1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set *btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 if (tree->ops && tree->ops->check_extent_io_range) 93 tree->ops->check_extent_io_range(tree->private_data, caller, 94 start, end); 95 } 96 #else 97 #define btrfs_leak_debug_add(new, head) do {} while (0) 98 #define btrfs_leak_debug_del(entry) do {} while (0) 99 #define btrfs_leak_debug_check() do {} while (0) 100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 101 #endif 102 103 #define BUFFER_LRU_MAX 64 104 105 struct tree_entry { 106 u64 start; 107 u64 end; 108 struct rb_node rb_node; 109 }; 110 111 struct extent_page_data { 112 struct bio *bio; 113 struct extent_io_tree *tree; 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use REQ_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static int add_extent_changeset(struct extent_state *state, unsigned bits, 124 struct extent_changeset *changeset, 125 int set) 126 { 127 int ret; 128 129 if (!changeset) 130 return 0; 131 if (set && (state->state & bits) == bits) 132 return 0; 133 if (!set && (state->state & bits) == 0) 134 return 0; 135 changeset->bytes_changed += state->end - state->start + 1; 136 ret = ulist_add(&changeset->range_changed, state->start, state->end, 137 GFP_ATOMIC); 138 return ret; 139 } 140 141 static void flush_write_bio(struct extent_page_data *epd); 142 143 static inline struct btrfs_fs_info * 144 tree_fs_info(struct extent_io_tree *tree) 145 { 146 if (tree->ops) 147 return tree->ops->tree_fs_info(tree->private_data); 148 return NULL; 149 } 150 151 int __init extent_io_init(void) 152 { 153 extent_state_cache = kmem_cache_create("btrfs_extent_state", 154 sizeof(struct extent_state), 0, 155 SLAB_MEM_SPREAD, NULL); 156 if (!extent_state_cache) 157 return -ENOMEM; 158 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 160 sizeof(struct extent_buffer), 0, 161 SLAB_MEM_SPREAD, NULL); 162 if (!extent_buffer_cache) 163 goto free_state_cache; 164 165 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 166 offsetof(struct btrfs_io_bio, bio), 167 BIOSET_NEED_BVECS); 168 if (!btrfs_bioset) 169 goto free_buffer_cache; 170 171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 172 goto free_bioset; 173 174 return 0; 175 176 free_bioset: 177 bioset_free(btrfs_bioset); 178 btrfs_bioset = NULL; 179 180 free_buffer_cache: 181 kmem_cache_destroy(extent_buffer_cache); 182 extent_buffer_cache = NULL; 183 184 free_state_cache: 185 kmem_cache_destroy(extent_state_cache); 186 extent_state_cache = NULL; 187 return -ENOMEM; 188 } 189 190 void __cold extent_io_exit(void) 191 { 192 btrfs_leak_debug_check(); 193 194 /* 195 * Make sure all delayed rcu free are flushed before we 196 * destroy caches. 197 */ 198 rcu_barrier(); 199 kmem_cache_destroy(extent_state_cache); 200 kmem_cache_destroy(extent_buffer_cache); 201 if (btrfs_bioset) 202 bioset_free(btrfs_bioset); 203 } 204 205 void extent_io_tree_init(struct extent_io_tree *tree, 206 void *private_data) 207 { 208 tree->state = RB_ROOT; 209 tree->ops = NULL; 210 tree->dirty_bytes = 0; 211 spin_lock_init(&tree->lock); 212 tree->private_data = private_data; 213 } 214 215 static struct extent_state *alloc_extent_state(gfp_t mask) 216 { 217 struct extent_state *state; 218 219 /* 220 * The given mask might be not appropriate for the slab allocator, 221 * drop the unsupported bits 222 */ 223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 224 state = kmem_cache_alloc(extent_state_cache, mask); 225 if (!state) 226 return state; 227 state->state = 0; 228 state->failrec = NULL; 229 RB_CLEAR_NODE(&state->rb_node); 230 btrfs_leak_debug_add(&state->leak_list, &states); 231 refcount_set(&state->refs, 1); 232 init_waitqueue_head(&state->wq); 233 trace_alloc_extent_state(state, mask, _RET_IP_); 234 return state; 235 } 236 237 void free_extent_state(struct extent_state *state) 238 { 239 if (!state) 240 return; 241 if (refcount_dec_and_test(&state->refs)) { 242 WARN_ON(extent_state_in_tree(state)); 243 btrfs_leak_debug_del(&state->leak_list); 244 trace_free_extent_state(state, _RET_IP_); 245 kmem_cache_free(extent_state_cache, state); 246 } 247 } 248 249 static struct rb_node *tree_insert(struct rb_root *root, 250 struct rb_node *search_start, 251 u64 offset, 252 struct rb_node *node, 253 struct rb_node ***p_in, 254 struct rb_node **parent_in) 255 { 256 struct rb_node **p; 257 struct rb_node *parent = NULL; 258 struct tree_entry *entry; 259 260 if (p_in && parent_in) { 261 p = *p_in; 262 parent = *parent_in; 263 goto do_insert; 264 } 265 266 p = search_start ? &search_start : &root->rb_node; 267 while (*p) { 268 parent = *p; 269 entry = rb_entry(parent, struct tree_entry, rb_node); 270 271 if (offset < entry->start) 272 p = &(*p)->rb_left; 273 else if (offset > entry->end) 274 p = &(*p)->rb_right; 275 else 276 return parent; 277 } 278 279 do_insert: 280 rb_link_node(node, parent, p); 281 rb_insert_color(node, root); 282 return NULL; 283 } 284 285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 286 struct rb_node **prev_ret, 287 struct rb_node **next_ret, 288 struct rb_node ***p_ret, 289 struct rb_node **parent_ret) 290 { 291 struct rb_root *root = &tree->state; 292 struct rb_node **n = &root->rb_node; 293 struct rb_node *prev = NULL; 294 struct rb_node *orig_prev = NULL; 295 struct tree_entry *entry; 296 struct tree_entry *prev_entry = NULL; 297 298 while (*n) { 299 prev = *n; 300 entry = rb_entry(prev, struct tree_entry, rb_node); 301 prev_entry = entry; 302 303 if (offset < entry->start) 304 n = &(*n)->rb_left; 305 else if (offset > entry->end) 306 n = &(*n)->rb_right; 307 else 308 return *n; 309 } 310 311 if (p_ret) 312 *p_ret = n; 313 if (parent_ret) 314 *parent_ret = prev; 315 316 if (prev_ret) { 317 orig_prev = prev; 318 while (prev && offset > prev_entry->end) { 319 prev = rb_next(prev); 320 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 321 } 322 *prev_ret = prev; 323 prev = orig_prev; 324 } 325 326 if (next_ret) { 327 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 328 while (prev && offset < prev_entry->start) { 329 prev = rb_prev(prev); 330 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 331 } 332 *next_ret = prev; 333 } 334 return NULL; 335 } 336 337 static inline struct rb_node * 338 tree_search_for_insert(struct extent_io_tree *tree, 339 u64 offset, 340 struct rb_node ***p_ret, 341 struct rb_node **parent_ret) 342 { 343 struct rb_node *prev = NULL; 344 struct rb_node *ret; 345 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 347 if (!ret) 348 return prev; 349 return ret; 350 } 351 352 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 353 u64 offset) 354 { 355 return tree_search_for_insert(tree, offset, NULL, NULL); 356 } 357 358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 359 struct extent_state *other) 360 { 361 if (tree->ops && tree->ops->merge_extent_hook) 362 tree->ops->merge_extent_hook(tree->private_data, new, other); 363 } 364 365 /* 366 * utility function to look for merge candidates inside a given range. 367 * Any extents with matching state are merged together into a single 368 * extent in the tree. Extents with EXTENT_IO in their state field 369 * are not merged because the end_io handlers need to be able to do 370 * operations on them without sleeping (or doing allocations/splits). 371 * 372 * This should be called with the tree lock held. 373 */ 374 static void merge_state(struct extent_io_tree *tree, 375 struct extent_state *state) 376 { 377 struct extent_state *other; 378 struct rb_node *other_node; 379 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 381 return; 382 383 other_node = rb_prev(&state->rb_node); 384 if (other_node) { 385 other = rb_entry(other_node, struct extent_state, rb_node); 386 if (other->end == state->start - 1 && 387 other->state == state->state) { 388 merge_cb(tree, state, other); 389 state->start = other->start; 390 rb_erase(&other->rb_node, &tree->state); 391 RB_CLEAR_NODE(&other->rb_node); 392 free_extent_state(other); 393 } 394 } 395 other_node = rb_next(&state->rb_node); 396 if (other_node) { 397 other = rb_entry(other_node, struct extent_state, rb_node); 398 if (other->start == state->end + 1 && 399 other->state == state->state) { 400 merge_cb(tree, state, other); 401 state->end = other->end; 402 rb_erase(&other->rb_node, &tree->state); 403 RB_CLEAR_NODE(&other->rb_node); 404 free_extent_state(other); 405 } 406 } 407 } 408 409 static void set_state_cb(struct extent_io_tree *tree, 410 struct extent_state *state, unsigned *bits) 411 { 412 if (tree->ops && tree->ops->set_bit_hook) 413 tree->ops->set_bit_hook(tree->private_data, state, bits); 414 } 415 416 static void clear_state_cb(struct extent_io_tree *tree, 417 struct extent_state *state, unsigned *bits) 418 { 419 if (tree->ops && tree->ops->clear_bit_hook) 420 tree->ops->clear_bit_hook(tree->private_data, state, bits); 421 } 422 423 static void set_state_bits(struct extent_io_tree *tree, 424 struct extent_state *state, unsigned *bits, 425 struct extent_changeset *changeset); 426 427 /* 428 * insert an extent_state struct into the tree. 'bits' are set on the 429 * struct before it is inserted. 430 * 431 * This may return -EEXIST if the extent is already there, in which case the 432 * state struct is freed. 433 * 434 * The tree lock is not taken internally. This is a utility function and 435 * probably isn't what you want to call (see set/clear_extent_bit). 436 */ 437 static int insert_state(struct extent_io_tree *tree, 438 struct extent_state *state, u64 start, u64 end, 439 struct rb_node ***p, 440 struct rb_node **parent, 441 unsigned *bits, struct extent_changeset *changeset) 442 { 443 struct rb_node *node; 444 445 if (end < start) 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 447 end, start); 448 state->start = start; 449 state->end = end; 450 451 set_state_bits(tree, state, bits, changeset); 452 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 454 if (node) { 455 struct extent_state *found; 456 found = rb_entry(node, struct extent_state, rb_node); 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 458 found->start, found->end, start, end); 459 return -EEXIST; 460 } 461 merge_state(tree, state); 462 return 0; 463 } 464 465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 466 u64 split) 467 { 468 if (tree->ops && tree->ops->split_extent_hook) 469 tree->ops->split_extent_hook(tree->private_data, orig, split); 470 } 471 472 /* 473 * split a given extent state struct in two, inserting the preallocated 474 * struct 'prealloc' as the newly created second half. 'split' indicates an 475 * offset inside 'orig' where it should be split. 476 * 477 * Before calling, 478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 479 * are two extent state structs in the tree: 480 * prealloc: [orig->start, split - 1] 481 * orig: [ split, orig->end ] 482 * 483 * The tree locks are not taken by this function. They need to be held 484 * by the caller. 485 */ 486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 487 struct extent_state *prealloc, u64 split) 488 { 489 struct rb_node *node; 490 491 split_cb(tree, orig, split); 492 493 prealloc->start = orig->start; 494 prealloc->end = split - 1; 495 prealloc->state = orig->state; 496 orig->start = split; 497 498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 499 &prealloc->rb_node, NULL, NULL); 500 if (node) { 501 free_extent_state(prealloc); 502 return -EEXIST; 503 } 504 return 0; 505 } 506 507 static struct extent_state *next_state(struct extent_state *state) 508 { 509 struct rb_node *next = rb_next(&state->rb_node); 510 if (next) 511 return rb_entry(next, struct extent_state, rb_node); 512 else 513 return NULL; 514 } 515 516 /* 517 * utility function to clear some bits in an extent state struct. 518 * it will optionally wake up any one waiting on this state (wake == 1). 519 * 520 * If no bits are set on the state struct after clearing things, the 521 * struct is freed and removed from the tree 522 */ 523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 524 struct extent_state *state, 525 unsigned *bits, int wake, 526 struct extent_changeset *changeset) 527 { 528 struct extent_state *next; 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 530 int ret; 531 532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 533 u64 range = state->end - state->start + 1; 534 WARN_ON(range > tree->dirty_bytes); 535 tree->dirty_bytes -= range; 536 } 537 clear_state_cb(tree, state, bits); 538 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 539 BUG_ON(ret < 0); 540 state->state &= ~bits_to_clear; 541 if (wake) 542 wake_up(&state->wq); 543 if (state->state == 0) { 544 next = next_state(state); 545 if (extent_state_in_tree(state)) { 546 rb_erase(&state->rb_node, &tree->state); 547 RB_CLEAR_NODE(&state->rb_node); 548 free_extent_state(state); 549 } else { 550 WARN_ON(1); 551 } 552 } else { 553 merge_state(tree, state); 554 next = next_state(state); 555 } 556 return next; 557 } 558 559 static struct extent_state * 560 alloc_extent_state_atomic(struct extent_state *prealloc) 561 { 562 if (!prealloc) 563 prealloc = alloc_extent_state(GFP_ATOMIC); 564 565 return prealloc; 566 } 567 568 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 569 { 570 btrfs_panic(tree_fs_info(tree), err, 571 "Locking error: Extent tree was modified by another thread while locked."); 572 } 573 574 /* 575 * clear some bits on a range in the tree. This may require splitting 576 * or inserting elements in the tree, so the gfp mask is used to 577 * indicate which allocations or sleeping are allowed. 578 * 579 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 580 * the given range from the tree regardless of state (ie for truncate). 581 * 582 * the range [start, end] is inclusive. 583 * 584 * This takes the tree lock, and returns 0 on success and < 0 on error. 585 */ 586 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 587 unsigned bits, int wake, int delete, 588 struct extent_state **cached_state, 589 gfp_t mask, struct extent_changeset *changeset) 590 { 591 struct extent_state *state; 592 struct extent_state *cached; 593 struct extent_state *prealloc = NULL; 594 struct rb_node *node; 595 u64 last_end; 596 int err; 597 int clear = 0; 598 599 btrfs_debug_check_extent_io_range(tree, start, end); 600 601 if (bits & EXTENT_DELALLOC) 602 bits |= EXTENT_NORESERVE; 603 604 if (delete) 605 bits |= ~EXTENT_CTLBITS; 606 bits |= EXTENT_FIRST_DELALLOC; 607 608 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 609 clear = 1; 610 again: 611 if (!prealloc && gfpflags_allow_blocking(mask)) { 612 /* 613 * Don't care for allocation failure here because we might end 614 * up not needing the pre-allocated extent state at all, which 615 * is the case if we only have in the tree extent states that 616 * cover our input range and don't cover too any other range. 617 * If we end up needing a new extent state we allocate it later. 618 */ 619 prealloc = alloc_extent_state(mask); 620 } 621 622 spin_lock(&tree->lock); 623 if (cached_state) { 624 cached = *cached_state; 625 626 if (clear) { 627 *cached_state = NULL; 628 cached_state = NULL; 629 } 630 631 if (cached && extent_state_in_tree(cached) && 632 cached->start <= start && cached->end > start) { 633 if (clear) 634 refcount_dec(&cached->refs); 635 state = cached; 636 goto hit_next; 637 } 638 if (clear) 639 free_extent_state(cached); 640 } 641 /* 642 * this search will find the extents that end after 643 * our range starts 644 */ 645 node = tree_search(tree, start); 646 if (!node) 647 goto out; 648 state = rb_entry(node, struct extent_state, rb_node); 649 hit_next: 650 if (state->start > end) 651 goto out; 652 WARN_ON(state->end < start); 653 last_end = state->end; 654 655 /* the state doesn't have the wanted bits, go ahead */ 656 if (!(state->state & bits)) { 657 state = next_state(state); 658 goto next; 659 } 660 661 /* 662 * | ---- desired range ---- | 663 * | state | or 664 * | ------------- state -------------- | 665 * 666 * We need to split the extent we found, and may flip 667 * bits on second half. 668 * 669 * If the extent we found extends past our range, we 670 * just split and search again. It'll get split again 671 * the next time though. 672 * 673 * If the extent we found is inside our range, we clear 674 * the desired bit on it. 675 */ 676 677 if (state->start < start) { 678 prealloc = alloc_extent_state_atomic(prealloc); 679 BUG_ON(!prealloc); 680 err = split_state(tree, state, prealloc, start); 681 if (err) 682 extent_io_tree_panic(tree, err); 683 684 prealloc = NULL; 685 if (err) 686 goto out; 687 if (state->end <= end) { 688 state = clear_state_bit(tree, state, &bits, wake, 689 changeset); 690 goto next; 691 } 692 goto search_again; 693 } 694 /* 695 * | ---- desired range ---- | 696 * | state | 697 * We need to split the extent, and clear the bit 698 * on the first half 699 */ 700 if (state->start <= end && state->end > end) { 701 prealloc = alloc_extent_state_atomic(prealloc); 702 BUG_ON(!prealloc); 703 err = split_state(tree, state, prealloc, end + 1); 704 if (err) 705 extent_io_tree_panic(tree, err); 706 707 if (wake) 708 wake_up(&state->wq); 709 710 clear_state_bit(tree, prealloc, &bits, wake, changeset); 711 712 prealloc = NULL; 713 goto out; 714 } 715 716 state = clear_state_bit(tree, state, &bits, wake, changeset); 717 next: 718 if (last_end == (u64)-1) 719 goto out; 720 start = last_end + 1; 721 if (start <= end && state && !need_resched()) 722 goto hit_next; 723 724 search_again: 725 if (start > end) 726 goto out; 727 spin_unlock(&tree->lock); 728 if (gfpflags_allow_blocking(mask)) 729 cond_resched(); 730 goto again; 731 732 out: 733 spin_unlock(&tree->lock); 734 if (prealloc) 735 free_extent_state(prealloc); 736 737 return 0; 738 739 } 740 741 static void wait_on_state(struct extent_io_tree *tree, 742 struct extent_state *state) 743 __releases(tree->lock) 744 __acquires(tree->lock) 745 { 746 DEFINE_WAIT(wait); 747 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 748 spin_unlock(&tree->lock); 749 schedule(); 750 spin_lock(&tree->lock); 751 finish_wait(&state->wq, &wait); 752 } 753 754 /* 755 * waits for one or more bits to clear on a range in the state tree. 756 * The range [start, end] is inclusive. 757 * The tree lock is taken by this function 758 */ 759 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 760 unsigned long bits) 761 { 762 struct extent_state *state; 763 struct rb_node *node; 764 765 btrfs_debug_check_extent_io_range(tree, start, end); 766 767 spin_lock(&tree->lock); 768 again: 769 while (1) { 770 /* 771 * this search will find all the extents that end after 772 * our range starts 773 */ 774 node = tree_search(tree, start); 775 process_node: 776 if (!node) 777 break; 778 779 state = rb_entry(node, struct extent_state, rb_node); 780 781 if (state->start > end) 782 goto out; 783 784 if (state->state & bits) { 785 start = state->start; 786 refcount_inc(&state->refs); 787 wait_on_state(tree, state); 788 free_extent_state(state); 789 goto again; 790 } 791 start = state->end + 1; 792 793 if (start > end) 794 break; 795 796 if (!cond_resched_lock(&tree->lock)) { 797 node = rb_next(node); 798 goto process_node; 799 } 800 } 801 out: 802 spin_unlock(&tree->lock); 803 } 804 805 static void set_state_bits(struct extent_io_tree *tree, 806 struct extent_state *state, 807 unsigned *bits, struct extent_changeset *changeset) 808 { 809 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 810 int ret; 811 812 set_state_cb(tree, state, bits); 813 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 814 u64 range = state->end - state->start + 1; 815 tree->dirty_bytes += range; 816 } 817 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 818 BUG_ON(ret < 0); 819 state->state |= bits_to_set; 820 } 821 822 static void cache_state_if_flags(struct extent_state *state, 823 struct extent_state **cached_ptr, 824 unsigned flags) 825 { 826 if (cached_ptr && !(*cached_ptr)) { 827 if (!flags || (state->state & flags)) { 828 *cached_ptr = state; 829 refcount_inc(&state->refs); 830 } 831 } 832 } 833 834 static void cache_state(struct extent_state *state, 835 struct extent_state **cached_ptr) 836 { 837 return cache_state_if_flags(state, cached_ptr, 838 EXTENT_IOBITS | EXTENT_BOUNDARY); 839 } 840 841 /* 842 * set some bits on a range in the tree. This may require allocations or 843 * sleeping, so the gfp mask is used to indicate what is allowed. 844 * 845 * If any of the exclusive bits are set, this will fail with -EEXIST if some 846 * part of the range already has the desired bits set. The start of the 847 * existing range is returned in failed_start in this case. 848 * 849 * [start, end] is inclusive This takes the tree lock. 850 */ 851 852 static int __must_check 853 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 854 unsigned bits, unsigned exclusive_bits, 855 u64 *failed_start, struct extent_state **cached_state, 856 gfp_t mask, struct extent_changeset *changeset) 857 { 858 struct extent_state *state; 859 struct extent_state *prealloc = NULL; 860 struct rb_node *node; 861 struct rb_node **p; 862 struct rb_node *parent; 863 int err = 0; 864 u64 last_start; 865 u64 last_end; 866 867 btrfs_debug_check_extent_io_range(tree, start, end); 868 869 bits |= EXTENT_FIRST_DELALLOC; 870 again: 871 if (!prealloc && gfpflags_allow_blocking(mask)) { 872 /* 873 * Don't care for allocation failure here because we might end 874 * up not needing the pre-allocated extent state at all, which 875 * is the case if we only have in the tree extent states that 876 * cover our input range and don't cover too any other range. 877 * If we end up needing a new extent state we allocate it later. 878 */ 879 prealloc = alloc_extent_state(mask); 880 } 881 882 spin_lock(&tree->lock); 883 if (cached_state && *cached_state) { 884 state = *cached_state; 885 if (state->start <= start && state->end > start && 886 extent_state_in_tree(state)) { 887 node = &state->rb_node; 888 goto hit_next; 889 } 890 } 891 /* 892 * this search will find all the extents that end after 893 * our range starts. 894 */ 895 node = tree_search_for_insert(tree, start, &p, &parent); 896 if (!node) { 897 prealloc = alloc_extent_state_atomic(prealloc); 898 BUG_ON(!prealloc); 899 err = insert_state(tree, prealloc, start, end, 900 &p, &parent, &bits, changeset); 901 if (err) 902 extent_io_tree_panic(tree, err); 903 904 cache_state(prealloc, cached_state); 905 prealloc = NULL; 906 goto out; 907 } 908 state = rb_entry(node, struct extent_state, rb_node); 909 hit_next: 910 last_start = state->start; 911 last_end = state->end; 912 913 /* 914 * | ---- desired range ---- | 915 * | state | 916 * 917 * Just lock what we found and keep going 918 */ 919 if (state->start == start && state->end <= end) { 920 if (state->state & exclusive_bits) { 921 *failed_start = state->start; 922 err = -EEXIST; 923 goto out; 924 } 925 926 set_state_bits(tree, state, &bits, changeset); 927 cache_state(state, cached_state); 928 merge_state(tree, state); 929 if (last_end == (u64)-1) 930 goto out; 931 start = last_end + 1; 932 state = next_state(state); 933 if (start < end && state && state->start == start && 934 !need_resched()) 935 goto hit_next; 936 goto search_again; 937 } 938 939 /* 940 * | ---- desired range ---- | 941 * | state | 942 * or 943 * | ------------- state -------------- | 944 * 945 * We need to split the extent we found, and may flip bits on 946 * second half. 947 * 948 * If the extent we found extends past our 949 * range, we just split and search again. It'll get split 950 * again the next time though. 951 * 952 * If the extent we found is inside our range, we set the 953 * desired bit on it. 954 */ 955 if (state->start < start) { 956 if (state->state & exclusive_bits) { 957 *failed_start = start; 958 err = -EEXIST; 959 goto out; 960 } 961 962 prealloc = alloc_extent_state_atomic(prealloc); 963 BUG_ON(!prealloc); 964 err = split_state(tree, state, prealloc, start); 965 if (err) 966 extent_io_tree_panic(tree, err); 967 968 prealloc = NULL; 969 if (err) 970 goto out; 971 if (state->end <= end) { 972 set_state_bits(tree, state, &bits, changeset); 973 cache_state(state, cached_state); 974 merge_state(tree, state); 975 if (last_end == (u64)-1) 976 goto out; 977 start = last_end + 1; 978 state = next_state(state); 979 if (start < end && state && state->start == start && 980 !need_resched()) 981 goto hit_next; 982 } 983 goto search_again; 984 } 985 /* 986 * | ---- desired range ---- | 987 * | state | or | state | 988 * 989 * There's a hole, we need to insert something in it and 990 * ignore the extent we found. 991 */ 992 if (state->start > start) { 993 u64 this_end; 994 if (end < last_start) 995 this_end = end; 996 else 997 this_end = last_start - 1; 998 999 prealloc = alloc_extent_state_atomic(prealloc); 1000 BUG_ON(!prealloc); 1001 1002 /* 1003 * Avoid to free 'prealloc' if it can be merged with 1004 * the later extent. 1005 */ 1006 err = insert_state(tree, prealloc, start, this_end, 1007 NULL, NULL, &bits, changeset); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 cache_state(prealloc, cached_state); 1012 prealloc = NULL; 1013 start = this_end + 1; 1014 goto search_again; 1015 } 1016 /* 1017 * | ---- desired range ---- | 1018 * | state | 1019 * We need to split the extent, and set the bit 1020 * on the first half 1021 */ 1022 if (state->start <= end && state->end > end) { 1023 if (state->state & exclusive_bits) { 1024 *failed_start = start; 1025 err = -EEXIST; 1026 goto out; 1027 } 1028 1029 prealloc = alloc_extent_state_atomic(prealloc); 1030 BUG_ON(!prealloc); 1031 err = split_state(tree, state, prealloc, end + 1); 1032 if (err) 1033 extent_io_tree_panic(tree, err); 1034 1035 set_state_bits(tree, prealloc, &bits, changeset); 1036 cache_state(prealloc, cached_state); 1037 merge_state(tree, prealloc); 1038 prealloc = NULL; 1039 goto out; 1040 } 1041 1042 search_again: 1043 if (start > end) 1044 goto out; 1045 spin_unlock(&tree->lock); 1046 if (gfpflags_allow_blocking(mask)) 1047 cond_resched(); 1048 goto again; 1049 1050 out: 1051 spin_unlock(&tree->lock); 1052 if (prealloc) 1053 free_extent_state(prealloc); 1054 1055 return err; 1056 1057 } 1058 1059 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1060 unsigned bits, u64 * failed_start, 1061 struct extent_state **cached_state, gfp_t mask) 1062 { 1063 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1064 cached_state, mask, NULL); 1065 } 1066 1067 1068 /** 1069 * convert_extent_bit - convert all bits in a given range from one bit to 1070 * another 1071 * @tree: the io tree to search 1072 * @start: the start offset in bytes 1073 * @end: the end offset in bytes (inclusive) 1074 * @bits: the bits to set in this range 1075 * @clear_bits: the bits to clear in this range 1076 * @cached_state: state that we're going to cache 1077 * 1078 * This will go through and set bits for the given range. If any states exist 1079 * already in this range they are set with the given bit and cleared of the 1080 * clear_bits. This is only meant to be used by things that are mergeable, ie 1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1082 * boundary bits like LOCK. 1083 * 1084 * All allocations are done with GFP_NOFS. 1085 */ 1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1087 unsigned bits, unsigned clear_bits, 1088 struct extent_state **cached_state) 1089 { 1090 struct extent_state *state; 1091 struct extent_state *prealloc = NULL; 1092 struct rb_node *node; 1093 struct rb_node **p; 1094 struct rb_node *parent; 1095 int err = 0; 1096 u64 last_start; 1097 u64 last_end; 1098 bool first_iteration = true; 1099 1100 btrfs_debug_check_extent_io_range(tree, start, end); 1101 1102 again: 1103 if (!prealloc) { 1104 /* 1105 * Best effort, don't worry if extent state allocation fails 1106 * here for the first iteration. We might have a cached state 1107 * that matches exactly the target range, in which case no 1108 * extent state allocations are needed. We'll only know this 1109 * after locking the tree. 1110 */ 1111 prealloc = alloc_extent_state(GFP_NOFS); 1112 if (!prealloc && !first_iteration) 1113 return -ENOMEM; 1114 } 1115 1116 spin_lock(&tree->lock); 1117 if (cached_state && *cached_state) { 1118 state = *cached_state; 1119 if (state->start <= start && state->end > start && 1120 extent_state_in_tree(state)) { 1121 node = &state->rb_node; 1122 goto hit_next; 1123 } 1124 } 1125 1126 /* 1127 * this search will find all the extents that end after 1128 * our range starts. 1129 */ 1130 node = tree_search_for_insert(tree, start, &p, &parent); 1131 if (!node) { 1132 prealloc = alloc_extent_state_atomic(prealloc); 1133 if (!prealloc) { 1134 err = -ENOMEM; 1135 goto out; 1136 } 1137 err = insert_state(tree, prealloc, start, end, 1138 &p, &parent, &bits, NULL); 1139 if (err) 1140 extent_io_tree_panic(tree, err); 1141 cache_state(prealloc, cached_state); 1142 prealloc = NULL; 1143 goto out; 1144 } 1145 state = rb_entry(node, struct extent_state, rb_node); 1146 hit_next: 1147 last_start = state->start; 1148 last_end = state->end; 1149 1150 /* 1151 * | ---- desired range ---- | 1152 * | state | 1153 * 1154 * Just lock what we found and keep going 1155 */ 1156 if (state->start == start && state->end <= end) { 1157 set_state_bits(tree, state, &bits, NULL); 1158 cache_state(state, cached_state); 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1160 if (last_end == (u64)-1) 1161 goto out; 1162 start = last_end + 1; 1163 if (start < end && state && state->start == start && 1164 !need_resched()) 1165 goto hit_next; 1166 goto search_again; 1167 } 1168 1169 /* 1170 * | ---- desired range ---- | 1171 * | state | 1172 * or 1173 * | ------------- state -------------- | 1174 * 1175 * We need to split the extent we found, and may flip bits on 1176 * second half. 1177 * 1178 * If the extent we found extends past our 1179 * range, we just split and search again. It'll get split 1180 * again the next time though. 1181 * 1182 * If the extent we found is inside our range, we set the 1183 * desired bit on it. 1184 */ 1185 if (state->start < start) { 1186 prealloc = alloc_extent_state_atomic(prealloc); 1187 if (!prealloc) { 1188 err = -ENOMEM; 1189 goto out; 1190 } 1191 err = split_state(tree, state, prealloc, start); 1192 if (err) 1193 extent_io_tree_panic(tree, err); 1194 prealloc = NULL; 1195 if (err) 1196 goto out; 1197 if (state->end <= end) { 1198 set_state_bits(tree, state, &bits, NULL); 1199 cache_state(state, cached_state); 1200 state = clear_state_bit(tree, state, &clear_bits, 0, 1201 NULL); 1202 if (last_end == (u64)-1) 1203 goto out; 1204 start = last_end + 1; 1205 if (start < end && state && state->start == start && 1206 !need_resched()) 1207 goto hit_next; 1208 } 1209 goto search_again; 1210 } 1211 /* 1212 * | ---- desired range ---- | 1213 * | state | or | state | 1214 * 1215 * There's a hole, we need to insert something in it and 1216 * ignore the extent we found. 1217 */ 1218 if (state->start > start) { 1219 u64 this_end; 1220 if (end < last_start) 1221 this_end = end; 1222 else 1223 this_end = last_start - 1; 1224 1225 prealloc = alloc_extent_state_atomic(prealloc); 1226 if (!prealloc) { 1227 err = -ENOMEM; 1228 goto out; 1229 } 1230 1231 /* 1232 * Avoid to free 'prealloc' if it can be merged with 1233 * the later extent. 1234 */ 1235 err = insert_state(tree, prealloc, start, this_end, 1236 NULL, NULL, &bits, NULL); 1237 if (err) 1238 extent_io_tree_panic(tree, err); 1239 cache_state(prealloc, cached_state); 1240 prealloc = NULL; 1241 start = this_end + 1; 1242 goto search_again; 1243 } 1244 /* 1245 * | ---- desired range ---- | 1246 * | state | 1247 * We need to split the extent, and set the bit 1248 * on the first half 1249 */ 1250 if (state->start <= end && state->end > end) { 1251 prealloc = alloc_extent_state_atomic(prealloc); 1252 if (!prealloc) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 1257 err = split_state(tree, state, prealloc, end + 1); 1258 if (err) 1259 extent_io_tree_panic(tree, err); 1260 1261 set_state_bits(tree, prealloc, &bits, NULL); 1262 cache_state(prealloc, cached_state); 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1264 prealloc = NULL; 1265 goto out; 1266 } 1267 1268 search_again: 1269 if (start > end) 1270 goto out; 1271 spin_unlock(&tree->lock); 1272 cond_resched(); 1273 first_iteration = false; 1274 goto again; 1275 1276 out: 1277 spin_unlock(&tree->lock); 1278 if (prealloc) 1279 free_extent_state(prealloc); 1280 1281 return err; 1282 } 1283 1284 /* wrappers around set/clear extent bit */ 1285 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1286 unsigned bits, struct extent_changeset *changeset) 1287 { 1288 /* 1289 * We don't support EXTENT_LOCKED yet, as current changeset will 1290 * record any bits changed, so for EXTENT_LOCKED case, it will 1291 * either fail with -EEXIST or changeset will record the whole 1292 * range. 1293 */ 1294 BUG_ON(bits & EXTENT_LOCKED); 1295 1296 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1297 changeset); 1298 } 1299 1300 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1301 unsigned bits, int wake, int delete, 1302 struct extent_state **cached) 1303 { 1304 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1305 cached, GFP_NOFS, NULL); 1306 } 1307 1308 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1309 unsigned bits, struct extent_changeset *changeset) 1310 { 1311 /* 1312 * Don't support EXTENT_LOCKED case, same reason as 1313 * set_record_extent_bits(). 1314 */ 1315 BUG_ON(bits & EXTENT_LOCKED); 1316 1317 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1318 changeset); 1319 } 1320 1321 /* 1322 * either insert or lock state struct between start and end use mask to tell 1323 * us if waiting is desired. 1324 */ 1325 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1326 struct extent_state **cached_state) 1327 { 1328 int err; 1329 u64 failed_start; 1330 1331 while (1) { 1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1333 EXTENT_LOCKED, &failed_start, 1334 cached_state, GFP_NOFS, NULL); 1335 if (err == -EEXIST) { 1336 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1337 start = failed_start; 1338 } else 1339 break; 1340 WARN_ON(start > end); 1341 } 1342 return err; 1343 } 1344 1345 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1346 { 1347 int err; 1348 u64 failed_start; 1349 1350 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1351 &failed_start, NULL, GFP_NOFS, NULL); 1352 if (err == -EEXIST) { 1353 if (failed_start > start) 1354 clear_extent_bit(tree, start, failed_start - 1, 1355 EXTENT_LOCKED, 1, 0, NULL); 1356 return 0; 1357 } 1358 return 1; 1359 } 1360 1361 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1362 { 1363 unsigned long index = start >> PAGE_SHIFT; 1364 unsigned long end_index = end >> PAGE_SHIFT; 1365 struct page *page; 1366 1367 while (index <= end_index) { 1368 page = find_get_page(inode->i_mapping, index); 1369 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1370 clear_page_dirty_for_io(page); 1371 put_page(page); 1372 index++; 1373 } 1374 } 1375 1376 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1377 { 1378 unsigned long index = start >> PAGE_SHIFT; 1379 unsigned long end_index = end >> PAGE_SHIFT; 1380 struct page *page; 1381 1382 while (index <= end_index) { 1383 page = find_get_page(inode->i_mapping, index); 1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1385 __set_page_dirty_nobuffers(page); 1386 account_page_redirty(page); 1387 put_page(page); 1388 index++; 1389 } 1390 } 1391 1392 /* 1393 * helper function to set both pages and extents in the tree writeback 1394 */ 1395 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1396 { 1397 tree->ops->set_range_writeback(tree->private_data, start, end); 1398 } 1399 1400 /* find the first state struct with 'bits' set after 'start', and 1401 * return it. tree->lock must be held. NULL will returned if 1402 * nothing was found after 'start' 1403 */ 1404 static struct extent_state * 1405 find_first_extent_bit_state(struct extent_io_tree *tree, 1406 u64 start, unsigned bits) 1407 { 1408 struct rb_node *node; 1409 struct extent_state *state; 1410 1411 /* 1412 * this search will find all the extents that end after 1413 * our range starts. 1414 */ 1415 node = tree_search(tree, start); 1416 if (!node) 1417 goto out; 1418 1419 while (1) { 1420 state = rb_entry(node, struct extent_state, rb_node); 1421 if (state->end >= start && (state->state & bits)) 1422 return state; 1423 1424 node = rb_next(node); 1425 if (!node) 1426 break; 1427 } 1428 out: 1429 return NULL; 1430 } 1431 1432 /* 1433 * find the first offset in the io tree with 'bits' set. zero is 1434 * returned if we find something, and *start_ret and *end_ret are 1435 * set to reflect the state struct that was found. 1436 * 1437 * If nothing was found, 1 is returned. If found something, return 0. 1438 */ 1439 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1440 u64 *start_ret, u64 *end_ret, unsigned bits, 1441 struct extent_state **cached_state) 1442 { 1443 struct extent_state *state; 1444 struct rb_node *n; 1445 int ret = 1; 1446 1447 spin_lock(&tree->lock); 1448 if (cached_state && *cached_state) { 1449 state = *cached_state; 1450 if (state->end == start - 1 && extent_state_in_tree(state)) { 1451 n = rb_next(&state->rb_node); 1452 while (n) { 1453 state = rb_entry(n, struct extent_state, 1454 rb_node); 1455 if (state->state & bits) 1456 goto got_it; 1457 n = rb_next(n); 1458 } 1459 free_extent_state(*cached_state); 1460 *cached_state = NULL; 1461 goto out; 1462 } 1463 free_extent_state(*cached_state); 1464 *cached_state = NULL; 1465 } 1466 1467 state = find_first_extent_bit_state(tree, start, bits); 1468 got_it: 1469 if (state) { 1470 cache_state_if_flags(state, cached_state, 0); 1471 *start_ret = state->start; 1472 *end_ret = state->end; 1473 ret = 0; 1474 } 1475 out: 1476 spin_unlock(&tree->lock); 1477 return ret; 1478 } 1479 1480 /* 1481 * find a contiguous range of bytes in the file marked as delalloc, not 1482 * more than 'max_bytes'. start and end are used to return the range, 1483 * 1484 * 1 is returned if we find something, 0 if nothing was in the tree 1485 */ 1486 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1487 u64 *start, u64 *end, u64 max_bytes, 1488 struct extent_state **cached_state) 1489 { 1490 struct rb_node *node; 1491 struct extent_state *state; 1492 u64 cur_start = *start; 1493 u64 found = 0; 1494 u64 total_bytes = 0; 1495 1496 spin_lock(&tree->lock); 1497 1498 /* 1499 * this search will find all the extents that end after 1500 * our range starts. 1501 */ 1502 node = tree_search(tree, cur_start); 1503 if (!node) { 1504 if (!found) 1505 *end = (u64)-1; 1506 goto out; 1507 } 1508 1509 while (1) { 1510 state = rb_entry(node, struct extent_state, rb_node); 1511 if (found && (state->start != cur_start || 1512 (state->state & EXTENT_BOUNDARY))) { 1513 goto out; 1514 } 1515 if (!(state->state & EXTENT_DELALLOC)) { 1516 if (!found) 1517 *end = state->end; 1518 goto out; 1519 } 1520 if (!found) { 1521 *start = state->start; 1522 *cached_state = state; 1523 refcount_inc(&state->refs); 1524 } 1525 found++; 1526 *end = state->end; 1527 cur_start = state->end + 1; 1528 node = rb_next(node); 1529 total_bytes += state->end - state->start + 1; 1530 if (total_bytes >= max_bytes) 1531 break; 1532 if (!node) 1533 break; 1534 } 1535 out: 1536 spin_unlock(&tree->lock); 1537 return found; 1538 } 1539 1540 static int __process_pages_contig(struct address_space *mapping, 1541 struct page *locked_page, 1542 pgoff_t start_index, pgoff_t end_index, 1543 unsigned long page_ops, pgoff_t *index_ret); 1544 1545 static noinline void __unlock_for_delalloc(struct inode *inode, 1546 struct page *locked_page, 1547 u64 start, u64 end) 1548 { 1549 unsigned long index = start >> PAGE_SHIFT; 1550 unsigned long end_index = end >> PAGE_SHIFT; 1551 1552 ASSERT(locked_page); 1553 if (index == locked_page->index && end_index == index) 1554 return; 1555 1556 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1557 PAGE_UNLOCK, NULL); 1558 } 1559 1560 static noinline int lock_delalloc_pages(struct inode *inode, 1561 struct page *locked_page, 1562 u64 delalloc_start, 1563 u64 delalloc_end) 1564 { 1565 unsigned long index = delalloc_start >> PAGE_SHIFT; 1566 unsigned long index_ret = index; 1567 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1568 int ret; 1569 1570 ASSERT(locked_page); 1571 if (index == locked_page->index && index == end_index) 1572 return 0; 1573 1574 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1575 end_index, PAGE_LOCK, &index_ret); 1576 if (ret == -EAGAIN) 1577 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1578 (u64)index_ret << PAGE_SHIFT); 1579 return ret; 1580 } 1581 1582 /* 1583 * find a contiguous range of bytes in the file marked as delalloc, not 1584 * more than 'max_bytes'. start and end are used to return the range, 1585 * 1586 * 1 is returned if we find something, 0 if nothing was in the tree 1587 */ 1588 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1589 struct extent_io_tree *tree, 1590 struct page *locked_page, u64 *start, 1591 u64 *end, u64 max_bytes) 1592 { 1593 u64 delalloc_start; 1594 u64 delalloc_end; 1595 u64 found; 1596 struct extent_state *cached_state = NULL; 1597 int ret; 1598 int loops = 0; 1599 1600 again: 1601 /* step one, find a bunch of delalloc bytes starting at start */ 1602 delalloc_start = *start; 1603 delalloc_end = 0; 1604 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1605 max_bytes, &cached_state); 1606 if (!found || delalloc_end <= *start) { 1607 *start = delalloc_start; 1608 *end = delalloc_end; 1609 free_extent_state(cached_state); 1610 return 0; 1611 } 1612 1613 /* 1614 * start comes from the offset of locked_page. We have to lock 1615 * pages in order, so we can't process delalloc bytes before 1616 * locked_page 1617 */ 1618 if (delalloc_start < *start) 1619 delalloc_start = *start; 1620 1621 /* 1622 * make sure to limit the number of pages we try to lock down 1623 */ 1624 if (delalloc_end + 1 - delalloc_start > max_bytes) 1625 delalloc_end = delalloc_start + max_bytes - 1; 1626 1627 /* step two, lock all the pages after the page that has start */ 1628 ret = lock_delalloc_pages(inode, locked_page, 1629 delalloc_start, delalloc_end); 1630 if (ret == -EAGAIN) { 1631 /* some of the pages are gone, lets avoid looping by 1632 * shortening the size of the delalloc range we're searching 1633 */ 1634 free_extent_state(cached_state); 1635 cached_state = NULL; 1636 if (!loops) { 1637 max_bytes = PAGE_SIZE; 1638 loops = 1; 1639 goto again; 1640 } else { 1641 found = 0; 1642 goto out_failed; 1643 } 1644 } 1645 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1646 1647 /* step three, lock the state bits for the whole range */ 1648 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1649 1650 /* then test to make sure it is all still delalloc */ 1651 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1652 EXTENT_DELALLOC, 1, cached_state); 1653 if (!ret) { 1654 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1655 &cached_state); 1656 __unlock_for_delalloc(inode, locked_page, 1657 delalloc_start, delalloc_end); 1658 cond_resched(); 1659 goto again; 1660 } 1661 free_extent_state(cached_state); 1662 *start = delalloc_start; 1663 *end = delalloc_end; 1664 out_failed: 1665 return found; 1666 } 1667 1668 static int __process_pages_contig(struct address_space *mapping, 1669 struct page *locked_page, 1670 pgoff_t start_index, pgoff_t end_index, 1671 unsigned long page_ops, pgoff_t *index_ret) 1672 { 1673 unsigned long nr_pages = end_index - start_index + 1; 1674 unsigned long pages_locked = 0; 1675 pgoff_t index = start_index; 1676 struct page *pages[16]; 1677 unsigned ret; 1678 int err = 0; 1679 int i; 1680 1681 if (page_ops & PAGE_LOCK) { 1682 ASSERT(page_ops == PAGE_LOCK); 1683 ASSERT(index_ret && *index_ret == start_index); 1684 } 1685 1686 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1687 mapping_set_error(mapping, -EIO); 1688 1689 while (nr_pages > 0) { 1690 ret = find_get_pages_contig(mapping, index, 1691 min_t(unsigned long, 1692 nr_pages, ARRAY_SIZE(pages)), pages); 1693 if (ret == 0) { 1694 /* 1695 * Only if we're going to lock these pages, 1696 * can we find nothing at @index. 1697 */ 1698 ASSERT(page_ops & PAGE_LOCK); 1699 err = -EAGAIN; 1700 goto out; 1701 } 1702 1703 for (i = 0; i < ret; i++) { 1704 if (page_ops & PAGE_SET_PRIVATE2) 1705 SetPagePrivate2(pages[i]); 1706 1707 if (pages[i] == locked_page) { 1708 put_page(pages[i]); 1709 pages_locked++; 1710 continue; 1711 } 1712 if (page_ops & PAGE_CLEAR_DIRTY) 1713 clear_page_dirty_for_io(pages[i]); 1714 if (page_ops & PAGE_SET_WRITEBACK) 1715 set_page_writeback(pages[i]); 1716 if (page_ops & PAGE_SET_ERROR) 1717 SetPageError(pages[i]); 1718 if (page_ops & PAGE_END_WRITEBACK) 1719 end_page_writeback(pages[i]); 1720 if (page_ops & PAGE_UNLOCK) 1721 unlock_page(pages[i]); 1722 if (page_ops & PAGE_LOCK) { 1723 lock_page(pages[i]); 1724 if (!PageDirty(pages[i]) || 1725 pages[i]->mapping != mapping) { 1726 unlock_page(pages[i]); 1727 put_page(pages[i]); 1728 err = -EAGAIN; 1729 goto out; 1730 } 1731 } 1732 put_page(pages[i]); 1733 pages_locked++; 1734 } 1735 nr_pages -= ret; 1736 index += ret; 1737 cond_resched(); 1738 } 1739 out: 1740 if (err && index_ret) 1741 *index_ret = start_index + pages_locked - 1; 1742 return err; 1743 } 1744 1745 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1746 u64 delalloc_end, struct page *locked_page, 1747 unsigned clear_bits, 1748 unsigned long page_ops) 1749 { 1750 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1751 NULL); 1752 1753 __process_pages_contig(inode->i_mapping, locked_page, 1754 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1755 page_ops, NULL); 1756 } 1757 1758 /* 1759 * count the number of bytes in the tree that have a given bit(s) 1760 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1761 * cached. The total number found is returned. 1762 */ 1763 u64 count_range_bits(struct extent_io_tree *tree, 1764 u64 *start, u64 search_end, u64 max_bytes, 1765 unsigned bits, int contig) 1766 { 1767 struct rb_node *node; 1768 struct extent_state *state; 1769 u64 cur_start = *start; 1770 u64 total_bytes = 0; 1771 u64 last = 0; 1772 int found = 0; 1773 1774 if (WARN_ON(search_end <= cur_start)) 1775 return 0; 1776 1777 spin_lock(&tree->lock); 1778 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1779 total_bytes = tree->dirty_bytes; 1780 goto out; 1781 } 1782 /* 1783 * this search will find all the extents that end after 1784 * our range starts. 1785 */ 1786 node = tree_search(tree, cur_start); 1787 if (!node) 1788 goto out; 1789 1790 while (1) { 1791 state = rb_entry(node, struct extent_state, rb_node); 1792 if (state->start > search_end) 1793 break; 1794 if (contig && found && state->start > last + 1) 1795 break; 1796 if (state->end >= cur_start && (state->state & bits) == bits) { 1797 total_bytes += min(search_end, state->end) + 1 - 1798 max(cur_start, state->start); 1799 if (total_bytes >= max_bytes) 1800 break; 1801 if (!found) { 1802 *start = max(cur_start, state->start); 1803 found = 1; 1804 } 1805 last = state->end; 1806 } else if (contig && found) { 1807 break; 1808 } 1809 node = rb_next(node); 1810 if (!node) 1811 break; 1812 } 1813 out: 1814 spin_unlock(&tree->lock); 1815 return total_bytes; 1816 } 1817 1818 /* 1819 * set the private field for a given byte offset in the tree. If there isn't 1820 * an extent_state there already, this does nothing. 1821 */ 1822 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1823 struct io_failure_record *failrec) 1824 { 1825 struct rb_node *node; 1826 struct extent_state *state; 1827 int ret = 0; 1828 1829 spin_lock(&tree->lock); 1830 /* 1831 * this search will find all the extents that end after 1832 * our range starts. 1833 */ 1834 node = tree_search(tree, start); 1835 if (!node) { 1836 ret = -ENOENT; 1837 goto out; 1838 } 1839 state = rb_entry(node, struct extent_state, rb_node); 1840 if (state->start != start) { 1841 ret = -ENOENT; 1842 goto out; 1843 } 1844 state->failrec = failrec; 1845 out: 1846 spin_unlock(&tree->lock); 1847 return ret; 1848 } 1849 1850 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1851 struct io_failure_record **failrec) 1852 { 1853 struct rb_node *node; 1854 struct extent_state *state; 1855 int ret = 0; 1856 1857 spin_lock(&tree->lock); 1858 /* 1859 * this search will find all the extents that end after 1860 * our range starts. 1861 */ 1862 node = tree_search(tree, start); 1863 if (!node) { 1864 ret = -ENOENT; 1865 goto out; 1866 } 1867 state = rb_entry(node, struct extent_state, rb_node); 1868 if (state->start != start) { 1869 ret = -ENOENT; 1870 goto out; 1871 } 1872 *failrec = state->failrec; 1873 out: 1874 spin_unlock(&tree->lock); 1875 return ret; 1876 } 1877 1878 /* 1879 * searches a range in the state tree for a given mask. 1880 * If 'filled' == 1, this returns 1 only if every extent in the tree 1881 * has the bits set. Otherwise, 1 is returned if any bit in the 1882 * range is found set. 1883 */ 1884 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1885 unsigned bits, int filled, struct extent_state *cached) 1886 { 1887 struct extent_state *state = NULL; 1888 struct rb_node *node; 1889 int bitset = 0; 1890 1891 spin_lock(&tree->lock); 1892 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1893 cached->end > start) 1894 node = &cached->rb_node; 1895 else 1896 node = tree_search(tree, start); 1897 while (node && start <= end) { 1898 state = rb_entry(node, struct extent_state, rb_node); 1899 1900 if (filled && state->start > start) { 1901 bitset = 0; 1902 break; 1903 } 1904 1905 if (state->start > end) 1906 break; 1907 1908 if (state->state & bits) { 1909 bitset = 1; 1910 if (!filled) 1911 break; 1912 } else if (filled) { 1913 bitset = 0; 1914 break; 1915 } 1916 1917 if (state->end == (u64)-1) 1918 break; 1919 1920 start = state->end + 1; 1921 if (start > end) 1922 break; 1923 node = rb_next(node); 1924 if (!node) { 1925 if (filled) 1926 bitset = 0; 1927 break; 1928 } 1929 } 1930 spin_unlock(&tree->lock); 1931 return bitset; 1932 } 1933 1934 /* 1935 * helper function to set a given page up to date if all the 1936 * extents in the tree for that page are up to date 1937 */ 1938 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1939 { 1940 u64 start = page_offset(page); 1941 u64 end = start + PAGE_SIZE - 1; 1942 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1943 SetPageUptodate(page); 1944 } 1945 1946 int free_io_failure(struct extent_io_tree *failure_tree, 1947 struct extent_io_tree *io_tree, 1948 struct io_failure_record *rec) 1949 { 1950 int ret; 1951 int err = 0; 1952 1953 set_state_failrec(failure_tree, rec->start, NULL); 1954 ret = clear_extent_bits(failure_tree, rec->start, 1955 rec->start + rec->len - 1, 1956 EXTENT_LOCKED | EXTENT_DIRTY); 1957 if (ret) 1958 err = ret; 1959 1960 ret = clear_extent_bits(io_tree, rec->start, 1961 rec->start + rec->len - 1, 1962 EXTENT_DAMAGED); 1963 if (ret && !err) 1964 err = ret; 1965 1966 kfree(rec); 1967 return err; 1968 } 1969 1970 /* 1971 * this bypasses the standard btrfs submit functions deliberately, as 1972 * the standard behavior is to write all copies in a raid setup. here we only 1973 * want to write the one bad copy. so we do the mapping for ourselves and issue 1974 * submit_bio directly. 1975 * to avoid any synchronization issues, wait for the data after writing, which 1976 * actually prevents the read that triggered the error from finishing. 1977 * currently, there can be no more than two copies of every data bit. thus, 1978 * exactly one rewrite is required. 1979 */ 1980 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1981 u64 length, u64 logical, struct page *page, 1982 unsigned int pg_offset, int mirror_num) 1983 { 1984 struct bio *bio; 1985 struct btrfs_device *dev; 1986 u64 map_length = 0; 1987 u64 sector; 1988 struct btrfs_bio *bbio = NULL; 1989 int ret; 1990 1991 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1992 BUG_ON(!mirror_num); 1993 1994 bio = btrfs_io_bio_alloc(1); 1995 bio->bi_iter.bi_size = 0; 1996 map_length = length; 1997 1998 /* 1999 * Avoid races with device replace and make sure our bbio has devices 2000 * associated to its stripes that don't go away while we are doing the 2001 * read repair operation. 2002 */ 2003 btrfs_bio_counter_inc_blocked(fs_info); 2004 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2005 /* 2006 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2007 * to update all raid stripes, but here we just want to correct 2008 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2009 * stripe's dev and sector. 2010 */ 2011 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2012 &map_length, &bbio, 0); 2013 if (ret) { 2014 btrfs_bio_counter_dec(fs_info); 2015 bio_put(bio); 2016 return -EIO; 2017 } 2018 ASSERT(bbio->mirror_num == 1); 2019 } else { 2020 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2021 &map_length, &bbio, mirror_num); 2022 if (ret) { 2023 btrfs_bio_counter_dec(fs_info); 2024 bio_put(bio); 2025 return -EIO; 2026 } 2027 BUG_ON(mirror_num != bbio->mirror_num); 2028 } 2029 2030 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2031 bio->bi_iter.bi_sector = sector; 2032 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2033 btrfs_put_bbio(bbio); 2034 if (!dev || !dev->bdev || 2035 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2036 btrfs_bio_counter_dec(fs_info); 2037 bio_put(bio); 2038 return -EIO; 2039 } 2040 bio_set_dev(bio, dev->bdev); 2041 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2042 bio_add_page(bio, page, length, pg_offset); 2043 2044 if (btrfsic_submit_bio_wait(bio)) { 2045 /* try to remap that extent elsewhere? */ 2046 btrfs_bio_counter_dec(fs_info); 2047 bio_put(bio); 2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2049 return -EIO; 2050 } 2051 2052 btrfs_info_rl_in_rcu(fs_info, 2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2054 ino, start, 2055 rcu_str_deref(dev->name), sector); 2056 btrfs_bio_counter_dec(fs_info); 2057 bio_put(bio); 2058 return 0; 2059 } 2060 2061 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2062 struct extent_buffer *eb, int mirror_num) 2063 { 2064 u64 start = eb->start; 2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2066 int ret = 0; 2067 2068 if (sb_rdonly(fs_info->sb)) 2069 return -EROFS; 2070 2071 for (i = 0; i < num_pages; i++) { 2072 struct page *p = eb->pages[i]; 2073 2074 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2075 start - page_offset(p), mirror_num); 2076 if (ret) 2077 break; 2078 start += PAGE_SIZE; 2079 } 2080 2081 return ret; 2082 } 2083 2084 /* 2085 * each time an IO finishes, we do a fast check in the IO failure tree 2086 * to see if we need to process or clean up an io_failure_record 2087 */ 2088 int clean_io_failure(struct btrfs_fs_info *fs_info, 2089 struct extent_io_tree *failure_tree, 2090 struct extent_io_tree *io_tree, u64 start, 2091 struct page *page, u64 ino, unsigned int pg_offset) 2092 { 2093 u64 private; 2094 struct io_failure_record *failrec; 2095 struct extent_state *state; 2096 int num_copies; 2097 int ret; 2098 2099 private = 0; 2100 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2101 EXTENT_DIRTY, 0); 2102 if (!ret) 2103 return 0; 2104 2105 ret = get_state_failrec(failure_tree, start, &failrec); 2106 if (ret) 2107 return 0; 2108 2109 BUG_ON(!failrec->this_mirror); 2110 2111 if (failrec->in_validation) { 2112 /* there was no real error, just free the record */ 2113 btrfs_debug(fs_info, 2114 "clean_io_failure: freeing dummy error at %llu", 2115 failrec->start); 2116 goto out; 2117 } 2118 if (sb_rdonly(fs_info->sb)) 2119 goto out; 2120 2121 spin_lock(&io_tree->lock); 2122 state = find_first_extent_bit_state(io_tree, 2123 failrec->start, 2124 EXTENT_LOCKED); 2125 spin_unlock(&io_tree->lock); 2126 2127 if (state && state->start <= failrec->start && 2128 state->end >= failrec->start + failrec->len - 1) { 2129 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2130 failrec->len); 2131 if (num_copies > 1) { 2132 repair_io_failure(fs_info, ino, start, failrec->len, 2133 failrec->logical, page, pg_offset, 2134 failrec->failed_mirror); 2135 } 2136 } 2137 2138 out: 2139 free_io_failure(failure_tree, io_tree, failrec); 2140 2141 return 0; 2142 } 2143 2144 /* 2145 * Can be called when 2146 * - hold extent lock 2147 * - under ordered extent 2148 * - the inode is freeing 2149 */ 2150 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2151 { 2152 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2153 struct io_failure_record *failrec; 2154 struct extent_state *state, *next; 2155 2156 if (RB_EMPTY_ROOT(&failure_tree->state)) 2157 return; 2158 2159 spin_lock(&failure_tree->lock); 2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2161 while (state) { 2162 if (state->start > end) 2163 break; 2164 2165 ASSERT(state->end <= end); 2166 2167 next = next_state(state); 2168 2169 failrec = state->failrec; 2170 free_extent_state(state); 2171 kfree(failrec); 2172 2173 state = next; 2174 } 2175 spin_unlock(&failure_tree->lock); 2176 } 2177 2178 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2179 struct io_failure_record **failrec_ret) 2180 { 2181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2182 struct io_failure_record *failrec; 2183 struct extent_map *em; 2184 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2185 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2186 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2187 int ret; 2188 u64 logical; 2189 2190 ret = get_state_failrec(failure_tree, start, &failrec); 2191 if (ret) { 2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2193 if (!failrec) 2194 return -ENOMEM; 2195 2196 failrec->start = start; 2197 failrec->len = end - start + 1; 2198 failrec->this_mirror = 0; 2199 failrec->bio_flags = 0; 2200 failrec->in_validation = 0; 2201 2202 read_lock(&em_tree->lock); 2203 em = lookup_extent_mapping(em_tree, start, failrec->len); 2204 if (!em) { 2205 read_unlock(&em_tree->lock); 2206 kfree(failrec); 2207 return -EIO; 2208 } 2209 2210 if (em->start > start || em->start + em->len <= start) { 2211 free_extent_map(em); 2212 em = NULL; 2213 } 2214 read_unlock(&em_tree->lock); 2215 if (!em) { 2216 kfree(failrec); 2217 return -EIO; 2218 } 2219 2220 logical = start - em->start; 2221 logical = em->block_start + logical; 2222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2223 logical = em->block_start; 2224 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2225 extent_set_compress_type(&failrec->bio_flags, 2226 em->compress_type); 2227 } 2228 2229 btrfs_debug(fs_info, 2230 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2231 logical, start, failrec->len); 2232 2233 failrec->logical = logical; 2234 free_extent_map(em); 2235 2236 /* set the bits in the private failure tree */ 2237 ret = set_extent_bits(failure_tree, start, end, 2238 EXTENT_LOCKED | EXTENT_DIRTY); 2239 if (ret >= 0) 2240 ret = set_state_failrec(failure_tree, start, failrec); 2241 /* set the bits in the inode's tree */ 2242 if (ret >= 0) 2243 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2244 if (ret < 0) { 2245 kfree(failrec); 2246 return ret; 2247 } 2248 } else { 2249 btrfs_debug(fs_info, 2250 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2251 failrec->logical, failrec->start, failrec->len, 2252 failrec->in_validation); 2253 /* 2254 * when data can be on disk more than twice, add to failrec here 2255 * (e.g. with a list for failed_mirror) to make 2256 * clean_io_failure() clean all those errors at once. 2257 */ 2258 } 2259 2260 *failrec_ret = failrec; 2261 2262 return 0; 2263 } 2264 2265 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2266 struct io_failure_record *failrec, int failed_mirror) 2267 { 2268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2269 int num_copies; 2270 2271 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2272 if (num_copies == 1) { 2273 /* 2274 * we only have a single copy of the data, so don't bother with 2275 * all the retry and error correction code that follows. no 2276 * matter what the error is, it is very likely to persist. 2277 */ 2278 btrfs_debug(fs_info, 2279 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2280 num_copies, failrec->this_mirror, failed_mirror); 2281 return false; 2282 } 2283 2284 /* 2285 * there are two premises: 2286 * a) deliver good data to the caller 2287 * b) correct the bad sectors on disk 2288 */ 2289 if (failed_bio_pages > 1) { 2290 /* 2291 * to fulfill b), we need to know the exact failing sectors, as 2292 * we don't want to rewrite any more than the failed ones. thus, 2293 * we need separate read requests for the failed bio 2294 * 2295 * if the following BUG_ON triggers, our validation request got 2296 * merged. we need separate requests for our algorithm to work. 2297 */ 2298 BUG_ON(failrec->in_validation); 2299 failrec->in_validation = 1; 2300 failrec->this_mirror = failed_mirror; 2301 } else { 2302 /* 2303 * we're ready to fulfill a) and b) alongside. get a good copy 2304 * of the failed sector and if we succeed, we have setup 2305 * everything for repair_io_failure to do the rest for us. 2306 */ 2307 if (failrec->in_validation) { 2308 BUG_ON(failrec->this_mirror != failed_mirror); 2309 failrec->in_validation = 0; 2310 failrec->this_mirror = 0; 2311 } 2312 failrec->failed_mirror = failed_mirror; 2313 failrec->this_mirror++; 2314 if (failrec->this_mirror == failed_mirror) 2315 failrec->this_mirror++; 2316 } 2317 2318 if (failrec->this_mirror > num_copies) { 2319 btrfs_debug(fs_info, 2320 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2321 num_copies, failrec->this_mirror, failed_mirror); 2322 return false; 2323 } 2324 2325 return true; 2326 } 2327 2328 2329 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2330 struct io_failure_record *failrec, 2331 struct page *page, int pg_offset, int icsum, 2332 bio_end_io_t *endio_func, void *data) 2333 { 2334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2335 struct bio *bio; 2336 struct btrfs_io_bio *btrfs_failed_bio; 2337 struct btrfs_io_bio *btrfs_bio; 2338 2339 bio = btrfs_io_bio_alloc(1); 2340 bio->bi_end_io = endio_func; 2341 bio->bi_iter.bi_sector = failrec->logical >> 9; 2342 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2343 bio->bi_iter.bi_size = 0; 2344 bio->bi_private = data; 2345 2346 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2347 if (btrfs_failed_bio->csum) { 2348 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2349 2350 btrfs_bio = btrfs_io_bio(bio); 2351 btrfs_bio->csum = btrfs_bio->csum_inline; 2352 icsum *= csum_size; 2353 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2354 csum_size); 2355 } 2356 2357 bio_add_page(bio, page, failrec->len, pg_offset); 2358 2359 return bio; 2360 } 2361 2362 /* 2363 * this is a generic handler for readpage errors (default 2364 * readpage_io_failed_hook). if other copies exist, read those and write back 2365 * good data to the failed position. does not investigate in remapping the 2366 * failed extent elsewhere, hoping the device will be smart enough to do this as 2367 * needed 2368 */ 2369 2370 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2371 struct page *page, u64 start, u64 end, 2372 int failed_mirror) 2373 { 2374 struct io_failure_record *failrec; 2375 struct inode *inode = page->mapping->host; 2376 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2377 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2378 struct bio *bio; 2379 int read_mode = 0; 2380 blk_status_t status; 2381 int ret; 2382 unsigned failed_bio_pages = bio_pages_all(failed_bio); 2383 2384 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2385 2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2387 if (ret) 2388 return ret; 2389 2390 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2391 failed_mirror)) { 2392 free_io_failure(failure_tree, tree, failrec); 2393 return -EIO; 2394 } 2395 2396 if (failed_bio_pages > 1) 2397 read_mode |= REQ_FAILFAST_DEV; 2398 2399 phy_offset >>= inode->i_sb->s_blocksize_bits; 2400 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2401 start - page_offset(page), 2402 (int)phy_offset, failed_bio->bi_end_io, 2403 NULL); 2404 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2405 2406 btrfs_debug(btrfs_sb(inode->i_sb), 2407 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2408 read_mode, failrec->this_mirror, failrec->in_validation); 2409 2410 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2411 failrec->bio_flags, 0); 2412 if (status) { 2413 free_io_failure(failure_tree, tree, failrec); 2414 bio_put(bio); 2415 ret = blk_status_to_errno(status); 2416 } 2417 2418 return ret; 2419 } 2420 2421 /* lots and lots of room for performance fixes in the end_bio funcs */ 2422 2423 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2424 { 2425 int uptodate = (err == 0); 2426 struct extent_io_tree *tree; 2427 int ret = 0; 2428 2429 tree = &BTRFS_I(page->mapping->host)->io_tree; 2430 2431 if (tree->ops && tree->ops->writepage_end_io_hook) 2432 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2433 uptodate); 2434 2435 if (!uptodate) { 2436 ClearPageUptodate(page); 2437 SetPageError(page); 2438 ret = err < 0 ? err : -EIO; 2439 mapping_set_error(page->mapping, ret); 2440 } 2441 } 2442 2443 /* 2444 * after a writepage IO is done, we need to: 2445 * clear the uptodate bits on error 2446 * clear the writeback bits in the extent tree for this IO 2447 * end_page_writeback if the page has no more pending IO 2448 * 2449 * Scheduling is not allowed, so the extent state tree is expected 2450 * to have one and only one object corresponding to this IO. 2451 */ 2452 static void end_bio_extent_writepage(struct bio *bio) 2453 { 2454 int error = blk_status_to_errno(bio->bi_status); 2455 struct bio_vec *bvec; 2456 u64 start; 2457 u64 end; 2458 int i; 2459 2460 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2461 bio_for_each_segment_all(bvec, bio, i) { 2462 struct page *page = bvec->bv_page; 2463 struct inode *inode = page->mapping->host; 2464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2465 2466 /* We always issue full-page reads, but if some block 2467 * in a page fails to read, blk_update_request() will 2468 * advance bv_offset and adjust bv_len to compensate. 2469 * Print a warning for nonzero offsets, and an error 2470 * if they don't add up to a full page. */ 2471 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2472 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2473 btrfs_err(fs_info, 2474 "partial page write in btrfs with offset %u and length %u", 2475 bvec->bv_offset, bvec->bv_len); 2476 else 2477 btrfs_info(fs_info, 2478 "incomplete page write in btrfs with offset %u and length %u", 2479 bvec->bv_offset, bvec->bv_len); 2480 } 2481 2482 start = page_offset(page); 2483 end = start + bvec->bv_offset + bvec->bv_len - 1; 2484 2485 end_extent_writepage(page, error, start, end); 2486 end_page_writeback(page); 2487 } 2488 2489 bio_put(bio); 2490 } 2491 2492 static void 2493 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2494 int uptodate) 2495 { 2496 struct extent_state *cached = NULL; 2497 u64 end = start + len - 1; 2498 2499 if (uptodate && tree->track_uptodate) 2500 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2501 unlock_extent_cached_atomic(tree, start, end, &cached); 2502 } 2503 2504 /* 2505 * after a readpage IO is done, we need to: 2506 * clear the uptodate bits on error 2507 * set the uptodate bits if things worked 2508 * set the page up to date if all extents in the tree are uptodate 2509 * clear the lock bit in the extent tree 2510 * unlock the page if there are no other extents locked for it 2511 * 2512 * Scheduling is not allowed, so the extent state tree is expected 2513 * to have one and only one object corresponding to this IO. 2514 */ 2515 static void end_bio_extent_readpage(struct bio *bio) 2516 { 2517 struct bio_vec *bvec; 2518 int uptodate = !bio->bi_status; 2519 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2520 struct extent_io_tree *tree, *failure_tree; 2521 u64 offset = 0; 2522 u64 start; 2523 u64 end; 2524 u64 len; 2525 u64 extent_start = 0; 2526 u64 extent_len = 0; 2527 int mirror; 2528 int ret; 2529 int i; 2530 2531 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2532 bio_for_each_segment_all(bvec, bio, i) { 2533 struct page *page = bvec->bv_page; 2534 struct inode *inode = page->mapping->host; 2535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2536 2537 btrfs_debug(fs_info, 2538 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2539 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2540 io_bio->mirror_num); 2541 tree = &BTRFS_I(inode)->io_tree; 2542 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2543 2544 /* We always issue full-page reads, but if some block 2545 * in a page fails to read, blk_update_request() will 2546 * advance bv_offset and adjust bv_len to compensate. 2547 * Print a warning for nonzero offsets, and an error 2548 * if they don't add up to a full page. */ 2549 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2550 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2551 btrfs_err(fs_info, 2552 "partial page read in btrfs with offset %u and length %u", 2553 bvec->bv_offset, bvec->bv_len); 2554 else 2555 btrfs_info(fs_info, 2556 "incomplete page read in btrfs with offset %u and length %u", 2557 bvec->bv_offset, bvec->bv_len); 2558 } 2559 2560 start = page_offset(page); 2561 end = start + bvec->bv_offset + bvec->bv_len - 1; 2562 len = bvec->bv_len; 2563 2564 mirror = io_bio->mirror_num; 2565 if (likely(uptodate && tree->ops)) { 2566 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2567 page, start, end, 2568 mirror); 2569 if (ret) 2570 uptodate = 0; 2571 else 2572 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2573 failure_tree, tree, start, 2574 page, 2575 btrfs_ino(BTRFS_I(inode)), 0); 2576 } 2577 2578 if (likely(uptodate)) 2579 goto readpage_ok; 2580 2581 if (tree->ops) { 2582 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2583 if (ret == -EAGAIN) { 2584 /* 2585 * Data inode's readpage_io_failed_hook() always 2586 * returns -EAGAIN. 2587 * 2588 * The generic bio_readpage_error handles errors 2589 * the following way: If possible, new read 2590 * requests are created and submitted and will 2591 * end up in end_bio_extent_readpage as well (if 2592 * we're lucky, not in the !uptodate case). In 2593 * that case it returns 0 and we just go on with 2594 * the next page in our bio. If it can't handle 2595 * the error it will return -EIO and we remain 2596 * responsible for that page. 2597 */ 2598 ret = bio_readpage_error(bio, offset, page, 2599 start, end, mirror); 2600 if (ret == 0) { 2601 uptodate = !bio->bi_status; 2602 offset += len; 2603 continue; 2604 } 2605 } 2606 2607 /* 2608 * metadata's readpage_io_failed_hook() always returns 2609 * -EIO and fixes nothing. -EIO is also returned if 2610 * data inode error could not be fixed. 2611 */ 2612 ASSERT(ret == -EIO); 2613 } 2614 readpage_ok: 2615 if (likely(uptodate)) { 2616 loff_t i_size = i_size_read(inode); 2617 pgoff_t end_index = i_size >> PAGE_SHIFT; 2618 unsigned off; 2619 2620 /* Zero out the end if this page straddles i_size */ 2621 off = i_size & (PAGE_SIZE-1); 2622 if (page->index == end_index && off) 2623 zero_user_segment(page, off, PAGE_SIZE); 2624 SetPageUptodate(page); 2625 } else { 2626 ClearPageUptodate(page); 2627 SetPageError(page); 2628 } 2629 unlock_page(page); 2630 offset += len; 2631 2632 if (unlikely(!uptodate)) { 2633 if (extent_len) { 2634 endio_readpage_release_extent(tree, 2635 extent_start, 2636 extent_len, 1); 2637 extent_start = 0; 2638 extent_len = 0; 2639 } 2640 endio_readpage_release_extent(tree, start, 2641 end - start + 1, 0); 2642 } else if (!extent_len) { 2643 extent_start = start; 2644 extent_len = end + 1 - start; 2645 } else if (extent_start + extent_len == start) { 2646 extent_len += end + 1 - start; 2647 } else { 2648 endio_readpage_release_extent(tree, extent_start, 2649 extent_len, uptodate); 2650 extent_start = start; 2651 extent_len = end + 1 - start; 2652 } 2653 } 2654 2655 if (extent_len) 2656 endio_readpage_release_extent(tree, extent_start, extent_len, 2657 uptodate); 2658 if (io_bio->end_io) 2659 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2660 bio_put(bio); 2661 } 2662 2663 /* 2664 * Initialize the members up to but not including 'bio'. Use after allocating a 2665 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2666 * 'bio' because use of __GFP_ZERO is not supported. 2667 */ 2668 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2669 { 2670 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2671 } 2672 2673 /* 2674 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2675 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2676 * for the appropriate container_of magic 2677 */ 2678 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2679 { 2680 struct bio *bio; 2681 2682 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset); 2683 bio_set_dev(bio, bdev); 2684 bio->bi_iter.bi_sector = first_byte >> 9; 2685 btrfs_io_bio_init(btrfs_io_bio(bio)); 2686 return bio; 2687 } 2688 2689 struct bio *btrfs_bio_clone(struct bio *bio) 2690 { 2691 struct btrfs_io_bio *btrfs_bio; 2692 struct bio *new; 2693 2694 /* Bio allocation backed by a bioset does not fail */ 2695 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset); 2696 btrfs_bio = btrfs_io_bio(new); 2697 btrfs_io_bio_init(btrfs_bio); 2698 btrfs_bio->iter = bio->bi_iter; 2699 return new; 2700 } 2701 2702 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2703 { 2704 struct bio *bio; 2705 2706 /* Bio allocation backed by a bioset does not fail */ 2707 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset); 2708 btrfs_io_bio_init(btrfs_io_bio(bio)); 2709 return bio; 2710 } 2711 2712 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2713 { 2714 struct bio *bio; 2715 struct btrfs_io_bio *btrfs_bio; 2716 2717 /* this will never fail when it's backed by a bioset */ 2718 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset); 2719 ASSERT(bio); 2720 2721 btrfs_bio = btrfs_io_bio(bio); 2722 btrfs_io_bio_init(btrfs_bio); 2723 2724 bio_trim(bio, offset >> 9, size >> 9); 2725 btrfs_bio->iter = bio->bi_iter; 2726 return bio; 2727 } 2728 2729 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2730 unsigned long bio_flags) 2731 { 2732 blk_status_t ret = 0; 2733 struct bio_vec *bvec = bio_last_bvec_all(bio); 2734 struct page *page = bvec->bv_page; 2735 struct extent_io_tree *tree = bio->bi_private; 2736 u64 start; 2737 2738 start = page_offset(page) + bvec->bv_offset; 2739 2740 bio->bi_private = NULL; 2741 2742 if (tree->ops) 2743 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2744 mirror_num, bio_flags, start); 2745 else 2746 btrfsic_submit_bio(bio); 2747 2748 return blk_status_to_errno(ret); 2749 } 2750 2751 /* 2752 * @opf: bio REQ_OP_* and REQ_* flags as one value 2753 * @tree: tree so we can call our merge_bio hook 2754 * @wbc: optional writeback control for io accounting 2755 * @page: page to add to the bio 2756 * @pg_offset: offset of the new bio or to check whether we are adding 2757 * a contiguous page to the previous one 2758 * @size: portion of page that we want to write 2759 * @offset: starting offset in the page 2760 * @bdev: attach newly created bios to this bdev 2761 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2762 * @end_io_func: end_io callback for new bio 2763 * @mirror_num: desired mirror to read/write 2764 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2765 * @bio_flags: flags of the current bio to see if we can merge them 2766 */ 2767 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2768 struct writeback_control *wbc, 2769 struct page *page, u64 offset, 2770 size_t size, unsigned long pg_offset, 2771 struct block_device *bdev, 2772 struct bio **bio_ret, 2773 bio_end_io_t end_io_func, 2774 int mirror_num, 2775 unsigned long prev_bio_flags, 2776 unsigned long bio_flags, 2777 bool force_bio_submit) 2778 { 2779 int ret = 0; 2780 struct bio *bio; 2781 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2782 sector_t sector = offset >> 9; 2783 2784 ASSERT(bio_ret); 2785 2786 if (*bio_ret) { 2787 bool contig; 2788 bool can_merge = true; 2789 2790 bio = *bio_ret; 2791 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2792 contig = bio->bi_iter.bi_sector == sector; 2793 else 2794 contig = bio_end_sector(bio) == sector; 2795 2796 if (tree->ops && tree->ops->merge_bio_hook(page, offset, 2797 page_size, bio, bio_flags)) 2798 can_merge = false; 2799 2800 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2801 force_bio_submit || 2802 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2803 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2804 if (ret < 0) { 2805 *bio_ret = NULL; 2806 return ret; 2807 } 2808 bio = NULL; 2809 } else { 2810 if (wbc) 2811 wbc_account_io(wbc, page, page_size); 2812 return 0; 2813 } 2814 } 2815 2816 bio = btrfs_bio_alloc(bdev, offset); 2817 bio_add_page(bio, page, page_size, pg_offset); 2818 bio->bi_end_io = end_io_func; 2819 bio->bi_private = tree; 2820 bio->bi_write_hint = page->mapping->host->i_write_hint; 2821 bio->bi_opf = opf; 2822 if (wbc) { 2823 wbc_init_bio(wbc, bio); 2824 wbc_account_io(wbc, page, page_size); 2825 } 2826 2827 *bio_ret = bio; 2828 2829 return ret; 2830 } 2831 2832 static void attach_extent_buffer_page(struct extent_buffer *eb, 2833 struct page *page) 2834 { 2835 if (!PagePrivate(page)) { 2836 SetPagePrivate(page); 2837 get_page(page); 2838 set_page_private(page, (unsigned long)eb); 2839 } else { 2840 WARN_ON(page->private != (unsigned long)eb); 2841 } 2842 } 2843 2844 void set_page_extent_mapped(struct page *page) 2845 { 2846 if (!PagePrivate(page)) { 2847 SetPagePrivate(page); 2848 get_page(page); 2849 set_page_private(page, EXTENT_PAGE_PRIVATE); 2850 } 2851 } 2852 2853 static struct extent_map * 2854 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2855 u64 start, u64 len, get_extent_t *get_extent, 2856 struct extent_map **em_cached) 2857 { 2858 struct extent_map *em; 2859 2860 if (em_cached && *em_cached) { 2861 em = *em_cached; 2862 if (extent_map_in_tree(em) && start >= em->start && 2863 start < extent_map_end(em)) { 2864 refcount_inc(&em->refs); 2865 return em; 2866 } 2867 2868 free_extent_map(em); 2869 *em_cached = NULL; 2870 } 2871 2872 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2873 if (em_cached && !IS_ERR_OR_NULL(em)) { 2874 BUG_ON(*em_cached); 2875 refcount_inc(&em->refs); 2876 *em_cached = em; 2877 } 2878 return em; 2879 } 2880 /* 2881 * basic readpage implementation. Locked extent state structs are inserted 2882 * into the tree that are removed when the IO is done (by the end_io 2883 * handlers) 2884 * XXX JDM: This needs looking at to ensure proper page locking 2885 * return 0 on success, otherwise return error 2886 */ 2887 static int __do_readpage(struct extent_io_tree *tree, 2888 struct page *page, 2889 get_extent_t *get_extent, 2890 struct extent_map **em_cached, 2891 struct bio **bio, int mirror_num, 2892 unsigned long *bio_flags, unsigned int read_flags, 2893 u64 *prev_em_start) 2894 { 2895 struct inode *inode = page->mapping->host; 2896 u64 start = page_offset(page); 2897 const u64 end = start + PAGE_SIZE - 1; 2898 u64 cur = start; 2899 u64 extent_offset; 2900 u64 last_byte = i_size_read(inode); 2901 u64 block_start; 2902 u64 cur_end; 2903 struct extent_map *em; 2904 struct block_device *bdev; 2905 int ret = 0; 2906 int nr = 0; 2907 size_t pg_offset = 0; 2908 size_t iosize; 2909 size_t disk_io_size; 2910 size_t blocksize = inode->i_sb->s_blocksize; 2911 unsigned long this_bio_flag = 0; 2912 2913 set_page_extent_mapped(page); 2914 2915 if (!PageUptodate(page)) { 2916 if (cleancache_get_page(page) == 0) { 2917 BUG_ON(blocksize != PAGE_SIZE); 2918 unlock_extent(tree, start, end); 2919 goto out; 2920 } 2921 } 2922 2923 if (page->index == last_byte >> PAGE_SHIFT) { 2924 char *userpage; 2925 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2926 2927 if (zero_offset) { 2928 iosize = PAGE_SIZE - zero_offset; 2929 userpage = kmap_atomic(page); 2930 memset(userpage + zero_offset, 0, iosize); 2931 flush_dcache_page(page); 2932 kunmap_atomic(userpage); 2933 } 2934 } 2935 while (cur <= end) { 2936 bool force_bio_submit = false; 2937 u64 offset; 2938 2939 if (cur >= last_byte) { 2940 char *userpage; 2941 struct extent_state *cached = NULL; 2942 2943 iosize = PAGE_SIZE - pg_offset; 2944 userpage = kmap_atomic(page); 2945 memset(userpage + pg_offset, 0, iosize); 2946 flush_dcache_page(page); 2947 kunmap_atomic(userpage); 2948 set_extent_uptodate(tree, cur, cur + iosize - 1, 2949 &cached, GFP_NOFS); 2950 unlock_extent_cached(tree, cur, 2951 cur + iosize - 1, &cached); 2952 break; 2953 } 2954 em = __get_extent_map(inode, page, pg_offset, cur, 2955 end - cur + 1, get_extent, em_cached); 2956 if (IS_ERR_OR_NULL(em)) { 2957 SetPageError(page); 2958 unlock_extent(tree, cur, end); 2959 break; 2960 } 2961 extent_offset = cur - em->start; 2962 BUG_ON(extent_map_end(em) <= cur); 2963 BUG_ON(end < cur); 2964 2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2966 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2967 extent_set_compress_type(&this_bio_flag, 2968 em->compress_type); 2969 } 2970 2971 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2972 cur_end = min(extent_map_end(em) - 1, end); 2973 iosize = ALIGN(iosize, blocksize); 2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2975 disk_io_size = em->block_len; 2976 offset = em->block_start; 2977 } else { 2978 offset = em->block_start + extent_offset; 2979 disk_io_size = iosize; 2980 } 2981 bdev = em->bdev; 2982 block_start = em->block_start; 2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2984 block_start = EXTENT_MAP_HOLE; 2985 2986 /* 2987 * If we have a file range that points to a compressed extent 2988 * and it's followed by a consecutive file range that points to 2989 * to the same compressed extent (possibly with a different 2990 * offset and/or length, so it either points to the whole extent 2991 * or only part of it), we must make sure we do not submit a 2992 * single bio to populate the pages for the 2 ranges because 2993 * this makes the compressed extent read zero out the pages 2994 * belonging to the 2nd range. Imagine the following scenario: 2995 * 2996 * File layout 2997 * [0 - 8K] [8K - 24K] 2998 * | | 2999 * | | 3000 * points to extent X, points to extent X, 3001 * offset 4K, length of 8K offset 0, length 16K 3002 * 3003 * [extent X, compressed length = 4K uncompressed length = 16K] 3004 * 3005 * If the bio to read the compressed extent covers both ranges, 3006 * it will decompress extent X into the pages belonging to the 3007 * first range and then it will stop, zeroing out the remaining 3008 * pages that belong to the other range that points to extent X. 3009 * So here we make sure we submit 2 bios, one for the first 3010 * range and another one for the third range. Both will target 3011 * the same physical extent from disk, but we can't currently 3012 * make the compressed bio endio callback populate the pages 3013 * for both ranges because each compressed bio is tightly 3014 * coupled with a single extent map, and each range can have 3015 * an extent map with a different offset value relative to the 3016 * uncompressed data of our extent and different lengths. This 3017 * is a corner case so we prioritize correctness over 3018 * non-optimal behavior (submitting 2 bios for the same extent). 3019 */ 3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3021 prev_em_start && *prev_em_start != (u64)-1 && 3022 *prev_em_start != em->orig_start) 3023 force_bio_submit = true; 3024 3025 if (prev_em_start) 3026 *prev_em_start = em->orig_start; 3027 3028 free_extent_map(em); 3029 em = NULL; 3030 3031 /* we've found a hole, just zero and go on */ 3032 if (block_start == EXTENT_MAP_HOLE) { 3033 char *userpage; 3034 struct extent_state *cached = NULL; 3035 3036 userpage = kmap_atomic(page); 3037 memset(userpage + pg_offset, 0, iosize); 3038 flush_dcache_page(page); 3039 kunmap_atomic(userpage); 3040 3041 set_extent_uptodate(tree, cur, cur + iosize - 1, 3042 &cached, GFP_NOFS); 3043 unlock_extent_cached(tree, cur, 3044 cur + iosize - 1, &cached); 3045 cur = cur + iosize; 3046 pg_offset += iosize; 3047 continue; 3048 } 3049 /* the get_extent function already copied into the page */ 3050 if (test_range_bit(tree, cur, cur_end, 3051 EXTENT_UPTODATE, 1, NULL)) { 3052 check_page_uptodate(tree, page); 3053 unlock_extent(tree, cur, cur + iosize - 1); 3054 cur = cur + iosize; 3055 pg_offset += iosize; 3056 continue; 3057 } 3058 /* we have an inline extent but it didn't get marked up 3059 * to date. Error out 3060 */ 3061 if (block_start == EXTENT_MAP_INLINE) { 3062 SetPageError(page); 3063 unlock_extent(tree, cur, cur + iosize - 1); 3064 cur = cur + iosize; 3065 pg_offset += iosize; 3066 continue; 3067 } 3068 3069 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3070 page, offset, disk_io_size, 3071 pg_offset, bdev, bio, 3072 end_bio_extent_readpage, mirror_num, 3073 *bio_flags, 3074 this_bio_flag, 3075 force_bio_submit); 3076 if (!ret) { 3077 nr++; 3078 *bio_flags = this_bio_flag; 3079 } else { 3080 SetPageError(page); 3081 unlock_extent(tree, cur, cur + iosize - 1); 3082 goto out; 3083 } 3084 cur = cur + iosize; 3085 pg_offset += iosize; 3086 } 3087 out: 3088 if (!nr) { 3089 if (!PageError(page)) 3090 SetPageUptodate(page); 3091 unlock_page(page); 3092 } 3093 return ret; 3094 } 3095 3096 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3097 struct page *pages[], int nr_pages, 3098 u64 start, u64 end, 3099 struct extent_map **em_cached, 3100 struct bio **bio, 3101 unsigned long *bio_flags, 3102 u64 *prev_em_start) 3103 { 3104 struct inode *inode; 3105 struct btrfs_ordered_extent *ordered; 3106 int index; 3107 3108 inode = pages[0]->mapping->host; 3109 while (1) { 3110 lock_extent(tree, start, end); 3111 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3112 end - start + 1); 3113 if (!ordered) 3114 break; 3115 unlock_extent(tree, start, end); 3116 btrfs_start_ordered_extent(inode, ordered, 1); 3117 btrfs_put_ordered_extent(ordered); 3118 } 3119 3120 for (index = 0; index < nr_pages; index++) { 3121 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3122 bio, 0, bio_flags, 0, prev_em_start); 3123 put_page(pages[index]); 3124 } 3125 } 3126 3127 static void __extent_readpages(struct extent_io_tree *tree, 3128 struct page *pages[], 3129 int nr_pages, 3130 struct extent_map **em_cached, 3131 struct bio **bio, unsigned long *bio_flags, 3132 u64 *prev_em_start) 3133 { 3134 u64 start = 0; 3135 u64 end = 0; 3136 u64 page_start; 3137 int index; 3138 int first_index = 0; 3139 3140 for (index = 0; index < nr_pages; index++) { 3141 page_start = page_offset(pages[index]); 3142 if (!end) { 3143 start = page_start; 3144 end = start + PAGE_SIZE - 1; 3145 first_index = index; 3146 } else if (end + 1 == page_start) { 3147 end += PAGE_SIZE; 3148 } else { 3149 __do_contiguous_readpages(tree, &pages[first_index], 3150 index - first_index, start, 3151 end, em_cached, 3152 bio, bio_flags, 3153 prev_em_start); 3154 start = page_start; 3155 end = start + PAGE_SIZE - 1; 3156 first_index = index; 3157 } 3158 } 3159 3160 if (end) 3161 __do_contiguous_readpages(tree, &pages[first_index], 3162 index - first_index, start, 3163 end, em_cached, bio, 3164 bio_flags, prev_em_start); 3165 } 3166 3167 static int __extent_read_full_page(struct extent_io_tree *tree, 3168 struct page *page, 3169 get_extent_t *get_extent, 3170 struct bio **bio, int mirror_num, 3171 unsigned long *bio_flags, 3172 unsigned int read_flags) 3173 { 3174 struct inode *inode = page->mapping->host; 3175 struct btrfs_ordered_extent *ordered; 3176 u64 start = page_offset(page); 3177 u64 end = start + PAGE_SIZE - 1; 3178 int ret; 3179 3180 while (1) { 3181 lock_extent(tree, start, end); 3182 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3183 PAGE_SIZE); 3184 if (!ordered) 3185 break; 3186 unlock_extent(tree, start, end); 3187 btrfs_start_ordered_extent(inode, ordered, 1); 3188 btrfs_put_ordered_extent(ordered); 3189 } 3190 3191 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3192 bio_flags, read_flags, NULL); 3193 return ret; 3194 } 3195 3196 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3197 get_extent_t *get_extent, int mirror_num) 3198 { 3199 struct bio *bio = NULL; 3200 unsigned long bio_flags = 0; 3201 int ret; 3202 3203 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3204 &bio_flags, 0); 3205 if (bio) 3206 ret = submit_one_bio(bio, mirror_num, bio_flags); 3207 return ret; 3208 } 3209 3210 static void update_nr_written(struct writeback_control *wbc, 3211 unsigned long nr_written) 3212 { 3213 wbc->nr_to_write -= nr_written; 3214 } 3215 3216 /* 3217 * helper for __extent_writepage, doing all of the delayed allocation setup. 3218 * 3219 * This returns 1 if our fill_delalloc function did all the work required 3220 * to write the page (copy into inline extent). In this case the IO has 3221 * been started and the page is already unlocked. 3222 * 3223 * This returns 0 if all went well (page still locked) 3224 * This returns < 0 if there were errors (page still locked) 3225 */ 3226 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3227 struct page *page, struct writeback_control *wbc, 3228 struct extent_page_data *epd, 3229 u64 delalloc_start, 3230 unsigned long *nr_written) 3231 { 3232 struct extent_io_tree *tree = epd->tree; 3233 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3234 u64 nr_delalloc; 3235 u64 delalloc_to_write = 0; 3236 u64 delalloc_end = 0; 3237 int ret; 3238 int page_started = 0; 3239 3240 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3241 return 0; 3242 3243 while (delalloc_end < page_end) { 3244 nr_delalloc = find_lock_delalloc_range(inode, tree, 3245 page, 3246 &delalloc_start, 3247 &delalloc_end, 3248 BTRFS_MAX_EXTENT_SIZE); 3249 if (nr_delalloc == 0) { 3250 delalloc_start = delalloc_end + 1; 3251 continue; 3252 } 3253 ret = tree->ops->fill_delalloc(inode, page, 3254 delalloc_start, 3255 delalloc_end, 3256 &page_started, 3257 nr_written, wbc); 3258 /* File system has been set read-only */ 3259 if (ret) { 3260 SetPageError(page); 3261 /* fill_delalloc should be return < 0 for error 3262 * but just in case, we use > 0 here meaning the 3263 * IO is started, so we don't want to return > 0 3264 * unless things are going well. 3265 */ 3266 ret = ret < 0 ? ret : -EIO; 3267 goto done; 3268 } 3269 /* 3270 * delalloc_end is already one less than the total length, so 3271 * we don't subtract one from PAGE_SIZE 3272 */ 3273 delalloc_to_write += (delalloc_end - delalloc_start + 3274 PAGE_SIZE) >> PAGE_SHIFT; 3275 delalloc_start = delalloc_end + 1; 3276 } 3277 if (wbc->nr_to_write < delalloc_to_write) { 3278 int thresh = 8192; 3279 3280 if (delalloc_to_write < thresh * 2) 3281 thresh = delalloc_to_write; 3282 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3283 thresh); 3284 } 3285 3286 /* did the fill delalloc function already unlock and start 3287 * the IO? 3288 */ 3289 if (page_started) { 3290 /* 3291 * we've unlocked the page, so we can't update 3292 * the mapping's writeback index, just update 3293 * nr_to_write. 3294 */ 3295 wbc->nr_to_write -= *nr_written; 3296 return 1; 3297 } 3298 3299 ret = 0; 3300 3301 done: 3302 return ret; 3303 } 3304 3305 /* 3306 * helper for __extent_writepage. This calls the writepage start hooks, 3307 * and does the loop to map the page into extents and bios. 3308 * 3309 * We return 1 if the IO is started and the page is unlocked, 3310 * 0 if all went well (page still locked) 3311 * < 0 if there were errors (page still locked) 3312 */ 3313 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3314 struct page *page, 3315 struct writeback_control *wbc, 3316 struct extent_page_data *epd, 3317 loff_t i_size, 3318 unsigned long nr_written, 3319 unsigned int write_flags, int *nr_ret) 3320 { 3321 struct extent_io_tree *tree = epd->tree; 3322 u64 start = page_offset(page); 3323 u64 page_end = start + PAGE_SIZE - 1; 3324 u64 end; 3325 u64 cur = start; 3326 u64 extent_offset; 3327 u64 block_start; 3328 u64 iosize; 3329 struct extent_map *em; 3330 struct block_device *bdev; 3331 size_t pg_offset = 0; 3332 size_t blocksize; 3333 int ret = 0; 3334 int nr = 0; 3335 bool compressed; 3336 3337 if (tree->ops && tree->ops->writepage_start_hook) { 3338 ret = tree->ops->writepage_start_hook(page, start, 3339 page_end); 3340 if (ret) { 3341 /* Fixup worker will requeue */ 3342 if (ret == -EBUSY) 3343 wbc->pages_skipped++; 3344 else 3345 redirty_page_for_writepage(wbc, page); 3346 3347 update_nr_written(wbc, nr_written); 3348 unlock_page(page); 3349 return 1; 3350 } 3351 } 3352 3353 /* 3354 * we don't want to touch the inode after unlocking the page, 3355 * so we update the mapping writeback index now 3356 */ 3357 update_nr_written(wbc, nr_written + 1); 3358 3359 end = page_end; 3360 if (i_size <= start) { 3361 if (tree->ops && tree->ops->writepage_end_io_hook) 3362 tree->ops->writepage_end_io_hook(page, start, 3363 page_end, NULL, 1); 3364 goto done; 3365 } 3366 3367 blocksize = inode->i_sb->s_blocksize; 3368 3369 while (cur <= end) { 3370 u64 em_end; 3371 u64 offset; 3372 3373 if (cur >= i_size) { 3374 if (tree->ops && tree->ops->writepage_end_io_hook) 3375 tree->ops->writepage_end_io_hook(page, cur, 3376 page_end, NULL, 1); 3377 break; 3378 } 3379 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3380 end - cur + 1, 1); 3381 if (IS_ERR_OR_NULL(em)) { 3382 SetPageError(page); 3383 ret = PTR_ERR_OR_ZERO(em); 3384 break; 3385 } 3386 3387 extent_offset = cur - em->start; 3388 em_end = extent_map_end(em); 3389 BUG_ON(em_end <= cur); 3390 BUG_ON(end < cur); 3391 iosize = min(em_end - cur, end - cur + 1); 3392 iosize = ALIGN(iosize, blocksize); 3393 offset = em->block_start + extent_offset; 3394 bdev = em->bdev; 3395 block_start = em->block_start; 3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3397 free_extent_map(em); 3398 em = NULL; 3399 3400 /* 3401 * compressed and inline extents are written through other 3402 * paths in the FS 3403 */ 3404 if (compressed || block_start == EXTENT_MAP_HOLE || 3405 block_start == EXTENT_MAP_INLINE) { 3406 /* 3407 * end_io notification does not happen here for 3408 * compressed extents 3409 */ 3410 if (!compressed && tree->ops && 3411 tree->ops->writepage_end_io_hook) 3412 tree->ops->writepage_end_io_hook(page, cur, 3413 cur + iosize - 1, 3414 NULL, 1); 3415 else if (compressed) { 3416 /* we don't want to end_page_writeback on 3417 * a compressed extent. this happens 3418 * elsewhere 3419 */ 3420 nr++; 3421 } 3422 3423 cur += iosize; 3424 pg_offset += iosize; 3425 continue; 3426 } 3427 3428 set_range_writeback(tree, cur, cur + iosize - 1); 3429 if (!PageWriteback(page)) { 3430 btrfs_err(BTRFS_I(inode)->root->fs_info, 3431 "page %lu not writeback, cur %llu end %llu", 3432 page->index, cur, end); 3433 } 3434 3435 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3436 page, offset, iosize, pg_offset, 3437 bdev, &epd->bio, 3438 end_bio_extent_writepage, 3439 0, 0, 0, false); 3440 if (ret) { 3441 SetPageError(page); 3442 if (PageWriteback(page)) 3443 end_page_writeback(page); 3444 } 3445 3446 cur = cur + iosize; 3447 pg_offset += iosize; 3448 nr++; 3449 } 3450 done: 3451 *nr_ret = nr; 3452 return ret; 3453 } 3454 3455 /* 3456 * the writepage semantics are similar to regular writepage. extent 3457 * records are inserted to lock ranges in the tree, and as dirty areas 3458 * are found, they are marked writeback. Then the lock bits are removed 3459 * and the end_io handler clears the writeback ranges 3460 */ 3461 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3462 struct extent_page_data *epd) 3463 { 3464 struct inode *inode = page->mapping->host; 3465 u64 start = page_offset(page); 3466 u64 page_end = start + PAGE_SIZE - 1; 3467 int ret; 3468 int nr = 0; 3469 size_t pg_offset = 0; 3470 loff_t i_size = i_size_read(inode); 3471 unsigned long end_index = i_size >> PAGE_SHIFT; 3472 unsigned int write_flags = 0; 3473 unsigned long nr_written = 0; 3474 3475 write_flags = wbc_to_write_flags(wbc); 3476 3477 trace___extent_writepage(page, inode, wbc); 3478 3479 WARN_ON(!PageLocked(page)); 3480 3481 ClearPageError(page); 3482 3483 pg_offset = i_size & (PAGE_SIZE - 1); 3484 if (page->index > end_index || 3485 (page->index == end_index && !pg_offset)) { 3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3487 unlock_page(page); 3488 return 0; 3489 } 3490 3491 if (page->index == end_index) { 3492 char *userpage; 3493 3494 userpage = kmap_atomic(page); 3495 memset(userpage + pg_offset, 0, 3496 PAGE_SIZE - pg_offset); 3497 kunmap_atomic(userpage); 3498 flush_dcache_page(page); 3499 } 3500 3501 pg_offset = 0; 3502 3503 set_page_extent_mapped(page); 3504 3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3506 if (ret == 1) 3507 goto done_unlocked; 3508 if (ret) 3509 goto done; 3510 3511 ret = __extent_writepage_io(inode, page, wbc, epd, 3512 i_size, nr_written, write_flags, &nr); 3513 if (ret == 1) 3514 goto done_unlocked; 3515 3516 done: 3517 if (nr == 0) { 3518 /* make sure the mapping tag for page dirty gets cleared */ 3519 set_page_writeback(page); 3520 end_page_writeback(page); 3521 } 3522 if (PageError(page)) { 3523 ret = ret < 0 ? ret : -EIO; 3524 end_extent_writepage(page, ret, start, page_end); 3525 } 3526 unlock_page(page); 3527 return ret; 3528 3529 done_unlocked: 3530 return 0; 3531 } 3532 3533 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3534 { 3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3536 TASK_UNINTERRUPTIBLE); 3537 } 3538 3539 static noinline_for_stack int 3540 lock_extent_buffer_for_io(struct extent_buffer *eb, 3541 struct btrfs_fs_info *fs_info, 3542 struct extent_page_data *epd) 3543 { 3544 unsigned long i, num_pages; 3545 int flush = 0; 3546 int ret = 0; 3547 3548 if (!btrfs_try_tree_write_lock(eb)) { 3549 flush = 1; 3550 flush_write_bio(epd); 3551 btrfs_tree_lock(eb); 3552 } 3553 3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3555 btrfs_tree_unlock(eb); 3556 if (!epd->sync_io) 3557 return 0; 3558 if (!flush) { 3559 flush_write_bio(epd); 3560 flush = 1; 3561 } 3562 while (1) { 3563 wait_on_extent_buffer_writeback(eb); 3564 btrfs_tree_lock(eb); 3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3566 break; 3567 btrfs_tree_unlock(eb); 3568 } 3569 } 3570 3571 /* 3572 * We need to do this to prevent races in people who check if the eb is 3573 * under IO since we can end up having no IO bits set for a short period 3574 * of time. 3575 */ 3576 spin_lock(&eb->refs_lock); 3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3579 spin_unlock(&eb->refs_lock); 3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3582 -eb->len, 3583 fs_info->dirty_metadata_batch); 3584 ret = 1; 3585 } else { 3586 spin_unlock(&eb->refs_lock); 3587 } 3588 3589 btrfs_tree_unlock(eb); 3590 3591 if (!ret) 3592 return ret; 3593 3594 num_pages = num_extent_pages(eb->start, eb->len); 3595 for (i = 0; i < num_pages; i++) { 3596 struct page *p = eb->pages[i]; 3597 3598 if (!trylock_page(p)) { 3599 if (!flush) { 3600 flush_write_bio(epd); 3601 flush = 1; 3602 } 3603 lock_page(p); 3604 } 3605 } 3606 3607 return ret; 3608 } 3609 3610 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3611 { 3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3613 smp_mb__after_atomic(); 3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3615 } 3616 3617 static void set_btree_ioerr(struct page *page) 3618 { 3619 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3620 3621 SetPageError(page); 3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3623 return; 3624 3625 /* 3626 * If writeback for a btree extent that doesn't belong to a log tree 3627 * failed, increment the counter transaction->eb_write_errors. 3628 * We do this because while the transaction is running and before it's 3629 * committing (when we call filemap_fdata[write|wait]_range against 3630 * the btree inode), we might have 3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3632 * returns an error or an error happens during writeback, when we're 3633 * committing the transaction we wouldn't know about it, since the pages 3634 * can be no longer dirty nor marked anymore for writeback (if a 3635 * subsequent modification to the extent buffer didn't happen before the 3636 * transaction commit), which makes filemap_fdata[write|wait]_range not 3637 * able to find the pages tagged with SetPageError at transaction 3638 * commit time. So if this happens we must abort the transaction, 3639 * otherwise we commit a super block with btree roots that point to 3640 * btree nodes/leafs whose content on disk is invalid - either garbage 3641 * or the content of some node/leaf from a past generation that got 3642 * cowed or deleted and is no longer valid. 3643 * 3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3645 * not be enough - we need to distinguish between log tree extents vs 3646 * non-log tree extents, and the next filemap_fdatawait_range() call 3647 * will catch and clear such errors in the mapping - and that call might 3648 * be from a log sync and not from a transaction commit. Also, checking 3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3650 * not done and would not be reliable - the eb might have been released 3651 * from memory and reading it back again means that flag would not be 3652 * set (since it's a runtime flag, not persisted on disk). 3653 * 3654 * Using the flags below in the btree inode also makes us achieve the 3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3656 * writeback for all dirty pages and before filemap_fdatawait_range() 3657 * is called, the writeback for all dirty pages had already finished 3658 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3659 * filemap_fdatawait_range() would return success, as it could not know 3660 * that writeback errors happened (the pages were no longer tagged for 3661 * writeback). 3662 */ 3663 switch (eb->log_index) { 3664 case -1: 3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3666 break; 3667 case 0: 3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3669 break; 3670 case 1: 3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3672 break; 3673 default: 3674 BUG(); /* unexpected, logic error */ 3675 } 3676 } 3677 3678 static void end_bio_extent_buffer_writepage(struct bio *bio) 3679 { 3680 struct bio_vec *bvec; 3681 struct extent_buffer *eb; 3682 int i, done; 3683 3684 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3685 bio_for_each_segment_all(bvec, bio, i) { 3686 struct page *page = bvec->bv_page; 3687 3688 eb = (struct extent_buffer *)page->private; 3689 BUG_ON(!eb); 3690 done = atomic_dec_and_test(&eb->io_pages); 3691 3692 if (bio->bi_status || 3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3694 ClearPageUptodate(page); 3695 set_btree_ioerr(page); 3696 } 3697 3698 end_page_writeback(page); 3699 3700 if (!done) 3701 continue; 3702 3703 end_extent_buffer_writeback(eb); 3704 } 3705 3706 bio_put(bio); 3707 } 3708 3709 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3710 struct btrfs_fs_info *fs_info, 3711 struct writeback_control *wbc, 3712 struct extent_page_data *epd) 3713 { 3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3716 u64 offset = eb->start; 3717 u32 nritems; 3718 unsigned long i, num_pages; 3719 unsigned long start, end; 3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3721 int ret = 0; 3722 3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3724 num_pages = num_extent_pages(eb->start, eb->len); 3725 atomic_set(&eb->io_pages, num_pages); 3726 3727 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3728 nritems = btrfs_header_nritems(eb); 3729 if (btrfs_header_level(eb) > 0) { 3730 end = btrfs_node_key_ptr_offset(nritems); 3731 3732 memzero_extent_buffer(eb, end, eb->len - end); 3733 } else { 3734 /* 3735 * leaf: 3736 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3737 */ 3738 start = btrfs_item_nr_offset(nritems); 3739 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3740 memzero_extent_buffer(eb, start, end - start); 3741 } 3742 3743 for (i = 0; i < num_pages; i++) { 3744 struct page *p = eb->pages[i]; 3745 3746 clear_page_dirty_for_io(p); 3747 set_page_writeback(p); 3748 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3749 p, offset, PAGE_SIZE, 0, bdev, 3750 &epd->bio, 3751 end_bio_extent_buffer_writepage, 3752 0, 0, 0, false); 3753 if (ret) { 3754 set_btree_ioerr(p); 3755 if (PageWriteback(p)) 3756 end_page_writeback(p); 3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3758 end_extent_buffer_writeback(eb); 3759 ret = -EIO; 3760 break; 3761 } 3762 offset += PAGE_SIZE; 3763 update_nr_written(wbc, 1); 3764 unlock_page(p); 3765 } 3766 3767 if (unlikely(ret)) { 3768 for (; i < num_pages; i++) { 3769 struct page *p = eb->pages[i]; 3770 clear_page_dirty_for_io(p); 3771 unlock_page(p); 3772 } 3773 } 3774 3775 return ret; 3776 } 3777 3778 int btree_write_cache_pages(struct address_space *mapping, 3779 struct writeback_control *wbc) 3780 { 3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3783 struct extent_buffer *eb, *prev_eb = NULL; 3784 struct extent_page_data epd = { 3785 .bio = NULL, 3786 .tree = tree, 3787 .extent_locked = 0, 3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3789 }; 3790 int ret = 0; 3791 int done = 0; 3792 int nr_to_write_done = 0; 3793 struct pagevec pvec; 3794 int nr_pages; 3795 pgoff_t index; 3796 pgoff_t end; /* Inclusive */ 3797 int scanned = 0; 3798 int tag; 3799 3800 pagevec_init(&pvec); 3801 if (wbc->range_cyclic) { 3802 index = mapping->writeback_index; /* Start from prev offset */ 3803 end = -1; 3804 } else { 3805 index = wbc->range_start >> PAGE_SHIFT; 3806 end = wbc->range_end >> PAGE_SHIFT; 3807 scanned = 1; 3808 } 3809 if (wbc->sync_mode == WB_SYNC_ALL) 3810 tag = PAGECACHE_TAG_TOWRITE; 3811 else 3812 tag = PAGECACHE_TAG_DIRTY; 3813 retry: 3814 if (wbc->sync_mode == WB_SYNC_ALL) 3815 tag_pages_for_writeback(mapping, index, end); 3816 while (!done && !nr_to_write_done && (index <= end) && 3817 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3818 tag))) { 3819 unsigned i; 3820 3821 scanned = 1; 3822 for (i = 0; i < nr_pages; i++) { 3823 struct page *page = pvec.pages[i]; 3824 3825 if (!PagePrivate(page)) 3826 continue; 3827 3828 spin_lock(&mapping->private_lock); 3829 if (!PagePrivate(page)) { 3830 spin_unlock(&mapping->private_lock); 3831 continue; 3832 } 3833 3834 eb = (struct extent_buffer *)page->private; 3835 3836 /* 3837 * Shouldn't happen and normally this would be a BUG_ON 3838 * but no sense in crashing the users box for something 3839 * we can survive anyway. 3840 */ 3841 if (WARN_ON(!eb)) { 3842 spin_unlock(&mapping->private_lock); 3843 continue; 3844 } 3845 3846 if (eb == prev_eb) { 3847 spin_unlock(&mapping->private_lock); 3848 continue; 3849 } 3850 3851 ret = atomic_inc_not_zero(&eb->refs); 3852 spin_unlock(&mapping->private_lock); 3853 if (!ret) 3854 continue; 3855 3856 prev_eb = eb; 3857 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3858 if (!ret) { 3859 free_extent_buffer(eb); 3860 continue; 3861 } 3862 3863 ret = write_one_eb(eb, fs_info, wbc, &epd); 3864 if (ret) { 3865 done = 1; 3866 free_extent_buffer(eb); 3867 break; 3868 } 3869 free_extent_buffer(eb); 3870 3871 /* 3872 * the filesystem may choose to bump up nr_to_write. 3873 * We have to make sure to honor the new nr_to_write 3874 * at any time 3875 */ 3876 nr_to_write_done = wbc->nr_to_write <= 0; 3877 } 3878 pagevec_release(&pvec); 3879 cond_resched(); 3880 } 3881 if (!scanned && !done) { 3882 /* 3883 * We hit the last page and there is more work to be done: wrap 3884 * back to the start of the file 3885 */ 3886 scanned = 1; 3887 index = 0; 3888 goto retry; 3889 } 3890 flush_write_bio(&epd); 3891 return ret; 3892 } 3893 3894 /** 3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3896 * @mapping: address space structure to write 3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3898 * @data: data passed to __extent_writepage function 3899 * 3900 * If a page is already under I/O, write_cache_pages() skips it, even 3901 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3902 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3903 * and msync() need to guarantee that all the data which was dirty at the time 3904 * the call was made get new I/O started against them. If wbc->sync_mode is 3905 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3906 * existing IO to complete. 3907 */ 3908 static int extent_write_cache_pages(struct address_space *mapping, 3909 struct writeback_control *wbc, 3910 struct extent_page_data *epd) 3911 { 3912 struct inode *inode = mapping->host; 3913 int ret = 0; 3914 int done = 0; 3915 int nr_to_write_done = 0; 3916 struct pagevec pvec; 3917 int nr_pages; 3918 pgoff_t index; 3919 pgoff_t end; /* Inclusive */ 3920 pgoff_t done_index; 3921 int range_whole = 0; 3922 int scanned = 0; 3923 int tag; 3924 3925 /* 3926 * We have to hold onto the inode so that ordered extents can do their 3927 * work when the IO finishes. The alternative to this is failing to add 3928 * an ordered extent if the igrab() fails there and that is a huge pain 3929 * to deal with, so instead just hold onto the inode throughout the 3930 * writepages operation. If it fails here we are freeing up the inode 3931 * anyway and we'd rather not waste our time writing out stuff that is 3932 * going to be truncated anyway. 3933 */ 3934 if (!igrab(inode)) 3935 return 0; 3936 3937 pagevec_init(&pvec); 3938 if (wbc->range_cyclic) { 3939 index = mapping->writeback_index; /* Start from prev offset */ 3940 end = -1; 3941 } else { 3942 index = wbc->range_start >> PAGE_SHIFT; 3943 end = wbc->range_end >> PAGE_SHIFT; 3944 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3945 range_whole = 1; 3946 scanned = 1; 3947 } 3948 if (wbc->sync_mode == WB_SYNC_ALL) 3949 tag = PAGECACHE_TAG_TOWRITE; 3950 else 3951 tag = PAGECACHE_TAG_DIRTY; 3952 retry: 3953 if (wbc->sync_mode == WB_SYNC_ALL) 3954 tag_pages_for_writeback(mapping, index, end); 3955 done_index = index; 3956 while (!done && !nr_to_write_done && (index <= end) && 3957 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3958 &index, end, tag))) { 3959 unsigned i; 3960 3961 scanned = 1; 3962 for (i = 0; i < nr_pages; i++) { 3963 struct page *page = pvec.pages[i]; 3964 3965 done_index = page->index; 3966 /* 3967 * At this point we hold neither the i_pages lock nor 3968 * the page lock: the page may be truncated or 3969 * invalidated (changing page->mapping to NULL), 3970 * or even swizzled back from swapper_space to 3971 * tmpfs file mapping 3972 */ 3973 if (!trylock_page(page)) { 3974 flush_write_bio(epd); 3975 lock_page(page); 3976 } 3977 3978 if (unlikely(page->mapping != mapping)) { 3979 unlock_page(page); 3980 continue; 3981 } 3982 3983 if (wbc->sync_mode != WB_SYNC_NONE) { 3984 if (PageWriteback(page)) 3985 flush_write_bio(epd); 3986 wait_on_page_writeback(page); 3987 } 3988 3989 if (PageWriteback(page) || 3990 !clear_page_dirty_for_io(page)) { 3991 unlock_page(page); 3992 continue; 3993 } 3994 3995 ret = __extent_writepage(page, wbc, epd); 3996 3997 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3998 unlock_page(page); 3999 ret = 0; 4000 } 4001 if (ret < 0) { 4002 /* 4003 * done_index is set past this page, 4004 * so media errors will not choke 4005 * background writeout for the entire 4006 * file. This has consequences for 4007 * range_cyclic semantics (ie. it may 4008 * not be suitable for data integrity 4009 * writeout). 4010 */ 4011 done_index = page->index + 1; 4012 done = 1; 4013 break; 4014 } 4015 4016 /* 4017 * the filesystem may choose to bump up nr_to_write. 4018 * We have to make sure to honor the new nr_to_write 4019 * at any time 4020 */ 4021 nr_to_write_done = wbc->nr_to_write <= 0; 4022 } 4023 pagevec_release(&pvec); 4024 cond_resched(); 4025 } 4026 if (!scanned && !done) { 4027 /* 4028 * We hit the last page and there is more work to be done: wrap 4029 * back to the start of the file 4030 */ 4031 scanned = 1; 4032 index = 0; 4033 goto retry; 4034 } 4035 4036 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4037 mapping->writeback_index = done_index; 4038 4039 btrfs_add_delayed_iput(inode); 4040 return ret; 4041 } 4042 4043 static void flush_write_bio(struct extent_page_data *epd) 4044 { 4045 if (epd->bio) { 4046 int ret; 4047 4048 ret = submit_one_bio(epd->bio, 0, 0); 4049 BUG_ON(ret < 0); /* -ENOMEM */ 4050 epd->bio = NULL; 4051 } 4052 } 4053 4054 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4055 { 4056 int ret; 4057 struct extent_page_data epd = { 4058 .bio = NULL, 4059 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4060 .extent_locked = 0, 4061 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4062 }; 4063 4064 ret = __extent_writepage(page, wbc, &epd); 4065 4066 flush_write_bio(&epd); 4067 return ret; 4068 } 4069 4070 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4071 int mode) 4072 { 4073 int ret = 0; 4074 struct address_space *mapping = inode->i_mapping; 4075 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4076 struct page *page; 4077 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4078 PAGE_SHIFT; 4079 4080 struct extent_page_data epd = { 4081 .bio = NULL, 4082 .tree = tree, 4083 .extent_locked = 1, 4084 .sync_io = mode == WB_SYNC_ALL, 4085 }; 4086 struct writeback_control wbc_writepages = { 4087 .sync_mode = mode, 4088 .nr_to_write = nr_pages * 2, 4089 .range_start = start, 4090 .range_end = end + 1, 4091 }; 4092 4093 while (start <= end) { 4094 page = find_get_page(mapping, start >> PAGE_SHIFT); 4095 if (clear_page_dirty_for_io(page)) 4096 ret = __extent_writepage(page, &wbc_writepages, &epd); 4097 else { 4098 if (tree->ops && tree->ops->writepage_end_io_hook) 4099 tree->ops->writepage_end_io_hook(page, start, 4100 start + PAGE_SIZE - 1, 4101 NULL, 1); 4102 unlock_page(page); 4103 } 4104 put_page(page); 4105 start += PAGE_SIZE; 4106 } 4107 4108 flush_write_bio(&epd); 4109 return ret; 4110 } 4111 4112 int extent_writepages(struct extent_io_tree *tree, 4113 struct address_space *mapping, 4114 struct writeback_control *wbc) 4115 { 4116 int ret = 0; 4117 struct extent_page_data epd = { 4118 .bio = NULL, 4119 .tree = tree, 4120 .extent_locked = 0, 4121 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4122 }; 4123 4124 ret = extent_write_cache_pages(mapping, wbc, &epd); 4125 flush_write_bio(&epd); 4126 return ret; 4127 } 4128 4129 int extent_readpages(struct extent_io_tree *tree, 4130 struct address_space *mapping, 4131 struct list_head *pages, unsigned nr_pages) 4132 { 4133 struct bio *bio = NULL; 4134 unsigned page_idx; 4135 unsigned long bio_flags = 0; 4136 struct page *pagepool[16]; 4137 struct page *page; 4138 struct extent_map *em_cached = NULL; 4139 int nr = 0; 4140 u64 prev_em_start = (u64)-1; 4141 4142 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4143 page = list_entry(pages->prev, struct page, lru); 4144 4145 prefetchw(&page->flags); 4146 list_del(&page->lru); 4147 if (add_to_page_cache_lru(page, mapping, 4148 page->index, 4149 readahead_gfp_mask(mapping))) { 4150 put_page(page); 4151 continue; 4152 } 4153 4154 pagepool[nr++] = page; 4155 if (nr < ARRAY_SIZE(pagepool)) 4156 continue; 4157 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4158 &bio_flags, &prev_em_start); 4159 nr = 0; 4160 } 4161 if (nr) 4162 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4163 &bio_flags, &prev_em_start); 4164 4165 if (em_cached) 4166 free_extent_map(em_cached); 4167 4168 BUG_ON(!list_empty(pages)); 4169 if (bio) 4170 return submit_one_bio(bio, 0, bio_flags); 4171 return 0; 4172 } 4173 4174 /* 4175 * basic invalidatepage code, this waits on any locked or writeback 4176 * ranges corresponding to the page, and then deletes any extent state 4177 * records from the tree 4178 */ 4179 int extent_invalidatepage(struct extent_io_tree *tree, 4180 struct page *page, unsigned long offset) 4181 { 4182 struct extent_state *cached_state = NULL; 4183 u64 start = page_offset(page); 4184 u64 end = start + PAGE_SIZE - 1; 4185 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4186 4187 start += ALIGN(offset, blocksize); 4188 if (start > end) 4189 return 0; 4190 4191 lock_extent_bits(tree, start, end, &cached_state); 4192 wait_on_page_writeback(page); 4193 clear_extent_bit(tree, start, end, 4194 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4195 EXTENT_DO_ACCOUNTING, 4196 1, 1, &cached_state); 4197 return 0; 4198 } 4199 4200 /* 4201 * a helper for releasepage, this tests for areas of the page that 4202 * are locked or under IO and drops the related state bits if it is safe 4203 * to drop the page. 4204 */ 4205 static int try_release_extent_state(struct extent_map_tree *map, 4206 struct extent_io_tree *tree, 4207 struct page *page, gfp_t mask) 4208 { 4209 u64 start = page_offset(page); 4210 u64 end = start + PAGE_SIZE - 1; 4211 int ret = 1; 4212 4213 if (test_range_bit(tree, start, end, 4214 EXTENT_IOBITS, 0, NULL)) 4215 ret = 0; 4216 else { 4217 /* 4218 * at this point we can safely clear everything except the 4219 * locked bit and the nodatasum bit 4220 */ 4221 ret = __clear_extent_bit(tree, start, end, 4222 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4223 0, 0, NULL, mask, NULL); 4224 4225 /* if clear_extent_bit failed for enomem reasons, 4226 * we can't allow the release to continue. 4227 */ 4228 if (ret < 0) 4229 ret = 0; 4230 else 4231 ret = 1; 4232 } 4233 return ret; 4234 } 4235 4236 /* 4237 * a helper for releasepage. As long as there are no locked extents 4238 * in the range corresponding to the page, both state records and extent 4239 * map records are removed 4240 */ 4241 int try_release_extent_mapping(struct extent_map_tree *map, 4242 struct extent_io_tree *tree, struct page *page, 4243 gfp_t mask) 4244 { 4245 struct extent_map *em; 4246 u64 start = page_offset(page); 4247 u64 end = start + PAGE_SIZE - 1; 4248 4249 if (gfpflags_allow_blocking(mask) && 4250 page->mapping->host->i_size > SZ_16M) { 4251 u64 len; 4252 while (start <= end) { 4253 len = end - start + 1; 4254 write_lock(&map->lock); 4255 em = lookup_extent_mapping(map, start, len); 4256 if (!em) { 4257 write_unlock(&map->lock); 4258 break; 4259 } 4260 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4261 em->start != start) { 4262 write_unlock(&map->lock); 4263 free_extent_map(em); 4264 break; 4265 } 4266 if (!test_range_bit(tree, em->start, 4267 extent_map_end(em) - 1, 4268 EXTENT_LOCKED | EXTENT_WRITEBACK, 4269 0, NULL)) { 4270 remove_extent_mapping(map, em); 4271 /* once for the rb tree */ 4272 free_extent_map(em); 4273 } 4274 start = extent_map_end(em); 4275 write_unlock(&map->lock); 4276 4277 /* once for us */ 4278 free_extent_map(em); 4279 } 4280 } 4281 return try_release_extent_state(map, tree, page, mask); 4282 } 4283 4284 /* 4285 * helper function for fiemap, which doesn't want to see any holes. 4286 * This maps until we find something past 'last' 4287 */ 4288 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4289 u64 offset, u64 last) 4290 { 4291 u64 sectorsize = btrfs_inode_sectorsize(inode); 4292 struct extent_map *em; 4293 u64 len; 4294 4295 if (offset >= last) 4296 return NULL; 4297 4298 while (1) { 4299 len = last - offset; 4300 if (len == 0) 4301 break; 4302 len = ALIGN(len, sectorsize); 4303 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset, 4304 len, 0); 4305 if (IS_ERR_OR_NULL(em)) 4306 return em; 4307 4308 /* if this isn't a hole return it */ 4309 if (em->block_start != EXTENT_MAP_HOLE) 4310 return em; 4311 4312 /* this is a hole, advance to the next extent */ 4313 offset = extent_map_end(em); 4314 free_extent_map(em); 4315 if (offset >= last) 4316 break; 4317 } 4318 return NULL; 4319 } 4320 4321 /* 4322 * To cache previous fiemap extent 4323 * 4324 * Will be used for merging fiemap extent 4325 */ 4326 struct fiemap_cache { 4327 u64 offset; 4328 u64 phys; 4329 u64 len; 4330 u32 flags; 4331 bool cached; 4332 }; 4333 4334 /* 4335 * Helper to submit fiemap extent. 4336 * 4337 * Will try to merge current fiemap extent specified by @offset, @phys, 4338 * @len and @flags with cached one. 4339 * And only when we fails to merge, cached one will be submitted as 4340 * fiemap extent. 4341 * 4342 * Return value is the same as fiemap_fill_next_extent(). 4343 */ 4344 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4345 struct fiemap_cache *cache, 4346 u64 offset, u64 phys, u64 len, u32 flags) 4347 { 4348 int ret = 0; 4349 4350 if (!cache->cached) 4351 goto assign; 4352 4353 /* 4354 * Sanity check, extent_fiemap() should have ensured that new 4355 * fiemap extent won't overlap with cahced one. 4356 * Not recoverable. 4357 * 4358 * NOTE: Physical address can overlap, due to compression 4359 */ 4360 if (cache->offset + cache->len > offset) { 4361 WARN_ON(1); 4362 return -EINVAL; 4363 } 4364 4365 /* 4366 * Only merges fiemap extents if 4367 * 1) Their logical addresses are continuous 4368 * 4369 * 2) Their physical addresses are continuous 4370 * So truly compressed (physical size smaller than logical size) 4371 * extents won't get merged with each other 4372 * 4373 * 3) Share same flags except FIEMAP_EXTENT_LAST 4374 * So regular extent won't get merged with prealloc extent 4375 */ 4376 if (cache->offset + cache->len == offset && 4377 cache->phys + cache->len == phys && 4378 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4379 (flags & ~FIEMAP_EXTENT_LAST)) { 4380 cache->len += len; 4381 cache->flags |= flags; 4382 goto try_submit_last; 4383 } 4384 4385 /* Not mergeable, need to submit cached one */ 4386 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4387 cache->len, cache->flags); 4388 cache->cached = false; 4389 if (ret) 4390 return ret; 4391 assign: 4392 cache->cached = true; 4393 cache->offset = offset; 4394 cache->phys = phys; 4395 cache->len = len; 4396 cache->flags = flags; 4397 try_submit_last: 4398 if (cache->flags & FIEMAP_EXTENT_LAST) { 4399 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4400 cache->phys, cache->len, cache->flags); 4401 cache->cached = false; 4402 } 4403 return ret; 4404 } 4405 4406 /* 4407 * Emit last fiemap cache 4408 * 4409 * The last fiemap cache may still be cached in the following case: 4410 * 0 4k 8k 4411 * |<- Fiemap range ->| 4412 * |<------------ First extent ----------->| 4413 * 4414 * In this case, the first extent range will be cached but not emitted. 4415 * So we must emit it before ending extent_fiemap(). 4416 */ 4417 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4418 struct fiemap_extent_info *fieinfo, 4419 struct fiemap_cache *cache) 4420 { 4421 int ret; 4422 4423 if (!cache->cached) 4424 return 0; 4425 4426 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4427 cache->len, cache->flags); 4428 cache->cached = false; 4429 if (ret > 0) 4430 ret = 0; 4431 return ret; 4432 } 4433 4434 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4435 __u64 start, __u64 len) 4436 { 4437 int ret = 0; 4438 u64 off = start; 4439 u64 max = start + len; 4440 u32 flags = 0; 4441 u32 found_type; 4442 u64 last; 4443 u64 last_for_get_extent = 0; 4444 u64 disko = 0; 4445 u64 isize = i_size_read(inode); 4446 struct btrfs_key found_key; 4447 struct extent_map *em = NULL; 4448 struct extent_state *cached_state = NULL; 4449 struct btrfs_path *path; 4450 struct btrfs_root *root = BTRFS_I(inode)->root; 4451 struct fiemap_cache cache = { 0 }; 4452 int end = 0; 4453 u64 em_start = 0; 4454 u64 em_len = 0; 4455 u64 em_end = 0; 4456 4457 if (len == 0) 4458 return -EINVAL; 4459 4460 path = btrfs_alloc_path(); 4461 if (!path) 4462 return -ENOMEM; 4463 path->leave_spinning = 1; 4464 4465 start = round_down(start, btrfs_inode_sectorsize(inode)); 4466 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4467 4468 /* 4469 * lookup the last file extent. We're not using i_size here 4470 * because there might be preallocation past i_size 4471 */ 4472 ret = btrfs_lookup_file_extent(NULL, root, path, 4473 btrfs_ino(BTRFS_I(inode)), -1, 0); 4474 if (ret < 0) { 4475 btrfs_free_path(path); 4476 return ret; 4477 } else { 4478 WARN_ON(!ret); 4479 if (ret == 1) 4480 ret = 0; 4481 } 4482 4483 path->slots[0]--; 4484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4485 found_type = found_key.type; 4486 4487 /* No extents, but there might be delalloc bits */ 4488 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4489 found_type != BTRFS_EXTENT_DATA_KEY) { 4490 /* have to trust i_size as the end */ 4491 last = (u64)-1; 4492 last_for_get_extent = isize; 4493 } else { 4494 /* 4495 * remember the start of the last extent. There are a 4496 * bunch of different factors that go into the length of the 4497 * extent, so its much less complex to remember where it started 4498 */ 4499 last = found_key.offset; 4500 last_for_get_extent = last + 1; 4501 } 4502 btrfs_release_path(path); 4503 4504 /* 4505 * we might have some extents allocated but more delalloc past those 4506 * extents. so, we trust isize unless the start of the last extent is 4507 * beyond isize 4508 */ 4509 if (last < isize) { 4510 last = (u64)-1; 4511 last_for_get_extent = isize; 4512 } 4513 4514 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4515 &cached_state); 4516 4517 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4518 if (!em) 4519 goto out; 4520 if (IS_ERR(em)) { 4521 ret = PTR_ERR(em); 4522 goto out; 4523 } 4524 4525 while (!end) { 4526 u64 offset_in_extent = 0; 4527 4528 /* break if the extent we found is outside the range */ 4529 if (em->start >= max || extent_map_end(em) < off) 4530 break; 4531 4532 /* 4533 * get_extent may return an extent that starts before our 4534 * requested range. We have to make sure the ranges 4535 * we return to fiemap always move forward and don't 4536 * overlap, so adjust the offsets here 4537 */ 4538 em_start = max(em->start, off); 4539 4540 /* 4541 * record the offset from the start of the extent 4542 * for adjusting the disk offset below. Only do this if the 4543 * extent isn't compressed since our in ram offset may be past 4544 * what we have actually allocated on disk. 4545 */ 4546 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4547 offset_in_extent = em_start - em->start; 4548 em_end = extent_map_end(em); 4549 em_len = em_end - em_start; 4550 disko = 0; 4551 flags = 0; 4552 4553 /* 4554 * bump off for our next call to get_extent 4555 */ 4556 off = extent_map_end(em); 4557 if (off >= max) 4558 end = 1; 4559 4560 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4561 end = 1; 4562 flags |= FIEMAP_EXTENT_LAST; 4563 } else if (em->block_start == EXTENT_MAP_INLINE) { 4564 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4565 FIEMAP_EXTENT_NOT_ALIGNED); 4566 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4567 flags |= (FIEMAP_EXTENT_DELALLOC | 4568 FIEMAP_EXTENT_UNKNOWN); 4569 } else if (fieinfo->fi_extents_max) { 4570 u64 bytenr = em->block_start - 4571 (em->start - em->orig_start); 4572 4573 disko = em->block_start + offset_in_extent; 4574 4575 /* 4576 * As btrfs supports shared space, this information 4577 * can be exported to userspace tools via 4578 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4579 * then we're just getting a count and we can skip the 4580 * lookup stuff. 4581 */ 4582 ret = btrfs_check_shared(root, 4583 btrfs_ino(BTRFS_I(inode)), 4584 bytenr); 4585 if (ret < 0) 4586 goto out_free; 4587 if (ret) 4588 flags |= FIEMAP_EXTENT_SHARED; 4589 ret = 0; 4590 } 4591 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4592 flags |= FIEMAP_EXTENT_ENCODED; 4593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4594 flags |= FIEMAP_EXTENT_UNWRITTEN; 4595 4596 free_extent_map(em); 4597 em = NULL; 4598 if ((em_start >= last) || em_len == (u64)-1 || 4599 (last == (u64)-1 && isize <= em_end)) { 4600 flags |= FIEMAP_EXTENT_LAST; 4601 end = 1; 4602 } 4603 4604 /* now scan forward to see if this is really the last extent. */ 4605 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4606 if (IS_ERR(em)) { 4607 ret = PTR_ERR(em); 4608 goto out; 4609 } 4610 if (!em) { 4611 flags |= FIEMAP_EXTENT_LAST; 4612 end = 1; 4613 } 4614 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4615 em_len, flags); 4616 if (ret) { 4617 if (ret == 1) 4618 ret = 0; 4619 goto out_free; 4620 } 4621 } 4622 out_free: 4623 if (!ret) 4624 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4625 free_extent_map(em); 4626 out: 4627 btrfs_free_path(path); 4628 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4629 &cached_state); 4630 return ret; 4631 } 4632 4633 static void __free_extent_buffer(struct extent_buffer *eb) 4634 { 4635 btrfs_leak_debug_del(&eb->leak_list); 4636 kmem_cache_free(extent_buffer_cache, eb); 4637 } 4638 4639 int extent_buffer_under_io(struct extent_buffer *eb) 4640 { 4641 return (atomic_read(&eb->io_pages) || 4642 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4643 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4644 } 4645 4646 /* 4647 * Helper for releasing extent buffer page. 4648 */ 4649 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4650 { 4651 unsigned long index; 4652 struct page *page; 4653 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4654 4655 BUG_ON(extent_buffer_under_io(eb)); 4656 4657 index = num_extent_pages(eb->start, eb->len); 4658 if (index == 0) 4659 return; 4660 4661 do { 4662 index--; 4663 page = eb->pages[index]; 4664 if (!page) 4665 continue; 4666 if (mapped) 4667 spin_lock(&page->mapping->private_lock); 4668 /* 4669 * We do this since we'll remove the pages after we've 4670 * removed the eb from the radix tree, so we could race 4671 * and have this page now attached to the new eb. So 4672 * only clear page_private if it's still connected to 4673 * this eb. 4674 */ 4675 if (PagePrivate(page) && 4676 page->private == (unsigned long)eb) { 4677 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4678 BUG_ON(PageDirty(page)); 4679 BUG_ON(PageWriteback(page)); 4680 /* 4681 * We need to make sure we haven't be attached 4682 * to a new eb. 4683 */ 4684 ClearPagePrivate(page); 4685 set_page_private(page, 0); 4686 /* One for the page private */ 4687 put_page(page); 4688 } 4689 4690 if (mapped) 4691 spin_unlock(&page->mapping->private_lock); 4692 4693 /* One for when we allocated the page */ 4694 put_page(page); 4695 } while (index != 0); 4696 } 4697 4698 /* 4699 * Helper for releasing the extent buffer. 4700 */ 4701 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4702 { 4703 btrfs_release_extent_buffer_page(eb); 4704 __free_extent_buffer(eb); 4705 } 4706 4707 static struct extent_buffer * 4708 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4709 unsigned long len) 4710 { 4711 struct extent_buffer *eb = NULL; 4712 4713 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4714 eb->start = start; 4715 eb->len = len; 4716 eb->fs_info = fs_info; 4717 eb->bflags = 0; 4718 rwlock_init(&eb->lock); 4719 atomic_set(&eb->write_locks, 0); 4720 atomic_set(&eb->read_locks, 0); 4721 atomic_set(&eb->blocking_readers, 0); 4722 atomic_set(&eb->blocking_writers, 0); 4723 atomic_set(&eb->spinning_readers, 0); 4724 atomic_set(&eb->spinning_writers, 0); 4725 eb->lock_nested = 0; 4726 init_waitqueue_head(&eb->write_lock_wq); 4727 init_waitqueue_head(&eb->read_lock_wq); 4728 4729 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4730 4731 spin_lock_init(&eb->refs_lock); 4732 atomic_set(&eb->refs, 1); 4733 atomic_set(&eb->io_pages, 0); 4734 4735 /* 4736 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4737 */ 4738 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4739 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4740 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4741 4742 return eb; 4743 } 4744 4745 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4746 { 4747 unsigned long i; 4748 struct page *p; 4749 struct extent_buffer *new; 4750 unsigned long num_pages = num_extent_pages(src->start, src->len); 4751 4752 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4753 if (new == NULL) 4754 return NULL; 4755 4756 for (i = 0; i < num_pages; i++) { 4757 p = alloc_page(GFP_NOFS); 4758 if (!p) { 4759 btrfs_release_extent_buffer(new); 4760 return NULL; 4761 } 4762 attach_extent_buffer_page(new, p); 4763 WARN_ON(PageDirty(p)); 4764 SetPageUptodate(p); 4765 new->pages[i] = p; 4766 copy_page(page_address(p), page_address(src->pages[i])); 4767 } 4768 4769 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4770 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4771 4772 return new; 4773 } 4774 4775 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4776 u64 start, unsigned long len) 4777 { 4778 struct extent_buffer *eb; 4779 unsigned long num_pages; 4780 unsigned long i; 4781 4782 num_pages = num_extent_pages(start, len); 4783 4784 eb = __alloc_extent_buffer(fs_info, start, len); 4785 if (!eb) 4786 return NULL; 4787 4788 for (i = 0; i < num_pages; i++) { 4789 eb->pages[i] = alloc_page(GFP_NOFS); 4790 if (!eb->pages[i]) 4791 goto err; 4792 } 4793 set_extent_buffer_uptodate(eb); 4794 btrfs_set_header_nritems(eb, 0); 4795 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4796 4797 return eb; 4798 err: 4799 for (; i > 0; i--) 4800 __free_page(eb->pages[i - 1]); 4801 __free_extent_buffer(eb); 4802 return NULL; 4803 } 4804 4805 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4806 u64 start) 4807 { 4808 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4809 } 4810 4811 static void check_buffer_tree_ref(struct extent_buffer *eb) 4812 { 4813 int refs; 4814 /* the ref bit is tricky. We have to make sure it is set 4815 * if we have the buffer dirty. Otherwise the 4816 * code to free a buffer can end up dropping a dirty 4817 * page 4818 * 4819 * Once the ref bit is set, it won't go away while the 4820 * buffer is dirty or in writeback, and it also won't 4821 * go away while we have the reference count on the 4822 * eb bumped. 4823 * 4824 * We can't just set the ref bit without bumping the 4825 * ref on the eb because free_extent_buffer might 4826 * see the ref bit and try to clear it. If this happens 4827 * free_extent_buffer might end up dropping our original 4828 * ref by mistake and freeing the page before we are able 4829 * to add one more ref. 4830 * 4831 * So bump the ref count first, then set the bit. If someone 4832 * beat us to it, drop the ref we added. 4833 */ 4834 refs = atomic_read(&eb->refs); 4835 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4836 return; 4837 4838 spin_lock(&eb->refs_lock); 4839 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4840 atomic_inc(&eb->refs); 4841 spin_unlock(&eb->refs_lock); 4842 } 4843 4844 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4845 struct page *accessed) 4846 { 4847 unsigned long num_pages, i; 4848 4849 check_buffer_tree_ref(eb); 4850 4851 num_pages = num_extent_pages(eb->start, eb->len); 4852 for (i = 0; i < num_pages; i++) { 4853 struct page *p = eb->pages[i]; 4854 4855 if (p != accessed) 4856 mark_page_accessed(p); 4857 } 4858 } 4859 4860 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4861 u64 start) 4862 { 4863 struct extent_buffer *eb; 4864 4865 rcu_read_lock(); 4866 eb = radix_tree_lookup(&fs_info->buffer_radix, 4867 start >> PAGE_SHIFT); 4868 if (eb && atomic_inc_not_zero(&eb->refs)) { 4869 rcu_read_unlock(); 4870 /* 4871 * Lock our eb's refs_lock to avoid races with 4872 * free_extent_buffer. When we get our eb it might be flagged 4873 * with EXTENT_BUFFER_STALE and another task running 4874 * free_extent_buffer might have seen that flag set, 4875 * eb->refs == 2, that the buffer isn't under IO (dirty and 4876 * writeback flags not set) and it's still in the tree (flag 4877 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4878 * of decrementing the extent buffer's reference count twice. 4879 * So here we could race and increment the eb's reference count, 4880 * clear its stale flag, mark it as dirty and drop our reference 4881 * before the other task finishes executing free_extent_buffer, 4882 * which would later result in an attempt to free an extent 4883 * buffer that is dirty. 4884 */ 4885 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4886 spin_lock(&eb->refs_lock); 4887 spin_unlock(&eb->refs_lock); 4888 } 4889 mark_extent_buffer_accessed(eb, NULL); 4890 return eb; 4891 } 4892 rcu_read_unlock(); 4893 4894 return NULL; 4895 } 4896 4897 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4898 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4899 u64 start) 4900 { 4901 struct extent_buffer *eb, *exists = NULL; 4902 int ret; 4903 4904 eb = find_extent_buffer(fs_info, start); 4905 if (eb) 4906 return eb; 4907 eb = alloc_dummy_extent_buffer(fs_info, start); 4908 if (!eb) 4909 return NULL; 4910 eb->fs_info = fs_info; 4911 again: 4912 ret = radix_tree_preload(GFP_NOFS); 4913 if (ret) 4914 goto free_eb; 4915 spin_lock(&fs_info->buffer_lock); 4916 ret = radix_tree_insert(&fs_info->buffer_radix, 4917 start >> PAGE_SHIFT, eb); 4918 spin_unlock(&fs_info->buffer_lock); 4919 radix_tree_preload_end(); 4920 if (ret == -EEXIST) { 4921 exists = find_extent_buffer(fs_info, start); 4922 if (exists) 4923 goto free_eb; 4924 else 4925 goto again; 4926 } 4927 check_buffer_tree_ref(eb); 4928 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4929 4930 /* 4931 * We will free dummy extent buffer's if they come into 4932 * free_extent_buffer with a ref count of 2, but if we are using this we 4933 * want the buffers to stay in memory until we're done with them, so 4934 * bump the ref count again. 4935 */ 4936 atomic_inc(&eb->refs); 4937 return eb; 4938 free_eb: 4939 btrfs_release_extent_buffer(eb); 4940 return exists; 4941 } 4942 #endif 4943 4944 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4945 u64 start) 4946 { 4947 unsigned long len = fs_info->nodesize; 4948 unsigned long num_pages = num_extent_pages(start, len); 4949 unsigned long i; 4950 unsigned long index = start >> PAGE_SHIFT; 4951 struct extent_buffer *eb; 4952 struct extent_buffer *exists = NULL; 4953 struct page *p; 4954 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4955 int uptodate = 1; 4956 int ret; 4957 4958 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4959 btrfs_err(fs_info, "bad tree block start %llu", start); 4960 return ERR_PTR(-EINVAL); 4961 } 4962 4963 eb = find_extent_buffer(fs_info, start); 4964 if (eb) 4965 return eb; 4966 4967 eb = __alloc_extent_buffer(fs_info, start, len); 4968 if (!eb) 4969 return ERR_PTR(-ENOMEM); 4970 4971 for (i = 0; i < num_pages; i++, index++) { 4972 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4973 if (!p) { 4974 exists = ERR_PTR(-ENOMEM); 4975 goto free_eb; 4976 } 4977 4978 spin_lock(&mapping->private_lock); 4979 if (PagePrivate(p)) { 4980 /* 4981 * We could have already allocated an eb for this page 4982 * and attached one so lets see if we can get a ref on 4983 * the existing eb, and if we can we know it's good and 4984 * we can just return that one, else we know we can just 4985 * overwrite page->private. 4986 */ 4987 exists = (struct extent_buffer *)p->private; 4988 if (atomic_inc_not_zero(&exists->refs)) { 4989 spin_unlock(&mapping->private_lock); 4990 unlock_page(p); 4991 put_page(p); 4992 mark_extent_buffer_accessed(exists, p); 4993 goto free_eb; 4994 } 4995 exists = NULL; 4996 4997 /* 4998 * Do this so attach doesn't complain and we need to 4999 * drop the ref the old guy had. 5000 */ 5001 ClearPagePrivate(p); 5002 WARN_ON(PageDirty(p)); 5003 put_page(p); 5004 } 5005 attach_extent_buffer_page(eb, p); 5006 spin_unlock(&mapping->private_lock); 5007 WARN_ON(PageDirty(p)); 5008 eb->pages[i] = p; 5009 if (!PageUptodate(p)) 5010 uptodate = 0; 5011 5012 /* 5013 * see below about how we avoid a nasty race with release page 5014 * and why we unlock later 5015 */ 5016 } 5017 if (uptodate) 5018 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5019 again: 5020 ret = radix_tree_preload(GFP_NOFS); 5021 if (ret) { 5022 exists = ERR_PTR(ret); 5023 goto free_eb; 5024 } 5025 5026 spin_lock(&fs_info->buffer_lock); 5027 ret = radix_tree_insert(&fs_info->buffer_radix, 5028 start >> PAGE_SHIFT, eb); 5029 spin_unlock(&fs_info->buffer_lock); 5030 radix_tree_preload_end(); 5031 if (ret == -EEXIST) { 5032 exists = find_extent_buffer(fs_info, start); 5033 if (exists) 5034 goto free_eb; 5035 else 5036 goto again; 5037 } 5038 /* add one reference for the tree */ 5039 check_buffer_tree_ref(eb); 5040 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5041 5042 /* 5043 * there is a race where release page may have 5044 * tried to find this extent buffer in the radix 5045 * but failed. It will tell the VM it is safe to 5046 * reclaim the, and it will clear the page private bit. 5047 * We must make sure to set the page private bit properly 5048 * after the extent buffer is in the radix tree so 5049 * it doesn't get lost 5050 */ 5051 SetPageChecked(eb->pages[0]); 5052 for (i = 1; i < num_pages; i++) { 5053 p = eb->pages[i]; 5054 ClearPageChecked(p); 5055 unlock_page(p); 5056 } 5057 unlock_page(eb->pages[0]); 5058 return eb; 5059 5060 free_eb: 5061 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5062 for (i = 0; i < num_pages; i++) { 5063 if (eb->pages[i]) 5064 unlock_page(eb->pages[i]); 5065 } 5066 5067 btrfs_release_extent_buffer(eb); 5068 return exists; 5069 } 5070 5071 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5072 { 5073 struct extent_buffer *eb = 5074 container_of(head, struct extent_buffer, rcu_head); 5075 5076 __free_extent_buffer(eb); 5077 } 5078 5079 /* Expects to have eb->eb_lock already held */ 5080 static int release_extent_buffer(struct extent_buffer *eb) 5081 { 5082 WARN_ON(atomic_read(&eb->refs) == 0); 5083 if (atomic_dec_and_test(&eb->refs)) { 5084 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5085 struct btrfs_fs_info *fs_info = eb->fs_info; 5086 5087 spin_unlock(&eb->refs_lock); 5088 5089 spin_lock(&fs_info->buffer_lock); 5090 radix_tree_delete(&fs_info->buffer_radix, 5091 eb->start >> PAGE_SHIFT); 5092 spin_unlock(&fs_info->buffer_lock); 5093 } else { 5094 spin_unlock(&eb->refs_lock); 5095 } 5096 5097 /* Should be safe to release our pages at this point */ 5098 btrfs_release_extent_buffer_page(eb); 5099 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5100 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5101 __free_extent_buffer(eb); 5102 return 1; 5103 } 5104 #endif 5105 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5106 return 1; 5107 } 5108 spin_unlock(&eb->refs_lock); 5109 5110 return 0; 5111 } 5112 5113 void free_extent_buffer(struct extent_buffer *eb) 5114 { 5115 int refs; 5116 int old; 5117 if (!eb) 5118 return; 5119 5120 while (1) { 5121 refs = atomic_read(&eb->refs); 5122 if (refs <= 3) 5123 break; 5124 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5125 if (old == refs) 5126 return; 5127 } 5128 5129 spin_lock(&eb->refs_lock); 5130 if (atomic_read(&eb->refs) == 2 && 5131 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5132 atomic_dec(&eb->refs); 5133 5134 if (atomic_read(&eb->refs) == 2 && 5135 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5136 !extent_buffer_under_io(eb) && 5137 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5138 atomic_dec(&eb->refs); 5139 5140 /* 5141 * I know this is terrible, but it's temporary until we stop tracking 5142 * the uptodate bits and such for the extent buffers. 5143 */ 5144 release_extent_buffer(eb); 5145 } 5146 5147 void free_extent_buffer_stale(struct extent_buffer *eb) 5148 { 5149 if (!eb) 5150 return; 5151 5152 spin_lock(&eb->refs_lock); 5153 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5154 5155 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5156 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5157 atomic_dec(&eb->refs); 5158 release_extent_buffer(eb); 5159 } 5160 5161 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5162 { 5163 unsigned long i; 5164 unsigned long num_pages; 5165 struct page *page; 5166 5167 num_pages = num_extent_pages(eb->start, eb->len); 5168 5169 for (i = 0; i < num_pages; i++) { 5170 page = eb->pages[i]; 5171 if (!PageDirty(page)) 5172 continue; 5173 5174 lock_page(page); 5175 WARN_ON(!PagePrivate(page)); 5176 5177 clear_page_dirty_for_io(page); 5178 xa_lock_irq(&page->mapping->i_pages); 5179 if (!PageDirty(page)) { 5180 radix_tree_tag_clear(&page->mapping->i_pages, 5181 page_index(page), 5182 PAGECACHE_TAG_DIRTY); 5183 } 5184 xa_unlock_irq(&page->mapping->i_pages); 5185 ClearPageError(page); 5186 unlock_page(page); 5187 } 5188 WARN_ON(atomic_read(&eb->refs) == 0); 5189 } 5190 5191 int set_extent_buffer_dirty(struct extent_buffer *eb) 5192 { 5193 unsigned long i; 5194 unsigned long num_pages; 5195 int was_dirty = 0; 5196 5197 check_buffer_tree_ref(eb); 5198 5199 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5200 5201 num_pages = num_extent_pages(eb->start, eb->len); 5202 WARN_ON(atomic_read(&eb->refs) == 0); 5203 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5204 5205 for (i = 0; i < num_pages; i++) 5206 set_page_dirty(eb->pages[i]); 5207 return was_dirty; 5208 } 5209 5210 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5211 { 5212 unsigned long i; 5213 struct page *page; 5214 unsigned long num_pages; 5215 5216 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5217 num_pages = num_extent_pages(eb->start, eb->len); 5218 for (i = 0; i < num_pages; i++) { 5219 page = eb->pages[i]; 5220 if (page) 5221 ClearPageUptodate(page); 5222 } 5223 } 5224 5225 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5226 { 5227 unsigned long i; 5228 struct page *page; 5229 unsigned long num_pages; 5230 5231 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5232 num_pages = num_extent_pages(eb->start, eb->len); 5233 for (i = 0; i < num_pages; i++) { 5234 page = eb->pages[i]; 5235 SetPageUptodate(page); 5236 } 5237 } 5238 5239 int read_extent_buffer_pages(struct extent_io_tree *tree, 5240 struct extent_buffer *eb, int wait, int mirror_num) 5241 { 5242 unsigned long i; 5243 struct page *page; 5244 int err; 5245 int ret = 0; 5246 int locked_pages = 0; 5247 int all_uptodate = 1; 5248 unsigned long num_pages; 5249 unsigned long num_reads = 0; 5250 struct bio *bio = NULL; 5251 unsigned long bio_flags = 0; 5252 5253 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5254 return 0; 5255 5256 num_pages = num_extent_pages(eb->start, eb->len); 5257 for (i = 0; i < num_pages; i++) { 5258 page = eb->pages[i]; 5259 if (wait == WAIT_NONE) { 5260 if (!trylock_page(page)) 5261 goto unlock_exit; 5262 } else { 5263 lock_page(page); 5264 } 5265 locked_pages++; 5266 } 5267 /* 5268 * We need to firstly lock all pages to make sure that 5269 * the uptodate bit of our pages won't be affected by 5270 * clear_extent_buffer_uptodate(). 5271 */ 5272 for (i = 0; i < num_pages; i++) { 5273 page = eb->pages[i]; 5274 if (!PageUptodate(page)) { 5275 num_reads++; 5276 all_uptodate = 0; 5277 } 5278 } 5279 5280 if (all_uptodate) { 5281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5282 goto unlock_exit; 5283 } 5284 5285 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5286 eb->read_mirror = 0; 5287 atomic_set(&eb->io_pages, num_reads); 5288 for (i = 0; i < num_pages; i++) { 5289 page = eb->pages[i]; 5290 5291 if (!PageUptodate(page)) { 5292 if (ret) { 5293 atomic_dec(&eb->io_pages); 5294 unlock_page(page); 5295 continue; 5296 } 5297 5298 ClearPageError(page); 5299 err = __extent_read_full_page(tree, page, 5300 btree_get_extent, &bio, 5301 mirror_num, &bio_flags, 5302 REQ_META); 5303 if (err) { 5304 ret = err; 5305 /* 5306 * We use &bio in above __extent_read_full_page, 5307 * so we ensure that if it returns error, the 5308 * current page fails to add itself to bio and 5309 * it's been unlocked. 5310 * 5311 * We must dec io_pages by ourselves. 5312 */ 5313 atomic_dec(&eb->io_pages); 5314 } 5315 } else { 5316 unlock_page(page); 5317 } 5318 } 5319 5320 if (bio) { 5321 err = submit_one_bio(bio, mirror_num, bio_flags); 5322 if (err) 5323 return err; 5324 } 5325 5326 if (ret || wait != WAIT_COMPLETE) 5327 return ret; 5328 5329 for (i = 0; i < num_pages; i++) { 5330 page = eb->pages[i]; 5331 wait_on_page_locked(page); 5332 if (!PageUptodate(page)) 5333 ret = -EIO; 5334 } 5335 5336 return ret; 5337 5338 unlock_exit: 5339 while (locked_pages > 0) { 5340 locked_pages--; 5341 page = eb->pages[locked_pages]; 5342 unlock_page(page); 5343 } 5344 return ret; 5345 } 5346 5347 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5348 unsigned long start, unsigned long len) 5349 { 5350 size_t cur; 5351 size_t offset; 5352 struct page *page; 5353 char *kaddr; 5354 char *dst = (char *)dstv; 5355 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5356 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5357 5358 if (start + len > eb->len) { 5359 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5360 eb->start, eb->len, start, len); 5361 memset(dst, 0, len); 5362 return; 5363 } 5364 5365 offset = (start_offset + start) & (PAGE_SIZE - 1); 5366 5367 while (len > 0) { 5368 page = eb->pages[i]; 5369 5370 cur = min(len, (PAGE_SIZE - offset)); 5371 kaddr = page_address(page); 5372 memcpy(dst, kaddr + offset, cur); 5373 5374 dst += cur; 5375 len -= cur; 5376 offset = 0; 5377 i++; 5378 } 5379 } 5380 5381 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5382 void __user *dstv, 5383 unsigned long start, unsigned long len) 5384 { 5385 size_t cur; 5386 size_t offset; 5387 struct page *page; 5388 char *kaddr; 5389 char __user *dst = (char __user *)dstv; 5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5392 int ret = 0; 5393 5394 WARN_ON(start > eb->len); 5395 WARN_ON(start + len > eb->start + eb->len); 5396 5397 offset = (start_offset + start) & (PAGE_SIZE - 1); 5398 5399 while (len > 0) { 5400 page = eb->pages[i]; 5401 5402 cur = min(len, (PAGE_SIZE - offset)); 5403 kaddr = page_address(page); 5404 if (copy_to_user(dst, kaddr + offset, cur)) { 5405 ret = -EFAULT; 5406 break; 5407 } 5408 5409 dst += cur; 5410 len -= cur; 5411 offset = 0; 5412 i++; 5413 } 5414 5415 return ret; 5416 } 5417 5418 /* 5419 * return 0 if the item is found within a page. 5420 * return 1 if the item spans two pages. 5421 * return -EINVAL otherwise. 5422 */ 5423 int map_private_extent_buffer(const struct extent_buffer *eb, 5424 unsigned long start, unsigned long min_len, 5425 char **map, unsigned long *map_start, 5426 unsigned long *map_len) 5427 { 5428 size_t offset = start & (PAGE_SIZE - 1); 5429 char *kaddr; 5430 struct page *p; 5431 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5432 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5433 unsigned long end_i = (start_offset + start + min_len - 1) >> 5434 PAGE_SHIFT; 5435 5436 if (start + min_len > eb->len) { 5437 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5438 eb->start, eb->len, start, min_len); 5439 return -EINVAL; 5440 } 5441 5442 if (i != end_i) 5443 return 1; 5444 5445 if (i == 0) { 5446 offset = start_offset; 5447 *map_start = 0; 5448 } else { 5449 offset = 0; 5450 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5451 } 5452 5453 p = eb->pages[i]; 5454 kaddr = page_address(p); 5455 *map = kaddr + offset; 5456 *map_len = PAGE_SIZE - offset; 5457 return 0; 5458 } 5459 5460 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5461 unsigned long start, unsigned long len) 5462 { 5463 size_t cur; 5464 size_t offset; 5465 struct page *page; 5466 char *kaddr; 5467 char *ptr = (char *)ptrv; 5468 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5469 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5470 int ret = 0; 5471 5472 WARN_ON(start > eb->len); 5473 WARN_ON(start + len > eb->start + eb->len); 5474 5475 offset = (start_offset + start) & (PAGE_SIZE - 1); 5476 5477 while (len > 0) { 5478 page = eb->pages[i]; 5479 5480 cur = min(len, (PAGE_SIZE - offset)); 5481 5482 kaddr = page_address(page); 5483 ret = memcmp(ptr, kaddr + offset, cur); 5484 if (ret) 5485 break; 5486 5487 ptr += cur; 5488 len -= cur; 5489 offset = 0; 5490 i++; 5491 } 5492 return ret; 5493 } 5494 5495 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5496 const void *srcv) 5497 { 5498 char *kaddr; 5499 5500 WARN_ON(!PageUptodate(eb->pages[0])); 5501 kaddr = page_address(eb->pages[0]); 5502 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5503 BTRFS_FSID_SIZE); 5504 } 5505 5506 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5507 { 5508 char *kaddr; 5509 5510 WARN_ON(!PageUptodate(eb->pages[0])); 5511 kaddr = page_address(eb->pages[0]); 5512 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5513 BTRFS_FSID_SIZE); 5514 } 5515 5516 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5517 unsigned long start, unsigned long len) 5518 { 5519 size_t cur; 5520 size_t offset; 5521 struct page *page; 5522 char *kaddr; 5523 char *src = (char *)srcv; 5524 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5525 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5526 5527 WARN_ON(start > eb->len); 5528 WARN_ON(start + len > eb->start + eb->len); 5529 5530 offset = (start_offset + start) & (PAGE_SIZE - 1); 5531 5532 while (len > 0) { 5533 page = eb->pages[i]; 5534 WARN_ON(!PageUptodate(page)); 5535 5536 cur = min(len, PAGE_SIZE - offset); 5537 kaddr = page_address(page); 5538 memcpy(kaddr + offset, src, cur); 5539 5540 src += cur; 5541 len -= cur; 5542 offset = 0; 5543 i++; 5544 } 5545 } 5546 5547 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5548 unsigned long len) 5549 { 5550 size_t cur; 5551 size_t offset; 5552 struct page *page; 5553 char *kaddr; 5554 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5555 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5556 5557 WARN_ON(start > eb->len); 5558 WARN_ON(start + len > eb->start + eb->len); 5559 5560 offset = (start_offset + start) & (PAGE_SIZE - 1); 5561 5562 while (len > 0) { 5563 page = eb->pages[i]; 5564 WARN_ON(!PageUptodate(page)); 5565 5566 cur = min(len, PAGE_SIZE - offset); 5567 kaddr = page_address(page); 5568 memset(kaddr + offset, 0, cur); 5569 5570 len -= cur; 5571 offset = 0; 5572 i++; 5573 } 5574 } 5575 5576 void copy_extent_buffer_full(struct extent_buffer *dst, 5577 struct extent_buffer *src) 5578 { 5579 int i; 5580 unsigned num_pages; 5581 5582 ASSERT(dst->len == src->len); 5583 5584 num_pages = num_extent_pages(dst->start, dst->len); 5585 for (i = 0; i < num_pages; i++) 5586 copy_page(page_address(dst->pages[i]), 5587 page_address(src->pages[i])); 5588 } 5589 5590 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5591 unsigned long dst_offset, unsigned long src_offset, 5592 unsigned long len) 5593 { 5594 u64 dst_len = dst->len; 5595 size_t cur; 5596 size_t offset; 5597 struct page *page; 5598 char *kaddr; 5599 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5600 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5601 5602 WARN_ON(src->len != dst_len); 5603 5604 offset = (start_offset + dst_offset) & 5605 (PAGE_SIZE - 1); 5606 5607 while (len > 0) { 5608 page = dst->pages[i]; 5609 WARN_ON(!PageUptodate(page)); 5610 5611 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5612 5613 kaddr = page_address(page); 5614 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5615 5616 src_offset += cur; 5617 len -= cur; 5618 offset = 0; 5619 i++; 5620 } 5621 } 5622 5623 void le_bitmap_set(u8 *map, unsigned int start, int len) 5624 { 5625 u8 *p = map + BIT_BYTE(start); 5626 const unsigned int size = start + len; 5627 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5628 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 5629 5630 while (len - bits_to_set >= 0) { 5631 *p |= mask_to_set; 5632 len -= bits_to_set; 5633 bits_to_set = BITS_PER_BYTE; 5634 mask_to_set = ~0; 5635 p++; 5636 } 5637 if (len) { 5638 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5639 *p |= mask_to_set; 5640 } 5641 } 5642 5643 void le_bitmap_clear(u8 *map, unsigned int start, int len) 5644 { 5645 u8 *p = map + BIT_BYTE(start); 5646 const unsigned int size = start + len; 5647 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5648 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start); 5649 5650 while (len - bits_to_clear >= 0) { 5651 *p &= ~mask_to_clear; 5652 len -= bits_to_clear; 5653 bits_to_clear = BITS_PER_BYTE; 5654 mask_to_clear = ~0; 5655 p++; 5656 } 5657 if (len) { 5658 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5659 *p &= ~mask_to_clear; 5660 } 5661 } 5662 5663 /* 5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5665 * given bit number 5666 * @eb: the extent buffer 5667 * @start: offset of the bitmap item in the extent buffer 5668 * @nr: bit number 5669 * @page_index: return index of the page in the extent buffer that contains the 5670 * given bit number 5671 * @page_offset: return offset into the page given by page_index 5672 * 5673 * This helper hides the ugliness of finding the byte in an extent buffer which 5674 * contains a given bit. 5675 */ 5676 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5677 unsigned long start, unsigned long nr, 5678 unsigned long *page_index, 5679 size_t *page_offset) 5680 { 5681 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5682 size_t byte_offset = BIT_BYTE(nr); 5683 size_t offset; 5684 5685 /* 5686 * The byte we want is the offset of the extent buffer + the offset of 5687 * the bitmap item in the extent buffer + the offset of the byte in the 5688 * bitmap item. 5689 */ 5690 offset = start_offset + start + byte_offset; 5691 5692 *page_index = offset >> PAGE_SHIFT; 5693 *page_offset = offset & (PAGE_SIZE - 1); 5694 } 5695 5696 /** 5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5698 * @eb: the extent buffer 5699 * @start: offset of the bitmap item in the extent buffer 5700 * @nr: bit number to test 5701 */ 5702 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5703 unsigned long nr) 5704 { 5705 u8 *kaddr; 5706 struct page *page; 5707 unsigned long i; 5708 size_t offset; 5709 5710 eb_bitmap_offset(eb, start, nr, &i, &offset); 5711 page = eb->pages[i]; 5712 WARN_ON(!PageUptodate(page)); 5713 kaddr = page_address(page); 5714 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5715 } 5716 5717 /** 5718 * extent_buffer_bitmap_set - set an area of a bitmap 5719 * @eb: the extent buffer 5720 * @start: offset of the bitmap item in the extent buffer 5721 * @pos: bit number of the first bit 5722 * @len: number of bits to set 5723 */ 5724 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5725 unsigned long pos, unsigned long len) 5726 { 5727 u8 *kaddr; 5728 struct page *page; 5729 unsigned long i; 5730 size_t offset; 5731 const unsigned int size = pos + len; 5732 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5733 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5734 5735 eb_bitmap_offset(eb, start, pos, &i, &offset); 5736 page = eb->pages[i]; 5737 WARN_ON(!PageUptodate(page)); 5738 kaddr = page_address(page); 5739 5740 while (len >= bits_to_set) { 5741 kaddr[offset] |= mask_to_set; 5742 len -= bits_to_set; 5743 bits_to_set = BITS_PER_BYTE; 5744 mask_to_set = ~0; 5745 if (++offset >= PAGE_SIZE && len > 0) { 5746 offset = 0; 5747 page = eb->pages[++i]; 5748 WARN_ON(!PageUptodate(page)); 5749 kaddr = page_address(page); 5750 } 5751 } 5752 if (len) { 5753 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5754 kaddr[offset] |= mask_to_set; 5755 } 5756 } 5757 5758 5759 /** 5760 * extent_buffer_bitmap_clear - clear an area of a bitmap 5761 * @eb: the extent buffer 5762 * @start: offset of the bitmap item in the extent buffer 5763 * @pos: bit number of the first bit 5764 * @len: number of bits to clear 5765 */ 5766 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5767 unsigned long pos, unsigned long len) 5768 { 5769 u8 *kaddr; 5770 struct page *page; 5771 unsigned long i; 5772 size_t offset; 5773 const unsigned int size = pos + len; 5774 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5775 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5776 5777 eb_bitmap_offset(eb, start, pos, &i, &offset); 5778 page = eb->pages[i]; 5779 WARN_ON(!PageUptodate(page)); 5780 kaddr = page_address(page); 5781 5782 while (len >= bits_to_clear) { 5783 kaddr[offset] &= ~mask_to_clear; 5784 len -= bits_to_clear; 5785 bits_to_clear = BITS_PER_BYTE; 5786 mask_to_clear = ~0; 5787 if (++offset >= PAGE_SIZE && len > 0) { 5788 offset = 0; 5789 page = eb->pages[++i]; 5790 WARN_ON(!PageUptodate(page)); 5791 kaddr = page_address(page); 5792 } 5793 } 5794 if (len) { 5795 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5796 kaddr[offset] &= ~mask_to_clear; 5797 } 5798 } 5799 5800 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5801 { 5802 unsigned long distance = (src > dst) ? src - dst : dst - src; 5803 return distance < len; 5804 } 5805 5806 static void copy_pages(struct page *dst_page, struct page *src_page, 5807 unsigned long dst_off, unsigned long src_off, 5808 unsigned long len) 5809 { 5810 char *dst_kaddr = page_address(dst_page); 5811 char *src_kaddr; 5812 int must_memmove = 0; 5813 5814 if (dst_page != src_page) { 5815 src_kaddr = page_address(src_page); 5816 } else { 5817 src_kaddr = dst_kaddr; 5818 if (areas_overlap(src_off, dst_off, len)) 5819 must_memmove = 1; 5820 } 5821 5822 if (must_memmove) 5823 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5824 else 5825 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5826 } 5827 5828 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5829 unsigned long src_offset, unsigned long len) 5830 { 5831 struct btrfs_fs_info *fs_info = dst->fs_info; 5832 size_t cur; 5833 size_t dst_off_in_page; 5834 size_t src_off_in_page; 5835 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5836 unsigned long dst_i; 5837 unsigned long src_i; 5838 5839 if (src_offset + len > dst->len) { 5840 btrfs_err(fs_info, 5841 "memmove bogus src_offset %lu move len %lu dst len %lu", 5842 src_offset, len, dst->len); 5843 BUG_ON(1); 5844 } 5845 if (dst_offset + len > dst->len) { 5846 btrfs_err(fs_info, 5847 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5848 dst_offset, len, dst->len); 5849 BUG_ON(1); 5850 } 5851 5852 while (len > 0) { 5853 dst_off_in_page = (start_offset + dst_offset) & 5854 (PAGE_SIZE - 1); 5855 src_off_in_page = (start_offset + src_offset) & 5856 (PAGE_SIZE - 1); 5857 5858 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5859 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5860 5861 cur = min(len, (unsigned long)(PAGE_SIZE - 5862 src_off_in_page)); 5863 cur = min_t(unsigned long, cur, 5864 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5865 5866 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5867 dst_off_in_page, src_off_in_page, cur); 5868 5869 src_offset += cur; 5870 dst_offset += cur; 5871 len -= cur; 5872 } 5873 } 5874 5875 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5876 unsigned long src_offset, unsigned long len) 5877 { 5878 struct btrfs_fs_info *fs_info = dst->fs_info; 5879 size_t cur; 5880 size_t dst_off_in_page; 5881 size_t src_off_in_page; 5882 unsigned long dst_end = dst_offset + len - 1; 5883 unsigned long src_end = src_offset + len - 1; 5884 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5885 unsigned long dst_i; 5886 unsigned long src_i; 5887 5888 if (src_offset + len > dst->len) { 5889 btrfs_err(fs_info, 5890 "memmove bogus src_offset %lu move len %lu len %lu", 5891 src_offset, len, dst->len); 5892 BUG_ON(1); 5893 } 5894 if (dst_offset + len > dst->len) { 5895 btrfs_err(fs_info, 5896 "memmove bogus dst_offset %lu move len %lu len %lu", 5897 dst_offset, len, dst->len); 5898 BUG_ON(1); 5899 } 5900 if (dst_offset < src_offset) { 5901 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5902 return; 5903 } 5904 while (len > 0) { 5905 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5906 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5907 5908 dst_off_in_page = (start_offset + dst_end) & 5909 (PAGE_SIZE - 1); 5910 src_off_in_page = (start_offset + src_end) & 5911 (PAGE_SIZE - 1); 5912 5913 cur = min_t(unsigned long, len, src_off_in_page + 1); 5914 cur = min(cur, dst_off_in_page + 1); 5915 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5916 dst_off_in_page - cur + 1, 5917 src_off_in_page - cur + 1, cur); 5918 5919 dst_end -= cur; 5920 src_end -= cur; 5921 len -= cur; 5922 } 5923 } 5924 5925 int try_release_extent_buffer(struct page *page) 5926 { 5927 struct extent_buffer *eb; 5928 5929 /* 5930 * We need to make sure nobody is attaching this page to an eb right 5931 * now. 5932 */ 5933 spin_lock(&page->mapping->private_lock); 5934 if (!PagePrivate(page)) { 5935 spin_unlock(&page->mapping->private_lock); 5936 return 1; 5937 } 5938 5939 eb = (struct extent_buffer *)page->private; 5940 BUG_ON(!eb); 5941 5942 /* 5943 * This is a little awful but should be ok, we need to make sure that 5944 * the eb doesn't disappear out from under us while we're looking at 5945 * this page. 5946 */ 5947 spin_lock(&eb->refs_lock); 5948 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5949 spin_unlock(&eb->refs_lock); 5950 spin_unlock(&page->mapping->private_lock); 5951 return 0; 5952 } 5953 spin_unlock(&page->mapping->private_lock); 5954 5955 /* 5956 * If tree ref isn't set then we know the ref on this eb is a real ref, 5957 * so just return, this page will likely be freed soon anyway. 5958 */ 5959 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5960 spin_unlock(&eb->refs_lock); 5961 return 0; 5962 } 5963 5964 return release_extent_buffer(eb); 5965 } 5966