1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 28 static struct kmem_cache *extent_state_cache; 29 static struct kmem_cache *extent_buffer_cache; 30 static struct bio_set btrfs_bioset; 31 32 static inline bool extent_state_in_tree(const struct extent_state *state) 33 { 34 return !RB_EMPTY_NODE(&state->rb_node); 35 } 36 37 #ifdef CONFIG_BTRFS_DEBUG 38 static LIST_HEAD(states); 39 static DEFINE_SPINLOCK(leak_lock); 40 41 static inline void btrfs_leak_debug_add(spinlock_t *lock, 42 struct list_head *new, 43 struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(lock, flags); 50 } 51 52 static inline void btrfs_leak_debug_del(spinlock_t *lock, 53 struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(lock, flags); 60 } 61 62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 63 { 64 struct extent_buffer *eb; 65 unsigned long flags; 66 67 /* 68 * If we didn't get into open_ctree our allocated_ebs will not be 69 * initialized, so just skip this. 70 */ 71 if (!fs_info->allocated_ebs.next) 72 return; 73 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 86 } 87 88 static inline void btrfs_extent_state_leak_debug_check(void) 89 { 90 struct extent_state *state; 91 92 while (!list_empty(&states)) { 93 state = list_entry(states.next, struct extent_state, leak_list); 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 95 state->start, state->end, state->state, 96 extent_state_in_tree(state), 97 refcount_read(&state->refs)); 98 list_del(&state->leak_list); 99 kmem_cache_free(extent_state_cache, state); 100 } 101 } 102 103 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 105 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 106 struct extent_io_tree *tree, u64 start, u64 end) 107 { 108 struct inode *inode = tree->private_data; 109 u64 isize; 110 111 if (!inode || !is_data_inode(inode)) 112 return; 113 114 isize = i_size_read(inode); 115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 117 "%s: ino %llu isize %llu odd range [%llu,%llu]", 118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 119 } 120 } 121 #else 122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 123 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 124 #define btrfs_extent_state_leak_debug_check() do {} while (0) 125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 126 #endif 127 128 struct tree_entry { 129 u64 start; 130 u64 end; 131 struct rb_node rb_node; 132 }; 133 134 struct extent_page_data { 135 struct bio *bio; 136 /* tells writepage not to lock the state bits for this range 137 * it still does the unlocking 138 */ 139 unsigned int extent_locked:1; 140 141 /* tells the submit_bio code to use REQ_SYNC */ 142 unsigned int sync_io:1; 143 }; 144 145 static int add_extent_changeset(struct extent_state *state, unsigned bits, 146 struct extent_changeset *changeset, 147 int set) 148 { 149 int ret; 150 151 if (!changeset) 152 return 0; 153 if (set && (state->state & bits) == bits) 154 return 0; 155 if (!set && (state->state & bits) == 0) 156 return 0; 157 changeset->bytes_changed += state->end - state->start + 1; 158 ret = ulist_add(&changeset->range_changed, state->start, state->end, 159 GFP_ATOMIC); 160 return ret; 161 } 162 163 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 164 unsigned long bio_flags) 165 { 166 blk_status_t ret = 0; 167 struct extent_io_tree *tree = bio->bi_private; 168 169 bio->bi_private = NULL; 170 171 if (is_data_inode(tree->private_data)) 172 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 173 bio_flags); 174 else 175 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 176 mirror_num, bio_flags); 177 178 return blk_status_to_errno(ret); 179 } 180 181 /* Cleanup unsubmitted bios */ 182 static void end_write_bio(struct extent_page_data *epd, int ret) 183 { 184 if (epd->bio) { 185 epd->bio->bi_status = errno_to_blk_status(ret); 186 bio_endio(epd->bio); 187 epd->bio = NULL; 188 } 189 } 190 191 /* 192 * Submit bio from extent page data via submit_one_bio 193 * 194 * Return 0 if everything is OK. 195 * Return <0 for error. 196 */ 197 static int __must_check flush_write_bio(struct extent_page_data *epd) 198 { 199 int ret = 0; 200 201 if (epd->bio) { 202 ret = submit_one_bio(epd->bio, 0, 0); 203 /* 204 * Clean up of epd->bio is handled by its endio function. 205 * And endio is either triggered by successful bio execution 206 * or the error handler of submit bio hook. 207 * So at this point, no matter what happened, we don't need 208 * to clean up epd->bio. 209 */ 210 epd->bio = NULL; 211 } 212 return ret; 213 } 214 215 int __init extent_state_cache_init(void) 216 { 217 extent_state_cache = kmem_cache_create("btrfs_extent_state", 218 sizeof(struct extent_state), 0, 219 SLAB_MEM_SPREAD, NULL); 220 if (!extent_state_cache) 221 return -ENOMEM; 222 return 0; 223 } 224 225 int __init extent_io_init(void) 226 { 227 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 228 sizeof(struct extent_buffer), 0, 229 SLAB_MEM_SPREAD, NULL); 230 if (!extent_buffer_cache) 231 return -ENOMEM; 232 233 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 234 offsetof(struct btrfs_io_bio, bio), 235 BIOSET_NEED_BVECS)) 236 goto free_buffer_cache; 237 238 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 239 goto free_bioset; 240 241 return 0; 242 243 free_bioset: 244 bioset_exit(&btrfs_bioset); 245 246 free_buffer_cache: 247 kmem_cache_destroy(extent_buffer_cache); 248 extent_buffer_cache = NULL; 249 return -ENOMEM; 250 } 251 252 void __cold extent_state_cache_exit(void) 253 { 254 btrfs_extent_state_leak_debug_check(); 255 kmem_cache_destroy(extent_state_cache); 256 } 257 258 void __cold extent_io_exit(void) 259 { 260 /* 261 * Make sure all delayed rcu free are flushed before we 262 * destroy caches. 263 */ 264 rcu_barrier(); 265 kmem_cache_destroy(extent_buffer_cache); 266 bioset_exit(&btrfs_bioset); 267 } 268 269 /* 270 * For the file_extent_tree, we want to hold the inode lock when we lookup and 271 * update the disk_i_size, but lockdep will complain because our io_tree we hold 272 * the tree lock and get the inode lock when setting delalloc. These two things 273 * are unrelated, so make a class for the file_extent_tree so we don't get the 274 * two locking patterns mixed up. 275 */ 276 static struct lock_class_key file_extent_tree_class; 277 278 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 279 struct extent_io_tree *tree, unsigned int owner, 280 void *private_data) 281 { 282 tree->fs_info = fs_info; 283 tree->state = RB_ROOT; 284 tree->dirty_bytes = 0; 285 spin_lock_init(&tree->lock); 286 tree->private_data = private_data; 287 tree->owner = owner; 288 if (owner == IO_TREE_INODE_FILE_EXTENT) 289 lockdep_set_class(&tree->lock, &file_extent_tree_class); 290 } 291 292 void extent_io_tree_release(struct extent_io_tree *tree) 293 { 294 spin_lock(&tree->lock); 295 /* 296 * Do a single barrier for the waitqueue_active check here, the state 297 * of the waitqueue should not change once extent_io_tree_release is 298 * called. 299 */ 300 smp_mb(); 301 while (!RB_EMPTY_ROOT(&tree->state)) { 302 struct rb_node *node; 303 struct extent_state *state; 304 305 node = rb_first(&tree->state); 306 state = rb_entry(node, struct extent_state, rb_node); 307 rb_erase(&state->rb_node, &tree->state); 308 RB_CLEAR_NODE(&state->rb_node); 309 /* 310 * btree io trees aren't supposed to have tasks waiting for 311 * changes in the flags of extent states ever. 312 */ 313 ASSERT(!waitqueue_active(&state->wq)); 314 free_extent_state(state); 315 316 cond_resched_lock(&tree->lock); 317 } 318 spin_unlock(&tree->lock); 319 } 320 321 static struct extent_state *alloc_extent_state(gfp_t mask) 322 { 323 struct extent_state *state; 324 325 /* 326 * The given mask might be not appropriate for the slab allocator, 327 * drop the unsupported bits 328 */ 329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 330 state = kmem_cache_alloc(extent_state_cache, mask); 331 if (!state) 332 return state; 333 state->state = 0; 334 state->failrec = NULL; 335 RB_CLEAR_NODE(&state->rb_node); 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 337 refcount_set(&state->refs, 1); 338 init_waitqueue_head(&state->wq); 339 trace_alloc_extent_state(state, mask, _RET_IP_); 340 return state; 341 } 342 343 void free_extent_state(struct extent_state *state) 344 { 345 if (!state) 346 return; 347 if (refcount_dec_and_test(&state->refs)) { 348 WARN_ON(extent_state_in_tree(state)); 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 350 trace_free_extent_state(state, _RET_IP_); 351 kmem_cache_free(extent_state_cache, state); 352 } 353 } 354 355 static struct rb_node *tree_insert(struct rb_root *root, 356 struct rb_node *search_start, 357 u64 offset, 358 struct rb_node *node, 359 struct rb_node ***p_in, 360 struct rb_node **parent_in) 361 { 362 struct rb_node **p; 363 struct rb_node *parent = NULL; 364 struct tree_entry *entry; 365 366 if (p_in && parent_in) { 367 p = *p_in; 368 parent = *parent_in; 369 goto do_insert; 370 } 371 372 p = search_start ? &search_start : &root->rb_node; 373 while (*p) { 374 parent = *p; 375 entry = rb_entry(parent, struct tree_entry, rb_node); 376 377 if (offset < entry->start) 378 p = &(*p)->rb_left; 379 else if (offset > entry->end) 380 p = &(*p)->rb_right; 381 else 382 return parent; 383 } 384 385 do_insert: 386 rb_link_node(node, parent, p); 387 rb_insert_color(node, root); 388 return NULL; 389 } 390 391 /** 392 * __etree_search - searche @tree for an entry that contains @offset. Such 393 * entry would have entry->start <= offset && entry->end >= offset. 394 * 395 * @tree - the tree to search 396 * @offset - offset that should fall within an entry in @tree 397 * @next_ret - pointer to the first entry whose range ends after @offset 398 * @prev - pointer to the first entry whose range begins before @offset 399 * @p_ret - pointer where new node should be anchored (used when inserting an 400 * entry in the tree) 401 * @parent_ret - points to entry which would have been the parent of the entry, 402 * containing @offset 403 * 404 * This function returns a pointer to the entry that contains @offset byte 405 * address. If no such entry exists, then NULL is returned and the other 406 * pointer arguments to the function are filled, otherwise the found entry is 407 * returned and other pointers are left untouched. 408 */ 409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 410 struct rb_node **next_ret, 411 struct rb_node **prev_ret, 412 struct rb_node ***p_ret, 413 struct rb_node **parent_ret) 414 { 415 struct rb_root *root = &tree->state; 416 struct rb_node **n = &root->rb_node; 417 struct rb_node *prev = NULL; 418 struct rb_node *orig_prev = NULL; 419 struct tree_entry *entry; 420 struct tree_entry *prev_entry = NULL; 421 422 while (*n) { 423 prev = *n; 424 entry = rb_entry(prev, struct tree_entry, rb_node); 425 prev_entry = entry; 426 427 if (offset < entry->start) 428 n = &(*n)->rb_left; 429 else if (offset > entry->end) 430 n = &(*n)->rb_right; 431 else 432 return *n; 433 } 434 435 if (p_ret) 436 *p_ret = n; 437 if (parent_ret) 438 *parent_ret = prev; 439 440 if (next_ret) { 441 orig_prev = prev; 442 while (prev && offset > prev_entry->end) { 443 prev = rb_next(prev); 444 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 445 } 446 *next_ret = prev; 447 prev = orig_prev; 448 } 449 450 if (prev_ret) { 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 452 while (prev && offset < prev_entry->start) { 453 prev = rb_prev(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *prev_ret = prev; 457 } 458 return NULL; 459 } 460 461 static inline struct rb_node * 462 tree_search_for_insert(struct extent_io_tree *tree, 463 u64 offset, 464 struct rb_node ***p_ret, 465 struct rb_node **parent_ret) 466 { 467 struct rb_node *next= NULL; 468 struct rb_node *ret; 469 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 471 if (!ret) 472 return next; 473 return ret; 474 } 475 476 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 477 u64 offset) 478 { 479 return tree_search_for_insert(tree, offset, NULL, NULL); 480 } 481 482 /* 483 * utility function to look for merge candidates inside a given range. 484 * Any extents with matching state are merged together into a single 485 * extent in the tree. Extents with EXTENT_IO in their state field 486 * are not merged because the end_io handlers need to be able to do 487 * operations on them without sleeping (or doing allocations/splits). 488 * 489 * This should be called with the tree lock held. 490 */ 491 static void merge_state(struct extent_io_tree *tree, 492 struct extent_state *state) 493 { 494 struct extent_state *other; 495 struct rb_node *other_node; 496 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 498 return; 499 500 other_node = rb_prev(&state->rb_node); 501 if (other_node) { 502 other = rb_entry(other_node, struct extent_state, rb_node); 503 if (other->end == state->start - 1 && 504 other->state == state->state) { 505 if (tree->private_data && 506 is_data_inode(tree->private_data)) 507 btrfs_merge_delalloc_extent(tree->private_data, 508 state, other); 509 state->start = other->start; 510 rb_erase(&other->rb_node, &tree->state); 511 RB_CLEAR_NODE(&other->rb_node); 512 free_extent_state(other); 513 } 514 } 515 other_node = rb_next(&state->rb_node); 516 if (other_node) { 517 other = rb_entry(other_node, struct extent_state, rb_node); 518 if (other->start == state->end + 1 && 519 other->state == state->state) { 520 if (tree->private_data && 521 is_data_inode(tree->private_data)) 522 btrfs_merge_delalloc_extent(tree->private_data, 523 state, other); 524 state->end = other->end; 525 rb_erase(&other->rb_node, &tree->state); 526 RB_CLEAR_NODE(&other->rb_node); 527 free_extent_state(other); 528 } 529 } 530 } 531 532 static void set_state_bits(struct extent_io_tree *tree, 533 struct extent_state *state, unsigned *bits, 534 struct extent_changeset *changeset); 535 536 /* 537 * insert an extent_state struct into the tree. 'bits' are set on the 538 * struct before it is inserted. 539 * 540 * This may return -EEXIST if the extent is already there, in which case the 541 * state struct is freed. 542 * 543 * The tree lock is not taken internally. This is a utility function and 544 * probably isn't what you want to call (see set/clear_extent_bit). 545 */ 546 static int insert_state(struct extent_io_tree *tree, 547 struct extent_state *state, u64 start, u64 end, 548 struct rb_node ***p, 549 struct rb_node **parent, 550 unsigned *bits, struct extent_changeset *changeset) 551 { 552 struct rb_node *node; 553 554 if (end < start) { 555 btrfs_err(tree->fs_info, 556 "insert state: end < start %llu %llu", end, start); 557 WARN_ON(1); 558 } 559 state->start = start; 560 state->end = end; 561 562 set_state_bits(tree, state, bits, changeset); 563 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 565 if (node) { 566 struct extent_state *found; 567 found = rb_entry(node, struct extent_state, rb_node); 568 btrfs_err(tree->fs_info, 569 "found node %llu %llu on insert of %llu %llu", 570 found->start, found->end, start, end); 571 return -EEXIST; 572 } 573 merge_state(tree, state); 574 return 0; 575 } 576 577 /* 578 * split a given extent state struct in two, inserting the preallocated 579 * struct 'prealloc' as the newly created second half. 'split' indicates an 580 * offset inside 'orig' where it should be split. 581 * 582 * Before calling, 583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 584 * are two extent state structs in the tree: 585 * prealloc: [orig->start, split - 1] 586 * orig: [ split, orig->end ] 587 * 588 * The tree locks are not taken by this function. They need to be held 589 * by the caller. 590 */ 591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 592 struct extent_state *prealloc, u64 split) 593 { 594 struct rb_node *node; 595 596 if (tree->private_data && is_data_inode(tree->private_data)) 597 btrfs_split_delalloc_extent(tree->private_data, orig, split); 598 599 prealloc->start = orig->start; 600 prealloc->end = split - 1; 601 prealloc->state = orig->state; 602 orig->start = split; 603 604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 605 &prealloc->rb_node, NULL, NULL); 606 if (node) { 607 free_extent_state(prealloc); 608 return -EEXIST; 609 } 610 return 0; 611 } 612 613 static struct extent_state *next_state(struct extent_state *state) 614 { 615 struct rb_node *next = rb_next(&state->rb_node); 616 if (next) 617 return rb_entry(next, struct extent_state, rb_node); 618 else 619 return NULL; 620 } 621 622 /* 623 * utility function to clear some bits in an extent state struct. 624 * it will optionally wake up anyone waiting on this state (wake == 1). 625 * 626 * If no bits are set on the state struct after clearing things, the 627 * struct is freed and removed from the tree 628 */ 629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 630 struct extent_state *state, 631 unsigned *bits, int wake, 632 struct extent_changeset *changeset) 633 { 634 struct extent_state *next; 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 636 int ret; 637 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 639 u64 range = state->end - state->start + 1; 640 WARN_ON(range > tree->dirty_bytes); 641 tree->dirty_bytes -= range; 642 } 643 644 if (tree->private_data && is_data_inode(tree->private_data)) 645 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 646 647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 648 BUG_ON(ret < 0); 649 state->state &= ~bits_to_clear; 650 if (wake) 651 wake_up(&state->wq); 652 if (state->state == 0) { 653 next = next_state(state); 654 if (extent_state_in_tree(state)) { 655 rb_erase(&state->rb_node, &tree->state); 656 RB_CLEAR_NODE(&state->rb_node); 657 free_extent_state(state); 658 } else { 659 WARN_ON(1); 660 } 661 } else { 662 merge_state(tree, state); 663 next = next_state(state); 664 } 665 return next; 666 } 667 668 static struct extent_state * 669 alloc_extent_state_atomic(struct extent_state *prealloc) 670 { 671 if (!prealloc) 672 prealloc = alloc_extent_state(GFP_ATOMIC); 673 674 return prealloc; 675 } 676 677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 678 { 679 struct inode *inode = tree->private_data; 680 681 btrfs_panic(btrfs_sb(inode->i_sb), err, 682 "locking error: extent tree was modified by another thread while locked"); 683 } 684 685 /* 686 * clear some bits on a range in the tree. This may require splitting 687 * or inserting elements in the tree, so the gfp mask is used to 688 * indicate which allocations or sleeping are allowed. 689 * 690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 691 * the given range from the tree regardless of state (ie for truncate). 692 * 693 * the range [start, end] is inclusive. 694 * 695 * This takes the tree lock, and returns 0 on success and < 0 on error. 696 */ 697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 698 unsigned bits, int wake, int delete, 699 struct extent_state **cached_state, 700 gfp_t mask, struct extent_changeset *changeset) 701 { 702 struct extent_state *state; 703 struct extent_state *cached; 704 struct extent_state *prealloc = NULL; 705 struct rb_node *node; 706 u64 last_end; 707 int err; 708 int clear = 0; 709 710 btrfs_debug_check_extent_io_range(tree, start, end); 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 712 713 if (bits & EXTENT_DELALLOC) 714 bits |= EXTENT_NORESERVE; 715 716 if (delete) 717 bits |= ~EXTENT_CTLBITS; 718 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 720 clear = 1; 721 again: 722 if (!prealloc && gfpflags_allow_blocking(mask)) { 723 /* 724 * Don't care for allocation failure here because we might end 725 * up not needing the pre-allocated extent state at all, which 726 * is the case if we only have in the tree extent states that 727 * cover our input range and don't cover too any other range. 728 * If we end up needing a new extent state we allocate it later. 729 */ 730 prealloc = alloc_extent_state(mask); 731 } 732 733 spin_lock(&tree->lock); 734 if (cached_state) { 735 cached = *cached_state; 736 737 if (clear) { 738 *cached_state = NULL; 739 cached_state = NULL; 740 } 741 742 if (cached && extent_state_in_tree(cached) && 743 cached->start <= start && cached->end > start) { 744 if (clear) 745 refcount_dec(&cached->refs); 746 state = cached; 747 goto hit_next; 748 } 749 if (clear) 750 free_extent_state(cached); 751 } 752 /* 753 * this search will find the extents that end after 754 * our range starts 755 */ 756 node = tree_search(tree, start); 757 if (!node) 758 goto out; 759 state = rb_entry(node, struct extent_state, rb_node); 760 hit_next: 761 if (state->start > end) 762 goto out; 763 WARN_ON(state->end < start); 764 last_end = state->end; 765 766 /* the state doesn't have the wanted bits, go ahead */ 767 if (!(state->state & bits)) { 768 state = next_state(state); 769 goto next; 770 } 771 772 /* 773 * | ---- desired range ---- | 774 * | state | or 775 * | ------------- state -------------- | 776 * 777 * We need to split the extent we found, and may flip 778 * bits on second half. 779 * 780 * If the extent we found extends past our range, we 781 * just split and search again. It'll get split again 782 * the next time though. 783 * 784 * If the extent we found is inside our range, we clear 785 * the desired bit on it. 786 */ 787 788 if (state->start < start) { 789 prealloc = alloc_extent_state_atomic(prealloc); 790 BUG_ON(!prealloc); 791 err = split_state(tree, state, prealloc, start); 792 if (err) 793 extent_io_tree_panic(tree, err); 794 795 prealloc = NULL; 796 if (err) 797 goto out; 798 if (state->end <= end) { 799 state = clear_state_bit(tree, state, &bits, wake, 800 changeset); 801 goto next; 802 } 803 goto search_again; 804 } 805 /* 806 * | ---- desired range ---- | 807 * | state | 808 * We need to split the extent, and clear the bit 809 * on the first half 810 */ 811 if (state->start <= end && state->end > end) { 812 prealloc = alloc_extent_state_atomic(prealloc); 813 BUG_ON(!prealloc); 814 err = split_state(tree, state, prealloc, end + 1); 815 if (err) 816 extent_io_tree_panic(tree, err); 817 818 if (wake) 819 wake_up(&state->wq); 820 821 clear_state_bit(tree, prealloc, &bits, wake, changeset); 822 823 prealloc = NULL; 824 goto out; 825 } 826 827 state = clear_state_bit(tree, state, &bits, wake, changeset); 828 next: 829 if (last_end == (u64)-1) 830 goto out; 831 start = last_end + 1; 832 if (start <= end && state && !need_resched()) 833 goto hit_next; 834 835 search_again: 836 if (start > end) 837 goto out; 838 spin_unlock(&tree->lock); 839 if (gfpflags_allow_blocking(mask)) 840 cond_resched(); 841 goto again; 842 843 out: 844 spin_unlock(&tree->lock); 845 if (prealloc) 846 free_extent_state(prealloc); 847 848 return 0; 849 850 } 851 852 static void wait_on_state(struct extent_io_tree *tree, 853 struct extent_state *state) 854 __releases(tree->lock) 855 __acquires(tree->lock) 856 { 857 DEFINE_WAIT(wait); 858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 859 spin_unlock(&tree->lock); 860 schedule(); 861 spin_lock(&tree->lock); 862 finish_wait(&state->wq, &wait); 863 } 864 865 /* 866 * waits for one or more bits to clear on a range in the state tree. 867 * The range [start, end] is inclusive. 868 * The tree lock is taken by this function 869 */ 870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 871 unsigned long bits) 872 { 873 struct extent_state *state; 874 struct rb_node *node; 875 876 btrfs_debug_check_extent_io_range(tree, start, end); 877 878 spin_lock(&tree->lock); 879 again: 880 while (1) { 881 /* 882 * this search will find all the extents that end after 883 * our range starts 884 */ 885 node = tree_search(tree, start); 886 process_node: 887 if (!node) 888 break; 889 890 state = rb_entry(node, struct extent_state, rb_node); 891 892 if (state->start > end) 893 goto out; 894 895 if (state->state & bits) { 896 start = state->start; 897 refcount_inc(&state->refs); 898 wait_on_state(tree, state); 899 free_extent_state(state); 900 goto again; 901 } 902 start = state->end + 1; 903 904 if (start > end) 905 break; 906 907 if (!cond_resched_lock(&tree->lock)) { 908 node = rb_next(node); 909 goto process_node; 910 } 911 } 912 out: 913 spin_unlock(&tree->lock); 914 } 915 916 static void set_state_bits(struct extent_io_tree *tree, 917 struct extent_state *state, 918 unsigned *bits, struct extent_changeset *changeset) 919 { 920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 921 int ret; 922 923 if (tree->private_data && is_data_inode(tree->private_data)) 924 btrfs_set_delalloc_extent(tree->private_data, state, bits); 925 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 927 u64 range = state->end - state->start + 1; 928 tree->dirty_bytes += range; 929 } 930 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 931 BUG_ON(ret < 0); 932 state->state |= bits_to_set; 933 } 934 935 static void cache_state_if_flags(struct extent_state *state, 936 struct extent_state **cached_ptr, 937 unsigned flags) 938 { 939 if (cached_ptr && !(*cached_ptr)) { 940 if (!flags || (state->state & flags)) { 941 *cached_ptr = state; 942 refcount_inc(&state->refs); 943 } 944 } 945 } 946 947 static void cache_state(struct extent_state *state, 948 struct extent_state **cached_ptr) 949 { 950 return cache_state_if_flags(state, cached_ptr, 951 EXTENT_LOCKED | EXTENT_BOUNDARY); 952 } 953 954 /* 955 * set some bits on a range in the tree. This may require allocations or 956 * sleeping, so the gfp mask is used to indicate what is allowed. 957 * 958 * If any of the exclusive bits are set, this will fail with -EEXIST if some 959 * part of the range already has the desired bits set. The start of the 960 * existing range is returned in failed_start in this case. 961 * 962 * [start, end] is inclusive This takes the tree lock. 963 */ 964 965 static int __must_check 966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 967 unsigned bits, unsigned exclusive_bits, 968 u64 *failed_start, struct extent_state **cached_state, 969 gfp_t mask, struct extent_changeset *changeset) 970 { 971 struct extent_state *state; 972 struct extent_state *prealloc = NULL; 973 struct rb_node *node; 974 struct rb_node **p; 975 struct rb_node *parent; 976 int err = 0; 977 u64 last_start; 978 u64 last_end; 979 980 btrfs_debug_check_extent_io_range(tree, start, end); 981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 982 983 again: 984 if (!prealloc && gfpflags_allow_blocking(mask)) { 985 /* 986 * Don't care for allocation failure here because we might end 987 * up not needing the pre-allocated extent state at all, which 988 * is the case if we only have in the tree extent states that 989 * cover our input range and don't cover too any other range. 990 * If we end up needing a new extent state we allocate it later. 991 */ 992 prealloc = alloc_extent_state(mask); 993 } 994 995 spin_lock(&tree->lock); 996 if (cached_state && *cached_state) { 997 state = *cached_state; 998 if (state->start <= start && state->end > start && 999 extent_state_in_tree(state)) { 1000 node = &state->rb_node; 1001 goto hit_next; 1002 } 1003 } 1004 /* 1005 * this search will find all the extents that end after 1006 * our range starts. 1007 */ 1008 node = tree_search_for_insert(tree, start, &p, &parent); 1009 if (!node) { 1010 prealloc = alloc_extent_state_atomic(prealloc); 1011 BUG_ON(!prealloc); 1012 err = insert_state(tree, prealloc, start, end, 1013 &p, &parent, &bits, changeset); 1014 if (err) 1015 extent_io_tree_panic(tree, err); 1016 1017 cache_state(prealloc, cached_state); 1018 prealloc = NULL; 1019 goto out; 1020 } 1021 state = rb_entry(node, struct extent_state, rb_node); 1022 hit_next: 1023 last_start = state->start; 1024 last_end = state->end; 1025 1026 /* 1027 * | ---- desired range ---- | 1028 * | state | 1029 * 1030 * Just lock what we found and keep going 1031 */ 1032 if (state->start == start && state->end <= end) { 1033 if (state->state & exclusive_bits) { 1034 *failed_start = state->start; 1035 err = -EEXIST; 1036 goto out; 1037 } 1038 1039 set_state_bits(tree, state, &bits, changeset); 1040 cache_state(state, cached_state); 1041 merge_state(tree, state); 1042 if (last_end == (u64)-1) 1043 goto out; 1044 start = last_end + 1; 1045 state = next_state(state); 1046 if (start < end && state && state->start == start && 1047 !need_resched()) 1048 goto hit_next; 1049 goto search_again; 1050 } 1051 1052 /* 1053 * | ---- desired range ---- | 1054 * | state | 1055 * or 1056 * | ------------- state -------------- | 1057 * 1058 * We need to split the extent we found, and may flip bits on 1059 * second half. 1060 * 1061 * If the extent we found extends past our 1062 * range, we just split and search again. It'll get split 1063 * again the next time though. 1064 * 1065 * If the extent we found is inside our range, we set the 1066 * desired bit on it. 1067 */ 1068 if (state->start < start) { 1069 if (state->state & exclusive_bits) { 1070 *failed_start = start; 1071 err = -EEXIST; 1072 goto out; 1073 } 1074 1075 /* 1076 * If this extent already has all the bits we want set, then 1077 * skip it, not necessary to split it or do anything with it. 1078 */ 1079 if ((state->state & bits) == bits) { 1080 start = state->end + 1; 1081 cache_state(state, cached_state); 1082 goto search_again; 1083 } 1084 1085 prealloc = alloc_extent_state_atomic(prealloc); 1086 BUG_ON(!prealloc); 1087 err = split_state(tree, state, prealloc, start); 1088 if (err) 1089 extent_io_tree_panic(tree, err); 1090 1091 prealloc = NULL; 1092 if (err) 1093 goto out; 1094 if (state->end <= end) { 1095 set_state_bits(tree, state, &bits, changeset); 1096 cache_state(state, cached_state); 1097 merge_state(tree, state); 1098 if (last_end == (u64)-1) 1099 goto out; 1100 start = last_end + 1; 1101 state = next_state(state); 1102 if (start < end && state && state->start == start && 1103 !need_resched()) 1104 goto hit_next; 1105 } 1106 goto search_again; 1107 } 1108 /* 1109 * | ---- desired range ---- | 1110 * | state | or | state | 1111 * 1112 * There's a hole, we need to insert something in it and 1113 * ignore the extent we found. 1114 */ 1115 if (state->start > start) { 1116 u64 this_end; 1117 if (end < last_start) 1118 this_end = end; 1119 else 1120 this_end = last_start - 1; 1121 1122 prealloc = alloc_extent_state_atomic(prealloc); 1123 BUG_ON(!prealloc); 1124 1125 /* 1126 * Avoid to free 'prealloc' if it can be merged with 1127 * the later extent. 1128 */ 1129 err = insert_state(tree, prealloc, start, this_end, 1130 NULL, NULL, &bits, changeset); 1131 if (err) 1132 extent_io_tree_panic(tree, err); 1133 1134 cache_state(prealloc, cached_state); 1135 prealloc = NULL; 1136 start = this_end + 1; 1137 goto search_again; 1138 } 1139 /* 1140 * | ---- desired range ---- | 1141 * | state | 1142 * We need to split the extent, and set the bit 1143 * on the first half 1144 */ 1145 if (state->start <= end && state->end > end) { 1146 if (state->state & exclusive_bits) { 1147 *failed_start = start; 1148 err = -EEXIST; 1149 goto out; 1150 } 1151 1152 prealloc = alloc_extent_state_atomic(prealloc); 1153 BUG_ON(!prealloc); 1154 err = split_state(tree, state, prealloc, end + 1); 1155 if (err) 1156 extent_io_tree_panic(tree, err); 1157 1158 set_state_bits(tree, prealloc, &bits, changeset); 1159 cache_state(prealloc, cached_state); 1160 merge_state(tree, prealloc); 1161 prealloc = NULL; 1162 goto out; 1163 } 1164 1165 search_again: 1166 if (start > end) 1167 goto out; 1168 spin_unlock(&tree->lock); 1169 if (gfpflags_allow_blocking(mask)) 1170 cond_resched(); 1171 goto again; 1172 1173 out: 1174 spin_unlock(&tree->lock); 1175 if (prealloc) 1176 free_extent_state(prealloc); 1177 1178 return err; 1179 1180 } 1181 1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1183 unsigned bits, u64 * failed_start, 1184 struct extent_state **cached_state, gfp_t mask) 1185 { 1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1187 cached_state, mask, NULL); 1188 } 1189 1190 1191 /** 1192 * convert_extent_bit - convert all bits in a given range from one bit to 1193 * another 1194 * @tree: the io tree to search 1195 * @start: the start offset in bytes 1196 * @end: the end offset in bytes (inclusive) 1197 * @bits: the bits to set in this range 1198 * @clear_bits: the bits to clear in this range 1199 * @cached_state: state that we're going to cache 1200 * 1201 * This will go through and set bits for the given range. If any states exist 1202 * already in this range they are set with the given bit and cleared of the 1203 * clear_bits. This is only meant to be used by things that are mergeable, ie 1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1205 * boundary bits like LOCK. 1206 * 1207 * All allocations are done with GFP_NOFS. 1208 */ 1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1210 unsigned bits, unsigned clear_bits, 1211 struct extent_state **cached_state) 1212 { 1213 struct extent_state *state; 1214 struct extent_state *prealloc = NULL; 1215 struct rb_node *node; 1216 struct rb_node **p; 1217 struct rb_node *parent; 1218 int err = 0; 1219 u64 last_start; 1220 u64 last_end; 1221 bool first_iteration = true; 1222 1223 btrfs_debug_check_extent_io_range(tree, start, end); 1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1225 clear_bits); 1226 1227 again: 1228 if (!prealloc) { 1229 /* 1230 * Best effort, don't worry if extent state allocation fails 1231 * here for the first iteration. We might have a cached state 1232 * that matches exactly the target range, in which case no 1233 * extent state allocations are needed. We'll only know this 1234 * after locking the tree. 1235 */ 1236 prealloc = alloc_extent_state(GFP_NOFS); 1237 if (!prealloc && !first_iteration) 1238 return -ENOMEM; 1239 } 1240 1241 spin_lock(&tree->lock); 1242 if (cached_state && *cached_state) { 1243 state = *cached_state; 1244 if (state->start <= start && state->end > start && 1245 extent_state_in_tree(state)) { 1246 node = &state->rb_node; 1247 goto hit_next; 1248 } 1249 } 1250 1251 /* 1252 * this search will find all the extents that end after 1253 * our range starts. 1254 */ 1255 node = tree_search_for_insert(tree, start, &p, &parent); 1256 if (!node) { 1257 prealloc = alloc_extent_state_atomic(prealloc); 1258 if (!prealloc) { 1259 err = -ENOMEM; 1260 goto out; 1261 } 1262 err = insert_state(tree, prealloc, start, end, 1263 &p, &parent, &bits, NULL); 1264 if (err) 1265 extent_io_tree_panic(tree, err); 1266 cache_state(prealloc, cached_state); 1267 prealloc = NULL; 1268 goto out; 1269 } 1270 state = rb_entry(node, struct extent_state, rb_node); 1271 hit_next: 1272 last_start = state->start; 1273 last_end = state->end; 1274 1275 /* 1276 * | ---- desired range ---- | 1277 * | state | 1278 * 1279 * Just lock what we found and keep going 1280 */ 1281 if (state->start == start && state->end <= end) { 1282 set_state_bits(tree, state, &bits, NULL); 1283 cache_state(state, cached_state); 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1285 if (last_end == (u64)-1) 1286 goto out; 1287 start = last_end + 1; 1288 if (start < end && state && state->start == start && 1289 !need_resched()) 1290 goto hit_next; 1291 goto search_again; 1292 } 1293 1294 /* 1295 * | ---- desired range ---- | 1296 * | state | 1297 * or 1298 * | ------------- state -------------- | 1299 * 1300 * We need to split the extent we found, and may flip bits on 1301 * second half. 1302 * 1303 * If the extent we found extends past our 1304 * range, we just split and search again. It'll get split 1305 * again the next time though. 1306 * 1307 * If the extent we found is inside our range, we set the 1308 * desired bit on it. 1309 */ 1310 if (state->start < start) { 1311 prealloc = alloc_extent_state_atomic(prealloc); 1312 if (!prealloc) { 1313 err = -ENOMEM; 1314 goto out; 1315 } 1316 err = split_state(tree, state, prealloc, start); 1317 if (err) 1318 extent_io_tree_panic(tree, err); 1319 prealloc = NULL; 1320 if (err) 1321 goto out; 1322 if (state->end <= end) { 1323 set_state_bits(tree, state, &bits, NULL); 1324 cache_state(state, cached_state); 1325 state = clear_state_bit(tree, state, &clear_bits, 0, 1326 NULL); 1327 if (last_end == (u64)-1) 1328 goto out; 1329 start = last_end + 1; 1330 if (start < end && state && state->start == start && 1331 !need_resched()) 1332 goto hit_next; 1333 } 1334 goto search_again; 1335 } 1336 /* 1337 * | ---- desired range ---- | 1338 * | state | or | state | 1339 * 1340 * There's a hole, we need to insert something in it and 1341 * ignore the extent we found. 1342 */ 1343 if (state->start > start) { 1344 u64 this_end; 1345 if (end < last_start) 1346 this_end = end; 1347 else 1348 this_end = last_start - 1; 1349 1350 prealloc = alloc_extent_state_atomic(prealloc); 1351 if (!prealloc) { 1352 err = -ENOMEM; 1353 goto out; 1354 } 1355 1356 /* 1357 * Avoid to free 'prealloc' if it can be merged with 1358 * the later extent. 1359 */ 1360 err = insert_state(tree, prealloc, start, this_end, 1361 NULL, NULL, &bits, NULL); 1362 if (err) 1363 extent_io_tree_panic(tree, err); 1364 cache_state(prealloc, cached_state); 1365 prealloc = NULL; 1366 start = this_end + 1; 1367 goto search_again; 1368 } 1369 /* 1370 * | ---- desired range ---- | 1371 * | state | 1372 * We need to split the extent, and set the bit 1373 * on the first half 1374 */ 1375 if (state->start <= end && state->end > end) { 1376 prealloc = alloc_extent_state_atomic(prealloc); 1377 if (!prealloc) { 1378 err = -ENOMEM; 1379 goto out; 1380 } 1381 1382 err = split_state(tree, state, prealloc, end + 1); 1383 if (err) 1384 extent_io_tree_panic(tree, err); 1385 1386 set_state_bits(tree, prealloc, &bits, NULL); 1387 cache_state(prealloc, cached_state); 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1389 prealloc = NULL; 1390 goto out; 1391 } 1392 1393 search_again: 1394 if (start > end) 1395 goto out; 1396 spin_unlock(&tree->lock); 1397 cond_resched(); 1398 first_iteration = false; 1399 goto again; 1400 1401 out: 1402 spin_unlock(&tree->lock); 1403 if (prealloc) 1404 free_extent_state(prealloc); 1405 1406 return err; 1407 } 1408 1409 /* wrappers around set/clear extent bit */ 1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1411 unsigned bits, struct extent_changeset *changeset) 1412 { 1413 /* 1414 * We don't support EXTENT_LOCKED yet, as current changeset will 1415 * record any bits changed, so for EXTENT_LOCKED case, it will 1416 * either fail with -EEXIST or changeset will record the whole 1417 * range. 1418 */ 1419 BUG_ON(bits & EXTENT_LOCKED); 1420 1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1422 changeset); 1423 } 1424 1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1426 unsigned bits) 1427 { 1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1429 GFP_NOWAIT, NULL); 1430 } 1431 1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1433 unsigned bits, int wake, int delete, 1434 struct extent_state **cached) 1435 { 1436 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1437 cached, GFP_NOFS, NULL); 1438 } 1439 1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1441 unsigned bits, struct extent_changeset *changeset) 1442 { 1443 /* 1444 * Don't support EXTENT_LOCKED case, same reason as 1445 * set_record_extent_bits(). 1446 */ 1447 BUG_ON(bits & EXTENT_LOCKED); 1448 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1450 changeset); 1451 } 1452 1453 /* 1454 * either insert or lock state struct between start and end use mask to tell 1455 * us if waiting is desired. 1456 */ 1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1458 struct extent_state **cached_state) 1459 { 1460 int err; 1461 u64 failed_start; 1462 1463 while (1) { 1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1465 EXTENT_LOCKED, &failed_start, 1466 cached_state, GFP_NOFS, NULL); 1467 if (err == -EEXIST) { 1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1469 start = failed_start; 1470 } else 1471 break; 1472 WARN_ON(start > end); 1473 } 1474 return err; 1475 } 1476 1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1478 { 1479 int err; 1480 u64 failed_start; 1481 1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1483 &failed_start, NULL, GFP_NOFS, NULL); 1484 if (err == -EEXIST) { 1485 if (failed_start > start) 1486 clear_extent_bit(tree, start, failed_start - 1, 1487 EXTENT_LOCKED, 1, 0, NULL); 1488 return 0; 1489 } 1490 return 1; 1491 } 1492 1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1494 { 1495 unsigned long index = start >> PAGE_SHIFT; 1496 unsigned long end_index = end >> PAGE_SHIFT; 1497 struct page *page; 1498 1499 while (index <= end_index) { 1500 page = find_get_page(inode->i_mapping, index); 1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1502 clear_page_dirty_for_io(page); 1503 put_page(page); 1504 index++; 1505 } 1506 } 1507 1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1509 { 1510 unsigned long index = start >> PAGE_SHIFT; 1511 unsigned long end_index = end >> PAGE_SHIFT; 1512 struct page *page; 1513 1514 while (index <= end_index) { 1515 page = find_get_page(inode->i_mapping, index); 1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1517 __set_page_dirty_nobuffers(page); 1518 account_page_redirty(page); 1519 put_page(page); 1520 index++; 1521 } 1522 } 1523 1524 /* find the first state struct with 'bits' set after 'start', and 1525 * return it. tree->lock must be held. NULL will returned if 1526 * nothing was found after 'start' 1527 */ 1528 static struct extent_state * 1529 find_first_extent_bit_state(struct extent_io_tree *tree, 1530 u64 start, unsigned bits) 1531 { 1532 struct rb_node *node; 1533 struct extent_state *state; 1534 1535 /* 1536 * this search will find all the extents that end after 1537 * our range starts. 1538 */ 1539 node = tree_search(tree, start); 1540 if (!node) 1541 goto out; 1542 1543 while (1) { 1544 state = rb_entry(node, struct extent_state, rb_node); 1545 if (state->end >= start && (state->state & bits)) 1546 return state; 1547 1548 node = rb_next(node); 1549 if (!node) 1550 break; 1551 } 1552 out: 1553 return NULL; 1554 } 1555 1556 /* 1557 * find the first offset in the io tree with 'bits' set. zero is 1558 * returned if we find something, and *start_ret and *end_ret are 1559 * set to reflect the state struct that was found. 1560 * 1561 * If nothing was found, 1 is returned. If found something, return 0. 1562 */ 1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1564 u64 *start_ret, u64 *end_ret, unsigned bits, 1565 struct extent_state **cached_state) 1566 { 1567 struct extent_state *state; 1568 int ret = 1; 1569 1570 spin_lock(&tree->lock); 1571 if (cached_state && *cached_state) { 1572 state = *cached_state; 1573 if (state->end == start - 1 && extent_state_in_tree(state)) { 1574 while ((state = next_state(state)) != NULL) { 1575 if (state->state & bits) 1576 goto got_it; 1577 } 1578 free_extent_state(*cached_state); 1579 *cached_state = NULL; 1580 goto out; 1581 } 1582 free_extent_state(*cached_state); 1583 *cached_state = NULL; 1584 } 1585 1586 state = find_first_extent_bit_state(tree, start, bits); 1587 got_it: 1588 if (state) { 1589 cache_state_if_flags(state, cached_state, 0); 1590 *start_ret = state->start; 1591 *end_ret = state->end; 1592 ret = 0; 1593 } 1594 out: 1595 spin_unlock(&tree->lock); 1596 return ret; 1597 } 1598 1599 /** 1600 * find_contiguous_extent_bit: find a contiguous area of bits 1601 * @tree - io tree to check 1602 * @start - offset to start the search from 1603 * @start_ret - the first offset we found with the bits set 1604 * @end_ret - the final contiguous range of the bits that were set 1605 * @bits - bits to look for 1606 * 1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1608 * to set bits appropriately, and then merge them again. During this time it 1609 * will drop the tree->lock, so use this helper if you want to find the actual 1610 * contiguous area for given bits. We will search to the first bit we find, and 1611 * then walk down the tree until we find a non-contiguous area. The area 1612 * returned will be the full contiguous area with the bits set. 1613 */ 1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1615 u64 *start_ret, u64 *end_ret, unsigned bits) 1616 { 1617 struct extent_state *state; 1618 int ret = 1; 1619 1620 spin_lock(&tree->lock); 1621 state = find_first_extent_bit_state(tree, start, bits); 1622 if (state) { 1623 *start_ret = state->start; 1624 *end_ret = state->end; 1625 while ((state = next_state(state)) != NULL) { 1626 if (state->start > (*end_ret + 1)) 1627 break; 1628 *end_ret = state->end; 1629 } 1630 ret = 0; 1631 } 1632 spin_unlock(&tree->lock); 1633 return ret; 1634 } 1635 1636 /** 1637 * find_first_clear_extent_bit - find the first range that has @bits not set. 1638 * This range could start before @start. 1639 * 1640 * @tree - the tree to search 1641 * @start - the offset at/after which the found extent should start 1642 * @start_ret - records the beginning of the range 1643 * @end_ret - records the end of the range (inclusive) 1644 * @bits - the set of bits which must be unset 1645 * 1646 * Since unallocated range is also considered one which doesn't have the bits 1647 * set it's possible that @end_ret contains -1, this happens in case the range 1648 * spans (last_range_end, end of device]. In this case it's up to the caller to 1649 * trim @end_ret to the appropriate size. 1650 */ 1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1652 u64 *start_ret, u64 *end_ret, unsigned bits) 1653 { 1654 struct extent_state *state; 1655 struct rb_node *node, *prev = NULL, *next; 1656 1657 spin_lock(&tree->lock); 1658 1659 /* Find first extent with bits cleared */ 1660 while (1) { 1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1662 if (!node && !next && !prev) { 1663 /* 1664 * Tree is completely empty, send full range and let 1665 * caller deal with it 1666 */ 1667 *start_ret = 0; 1668 *end_ret = -1; 1669 goto out; 1670 } else if (!node && !next) { 1671 /* 1672 * We are past the last allocated chunk, set start at 1673 * the end of the last extent. 1674 */ 1675 state = rb_entry(prev, struct extent_state, rb_node); 1676 *start_ret = state->end + 1; 1677 *end_ret = -1; 1678 goto out; 1679 } else if (!node) { 1680 node = next; 1681 } 1682 /* 1683 * At this point 'node' either contains 'start' or start is 1684 * before 'node' 1685 */ 1686 state = rb_entry(node, struct extent_state, rb_node); 1687 1688 if (in_range(start, state->start, state->end - state->start + 1)) { 1689 if (state->state & bits) { 1690 /* 1691 * |--range with bits sets--| 1692 * | 1693 * start 1694 */ 1695 start = state->end + 1; 1696 } else { 1697 /* 1698 * 'start' falls within a range that doesn't 1699 * have the bits set, so take its start as 1700 * the beginning of the desired range 1701 * 1702 * |--range with bits cleared----| 1703 * | 1704 * start 1705 */ 1706 *start_ret = state->start; 1707 break; 1708 } 1709 } else { 1710 /* 1711 * |---prev range---|---hole/unset---|---node range---| 1712 * | 1713 * start 1714 * 1715 * or 1716 * 1717 * |---hole/unset--||--first node--| 1718 * 0 | 1719 * start 1720 */ 1721 if (prev) { 1722 state = rb_entry(prev, struct extent_state, 1723 rb_node); 1724 *start_ret = state->end + 1; 1725 } else { 1726 *start_ret = 0; 1727 } 1728 break; 1729 } 1730 } 1731 1732 /* 1733 * Find the longest stretch from start until an entry which has the 1734 * bits set 1735 */ 1736 while (1) { 1737 state = rb_entry(node, struct extent_state, rb_node); 1738 if (state->end >= start && !(state->state & bits)) { 1739 *end_ret = state->end; 1740 } else { 1741 *end_ret = state->start - 1; 1742 break; 1743 } 1744 1745 node = rb_next(node); 1746 if (!node) 1747 break; 1748 } 1749 out: 1750 spin_unlock(&tree->lock); 1751 } 1752 1753 /* 1754 * find a contiguous range of bytes in the file marked as delalloc, not 1755 * more than 'max_bytes'. start and end are used to return the range, 1756 * 1757 * true is returned if we find something, false if nothing was in the tree 1758 */ 1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1760 u64 *end, u64 max_bytes, 1761 struct extent_state **cached_state) 1762 { 1763 struct rb_node *node; 1764 struct extent_state *state; 1765 u64 cur_start = *start; 1766 bool found = false; 1767 u64 total_bytes = 0; 1768 1769 spin_lock(&tree->lock); 1770 1771 /* 1772 * this search will find all the extents that end after 1773 * our range starts. 1774 */ 1775 node = tree_search(tree, cur_start); 1776 if (!node) { 1777 *end = (u64)-1; 1778 goto out; 1779 } 1780 1781 while (1) { 1782 state = rb_entry(node, struct extent_state, rb_node); 1783 if (found && (state->start != cur_start || 1784 (state->state & EXTENT_BOUNDARY))) { 1785 goto out; 1786 } 1787 if (!(state->state & EXTENT_DELALLOC)) { 1788 if (!found) 1789 *end = state->end; 1790 goto out; 1791 } 1792 if (!found) { 1793 *start = state->start; 1794 *cached_state = state; 1795 refcount_inc(&state->refs); 1796 } 1797 found = true; 1798 *end = state->end; 1799 cur_start = state->end + 1; 1800 node = rb_next(node); 1801 total_bytes += state->end - state->start + 1; 1802 if (total_bytes >= max_bytes) 1803 break; 1804 if (!node) 1805 break; 1806 } 1807 out: 1808 spin_unlock(&tree->lock); 1809 return found; 1810 } 1811 1812 static int __process_pages_contig(struct address_space *mapping, 1813 struct page *locked_page, 1814 pgoff_t start_index, pgoff_t end_index, 1815 unsigned long page_ops, pgoff_t *index_ret); 1816 1817 static noinline void __unlock_for_delalloc(struct inode *inode, 1818 struct page *locked_page, 1819 u64 start, u64 end) 1820 { 1821 unsigned long index = start >> PAGE_SHIFT; 1822 unsigned long end_index = end >> PAGE_SHIFT; 1823 1824 ASSERT(locked_page); 1825 if (index == locked_page->index && end_index == index) 1826 return; 1827 1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1829 PAGE_UNLOCK, NULL); 1830 } 1831 1832 static noinline int lock_delalloc_pages(struct inode *inode, 1833 struct page *locked_page, 1834 u64 delalloc_start, 1835 u64 delalloc_end) 1836 { 1837 unsigned long index = delalloc_start >> PAGE_SHIFT; 1838 unsigned long index_ret = index; 1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1840 int ret; 1841 1842 ASSERT(locked_page); 1843 if (index == locked_page->index && index == end_index) 1844 return 0; 1845 1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1847 end_index, PAGE_LOCK, &index_ret); 1848 if (ret == -EAGAIN) 1849 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1850 (u64)index_ret << PAGE_SHIFT); 1851 return ret; 1852 } 1853 1854 /* 1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1856 * more than @max_bytes. @Start and @end are used to return the range, 1857 * 1858 * Return: true if we find something 1859 * false if nothing was in the tree 1860 */ 1861 EXPORT_FOR_TESTS 1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1863 struct page *locked_page, u64 *start, 1864 u64 *end) 1865 { 1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1868 u64 delalloc_start; 1869 u64 delalloc_end; 1870 bool found; 1871 struct extent_state *cached_state = NULL; 1872 int ret; 1873 int loops = 0; 1874 1875 again: 1876 /* step one, find a bunch of delalloc bytes starting at start */ 1877 delalloc_start = *start; 1878 delalloc_end = 0; 1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1880 max_bytes, &cached_state); 1881 if (!found || delalloc_end <= *start) { 1882 *start = delalloc_start; 1883 *end = delalloc_end; 1884 free_extent_state(cached_state); 1885 return false; 1886 } 1887 1888 /* 1889 * start comes from the offset of locked_page. We have to lock 1890 * pages in order, so we can't process delalloc bytes before 1891 * locked_page 1892 */ 1893 if (delalloc_start < *start) 1894 delalloc_start = *start; 1895 1896 /* 1897 * make sure to limit the number of pages we try to lock down 1898 */ 1899 if (delalloc_end + 1 - delalloc_start > max_bytes) 1900 delalloc_end = delalloc_start + max_bytes - 1; 1901 1902 /* step two, lock all the pages after the page that has start */ 1903 ret = lock_delalloc_pages(inode, locked_page, 1904 delalloc_start, delalloc_end); 1905 ASSERT(!ret || ret == -EAGAIN); 1906 if (ret == -EAGAIN) { 1907 /* some of the pages are gone, lets avoid looping by 1908 * shortening the size of the delalloc range we're searching 1909 */ 1910 free_extent_state(cached_state); 1911 cached_state = NULL; 1912 if (!loops) { 1913 max_bytes = PAGE_SIZE; 1914 loops = 1; 1915 goto again; 1916 } else { 1917 found = false; 1918 goto out_failed; 1919 } 1920 } 1921 1922 /* step three, lock the state bits for the whole range */ 1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1924 1925 /* then test to make sure it is all still delalloc */ 1926 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1927 EXTENT_DELALLOC, 1, cached_state); 1928 if (!ret) { 1929 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1930 &cached_state); 1931 __unlock_for_delalloc(inode, locked_page, 1932 delalloc_start, delalloc_end); 1933 cond_resched(); 1934 goto again; 1935 } 1936 free_extent_state(cached_state); 1937 *start = delalloc_start; 1938 *end = delalloc_end; 1939 out_failed: 1940 return found; 1941 } 1942 1943 static int __process_pages_contig(struct address_space *mapping, 1944 struct page *locked_page, 1945 pgoff_t start_index, pgoff_t end_index, 1946 unsigned long page_ops, pgoff_t *index_ret) 1947 { 1948 unsigned long nr_pages = end_index - start_index + 1; 1949 unsigned long pages_locked = 0; 1950 pgoff_t index = start_index; 1951 struct page *pages[16]; 1952 unsigned ret; 1953 int err = 0; 1954 int i; 1955 1956 if (page_ops & PAGE_LOCK) { 1957 ASSERT(page_ops == PAGE_LOCK); 1958 ASSERT(index_ret && *index_ret == start_index); 1959 } 1960 1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1962 mapping_set_error(mapping, -EIO); 1963 1964 while (nr_pages > 0) { 1965 ret = find_get_pages_contig(mapping, index, 1966 min_t(unsigned long, 1967 nr_pages, ARRAY_SIZE(pages)), pages); 1968 if (ret == 0) { 1969 /* 1970 * Only if we're going to lock these pages, 1971 * can we find nothing at @index. 1972 */ 1973 ASSERT(page_ops & PAGE_LOCK); 1974 err = -EAGAIN; 1975 goto out; 1976 } 1977 1978 for (i = 0; i < ret; i++) { 1979 if (page_ops & PAGE_SET_PRIVATE2) 1980 SetPagePrivate2(pages[i]); 1981 1982 if (locked_page && pages[i] == locked_page) { 1983 put_page(pages[i]); 1984 pages_locked++; 1985 continue; 1986 } 1987 if (page_ops & PAGE_CLEAR_DIRTY) 1988 clear_page_dirty_for_io(pages[i]); 1989 if (page_ops & PAGE_SET_WRITEBACK) 1990 set_page_writeback(pages[i]); 1991 if (page_ops & PAGE_SET_ERROR) 1992 SetPageError(pages[i]); 1993 if (page_ops & PAGE_END_WRITEBACK) 1994 end_page_writeback(pages[i]); 1995 if (page_ops & PAGE_UNLOCK) 1996 unlock_page(pages[i]); 1997 if (page_ops & PAGE_LOCK) { 1998 lock_page(pages[i]); 1999 if (!PageDirty(pages[i]) || 2000 pages[i]->mapping != mapping) { 2001 unlock_page(pages[i]); 2002 for (; i < ret; i++) 2003 put_page(pages[i]); 2004 err = -EAGAIN; 2005 goto out; 2006 } 2007 } 2008 put_page(pages[i]); 2009 pages_locked++; 2010 } 2011 nr_pages -= ret; 2012 index += ret; 2013 cond_resched(); 2014 } 2015 out: 2016 if (err && index_ret) 2017 *index_ret = start_index + pages_locked - 1; 2018 return err; 2019 } 2020 2021 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2022 struct page *locked_page, 2023 unsigned clear_bits, 2024 unsigned long page_ops) 2025 { 2026 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2027 2028 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2030 page_ops, NULL); 2031 } 2032 2033 /* 2034 * count the number of bytes in the tree that have a given bit(s) 2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2036 * cached. The total number found is returned. 2037 */ 2038 u64 count_range_bits(struct extent_io_tree *tree, 2039 u64 *start, u64 search_end, u64 max_bytes, 2040 unsigned bits, int contig) 2041 { 2042 struct rb_node *node; 2043 struct extent_state *state; 2044 u64 cur_start = *start; 2045 u64 total_bytes = 0; 2046 u64 last = 0; 2047 int found = 0; 2048 2049 if (WARN_ON(search_end <= cur_start)) 2050 return 0; 2051 2052 spin_lock(&tree->lock); 2053 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2054 total_bytes = tree->dirty_bytes; 2055 goto out; 2056 } 2057 /* 2058 * this search will find all the extents that end after 2059 * our range starts. 2060 */ 2061 node = tree_search(tree, cur_start); 2062 if (!node) 2063 goto out; 2064 2065 while (1) { 2066 state = rb_entry(node, struct extent_state, rb_node); 2067 if (state->start > search_end) 2068 break; 2069 if (contig && found && state->start > last + 1) 2070 break; 2071 if (state->end >= cur_start && (state->state & bits) == bits) { 2072 total_bytes += min(search_end, state->end) + 1 - 2073 max(cur_start, state->start); 2074 if (total_bytes >= max_bytes) 2075 break; 2076 if (!found) { 2077 *start = max(cur_start, state->start); 2078 found = 1; 2079 } 2080 last = state->end; 2081 } else if (contig && found) { 2082 break; 2083 } 2084 node = rb_next(node); 2085 if (!node) 2086 break; 2087 } 2088 out: 2089 spin_unlock(&tree->lock); 2090 return total_bytes; 2091 } 2092 2093 /* 2094 * set the private field for a given byte offset in the tree. If there isn't 2095 * an extent_state there already, this does nothing. 2096 */ 2097 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2098 struct io_failure_record *failrec) 2099 { 2100 struct rb_node *node; 2101 struct extent_state *state; 2102 int ret = 0; 2103 2104 spin_lock(&tree->lock); 2105 /* 2106 * this search will find all the extents that end after 2107 * our range starts. 2108 */ 2109 node = tree_search(tree, start); 2110 if (!node) { 2111 ret = -ENOENT; 2112 goto out; 2113 } 2114 state = rb_entry(node, struct extent_state, rb_node); 2115 if (state->start != start) { 2116 ret = -ENOENT; 2117 goto out; 2118 } 2119 state->failrec = failrec; 2120 out: 2121 spin_unlock(&tree->lock); 2122 return ret; 2123 } 2124 2125 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2126 { 2127 struct rb_node *node; 2128 struct extent_state *state; 2129 struct io_failure_record *failrec; 2130 2131 spin_lock(&tree->lock); 2132 /* 2133 * this search will find all the extents that end after 2134 * our range starts. 2135 */ 2136 node = tree_search(tree, start); 2137 if (!node) { 2138 failrec = ERR_PTR(-ENOENT); 2139 goto out; 2140 } 2141 state = rb_entry(node, struct extent_state, rb_node); 2142 if (state->start != start) { 2143 failrec = ERR_PTR(-ENOENT); 2144 goto out; 2145 } 2146 2147 failrec = state->failrec; 2148 out: 2149 spin_unlock(&tree->lock); 2150 return failrec; 2151 } 2152 2153 /* 2154 * searches a range in the state tree for a given mask. 2155 * If 'filled' == 1, this returns 1 only if every extent in the tree 2156 * has the bits set. Otherwise, 1 is returned if any bit in the 2157 * range is found set. 2158 */ 2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2160 unsigned bits, int filled, struct extent_state *cached) 2161 { 2162 struct extent_state *state = NULL; 2163 struct rb_node *node; 2164 int bitset = 0; 2165 2166 spin_lock(&tree->lock); 2167 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2168 cached->end > start) 2169 node = &cached->rb_node; 2170 else 2171 node = tree_search(tree, start); 2172 while (node && start <= end) { 2173 state = rb_entry(node, struct extent_state, rb_node); 2174 2175 if (filled && state->start > start) { 2176 bitset = 0; 2177 break; 2178 } 2179 2180 if (state->start > end) 2181 break; 2182 2183 if (state->state & bits) { 2184 bitset = 1; 2185 if (!filled) 2186 break; 2187 } else if (filled) { 2188 bitset = 0; 2189 break; 2190 } 2191 2192 if (state->end == (u64)-1) 2193 break; 2194 2195 start = state->end + 1; 2196 if (start > end) 2197 break; 2198 node = rb_next(node); 2199 if (!node) { 2200 if (filled) 2201 bitset = 0; 2202 break; 2203 } 2204 } 2205 spin_unlock(&tree->lock); 2206 return bitset; 2207 } 2208 2209 /* 2210 * helper function to set a given page up to date if all the 2211 * extents in the tree for that page are up to date 2212 */ 2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2214 { 2215 u64 start = page_offset(page); 2216 u64 end = start + PAGE_SIZE - 1; 2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2218 SetPageUptodate(page); 2219 } 2220 2221 int free_io_failure(struct extent_io_tree *failure_tree, 2222 struct extent_io_tree *io_tree, 2223 struct io_failure_record *rec) 2224 { 2225 int ret; 2226 int err = 0; 2227 2228 set_state_failrec(failure_tree, rec->start, NULL); 2229 ret = clear_extent_bits(failure_tree, rec->start, 2230 rec->start + rec->len - 1, 2231 EXTENT_LOCKED | EXTENT_DIRTY); 2232 if (ret) 2233 err = ret; 2234 2235 ret = clear_extent_bits(io_tree, rec->start, 2236 rec->start + rec->len - 1, 2237 EXTENT_DAMAGED); 2238 if (ret && !err) 2239 err = ret; 2240 2241 kfree(rec); 2242 return err; 2243 } 2244 2245 /* 2246 * this bypasses the standard btrfs submit functions deliberately, as 2247 * the standard behavior is to write all copies in a raid setup. here we only 2248 * want to write the one bad copy. so we do the mapping for ourselves and issue 2249 * submit_bio directly. 2250 * to avoid any synchronization issues, wait for the data after writing, which 2251 * actually prevents the read that triggered the error from finishing. 2252 * currently, there can be no more than two copies of every data bit. thus, 2253 * exactly one rewrite is required. 2254 */ 2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2256 u64 length, u64 logical, struct page *page, 2257 unsigned int pg_offset, int mirror_num) 2258 { 2259 struct bio *bio; 2260 struct btrfs_device *dev; 2261 u64 map_length = 0; 2262 u64 sector; 2263 struct btrfs_bio *bbio = NULL; 2264 int ret; 2265 2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2267 BUG_ON(!mirror_num); 2268 2269 bio = btrfs_io_bio_alloc(1); 2270 bio->bi_iter.bi_size = 0; 2271 map_length = length; 2272 2273 /* 2274 * Avoid races with device replace and make sure our bbio has devices 2275 * associated to its stripes that don't go away while we are doing the 2276 * read repair operation. 2277 */ 2278 btrfs_bio_counter_inc_blocked(fs_info); 2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2280 /* 2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2282 * to update all raid stripes, but here we just want to correct 2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2284 * stripe's dev and sector. 2285 */ 2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2287 &map_length, &bbio, 0); 2288 if (ret) { 2289 btrfs_bio_counter_dec(fs_info); 2290 bio_put(bio); 2291 return -EIO; 2292 } 2293 ASSERT(bbio->mirror_num == 1); 2294 } else { 2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2296 &map_length, &bbio, mirror_num); 2297 if (ret) { 2298 btrfs_bio_counter_dec(fs_info); 2299 bio_put(bio); 2300 return -EIO; 2301 } 2302 BUG_ON(mirror_num != bbio->mirror_num); 2303 } 2304 2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2306 bio->bi_iter.bi_sector = sector; 2307 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2308 btrfs_put_bbio(bbio); 2309 if (!dev || !dev->bdev || 2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2311 btrfs_bio_counter_dec(fs_info); 2312 bio_put(bio); 2313 return -EIO; 2314 } 2315 bio_set_dev(bio, dev->bdev); 2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2317 bio_add_page(bio, page, length, pg_offset); 2318 2319 if (btrfsic_submit_bio_wait(bio)) { 2320 /* try to remap that extent elsewhere? */ 2321 btrfs_bio_counter_dec(fs_info); 2322 bio_put(bio); 2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2324 return -EIO; 2325 } 2326 2327 btrfs_info_rl_in_rcu(fs_info, 2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2329 ino, start, 2330 rcu_str_deref(dev->name), sector); 2331 btrfs_bio_counter_dec(fs_info); 2332 bio_put(bio); 2333 return 0; 2334 } 2335 2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2337 { 2338 struct btrfs_fs_info *fs_info = eb->fs_info; 2339 u64 start = eb->start; 2340 int i, num_pages = num_extent_pages(eb); 2341 int ret = 0; 2342 2343 if (sb_rdonly(fs_info->sb)) 2344 return -EROFS; 2345 2346 for (i = 0; i < num_pages; i++) { 2347 struct page *p = eb->pages[i]; 2348 2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2350 start - page_offset(p), mirror_num); 2351 if (ret) 2352 break; 2353 start += PAGE_SIZE; 2354 } 2355 2356 return ret; 2357 } 2358 2359 /* 2360 * each time an IO finishes, we do a fast check in the IO failure tree 2361 * to see if we need to process or clean up an io_failure_record 2362 */ 2363 int clean_io_failure(struct btrfs_fs_info *fs_info, 2364 struct extent_io_tree *failure_tree, 2365 struct extent_io_tree *io_tree, u64 start, 2366 struct page *page, u64 ino, unsigned int pg_offset) 2367 { 2368 u64 private; 2369 struct io_failure_record *failrec; 2370 struct extent_state *state; 2371 int num_copies; 2372 int ret; 2373 2374 private = 0; 2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2376 EXTENT_DIRTY, 0); 2377 if (!ret) 2378 return 0; 2379 2380 failrec = get_state_failrec(failure_tree, start); 2381 if (IS_ERR(failrec)) 2382 return 0; 2383 2384 BUG_ON(!failrec->this_mirror); 2385 2386 if (failrec->in_validation) { 2387 /* there was no real error, just free the record */ 2388 btrfs_debug(fs_info, 2389 "clean_io_failure: freeing dummy error at %llu", 2390 failrec->start); 2391 goto out; 2392 } 2393 if (sb_rdonly(fs_info->sb)) 2394 goto out; 2395 2396 spin_lock(&io_tree->lock); 2397 state = find_first_extent_bit_state(io_tree, 2398 failrec->start, 2399 EXTENT_LOCKED); 2400 spin_unlock(&io_tree->lock); 2401 2402 if (state && state->start <= failrec->start && 2403 state->end >= failrec->start + failrec->len - 1) { 2404 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2405 failrec->len); 2406 if (num_copies > 1) { 2407 repair_io_failure(fs_info, ino, start, failrec->len, 2408 failrec->logical, page, pg_offset, 2409 failrec->failed_mirror); 2410 } 2411 } 2412 2413 out: 2414 free_io_failure(failure_tree, io_tree, failrec); 2415 2416 return 0; 2417 } 2418 2419 /* 2420 * Can be called when 2421 * - hold extent lock 2422 * - under ordered extent 2423 * - the inode is freeing 2424 */ 2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2426 { 2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2428 struct io_failure_record *failrec; 2429 struct extent_state *state, *next; 2430 2431 if (RB_EMPTY_ROOT(&failure_tree->state)) 2432 return; 2433 2434 spin_lock(&failure_tree->lock); 2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2436 while (state) { 2437 if (state->start > end) 2438 break; 2439 2440 ASSERT(state->end <= end); 2441 2442 next = next_state(state); 2443 2444 failrec = state->failrec; 2445 free_extent_state(state); 2446 kfree(failrec); 2447 2448 state = next; 2449 } 2450 spin_unlock(&failure_tree->lock); 2451 } 2452 2453 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2454 u64 start, u64 end) 2455 { 2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2457 struct io_failure_record *failrec; 2458 struct extent_map *em; 2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2462 int ret; 2463 u64 logical; 2464 2465 failrec = get_state_failrec(failure_tree, start); 2466 if (!IS_ERR(failrec)) { 2467 btrfs_debug(fs_info, 2468 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2469 failrec->logical, failrec->start, failrec->len, 2470 failrec->in_validation); 2471 /* 2472 * when data can be on disk more than twice, add to failrec here 2473 * (e.g. with a list for failed_mirror) to make 2474 * clean_io_failure() clean all those errors at once. 2475 */ 2476 2477 return failrec; 2478 } 2479 2480 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2481 if (!failrec) 2482 return ERR_PTR(-ENOMEM); 2483 2484 failrec->start = start; 2485 failrec->len = end - start + 1; 2486 failrec->this_mirror = 0; 2487 failrec->bio_flags = 0; 2488 failrec->in_validation = 0; 2489 2490 read_lock(&em_tree->lock); 2491 em = lookup_extent_mapping(em_tree, start, failrec->len); 2492 if (!em) { 2493 read_unlock(&em_tree->lock); 2494 kfree(failrec); 2495 return ERR_PTR(-EIO); 2496 } 2497 2498 if (em->start > start || em->start + em->len <= start) { 2499 free_extent_map(em); 2500 em = NULL; 2501 } 2502 read_unlock(&em_tree->lock); 2503 if (!em) { 2504 kfree(failrec); 2505 return ERR_PTR(-EIO); 2506 } 2507 2508 logical = start - em->start; 2509 logical = em->block_start + logical; 2510 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2511 logical = em->block_start; 2512 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2513 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2514 } 2515 2516 btrfs_debug(fs_info, 2517 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2518 logical, start, failrec->len); 2519 2520 failrec->logical = logical; 2521 free_extent_map(em); 2522 2523 /* Set the bits in the private failure tree */ 2524 ret = set_extent_bits(failure_tree, start, end, 2525 EXTENT_LOCKED | EXTENT_DIRTY); 2526 if (ret >= 0) { 2527 ret = set_state_failrec(failure_tree, start, failrec); 2528 /* Set the bits in the inode's tree */ 2529 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2530 } else if (ret < 0) { 2531 kfree(failrec); 2532 return ERR_PTR(ret); 2533 } 2534 2535 return failrec; 2536 } 2537 2538 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2539 struct io_failure_record *failrec, 2540 int failed_mirror) 2541 { 2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2543 int num_copies; 2544 2545 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2546 if (num_copies == 1) { 2547 /* 2548 * we only have a single copy of the data, so don't bother with 2549 * all the retry and error correction code that follows. no 2550 * matter what the error is, it is very likely to persist. 2551 */ 2552 btrfs_debug(fs_info, 2553 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2554 num_copies, failrec->this_mirror, failed_mirror); 2555 return false; 2556 } 2557 2558 /* 2559 * there are two premises: 2560 * a) deliver good data to the caller 2561 * b) correct the bad sectors on disk 2562 */ 2563 if (needs_validation) { 2564 /* 2565 * to fulfill b), we need to know the exact failing sectors, as 2566 * we don't want to rewrite any more than the failed ones. thus, 2567 * we need separate read requests for the failed bio 2568 * 2569 * if the following BUG_ON triggers, our validation request got 2570 * merged. we need separate requests for our algorithm to work. 2571 */ 2572 BUG_ON(failrec->in_validation); 2573 failrec->in_validation = 1; 2574 failrec->this_mirror = failed_mirror; 2575 } else { 2576 /* 2577 * we're ready to fulfill a) and b) alongside. get a good copy 2578 * of the failed sector and if we succeed, we have setup 2579 * everything for repair_io_failure to do the rest for us. 2580 */ 2581 if (failrec->in_validation) { 2582 BUG_ON(failrec->this_mirror != failed_mirror); 2583 failrec->in_validation = 0; 2584 failrec->this_mirror = 0; 2585 } 2586 failrec->failed_mirror = failed_mirror; 2587 failrec->this_mirror++; 2588 if (failrec->this_mirror == failed_mirror) 2589 failrec->this_mirror++; 2590 } 2591 2592 if (failrec->this_mirror > num_copies) { 2593 btrfs_debug(fs_info, 2594 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2595 num_copies, failrec->this_mirror, failed_mirror); 2596 return false; 2597 } 2598 2599 return true; 2600 } 2601 2602 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2603 { 2604 u64 len = 0; 2605 const u32 blocksize = inode->i_sb->s_blocksize; 2606 2607 /* 2608 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2609 * I/O error. In this case, we already know exactly which sector was 2610 * bad, so we don't need to validate. 2611 */ 2612 if (bio->bi_status == BLK_STS_OK) 2613 return false; 2614 2615 /* 2616 * We need to validate each sector individually if the failed I/O was 2617 * for multiple sectors. 2618 * 2619 * There are a few possible bios that can end up here: 2620 * 1. A buffered read bio, which is not cloned. 2621 * 2. A direct I/O read bio, which is cloned. 2622 * 3. A (buffered or direct) repair bio, which is not cloned. 2623 * 2624 * For cloned bios (case 2), we can get the size from 2625 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2626 * it from the bvecs. 2627 */ 2628 if (bio_flagged(bio, BIO_CLONED)) { 2629 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2630 return true; 2631 } else { 2632 struct bio_vec *bvec; 2633 int i; 2634 2635 bio_for_each_bvec_all(bvec, bio, i) { 2636 len += bvec->bv_len; 2637 if (len > blocksize) 2638 return true; 2639 } 2640 } 2641 return false; 2642 } 2643 2644 blk_status_t btrfs_submit_read_repair(struct inode *inode, 2645 struct bio *failed_bio, u64 phy_offset, 2646 struct page *page, unsigned int pgoff, 2647 u64 start, u64 end, int failed_mirror, 2648 submit_bio_hook_t *submit_bio_hook) 2649 { 2650 struct io_failure_record *failrec; 2651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2652 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2653 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2654 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2655 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits; 2656 bool need_validation; 2657 struct bio *repair_bio; 2658 struct btrfs_io_bio *repair_io_bio; 2659 blk_status_t status; 2660 2661 btrfs_debug(fs_info, 2662 "repair read error: read error at %llu", start); 2663 2664 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2665 2666 failrec = btrfs_get_io_failure_record(inode, start, end); 2667 if (IS_ERR(failrec)) 2668 return errno_to_blk_status(PTR_ERR(failrec)); 2669 2670 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2671 2672 if (!btrfs_check_repairable(inode, need_validation, failrec, 2673 failed_mirror)) { 2674 free_io_failure(failure_tree, tree, failrec); 2675 return BLK_STS_IOERR; 2676 } 2677 2678 repair_bio = btrfs_io_bio_alloc(1); 2679 repair_io_bio = btrfs_io_bio(repair_bio); 2680 repair_bio->bi_opf = REQ_OP_READ; 2681 if (need_validation) 2682 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2683 repair_bio->bi_end_io = failed_bio->bi_end_io; 2684 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2685 repair_bio->bi_private = failed_bio->bi_private; 2686 2687 if (failed_io_bio->csum) { 2688 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2689 2690 repair_io_bio->csum = repair_io_bio->csum_inline; 2691 memcpy(repair_io_bio->csum, 2692 failed_io_bio->csum + csum_size * icsum, csum_size); 2693 } 2694 2695 bio_add_page(repair_bio, page, failrec->len, pgoff); 2696 repair_io_bio->logical = failrec->start; 2697 repair_io_bio->iter = repair_bio->bi_iter; 2698 2699 btrfs_debug(btrfs_sb(inode->i_sb), 2700 "repair read error: submitting new read to mirror %d, in_validation=%d", 2701 failrec->this_mirror, failrec->in_validation); 2702 2703 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2704 failrec->bio_flags); 2705 if (status) { 2706 free_io_failure(failure_tree, tree, failrec); 2707 bio_put(repair_bio); 2708 } 2709 return status; 2710 } 2711 2712 /* lots and lots of room for performance fixes in the end_bio funcs */ 2713 2714 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2715 { 2716 int uptodate = (err == 0); 2717 int ret = 0; 2718 2719 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2720 2721 if (!uptodate) { 2722 ClearPageUptodate(page); 2723 SetPageError(page); 2724 ret = err < 0 ? err : -EIO; 2725 mapping_set_error(page->mapping, ret); 2726 } 2727 } 2728 2729 /* 2730 * after a writepage IO is done, we need to: 2731 * clear the uptodate bits on error 2732 * clear the writeback bits in the extent tree for this IO 2733 * end_page_writeback if the page has no more pending IO 2734 * 2735 * Scheduling is not allowed, so the extent state tree is expected 2736 * to have one and only one object corresponding to this IO. 2737 */ 2738 static void end_bio_extent_writepage(struct bio *bio) 2739 { 2740 int error = blk_status_to_errno(bio->bi_status); 2741 struct bio_vec *bvec; 2742 u64 start; 2743 u64 end; 2744 struct bvec_iter_all iter_all; 2745 2746 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2747 bio_for_each_segment_all(bvec, bio, iter_all) { 2748 struct page *page = bvec->bv_page; 2749 struct inode *inode = page->mapping->host; 2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2751 2752 /* We always issue full-page reads, but if some block 2753 * in a page fails to read, blk_update_request() will 2754 * advance bv_offset and adjust bv_len to compensate. 2755 * Print a warning for nonzero offsets, and an error 2756 * if they don't add up to a full page. */ 2757 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2758 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2759 btrfs_err(fs_info, 2760 "partial page write in btrfs with offset %u and length %u", 2761 bvec->bv_offset, bvec->bv_len); 2762 else 2763 btrfs_info(fs_info, 2764 "incomplete page write in btrfs with offset %u and length %u", 2765 bvec->bv_offset, bvec->bv_len); 2766 } 2767 2768 start = page_offset(page); 2769 end = start + bvec->bv_offset + bvec->bv_len - 1; 2770 2771 end_extent_writepage(page, error, start, end); 2772 end_page_writeback(page); 2773 } 2774 2775 bio_put(bio); 2776 } 2777 2778 static void 2779 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2780 int uptodate) 2781 { 2782 struct extent_state *cached = NULL; 2783 u64 end = start + len - 1; 2784 2785 if (uptodate && tree->track_uptodate) 2786 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2787 unlock_extent_cached_atomic(tree, start, end, &cached); 2788 } 2789 2790 /* 2791 * after a readpage IO is done, we need to: 2792 * clear the uptodate bits on error 2793 * set the uptodate bits if things worked 2794 * set the page up to date if all extents in the tree are uptodate 2795 * clear the lock bit in the extent tree 2796 * unlock the page if there are no other extents locked for it 2797 * 2798 * Scheduling is not allowed, so the extent state tree is expected 2799 * to have one and only one object corresponding to this IO. 2800 */ 2801 static void end_bio_extent_readpage(struct bio *bio) 2802 { 2803 struct bio_vec *bvec; 2804 int uptodate = !bio->bi_status; 2805 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2806 struct extent_io_tree *tree, *failure_tree; 2807 u64 offset = 0; 2808 u64 start; 2809 u64 end; 2810 u64 len; 2811 u64 extent_start = 0; 2812 u64 extent_len = 0; 2813 int mirror; 2814 int ret; 2815 struct bvec_iter_all iter_all; 2816 2817 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2818 bio_for_each_segment_all(bvec, bio, iter_all) { 2819 struct page *page = bvec->bv_page; 2820 struct inode *inode = page->mapping->host; 2821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2822 2823 btrfs_debug(fs_info, 2824 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2825 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2826 io_bio->mirror_num); 2827 tree = &BTRFS_I(inode)->io_tree; 2828 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2829 2830 /* We always issue full-page reads, but if some block 2831 * in a page fails to read, blk_update_request() will 2832 * advance bv_offset and adjust bv_len to compensate. 2833 * Print a warning for nonzero offsets, and an error 2834 * if they don't add up to a full page. */ 2835 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2836 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2837 btrfs_err(fs_info, 2838 "partial page read in btrfs with offset %u and length %u", 2839 bvec->bv_offset, bvec->bv_len); 2840 else 2841 btrfs_info(fs_info, 2842 "incomplete page read in btrfs with offset %u and length %u", 2843 bvec->bv_offset, bvec->bv_len); 2844 } 2845 2846 start = page_offset(page); 2847 end = start + bvec->bv_offset + bvec->bv_len - 1; 2848 len = bvec->bv_len; 2849 2850 mirror = io_bio->mirror_num; 2851 if (likely(uptodate)) { 2852 if (is_data_inode(inode)) 2853 ret = btrfs_verify_data_csum(io_bio, offset, page, 2854 start, end, mirror); 2855 else 2856 ret = btrfs_validate_metadata_buffer(io_bio, 2857 offset, page, start, end, mirror); 2858 if (ret) 2859 uptodate = 0; 2860 else 2861 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2862 failure_tree, tree, start, 2863 page, 2864 btrfs_ino(BTRFS_I(inode)), 0); 2865 } 2866 2867 if (likely(uptodate)) 2868 goto readpage_ok; 2869 2870 if (is_data_inode(inode)) { 2871 2872 /* 2873 * The generic bio_readpage_error handles errors the 2874 * following way: If possible, new read requests are 2875 * created and submitted and will end up in 2876 * end_bio_extent_readpage as well (if we're lucky, 2877 * not in the !uptodate case). In that case it returns 2878 * 0 and we just go on with the next page in our bio. 2879 * If it can't handle the error it will return -EIO and 2880 * we remain responsible for that page. 2881 */ 2882 if (!btrfs_submit_read_repair(inode, bio, offset, page, 2883 start - page_offset(page), 2884 start, end, mirror, 2885 btrfs_submit_data_bio)) { 2886 uptodate = !bio->bi_status; 2887 offset += len; 2888 continue; 2889 } 2890 } else { 2891 struct extent_buffer *eb; 2892 2893 eb = (struct extent_buffer *)page->private; 2894 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2895 eb->read_mirror = mirror; 2896 atomic_dec(&eb->io_pages); 2897 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2898 &eb->bflags)) 2899 btree_readahead_hook(eb, -EIO); 2900 } 2901 readpage_ok: 2902 if (likely(uptodate)) { 2903 loff_t i_size = i_size_read(inode); 2904 pgoff_t end_index = i_size >> PAGE_SHIFT; 2905 unsigned off; 2906 2907 /* Zero out the end if this page straddles i_size */ 2908 off = offset_in_page(i_size); 2909 if (page->index == end_index && off) 2910 zero_user_segment(page, off, PAGE_SIZE); 2911 SetPageUptodate(page); 2912 } else { 2913 ClearPageUptodate(page); 2914 SetPageError(page); 2915 } 2916 unlock_page(page); 2917 offset += len; 2918 2919 if (unlikely(!uptodate)) { 2920 if (extent_len) { 2921 endio_readpage_release_extent(tree, 2922 extent_start, 2923 extent_len, 1); 2924 extent_start = 0; 2925 extent_len = 0; 2926 } 2927 endio_readpage_release_extent(tree, start, 2928 end - start + 1, 0); 2929 } else if (!extent_len) { 2930 extent_start = start; 2931 extent_len = end + 1 - start; 2932 } else if (extent_start + extent_len == start) { 2933 extent_len += end + 1 - start; 2934 } else { 2935 endio_readpage_release_extent(tree, extent_start, 2936 extent_len, uptodate); 2937 extent_start = start; 2938 extent_len = end + 1 - start; 2939 } 2940 } 2941 2942 if (extent_len) 2943 endio_readpage_release_extent(tree, extent_start, extent_len, 2944 uptodate); 2945 btrfs_io_bio_free_csum(io_bio); 2946 bio_put(bio); 2947 } 2948 2949 /* 2950 * Initialize the members up to but not including 'bio'. Use after allocating a 2951 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2952 * 'bio' because use of __GFP_ZERO is not supported. 2953 */ 2954 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2955 { 2956 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2957 } 2958 2959 /* 2960 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2961 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2962 * for the appropriate container_of magic 2963 */ 2964 struct bio *btrfs_bio_alloc(u64 first_byte) 2965 { 2966 struct bio *bio; 2967 2968 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2969 bio->bi_iter.bi_sector = first_byte >> 9; 2970 btrfs_io_bio_init(btrfs_io_bio(bio)); 2971 return bio; 2972 } 2973 2974 struct bio *btrfs_bio_clone(struct bio *bio) 2975 { 2976 struct btrfs_io_bio *btrfs_bio; 2977 struct bio *new; 2978 2979 /* Bio allocation backed by a bioset does not fail */ 2980 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2981 btrfs_bio = btrfs_io_bio(new); 2982 btrfs_io_bio_init(btrfs_bio); 2983 btrfs_bio->iter = bio->bi_iter; 2984 return new; 2985 } 2986 2987 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2988 { 2989 struct bio *bio; 2990 2991 /* Bio allocation backed by a bioset does not fail */ 2992 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2993 btrfs_io_bio_init(btrfs_io_bio(bio)); 2994 return bio; 2995 } 2996 2997 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2998 { 2999 struct bio *bio; 3000 struct btrfs_io_bio *btrfs_bio; 3001 3002 /* this will never fail when it's backed by a bioset */ 3003 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3004 ASSERT(bio); 3005 3006 btrfs_bio = btrfs_io_bio(bio); 3007 btrfs_io_bio_init(btrfs_bio); 3008 3009 bio_trim(bio, offset >> 9, size >> 9); 3010 btrfs_bio->iter = bio->bi_iter; 3011 return bio; 3012 } 3013 3014 /* 3015 * @opf: bio REQ_OP_* and REQ_* flags as one value 3016 * @wbc: optional writeback control for io accounting 3017 * @page: page to add to the bio 3018 * @pg_offset: offset of the new bio or to check whether we are adding 3019 * a contiguous page to the previous one 3020 * @size: portion of page that we want to write 3021 * @offset: starting offset in the page 3022 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3023 * @end_io_func: end_io callback for new bio 3024 * @mirror_num: desired mirror to read/write 3025 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3026 * @bio_flags: flags of the current bio to see if we can merge them 3027 */ 3028 static int submit_extent_page(unsigned int opf, 3029 struct writeback_control *wbc, 3030 struct page *page, u64 offset, 3031 size_t size, unsigned long pg_offset, 3032 struct bio **bio_ret, 3033 bio_end_io_t end_io_func, 3034 int mirror_num, 3035 unsigned long prev_bio_flags, 3036 unsigned long bio_flags, 3037 bool force_bio_submit) 3038 { 3039 int ret = 0; 3040 struct bio *bio; 3041 size_t page_size = min_t(size_t, size, PAGE_SIZE); 3042 sector_t sector = offset >> 9; 3043 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree; 3044 3045 ASSERT(bio_ret); 3046 3047 if (*bio_ret) { 3048 bool contig; 3049 bool can_merge = true; 3050 3051 bio = *bio_ret; 3052 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3053 contig = bio->bi_iter.bi_sector == sector; 3054 else 3055 contig = bio_end_sector(bio) == sector; 3056 3057 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 3058 can_merge = false; 3059 3060 if (prev_bio_flags != bio_flags || !contig || !can_merge || 3061 force_bio_submit || 3062 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 3063 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3064 if (ret < 0) { 3065 *bio_ret = NULL; 3066 return ret; 3067 } 3068 bio = NULL; 3069 } else { 3070 if (wbc) 3071 wbc_account_cgroup_owner(wbc, page, page_size); 3072 return 0; 3073 } 3074 } 3075 3076 bio = btrfs_bio_alloc(offset); 3077 bio_add_page(bio, page, page_size, pg_offset); 3078 bio->bi_end_io = end_io_func; 3079 bio->bi_private = tree; 3080 bio->bi_write_hint = page->mapping->host->i_write_hint; 3081 bio->bi_opf = opf; 3082 if (wbc) { 3083 struct block_device *bdev; 3084 3085 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev; 3086 bio_set_dev(bio, bdev); 3087 wbc_init_bio(wbc, bio); 3088 wbc_account_cgroup_owner(wbc, page, page_size); 3089 } 3090 3091 *bio_ret = bio; 3092 3093 return ret; 3094 } 3095 3096 static void attach_extent_buffer_page(struct extent_buffer *eb, 3097 struct page *page) 3098 { 3099 if (!PagePrivate(page)) 3100 attach_page_private(page, eb); 3101 else 3102 WARN_ON(page->private != (unsigned long)eb); 3103 } 3104 3105 void set_page_extent_mapped(struct page *page) 3106 { 3107 if (!PagePrivate(page)) 3108 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3109 } 3110 3111 static struct extent_map * 3112 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3113 u64 start, u64 len, struct extent_map **em_cached) 3114 { 3115 struct extent_map *em; 3116 3117 if (em_cached && *em_cached) { 3118 em = *em_cached; 3119 if (extent_map_in_tree(em) && start >= em->start && 3120 start < extent_map_end(em)) { 3121 refcount_inc(&em->refs); 3122 return em; 3123 } 3124 3125 free_extent_map(em); 3126 *em_cached = NULL; 3127 } 3128 3129 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3130 if (em_cached && !IS_ERR_OR_NULL(em)) { 3131 BUG_ON(*em_cached); 3132 refcount_inc(&em->refs); 3133 *em_cached = em; 3134 } 3135 return em; 3136 } 3137 /* 3138 * basic readpage implementation. Locked extent state structs are inserted 3139 * into the tree that are removed when the IO is done (by the end_io 3140 * handlers) 3141 * XXX JDM: This needs looking at to ensure proper page locking 3142 * return 0 on success, otherwise return error 3143 */ 3144 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3145 struct bio **bio, unsigned long *bio_flags, 3146 unsigned int read_flags, u64 *prev_em_start) 3147 { 3148 struct inode *inode = page->mapping->host; 3149 u64 start = page_offset(page); 3150 const u64 end = start + PAGE_SIZE - 1; 3151 u64 cur = start; 3152 u64 extent_offset; 3153 u64 last_byte = i_size_read(inode); 3154 u64 block_start; 3155 u64 cur_end; 3156 struct extent_map *em; 3157 int ret = 0; 3158 int nr = 0; 3159 size_t pg_offset = 0; 3160 size_t iosize; 3161 size_t disk_io_size; 3162 size_t blocksize = inode->i_sb->s_blocksize; 3163 unsigned long this_bio_flag = 0; 3164 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3165 3166 set_page_extent_mapped(page); 3167 3168 if (!PageUptodate(page)) { 3169 if (cleancache_get_page(page) == 0) { 3170 BUG_ON(blocksize != PAGE_SIZE); 3171 unlock_extent(tree, start, end); 3172 goto out; 3173 } 3174 } 3175 3176 if (page->index == last_byte >> PAGE_SHIFT) { 3177 char *userpage; 3178 size_t zero_offset = offset_in_page(last_byte); 3179 3180 if (zero_offset) { 3181 iosize = PAGE_SIZE - zero_offset; 3182 userpage = kmap_atomic(page); 3183 memset(userpage + zero_offset, 0, iosize); 3184 flush_dcache_page(page); 3185 kunmap_atomic(userpage); 3186 } 3187 } 3188 while (cur <= end) { 3189 bool force_bio_submit = false; 3190 u64 offset; 3191 3192 if (cur >= last_byte) { 3193 char *userpage; 3194 struct extent_state *cached = NULL; 3195 3196 iosize = PAGE_SIZE - pg_offset; 3197 userpage = kmap_atomic(page); 3198 memset(userpage + pg_offset, 0, iosize); 3199 flush_dcache_page(page); 3200 kunmap_atomic(userpage); 3201 set_extent_uptodate(tree, cur, cur + iosize - 1, 3202 &cached, GFP_NOFS); 3203 unlock_extent_cached(tree, cur, 3204 cur + iosize - 1, &cached); 3205 break; 3206 } 3207 em = __get_extent_map(inode, page, pg_offset, cur, 3208 end - cur + 1, em_cached); 3209 if (IS_ERR_OR_NULL(em)) { 3210 SetPageError(page); 3211 unlock_extent(tree, cur, end); 3212 break; 3213 } 3214 extent_offset = cur - em->start; 3215 BUG_ON(extent_map_end(em) <= cur); 3216 BUG_ON(end < cur); 3217 3218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3219 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3220 extent_set_compress_type(&this_bio_flag, 3221 em->compress_type); 3222 } 3223 3224 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3225 cur_end = min(extent_map_end(em) - 1, end); 3226 iosize = ALIGN(iosize, blocksize); 3227 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3228 disk_io_size = em->block_len; 3229 offset = em->block_start; 3230 } else { 3231 offset = em->block_start + extent_offset; 3232 disk_io_size = iosize; 3233 } 3234 block_start = em->block_start; 3235 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3236 block_start = EXTENT_MAP_HOLE; 3237 3238 /* 3239 * If we have a file range that points to a compressed extent 3240 * and it's followed by a consecutive file range that points 3241 * to the same compressed extent (possibly with a different 3242 * offset and/or length, so it either points to the whole extent 3243 * or only part of it), we must make sure we do not submit a 3244 * single bio to populate the pages for the 2 ranges because 3245 * this makes the compressed extent read zero out the pages 3246 * belonging to the 2nd range. Imagine the following scenario: 3247 * 3248 * File layout 3249 * [0 - 8K] [8K - 24K] 3250 * | | 3251 * | | 3252 * points to extent X, points to extent X, 3253 * offset 4K, length of 8K offset 0, length 16K 3254 * 3255 * [extent X, compressed length = 4K uncompressed length = 16K] 3256 * 3257 * If the bio to read the compressed extent covers both ranges, 3258 * it will decompress extent X into the pages belonging to the 3259 * first range and then it will stop, zeroing out the remaining 3260 * pages that belong to the other range that points to extent X. 3261 * So here we make sure we submit 2 bios, one for the first 3262 * range and another one for the third range. Both will target 3263 * the same physical extent from disk, but we can't currently 3264 * make the compressed bio endio callback populate the pages 3265 * for both ranges because each compressed bio is tightly 3266 * coupled with a single extent map, and each range can have 3267 * an extent map with a different offset value relative to the 3268 * uncompressed data of our extent and different lengths. This 3269 * is a corner case so we prioritize correctness over 3270 * non-optimal behavior (submitting 2 bios for the same extent). 3271 */ 3272 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3273 prev_em_start && *prev_em_start != (u64)-1 && 3274 *prev_em_start != em->start) 3275 force_bio_submit = true; 3276 3277 if (prev_em_start) 3278 *prev_em_start = em->start; 3279 3280 free_extent_map(em); 3281 em = NULL; 3282 3283 /* we've found a hole, just zero and go on */ 3284 if (block_start == EXTENT_MAP_HOLE) { 3285 char *userpage; 3286 struct extent_state *cached = NULL; 3287 3288 userpage = kmap_atomic(page); 3289 memset(userpage + pg_offset, 0, iosize); 3290 flush_dcache_page(page); 3291 kunmap_atomic(userpage); 3292 3293 set_extent_uptodate(tree, cur, cur + iosize - 1, 3294 &cached, GFP_NOFS); 3295 unlock_extent_cached(tree, cur, 3296 cur + iosize - 1, &cached); 3297 cur = cur + iosize; 3298 pg_offset += iosize; 3299 continue; 3300 } 3301 /* the get_extent function already copied into the page */ 3302 if (test_range_bit(tree, cur, cur_end, 3303 EXTENT_UPTODATE, 1, NULL)) { 3304 check_page_uptodate(tree, page); 3305 unlock_extent(tree, cur, cur + iosize - 1); 3306 cur = cur + iosize; 3307 pg_offset += iosize; 3308 continue; 3309 } 3310 /* we have an inline extent but it didn't get marked up 3311 * to date. Error out 3312 */ 3313 if (block_start == EXTENT_MAP_INLINE) { 3314 SetPageError(page); 3315 unlock_extent(tree, cur, cur + iosize - 1); 3316 cur = cur + iosize; 3317 pg_offset += iosize; 3318 continue; 3319 } 3320 3321 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3322 page, offset, disk_io_size, 3323 pg_offset, bio, 3324 end_bio_extent_readpage, 0, 3325 *bio_flags, 3326 this_bio_flag, 3327 force_bio_submit); 3328 if (!ret) { 3329 nr++; 3330 *bio_flags = this_bio_flag; 3331 } else { 3332 SetPageError(page); 3333 unlock_extent(tree, cur, cur + iosize - 1); 3334 goto out; 3335 } 3336 cur = cur + iosize; 3337 pg_offset += iosize; 3338 } 3339 out: 3340 if (!nr) { 3341 if (!PageError(page)) 3342 SetPageUptodate(page); 3343 unlock_page(page); 3344 } 3345 return ret; 3346 } 3347 3348 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3349 u64 start, u64 end, 3350 struct extent_map **em_cached, 3351 struct bio **bio, 3352 unsigned long *bio_flags, 3353 u64 *prev_em_start) 3354 { 3355 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3356 int index; 3357 3358 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3359 3360 for (index = 0; index < nr_pages; index++) { 3361 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags, 3362 REQ_RAHEAD, prev_em_start); 3363 put_page(pages[index]); 3364 } 3365 } 3366 3367 static void update_nr_written(struct writeback_control *wbc, 3368 unsigned long nr_written) 3369 { 3370 wbc->nr_to_write -= nr_written; 3371 } 3372 3373 /* 3374 * helper for __extent_writepage, doing all of the delayed allocation setup. 3375 * 3376 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3377 * to write the page (copy into inline extent). In this case the IO has 3378 * been started and the page is already unlocked. 3379 * 3380 * This returns 0 if all went well (page still locked) 3381 * This returns < 0 if there were errors (page still locked) 3382 */ 3383 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3384 struct page *page, struct writeback_control *wbc, 3385 u64 delalloc_start, unsigned long *nr_written) 3386 { 3387 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3388 bool found; 3389 u64 delalloc_to_write = 0; 3390 u64 delalloc_end = 0; 3391 int ret; 3392 int page_started = 0; 3393 3394 3395 while (delalloc_end < page_end) { 3396 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3397 &delalloc_start, 3398 &delalloc_end); 3399 if (!found) { 3400 delalloc_start = delalloc_end + 1; 3401 continue; 3402 } 3403 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3404 delalloc_end, &page_started, nr_written, wbc); 3405 if (ret) { 3406 SetPageError(page); 3407 /* 3408 * btrfs_run_delalloc_range should return < 0 for error 3409 * but just in case, we use > 0 here meaning the IO is 3410 * started, so we don't want to return > 0 unless 3411 * things are going well. 3412 */ 3413 return ret < 0 ? ret : -EIO; 3414 } 3415 /* 3416 * delalloc_end is already one less than the total length, so 3417 * we don't subtract one from PAGE_SIZE 3418 */ 3419 delalloc_to_write += (delalloc_end - delalloc_start + 3420 PAGE_SIZE) >> PAGE_SHIFT; 3421 delalloc_start = delalloc_end + 1; 3422 } 3423 if (wbc->nr_to_write < delalloc_to_write) { 3424 int thresh = 8192; 3425 3426 if (delalloc_to_write < thresh * 2) 3427 thresh = delalloc_to_write; 3428 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3429 thresh); 3430 } 3431 3432 /* did the fill delalloc function already unlock and start 3433 * the IO? 3434 */ 3435 if (page_started) { 3436 /* 3437 * we've unlocked the page, so we can't update 3438 * the mapping's writeback index, just update 3439 * nr_to_write. 3440 */ 3441 wbc->nr_to_write -= *nr_written; 3442 return 1; 3443 } 3444 3445 return 0; 3446 } 3447 3448 /* 3449 * helper for __extent_writepage. This calls the writepage start hooks, 3450 * and does the loop to map the page into extents and bios. 3451 * 3452 * We return 1 if the IO is started and the page is unlocked, 3453 * 0 if all went well (page still locked) 3454 * < 0 if there were errors (page still locked) 3455 */ 3456 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3457 struct page *page, 3458 struct writeback_control *wbc, 3459 struct extent_page_data *epd, 3460 loff_t i_size, 3461 unsigned long nr_written, 3462 int *nr_ret) 3463 { 3464 struct extent_io_tree *tree = &inode->io_tree; 3465 u64 start = page_offset(page); 3466 u64 page_end = start + PAGE_SIZE - 1; 3467 u64 end; 3468 u64 cur = start; 3469 u64 extent_offset; 3470 u64 block_start; 3471 u64 iosize; 3472 struct extent_map *em; 3473 size_t pg_offset = 0; 3474 size_t blocksize; 3475 int ret = 0; 3476 int nr = 0; 3477 const unsigned int write_flags = wbc_to_write_flags(wbc); 3478 bool compressed; 3479 3480 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3481 if (ret) { 3482 /* Fixup worker will requeue */ 3483 redirty_page_for_writepage(wbc, page); 3484 update_nr_written(wbc, nr_written); 3485 unlock_page(page); 3486 return 1; 3487 } 3488 3489 /* 3490 * we don't want to touch the inode after unlocking the page, 3491 * so we update the mapping writeback index now 3492 */ 3493 update_nr_written(wbc, nr_written + 1); 3494 3495 end = page_end; 3496 blocksize = inode->vfs_inode.i_sb->s_blocksize; 3497 3498 while (cur <= end) { 3499 u64 em_end; 3500 u64 offset; 3501 3502 if (cur >= i_size) { 3503 btrfs_writepage_endio_finish_ordered(page, cur, 3504 page_end, 1); 3505 break; 3506 } 3507 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3508 if (IS_ERR_OR_NULL(em)) { 3509 SetPageError(page); 3510 ret = PTR_ERR_OR_ZERO(em); 3511 break; 3512 } 3513 3514 extent_offset = cur - em->start; 3515 em_end = extent_map_end(em); 3516 BUG_ON(em_end <= cur); 3517 BUG_ON(end < cur); 3518 iosize = min(em_end - cur, end - cur + 1); 3519 iosize = ALIGN(iosize, blocksize); 3520 offset = em->block_start + extent_offset; 3521 block_start = em->block_start; 3522 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3523 free_extent_map(em); 3524 em = NULL; 3525 3526 /* 3527 * compressed and inline extents are written through other 3528 * paths in the FS 3529 */ 3530 if (compressed || block_start == EXTENT_MAP_HOLE || 3531 block_start == EXTENT_MAP_INLINE) { 3532 if (compressed) 3533 nr++; 3534 else 3535 btrfs_writepage_endio_finish_ordered(page, cur, 3536 cur + iosize - 1, 1); 3537 cur += iosize; 3538 pg_offset += iosize; 3539 continue; 3540 } 3541 3542 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3543 if (!PageWriteback(page)) { 3544 btrfs_err(inode->root->fs_info, 3545 "page %lu not writeback, cur %llu end %llu", 3546 page->index, cur, end); 3547 } 3548 3549 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3550 page, offset, iosize, pg_offset, 3551 &epd->bio, 3552 end_bio_extent_writepage, 3553 0, 0, 0, false); 3554 if (ret) { 3555 SetPageError(page); 3556 if (PageWriteback(page)) 3557 end_page_writeback(page); 3558 } 3559 3560 cur = cur + iosize; 3561 pg_offset += iosize; 3562 nr++; 3563 } 3564 *nr_ret = nr; 3565 return ret; 3566 } 3567 3568 /* 3569 * the writepage semantics are similar to regular writepage. extent 3570 * records are inserted to lock ranges in the tree, and as dirty areas 3571 * are found, they are marked writeback. Then the lock bits are removed 3572 * and the end_io handler clears the writeback ranges 3573 * 3574 * Return 0 if everything goes well. 3575 * Return <0 for error. 3576 */ 3577 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3578 struct extent_page_data *epd) 3579 { 3580 struct inode *inode = page->mapping->host; 3581 u64 start = page_offset(page); 3582 u64 page_end = start + PAGE_SIZE - 1; 3583 int ret; 3584 int nr = 0; 3585 size_t pg_offset; 3586 loff_t i_size = i_size_read(inode); 3587 unsigned long end_index = i_size >> PAGE_SHIFT; 3588 unsigned long nr_written = 0; 3589 3590 trace___extent_writepage(page, inode, wbc); 3591 3592 WARN_ON(!PageLocked(page)); 3593 3594 ClearPageError(page); 3595 3596 pg_offset = offset_in_page(i_size); 3597 if (page->index > end_index || 3598 (page->index == end_index && !pg_offset)) { 3599 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3600 unlock_page(page); 3601 return 0; 3602 } 3603 3604 if (page->index == end_index) { 3605 char *userpage; 3606 3607 userpage = kmap_atomic(page); 3608 memset(userpage + pg_offset, 0, 3609 PAGE_SIZE - pg_offset); 3610 kunmap_atomic(userpage); 3611 flush_dcache_page(page); 3612 } 3613 3614 set_page_extent_mapped(page); 3615 3616 if (!epd->extent_locked) { 3617 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 3618 &nr_written); 3619 if (ret == 1) 3620 return 0; 3621 if (ret) 3622 goto done; 3623 } 3624 3625 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 3626 nr_written, &nr); 3627 if (ret == 1) 3628 return 0; 3629 3630 done: 3631 if (nr == 0) { 3632 /* make sure the mapping tag for page dirty gets cleared */ 3633 set_page_writeback(page); 3634 end_page_writeback(page); 3635 } 3636 if (PageError(page)) { 3637 ret = ret < 0 ? ret : -EIO; 3638 end_extent_writepage(page, ret, start, page_end); 3639 } 3640 unlock_page(page); 3641 ASSERT(ret <= 0); 3642 return ret; 3643 } 3644 3645 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3646 { 3647 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3648 TASK_UNINTERRUPTIBLE); 3649 } 3650 3651 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3652 { 3653 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3654 smp_mb__after_atomic(); 3655 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3656 } 3657 3658 /* 3659 * Lock eb pages and flush the bio if we can't the locks 3660 * 3661 * Return 0 if nothing went wrong 3662 * Return >0 is same as 0, except bio is not submitted 3663 * Return <0 if something went wrong, no page is locked 3664 */ 3665 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3666 struct extent_page_data *epd) 3667 { 3668 struct btrfs_fs_info *fs_info = eb->fs_info; 3669 int i, num_pages, failed_page_nr; 3670 int flush = 0; 3671 int ret = 0; 3672 3673 if (!btrfs_try_tree_write_lock(eb)) { 3674 ret = flush_write_bio(epd); 3675 if (ret < 0) 3676 return ret; 3677 flush = 1; 3678 btrfs_tree_lock(eb); 3679 } 3680 3681 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3682 btrfs_tree_unlock(eb); 3683 if (!epd->sync_io) 3684 return 0; 3685 if (!flush) { 3686 ret = flush_write_bio(epd); 3687 if (ret < 0) 3688 return ret; 3689 flush = 1; 3690 } 3691 while (1) { 3692 wait_on_extent_buffer_writeback(eb); 3693 btrfs_tree_lock(eb); 3694 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3695 break; 3696 btrfs_tree_unlock(eb); 3697 } 3698 } 3699 3700 /* 3701 * We need to do this to prevent races in people who check if the eb is 3702 * under IO since we can end up having no IO bits set for a short period 3703 * of time. 3704 */ 3705 spin_lock(&eb->refs_lock); 3706 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3707 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3708 spin_unlock(&eb->refs_lock); 3709 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3710 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3711 -eb->len, 3712 fs_info->dirty_metadata_batch); 3713 ret = 1; 3714 } else { 3715 spin_unlock(&eb->refs_lock); 3716 } 3717 3718 btrfs_tree_unlock(eb); 3719 3720 if (!ret) 3721 return ret; 3722 3723 num_pages = num_extent_pages(eb); 3724 for (i = 0; i < num_pages; i++) { 3725 struct page *p = eb->pages[i]; 3726 3727 if (!trylock_page(p)) { 3728 if (!flush) { 3729 int err; 3730 3731 err = flush_write_bio(epd); 3732 if (err < 0) { 3733 ret = err; 3734 failed_page_nr = i; 3735 goto err_unlock; 3736 } 3737 flush = 1; 3738 } 3739 lock_page(p); 3740 } 3741 } 3742 3743 return ret; 3744 err_unlock: 3745 /* Unlock already locked pages */ 3746 for (i = 0; i < failed_page_nr; i++) 3747 unlock_page(eb->pages[i]); 3748 /* 3749 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3750 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3751 * be made and undo everything done before. 3752 */ 3753 btrfs_tree_lock(eb); 3754 spin_lock(&eb->refs_lock); 3755 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3756 end_extent_buffer_writeback(eb); 3757 spin_unlock(&eb->refs_lock); 3758 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3759 fs_info->dirty_metadata_batch); 3760 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3761 btrfs_tree_unlock(eb); 3762 return ret; 3763 } 3764 3765 static void set_btree_ioerr(struct page *page) 3766 { 3767 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3768 struct btrfs_fs_info *fs_info; 3769 3770 SetPageError(page); 3771 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3772 return; 3773 3774 /* 3775 * If we error out, we should add back the dirty_metadata_bytes 3776 * to make it consistent. 3777 */ 3778 fs_info = eb->fs_info; 3779 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3780 eb->len, fs_info->dirty_metadata_batch); 3781 3782 /* 3783 * If writeback for a btree extent that doesn't belong to a log tree 3784 * failed, increment the counter transaction->eb_write_errors. 3785 * We do this because while the transaction is running and before it's 3786 * committing (when we call filemap_fdata[write|wait]_range against 3787 * the btree inode), we might have 3788 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3789 * returns an error or an error happens during writeback, when we're 3790 * committing the transaction we wouldn't know about it, since the pages 3791 * can be no longer dirty nor marked anymore for writeback (if a 3792 * subsequent modification to the extent buffer didn't happen before the 3793 * transaction commit), which makes filemap_fdata[write|wait]_range not 3794 * able to find the pages tagged with SetPageError at transaction 3795 * commit time. So if this happens we must abort the transaction, 3796 * otherwise we commit a super block with btree roots that point to 3797 * btree nodes/leafs whose content on disk is invalid - either garbage 3798 * or the content of some node/leaf from a past generation that got 3799 * cowed or deleted and is no longer valid. 3800 * 3801 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3802 * not be enough - we need to distinguish between log tree extents vs 3803 * non-log tree extents, and the next filemap_fdatawait_range() call 3804 * will catch and clear such errors in the mapping - and that call might 3805 * be from a log sync and not from a transaction commit. Also, checking 3806 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3807 * not done and would not be reliable - the eb might have been released 3808 * from memory and reading it back again means that flag would not be 3809 * set (since it's a runtime flag, not persisted on disk). 3810 * 3811 * Using the flags below in the btree inode also makes us achieve the 3812 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3813 * writeback for all dirty pages and before filemap_fdatawait_range() 3814 * is called, the writeback for all dirty pages had already finished 3815 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3816 * filemap_fdatawait_range() would return success, as it could not know 3817 * that writeback errors happened (the pages were no longer tagged for 3818 * writeback). 3819 */ 3820 switch (eb->log_index) { 3821 case -1: 3822 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3823 break; 3824 case 0: 3825 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3826 break; 3827 case 1: 3828 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3829 break; 3830 default: 3831 BUG(); /* unexpected, logic error */ 3832 } 3833 } 3834 3835 static void end_bio_extent_buffer_writepage(struct bio *bio) 3836 { 3837 struct bio_vec *bvec; 3838 struct extent_buffer *eb; 3839 int done; 3840 struct bvec_iter_all iter_all; 3841 3842 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3843 bio_for_each_segment_all(bvec, bio, iter_all) { 3844 struct page *page = bvec->bv_page; 3845 3846 eb = (struct extent_buffer *)page->private; 3847 BUG_ON(!eb); 3848 done = atomic_dec_and_test(&eb->io_pages); 3849 3850 if (bio->bi_status || 3851 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3852 ClearPageUptodate(page); 3853 set_btree_ioerr(page); 3854 } 3855 3856 end_page_writeback(page); 3857 3858 if (!done) 3859 continue; 3860 3861 end_extent_buffer_writeback(eb); 3862 } 3863 3864 bio_put(bio); 3865 } 3866 3867 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3868 struct writeback_control *wbc, 3869 struct extent_page_data *epd) 3870 { 3871 u64 offset = eb->start; 3872 u32 nritems; 3873 int i, num_pages; 3874 unsigned long start, end; 3875 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3876 int ret = 0; 3877 3878 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3879 num_pages = num_extent_pages(eb); 3880 atomic_set(&eb->io_pages, num_pages); 3881 3882 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3883 nritems = btrfs_header_nritems(eb); 3884 if (btrfs_header_level(eb) > 0) { 3885 end = btrfs_node_key_ptr_offset(nritems); 3886 3887 memzero_extent_buffer(eb, end, eb->len - end); 3888 } else { 3889 /* 3890 * leaf: 3891 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3892 */ 3893 start = btrfs_item_nr_offset(nritems); 3894 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3895 memzero_extent_buffer(eb, start, end - start); 3896 } 3897 3898 for (i = 0; i < num_pages; i++) { 3899 struct page *p = eb->pages[i]; 3900 3901 clear_page_dirty_for_io(p); 3902 set_page_writeback(p); 3903 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3904 p, offset, PAGE_SIZE, 0, 3905 &epd->bio, 3906 end_bio_extent_buffer_writepage, 3907 0, 0, 0, false); 3908 if (ret) { 3909 set_btree_ioerr(p); 3910 if (PageWriteback(p)) 3911 end_page_writeback(p); 3912 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3913 end_extent_buffer_writeback(eb); 3914 ret = -EIO; 3915 break; 3916 } 3917 offset += PAGE_SIZE; 3918 update_nr_written(wbc, 1); 3919 unlock_page(p); 3920 } 3921 3922 if (unlikely(ret)) { 3923 for (; i < num_pages; i++) { 3924 struct page *p = eb->pages[i]; 3925 clear_page_dirty_for_io(p); 3926 unlock_page(p); 3927 } 3928 } 3929 3930 return ret; 3931 } 3932 3933 int btree_write_cache_pages(struct address_space *mapping, 3934 struct writeback_control *wbc) 3935 { 3936 struct extent_buffer *eb, *prev_eb = NULL; 3937 struct extent_page_data epd = { 3938 .bio = NULL, 3939 .extent_locked = 0, 3940 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3941 }; 3942 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3943 int ret = 0; 3944 int done = 0; 3945 int nr_to_write_done = 0; 3946 struct pagevec pvec; 3947 int nr_pages; 3948 pgoff_t index; 3949 pgoff_t end; /* Inclusive */ 3950 int scanned = 0; 3951 xa_mark_t tag; 3952 3953 pagevec_init(&pvec); 3954 if (wbc->range_cyclic) { 3955 index = mapping->writeback_index; /* Start from prev offset */ 3956 end = -1; 3957 /* 3958 * Start from the beginning does not need to cycle over the 3959 * range, mark it as scanned. 3960 */ 3961 scanned = (index == 0); 3962 } else { 3963 index = wbc->range_start >> PAGE_SHIFT; 3964 end = wbc->range_end >> PAGE_SHIFT; 3965 scanned = 1; 3966 } 3967 if (wbc->sync_mode == WB_SYNC_ALL) 3968 tag = PAGECACHE_TAG_TOWRITE; 3969 else 3970 tag = PAGECACHE_TAG_DIRTY; 3971 retry: 3972 if (wbc->sync_mode == WB_SYNC_ALL) 3973 tag_pages_for_writeback(mapping, index, end); 3974 while (!done && !nr_to_write_done && (index <= end) && 3975 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3976 tag))) { 3977 unsigned i; 3978 3979 for (i = 0; i < nr_pages; i++) { 3980 struct page *page = pvec.pages[i]; 3981 3982 if (!PagePrivate(page)) 3983 continue; 3984 3985 spin_lock(&mapping->private_lock); 3986 if (!PagePrivate(page)) { 3987 spin_unlock(&mapping->private_lock); 3988 continue; 3989 } 3990 3991 eb = (struct extent_buffer *)page->private; 3992 3993 /* 3994 * Shouldn't happen and normally this would be a BUG_ON 3995 * but no sense in crashing the users box for something 3996 * we can survive anyway. 3997 */ 3998 if (WARN_ON(!eb)) { 3999 spin_unlock(&mapping->private_lock); 4000 continue; 4001 } 4002 4003 if (eb == prev_eb) { 4004 spin_unlock(&mapping->private_lock); 4005 continue; 4006 } 4007 4008 ret = atomic_inc_not_zero(&eb->refs); 4009 spin_unlock(&mapping->private_lock); 4010 if (!ret) 4011 continue; 4012 4013 prev_eb = eb; 4014 ret = lock_extent_buffer_for_io(eb, &epd); 4015 if (!ret) { 4016 free_extent_buffer(eb); 4017 continue; 4018 } else if (ret < 0) { 4019 done = 1; 4020 free_extent_buffer(eb); 4021 break; 4022 } 4023 4024 ret = write_one_eb(eb, wbc, &epd); 4025 if (ret) { 4026 done = 1; 4027 free_extent_buffer(eb); 4028 break; 4029 } 4030 free_extent_buffer(eb); 4031 4032 /* 4033 * the filesystem may choose to bump up nr_to_write. 4034 * We have to make sure to honor the new nr_to_write 4035 * at any time 4036 */ 4037 nr_to_write_done = wbc->nr_to_write <= 0; 4038 } 4039 pagevec_release(&pvec); 4040 cond_resched(); 4041 } 4042 if (!scanned && !done) { 4043 /* 4044 * We hit the last page and there is more work to be done: wrap 4045 * back to the start of the file 4046 */ 4047 scanned = 1; 4048 index = 0; 4049 goto retry; 4050 } 4051 ASSERT(ret <= 0); 4052 if (ret < 0) { 4053 end_write_bio(&epd, ret); 4054 return ret; 4055 } 4056 /* 4057 * If something went wrong, don't allow any metadata write bio to be 4058 * submitted. 4059 * 4060 * This would prevent use-after-free if we had dirty pages not 4061 * cleaned up, which can still happen by fuzzed images. 4062 * 4063 * - Bad extent tree 4064 * Allowing existing tree block to be allocated for other trees. 4065 * 4066 * - Log tree operations 4067 * Exiting tree blocks get allocated to log tree, bumps its 4068 * generation, then get cleaned in tree re-balance. 4069 * Such tree block will not be written back, since it's clean, 4070 * thus no WRITTEN flag set. 4071 * And after log writes back, this tree block is not traced by 4072 * any dirty extent_io_tree. 4073 * 4074 * - Offending tree block gets re-dirtied from its original owner 4075 * Since it has bumped generation, no WRITTEN flag, it can be 4076 * reused without COWing. This tree block will not be traced 4077 * by btrfs_transaction::dirty_pages. 4078 * 4079 * Now such dirty tree block will not be cleaned by any dirty 4080 * extent io tree. Thus we don't want to submit such wild eb 4081 * if the fs already has error. 4082 */ 4083 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4084 ret = flush_write_bio(&epd); 4085 } else { 4086 ret = -EROFS; 4087 end_write_bio(&epd, ret); 4088 } 4089 return ret; 4090 } 4091 4092 /** 4093 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4094 * @mapping: address space structure to write 4095 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4096 * @data: data passed to __extent_writepage function 4097 * 4098 * If a page is already under I/O, write_cache_pages() skips it, even 4099 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4100 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4101 * and msync() need to guarantee that all the data which was dirty at the time 4102 * the call was made get new I/O started against them. If wbc->sync_mode is 4103 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4104 * existing IO to complete. 4105 */ 4106 static int extent_write_cache_pages(struct address_space *mapping, 4107 struct writeback_control *wbc, 4108 struct extent_page_data *epd) 4109 { 4110 struct inode *inode = mapping->host; 4111 int ret = 0; 4112 int done = 0; 4113 int nr_to_write_done = 0; 4114 struct pagevec pvec; 4115 int nr_pages; 4116 pgoff_t index; 4117 pgoff_t end; /* Inclusive */ 4118 pgoff_t done_index; 4119 int range_whole = 0; 4120 int scanned = 0; 4121 xa_mark_t tag; 4122 4123 /* 4124 * We have to hold onto the inode so that ordered extents can do their 4125 * work when the IO finishes. The alternative to this is failing to add 4126 * an ordered extent if the igrab() fails there and that is a huge pain 4127 * to deal with, so instead just hold onto the inode throughout the 4128 * writepages operation. If it fails here we are freeing up the inode 4129 * anyway and we'd rather not waste our time writing out stuff that is 4130 * going to be truncated anyway. 4131 */ 4132 if (!igrab(inode)) 4133 return 0; 4134 4135 pagevec_init(&pvec); 4136 if (wbc->range_cyclic) { 4137 index = mapping->writeback_index; /* Start from prev offset */ 4138 end = -1; 4139 /* 4140 * Start from the beginning does not need to cycle over the 4141 * range, mark it as scanned. 4142 */ 4143 scanned = (index == 0); 4144 } else { 4145 index = wbc->range_start >> PAGE_SHIFT; 4146 end = wbc->range_end >> PAGE_SHIFT; 4147 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4148 range_whole = 1; 4149 scanned = 1; 4150 } 4151 4152 /* 4153 * We do the tagged writepage as long as the snapshot flush bit is set 4154 * and we are the first one who do the filemap_flush() on this inode. 4155 * 4156 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4157 * not race in and drop the bit. 4158 */ 4159 if (range_whole && wbc->nr_to_write == LONG_MAX && 4160 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4161 &BTRFS_I(inode)->runtime_flags)) 4162 wbc->tagged_writepages = 1; 4163 4164 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4165 tag = PAGECACHE_TAG_TOWRITE; 4166 else 4167 tag = PAGECACHE_TAG_DIRTY; 4168 retry: 4169 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4170 tag_pages_for_writeback(mapping, index, end); 4171 done_index = index; 4172 while (!done && !nr_to_write_done && (index <= end) && 4173 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4174 &index, end, tag))) { 4175 unsigned i; 4176 4177 for (i = 0; i < nr_pages; i++) { 4178 struct page *page = pvec.pages[i]; 4179 4180 done_index = page->index + 1; 4181 /* 4182 * At this point we hold neither the i_pages lock nor 4183 * the page lock: the page may be truncated or 4184 * invalidated (changing page->mapping to NULL), 4185 * or even swizzled back from swapper_space to 4186 * tmpfs file mapping 4187 */ 4188 if (!trylock_page(page)) { 4189 ret = flush_write_bio(epd); 4190 BUG_ON(ret < 0); 4191 lock_page(page); 4192 } 4193 4194 if (unlikely(page->mapping != mapping)) { 4195 unlock_page(page); 4196 continue; 4197 } 4198 4199 if (wbc->sync_mode != WB_SYNC_NONE) { 4200 if (PageWriteback(page)) { 4201 ret = flush_write_bio(epd); 4202 BUG_ON(ret < 0); 4203 } 4204 wait_on_page_writeback(page); 4205 } 4206 4207 if (PageWriteback(page) || 4208 !clear_page_dirty_for_io(page)) { 4209 unlock_page(page); 4210 continue; 4211 } 4212 4213 ret = __extent_writepage(page, wbc, epd); 4214 if (ret < 0) { 4215 done = 1; 4216 break; 4217 } 4218 4219 /* 4220 * the filesystem may choose to bump up nr_to_write. 4221 * We have to make sure to honor the new nr_to_write 4222 * at any time 4223 */ 4224 nr_to_write_done = wbc->nr_to_write <= 0; 4225 } 4226 pagevec_release(&pvec); 4227 cond_resched(); 4228 } 4229 if (!scanned && !done) { 4230 /* 4231 * We hit the last page and there is more work to be done: wrap 4232 * back to the start of the file 4233 */ 4234 scanned = 1; 4235 index = 0; 4236 4237 /* 4238 * If we're looping we could run into a page that is locked by a 4239 * writer and that writer could be waiting on writeback for a 4240 * page in our current bio, and thus deadlock, so flush the 4241 * write bio here. 4242 */ 4243 ret = flush_write_bio(epd); 4244 if (!ret) 4245 goto retry; 4246 } 4247 4248 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4249 mapping->writeback_index = done_index; 4250 4251 btrfs_add_delayed_iput(inode); 4252 return ret; 4253 } 4254 4255 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4256 { 4257 int ret; 4258 struct extent_page_data epd = { 4259 .bio = NULL, 4260 .extent_locked = 0, 4261 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4262 }; 4263 4264 ret = __extent_writepage(page, wbc, &epd); 4265 ASSERT(ret <= 0); 4266 if (ret < 0) { 4267 end_write_bio(&epd, ret); 4268 return ret; 4269 } 4270 4271 ret = flush_write_bio(&epd); 4272 ASSERT(ret <= 0); 4273 return ret; 4274 } 4275 4276 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4277 int mode) 4278 { 4279 int ret = 0; 4280 struct address_space *mapping = inode->i_mapping; 4281 struct page *page; 4282 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4283 PAGE_SHIFT; 4284 4285 struct extent_page_data epd = { 4286 .bio = NULL, 4287 .extent_locked = 1, 4288 .sync_io = mode == WB_SYNC_ALL, 4289 }; 4290 struct writeback_control wbc_writepages = { 4291 .sync_mode = mode, 4292 .nr_to_write = nr_pages * 2, 4293 .range_start = start, 4294 .range_end = end + 1, 4295 /* We're called from an async helper function */ 4296 .punt_to_cgroup = 1, 4297 .no_cgroup_owner = 1, 4298 }; 4299 4300 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4301 while (start <= end) { 4302 page = find_get_page(mapping, start >> PAGE_SHIFT); 4303 if (clear_page_dirty_for_io(page)) 4304 ret = __extent_writepage(page, &wbc_writepages, &epd); 4305 else { 4306 btrfs_writepage_endio_finish_ordered(page, start, 4307 start + PAGE_SIZE - 1, 1); 4308 unlock_page(page); 4309 } 4310 put_page(page); 4311 start += PAGE_SIZE; 4312 } 4313 4314 ASSERT(ret <= 0); 4315 if (ret == 0) 4316 ret = flush_write_bio(&epd); 4317 else 4318 end_write_bio(&epd, ret); 4319 4320 wbc_detach_inode(&wbc_writepages); 4321 return ret; 4322 } 4323 4324 int extent_writepages(struct address_space *mapping, 4325 struct writeback_control *wbc) 4326 { 4327 int ret = 0; 4328 struct extent_page_data epd = { 4329 .bio = NULL, 4330 .extent_locked = 0, 4331 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4332 }; 4333 4334 ret = extent_write_cache_pages(mapping, wbc, &epd); 4335 ASSERT(ret <= 0); 4336 if (ret < 0) { 4337 end_write_bio(&epd, ret); 4338 return ret; 4339 } 4340 ret = flush_write_bio(&epd); 4341 return ret; 4342 } 4343 4344 void extent_readahead(struct readahead_control *rac) 4345 { 4346 struct bio *bio = NULL; 4347 unsigned long bio_flags = 0; 4348 struct page *pagepool[16]; 4349 struct extent_map *em_cached = NULL; 4350 u64 prev_em_start = (u64)-1; 4351 int nr; 4352 4353 while ((nr = readahead_page_batch(rac, pagepool))) { 4354 u64 contig_start = page_offset(pagepool[0]); 4355 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4356 4357 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4358 4359 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4360 &em_cached, &bio, &bio_flags, &prev_em_start); 4361 } 4362 4363 if (em_cached) 4364 free_extent_map(em_cached); 4365 4366 if (bio) { 4367 if (submit_one_bio(bio, 0, bio_flags)) 4368 return; 4369 } 4370 } 4371 4372 /* 4373 * basic invalidatepage code, this waits on any locked or writeback 4374 * ranges corresponding to the page, and then deletes any extent state 4375 * records from the tree 4376 */ 4377 int extent_invalidatepage(struct extent_io_tree *tree, 4378 struct page *page, unsigned long offset) 4379 { 4380 struct extent_state *cached_state = NULL; 4381 u64 start = page_offset(page); 4382 u64 end = start + PAGE_SIZE - 1; 4383 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4384 4385 start += ALIGN(offset, blocksize); 4386 if (start > end) 4387 return 0; 4388 4389 lock_extent_bits(tree, start, end, &cached_state); 4390 wait_on_page_writeback(page); 4391 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC | 4392 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state); 4393 return 0; 4394 } 4395 4396 /* 4397 * a helper for releasepage, this tests for areas of the page that 4398 * are locked or under IO and drops the related state bits if it is safe 4399 * to drop the page. 4400 */ 4401 static int try_release_extent_state(struct extent_io_tree *tree, 4402 struct page *page, gfp_t mask) 4403 { 4404 u64 start = page_offset(page); 4405 u64 end = start + PAGE_SIZE - 1; 4406 int ret = 1; 4407 4408 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4409 ret = 0; 4410 } else { 4411 /* 4412 * at this point we can safely clear everything except the 4413 * locked bit and the nodatasum bit 4414 */ 4415 ret = __clear_extent_bit(tree, start, end, 4416 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4417 0, 0, NULL, mask, NULL); 4418 4419 /* if clear_extent_bit failed for enomem reasons, 4420 * we can't allow the release to continue. 4421 */ 4422 if (ret < 0) 4423 ret = 0; 4424 else 4425 ret = 1; 4426 } 4427 return ret; 4428 } 4429 4430 /* 4431 * a helper for releasepage. As long as there are no locked extents 4432 * in the range corresponding to the page, both state records and extent 4433 * map records are removed 4434 */ 4435 int try_release_extent_mapping(struct page *page, gfp_t mask) 4436 { 4437 struct extent_map *em; 4438 u64 start = page_offset(page); 4439 u64 end = start + PAGE_SIZE - 1; 4440 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4441 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4442 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4443 4444 if (gfpflags_allow_blocking(mask) && 4445 page->mapping->host->i_size > SZ_16M) { 4446 u64 len; 4447 while (start <= end) { 4448 struct btrfs_fs_info *fs_info; 4449 u64 cur_gen; 4450 4451 len = end - start + 1; 4452 write_lock(&map->lock); 4453 em = lookup_extent_mapping(map, start, len); 4454 if (!em) { 4455 write_unlock(&map->lock); 4456 break; 4457 } 4458 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4459 em->start != start) { 4460 write_unlock(&map->lock); 4461 free_extent_map(em); 4462 break; 4463 } 4464 if (test_range_bit(tree, em->start, 4465 extent_map_end(em) - 1, 4466 EXTENT_LOCKED, 0, NULL)) 4467 goto next; 4468 /* 4469 * If it's not in the list of modified extents, used 4470 * by a fast fsync, we can remove it. If it's being 4471 * logged we can safely remove it since fsync took an 4472 * extra reference on the em. 4473 */ 4474 if (list_empty(&em->list) || 4475 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 4476 goto remove_em; 4477 /* 4478 * If it's in the list of modified extents, remove it 4479 * only if its generation is older then the current one, 4480 * in which case we don't need it for a fast fsync. 4481 * Otherwise don't remove it, we could be racing with an 4482 * ongoing fast fsync that could miss the new extent. 4483 */ 4484 fs_info = btrfs_inode->root->fs_info; 4485 spin_lock(&fs_info->trans_lock); 4486 cur_gen = fs_info->generation; 4487 spin_unlock(&fs_info->trans_lock); 4488 if (em->generation >= cur_gen) 4489 goto next; 4490 remove_em: 4491 /* 4492 * We only remove extent maps that are not in the list of 4493 * modified extents or that are in the list but with a 4494 * generation lower then the current generation, so there 4495 * is no need to set the full fsync flag on the inode (it 4496 * hurts the fsync performance for workloads with a data 4497 * size that exceeds or is close to the system's memory). 4498 */ 4499 remove_extent_mapping(map, em); 4500 /* once for the rb tree */ 4501 free_extent_map(em); 4502 next: 4503 start = extent_map_end(em); 4504 write_unlock(&map->lock); 4505 4506 /* once for us */ 4507 free_extent_map(em); 4508 4509 cond_resched(); /* Allow large-extent preemption. */ 4510 } 4511 } 4512 return try_release_extent_state(tree, page, mask); 4513 } 4514 4515 /* 4516 * helper function for fiemap, which doesn't want to see any holes. 4517 * This maps until we find something past 'last' 4518 */ 4519 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 4520 u64 offset, u64 last) 4521 { 4522 u64 sectorsize = btrfs_inode_sectorsize(inode); 4523 struct extent_map *em; 4524 u64 len; 4525 4526 if (offset >= last) 4527 return NULL; 4528 4529 while (1) { 4530 len = last - offset; 4531 if (len == 0) 4532 break; 4533 len = ALIGN(len, sectorsize); 4534 em = btrfs_get_extent_fiemap(inode, offset, len); 4535 if (IS_ERR_OR_NULL(em)) 4536 return em; 4537 4538 /* if this isn't a hole return it */ 4539 if (em->block_start != EXTENT_MAP_HOLE) 4540 return em; 4541 4542 /* this is a hole, advance to the next extent */ 4543 offset = extent_map_end(em); 4544 free_extent_map(em); 4545 if (offset >= last) 4546 break; 4547 } 4548 return NULL; 4549 } 4550 4551 /* 4552 * To cache previous fiemap extent 4553 * 4554 * Will be used for merging fiemap extent 4555 */ 4556 struct fiemap_cache { 4557 u64 offset; 4558 u64 phys; 4559 u64 len; 4560 u32 flags; 4561 bool cached; 4562 }; 4563 4564 /* 4565 * Helper to submit fiemap extent. 4566 * 4567 * Will try to merge current fiemap extent specified by @offset, @phys, 4568 * @len and @flags with cached one. 4569 * And only when we fails to merge, cached one will be submitted as 4570 * fiemap extent. 4571 * 4572 * Return value is the same as fiemap_fill_next_extent(). 4573 */ 4574 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4575 struct fiemap_cache *cache, 4576 u64 offset, u64 phys, u64 len, u32 flags) 4577 { 4578 int ret = 0; 4579 4580 if (!cache->cached) 4581 goto assign; 4582 4583 /* 4584 * Sanity check, extent_fiemap() should have ensured that new 4585 * fiemap extent won't overlap with cached one. 4586 * Not recoverable. 4587 * 4588 * NOTE: Physical address can overlap, due to compression 4589 */ 4590 if (cache->offset + cache->len > offset) { 4591 WARN_ON(1); 4592 return -EINVAL; 4593 } 4594 4595 /* 4596 * Only merges fiemap extents if 4597 * 1) Their logical addresses are continuous 4598 * 4599 * 2) Their physical addresses are continuous 4600 * So truly compressed (physical size smaller than logical size) 4601 * extents won't get merged with each other 4602 * 4603 * 3) Share same flags except FIEMAP_EXTENT_LAST 4604 * So regular extent won't get merged with prealloc extent 4605 */ 4606 if (cache->offset + cache->len == offset && 4607 cache->phys + cache->len == phys && 4608 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4609 (flags & ~FIEMAP_EXTENT_LAST)) { 4610 cache->len += len; 4611 cache->flags |= flags; 4612 goto try_submit_last; 4613 } 4614 4615 /* Not mergeable, need to submit cached one */ 4616 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4617 cache->len, cache->flags); 4618 cache->cached = false; 4619 if (ret) 4620 return ret; 4621 assign: 4622 cache->cached = true; 4623 cache->offset = offset; 4624 cache->phys = phys; 4625 cache->len = len; 4626 cache->flags = flags; 4627 try_submit_last: 4628 if (cache->flags & FIEMAP_EXTENT_LAST) { 4629 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4630 cache->phys, cache->len, cache->flags); 4631 cache->cached = false; 4632 } 4633 return ret; 4634 } 4635 4636 /* 4637 * Emit last fiemap cache 4638 * 4639 * The last fiemap cache may still be cached in the following case: 4640 * 0 4k 8k 4641 * |<- Fiemap range ->| 4642 * |<------------ First extent ----------->| 4643 * 4644 * In this case, the first extent range will be cached but not emitted. 4645 * So we must emit it before ending extent_fiemap(). 4646 */ 4647 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4648 struct fiemap_cache *cache) 4649 { 4650 int ret; 4651 4652 if (!cache->cached) 4653 return 0; 4654 4655 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4656 cache->len, cache->flags); 4657 cache->cached = false; 4658 if (ret > 0) 4659 ret = 0; 4660 return ret; 4661 } 4662 4663 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 4664 u64 start, u64 len) 4665 { 4666 int ret = 0; 4667 u64 off = start; 4668 u64 max = start + len; 4669 u32 flags = 0; 4670 u32 found_type; 4671 u64 last; 4672 u64 last_for_get_extent = 0; 4673 u64 disko = 0; 4674 u64 isize = i_size_read(&inode->vfs_inode); 4675 struct btrfs_key found_key; 4676 struct extent_map *em = NULL; 4677 struct extent_state *cached_state = NULL; 4678 struct btrfs_path *path; 4679 struct btrfs_root *root = inode->root; 4680 struct fiemap_cache cache = { 0 }; 4681 struct ulist *roots; 4682 struct ulist *tmp_ulist; 4683 int end = 0; 4684 u64 em_start = 0; 4685 u64 em_len = 0; 4686 u64 em_end = 0; 4687 4688 if (len == 0) 4689 return -EINVAL; 4690 4691 path = btrfs_alloc_path(); 4692 if (!path) 4693 return -ENOMEM; 4694 path->leave_spinning = 1; 4695 4696 roots = ulist_alloc(GFP_KERNEL); 4697 tmp_ulist = ulist_alloc(GFP_KERNEL); 4698 if (!roots || !tmp_ulist) { 4699 ret = -ENOMEM; 4700 goto out_free_ulist; 4701 } 4702 4703 start = round_down(start, btrfs_inode_sectorsize(inode)); 4704 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4705 4706 /* 4707 * lookup the last file extent. We're not using i_size here 4708 * because there might be preallocation past i_size 4709 */ 4710 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4711 0); 4712 if (ret < 0) { 4713 goto out_free_ulist; 4714 } else { 4715 WARN_ON(!ret); 4716 if (ret == 1) 4717 ret = 0; 4718 } 4719 4720 path->slots[0]--; 4721 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4722 found_type = found_key.type; 4723 4724 /* No extents, but there might be delalloc bits */ 4725 if (found_key.objectid != btrfs_ino(inode) || 4726 found_type != BTRFS_EXTENT_DATA_KEY) { 4727 /* have to trust i_size as the end */ 4728 last = (u64)-1; 4729 last_for_get_extent = isize; 4730 } else { 4731 /* 4732 * remember the start of the last extent. There are a 4733 * bunch of different factors that go into the length of the 4734 * extent, so its much less complex to remember where it started 4735 */ 4736 last = found_key.offset; 4737 last_for_get_extent = last + 1; 4738 } 4739 btrfs_release_path(path); 4740 4741 /* 4742 * we might have some extents allocated but more delalloc past those 4743 * extents. so, we trust isize unless the start of the last extent is 4744 * beyond isize 4745 */ 4746 if (last < isize) { 4747 last = (u64)-1; 4748 last_for_get_extent = isize; 4749 } 4750 4751 lock_extent_bits(&inode->io_tree, start, start + len - 1, 4752 &cached_state); 4753 4754 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4755 if (!em) 4756 goto out; 4757 if (IS_ERR(em)) { 4758 ret = PTR_ERR(em); 4759 goto out; 4760 } 4761 4762 while (!end) { 4763 u64 offset_in_extent = 0; 4764 4765 /* break if the extent we found is outside the range */ 4766 if (em->start >= max || extent_map_end(em) < off) 4767 break; 4768 4769 /* 4770 * get_extent may return an extent that starts before our 4771 * requested range. We have to make sure the ranges 4772 * we return to fiemap always move forward and don't 4773 * overlap, so adjust the offsets here 4774 */ 4775 em_start = max(em->start, off); 4776 4777 /* 4778 * record the offset from the start of the extent 4779 * for adjusting the disk offset below. Only do this if the 4780 * extent isn't compressed since our in ram offset may be past 4781 * what we have actually allocated on disk. 4782 */ 4783 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4784 offset_in_extent = em_start - em->start; 4785 em_end = extent_map_end(em); 4786 em_len = em_end - em_start; 4787 flags = 0; 4788 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4789 disko = em->block_start + offset_in_extent; 4790 else 4791 disko = 0; 4792 4793 /* 4794 * bump off for our next call to get_extent 4795 */ 4796 off = extent_map_end(em); 4797 if (off >= max) 4798 end = 1; 4799 4800 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4801 end = 1; 4802 flags |= FIEMAP_EXTENT_LAST; 4803 } else if (em->block_start == EXTENT_MAP_INLINE) { 4804 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4805 FIEMAP_EXTENT_NOT_ALIGNED); 4806 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4807 flags |= (FIEMAP_EXTENT_DELALLOC | 4808 FIEMAP_EXTENT_UNKNOWN); 4809 } else if (fieinfo->fi_extents_max) { 4810 u64 bytenr = em->block_start - 4811 (em->start - em->orig_start); 4812 4813 /* 4814 * As btrfs supports shared space, this information 4815 * can be exported to userspace tools via 4816 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4817 * then we're just getting a count and we can skip the 4818 * lookup stuff. 4819 */ 4820 ret = btrfs_check_shared(root, btrfs_ino(inode), 4821 bytenr, roots, tmp_ulist); 4822 if (ret < 0) 4823 goto out_free; 4824 if (ret) 4825 flags |= FIEMAP_EXTENT_SHARED; 4826 ret = 0; 4827 } 4828 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4829 flags |= FIEMAP_EXTENT_ENCODED; 4830 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4831 flags |= FIEMAP_EXTENT_UNWRITTEN; 4832 4833 free_extent_map(em); 4834 em = NULL; 4835 if ((em_start >= last) || em_len == (u64)-1 || 4836 (last == (u64)-1 && isize <= em_end)) { 4837 flags |= FIEMAP_EXTENT_LAST; 4838 end = 1; 4839 } 4840 4841 /* now scan forward to see if this is really the last extent. */ 4842 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4843 if (IS_ERR(em)) { 4844 ret = PTR_ERR(em); 4845 goto out; 4846 } 4847 if (!em) { 4848 flags |= FIEMAP_EXTENT_LAST; 4849 end = 1; 4850 } 4851 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4852 em_len, flags); 4853 if (ret) { 4854 if (ret == 1) 4855 ret = 0; 4856 goto out_free; 4857 } 4858 } 4859 out_free: 4860 if (!ret) 4861 ret = emit_last_fiemap_cache(fieinfo, &cache); 4862 free_extent_map(em); 4863 out: 4864 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 4865 &cached_state); 4866 4867 out_free_ulist: 4868 btrfs_free_path(path); 4869 ulist_free(roots); 4870 ulist_free(tmp_ulist); 4871 return ret; 4872 } 4873 4874 static void __free_extent_buffer(struct extent_buffer *eb) 4875 { 4876 kmem_cache_free(extent_buffer_cache, eb); 4877 } 4878 4879 int extent_buffer_under_io(const struct extent_buffer *eb) 4880 { 4881 return (atomic_read(&eb->io_pages) || 4882 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4883 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4884 } 4885 4886 /* 4887 * Release all pages attached to the extent buffer. 4888 */ 4889 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4890 { 4891 int i; 4892 int num_pages; 4893 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4894 4895 BUG_ON(extent_buffer_under_io(eb)); 4896 4897 num_pages = num_extent_pages(eb); 4898 for (i = 0; i < num_pages; i++) { 4899 struct page *page = eb->pages[i]; 4900 4901 if (!page) 4902 continue; 4903 if (mapped) 4904 spin_lock(&page->mapping->private_lock); 4905 /* 4906 * We do this since we'll remove the pages after we've 4907 * removed the eb from the radix tree, so we could race 4908 * and have this page now attached to the new eb. So 4909 * only clear page_private if it's still connected to 4910 * this eb. 4911 */ 4912 if (PagePrivate(page) && 4913 page->private == (unsigned long)eb) { 4914 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4915 BUG_ON(PageDirty(page)); 4916 BUG_ON(PageWriteback(page)); 4917 /* 4918 * We need to make sure we haven't be attached 4919 * to a new eb. 4920 */ 4921 detach_page_private(page); 4922 } 4923 4924 if (mapped) 4925 spin_unlock(&page->mapping->private_lock); 4926 4927 /* One for when we allocated the page */ 4928 put_page(page); 4929 } 4930 } 4931 4932 /* 4933 * Helper for releasing the extent buffer. 4934 */ 4935 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4936 { 4937 btrfs_release_extent_buffer_pages(eb); 4938 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 4939 __free_extent_buffer(eb); 4940 } 4941 4942 static struct extent_buffer * 4943 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4944 unsigned long len) 4945 { 4946 struct extent_buffer *eb = NULL; 4947 4948 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4949 eb->start = start; 4950 eb->len = len; 4951 eb->fs_info = fs_info; 4952 eb->bflags = 0; 4953 rwlock_init(&eb->lock); 4954 atomic_set(&eb->blocking_readers, 0); 4955 eb->blocking_writers = 0; 4956 eb->lock_recursed = false; 4957 init_waitqueue_head(&eb->write_lock_wq); 4958 init_waitqueue_head(&eb->read_lock_wq); 4959 4960 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 4961 &fs_info->allocated_ebs); 4962 4963 spin_lock_init(&eb->refs_lock); 4964 atomic_set(&eb->refs, 1); 4965 atomic_set(&eb->io_pages, 0); 4966 4967 /* 4968 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4969 */ 4970 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4971 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4972 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4973 4974 #ifdef CONFIG_BTRFS_DEBUG 4975 eb->spinning_writers = 0; 4976 atomic_set(&eb->spinning_readers, 0); 4977 atomic_set(&eb->read_locks, 0); 4978 eb->write_locks = 0; 4979 #endif 4980 4981 return eb; 4982 } 4983 4984 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 4985 { 4986 int i; 4987 struct page *p; 4988 struct extent_buffer *new; 4989 int num_pages = num_extent_pages(src); 4990 4991 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4992 if (new == NULL) 4993 return NULL; 4994 4995 for (i = 0; i < num_pages; i++) { 4996 p = alloc_page(GFP_NOFS); 4997 if (!p) { 4998 btrfs_release_extent_buffer(new); 4999 return NULL; 5000 } 5001 attach_extent_buffer_page(new, p); 5002 WARN_ON(PageDirty(p)); 5003 SetPageUptodate(p); 5004 new->pages[i] = p; 5005 copy_page(page_address(p), page_address(src->pages[i])); 5006 } 5007 5008 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 5009 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5010 5011 return new; 5012 } 5013 5014 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5015 u64 start, unsigned long len) 5016 { 5017 struct extent_buffer *eb; 5018 int num_pages; 5019 int i; 5020 5021 eb = __alloc_extent_buffer(fs_info, start, len); 5022 if (!eb) 5023 return NULL; 5024 5025 num_pages = num_extent_pages(eb); 5026 for (i = 0; i < num_pages; i++) { 5027 eb->pages[i] = alloc_page(GFP_NOFS); 5028 if (!eb->pages[i]) 5029 goto err; 5030 } 5031 set_extent_buffer_uptodate(eb); 5032 btrfs_set_header_nritems(eb, 0); 5033 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5034 5035 return eb; 5036 err: 5037 for (; i > 0; i--) 5038 __free_page(eb->pages[i - 1]); 5039 __free_extent_buffer(eb); 5040 return NULL; 5041 } 5042 5043 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5044 u64 start) 5045 { 5046 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5047 } 5048 5049 static void check_buffer_tree_ref(struct extent_buffer *eb) 5050 { 5051 int refs; 5052 /* 5053 * The TREE_REF bit is first set when the extent_buffer is added 5054 * to the radix tree. It is also reset, if unset, when a new reference 5055 * is created by find_extent_buffer. 5056 * 5057 * It is only cleared in two cases: freeing the last non-tree 5058 * reference to the extent_buffer when its STALE bit is set or 5059 * calling releasepage when the tree reference is the only reference. 5060 * 5061 * In both cases, care is taken to ensure that the extent_buffer's 5062 * pages are not under io. However, releasepage can be concurrently 5063 * called with creating new references, which is prone to race 5064 * conditions between the calls to check_buffer_tree_ref in those 5065 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5066 * 5067 * The actual lifetime of the extent_buffer in the radix tree is 5068 * adequately protected by the refcount, but the TREE_REF bit and 5069 * its corresponding reference are not. To protect against this 5070 * class of races, we call check_buffer_tree_ref from the codepaths 5071 * which trigger io after they set eb->io_pages. Note that once io is 5072 * initiated, TREE_REF can no longer be cleared, so that is the 5073 * moment at which any such race is best fixed. 5074 */ 5075 refs = atomic_read(&eb->refs); 5076 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5077 return; 5078 5079 spin_lock(&eb->refs_lock); 5080 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5081 atomic_inc(&eb->refs); 5082 spin_unlock(&eb->refs_lock); 5083 } 5084 5085 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5086 struct page *accessed) 5087 { 5088 int num_pages, i; 5089 5090 check_buffer_tree_ref(eb); 5091 5092 num_pages = num_extent_pages(eb); 5093 for (i = 0; i < num_pages; i++) { 5094 struct page *p = eb->pages[i]; 5095 5096 if (p != accessed) 5097 mark_page_accessed(p); 5098 } 5099 } 5100 5101 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5102 u64 start) 5103 { 5104 struct extent_buffer *eb; 5105 5106 rcu_read_lock(); 5107 eb = radix_tree_lookup(&fs_info->buffer_radix, 5108 start >> PAGE_SHIFT); 5109 if (eb && atomic_inc_not_zero(&eb->refs)) { 5110 rcu_read_unlock(); 5111 /* 5112 * Lock our eb's refs_lock to avoid races with 5113 * free_extent_buffer. When we get our eb it might be flagged 5114 * with EXTENT_BUFFER_STALE and another task running 5115 * free_extent_buffer might have seen that flag set, 5116 * eb->refs == 2, that the buffer isn't under IO (dirty and 5117 * writeback flags not set) and it's still in the tree (flag 5118 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5119 * of decrementing the extent buffer's reference count twice. 5120 * So here we could race and increment the eb's reference count, 5121 * clear its stale flag, mark it as dirty and drop our reference 5122 * before the other task finishes executing free_extent_buffer, 5123 * which would later result in an attempt to free an extent 5124 * buffer that is dirty. 5125 */ 5126 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5127 spin_lock(&eb->refs_lock); 5128 spin_unlock(&eb->refs_lock); 5129 } 5130 mark_extent_buffer_accessed(eb, NULL); 5131 return eb; 5132 } 5133 rcu_read_unlock(); 5134 5135 return NULL; 5136 } 5137 5138 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5139 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5140 u64 start) 5141 { 5142 struct extent_buffer *eb, *exists = NULL; 5143 int ret; 5144 5145 eb = find_extent_buffer(fs_info, start); 5146 if (eb) 5147 return eb; 5148 eb = alloc_dummy_extent_buffer(fs_info, start); 5149 if (!eb) 5150 return ERR_PTR(-ENOMEM); 5151 eb->fs_info = fs_info; 5152 again: 5153 ret = radix_tree_preload(GFP_NOFS); 5154 if (ret) { 5155 exists = ERR_PTR(ret); 5156 goto free_eb; 5157 } 5158 spin_lock(&fs_info->buffer_lock); 5159 ret = radix_tree_insert(&fs_info->buffer_radix, 5160 start >> PAGE_SHIFT, eb); 5161 spin_unlock(&fs_info->buffer_lock); 5162 radix_tree_preload_end(); 5163 if (ret == -EEXIST) { 5164 exists = find_extent_buffer(fs_info, start); 5165 if (exists) 5166 goto free_eb; 5167 else 5168 goto again; 5169 } 5170 check_buffer_tree_ref(eb); 5171 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5172 5173 return eb; 5174 free_eb: 5175 btrfs_release_extent_buffer(eb); 5176 return exists; 5177 } 5178 #endif 5179 5180 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5181 u64 start) 5182 { 5183 unsigned long len = fs_info->nodesize; 5184 int num_pages; 5185 int i; 5186 unsigned long index = start >> PAGE_SHIFT; 5187 struct extent_buffer *eb; 5188 struct extent_buffer *exists = NULL; 5189 struct page *p; 5190 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5191 int uptodate = 1; 5192 int ret; 5193 5194 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5195 btrfs_err(fs_info, "bad tree block start %llu", start); 5196 return ERR_PTR(-EINVAL); 5197 } 5198 5199 eb = find_extent_buffer(fs_info, start); 5200 if (eb) 5201 return eb; 5202 5203 eb = __alloc_extent_buffer(fs_info, start, len); 5204 if (!eb) 5205 return ERR_PTR(-ENOMEM); 5206 5207 num_pages = num_extent_pages(eb); 5208 for (i = 0; i < num_pages; i++, index++) { 5209 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5210 if (!p) { 5211 exists = ERR_PTR(-ENOMEM); 5212 goto free_eb; 5213 } 5214 5215 spin_lock(&mapping->private_lock); 5216 if (PagePrivate(p)) { 5217 /* 5218 * We could have already allocated an eb for this page 5219 * and attached one so lets see if we can get a ref on 5220 * the existing eb, and if we can we know it's good and 5221 * we can just return that one, else we know we can just 5222 * overwrite page->private. 5223 */ 5224 exists = (struct extent_buffer *)p->private; 5225 if (atomic_inc_not_zero(&exists->refs)) { 5226 spin_unlock(&mapping->private_lock); 5227 unlock_page(p); 5228 put_page(p); 5229 mark_extent_buffer_accessed(exists, p); 5230 goto free_eb; 5231 } 5232 exists = NULL; 5233 5234 /* 5235 * Do this so attach doesn't complain and we need to 5236 * drop the ref the old guy had. 5237 */ 5238 ClearPagePrivate(p); 5239 WARN_ON(PageDirty(p)); 5240 put_page(p); 5241 } 5242 attach_extent_buffer_page(eb, p); 5243 spin_unlock(&mapping->private_lock); 5244 WARN_ON(PageDirty(p)); 5245 eb->pages[i] = p; 5246 if (!PageUptodate(p)) 5247 uptodate = 0; 5248 5249 /* 5250 * We can't unlock the pages just yet since the extent buffer 5251 * hasn't been properly inserted in the radix tree, this 5252 * opens a race with btree_releasepage which can free a page 5253 * while we are still filling in all pages for the buffer and 5254 * we could crash. 5255 */ 5256 } 5257 if (uptodate) 5258 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5259 again: 5260 ret = radix_tree_preload(GFP_NOFS); 5261 if (ret) { 5262 exists = ERR_PTR(ret); 5263 goto free_eb; 5264 } 5265 5266 spin_lock(&fs_info->buffer_lock); 5267 ret = radix_tree_insert(&fs_info->buffer_radix, 5268 start >> PAGE_SHIFT, eb); 5269 spin_unlock(&fs_info->buffer_lock); 5270 radix_tree_preload_end(); 5271 if (ret == -EEXIST) { 5272 exists = find_extent_buffer(fs_info, start); 5273 if (exists) 5274 goto free_eb; 5275 else 5276 goto again; 5277 } 5278 /* add one reference for the tree */ 5279 check_buffer_tree_ref(eb); 5280 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5281 5282 /* 5283 * Now it's safe to unlock the pages because any calls to 5284 * btree_releasepage will correctly detect that a page belongs to a 5285 * live buffer and won't free them prematurely. 5286 */ 5287 for (i = 0; i < num_pages; i++) 5288 unlock_page(eb->pages[i]); 5289 return eb; 5290 5291 free_eb: 5292 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5293 for (i = 0; i < num_pages; i++) { 5294 if (eb->pages[i]) 5295 unlock_page(eb->pages[i]); 5296 } 5297 5298 btrfs_release_extent_buffer(eb); 5299 return exists; 5300 } 5301 5302 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5303 { 5304 struct extent_buffer *eb = 5305 container_of(head, struct extent_buffer, rcu_head); 5306 5307 __free_extent_buffer(eb); 5308 } 5309 5310 static int release_extent_buffer(struct extent_buffer *eb) 5311 __releases(&eb->refs_lock) 5312 { 5313 lockdep_assert_held(&eb->refs_lock); 5314 5315 WARN_ON(atomic_read(&eb->refs) == 0); 5316 if (atomic_dec_and_test(&eb->refs)) { 5317 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5318 struct btrfs_fs_info *fs_info = eb->fs_info; 5319 5320 spin_unlock(&eb->refs_lock); 5321 5322 spin_lock(&fs_info->buffer_lock); 5323 radix_tree_delete(&fs_info->buffer_radix, 5324 eb->start >> PAGE_SHIFT); 5325 spin_unlock(&fs_info->buffer_lock); 5326 } else { 5327 spin_unlock(&eb->refs_lock); 5328 } 5329 5330 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5331 /* Should be safe to release our pages at this point */ 5332 btrfs_release_extent_buffer_pages(eb); 5333 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5334 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5335 __free_extent_buffer(eb); 5336 return 1; 5337 } 5338 #endif 5339 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5340 return 1; 5341 } 5342 spin_unlock(&eb->refs_lock); 5343 5344 return 0; 5345 } 5346 5347 void free_extent_buffer(struct extent_buffer *eb) 5348 { 5349 int refs; 5350 int old; 5351 if (!eb) 5352 return; 5353 5354 while (1) { 5355 refs = atomic_read(&eb->refs); 5356 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5357 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5358 refs == 1)) 5359 break; 5360 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5361 if (old == refs) 5362 return; 5363 } 5364 5365 spin_lock(&eb->refs_lock); 5366 if (atomic_read(&eb->refs) == 2 && 5367 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5368 !extent_buffer_under_io(eb) && 5369 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5370 atomic_dec(&eb->refs); 5371 5372 /* 5373 * I know this is terrible, but it's temporary until we stop tracking 5374 * the uptodate bits and such for the extent buffers. 5375 */ 5376 release_extent_buffer(eb); 5377 } 5378 5379 void free_extent_buffer_stale(struct extent_buffer *eb) 5380 { 5381 if (!eb) 5382 return; 5383 5384 spin_lock(&eb->refs_lock); 5385 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5386 5387 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5388 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5389 atomic_dec(&eb->refs); 5390 release_extent_buffer(eb); 5391 } 5392 5393 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5394 { 5395 int i; 5396 int num_pages; 5397 struct page *page; 5398 5399 num_pages = num_extent_pages(eb); 5400 5401 for (i = 0; i < num_pages; i++) { 5402 page = eb->pages[i]; 5403 if (!PageDirty(page)) 5404 continue; 5405 5406 lock_page(page); 5407 WARN_ON(!PagePrivate(page)); 5408 5409 clear_page_dirty_for_io(page); 5410 xa_lock_irq(&page->mapping->i_pages); 5411 if (!PageDirty(page)) 5412 __xa_clear_mark(&page->mapping->i_pages, 5413 page_index(page), PAGECACHE_TAG_DIRTY); 5414 xa_unlock_irq(&page->mapping->i_pages); 5415 ClearPageError(page); 5416 unlock_page(page); 5417 } 5418 WARN_ON(atomic_read(&eb->refs) == 0); 5419 } 5420 5421 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5422 { 5423 int i; 5424 int num_pages; 5425 bool was_dirty; 5426 5427 check_buffer_tree_ref(eb); 5428 5429 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5430 5431 num_pages = num_extent_pages(eb); 5432 WARN_ON(atomic_read(&eb->refs) == 0); 5433 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5434 5435 if (!was_dirty) 5436 for (i = 0; i < num_pages; i++) 5437 set_page_dirty(eb->pages[i]); 5438 5439 #ifdef CONFIG_BTRFS_DEBUG 5440 for (i = 0; i < num_pages; i++) 5441 ASSERT(PageDirty(eb->pages[i])); 5442 #endif 5443 5444 return was_dirty; 5445 } 5446 5447 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5448 { 5449 int i; 5450 struct page *page; 5451 int num_pages; 5452 5453 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5454 num_pages = num_extent_pages(eb); 5455 for (i = 0; i < num_pages; i++) { 5456 page = eb->pages[i]; 5457 if (page) 5458 ClearPageUptodate(page); 5459 } 5460 } 5461 5462 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5463 { 5464 int i; 5465 struct page *page; 5466 int num_pages; 5467 5468 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5469 num_pages = num_extent_pages(eb); 5470 for (i = 0; i < num_pages; i++) { 5471 page = eb->pages[i]; 5472 SetPageUptodate(page); 5473 } 5474 } 5475 5476 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5477 { 5478 int i; 5479 struct page *page; 5480 int err; 5481 int ret = 0; 5482 int locked_pages = 0; 5483 int all_uptodate = 1; 5484 int num_pages; 5485 unsigned long num_reads = 0; 5486 struct bio *bio = NULL; 5487 unsigned long bio_flags = 0; 5488 5489 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5490 return 0; 5491 5492 num_pages = num_extent_pages(eb); 5493 for (i = 0; i < num_pages; i++) { 5494 page = eb->pages[i]; 5495 if (wait == WAIT_NONE) { 5496 if (!trylock_page(page)) 5497 goto unlock_exit; 5498 } else { 5499 lock_page(page); 5500 } 5501 locked_pages++; 5502 } 5503 /* 5504 * We need to firstly lock all pages to make sure that 5505 * the uptodate bit of our pages won't be affected by 5506 * clear_extent_buffer_uptodate(). 5507 */ 5508 for (i = 0; i < num_pages; i++) { 5509 page = eb->pages[i]; 5510 if (!PageUptodate(page)) { 5511 num_reads++; 5512 all_uptodate = 0; 5513 } 5514 } 5515 5516 if (all_uptodate) { 5517 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5518 goto unlock_exit; 5519 } 5520 5521 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5522 eb->read_mirror = 0; 5523 atomic_set(&eb->io_pages, num_reads); 5524 /* 5525 * It is possible for releasepage to clear the TREE_REF bit before we 5526 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 5527 */ 5528 check_buffer_tree_ref(eb); 5529 for (i = 0; i < num_pages; i++) { 5530 page = eb->pages[i]; 5531 5532 if (!PageUptodate(page)) { 5533 if (ret) { 5534 atomic_dec(&eb->io_pages); 5535 unlock_page(page); 5536 continue; 5537 } 5538 5539 ClearPageError(page); 5540 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 5541 page, page_offset(page), PAGE_SIZE, 0, 5542 &bio, end_bio_extent_readpage, 5543 mirror_num, 0, 0, false); 5544 if (err) { 5545 /* 5546 * We failed to submit the bio so it's the 5547 * caller's responsibility to perform cleanup 5548 * i.e unlock page/set error bit. 5549 */ 5550 ret = err; 5551 SetPageError(page); 5552 unlock_page(page); 5553 atomic_dec(&eb->io_pages); 5554 } 5555 } else { 5556 unlock_page(page); 5557 } 5558 } 5559 5560 if (bio) { 5561 err = submit_one_bio(bio, mirror_num, bio_flags); 5562 if (err) 5563 return err; 5564 } 5565 5566 if (ret || wait != WAIT_COMPLETE) 5567 return ret; 5568 5569 for (i = 0; i < num_pages; i++) { 5570 page = eb->pages[i]; 5571 wait_on_page_locked(page); 5572 if (!PageUptodate(page)) 5573 ret = -EIO; 5574 } 5575 5576 return ret; 5577 5578 unlock_exit: 5579 while (locked_pages > 0) { 5580 locked_pages--; 5581 page = eb->pages[locked_pages]; 5582 unlock_page(page); 5583 } 5584 return ret; 5585 } 5586 5587 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5588 unsigned long len) 5589 { 5590 btrfs_warn(eb->fs_info, 5591 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5592 eb->start, eb->len, start, len); 5593 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5594 5595 return true; 5596 } 5597 5598 /* 5599 * Check if the [start, start + len) range is valid before reading/writing 5600 * the eb. 5601 * NOTE: @start and @len are offset inside the eb, not logical address. 5602 * 5603 * Caller should not touch the dst/src memory if this function returns error. 5604 */ 5605 static inline int check_eb_range(const struct extent_buffer *eb, 5606 unsigned long start, unsigned long len) 5607 { 5608 unsigned long offset; 5609 5610 /* start, start + len should not go beyond eb->len nor overflow */ 5611 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5612 return report_eb_range(eb, start, len); 5613 5614 return false; 5615 } 5616 5617 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5618 unsigned long start, unsigned long len) 5619 { 5620 size_t cur; 5621 size_t offset; 5622 struct page *page; 5623 char *kaddr; 5624 char *dst = (char *)dstv; 5625 unsigned long i = start >> PAGE_SHIFT; 5626 5627 if (check_eb_range(eb, start, len)) 5628 return; 5629 5630 offset = offset_in_page(start); 5631 5632 while (len > 0) { 5633 page = eb->pages[i]; 5634 5635 cur = min(len, (PAGE_SIZE - offset)); 5636 kaddr = page_address(page); 5637 memcpy(dst, kaddr + offset, cur); 5638 5639 dst += cur; 5640 len -= cur; 5641 offset = 0; 5642 i++; 5643 } 5644 } 5645 5646 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5647 void __user *dstv, 5648 unsigned long start, unsigned long len) 5649 { 5650 size_t cur; 5651 size_t offset; 5652 struct page *page; 5653 char *kaddr; 5654 char __user *dst = (char __user *)dstv; 5655 unsigned long i = start >> PAGE_SHIFT; 5656 int ret = 0; 5657 5658 WARN_ON(start > eb->len); 5659 WARN_ON(start + len > eb->start + eb->len); 5660 5661 offset = offset_in_page(start); 5662 5663 while (len > 0) { 5664 page = eb->pages[i]; 5665 5666 cur = min(len, (PAGE_SIZE - offset)); 5667 kaddr = page_address(page); 5668 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5669 ret = -EFAULT; 5670 break; 5671 } 5672 5673 dst += cur; 5674 len -= cur; 5675 offset = 0; 5676 i++; 5677 } 5678 5679 return ret; 5680 } 5681 5682 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5683 unsigned long start, unsigned long len) 5684 { 5685 size_t cur; 5686 size_t offset; 5687 struct page *page; 5688 char *kaddr; 5689 char *ptr = (char *)ptrv; 5690 unsigned long i = start >> PAGE_SHIFT; 5691 int ret = 0; 5692 5693 if (check_eb_range(eb, start, len)) 5694 return -EINVAL; 5695 5696 offset = offset_in_page(start); 5697 5698 while (len > 0) { 5699 page = eb->pages[i]; 5700 5701 cur = min(len, (PAGE_SIZE - offset)); 5702 5703 kaddr = page_address(page); 5704 ret = memcmp(ptr, kaddr + offset, cur); 5705 if (ret) 5706 break; 5707 5708 ptr += cur; 5709 len -= cur; 5710 offset = 0; 5711 i++; 5712 } 5713 return ret; 5714 } 5715 5716 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5717 const void *srcv) 5718 { 5719 char *kaddr; 5720 5721 WARN_ON(!PageUptodate(eb->pages[0])); 5722 kaddr = page_address(eb->pages[0]); 5723 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5724 BTRFS_FSID_SIZE); 5725 } 5726 5727 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5728 { 5729 char *kaddr; 5730 5731 WARN_ON(!PageUptodate(eb->pages[0])); 5732 kaddr = page_address(eb->pages[0]); 5733 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5734 BTRFS_FSID_SIZE); 5735 } 5736 5737 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5738 unsigned long start, unsigned long len) 5739 { 5740 size_t cur; 5741 size_t offset; 5742 struct page *page; 5743 char *kaddr; 5744 char *src = (char *)srcv; 5745 unsigned long i = start >> PAGE_SHIFT; 5746 5747 if (check_eb_range(eb, start, len)) 5748 return; 5749 5750 offset = offset_in_page(start); 5751 5752 while (len > 0) { 5753 page = eb->pages[i]; 5754 WARN_ON(!PageUptodate(page)); 5755 5756 cur = min(len, PAGE_SIZE - offset); 5757 kaddr = page_address(page); 5758 memcpy(kaddr + offset, src, cur); 5759 5760 src += cur; 5761 len -= cur; 5762 offset = 0; 5763 i++; 5764 } 5765 } 5766 5767 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5768 unsigned long len) 5769 { 5770 size_t cur; 5771 size_t offset; 5772 struct page *page; 5773 char *kaddr; 5774 unsigned long i = start >> PAGE_SHIFT; 5775 5776 if (check_eb_range(eb, start, len)) 5777 return; 5778 5779 offset = offset_in_page(start); 5780 5781 while (len > 0) { 5782 page = eb->pages[i]; 5783 WARN_ON(!PageUptodate(page)); 5784 5785 cur = min(len, PAGE_SIZE - offset); 5786 kaddr = page_address(page); 5787 memset(kaddr + offset, 0, cur); 5788 5789 len -= cur; 5790 offset = 0; 5791 i++; 5792 } 5793 } 5794 5795 void copy_extent_buffer_full(const struct extent_buffer *dst, 5796 const struct extent_buffer *src) 5797 { 5798 int i; 5799 int num_pages; 5800 5801 ASSERT(dst->len == src->len); 5802 5803 num_pages = num_extent_pages(dst); 5804 for (i = 0; i < num_pages; i++) 5805 copy_page(page_address(dst->pages[i]), 5806 page_address(src->pages[i])); 5807 } 5808 5809 void copy_extent_buffer(const struct extent_buffer *dst, 5810 const struct extent_buffer *src, 5811 unsigned long dst_offset, unsigned long src_offset, 5812 unsigned long len) 5813 { 5814 u64 dst_len = dst->len; 5815 size_t cur; 5816 size_t offset; 5817 struct page *page; 5818 char *kaddr; 5819 unsigned long i = dst_offset >> PAGE_SHIFT; 5820 5821 if (check_eb_range(dst, dst_offset, len) || 5822 check_eb_range(src, src_offset, len)) 5823 return; 5824 5825 WARN_ON(src->len != dst_len); 5826 5827 offset = offset_in_page(dst_offset); 5828 5829 while (len > 0) { 5830 page = dst->pages[i]; 5831 WARN_ON(!PageUptodate(page)); 5832 5833 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5834 5835 kaddr = page_address(page); 5836 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5837 5838 src_offset += cur; 5839 len -= cur; 5840 offset = 0; 5841 i++; 5842 } 5843 } 5844 5845 /* 5846 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5847 * given bit number 5848 * @eb: the extent buffer 5849 * @start: offset of the bitmap item in the extent buffer 5850 * @nr: bit number 5851 * @page_index: return index of the page in the extent buffer that contains the 5852 * given bit number 5853 * @page_offset: return offset into the page given by page_index 5854 * 5855 * This helper hides the ugliness of finding the byte in an extent buffer which 5856 * contains a given bit. 5857 */ 5858 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5859 unsigned long start, unsigned long nr, 5860 unsigned long *page_index, 5861 size_t *page_offset) 5862 { 5863 size_t byte_offset = BIT_BYTE(nr); 5864 size_t offset; 5865 5866 /* 5867 * The byte we want is the offset of the extent buffer + the offset of 5868 * the bitmap item in the extent buffer + the offset of the byte in the 5869 * bitmap item. 5870 */ 5871 offset = start + byte_offset; 5872 5873 *page_index = offset >> PAGE_SHIFT; 5874 *page_offset = offset_in_page(offset); 5875 } 5876 5877 /** 5878 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5879 * @eb: the extent buffer 5880 * @start: offset of the bitmap item in the extent buffer 5881 * @nr: bit number to test 5882 */ 5883 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5884 unsigned long nr) 5885 { 5886 u8 *kaddr; 5887 struct page *page; 5888 unsigned long i; 5889 size_t offset; 5890 5891 eb_bitmap_offset(eb, start, nr, &i, &offset); 5892 page = eb->pages[i]; 5893 WARN_ON(!PageUptodate(page)); 5894 kaddr = page_address(page); 5895 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5896 } 5897 5898 /** 5899 * extent_buffer_bitmap_set - set an area of a bitmap 5900 * @eb: the extent buffer 5901 * @start: offset of the bitmap item in the extent buffer 5902 * @pos: bit number of the first bit 5903 * @len: number of bits to set 5904 */ 5905 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5906 unsigned long pos, unsigned long len) 5907 { 5908 u8 *kaddr; 5909 struct page *page; 5910 unsigned long i; 5911 size_t offset; 5912 const unsigned int size = pos + len; 5913 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5914 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5915 5916 eb_bitmap_offset(eb, start, pos, &i, &offset); 5917 page = eb->pages[i]; 5918 WARN_ON(!PageUptodate(page)); 5919 kaddr = page_address(page); 5920 5921 while (len >= bits_to_set) { 5922 kaddr[offset] |= mask_to_set; 5923 len -= bits_to_set; 5924 bits_to_set = BITS_PER_BYTE; 5925 mask_to_set = ~0; 5926 if (++offset >= PAGE_SIZE && len > 0) { 5927 offset = 0; 5928 page = eb->pages[++i]; 5929 WARN_ON(!PageUptodate(page)); 5930 kaddr = page_address(page); 5931 } 5932 } 5933 if (len) { 5934 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5935 kaddr[offset] |= mask_to_set; 5936 } 5937 } 5938 5939 5940 /** 5941 * extent_buffer_bitmap_clear - clear an area of a bitmap 5942 * @eb: the extent buffer 5943 * @start: offset of the bitmap item in the extent buffer 5944 * @pos: bit number of the first bit 5945 * @len: number of bits to clear 5946 */ 5947 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5948 unsigned long start, unsigned long pos, 5949 unsigned long len) 5950 { 5951 u8 *kaddr; 5952 struct page *page; 5953 unsigned long i; 5954 size_t offset; 5955 const unsigned int size = pos + len; 5956 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5957 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5958 5959 eb_bitmap_offset(eb, start, pos, &i, &offset); 5960 page = eb->pages[i]; 5961 WARN_ON(!PageUptodate(page)); 5962 kaddr = page_address(page); 5963 5964 while (len >= bits_to_clear) { 5965 kaddr[offset] &= ~mask_to_clear; 5966 len -= bits_to_clear; 5967 bits_to_clear = BITS_PER_BYTE; 5968 mask_to_clear = ~0; 5969 if (++offset >= PAGE_SIZE && len > 0) { 5970 offset = 0; 5971 page = eb->pages[++i]; 5972 WARN_ON(!PageUptodate(page)); 5973 kaddr = page_address(page); 5974 } 5975 } 5976 if (len) { 5977 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5978 kaddr[offset] &= ~mask_to_clear; 5979 } 5980 } 5981 5982 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5983 { 5984 unsigned long distance = (src > dst) ? src - dst : dst - src; 5985 return distance < len; 5986 } 5987 5988 static void copy_pages(struct page *dst_page, struct page *src_page, 5989 unsigned long dst_off, unsigned long src_off, 5990 unsigned long len) 5991 { 5992 char *dst_kaddr = page_address(dst_page); 5993 char *src_kaddr; 5994 int must_memmove = 0; 5995 5996 if (dst_page != src_page) { 5997 src_kaddr = page_address(src_page); 5998 } else { 5999 src_kaddr = dst_kaddr; 6000 if (areas_overlap(src_off, dst_off, len)) 6001 must_memmove = 1; 6002 } 6003 6004 if (must_memmove) 6005 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6006 else 6007 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6008 } 6009 6010 void memcpy_extent_buffer(const struct extent_buffer *dst, 6011 unsigned long dst_offset, unsigned long src_offset, 6012 unsigned long len) 6013 { 6014 size_t cur; 6015 size_t dst_off_in_page; 6016 size_t src_off_in_page; 6017 unsigned long dst_i; 6018 unsigned long src_i; 6019 6020 if (check_eb_range(dst, dst_offset, len) || 6021 check_eb_range(dst, src_offset, len)) 6022 return; 6023 6024 while (len > 0) { 6025 dst_off_in_page = offset_in_page(dst_offset); 6026 src_off_in_page = offset_in_page(src_offset); 6027 6028 dst_i = dst_offset >> PAGE_SHIFT; 6029 src_i = src_offset >> PAGE_SHIFT; 6030 6031 cur = min(len, (unsigned long)(PAGE_SIZE - 6032 src_off_in_page)); 6033 cur = min_t(unsigned long, cur, 6034 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6035 6036 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6037 dst_off_in_page, src_off_in_page, cur); 6038 6039 src_offset += cur; 6040 dst_offset += cur; 6041 len -= cur; 6042 } 6043 } 6044 6045 void memmove_extent_buffer(const struct extent_buffer *dst, 6046 unsigned long dst_offset, unsigned long src_offset, 6047 unsigned long len) 6048 { 6049 size_t cur; 6050 size_t dst_off_in_page; 6051 size_t src_off_in_page; 6052 unsigned long dst_end = dst_offset + len - 1; 6053 unsigned long src_end = src_offset + len - 1; 6054 unsigned long dst_i; 6055 unsigned long src_i; 6056 6057 if (check_eb_range(dst, dst_offset, len) || 6058 check_eb_range(dst, src_offset, len)) 6059 return; 6060 if (dst_offset < src_offset) { 6061 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6062 return; 6063 } 6064 while (len > 0) { 6065 dst_i = dst_end >> PAGE_SHIFT; 6066 src_i = src_end >> PAGE_SHIFT; 6067 6068 dst_off_in_page = offset_in_page(dst_end); 6069 src_off_in_page = offset_in_page(src_end); 6070 6071 cur = min_t(unsigned long, len, src_off_in_page + 1); 6072 cur = min(cur, dst_off_in_page + 1); 6073 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6074 dst_off_in_page - cur + 1, 6075 src_off_in_page - cur + 1, cur); 6076 6077 dst_end -= cur; 6078 src_end -= cur; 6079 len -= cur; 6080 } 6081 } 6082 6083 int try_release_extent_buffer(struct page *page) 6084 { 6085 struct extent_buffer *eb; 6086 6087 /* 6088 * We need to make sure nobody is attaching this page to an eb right 6089 * now. 6090 */ 6091 spin_lock(&page->mapping->private_lock); 6092 if (!PagePrivate(page)) { 6093 spin_unlock(&page->mapping->private_lock); 6094 return 1; 6095 } 6096 6097 eb = (struct extent_buffer *)page->private; 6098 BUG_ON(!eb); 6099 6100 /* 6101 * This is a little awful but should be ok, we need to make sure that 6102 * the eb doesn't disappear out from under us while we're looking at 6103 * this page. 6104 */ 6105 spin_lock(&eb->refs_lock); 6106 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6107 spin_unlock(&eb->refs_lock); 6108 spin_unlock(&page->mapping->private_lock); 6109 return 0; 6110 } 6111 spin_unlock(&page->mapping->private_lock); 6112 6113 /* 6114 * If tree ref isn't set then we know the ref on this eb is a real ref, 6115 * so just return, this page will likely be freed soon anyway. 6116 */ 6117 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6118 spin_unlock(&eb->refs_lock); 6119 return 0; 6120 } 6121 6122 return release_extent_buffer(eb); 6123 } 6124