * indicate which allocations or sleeping are allowed. 569 * 570 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 571 * the given range from the tree regardless of state (ie for truncate). 572 * 573 * the range [start, end] is inclusive. 574 * 575 * This takes the tree lock, and returns 0 on success and < 0 on error. 576 */ 577 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 578 unsigned bits, int wake, int delete, 579 struct extent_state **cached_state, 580 gfp_t mask, struct extent_changeset *changeset) 581 { 582 struct extent_state *state; 583 struct extent_state *cached; 584 struct extent_state *prealloc = NULL; 585 struct rb_node *node; 586 u64 last_end; 587 int err; 588 int clear = 0; 589 590 btrfs_debug_check_extent_io_range(tree, start, end); 591 592 if (bits & EXTENT_DELALLOC) 593 bits |= EXTENT_NORESERVE; 594 595 if (delete) 596 bits |= ~EXTENT_CTLBITS; 597 bits |= EXTENT_FIRST_DELALLOC; 598 599 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 600 clear = 1; 601 again: 602 if (!prealloc && gfpflags_allow_blocking(mask)) { 603 /* 604 * Don't care for allocation failure here because we might end 605 * up not needing the pre-allocated extent state at all, which 606 * is the case if we only have in the tree extent states that 607 * cover our input range and don't cover too any other range. 608 * If we end up needing a new extent state we allocate it later. 609 */ 610 prealloc = alloc_extent_state(mask); 611 } 612 613 spin_lock(&tree->lock); 614 if (cached_state) { 615 cached = *cached_state; 616 617 if (clear) { 618 *cached_state = NULL; 619 cached_state = NULL; 620 } 621 622 if (cached && extent_state_in_tree(cached) && 623 cached->start <= start && cached->end > start) { 624 if (clear) 625 refcount_dec(&cached->refs); 626 state = cached; 627 goto hit_next; 628 } 629 if (clear) 630 free_extent_state(cached); 631 } 632 /* 633 * this search will find the extents that end after 634 * our range starts 635 */ 636 node = tree_search(tree, start); 637 if (!node) 638 goto out; 639 state = rb_entry(node, struct extent_state, rb_node); 640 hit_next: 641 if (state->start > end) 642 goto out; 643 WARN_ON(state->end < start); 644 last_end = state->end; 645 646 /* the state doesn't have the wanted bits, go ahead */ 647 if (!(state->state & bits)) { 648 state = next_state(state); 649 goto next; 650 } 651 652 /* 653 * | ---- desired range ---- | 654 * | state | or 655 * | ------------- state -------------- | 656 * 657 * We need to split the extent we found, and may flip 658 * bits on second half. 659 * 660 * If the extent we found extends past our range, we 661 * just split and search again. It'll get split again 662 * the next time though. 663 * 664 * If the extent we found is inside our range, we clear 665 * the desired bit on it. 666 */ 667 668 if (state->start < start) { 669 prealloc = alloc_extent_state_atomic(prealloc); 670 BUG_ON(!prealloc); 671 err = split_state(tree, state, prealloc, start); 672 if (err) 673 extent_io_tree_panic(tree, err); 674 675 prealloc = NULL; 676 if (err) 677 goto out; 678 if (state->end <= end) { 679 state = clear_state_bit(tree, state, &bits, wake, 680 changeset); 681 goto next; 682 } 683 goto search_again; 684 } 685 /* 686 * | ---- desired range ---- | 687 * | state | 688 * We need to split the extent, and clear the bit 689 * on the first half 690 */ 691 if (state->start <= end && state->end > end) { 692 prealloc = alloc_extent_state_atomic(prealloc); 693 BUG_ON(!prealloc); 694 err = split_state(tree, state, prealloc, end + 1); 695 if (err) 696 extent_io_tree_panic(tree, err); 697 698 if (wake) 699 wake_up(&state->wq); 700 701 clear_state_bit(tree, prealloc, &bits, wake, changeset); 702 703 prealloc = NULL; 704 goto out; 705 } 706 707 state = clear_state_bit(tree, state, &bits, wake, changeset); 708 next: 709 if (last_end == (u64)-1) 710 goto out; 711 start = last_end + 1; 712 if (start <= end && state && !need_resched()) 713 goto hit_next; 714 715 search_again: 716 if (start > end) 717 goto out; 718 spin_unlock(&tree->lock); 719 if (gfpflags_allow_blocking(mask)) 720 cond_resched(); 721 goto again; 722 723 out: 724 spin_unlock(&tree->lock); 725 if (prealloc) 726 free_extent_state(prealloc); 727 728 return 0; 729 730 } 731 732 static void wait_on_state(struct extent_io_tree *tree, 733 struct extent_state *state) 734 __releases(tree->lock) 735 __acquires(tree->lock) 736 { 737 DEFINE_WAIT(wait); 738 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 739 spin_unlock(&tree->lock); 740 schedule(); 741 spin_lock(&tree->lock); 742 finish_wait(&state->wq, &wait); 743 } 744 745 /* 746 * waits for one or more bits to clear on a range in the state tree. 747 * The range [start, end] is inclusive. 748 * The tree lock is taken by this function 749 */ 750 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 751 unsigned long bits) 752 { 753 struct extent_state *state; 754 struct rb_node *node; 755 756 btrfs_debug_check_extent_io_range(tree, start, end); 757 758 spin_lock(&tree->lock); 759 again: 760 while (1) { 761 /* 762 * this search will find all the extents that end after 763 * our range starts 764 */ 765 node = tree_search(tree, start); 766 process_node: 767 if (!node) 768 break; 769 770 state = rb_entry(node, struct extent_state, rb_node); 771 772 if (state->start > end) 773 goto out; 774 775 if (state->state & bits) { 776 start = state->start; 777 refcount_inc(&state->refs); 778 wait_on_state(tree, state); 779 free_extent_state(state); 780 goto again; 781 } 782 start = state->end + 1; 783 784 if (start > end) 785 break; 786 787 if (!cond_resched_lock(&tree->lock)) { 788 node = rb_next(node); 789 goto process_node; 790 } 791 } 792 out: 793 spin_unlock(&tree->lock); 794 } 795 796 static void set_state_bits(struct extent_io_tree *tree, 797 struct extent_state *state, 798 unsigned *bits, struct extent_changeset *changeset) 799 { 800 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 801 int ret; 802 803 set_state_cb(tree, state, bits); 804 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 805 u64 range = state->end - state->start + 1; 806 tree->dirty_bytes += range; 807 } 808 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 809 BUG_ON(ret < 0); 810 state->state |= bits_to_set; 811 } 812 813 static void cache_state_if_flags(struct extent_state *state, 814 struct extent_state **cached_ptr, 815 unsigned flags) 816 { 817 if (cached_ptr && !(*cached_ptr)) { 818 if (!flags || (state->state & flags)) { 819 *cached_ptr = state; 820 refcount_inc(&state->refs); 821 } 822 } 823 } 824 825 static void cache_state(struct extent_state *state, 826 struct extent_state **cached_ptr) 827 { 828 return cache_state_if_flags(state, cached_ptr, 829 EXTENT_IOBITS | EXTENT_BOUNDARY); 830 } 831 832 /* 833 * set some bits on a range in the tree. This may require allocations or 834 * sleeping, so the gfp mask is used to indicate what is allowed. 835 * 836 * If any of the exclusive bits are set, this will fail with -EEXIST if some 837 * part of the range already has the desired bits set. The start of the 838 * existing range is returned in failed_start in this case. 839 * 840 * [start, end] is inclusive This takes the tree lock. 841 */ 842 843 static int __must_check 844 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 845 unsigned bits, unsigned exclusive_bits, 846 u64 *failed_start, struct extent_state **cached_state, 847 gfp_t mask, struct extent_changeset *changeset) 848 { 849 struct extent_state *state; 850 struct extent_state *prealloc = NULL; 851 struct rb_node *node; 852 struct rb_node **p; 853 struct rb_node *parent; 854 int err = 0; 855 u64 last_start; 856 u64 last_end; 857 858 btrfs_debug_check_extent_io_range(tree, start, end); 859 860 bits |= EXTENT_FIRST_DELALLOC; 861 again: 862 if (!prealloc && gfpflags_allow_blocking(mask)) { 863 /* 864 * Don't care for allocation failure here because we might end 865 * up not needing the pre-allocated extent state at all, which 866 * is the case if we only have in the tree extent states that 867 * cover our input range and don't cover too any other range. 868 * If we end up needing a new extent state we allocate it later. 869 */ 870 prealloc = alloc_extent_state(mask); 871 } 872 873 spin_lock(&tree->lock); 874 if (cached_state && *cached_state) { 875 state = *cached_state; 876 if (state->start <= start && state->end > start && 877 extent_state_in_tree(state)) { 878 node = &state->rb_node; 879 goto hit_next; 880 } 881 } 882 /* 883 * this search will find all the extents that end after 884 * our range starts. 885 */ 886 node = tree_search_for_insert(tree, start, &p, &parent); 887 if (!node) { 888 prealloc = alloc_extent_state_atomic(prealloc); 889 BUG_ON(!prealloc); 890 err = insert_state(tree, prealloc, start, end, 891 &p, &parent, &bits, changeset); 892 if (err) 893 extent_io_tree_panic(tree, err); 894 895 cache_state(prealloc, cached_state); 896 prealloc = NULL; 897 goto out; 898 } 899 state = rb_entry(node, struct extent_state, rb_node); 900 hit_next: 901 last_start = state->start; 902 last_end = state->end; 903 904 /* 905 * | ---- desired range ---- | 906 * | state | 907 * 908 * Just lock what we found and keep going 909 */ 910 if (state->start == start && state->end <= end) { 911 if (state->state & exclusive_bits) { 912 *failed_start = state->start; 913 err = -EEXIST; 914 goto out; 915 } 916 917 set_state_bits(tree, state, &bits, changeset); 918 cache_state(state, cached_state); 919 merge_state(tree, state); 920 if (last_end == (u64)-1) 921 goto out; 922 start = last_end + 1; 923 state = next_state(state); 924 if (start < end && state && state->start == start && 925 !need_resched()) 926 goto hit_next; 927 goto search_again; 928 } 929 930 /* 931 * | ---- desired range ---- | 932 * | state | 933 * or 934 * | ------------- state -------------- | 935 * 936 * We need to split the extent we found, and may flip bits on 937 * second half. 938 * 939 * If the extent we found extends past our 940 * range, we just split and search again. It'll get split 941 * again the next time though. 942 * 943 * If the extent we found is inside our range, we set the 944 * desired bit on it. 945 */ 946 if (state->start < start) { 947 if (state->state & exclusive_bits) { 948 *failed_start = start; 949 err = -EEXIST; 950 goto out; 951 } 952 953 prealloc = alloc_extent_state_atomic(prealloc); 954 BUG_ON(!prealloc); 955 err = split_state(tree, state, prealloc, start); 956 if (err) 957 extent_io_tree_panic(tree, err); 958 959 prealloc = NULL; 960 if (err) 961 goto out; 962 if (state->end <= end) { 963 set_state_bits(tree, state, &bits, changeset); 964 cache_state(state, cached_state); 965 merge_state(tree, state); 966 if (last_end == (u64)-1) 967 goto out; 968 start = last_end + 1; 969 state = next_state(state); 970 if (start < end && state && state->start == start && 971 !need_resched()) 972 goto hit_next; 973 } 974 goto search_again; 975 } 976 /* 977 * | ---- desired range ---- | 978 * | state | or | state | 979 * 980 * There's a hole, we need to insert something in it and 981 * ignore the extent we found. 982 */ 983 if (state->start > start) { 984 u64 this_end; 985 if (end < last_start) 986 this_end = end; 987 else 988 this_end = last_start - 1; 989 990 prealloc = alloc_extent_state_atomic(prealloc); 991 BUG_ON(!prealloc); 992 993 /* 994 * Avoid to free 'prealloc' if it can be merged with 995 * the later extent. 996 */ 997 err = insert_state(tree, prealloc, start, this_end, 998 NULL, NULL, &bits, changeset); 999 if (err) 1000 extent_io_tree_panic(tree, err); 1001 1002 cache_state(prealloc, cached_state); 1003 prealloc = NULL; 1004 start = this_end + 1; 1005 goto search_again; 1006 } 1007 /* 1008 * | ---- desired range ---- | 1009 * | state | 1010 * We need to split the extent, and set the bit 1011 * on the first half 1012 */ 1013 if (state->start <= end && state->end > end) { 1014 if (state->state & exclusive_bits) { 1015 *failed_start = start; 1016 err = -EEXIST; 1017 goto out; 1018 } 1019 1020 prealloc = alloc_extent_state_atomic(prealloc); 1021 BUG_ON(!prealloc); 1022 err = split_state(tree, state, prealloc, end + 1); 1023 if (err) 1024 extent_io_tree_panic(tree, err); 1025 1026 set_state_bits(tree, prealloc, &bits, changeset); 1027 cache_state(prealloc, cached_state); 1028 merge_state(tree, prealloc); 1029 prealloc = NULL; 1030 goto out; 1031 } 1032 1033 search_again: 1034 if (start > end) 1035 goto out; 1036 spin_unlock(&tree->lock); 1037 if (gfpflags_allow_blocking(mask)) 1038 cond_resched(); 1039 goto again; 1040 1041 out: 1042 spin_unlock(&tree->lock); 1043 if (prealloc) 1044 free_extent_state(prealloc); 1045 1046 return err; 1047 1048 } 1049 1050 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1051 unsigned bits, u64 * failed_start, 1052 struct extent_state **cached_state, gfp_t mask) 1053 { 1054 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1055 cached_state, mask, NULL); 1056 } 1057 1058 1059 /** 1060 * convert_extent_bit - convert all bits in a given range from one bit to 1061 * another 1062 * @tree: the io tree to search 1063 * @start: the start offset in bytes 1064 * @end: the end offset in bytes (inclusive) 1065 * @bits: the bits to set in this range 1066 * @clear_bits: the bits to clear in this range 1067 * @cached_state: state that we're going to cache 1068 * 1069 * This will go through and set bits for the given range. If any states exist 1070 * already in this range they are set with the given bit and cleared of the 1071 * clear_bits. This is only meant to be used by things that are mergeable, ie 1072 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1073 * boundary bits like LOCK. 1074 * 1075 * All allocations are done with GFP_NOFS. 1076 */ 1077 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1078 unsigned bits, unsigned clear_bits, 1079 struct extent_state **cached_state) 1080 { 1081 struct extent_state *state; 1082 struct extent_state *prealloc = NULL; 1083 struct rb_node *node; 1084 struct rb_node **p; 1085 struct rb_node *parent; 1086 int err = 0; 1087 u64 last_start; 1088 u64 last_end; 1089 bool first_iteration = true; 1090 1091 btrfs_debug_check_extent_io_range(tree, start, end); 1092 1093 again: 1094 if (!prealloc) { 1095 /* 1096 * Best effort, don't worry if extent state allocation fails 1097 * here for the first iteration. We might have a cached state 1098 * that matches exactly the target range, in which case no 1099 * extent state allocations are needed. We'll only know this 1100 * after locking the tree. 1101 */ 1102 prealloc = alloc_extent_state(GFP_NOFS); 1103 if (!prealloc && !first_iteration) 1104 return -ENOMEM; 1105 } 1106 1107 spin_lock(&tree->lock); 1108 if (cached_state && *cached_state) { 1109 state = *cached_state; 1110 if (state->start <= start && state->end > start && 1111 extent_state_in_tree(state)) { 1112 node = &state->rb_node; 1113 goto hit_next; 1114 } 1115 } 1116 1117 /* 1118 * this search will find all the extents that end after 1119 * our range starts. 1120 */ 1121 node = tree_search_for_insert(tree, start, &p, &parent); 1122 if (!node) { 1123 prealloc = alloc_extent_state_atomic(prealloc); 1124 if (!prealloc) { 1125 err = -ENOMEM; 1126 goto out; 1127 } 1128 err = insert_state(tree, prealloc, start, end, 1129 &p, &parent, &bits, NULL); 1130 if (err) 1131 extent_io_tree_panic(tree, err); 1132 cache_state(prealloc, cached_state); 1133 prealloc = NULL; 1134 goto out; 1135 } 1136 state = rb_entry(node, struct extent_state, rb_node); 1137 hit_next: 1138 last_start = state->start; 1139 last_end = state->end; 1140 1141 /* 1142 * | ---- desired range ---- | 1143 * | state | 1144 * 1145 * Just lock what we found and keep going 1146 */ 1147 if (state->start == start && state->end <= end) { 1148 set_state_bits(tree, state, &bits, NULL); 1149 cache_state(state, cached_state); 1150 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1151 if (last_end == (u64)-1) 1152 goto out; 1153 start = last_end + 1; 1154 if (start < end && state && state->start == start && 1155 !need_resched()) 1156 goto hit_next; 1157 goto search_again; 1158 } 1159 1160 /* 1161 * | ---- desired range ---- | 1162 * | state | 1163 * or 1164 * | ------------- state -------------- | 1165 * 1166 * We need to split the extent we found, and may flip bits on 1167 * second half. 1168 * 1169 * If the extent we found extends past our 1170 * range, we just split and search again. It'll get split 1171 * again the next time though. 1172 * 1173 * If the extent we found is inside our range, we set the 1174 * desired bit on it. 1175 */ 1176 if (state->start < start) { 1177 prealloc = alloc_extent_state_atomic(prealloc); 1178 if (!prealloc) { 1179 err = -ENOMEM; 1180 goto out; 1181 } 1182 err = split_state(tree, state, prealloc, start); 1183 if (err) 1184 extent_io_tree_panic(tree, err); 1185 prealloc = NULL; 1186 if (err) 1187 goto out; 1188 if (state->end <= end) { 1189 set_state_bits(tree, state, &bits, NULL); 1190 cache_state(state, cached_state); 1191 state = clear_state_bit(tree, state, &clear_bits, 0, 1192 NULL); 1193 if (last_end == (u64)-1) 1194 goto out; 1195 start = last_end + 1; 1196 if (start < end && state && state->start == start && 1197 !need_resched()) 1198 goto hit_next; 1199 } 1200 goto search_again; 1201 } 1202 /* 1203 * | ---- desired range ---- | 1204 * | state | or | state | 1205 * 1206 * There's a hole, we need to insert something in it and 1207 * ignore the extent we found. 1208 */ 1209 if (state->start > start) { 1210 u64 this_end; 1211 if (end < last_start) 1212 this_end = end; 1213 else 1214 this_end = last_start - 1; 1215 1216 prealloc = alloc_extent_state_atomic(prealloc); 1217 if (!prealloc) { 1218 err = -ENOMEM; 1219 goto out; 1220 } 1221 1222 /* 1223 * Avoid to free 'prealloc' if it can be merged with 1224 * the later extent. 1225 */ 1226 err = insert_state(tree, prealloc, start, this_end, 1227 NULL, NULL, &bits, NULL); 1228 if (err) 1229 extent_io_tree_panic(tree, err); 1230 cache_state(prealloc, cached_state); 1231 prealloc = NULL; 1232 start = this_end + 1; 1233 goto search_again; 1234 } 1235 /* 1236 * | ---- desired range ---- | 1237 * | state | 1238 * We need to split the extent, and set the bit 1239 * on the first half 1240 */ 1241 if (state->start <= end && state->end > end) { 1242 prealloc = alloc_extent_state_atomic(prealloc); 1243 if (!prealloc) { 1244 err = -ENOMEM; 1245 goto out; 1246 } 1247 1248 err = split_state(tree, state, prealloc, end + 1); 1249 if (err) 1250 extent_io_tree_panic(tree, err); 1251 1252 set_state_bits(tree, prealloc, &bits, NULL); 1253 cache_state(prealloc, cached_state); 1254 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1255 prealloc = NULL; 1256 goto out; 1257 } 1258 1259 search_again: 1260 if (start > end) 1261 goto out; 1262 spin_unlock(&tree->lock); 1263 cond_resched(); 1264 first_iteration = false; 1265 goto again; 1266 1267 out: 1268 spin_unlock(&tree->lock); 1269 if (prealloc) 1270 free_extent_state(prealloc); 1271 1272 return err; 1273 } 1274 1275 /* wrappers around set/clear extent bit */ 1276 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1277 unsigned bits, struct extent_changeset *changeset) 1278 { 1279 /* 1280 * We don't support EXTENT_LOCKED yet, as current changeset will 1281 * record any bits changed, so for EXTENT_LOCKED case, it will 1282 * either fail with -EEXIST or changeset will record the whole 1283 * range. 1284 */ 1285 BUG_ON(bits & EXTENT_LOCKED); 1286 1287 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1288 changeset); 1289 } 1290 1291 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1292 unsigned bits, int wake, int delete, 1293 struct extent_state **cached) 1294 { 1295 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1296 cached, GFP_NOFS, NULL); 1297 } 1298 1299 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1300 unsigned bits, struct extent_changeset *changeset) 1301 { 1302 /* 1303 * Don't support EXTENT_LOCKED case, same reason as 1304 * set_record_extent_bits(). 1305 */ 1306 BUG_ON(bits & EXTENT_LOCKED); 1307 1308 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1309 changeset); 1310 } 1311 1312 /* 1313 * either insert or lock state struct between start and end use mask to tell 1314 * us if waiting is desired. 1315 */ 1316 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1317 struct extent_state **cached_state) 1318 { 1319 int err; 1320 u64 failed_start; 1321 1322 while (1) { 1323 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1324 EXTENT_LOCKED, &failed_start, 1325 cached_state, GFP_NOFS, NULL); 1326 if (err == -EEXIST) { 1327 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1328 start = failed_start; 1329 } else 1330 break; 1331 WARN_ON(start > end); 1332 } 1333 return err; 1334 } 1335 1336 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1337 { 1338 int err; 1339 u64 failed_start; 1340 1341 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1342 &failed_start, NULL, GFP_NOFS, NULL); 1343 if (err == -EEXIST) { 1344 if (failed_start > start) 1345 clear_extent_bit(tree, start, failed_start - 1, 1346 EXTENT_LOCKED, 1, 0, NULL); 1347 return 0; 1348 } 1349 return 1; 1350 } 1351 1352 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1353 { 1354 unsigned long index = start >> PAGE_SHIFT; 1355 unsigned long end_index = end >> PAGE_SHIFT; 1356 struct page *page; 1357 1358 while (index <= end_index) { 1359 page = find_get_page(inode->i_mapping, index); 1360 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1361 clear_page_dirty_for_io(page); 1362 put_page(page); 1363 index++; 1364 } 1365 } 1366 1367 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1368 { 1369 unsigned long index = start >> PAGE_SHIFT; 1370 unsigned long end_index = end >> PAGE_SHIFT; 1371 struct page *page; 1372 1373 while (index <= end_index) { 1374 page = find_get_page(inode->i_mapping, index); 1375 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1376 __set_page_dirty_nobuffers(page); 1377 account_page_redirty(page); 1378 put_page(page); 1379 index++; 1380 } 1381 } 1382 1383 /* find the first state struct with 'bits' set after 'start', and 1384 * return it. tree->lock must be held. NULL will returned if 1385 * nothing was found after 'start' 1386 */ 1387 static struct extent_state * 1388 find_first_extent_bit_state(struct extent_io_tree *tree, 1389 u64 start, unsigned bits) 1390 { 1391 struct rb_node *node; 1392 struct extent_state *state; 1393 1394 /* 1395 * this search will find all the extents that end after 1396 * our range starts. 1397 */ 1398 node = tree_search(tree, start); 1399 if (!node) 1400 goto out; 1401 1402 while (1) { 1403 state = rb_entry(node, struct extent_state, rb_node); 1404 if (state->end >= start && (state->state & bits)) 1405 return state; 1406 1407 node = rb_next(node); 1408 if (!node) 1409 break; 1410 } 1411 out: 1412 return NULL; 1413 } 1414 1415 /* 1416 * find the first offset in the io tree with 'bits' set. zero is 1417 * returned if we find something, and *start_ret and *end_ret are 1418 * set to reflect the state struct that was found. 1419 * 1420 * If nothing was found, 1 is returned. If found something, return 0. 1421 */ 1422 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1423 u64 *start_ret, u64 *end_ret, unsigned bits, 1424 struct extent_state **cached_state) 1425 { 1426 struct extent_state *state; 1427 int ret = 1; 1428 1429 spin_lock(&tree->lock); 1430 if (cached_state && *cached_state) { 1431 state = *cached_state; 1432 if (state->end == start - 1 && extent_state_in_tree(state)) { 1433 while ((state = next_state(state)) != NULL) { 1434 if (state->state & bits) 1435 goto got_it; 1436 } 1437 free_extent_state(*cached_state); 1438 *cached_state = NULL; 1439 goto out; 1440 } 1441 free_extent_state(*cached_state); 1442 *cached_state = NULL; 1443 } 1444 1445 state = find_first_extent_bit_state(tree, start, bits); 1446 got_it: 1447 if (state) { 1448 cache_state_if_flags(state, cached_state, 0); 1449 *start_ret = state->start; 1450 *end_ret = state->end; 1451 ret = 0; 1452 } 1453 out: 1454 spin_unlock(&tree->lock); 1455 return ret; 1456 } 1457 1458 /* 1459 * find a contiguous range of bytes in the file marked as delalloc, not 1460 * more than 'max_bytes'. start and end are used to return the range, 1461 * 1462 * 1 is returned if we find something, 0 if nothing was in the tree 1463 */ 1464 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1465 u64 *start, u64 *end, u64 max_bytes, 1466 struct extent_state **cached_state) 1467 { 1468 struct rb_node *node; 1469 struct extent_state *state; 1470 u64 cur_start = *start; 1471 u64 found = 0; 1472 u64 total_bytes = 0; 1473 1474 spin_lock(&tree->lock); 1475 1476 /* 1477 * this search will find all the extents that end after 1478 * our range starts. 1479 */ 1480 node = tree_search(tree, cur_start); 1481 if (!node) { 1482 if (!found) 1483 *end = (u64)-1; 1484 goto out; 1485 } 1486 1487 while (1) { 1488 state = rb_entry(node, struct extent_state, rb_node); 1489 if (found && (state->start != cur_start || 1490 (state->state & EXTENT_BOUNDARY))) { 1491 goto out; 1492 } 1493 if (!(state->state & EXTENT_DELALLOC)) { 1494 if (!found) 1495 *end = state->end; 1496 goto out; 1497 } 1498 if (!found) { 1499 *start = state->start; 1500 *cached_state = state; 1501 refcount_inc(&state->refs); 1502 } 1503 found++; 1504 *end = state->end; 1505 cur_start = state->end + 1; 1506 node = rb_next(node); 1507 total_bytes += state->end - state->start + 1; 1508 if (total_bytes >= max_bytes) 1509 break; 1510 if (!node) 1511 break; 1512 } 1513 out: 1514 spin_unlock(&tree->lock); 1515 return found; 1516 } 1517 1518 static int __process_pages_contig(struct address_space *mapping, 1519 struct page *locked_page, 1520 pgoff_t start_index, pgoff_t end_index, 1521 unsigned long page_ops, pgoff_t *index_ret); 1522 1523 static noinline void __unlock_for_delalloc(struct inode *inode, 1524 struct page *locked_page, 1525 u64 start, u64 end) 1526 { 1527 unsigned long index = start >> PAGE_SHIFT; 1528 unsigned long end_index = end >> PAGE_SHIFT; 1529 1530 ASSERT(locked_page); 1531 if (index == locked_page->index && end_index == index) 1532 return; 1533 1534 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1535 PAGE_UNLOCK, NULL); 1536 } 1537 1538 static noinline int lock_delalloc_pages(struct inode *inode, 1539 struct page *locked_page, 1540 u64 delalloc_start, 1541 u64 delalloc_end) 1542 { 1543 unsigned long index = delalloc_start >> PAGE_SHIFT; 1544 unsigned long index_ret = index; 1545 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1546 int ret; 1547 1548 ASSERT(locked_page); 1549 if (index == locked_page->index && index == end_index) 1550 return 0; 1551 1552 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1553 end_index, PAGE_LOCK, &index_ret); 1554 if (ret == -EAGAIN) 1555 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1556 (u64)index_ret << PAGE_SHIFT); 1557 return ret; 1558 } 1559 1560 /* 1561 * find a contiguous range of bytes in the file marked as delalloc, not 1562 * more than 'max_bytes'. start and end are used to return the range, 1563 * 1564 * 1 is returned if we find something, 0 if nothing was in the tree 1565 */ 1566 static noinline_for_stack u64 find_lock_delalloc_range(struct inode *inode, 1567 struct extent_io_tree *tree, 1568 struct page *locked_page, u64 *start, 1569 u64 *end, u64 max_bytes) 1570 { 1571 u64 delalloc_start; 1572 u64 delalloc_end; 1573 u64 found; 1574 struct extent_state *cached_state = NULL; 1575 int ret; 1576 int loops = 0; 1577 1578 again: 1579 /* step one, find a bunch of delalloc bytes starting at start */ 1580 delalloc_start = *start; 1581 delalloc_end = 0; 1582 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1583 max_bytes, &cached_state); 1584 if (!found || delalloc_end <= *start) { 1585 *start = delalloc_start; 1586 *end = delalloc_end; 1587 free_extent_state(cached_state); 1588 return 0; 1589 } 1590 1591 /* 1592 * start comes from the offset of locked_page. We have to lock 1593 * pages in order, so we can't process delalloc bytes before 1594 * locked_page 1595 */ 1596 if (delalloc_start < *start) 1597 delalloc_start = *start; 1598 1599 /* 1600 * make sure to limit the number of pages we try to lock down 1601 */ 1602 if (delalloc_end + 1 - delalloc_start > max_bytes) 1603 delalloc_end = delalloc_start + max_bytes - 1; 1604 1605 /* step two, lock all the pages after the page that has start */ 1606 ret = lock_delalloc_pages(inode, locked_page, 1607 delalloc_start, delalloc_end); 1608 if (ret == -EAGAIN) { 1609 /* some of the pages are gone, lets avoid looping by 1610 * shortening the size of the delalloc range we're searching 1611 */ 1612 free_extent_state(cached_state); 1613 cached_state = NULL; 1614 if (!loops) { 1615 max_bytes = PAGE_SIZE; 1616 loops = 1; 1617 goto again; 1618 } else { 1619 found = 0; 1620 goto out_failed; 1621 } 1622 } 1623 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1624 1625 /* step three, lock the state bits for the whole range */ 1626 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1627 1628 /* then test to make sure it is all still delalloc */ 1629 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1630 EXTENT_DELALLOC, 1, cached_state); 1631 if (!ret) { 1632 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1633 &cached_state); 1634 __unlock_for_delalloc(inode, locked_page, 1635 delalloc_start, delalloc_end); 1636 cond_resched(); 1637 goto again; 1638 } 1639 free_extent_state(cached_state); 1640 *start = delalloc_start; 1641 *end = delalloc_end; 1642 out_failed: 1643 return found; 1644 } 1645 1646 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1647 u64 btrfs_find_lock_delalloc_range(struct inode *inode, 1648 struct extent_io_tree *tree, 1649 struct page *locked_page, u64 *start, 1650 u64 *end, u64 max_bytes) 1651 { 1652 return find_lock_delalloc_range(inode, tree, locked_page, start, end, 1653 max_bytes); 1654 } 1655 #endif 1656 1657 static int __process_pages_contig(struct address_space *mapping, 1658 struct page *locked_page, 1659 pgoff_t start_index, pgoff_t end_index, 1660 unsigned long page_ops, pgoff_t *index_ret) 1661 { 1662 unsigned long nr_pages = end_index - start_index + 1; 1663 unsigned long pages_locked = 0; 1664 pgoff_t index = start_index; 1665 struct page *pages[16]; 1666 unsigned ret; 1667 int err = 0; 1668 int i; 1669 1670 if (page_ops & PAGE_LOCK) { 1671 ASSERT(page_ops == PAGE_LOCK); 1672 ASSERT(index_ret && *index_ret == start_index); 1673 } 1674 1675 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1676 mapping_set_error(mapping, -EIO); 1677 1678 while (nr_pages > 0) { 1679 ret = find_get_pages_contig(mapping, index, 1680 min_t(unsigned long, 1681 nr_pages, ARRAY_SIZE(pages)), pages); 1682 if (ret == 0) { 1683 /* 1684 * Only if we're going to lock these pages, 1685 * can we find nothing at @index. 1686 */ 1687 ASSERT(page_ops & PAGE_LOCK); 1688 err = -EAGAIN; 1689 goto out; 1690 } 1691 1692 for (i = 0; i < ret; i++) { 1693 if (page_ops & PAGE_SET_PRIVATE2) 1694 SetPagePrivate2(pages[i]); 1695 1696 if (pages[i] == locked_page) { 1697 put_page(pages[i]); 1698 pages_locked++; 1699 continue; 1700 } 1701 if (page_ops & PAGE_CLEAR_DIRTY) 1702 clear_page_dirty_for_io(pages[i]); 1703 if (page_ops & PAGE_SET_WRITEBACK) 1704 set_page_writeback(pages[i]); 1705 if (page_ops & PAGE_SET_ERROR) 1706 SetPageError(pages[i]); 1707 if (page_ops & PAGE_END_WRITEBACK) 1708 end_page_writeback(pages[i]); 1709 if (page_ops & PAGE_UNLOCK) 1710 unlock_page(pages[i]); 1711 if (page_ops & PAGE_LOCK) { 1712 lock_page(pages[i]); 1713 if (!PageDirty(pages[i]) || 1714 pages[i]->mapping != mapping) { 1715 unlock_page(pages[i]); 1716 put_page(pages[i]); 1717 err = -EAGAIN; 1718 goto out; 1719 } 1720 } 1721 put_page(pages[i]); 1722 pages_locked++; 1723 } 1724 nr_pages -= ret; 1725 index += ret; 1726 cond_resched(); 1727 } 1728 out: 1729 if (err && index_ret) 1730 *index_ret = start_index + pages_locked - 1; 1731 return err; 1732 } 1733 1734 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1735 u64 delalloc_end, struct page *locked_page, 1736 unsigned clear_bits, 1737 unsigned long page_ops) 1738 { 1739 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1740 NULL); 1741 1742 __process_pages_contig(inode->i_mapping, locked_page, 1743 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1744 page_ops, NULL); 1745 } 1746 1747 /* 1748 * count the number of bytes in the tree that have a given bit(s) 1749 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1750 * cached. The total number found is returned. 1751 */ 1752 u64 count_range_bits(struct extent_io_tree *tree, 1753 u64 *start, u64 search_end, u64 max_bytes, 1754 unsigned bits, int contig) 1755 { 1756 struct rb_node *node; 1757 struct extent_state *state; 1758 u64 cur_start = *start; 1759 u64 total_bytes = 0; 1760 u64 last = 0; 1761 int found = 0; 1762 1763 if (WARN_ON(search_end <= cur_start)) 1764 return 0; 1765 1766 spin_lock(&tree->lock); 1767 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1768 total_bytes = tree->dirty_bytes; 1769 goto out; 1770 } 1771 /* 1772 * this search will find all the extents that end after 1773 * our range starts. 1774 */ 1775 node = tree_search(tree, cur_start); 1776 if (!node) 1777 goto out; 1778 1779 while (1) { 1780 state = rb_entry(node, struct extent_state, rb_node); 1781 if (state->start > search_end) 1782 break; 1783 if (contig && found && state->start > last + 1) 1784 break; 1785 if (state->end >= cur_start && (state->state & bits) == bits) { 1786 total_bytes += min(search_end, state->end) + 1 - 1787 max(cur_start, state->start); 1788 if (total_bytes >= max_bytes) 1789 break; 1790 if (!found) { 1791 *start = max(cur_start, state->start); 1792 found = 1; 1793 } 1794 last = state->end; 1795 } else if (contig && found) { 1796 break; 1797 } 1798 node = rb_next(node); 1799 if (!node) 1800 break; 1801 } 1802 out: 1803 spin_unlock(&tree->lock); 1804 return total_bytes; 1805 } 1806 1807 /* 1808 * set the private field for a given byte offset in the tree. If there isn't 1809 * an extent_state there already, this does nothing. 1810 */ 1811 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1812 struct io_failure_record *failrec) 1813 { 1814 struct rb_node *node; 1815 struct extent_state *state; 1816 int ret = 0; 1817 1818 spin_lock(&tree->lock); 1819 /* 1820 * this search will find all the extents that end after 1821 * our range starts. 1822 */ 1823 node = tree_search(tree, start); 1824 if (!node) { 1825 ret = -ENOENT; 1826 goto out; 1827 } 1828 state = rb_entry(node, struct extent_state, rb_node); 1829 if (state->start != start) { 1830 ret = -ENOENT; 1831 goto out; 1832 } 1833 state->failrec = failrec; 1834 out: 1835 spin_unlock(&tree->lock); 1836 return ret; 1837 } 1838 1839 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1840 struct io_failure_record **failrec) 1841 { 1842 struct rb_node *node; 1843 struct extent_state *state; 1844 int ret = 0; 1845 1846 spin_lock(&tree->lock); 1847 /* 1848 * this search will find all the extents that end after 1849 * our range starts. 1850 */ 1851 node = tree_search(tree, start); 1852 if (!node) { 1853 ret = -ENOENT; 1854 goto out; 1855 } 1856 state = rb_entry(node, struct extent_state, rb_node); 1857 if (state->start != start) { 1858 ret = -ENOENT; 1859 goto out; 1860 } 1861 *failrec = state->failrec; 1862 out: 1863 spin_unlock(&tree->lock); 1864 return ret; 1865 } 1866 1867 /* 1868 * searches a range in the state tree for a given mask. 1869 * If 'filled' == 1, this returns 1 only if every extent in the tree 1870 * has the bits set. Otherwise, 1 is returned if any bit in the 1871 * range is found set. 1872 */ 1873 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1874 unsigned bits, int filled, struct extent_state *cached) 1875 { 1876 struct extent_state *state = NULL; 1877 struct rb_node *node; 1878 int bitset = 0; 1879 1880 spin_lock(&tree->lock); 1881 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1882 cached->end > start) 1883 node = &cached->rb_node; 1884 else 1885 node = tree_search(tree, start); 1886 while (node && start <= end) { 1887 state = rb_entry(node, struct extent_state, rb_node); 1888 1889 if (filled && state->start > start) { 1890 bitset = 0; 1891 break; 1892 } 1893 1894 if (state->start > end) 1895 break; 1896 1897 if (state->state & bits) { 1898 bitset = 1; 1899 if (!filled) 1900 break; 1901 } else if (filled) { 1902 bitset = 0; 1903 break; 1904 } 1905 1906 if (state->end == (u64)-1) 1907 break; 1908 1909 start = state->end + 1; 1910 if (start > end) 1911 break; 1912 node = rb_next(node); 1913 if (!node) { 1914 if (filled) 1915 bitset = 0; 1916 break; 1917 } 1918 } 1919 spin_unlock(&tree->lock); 1920 return bitset; 1921 } 1922 1923 /* 1924 * helper function to set a given page up to date if all the 1925 * extents in the tree for that page are up to date 1926 */ 1927 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1928 { 1929 u64 start = page_offset(page); 1930 u64 end = start + PAGE_SIZE - 1; 1931 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1932 SetPageUptodate(page); 1933 } 1934 1935 int free_io_failure(struct extent_io_tree *failure_tree, 1936 struct extent_io_tree *io_tree, 1937 struct io_failure_record *rec) 1938 { 1939 int ret; 1940 int err = 0; 1941 1942 set_state_failrec(failure_tree, rec->start, NULL); 1943 ret = clear_extent_bits(failure_tree, rec->start, 1944 rec->start + rec->len - 1, 1945 EXTENT_LOCKED | EXTENT_DIRTY); 1946 if (ret) 1947 err = ret; 1948 1949 ret = clear_extent_bits(io_tree, rec->start, 1950 rec->start + rec->len - 1, 1951 EXTENT_DAMAGED); 1952 if (ret && !err) 1953 err = ret; 1954 1955 kfree(rec); 1956 return err; 1957 } 1958 1959 /* 1960 * this bypasses the standard btrfs submit functions deliberately, as 1961 * the standard behavior is to write all copies in a raid setup. here we only 1962 * want to write the one bad copy. so we do the mapping for ourselves and issue 1963 * submit_bio directly. 1964 * to avoid any synchronization issues, wait for the data after writing, which 1965 * actually prevents the read that triggered the error from finishing. 1966 * currently, there can be no more than two copies of every data bit. thus, 1967 * exactly one rewrite is required. 1968 */ 1969 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1970 u64 length, u64 logical, struct page *page, 1971 unsigned int pg_offset, int mirror_num) 1972 { 1973 struct bio *bio; 1974 struct btrfs_device *dev; 1975 u64 map_length = 0; 1976 u64 sector; 1977 struct btrfs_bio *bbio = NULL; 1978 int ret; 1979 1980 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1981 BUG_ON(!mirror_num); 1982 1983 bio = btrfs_io_bio_alloc(1); 1984 bio->bi_iter.bi_size = 0; 1985 map_length = length; 1986 1987 /* 1988 * Avoid races with device replace and make sure our bbio has devices 1989 * associated to its stripes that don't go away while we are doing the 1990 * read repair operation. 1991 */ 1992 btrfs_bio_counter_inc_blocked(fs_info); 1993 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 1994 /* 1995 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 1996 * to update all raid stripes, but here we just want to correct 1997 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 1998 * stripe's dev and sector. 1999 */ 2000 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2001 &map_length, &bbio, 0); 2002 if (ret) { 2003 btrfs_bio_counter_dec(fs_info); 2004 bio_put(bio); 2005 return -EIO; 2006 } 2007 ASSERT(bbio->mirror_num == 1); 2008 } else { 2009 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2010 &map_length, &bbio, mirror_num); 2011 if (ret) { 2012 btrfs_bio_counter_dec(fs_info); 2013 bio_put(bio); 2014 return -EIO; 2015 } 2016 BUG_ON(mirror_num != bbio->mirror_num); 2017 } 2018 2019 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2020 bio->bi_iter.bi_sector = sector; 2021 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2022 btrfs_put_bbio(bbio); 2023 if (!dev || !dev->bdev || 2024 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2025 btrfs_bio_counter_dec(fs_info); 2026 bio_put(bio); 2027 return -EIO; 2028 } 2029 bio_set_dev(bio, dev->bdev); 2030 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2031 bio_add_page(bio, page, length, pg_offset); 2032 2033 if (btrfsic_submit_bio_wait(bio)) { 2034 /* try to remap that extent elsewhere? */ 2035 btrfs_bio_counter_dec(fs_info); 2036 bio_put(bio); 2037 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2038 return -EIO; 2039 } 2040 2041 btrfs_info_rl_in_rcu(fs_info, 2042 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2043 ino, start, 2044 rcu_str_deref(dev->name), sector); 2045 btrfs_bio_counter_dec(fs_info); 2046 bio_put(bio); 2047 return 0; 2048 } 2049 2050 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2051 struct extent_buffer *eb, int mirror_num) 2052 { 2053 u64 start = eb->start; 2054 int i, num_pages = num_extent_pages(eb); 2055 int ret = 0; 2056 2057 if (sb_rdonly(fs_info->sb)) 2058 return -EROFS; 2059 2060 for (i = 0; i < num_pages; i++) { 2061 struct page *p = eb->pages[i]; 2062 2063 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2064 start - page_offset(p), mirror_num); 2065 if (ret) 2066 break; 2067 start += PAGE_SIZE; 2068 } 2069 2070 return ret; 2071 } 2072 2073 /* 2074 * each time an IO finishes, we do a fast check in the IO failure tree 2075 * to see if we need to process or clean up an io_failure_record 2076 */ 2077 int clean_io_failure(struct btrfs_fs_info *fs_info, 2078 struct extent_io_tree *failure_tree, 2079 struct extent_io_tree *io_tree, u64 start, 2080 struct page *page, u64 ino, unsigned int pg_offset) 2081 { 2082 u64 private; 2083 struct io_failure_record *failrec; 2084 struct extent_state *state; 2085 int num_copies; 2086 int ret; 2087 2088 private = 0; 2089 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2090 EXTENT_DIRTY, 0); 2091 if (!ret) 2092 return 0; 2093 2094 ret = get_state_failrec(failure_tree, start, &failrec); 2095 if (ret) 2096 return 0; 2097 2098 BUG_ON(!failrec->this_mirror); 2099 2100 if (failrec->in_validation) { 2101 /* there was no real error, just free the record */ 2102 btrfs_debug(fs_info, 2103 "clean_io_failure: freeing dummy error at %llu", 2104 failrec->start); 2105 goto out; 2106 } 2107 if (sb_rdonly(fs_info->sb)) 2108 goto out; 2109 2110 spin_lock(&io_tree->lock); 2111 state = find_first_extent_bit_state(io_tree, 2112 failrec->start, 2113 EXTENT_LOCKED); 2114 spin_unlock(&io_tree->lock); 2115 2116 if (state && state->start <= failrec->start && 2117 state->end >= failrec->start + failrec->len - 1) { 2118 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2119 failrec->len); 2120 if (num_copies > 1) { 2121 repair_io_failure(fs_info, ino, start, failrec->len, 2122 failrec->logical, page, pg_offset, 2123 failrec->failed_mirror); 2124 } 2125 } 2126 2127 out: 2128 free_io_failure(failure_tree, io_tree, failrec); 2129 2130 return 0; 2131 } 2132 2133 /* 2134 * Can be called when 2135 * - hold extent lock 2136 * - under ordered extent 2137 * - the inode is freeing 2138 */ 2139 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2140 { 2141 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2142 struct io_failure_record *failrec; 2143 struct extent_state *state, *next; 2144 2145 if (RB_EMPTY_ROOT(&failure_tree->state)) 2146 return; 2147 2148 spin_lock(&failure_tree->lock); 2149 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2150 while (state) { 2151 if (state->start > end) 2152 break; 2153 2154 ASSERT(state->end <= end); 2155 2156 next = next_state(state); 2157 2158 failrec = state->failrec; 2159 free_extent_state(state); 2160 kfree(failrec); 2161 2162 state = next; 2163 } 2164 spin_unlock(&failure_tree->lock); 2165 } 2166 2167 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2168 struct io_failure_record **failrec_ret) 2169 { 2170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2171 struct io_failure_record *failrec; 2172 struct extent_map *em; 2173 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2174 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2175 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2176 int ret; 2177 u64 logical; 2178 2179 ret = get_state_failrec(failure_tree, start, &failrec); 2180 if (ret) { 2181 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2182 if (!failrec) 2183 return -ENOMEM; 2184 2185 failrec->start = start; 2186 failrec->len = end - start + 1; 2187 failrec->this_mirror = 0; 2188 failrec->bio_flags = 0; 2189 failrec->in_validation = 0; 2190 2191 read_lock(&em_tree->lock); 2192 em = lookup_extent_mapping(em_tree, start, failrec->len); 2193 if (!em) { 2194 read_unlock(&em_tree->lock); 2195 kfree(failrec); 2196 return -EIO; 2197 } 2198 2199 if (em->start > start || em->start + em->len <= start) { 2200 free_extent_map(em); 2201 em = NULL; 2202 } 2203 read_unlock(&em_tree->lock); 2204 if (!em) { 2205 kfree(failrec); 2206 return -EIO; 2207 } 2208 2209 logical = start - em->start; 2210 logical = em->block_start + logical; 2211 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2212 logical = em->block_start; 2213 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2214 extent_set_compress_type(&failrec->bio_flags, 2215 em->compress_type); 2216 } 2217 2218 btrfs_debug(fs_info, 2219 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2220 logical, start, failrec->len); 2221 2222 failrec->logical = logical; 2223 free_extent_map(em); 2224 2225 /* set the bits in the private failure tree */ 2226 ret = set_extent_bits(failure_tree, start, end, 2227 EXTENT_LOCKED | EXTENT_DIRTY); 2228 if (ret >= 0) 2229 ret = set_state_failrec(failure_tree, start, failrec); 2230 /* set the bits in the inode's tree */ 2231 if (ret >= 0) 2232 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2233 if (ret < 0) { 2234 kfree(failrec); 2235 return ret; 2236 } 2237 } else { 2238 btrfs_debug(fs_info, 2239 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2240 failrec->logical, failrec->start, failrec->len, 2241 failrec->in_validation); 2242 /* 2243 * when data can be on disk more than twice, add to failrec here 2244 * (e.g. with a list for failed_mirror) to make 2245 * clean_io_failure() clean all those errors at once. 2246 */ 2247 } 2248 2249 *failrec_ret = failrec; 2250 2251 return 0; 2252 } 2253 2254 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2255 struct io_failure_record *failrec, int failed_mirror) 2256 { 2257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2258 int num_copies; 2259 2260 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2261 if (num_copies == 1) { 2262 /* 2263 * we only have a single copy of the data, so don't bother with 2264 * all the retry and error correction code that follows. no 2265 * matter what the error is, it is very likely to persist. 2266 */ 2267 btrfs_debug(fs_info, 2268 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2269 num_copies, failrec->this_mirror, failed_mirror); 2270 return false; 2271 } 2272 2273 /* 2274 * there are two premises: 2275 * a) deliver good data to the caller 2276 * b) correct the bad sectors on disk 2277 */ 2278 if (failed_bio_pages > 1) { 2279 /* 2280 * to fulfill b), we need to know the exact failing sectors, as 2281 * we don't want to rewrite any more than the failed ones. thus, 2282 * we need separate read requests for the failed bio 2283 * 2284 * if the following BUG_ON triggers, our validation request got 2285 * merged. we need separate requests for our algorithm to work. 2286 */ 2287 BUG_ON(failrec->in_validation); 2288 failrec->in_validation = 1; 2289 failrec->this_mirror = failed_mirror; 2290 } else { 2291 /* 2292 * we're ready to fulfill a) and b) alongside. get a good copy 2293 * of the failed sector and if we succeed, we have setup 2294 * everything for repair_io_failure to do the rest for us. 2295 */ 2296 if (failrec->in_validation) { 2297 BUG_ON(failrec->this_mirror != failed_mirror); 2298 failrec->in_validation = 0; 2299 failrec->this_mirror = 0; 2300 } 2301 failrec->failed_mirror = failed_mirror; 2302 failrec->this_mirror++; 2303 if (failrec->this_mirror == failed_mirror) 2304 failrec->this_mirror++; 2305 } 2306 2307 if (failrec->this_mirror > num_copies) { 2308 btrfs_debug(fs_info, 2309 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2310 num_copies, failrec->this_mirror, failed_mirror); 2311 return false; 2312 } 2313 2314 return true; 2315 } 2316 2317 2318 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2319 struct io_failure_record *failrec, 2320 struct page *page, int pg_offset, int icsum, 2321 bio_end_io_t *endio_func, void *data) 2322 { 2323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2324 struct bio *bio; 2325 struct btrfs_io_bio *btrfs_failed_bio; 2326 struct btrfs_io_bio *btrfs_bio; 2327 2328 bio = btrfs_io_bio_alloc(1); 2329 bio->bi_end_io = endio_func; 2330 bio->bi_iter.bi_sector = failrec->logical >> 9; 2331 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2332 bio->bi_iter.bi_size = 0; 2333 bio->bi_private = data; 2334 2335 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2336 if (btrfs_failed_bio->csum) { 2337 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2338 2339 btrfs_bio = btrfs_io_bio(bio); 2340 btrfs_bio->csum = btrfs_bio->csum_inline; 2341 icsum *= csum_size; 2342 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2343 csum_size); 2344 } 2345 2346 bio_add_page(bio, page, failrec->len, pg_offset); 2347 2348 return bio; 2349 } 2350 2351 /* 2352 * this is a generic handler for readpage errors (default 2353 * readpage_io_failed_hook). if other copies exist, read those and write back 2354 * good data to the failed position. does not investigate in remapping the 2355 * failed extent elsewhere, hoping the device will be smart enough to do this as 2356 * needed 2357 */ 2358 2359 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2360 struct page *page, u64 start, u64 end, 2361 int failed_mirror) 2362 { 2363 struct io_failure_record *failrec; 2364 struct inode *inode = page->mapping->host; 2365 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2366 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2367 struct bio *bio; 2368 int read_mode = 0; 2369 blk_status_t status; 2370 int ret; 2371 unsigned failed_bio_pages = bio_pages_all(failed_bio); 2372 2373 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2374 2375 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2376 if (ret) 2377 return ret; 2378 2379 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2380 failed_mirror)) { 2381 free_io_failure(failure_tree, tree, failrec); 2382 return -EIO; 2383 } 2384 2385 if (failed_bio_pages > 1) 2386 read_mode |= REQ_FAILFAST_DEV; 2387 2388 phy_offset >>= inode->i_sb->s_blocksize_bits; 2389 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2390 start - page_offset(page), 2391 (int)phy_offset, failed_bio->bi_end_io, 2392 NULL); 2393 bio->bi_opf = REQ_OP_READ | read_mode; 2394 2395 btrfs_debug(btrfs_sb(inode->i_sb), 2396 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2397 read_mode, failrec->this_mirror, failrec->in_validation); 2398 2399 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2400 failrec->bio_flags, 0); 2401 if (status) { 2402 free_io_failure(failure_tree, tree, failrec); 2403 bio_put(bio); 2404 ret = blk_status_to_errno(status); 2405 } 2406 2407 return ret; 2408 } 2409 2410 /* lots and lots of room for performance fixes in the end_bio funcs */ 2411 2412 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2413 { 2414 int uptodate = (err == 0); 2415 struct extent_io_tree *tree; 2416 int ret = 0; 2417 2418 tree = &BTRFS_I(page->mapping->host)->io_tree; 2419 2420 if (tree->ops && tree->ops->writepage_end_io_hook) 2421 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2422 uptodate); 2423 2424 if (!uptodate) { 2425 ClearPageUptodate(page); 2426 SetPageError(page); 2427 ret = err < 0 ? err : -EIO; 2428 mapping_set_error(page->mapping, ret); 2429 } 2430 } 2431 2432 /* 2433 * after a writepage IO is done, we need to: 2434 * clear the uptodate bits on error 2435 * clear the writeback bits in the extent tree for this IO 2436 * end_page_writeback if the page has no more pending IO 2437 * 2438 * Scheduling is not allowed, so the extent state tree is expected 2439 * to have one and only one object corresponding to this IO. 2440 */ 2441 static void end_bio_extent_writepage(struct bio *bio) 2442 { 2443 int error = blk_status_to_errno(bio->bi_status); 2444 struct bio_vec *bvec; 2445 u64 start; 2446 u64 end; 2447 int i; 2448 2449 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2450 bio_for_each_segment_all(bvec, bio, i) { 2451 struct page *page = bvec->bv_page; 2452 struct inode *inode = page->mapping->host; 2453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2454 2455 /* We always issue full-page reads, but if some block 2456 * in a page fails to read, blk_update_request() will 2457 * advance bv_offset and adjust bv_len to compensate. 2458 * Print a warning for nonzero offsets, and an error 2459 * if they don't add up to a full page. */ 2460 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2461 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2462 btrfs_err(fs_info, 2463 "partial page write in btrfs with offset %u and length %u", 2464 bvec->bv_offset, bvec->bv_len); 2465 else 2466 btrfs_info(fs_info, 2467 "incomplete page write in btrfs with offset %u and length %u", 2468 bvec->bv_offset, bvec->bv_len); 2469 } 2470 2471 start = page_offset(page); 2472 end = start + bvec->bv_offset + bvec->bv_len - 1; 2473 2474 end_extent_writepage(page, error, start, end); 2475 end_page_writeback(page); 2476 } 2477 2478 bio_put(bio); 2479 } 2480 2481 static void 2482 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2483 int uptodate) 2484 { 2485 struct extent_state *cached = NULL; 2486 u64 end = start + len - 1; 2487 2488 if (uptodate && tree->track_uptodate) 2489 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2490 unlock_extent_cached_atomic(tree, start, end, &cached); 2491 } 2492 2493 /* 2494 * after a readpage IO is done, we need to: 2495 * clear the uptodate bits on error 2496 * set the uptodate bits if things worked 2497 * set the page up to date if all extents in the tree are uptodate 2498 * clear the lock bit in the extent tree 2499 * unlock the page if there are no other extents locked for it 2500 * 2501 * Scheduling is not allowed, so the extent state tree is expected 2502 * to have one and only one object corresponding to this IO. 2503 */ 2504 static void end_bio_extent_readpage(struct bio *bio) 2505 { 2506 struct bio_vec *bvec; 2507 int uptodate = !bio->bi_status; 2508 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2509 struct extent_io_tree *tree, *failure_tree; 2510 u64 offset = 0; 2511 u64 start; 2512 u64 end; 2513 u64 len; 2514 u64 extent_start = 0; 2515 u64 extent_len = 0; 2516 int mirror; 2517 int ret; 2518 int i; 2519 2520 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2521 bio_for_each_segment_all(bvec, bio, i) { 2522 struct page *page = bvec->bv_page; 2523 struct inode *inode = page->mapping->host; 2524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2525 2526 btrfs_debug(fs_info, 2527 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2528 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2529 io_bio->mirror_num); 2530 tree = &BTRFS_I(inode)->io_tree; 2531 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2532 2533 /* We always issue full-page reads, but if some block 2534 * in a page fails to read, blk_update_request() will 2535 * advance bv_offset and adjust bv_len to compensate. 2536 * Print a warning for nonzero offsets, and an error 2537 * if they don't add up to a full page. */ 2538 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2539 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2540 btrfs_err(fs_info, 2541 "partial page read in btrfs with offset %u and length %u", 2542 bvec->bv_offset, bvec->bv_len); 2543 else 2544 btrfs_info(fs_info, 2545 "incomplete page read in btrfs with offset %u and length %u", 2546 bvec->bv_offset, bvec->bv_len); 2547 } 2548 2549 start = page_offset(page); 2550 end = start + bvec->bv_offset + bvec->bv_len - 1; 2551 len = bvec->bv_len; 2552 2553 mirror = io_bio->mirror_num; 2554 if (likely(uptodate && tree->ops)) { 2555 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2556 page, start, end, 2557 mirror); 2558 if (ret) 2559 uptodate = 0; 2560 else 2561 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2562 failure_tree, tree, start, 2563 page, 2564 btrfs_ino(BTRFS_I(inode)), 0); 2565 } 2566 2567 if (likely(uptodate)) 2568 goto readpage_ok; 2569 2570 if (tree->ops) { 2571 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2572 if (ret == -EAGAIN) { 2573 /* 2574 * Data inode's readpage_io_failed_hook() always 2575 * returns -EAGAIN. 2576 * 2577 * The generic bio_readpage_error handles errors 2578 * the following way: If possible, new read 2579 * requests are created and submitted and will 2580 * end up in end_bio_extent_readpage as well (if 2581 * we're lucky, not in the !uptodate case). In 2582 * that case it returns 0 and we just go on with 2583 * the next page in our bio. If it can't handle 2584 * the error it will return -EIO and we remain 2585 * responsible for that page. 2586 */ 2587 ret = bio_readpage_error(bio, offset, page, 2588 start, end, mirror); 2589 if (ret == 0) { 2590 uptodate = !bio->bi_status; 2591 offset += len; 2592 continue; 2593 } 2594 } 2595 2596 /* 2597 * metadata's readpage_io_failed_hook() always returns 2598 * -EIO and fixes nothing. -EIO is also returned if 2599 * data inode error could not be fixed. 2600 */ 2601 ASSERT(ret == -EIO); 2602 } 2603 readpage_ok: 2604 if (likely(uptodate)) { 2605 loff_t i_size = i_size_read(inode); 2606 pgoff_t end_index = i_size >> PAGE_SHIFT; 2607 unsigned off; 2608 2609 /* Zero out the end if this page straddles i_size */ 2610 off = i_size & (PAGE_SIZE-1); 2611 if (page->index == end_index && off) 2612 zero_user_segment(page, off, PAGE_SIZE); 2613 SetPageUptodate(page); 2614 } else { 2615 ClearPageUptodate(page); 2616 SetPageError(page); 2617 } 2618 unlock_page(page); 2619 offset += len; 2620 2621 if (unlikely(!uptodate)) { 2622 if (extent_len) { 2623 endio_readpage_release_extent(tree, 2624 extent_start, 2625 extent_len, 1); 2626 extent_start = 0; 2627 extent_len = 0; 2628 } 2629 endio_readpage_release_extent(tree, start, 2630 end - start + 1, 0); 2631 } else if (!extent_len) { 2632 extent_start = start; 2633 extent_len = end + 1 - start; 2634 } else if (extent_start + extent_len == start) { 2635 extent_len += end + 1 - start; 2636 } else { 2637 endio_readpage_release_extent(tree, extent_start, 2638 extent_len, uptodate); 2639 extent_start = start; 2640 extent_len = end + 1 - start; 2641 } 2642 } 2643 2644 if (extent_len) 2645 endio_readpage_release_extent(tree, extent_start, extent_len, 2646 uptodate); 2647 if (io_bio->end_io) 2648 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2649 bio_put(bio); 2650 } 2651 2652 /* 2653 * Initialize the members up to but not including 'bio'. Use after allocating a 2654 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2655 * 'bio' because use of __GFP_ZERO is not supported. 2656 */ 2657 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2658 { 2659 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2660 } 2661 2662 /* 2663 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2664 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2665 * for the appropriate container_of magic 2666 */ 2667 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2668 { 2669 struct bio *bio; 2670 2671 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2672 bio_set_dev(bio, bdev); 2673 bio->bi_iter.bi_sector = first_byte >> 9; 2674 btrfs_io_bio_init(btrfs_io_bio(bio)); 2675 return bio; 2676 } 2677 2678 struct bio *btrfs_bio_clone(struct bio *bio) 2679 { 2680 struct btrfs_io_bio *btrfs_bio; 2681 struct bio *new; 2682 2683 /* Bio allocation backed by a bioset does not fail */ 2684 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2685 btrfs_bio = btrfs_io_bio(new); 2686 btrfs_io_bio_init(btrfs_bio); 2687 btrfs_bio->iter = bio->bi_iter; 2688 return new; 2689 } 2690 2691 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2692 { 2693 struct bio *bio; 2694 2695 /* Bio allocation backed by a bioset does not fail */ 2696 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2697 btrfs_io_bio_init(btrfs_io_bio(bio)); 2698 return bio; 2699 } 2700 2701 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2702 { 2703 struct bio *bio; 2704 struct btrfs_io_bio *btrfs_bio; 2705 2706 /* this will never fail when it's backed by a bioset */ 2707 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2708 ASSERT(bio); 2709 2710 btrfs_bio = btrfs_io_bio(bio); 2711 btrfs_io_bio_init(btrfs_bio); 2712 2713 bio_trim(bio, offset >> 9, size >> 9); 2714 btrfs_bio->iter = bio->bi_iter; 2715 return bio; 2716 } 2717 2718 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2719 unsigned long bio_flags) 2720 { 2721 blk_status_t ret = 0; 2722 struct bio_vec *bvec = bio_last_bvec_all(bio); 2723 struct page *page = bvec->bv_page; 2724 struct extent_io_tree *tree = bio->bi_private; 2725 u64 start; 2726 2727 start = page_offset(page) + bvec->bv_offset; 2728 2729 bio->bi_private = NULL; 2730 2731 if (tree->ops) 2732 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2733 mirror_num, bio_flags, start); 2734 else 2735 btrfsic_submit_bio(bio); 2736 2737 return blk_status_to_errno(ret); 2738 } 2739 2740 /* 2741 * @opf: bio REQ_OP_* and REQ_* flags as one value 2742 * @tree: tree so we can call our merge_bio hook 2743 * @wbc: optional writeback control for io accounting 2744 * @page: page to add to the bio 2745 * @pg_offset: offset of the new bio or to check whether we are adding 2746 * a contiguous page to the previous one 2747 * @size: portion of page that we want to write 2748 * @offset: starting offset in the page 2749 * @bdev: attach newly created bios to this bdev 2750 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2751 * @end_io_func: end_io callback for new bio 2752 * @mirror_num: desired mirror to read/write 2753 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2754 * @bio_flags: flags of the current bio to see if we can merge them 2755 */ 2756 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2757 struct writeback_control *wbc, 2758 struct page *page, u64 offset, 2759 size_t size, unsigned long pg_offset, 2760 struct block_device *bdev, 2761 struct bio **bio_ret, 2762 bio_end_io_t end_io_func, 2763 int mirror_num, 2764 unsigned long prev_bio_flags, 2765 unsigned long bio_flags, 2766 bool force_bio_submit) 2767 { 2768 int ret = 0; 2769 struct bio *bio; 2770 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2771 sector_t sector = offset >> 9; 2772 2773 ASSERT(bio_ret); 2774 2775 if (*bio_ret) { 2776 bool contig; 2777 bool can_merge = true; 2778 2779 bio = *bio_ret; 2780 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2781 contig = bio->bi_iter.bi_sector == sector; 2782 else 2783 contig = bio_end_sector(bio) == sector; 2784 2785 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size, 2786 bio, bio_flags)) 2787 can_merge = false; 2788 2789 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2790 force_bio_submit || 2791 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2793 if (ret < 0) { 2794 *bio_ret = NULL; 2795 return ret; 2796 } 2797 bio = NULL; 2798 } else { 2799 if (wbc) 2800 wbc_account_io(wbc, page, page_size); 2801 return 0; 2802 } 2803 } 2804 2805 bio = btrfs_bio_alloc(bdev, offset); 2806 bio_add_page(bio, page, page_size, pg_offset); 2807 bio->bi_end_io = end_io_func; 2808 bio->bi_private = tree; 2809 bio->bi_write_hint = page->mapping->host->i_write_hint; 2810 bio->bi_opf = opf; 2811 if (wbc) { 2812 wbc_init_bio(wbc, bio); 2813 wbc_account_io(wbc, page, page_size); 2814 } 2815 2816 *bio_ret = bio; 2817 2818 return ret; 2819 } 2820 2821 static void attach_extent_buffer_page(struct extent_buffer *eb, 2822 struct page *page) 2823 { 2824 if (!PagePrivate(page)) { 2825 SetPagePrivate(page); 2826 get_page(page); 2827 set_page_private(page, (unsigned long)eb); 2828 } else { 2829 WARN_ON(page->private != (unsigned long)eb); 2830 } 2831 } 2832 2833 void set_page_extent_mapped(struct page *page) 2834 { 2835 if (!PagePrivate(page)) { 2836 SetPagePrivate(page); 2837 get_page(page); 2838 set_page_private(page, EXTENT_PAGE_PRIVATE); 2839 } 2840 } 2841 2842 static struct extent_map * 2843 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2844 u64 start, u64 len, get_extent_t *get_extent, 2845 struct extent_map **em_cached) 2846 { 2847 struct extent_map *em; 2848 2849 if (em_cached && *em_cached) { 2850 em = *em_cached; 2851 if (extent_map_in_tree(em) && start >= em->start && 2852 start < extent_map_end(em)) { 2853 refcount_inc(&em->refs); 2854 return em; 2855 } 2856 2857 free_extent_map(em); 2858 *em_cached = NULL; 2859 } 2860 2861 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2862 if (em_cached && !IS_ERR_OR_NULL(em)) { 2863 BUG_ON(*em_cached); 2864 refcount_inc(&em->refs); 2865 *em_cached = em; 2866 } 2867 return em; 2868 } 2869 /* 2870 * basic readpage implementation. Locked extent state structs are inserted 2871 * into the tree that are removed when the IO is done (by the end_io 2872 * handlers) 2873 * XXX JDM: This needs looking at to ensure proper page locking 2874 * return 0 on success, otherwise return error 2875 */ 2876 static int __do_readpage(struct extent_io_tree *tree, 2877 struct page *page, 2878 get_extent_t *get_extent, 2879 struct extent_map **em_cached, 2880 struct bio **bio, int mirror_num, 2881 unsigned long *bio_flags, unsigned int read_flags, 2882 u64 *prev_em_start) 2883 { 2884 struct inode *inode = page->mapping->host; 2885 u64 start = page_offset(page); 2886 const u64 end = start + PAGE_SIZE - 1; 2887 u64 cur = start; 2888 u64 extent_offset; 2889 u64 last_byte = i_size_read(inode); 2890 u64 block_start; 2891 u64 cur_end; 2892 struct extent_map *em; 2893 struct block_device *bdev; 2894 int ret = 0; 2895 int nr = 0; 2896 size_t pg_offset = 0; 2897 size_t iosize; 2898 size_t disk_io_size; 2899 size_t blocksize = inode->i_sb->s_blocksize; 2900 unsigned long this_bio_flag = 0; 2901 2902 set_page_extent_mapped(page); 2903 2904 if (!PageUptodate(page)) { 2905 if (cleancache_get_page(page) == 0) { 2906 BUG_ON(blocksize != PAGE_SIZE); 2907 unlock_extent(tree, start, end); 2908 goto out; 2909 } 2910 } 2911 2912 if (page->index == last_byte >> PAGE_SHIFT) { 2913 char *userpage; 2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2915 2916 if (zero_offset) { 2917 iosize = PAGE_SIZE - zero_offset; 2918 userpage = kmap_atomic(page); 2919 memset(userpage + zero_offset, 0, iosize); 2920 flush_dcache_page(page); 2921 kunmap_atomic(userpage); 2922 } 2923 } 2924 while (cur <= end) { 2925 bool force_bio_submit = false; 2926 u64 offset; 2927 2928 if (cur >= last_byte) { 2929 char *userpage; 2930 struct extent_state *cached = NULL; 2931 2932 iosize = PAGE_SIZE - pg_offset; 2933 userpage = kmap_atomic(page); 2934 memset(userpage + pg_offset, 0, iosize); 2935 flush_dcache_page(page); 2936 kunmap_atomic(userpage); 2937 set_extent_uptodate(tree, cur, cur + iosize - 1, 2938 &cached, GFP_NOFS); 2939 unlock_extent_cached(tree, cur, 2940 cur + iosize - 1, &cached); 2941 break; 2942 } 2943 em = __get_extent_map(inode, page, pg_offset, cur, 2944 end - cur + 1, get_extent, em_cached); 2945 if (IS_ERR_OR_NULL(em)) { 2946 SetPageError(page); 2947 unlock_extent(tree, cur, end); 2948 break; 2949 } 2950 extent_offset = cur - em->start; 2951 BUG_ON(extent_map_end(em) <= cur); 2952 BUG_ON(end < cur); 2953 2954 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2955 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2956 extent_set_compress_type(&this_bio_flag, 2957 em->compress_type); 2958 } 2959 2960 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2961 cur_end = min(extent_map_end(em) - 1, end); 2962 iosize = ALIGN(iosize, blocksize); 2963 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2964 disk_io_size = em->block_len; 2965 offset = em->block_start; 2966 } else { 2967 offset = em->block_start + extent_offset; 2968 disk_io_size = iosize; 2969 } 2970 bdev = em->bdev; 2971 block_start = em->block_start; 2972 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2973 block_start = EXTENT_MAP_HOLE; 2974 2975 /* 2976 * If we have a file range that points to a compressed extent 2977 * and it's followed by a consecutive file range that points to 2978 * to the same compressed extent (possibly with a different 2979 * offset and/or length, so it either points to the whole extent 2980 * or only part of it), we must make sure we do not submit a 2981 * single bio to populate the pages for the 2 ranges because 2982 * this makes the compressed extent read zero out the pages 2983 * belonging to the 2nd range. Imagine the following scenario: 2984 * 2985 * File layout 2986 * [0 - 8K] [8K - 24K] 2987 * | | 2988 * | | 2989 * points to extent X, points to extent X, 2990 * offset 4K, length of 8K offset 0, length 16K 2991 * 2992 * [extent X, compressed length = 4K uncompressed length = 16K] 2993 * 2994 * If the bio to read the compressed extent covers both ranges, 2995 * it will decompress extent X into the pages belonging to the 2996 * first range and then it will stop, zeroing out the remaining 2997 * pages that belong to the other range that points to extent X. 2998 * So here we make sure we submit 2 bios, one for the first 2999 * range and another one for the third range. Both will target 3000 * the same physical extent from disk, but we can't currently 3001 * make the compressed bio endio callback populate the pages 3002 * for both ranges because each compressed bio is tightly 3003 * coupled with a single extent map, and each range can have 3004 * an extent map with a different offset value relative to the 3005 * uncompressed data of our extent and different lengths. This 3006 * is a corner case so we prioritize correctness over 3007 * non-optimal behavior (submitting 2 bios for the same extent). 3008 */ 3009 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3010 prev_em_start && *prev_em_start != (u64)-1 && 3011 *prev_em_start != em->orig_start) 3012 force_bio_submit = true; 3013 3014 if (prev_em_start) 3015 *prev_em_start = em->orig_start; 3016 3017 free_extent_map(em); 3018 em = NULL; 3019 3020 /* we've found a hole, just zero and go on */ 3021 if (block_start == EXTENT_MAP_HOLE) { 3022 char *userpage; 3023 struct extent_state *cached = NULL; 3024 3025 userpage = kmap_atomic(page); 3026 memset(userpage + pg_offset, 0, iosize); 3027 flush_dcache_page(page); 3028 kunmap_atomic(userpage); 3029 3030 set_extent_uptodate(tree, cur, cur + iosize - 1, 3031 &cached, GFP_NOFS); 3032 unlock_extent_cached(tree, cur, 3033 cur + iosize - 1, &cached); 3034 cur = cur + iosize; 3035 pg_offset += iosize; 3036 continue; 3037 } 3038 /* the get_extent function already copied into the page */ 3039 if (test_range_bit(tree, cur, cur_end, 3040 EXTENT_UPTODATE, 1, NULL)) { 3041 check_page_uptodate(tree, page); 3042 unlock_extent(tree, cur, cur + iosize - 1); 3043 cur = cur + iosize; 3044 pg_offset += iosize; 3045 continue; 3046 } 3047 /* we have an inline extent but it didn't get marked up 3048 * to date. Error out 3049 */ 3050 if (block_start == EXTENT_MAP_INLINE) { 3051 SetPageError(page); 3052 unlock_extent(tree, cur, cur + iosize - 1); 3053 cur = cur + iosize; 3054 pg_offset += iosize; 3055 continue; 3056 } 3057 3058 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3059 page, offset, disk_io_size, 3060 pg_offset, bdev, bio, 3061 end_bio_extent_readpage, mirror_num, 3062 *bio_flags, 3063 this_bio_flag, 3064 force_bio_submit); 3065 if (!ret) { 3066 nr++; 3067 *bio_flags = this_bio_flag; 3068 } else { 3069 SetPageError(page); 3070 unlock_extent(tree, cur, cur + iosize - 1); 3071 goto out; 3072 } 3073 cur = cur + iosize; 3074 pg_offset += iosize; 3075 } 3076 out: 3077 if (!nr) { 3078 if (!PageError(page)) 3079 SetPageUptodate(page); 3080 unlock_page(page); 3081 } 3082 return ret; 3083 } 3084 3085 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3086 struct page *pages[], int nr_pages, 3087 u64 start, u64 end, 3088 struct extent_map **em_cached, 3089 struct bio **bio, 3090 unsigned long *bio_flags, 3091 u64 *prev_em_start) 3092 { 3093 struct inode *inode; 3094 struct btrfs_ordered_extent *ordered; 3095 int index; 3096 3097 inode = pages[0]->mapping->host; 3098 while (1) { 3099 lock_extent(tree, start, end); 3100 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3101 end - start + 1); 3102 if (!ordered) 3103 break; 3104 unlock_extent(tree, start, end); 3105 btrfs_start_ordered_extent(inode, ordered, 1); 3106 btrfs_put_ordered_extent(ordered); 3107 } 3108 3109 for (index = 0; index < nr_pages; index++) { 3110 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3111 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3112 put_page(pages[index]); 3113 } 3114 } 3115 3116 static void __extent_readpages(struct extent_io_tree *tree, 3117 struct page *pages[], 3118 int nr_pages, 3119 struct extent_map **em_cached, 3120 struct bio **bio, unsigned long *bio_flags, 3121 u64 *prev_em_start) 3122 { 3123 u64 start = 0; 3124 u64 end = 0; 3125 u64 page_start; 3126 int index; 3127 int first_index = 0; 3128 3129 for (index = 0; index < nr_pages; index++) { 3130 page_start = page_offset(pages[index]); 3131 if (!end) { 3132 start = page_start; 3133 end = start + PAGE_SIZE - 1; 3134 first_index = index; 3135 } else if (end + 1 == page_start) { 3136 end += PAGE_SIZE; 3137 } else { 3138 __do_contiguous_readpages(tree, &pages[first_index], 3139 index - first_index, start, 3140 end, em_cached, 3141 bio, bio_flags, 3142 prev_em_start); 3143 start = page_start; 3144 end = start + PAGE_SIZE - 1; 3145 first_index = index; 3146 } 3147 } 3148 3149 if (end) 3150 __do_contiguous_readpages(tree, &pages[first_index], 3151 index - first_index, start, 3152 end, em_cached, bio, 3153 bio_flags, prev_em_start); 3154 } 3155 3156 static int __extent_read_full_page(struct extent_io_tree *tree, 3157 struct page *page, 3158 get_extent_t *get_extent, 3159 struct bio **bio, int mirror_num, 3160 unsigned long *bio_flags, 3161 unsigned int read_flags) 3162 { 3163 struct inode *inode = page->mapping->host; 3164 struct btrfs_ordered_extent *ordered; 3165 u64 start = page_offset(page); 3166 u64 end = start + PAGE_SIZE - 1; 3167 int ret; 3168 3169 while (1) { 3170 lock_extent(tree, start, end); 3171 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3172 PAGE_SIZE); 3173 if (!ordered) 3174 break; 3175 unlock_extent(tree, start, end); 3176 btrfs_start_ordered_extent(inode, ordered, 1); 3177 btrfs_put_ordered_extent(ordered); 3178 } 3179 3180 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3181 bio_flags, read_flags, NULL); 3182 return ret; 3183 } 3184 3185 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3186 get_extent_t *get_extent, int mirror_num) 3187 { 3188 struct bio *bio = NULL; 3189 unsigned long bio_flags = 0; 3190 int ret; 3191 3192 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3193 &bio_flags, 0); 3194 if (bio) 3195 ret = submit_one_bio(bio, mirror_num, bio_flags); 3196 return ret; 3197 } 3198 3199 static void update_nr_written(struct writeback_control *wbc, 3200 unsigned long nr_written) 3201 { 3202 wbc->nr_to_write -= nr_written; 3203 } 3204 3205 /* 3206 * helper for __extent_writepage, doing all of the delayed allocation setup. 3207 * 3208 * This returns 1 if our fill_delalloc function did all the work required 3209 * to write the page (copy into inline extent). In this case the IO has 3210 * been started and the page is already unlocked. 3211 * 3212 * This returns 0 if all went well (page still locked) 3213 * This returns < 0 if there were errors (page still locked) 3214 */ 3215 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3216 struct page *page, struct writeback_control *wbc, 3217 struct extent_page_data *epd, 3218 u64 delalloc_start, 3219 unsigned long *nr_written) 3220 { 3221 struct extent_io_tree *tree = epd->tree; 3222 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3223 u64 nr_delalloc; 3224 u64 delalloc_to_write = 0; 3225 u64 delalloc_end = 0; 3226 int ret; 3227 int page_started = 0; 3228 3229 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3230 return 0; 3231 3232 while (delalloc_end < page_end) { 3233 nr_delalloc = find_lock_delalloc_range(inode, tree, 3234 page, 3235 &delalloc_start, 3236 &delalloc_end, 3237 BTRFS_MAX_EXTENT_SIZE); 3238 if (nr_delalloc == 0) { 3239 delalloc_start = delalloc_end + 1; 3240 continue; 3241 } 3242 ret = tree->ops->fill_delalloc(inode, page, 3243 delalloc_start, 3244 delalloc_end, 3245 &page_started, 3246 nr_written, wbc); 3247 /* File system has been set read-only */ 3248 if (ret) { 3249 SetPageError(page); 3250 /* fill_delalloc should be return < 0 for error 3251 * but just in case, we use > 0 here meaning the 3252 * IO is started, so we don't want to return > 0 3253 * unless things are going well. 3254 */ 3255 ret = ret < 0 ? ret : -EIO; 3256 goto done; 3257 } 3258 /* 3259 * delalloc_end is already one less than the total length, so 3260 * we don't subtract one from PAGE_SIZE 3261 */ 3262 delalloc_to_write += (delalloc_end - delalloc_start + 3263 PAGE_SIZE) >> PAGE_SHIFT; 3264 delalloc_start = delalloc_end + 1; 3265 } 3266 if (wbc->nr_to_write < delalloc_to_write) { 3267 int thresh = 8192; 3268 3269 if (delalloc_to_write < thresh * 2) 3270 thresh = delalloc_to_write; 3271 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3272 thresh); 3273 } 3274 3275 /* did the fill delalloc function already unlock and start 3276 * the IO? 3277 */ 3278 if (page_started) { 3279 /* 3280 * we've unlocked the page, so we can't update 3281 * the mapping's writeback index, just update 3282 * nr_to_write. 3283 */ 3284 wbc->nr_to_write -= *nr_written; 3285 return 1; 3286 } 3287 3288 ret = 0; 3289 3290 done: 3291 return ret; 3292 } 3293 3294 /* 3295 * helper for __extent_writepage. This calls the writepage start hooks, 3296 * and does the loop to map the page into extents and bios. 3297 * 3298 * We return 1 if the IO is started and the page is unlocked, 3299 * 0 if all went well (page still locked) 3300 * < 0 if there were errors (page still locked) 3301 */ 3302 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3303 struct page *page, 3304 struct writeback_control *wbc, 3305 struct extent_page_data *epd, 3306 loff_t i_size, 3307 unsigned long nr_written, 3308 unsigned int write_flags, int *nr_ret) 3309 { 3310 struct extent_io_tree *tree = epd->tree; 3311 u64 start = page_offset(page); 3312 u64 page_end = start + PAGE_SIZE - 1; 3313 u64 end; 3314 u64 cur = start; 3315 u64 extent_offset; 3316 u64 block_start; 3317 u64 iosize; 3318 struct extent_map *em; 3319 struct block_device *bdev; 3320 size_t pg_offset = 0; 3321 size_t blocksize; 3322 int ret = 0; 3323 int nr = 0; 3324 bool compressed; 3325 3326 if (tree->ops && tree->ops->writepage_start_hook) { 3327 ret = tree->ops->writepage_start_hook(page, start, 3328 page_end); 3329 if (ret) { 3330 /* Fixup worker will requeue */ 3331 if (ret == -EBUSY) 3332 wbc->pages_skipped++; 3333 else 3334 redirty_page_for_writepage(wbc, page); 3335 3336 update_nr_written(wbc, nr_written); 3337 unlock_page(page); 3338 return 1; 3339 } 3340 } 3341 3342 /* 3343 * we don't want to touch the inode after unlocking the page, 3344 * so we update the mapping writeback index now 3345 */ 3346 update_nr_written(wbc, nr_written + 1); 3347 3348 end = page_end; 3349 if (i_size <= start) { 3350 if (tree->ops && tree->ops->writepage_end_io_hook) 3351 tree->ops->writepage_end_io_hook(page, start, 3352 page_end, NULL, 1); 3353 goto done; 3354 } 3355 3356 blocksize = inode->i_sb->s_blocksize; 3357 3358 while (cur <= end) { 3359 u64 em_end; 3360 u64 offset; 3361 3362 if (cur >= i_size) { 3363 if (tree->ops && tree->ops->writepage_end_io_hook) 3364 tree->ops->writepage_end_io_hook(page, cur, 3365 page_end, NULL, 1); 3366 break; 3367 } 3368 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3369 end - cur + 1, 1); 3370 if (IS_ERR_OR_NULL(em)) { 3371 SetPageError(page); 3372 ret = PTR_ERR_OR_ZERO(em); 3373 break; 3374 } 3375 3376 extent_offset = cur - em->start; 3377 em_end = extent_map_end(em); 3378 BUG_ON(em_end <= cur); 3379 BUG_ON(end < cur); 3380 iosize = min(em_end - cur, end - cur + 1); 3381 iosize = ALIGN(iosize, blocksize); 3382 offset = em->block_start + extent_offset; 3383 bdev = em->bdev; 3384 block_start = em->block_start; 3385 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3386 free_extent_map(em); 3387 em = NULL; 3388 3389 /* 3390 * compressed and inline extents are written through other 3391 * paths in the FS 3392 */ 3393 if (compressed || block_start == EXTENT_MAP_HOLE || 3394 block_start == EXTENT_MAP_INLINE) { 3395 /* 3396 * end_io notification does not happen here for 3397 * compressed extents 3398 */ 3399 if (!compressed && tree->ops && 3400 tree->ops->writepage_end_io_hook) 3401 tree->ops->writepage_end_io_hook(page, cur, 3402 cur + iosize - 1, 3403 NULL, 1); 3404 else if (compressed) { 3405 /* we don't want to end_page_writeback on 3406 * a compressed extent. this happens 3407 * elsewhere 3408 */ 3409 nr++; 3410 } 3411 3412 cur += iosize; 3413 pg_offset += iosize; 3414 continue; 3415 } 3416 3417 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3418 if (!PageWriteback(page)) { 3419 btrfs_err(BTRFS_I(inode)->root->fs_info, 3420 "page %lu not writeback, cur %llu end %llu", 3421 page->index, cur, end); 3422 } 3423 3424 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3425 page, offset, iosize, pg_offset, 3426 bdev, &epd->bio, 3427 end_bio_extent_writepage, 3428 0, 0, 0, false); 3429 if (ret) { 3430 SetPageError(page); 3431 if (PageWriteback(page)) 3432 end_page_writeback(page); 3433 } 3434 3435 cur = cur + iosize; 3436 pg_offset += iosize; 3437 nr++; 3438 } 3439 done: 3440 *nr_ret = nr; 3441 return ret; 3442 } 3443 3444 /* 3445 * the writepage semantics are similar to regular writepage. extent 3446 * records are inserted to lock ranges in the tree, and as dirty areas 3447 * are found, they are marked writeback. Then the lock bits are removed 3448 * and the end_io handler clears the writeback ranges 3449 */ 3450 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3451 struct extent_page_data *epd) 3452 { 3453 struct inode *inode = page->mapping->host; 3454 u64 start = page_offset(page); 3455 u64 page_end = start + PAGE_SIZE - 1; 3456 int ret; 3457 int nr = 0; 3458 size_t pg_offset = 0; 3459 loff_t i_size = i_size_read(inode); 3460 unsigned long end_index = i_size >> PAGE_SHIFT; 3461 unsigned int write_flags = 0; 3462 unsigned long nr_written = 0; 3463 3464 write_flags = wbc_to_write_flags(wbc); 3465 3466 trace___extent_writepage(page, inode, wbc); 3467 3468 WARN_ON(!PageLocked(page)); 3469 3470 ClearPageError(page); 3471 3472 pg_offset = i_size & (PAGE_SIZE - 1); 3473 if (page->index > end_index || 3474 (page->index == end_index && !pg_offset)) { 3475 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3476 unlock_page(page); 3477 return 0; 3478 } 3479 3480 if (page->index == end_index) { 3481 char *userpage; 3482 3483 userpage = kmap_atomic(page); 3484 memset(userpage + pg_offset, 0, 3485 PAGE_SIZE - pg_offset); 3486 kunmap_atomic(userpage); 3487 flush_dcache_page(page); 3488 } 3489 3490 pg_offset = 0; 3491 3492 set_page_extent_mapped(page); 3493 3494 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3495 if (ret == 1) 3496 goto done_unlocked; 3497 if (ret) 3498 goto done; 3499 3500 ret = __extent_writepage_io(inode, page, wbc, epd, 3501 i_size, nr_written, write_flags, &nr); 3502 if (ret == 1) 3503 goto done_unlocked; 3504 3505 done: 3506 if (nr == 0) { 3507 /* make sure the mapping tag for page dirty gets cleared */ 3508 set_page_writeback(page); 3509 end_page_writeback(page); 3510 } 3511 if (PageError(page)) { 3512 ret = ret < 0 ? ret : -EIO; 3513 end_extent_writepage(page, ret, start, page_end); 3514 } 3515 unlock_page(page); 3516 return ret; 3517 3518 done_unlocked: 3519 return 0; 3520 } 3521 3522 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3523 { 3524 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3525 TASK_UNINTERRUPTIBLE); 3526 } 3527 3528 static noinline_for_stack int 3529 lock_extent_buffer_for_io(struct extent_buffer *eb, 3530 struct btrfs_fs_info *fs_info, 3531 struct extent_page_data *epd) 3532 { 3533 int i, num_pages; 3534 int flush = 0; 3535 int ret = 0; 3536 3537 if (!btrfs_try_tree_write_lock(eb)) { 3538 flush = 1; 3539 flush_write_bio(epd); 3540 btrfs_tree_lock(eb); 3541 } 3542 3543 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3544 btrfs_tree_unlock(eb); 3545 if (!epd->sync_io) 3546 return 0; 3547 if (!flush) { 3548 flush_write_bio(epd); 3549 flush = 1; 3550 } 3551 while (1) { 3552 wait_on_extent_buffer_writeback(eb); 3553 btrfs_tree_lock(eb); 3554 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3555 break; 3556 btrfs_tree_unlock(eb); 3557 } 3558 } 3559 3560 /* 3561 * We need to do this to prevent races in people who check if the eb is 3562 * under IO since we can end up having no IO bits set for a short period 3563 * of time. 3564 */ 3565 spin_lock(&eb->refs_lock); 3566 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3567 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3568 spin_unlock(&eb->refs_lock); 3569 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3570 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3571 -eb->len, 3572 fs_info->dirty_metadata_batch); 3573 ret = 1; 3574 } else { 3575 spin_unlock(&eb->refs_lock); 3576 } 3577 3578 btrfs_tree_unlock(eb); 3579 3580 if (!ret) 3581 return ret; 3582 3583 num_pages = num_extent_pages(eb); 3584 for (i = 0; i < num_pages; i++) { 3585 struct page *p = eb->pages[i]; 3586 3587 if (!trylock_page(p)) { 3588 if (!flush) { 3589 flush_write_bio(epd); 3590 flush = 1; 3591 } 3592 lock_page(p); 3593 } 3594 } 3595 3596 return ret; 3597 } 3598 3599 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3600 { 3601 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3602 smp_mb__after_atomic(); 3603 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3604 } 3605 3606 static void set_btree_ioerr(struct page *page) 3607 { 3608 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3609 3610 SetPageError(page); 3611 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3612 return; 3613 3614 /* 3615 * If writeback for a btree extent that doesn't belong to a log tree 3616 * failed, increment the counter transaction->eb_write_errors. 3617 * We do this because while the transaction is running and before it's 3618 * committing (when we call filemap_fdata[write|wait]_range against 3619 * the btree inode), we might have 3620 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3621 * returns an error or an error happens during writeback, when we're 3622 * committing the transaction we wouldn't know about it, since the pages 3623 * can be no longer dirty nor marked anymore for writeback (if a 3624 * subsequent modification to the extent buffer didn't happen before the 3625 * transaction commit), which makes filemap_fdata[write|wait]_range not 3626 * able to find the pages tagged with SetPageError at transaction 3627 * commit time. So if this happens we must abort the transaction, 3628 * otherwise we commit a super block with btree roots that point to 3629 * btree nodes/leafs whose content on disk is invalid - either garbage 3630 * or the content of some node/leaf from a past generation that got 3631 * cowed or deleted and is no longer valid. 3632 * 3633 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3634 * not be enough - we need to distinguish between log tree extents vs 3635 * non-log tree extents, and the next filemap_fdatawait_range() call 3636 * will catch and clear such errors in the mapping - and that call might 3637 * be from a log sync and not from a transaction commit. Also, checking 3638 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3639 * not done and would not be reliable - the eb might have been released 3640 * from memory and reading it back again means that flag would not be 3641 * set (since it's a runtime flag, not persisted on disk). 3642 * 3643 * Using the flags below in the btree inode also makes us achieve the 3644 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3645 * writeback for all dirty pages and before filemap_fdatawait_range() 3646 * is called, the writeback for all dirty pages had already finished 3647 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3648 * filemap_fdatawait_range() would return success, as it could not know 3649 * that writeback errors happened (the pages were no longer tagged for 3650 * writeback). 3651 */ 3652 switch (eb->log_index) { 3653 case -1: 3654 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3655 break; 3656 case 0: 3657 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3658 break; 3659 case 1: 3660 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3661 break; 3662 default: 3663 BUG(); /* unexpected, logic error */ 3664 } 3665 } 3666 3667 static void end_bio_extent_buffer_writepage(struct bio *bio) 3668 { 3669 struct bio_vec *bvec; 3670 struct extent_buffer *eb; 3671 int i, done; 3672 3673 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3674 bio_for_each_segment_all(bvec, bio, i) { 3675 struct page *page = bvec->bv_page; 3676 3677 eb = (struct extent_buffer *)page->private; 3678 BUG_ON(!eb); 3679 done = atomic_dec_and_test(&eb->io_pages); 3680 3681 if (bio->bi_status || 3682 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3683 ClearPageUptodate(page); 3684 set_btree_ioerr(page); 3685 } 3686 3687 end_page_writeback(page); 3688 3689 if (!done) 3690 continue; 3691 3692 end_extent_buffer_writeback(eb); 3693 } 3694 3695 bio_put(bio); 3696 } 3697 3698 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3699 struct btrfs_fs_info *fs_info, 3700 struct writeback_control *wbc, 3701 struct extent_page_data *epd) 3702 { 3703 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3704 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3705 u64 offset = eb->start; 3706 u32 nritems; 3707 int i, num_pages; 3708 unsigned long start, end; 3709 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3710 int ret = 0; 3711 3712 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3713 num_pages = num_extent_pages(eb); 3714 atomic_set(&eb->io_pages, num_pages); 3715 3716 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3717 nritems = btrfs_header_nritems(eb); 3718 if (btrfs_header_level(eb) > 0) { 3719 end = btrfs_node_key_ptr_offset(nritems); 3720 3721 memzero_extent_buffer(eb, end, eb->len - end); 3722 } else { 3723 /* 3724 * leaf: 3725 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3726 */ 3727 start = btrfs_item_nr_offset(nritems); 3728 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3729 memzero_extent_buffer(eb, start, end - start); 3730 } 3731 3732 for (i = 0; i < num_pages; i++) { 3733 struct page *p = eb->pages[i]; 3734 3735 clear_page_dirty_for_io(p); 3736 set_page_writeback(p); 3737 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3738 p, offset, PAGE_SIZE, 0, bdev, 3739 &epd->bio, 3740 end_bio_extent_buffer_writepage, 3741 0, 0, 0, false); 3742 if (ret) { 3743 set_btree_ioerr(p); 3744 if (PageWriteback(p)) 3745 end_page_writeback(p); 3746 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3747 end_extent_buffer_writeback(eb); 3748 ret = -EIO; 3749 break; 3750 } 3751 offset += PAGE_SIZE; 3752 update_nr_written(wbc, 1); 3753 unlock_page(p); 3754 } 3755 3756 if (unlikely(ret)) { 3757 for (; i < num_pages; i++) { 3758 struct page *p = eb->pages[i]; 3759 clear_page_dirty_for_io(p); 3760 unlock_page(p); 3761 } 3762 } 3763 3764 return ret; 3765 } 3766 3767 int btree_write_cache_pages(struct address_space *mapping, 3768 struct writeback_control *wbc) 3769 { 3770 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3771 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3772 struct extent_buffer *eb, *prev_eb = NULL; 3773 struct extent_page_data epd = { 3774 .bio = NULL, 3775 .tree = tree, 3776 .extent_locked = 0, 3777 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3778 }; 3779 int ret = 0; 3780 int done = 0; 3781 int nr_to_write_done = 0; 3782 struct pagevec pvec; 3783 int nr_pages; 3784 pgoff_t index; 3785 pgoff_t end; /* Inclusive */ 3786 int scanned = 0; 3787 xa_mark_t tag; 3788 3789 pagevec_init(&pvec); 3790 if (wbc->range_cyclic) { 3791 index = mapping->writeback_index; /* Start from prev offset */ 3792 end = -1; 3793 } else { 3794 index = wbc->range_start >> PAGE_SHIFT; 3795 end = wbc->range_end >> PAGE_SHIFT; 3796 scanned = 1; 3797 } 3798 if (wbc->sync_mode == WB_SYNC_ALL) 3799 tag = PAGECACHE_TAG_TOWRITE; 3800 else 3801 tag = PAGECACHE_TAG_DIRTY; 3802 retry: 3803 if (wbc->sync_mode == WB_SYNC_ALL) 3804 tag_pages_for_writeback(mapping, index, end); 3805 while (!done && !nr_to_write_done && (index <= end) && 3806 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3807 tag))) { 3808 unsigned i; 3809 3810 scanned = 1; 3811 for (i = 0; i < nr_pages; i++) { 3812 struct page *page = pvec.pages[i]; 3813 3814 if (!PagePrivate(page)) 3815 continue; 3816 3817 spin_lock(&mapping->private_lock); 3818 if (!PagePrivate(page)) { 3819 spin_unlock(&mapping->private_lock); 3820 continue; 3821 } 3822 3823 eb = (struct extent_buffer *)page->private; 3824 3825 /* 3826 * Shouldn't happen and normally this would be a BUG_ON 3827 * but no sense in crashing the users box for something 3828 * we can survive anyway. 3829 */ 3830 if (WARN_ON(!eb)) { 3831 spin_unlock(&mapping->private_lock); 3832 continue; 3833 } 3834 3835 if (eb == prev_eb) { 3836 spin_unlock(&mapping->private_lock); 3837 continue; 3838 } 3839 3840 ret = atomic_inc_not_zero(&eb->refs); 3841 spin_unlock(&mapping->private_lock); 3842 if (!ret) 3843 continue; 3844 3845 prev_eb = eb; 3846 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3847 if (!ret) { 3848 free_extent_buffer(eb); 3849 continue; 3850 } 3851 3852 ret = write_one_eb(eb, fs_info, wbc, &epd); 3853 if (ret) { 3854 done = 1; 3855 free_extent_buffer(eb); 3856 break; 3857 } 3858 free_extent_buffer(eb); 3859 3860 /* 3861 * the filesystem may choose to bump up nr_to_write. 3862 * We have to make sure to honor the new nr_to_write 3863 * at any time 3864 */ 3865 nr_to_write_done = wbc->nr_to_write <= 0; 3866 } 3867 pagevec_release(&pvec); 3868 cond_resched(); 3869 } 3870 if (!scanned && !done) { 3871 /* 3872 * We hit the last page and there is more work to be done: wrap 3873 * back to the start of the file 3874 */ 3875 scanned = 1; 3876 index = 0; 3877 goto retry; 3878 } 3879 flush_write_bio(&epd); 3880 return ret; 3881 } 3882 3883 /** 3884 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3885 * @mapping: address space structure to write 3886 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3887 * @data: data passed to __extent_writepage function 3888 * 3889 * If a page is already under I/O, write_cache_pages() skips it, even 3890 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3891 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3892 * and msync() need to guarantee that all the data which was dirty at the time 3893 * the call was made get new I/O started against them. If wbc->sync_mode is 3894 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3895 * existing IO to complete. 3896 */ 3897 static int extent_write_cache_pages(struct address_space *mapping, 3898 struct writeback_control *wbc, 3899 struct extent_page_data *epd) 3900 { 3901 struct inode *inode = mapping->host; 3902 int ret = 0; 3903 int done = 0; 3904 int nr_to_write_done = 0; 3905 struct pagevec pvec; 3906 int nr_pages; 3907 pgoff_t index; 3908 pgoff_t end; /* Inclusive */ 3909 pgoff_t done_index; 3910 int range_whole = 0; 3911 int scanned = 0; 3912 xa_mark_t tag; 3913 3914 /* 3915 * We have to hold onto the inode so that ordered extents can do their 3916 * work when the IO finishes. The alternative to this is failing to add 3917 * an ordered extent if the igrab() fails there and that is a huge pain 3918 * to deal with, so instead just hold onto the inode throughout the 3919 * writepages operation. If it fails here we are freeing up the inode 3920 * anyway and we'd rather not waste our time writing out stuff that is 3921 * going to be truncated anyway. 3922 */ 3923 if (!igrab(inode)) 3924 return 0; 3925 3926 pagevec_init(&pvec); 3927 if (wbc->range_cyclic) { 3928 index = mapping->writeback_index; /* Start from prev offset */ 3929 end = -1; 3930 } else { 3931 index = wbc->range_start >> PAGE_SHIFT; 3932 end = wbc->range_end >> PAGE_SHIFT; 3933 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3934 range_whole = 1; 3935 scanned = 1; 3936 } 3937 if (wbc->sync_mode == WB_SYNC_ALL) 3938 tag = PAGECACHE_TAG_TOWRITE; 3939 else 3940 tag = PAGECACHE_TAG_DIRTY; 3941 retry: 3942 if (wbc->sync_mode == WB_SYNC_ALL) 3943 tag_pages_for_writeback(mapping, index, end); 3944 done_index = index; 3945 while (!done && !nr_to_write_done && (index <= end) && 3946 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3947 &index, end, tag))) { 3948 unsigned i; 3949 3950 scanned = 1; 3951 for (i = 0; i < nr_pages; i++) { 3952 struct page *page = pvec.pages[i]; 3953 3954 done_index = page->index; 3955 /* 3956 * At this point we hold neither the i_pages lock nor 3957 * the page lock: the page may be truncated or 3958 * invalidated (changing page->mapping to NULL), 3959 * or even swizzled back from swapper_space to 3960 * tmpfs file mapping 3961 */ 3962 if (!trylock_page(page)) { 3963 flush_write_bio(epd); 3964 lock_page(page); 3965 } 3966 3967 if (unlikely(page->mapping != mapping)) { 3968 unlock_page(page); 3969 continue; 3970 } 3971 3972 if (wbc->sync_mode != WB_SYNC_NONE) { 3973 if (PageWriteback(page)) 3974 flush_write_bio(epd); 3975 wait_on_page_writeback(page); 3976 } 3977 3978 if (PageWriteback(page) || 3979 !clear_page_dirty_for_io(page)) { 3980 unlock_page(page); 3981 continue; 3982 } 3983 3984 ret = __extent_writepage(page, wbc, epd); 3985 3986 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3987 unlock_page(page); 3988 ret = 0; 3989 } 3990 if (ret < 0) { 3991 /* 3992 * done_index is set past this page, 3993 * so media errors will not choke 3994 * background writeout for the entire 3995 * file. This has consequences for 3996 * range_cyclic semantics (ie. it may 3997 * not be suitable for data integrity 3998 * writeout). 3999 */ 4000 done_index = page->index + 1; 4001 done = 1; 4002 break; 4003 } 4004 4005 /* 4006 * the filesystem may choose to bump up nr_to_write. 4007 * We have to make sure to honor the new nr_to_write 4008 * at any time 4009 */ 4010 nr_to_write_done = wbc->nr_to_write <= 0; 4011 } 4012 pagevec_release(&pvec); 4013 cond_resched(); 4014 } 4015 if (!scanned && !done) { 4016 /* 4017 * We hit the last page and there is more work to be done: wrap 4018 * back to the start of the file 4019 */ 4020 scanned = 1; 4021 index = 0; 4022 goto retry; 4023 } 4024 4025 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4026 mapping->writeback_index = done_index; 4027 4028 btrfs_add_delayed_iput(inode); 4029 return ret; 4030 } 4031 4032 static void flush_write_bio(struct extent_page_data *epd) 4033 { 4034 if (epd->bio) { 4035 int ret; 4036 4037 ret = submit_one_bio(epd->bio, 0, 0); 4038 BUG_ON(ret < 0); /* -ENOMEM */ 4039 epd->bio = NULL; 4040 } 4041 } 4042 4043 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4044 { 4045 int ret; 4046 struct extent_page_data epd = { 4047 .bio = NULL, 4048 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4049 .extent_locked = 0, 4050 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4051 }; 4052 4053 ret = __extent_writepage(page, wbc, &epd); 4054 4055 flush_write_bio(&epd); 4056 return ret; 4057 } 4058 4059 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4060 int mode) 4061 { 4062 int ret = 0; 4063 struct address_space *mapping = inode->i_mapping; 4064 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4065 struct page *page; 4066 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4067 PAGE_SHIFT; 4068 4069 struct extent_page_data epd = { 4070 .bio = NULL, 4071 .tree = tree, 4072 .extent_locked = 1, 4073 .sync_io = mode == WB_SYNC_ALL, 4074 }; 4075 struct writeback_control wbc_writepages = { 4076 .sync_mode = mode, 4077 .nr_to_write = nr_pages * 2, 4078 .range_start = start, 4079 .range_end = end + 1, 4080 }; 4081 4082 while (start <= end) { 4083 page = find_get_page(mapping, start >> PAGE_SHIFT); 4084 if (clear_page_dirty_for_io(page)) 4085 ret = __extent_writepage(page, &wbc_writepages, &epd); 4086 else { 4087 if (tree->ops && tree->ops->writepage_end_io_hook) 4088 tree->ops->writepage_end_io_hook(page, start, 4089 start + PAGE_SIZE - 1, 4090 NULL, 1); 4091 unlock_page(page); 4092 } 4093 put_page(page); 4094 start += PAGE_SIZE; 4095 } 4096 4097 flush_write_bio(&epd); 4098 return ret; 4099 } 4100 4101 int extent_writepages(struct address_space *mapping, 4102 struct writeback_control *wbc) 4103 { 4104 int ret = 0; 4105 struct extent_page_data epd = { 4106 .bio = NULL, 4107 .tree = &BTRFS_I(mapping->host)->io_tree, 4108 .extent_locked = 0, 4109 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4110 }; 4111 4112 ret = extent_write_cache_pages(mapping, wbc, &epd); 4113 flush_write_bio(&epd); 4114 return ret; 4115 } 4116 4117 int extent_readpages(struct address_space *mapping, struct list_head *pages, 4118 unsigned nr_pages) 4119 { 4120 struct bio *bio = NULL; 4121 unsigned page_idx; 4122 unsigned long bio_flags = 0; 4123 struct page *pagepool[16]; 4124 struct page *page; 4125 struct extent_map *em_cached = NULL; 4126 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 4127 int nr = 0; 4128 u64 prev_em_start = (u64)-1; 4129 4130 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4131 page = list_entry(pages->prev, struct page, lru); 4132 4133 prefetchw(&page->flags); 4134 list_del(&page->lru); 4135 if (add_to_page_cache_lru(page, mapping, 4136 page->index, 4137 readahead_gfp_mask(mapping))) { 4138 put_page(page); 4139 continue; 4140 } 4141 4142 pagepool[nr++] = page; 4143 if (nr < ARRAY_SIZE(pagepool)) 4144 continue; 4145 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4146 &bio_flags, &prev_em_start); 4147 nr = 0; 4148 } 4149 if (nr) 4150 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4151 &bio_flags, &prev_em_start); 4152 4153 if (em_cached) 4154 free_extent_map(em_cached); 4155 4156 BUG_ON(!list_empty(pages)); 4157 if (bio) 4158 return submit_one_bio(bio, 0, bio_flags); 4159 return 0; 4160 } 4161 4162 /* 4163 * basic invalidatepage code, this waits on any locked or writeback 4164 * ranges corresponding to the page, and then deletes any extent state 4165 * records from the tree 4166 */ 4167 int extent_invalidatepage(struct extent_io_tree *tree, 4168 struct page *page, unsigned long offset) 4169 { 4170 struct extent_state *cached_state = NULL; 4171 u64 start = page_offset(page); 4172 u64 end = start + PAGE_SIZE - 1; 4173 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4174 4175 start += ALIGN(offset, blocksize); 4176 if (start > end) 4177 return 0; 4178 4179 lock_extent_bits(tree, start, end, &cached_state); 4180 wait_on_page_writeback(page); 4181 clear_extent_bit(tree, start, end, 4182 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4183 EXTENT_DO_ACCOUNTING, 4184 1, 1, &cached_state); 4185 return 0; 4186 } 4187 4188 /* 4189 * a helper for releasepage, this tests for areas of the page that 4190 * are locked or under IO and drops the related state bits if it is safe 4191 * to drop the page. 4192 */ 4193 static int try_release_extent_state(struct extent_io_tree *tree, 4194 struct page *page, gfp_t mask) 4195 { 4196 u64 start = page_offset(page); 4197 u64 end = start + PAGE_SIZE - 1; 4198 int ret = 1; 4199 4200 if (test_range_bit(tree, start, end, 4201 EXTENT_IOBITS, 0, NULL)) 4202 ret = 0; 4203 else { 4204 /* 4205 * at this point we can safely clear everything except the 4206 * locked bit and the nodatasum bit 4207 */ 4208 ret = __clear_extent_bit(tree, start, end, 4209 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4210 0, 0, NULL, mask, NULL); 4211 4212 /* if clear_extent_bit failed for enomem reasons, 4213 * we can't allow the release to continue. 4214 */ 4215 if (ret < 0) 4216 ret = 0; 4217 else 4218 ret = 1; 4219 } 4220 return ret; 4221 } 4222 4223 /* 4224 * a helper for releasepage. As long as there are no locked extents 4225 * in the range corresponding to the page, both state records and extent 4226 * map records are removed 4227 */ 4228 int try_release_extent_mapping(struct page *page, gfp_t mask) 4229 { 4230 struct extent_map *em; 4231 u64 start = page_offset(page); 4232 u64 end = start + PAGE_SIZE - 1; 4233 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4234 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4235 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4236 4237 if (gfpflags_allow_blocking(mask) && 4238 page->mapping->host->i_size > SZ_16M) { 4239 u64 len; 4240 while (start <= end) { 4241 len = end - start + 1; 4242 write_lock(&map->lock); 4243 em = lookup_extent_mapping(map, start, len); 4244 if (!em) { 4245 write_unlock(&map->lock); 4246 break; 4247 } 4248 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4249 em->start != start) { 4250 write_unlock(&map->lock); 4251 free_extent_map(em); 4252 break; 4253 } 4254 if (!test_range_bit(tree, em->start, 4255 extent_map_end(em) - 1, 4256 EXTENT_LOCKED | EXTENT_WRITEBACK, 4257 0, NULL)) { 4258 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4259 &btrfs_inode->runtime_flags); 4260 remove_extent_mapping(map, em); 4261 /* once for the rb tree */ 4262 free_extent_map(em); 4263 } 4264 start = extent_map_end(em); 4265 write_unlock(&map->lock); 4266 4267 /* once for us */ 4268 free_extent_map(em); 4269 } 4270 } 4271 return try_release_extent_state(tree, page, mask); 4272 } 4273 4274 /* 4275 * helper function for fiemap, which doesn't want to see any holes. 4276 * This maps until we find something past 'last' 4277 */ 4278 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4279 u64 offset, u64 last) 4280 { 4281 u64 sectorsize = btrfs_inode_sectorsize(inode); 4282 struct extent_map *em; 4283 u64 len; 4284 4285 if (offset >= last) 4286 return NULL; 4287 4288 while (1) { 4289 len = last - offset; 4290 if (len == 0) 4291 break; 4292 len = ALIGN(len, sectorsize); 4293 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset, 4294 len, 0); 4295 if (IS_ERR_OR_NULL(em)) 4296 return em; 4297 4298 /* if this isn't a hole return it */ 4299 if (em->block_start != EXTENT_MAP_HOLE) 4300 return em; 4301 4302 /* this is a hole, advance to the next extent */ 4303 offset = extent_map_end(em); 4304 free_extent_map(em); 4305 if (offset >= last) 4306 break; 4307 } 4308 return NULL; 4309 } 4310 4311 /* 4312 * To cache previous fiemap extent 4313 * 4314 * Will be used for merging fiemap extent 4315 */ 4316 struct fiemap_cache { 4317 u64 offset; 4318 u64 phys; 4319 u64 len; 4320 u32 flags; 4321 bool cached; 4322 }; 4323 4324 /* 4325 * Helper to submit fiemap extent. 4326 * 4327 * Will try to merge current fiemap extent specified by @offset, @phys, 4328 * @len and @flags with cached one. 4329 * And only when we fails to merge, cached one will be submitted as 4330 * fiemap extent. 4331 * 4332 * Return value is the same as fiemap_fill_next_extent(). 4333 */ 4334 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4335 struct fiemap_cache *cache, 4336 u64 offset, u64 phys, u64 len, u32 flags) 4337 { 4338 int ret = 0; 4339 4340 if (!cache->cached) 4341 goto assign; 4342 4343 /* 4344 * Sanity check, extent_fiemap() should have ensured that new 4345 * fiemap extent won't overlap with cahced one. 4346 * Not recoverable. 4347 * 4348 * NOTE: Physical address can overlap, due to compression 4349 */ 4350 if (cache->offset + cache->len > offset) { 4351 WARN_ON(1); 4352 return -EINVAL; 4353 } 4354 4355 /* 4356 * Only merges fiemap extents if 4357 * 1) Their logical addresses are continuous 4358 * 4359 * 2) Their physical addresses are continuous 4360 * So truly compressed (physical size smaller than logical size) 4361 * extents won't get merged with each other 4362 * 4363 * 3) Share same flags except FIEMAP_EXTENT_LAST 4364 * So regular extent won't get merged with prealloc extent 4365 */ 4366 if (cache->offset + cache->len == offset && 4367 cache->phys + cache->len == phys && 4368 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4369 (flags & ~FIEMAP_EXTENT_LAST)) { 4370 cache->len += len; 4371 cache->flags |= flags; 4372 goto try_submit_last; 4373 } 4374 4375 /* Not mergeable, need to submit cached one */ 4376 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4377 cache->len, cache->flags); 4378 cache->cached = false; 4379 if (ret) 4380 return ret; 4381 assign: 4382 cache->cached = true; 4383 cache->offset = offset; 4384 cache->phys = phys; 4385 cache->len = len; 4386 cache->flags = flags; 4387 try_submit_last: 4388 if (cache->flags & FIEMAP_EXTENT_LAST) { 4389 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4390 cache->phys, cache->len, cache->flags); 4391 cache->cached = false; 4392 } 4393 return ret; 4394 } 4395 4396 /* 4397 * Emit last fiemap cache 4398 * 4399 * The last fiemap cache may still be cached in the following case: 4400 * 0 4k 8k 4401 * |<- Fiemap range ->| 4402 * |<------------ First extent ----------->| 4403 * 4404 * In this case, the first extent range will be cached but not emitted. 4405 * So we must emit it before ending extent_fiemap(). 4406 */ 4407 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4408 struct fiemap_extent_info *fieinfo, 4409 struct fiemap_cache *cache) 4410 { 4411 int ret; 4412 4413 if (!cache->cached) 4414 return 0; 4415 4416 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4417 cache->len, cache->flags); 4418 cache->cached = false; 4419 if (ret > 0) 4420 ret = 0; 4421 return ret; 4422 } 4423 4424 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4425 __u64 start, __u64 len) 4426 { 4427 int ret = 0; 4428 u64 off = start; 4429 u64 max = start + len; 4430 u32 flags = 0; 4431 u32 found_type; 4432 u64 last; 4433 u64 last_for_get_extent = 0; 4434 u64 disko = 0; 4435 u64 isize = i_size_read(inode); 4436 struct btrfs_key found_key; 4437 struct extent_map *em = NULL; 4438 struct extent_state *cached_state = NULL; 4439 struct btrfs_path *path; 4440 struct btrfs_root *root = BTRFS_I(inode)->root; 4441 struct fiemap_cache cache = { 0 }; 4442 int end = 0; 4443 u64 em_start = 0; 4444 u64 em_len = 0; 4445 u64 em_end = 0; 4446 4447 if (len == 0) 4448 return -EINVAL; 4449 4450 path = btrfs_alloc_path(); 4451 if (!path) 4452 return -ENOMEM; 4453 path->leave_spinning = 1; 4454 4455 start = round_down(start, btrfs_inode_sectorsize(inode)); 4456 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4457 4458 /* 4459 * lookup the last file extent. We're not using i_size here 4460 * because there might be preallocation past i_size 4461 */ 4462 ret = btrfs_lookup_file_extent(NULL, root, path, 4463 btrfs_ino(BTRFS_I(inode)), -1, 0); 4464 if (ret < 0) { 4465 btrfs_free_path(path); 4466 return ret; 4467 } else { 4468 WARN_ON(!ret); 4469 if (ret == 1) 4470 ret = 0; 4471 } 4472 4473 path->slots[0]--; 4474 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4475 found_type = found_key.type; 4476 4477 /* No extents, but there might be delalloc bits */ 4478 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4479 found_type != BTRFS_EXTENT_DATA_KEY) { 4480 /* have to trust i_size as the end */ 4481 last = (u64)-1; 4482 last_for_get_extent = isize; 4483 } else { 4484 /* 4485 * remember the start of the last extent. There are a 4486 * bunch of different factors that go into the length of the 4487 * extent, so its much less complex to remember where it started 4488 */ 4489 last = found_key.offset; 4490 last_for_get_extent = last + 1; 4491 } 4492 btrfs_release_path(path); 4493 4494 /* 4495 * we might have some extents allocated but more delalloc past those 4496 * extents. so, we trust isize unless the start of the last extent is 4497 * beyond isize 4498 */ 4499 if (last < isize) { 4500 last = (u64)-1; 4501 last_for_get_extent = isize; 4502 } 4503 4504 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4505 &cached_state); 4506 4507 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4508 if (!em) 4509 goto out; 4510 if (IS_ERR(em)) { 4511 ret = PTR_ERR(em); 4512 goto out; 4513 } 4514 4515 while (!end) { 4516 u64 offset_in_extent = 0; 4517 4518 /* break if the extent we found is outside the range */ 4519 if (em->start >= max || extent_map_end(em) < off) 4520 break; 4521 4522 /* 4523 * get_extent may return an extent that starts before our 4524 * requested range. We have to make sure the ranges 4525 * we return to fiemap always move forward and don't 4526 * overlap, so adjust the offsets here 4527 */ 4528 em_start = max(em->start, off); 4529 4530 /* 4531 * record the offset from the start of the extent 4532 * for adjusting the disk offset below. Only do this if the 4533 * extent isn't compressed since our in ram offset may be past 4534 * what we have actually allocated on disk. 4535 */ 4536 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4537 offset_in_extent = em_start - em->start; 4538 em_end = extent_map_end(em); 4539 em_len = em_end - em_start; 4540 flags = 0; 4541 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4542 disko = em->block_start + offset_in_extent; 4543 else 4544 disko = 0; 4545 4546 /* 4547 * bump off for our next call to get_extent 4548 */ 4549 off = extent_map_end(em); 4550 if (off >= max) 4551 end = 1; 4552 4553 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4554 end = 1; 4555 flags |= FIEMAP_EXTENT_LAST; 4556 } else if (em->block_start == EXTENT_MAP_INLINE) { 4557 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4558 FIEMAP_EXTENT_NOT_ALIGNED); 4559 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4560 flags |= (FIEMAP_EXTENT_DELALLOC | 4561 FIEMAP_EXTENT_UNKNOWN); 4562 } else if (fieinfo->fi_extents_max) { 4563 u64 bytenr = em->block_start - 4564 (em->start - em->orig_start); 4565 4566 /* 4567 * As btrfs supports shared space, this information 4568 * can be exported to userspace tools via 4569 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4570 * then we're just getting a count and we can skip the 4571 * lookup stuff. 4572 */ 4573 ret = btrfs_check_shared(root, 4574 btrfs_ino(BTRFS_I(inode)), 4575 bytenr); 4576 if (ret < 0) 4577 goto out_free; 4578 if (ret) 4579 flags |= FIEMAP_EXTENT_SHARED; 4580 ret = 0; 4581 } 4582 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4583 flags |= FIEMAP_EXTENT_ENCODED; 4584 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4585 flags |= FIEMAP_EXTENT_UNWRITTEN; 4586 4587 free_extent_map(em); 4588 em = NULL; 4589 if ((em_start >= last) || em_len == (u64)-1 || 4590 (last == (u64)-1 && isize <= em_end)) { 4591 flags |= FIEMAP_EXTENT_LAST; 4592 end = 1; 4593 } 4594 4595 /* now scan forward to see if this is really the last extent. */ 4596 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4597 if (IS_ERR(em)) { 4598 ret = PTR_ERR(em); 4599 goto out; 4600 } 4601 if (!em) { 4602 flags |= FIEMAP_EXTENT_LAST; 4603 end = 1; 4604 } 4605 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4606 em_len, flags); 4607 if (ret) { 4608 if (ret == 1) 4609 ret = 0; 4610 goto out_free; 4611 } 4612 } 4613 out_free: 4614 if (!ret) 4615 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4616 free_extent_map(em); 4617 out: 4618 btrfs_free_path(path); 4619 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4620 &cached_state); 4621 return ret; 4622 } 4623 4624 static void __free_extent_buffer(struct extent_buffer *eb) 4625 { 4626 btrfs_leak_debug_del(&eb->leak_list); 4627 kmem_cache_free(extent_buffer_cache, eb); 4628 } 4629 4630 int extent_buffer_under_io(struct extent_buffer *eb) 4631 { 4632 return (atomic_read(&eb->io_pages) || 4633 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4634 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4635 } 4636 4637 /* 4638 * Release all pages attached to the extent buffer. 4639 */ 4640 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4641 { 4642 int i; 4643 int num_pages; 4644 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4645 4646 BUG_ON(extent_buffer_under_io(eb)); 4647 4648 num_pages = num_extent_pages(eb); 4649 for (i = 0; i < num_pages; i++) { 4650 struct page *page = eb->pages[i]; 4651 4652 if (!page) 4653 continue; 4654 if (mapped) 4655 spin_lock(&page->mapping->private_lock); 4656 /* 4657 * We do this since we'll remove the pages after we've 4658 * removed the eb from the radix tree, so we could race 4659 * and have this page now attached to the new eb. So 4660 * only clear page_private if it's still connected to 4661 * this eb. 4662 */ 4663 if (PagePrivate(page) && 4664 page->private == (unsigned long)eb) { 4665 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4666 BUG_ON(PageDirty(page)); 4667 BUG_ON(PageWriteback(page)); 4668 /* 4669 * We need to make sure we haven't be attached 4670 * to a new eb. 4671 */ 4672 ClearPagePrivate(page); 4673 set_page_private(page, 0); 4674 /* One for the page private */ 4675 put_page(page); 4676 } 4677 4678 if (mapped) 4679 spin_unlock(&page->mapping->private_lock); 4680 4681 /* One for when we allocated the page */ 4682 put_page(page); 4683 } 4684 } 4685 4686 /* 4687 * Helper for releasing the extent buffer. 4688 */ 4689 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4690 { 4691 btrfs_release_extent_buffer_pages(eb); 4692 __free_extent_buffer(eb); 4693 } 4694 4695 static struct extent_buffer * 4696 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4697 unsigned long len) 4698 { 4699 struct extent_buffer *eb = NULL; 4700 4701 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4702 eb->start = start; 4703 eb->len = len; 4704 eb->fs_info = fs_info; 4705 eb->bflags = 0; 4706 rwlock_init(&eb->lock); 4707 atomic_set(&eb->write_locks, 0); 4708 atomic_set(&eb->read_locks, 0); 4709 atomic_set(&eb->blocking_readers, 0); 4710 atomic_set(&eb->blocking_writers, 0); 4711 atomic_set(&eb->spinning_readers, 0); 4712 atomic_set(&eb->spinning_writers, 0); 4713 eb->lock_nested = 0; 4714 init_waitqueue_head(&eb->write_lock_wq); 4715 init_waitqueue_head(&eb->read_lock_wq); 4716 4717 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4718 4719 spin_lock_init(&eb->refs_lock); 4720 atomic_set(&eb->refs, 1); 4721 atomic_set(&eb->io_pages, 0); 4722 4723 /* 4724 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4725 */ 4726 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4727 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4728 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4729 4730 return eb; 4731 } 4732 4733 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4734 { 4735 int i; 4736 struct page *p; 4737 struct extent_buffer *new; 4738 int num_pages = num_extent_pages(src); 4739 4740 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4741 if (new == NULL) 4742 return NULL; 4743 4744 for (i = 0; i < num_pages; i++) { 4745 p = alloc_page(GFP_NOFS); 4746 if (!p) { 4747 btrfs_release_extent_buffer(new); 4748 return NULL; 4749 } 4750 attach_extent_buffer_page(new, p); 4751 WARN_ON(PageDirty(p)); 4752 SetPageUptodate(p); 4753 new->pages[i] = p; 4754 copy_page(page_address(p), page_address(src->pages[i])); 4755 } 4756 4757 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4758 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4759 4760 return new; 4761 } 4762 4763 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4764 u64 start, unsigned long len) 4765 { 4766 struct extent_buffer *eb; 4767 int num_pages; 4768 int i; 4769 4770 eb = __alloc_extent_buffer(fs_info, start, len); 4771 if (!eb) 4772 return NULL; 4773 4774 num_pages = num_extent_pages(eb); 4775 for (i = 0; i < num_pages; i++) { 4776 eb->pages[i] = alloc_page(GFP_NOFS); 4777 if (!eb->pages[i]) 4778 goto err; 4779 } 4780 set_extent_buffer_uptodate(eb); 4781 btrfs_set_header_nritems(eb, 0); 4782 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4783 4784 return eb; 4785 err: 4786 for (; i > 0; i--) 4787 __free_page(eb->pages[i - 1]); 4788 __free_extent_buffer(eb); 4789 return NULL; 4790 } 4791 4792 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4793 u64 start) 4794 { 4795 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4796 } 4797 4798 static void check_buffer_tree_ref(struct extent_buffer *eb) 4799 { 4800 int refs; 4801 /* the ref bit is tricky. We have to make sure it is set 4802 * if we have the buffer dirty. Otherwise the 4803 * code to free a buffer can end up dropping a dirty 4804 * page 4805 * 4806 * Once the ref bit is set, it won't go away while the 4807 * buffer is dirty or in writeback, and it also won't 4808 * go away while we have the reference count on the 4809 * eb bumped. 4810 * 4811 * We can't just set the ref bit without bumping the 4812 * ref on the eb because free_extent_buffer might 4813 * see the ref bit and try to clear it. If this happens 4814 * free_extent_buffer might end up dropping our original 4815 * ref by mistake and freeing the page before we are able 4816 * to add one more ref. 4817 * 4818 * So bump the ref count first, then set the bit. If someone 4819 * beat us to it, drop the ref we added. 4820 */ 4821 refs = atomic_read(&eb->refs); 4822 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4823 return; 4824 4825 spin_lock(&eb->refs_lock); 4826 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4827 atomic_inc(&eb->refs); 4828 spin_unlock(&eb->refs_lock); 4829 } 4830 4831 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4832 struct page *accessed) 4833 { 4834 int num_pages, i; 4835 4836 check_buffer_tree_ref(eb); 4837 4838 num_pages = num_extent_pages(eb); 4839 for (i = 0; i < num_pages; i++) { 4840 struct page *p = eb->pages[i]; 4841 4842 if (p != accessed) 4843 mark_page_accessed(p); 4844 } 4845 } 4846 4847 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4848 u64 start) 4849 { 4850 struct extent_buffer *eb; 4851 4852 rcu_read_lock(); 4853 eb = radix_tree_lookup(&fs_info->buffer_radix, 4854 start >> PAGE_SHIFT); 4855 if (eb && atomic_inc_not_zero(&eb->refs)) { 4856 rcu_read_unlock(); 4857 /* 4858 * Lock our eb's refs_lock to avoid races with 4859 * free_extent_buffer. When we get our eb it might be flagged 4860 * with EXTENT_BUFFER_STALE and another task running 4861 * free_extent_buffer might have seen that flag set, 4862 * eb->refs == 2, that the buffer isn't under IO (dirty and 4863 * writeback flags not set) and it's still in the tree (flag 4864 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4865 * of decrementing the extent buffer's reference count twice. 4866 * So here we could race and increment the eb's reference count, 4867 * clear its stale flag, mark it as dirty and drop our reference 4868 * before the other task finishes executing free_extent_buffer, 4869 * which would later result in an attempt to free an extent 4870 * buffer that is dirty. 4871 */ 4872 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4873 spin_lock(&eb->refs_lock); 4874 spin_unlock(&eb->refs_lock); 4875 } 4876 mark_extent_buffer_accessed(eb, NULL); 4877 return eb; 4878 } 4879 rcu_read_unlock(); 4880 4881 return NULL; 4882 } 4883 4884 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4885 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4886 u64 start) 4887 { 4888 struct extent_buffer *eb, *exists = NULL; 4889 int ret; 4890 4891 eb = find_extent_buffer(fs_info, start); 4892 if (eb) 4893 return eb; 4894 eb = alloc_dummy_extent_buffer(fs_info, start); 4895 if (!eb) 4896 return NULL; 4897 eb->fs_info = fs_info; 4898 again: 4899 ret = radix_tree_preload(GFP_NOFS); 4900 if (ret) 4901 goto free_eb; 4902 spin_lock(&fs_info->buffer_lock); 4903 ret = radix_tree_insert(&fs_info->buffer_radix, 4904 start >> PAGE_SHIFT, eb); 4905 spin_unlock(&fs_info->buffer_lock); 4906 radix_tree_preload_end(); 4907 if (ret == -EEXIST) { 4908 exists = find_extent_buffer(fs_info, start); 4909 if (exists) 4910 goto free_eb; 4911 else 4912 goto again; 4913 } 4914 check_buffer_tree_ref(eb); 4915 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4916 4917 /* 4918 * We will free dummy extent buffer's if they come into 4919 * free_extent_buffer with a ref count of 2, but if we are using this we 4920 * want the buffers to stay in memory until we're done with them, so 4921 * bump the ref count again. 4922 */ 4923 atomic_inc(&eb->refs); 4924 return eb; 4925 free_eb: 4926 btrfs_release_extent_buffer(eb); 4927 return exists; 4928 } 4929 #endif 4930 4931 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4932 u64 start) 4933 { 4934 unsigned long len = fs_info->nodesize; 4935 int num_pages; 4936 int i; 4937 unsigned long index = start >> PAGE_SHIFT; 4938 struct extent_buffer *eb; 4939 struct extent_buffer *exists = NULL; 4940 struct page *p; 4941 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4942 int uptodate = 1; 4943 int ret; 4944 4945 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4946 btrfs_err(fs_info, "bad tree block start %llu", start); 4947 return ERR_PTR(-EINVAL); 4948 } 4949 4950 eb = find_extent_buffer(fs_info, start); 4951 if (eb) 4952 return eb; 4953 4954 eb = __alloc_extent_buffer(fs_info, start, len); 4955 if (!eb) 4956 return ERR_PTR(-ENOMEM); 4957 4958 num_pages = num_extent_pages(eb); 4959 for (i = 0; i < num_pages; i++, index++) { 4960 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4961 if (!p) { 4962 exists = ERR_PTR(-ENOMEM); 4963 goto free_eb; 4964 } 4965 4966 spin_lock(&mapping->private_lock); 4967 if (PagePrivate(p)) { 4968 /* 4969 * We could have already allocated an eb for this page 4970 * and attached one so lets see if we can get a ref on 4971 * the existing eb, and if we can we know it's good and 4972 * we can just return that one, else we know we can just 4973 * overwrite page->private. 4974 */ 4975 exists = (struct extent_buffer *)p->private; 4976 if (atomic_inc_not_zero(&exists->refs)) { 4977 spin_unlock(&mapping->private_lock); 4978 unlock_page(p); 4979 put_page(p); 4980 mark_extent_buffer_accessed(exists, p); 4981 goto free_eb; 4982 } 4983 exists = NULL; 4984 4985 /* 4986 * Do this so attach doesn't complain and we need to 4987 * drop the ref the old guy had. 4988 */ 4989 ClearPagePrivate(p); 4990 WARN_ON(PageDirty(p)); 4991 put_page(p); 4992 } 4993 attach_extent_buffer_page(eb, p); 4994 spin_unlock(&mapping->private_lock); 4995 WARN_ON(PageDirty(p)); 4996 eb->pages[i] = p; 4997 if (!PageUptodate(p)) 4998 uptodate = 0; 4999 5000 /* 5001 * We can't unlock the pages just yet since the extent buffer 5002 * hasn't been properly inserted in the radix tree, this 5003 * opens a race with btree_releasepage which can free a page 5004 * while we are still filling in all pages for the buffer and 5005 * we could crash. 5006 */ 5007 } 5008 if (uptodate) 5009 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5010 again: 5011 ret = radix_tree_preload(GFP_NOFS); 5012 if (ret) { 5013 exists = ERR_PTR(ret); 5014 goto free_eb; 5015 } 5016 5017 spin_lock(&fs_info->buffer_lock); 5018 ret = radix_tree_insert(&fs_info->buffer_radix, 5019 start >> PAGE_SHIFT, eb); 5020 spin_unlock(&fs_info->buffer_lock); 5021 radix_tree_preload_end(); 5022 if (ret == -EEXIST) { 5023 exists = find_extent_buffer(fs_info, start); 5024 if (exists) 5025 goto free_eb; 5026 else 5027 goto again; 5028 } 5029 /* add one reference for the tree */ 5030 check_buffer_tree_ref(eb); 5031 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5032 5033 /* 5034 * Now it's safe to unlock the pages because any calls to 5035 * btree_releasepage will correctly detect that a page belongs to a 5036 * live buffer and won't free them prematurely. 5037 */ 5038 for (i = 0; i < num_pages; i++) 5039 unlock_page(eb->pages[i]); 5040 return eb; 5041 5042 free_eb: 5043 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5044 for (i = 0; i < num_pages; i++) { 5045 if (eb->pages[i]) 5046 unlock_page(eb->pages[i]); 5047 } 5048 5049 btrfs_release_extent_buffer(eb); 5050 return exists; 5051 } 5052 5053 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5054 { 5055 struct extent_buffer *eb = 5056 container_of(head, struct extent_buffer, rcu_head); 5057 5058 __free_extent_buffer(eb); 5059 } 5060 5061 static int release_extent_buffer(struct extent_buffer *eb) 5062 { 5063 lockdep_assert_held(&eb->refs_lock); 5064 5065 WARN_ON(atomic_read(&eb->refs) == 0); 5066 if (atomic_dec_and_test(&eb->refs)) { 5067 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5068 struct btrfs_fs_info *fs_info = eb->fs_info; 5069 5070 spin_unlock(&eb->refs_lock); 5071 5072 spin_lock(&fs_info->buffer_lock); 5073 radix_tree_delete(&fs_info->buffer_radix, 5074 eb->start >> PAGE_SHIFT); 5075 spin_unlock(&fs_info->buffer_lock); 5076 } else { 5077 spin_unlock(&eb->refs_lock); 5078 } 5079 5080 /* Should be safe to release our pages at this point */ 5081 btrfs_release_extent_buffer_pages(eb); 5082 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5083 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5084 __free_extent_buffer(eb); 5085 return 1; 5086 } 5087 #endif 5088 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5089 return 1; 5090 } 5091 spin_unlock(&eb->refs_lock); 5092 5093 return 0; 5094 } 5095 5096 void free_extent_buffer(struct extent_buffer *eb) 5097 { 5098 int refs; 5099 int old; 5100 if (!eb) 5101 return; 5102 5103 while (1) { 5104 refs = atomic_read(&eb->refs); 5105 if (refs <= 3) 5106 break; 5107 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5108 if (old == refs) 5109 return; 5110 } 5111 5112 spin_lock(&eb->refs_lock); 5113 if (atomic_read(&eb->refs) == 2 && 5114 test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) 5115 atomic_dec(&eb->refs); 5116 5117 if (atomic_read(&eb->refs) == 2 && 5118 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5119 !extent_buffer_under_io(eb) && 5120 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5121 atomic_dec(&eb->refs); 5122 5123 /* 5124 * I know this is terrible, but it's temporary until we stop tracking 5125 * the uptodate bits and such for the extent buffers. 5126 */ 5127 release_extent_buffer(eb); 5128 } 5129 5130 void free_extent_buffer_stale(struct extent_buffer *eb) 5131 { 5132 if (!eb) 5133 return; 5134 5135 spin_lock(&eb->refs_lock); 5136 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5137 5138 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5139 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5140 atomic_dec(&eb->refs); 5141 release_extent_buffer(eb); 5142 } 5143 5144 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5145 { 5146 int i; 5147 int num_pages; 5148 struct page *page; 5149 5150 num_pages = num_extent_pages(eb); 5151 5152 for (i = 0; i < num_pages; i++) { 5153 page = eb->pages[i]; 5154 if (!PageDirty(page)) 5155 continue; 5156 5157 lock_page(page); 5158 WARN_ON(!PagePrivate(page)); 5159 5160 clear_page_dirty_for_io(page); 5161 xa_lock_irq(&page->mapping->i_pages); 5162 if (!PageDirty(page)) 5163 __xa_clear_mark(&page->mapping->i_pages, 5164 page_index(page), PAGECACHE_TAG_DIRTY); 5165 xa_unlock_irq(&page->mapping->i_pages); 5166 ClearPageError(page); 5167 unlock_page(page); 5168 } 5169 WARN_ON(atomic_read(&eb->refs) == 0); 5170 } 5171 5172 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5173 { 5174 int i; 5175 int num_pages; 5176 bool was_dirty; 5177 5178 check_buffer_tree_ref(eb); 5179 5180 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5181 5182 num_pages = num_extent_pages(eb); 5183 WARN_ON(atomic_read(&eb->refs) == 0); 5184 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5185 5186 if (!was_dirty) 5187 for (i = 0; i < num_pages; i++) 5188 set_page_dirty(eb->pages[i]); 5189 5190 #ifdef CONFIG_BTRFS_DEBUG 5191 for (i = 0; i < num_pages; i++) 5192 ASSERT(PageDirty(eb->pages[i])); 5193 #endif 5194 5195 return was_dirty; 5196 } 5197 5198 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5199 { 5200 int i; 5201 struct page *page; 5202 int num_pages; 5203 5204 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5205 num_pages = num_extent_pages(eb); 5206 for (i = 0; i < num_pages; i++) { 5207 page = eb->pages[i]; 5208 if (page) 5209 ClearPageUptodate(page); 5210 } 5211 } 5212 5213 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5214 { 5215 int i; 5216 struct page *page; 5217 int num_pages; 5218 5219 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5220 num_pages = num_extent_pages(eb); 5221 for (i = 0; i < num_pages; i++) { 5222 page = eb->pages[i]; 5223 SetPageUptodate(page); 5224 } 5225 } 5226 5227 int read_extent_buffer_pages(struct extent_io_tree *tree, 5228 struct extent_buffer *eb, int wait, int mirror_num) 5229 { 5230 int i; 5231 struct page *page; 5232 int err; 5233 int ret = 0; 5234 int locked_pages = 0; 5235 int all_uptodate = 1; 5236 int num_pages; 5237 unsigned long num_reads = 0; 5238 struct bio *bio = NULL; 5239 unsigned long bio_flags = 0; 5240 5241 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5242 return 0; 5243 5244 num_pages = num_extent_pages(eb); 5245 for (i = 0; i < num_pages; i++) { 5246 page = eb->pages[i]; 5247 if (wait == WAIT_NONE) { 5248 if (!trylock_page(page)) 5249 goto unlock_exit; 5250 } else { 5251 lock_page(page); 5252 } 5253 locked_pages++; 5254 } 5255 /* 5256 * We need to firstly lock all pages to make sure that 5257 * the uptodate bit of our pages won't be affected by 5258 * clear_extent_buffer_uptodate(). 5259 */ 5260 for (i = 0; i < num_pages; i++) { 5261 page = eb->pages[i]; 5262 if (!PageUptodate(page)) { 5263 num_reads++; 5264 all_uptodate = 0; 5265 } 5266 } 5267 5268 if (all_uptodate) { 5269 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5270 goto unlock_exit; 5271 } 5272 5273 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5274 eb->read_mirror = 0; 5275 atomic_set(&eb->io_pages, num_reads); 5276 for (i = 0; i < num_pages; i++) { 5277 page = eb->pages[i]; 5278 5279 if (!PageUptodate(page)) { 5280 if (ret) { 5281 atomic_dec(&eb->io_pages); 5282 unlock_page(page); 5283 continue; 5284 } 5285 5286 ClearPageError(page); 5287 err = __extent_read_full_page(tree, page, 5288 btree_get_extent, &bio, 5289 mirror_num, &bio_flags, 5290 REQ_META); 5291 if (err) { 5292 ret = err; 5293 /* 5294 * We use &bio in above __extent_read_full_page, 5295 * so we ensure that if it returns error, the 5296 * current page fails to add itself to bio and 5297 * it's been unlocked. 5298 * 5299 * We must dec io_pages by ourselves. 5300 */ 5301 atomic_dec(&eb->io_pages); 5302 } 5303 } else { 5304 unlock_page(page); 5305 } 5306 } 5307 5308 if (bio) { 5309 err = submit_one_bio(bio, mirror_num, bio_flags); 5310 if (err) 5311 return err; 5312 } 5313 5314 if (ret || wait != WAIT_COMPLETE) 5315 return ret; 5316 5317 for (i = 0; i < num_pages; i++) { 5318 page = eb->pages[i]; 5319 wait_on_page_locked(page); 5320 if (!PageUptodate(page)) 5321 ret = -EIO; 5322 } 5323 5324 return ret; 5325 5326 unlock_exit: 5327 while (locked_pages > 0) { 5328 locked_pages--; 5329 page = eb->pages[locked_pages]; 5330 unlock_page(page); 5331 } 5332 return ret; 5333 } 5334 5335 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5336 unsigned long start, unsigned long len) 5337 { 5338 size_t cur; 5339 size_t offset; 5340 struct page *page; 5341 char *kaddr; 5342 char *dst = (char *)dstv; 5343 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5344 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5345 5346 if (start + len > eb->len) { 5347 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5348 eb->start, eb->len, start, len); 5349 memset(dst, 0, len); 5350 return; 5351 } 5352 5353 offset = (start_offset + start) & (PAGE_SIZE - 1); 5354 5355 while (len > 0) { 5356 page = eb->pages[i]; 5357 5358 cur = min(len, (PAGE_SIZE - offset)); 5359 kaddr = page_address(page); 5360 memcpy(dst, kaddr + offset, cur); 5361 5362 dst += cur; 5363 len -= cur; 5364 offset = 0; 5365 i++; 5366 } 5367 } 5368 5369 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5370 void __user *dstv, 5371 unsigned long start, unsigned long len) 5372 { 5373 size_t cur; 5374 size_t offset; 5375 struct page *page; 5376 char *kaddr; 5377 char __user *dst = (char __user *)dstv; 5378 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5379 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5380 int ret = 0; 5381 5382 WARN_ON(start > eb->len); 5383 WARN_ON(start + len > eb->start + eb->len); 5384 5385 offset = (start_offset + start) & (PAGE_SIZE - 1); 5386 5387 while (len > 0) { 5388 page = eb->pages[i]; 5389 5390 cur = min(len, (PAGE_SIZE - offset)); 5391 kaddr = page_address(page); 5392 if (copy_to_user(dst, kaddr + offset, cur)) { 5393 ret = -EFAULT; 5394 break; 5395 } 5396 5397 dst += cur; 5398 len -= cur; 5399 offset = 0; 5400 i++; 5401 } 5402 5403 return ret; 5404 } 5405 5406 /* 5407 * return 0 if the item is found within a page. 5408 * return 1 if the item spans two pages. 5409 * return -EINVAL otherwise. 5410 */ 5411 int map_private_extent_buffer(const struct extent_buffer *eb, 5412 unsigned long start, unsigned long min_len, 5413 char **map, unsigned long *map_start, 5414 unsigned long *map_len) 5415 { 5416 size_t offset = start & (PAGE_SIZE - 1); 5417 char *kaddr; 5418 struct page *p; 5419 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5420 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5421 unsigned long end_i = (start_offset + start + min_len - 1) >> 5422 PAGE_SHIFT; 5423 5424 if (start + min_len > eb->len) { 5425 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5426 eb->start, eb->len, start, min_len); 5427 return -EINVAL; 5428 } 5429 5430 if (i != end_i) 5431 return 1; 5432 5433 if (i == 0) { 5434 offset = start_offset; 5435 *map_start = 0; 5436 } else { 5437 offset = 0; 5438 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5439 } 5440 5441 p = eb->pages[i]; 5442 kaddr = page_address(p); 5443 *map = kaddr + offset; 5444 *map_len = PAGE_SIZE - offset; 5445 return 0; 5446 } 5447 5448 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5449 unsigned long start, unsigned long len) 5450 { 5451 size_t cur; 5452 size_t offset; 5453 struct page *page; 5454 char *kaddr; 5455 char *ptr = (char *)ptrv; 5456 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5457 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5458 int ret = 0; 5459 5460 WARN_ON(start > eb->len); 5461 WARN_ON(start + len > eb->start + eb->len); 5462 5463 offset = (start_offset + start) & (PAGE_SIZE - 1); 5464 5465 while (len > 0) { 5466 page = eb->pages[i]; 5467 5468 cur = min(len, (PAGE_SIZE - offset)); 5469 5470 kaddr = page_address(page); 5471 ret = memcmp(ptr, kaddr + offset, cur); 5472 if (ret) 5473 break; 5474 5475 ptr += cur; 5476 len -= cur; 5477 offset = 0; 5478 i++; 5479 } 5480 return ret; 5481 } 5482 5483 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5484 const void *srcv) 5485 { 5486 char *kaddr; 5487 5488 WARN_ON(!PageUptodate(eb->pages[0])); 5489 kaddr = page_address(eb->pages[0]); 5490 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5491 BTRFS_FSID_SIZE); 5492 } 5493 5494 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5495 { 5496 char *kaddr; 5497 5498 WARN_ON(!PageUptodate(eb->pages[0])); 5499 kaddr = page_address(eb->pages[0]); 5500 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5501 BTRFS_FSID_SIZE); 5502 } 5503 5504 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5505 unsigned long start, unsigned long len) 5506 { 5507 size_t cur; 5508 size_t offset; 5509 struct page *page; 5510 char *kaddr; 5511 char *src = (char *)srcv; 5512 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5513 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5514 5515 WARN_ON(start > eb->len); 5516 WARN_ON(start + len > eb->start + eb->len); 5517 5518 offset = (start_offset + start) & (PAGE_SIZE - 1); 5519 5520 while (len > 0) { 5521 page = eb->pages[i]; 5522 WARN_ON(!PageUptodate(page)); 5523 5524 cur = min(len, PAGE_SIZE - offset); 5525 kaddr = page_address(page); 5526 memcpy(kaddr + offset, src, cur); 5527 5528 src += cur; 5529 len -= cur; 5530 offset = 0; 5531 i++; 5532 } 5533 } 5534 5535 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5536 unsigned long len) 5537 { 5538 size_t cur; 5539 size_t offset; 5540 struct page *page; 5541 char *kaddr; 5542 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5543 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5544 5545 WARN_ON(start > eb->len); 5546 WARN_ON(start + len > eb->start + eb->len); 5547 5548 offset = (start_offset + start) & (PAGE_SIZE - 1); 5549 5550 while (len > 0) { 5551 page = eb->pages[i]; 5552 WARN_ON(!PageUptodate(page)); 5553 5554 cur = min(len, PAGE_SIZE - offset); 5555 kaddr = page_address(page); 5556 memset(kaddr + offset, 0, cur); 5557 5558 len -= cur; 5559 offset = 0; 5560 i++; 5561 } 5562 } 5563 5564 void copy_extent_buffer_full(struct extent_buffer *dst, 5565 struct extent_buffer *src) 5566 { 5567 int i; 5568 int num_pages; 5569 5570 ASSERT(dst->len == src->len); 5571 5572 num_pages = num_extent_pages(dst); 5573 for (i = 0; i < num_pages; i++) 5574 copy_page(page_address(dst->pages[i]), 5575 page_address(src->pages[i])); 5576 } 5577 5578 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5579 unsigned long dst_offset, unsigned long src_offset, 5580 unsigned long len) 5581 { 5582 u64 dst_len = dst->len; 5583 size_t cur; 5584 size_t offset; 5585 struct page *page; 5586 char *kaddr; 5587 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5588 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5589 5590 WARN_ON(src->len != dst_len); 5591 5592 offset = (start_offset + dst_offset) & 5593 (PAGE_SIZE - 1); 5594 5595 while (len > 0) { 5596 page = dst->pages[i]; 5597 WARN_ON(!PageUptodate(page)); 5598 5599 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5600 5601 kaddr = page_address(page); 5602 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5603 5604 src_offset += cur; 5605 len -= cur; 5606 offset = 0; 5607 i++; 5608 } 5609 } 5610 5611 /* 5612 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5613 * given bit number 5614 * @eb: the extent buffer 5615 * @start: offset of the bitmap item in the extent buffer 5616 * @nr: bit number 5617 * @page_index: return index of the page in the extent buffer that contains the 5618 * given bit number 5619 * @page_offset: return offset into the page given by page_index 5620 * 5621 * This helper hides the ugliness of finding the byte in an extent buffer which 5622 * contains a given bit. 5623 */ 5624 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5625 unsigned long start, unsigned long nr, 5626 unsigned long *page_index, 5627 size_t *page_offset) 5628 { 5629 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5630 size_t byte_offset = BIT_BYTE(nr); 5631 size_t offset; 5632 5633 /* 5634 * The byte we want is the offset of the extent buffer + the offset of 5635 * the bitmap item in the extent buffer + the offset of the byte in the 5636 * bitmap item. 5637 */ 5638 offset = start_offset + start + byte_offset; 5639 5640 *page_index = offset >> PAGE_SHIFT; 5641 *page_offset = offset & (PAGE_SIZE - 1); 5642 } 5643 5644 /** 5645 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5646 * @eb: the extent buffer 5647 * @start: offset of the bitmap item in the extent buffer 5648 * @nr: bit number to test 5649 */ 5650 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5651 unsigned long nr) 5652 { 5653 u8 *kaddr; 5654 struct page *page; 5655 unsigned long i; 5656 size_t offset; 5657 5658 eb_bitmap_offset(eb, start, nr, &i, &offset); 5659 page = eb->pages[i]; 5660 WARN_ON(!PageUptodate(page)); 5661 kaddr = page_address(page); 5662 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5663 } 5664 5665 /** 5666 * extent_buffer_bitmap_set - set an area of a bitmap 5667 * @eb: the extent buffer 5668 * @start: offset of the bitmap item in the extent buffer 5669 * @pos: bit number of the first bit 5670 * @len: number of bits to set 5671 */ 5672 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5673 unsigned long pos, unsigned long len) 5674 { 5675 u8 *kaddr; 5676 struct page *page; 5677 unsigned long i; 5678 size_t offset; 5679 const unsigned int size = pos + len; 5680 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5681 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5682 5683 eb_bitmap_offset(eb, start, pos, &i, &offset); 5684 page = eb->pages[i]; 5685 WARN_ON(!PageUptodate(page)); 5686 kaddr = page_address(page); 5687 5688 while (len >= bits_to_set) { 5689 kaddr[offset] |= mask_to_set; 5690 len -= bits_to_set; 5691 bits_to_set = BITS_PER_BYTE; 5692 mask_to_set = ~0; 5693 if (++offset >= PAGE_SIZE && len > 0) { 5694 offset = 0; 5695 page = eb->pages[++i]; 5696 WARN_ON(!PageUptodate(page)); 5697 kaddr = page_address(page); 5698 } 5699 } 5700 if (len) { 5701 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5702 kaddr[offset] |= mask_to_set; 5703 } 5704 } 5705 5706 5707 /** 5708 * extent_buffer_bitmap_clear - clear an area of a bitmap 5709 * @eb: the extent buffer 5710 * @start: offset of the bitmap item in the extent buffer 5711 * @pos: bit number of the first bit 5712 * @len: number of bits to clear 5713 */ 5714 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5715 unsigned long pos, unsigned long len) 5716 { 5717 u8 *kaddr; 5718 struct page *page; 5719 unsigned long i; 5720 size_t offset; 5721 const unsigned int size = pos + len; 5722 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5723 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5724 5725 eb_bitmap_offset(eb, start, pos, &i, &offset); 5726 page = eb->pages[i]; 5727 WARN_ON(!PageUptodate(page)); 5728 kaddr = page_address(page); 5729 5730 while (len >= bits_to_clear) { 5731 kaddr[offset] &= ~mask_to_clear; 5732 len -= bits_to_clear; 5733 bits_to_clear = BITS_PER_BYTE; 5734 mask_to_clear = ~0; 5735 if (++offset >= PAGE_SIZE && len > 0) { 5736 offset = 0; 5737 page = eb->pages[++i]; 5738 WARN_ON(!PageUptodate(page)); 5739 kaddr = page_address(page); 5740 } 5741 } 5742 if (len) { 5743 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5744 kaddr[offset] &= ~mask_to_clear; 5745 } 5746 } 5747 5748 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5749 { 5750 unsigned long distance = (src > dst) ? src - dst : dst - src; 5751 return distance < len; 5752 } 5753 5754 static void copy_pages(struct page *dst_page, struct page *src_page, 5755 unsigned long dst_off, unsigned long src_off, 5756 unsigned long len) 5757 { 5758 char *dst_kaddr = page_address(dst_page); 5759 char *src_kaddr; 5760 int must_memmove = 0; 5761 5762 if (dst_page != src_page) { 5763 src_kaddr = page_address(src_page); 5764 } else { 5765 src_kaddr = dst_kaddr; 5766 if (areas_overlap(src_off, dst_off, len)) 5767 must_memmove = 1; 5768 } 5769 5770 if (must_memmove) 5771 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5772 else 5773 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5774 } 5775 5776 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5777 unsigned long src_offset, unsigned long len) 5778 { 5779 struct btrfs_fs_info *fs_info = dst->fs_info; 5780 size_t cur; 5781 size_t dst_off_in_page; 5782 size_t src_off_in_page; 5783 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5784 unsigned long dst_i; 5785 unsigned long src_i; 5786 5787 if (src_offset + len > dst->len) { 5788 btrfs_err(fs_info, 5789 "memmove bogus src_offset %lu move len %lu dst len %lu", 5790 src_offset, len, dst->len); 5791 BUG_ON(1); 5792 } 5793 if (dst_offset + len > dst->len) { 5794 btrfs_err(fs_info, 5795 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5796 dst_offset, len, dst->len); 5797 BUG_ON(1); 5798 } 5799 5800 while (len > 0) { 5801 dst_off_in_page = (start_offset + dst_offset) & 5802 (PAGE_SIZE - 1); 5803 src_off_in_page = (start_offset + src_offset) & 5804 (PAGE_SIZE - 1); 5805 5806 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5807 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5808 5809 cur = min(len, (unsigned long)(PAGE_SIZE - 5810 src_off_in_page)); 5811 cur = min_t(unsigned long, cur, 5812 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5813 5814 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5815 dst_off_in_page, src_off_in_page, cur); 5816 5817 src_offset += cur; 5818 dst_offset += cur; 5819 len -= cur; 5820 } 5821 } 5822 5823 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5824 unsigned long src_offset, unsigned long len) 5825 { 5826 struct btrfs_fs_info *fs_info = dst->fs_info; 5827 size_t cur; 5828 size_t dst_off_in_page; 5829 size_t src_off_in_page; 5830 unsigned long dst_end = dst_offset + len - 1; 5831 unsigned long src_end = src_offset + len - 1; 5832 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5833 unsigned long dst_i; 5834 unsigned long src_i; 5835 5836 if (src_offset + len > dst->len) { 5837 btrfs_err(fs_info, 5838 "memmove bogus src_offset %lu move len %lu len %lu", 5839 src_offset, len, dst->len); 5840 BUG_ON(1); 5841 } 5842 if (dst_offset + len > dst->len) { 5843 btrfs_err(fs_info, 5844 "memmove bogus dst_offset %lu move len %lu len %lu", 5845 dst_offset, len, dst->len); 5846 BUG_ON(1); 5847 } 5848 if (dst_offset < src_offset) { 5849 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5850 return; 5851 } 5852 while (len > 0) { 5853 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5854 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5855 5856 dst_off_in_page = (start_offset + dst_end) & 5857 (PAGE_SIZE - 1); 5858 src_off_in_page = (start_offset + src_end) & 5859 (PAGE_SIZE - 1); 5860 5861 cur = min_t(unsigned long, len, src_off_in_page + 1); 5862 cur = min(cur, dst_off_in_page + 1); 5863 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5864 dst_off_in_page - cur + 1, 5865 src_off_in_page - cur + 1, cur); 5866 5867 dst_end -= cur; 5868 src_end -= cur; 5869 len -= cur; 5870 } 5871 } 5872 5873 int try_release_extent_buffer(struct page *page) 5874 { 5875 struct extent_buffer *eb; 5876 5877 /* 5878 * We need to make sure nobody is attaching this page to an eb right 5879 * now. 5880 */ 5881 spin_lock(&page->mapping->private_lock); 5882 if (!PagePrivate(page)) { 5883 spin_unlock(&page->mapping->private_lock); 5884 return 1; 5885 } 5886 5887 eb = (struct extent_buffer *)page->private; 5888 BUG_ON(!eb); 5889 5890 /* 5891 * This is a little awful but should be ok, we need to make sure that 5892 * the eb doesn't disappear out from under us while we're looking at 5893 * this page. 5894 */ 5895 spin_lock(&eb->refs_lock); 5896 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5897 spin_unlock(&eb->refs_lock); 5898 spin_unlock(&page->mapping->private_lock); 5899 return 0; 5900 } 5901 spin_unlock(&page->mapping->private_lock); 5902 5903 /* 5904 * If tree ref isn't set then we know the ref on this eb is a real ref, 5905 * so just return, this page will likely be freed soon anyway. 5906 */ 5907 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5908 spin_unlock(&eb->refs_lock); 5909 return 0; 5910 } 5911 5912 return release_extent_buffer(eb); 5913 } 5914