xref: /openbmc/linux/fs/btrfs/extent_io.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set *btrfs_bioset;
30 
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	if (tree->ops && tree->ops->check_extent_io_range)
93 		tree->ops->check_extent_io_range(tree->private_data, caller,
94 						 start, end);
95 }
96 #else
97 #define btrfs_leak_debug_add(new, head)	do {} while (0)
98 #define btrfs_leak_debug_del(entry)	do {} while (0)
99 #define btrfs_leak_debug_check()	do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
101 #endif
102 
103 #define BUFFER_LRU_MAX 64
104 
105 struct tree_entry {
106 	u64 start;
107 	u64 end;
108 	struct rb_node rb_node;
109 };
110 
111 struct extent_page_data {
112 	struct bio *bio;
113 	struct extent_io_tree *tree;
114 	/* tells writepage not to lock the state bits for this range
115 	 * it still does the unlocking
116 	 */
117 	unsigned int extent_locked:1;
118 
119 	/* tells the submit_bio code to use REQ_SYNC */
120 	unsigned int sync_io:1;
121 };
122 
123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 				 struct extent_changeset *changeset,
125 				 int set)
126 {
127 	int ret;
128 
129 	if (!changeset)
130 		return 0;
131 	if (set && (state->state & bits) == bits)
132 		return 0;
133 	if (!set && (state->state & bits) == 0)
134 		return 0;
135 	changeset->bytes_changed += state->end - state->start + 1;
136 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 			GFP_ATOMIC);
138 	return ret;
139 }
140 
141 static void flush_write_bio(struct extent_page_data *epd);
142 
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
145 {
146 	if (tree->ops)
147 		return tree->ops->tree_fs_info(tree->private_data);
148 	return NULL;
149 }
150 
151 int __init extent_io_init(void)
152 {
153 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 			sizeof(struct extent_state), 0,
155 			SLAB_MEM_SPREAD, NULL);
156 	if (!extent_state_cache)
157 		return -ENOMEM;
158 
159 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 			sizeof(struct extent_buffer), 0,
161 			SLAB_MEM_SPREAD, NULL);
162 	if (!extent_buffer_cache)
163 		goto free_state_cache;
164 
165 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 				     offsetof(struct btrfs_io_bio, bio),
167 				     BIOSET_NEED_BVECS);
168 	if (!btrfs_bioset)
169 		goto free_buffer_cache;
170 
171 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 		goto free_bioset;
173 
174 	return 0;
175 
176 free_bioset:
177 	bioset_free(btrfs_bioset);
178 	btrfs_bioset = NULL;
179 
180 free_buffer_cache:
181 	kmem_cache_destroy(extent_buffer_cache);
182 	extent_buffer_cache = NULL;
183 
184 free_state_cache:
185 	kmem_cache_destroy(extent_state_cache);
186 	extent_state_cache = NULL;
187 	return -ENOMEM;
188 }
189 
190 void __cold extent_io_exit(void)
191 {
192 	btrfs_leak_debug_check();
193 
194 	/*
195 	 * Make sure all delayed rcu free are flushed before we
196 	 * destroy caches.
197 	 */
198 	rcu_barrier();
199 	kmem_cache_destroy(extent_state_cache);
200 	kmem_cache_destroy(extent_buffer_cache);
201 	if (btrfs_bioset)
202 		bioset_free(btrfs_bioset);
203 }
204 
205 void extent_io_tree_init(struct extent_io_tree *tree,
206 			 void *private_data)
207 {
208 	tree->state = RB_ROOT;
209 	tree->ops = NULL;
210 	tree->dirty_bytes = 0;
211 	spin_lock_init(&tree->lock);
212 	tree->private_data = private_data;
213 }
214 
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217 	struct extent_state *state;
218 
219 	/*
220 	 * The given mask might be not appropriate for the slab allocator,
221 	 * drop the unsupported bits
222 	 */
223 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 	state = kmem_cache_alloc(extent_state_cache, mask);
225 	if (!state)
226 		return state;
227 	state->state = 0;
228 	state->failrec = NULL;
229 	RB_CLEAR_NODE(&state->rb_node);
230 	btrfs_leak_debug_add(&state->leak_list, &states);
231 	refcount_set(&state->refs, 1);
232 	init_waitqueue_head(&state->wq);
233 	trace_alloc_extent_state(state, mask, _RET_IP_);
234 	return state;
235 }
236 
237 void free_extent_state(struct extent_state *state)
238 {
239 	if (!state)
240 		return;
241 	if (refcount_dec_and_test(&state->refs)) {
242 		WARN_ON(extent_state_in_tree(state));
243 		btrfs_leak_debug_del(&state->leak_list);
244 		trace_free_extent_state(state, _RET_IP_);
245 		kmem_cache_free(extent_state_cache, state);
246 	}
247 }
248 
249 static struct rb_node *tree_insert(struct rb_root *root,
250 				   struct rb_node *search_start,
251 				   u64 offset,
252 				   struct rb_node *node,
253 				   struct rb_node ***p_in,
254 				   struct rb_node **parent_in)
255 {
256 	struct rb_node **p;
257 	struct rb_node *parent = NULL;
258 	struct tree_entry *entry;
259 
260 	if (p_in && parent_in) {
261 		p = *p_in;
262 		parent = *parent_in;
263 		goto do_insert;
264 	}
265 
266 	p = search_start ? &search_start : &root->rb_node;
267 	while (*p) {
268 		parent = *p;
269 		entry = rb_entry(parent, struct tree_entry, rb_node);
270 
271 		if (offset < entry->start)
272 			p = &(*p)->rb_left;
273 		else if (offset > entry->end)
274 			p = &(*p)->rb_right;
275 		else
276 			return parent;
277 	}
278 
279 do_insert:
280 	rb_link_node(node, parent, p);
281 	rb_insert_color(node, root);
282 	return NULL;
283 }
284 
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 				      struct rb_node **prev_ret,
287 				      struct rb_node **next_ret,
288 				      struct rb_node ***p_ret,
289 				      struct rb_node **parent_ret)
290 {
291 	struct rb_root *root = &tree->state;
292 	struct rb_node **n = &root->rb_node;
293 	struct rb_node *prev = NULL;
294 	struct rb_node *orig_prev = NULL;
295 	struct tree_entry *entry;
296 	struct tree_entry *prev_entry = NULL;
297 
298 	while (*n) {
299 		prev = *n;
300 		entry = rb_entry(prev, struct tree_entry, rb_node);
301 		prev_entry = entry;
302 
303 		if (offset < entry->start)
304 			n = &(*n)->rb_left;
305 		else if (offset > entry->end)
306 			n = &(*n)->rb_right;
307 		else
308 			return *n;
309 	}
310 
311 	if (p_ret)
312 		*p_ret = n;
313 	if (parent_ret)
314 		*parent_ret = prev;
315 
316 	if (prev_ret) {
317 		orig_prev = prev;
318 		while (prev && offset > prev_entry->end) {
319 			prev = rb_next(prev);
320 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 		}
322 		*prev_ret = prev;
323 		prev = orig_prev;
324 	}
325 
326 	if (next_ret) {
327 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 		while (prev && offset < prev_entry->start) {
329 			prev = rb_prev(prev);
330 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 		}
332 		*next_ret = prev;
333 	}
334 	return NULL;
335 }
336 
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339 		       u64 offset,
340 		       struct rb_node ***p_ret,
341 		       struct rb_node **parent_ret)
342 {
343 	struct rb_node *prev = NULL;
344 	struct rb_node *ret;
345 
346 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 	if (!ret)
348 		return prev;
349 	return ret;
350 }
351 
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 					  u64 offset)
354 {
355 	return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357 
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 		     struct extent_state *other)
360 {
361 	if (tree->ops && tree->ops->merge_extent_hook)
362 		tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364 
365 /*
366  * utility function to look for merge candidates inside a given range.
367  * Any extents with matching state are merged together into a single
368  * extent in the tree.  Extents with EXTENT_IO in their state field
369  * are not merged because the end_io handlers need to be able to do
370  * operations on them without sleeping (or doing allocations/splits).
371  *
372  * This should be called with the tree lock held.
373  */
374 static void merge_state(struct extent_io_tree *tree,
375 		        struct extent_state *state)
376 {
377 	struct extent_state *other;
378 	struct rb_node *other_node;
379 
380 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 		return;
382 
383 	other_node = rb_prev(&state->rb_node);
384 	if (other_node) {
385 		other = rb_entry(other_node, struct extent_state, rb_node);
386 		if (other->end == state->start - 1 &&
387 		    other->state == state->state) {
388 			merge_cb(tree, state, other);
389 			state->start = other->start;
390 			rb_erase(&other->rb_node, &tree->state);
391 			RB_CLEAR_NODE(&other->rb_node);
392 			free_extent_state(other);
393 		}
394 	}
395 	other_node = rb_next(&state->rb_node);
396 	if (other_node) {
397 		other = rb_entry(other_node, struct extent_state, rb_node);
398 		if (other->start == state->end + 1 &&
399 		    other->state == state->state) {
400 			merge_cb(tree, state, other);
401 			state->end = other->end;
402 			rb_erase(&other->rb_node, &tree->state);
403 			RB_CLEAR_NODE(&other->rb_node);
404 			free_extent_state(other);
405 		}
406 	}
407 }
408 
409 static void set_state_cb(struct extent_io_tree *tree,
410 			 struct extent_state *state, unsigned *bits)
411 {
412 	if (tree->ops && tree->ops->set_bit_hook)
413 		tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415 
416 static void clear_state_cb(struct extent_io_tree *tree,
417 			   struct extent_state *state, unsigned *bits)
418 {
419 	if (tree->ops && tree->ops->clear_bit_hook)
420 		tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422 
423 static void set_state_bits(struct extent_io_tree *tree,
424 			   struct extent_state *state, unsigned *bits,
425 			   struct extent_changeset *changeset);
426 
427 /*
428  * insert an extent_state struct into the tree.  'bits' are set on the
429  * struct before it is inserted.
430  *
431  * This may return -EEXIST if the extent is already there, in which case the
432  * state struct is freed.
433  *
434  * The tree lock is not taken internally.  This is a utility function and
435  * probably isn't what you want to call (see set/clear_extent_bit).
436  */
437 static int insert_state(struct extent_io_tree *tree,
438 			struct extent_state *state, u64 start, u64 end,
439 			struct rb_node ***p,
440 			struct rb_node **parent,
441 			unsigned *bits, struct extent_changeset *changeset)
442 {
443 	struct rb_node *node;
444 
445 	if (end < start)
446 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 		       end, start);
448 	state->start = start;
449 	state->end = end;
450 
451 	set_state_bits(tree, state, bits, changeset);
452 
453 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 	if (node) {
455 		struct extent_state *found;
456 		found = rb_entry(node, struct extent_state, rb_node);
457 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 		       found->start, found->end, start, end);
459 		return -EEXIST;
460 	}
461 	merge_state(tree, state);
462 	return 0;
463 }
464 
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 		     u64 split)
467 {
468 	if (tree->ops && tree->ops->split_extent_hook)
469 		tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471 
472 /*
473  * split a given extent state struct in two, inserting the preallocated
474  * struct 'prealloc' as the newly created second half.  'split' indicates an
475  * offset inside 'orig' where it should be split.
476  *
477  * Before calling,
478  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
479  * are two extent state structs in the tree:
480  * prealloc: [orig->start, split - 1]
481  * orig: [ split, orig->end ]
482  *
483  * The tree locks are not taken by this function. They need to be held
484  * by the caller.
485  */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 		       struct extent_state *prealloc, u64 split)
488 {
489 	struct rb_node *node;
490 
491 	split_cb(tree, orig, split);
492 
493 	prealloc->start = orig->start;
494 	prealloc->end = split - 1;
495 	prealloc->state = orig->state;
496 	orig->start = split;
497 
498 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 			   &prealloc->rb_node, NULL, NULL);
500 	if (node) {
501 		free_extent_state(prealloc);
502 		return -EEXIST;
503 	}
504 	return 0;
505 }
506 
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509 	struct rb_node *next = rb_next(&state->rb_node);
510 	if (next)
511 		return rb_entry(next, struct extent_state, rb_node);
512 	else
513 		return NULL;
514 }
515 
516 /*
517  * utility function to clear some bits in an extent state struct.
518  * it will optionally wake up any one waiting on this state (wake == 1).
519  *
520  * If no bits are set on the state struct after clearing things, the
521  * struct is freed and removed from the tree
522  */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 					    struct extent_state *state,
525 					    unsigned *bits, int wake,
526 					    struct extent_changeset *changeset)
527 {
528 	struct extent_state *next;
529 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530 	int ret;
531 
532 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 		u64 range = state->end - state->start + 1;
534 		WARN_ON(range > tree->dirty_bytes);
535 		tree->dirty_bytes -= range;
536 	}
537 	clear_state_cb(tree, state, bits);
538 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
539 	BUG_ON(ret < 0);
540 	state->state &= ~bits_to_clear;
541 	if (wake)
542 		wake_up(&state->wq);
543 	if (state->state == 0) {
544 		next = next_state(state);
545 		if (extent_state_in_tree(state)) {
546 			rb_erase(&state->rb_node, &tree->state);
547 			RB_CLEAR_NODE(&state->rb_node);
548 			free_extent_state(state);
549 		} else {
550 			WARN_ON(1);
551 		}
552 	} else {
553 		merge_state(tree, state);
554 		next = next_state(state);
555 	}
556 	return next;
557 }
558 
559 static struct extent_state *
560 alloc_extent_state_atomic(struct extent_state *prealloc)
561 {
562 	if (!prealloc)
563 		prealloc = alloc_extent_state(GFP_ATOMIC);
564 
565 	return prealloc;
566 }
567 
568 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
569 {
570 	btrfs_panic(tree_fs_info(tree), err,
571 		    "Locking error: Extent tree was modified by another thread while locked.");
572 }
573 
574 /*
575  * clear some bits on a range in the tree.  This may require splitting
576  * or inserting elements in the tree, so the gfp mask is used to
577  * indicate which allocations or sleeping are allowed.
578  *
579  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
580  * the given range from the tree regardless of state (ie for truncate).
581  *
582  * the range [start, end] is inclusive.
583  *
584  * This takes the tree lock, and returns 0 on success and < 0 on error.
585  */
586 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
587 			      unsigned bits, int wake, int delete,
588 			      struct extent_state **cached_state,
589 			      gfp_t mask, struct extent_changeset *changeset)
590 {
591 	struct extent_state *state;
592 	struct extent_state *cached;
593 	struct extent_state *prealloc = NULL;
594 	struct rb_node *node;
595 	u64 last_end;
596 	int err;
597 	int clear = 0;
598 
599 	btrfs_debug_check_extent_io_range(tree, start, end);
600 
601 	if (bits & EXTENT_DELALLOC)
602 		bits |= EXTENT_NORESERVE;
603 
604 	if (delete)
605 		bits |= ~EXTENT_CTLBITS;
606 	bits |= EXTENT_FIRST_DELALLOC;
607 
608 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
609 		clear = 1;
610 again:
611 	if (!prealloc && gfpflags_allow_blocking(mask)) {
612 		/*
613 		 * Don't care for allocation failure here because we might end
614 		 * up not needing the pre-allocated extent state at all, which
615 		 * is the case if we only have in the tree extent states that
616 		 * cover our input range and don't cover too any other range.
617 		 * If we end up needing a new extent state we allocate it later.
618 		 */
619 		prealloc = alloc_extent_state(mask);
620 	}
621 
622 	spin_lock(&tree->lock);
623 	if (cached_state) {
624 		cached = *cached_state;
625 
626 		if (clear) {
627 			*cached_state = NULL;
628 			cached_state = NULL;
629 		}
630 
631 		if (cached && extent_state_in_tree(cached) &&
632 		    cached->start <= start && cached->end > start) {
633 			if (clear)
634 				refcount_dec(&cached->refs);
635 			state = cached;
636 			goto hit_next;
637 		}
638 		if (clear)
639 			free_extent_state(cached);
640 	}
641 	/*
642 	 * this search will find the extents that end after
643 	 * our range starts
644 	 */
645 	node = tree_search(tree, start);
646 	if (!node)
647 		goto out;
648 	state = rb_entry(node, struct extent_state, rb_node);
649 hit_next:
650 	if (state->start > end)
651 		goto out;
652 	WARN_ON(state->end < start);
653 	last_end = state->end;
654 
655 	/* the state doesn't have the wanted bits, go ahead */
656 	if (!(state->state & bits)) {
657 		state = next_state(state);
658 		goto next;
659 	}
660 
661 	/*
662 	 *     | ---- desired range ---- |
663 	 *  | state | or
664 	 *  | ------------- state -------------- |
665 	 *
666 	 * We need to split the extent we found, and may flip
667 	 * bits on second half.
668 	 *
669 	 * If the extent we found extends past our range, we
670 	 * just split and search again.  It'll get split again
671 	 * the next time though.
672 	 *
673 	 * If the extent we found is inside our range, we clear
674 	 * the desired bit on it.
675 	 */
676 
677 	if (state->start < start) {
678 		prealloc = alloc_extent_state_atomic(prealloc);
679 		BUG_ON(!prealloc);
680 		err = split_state(tree, state, prealloc, start);
681 		if (err)
682 			extent_io_tree_panic(tree, err);
683 
684 		prealloc = NULL;
685 		if (err)
686 			goto out;
687 		if (state->end <= end) {
688 			state = clear_state_bit(tree, state, &bits, wake,
689 						changeset);
690 			goto next;
691 		}
692 		goto search_again;
693 	}
694 	/*
695 	 * | ---- desired range ---- |
696 	 *                        | state |
697 	 * We need to split the extent, and clear the bit
698 	 * on the first half
699 	 */
700 	if (state->start <= end && state->end > end) {
701 		prealloc = alloc_extent_state_atomic(prealloc);
702 		BUG_ON(!prealloc);
703 		err = split_state(tree, state, prealloc, end + 1);
704 		if (err)
705 			extent_io_tree_panic(tree, err);
706 
707 		if (wake)
708 			wake_up(&state->wq);
709 
710 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
711 
712 		prealloc = NULL;
713 		goto out;
714 	}
715 
716 	state = clear_state_bit(tree, state, &bits, wake, changeset);
717 next:
718 	if (last_end == (u64)-1)
719 		goto out;
720 	start = last_end + 1;
721 	if (start <= end && state && !need_resched())
722 		goto hit_next;
723 
724 search_again:
725 	if (start > end)
726 		goto out;
727 	spin_unlock(&tree->lock);
728 	if (gfpflags_allow_blocking(mask))
729 		cond_resched();
730 	goto again;
731 
732 out:
733 	spin_unlock(&tree->lock);
734 	if (prealloc)
735 		free_extent_state(prealloc);
736 
737 	return 0;
738 
739 }
740 
741 static void wait_on_state(struct extent_io_tree *tree,
742 			  struct extent_state *state)
743 		__releases(tree->lock)
744 		__acquires(tree->lock)
745 {
746 	DEFINE_WAIT(wait);
747 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
748 	spin_unlock(&tree->lock);
749 	schedule();
750 	spin_lock(&tree->lock);
751 	finish_wait(&state->wq, &wait);
752 }
753 
754 /*
755  * waits for one or more bits to clear on a range in the state tree.
756  * The range [start, end] is inclusive.
757  * The tree lock is taken by this function
758  */
759 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
760 			    unsigned long bits)
761 {
762 	struct extent_state *state;
763 	struct rb_node *node;
764 
765 	btrfs_debug_check_extent_io_range(tree, start, end);
766 
767 	spin_lock(&tree->lock);
768 again:
769 	while (1) {
770 		/*
771 		 * this search will find all the extents that end after
772 		 * our range starts
773 		 */
774 		node = tree_search(tree, start);
775 process_node:
776 		if (!node)
777 			break;
778 
779 		state = rb_entry(node, struct extent_state, rb_node);
780 
781 		if (state->start > end)
782 			goto out;
783 
784 		if (state->state & bits) {
785 			start = state->start;
786 			refcount_inc(&state->refs);
787 			wait_on_state(tree, state);
788 			free_extent_state(state);
789 			goto again;
790 		}
791 		start = state->end + 1;
792 
793 		if (start > end)
794 			break;
795 
796 		if (!cond_resched_lock(&tree->lock)) {
797 			node = rb_next(node);
798 			goto process_node;
799 		}
800 	}
801 out:
802 	spin_unlock(&tree->lock);
803 }
804 
805 static void set_state_bits(struct extent_io_tree *tree,
806 			   struct extent_state *state,
807 			   unsigned *bits, struct extent_changeset *changeset)
808 {
809 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
810 	int ret;
811 
812 	set_state_cb(tree, state, bits);
813 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
814 		u64 range = state->end - state->start + 1;
815 		tree->dirty_bytes += range;
816 	}
817 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
818 	BUG_ON(ret < 0);
819 	state->state |= bits_to_set;
820 }
821 
822 static void cache_state_if_flags(struct extent_state *state,
823 				 struct extent_state **cached_ptr,
824 				 unsigned flags)
825 {
826 	if (cached_ptr && !(*cached_ptr)) {
827 		if (!flags || (state->state & flags)) {
828 			*cached_ptr = state;
829 			refcount_inc(&state->refs);
830 		}
831 	}
832 }
833 
834 static void cache_state(struct extent_state *state,
835 			struct extent_state **cached_ptr)
836 {
837 	return cache_state_if_flags(state, cached_ptr,
838 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
839 }
840 
841 /*
842  * set some bits on a range in the tree.  This may require allocations or
843  * sleeping, so the gfp mask is used to indicate what is allowed.
844  *
845  * If any of the exclusive bits are set, this will fail with -EEXIST if some
846  * part of the range already has the desired bits set.  The start of the
847  * existing range is returned in failed_start in this case.
848  *
849  * [start, end] is inclusive This takes the tree lock.
850  */
851 
852 static int __must_check
853 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
854 		 unsigned bits, unsigned exclusive_bits,
855 		 u64 *failed_start, struct extent_state **cached_state,
856 		 gfp_t mask, struct extent_changeset *changeset)
857 {
858 	struct extent_state *state;
859 	struct extent_state *prealloc = NULL;
860 	struct rb_node *node;
861 	struct rb_node **p;
862 	struct rb_node *parent;
863 	int err = 0;
864 	u64 last_start;
865 	u64 last_end;
866 
867 	btrfs_debug_check_extent_io_range(tree, start, end);
868 
869 	bits |= EXTENT_FIRST_DELALLOC;
870 again:
871 	if (!prealloc && gfpflags_allow_blocking(mask)) {
872 		/*
873 		 * Don't care for allocation failure here because we might end
874 		 * up not needing the pre-allocated extent state at all, which
875 		 * is the case if we only have in the tree extent states that
876 		 * cover our input range and don't cover too any other range.
877 		 * If we end up needing a new extent state we allocate it later.
878 		 */
879 		prealloc = alloc_extent_state(mask);
880 	}
881 
882 	spin_lock(&tree->lock);
883 	if (cached_state && *cached_state) {
884 		state = *cached_state;
885 		if (state->start <= start && state->end > start &&
886 		    extent_state_in_tree(state)) {
887 			node = &state->rb_node;
888 			goto hit_next;
889 		}
890 	}
891 	/*
892 	 * this search will find all the extents that end after
893 	 * our range starts.
894 	 */
895 	node = tree_search_for_insert(tree, start, &p, &parent);
896 	if (!node) {
897 		prealloc = alloc_extent_state_atomic(prealloc);
898 		BUG_ON(!prealloc);
899 		err = insert_state(tree, prealloc, start, end,
900 				   &p, &parent, &bits, changeset);
901 		if (err)
902 			extent_io_tree_panic(tree, err);
903 
904 		cache_state(prealloc, cached_state);
905 		prealloc = NULL;
906 		goto out;
907 	}
908 	state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 	last_start = state->start;
911 	last_end = state->end;
912 
913 	/*
914 	 * | ---- desired range ---- |
915 	 * | state |
916 	 *
917 	 * Just lock what we found and keep going
918 	 */
919 	if (state->start == start && state->end <= end) {
920 		if (state->state & exclusive_bits) {
921 			*failed_start = state->start;
922 			err = -EEXIST;
923 			goto out;
924 		}
925 
926 		set_state_bits(tree, state, &bits, changeset);
927 		cache_state(state, cached_state);
928 		merge_state(tree, state);
929 		if (last_end == (u64)-1)
930 			goto out;
931 		start = last_end + 1;
932 		state = next_state(state);
933 		if (start < end && state && state->start == start &&
934 		    !need_resched())
935 			goto hit_next;
936 		goto search_again;
937 	}
938 
939 	/*
940 	 *     | ---- desired range ---- |
941 	 * | state |
942 	 *   or
943 	 * | ------------- state -------------- |
944 	 *
945 	 * We need to split the extent we found, and may flip bits on
946 	 * second half.
947 	 *
948 	 * If the extent we found extends past our
949 	 * range, we just split and search again.  It'll get split
950 	 * again the next time though.
951 	 *
952 	 * If the extent we found is inside our range, we set the
953 	 * desired bit on it.
954 	 */
955 	if (state->start < start) {
956 		if (state->state & exclusive_bits) {
957 			*failed_start = start;
958 			err = -EEXIST;
959 			goto out;
960 		}
961 
962 		prealloc = alloc_extent_state_atomic(prealloc);
963 		BUG_ON(!prealloc);
964 		err = split_state(tree, state, prealloc, start);
965 		if (err)
966 			extent_io_tree_panic(tree, err);
967 
968 		prealloc = NULL;
969 		if (err)
970 			goto out;
971 		if (state->end <= end) {
972 			set_state_bits(tree, state, &bits, changeset);
973 			cache_state(state, cached_state);
974 			merge_state(tree, state);
975 			if (last_end == (u64)-1)
976 				goto out;
977 			start = last_end + 1;
978 			state = next_state(state);
979 			if (start < end && state && state->start == start &&
980 			    !need_resched())
981 				goto hit_next;
982 		}
983 		goto search_again;
984 	}
985 	/*
986 	 * | ---- desired range ---- |
987 	 *     | state | or               | state |
988 	 *
989 	 * There's a hole, we need to insert something in it and
990 	 * ignore the extent we found.
991 	 */
992 	if (state->start > start) {
993 		u64 this_end;
994 		if (end < last_start)
995 			this_end = end;
996 		else
997 			this_end = last_start - 1;
998 
999 		prealloc = alloc_extent_state_atomic(prealloc);
1000 		BUG_ON(!prealloc);
1001 
1002 		/*
1003 		 * Avoid to free 'prealloc' if it can be merged with
1004 		 * the later extent.
1005 		 */
1006 		err = insert_state(tree, prealloc, start, this_end,
1007 				   NULL, NULL, &bits, changeset);
1008 		if (err)
1009 			extent_io_tree_panic(tree, err);
1010 
1011 		cache_state(prealloc, cached_state);
1012 		prealloc = NULL;
1013 		start = this_end + 1;
1014 		goto search_again;
1015 	}
1016 	/*
1017 	 * | ---- desired range ---- |
1018 	 *                        | state |
1019 	 * We need to split the extent, and set the bit
1020 	 * on the first half
1021 	 */
1022 	if (state->start <= end && state->end > end) {
1023 		if (state->state & exclusive_bits) {
1024 			*failed_start = start;
1025 			err = -EEXIST;
1026 			goto out;
1027 		}
1028 
1029 		prealloc = alloc_extent_state_atomic(prealloc);
1030 		BUG_ON(!prealloc);
1031 		err = split_state(tree, state, prealloc, end + 1);
1032 		if (err)
1033 			extent_io_tree_panic(tree, err);
1034 
1035 		set_state_bits(tree, prealloc, &bits, changeset);
1036 		cache_state(prealloc, cached_state);
1037 		merge_state(tree, prealloc);
1038 		prealloc = NULL;
1039 		goto out;
1040 	}
1041 
1042 search_again:
1043 	if (start > end)
1044 		goto out;
1045 	spin_unlock(&tree->lock);
1046 	if (gfpflags_allow_blocking(mask))
1047 		cond_resched();
1048 	goto again;
1049 
1050 out:
1051 	spin_unlock(&tree->lock);
1052 	if (prealloc)
1053 		free_extent_state(prealloc);
1054 
1055 	return err;
1056 
1057 }
1058 
1059 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1060 		   unsigned bits, u64 * failed_start,
1061 		   struct extent_state **cached_state, gfp_t mask)
1062 {
1063 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1064 				cached_state, mask, NULL);
1065 }
1066 
1067 
1068 /**
1069  * convert_extent_bit - convert all bits in a given range from one bit to
1070  * 			another
1071  * @tree:	the io tree to search
1072  * @start:	the start offset in bytes
1073  * @end:	the end offset in bytes (inclusive)
1074  * @bits:	the bits to set in this range
1075  * @clear_bits:	the bits to clear in this range
1076  * @cached_state:	state that we're going to cache
1077  *
1078  * This will go through and set bits for the given range.  If any states exist
1079  * already in this range they are set with the given bit and cleared of the
1080  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1081  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1082  * boundary bits like LOCK.
1083  *
1084  * All allocations are done with GFP_NOFS.
1085  */
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 		       unsigned bits, unsigned clear_bits,
1088 		       struct extent_state **cached_state)
1089 {
1090 	struct extent_state *state;
1091 	struct extent_state *prealloc = NULL;
1092 	struct rb_node *node;
1093 	struct rb_node **p;
1094 	struct rb_node *parent;
1095 	int err = 0;
1096 	u64 last_start;
1097 	u64 last_end;
1098 	bool first_iteration = true;
1099 
1100 	btrfs_debug_check_extent_io_range(tree, start, end);
1101 
1102 again:
1103 	if (!prealloc) {
1104 		/*
1105 		 * Best effort, don't worry if extent state allocation fails
1106 		 * here for the first iteration. We might have a cached state
1107 		 * that matches exactly the target range, in which case no
1108 		 * extent state allocations are needed. We'll only know this
1109 		 * after locking the tree.
1110 		 */
1111 		prealloc = alloc_extent_state(GFP_NOFS);
1112 		if (!prealloc && !first_iteration)
1113 			return -ENOMEM;
1114 	}
1115 
1116 	spin_lock(&tree->lock);
1117 	if (cached_state && *cached_state) {
1118 		state = *cached_state;
1119 		if (state->start <= start && state->end > start &&
1120 		    extent_state_in_tree(state)) {
1121 			node = &state->rb_node;
1122 			goto hit_next;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * this search will find all the extents that end after
1128 	 * our range starts.
1129 	 */
1130 	node = tree_search_for_insert(tree, start, &p, &parent);
1131 	if (!node) {
1132 		prealloc = alloc_extent_state_atomic(prealloc);
1133 		if (!prealloc) {
1134 			err = -ENOMEM;
1135 			goto out;
1136 		}
1137 		err = insert_state(tree, prealloc, start, end,
1138 				   &p, &parent, &bits, NULL);
1139 		if (err)
1140 			extent_io_tree_panic(tree, err);
1141 		cache_state(prealloc, cached_state);
1142 		prealloc = NULL;
1143 		goto out;
1144 	}
1145 	state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 	last_start = state->start;
1148 	last_end = state->end;
1149 
1150 	/*
1151 	 * | ---- desired range ---- |
1152 	 * | state |
1153 	 *
1154 	 * Just lock what we found and keep going
1155 	 */
1156 	if (state->start == start && state->end <= end) {
1157 		set_state_bits(tree, state, &bits, NULL);
1158 		cache_state(state, cached_state);
1159 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 		if (last_end == (u64)-1)
1161 			goto out;
1162 		start = last_end + 1;
1163 		if (start < end && state && state->start == start &&
1164 		    !need_resched())
1165 			goto hit_next;
1166 		goto search_again;
1167 	}
1168 
1169 	/*
1170 	 *     | ---- desired range ---- |
1171 	 * | state |
1172 	 *   or
1173 	 * | ------------- state -------------- |
1174 	 *
1175 	 * We need to split the extent we found, and may flip bits on
1176 	 * second half.
1177 	 *
1178 	 * If the extent we found extends past our
1179 	 * range, we just split and search again.  It'll get split
1180 	 * again the next time though.
1181 	 *
1182 	 * If the extent we found is inside our range, we set the
1183 	 * desired bit on it.
1184 	 */
1185 	if (state->start < start) {
1186 		prealloc = alloc_extent_state_atomic(prealloc);
1187 		if (!prealloc) {
1188 			err = -ENOMEM;
1189 			goto out;
1190 		}
1191 		err = split_state(tree, state, prealloc, start);
1192 		if (err)
1193 			extent_io_tree_panic(tree, err);
1194 		prealloc = NULL;
1195 		if (err)
1196 			goto out;
1197 		if (state->end <= end) {
1198 			set_state_bits(tree, state, &bits, NULL);
1199 			cache_state(state, cached_state);
1200 			state = clear_state_bit(tree, state, &clear_bits, 0,
1201 						NULL);
1202 			if (last_end == (u64)-1)
1203 				goto out;
1204 			start = last_end + 1;
1205 			if (start < end && state && state->start == start &&
1206 			    !need_resched())
1207 				goto hit_next;
1208 		}
1209 		goto search_again;
1210 	}
1211 	/*
1212 	 * | ---- desired range ---- |
1213 	 *     | state | or               | state |
1214 	 *
1215 	 * There's a hole, we need to insert something in it and
1216 	 * ignore the extent we found.
1217 	 */
1218 	if (state->start > start) {
1219 		u64 this_end;
1220 		if (end < last_start)
1221 			this_end = end;
1222 		else
1223 			this_end = last_start - 1;
1224 
1225 		prealloc = alloc_extent_state_atomic(prealloc);
1226 		if (!prealloc) {
1227 			err = -ENOMEM;
1228 			goto out;
1229 		}
1230 
1231 		/*
1232 		 * Avoid to free 'prealloc' if it can be merged with
1233 		 * the later extent.
1234 		 */
1235 		err = insert_state(tree, prealloc, start, this_end,
1236 				   NULL, NULL, &bits, NULL);
1237 		if (err)
1238 			extent_io_tree_panic(tree, err);
1239 		cache_state(prealloc, cached_state);
1240 		prealloc = NULL;
1241 		start = this_end + 1;
1242 		goto search_again;
1243 	}
1244 	/*
1245 	 * | ---- desired range ---- |
1246 	 *                        | state |
1247 	 * We need to split the extent, and set the bit
1248 	 * on the first half
1249 	 */
1250 	if (state->start <= end && state->end > end) {
1251 		prealloc = alloc_extent_state_atomic(prealloc);
1252 		if (!prealloc) {
1253 			err = -ENOMEM;
1254 			goto out;
1255 		}
1256 
1257 		err = split_state(tree, state, prealloc, end + 1);
1258 		if (err)
1259 			extent_io_tree_panic(tree, err);
1260 
1261 		set_state_bits(tree, prealloc, &bits, NULL);
1262 		cache_state(prealloc, cached_state);
1263 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 		prealloc = NULL;
1265 		goto out;
1266 	}
1267 
1268 search_again:
1269 	if (start > end)
1270 		goto out;
1271 	spin_unlock(&tree->lock);
1272 	cond_resched();
1273 	first_iteration = false;
1274 	goto again;
1275 
1276 out:
1277 	spin_unlock(&tree->lock);
1278 	if (prealloc)
1279 		free_extent_state(prealloc);
1280 
1281 	return err;
1282 }
1283 
1284 /* wrappers around set/clear extent bit */
1285 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1286 			   unsigned bits, struct extent_changeset *changeset)
1287 {
1288 	/*
1289 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1290 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1291 	 * either fail with -EEXIST or changeset will record the whole
1292 	 * range.
1293 	 */
1294 	BUG_ON(bits & EXTENT_LOCKED);
1295 
1296 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1297 				changeset);
1298 }
1299 
1300 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301 		     unsigned bits, int wake, int delete,
1302 		     struct extent_state **cached)
1303 {
1304 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1305 				  cached, GFP_NOFS, NULL);
1306 }
1307 
1308 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1309 		unsigned bits, struct extent_changeset *changeset)
1310 {
1311 	/*
1312 	 * Don't support EXTENT_LOCKED case, same reason as
1313 	 * set_record_extent_bits().
1314 	 */
1315 	BUG_ON(bits & EXTENT_LOCKED);
1316 
1317 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1318 				  changeset);
1319 }
1320 
1321 /*
1322  * either insert or lock state struct between start and end use mask to tell
1323  * us if waiting is desired.
1324  */
1325 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1326 		     struct extent_state **cached_state)
1327 {
1328 	int err;
1329 	u64 failed_start;
1330 
1331 	while (1) {
1332 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1333 				       EXTENT_LOCKED, &failed_start,
1334 				       cached_state, GFP_NOFS, NULL);
1335 		if (err == -EEXIST) {
1336 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337 			start = failed_start;
1338 		} else
1339 			break;
1340 		WARN_ON(start > end);
1341 	}
1342 	return err;
1343 }
1344 
1345 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1346 {
1347 	int err;
1348 	u64 failed_start;
1349 
1350 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1351 			       &failed_start, NULL, GFP_NOFS, NULL);
1352 	if (err == -EEXIST) {
1353 		if (failed_start > start)
1354 			clear_extent_bit(tree, start, failed_start - 1,
1355 					 EXTENT_LOCKED, 1, 0, NULL);
1356 		return 0;
1357 	}
1358 	return 1;
1359 }
1360 
1361 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362 {
1363 	unsigned long index = start >> PAGE_SHIFT;
1364 	unsigned long end_index = end >> PAGE_SHIFT;
1365 	struct page *page;
1366 
1367 	while (index <= end_index) {
1368 		page = find_get_page(inode->i_mapping, index);
1369 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370 		clear_page_dirty_for_io(page);
1371 		put_page(page);
1372 		index++;
1373 	}
1374 }
1375 
1376 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377 {
1378 	unsigned long index = start >> PAGE_SHIFT;
1379 	unsigned long end_index = end >> PAGE_SHIFT;
1380 	struct page *page;
1381 
1382 	while (index <= end_index) {
1383 		page = find_get_page(inode->i_mapping, index);
1384 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 		__set_page_dirty_nobuffers(page);
1386 		account_page_redirty(page);
1387 		put_page(page);
1388 		index++;
1389 	}
1390 }
1391 
1392 /*
1393  * helper function to set both pages and extents in the tree writeback
1394  */
1395 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1396 {
1397 	tree->ops->set_range_writeback(tree->private_data, start, end);
1398 }
1399 
1400 /* find the first state struct with 'bits' set after 'start', and
1401  * return it.  tree->lock must be held.  NULL will returned if
1402  * nothing was found after 'start'
1403  */
1404 static struct extent_state *
1405 find_first_extent_bit_state(struct extent_io_tree *tree,
1406 			    u64 start, unsigned bits)
1407 {
1408 	struct rb_node *node;
1409 	struct extent_state *state;
1410 
1411 	/*
1412 	 * this search will find all the extents that end after
1413 	 * our range starts.
1414 	 */
1415 	node = tree_search(tree, start);
1416 	if (!node)
1417 		goto out;
1418 
1419 	while (1) {
1420 		state = rb_entry(node, struct extent_state, rb_node);
1421 		if (state->end >= start && (state->state & bits))
1422 			return state;
1423 
1424 		node = rb_next(node);
1425 		if (!node)
1426 			break;
1427 	}
1428 out:
1429 	return NULL;
1430 }
1431 
1432 /*
1433  * find the first offset in the io tree with 'bits' set. zero is
1434  * returned if we find something, and *start_ret and *end_ret are
1435  * set to reflect the state struct that was found.
1436  *
1437  * If nothing was found, 1 is returned. If found something, return 0.
1438  */
1439 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1440 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1441 			  struct extent_state **cached_state)
1442 {
1443 	struct extent_state *state;
1444 	struct rb_node *n;
1445 	int ret = 1;
1446 
1447 	spin_lock(&tree->lock);
1448 	if (cached_state && *cached_state) {
1449 		state = *cached_state;
1450 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1451 			n = rb_next(&state->rb_node);
1452 			while (n) {
1453 				state = rb_entry(n, struct extent_state,
1454 						 rb_node);
1455 				if (state->state & bits)
1456 					goto got_it;
1457 				n = rb_next(n);
1458 			}
1459 			free_extent_state(*cached_state);
1460 			*cached_state = NULL;
1461 			goto out;
1462 		}
1463 		free_extent_state(*cached_state);
1464 		*cached_state = NULL;
1465 	}
1466 
1467 	state = find_first_extent_bit_state(tree, start, bits);
1468 got_it:
1469 	if (state) {
1470 		cache_state_if_flags(state, cached_state, 0);
1471 		*start_ret = state->start;
1472 		*end_ret = state->end;
1473 		ret = 0;
1474 	}
1475 out:
1476 	spin_unlock(&tree->lock);
1477 	return ret;
1478 }
1479 
1480 /*
1481  * find a contiguous range of bytes in the file marked as delalloc, not
1482  * more than 'max_bytes'.  start and end are used to return the range,
1483  *
1484  * 1 is returned if we find something, 0 if nothing was in the tree
1485  */
1486 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1487 					u64 *start, u64 *end, u64 max_bytes,
1488 					struct extent_state **cached_state)
1489 {
1490 	struct rb_node *node;
1491 	struct extent_state *state;
1492 	u64 cur_start = *start;
1493 	u64 found = 0;
1494 	u64 total_bytes = 0;
1495 
1496 	spin_lock(&tree->lock);
1497 
1498 	/*
1499 	 * this search will find all the extents that end after
1500 	 * our range starts.
1501 	 */
1502 	node = tree_search(tree, cur_start);
1503 	if (!node) {
1504 		if (!found)
1505 			*end = (u64)-1;
1506 		goto out;
1507 	}
1508 
1509 	while (1) {
1510 		state = rb_entry(node, struct extent_state, rb_node);
1511 		if (found && (state->start != cur_start ||
1512 			      (state->state & EXTENT_BOUNDARY))) {
1513 			goto out;
1514 		}
1515 		if (!(state->state & EXTENT_DELALLOC)) {
1516 			if (!found)
1517 				*end = state->end;
1518 			goto out;
1519 		}
1520 		if (!found) {
1521 			*start = state->start;
1522 			*cached_state = state;
1523 			refcount_inc(&state->refs);
1524 		}
1525 		found++;
1526 		*end = state->end;
1527 		cur_start = state->end + 1;
1528 		node = rb_next(node);
1529 		total_bytes += state->end - state->start + 1;
1530 		if (total_bytes >= max_bytes)
1531 			break;
1532 		if (!node)
1533 			break;
1534 	}
1535 out:
1536 	spin_unlock(&tree->lock);
1537 	return found;
1538 }
1539 
1540 static int __process_pages_contig(struct address_space *mapping,
1541 				  struct page *locked_page,
1542 				  pgoff_t start_index, pgoff_t end_index,
1543 				  unsigned long page_ops, pgoff_t *index_ret);
1544 
1545 static noinline void __unlock_for_delalloc(struct inode *inode,
1546 					   struct page *locked_page,
1547 					   u64 start, u64 end)
1548 {
1549 	unsigned long index = start >> PAGE_SHIFT;
1550 	unsigned long end_index = end >> PAGE_SHIFT;
1551 
1552 	ASSERT(locked_page);
1553 	if (index == locked_page->index && end_index == index)
1554 		return;
1555 
1556 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557 			       PAGE_UNLOCK, NULL);
1558 }
1559 
1560 static noinline int lock_delalloc_pages(struct inode *inode,
1561 					struct page *locked_page,
1562 					u64 delalloc_start,
1563 					u64 delalloc_end)
1564 {
1565 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1566 	unsigned long index_ret = index;
1567 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1568 	int ret;
1569 
1570 	ASSERT(locked_page);
1571 	if (index == locked_page->index && index == end_index)
1572 		return 0;
1573 
1574 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575 				     end_index, PAGE_LOCK, &index_ret);
1576 	if (ret == -EAGAIN)
1577 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1578 				      (u64)index_ret << PAGE_SHIFT);
1579 	return ret;
1580 }
1581 
1582 /*
1583  * find a contiguous range of bytes in the file marked as delalloc, not
1584  * more than 'max_bytes'.  start and end are used to return the range,
1585  *
1586  * 1 is returned if we find something, 0 if nothing was in the tree
1587  */
1588 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1589 				    struct extent_io_tree *tree,
1590 				    struct page *locked_page, u64 *start,
1591 				    u64 *end, u64 max_bytes)
1592 {
1593 	u64 delalloc_start;
1594 	u64 delalloc_end;
1595 	u64 found;
1596 	struct extent_state *cached_state = NULL;
1597 	int ret;
1598 	int loops = 0;
1599 
1600 again:
1601 	/* step one, find a bunch of delalloc bytes starting at start */
1602 	delalloc_start = *start;
1603 	delalloc_end = 0;
1604 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1605 				    max_bytes, &cached_state);
1606 	if (!found || delalloc_end <= *start) {
1607 		*start = delalloc_start;
1608 		*end = delalloc_end;
1609 		free_extent_state(cached_state);
1610 		return 0;
1611 	}
1612 
1613 	/*
1614 	 * start comes from the offset of locked_page.  We have to lock
1615 	 * pages in order, so we can't process delalloc bytes before
1616 	 * locked_page
1617 	 */
1618 	if (delalloc_start < *start)
1619 		delalloc_start = *start;
1620 
1621 	/*
1622 	 * make sure to limit the number of pages we try to lock down
1623 	 */
1624 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1625 		delalloc_end = delalloc_start + max_bytes - 1;
1626 
1627 	/* step two, lock all the pages after the page that has start */
1628 	ret = lock_delalloc_pages(inode, locked_page,
1629 				  delalloc_start, delalloc_end);
1630 	if (ret == -EAGAIN) {
1631 		/* some of the pages are gone, lets avoid looping by
1632 		 * shortening the size of the delalloc range we're searching
1633 		 */
1634 		free_extent_state(cached_state);
1635 		cached_state = NULL;
1636 		if (!loops) {
1637 			max_bytes = PAGE_SIZE;
1638 			loops = 1;
1639 			goto again;
1640 		} else {
1641 			found = 0;
1642 			goto out_failed;
1643 		}
1644 	}
1645 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1646 
1647 	/* step three, lock the state bits for the whole range */
1648 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1649 
1650 	/* then test to make sure it is all still delalloc */
1651 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1652 			     EXTENT_DELALLOC, 1, cached_state);
1653 	if (!ret) {
1654 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1655 				     &cached_state);
1656 		__unlock_for_delalloc(inode, locked_page,
1657 			      delalloc_start, delalloc_end);
1658 		cond_resched();
1659 		goto again;
1660 	}
1661 	free_extent_state(cached_state);
1662 	*start = delalloc_start;
1663 	*end = delalloc_end;
1664 out_failed:
1665 	return found;
1666 }
1667 
1668 static int __process_pages_contig(struct address_space *mapping,
1669 				  struct page *locked_page,
1670 				  pgoff_t start_index, pgoff_t end_index,
1671 				  unsigned long page_ops, pgoff_t *index_ret)
1672 {
1673 	unsigned long nr_pages = end_index - start_index + 1;
1674 	unsigned long pages_locked = 0;
1675 	pgoff_t index = start_index;
1676 	struct page *pages[16];
1677 	unsigned ret;
1678 	int err = 0;
1679 	int i;
1680 
1681 	if (page_ops & PAGE_LOCK) {
1682 		ASSERT(page_ops == PAGE_LOCK);
1683 		ASSERT(index_ret && *index_ret == start_index);
1684 	}
1685 
1686 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1687 		mapping_set_error(mapping, -EIO);
1688 
1689 	while (nr_pages > 0) {
1690 		ret = find_get_pages_contig(mapping, index,
1691 				     min_t(unsigned long,
1692 				     nr_pages, ARRAY_SIZE(pages)), pages);
1693 		if (ret == 0) {
1694 			/*
1695 			 * Only if we're going to lock these pages,
1696 			 * can we find nothing at @index.
1697 			 */
1698 			ASSERT(page_ops & PAGE_LOCK);
1699 			err = -EAGAIN;
1700 			goto out;
1701 		}
1702 
1703 		for (i = 0; i < ret; i++) {
1704 			if (page_ops & PAGE_SET_PRIVATE2)
1705 				SetPagePrivate2(pages[i]);
1706 
1707 			if (pages[i] == locked_page) {
1708 				put_page(pages[i]);
1709 				pages_locked++;
1710 				continue;
1711 			}
1712 			if (page_ops & PAGE_CLEAR_DIRTY)
1713 				clear_page_dirty_for_io(pages[i]);
1714 			if (page_ops & PAGE_SET_WRITEBACK)
1715 				set_page_writeback(pages[i]);
1716 			if (page_ops & PAGE_SET_ERROR)
1717 				SetPageError(pages[i]);
1718 			if (page_ops & PAGE_END_WRITEBACK)
1719 				end_page_writeback(pages[i]);
1720 			if (page_ops & PAGE_UNLOCK)
1721 				unlock_page(pages[i]);
1722 			if (page_ops & PAGE_LOCK) {
1723 				lock_page(pages[i]);
1724 				if (!PageDirty(pages[i]) ||
1725 				    pages[i]->mapping != mapping) {
1726 					unlock_page(pages[i]);
1727 					put_page(pages[i]);
1728 					err = -EAGAIN;
1729 					goto out;
1730 				}
1731 			}
1732 			put_page(pages[i]);
1733 			pages_locked++;
1734 		}
1735 		nr_pages -= ret;
1736 		index += ret;
1737 		cond_resched();
1738 	}
1739 out:
1740 	if (err && index_ret)
1741 		*index_ret = start_index + pages_locked - 1;
1742 	return err;
1743 }
1744 
1745 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1746 				 u64 delalloc_end, struct page *locked_page,
1747 				 unsigned clear_bits,
1748 				 unsigned long page_ops)
1749 {
1750 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1751 			 NULL);
1752 
1753 	__process_pages_contig(inode->i_mapping, locked_page,
1754 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1755 			       page_ops, NULL);
1756 }
1757 
1758 /*
1759  * count the number of bytes in the tree that have a given bit(s)
1760  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1761  * cached.  The total number found is returned.
1762  */
1763 u64 count_range_bits(struct extent_io_tree *tree,
1764 		     u64 *start, u64 search_end, u64 max_bytes,
1765 		     unsigned bits, int contig)
1766 {
1767 	struct rb_node *node;
1768 	struct extent_state *state;
1769 	u64 cur_start = *start;
1770 	u64 total_bytes = 0;
1771 	u64 last = 0;
1772 	int found = 0;
1773 
1774 	if (WARN_ON(search_end <= cur_start))
1775 		return 0;
1776 
1777 	spin_lock(&tree->lock);
1778 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1779 		total_bytes = tree->dirty_bytes;
1780 		goto out;
1781 	}
1782 	/*
1783 	 * this search will find all the extents that end after
1784 	 * our range starts.
1785 	 */
1786 	node = tree_search(tree, cur_start);
1787 	if (!node)
1788 		goto out;
1789 
1790 	while (1) {
1791 		state = rb_entry(node, struct extent_state, rb_node);
1792 		if (state->start > search_end)
1793 			break;
1794 		if (contig && found && state->start > last + 1)
1795 			break;
1796 		if (state->end >= cur_start && (state->state & bits) == bits) {
1797 			total_bytes += min(search_end, state->end) + 1 -
1798 				       max(cur_start, state->start);
1799 			if (total_bytes >= max_bytes)
1800 				break;
1801 			if (!found) {
1802 				*start = max(cur_start, state->start);
1803 				found = 1;
1804 			}
1805 			last = state->end;
1806 		} else if (contig && found) {
1807 			break;
1808 		}
1809 		node = rb_next(node);
1810 		if (!node)
1811 			break;
1812 	}
1813 out:
1814 	spin_unlock(&tree->lock);
1815 	return total_bytes;
1816 }
1817 
1818 /*
1819  * set the private field for a given byte offset in the tree.  If there isn't
1820  * an extent_state there already, this does nothing.
1821  */
1822 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1823 		struct io_failure_record *failrec)
1824 {
1825 	struct rb_node *node;
1826 	struct extent_state *state;
1827 	int ret = 0;
1828 
1829 	spin_lock(&tree->lock);
1830 	/*
1831 	 * this search will find all the extents that end after
1832 	 * our range starts.
1833 	 */
1834 	node = tree_search(tree, start);
1835 	if (!node) {
1836 		ret = -ENOENT;
1837 		goto out;
1838 	}
1839 	state = rb_entry(node, struct extent_state, rb_node);
1840 	if (state->start != start) {
1841 		ret = -ENOENT;
1842 		goto out;
1843 	}
1844 	state->failrec = failrec;
1845 out:
1846 	spin_unlock(&tree->lock);
1847 	return ret;
1848 }
1849 
1850 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1851 		struct io_failure_record **failrec)
1852 {
1853 	struct rb_node *node;
1854 	struct extent_state *state;
1855 	int ret = 0;
1856 
1857 	spin_lock(&tree->lock);
1858 	/*
1859 	 * this search will find all the extents that end after
1860 	 * our range starts.
1861 	 */
1862 	node = tree_search(tree, start);
1863 	if (!node) {
1864 		ret = -ENOENT;
1865 		goto out;
1866 	}
1867 	state = rb_entry(node, struct extent_state, rb_node);
1868 	if (state->start != start) {
1869 		ret = -ENOENT;
1870 		goto out;
1871 	}
1872 	*failrec = state->failrec;
1873 out:
1874 	spin_unlock(&tree->lock);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * searches a range in the state tree for a given mask.
1880  * If 'filled' == 1, this returns 1 only if every extent in the tree
1881  * has the bits set.  Otherwise, 1 is returned if any bit in the
1882  * range is found set.
1883  */
1884 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1885 		   unsigned bits, int filled, struct extent_state *cached)
1886 {
1887 	struct extent_state *state = NULL;
1888 	struct rb_node *node;
1889 	int bitset = 0;
1890 
1891 	spin_lock(&tree->lock);
1892 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1893 	    cached->end > start)
1894 		node = &cached->rb_node;
1895 	else
1896 		node = tree_search(tree, start);
1897 	while (node && start <= end) {
1898 		state = rb_entry(node, struct extent_state, rb_node);
1899 
1900 		if (filled && state->start > start) {
1901 			bitset = 0;
1902 			break;
1903 		}
1904 
1905 		if (state->start > end)
1906 			break;
1907 
1908 		if (state->state & bits) {
1909 			bitset = 1;
1910 			if (!filled)
1911 				break;
1912 		} else if (filled) {
1913 			bitset = 0;
1914 			break;
1915 		}
1916 
1917 		if (state->end == (u64)-1)
1918 			break;
1919 
1920 		start = state->end + 1;
1921 		if (start > end)
1922 			break;
1923 		node = rb_next(node);
1924 		if (!node) {
1925 			if (filled)
1926 				bitset = 0;
1927 			break;
1928 		}
1929 	}
1930 	spin_unlock(&tree->lock);
1931 	return bitset;
1932 }
1933 
1934 /*
1935  * helper function to set a given page up to date if all the
1936  * extents in the tree for that page are up to date
1937  */
1938 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1939 {
1940 	u64 start = page_offset(page);
1941 	u64 end = start + PAGE_SIZE - 1;
1942 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1943 		SetPageUptodate(page);
1944 }
1945 
1946 int free_io_failure(struct extent_io_tree *failure_tree,
1947 		    struct extent_io_tree *io_tree,
1948 		    struct io_failure_record *rec)
1949 {
1950 	int ret;
1951 	int err = 0;
1952 
1953 	set_state_failrec(failure_tree, rec->start, NULL);
1954 	ret = clear_extent_bits(failure_tree, rec->start,
1955 				rec->start + rec->len - 1,
1956 				EXTENT_LOCKED | EXTENT_DIRTY);
1957 	if (ret)
1958 		err = ret;
1959 
1960 	ret = clear_extent_bits(io_tree, rec->start,
1961 				rec->start + rec->len - 1,
1962 				EXTENT_DAMAGED);
1963 	if (ret && !err)
1964 		err = ret;
1965 
1966 	kfree(rec);
1967 	return err;
1968 }
1969 
1970 /*
1971  * this bypasses the standard btrfs submit functions deliberately, as
1972  * the standard behavior is to write all copies in a raid setup. here we only
1973  * want to write the one bad copy. so we do the mapping for ourselves and issue
1974  * submit_bio directly.
1975  * to avoid any synchronization issues, wait for the data after writing, which
1976  * actually prevents the read that triggered the error from finishing.
1977  * currently, there can be no more than two copies of every data bit. thus,
1978  * exactly one rewrite is required.
1979  */
1980 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1981 		      u64 length, u64 logical, struct page *page,
1982 		      unsigned int pg_offset, int mirror_num)
1983 {
1984 	struct bio *bio;
1985 	struct btrfs_device *dev;
1986 	u64 map_length = 0;
1987 	u64 sector;
1988 	struct btrfs_bio *bbio = NULL;
1989 	int ret;
1990 
1991 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1992 	BUG_ON(!mirror_num);
1993 
1994 	bio = btrfs_io_bio_alloc(1);
1995 	bio->bi_iter.bi_size = 0;
1996 	map_length = length;
1997 
1998 	/*
1999 	 * Avoid races with device replace and make sure our bbio has devices
2000 	 * associated to its stripes that don't go away while we are doing the
2001 	 * read repair operation.
2002 	 */
2003 	btrfs_bio_counter_inc_blocked(fs_info);
2004 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2005 		/*
2006 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2007 		 * to update all raid stripes, but here we just want to correct
2008 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2009 		 * stripe's dev and sector.
2010 		 */
2011 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2012 				      &map_length, &bbio, 0);
2013 		if (ret) {
2014 			btrfs_bio_counter_dec(fs_info);
2015 			bio_put(bio);
2016 			return -EIO;
2017 		}
2018 		ASSERT(bbio->mirror_num == 1);
2019 	} else {
2020 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2021 				      &map_length, &bbio, mirror_num);
2022 		if (ret) {
2023 			btrfs_bio_counter_dec(fs_info);
2024 			bio_put(bio);
2025 			return -EIO;
2026 		}
2027 		BUG_ON(mirror_num != bbio->mirror_num);
2028 	}
2029 
2030 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2031 	bio->bi_iter.bi_sector = sector;
2032 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2033 	btrfs_put_bbio(bbio);
2034 	if (!dev || !dev->bdev ||
2035 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2036 		btrfs_bio_counter_dec(fs_info);
2037 		bio_put(bio);
2038 		return -EIO;
2039 	}
2040 	bio_set_dev(bio, dev->bdev);
2041 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2042 	bio_add_page(bio, page, length, pg_offset);
2043 
2044 	if (btrfsic_submit_bio_wait(bio)) {
2045 		/* try to remap that extent elsewhere? */
2046 		btrfs_bio_counter_dec(fs_info);
2047 		bio_put(bio);
2048 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 		return -EIO;
2050 	}
2051 
2052 	btrfs_info_rl_in_rcu(fs_info,
2053 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 				  ino, start,
2055 				  rcu_str_deref(dev->name), sector);
2056 	btrfs_bio_counter_dec(fs_info);
2057 	bio_put(bio);
2058 	return 0;
2059 }
2060 
2061 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2062 			 struct extent_buffer *eb, int mirror_num)
2063 {
2064 	u64 start = eb->start;
2065 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066 	int ret = 0;
2067 
2068 	if (sb_rdonly(fs_info->sb))
2069 		return -EROFS;
2070 
2071 	for (i = 0; i < num_pages; i++) {
2072 		struct page *p = eb->pages[i];
2073 
2074 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2075 					start - page_offset(p), mirror_num);
2076 		if (ret)
2077 			break;
2078 		start += PAGE_SIZE;
2079 	}
2080 
2081 	return ret;
2082 }
2083 
2084 /*
2085  * each time an IO finishes, we do a fast check in the IO failure tree
2086  * to see if we need to process or clean up an io_failure_record
2087  */
2088 int clean_io_failure(struct btrfs_fs_info *fs_info,
2089 		     struct extent_io_tree *failure_tree,
2090 		     struct extent_io_tree *io_tree, u64 start,
2091 		     struct page *page, u64 ino, unsigned int pg_offset)
2092 {
2093 	u64 private;
2094 	struct io_failure_record *failrec;
2095 	struct extent_state *state;
2096 	int num_copies;
2097 	int ret;
2098 
2099 	private = 0;
2100 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2101 			       EXTENT_DIRTY, 0);
2102 	if (!ret)
2103 		return 0;
2104 
2105 	ret = get_state_failrec(failure_tree, start, &failrec);
2106 	if (ret)
2107 		return 0;
2108 
2109 	BUG_ON(!failrec->this_mirror);
2110 
2111 	if (failrec->in_validation) {
2112 		/* there was no real error, just free the record */
2113 		btrfs_debug(fs_info,
2114 			"clean_io_failure: freeing dummy error at %llu",
2115 			failrec->start);
2116 		goto out;
2117 	}
2118 	if (sb_rdonly(fs_info->sb))
2119 		goto out;
2120 
2121 	spin_lock(&io_tree->lock);
2122 	state = find_first_extent_bit_state(io_tree,
2123 					    failrec->start,
2124 					    EXTENT_LOCKED);
2125 	spin_unlock(&io_tree->lock);
2126 
2127 	if (state && state->start <= failrec->start &&
2128 	    state->end >= failrec->start + failrec->len - 1) {
2129 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 					      failrec->len);
2131 		if (num_copies > 1)  {
2132 			repair_io_failure(fs_info, ino, start, failrec->len,
2133 					  failrec->logical, page, pg_offset,
2134 					  failrec->failed_mirror);
2135 		}
2136 	}
2137 
2138 out:
2139 	free_io_failure(failure_tree, io_tree, failrec);
2140 
2141 	return 0;
2142 }
2143 
2144 /*
2145  * Can be called when
2146  * - hold extent lock
2147  * - under ordered extent
2148  * - the inode is freeing
2149  */
2150 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2151 {
2152 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2153 	struct io_failure_record *failrec;
2154 	struct extent_state *state, *next;
2155 
2156 	if (RB_EMPTY_ROOT(&failure_tree->state))
2157 		return;
2158 
2159 	spin_lock(&failure_tree->lock);
2160 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 	while (state) {
2162 		if (state->start > end)
2163 			break;
2164 
2165 		ASSERT(state->end <= end);
2166 
2167 		next = next_state(state);
2168 
2169 		failrec = state->failrec;
2170 		free_extent_state(state);
2171 		kfree(failrec);
2172 
2173 		state = next;
2174 	}
2175 	spin_unlock(&failure_tree->lock);
2176 }
2177 
2178 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179 		struct io_failure_record **failrec_ret)
2180 {
2181 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2182 	struct io_failure_record *failrec;
2183 	struct extent_map *em;
2184 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2185 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2186 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2187 	int ret;
2188 	u64 logical;
2189 
2190 	ret = get_state_failrec(failure_tree, start, &failrec);
2191 	if (ret) {
2192 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193 		if (!failrec)
2194 			return -ENOMEM;
2195 
2196 		failrec->start = start;
2197 		failrec->len = end - start + 1;
2198 		failrec->this_mirror = 0;
2199 		failrec->bio_flags = 0;
2200 		failrec->in_validation = 0;
2201 
2202 		read_lock(&em_tree->lock);
2203 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 		if (!em) {
2205 			read_unlock(&em_tree->lock);
2206 			kfree(failrec);
2207 			return -EIO;
2208 		}
2209 
2210 		if (em->start > start || em->start + em->len <= start) {
2211 			free_extent_map(em);
2212 			em = NULL;
2213 		}
2214 		read_unlock(&em_tree->lock);
2215 		if (!em) {
2216 			kfree(failrec);
2217 			return -EIO;
2218 		}
2219 
2220 		logical = start - em->start;
2221 		logical = em->block_start + logical;
2222 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 			logical = em->block_start;
2224 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 			extent_set_compress_type(&failrec->bio_flags,
2226 						 em->compress_type);
2227 		}
2228 
2229 		btrfs_debug(fs_info,
2230 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2231 			logical, start, failrec->len);
2232 
2233 		failrec->logical = logical;
2234 		free_extent_map(em);
2235 
2236 		/* set the bits in the private failure tree */
2237 		ret = set_extent_bits(failure_tree, start, end,
2238 					EXTENT_LOCKED | EXTENT_DIRTY);
2239 		if (ret >= 0)
2240 			ret = set_state_failrec(failure_tree, start, failrec);
2241 		/* set the bits in the inode's tree */
2242 		if (ret >= 0)
2243 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2244 		if (ret < 0) {
2245 			kfree(failrec);
2246 			return ret;
2247 		}
2248 	} else {
2249 		btrfs_debug(fs_info,
2250 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2251 			failrec->logical, failrec->start, failrec->len,
2252 			failrec->in_validation);
2253 		/*
2254 		 * when data can be on disk more than twice, add to failrec here
2255 		 * (e.g. with a list for failed_mirror) to make
2256 		 * clean_io_failure() clean all those errors at once.
2257 		 */
2258 	}
2259 
2260 	*failrec_ret = failrec;
2261 
2262 	return 0;
2263 }
2264 
2265 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2266 			   struct io_failure_record *failrec, int failed_mirror)
2267 {
2268 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2269 	int num_copies;
2270 
2271 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2272 	if (num_copies == 1) {
2273 		/*
2274 		 * we only have a single copy of the data, so don't bother with
2275 		 * all the retry and error correction code that follows. no
2276 		 * matter what the error is, it is very likely to persist.
2277 		 */
2278 		btrfs_debug(fs_info,
2279 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2280 			num_copies, failrec->this_mirror, failed_mirror);
2281 		return false;
2282 	}
2283 
2284 	/*
2285 	 * there are two premises:
2286 	 *	a) deliver good data to the caller
2287 	 *	b) correct the bad sectors on disk
2288 	 */
2289 	if (failed_bio_pages > 1) {
2290 		/*
2291 		 * to fulfill b), we need to know the exact failing sectors, as
2292 		 * we don't want to rewrite any more than the failed ones. thus,
2293 		 * we need separate read requests for the failed bio
2294 		 *
2295 		 * if the following BUG_ON triggers, our validation request got
2296 		 * merged. we need separate requests for our algorithm to work.
2297 		 */
2298 		BUG_ON(failrec->in_validation);
2299 		failrec->in_validation = 1;
2300 		failrec->this_mirror = failed_mirror;
2301 	} else {
2302 		/*
2303 		 * we're ready to fulfill a) and b) alongside. get a good copy
2304 		 * of the failed sector and if we succeed, we have setup
2305 		 * everything for repair_io_failure to do the rest for us.
2306 		 */
2307 		if (failrec->in_validation) {
2308 			BUG_ON(failrec->this_mirror != failed_mirror);
2309 			failrec->in_validation = 0;
2310 			failrec->this_mirror = 0;
2311 		}
2312 		failrec->failed_mirror = failed_mirror;
2313 		failrec->this_mirror++;
2314 		if (failrec->this_mirror == failed_mirror)
2315 			failrec->this_mirror++;
2316 	}
2317 
2318 	if (failrec->this_mirror > num_copies) {
2319 		btrfs_debug(fs_info,
2320 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2321 			num_copies, failrec->this_mirror, failed_mirror);
2322 		return false;
2323 	}
2324 
2325 	return true;
2326 }
2327 
2328 
2329 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 				    struct io_failure_record *failrec,
2331 				    struct page *page, int pg_offset, int icsum,
2332 				    bio_end_io_t *endio_func, void *data)
2333 {
2334 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335 	struct bio *bio;
2336 	struct btrfs_io_bio *btrfs_failed_bio;
2337 	struct btrfs_io_bio *btrfs_bio;
2338 
2339 	bio = btrfs_io_bio_alloc(1);
2340 	bio->bi_end_io = endio_func;
2341 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2342 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2343 	bio->bi_iter.bi_size = 0;
2344 	bio->bi_private = data;
2345 
2346 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347 	if (btrfs_failed_bio->csum) {
2348 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349 
2350 		btrfs_bio = btrfs_io_bio(bio);
2351 		btrfs_bio->csum = btrfs_bio->csum_inline;
2352 		icsum *= csum_size;
2353 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2354 		       csum_size);
2355 	}
2356 
2357 	bio_add_page(bio, page, failrec->len, pg_offset);
2358 
2359 	return bio;
2360 }
2361 
2362 /*
2363  * this is a generic handler for readpage errors (default
2364  * readpage_io_failed_hook). if other copies exist, read those and write back
2365  * good data to the failed position. does not investigate in remapping the
2366  * failed extent elsewhere, hoping the device will be smart enough to do this as
2367  * needed
2368  */
2369 
2370 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371 			      struct page *page, u64 start, u64 end,
2372 			      int failed_mirror)
2373 {
2374 	struct io_failure_record *failrec;
2375 	struct inode *inode = page->mapping->host;
2376 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2377 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2378 	struct bio *bio;
2379 	int read_mode = 0;
2380 	blk_status_t status;
2381 	int ret;
2382 	unsigned failed_bio_pages = bio_pages_all(failed_bio);
2383 
2384 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2385 
2386 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 	if (ret)
2388 		return ret;
2389 
2390 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2391 				    failed_mirror)) {
2392 		free_io_failure(failure_tree, tree, failrec);
2393 		return -EIO;
2394 	}
2395 
2396 	if (failed_bio_pages > 1)
2397 		read_mode |= REQ_FAILFAST_DEV;
2398 
2399 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2400 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401 				      start - page_offset(page),
2402 				      (int)phy_offset, failed_bio->bi_end_io,
2403 				      NULL);
2404 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2405 
2406 	btrfs_debug(btrfs_sb(inode->i_sb),
2407 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408 		read_mode, failrec->this_mirror, failrec->in_validation);
2409 
2410 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2411 					 failrec->bio_flags, 0);
2412 	if (status) {
2413 		free_io_failure(failure_tree, tree, failrec);
2414 		bio_put(bio);
2415 		ret = blk_status_to_errno(status);
2416 	}
2417 
2418 	return ret;
2419 }
2420 
2421 /* lots and lots of room for performance fixes in the end_bio funcs */
2422 
2423 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424 {
2425 	int uptodate = (err == 0);
2426 	struct extent_io_tree *tree;
2427 	int ret = 0;
2428 
2429 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2430 
2431 	if (tree->ops && tree->ops->writepage_end_io_hook)
2432 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2433 				uptodate);
2434 
2435 	if (!uptodate) {
2436 		ClearPageUptodate(page);
2437 		SetPageError(page);
2438 		ret = err < 0 ? err : -EIO;
2439 		mapping_set_error(page->mapping, ret);
2440 	}
2441 }
2442 
2443 /*
2444  * after a writepage IO is done, we need to:
2445  * clear the uptodate bits on error
2446  * clear the writeback bits in the extent tree for this IO
2447  * end_page_writeback if the page has no more pending IO
2448  *
2449  * Scheduling is not allowed, so the extent state tree is expected
2450  * to have one and only one object corresponding to this IO.
2451  */
2452 static void end_bio_extent_writepage(struct bio *bio)
2453 {
2454 	int error = blk_status_to_errno(bio->bi_status);
2455 	struct bio_vec *bvec;
2456 	u64 start;
2457 	u64 end;
2458 	int i;
2459 
2460 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2461 	bio_for_each_segment_all(bvec, bio, i) {
2462 		struct page *page = bvec->bv_page;
2463 		struct inode *inode = page->mapping->host;
2464 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2465 
2466 		/* We always issue full-page reads, but if some block
2467 		 * in a page fails to read, blk_update_request() will
2468 		 * advance bv_offset and adjust bv_len to compensate.
2469 		 * Print a warning for nonzero offsets, and an error
2470 		 * if they don't add up to a full page.  */
2471 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2472 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2473 				btrfs_err(fs_info,
2474 				   "partial page write in btrfs with offset %u and length %u",
2475 					bvec->bv_offset, bvec->bv_len);
2476 			else
2477 				btrfs_info(fs_info,
2478 				   "incomplete page write in btrfs with offset %u and length %u",
2479 					bvec->bv_offset, bvec->bv_len);
2480 		}
2481 
2482 		start = page_offset(page);
2483 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2484 
2485 		end_extent_writepage(page, error, start, end);
2486 		end_page_writeback(page);
2487 	}
2488 
2489 	bio_put(bio);
2490 }
2491 
2492 static void
2493 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2494 			      int uptodate)
2495 {
2496 	struct extent_state *cached = NULL;
2497 	u64 end = start + len - 1;
2498 
2499 	if (uptodate && tree->track_uptodate)
2500 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2501 	unlock_extent_cached_atomic(tree, start, end, &cached);
2502 }
2503 
2504 /*
2505  * after a readpage IO is done, we need to:
2506  * clear the uptodate bits on error
2507  * set the uptodate bits if things worked
2508  * set the page up to date if all extents in the tree are uptodate
2509  * clear the lock bit in the extent tree
2510  * unlock the page if there are no other extents locked for it
2511  *
2512  * Scheduling is not allowed, so the extent state tree is expected
2513  * to have one and only one object corresponding to this IO.
2514  */
2515 static void end_bio_extent_readpage(struct bio *bio)
2516 {
2517 	struct bio_vec *bvec;
2518 	int uptodate = !bio->bi_status;
2519 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2520 	struct extent_io_tree *tree, *failure_tree;
2521 	u64 offset = 0;
2522 	u64 start;
2523 	u64 end;
2524 	u64 len;
2525 	u64 extent_start = 0;
2526 	u64 extent_len = 0;
2527 	int mirror;
2528 	int ret;
2529 	int i;
2530 
2531 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2532 	bio_for_each_segment_all(bvec, bio, i) {
2533 		struct page *page = bvec->bv_page;
2534 		struct inode *inode = page->mapping->host;
2535 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2536 
2537 		btrfs_debug(fs_info,
2538 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2540 			io_bio->mirror_num);
2541 		tree = &BTRFS_I(inode)->io_tree;
2542 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543 
2544 		/* We always issue full-page reads, but if some block
2545 		 * in a page fails to read, blk_update_request() will
2546 		 * advance bv_offset and adjust bv_len to compensate.
2547 		 * Print a warning for nonzero offsets, and an error
2548 		 * if they don't add up to a full page.  */
2549 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551 				btrfs_err(fs_info,
2552 					"partial page read in btrfs with offset %u and length %u",
2553 					bvec->bv_offset, bvec->bv_len);
2554 			else
2555 				btrfs_info(fs_info,
2556 					"incomplete page read in btrfs with offset %u and length %u",
2557 					bvec->bv_offset, bvec->bv_len);
2558 		}
2559 
2560 		start = page_offset(page);
2561 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2562 		len = bvec->bv_len;
2563 
2564 		mirror = io_bio->mirror_num;
2565 		if (likely(uptodate && tree->ops)) {
2566 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567 							      page, start, end,
2568 							      mirror);
2569 			if (ret)
2570 				uptodate = 0;
2571 			else
2572 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573 						 failure_tree, tree, start,
2574 						 page,
2575 						 btrfs_ino(BTRFS_I(inode)), 0);
2576 		}
2577 
2578 		if (likely(uptodate))
2579 			goto readpage_ok;
2580 
2581 		if (tree->ops) {
2582 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2583 			if (ret == -EAGAIN) {
2584 				/*
2585 				 * Data inode's readpage_io_failed_hook() always
2586 				 * returns -EAGAIN.
2587 				 *
2588 				 * The generic bio_readpage_error handles errors
2589 				 * the following way: If possible, new read
2590 				 * requests are created and submitted and will
2591 				 * end up in end_bio_extent_readpage as well (if
2592 				 * we're lucky, not in the !uptodate case). In
2593 				 * that case it returns 0 and we just go on with
2594 				 * the next page in our bio. If it can't handle
2595 				 * the error it will return -EIO and we remain
2596 				 * responsible for that page.
2597 				 */
2598 				ret = bio_readpage_error(bio, offset, page,
2599 							 start, end, mirror);
2600 				if (ret == 0) {
2601 					uptodate = !bio->bi_status;
2602 					offset += len;
2603 					continue;
2604 				}
2605 			}
2606 
2607 			/*
2608 			 * metadata's readpage_io_failed_hook() always returns
2609 			 * -EIO and fixes nothing.  -EIO is also returned if
2610 			 * data inode error could not be fixed.
2611 			 */
2612 			ASSERT(ret == -EIO);
2613 		}
2614 readpage_ok:
2615 		if (likely(uptodate)) {
2616 			loff_t i_size = i_size_read(inode);
2617 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 			unsigned off;
2619 
2620 			/* Zero out the end if this page straddles i_size */
2621 			off = i_size & (PAGE_SIZE-1);
2622 			if (page->index == end_index && off)
2623 				zero_user_segment(page, off, PAGE_SIZE);
2624 			SetPageUptodate(page);
2625 		} else {
2626 			ClearPageUptodate(page);
2627 			SetPageError(page);
2628 		}
2629 		unlock_page(page);
2630 		offset += len;
2631 
2632 		if (unlikely(!uptodate)) {
2633 			if (extent_len) {
2634 				endio_readpage_release_extent(tree,
2635 							      extent_start,
2636 							      extent_len, 1);
2637 				extent_start = 0;
2638 				extent_len = 0;
2639 			}
2640 			endio_readpage_release_extent(tree, start,
2641 						      end - start + 1, 0);
2642 		} else if (!extent_len) {
2643 			extent_start = start;
2644 			extent_len = end + 1 - start;
2645 		} else if (extent_start + extent_len == start) {
2646 			extent_len += end + 1 - start;
2647 		} else {
2648 			endio_readpage_release_extent(tree, extent_start,
2649 						      extent_len, uptodate);
2650 			extent_start = start;
2651 			extent_len = end + 1 - start;
2652 		}
2653 	}
2654 
2655 	if (extent_len)
2656 		endio_readpage_release_extent(tree, extent_start, extent_len,
2657 					      uptodate);
2658 	if (io_bio->end_io)
2659 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2660 	bio_put(bio);
2661 }
2662 
2663 /*
2664  * Initialize the members up to but not including 'bio'. Use after allocating a
2665  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2666  * 'bio' because use of __GFP_ZERO is not supported.
2667  */
2668 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2669 {
2670 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2671 }
2672 
2673 /*
2674  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2675  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2676  * for the appropriate container_of magic
2677  */
2678 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2679 {
2680 	struct bio *bio;
2681 
2682 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2683 	bio_set_dev(bio, bdev);
2684 	bio->bi_iter.bi_sector = first_byte >> 9;
2685 	btrfs_io_bio_init(btrfs_io_bio(bio));
2686 	return bio;
2687 }
2688 
2689 struct bio *btrfs_bio_clone(struct bio *bio)
2690 {
2691 	struct btrfs_io_bio *btrfs_bio;
2692 	struct bio *new;
2693 
2694 	/* Bio allocation backed by a bioset does not fail */
2695 	new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2696 	btrfs_bio = btrfs_io_bio(new);
2697 	btrfs_io_bio_init(btrfs_bio);
2698 	btrfs_bio->iter = bio->bi_iter;
2699 	return new;
2700 }
2701 
2702 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2703 {
2704 	struct bio *bio;
2705 
2706 	/* Bio allocation backed by a bioset does not fail */
2707 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2708 	btrfs_io_bio_init(btrfs_io_bio(bio));
2709 	return bio;
2710 }
2711 
2712 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2713 {
2714 	struct bio *bio;
2715 	struct btrfs_io_bio *btrfs_bio;
2716 
2717 	/* this will never fail when it's backed by a bioset */
2718 	bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2719 	ASSERT(bio);
2720 
2721 	btrfs_bio = btrfs_io_bio(bio);
2722 	btrfs_io_bio_init(btrfs_bio);
2723 
2724 	bio_trim(bio, offset >> 9, size >> 9);
2725 	btrfs_bio->iter = bio->bi_iter;
2726 	return bio;
2727 }
2728 
2729 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2730 				       unsigned long bio_flags)
2731 {
2732 	blk_status_t ret = 0;
2733 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2734 	struct page *page = bvec->bv_page;
2735 	struct extent_io_tree *tree = bio->bi_private;
2736 	u64 start;
2737 
2738 	start = page_offset(page) + bvec->bv_offset;
2739 
2740 	bio->bi_private = NULL;
2741 
2742 	if (tree->ops)
2743 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2744 					   mirror_num, bio_flags, start);
2745 	else
2746 		btrfsic_submit_bio(bio);
2747 
2748 	return blk_status_to_errno(ret);
2749 }
2750 
2751 /*
2752  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2753  * @tree:	tree so we can call our merge_bio hook
2754  * @wbc:	optional writeback control for io accounting
2755  * @page:	page to add to the bio
2756  * @pg_offset:	offset of the new bio or to check whether we are adding
2757  *              a contiguous page to the previous one
2758  * @size:	portion of page that we want to write
2759  * @offset:	starting offset in the page
2760  * @bdev:	attach newly created bios to this bdev
2761  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2762  * @end_io_func:     end_io callback for new bio
2763  * @mirror_num:	     desired mirror to read/write
2764  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2765  * @bio_flags:	flags of the current bio to see if we can merge them
2766  */
2767 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2768 			      struct writeback_control *wbc,
2769 			      struct page *page, u64 offset,
2770 			      size_t size, unsigned long pg_offset,
2771 			      struct block_device *bdev,
2772 			      struct bio **bio_ret,
2773 			      bio_end_io_t end_io_func,
2774 			      int mirror_num,
2775 			      unsigned long prev_bio_flags,
2776 			      unsigned long bio_flags,
2777 			      bool force_bio_submit)
2778 {
2779 	int ret = 0;
2780 	struct bio *bio;
2781 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782 	sector_t sector = offset >> 9;
2783 
2784 	ASSERT(bio_ret);
2785 
2786 	if (*bio_ret) {
2787 		bool contig;
2788 		bool can_merge = true;
2789 
2790 		bio = *bio_ret;
2791 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2792 			contig = bio->bi_iter.bi_sector == sector;
2793 		else
2794 			contig = bio_end_sector(bio) == sector;
2795 
2796 		if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2797 					page_size, bio, bio_flags))
2798 			can_merge = false;
2799 
2800 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2801 		    force_bio_submit ||
2802 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2803 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2804 			if (ret < 0) {
2805 				*bio_ret = NULL;
2806 				return ret;
2807 			}
2808 			bio = NULL;
2809 		} else {
2810 			if (wbc)
2811 				wbc_account_io(wbc, page, page_size);
2812 			return 0;
2813 		}
2814 	}
2815 
2816 	bio = btrfs_bio_alloc(bdev, offset);
2817 	bio_add_page(bio, page, page_size, pg_offset);
2818 	bio->bi_end_io = end_io_func;
2819 	bio->bi_private = tree;
2820 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2821 	bio->bi_opf = opf;
2822 	if (wbc) {
2823 		wbc_init_bio(wbc, bio);
2824 		wbc_account_io(wbc, page, page_size);
2825 	}
2826 
2827 	*bio_ret = bio;
2828 
2829 	return ret;
2830 }
2831 
2832 static void attach_extent_buffer_page(struct extent_buffer *eb,
2833 				      struct page *page)
2834 {
2835 	if (!PagePrivate(page)) {
2836 		SetPagePrivate(page);
2837 		get_page(page);
2838 		set_page_private(page, (unsigned long)eb);
2839 	} else {
2840 		WARN_ON(page->private != (unsigned long)eb);
2841 	}
2842 }
2843 
2844 void set_page_extent_mapped(struct page *page)
2845 {
2846 	if (!PagePrivate(page)) {
2847 		SetPagePrivate(page);
2848 		get_page(page);
2849 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2850 	}
2851 }
2852 
2853 static struct extent_map *
2854 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2855 		 u64 start, u64 len, get_extent_t *get_extent,
2856 		 struct extent_map **em_cached)
2857 {
2858 	struct extent_map *em;
2859 
2860 	if (em_cached && *em_cached) {
2861 		em = *em_cached;
2862 		if (extent_map_in_tree(em) && start >= em->start &&
2863 		    start < extent_map_end(em)) {
2864 			refcount_inc(&em->refs);
2865 			return em;
2866 		}
2867 
2868 		free_extent_map(em);
2869 		*em_cached = NULL;
2870 	}
2871 
2872 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2873 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2874 		BUG_ON(*em_cached);
2875 		refcount_inc(&em->refs);
2876 		*em_cached = em;
2877 	}
2878 	return em;
2879 }
2880 /*
2881  * basic readpage implementation.  Locked extent state structs are inserted
2882  * into the tree that are removed when the IO is done (by the end_io
2883  * handlers)
2884  * XXX JDM: This needs looking at to ensure proper page locking
2885  * return 0 on success, otherwise return error
2886  */
2887 static int __do_readpage(struct extent_io_tree *tree,
2888 			 struct page *page,
2889 			 get_extent_t *get_extent,
2890 			 struct extent_map **em_cached,
2891 			 struct bio **bio, int mirror_num,
2892 			 unsigned long *bio_flags, unsigned int read_flags,
2893 			 u64 *prev_em_start)
2894 {
2895 	struct inode *inode = page->mapping->host;
2896 	u64 start = page_offset(page);
2897 	const u64 end = start + PAGE_SIZE - 1;
2898 	u64 cur = start;
2899 	u64 extent_offset;
2900 	u64 last_byte = i_size_read(inode);
2901 	u64 block_start;
2902 	u64 cur_end;
2903 	struct extent_map *em;
2904 	struct block_device *bdev;
2905 	int ret = 0;
2906 	int nr = 0;
2907 	size_t pg_offset = 0;
2908 	size_t iosize;
2909 	size_t disk_io_size;
2910 	size_t blocksize = inode->i_sb->s_blocksize;
2911 	unsigned long this_bio_flag = 0;
2912 
2913 	set_page_extent_mapped(page);
2914 
2915 	if (!PageUptodate(page)) {
2916 		if (cleancache_get_page(page) == 0) {
2917 			BUG_ON(blocksize != PAGE_SIZE);
2918 			unlock_extent(tree, start, end);
2919 			goto out;
2920 		}
2921 	}
2922 
2923 	if (page->index == last_byte >> PAGE_SHIFT) {
2924 		char *userpage;
2925 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2926 
2927 		if (zero_offset) {
2928 			iosize = PAGE_SIZE - zero_offset;
2929 			userpage = kmap_atomic(page);
2930 			memset(userpage + zero_offset, 0, iosize);
2931 			flush_dcache_page(page);
2932 			kunmap_atomic(userpage);
2933 		}
2934 	}
2935 	while (cur <= end) {
2936 		bool force_bio_submit = false;
2937 		u64 offset;
2938 
2939 		if (cur >= last_byte) {
2940 			char *userpage;
2941 			struct extent_state *cached = NULL;
2942 
2943 			iosize = PAGE_SIZE - pg_offset;
2944 			userpage = kmap_atomic(page);
2945 			memset(userpage + pg_offset, 0, iosize);
2946 			flush_dcache_page(page);
2947 			kunmap_atomic(userpage);
2948 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2949 					    &cached, GFP_NOFS);
2950 			unlock_extent_cached(tree, cur,
2951 					     cur + iosize - 1, &cached);
2952 			break;
2953 		}
2954 		em = __get_extent_map(inode, page, pg_offset, cur,
2955 				      end - cur + 1, get_extent, em_cached);
2956 		if (IS_ERR_OR_NULL(em)) {
2957 			SetPageError(page);
2958 			unlock_extent(tree, cur, end);
2959 			break;
2960 		}
2961 		extent_offset = cur - em->start;
2962 		BUG_ON(extent_map_end(em) <= cur);
2963 		BUG_ON(end < cur);
2964 
2965 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 			extent_set_compress_type(&this_bio_flag,
2968 						 em->compress_type);
2969 		}
2970 
2971 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 		cur_end = min(extent_map_end(em) - 1, end);
2973 		iosize = ALIGN(iosize, blocksize);
2974 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 			disk_io_size = em->block_len;
2976 			offset = em->block_start;
2977 		} else {
2978 			offset = em->block_start + extent_offset;
2979 			disk_io_size = iosize;
2980 		}
2981 		bdev = em->bdev;
2982 		block_start = em->block_start;
2983 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 			block_start = EXTENT_MAP_HOLE;
2985 
2986 		/*
2987 		 * If we have a file range that points to a compressed extent
2988 		 * and it's followed by a consecutive file range that points to
2989 		 * to the same compressed extent (possibly with a different
2990 		 * offset and/or length, so it either points to the whole extent
2991 		 * or only part of it), we must make sure we do not submit a
2992 		 * single bio to populate the pages for the 2 ranges because
2993 		 * this makes the compressed extent read zero out the pages
2994 		 * belonging to the 2nd range. Imagine the following scenario:
2995 		 *
2996 		 *  File layout
2997 		 *  [0 - 8K]                     [8K - 24K]
2998 		 *    |                               |
2999 		 *    |                               |
3000 		 * points to extent X,         points to extent X,
3001 		 * offset 4K, length of 8K     offset 0, length 16K
3002 		 *
3003 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 		 *
3005 		 * If the bio to read the compressed extent covers both ranges,
3006 		 * it will decompress extent X into the pages belonging to the
3007 		 * first range and then it will stop, zeroing out the remaining
3008 		 * pages that belong to the other range that points to extent X.
3009 		 * So here we make sure we submit 2 bios, one for the first
3010 		 * range and another one for the third range. Both will target
3011 		 * the same physical extent from disk, but we can't currently
3012 		 * make the compressed bio endio callback populate the pages
3013 		 * for both ranges because each compressed bio is tightly
3014 		 * coupled with a single extent map, and each range can have
3015 		 * an extent map with a different offset value relative to the
3016 		 * uncompressed data of our extent and different lengths. This
3017 		 * is a corner case so we prioritize correctness over
3018 		 * non-optimal behavior (submitting 2 bios for the same extent).
3019 		 */
3020 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 		    prev_em_start && *prev_em_start != (u64)-1 &&
3022 		    *prev_em_start != em->orig_start)
3023 			force_bio_submit = true;
3024 
3025 		if (prev_em_start)
3026 			*prev_em_start = em->orig_start;
3027 
3028 		free_extent_map(em);
3029 		em = NULL;
3030 
3031 		/* we've found a hole, just zero and go on */
3032 		if (block_start == EXTENT_MAP_HOLE) {
3033 			char *userpage;
3034 			struct extent_state *cached = NULL;
3035 
3036 			userpage = kmap_atomic(page);
3037 			memset(userpage + pg_offset, 0, iosize);
3038 			flush_dcache_page(page);
3039 			kunmap_atomic(userpage);
3040 
3041 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3042 					    &cached, GFP_NOFS);
3043 			unlock_extent_cached(tree, cur,
3044 					     cur + iosize - 1, &cached);
3045 			cur = cur + iosize;
3046 			pg_offset += iosize;
3047 			continue;
3048 		}
3049 		/* the get_extent function already copied into the page */
3050 		if (test_range_bit(tree, cur, cur_end,
3051 				   EXTENT_UPTODATE, 1, NULL)) {
3052 			check_page_uptodate(tree, page);
3053 			unlock_extent(tree, cur, cur + iosize - 1);
3054 			cur = cur + iosize;
3055 			pg_offset += iosize;
3056 			continue;
3057 		}
3058 		/* we have an inline extent but it didn't get marked up
3059 		 * to date.  Error out
3060 		 */
3061 		if (block_start == EXTENT_MAP_INLINE) {
3062 			SetPageError(page);
3063 			unlock_extent(tree, cur, cur + iosize - 1);
3064 			cur = cur + iosize;
3065 			pg_offset += iosize;
3066 			continue;
3067 		}
3068 
3069 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3070 					 page, offset, disk_io_size,
3071 					 pg_offset, bdev, bio,
3072 					 end_bio_extent_readpage, mirror_num,
3073 					 *bio_flags,
3074 					 this_bio_flag,
3075 					 force_bio_submit);
3076 		if (!ret) {
3077 			nr++;
3078 			*bio_flags = this_bio_flag;
3079 		} else {
3080 			SetPageError(page);
3081 			unlock_extent(tree, cur, cur + iosize - 1);
3082 			goto out;
3083 		}
3084 		cur = cur + iosize;
3085 		pg_offset += iosize;
3086 	}
3087 out:
3088 	if (!nr) {
3089 		if (!PageError(page))
3090 			SetPageUptodate(page);
3091 		unlock_page(page);
3092 	}
3093 	return ret;
3094 }
3095 
3096 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3097 					     struct page *pages[], int nr_pages,
3098 					     u64 start, u64 end,
3099 					     struct extent_map **em_cached,
3100 					     struct bio **bio,
3101 					     unsigned long *bio_flags,
3102 					     u64 *prev_em_start)
3103 {
3104 	struct inode *inode;
3105 	struct btrfs_ordered_extent *ordered;
3106 	int index;
3107 
3108 	inode = pages[0]->mapping->host;
3109 	while (1) {
3110 		lock_extent(tree, start, end);
3111 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3112 						     end - start + 1);
3113 		if (!ordered)
3114 			break;
3115 		unlock_extent(tree, start, end);
3116 		btrfs_start_ordered_extent(inode, ordered, 1);
3117 		btrfs_put_ordered_extent(ordered);
3118 	}
3119 
3120 	for (index = 0; index < nr_pages; index++) {
3121 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3122 				bio, 0, bio_flags, 0, prev_em_start);
3123 		put_page(pages[index]);
3124 	}
3125 }
3126 
3127 static void __extent_readpages(struct extent_io_tree *tree,
3128 			       struct page *pages[],
3129 			       int nr_pages,
3130 			       struct extent_map **em_cached,
3131 			       struct bio **bio, unsigned long *bio_flags,
3132 			       u64 *prev_em_start)
3133 {
3134 	u64 start = 0;
3135 	u64 end = 0;
3136 	u64 page_start;
3137 	int index;
3138 	int first_index = 0;
3139 
3140 	for (index = 0; index < nr_pages; index++) {
3141 		page_start = page_offset(pages[index]);
3142 		if (!end) {
3143 			start = page_start;
3144 			end = start + PAGE_SIZE - 1;
3145 			first_index = index;
3146 		} else if (end + 1 == page_start) {
3147 			end += PAGE_SIZE;
3148 		} else {
3149 			__do_contiguous_readpages(tree, &pages[first_index],
3150 						  index - first_index, start,
3151 						  end, em_cached,
3152 						  bio, bio_flags,
3153 						  prev_em_start);
3154 			start = page_start;
3155 			end = start + PAGE_SIZE - 1;
3156 			first_index = index;
3157 		}
3158 	}
3159 
3160 	if (end)
3161 		__do_contiguous_readpages(tree, &pages[first_index],
3162 					  index - first_index, start,
3163 					  end, em_cached, bio,
3164 					  bio_flags, prev_em_start);
3165 }
3166 
3167 static int __extent_read_full_page(struct extent_io_tree *tree,
3168 				   struct page *page,
3169 				   get_extent_t *get_extent,
3170 				   struct bio **bio, int mirror_num,
3171 				   unsigned long *bio_flags,
3172 				   unsigned int read_flags)
3173 {
3174 	struct inode *inode = page->mapping->host;
3175 	struct btrfs_ordered_extent *ordered;
3176 	u64 start = page_offset(page);
3177 	u64 end = start + PAGE_SIZE - 1;
3178 	int ret;
3179 
3180 	while (1) {
3181 		lock_extent(tree, start, end);
3182 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3183 						PAGE_SIZE);
3184 		if (!ordered)
3185 			break;
3186 		unlock_extent(tree, start, end);
3187 		btrfs_start_ordered_extent(inode, ordered, 1);
3188 		btrfs_put_ordered_extent(ordered);
3189 	}
3190 
3191 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3192 			    bio_flags, read_flags, NULL);
3193 	return ret;
3194 }
3195 
3196 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3197 			    get_extent_t *get_extent, int mirror_num)
3198 {
3199 	struct bio *bio = NULL;
3200 	unsigned long bio_flags = 0;
3201 	int ret;
3202 
3203 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3204 				      &bio_flags, 0);
3205 	if (bio)
3206 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3207 	return ret;
3208 }
3209 
3210 static void update_nr_written(struct writeback_control *wbc,
3211 			      unsigned long nr_written)
3212 {
3213 	wbc->nr_to_write -= nr_written;
3214 }
3215 
3216 /*
3217  * helper for __extent_writepage, doing all of the delayed allocation setup.
3218  *
3219  * This returns 1 if our fill_delalloc function did all the work required
3220  * to write the page (copy into inline extent).  In this case the IO has
3221  * been started and the page is already unlocked.
3222  *
3223  * This returns 0 if all went well (page still locked)
3224  * This returns < 0 if there were errors (page still locked)
3225  */
3226 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227 			      struct page *page, struct writeback_control *wbc,
3228 			      struct extent_page_data *epd,
3229 			      u64 delalloc_start,
3230 			      unsigned long *nr_written)
3231 {
3232 	struct extent_io_tree *tree = epd->tree;
3233 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3234 	u64 nr_delalloc;
3235 	u64 delalloc_to_write = 0;
3236 	u64 delalloc_end = 0;
3237 	int ret;
3238 	int page_started = 0;
3239 
3240 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241 		return 0;
3242 
3243 	while (delalloc_end < page_end) {
3244 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3245 					       page,
3246 					       &delalloc_start,
3247 					       &delalloc_end,
3248 					       BTRFS_MAX_EXTENT_SIZE);
3249 		if (nr_delalloc == 0) {
3250 			delalloc_start = delalloc_end + 1;
3251 			continue;
3252 		}
3253 		ret = tree->ops->fill_delalloc(inode, page,
3254 					       delalloc_start,
3255 					       delalloc_end,
3256 					       &page_started,
3257 					       nr_written, wbc);
3258 		/* File system has been set read-only */
3259 		if (ret) {
3260 			SetPageError(page);
3261 			/* fill_delalloc should be return < 0 for error
3262 			 * but just in case, we use > 0 here meaning the
3263 			 * IO is started, so we don't want to return > 0
3264 			 * unless things are going well.
3265 			 */
3266 			ret = ret < 0 ? ret : -EIO;
3267 			goto done;
3268 		}
3269 		/*
3270 		 * delalloc_end is already one less than the total length, so
3271 		 * we don't subtract one from PAGE_SIZE
3272 		 */
3273 		delalloc_to_write += (delalloc_end - delalloc_start +
3274 				      PAGE_SIZE) >> PAGE_SHIFT;
3275 		delalloc_start = delalloc_end + 1;
3276 	}
3277 	if (wbc->nr_to_write < delalloc_to_write) {
3278 		int thresh = 8192;
3279 
3280 		if (delalloc_to_write < thresh * 2)
3281 			thresh = delalloc_to_write;
3282 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283 					 thresh);
3284 	}
3285 
3286 	/* did the fill delalloc function already unlock and start
3287 	 * the IO?
3288 	 */
3289 	if (page_started) {
3290 		/*
3291 		 * we've unlocked the page, so we can't update
3292 		 * the mapping's writeback index, just update
3293 		 * nr_to_write.
3294 		 */
3295 		wbc->nr_to_write -= *nr_written;
3296 		return 1;
3297 	}
3298 
3299 	ret = 0;
3300 
3301 done:
3302 	return ret;
3303 }
3304 
3305 /*
3306  * helper for __extent_writepage.  This calls the writepage start hooks,
3307  * and does the loop to map the page into extents and bios.
3308  *
3309  * We return 1 if the IO is started and the page is unlocked,
3310  * 0 if all went well (page still locked)
3311  * < 0 if there were errors (page still locked)
3312  */
3313 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314 				 struct page *page,
3315 				 struct writeback_control *wbc,
3316 				 struct extent_page_data *epd,
3317 				 loff_t i_size,
3318 				 unsigned long nr_written,
3319 				 unsigned int write_flags, int *nr_ret)
3320 {
3321 	struct extent_io_tree *tree = epd->tree;
3322 	u64 start = page_offset(page);
3323 	u64 page_end = start + PAGE_SIZE - 1;
3324 	u64 end;
3325 	u64 cur = start;
3326 	u64 extent_offset;
3327 	u64 block_start;
3328 	u64 iosize;
3329 	struct extent_map *em;
3330 	struct block_device *bdev;
3331 	size_t pg_offset = 0;
3332 	size_t blocksize;
3333 	int ret = 0;
3334 	int nr = 0;
3335 	bool compressed;
3336 
3337 	if (tree->ops && tree->ops->writepage_start_hook) {
3338 		ret = tree->ops->writepage_start_hook(page, start,
3339 						      page_end);
3340 		if (ret) {
3341 			/* Fixup worker will requeue */
3342 			if (ret == -EBUSY)
3343 				wbc->pages_skipped++;
3344 			else
3345 				redirty_page_for_writepage(wbc, page);
3346 
3347 			update_nr_written(wbc, nr_written);
3348 			unlock_page(page);
3349 			return 1;
3350 		}
3351 	}
3352 
3353 	/*
3354 	 * we don't want to touch the inode after unlocking the page,
3355 	 * so we update the mapping writeback index now
3356 	 */
3357 	update_nr_written(wbc, nr_written + 1);
3358 
3359 	end = page_end;
3360 	if (i_size <= start) {
3361 		if (tree->ops && tree->ops->writepage_end_io_hook)
3362 			tree->ops->writepage_end_io_hook(page, start,
3363 							 page_end, NULL, 1);
3364 		goto done;
3365 	}
3366 
3367 	blocksize = inode->i_sb->s_blocksize;
3368 
3369 	while (cur <= end) {
3370 		u64 em_end;
3371 		u64 offset;
3372 
3373 		if (cur >= i_size) {
3374 			if (tree->ops && tree->ops->writepage_end_io_hook)
3375 				tree->ops->writepage_end_io_hook(page, cur,
3376 							 page_end, NULL, 1);
3377 			break;
3378 		}
3379 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3380 				     end - cur + 1, 1);
3381 		if (IS_ERR_OR_NULL(em)) {
3382 			SetPageError(page);
3383 			ret = PTR_ERR_OR_ZERO(em);
3384 			break;
3385 		}
3386 
3387 		extent_offset = cur - em->start;
3388 		em_end = extent_map_end(em);
3389 		BUG_ON(em_end <= cur);
3390 		BUG_ON(end < cur);
3391 		iosize = min(em_end - cur, end - cur + 1);
3392 		iosize = ALIGN(iosize, blocksize);
3393 		offset = em->block_start + extent_offset;
3394 		bdev = em->bdev;
3395 		block_start = em->block_start;
3396 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397 		free_extent_map(em);
3398 		em = NULL;
3399 
3400 		/*
3401 		 * compressed and inline extents are written through other
3402 		 * paths in the FS
3403 		 */
3404 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3405 		    block_start == EXTENT_MAP_INLINE) {
3406 			/*
3407 			 * end_io notification does not happen here for
3408 			 * compressed extents
3409 			 */
3410 			if (!compressed && tree->ops &&
3411 			    tree->ops->writepage_end_io_hook)
3412 				tree->ops->writepage_end_io_hook(page, cur,
3413 							 cur + iosize - 1,
3414 							 NULL, 1);
3415 			else if (compressed) {
3416 				/* we don't want to end_page_writeback on
3417 				 * a compressed extent.  this happens
3418 				 * elsewhere
3419 				 */
3420 				nr++;
3421 			}
3422 
3423 			cur += iosize;
3424 			pg_offset += iosize;
3425 			continue;
3426 		}
3427 
3428 		set_range_writeback(tree, cur, cur + iosize - 1);
3429 		if (!PageWriteback(page)) {
3430 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3431 				   "page %lu not writeback, cur %llu end %llu",
3432 			       page->index, cur, end);
3433 		}
3434 
3435 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3436 					 page, offset, iosize, pg_offset,
3437 					 bdev, &epd->bio,
3438 					 end_bio_extent_writepage,
3439 					 0, 0, 0, false);
3440 		if (ret) {
3441 			SetPageError(page);
3442 			if (PageWriteback(page))
3443 				end_page_writeback(page);
3444 		}
3445 
3446 		cur = cur + iosize;
3447 		pg_offset += iosize;
3448 		nr++;
3449 	}
3450 done:
3451 	*nr_ret = nr;
3452 	return ret;
3453 }
3454 
3455 /*
3456  * the writepage semantics are similar to regular writepage.  extent
3457  * records are inserted to lock ranges in the tree, and as dirty areas
3458  * are found, they are marked writeback.  Then the lock bits are removed
3459  * and the end_io handler clears the writeback ranges
3460  */
3461 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 			      struct extent_page_data *epd)
3463 {
3464 	struct inode *inode = page->mapping->host;
3465 	u64 start = page_offset(page);
3466 	u64 page_end = start + PAGE_SIZE - 1;
3467 	int ret;
3468 	int nr = 0;
3469 	size_t pg_offset = 0;
3470 	loff_t i_size = i_size_read(inode);
3471 	unsigned long end_index = i_size >> PAGE_SHIFT;
3472 	unsigned int write_flags = 0;
3473 	unsigned long nr_written = 0;
3474 
3475 	write_flags = wbc_to_write_flags(wbc);
3476 
3477 	trace___extent_writepage(page, inode, wbc);
3478 
3479 	WARN_ON(!PageLocked(page));
3480 
3481 	ClearPageError(page);
3482 
3483 	pg_offset = i_size & (PAGE_SIZE - 1);
3484 	if (page->index > end_index ||
3485 	   (page->index == end_index && !pg_offset)) {
3486 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487 		unlock_page(page);
3488 		return 0;
3489 	}
3490 
3491 	if (page->index == end_index) {
3492 		char *userpage;
3493 
3494 		userpage = kmap_atomic(page);
3495 		memset(userpage + pg_offset, 0,
3496 		       PAGE_SIZE - pg_offset);
3497 		kunmap_atomic(userpage);
3498 		flush_dcache_page(page);
3499 	}
3500 
3501 	pg_offset = 0;
3502 
3503 	set_page_extent_mapped(page);
3504 
3505 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 	if (ret == 1)
3507 		goto done_unlocked;
3508 	if (ret)
3509 		goto done;
3510 
3511 	ret = __extent_writepage_io(inode, page, wbc, epd,
3512 				    i_size, nr_written, write_flags, &nr);
3513 	if (ret == 1)
3514 		goto done_unlocked;
3515 
3516 done:
3517 	if (nr == 0) {
3518 		/* make sure the mapping tag for page dirty gets cleared */
3519 		set_page_writeback(page);
3520 		end_page_writeback(page);
3521 	}
3522 	if (PageError(page)) {
3523 		ret = ret < 0 ? ret : -EIO;
3524 		end_extent_writepage(page, ret, start, page_end);
3525 	}
3526 	unlock_page(page);
3527 	return ret;
3528 
3529 done_unlocked:
3530 	return 0;
3531 }
3532 
3533 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534 {
3535 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 		       TASK_UNINTERRUPTIBLE);
3537 }
3538 
3539 static noinline_for_stack int
3540 lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 			  struct btrfs_fs_info *fs_info,
3542 			  struct extent_page_data *epd)
3543 {
3544 	unsigned long i, num_pages;
3545 	int flush = 0;
3546 	int ret = 0;
3547 
3548 	if (!btrfs_try_tree_write_lock(eb)) {
3549 		flush = 1;
3550 		flush_write_bio(epd);
3551 		btrfs_tree_lock(eb);
3552 	}
3553 
3554 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 		btrfs_tree_unlock(eb);
3556 		if (!epd->sync_io)
3557 			return 0;
3558 		if (!flush) {
3559 			flush_write_bio(epd);
3560 			flush = 1;
3561 		}
3562 		while (1) {
3563 			wait_on_extent_buffer_writeback(eb);
3564 			btrfs_tree_lock(eb);
3565 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 				break;
3567 			btrfs_tree_unlock(eb);
3568 		}
3569 	}
3570 
3571 	/*
3572 	 * We need to do this to prevent races in people who check if the eb is
3573 	 * under IO since we can end up having no IO bits set for a short period
3574 	 * of time.
3575 	 */
3576 	spin_lock(&eb->refs_lock);
3577 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579 		spin_unlock(&eb->refs_lock);
3580 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 					 -eb->len,
3583 					 fs_info->dirty_metadata_batch);
3584 		ret = 1;
3585 	} else {
3586 		spin_unlock(&eb->refs_lock);
3587 	}
3588 
3589 	btrfs_tree_unlock(eb);
3590 
3591 	if (!ret)
3592 		return ret;
3593 
3594 	num_pages = num_extent_pages(eb->start, eb->len);
3595 	for (i = 0; i < num_pages; i++) {
3596 		struct page *p = eb->pages[i];
3597 
3598 		if (!trylock_page(p)) {
3599 			if (!flush) {
3600 				flush_write_bio(epd);
3601 				flush = 1;
3602 			}
3603 			lock_page(p);
3604 		}
3605 	}
3606 
3607 	return ret;
3608 }
3609 
3610 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611 {
3612 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613 	smp_mb__after_atomic();
3614 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615 }
3616 
3617 static void set_btree_ioerr(struct page *page)
3618 {
3619 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620 
3621 	SetPageError(page);
3622 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 		return;
3624 
3625 	/*
3626 	 * If writeback for a btree extent that doesn't belong to a log tree
3627 	 * failed, increment the counter transaction->eb_write_errors.
3628 	 * We do this because while the transaction is running and before it's
3629 	 * committing (when we call filemap_fdata[write|wait]_range against
3630 	 * the btree inode), we might have
3631 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 	 * returns an error or an error happens during writeback, when we're
3633 	 * committing the transaction we wouldn't know about it, since the pages
3634 	 * can be no longer dirty nor marked anymore for writeback (if a
3635 	 * subsequent modification to the extent buffer didn't happen before the
3636 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 	 * able to find the pages tagged with SetPageError at transaction
3638 	 * commit time. So if this happens we must abort the transaction,
3639 	 * otherwise we commit a super block with btree roots that point to
3640 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 	 * or the content of some node/leaf from a past generation that got
3642 	 * cowed or deleted and is no longer valid.
3643 	 *
3644 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 	 * not be enough - we need to distinguish between log tree extents vs
3646 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 	 * will catch and clear such errors in the mapping - and that call might
3648 	 * be from a log sync and not from a transaction commit. Also, checking
3649 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 	 * not done and would not be reliable - the eb might have been released
3651 	 * from memory and reading it back again means that flag would not be
3652 	 * set (since it's a runtime flag, not persisted on disk).
3653 	 *
3654 	 * Using the flags below in the btree inode also makes us achieve the
3655 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 	 * is called, the writeback for all dirty pages had already finished
3658 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 	 * filemap_fdatawait_range() would return success, as it could not know
3660 	 * that writeback errors happened (the pages were no longer tagged for
3661 	 * writeback).
3662 	 */
3663 	switch (eb->log_index) {
3664 	case -1:
3665 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666 		break;
3667 	case 0:
3668 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669 		break;
3670 	case 1:
3671 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672 		break;
3673 	default:
3674 		BUG(); /* unexpected, logic error */
3675 	}
3676 }
3677 
3678 static void end_bio_extent_buffer_writepage(struct bio *bio)
3679 {
3680 	struct bio_vec *bvec;
3681 	struct extent_buffer *eb;
3682 	int i, done;
3683 
3684 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3685 	bio_for_each_segment_all(bvec, bio, i) {
3686 		struct page *page = bvec->bv_page;
3687 
3688 		eb = (struct extent_buffer *)page->private;
3689 		BUG_ON(!eb);
3690 		done = atomic_dec_and_test(&eb->io_pages);
3691 
3692 		if (bio->bi_status ||
3693 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694 			ClearPageUptodate(page);
3695 			set_btree_ioerr(page);
3696 		}
3697 
3698 		end_page_writeback(page);
3699 
3700 		if (!done)
3701 			continue;
3702 
3703 		end_extent_buffer_writeback(eb);
3704 	}
3705 
3706 	bio_put(bio);
3707 }
3708 
3709 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710 			struct btrfs_fs_info *fs_info,
3711 			struct writeback_control *wbc,
3712 			struct extent_page_data *epd)
3713 {
3714 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716 	u64 offset = eb->start;
3717 	u32 nritems;
3718 	unsigned long i, num_pages;
3719 	unsigned long start, end;
3720 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3721 	int ret = 0;
3722 
3723 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3724 	num_pages = num_extent_pages(eb->start, eb->len);
3725 	atomic_set(&eb->io_pages, num_pages);
3726 
3727 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3728 	nritems = btrfs_header_nritems(eb);
3729 	if (btrfs_header_level(eb) > 0) {
3730 		end = btrfs_node_key_ptr_offset(nritems);
3731 
3732 		memzero_extent_buffer(eb, end, eb->len - end);
3733 	} else {
3734 		/*
3735 		 * leaf:
3736 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737 		 */
3738 		start = btrfs_item_nr_offset(nritems);
3739 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3740 		memzero_extent_buffer(eb, start, end - start);
3741 	}
3742 
3743 	for (i = 0; i < num_pages; i++) {
3744 		struct page *p = eb->pages[i];
3745 
3746 		clear_page_dirty_for_io(p);
3747 		set_page_writeback(p);
3748 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3749 					 p, offset, PAGE_SIZE, 0, bdev,
3750 					 &epd->bio,
3751 					 end_bio_extent_buffer_writepage,
3752 					 0, 0, 0, false);
3753 		if (ret) {
3754 			set_btree_ioerr(p);
3755 			if (PageWriteback(p))
3756 				end_page_writeback(p);
3757 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758 				end_extent_buffer_writeback(eb);
3759 			ret = -EIO;
3760 			break;
3761 		}
3762 		offset += PAGE_SIZE;
3763 		update_nr_written(wbc, 1);
3764 		unlock_page(p);
3765 	}
3766 
3767 	if (unlikely(ret)) {
3768 		for (; i < num_pages; i++) {
3769 			struct page *p = eb->pages[i];
3770 			clear_page_dirty_for_io(p);
3771 			unlock_page(p);
3772 		}
3773 	}
3774 
3775 	return ret;
3776 }
3777 
3778 int btree_write_cache_pages(struct address_space *mapping,
3779 				   struct writeback_control *wbc)
3780 {
3781 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783 	struct extent_buffer *eb, *prev_eb = NULL;
3784 	struct extent_page_data epd = {
3785 		.bio = NULL,
3786 		.tree = tree,
3787 		.extent_locked = 0,
3788 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789 	};
3790 	int ret = 0;
3791 	int done = 0;
3792 	int nr_to_write_done = 0;
3793 	struct pagevec pvec;
3794 	int nr_pages;
3795 	pgoff_t index;
3796 	pgoff_t end;		/* Inclusive */
3797 	int scanned = 0;
3798 	int tag;
3799 
3800 	pagevec_init(&pvec);
3801 	if (wbc->range_cyclic) {
3802 		index = mapping->writeback_index; /* Start from prev offset */
3803 		end = -1;
3804 	} else {
3805 		index = wbc->range_start >> PAGE_SHIFT;
3806 		end = wbc->range_end >> PAGE_SHIFT;
3807 		scanned = 1;
3808 	}
3809 	if (wbc->sync_mode == WB_SYNC_ALL)
3810 		tag = PAGECACHE_TAG_TOWRITE;
3811 	else
3812 		tag = PAGECACHE_TAG_DIRTY;
3813 retry:
3814 	if (wbc->sync_mode == WB_SYNC_ALL)
3815 		tag_pages_for_writeback(mapping, index, end);
3816 	while (!done && !nr_to_write_done && (index <= end) &&
3817 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3818 			tag))) {
3819 		unsigned i;
3820 
3821 		scanned = 1;
3822 		for (i = 0; i < nr_pages; i++) {
3823 			struct page *page = pvec.pages[i];
3824 
3825 			if (!PagePrivate(page))
3826 				continue;
3827 
3828 			spin_lock(&mapping->private_lock);
3829 			if (!PagePrivate(page)) {
3830 				spin_unlock(&mapping->private_lock);
3831 				continue;
3832 			}
3833 
3834 			eb = (struct extent_buffer *)page->private;
3835 
3836 			/*
3837 			 * Shouldn't happen and normally this would be a BUG_ON
3838 			 * but no sense in crashing the users box for something
3839 			 * we can survive anyway.
3840 			 */
3841 			if (WARN_ON(!eb)) {
3842 				spin_unlock(&mapping->private_lock);
3843 				continue;
3844 			}
3845 
3846 			if (eb == prev_eb) {
3847 				spin_unlock(&mapping->private_lock);
3848 				continue;
3849 			}
3850 
3851 			ret = atomic_inc_not_zero(&eb->refs);
3852 			spin_unlock(&mapping->private_lock);
3853 			if (!ret)
3854 				continue;
3855 
3856 			prev_eb = eb;
3857 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858 			if (!ret) {
3859 				free_extent_buffer(eb);
3860 				continue;
3861 			}
3862 
3863 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3864 			if (ret) {
3865 				done = 1;
3866 				free_extent_buffer(eb);
3867 				break;
3868 			}
3869 			free_extent_buffer(eb);
3870 
3871 			/*
3872 			 * the filesystem may choose to bump up nr_to_write.
3873 			 * We have to make sure to honor the new nr_to_write
3874 			 * at any time
3875 			 */
3876 			nr_to_write_done = wbc->nr_to_write <= 0;
3877 		}
3878 		pagevec_release(&pvec);
3879 		cond_resched();
3880 	}
3881 	if (!scanned && !done) {
3882 		/*
3883 		 * We hit the last page and there is more work to be done: wrap
3884 		 * back to the start of the file
3885 		 */
3886 		scanned = 1;
3887 		index = 0;
3888 		goto retry;
3889 	}
3890 	flush_write_bio(&epd);
3891 	return ret;
3892 }
3893 
3894 /**
3895  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3896  * @mapping: address space structure to write
3897  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3898  * @data: data passed to __extent_writepage function
3899  *
3900  * If a page is already under I/O, write_cache_pages() skips it, even
3901  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3902  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3903  * and msync() need to guarantee that all the data which was dirty at the time
3904  * the call was made get new I/O started against them.  If wbc->sync_mode is
3905  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3906  * existing IO to complete.
3907  */
3908 static int extent_write_cache_pages(struct address_space *mapping,
3909 			     struct writeback_control *wbc,
3910 			     struct extent_page_data *epd)
3911 {
3912 	struct inode *inode = mapping->host;
3913 	int ret = 0;
3914 	int done = 0;
3915 	int nr_to_write_done = 0;
3916 	struct pagevec pvec;
3917 	int nr_pages;
3918 	pgoff_t index;
3919 	pgoff_t end;		/* Inclusive */
3920 	pgoff_t done_index;
3921 	int range_whole = 0;
3922 	int scanned = 0;
3923 	int tag;
3924 
3925 	/*
3926 	 * We have to hold onto the inode so that ordered extents can do their
3927 	 * work when the IO finishes.  The alternative to this is failing to add
3928 	 * an ordered extent if the igrab() fails there and that is a huge pain
3929 	 * to deal with, so instead just hold onto the inode throughout the
3930 	 * writepages operation.  If it fails here we are freeing up the inode
3931 	 * anyway and we'd rather not waste our time writing out stuff that is
3932 	 * going to be truncated anyway.
3933 	 */
3934 	if (!igrab(inode))
3935 		return 0;
3936 
3937 	pagevec_init(&pvec);
3938 	if (wbc->range_cyclic) {
3939 		index = mapping->writeback_index; /* Start from prev offset */
3940 		end = -1;
3941 	} else {
3942 		index = wbc->range_start >> PAGE_SHIFT;
3943 		end = wbc->range_end >> PAGE_SHIFT;
3944 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945 			range_whole = 1;
3946 		scanned = 1;
3947 	}
3948 	if (wbc->sync_mode == WB_SYNC_ALL)
3949 		tag = PAGECACHE_TAG_TOWRITE;
3950 	else
3951 		tag = PAGECACHE_TAG_DIRTY;
3952 retry:
3953 	if (wbc->sync_mode == WB_SYNC_ALL)
3954 		tag_pages_for_writeback(mapping, index, end);
3955 	done_index = index;
3956 	while (!done && !nr_to_write_done && (index <= end) &&
3957 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958 						&index, end, tag))) {
3959 		unsigned i;
3960 
3961 		scanned = 1;
3962 		for (i = 0; i < nr_pages; i++) {
3963 			struct page *page = pvec.pages[i];
3964 
3965 			done_index = page->index;
3966 			/*
3967 			 * At this point we hold neither the i_pages lock nor
3968 			 * the page lock: the page may be truncated or
3969 			 * invalidated (changing page->mapping to NULL),
3970 			 * or even swizzled back from swapper_space to
3971 			 * tmpfs file mapping
3972 			 */
3973 			if (!trylock_page(page)) {
3974 				flush_write_bio(epd);
3975 				lock_page(page);
3976 			}
3977 
3978 			if (unlikely(page->mapping != mapping)) {
3979 				unlock_page(page);
3980 				continue;
3981 			}
3982 
3983 			if (wbc->sync_mode != WB_SYNC_NONE) {
3984 				if (PageWriteback(page))
3985 					flush_write_bio(epd);
3986 				wait_on_page_writeback(page);
3987 			}
3988 
3989 			if (PageWriteback(page) ||
3990 			    !clear_page_dirty_for_io(page)) {
3991 				unlock_page(page);
3992 				continue;
3993 			}
3994 
3995 			ret = __extent_writepage(page, wbc, epd);
3996 
3997 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998 				unlock_page(page);
3999 				ret = 0;
4000 			}
4001 			if (ret < 0) {
4002 				/*
4003 				 * done_index is set past this page,
4004 				 * so media errors will not choke
4005 				 * background writeout for the entire
4006 				 * file. This has consequences for
4007 				 * range_cyclic semantics (ie. it may
4008 				 * not be suitable for data integrity
4009 				 * writeout).
4010 				 */
4011 				done_index = page->index + 1;
4012 				done = 1;
4013 				break;
4014 			}
4015 
4016 			/*
4017 			 * the filesystem may choose to bump up nr_to_write.
4018 			 * We have to make sure to honor the new nr_to_write
4019 			 * at any time
4020 			 */
4021 			nr_to_write_done = wbc->nr_to_write <= 0;
4022 		}
4023 		pagevec_release(&pvec);
4024 		cond_resched();
4025 	}
4026 	if (!scanned && !done) {
4027 		/*
4028 		 * We hit the last page and there is more work to be done: wrap
4029 		 * back to the start of the file
4030 		 */
4031 		scanned = 1;
4032 		index = 0;
4033 		goto retry;
4034 	}
4035 
4036 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4037 		mapping->writeback_index = done_index;
4038 
4039 	btrfs_add_delayed_iput(inode);
4040 	return ret;
4041 }
4042 
4043 static void flush_write_bio(struct extent_page_data *epd)
4044 {
4045 	if (epd->bio) {
4046 		int ret;
4047 
4048 		ret = submit_one_bio(epd->bio, 0, 0);
4049 		BUG_ON(ret < 0); /* -ENOMEM */
4050 		epd->bio = NULL;
4051 	}
4052 }
4053 
4054 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4055 {
4056 	int ret;
4057 	struct extent_page_data epd = {
4058 		.bio = NULL,
4059 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4060 		.extent_locked = 0,
4061 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4062 	};
4063 
4064 	ret = __extent_writepage(page, wbc, &epd);
4065 
4066 	flush_write_bio(&epd);
4067 	return ret;
4068 }
4069 
4070 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4071 			      int mode)
4072 {
4073 	int ret = 0;
4074 	struct address_space *mapping = inode->i_mapping;
4075 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4076 	struct page *page;
4077 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078 		PAGE_SHIFT;
4079 
4080 	struct extent_page_data epd = {
4081 		.bio = NULL,
4082 		.tree = tree,
4083 		.extent_locked = 1,
4084 		.sync_io = mode == WB_SYNC_ALL,
4085 	};
4086 	struct writeback_control wbc_writepages = {
4087 		.sync_mode	= mode,
4088 		.nr_to_write	= nr_pages * 2,
4089 		.range_start	= start,
4090 		.range_end	= end + 1,
4091 	};
4092 
4093 	while (start <= end) {
4094 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4095 		if (clear_page_dirty_for_io(page))
4096 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4097 		else {
4098 			if (tree->ops && tree->ops->writepage_end_io_hook)
4099 				tree->ops->writepage_end_io_hook(page, start,
4100 						 start + PAGE_SIZE - 1,
4101 						 NULL, 1);
4102 			unlock_page(page);
4103 		}
4104 		put_page(page);
4105 		start += PAGE_SIZE;
4106 	}
4107 
4108 	flush_write_bio(&epd);
4109 	return ret;
4110 }
4111 
4112 int extent_writepages(struct extent_io_tree *tree,
4113 		      struct address_space *mapping,
4114 		      struct writeback_control *wbc)
4115 {
4116 	int ret = 0;
4117 	struct extent_page_data epd = {
4118 		.bio = NULL,
4119 		.tree = tree,
4120 		.extent_locked = 0,
4121 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4122 	};
4123 
4124 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4125 	flush_write_bio(&epd);
4126 	return ret;
4127 }
4128 
4129 int extent_readpages(struct extent_io_tree *tree,
4130 		     struct address_space *mapping,
4131 		     struct list_head *pages, unsigned nr_pages)
4132 {
4133 	struct bio *bio = NULL;
4134 	unsigned page_idx;
4135 	unsigned long bio_flags = 0;
4136 	struct page *pagepool[16];
4137 	struct page *page;
4138 	struct extent_map *em_cached = NULL;
4139 	int nr = 0;
4140 	u64 prev_em_start = (u64)-1;
4141 
4142 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4143 		page = list_entry(pages->prev, struct page, lru);
4144 
4145 		prefetchw(&page->flags);
4146 		list_del(&page->lru);
4147 		if (add_to_page_cache_lru(page, mapping,
4148 					page->index,
4149 					readahead_gfp_mask(mapping))) {
4150 			put_page(page);
4151 			continue;
4152 		}
4153 
4154 		pagepool[nr++] = page;
4155 		if (nr < ARRAY_SIZE(pagepool))
4156 			continue;
4157 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158 				&bio_flags, &prev_em_start);
4159 		nr = 0;
4160 	}
4161 	if (nr)
4162 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4163 				&bio_flags, &prev_em_start);
4164 
4165 	if (em_cached)
4166 		free_extent_map(em_cached);
4167 
4168 	BUG_ON(!list_empty(pages));
4169 	if (bio)
4170 		return submit_one_bio(bio, 0, bio_flags);
4171 	return 0;
4172 }
4173 
4174 /*
4175  * basic invalidatepage code, this waits on any locked or writeback
4176  * ranges corresponding to the page, and then deletes any extent state
4177  * records from the tree
4178  */
4179 int extent_invalidatepage(struct extent_io_tree *tree,
4180 			  struct page *page, unsigned long offset)
4181 {
4182 	struct extent_state *cached_state = NULL;
4183 	u64 start = page_offset(page);
4184 	u64 end = start + PAGE_SIZE - 1;
4185 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4186 
4187 	start += ALIGN(offset, blocksize);
4188 	if (start > end)
4189 		return 0;
4190 
4191 	lock_extent_bits(tree, start, end, &cached_state);
4192 	wait_on_page_writeback(page);
4193 	clear_extent_bit(tree, start, end,
4194 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4195 			 EXTENT_DO_ACCOUNTING,
4196 			 1, 1, &cached_state);
4197 	return 0;
4198 }
4199 
4200 /*
4201  * a helper for releasepage, this tests for areas of the page that
4202  * are locked or under IO and drops the related state bits if it is safe
4203  * to drop the page.
4204  */
4205 static int try_release_extent_state(struct extent_map_tree *map,
4206 				    struct extent_io_tree *tree,
4207 				    struct page *page, gfp_t mask)
4208 {
4209 	u64 start = page_offset(page);
4210 	u64 end = start + PAGE_SIZE - 1;
4211 	int ret = 1;
4212 
4213 	if (test_range_bit(tree, start, end,
4214 			   EXTENT_IOBITS, 0, NULL))
4215 		ret = 0;
4216 	else {
4217 		/*
4218 		 * at this point we can safely clear everything except the
4219 		 * locked bit and the nodatasum bit
4220 		 */
4221 		ret = __clear_extent_bit(tree, start, end,
4222 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4223 				 0, 0, NULL, mask, NULL);
4224 
4225 		/* if clear_extent_bit failed for enomem reasons,
4226 		 * we can't allow the release to continue.
4227 		 */
4228 		if (ret < 0)
4229 			ret = 0;
4230 		else
4231 			ret = 1;
4232 	}
4233 	return ret;
4234 }
4235 
4236 /*
4237  * a helper for releasepage.  As long as there are no locked extents
4238  * in the range corresponding to the page, both state records and extent
4239  * map records are removed
4240  */
4241 int try_release_extent_mapping(struct extent_map_tree *map,
4242 			       struct extent_io_tree *tree, struct page *page,
4243 			       gfp_t mask)
4244 {
4245 	struct extent_map *em;
4246 	u64 start = page_offset(page);
4247 	u64 end = start + PAGE_SIZE - 1;
4248 
4249 	if (gfpflags_allow_blocking(mask) &&
4250 	    page->mapping->host->i_size > SZ_16M) {
4251 		u64 len;
4252 		while (start <= end) {
4253 			len = end - start + 1;
4254 			write_lock(&map->lock);
4255 			em = lookup_extent_mapping(map, start, len);
4256 			if (!em) {
4257 				write_unlock(&map->lock);
4258 				break;
4259 			}
4260 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4261 			    em->start != start) {
4262 				write_unlock(&map->lock);
4263 				free_extent_map(em);
4264 				break;
4265 			}
4266 			if (!test_range_bit(tree, em->start,
4267 					    extent_map_end(em) - 1,
4268 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4269 					    0, NULL)) {
4270 				remove_extent_mapping(map, em);
4271 				/* once for the rb tree */
4272 				free_extent_map(em);
4273 			}
4274 			start = extent_map_end(em);
4275 			write_unlock(&map->lock);
4276 
4277 			/* once for us */
4278 			free_extent_map(em);
4279 		}
4280 	}
4281 	return try_release_extent_state(map, tree, page, mask);
4282 }
4283 
4284 /*
4285  * helper function for fiemap, which doesn't want to see any holes.
4286  * This maps until we find something past 'last'
4287  */
4288 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4289 						u64 offset, u64 last)
4290 {
4291 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4292 	struct extent_map *em;
4293 	u64 len;
4294 
4295 	if (offset >= last)
4296 		return NULL;
4297 
4298 	while (1) {
4299 		len = last - offset;
4300 		if (len == 0)
4301 			break;
4302 		len = ALIGN(len, sectorsize);
4303 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4304 				len, 0);
4305 		if (IS_ERR_OR_NULL(em))
4306 			return em;
4307 
4308 		/* if this isn't a hole return it */
4309 		if (em->block_start != EXTENT_MAP_HOLE)
4310 			return em;
4311 
4312 		/* this is a hole, advance to the next extent */
4313 		offset = extent_map_end(em);
4314 		free_extent_map(em);
4315 		if (offset >= last)
4316 			break;
4317 	}
4318 	return NULL;
4319 }
4320 
4321 /*
4322  * To cache previous fiemap extent
4323  *
4324  * Will be used for merging fiemap extent
4325  */
4326 struct fiemap_cache {
4327 	u64 offset;
4328 	u64 phys;
4329 	u64 len;
4330 	u32 flags;
4331 	bool cached;
4332 };
4333 
4334 /*
4335  * Helper to submit fiemap extent.
4336  *
4337  * Will try to merge current fiemap extent specified by @offset, @phys,
4338  * @len and @flags with cached one.
4339  * And only when we fails to merge, cached one will be submitted as
4340  * fiemap extent.
4341  *
4342  * Return value is the same as fiemap_fill_next_extent().
4343  */
4344 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4345 				struct fiemap_cache *cache,
4346 				u64 offset, u64 phys, u64 len, u32 flags)
4347 {
4348 	int ret = 0;
4349 
4350 	if (!cache->cached)
4351 		goto assign;
4352 
4353 	/*
4354 	 * Sanity check, extent_fiemap() should have ensured that new
4355 	 * fiemap extent won't overlap with cahced one.
4356 	 * Not recoverable.
4357 	 *
4358 	 * NOTE: Physical address can overlap, due to compression
4359 	 */
4360 	if (cache->offset + cache->len > offset) {
4361 		WARN_ON(1);
4362 		return -EINVAL;
4363 	}
4364 
4365 	/*
4366 	 * Only merges fiemap extents if
4367 	 * 1) Their logical addresses are continuous
4368 	 *
4369 	 * 2) Their physical addresses are continuous
4370 	 *    So truly compressed (physical size smaller than logical size)
4371 	 *    extents won't get merged with each other
4372 	 *
4373 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4374 	 *    So regular extent won't get merged with prealloc extent
4375 	 */
4376 	if (cache->offset + cache->len  == offset &&
4377 	    cache->phys + cache->len == phys  &&
4378 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4379 			(flags & ~FIEMAP_EXTENT_LAST)) {
4380 		cache->len += len;
4381 		cache->flags |= flags;
4382 		goto try_submit_last;
4383 	}
4384 
4385 	/* Not mergeable, need to submit cached one */
4386 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387 				      cache->len, cache->flags);
4388 	cache->cached = false;
4389 	if (ret)
4390 		return ret;
4391 assign:
4392 	cache->cached = true;
4393 	cache->offset = offset;
4394 	cache->phys = phys;
4395 	cache->len = len;
4396 	cache->flags = flags;
4397 try_submit_last:
4398 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4399 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4400 				cache->phys, cache->len, cache->flags);
4401 		cache->cached = false;
4402 	}
4403 	return ret;
4404 }
4405 
4406 /*
4407  * Emit last fiemap cache
4408  *
4409  * The last fiemap cache may still be cached in the following case:
4410  * 0		      4k		    8k
4411  * |<- Fiemap range ->|
4412  * |<------------  First extent ----------->|
4413  *
4414  * In this case, the first extent range will be cached but not emitted.
4415  * So we must emit it before ending extent_fiemap().
4416  */
4417 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4418 				  struct fiemap_extent_info *fieinfo,
4419 				  struct fiemap_cache *cache)
4420 {
4421 	int ret;
4422 
4423 	if (!cache->cached)
4424 		return 0;
4425 
4426 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4427 				      cache->len, cache->flags);
4428 	cache->cached = false;
4429 	if (ret > 0)
4430 		ret = 0;
4431 	return ret;
4432 }
4433 
4434 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4435 		__u64 start, __u64 len)
4436 {
4437 	int ret = 0;
4438 	u64 off = start;
4439 	u64 max = start + len;
4440 	u32 flags = 0;
4441 	u32 found_type;
4442 	u64 last;
4443 	u64 last_for_get_extent = 0;
4444 	u64 disko = 0;
4445 	u64 isize = i_size_read(inode);
4446 	struct btrfs_key found_key;
4447 	struct extent_map *em = NULL;
4448 	struct extent_state *cached_state = NULL;
4449 	struct btrfs_path *path;
4450 	struct btrfs_root *root = BTRFS_I(inode)->root;
4451 	struct fiemap_cache cache = { 0 };
4452 	int end = 0;
4453 	u64 em_start = 0;
4454 	u64 em_len = 0;
4455 	u64 em_end = 0;
4456 
4457 	if (len == 0)
4458 		return -EINVAL;
4459 
4460 	path = btrfs_alloc_path();
4461 	if (!path)
4462 		return -ENOMEM;
4463 	path->leave_spinning = 1;
4464 
4465 	start = round_down(start, btrfs_inode_sectorsize(inode));
4466 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4467 
4468 	/*
4469 	 * lookup the last file extent.  We're not using i_size here
4470 	 * because there might be preallocation past i_size
4471 	 */
4472 	ret = btrfs_lookup_file_extent(NULL, root, path,
4473 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4474 	if (ret < 0) {
4475 		btrfs_free_path(path);
4476 		return ret;
4477 	} else {
4478 		WARN_ON(!ret);
4479 		if (ret == 1)
4480 			ret = 0;
4481 	}
4482 
4483 	path->slots[0]--;
4484 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4485 	found_type = found_key.type;
4486 
4487 	/* No extents, but there might be delalloc bits */
4488 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4489 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4490 		/* have to trust i_size as the end */
4491 		last = (u64)-1;
4492 		last_for_get_extent = isize;
4493 	} else {
4494 		/*
4495 		 * remember the start of the last extent.  There are a
4496 		 * bunch of different factors that go into the length of the
4497 		 * extent, so its much less complex to remember where it started
4498 		 */
4499 		last = found_key.offset;
4500 		last_for_get_extent = last + 1;
4501 	}
4502 	btrfs_release_path(path);
4503 
4504 	/*
4505 	 * we might have some extents allocated but more delalloc past those
4506 	 * extents.  so, we trust isize unless the start of the last extent is
4507 	 * beyond isize
4508 	 */
4509 	if (last < isize) {
4510 		last = (u64)-1;
4511 		last_for_get_extent = isize;
4512 	}
4513 
4514 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4515 			 &cached_state);
4516 
4517 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4518 	if (!em)
4519 		goto out;
4520 	if (IS_ERR(em)) {
4521 		ret = PTR_ERR(em);
4522 		goto out;
4523 	}
4524 
4525 	while (!end) {
4526 		u64 offset_in_extent = 0;
4527 
4528 		/* break if the extent we found is outside the range */
4529 		if (em->start >= max || extent_map_end(em) < off)
4530 			break;
4531 
4532 		/*
4533 		 * get_extent may return an extent that starts before our
4534 		 * requested range.  We have to make sure the ranges
4535 		 * we return to fiemap always move forward and don't
4536 		 * overlap, so adjust the offsets here
4537 		 */
4538 		em_start = max(em->start, off);
4539 
4540 		/*
4541 		 * record the offset from the start of the extent
4542 		 * for adjusting the disk offset below.  Only do this if the
4543 		 * extent isn't compressed since our in ram offset may be past
4544 		 * what we have actually allocated on disk.
4545 		 */
4546 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4547 			offset_in_extent = em_start - em->start;
4548 		em_end = extent_map_end(em);
4549 		em_len = em_end - em_start;
4550 		disko = 0;
4551 		flags = 0;
4552 
4553 		/*
4554 		 * bump off for our next call to get_extent
4555 		 */
4556 		off = extent_map_end(em);
4557 		if (off >= max)
4558 			end = 1;
4559 
4560 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4561 			end = 1;
4562 			flags |= FIEMAP_EXTENT_LAST;
4563 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4564 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4565 				  FIEMAP_EXTENT_NOT_ALIGNED);
4566 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4567 			flags |= (FIEMAP_EXTENT_DELALLOC |
4568 				  FIEMAP_EXTENT_UNKNOWN);
4569 		} else if (fieinfo->fi_extents_max) {
4570 			u64 bytenr = em->block_start -
4571 				(em->start - em->orig_start);
4572 
4573 			disko = em->block_start + offset_in_extent;
4574 
4575 			/*
4576 			 * As btrfs supports shared space, this information
4577 			 * can be exported to userspace tools via
4578 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4579 			 * then we're just getting a count and we can skip the
4580 			 * lookup stuff.
4581 			 */
4582 			ret = btrfs_check_shared(root,
4583 						 btrfs_ino(BTRFS_I(inode)),
4584 						 bytenr);
4585 			if (ret < 0)
4586 				goto out_free;
4587 			if (ret)
4588 				flags |= FIEMAP_EXTENT_SHARED;
4589 			ret = 0;
4590 		}
4591 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4592 			flags |= FIEMAP_EXTENT_ENCODED;
4593 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4594 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4595 
4596 		free_extent_map(em);
4597 		em = NULL;
4598 		if ((em_start >= last) || em_len == (u64)-1 ||
4599 		   (last == (u64)-1 && isize <= em_end)) {
4600 			flags |= FIEMAP_EXTENT_LAST;
4601 			end = 1;
4602 		}
4603 
4604 		/* now scan forward to see if this is really the last extent. */
4605 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4606 		if (IS_ERR(em)) {
4607 			ret = PTR_ERR(em);
4608 			goto out;
4609 		}
4610 		if (!em) {
4611 			flags |= FIEMAP_EXTENT_LAST;
4612 			end = 1;
4613 		}
4614 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4615 					   em_len, flags);
4616 		if (ret) {
4617 			if (ret == 1)
4618 				ret = 0;
4619 			goto out_free;
4620 		}
4621 	}
4622 out_free:
4623 	if (!ret)
4624 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4625 	free_extent_map(em);
4626 out:
4627 	btrfs_free_path(path);
4628 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4629 			     &cached_state);
4630 	return ret;
4631 }
4632 
4633 static void __free_extent_buffer(struct extent_buffer *eb)
4634 {
4635 	btrfs_leak_debug_del(&eb->leak_list);
4636 	kmem_cache_free(extent_buffer_cache, eb);
4637 }
4638 
4639 int extent_buffer_under_io(struct extent_buffer *eb)
4640 {
4641 	return (atomic_read(&eb->io_pages) ||
4642 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4643 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4644 }
4645 
4646 /*
4647  * Helper for releasing extent buffer page.
4648  */
4649 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4650 {
4651 	unsigned long index;
4652 	struct page *page;
4653 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4654 
4655 	BUG_ON(extent_buffer_under_io(eb));
4656 
4657 	index = num_extent_pages(eb->start, eb->len);
4658 	if (index == 0)
4659 		return;
4660 
4661 	do {
4662 		index--;
4663 		page = eb->pages[index];
4664 		if (!page)
4665 			continue;
4666 		if (mapped)
4667 			spin_lock(&page->mapping->private_lock);
4668 		/*
4669 		 * We do this since we'll remove the pages after we've
4670 		 * removed the eb from the radix tree, so we could race
4671 		 * and have this page now attached to the new eb.  So
4672 		 * only clear page_private if it's still connected to
4673 		 * this eb.
4674 		 */
4675 		if (PagePrivate(page) &&
4676 		    page->private == (unsigned long)eb) {
4677 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4678 			BUG_ON(PageDirty(page));
4679 			BUG_ON(PageWriteback(page));
4680 			/*
4681 			 * We need to make sure we haven't be attached
4682 			 * to a new eb.
4683 			 */
4684 			ClearPagePrivate(page);
4685 			set_page_private(page, 0);
4686 			/* One for the page private */
4687 			put_page(page);
4688 		}
4689 
4690 		if (mapped)
4691 			spin_unlock(&page->mapping->private_lock);
4692 
4693 		/* One for when we allocated the page */
4694 		put_page(page);
4695 	} while (index != 0);
4696 }
4697 
4698 /*
4699  * Helper for releasing the extent buffer.
4700  */
4701 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4702 {
4703 	btrfs_release_extent_buffer_page(eb);
4704 	__free_extent_buffer(eb);
4705 }
4706 
4707 static struct extent_buffer *
4708 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4709 		      unsigned long len)
4710 {
4711 	struct extent_buffer *eb = NULL;
4712 
4713 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4714 	eb->start = start;
4715 	eb->len = len;
4716 	eb->fs_info = fs_info;
4717 	eb->bflags = 0;
4718 	rwlock_init(&eb->lock);
4719 	atomic_set(&eb->write_locks, 0);
4720 	atomic_set(&eb->read_locks, 0);
4721 	atomic_set(&eb->blocking_readers, 0);
4722 	atomic_set(&eb->blocking_writers, 0);
4723 	atomic_set(&eb->spinning_readers, 0);
4724 	atomic_set(&eb->spinning_writers, 0);
4725 	eb->lock_nested = 0;
4726 	init_waitqueue_head(&eb->write_lock_wq);
4727 	init_waitqueue_head(&eb->read_lock_wq);
4728 
4729 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4730 
4731 	spin_lock_init(&eb->refs_lock);
4732 	atomic_set(&eb->refs, 1);
4733 	atomic_set(&eb->io_pages, 0);
4734 
4735 	/*
4736 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737 	 */
4738 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4739 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4740 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4741 
4742 	return eb;
4743 }
4744 
4745 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4746 {
4747 	unsigned long i;
4748 	struct page *p;
4749 	struct extent_buffer *new;
4750 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4751 
4752 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4753 	if (new == NULL)
4754 		return NULL;
4755 
4756 	for (i = 0; i < num_pages; i++) {
4757 		p = alloc_page(GFP_NOFS);
4758 		if (!p) {
4759 			btrfs_release_extent_buffer(new);
4760 			return NULL;
4761 		}
4762 		attach_extent_buffer_page(new, p);
4763 		WARN_ON(PageDirty(p));
4764 		SetPageUptodate(p);
4765 		new->pages[i] = p;
4766 		copy_page(page_address(p), page_address(src->pages[i]));
4767 	}
4768 
4769 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4770 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4771 
4772 	return new;
4773 }
4774 
4775 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4776 						  u64 start, unsigned long len)
4777 {
4778 	struct extent_buffer *eb;
4779 	unsigned long num_pages;
4780 	unsigned long i;
4781 
4782 	num_pages = num_extent_pages(start, len);
4783 
4784 	eb = __alloc_extent_buffer(fs_info, start, len);
4785 	if (!eb)
4786 		return NULL;
4787 
4788 	for (i = 0; i < num_pages; i++) {
4789 		eb->pages[i] = alloc_page(GFP_NOFS);
4790 		if (!eb->pages[i])
4791 			goto err;
4792 	}
4793 	set_extent_buffer_uptodate(eb);
4794 	btrfs_set_header_nritems(eb, 0);
4795 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4796 
4797 	return eb;
4798 err:
4799 	for (; i > 0; i--)
4800 		__free_page(eb->pages[i - 1]);
4801 	__free_extent_buffer(eb);
4802 	return NULL;
4803 }
4804 
4805 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4806 						u64 start)
4807 {
4808 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4809 }
4810 
4811 static void check_buffer_tree_ref(struct extent_buffer *eb)
4812 {
4813 	int refs;
4814 	/* the ref bit is tricky.  We have to make sure it is set
4815 	 * if we have the buffer dirty.   Otherwise the
4816 	 * code to free a buffer can end up dropping a dirty
4817 	 * page
4818 	 *
4819 	 * Once the ref bit is set, it won't go away while the
4820 	 * buffer is dirty or in writeback, and it also won't
4821 	 * go away while we have the reference count on the
4822 	 * eb bumped.
4823 	 *
4824 	 * We can't just set the ref bit without bumping the
4825 	 * ref on the eb because free_extent_buffer might
4826 	 * see the ref bit and try to clear it.  If this happens
4827 	 * free_extent_buffer might end up dropping our original
4828 	 * ref by mistake and freeing the page before we are able
4829 	 * to add one more ref.
4830 	 *
4831 	 * So bump the ref count first, then set the bit.  If someone
4832 	 * beat us to it, drop the ref we added.
4833 	 */
4834 	refs = atomic_read(&eb->refs);
4835 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836 		return;
4837 
4838 	spin_lock(&eb->refs_lock);
4839 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4840 		atomic_inc(&eb->refs);
4841 	spin_unlock(&eb->refs_lock);
4842 }
4843 
4844 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4845 		struct page *accessed)
4846 {
4847 	unsigned long num_pages, i;
4848 
4849 	check_buffer_tree_ref(eb);
4850 
4851 	num_pages = num_extent_pages(eb->start, eb->len);
4852 	for (i = 0; i < num_pages; i++) {
4853 		struct page *p = eb->pages[i];
4854 
4855 		if (p != accessed)
4856 			mark_page_accessed(p);
4857 	}
4858 }
4859 
4860 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4861 					 u64 start)
4862 {
4863 	struct extent_buffer *eb;
4864 
4865 	rcu_read_lock();
4866 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4867 			       start >> PAGE_SHIFT);
4868 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4869 		rcu_read_unlock();
4870 		/*
4871 		 * Lock our eb's refs_lock to avoid races with
4872 		 * free_extent_buffer. When we get our eb it might be flagged
4873 		 * with EXTENT_BUFFER_STALE and another task running
4874 		 * free_extent_buffer might have seen that flag set,
4875 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4876 		 * writeback flags not set) and it's still in the tree (flag
4877 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4878 		 * of decrementing the extent buffer's reference count twice.
4879 		 * So here we could race and increment the eb's reference count,
4880 		 * clear its stale flag, mark it as dirty and drop our reference
4881 		 * before the other task finishes executing free_extent_buffer,
4882 		 * which would later result in an attempt to free an extent
4883 		 * buffer that is dirty.
4884 		 */
4885 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4886 			spin_lock(&eb->refs_lock);
4887 			spin_unlock(&eb->refs_lock);
4888 		}
4889 		mark_extent_buffer_accessed(eb, NULL);
4890 		return eb;
4891 	}
4892 	rcu_read_unlock();
4893 
4894 	return NULL;
4895 }
4896 
4897 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4898 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4899 					u64 start)
4900 {
4901 	struct extent_buffer *eb, *exists = NULL;
4902 	int ret;
4903 
4904 	eb = find_extent_buffer(fs_info, start);
4905 	if (eb)
4906 		return eb;
4907 	eb = alloc_dummy_extent_buffer(fs_info, start);
4908 	if (!eb)
4909 		return NULL;
4910 	eb->fs_info = fs_info;
4911 again:
4912 	ret = radix_tree_preload(GFP_NOFS);
4913 	if (ret)
4914 		goto free_eb;
4915 	spin_lock(&fs_info->buffer_lock);
4916 	ret = radix_tree_insert(&fs_info->buffer_radix,
4917 				start >> PAGE_SHIFT, eb);
4918 	spin_unlock(&fs_info->buffer_lock);
4919 	radix_tree_preload_end();
4920 	if (ret == -EEXIST) {
4921 		exists = find_extent_buffer(fs_info, start);
4922 		if (exists)
4923 			goto free_eb;
4924 		else
4925 			goto again;
4926 	}
4927 	check_buffer_tree_ref(eb);
4928 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4929 
4930 	/*
4931 	 * We will free dummy extent buffer's if they come into
4932 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4933 	 * want the buffers to stay in memory until we're done with them, so
4934 	 * bump the ref count again.
4935 	 */
4936 	atomic_inc(&eb->refs);
4937 	return eb;
4938 free_eb:
4939 	btrfs_release_extent_buffer(eb);
4940 	return exists;
4941 }
4942 #endif
4943 
4944 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4945 					  u64 start)
4946 {
4947 	unsigned long len = fs_info->nodesize;
4948 	unsigned long num_pages = num_extent_pages(start, len);
4949 	unsigned long i;
4950 	unsigned long index = start >> PAGE_SHIFT;
4951 	struct extent_buffer *eb;
4952 	struct extent_buffer *exists = NULL;
4953 	struct page *p;
4954 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4955 	int uptodate = 1;
4956 	int ret;
4957 
4958 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4959 		btrfs_err(fs_info, "bad tree block start %llu", start);
4960 		return ERR_PTR(-EINVAL);
4961 	}
4962 
4963 	eb = find_extent_buffer(fs_info, start);
4964 	if (eb)
4965 		return eb;
4966 
4967 	eb = __alloc_extent_buffer(fs_info, start, len);
4968 	if (!eb)
4969 		return ERR_PTR(-ENOMEM);
4970 
4971 	for (i = 0; i < num_pages; i++, index++) {
4972 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4973 		if (!p) {
4974 			exists = ERR_PTR(-ENOMEM);
4975 			goto free_eb;
4976 		}
4977 
4978 		spin_lock(&mapping->private_lock);
4979 		if (PagePrivate(p)) {
4980 			/*
4981 			 * We could have already allocated an eb for this page
4982 			 * and attached one so lets see if we can get a ref on
4983 			 * the existing eb, and if we can we know it's good and
4984 			 * we can just return that one, else we know we can just
4985 			 * overwrite page->private.
4986 			 */
4987 			exists = (struct extent_buffer *)p->private;
4988 			if (atomic_inc_not_zero(&exists->refs)) {
4989 				spin_unlock(&mapping->private_lock);
4990 				unlock_page(p);
4991 				put_page(p);
4992 				mark_extent_buffer_accessed(exists, p);
4993 				goto free_eb;
4994 			}
4995 			exists = NULL;
4996 
4997 			/*
4998 			 * Do this so attach doesn't complain and we need to
4999 			 * drop the ref the old guy had.
5000 			 */
5001 			ClearPagePrivate(p);
5002 			WARN_ON(PageDirty(p));
5003 			put_page(p);
5004 		}
5005 		attach_extent_buffer_page(eb, p);
5006 		spin_unlock(&mapping->private_lock);
5007 		WARN_ON(PageDirty(p));
5008 		eb->pages[i] = p;
5009 		if (!PageUptodate(p))
5010 			uptodate = 0;
5011 
5012 		/*
5013 		 * see below about how we avoid a nasty race with release page
5014 		 * and why we unlock later
5015 		 */
5016 	}
5017 	if (uptodate)
5018 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5019 again:
5020 	ret = radix_tree_preload(GFP_NOFS);
5021 	if (ret) {
5022 		exists = ERR_PTR(ret);
5023 		goto free_eb;
5024 	}
5025 
5026 	spin_lock(&fs_info->buffer_lock);
5027 	ret = radix_tree_insert(&fs_info->buffer_radix,
5028 				start >> PAGE_SHIFT, eb);
5029 	spin_unlock(&fs_info->buffer_lock);
5030 	radix_tree_preload_end();
5031 	if (ret == -EEXIST) {
5032 		exists = find_extent_buffer(fs_info, start);
5033 		if (exists)
5034 			goto free_eb;
5035 		else
5036 			goto again;
5037 	}
5038 	/* add one reference for the tree */
5039 	check_buffer_tree_ref(eb);
5040 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5041 
5042 	/*
5043 	 * there is a race where release page may have
5044 	 * tried to find this extent buffer in the radix
5045 	 * but failed.  It will tell the VM it is safe to
5046 	 * reclaim the, and it will clear the page private bit.
5047 	 * We must make sure to set the page private bit properly
5048 	 * after the extent buffer is in the radix tree so
5049 	 * it doesn't get lost
5050 	 */
5051 	SetPageChecked(eb->pages[0]);
5052 	for (i = 1; i < num_pages; i++) {
5053 		p = eb->pages[i];
5054 		ClearPageChecked(p);
5055 		unlock_page(p);
5056 	}
5057 	unlock_page(eb->pages[0]);
5058 	return eb;
5059 
5060 free_eb:
5061 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5062 	for (i = 0; i < num_pages; i++) {
5063 		if (eb->pages[i])
5064 			unlock_page(eb->pages[i]);
5065 	}
5066 
5067 	btrfs_release_extent_buffer(eb);
5068 	return exists;
5069 }
5070 
5071 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5072 {
5073 	struct extent_buffer *eb =
5074 			container_of(head, struct extent_buffer, rcu_head);
5075 
5076 	__free_extent_buffer(eb);
5077 }
5078 
5079 /* Expects to have eb->eb_lock already held */
5080 static int release_extent_buffer(struct extent_buffer *eb)
5081 {
5082 	WARN_ON(atomic_read(&eb->refs) == 0);
5083 	if (atomic_dec_and_test(&eb->refs)) {
5084 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5085 			struct btrfs_fs_info *fs_info = eb->fs_info;
5086 
5087 			spin_unlock(&eb->refs_lock);
5088 
5089 			spin_lock(&fs_info->buffer_lock);
5090 			radix_tree_delete(&fs_info->buffer_radix,
5091 					  eb->start >> PAGE_SHIFT);
5092 			spin_unlock(&fs_info->buffer_lock);
5093 		} else {
5094 			spin_unlock(&eb->refs_lock);
5095 		}
5096 
5097 		/* Should be safe to release our pages at this point */
5098 		btrfs_release_extent_buffer_page(eb);
5099 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5100 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5101 			__free_extent_buffer(eb);
5102 			return 1;
5103 		}
5104 #endif
5105 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5106 		return 1;
5107 	}
5108 	spin_unlock(&eb->refs_lock);
5109 
5110 	return 0;
5111 }
5112 
5113 void free_extent_buffer(struct extent_buffer *eb)
5114 {
5115 	int refs;
5116 	int old;
5117 	if (!eb)
5118 		return;
5119 
5120 	while (1) {
5121 		refs = atomic_read(&eb->refs);
5122 		if (refs <= 3)
5123 			break;
5124 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5125 		if (old == refs)
5126 			return;
5127 	}
5128 
5129 	spin_lock(&eb->refs_lock);
5130 	if (atomic_read(&eb->refs) == 2 &&
5131 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5132 		atomic_dec(&eb->refs);
5133 
5134 	if (atomic_read(&eb->refs) == 2 &&
5135 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5136 	    !extent_buffer_under_io(eb) &&
5137 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138 		atomic_dec(&eb->refs);
5139 
5140 	/*
5141 	 * I know this is terrible, but it's temporary until we stop tracking
5142 	 * the uptodate bits and such for the extent buffers.
5143 	 */
5144 	release_extent_buffer(eb);
5145 }
5146 
5147 void free_extent_buffer_stale(struct extent_buffer *eb)
5148 {
5149 	if (!eb)
5150 		return;
5151 
5152 	spin_lock(&eb->refs_lock);
5153 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5154 
5155 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5156 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5157 		atomic_dec(&eb->refs);
5158 	release_extent_buffer(eb);
5159 }
5160 
5161 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5162 {
5163 	unsigned long i;
5164 	unsigned long num_pages;
5165 	struct page *page;
5166 
5167 	num_pages = num_extent_pages(eb->start, eb->len);
5168 
5169 	for (i = 0; i < num_pages; i++) {
5170 		page = eb->pages[i];
5171 		if (!PageDirty(page))
5172 			continue;
5173 
5174 		lock_page(page);
5175 		WARN_ON(!PagePrivate(page));
5176 
5177 		clear_page_dirty_for_io(page);
5178 		xa_lock_irq(&page->mapping->i_pages);
5179 		if (!PageDirty(page)) {
5180 			radix_tree_tag_clear(&page->mapping->i_pages,
5181 						page_index(page),
5182 						PAGECACHE_TAG_DIRTY);
5183 		}
5184 		xa_unlock_irq(&page->mapping->i_pages);
5185 		ClearPageError(page);
5186 		unlock_page(page);
5187 	}
5188 	WARN_ON(atomic_read(&eb->refs) == 0);
5189 }
5190 
5191 int set_extent_buffer_dirty(struct extent_buffer *eb)
5192 {
5193 	unsigned long i;
5194 	unsigned long num_pages;
5195 	int was_dirty = 0;
5196 
5197 	check_buffer_tree_ref(eb);
5198 
5199 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5200 
5201 	num_pages = num_extent_pages(eb->start, eb->len);
5202 	WARN_ON(atomic_read(&eb->refs) == 0);
5203 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5204 
5205 	for (i = 0; i < num_pages; i++)
5206 		set_page_dirty(eb->pages[i]);
5207 	return was_dirty;
5208 }
5209 
5210 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5211 {
5212 	unsigned long i;
5213 	struct page *page;
5214 	unsigned long num_pages;
5215 
5216 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5217 	num_pages = num_extent_pages(eb->start, eb->len);
5218 	for (i = 0; i < num_pages; i++) {
5219 		page = eb->pages[i];
5220 		if (page)
5221 			ClearPageUptodate(page);
5222 	}
5223 }
5224 
5225 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5226 {
5227 	unsigned long i;
5228 	struct page *page;
5229 	unsigned long num_pages;
5230 
5231 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5232 	num_pages = num_extent_pages(eb->start, eb->len);
5233 	for (i = 0; i < num_pages; i++) {
5234 		page = eb->pages[i];
5235 		SetPageUptodate(page);
5236 	}
5237 }
5238 
5239 int read_extent_buffer_pages(struct extent_io_tree *tree,
5240 			     struct extent_buffer *eb, int wait, int mirror_num)
5241 {
5242 	unsigned long i;
5243 	struct page *page;
5244 	int err;
5245 	int ret = 0;
5246 	int locked_pages = 0;
5247 	int all_uptodate = 1;
5248 	unsigned long num_pages;
5249 	unsigned long num_reads = 0;
5250 	struct bio *bio = NULL;
5251 	unsigned long bio_flags = 0;
5252 
5253 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5254 		return 0;
5255 
5256 	num_pages = num_extent_pages(eb->start, eb->len);
5257 	for (i = 0; i < num_pages; i++) {
5258 		page = eb->pages[i];
5259 		if (wait == WAIT_NONE) {
5260 			if (!trylock_page(page))
5261 				goto unlock_exit;
5262 		} else {
5263 			lock_page(page);
5264 		}
5265 		locked_pages++;
5266 	}
5267 	/*
5268 	 * We need to firstly lock all pages to make sure that
5269 	 * the uptodate bit of our pages won't be affected by
5270 	 * clear_extent_buffer_uptodate().
5271 	 */
5272 	for (i = 0; i < num_pages; i++) {
5273 		page = eb->pages[i];
5274 		if (!PageUptodate(page)) {
5275 			num_reads++;
5276 			all_uptodate = 0;
5277 		}
5278 	}
5279 
5280 	if (all_uptodate) {
5281 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282 		goto unlock_exit;
5283 	}
5284 
5285 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5286 	eb->read_mirror = 0;
5287 	atomic_set(&eb->io_pages, num_reads);
5288 	for (i = 0; i < num_pages; i++) {
5289 		page = eb->pages[i];
5290 
5291 		if (!PageUptodate(page)) {
5292 			if (ret) {
5293 				atomic_dec(&eb->io_pages);
5294 				unlock_page(page);
5295 				continue;
5296 			}
5297 
5298 			ClearPageError(page);
5299 			err = __extent_read_full_page(tree, page,
5300 						      btree_get_extent, &bio,
5301 						      mirror_num, &bio_flags,
5302 						      REQ_META);
5303 			if (err) {
5304 				ret = err;
5305 				/*
5306 				 * We use &bio in above __extent_read_full_page,
5307 				 * so we ensure that if it returns error, the
5308 				 * current page fails to add itself to bio and
5309 				 * it's been unlocked.
5310 				 *
5311 				 * We must dec io_pages by ourselves.
5312 				 */
5313 				atomic_dec(&eb->io_pages);
5314 			}
5315 		} else {
5316 			unlock_page(page);
5317 		}
5318 	}
5319 
5320 	if (bio) {
5321 		err = submit_one_bio(bio, mirror_num, bio_flags);
5322 		if (err)
5323 			return err;
5324 	}
5325 
5326 	if (ret || wait != WAIT_COMPLETE)
5327 		return ret;
5328 
5329 	for (i = 0; i < num_pages; i++) {
5330 		page = eb->pages[i];
5331 		wait_on_page_locked(page);
5332 		if (!PageUptodate(page))
5333 			ret = -EIO;
5334 	}
5335 
5336 	return ret;
5337 
5338 unlock_exit:
5339 	while (locked_pages > 0) {
5340 		locked_pages--;
5341 		page = eb->pages[locked_pages];
5342 		unlock_page(page);
5343 	}
5344 	return ret;
5345 }
5346 
5347 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348 			unsigned long start, unsigned long len)
5349 {
5350 	size_t cur;
5351 	size_t offset;
5352 	struct page *page;
5353 	char *kaddr;
5354 	char *dst = (char *)dstv;
5355 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5357 
5358 	if (start + len > eb->len) {
5359 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360 		     eb->start, eb->len, start, len);
5361 		memset(dst, 0, len);
5362 		return;
5363 	}
5364 
5365 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5366 
5367 	while (len > 0) {
5368 		page = eb->pages[i];
5369 
5370 		cur = min(len, (PAGE_SIZE - offset));
5371 		kaddr = page_address(page);
5372 		memcpy(dst, kaddr + offset, cur);
5373 
5374 		dst += cur;
5375 		len -= cur;
5376 		offset = 0;
5377 		i++;
5378 	}
5379 }
5380 
5381 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382 			       void __user *dstv,
5383 			       unsigned long start, unsigned long len)
5384 {
5385 	size_t cur;
5386 	size_t offset;
5387 	struct page *page;
5388 	char *kaddr;
5389 	char __user *dst = (char __user *)dstv;
5390 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 	int ret = 0;
5393 
5394 	WARN_ON(start > eb->len);
5395 	WARN_ON(start + len > eb->start + eb->len);
5396 
5397 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5398 
5399 	while (len > 0) {
5400 		page = eb->pages[i];
5401 
5402 		cur = min(len, (PAGE_SIZE - offset));
5403 		kaddr = page_address(page);
5404 		if (copy_to_user(dst, kaddr + offset, cur)) {
5405 			ret = -EFAULT;
5406 			break;
5407 		}
5408 
5409 		dst += cur;
5410 		len -= cur;
5411 		offset = 0;
5412 		i++;
5413 	}
5414 
5415 	return ret;
5416 }
5417 
5418 /*
5419  * return 0 if the item is found within a page.
5420  * return 1 if the item spans two pages.
5421  * return -EINVAL otherwise.
5422  */
5423 int map_private_extent_buffer(const struct extent_buffer *eb,
5424 			      unsigned long start, unsigned long min_len,
5425 			      char **map, unsigned long *map_start,
5426 			      unsigned long *map_len)
5427 {
5428 	size_t offset = start & (PAGE_SIZE - 1);
5429 	char *kaddr;
5430 	struct page *p;
5431 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5433 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5434 		PAGE_SHIFT;
5435 
5436 	if (start + min_len > eb->len) {
5437 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438 		       eb->start, eb->len, start, min_len);
5439 		return -EINVAL;
5440 	}
5441 
5442 	if (i != end_i)
5443 		return 1;
5444 
5445 	if (i == 0) {
5446 		offset = start_offset;
5447 		*map_start = 0;
5448 	} else {
5449 		offset = 0;
5450 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5451 	}
5452 
5453 	p = eb->pages[i];
5454 	kaddr = page_address(p);
5455 	*map = kaddr + offset;
5456 	*map_len = PAGE_SIZE - offset;
5457 	return 0;
5458 }
5459 
5460 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461 			 unsigned long start, unsigned long len)
5462 {
5463 	size_t cur;
5464 	size_t offset;
5465 	struct page *page;
5466 	char *kaddr;
5467 	char *ptr = (char *)ptrv;
5468 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5470 	int ret = 0;
5471 
5472 	WARN_ON(start > eb->len);
5473 	WARN_ON(start + len > eb->start + eb->len);
5474 
5475 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5476 
5477 	while (len > 0) {
5478 		page = eb->pages[i];
5479 
5480 		cur = min(len, (PAGE_SIZE - offset));
5481 
5482 		kaddr = page_address(page);
5483 		ret = memcmp(ptr, kaddr + offset, cur);
5484 		if (ret)
5485 			break;
5486 
5487 		ptr += cur;
5488 		len -= cur;
5489 		offset = 0;
5490 		i++;
5491 	}
5492 	return ret;
5493 }
5494 
5495 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5496 		const void *srcv)
5497 {
5498 	char *kaddr;
5499 
5500 	WARN_ON(!PageUptodate(eb->pages[0]));
5501 	kaddr = page_address(eb->pages[0]);
5502 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503 			BTRFS_FSID_SIZE);
5504 }
5505 
5506 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507 {
5508 	char *kaddr;
5509 
5510 	WARN_ON(!PageUptodate(eb->pages[0]));
5511 	kaddr = page_address(eb->pages[0]);
5512 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513 			BTRFS_FSID_SIZE);
5514 }
5515 
5516 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517 			 unsigned long start, unsigned long len)
5518 {
5519 	size_t cur;
5520 	size_t offset;
5521 	struct page *page;
5522 	char *kaddr;
5523 	char *src = (char *)srcv;
5524 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5526 
5527 	WARN_ON(start > eb->len);
5528 	WARN_ON(start + len > eb->start + eb->len);
5529 
5530 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5531 
5532 	while (len > 0) {
5533 		page = eb->pages[i];
5534 		WARN_ON(!PageUptodate(page));
5535 
5536 		cur = min(len, PAGE_SIZE - offset);
5537 		kaddr = page_address(page);
5538 		memcpy(kaddr + offset, src, cur);
5539 
5540 		src += cur;
5541 		len -= cur;
5542 		offset = 0;
5543 		i++;
5544 	}
5545 }
5546 
5547 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548 		unsigned long len)
5549 {
5550 	size_t cur;
5551 	size_t offset;
5552 	struct page *page;
5553 	char *kaddr;
5554 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5556 
5557 	WARN_ON(start > eb->len);
5558 	WARN_ON(start + len > eb->start + eb->len);
5559 
5560 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5561 
5562 	while (len > 0) {
5563 		page = eb->pages[i];
5564 		WARN_ON(!PageUptodate(page));
5565 
5566 		cur = min(len, PAGE_SIZE - offset);
5567 		kaddr = page_address(page);
5568 		memset(kaddr + offset, 0, cur);
5569 
5570 		len -= cur;
5571 		offset = 0;
5572 		i++;
5573 	}
5574 }
5575 
5576 void copy_extent_buffer_full(struct extent_buffer *dst,
5577 			     struct extent_buffer *src)
5578 {
5579 	int i;
5580 	unsigned num_pages;
5581 
5582 	ASSERT(dst->len == src->len);
5583 
5584 	num_pages = num_extent_pages(dst->start, dst->len);
5585 	for (i = 0; i < num_pages; i++)
5586 		copy_page(page_address(dst->pages[i]),
5587 				page_address(src->pages[i]));
5588 }
5589 
5590 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5591 			unsigned long dst_offset, unsigned long src_offset,
5592 			unsigned long len)
5593 {
5594 	u64 dst_len = dst->len;
5595 	size_t cur;
5596 	size_t offset;
5597 	struct page *page;
5598 	char *kaddr;
5599 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5601 
5602 	WARN_ON(src->len != dst_len);
5603 
5604 	offset = (start_offset + dst_offset) &
5605 		(PAGE_SIZE - 1);
5606 
5607 	while (len > 0) {
5608 		page = dst->pages[i];
5609 		WARN_ON(!PageUptodate(page));
5610 
5611 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5612 
5613 		kaddr = page_address(page);
5614 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5615 
5616 		src_offset += cur;
5617 		len -= cur;
5618 		offset = 0;
5619 		i++;
5620 	}
5621 }
5622 
5623 void le_bitmap_set(u8 *map, unsigned int start, int len)
5624 {
5625 	u8 *p = map + BIT_BYTE(start);
5626 	const unsigned int size = start + len;
5627 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629 
5630 	while (len - bits_to_set >= 0) {
5631 		*p |= mask_to_set;
5632 		len -= bits_to_set;
5633 		bits_to_set = BITS_PER_BYTE;
5634 		mask_to_set = ~0;
5635 		p++;
5636 	}
5637 	if (len) {
5638 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639 		*p |= mask_to_set;
5640 	}
5641 }
5642 
5643 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644 {
5645 	u8 *p = map + BIT_BYTE(start);
5646 	const unsigned int size = start + len;
5647 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649 
5650 	while (len - bits_to_clear >= 0) {
5651 		*p &= ~mask_to_clear;
5652 		len -= bits_to_clear;
5653 		bits_to_clear = BITS_PER_BYTE;
5654 		mask_to_clear = ~0;
5655 		p++;
5656 	}
5657 	if (len) {
5658 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659 		*p &= ~mask_to_clear;
5660 	}
5661 }
5662 
5663 /*
5664  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665  * given bit number
5666  * @eb: the extent buffer
5667  * @start: offset of the bitmap item in the extent buffer
5668  * @nr: bit number
5669  * @page_index: return index of the page in the extent buffer that contains the
5670  * given bit number
5671  * @page_offset: return offset into the page given by page_index
5672  *
5673  * This helper hides the ugliness of finding the byte in an extent buffer which
5674  * contains a given bit.
5675  */
5676 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677 				    unsigned long start, unsigned long nr,
5678 				    unsigned long *page_index,
5679 				    size_t *page_offset)
5680 {
5681 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5682 	size_t byte_offset = BIT_BYTE(nr);
5683 	size_t offset;
5684 
5685 	/*
5686 	 * The byte we want is the offset of the extent buffer + the offset of
5687 	 * the bitmap item in the extent buffer + the offset of the byte in the
5688 	 * bitmap item.
5689 	 */
5690 	offset = start_offset + start + byte_offset;
5691 
5692 	*page_index = offset >> PAGE_SHIFT;
5693 	*page_offset = offset & (PAGE_SIZE - 1);
5694 }
5695 
5696 /**
5697  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698  * @eb: the extent buffer
5699  * @start: offset of the bitmap item in the extent buffer
5700  * @nr: bit number to test
5701  */
5702 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703 			   unsigned long nr)
5704 {
5705 	u8 *kaddr;
5706 	struct page *page;
5707 	unsigned long i;
5708 	size_t offset;
5709 
5710 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5711 	page = eb->pages[i];
5712 	WARN_ON(!PageUptodate(page));
5713 	kaddr = page_address(page);
5714 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715 }
5716 
5717 /**
5718  * extent_buffer_bitmap_set - set an area of a bitmap
5719  * @eb: the extent buffer
5720  * @start: offset of the bitmap item in the extent buffer
5721  * @pos: bit number of the first bit
5722  * @len: number of bits to set
5723  */
5724 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725 			      unsigned long pos, unsigned long len)
5726 {
5727 	u8 *kaddr;
5728 	struct page *page;
5729 	unsigned long i;
5730 	size_t offset;
5731 	const unsigned int size = pos + len;
5732 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5733 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5734 
5735 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5736 	page = eb->pages[i];
5737 	WARN_ON(!PageUptodate(page));
5738 	kaddr = page_address(page);
5739 
5740 	while (len >= bits_to_set) {
5741 		kaddr[offset] |= mask_to_set;
5742 		len -= bits_to_set;
5743 		bits_to_set = BITS_PER_BYTE;
5744 		mask_to_set = ~0;
5745 		if (++offset >= PAGE_SIZE && len > 0) {
5746 			offset = 0;
5747 			page = eb->pages[++i];
5748 			WARN_ON(!PageUptodate(page));
5749 			kaddr = page_address(page);
5750 		}
5751 	}
5752 	if (len) {
5753 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754 		kaddr[offset] |= mask_to_set;
5755 	}
5756 }
5757 
5758 
5759 /**
5760  * extent_buffer_bitmap_clear - clear an area of a bitmap
5761  * @eb: the extent buffer
5762  * @start: offset of the bitmap item in the extent buffer
5763  * @pos: bit number of the first bit
5764  * @len: number of bits to clear
5765  */
5766 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767 				unsigned long pos, unsigned long len)
5768 {
5769 	u8 *kaddr;
5770 	struct page *page;
5771 	unsigned long i;
5772 	size_t offset;
5773 	const unsigned int size = pos + len;
5774 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5775 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5776 
5777 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5778 	page = eb->pages[i];
5779 	WARN_ON(!PageUptodate(page));
5780 	kaddr = page_address(page);
5781 
5782 	while (len >= bits_to_clear) {
5783 		kaddr[offset] &= ~mask_to_clear;
5784 		len -= bits_to_clear;
5785 		bits_to_clear = BITS_PER_BYTE;
5786 		mask_to_clear = ~0;
5787 		if (++offset >= PAGE_SIZE && len > 0) {
5788 			offset = 0;
5789 			page = eb->pages[++i];
5790 			WARN_ON(!PageUptodate(page));
5791 			kaddr = page_address(page);
5792 		}
5793 	}
5794 	if (len) {
5795 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796 		kaddr[offset] &= ~mask_to_clear;
5797 	}
5798 }
5799 
5800 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801 {
5802 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5803 	return distance < len;
5804 }
5805 
5806 static void copy_pages(struct page *dst_page, struct page *src_page,
5807 		       unsigned long dst_off, unsigned long src_off,
5808 		       unsigned long len)
5809 {
5810 	char *dst_kaddr = page_address(dst_page);
5811 	char *src_kaddr;
5812 	int must_memmove = 0;
5813 
5814 	if (dst_page != src_page) {
5815 		src_kaddr = page_address(src_page);
5816 	} else {
5817 		src_kaddr = dst_kaddr;
5818 		if (areas_overlap(src_off, dst_off, len))
5819 			must_memmove = 1;
5820 	}
5821 
5822 	if (must_memmove)
5823 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824 	else
5825 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5826 }
5827 
5828 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829 			   unsigned long src_offset, unsigned long len)
5830 {
5831 	struct btrfs_fs_info *fs_info = dst->fs_info;
5832 	size_t cur;
5833 	size_t dst_off_in_page;
5834 	size_t src_off_in_page;
5835 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5836 	unsigned long dst_i;
5837 	unsigned long src_i;
5838 
5839 	if (src_offset + len > dst->len) {
5840 		btrfs_err(fs_info,
5841 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5842 			 src_offset, len, dst->len);
5843 		BUG_ON(1);
5844 	}
5845 	if (dst_offset + len > dst->len) {
5846 		btrfs_err(fs_info,
5847 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5848 			 dst_offset, len, dst->len);
5849 		BUG_ON(1);
5850 	}
5851 
5852 	while (len > 0) {
5853 		dst_off_in_page = (start_offset + dst_offset) &
5854 			(PAGE_SIZE - 1);
5855 		src_off_in_page = (start_offset + src_offset) &
5856 			(PAGE_SIZE - 1);
5857 
5858 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5860 
5861 		cur = min(len, (unsigned long)(PAGE_SIZE -
5862 					       src_off_in_page));
5863 		cur = min_t(unsigned long, cur,
5864 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5865 
5866 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5867 			   dst_off_in_page, src_off_in_page, cur);
5868 
5869 		src_offset += cur;
5870 		dst_offset += cur;
5871 		len -= cur;
5872 	}
5873 }
5874 
5875 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876 			   unsigned long src_offset, unsigned long len)
5877 {
5878 	struct btrfs_fs_info *fs_info = dst->fs_info;
5879 	size_t cur;
5880 	size_t dst_off_in_page;
5881 	size_t src_off_in_page;
5882 	unsigned long dst_end = dst_offset + len - 1;
5883 	unsigned long src_end = src_offset + len - 1;
5884 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5885 	unsigned long dst_i;
5886 	unsigned long src_i;
5887 
5888 	if (src_offset + len > dst->len) {
5889 		btrfs_err(fs_info,
5890 			  "memmove bogus src_offset %lu move len %lu len %lu",
5891 			  src_offset, len, dst->len);
5892 		BUG_ON(1);
5893 	}
5894 	if (dst_offset + len > dst->len) {
5895 		btrfs_err(fs_info,
5896 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5897 			  dst_offset, len, dst->len);
5898 		BUG_ON(1);
5899 	}
5900 	if (dst_offset < src_offset) {
5901 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902 		return;
5903 	}
5904 	while (len > 0) {
5905 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5907 
5908 		dst_off_in_page = (start_offset + dst_end) &
5909 			(PAGE_SIZE - 1);
5910 		src_off_in_page = (start_offset + src_end) &
5911 			(PAGE_SIZE - 1);
5912 
5913 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5914 		cur = min(cur, dst_off_in_page + 1);
5915 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5916 			   dst_off_in_page - cur + 1,
5917 			   src_off_in_page - cur + 1, cur);
5918 
5919 		dst_end -= cur;
5920 		src_end -= cur;
5921 		len -= cur;
5922 	}
5923 }
5924 
5925 int try_release_extent_buffer(struct page *page)
5926 {
5927 	struct extent_buffer *eb;
5928 
5929 	/*
5930 	 * We need to make sure nobody is attaching this page to an eb right
5931 	 * now.
5932 	 */
5933 	spin_lock(&page->mapping->private_lock);
5934 	if (!PagePrivate(page)) {
5935 		spin_unlock(&page->mapping->private_lock);
5936 		return 1;
5937 	}
5938 
5939 	eb = (struct extent_buffer *)page->private;
5940 	BUG_ON(!eb);
5941 
5942 	/*
5943 	 * This is a little awful but should be ok, we need to make sure that
5944 	 * the eb doesn't disappear out from under us while we're looking at
5945 	 * this page.
5946 	 */
5947 	spin_lock(&eb->refs_lock);
5948 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5949 		spin_unlock(&eb->refs_lock);
5950 		spin_unlock(&page->mapping->private_lock);
5951 		return 0;
5952 	}
5953 	spin_unlock(&page->mapping->private_lock);
5954 
5955 	/*
5956 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957 	 * so just return, this page will likely be freed soon anyway.
5958 	 */
5959 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960 		spin_unlock(&eb->refs_lock);
5961 		return 0;
5962 	}
5963 
5964 	return release_extent_buffer(eb);
5965 }
5966