1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 28 static struct kmem_cache *extent_state_cache; 29 static struct kmem_cache *extent_buffer_cache; 30 static struct bio_set btrfs_bioset; 31 32 static inline bool extent_state_in_tree(const struct extent_state *state) 33 { 34 return !RB_EMPTY_NODE(&state->rb_node); 35 } 36 37 #ifdef CONFIG_BTRFS_DEBUG 38 static LIST_HEAD(states); 39 static DEFINE_SPINLOCK(leak_lock); 40 41 static inline void btrfs_leak_debug_add(spinlock_t *lock, 42 struct list_head *new, 43 struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(lock, flags); 50 } 51 52 static inline void btrfs_leak_debug_del(spinlock_t *lock, 53 struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(lock, flags); 60 } 61 62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 63 { 64 struct extent_buffer *eb; 65 unsigned long flags; 66 67 /* 68 * If we didn't get into open_ctree our allocated_ebs will not be 69 * initialized, so just skip this. 70 */ 71 if (!fs_info->allocated_ebs.next) 72 return; 73 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 86 } 87 88 static inline void btrfs_extent_state_leak_debug_check(void) 89 { 90 struct extent_state *state; 91 92 while (!list_empty(&states)) { 93 state = list_entry(states.next, struct extent_state, leak_list); 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 95 state->start, state->end, state->state, 96 extent_state_in_tree(state), 97 refcount_read(&state->refs)); 98 list_del(&state->leak_list); 99 kmem_cache_free(extent_state_cache, state); 100 } 101 } 102 103 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 105 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 106 struct extent_io_tree *tree, u64 start, u64 end) 107 { 108 struct inode *inode = tree->private_data; 109 u64 isize; 110 111 if (!inode || !is_data_inode(inode)) 112 return; 113 114 isize = i_size_read(inode); 115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 117 "%s: ino %llu isize %llu odd range [%llu,%llu]", 118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 119 } 120 } 121 #else 122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 123 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 124 #define btrfs_extent_state_leak_debug_check() do {} while (0) 125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 126 #endif 127 128 struct tree_entry { 129 u64 start; 130 u64 end; 131 struct rb_node rb_node; 132 }; 133 134 struct extent_page_data { 135 struct bio *bio; 136 /* tells writepage not to lock the state bits for this range 137 * it still does the unlocking 138 */ 139 unsigned int extent_locked:1; 140 141 /* tells the submit_bio code to use REQ_SYNC */ 142 unsigned int sync_io:1; 143 }; 144 145 static int add_extent_changeset(struct extent_state *state, u32 bits, 146 struct extent_changeset *changeset, 147 int set) 148 { 149 int ret; 150 151 if (!changeset) 152 return 0; 153 if (set && (state->state & bits) == bits) 154 return 0; 155 if (!set && (state->state & bits) == 0) 156 return 0; 157 changeset->bytes_changed += state->end - state->start + 1; 158 ret = ulist_add(&changeset->range_changed, state->start, state->end, 159 GFP_ATOMIC); 160 return ret; 161 } 162 163 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 164 unsigned long bio_flags) 165 { 166 blk_status_t ret = 0; 167 struct extent_io_tree *tree = bio->bi_private; 168 169 bio->bi_private = NULL; 170 171 if (is_data_inode(tree->private_data)) 172 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 173 bio_flags); 174 else 175 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 176 mirror_num, bio_flags); 177 178 return blk_status_to_errno(ret); 179 } 180 181 /* Cleanup unsubmitted bios */ 182 static void end_write_bio(struct extent_page_data *epd, int ret) 183 { 184 if (epd->bio) { 185 epd->bio->bi_status = errno_to_blk_status(ret); 186 bio_endio(epd->bio); 187 epd->bio = NULL; 188 } 189 } 190 191 /* 192 * Submit bio from extent page data via submit_one_bio 193 * 194 * Return 0 if everything is OK. 195 * Return <0 for error. 196 */ 197 static int __must_check flush_write_bio(struct extent_page_data *epd) 198 { 199 int ret = 0; 200 201 if (epd->bio) { 202 ret = submit_one_bio(epd->bio, 0, 0); 203 /* 204 * Clean up of epd->bio is handled by its endio function. 205 * And endio is either triggered by successful bio execution 206 * or the error handler of submit bio hook. 207 * So at this point, no matter what happened, we don't need 208 * to clean up epd->bio. 209 */ 210 epd->bio = NULL; 211 } 212 return ret; 213 } 214 215 int __init extent_state_cache_init(void) 216 { 217 extent_state_cache = kmem_cache_create("btrfs_extent_state", 218 sizeof(struct extent_state), 0, 219 SLAB_MEM_SPREAD, NULL); 220 if (!extent_state_cache) 221 return -ENOMEM; 222 return 0; 223 } 224 225 int __init extent_io_init(void) 226 { 227 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 228 sizeof(struct extent_buffer), 0, 229 SLAB_MEM_SPREAD, NULL); 230 if (!extent_buffer_cache) 231 return -ENOMEM; 232 233 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 234 offsetof(struct btrfs_io_bio, bio), 235 BIOSET_NEED_BVECS)) 236 goto free_buffer_cache; 237 238 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 239 goto free_bioset; 240 241 return 0; 242 243 free_bioset: 244 bioset_exit(&btrfs_bioset); 245 246 free_buffer_cache: 247 kmem_cache_destroy(extent_buffer_cache); 248 extent_buffer_cache = NULL; 249 return -ENOMEM; 250 } 251 252 void __cold extent_state_cache_exit(void) 253 { 254 btrfs_extent_state_leak_debug_check(); 255 kmem_cache_destroy(extent_state_cache); 256 } 257 258 void __cold extent_io_exit(void) 259 { 260 /* 261 * Make sure all delayed rcu free are flushed before we 262 * destroy caches. 263 */ 264 rcu_barrier(); 265 kmem_cache_destroy(extent_buffer_cache); 266 bioset_exit(&btrfs_bioset); 267 } 268 269 /* 270 * For the file_extent_tree, we want to hold the inode lock when we lookup and 271 * update the disk_i_size, but lockdep will complain because our io_tree we hold 272 * the tree lock and get the inode lock when setting delalloc. These two things 273 * are unrelated, so make a class for the file_extent_tree so we don't get the 274 * two locking patterns mixed up. 275 */ 276 static struct lock_class_key file_extent_tree_class; 277 278 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 279 struct extent_io_tree *tree, unsigned int owner, 280 void *private_data) 281 { 282 tree->fs_info = fs_info; 283 tree->state = RB_ROOT; 284 tree->dirty_bytes = 0; 285 spin_lock_init(&tree->lock); 286 tree->private_data = private_data; 287 tree->owner = owner; 288 if (owner == IO_TREE_INODE_FILE_EXTENT) 289 lockdep_set_class(&tree->lock, &file_extent_tree_class); 290 } 291 292 void extent_io_tree_release(struct extent_io_tree *tree) 293 { 294 spin_lock(&tree->lock); 295 /* 296 * Do a single barrier for the waitqueue_active check here, the state 297 * of the waitqueue should not change once extent_io_tree_release is 298 * called. 299 */ 300 smp_mb(); 301 while (!RB_EMPTY_ROOT(&tree->state)) { 302 struct rb_node *node; 303 struct extent_state *state; 304 305 node = rb_first(&tree->state); 306 state = rb_entry(node, struct extent_state, rb_node); 307 rb_erase(&state->rb_node, &tree->state); 308 RB_CLEAR_NODE(&state->rb_node); 309 /* 310 * btree io trees aren't supposed to have tasks waiting for 311 * changes in the flags of extent states ever. 312 */ 313 ASSERT(!waitqueue_active(&state->wq)); 314 free_extent_state(state); 315 316 cond_resched_lock(&tree->lock); 317 } 318 spin_unlock(&tree->lock); 319 } 320 321 static struct extent_state *alloc_extent_state(gfp_t mask) 322 { 323 struct extent_state *state; 324 325 /* 326 * The given mask might be not appropriate for the slab allocator, 327 * drop the unsupported bits 328 */ 329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 330 state = kmem_cache_alloc(extent_state_cache, mask); 331 if (!state) 332 return state; 333 state->state = 0; 334 state->failrec = NULL; 335 RB_CLEAR_NODE(&state->rb_node); 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 337 refcount_set(&state->refs, 1); 338 init_waitqueue_head(&state->wq); 339 trace_alloc_extent_state(state, mask, _RET_IP_); 340 return state; 341 } 342 343 void free_extent_state(struct extent_state *state) 344 { 345 if (!state) 346 return; 347 if (refcount_dec_and_test(&state->refs)) { 348 WARN_ON(extent_state_in_tree(state)); 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 350 trace_free_extent_state(state, _RET_IP_); 351 kmem_cache_free(extent_state_cache, state); 352 } 353 } 354 355 static struct rb_node *tree_insert(struct rb_root *root, 356 struct rb_node *search_start, 357 u64 offset, 358 struct rb_node *node, 359 struct rb_node ***p_in, 360 struct rb_node **parent_in) 361 { 362 struct rb_node **p; 363 struct rb_node *parent = NULL; 364 struct tree_entry *entry; 365 366 if (p_in && parent_in) { 367 p = *p_in; 368 parent = *parent_in; 369 goto do_insert; 370 } 371 372 p = search_start ? &search_start : &root->rb_node; 373 while (*p) { 374 parent = *p; 375 entry = rb_entry(parent, struct tree_entry, rb_node); 376 377 if (offset < entry->start) 378 p = &(*p)->rb_left; 379 else if (offset > entry->end) 380 p = &(*p)->rb_right; 381 else 382 return parent; 383 } 384 385 do_insert: 386 rb_link_node(node, parent, p); 387 rb_insert_color(node, root); 388 return NULL; 389 } 390 391 /** 392 * __etree_search - searche @tree for an entry that contains @offset. Such 393 * entry would have entry->start <= offset && entry->end >= offset. 394 * 395 * @tree - the tree to search 396 * @offset - offset that should fall within an entry in @tree 397 * @next_ret - pointer to the first entry whose range ends after @offset 398 * @prev - pointer to the first entry whose range begins before @offset 399 * @p_ret - pointer where new node should be anchored (used when inserting an 400 * entry in the tree) 401 * @parent_ret - points to entry which would have been the parent of the entry, 402 * containing @offset 403 * 404 * This function returns a pointer to the entry that contains @offset byte 405 * address. If no such entry exists, then NULL is returned and the other 406 * pointer arguments to the function are filled, otherwise the found entry is 407 * returned and other pointers are left untouched. 408 */ 409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 410 struct rb_node **next_ret, 411 struct rb_node **prev_ret, 412 struct rb_node ***p_ret, 413 struct rb_node **parent_ret) 414 { 415 struct rb_root *root = &tree->state; 416 struct rb_node **n = &root->rb_node; 417 struct rb_node *prev = NULL; 418 struct rb_node *orig_prev = NULL; 419 struct tree_entry *entry; 420 struct tree_entry *prev_entry = NULL; 421 422 while (*n) { 423 prev = *n; 424 entry = rb_entry(prev, struct tree_entry, rb_node); 425 prev_entry = entry; 426 427 if (offset < entry->start) 428 n = &(*n)->rb_left; 429 else if (offset > entry->end) 430 n = &(*n)->rb_right; 431 else 432 return *n; 433 } 434 435 if (p_ret) 436 *p_ret = n; 437 if (parent_ret) 438 *parent_ret = prev; 439 440 if (next_ret) { 441 orig_prev = prev; 442 while (prev && offset > prev_entry->end) { 443 prev = rb_next(prev); 444 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 445 } 446 *next_ret = prev; 447 prev = orig_prev; 448 } 449 450 if (prev_ret) { 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 452 while (prev && offset < prev_entry->start) { 453 prev = rb_prev(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *prev_ret = prev; 457 } 458 return NULL; 459 } 460 461 static inline struct rb_node * 462 tree_search_for_insert(struct extent_io_tree *tree, 463 u64 offset, 464 struct rb_node ***p_ret, 465 struct rb_node **parent_ret) 466 { 467 struct rb_node *next= NULL; 468 struct rb_node *ret; 469 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 471 if (!ret) 472 return next; 473 return ret; 474 } 475 476 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 477 u64 offset) 478 { 479 return tree_search_for_insert(tree, offset, NULL, NULL); 480 } 481 482 /* 483 * utility function to look for merge candidates inside a given range. 484 * Any extents with matching state are merged together into a single 485 * extent in the tree. Extents with EXTENT_IO in their state field 486 * are not merged because the end_io handlers need to be able to do 487 * operations on them without sleeping (or doing allocations/splits). 488 * 489 * This should be called with the tree lock held. 490 */ 491 static void merge_state(struct extent_io_tree *tree, 492 struct extent_state *state) 493 { 494 struct extent_state *other; 495 struct rb_node *other_node; 496 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 498 return; 499 500 other_node = rb_prev(&state->rb_node); 501 if (other_node) { 502 other = rb_entry(other_node, struct extent_state, rb_node); 503 if (other->end == state->start - 1 && 504 other->state == state->state) { 505 if (tree->private_data && 506 is_data_inode(tree->private_data)) 507 btrfs_merge_delalloc_extent(tree->private_data, 508 state, other); 509 state->start = other->start; 510 rb_erase(&other->rb_node, &tree->state); 511 RB_CLEAR_NODE(&other->rb_node); 512 free_extent_state(other); 513 } 514 } 515 other_node = rb_next(&state->rb_node); 516 if (other_node) { 517 other = rb_entry(other_node, struct extent_state, rb_node); 518 if (other->start == state->end + 1 && 519 other->state == state->state) { 520 if (tree->private_data && 521 is_data_inode(tree->private_data)) 522 btrfs_merge_delalloc_extent(tree->private_data, 523 state, other); 524 state->end = other->end; 525 rb_erase(&other->rb_node, &tree->state); 526 RB_CLEAR_NODE(&other->rb_node); 527 free_extent_state(other); 528 } 529 } 530 } 531 532 static void set_state_bits(struct extent_io_tree *tree, 533 struct extent_state *state, u32 *bits, 534 struct extent_changeset *changeset); 535 536 /* 537 * insert an extent_state struct into the tree. 'bits' are set on the 538 * struct before it is inserted. 539 * 540 * This may return -EEXIST if the extent is already there, in which case the 541 * state struct is freed. 542 * 543 * The tree lock is not taken internally. This is a utility function and 544 * probably isn't what you want to call (see set/clear_extent_bit). 545 */ 546 static int insert_state(struct extent_io_tree *tree, 547 struct extent_state *state, u64 start, u64 end, 548 struct rb_node ***p, 549 struct rb_node **parent, 550 u32 *bits, struct extent_changeset *changeset) 551 { 552 struct rb_node *node; 553 554 if (end < start) { 555 btrfs_err(tree->fs_info, 556 "insert state: end < start %llu %llu", end, start); 557 WARN_ON(1); 558 } 559 state->start = start; 560 state->end = end; 561 562 set_state_bits(tree, state, bits, changeset); 563 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 565 if (node) { 566 struct extent_state *found; 567 found = rb_entry(node, struct extent_state, rb_node); 568 btrfs_err(tree->fs_info, 569 "found node %llu %llu on insert of %llu %llu", 570 found->start, found->end, start, end); 571 return -EEXIST; 572 } 573 merge_state(tree, state); 574 return 0; 575 } 576 577 /* 578 * split a given extent state struct in two, inserting the preallocated 579 * struct 'prealloc' as the newly created second half. 'split' indicates an 580 * offset inside 'orig' where it should be split. 581 * 582 * Before calling, 583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 584 * are two extent state structs in the tree: 585 * prealloc: [orig->start, split - 1] 586 * orig: [ split, orig->end ] 587 * 588 * The tree locks are not taken by this function. They need to be held 589 * by the caller. 590 */ 591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 592 struct extent_state *prealloc, u64 split) 593 { 594 struct rb_node *node; 595 596 if (tree->private_data && is_data_inode(tree->private_data)) 597 btrfs_split_delalloc_extent(tree->private_data, orig, split); 598 599 prealloc->start = orig->start; 600 prealloc->end = split - 1; 601 prealloc->state = orig->state; 602 orig->start = split; 603 604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 605 &prealloc->rb_node, NULL, NULL); 606 if (node) { 607 free_extent_state(prealloc); 608 return -EEXIST; 609 } 610 return 0; 611 } 612 613 static struct extent_state *next_state(struct extent_state *state) 614 { 615 struct rb_node *next = rb_next(&state->rb_node); 616 if (next) 617 return rb_entry(next, struct extent_state, rb_node); 618 else 619 return NULL; 620 } 621 622 /* 623 * utility function to clear some bits in an extent state struct. 624 * it will optionally wake up anyone waiting on this state (wake == 1). 625 * 626 * If no bits are set on the state struct after clearing things, the 627 * struct is freed and removed from the tree 628 */ 629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 630 struct extent_state *state, 631 u32 *bits, int wake, 632 struct extent_changeset *changeset) 633 { 634 struct extent_state *next; 635 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 636 int ret; 637 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 639 u64 range = state->end - state->start + 1; 640 WARN_ON(range > tree->dirty_bytes); 641 tree->dirty_bytes -= range; 642 } 643 644 if (tree->private_data && is_data_inode(tree->private_data)) 645 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 646 647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 648 BUG_ON(ret < 0); 649 state->state &= ~bits_to_clear; 650 if (wake) 651 wake_up(&state->wq); 652 if (state->state == 0) { 653 next = next_state(state); 654 if (extent_state_in_tree(state)) { 655 rb_erase(&state->rb_node, &tree->state); 656 RB_CLEAR_NODE(&state->rb_node); 657 free_extent_state(state); 658 } else { 659 WARN_ON(1); 660 } 661 } else { 662 merge_state(tree, state); 663 next = next_state(state); 664 } 665 return next; 666 } 667 668 static struct extent_state * 669 alloc_extent_state_atomic(struct extent_state *prealloc) 670 { 671 if (!prealloc) 672 prealloc = alloc_extent_state(GFP_ATOMIC); 673 674 return prealloc; 675 } 676 677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 678 { 679 struct inode *inode = tree->private_data; 680 681 btrfs_panic(btrfs_sb(inode->i_sb), err, 682 "locking error: extent tree was modified by another thread while locked"); 683 } 684 685 /* 686 * clear some bits on a range in the tree. This may require splitting 687 * or inserting elements in the tree, so the gfp mask is used to 688 * indicate which allocations or sleeping are allowed. 689 * 690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 691 * the given range from the tree regardless of state (ie for truncate). 692 * 693 * the range [start, end] is inclusive. 694 * 695 * This takes the tree lock, and returns 0 on success and < 0 on error. 696 */ 697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 698 u32 bits, int wake, int delete, 699 struct extent_state **cached_state, 700 gfp_t mask, struct extent_changeset *changeset) 701 { 702 struct extent_state *state; 703 struct extent_state *cached; 704 struct extent_state *prealloc = NULL; 705 struct rb_node *node; 706 u64 last_end; 707 int err; 708 int clear = 0; 709 710 btrfs_debug_check_extent_io_range(tree, start, end); 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 712 713 if (bits & EXTENT_DELALLOC) 714 bits |= EXTENT_NORESERVE; 715 716 if (delete) 717 bits |= ~EXTENT_CTLBITS; 718 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 720 clear = 1; 721 again: 722 if (!prealloc && gfpflags_allow_blocking(mask)) { 723 /* 724 * Don't care for allocation failure here because we might end 725 * up not needing the pre-allocated extent state at all, which 726 * is the case if we only have in the tree extent states that 727 * cover our input range and don't cover too any other range. 728 * If we end up needing a new extent state we allocate it later. 729 */ 730 prealloc = alloc_extent_state(mask); 731 } 732 733 spin_lock(&tree->lock); 734 if (cached_state) { 735 cached = *cached_state; 736 737 if (clear) { 738 *cached_state = NULL; 739 cached_state = NULL; 740 } 741 742 if (cached && extent_state_in_tree(cached) && 743 cached->start <= start && cached->end > start) { 744 if (clear) 745 refcount_dec(&cached->refs); 746 state = cached; 747 goto hit_next; 748 } 749 if (clear) 750 free_extent_state(cached); 751 } 752 /* 753 * this search will find the extents that end after 754 * our range starts 755 */ 756 node = tree_search(tree, start); 757 if (!node) 758 goto out; 759 state = rb_entry(node, struct extent_state, rb_node); 760 hit_next: 761 if (state->start > end) 762 goto out; 763 WARN_ON(state->end < start); 764 last_end = state->end; 765 766 /* the state doesn't have the wanted bits, go ahead */ 767 if (!(state->state & bits)) { 768 state = next_state(state); 769 goto next; 770 } 771 772 /* 773 * | ---- desired range ---- | 774 * | state | or 775 * | ------------- state -------------- | 776 * 777 * We need to split the extent we found, and may flip 778 * bits on second half. 779 * 780 * If the extent we found extends past our range, we 781 * just split and search again. It'll get split again 782 * the next time though. 783 * 784 * If the extent we found is inside our range, we clear 785 * the desired bit on it. 786 */ 787 788 if (state->start < start) { 789 prealloc = alloc_extent_state_atomic(prealloc); 790 BUG_ON(!prealloc); 791 err = split_state(tree, state, prealloc, start); 792 if (err) 793 extent_io_tree_panic(tree, err); 794 795 prealloc = NULL; 796 if (err) 797 goto out; 798 if (state->end <= end) { 799 state = clear_state_bit(tree, state, &bits, wake, 800 changeset); 801 goto next; 802 } 803 goto search_again; 804 } 805 /* 806 * | ---- desired range ---- | 807 * | state | 808 * We need to split the extent, and clear the bit 809 * on the first half 810 */ 811 if (state->start <= end && state->end > end) { 812 prealloc = alloc_extent_state_atomic(prealloc); 813 BUG_ON(!prealloc); 814 err = split_state(tree, state, prealloc, end + 1); 815 if (err) 816 extent_io_tree_panic(tree, err); 817 818 if (wake) 819 wake_up(&state->wq); 820 821 clear_state_bit(tree, prealloc, &bits, wake, changeset); 822 823 prealloc = NULL; 824 goto out; 825 } 826 827 state = clear_state_bit(tree, state, &bits, wake, changeset); 828 next: 829 if (last_end == (u64)-1) 830 goto out; 831 start = last_end + 1; 832 if (start <= end && state && !need_resched()) 833 goto hit_next; 834 835 search_again: 836 if (start > end) 837 goto out; 838 spin_unlock(&tree->lock); 839 if (gfpflags_allow_blocking(mask)) 840 cond_resched(); 841 goto again; 842 843 out: 844 spin_unlock(&tree->lock); 845 if (prealloc) 846 free_extent_state(prealloc); 847 848 return 0; 849 850 } 851 852 static void wait_on_state(struct extent_io_tree *tree, 853 struct extent_state *state) 854 __releases(tree->lock) 855 __acquires(tree->lock) 856 { 857 DEFINE_WAIT(wait); 858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 859 spin_unlock(&tree->lock); 860 schedule(); 861 spin_lock(&tree->lock); 862 finish_wait(&state->wq, &wait); 863 } 864 865 /* 866 * waits for one or more bits to clear on a range in the state tree. 867 * The range [start, end] is inclusive. 868 * The tree lock is taken by this function 869 */ 870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 871 u32 bits) 872 { 873 struct extent_state *state; 874 struct rb_node *node; 875 876 btrfs_debug_check_extent_io_range(tree, start, end); 877 878 spin_lock(&tree->lock); 879 again: 880 while (1) { 881 /* 882 * this search will find all the extents that end after 883 * our range starts 884 */ 885 node = tree_search(tree, start); 886 process_node: 887 if (!node) 888 break; 889 890 state = rb_entry(node, struct extent_state, rb_node); 891 892 if (state->start > end) 893 goto out; 894 895 if (state->state & bits) { 896 start = state->start; 897 refcount_inc(&state->refs); 898 wait_on_state(tree, state); 899 free_extent_state(state); 900 goto again; 901 } 902 start = state->end + 1; 903 904 if (start > end) 905 break; 906 907 if (!cond_resched_lock(&tree->lock)) { 908 node = rb_next(node); 909 goto process_node; 910 } 911 } 912 out: 913 spin_unlock(&tree->lock); 914 } 915 916 static void set_state_bits(struct extent_io_tree *tree, 917 struct extent_state *state, 918 u32 *bits, struct extent_changeset *changeset) 919 { 920 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 921 int ret; 922 923 if (tree->private_data && is_data_inode(tree->private_data)) 924 btrfs_set_delalloc_extent(tree->private_data, state, bits); 925 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 927 u64 range = state->end - state->start + 1; 928 tree->dirty_bytes += range; 929 } 930 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 931 BUG_ON(ret < 0); 932 state->state |= bits_to_set; 933 } 934 935 static void cache_state_if_flags(struct extent_state *state, 936 struct extent_state **cached_ptr, 937 unsigned flags) 938 { 939 if (cached_ptr && !(*cached_ptr)) { 940 if (!flags || (state->state & flags)) { 941 *cached_ptr = state; 942 refcount_inc(&state->refs); 943 } 944 } 945 } 946 947 static void cache_state(struct extent_state *state, 948 struct extent_state **cached_ptr) 949 { 950 return cache_state_if_flags(state, cached_ptr, 951 EXTENT_LOCKED | EXTENT_BOUNDARY); 952 } 953 954 /* 955 * set some bits on a range in the tree. This may require allocations or 956 * sleeping, so the gfp mask is used to indicate what is allowed. 957 * 958 * If any of the exclusive bits are set, this will fail with -EEXIST if some 959 * part of the range already has the desired bits set. The start of the 960 * existing range is returned in failed_start in this case. 961 * 962 * [start, end] is inclusive This takes the tree lock. 963 */ 964 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 965 u32 exclusive_bits, u64 *failed_start, 966 struct extent_state **cached_state, gfp_t mask, 967 struct extent_changeset *changeset) 968 { 969 struct extent_state *state; 970 struct extent_state *prealloc = NULL; 971 struct rb_node *node; 972 struct rb_node **p; 973 struct rb_node *parent; 974 int err = 0; 975 u64 last_start; 976 u64 last_end; 977 978 btrfs_debug_check_extent_io_range(tree, start, end); 979 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 980 981 if (exclusive_bits) 982 ASSERT(failed_start); 983 else 984 ASSERT(failed_start == NULL); 985 again: 986 if (!prealloc && gfpflags_allow_blocking(mask)) { 987 /* 988 * Don't care for allocation failure here because we might end 989 * up not needing the pre-allocated extent state at all, which 990 * is the case if we only have in the tree extent states that 991 * cover our input range and don't cover too any other range. 992 * If we end up needing a new extent state we allocate it later. 993 */ 994 prealloc = alloc_extent_state(mask); 995 } 996 997 spin_lock(&tree->lock); 998 if (cached_state && *cached_state) { 999 state = *cached_state; 1000 if (state->start <= start && state->end > start && 1001 extent_state_in_tree(state)) { 1002 node = &state->rb_node; 1003 goto hit_next; 1004 } 1005 } 1006 /* 1007 * this search will find all the extents that end after 1008 * our range starts. 1009 */ 1010 node = tree_search_for_insert(tree, start, &p, &parent); 1011 if (!node) { 1012 prealloc = alloc_extent_state_atomic(prealloc); 1013 BUG_ON(!prealloc); 1014 err = insert_state(tree, prealloc, start, end, 1015 &p, &parent, &bits, changeset); 1016 if (err) 1017 extent_io_tree_panic(tree, err); 1018 1019 cache_state(prealloc, cached_state); 1020 prealloc = NULL; 1021 goto out; 1022 } 1023 state = rb_entry(node, struct extent_state, rb_node); 1024 hit_next: 1025 last_start = state->start; 1026 last_end = state->end; 1027 1028 /* 1029 * | ---- desired range ---- | 1030 * | state | 1031 * 1032 * Just lock what we found and keep going 1033 */ 1034 if (state->start == start && state->end <= end) { 1035 if (state->state & exclusive_bits) { 1036 *failed_start = state->start; 1037 err = -EEXIST; 1038 goto out; 1039 } 1040 1041 set_state_bits(tree, state, &bits, changeset); 1042 cache_state(state, cached_state); 1043 merge_state(tree, state); 1044 if (last_end == (u64)-1) 1045 goto out; 1046 start = last_end + 1; 1047 state = next_state(state); 1048 if (start < end && state && state->start == start && 1049 !need_resched()) 1050 goto hit_next; 1051 goto search_again; 1052 } 1053 1054 /* 1055 * | ---- desired range ---- | 1056 * | state | 1057 * or 1058 * | ------------- state -------------- | 1059 * 1060 * We need to split the extent we found, and may flip bits on 1061 * second half. 1062 * 1063 * If the extent we found extends past our 1064 * range, we just split and search again. It'll get split 1065 * again the next time though. 1066 * 1067 * If the extent we found is inside our range, we set the 1068 * desired bit on it. 1069 */ 1070 if (state->start < start) { 1071 if (state->state & exclusive_bits) { 1072 *failed_start = start; 1073 err = -EEXIST; 1074 goto out; 1075 } 1076 1077 /* 1078 * If this extent already has all the bits we want set, then 1079 * skip it, not necessary to split it or do anything with it. 1080 */ 1081 if ((state->state & bits) == bits) { 1082 start = state->end + 1; 1083 cache_state(state, cached_state); 1084 goto search_again; 1085 } 1086 1087 prealloc = alloc_extent_state_atomic(prealloc); 1088 BUG_ON(!prealloc); 1089 err = split_state(tree, state, prealloc, start); 1090 if (err) 1091 extent_io_tree_panic(tree, err); 1092 1093 prealloc = NULL; 1094 if (err) 1095 goto out; 1096 if (state->end <= end) { 1097 set_state_bits(tree, state, &bits, changeset); 1098 cache_state(state, cached_state); 1099 merge_state(tree, state); 1100 if (last_end == (u64)-1) 1101 goto out; 1102 start = last_end + 1; 1103 state = next_state(state); 1104 if (start < end && state && state->start == start && 1105 !need_resched()) 1106 goto hit_next; 1107 } 1108 goto search_again; 1109 } 1110 /* 1111 * | ---- desired range ---- | 1112 * | state | or | state | 1113 * 1114 * There's a hole, we need to insert something in it and 1115 * ignore the extent we found. 1116 */ 1117 if (state->start > start) { 1118 u64 this_end; 1119 if (end < last_start) 1120 this_end = end; 1121 else 1122 this_end = last_start - 1; 1123 1124 prealloc = alloc_extent_state_atomic(prealloc); 1125 BUG_ON(!prealloc); 1126 1127 /* 1128 * Avoid to free 'prealloc' if it can be merged with 1129 * the later extent. 1130 */ 1131 err = insert_state(tree, prealloc, start, this_end, 1132 NULL, NULL, &bits, changeset); 1133 if (err) 1134 extent_io_tree_panic(tree, err); 1135 1136 cache_state(prealloc, cached_state); 1137 prealloc = NULL; 1138 start = this_end + 1; 1139 goto search_again; 1140 } 1141 /* 1142 * | ---- desired range ---- | 1143 * | state | 1144 * We need to split the extent, and set the bit 1145 * on the first half 1146 */ 1147 if (state->start <= end && state->end > end) { 1148 if (state->state & exclusive_bits) { 1149 *failed_start = start; 1150 err = -EEXIST; 1151 goto out; 1152 } 1153 1154 prealloc = alloc_extent_state_atomic(prealloc); 1155 BUG_ON(!prealloc); 1156 err = split_state(tree, state, prealloc, end + 1); 1157 if (err) 1158 extent_io_tree_panic(tree, err); 1159 1160 set_state_bits(tree, prealloc, &bits, changeset); 1161 cache_state(prealloc, cached_state); 1162 merge_state(tree, prealloc); 1163 prealloc = NULL; 1164 goto out; 1165 } 1166 1167 search_again: 1168 if (start > end) 1169 goto out; 1170 spin_unlock(&tree->lock); 1171 if (gfpflags_allow_blocking(mask)) 1172 cond_resched(); 1173 goto again; 1174 1175 out: 1176 spin_unlock(&tree->lock); 1177 if (prealloc) 1178 free_extent_state(prealloc); 1179 1180 return err; 1181 1182 } 1183 1184 /** 1185 * convert_extent_bit - convert all bits in a given range from one bit to 1186 * another 1187 * @tree: the io tree to search 1188 * @start: the start offset in bytes 1189 * @end: the end offset in bytes (inclusive) 1190 * @bits: the bits to set in this range 1191 * @clear_bits: the bits to clear in this range 1192 * @cached_state: state that we're going to cache 1193 * 1194 * This will go through and set bits for the given range. If any states exist 1195 * already in this range they are set with the given bit and cleared of the 1196 * clear_bits. This is only meant to be used by things that are mergeable, ie 1197 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1198 * boundary bits like LOCK. 1199 * 1200 * All allocations are done with GFP_NOFS. 1201 */ 1202 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1203 u32 bits, u32 clear_bits, 1204 struct extent_state **cached_state) 1205 { 1206 struct extent_state *state; 1207 struct extent_state *prealloc = NULL; 1208 struct rb_node *node; 1209 struct rb_node **p; 1210 struct rb_node *parent; 1211 int err = 0; 1212 u64 last_start; 1213 u64 last_end; 1214 bool first_iteration = true; 1215 1216 btrfs_debug_check_extent_io_range(tree, start, end); 1217 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1218 clear_bits); 1219 1220 again: 1221 if (!prealloc) { 1222 /* 1223 * Best effort, don't worry if extent state allocation fails 1224 * here for the first iteration. We might have a cached state 1225 * that matches exactly the target range, in which case no 1226 * extent state allocations are needed. We'll only know this 1227 * after locking the tree. 1228 */ 1229 prealloc = alloc_extent_state(GFP_NOFS); 1230 if (!prealloc && !first_iteration) 1231 return -ENOMEM; 1232 } 1233 1234 spin_lock(&tree->lock); 1235 if (cached_state && *cached_state) { 1236 state = *cached_state; 1237 if (state->start <= start && state->end > start && 1238 extent_state_in_tree(state)) { 1239 node = &state->rb_node; 1240 goto hit_next; 1241 } 1242 } 1243 1244 /* 1245 * this search will find all the extents that end after 1246 * our range starts. 1247 */ 1248 node = tree_search_for_insert(tree, start, &p, &parent); 1249 if (!node) { 1250 prealloc = alloc_extent_state_atomic(prealloc); 1251 if (!prealloc) { 1252 err = -ENOMEM; 1253 goto out; 1254 } 1255 err = insert_state(tree, prealloc, start, end, 1256 &p, &parent, &bits, NULL); 1257 if (err) 1258 extent_io_tree_panic(tree, err); 1259 cache_state(prealloc, cached_state); 1260 prealloc = NULL; 1261 goto out; 1262 } 1263 state = rb_entry(node, struct extent_state, rb_node); 1264 hit_next: 1265 last_start = state->start; 1266 last_end = state->end; 1267 1268 /* 1269 * | ---- desired range ---- | 1270 * | state | 1271 * 1272 * Just lock what we found and keep going 1273 */ 1274 if (state->start == start && state->end <= end) { 1275 set_state_bits(tree, state, &bits, NULL); 1276 cache_state(state, cached_state); 1277 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1278 if (last_end == (u64)-1) 1279 goto out; 1280 start = last_end + 1; 1281 if (start < end && state && state->start == start && 1282 !need_resched()) 1283 goto hit_next; 1284 goto search_again; 1285 } 1286 1287 /* 1288 * | ---- desired range ---- | 1289 * | state | 1290 * or 1291 * | ------------- state -------------- | 1292 * 1293 * We need to split the extent we found, and may flip bits on 1294 * second half. 1295 * 1296 * If the extent we found extends past our 1297 * range, we just split and search again. It'll get split 1298 * again the next time though. 1299 * 1300 * If the extent we found is inside our range, we set the 1301 * desired bit on it. 1302 */ 1303 if (state->start < start) { 1304 prealloc = alloc_extent_state_atomic(prealloc); 1305 if (!prealloc) { 1306 err = -ENOMEM; 1307 goto out; 1308 } 1309 err = split_state(tree, state, prealloc, start); 1310 if (err) 1311 extent_io_tree_panic(tree, err); 1312 prealloc = NULL; 1313 if (err) 1314 goto out; 1315 if (state->end <= end) { 1316 set_state_bits(tree, state, &bits, NULL); 1317 cache_state(state, cached_state); 1318 state = clear_state_bit(tree, state, &clear_bits, 0, 1319 NULL); 1320 if (last_end == (u64)-1) 1321 goto out; 1322 start = last_end + 1; 1323 if (start < end && state && state->start == start && 1324 !need_resched()) 1325 goto hit_next; 1326 } 1327 goto search_again; 1328 } 1329 /* 1330 * | ---- desired range ---- | 1331 * | state | or | state | 1332 * 1333 * There's a hole, we need to insert something in it and 1334 * ignore the extent we found. 1335 */ 1336 if (state->start > start) { 1337 u64 this_end; 1338 if (end < last_start) 1339 this_end = end; 1340 else 1341 this_end = last_start - 1; 1342 1343 prealloc = alloc_extent_state_atomic(prealloc); 1344 if (!prealloc) { 1345 err = -ENOMEM; 1346 goto out; 1347 } 1348 1349 /* 1350 * Avoid to free 'prealloc' if it can be merged with 1351 * the later extent. 1352 */ 1353 err = insert_state(tree, prealloc, start, this_end, 1354 NULL, NULL, &bits, NULL); 1355 if (err) 1356 extent_io_tree_panic(tree, err); 1357 cache_state(prealloc, cached_state); 1358 prealloc = NULL; 1359 start = this_end + 1; 1360 goto search_again; 1361 } 1362 /* 1363 * | ---- desired range ---- | 1364 * | state | 1365 * We need to split the extent, and set the bit 1366 * on the first half 1367 */ 1368 if (state->start <= end && state->end > end) { 1369 prealloc = alloc_extent_state_atomic(prealloc); 1370 if (!prealloc) { 1371 err = -ENOMEM; 1372 goto out; 1373 } 1374 1375 err = split_state(tree, state, prealloc, end + 1); 1376 if (err) 1377 extent_io_tree_panic(tree, err); 1378 1379 set_state_bits(tree, prealloc, &bits, NULL); 1380 cache_state(prealloc, cached_state); 1381 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1382 prealloc = NULL; 1383 goto out; 1384 } 1385 1386 search_again: 1387 if (start > end) 1388 goto out; 1389 spin_unlock(&tree->lock); 1390 cond_resched(); 1391 first_iteration = false; 1392 goto again; 1393 1394 out: 1395 spin_unlock(&tree->lock); 1396 if (prealloc) 1397 free_extent_state(prealloc); 1398 1399 return err; 1400 } 1401 1402 /* wrappers around set/clear extent bit */ 1403 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1404 u32 bits, struct extent_changeset *changeset) 1405 { 1406 /* 1407 * We don't support EXTENT_LOCKED yet, as current changeset will 1408 * record any bits changed, so for EXTENT_LOCKED case, it will 1409 * either fail with -EEXIST or changeset will record the whole 1410 * range. 1411 */ 1412 BUG_ON(bits & EXTENT_LOCKED); 1413 1414 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1415 changeset); 1416 } 1417 1418 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1419 u32 bits) 1420 { 1421 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1422 GFP_NOWAIT, NULL); 1423 } 1424 1425 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1426 u32 bits, int wake, int delete, 1427 struct extent_state **cached) 1428 { 1429 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1430 cached, GFP_NOFS, NULL); 1431 } 1432 1433 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1434 u32 bits, struct extent_changeset *changeset) 1435 { 1436 /* 1437 * Don't support EXTENT_LOCKED case, same reason as 1438 * set_record_extent_bits(). 1439 */ 1440 BUG_ON(bits & EXTENT_LOCKED); 1441 1442 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1443 changeset); 1444 } 1445 1446 /* 1447 * either insert or lock state struct between start and end use mask to tell 1448 * us if waiting is desired. 1449 */ 1450 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1451 struct extent_state **cached_state) 1452 { 1453 int err; 1454 u64 failed_start; 1455 1456 while (1) { 1457 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1458 EXTENT_LOCKED, &failed_start, 1459 cached_state, GFP_NOFS, NULL); 1460 if (err == -EEXIST) { 1461 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1462 start = failed_start; 1463 } else 1464 break; 1465 WARN_ON(start > end); 1466 } 1467 return err; 1468 } 1469 1470 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1471 { 1472 int err; 1473 u64 failed_start; 1474 1475 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1476 &failed_start, NULL, GFP_NOFS, NULL); 1477 if (err == -EEXIST) { 1478 if (failed_start > start) 1479 clear_extent_bit(tree, start, failed_start - 1, 1480 EXTENT_LOCKED, 1, 0, NULL); 1481 return 0; 1482 } 1483 return 1; 1484 } 1485 1486 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1487 { 1488 unsigned long index = start >> PAGE_SHIFT; 1489 unsigned long end_index = end >> PAGE_SHIFT; 1490 struct page *page; 1491 1492 while (index <= end_index) { 1493 page = find_get_page(inode->i_mapping, index); 1494 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1495 clear_page_dirty_for_io(page); 1496 put_page(page); 1497 index++; 1498 } 1499 } 1500 1501 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1502 { 1503 unsigned long index = start >> PAGE_SHIFT; 1504 unsigned long end_index = end >> PAGE_SHIFT; 1505 struct page *page; 1506 1507 while (index <= end_index) { 1508 page = find_get_page(inode->i_mapping, index); 1509 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1510 __set_page_dirty_nobuffers(page); 1511 account_page_redirty(page); 1512 put_page(page); 1513 index++; 1514 } 1515 } 1516 1517 /* find the first state struct with 'bits' set after 'start', and 1518 * return it. tree->lock must be held. NULL will returned if 1519 * nothing was found after 'start' 1520 */ 1521 static struct extent_state * 1522 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1523 { 1524 struct rb_node *node; 1525 struct extent_state *state; 1526 1527 /* 1528 * this search will find all the extents that end after 1529 * our range starts. 1530 */ 1531 node = tree_search(tree, start); 1532 if (!node) 1533 goto out; 1534 1535 while (1) { 1536 state = rb_entry(node, struct extent_state, rb_node); 1537 if (state->end >= start && (state->state & bits)) 1538 return state; 1539 1540 node = rb_next(node); 1541 if (!node) 1542 break; 1543 } 1544 out: 1545 return NULL; 1546 } 1547 1548 /* 1549 * Find the first offset in the io tree with one or more @bits set. 1550 * 1551 * Note: If there are multiple bits set in @bits, any of them will match. 1552 * 1553 * Return 0 if we find something, and update @start_ret and @end_ret. 1554 * Return 1 if we found nothing. 1555 */ 1556 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1557 u64 *start_ret, u64 *end_ret, u32 bits, 1558 struct extent_state **cached_state) 1559 { 1560 struct extent_state *state; 1561 int ret = 1; 1562 1563 spin_lock(&tree->lock); 1564 if (cached_state && *cached_state) { 1565 state = *cached_state; 1566 if (state->end == start - 1 && extent_state_in_tree(state)) { 1567 while ((state = next_state(state)) != NULL) { 1568 if (state->state & bits) 1569 goto got_it; 1570 } 1571 free_extent_state(*cached_state); 1572 *cached_state = NULL; 1573 goto out; 1574 } 1575 free_extent_state(*cached_state); 1576 *cached_state = NULL; 1577 } 1578 1579 state = find_first_extent_bit_state(tree, start, bits); 1580 got_it: 1581 if (state) { 1582 cache_state_if_flags(state, cached_state, 0); 1583 *start_ret = state->start; 1584 *end_ret = state->end; 1585 ret = 0; 1586 } 1587 out: 1588 spin_unlock(&tree->lock); 1589 return ret; 1590 } 1591 1592 /** 1593 * find_contiguous_extent_bit: find a contiguous area of bits 1594 * @tree - io tree to check 1595 * @start - offset to start the search from 1596 * @start_ret - the first offset we found with the bits set 1597 * @end_ret - the final contiguous range of the bits that were set 1598 * @bits - bits to look for 1599 * 1600 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1601 * to set bits appropriately, and then merge them again. During this time it 1602 * will drop the tree->lock, so use this helper if you want to find the actual 1603 * contiguous area for given bits. We will search to the first bit we find, and 1604 * then walk down the tree until we find a non-contiguous area. The area 1605 * returned will be the full contiguous area with the bits set. 1606 */ 1607 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1608 u64 *start_ret, u64 *end_ret, u32 bits) 1609 { 1610 struct extent_state *state; 1611 int ret = 1; 1612 1613 spin_lock(&tree->lock); 1614 state = find_first_extent_bit_state(tree, start, bits); 1615 if (state) { 1616 *start_ret = state->start; 1617 *end_ret = state->end; 1618 while ((state = next_state(state)) != NULL) { 1619 if (state->start > (*end_ret + 1)) 1620 break; 1621 *end_ret = state->end; 1622 } 1623 ret = 0; 1624 } 1625 spin_unlock(&tree->lock); 1626 return ret; 1627 } 1628 1629 /** 1630 * find_first_clear_extent_bit - find the first range that has @bits not set. 1631 * This range could start before @start. 1632 * 1633 * @tree - the tree to search 1634 * @start - the offset at/after which the found extent should start 1635 * @start_ret - records the beginning of the range 1636 * @end_ret - records the end of the range (inclusive) 1637 * @bits - the set of bits which must be unset 1638 * 1639 * Since unallocated range is also considered one which doesn't have the bits 1640 * set it's possible that @end_ret contains -1, this happens in case the range 1641 * spans (last_range_end, end of device]. In this case it's up to the caller to 1642 * trim @end_ret to the appropriate size. 1643 */ 1644 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1645 u64 *start_ret, u64 *end_ret, u32 bits) 1646 { 1647 struct extent_state *state; 1648 struct rb_node *node, *prev = NULL, *next; 1649 1650 spin_lock(&tree->lock); 1651 1652 /* Find first extent with bits cleared */ 1653 while (1) { 1654 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1655 if (!node && !next && !prev) { 1656 /* 1657 * Tree is completely empty, send full range and let 1658 * caller deal with it 1659 */ 1660 *start_ret = 0; 1661 *end_ret = -1; 1662 goto out; 1663 } else if (!node && !next) { 1664 /* 1665 * We are past the last allocated chunk, set start at 1666 * the end of the last extent. 1667 */ 1668 state = rb_entry(prev, struct extent_state, rb_node); 1669 *start_ret = state->end + 1; 1670 *end_ret = -1; 1671 goto out; 1672 } else if (!node) { 1673 node = next; 1674 } 1675 /* 1676 * At this point 'node' either contains 'start' or start is 1677 * before 'node' 1678 */ 1679 state = rb_entry(node, struct extent_state, rb_node); 1680 1681 if (in_range(start, state->start, state->end - state->start + 1)) { 1682 if (state->state & bits) { 1683 /* 1684 * |--range with bits sets--| 1685 * | 1686 * start 1687 */ 1688 start = state->end + 1; 1689 } else { 1690 /* 1691 * 'start' falls within a range that doesn't 1692 * have the bits set, so take its start as 1693 * the beginning of the desired range 1694 * 1695 * |--range with bits cleared----| 1696 * | 1697 * start 1698 */ 1699 *start_ret = state->start; 1700 break; 1701 } 1702 } else { 1703 /* 1704 * |---prev range---|---hole/unset---|---node range---| 1705 * | 1706 * start 1707 * 1708 * or 1709 * 1710 * |---hole/unset--||--first node--| 1711 * 0 | 1712 * start 1713 */ 1714 if (prev) { 1715 state = rb_entry(prev, struct extent_state, 1716 rb_node); 1717 *start_ret = state->end + 1; 1718 } else { 1719 *start_ret = 0; 1720 } 1721 break; 1722 } 1723 } 1724 1725 /* 1726 * Find the longest stretch from start until an entry which has the 1727 * bits set 1728 */ 1729 while (1) { 1730 state = rb_entry(node, struct extent_state, rb_node); 1731 if (state->end >= start && !(state->state & bits)) { 1732 *end_ret = state->end; 1733 } else { 1734 *end_ret = state->start - 1; 1735 break; 1736 } 1737 1738 node = rb_next(node); 1739 if (!node) 1740 break; 1741 } 1742 out: 1743 spin_unlock(&tree->lock); 1744 } 1745 1746 /* 1747 * find a contiguous range of bytes in the file marked as delalloc, not 1748 * more than 'max_bytes'. start and end are used to return the range, 1749 * 1750 * true is returned if we find something, false if nothing was in the tree 1751 */ 1752 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1753 u64 *end, u64 max_bytes, 1754 struct extent_state **cached_state) 1755 { 1756 struct rb_node *node; 1757 struct extent_state *state; 1758 u64 cur_start = *start; 1759 bool found = false; 1760 u64 total_bytes = 0; 1761 1762 spin_lock(&tree->lock); 1763 1764 /* 1765 * this search will find all the extents that end after 1766 * our range starts. 1767 */ 1768 node = tree_search(tree, cur_start); 1769 if (!node) { 1770 *end = (u64)-1; 1771 goto out; 1772 } 1773 1774 while (1) { 1775 state = rb_entry(node, struct extent_state, rb_node); 1776 if (found && (state->start != cur_start || 1777 (state->state & EXTENT_BOUNDARY))) { 1778 goto out; 1779 } 1780 if (!(state->state & EXTENT_DELALLOC)) { 1781 if (!found) 1782 *end = state->end; 1783 goto out; 1784 } 1785 if (!found) { 1786 *start = state->start; 1787 *cached_state = state; 1788 refcount_inc(&state->refs); 1789 } 1790 found = true; 1791 *end = state->end; 1792 cur_start = state->end + 1; 1793 node = rb_next(node); 1794 total_bytes += state->end - state->start + 1; 1795 if (total_bytes >= max_bytes) 1796 break; 1797 if (!node) 1798 break; 1799 } 1800 out: 1801 spin_unlock(&tree->lock); 1802 return found; 1803 } 1804 1805 static int __process_pages_contig(struct address_space *mapping, 1806 struct page *locked_page, 1807 pgoff_t start_index, pgoff_t end_index, 1808 unsigned long page_ops, pgoff_t *index_ret); 1809 1810 static noinline void __unlock_for_delalloc(struct inode *inode, 1811 struct page *locked_page, 1812 u64 start, u64 end) 1813 { 1814 unsigned long index = start >> PAGE_SHIFT; 1815 unsigned long end_index = end >> PAGE_SHIFT; 1816 1817 ASSERT(locked_page); 1818 if (index == locked_page->index && end_index == index) 1819 return; 1820 1821 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1822 PAGE_UNLOCK, NULL); 1823 } 1824 1825 static noinline int lock_delalloc_pages(struct inode *inode, 1826 struct page *locked_page, 1827 u64 delalloc_start, 1828 u64 delalloc_end) 1829 { 1830 unsigned long index = delalloc_start >> PAGE_SHIFT; 1831 unsigned long index_ret = index; 1832 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1833 int ret; 1834 1835 ASSERT(locked_page); 1836 if (index == locked_page->index && index == end_index) 1837 return 0; 1838 1839 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1840 end_index, PAGE_LOCK, &index_ret); 1841 if (ret == -EAGAIN) 1842 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1843 (u64)index_ret << PAGE_SHIFT); 1844 return ret; 1845 } 1846 1847 /* 1848 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1849 * more than @max_bytes. @Start and @end are used to return the range, 1850 * 1851 * Return: true if we find something 1852 * false if nothing was in the tree 1853 */ 1854 EXPORT_FOR_TESTS 1855 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1856 struct page *locked_page, u64 *start, 1857 u64 *end) 1858 { 1859 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1860 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1861 u64 delalloc_start; 1862 u64 delalloc_end; 1863 bool found; 1864 struct extent_state *cached_state = NULL; 1865 int ret; 1866 int loops = 0; 1867 1868 again: 1869 /* step one, find a bunch of delalloc bytes starting at start */ 1870 delalloc_start = *start; 1871 delalloc_end = 0; 1872 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1873 max_bytes, &cached_state); 1874 if (!found || delalloc_end <= *start) { 1875 *start = delalloc_start; 1876 *end = delalloc_end; 1877 free_extent_state(cached_state); 1878 return false; 1879 } 1880 1881 /* 1882 * start comes from the offset of locked_page. We have to lock 1883 * pages in order, so we can't process delalloc bytes before 1884 * locked_page 1885 */ 1886 if (delalloc_start < *start) 1887 delalloc_start = *start; 1888 1889 /* 1890 * make sure to limit the number of pages we try to lock down 1891 */ 1892 if (delalloc_end + 1 - delalloc_start > max_bytes) 1893 delalloc_end = delalloc_start + max_bytes - 1; 1894 1895 /* step two, lock all the pages after the page that has start */ 1896 ret = lock_delalloc_pages(inode, locked_page, 1897 delalloc_start, delalloc_end); 1898 ASSERT(!ret || ret == -EAGAIN); 1899 if (ret == -EAGAIN) { 1900 /* some of the pages are gone, lets avoid looping by 1901 * shortening the size of the delalloc range we're searching 1902 */ 1903 free_extent_state(cached_state); 1904 cached_state = NULL; 1905 if (!loops) { 1906 max_bytes = PAGE_SIZE; 1907 loops = 1; 1908 goto again; 1909 } else { 1910 found = false; 1911 goto out_failed; 1912 } 1913 } 1914 1915 /* step three, lock the state bits for the whole range */ 1916 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1917 1918 /* then test to make sure it is all still delalloc */ 1919 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1920 EXTENT_DELALLOC, 1, cached_state); 1921 if (!ret) { 1922 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1923 &cached_state); 1924 __unlock_for_delalloc(inode, locked_page, 1925 delalloc_start, delalloc_end); 1926 cond_resched(); 1927 goto again; 1928 } 1929 free_extent_state(cached_state); 1930 *start = delalloc_start; 1931 *end = delalloc_end; 1932 out_failed: 1933 return found; 1934 } 1935 1936 static int __process_pages_contig(struct address_space *mapping, 1937 struct page *locked_page, 1938 pgoff_t start_index, pgoff_t end_index, 1939 unsigned long page_ops, pgoff_t *index_ret) 1940 { 1941 unsigned long nr_pages = end_index - start_index + 1; 1942 unsigned long pages_processed = 0; 1943 pgoff_t index = start_index; 1944 struct page *pages[16]; 1945 unsigned ret; 1946 int err = 0; 1947 int i; 1948 1949 if (page_ops & PAGE_LOCK) { 1950 ASSERT(page_ops == PAGE_LOCK); 1951 ASSERT(index_ret && *index_ret == start_index); 1952 } 1953 1954 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1955 mapping_set_error(mapping, -EIO); 1956 1957 while (nr_pages > 0) { 1958 ret = find_get_pages_contig(mapping, index, 1959 min_t(unsigned long, 1960 nr_pages, ARRAY_SIZE(pages)), pages); 1961 if (ret == 0) { 1962 /* 1963 * Only if we're going to lock these pages, 1964 * can we find nothing at @index. 1965 */ 1966 ASSERT(page_ops & PAGE_LOCK); 1967 err = -EAGAIN; 1968 goto out; 1969 } 1970 1971 for (i = 0; i < ret; i++) { 1972 if (page_ops & PAGE_SET_PRIVATE2) 1973 SetPagePrivate2(pages[i]); 1974 1975 if (locked_page && pages[i] == locked_page) { 1976 put_page(pages[i]); 1977 pages_processed++; 1978 continue; 1979 } 1980 if (page_ops & PAGE_CLEAR_DIRTY) 1981 clear_page_dirty_for_io(pages[i]); 1982 if (page_ops & PAGE_SET_WRITEBACK) 1983 set_page_writeback(pages[i]); 1984 if (page_ops & PAGE_SET_ERROR) 1985 SetPageError(pages[i]); 1986 if (page_ops & PAGE_END_WRITEBACK) 1987 end_page_writeback(pages[i]); 1988 if (page_ops & PAGE_UNLOCK) 1989 unlock_page(pages[i]); 1990 if (page_ops & PAGE_LOCK) { 1991 lock_page(pages[i]); 1992 if (!PageDirty(pages[i]) || 1993 pages[i]->mapping != mapping) { 1994 unlock_page(pages[i]); 1995 for (; i < ret; i++) 1996 put_page(pages[i]); 1997 err = -EAGAIN; 1998 goto out; 1999 } 2000 } 2001 put_page(pages[i]); 2002 pages_processed++; 2003 } 2004 nr_pages -= ret; 2005 index += ret; 2006 cond_resched(); 2007 } 2008 out: 2009 if (err && index_ret) 2010 *index_ret = start_index + pages_processed - 1; 2011 return err; 2012 } 2013 2014 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2015 struct page *locked_page, 2016 u32 clear_bits, unsigned long page_ops) 2017 { 2018 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2019 2020 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2021 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2022 page_ops, NULL); 2023 } 2024 2025 /* 2026 * count the number of bytes in the tree that have a given bit(s) 2027 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2028 * cached. The total number found is returned. 2029 */ 2030 u64 count_range_bits(struct extent_io_tree *tree, 2031 u64 *start, u64 search_end, u64 max_bytes, 2032 u32 bits, int contig) 2033 { 2034 struct rb_node *node; 2035 struct extent_state *state; 2036 u64 cur_start = *start; 2037 u64 total_bytes = 0; 2038 u64 last = 0; 2039 int found = 0; 2040 2041 if (WARN_ON(search_end <= cur_start)) 2042 return 0; 2043 2044 spin_lock(&tree->lock); 2045 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2046 total_bytes = tree->dirty_bytes; 2047 goto out; 2048 } 2049 /* 2050 * this search will find all the extents that end after 2051 * our range starts. 2052 */ 2053 node = tree_search(tree, cur_start); 2054 if (!node) 2055 goto out; 2056 2057 while (1) { 2058 state = rb_entry(node, struct extent_state, rb_node); 2059 if (state->start > search_end) 2060 break; 2061 if (contig && found && state->start > last + 1) 2062 break; 2063 if (state->end >= cur_start && (state->state & bits) == bits) { 2064 total_bytes += min(search_end, state->end) + 1 - 2065 max(cur_start, state->start); 2066 if (total_bytes >= max_bytes) 2067 break; 2068 if (!found) { 2069 *start = max(cur_start, state->start); 2070 found = 1; 2071 } 2072 last = state->end; 2073 } else if (contig && found) { 2074 break; 2075 } 2076 node = rb_next(node); 2077 if (!node) 2078 break; 2079 } 2080 out: 2081 spin_unlock(&tree->lock); 2082 return total_bytes; 2083 } 2084 2085 /* 2086 * set the private field for a given byte offset in the tree. If there isn't 2087 * an extent_state there already, this does nothing. 2088 */ 2089 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2090 struct io_failure_record *failrec) 2091 { 2092 struct rb_node *node; 2093 struct extent_state *state; 2094 int ret = 0; 2095 2096 spin_lock(&tree->lock); 2097 /* 2098 * this search will find all the extents that end after 2099 * our range starts. 2100 */ 2101 node = tree_search(tree, start); 2102 if (!node) { 2103 ret = -ENOENT; 2104 goto out; 2105 } 2106 state = rb_entry(node, struct extent_state, rb_node); 2107 if (state->start != start) { 2108 ret = -ENOENT; 2109 goto out; 2110 } 2111 state->failrec = failrec; 2112 out: 2113 spin_unlock(&tree->lock); 2114 return ret; 2115 } 2116 2117 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2118 { 2119 struct rb_node *node; 2120 struct extent_state *state; 2121 struct io_failure_record *failrec; 2122 2123 spin_lock(&tree->lock); 2124 /* 2125 * this search will find all the extents that end after 2126 * our range starts. 2127 */ 2128 node = tree_search(tree, start); 2129 if (!node) { 2130 failrec = ERR_PTR(-ENOENT); 2131 goto out; 2132 } 2133 state = rb_entry(node, struct extent_state, rb_node); 2134 if (state->start != start) { 2135 failrec = ERR_PTR(-ENOENT); 2136 goto out; 2137 } 2138 2139 failrec = state->failrec; 2140 out: 2141 spin_unlock(&tree->lock); 2142 return failrec; 2143 } 2144 2145 /* 2146 * searches a range in the state tree for a given mask. 2147 * If 'filled' == 1, this returns 1 only if every extent in the tree 2148 * has the bits set. Otherwise, 1 is returned if any bit in the 2149 * range is found set. 2150 */ 2151 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2152 u32 bits, int filled, struct extent_state *cached) 2153 { 2154 struct extent_state *state = NULL; 2155 struct rb_node *node; 2156 int bitset = 0; 2157 2158 spin_lock(&tree->lock); 2159 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2160 cached->end > start) 2161 node = &cached->rb_node; 2162 else 2163 node = tree_search(tree, start); 2164 while (node && start <= end) { 2165 state = rb_entry(node, struct extent_state, rb_node); 2166 2167 if (filled && state->start > start) { 2168 bitset = 0; 2169 break; 2170 } 2171 2172 if (state->start > end) 2173 break; 2174 2175 if (state->state & bits) { 2176 bitset = 1; 2177 if (!filled) 2178 break; 2179 } else if (filled) { 2180 bitset = 0; 2181 break; 2182 } 2183 2184 if (state->end == (u64)-1) 2185 break; 2186 2187 start = state->end + 1; 2188 if (start > end) 2189 break; 2190 node = rb_next(node); 2191 if (!node) { 2192 if (filled) 2193 bitset = 0; 2194 break; 2195 } 2196 } 2197 spin_unlock(&tree->lock); 2198 return bitset; 2199 } 2200 2201 /* 2202 * helper function to set a given page up to date if all the 2203 * extents in the tree for that page are up to date 2204 */ 2205 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2206 { 2207 u64 start = page_offset(page); 2208 u64 end = start + PAGE_SIZE - 1; 2209 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2210 SetPageUptodate(page); 2211 } 2212 2213 int free_io_failure(struct extent_io_tree *failure_tree, 2214 struct extent_io_tree *io_tree, 2215 struct io_failure_record *rec) 2216 { 2217 int ret; 2218 int err = 0; 2219 2220 set_state_failrec(failure_tree, rec->start, NULL); 2221 ret = clear_extent_bits(failure_tree, rec->start, 2222 rec->start + rec->len - 1, 2223 EXTENT_LOCKED | EXTENT_DIRTY); 2224 if (ret) 2225 err = ret; 2226 2227 ret = clear_extent_bits(io_tree, rec->start, 2228 rec->start + rec->len - 1, 2229 EXTENT_DAMAGED); 2230 if (ret && !err) 2231 err = ret; 2232 2233 kfree(rec); 2234 return err; 2235 } 2236 2237 /* 2238 * this bypasses the standard btrfs submit functions deliberately, as 2239 * the standard behavior is to write all copies in a raid setup. here we only 2240 * want to write the one bad copy. so we do the mapping for ourselves and issue 2241 * submit_bio directly. 2242 * to avoid any synchronization issues, wait for the data after writing, which 2243 * actually prevents the read that triggered the error from finishing. 2244 * currently, there can be no more than two copies of every data bit. thus, 2245 * exactly one rewrite is required. 2246 */ 2247 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2248 u64 length, u64 logical, struct page *page, 2249 unsigned int pg_offset, int mirror_num) 2250 { 2251 struct bio *bio; 2252 struct btrfs_device *dev; 2253 u64 map_length = 0; 2254 u64 sector; 2255 struct btrfs_bio *bbio = NULL; 2256 int ret; 2257 2258 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2259 BUG_ON(!mirror_num); 2260 2261 bio = btrfs_io_bio_alloc(1); 2262 bio->bi_iter.bi_size = 0; 2263 map_length = length; 2264 2265 /* 2266 * Avoid races with device replace and make sure our bbio has devices 2267 * associated to its stripes that don't go away while we are doing the 2268 * read repair operation. 2269 */ 2270 btrfs_bio_counter_inc_blocked(fs_info); 2271 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2272 /* 2273 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2274 * to update all raid stripes, but here we just want to correct 2275 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2276 * stripe's dev and sector. 2277 */ 2278 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2279 &map_length, &bbio, 0); 2280 if (ret) { 2281 btrfs_bio_counter_dec(fs_info); 2282 bio_put(bio); 2283 return -EIO; 2284 } 2285 ASSERT(bbio->mirror_num == 1); 2286 } else { 2287 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2288 &map_length, &bbio, mirror_num); 2289 if (ret) { 2290 btrfs_bio_counter_dec(fs_info); 2291 bio_put(bio); 2292 return -EIO; 2293 } 2294 BUG_ON(mirror_num != bbio->mirror_num); 2295 } 2296 2297 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2298 bio->bi_iter.bi_sector = sector; 2299 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2300 btrfs_put_bbio(bbio); 2301 if (!dev || !dev->bdev || 2302 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2303 btrfs_bio_counter_dec(fs_info); 2304 bio_put(bio); 2305 return -EIO; 2306 } 2307 bio_set_dev(bio, dev->bdev); 2308 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2309 bio_add_page(bio, page, length, pg_offset); 2310 2311 if (btrfsic_submit_bio_wait(bio)) { 2312 /* try to remap that extent elsewhere? */ 2313 btrfs_bio_counter_dec(fs_info); 2314 bio_put(bio); 2315 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2316 return -EIO; 2317 } 2318 2319 btrfs_info_rl_in_rcu(fs_info, 2320 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2321 ino, start, 2322 rcu_str_deref(dev->name), sector); 2323 btrfs_bio_counter_dec(fs_info); 2324 bio_put(bio); 2325 return 0; 2326 } 2327 2328 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2329 { 2330 struct btrfs_fs_info *fs_info = eb->fs_info; 2331 u64 start = eb->start; 2332 int i, num_pages = num_extent_pages(eb); 2333 int ret = 0; 2334 2335 if (sb_rdonly(fs_info->sb)) 2336 return -EROFS; 2337 2338 for (i = 0; i < num_pages; i++) { 2339 struct page *p = eb->pages[i]; 2340 2341 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2342 start - page_offset(p), mirror_num); 2343 if (ret) 2344 break; 2345 start += PAGE_SIZE; 2346 } 2347 2348 return ret; 2349 } 2350 2351 /* 2352 * each time an IO finishes, we do a fast check in the IO failure tree 2353 * to see if we need to process or clean up an io_failure_record 2354 */ 2355 int clean_io_failure(struct btrfs_fs_info *fs_info, 2356 struct extent_io_tree *failure_tree, 2357 struct extent_io_tree *io_tree, u64 start, 2358 struct page *page, u64 ino, unsigned int pg_offset) 2359 { 2360 u64 private; 2361 struct io_failure_record *failrec; 2362 struct extent_state *state; 2363 int num_copies; 2364 int ret; 2365 2366 private = 0; 2367 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2368 EXTENT_DIRTY, 0); 2369 if (!ret) 2370 return 0; 2371 2372 failrec = get_state_failrec(failure_tree, start); 2373 if (IS_ERR(failrec)) 2374 return 0; 2375 2376 BUG_ON(!failrec->this_mirror); 2377 2378 if (failrec->in_validation) { 2379 /* there was no real error, just free the record */ 2380 btrfs_debug(fs_info, 2381 "clean_io_failure: freeing dummy error at %llu", 2382 failrec->start); 2383 goto out; 2384 } 2385 if (sb_rdonly(fs_info->sb)) 2386 goto out; 2387 2388 spin_lock(&io_tree->lock); 2389 state = find_first_extent_bit_state(io_tree, 2390 failrec->start, 2391 EXTENT_LOCKED); 2392 spin_unlock(&io_tree->lock); 2393 2394 if (state && state->start <= failrec->start && 2395 state->end >= failrec->start + failrec->len - 1) { 2396 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2397 failrec->len); 2398 if (num_copies > 1) { 2399 repair_io_failure(fs_info, ino, start, failrec->len, 2400 failrec->logical, page, pg_offset, 2401 failrec->failed_mirror); 2402 } 2403 } 2404 2405 out: 2406 free_io_failure(failure_tree, io_tree, failrec); 2407 2408 return 0; 2409 } 2410 2411 /* 2412 * Can be called when 2413 * - hold extent lock 2414 * - under ordered extent 2415 * - the inode is freeing 2416 */ 2417 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2418 { 2419 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2420 struct io_failure_record *failrec; 2421 struct extent_state *state, *next; 2422 2423 if (RB_EMPTY_ROOT(&failure_tree->state)) 2424 return; 2425 2426 spin_lock(&failure_tree->lock); 2427 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2428 while (state) { 2429 if (state->start > end) 2430 break; 2431 2432 ASSERT(state->end <= end); 2433 2434 next = next_state(state); 2435 2436 failrec = state->failrec; 2437 free_extent_state(state); 2438 kfree(failrec); 2439 2440 state = next; 2441 } 2442 spin_unlock(&failure_tree->lock); 2443 } 2444 2445 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2446 u64 start, u64 end) 2447 { 2448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2449 struct io_failure_record *failrec; 2450 struct extent_map *em; 2451 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2452 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2453 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2454 int ret; 2455 u64 logical; 2456 2457 failrec = get_state_failrec(failure_tree, start); 2458 if (!IS_ERR(failrec)) { 2459 btrfs_debug(fs_info, 2460 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2461 failrec->logical, failrec->start, failrec->len, 2462 failrec->in_validation); 2463 /* 2464 * when data can be on disk more than twice, add to failrec here 2465 * (e.g. with a list for failed_mirror) to make 2466 * clean_io_failure() clean all those errors at once. 2467 */ 2468 2469 return failrec; 2470 } 2471 2472 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2473 if (!failrec) 2474 return ERR_PTR(-ENOMEM); 2475 2476 failrec->start = start; 2477 failrec->len = end - start + 1; 2478 failrec->this_mirror = 0; 2479 failrec->bio_flags = 0; 2480 failrec->in_validation = 0; 2481 2482 read_lock(&em_tree->lock); 2483 em = lookup_extent_mapping(em_tree, start, failrec->len); 2484 if (!em) { 2485 read_unlock(&em_tree->lock); 2486 kfree(failrec); 2487 return ERR_PTR(-EIO); 2488 } 2489 2490 if (em->start > start || em->start + em->len <= start) { 2491 free_extent_map(em); 2492 em = NULL; 2493 } 2494 read_unlock(&em_tree->lock); 2495 if (!em) { 2496 kfree(failrec); 2497 return ERR_PTR(-EIO); 2498 } 2499 2500 logical = start - em->start; 2501 logical = em->block_start + logical; 2502 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2503 logical = em->block_start; 2504 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2505 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2506 } 2507 2508 btrfs_debug(fs_info, 2509 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2510 logical, start, failrec->len); 2511 2512 failrec->logical = logical; 2513 free_extent_map(em); 2514 2515 /* Set the bits in the private failure tree */ 2516 ret = set_extent_bits(failure_tree, start, end, 2517 EXTENT_LOCKED | EXTENT_DIRTY); 2518 if (ret >= 0) { 2519 ret = set_state_failrec(failure_tree, start, failrec); 2520 /* Set the bits in the inode's tree */ 2521 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2522 } else if (ret < 0) { 2523 kfree(failrec); 2524 return ERR_PTR(ret); 2525 } 2526 2527 return failrec; 2528 } 2529 2530 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2531 struct io_failure_record *failrec, 2532 int failed_mirror) 2533 { 2534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2535 int num_copies; 2536 2537 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2538 if (num_copies == 1) { 2539 /* 2540 * we only have a single copy of the data, so don't bother with 2541 * all the retry and error correction code that follows. no 2542 * matter what the error is, it is very likely to persist. 2543 */ 2544 btrfs_debug(fs_info, 2545 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2546 num_copies, failrec->this_mirror, failed_mirror); 2547 return false; 2548 } 2549 2550 /* 2551 * there are two premises: 2552 * a) deliver good data to the caller 2553 * b) correct the bad sectors on disk 2554 */ 2555 if (needs_validation) { 2556 /* 2557 * to fulfill b), we need to know the exact failing sectors, as 2558 * we don't want to rewrite any more than the failed ones. thus, 2559 * we need separate read requests for the failed bio 2560 * 2561 * if the following BUG_ON triggers, our validation request got 2562 * merged. we need separate requests for our algorithm to work. 2563 */ 2564 BUG_ON(failrec->in_validation); 2565 failrec->in_validation = 1; 2566 failrec->this_mirror = failed_mirror; 2567 } else { 2568 /* 2569 * we're ready to fulfill a) and b) alongside. get a good copy 2570 * of the failed sector and if we succeed, we have setup 2571 * everything for repair_io_failure to do the rest for us. 2572 */ 2573 if (failrec->in_validation) { 2574 BUG_ON(failrec->this_mirror != failed_mirror); 2575 failrec->in_validation = 0; 2576 failrec->this_mirror = 0; 2577 } 2578 failrec->failed_mirror = failed_mirror; 2579 failrec->this_mirror++; 2580 if (failrec->this_mirror == failed_mirror) 2581 failrec->this_mirror++; 2582 } 2583 2584 if (failrec->this_mirror > num_copies) { 2585 btrfs_debug(fs_info, 2586 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2587 num_copies, failrec->this_mirror, failed_mirror); 2588 return false; 2589 } 2590 2591 return true; 2592 } 2593 2594 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2595 { 2596 u64 len = 0; 2597 const u32 blocksize = inode->i_sb->s_blocksize; 2598 2599 /* 2600 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2601 * I/O error. In this case, we already know exactly which sector was 2602 * bad, so we don't need to validate. 2603 */ 2604 if (bio->bi_status == BLK_STS_OK) 2605 return false; 2606 2607 /* 2608 * We need to validate each sector individually if the failed I/O was 2609 * for multiple sectors. 2610 * 2611 * There are a few possible bios that can end up here: 2612 * 1. A buffered read bio, which is not cloned. 2613 * 2. A direct I/O read bio, which is cloned. 2614 * 3. A (buffered or direct) repair bio, which is not cloned. 2615 * 2616 * For cloned bios (case 2), we can get the size from 2617 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2618 * it from the bvecs. 2619 */ 2620 if (bio_flagged(bio, BIO_CLONED)) { 2621 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2622 return true; 2623 } else { 2624 struct bio_vec *bvec; 2625 int i; 2626 2627 bio_for_each_bvec_all(bvec, bio, i) { 2628 len += bvec->bv_len; 2629 if (len > blocksize) 2630 return true; 2631 } 2632 } 2633 return false; 2634 } 2635 2636 blk_status_t btrfs_submit_read_repair(struct inode *inode, 2637 struct bio *failed_bio, u32 bio_offset, 2638 struct page *page, unsigned int pgoff, 2639 u64 start, u64 end, int failed_mirror, 2640 submit_bio_hook_t *submit_bio_hook) 2641 { 2642 struct io_failure_record *failrec; 2643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2644 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2645 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2646 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2647 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2648 bool need_validation; 2649 struct bio *repair_bio; 2650 struct btrfs_io_bio *repair_io_bio; 2651 blk_status_t status; 2652 2653 btrfs_debug(fs_info, 2654 "repair read error: read error at %llu", start); 2655 2656 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2657 2658 failrec = btrfs_get_io_failure_record(inode, start, end); 2659 if (IS_ERR(failrec)) 2660 return errno_to_blk_status(PTR_ERR(failrec)); 2661 2662 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2663 2664 if (!btrfs_check_repairable(inode, need_validation, failrec, 2665 failed_mirror)) { 2666 free_io_failure(failure_tree, tree, failrec); 2667 return BLK_STS_IOERR; 2668 } 2669 2670 repair_bio = btrfs_io_bio_alloc(1); 2671 repair_io_bio = btrfs_io_bio(repair_bio); 2672 repair_bio->bi_opf = REQ_OP_READ; 2673 if (need_validation) 2674 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2675 repair_bio->bi_end_io = failed_bio->bi_end_io; 2676 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2677 repair_bio->bi_private = failed_bio->bi_private; 2678 2679 if (failed_io_bio->csum) { 2680 const u32 csum_size = fs_info->csum_size; 2681 2682 repair_io_bio->csum = repair_io_bio->csum_inline; 2683 memcpy(repair_io_bio->csum, 2684 failed_io_bio->csum + csum_size * icsum, csum_size); 2685 } 2686 2687 bio_add_page(repair_bio, page, failrec->len, pgoff); 2688 repair_io_bio->logical = failrec->start; 2689 repair_io_bio->iter = repair_bio->bi_iter; 2690 2691 btrfs_debug(btrfs_sb(inode->i_sb), 2692 "repair read error: submitting new read to mirror %d, in_validation=%d", 2693 failrec->this_mirror, failrec->in_validation); 2694 2695 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2696 failrec->bio_flags); 2697 if (status) { 2698 free_io_failure(failure_tree, tree, failrec); 2699 bio_put(repair_bio); 2700 } 2701 return status; 2702 } 2703 2704 /* lots and lots of room for performance fixes in the end_bio funcs */ 2705 2706 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2707 { 2708 int uptodate = (err == 0); 2709 int ret = 0; 2710 2711 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2712 2713 if (!uptodate) { 2714 ClearPageUptodate(page); 2715 SetPageError(page); 2716 ret = err < 0 ? err : -EIO; 2717 mapping_set_error(page->mapping, ret); 2718 } 2719 } 2720 2721 /* 2722 * after a writepage IO is done, we need to: 2723 * clear the uptodate bits on error 2724 * clear the writeback bits in the extent tree for this IO 2725 * end_page_writeback if the page has no more pending IO 2726 * 2727 * Scheduling is not allowed, so the extent state tree is expected 2728 * to have one and only one object corresponding to this IO. 2729 */ 2730 static void end_bio_extent_writepage(struct bio *bio) 2731 { 2732 int error = blk_status_to_errno(bio->bi_status); 2733 struct bio_vec *bvec; 2734 u64 start; 2735 u64 end; 2736 struct bvec_iter_all iter_all; 2737 2738 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2739 bio_for_each_segment_all(bvec, bio, iter_all) { 2740 struct page *page = bvec->bv_page; 2741 struct inode *inode = page->mapping->host; 2742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2743 2744 /* We always issue full-page reads, but if some block 2745 * in a page fails to read, blk_update_request() will 2746 * advance bv_offset and adjust bv_len to compensate. 2747 * Print a warning for nonzero offsets, and an error 2748 * if they don't add up to a full page. */ 2749 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2750 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2751 btrfs_err(fs_info, 2752 "partial page write in btrfs with offset %u and length %u", 2753 bvec->bv_offset, bvec->bv_len); 2754 else 2755 btrfs_info(fs_info, 2756 "incomplete page write in btrfs with offset %u and length %u", 2757 bvec->bv_offset, bvec->bv_len); 2758 } 2759 2760 start = page_offset(page); 2761 end = start + bvec->bv_offset + bvec->bv_len - 1; 2762 2763 end_extent_writepage(page, error, start, end); 2764 end_page_writeback(page); 2765 } 2766 2767 bio_put(bio); 2768 } 2769 2770 /* 2771 * Record previously processed extent range 2772 * 2773 * For endio_readpage_release_extent() to handle a full extent range, reducing 2774 * the extent io operations. 2775 */ 2776 struct processed_extent { 2777 struct btrfs_inode *inode; 2778 /* Start of the range in @inode */ 2779 u64 start; 2780 /* End of the range in in @inode */ 2781 u64 end; 2782 bool uptodate; 2783 }; 2784 2785 /* 2786 * Try to release processed extent range 2787 * 2788 * May not release the extent range right now if the current range is 2789 * contiguous to processed extent. 2790 * 2791 * Will release processed extent when any of @inode, @uptodate, the range is 2792 * no longer contiguous to the processed range. 2793 * 2794 * Passing @inode == NULL will force processed extent to be released. 2795 */ 2796 static void endio_readpage_release_extent(struct processed_extent *processed, 2797 struct btrfs_inode *inode, u64 start, u64 end, 2798 bool uptodate) 2799 { 2800 struct extent_state *cached = NULL; 2801 struct extent_io_tree *tree; 2802 2803 /* The first extent, initialize @processed */ 2804 if (!processed->inode) 2805 goto update; 2806 2807 /* 2808 * Contiguous to processed extent, just uptodate the end. 2809 * 2810 * Several things to notice: 2811 * 2812 * - bio can be merged as long as on-disk bytenr is contiguous 2813 * This means we can have page belonging to other inodes, thus need to 2814 * check if the inode still matches. 2815 * - bvec can contain range beyond current page for multi-page bvec 2816 * Thus we need to do processed->end + 1 >= start check 2817 */ 2818 if (processed->inode == inode && processed->uptodate == uptodate && 2819 processed->end + 1 >= start && end >= processed->end) { 2820 processed->end = end; 2821 return; 2822 } 2823 2824 tree = &processed->inode->io_tree; 2825 /* 2826 * Now we don't have range contiguous to the processed range, release 2827 * the processed range now. 2828 */ 2829 if (processed->uptodate && tree->track_uptodate) 2830 set_extent_uptodate(tree, processed->start, processed->end, 2831 &cached, GFP_ATOMIC); 2832 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2833 &cached); 2834 2835 update: 2836 /* Update processed to current range */ 2837 processed->inode = inode; 2838 processed->start = start; 2839 processed->end = end; 2840 processed->uptodate = uptodate; 2841 } 2842 2843 static void endio_readpage_update_page_status(struct page *page, bool uptodate) 2844 { 2845 if (uptodate) { 2846 SetPageUptodate(page); 2847 } else { 2848 ClearPageUptodate(page); 2849 SetPageError(page); 2850 } 2851 unlock_page(page); 2852 } 2853 2854 /* 2855 * after a readpage IO is done, we need to: 2856 * clear the uptodate bits on error 2857 * set the uptodate bits if things worked 2858 * set the page up to date if all extents in the tree are uptodate 2859 * clear the lock bit in the extent tree 2860 * unlock the page if there are no other extents locked for it 2861 * 2862 * Scheduling is not allowed, so the extent state tree is expected 2863 * to have one and only one object corresponding to this IO. 2864 */ 2865 static void end_bio_extent_readpage(struct bio *bio) 2866 { 2867 struct bio_vec *bvec; 2868 int uptodate = !bio->bi_status; 2869 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2870 struct extent_io_tree *tree, *failure_tree; 2871 struct processed_extent processed = { 0 }; 2872 /* 2873 * The offset to the beginning of a bio, since one bio can never be 2874 * larger than UINT_MAX, u32 here is enough. 2875 */ 2876 u32 bio_offset = 0; 2877 int mirror; 2878 int ret; 2879 struct bvec_iter_all iter_all; 2880 2881 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2882 bio_for_each_segment_all(bvec, bio, iter_all) { 2883 struct page *page = bvec->bv_page; 2884 struct inode *inode = page->mapping->host; 2885 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2886 const u32 sectorsize = fs_info->sectorsize; 2887 u64 start; 2888 u64 end; 2889 u32 len; 2890 2891 btrfs_debug(fs_info, 2892 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2893 bio->bi_iter.bi_sector, bio->bi_status, 2894 io_bio->mirror_num); 2895 tree = &BTRFS_I(inode)->io_tree; 2896 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2897 2898 /* 2899 * We always issue full-sector reads, but if some block in a 2900 * page fails to read, blk_update_request() will advance 2901 * bv_offset and adjust bv_len to compensate. Print a warning 2902 * for unaligned offsets, and an error if they don't add up to 2903 * a full sector. 2904 */ 2905 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2906 btrfs_err(fs_info, 2907 "partial page read in btrfs with offset %u and length %u", 2908 bvec->bv_offset, bvec->bv_len); 2909 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 2910 sectorsize)) 2911 btrfs_info(fs_info, 2912 "incomplete page read with offset %u and length %u", 2913 bvec->bv_offset, bvec->bv_len); 2914 2915 start = page_offset(page) + bvec->bv_offset; 2916 end = start + bvec->bv_len - 1; 2917 len = bvec->bv_len; 2918 2919 mirror = io_bio->mirror_num; 2920 if (likely(uptodate)) { 2921 if (is_data_inode(inode)) 2922 ret = btrfs_verify_data_csum(io_bio, 2923 bio_offset, page, start, end, 2924 mirror); 2925 else 2926 ret = btrfs_validate_metadata_buffer(io_bio, 2927 page, start, end, mirror); 2928 if (ret) 2929 uptodate = 0; 2930 else 2931 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2932 failure_tree, tree, start, 2933 page, 2934 btrfs_ino(BTRFS_I(inode)), 0); 2935 } 2936 2937 if (likely(uptodate)) 2938 goto readpage_ok; 2939 2940 if (is_data_inode(inode)) { 2941 2942 /* 2943 * The generic bio_readpage_error handles errors the 2944 * following way: If possible, new read requests are 2945 * created and submitted and will end up in 2946 * end_bio_extent_readpage as well (if we're lucky, 2947 * not in the !uptodate case). In that case it returns 2948 * 0 and we just go on with the next page in our bio. 2949 * If it can't handle the error it will return -EIO and 2950 * we remain responsible for that page. 2951 */ 2952 if (!btrfs_submit_read_repair(inode, bio, bio_offset, 2953 page, 2954 start - page_offset(page), 2955 start, end, mirror, 2956 btrfs_submit_data_bio)) { 2957 uptodate = !bio->bi_status; 2958 ASSERT(bio_offset + len > bio_offset); 2959 bio_offset += len; 2960 continue; 2961 } 2962 } else { 2963 struct extent_buffer *eb; 2964 2965 eb = (struct extent_buffer *)page->private; 2966 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2967 eb->read_mirror = mirror; 2968 atomic_dec(&eb->io_pages); 2969 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2970 &eb->bflags)) 2971 btree_readahead_hook(eb, -EIO); 2972 } 2973 readpage_ok: 2974 if (likely(uptodate)) { 2975 loff_t i_size = i_size_read(inode); 2976 pgoff_t end_index = i_size >> PAGE_SHIFT; 2977 unsigned off; 2978 2979 /* Zero out the end if this page straddles i_size */ 2980 off = offset_in_page(i_size); 2981 if (page->index == end_index && off) 2982 zero_user_segment(page, off, PAGE_SIZE); 2983 } 2984 ASSERT(bio_offset + len > bio_offset); 2985 bio_offset += len; 2986 2987 /* Update page status and unlock */ 2988 endio_readpage_update_page_status(page, uptodate); 2989 endio_readpage_release_extent(&processed, BTRFS_I(inode), 2990 start, end, uptodate); 2991 } 2992 /* Release the last extent */ 2993 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 2994 btrfs_io_bio_free_csum(io_bio); 2995 bio_put(bio); 2996 } 2997 2998 /* 2999 * Initialize the members up to but not including 'bio'. Use after allocating a 3000 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3001 * 'bio' because use of __GFP_ZERO is not supported. 3002 */ 3003 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 3004 { 3005 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 3006 } 3007 3008 /* 3009 * The following helpers allocate a bio. As it's backed by a bioset, it'll 3010 * never fail. We're returning a bio right now but you can call btrfs_io_bio 3011 * for the appropriate container_of magic 3012 */ 3013 struct bio *btrfs_bio_alloc(u64 first_byte) 3014 { 3015 struct bio *bio; 3016 3017 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 3018 bio->bi_iter.bi_sector = first_byte >> 9; 3019 btrfs_io_bio_init(btrfs_io_bio(bio)); 3020 return bio; 3021 } 3022 3023 struct bio *btrfs_bio_clone(struct bio *bio) 3024 { 3025 struct btrfs_io_bio *btrfs_bio; 3026 struct bio *new; 3027 3028 /* Bio allocation backed by a bioset does not fail */ 3029 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3030 btrfs_bio = btrfs_io_bio(new); 3031 btrfs_io_bio_init(btrfs_bio); 3032 btrfs_bio->iter = bio->bi_iter; 3033 return new; 3034 } 3035 3036 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 3037 { 3038 struct bio *bio; 3039 3040 /* Bio allocation backed by a bioset does not fail */ 3041 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3042 btrfs_io_bio_init(btrfs_io_bio(bio)); 3043 return bio; 3044 } 3045 3046 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 3047 { 3048 struct bio *bio; 3049 struct btrfs_io_bio *btrfs_bio; 3050 3051 /* this will never fail when it's backed by a bioset */ 3052 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3053 ASSERT(bio); 3054 3055 btrfs_bio = btrfs_io_bio(bio); 3056 btrfs_io_bio_init(btrfs_bio); 3057 3058 bio_trim(bio, offset >> 9, size >> 9); 3059 btrfs_bio->iter = bio->bi_iter; 3060 return bio; 3061 } 3062 3063 /* 3064 * @opf: bio REQ_OP_* and REQ_* flags as one value 3065 * @wbc: optional writeback control for io accounting 3066 * @page: page to add to the bio 3067 * @pg_offset: offset of the new bio or to check whether we are adding 3068 * a contiguous page to the previous one 3069 * @size: portion of page that we want to write 3070 * @offset: starting offset in the page 3071 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3072 * @end_io_func: end_io callback for new bio 3073 * @mirror_num: desired mirror to read/write 3074 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3075 * @bio_flags: flags of the current bio to see if we can merge them 3076 */ 3077 static int submit_extent_page(unsigned int opf, 3078 struct writeback_control *wbc, 3079 struct page *page, u64 offset, 3080 size_t size, unsigned long pg_offset, 3081 struct bio **bio_ret, 3082 bio_end_io_t end_io_func, 3083 int mirror_num, 3084 unsigned long prev_bio_flags, 3085 unsigned long bio_flags, 3086 bool force_bio_submit) 3087 { 3088 int ret = 0; 3089 struct bio *bio; 3090 size_t io_size = min_t(size_t, size, PAGE_SIZE); 3091 sector_t sector = offset >> 9; 3092 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree; 3093 3094 ASSERT(bio_ret); 3095 3096 if (*bio_ret) { 3097 bool contig; 3098 bool can_merge = true; 3099 3100 bio = *bio_ret; 3101 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3102 contig = bio->bi_iter.bi_sector == sector; 3103 else 3104 contig = bio_end_sector(bio) == sector; 3105 3106 if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags)) 3107 can_merge = false; 3108 3109 if (prev_bio_flags != bio_flags || !contig || !can_merge || 3110 force_bio_submit || 3111 bio_add_page(bio, page, io_size, pg_offset) < io_size) { 3112 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3113 if (ret < 0) { 3114 *bio_ret = NULL; 3115 return ret; 3116 } 3117 bio = NULL; 3118 } else { 3119 if (wbc) 3120 wbc_account_cgroup_owner(wbc, page, io_size); 3121 return 0; 3122 } 3123 } 3124 3125 bio = btrfs_bio_alloc(offset); 3126 bio_add_page(bio, page, io_size, pg_offset); 3127 bio->bi_end_io = end_io_func; 3128 bio->bi_private = tree; 3129 bio->bi_write_hint = page->mapping->host->i_write_hint; 3130 bio->bi_opf = opf; 3131 if (wbc) { 3132 struct block_device *bdev; 3133 3134 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev; 3135 bio_set_dev(bio, bdev); 3136 wbc_init_bio(wbc, bio); 3137 wbc_account_cgroup_owner(wbc, page, io_size); 3138 } 3139 3140 *bio_ret = bio; 3141 3142 return ret; 3143 } 3144 3145 static void attach_extent_buffer_page(struct extent_buffer *eb, 3146 struct page *page) 3147 { 3148 /* 3149 * If the page is mapped to btree inode, we should hold the private 3150 * lock to prevent race. 3151 * For cloned or dummy extent buffers, their pages are not mapped and 3152 * will not race with any other ebs. 3153 */ 3154 if (page->mapping) 3155 lockdep_assert_held(&page->mapping->private_lock); 3156 3157 if (!PagePrivate(page)) 3158 attach_page_private(page, eb); 3159 else 3160 WARN_ON(page->private != (unsigned long)eb); 3161 } 3162 3163 void set_page_extent_mapped(struct page *page) 3164 { 3165 if (!PagePrivate(page)) 3166 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3167 } 3168 3169 static struct extent_map * 3170 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3171 u64 start, u64 len, struct extent_map **em_cached) 3172 { 3173 struct extent_map *em; 3174 3175 if (em_cached && *em_cached) { 3176 em = *em_cached; 3177 if (extent_map_in_tree(em) && start >= em->start && 3178 start < extent_map_end(em)) { 3179 refcount_inc(&em->refs); 3180 return em; 3181 } 3182 3183 free_extent_map(em); 3184 *em_cached = NULL; 3185 } 3186 3187 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3188 if (em_cached && !IS_ERR_OR_NULL(em)) { 3189 BUG_ON(*em_cached); 3190 refcount_inc(&em->refs); 3191 *em_cached = em; 3192 } 3193 return em; 3194 } 3195 /* 3196 * basic readpage implementation. Locked extent state structs are inserted 3197 * into the tree that are removed when the IO is done (by the end_io 3198 * handlers) 3199 * XXX JDM: This needs looking at to ensure proper page locking 3200 * return 0 on success, otherwise return error 3201 */ 3202 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3203 struct bio **bio, unsigned long *bio_flags, 3204 unsigned int read_flags, u64 *prev_em_start) 3205 { 3206 struct inode *inode = page->mapping->host; 3207 u64 start = page_offset(page); 3208 const u64 end = start + PAGE_SIZE - 1; 3209 u64 cur = start; 3210 u64 extent_offset; 3211 u64 last_byte = i_size_read(inode); 3212 u64 block_start; 3213 u64 cur_end; 3214 struct extent_map *em; 3215 int ret = 0; 3216 int nr = 0; 3217 size_t pg_offset = 0; 3218 size_t iosize; 3219 size_t blocksize = inode->i_sb->s_blocksize; 3220 unsigned long this_bio_flag = 0; 3221 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3222 3223 set_page_extent_mapped(page); 3224 3225 if (!PageUptodate(page)) { 3226 if (cleancache_get_page(page) == 0) { 3227 BUG_ON(blocksize != PAGE_SIZE); 3228 unlock_extent(tree, start, end); 3229 goto out; 3230 } 3231 } 3232 3233 if (page->index == last_byte >> PAGE_SHIFT) { 3234 char *userpage; 3235 size_t zero_offset = offset_in_page(last_byte); 3236 3237 if (zero_offset) { 3238 iosize = PAGE_SIZE - zero_offset; 3239 userpage = kmap_atomic(page); 3240 memset(userpage + zero_offset, 0, iosize); 3241 flush_dcache_page(page); 3242 kunmap_atomic(userpage); 3243 } 3244 } 3245 while (cur <= end) { 3246 bool force_bio_submit = false; 3247 u64 offset; 3248 3249 if (cur >= last_byte) { 3250 char *userpage; 3251 struct extent_state *cached = NULL; 3252 3253 iosize = PAGE_SIZE - pg_offset; 3254 userpage = kmap_atomic(page); 3255 memset(userpage + pg_offset, 0, iosize); 3256 flush_dcache_page(page); 3257 kunmap_atomic(userpage); 3258 set_extent_uptodate(tree, cur, cur + iosize - 1, 3259 &cached, GFP_NOFS); 3260 unlock_extent_cached(tree, cur, 3261 cur + iosize - 1, &cached); 3262 break; 3263 } 3264 em = __get_extent_map(inode, page, pg_offset, cur, 3265 end - cur + 1, em_cached); 3266 if (IS_ERR_OR_NULL(em)) { 3267 SetPageError(page); 3268 unlock_extent(tree, cur, end); 3269 break; 3270 } 3271 extent_offset = cur - em->start; 3272 BUG_ON(extent_map_end(em) <= cur); 3273 BUG_ON(end < cur); 3274 3275 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3276 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3277 extent_set_compress_type(&this_bio_flag, 3278 em->compress_type); 3279 } 3280 3281 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3282 cur_end = min(extent_map_end(em) - 1, end); 3283 iosize = ALIGN(iosize, blocksize); 3284 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3285 offset = em->block_start; 3286 else 3287 offset = em->block_start + extent_offset; 3288 block_start = em->block_start; 3289 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3290 block_start = EXTENT_MAP_HOLE; 3291 3292 /* 3293 * If we have a file range that points to a compressed extent 3294 * and it's followed by a consecutive file range that points 3295 * to the same compressed extent (possibly with a different 3296 * offset and/or length, so it either points to the whole extent 3297 * or only part of it), we must make sure we do not submit a 3298 * single bio to populate the pages for the 2 ranges because 3299 * this makes the compressed extent read zero out the pages 3300 * belonging to the 2nd range. Imagine the following scenario: 3301 * 3302 * File layout 3303 * [0 - 8K] [8K - 24K] 3304 * | | 3305 * | | 3306 * points to extent X, points to extent X, 3307 * offset 4K, length of 8K offset 0, length 16K 3308 * 3309 * [extent X, compressed length = 4K uncompressed length = 16K] 3310 * 3311 * If the bio to read the compressed extent covers both ranges, 3312 * it will decompress extent X into the pages belonging to the 3313 * first range and then it will stop, zeroing out the remaining 3314 * pages that belong to the other range that points to extent X. 3315 * So here we make sure we submit 2 bios, one for the first 3316 * range and another one for the third range. Both will target 3317 * the same physical extent from disk, but we can't currently 3318 * make the compressed bio endio callback populate the pages 3319 * for both ranges because each compressed bio is tightly 3320 * coupled with a single extent map, and each range can have 3321 * an extent map with a different offset value relative to the 3322 * uncompressed data of our extent and different lengths. This 3323 * is a corner case so we prioritize correctness over 3324 * non-optimal behavior (submitting 2 bios for the same extent). 3325 */ 3326 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3327 prev_em_start && *prev_em_start != (u64)-1 && 3328 *prev_em_start != em->start) 3329 force_bio_submit = true; 3330 3331 if (prev_em_start) 3332 *prev_em_start = em->start; 3333 3334 free_extent_map(em); 3335 em = NULL; 3336 3337 /* we've found a hole, just zero and go on */ 3338 if (block_start == EXTENT_MAP_HOLE) { 3339 char *userpage; 3340 struct extent_state *cached = NULL; 3341 3342 userpage = kmap_atomic(page); 3343 memset(userpage + pg_offset, 0, iosize); 3344 flush_dcache_page(page); 3345 kunmap_atomic(userpage); 3346 3347 set_extent_uptodate(tree, cur, cur + iosize - 1, 3348 &cached, GFP_NOFS); 3349 unlock_extent_cached(tree, cur, 3350 cur + iosize - 1, &cached); 3351 cur = cur + iosize; 3352 pg_offset += iosize; 3353 continue; 3354 } 3355 /* the get_extent function already copied into the page */ 3356 if (test_range_bit(tree, cur, cur_end, 3357 EXTENT_UPTODATE, 1, NULL)) { 3358 check_page_uptodate(tree, page); 3359 unlock_extent(tree, cur, cur + iosize - 1); 3360 cur = cur + iosize; 3361 pg_offset += iosize; 3362 continue; 3363 } 3364 /* we have an inline extent but it didn't get marked up 3365 * to date. Error out 3366 */ 3367 if (block_start == EXTENT_MAP_INLINE) { 3368 SetPageError(page); 3369 unlock_extent(tree, cur, cur + iosize - 1); 3370 cur = cur + iosize; 3371 pg_offset += iosize; 3372 continue; 3373 } 3374 3375 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3376 page, offset, iosize, 3377 pg_offset, bio, 3378 end_bio_extent_readpage, 0, 3379 *bio_flags, 3380 this_bio_flag, 3381 force_bio_submit); 3382 if (!ret) { 3383 nr++; 3384 *bio_flags = this_bio_flag; 3385 } else { 3386 SetPageError(page); 3387 unlock_extent(tree, cur, cur + iosize - 1); 3388 goto out; 3389 } 3390 cur = cur + iosize; 3391 pg_offset += iosize; 3392 } 3393 out: 3394 if (!nr) { 3395 if (!PageError(page)) 3396 SetPageUptodate(page); 3397 unlock_page(page); 3398 } 3399 return ret; 3400 } 3401 3402 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3403 u64 start, u64 end, 3404 struct extent_map **em_cached, 3405 struct bio **bio, 3406 unsigned long *bio_flags, 3407 u64 *prev_em_start) 3408 { 3409 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3410 int index; 3411 3412 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3413 3414 for (index = 0; index < nr_pages; index++) { 3415 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags, 3416 REQ_RAHEAD, prev_em_start); 3417 put_page(pages[index]); 3418 } 3419 } 3420 3421 static void update_nr_written(struct writeback_control *wbc, 3422 unsigned long nr_written) 3423 { 3424 wbc->nr_to_write -= nr_written; 3425 } 3426 3427 /* 3428 * helper for __extent_writepage, doing all of the delayed allocation setup. 3429 * 3430 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3431 * to write the page (copy into inline extent). In this case the IO has 3432 * been started and the page is already unlocked. 3433 * 3434 * This returns 0 if all went well (page still locked) 3435 * This returns < 0 if there were errors (page still locked) 3436 */ 3437 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3438 struct page *page, struct writeback_control *wbc, 3439 u64 delalloc_start, unsigned long *nr_written) 3440 { 3441 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3442 bool found; 3443 u64 delalloc_to_write = 0; 3444 u64 delalloc_end = 0; 3445 int ret; 3446 int page_started = 0; 3447 3448 3449 while (delalloc_end < page_end) { 3450 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3451 &delalloc_start, 3452 &delalloc_end); 3453 if (!found) { 3454 delalloc_start = delalloc_end + 1; 3455 continue; 3456 } 3457 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3458 delalloc_end, &page_started, nr_written, wbc); 3459 if (ret) { 3460 SetPageError(page); 3461 /* 3462 * btrfs_run_delalloc_range should return < 0 for error 3463 * but just in case, we use > 0 here meaning the IO is 3464 * started, so we don't want to return > 0 unless 3465 * things are going well. 3466 */ 3467 return ret < 0 ? ret : -EIO; 3468 } 3469 /* 3470 * delalloc_end is already one less than the total length, so 3471 * we don't subtract one from PAGE_SIZE 3472 */ 3473 delalloc_to_write += (delalloc_end - delalloc_start + 3474 PAGE_SIZE) >> PAGE_SHIFT; 3475 delalloc_start = delalloc_end + 1; 3476 } 3477 if (wbc->nr_to_write < delalloc_to_write) { 3478 int thresh = 8192; 3479 3480 if (delalloc_to_write < thresh * 2) 3481 thresh = delalloc_to_write; 3482 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3483 thresh); 3484 } 3485 3486 /* did the fill delalloc function already unlock and start 3487 * the IO? 3488 */ 3489 if (page_started) { 3490 /* 3491 * we've unlocked the page, so we can't update 3492 * the mapping's writeback index, just update 3493 * nr_to_write. 3494 */ 3495 wbc->nr_to_write -= *nr_written; 3496 return 1; 3497 } 3498 3499 return 0; 3500 } 3501 3502 /* 3503 * helper for __extent_writepage. This calls the writepage start hooks, 3504 * and does the loop to map the page into extents and bios. 3505 * 3506 * We return 1 if the IO is started and the page is unlocked, 3507 * 0 if all went well (page still locked) 3508 * < 0 if there were errors (page still locked) 3509 */ 3510 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3511 struct page *page, 3512 struct writeback_control *wbc, 3513 struct extent_page_data *epd, 3514 loff_t i_size, 3515 unsigned long nr_written, 3516 int *nr_ret) 3517 { 3518 struct extent_io_tree *tree = &inode->io_tree; 3519 u64 start = page_offset(page); 3520 u64 page_end = start + PAGE_SIZE - 1; 3521 u64 end; 3522 u64 cur = start; 3523 u64 extent_offset; 3524 u64 block_start; 3525 u64 iosize; 3526 struct extent_map *em; 3527 size_t pg_offset = 0; 3528 size_t blocksize; 3529 int ret = 0; 3530 int nr = 0; 3531 const unsigned int write_flags = wbc_to_write_flags(wbc); 3532 bool compressed; 3533 3534 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3535 if (ret) { 3536 /* Fixup worker will requeue */ 3537 redirty_page_for_writepage(wbc, page); 3538 update_nr_written(wbc, nr_written); 3539 unlock_page(page); 3540 return 1; 3541 } 3542 3543 /* 3544 * we don't want to touch the inode after unlocking the page, 3545 * so we update the mapping writeback index now 3546 */ 3547 update_nr_written(wbc, nr_written + 1); 3548 3549 end = page_end; 3550 blocksize = inode->vfs_inode.i_sb->s_blocksize; 3551 3552 while (cur <= end) { 3553 u64 em_end; 3554 u64 offset; 3555 3556 if (cur >= i_size) { 3557 btrfs_writepage_endio_finish_ordered(page, cur, 3558 page_end, 1); 3559 break; 3560 } 3561 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3562 if (IS_ERR_OR_NULL(em)) { 3563 SetPageError(page); 3564 ret = PTR_ERR_OR_ZERO(em); 3565 break; 3566 } 3567 3568 extent_offset = cur - em->start; 3569 em_end = extent_map_end(em); 3570 BUG_ON(em_end <= cur); 3571 BUG_ON(end < cur); 3572 iosize = min(em_end - cur, end - cur + 1); 3573 iosize = ALIGN(iosize, blocksize); 3574 offset = em->block_start + extent_offset; 3575 block_start = em->block_start; 3576 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3577 free_extent_map(em); 3578 em = NULL; 3579 3580 /* 3581 * compressed and inline extents are written through other 3582 * paths in the FS 3583 */ 3584 if (compressed || block_start == EXTENT_MAP_HOLE || 3585 block_start == EXTENT_MAP_INLINE) { 3586 if (compressed) 3587 nr++; 3588 else 3589 btrfs_writepage_endio_finish_ordered(page, cur, 3590 cur + iosize - 1, 1); 3591 cur += iosize; 3592 pg_offset += iosize; 3593 continue; 3594 } 3595 3596 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3597 if (!PageWriteback(page)) { 3598 btrfs_err(inode->root->fs_info, 3599 "page %lu not writeback, cur %llu end %llu", 3600 page->index, cur, end); 3601 } 3602 3603 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3604 page, offset, iosize, pg_offset, 3605 &epd->bio, 3606 end_bio_extent_writepage, 3607 0, 0, 0, false); 3608 if (ret) { 3609 SetPageError(page); 3610 if (PageWriteback(page)) 3611 end_page_writeback(page); 3612 } 3613 3614 cur = cur + iosize; 3615 pg_offset += iosize; 3616 nr++; 3617 } 3618 *nr_ret = nr; 3619 return ret; 3620 } 3621 3622 /* 3623 * the writepage semantics are similar to regular writepage. extent 3624 * records are inserted to lock ranges in the tree, and as dirty areas 3625 * are found, they are marked writeback. Then the lock bits are removed 3626 * and the end_io handler clears the writeback ranges 3627 * 3628 * Return 0 if everything goes well. 3629 * Return <0 for error. 3630 */ 3631 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3632 struct extent_page_data *epd) 3633 { 3634 struct inode *inode = page->mapping->host; 3635 u64 start = page_offset(page); 3636 u64 page_end = start + PAGE_SIZE - 1; 3637 int ret; 3638 int nr = 0; 3639 size_t pg_offset; 3640 loff_t i_size = i_size_read(inode); 3641 unsigned long end_index = i_size >> PAGE_SHIFT; 3642 unsigned long nr_written = 0; 3643 3644 trace___extent_writepage(page, inode, wbc); 3645 3646 WARN_ON(!PageLocked(page)); 3647 3648 ClearPageError(page); 3649 3650 pg_offset = offset_in_page(i_size); 3651 if (page->index > end_index || 3652 (page->index == end_index && !pg_offset)) { 3653 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3654 unlock_page(page); 3655 return 0; 3656 } 3657 3658 if (page->index == end_index) { 3659 char *userpage; 3660 3661 userpage = kmap_atomic(page); 3662 memset(userpage + pg_offset, 0, 3663 PAGE_SIZE - pg_offset); 3664 kunmap_atomic(userpage); 3665 flush_dcache_page(page); 3666 } 3667 3668 set_page_extent_mapped(page); 3669 3670 if (!epd->extent_locked) { 3671 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 3672 &nr_written); 3673 if (ret == 1) 3674 return 0; 3675 if (ret) 3676 goto done; 3677 } 3678 3679 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 3680 nr_written, &nr); 3681 if (ret == 1) 3682 return 0; 3683 3684 done: 3685 if (nr == 0) { 3686 /* make sure the mapping tag for page dirty gets cleared */ 3687 set_page_writeback(page); 3688 end_page_writeback(page); 3689 } 3690 if (PageError(page)) { 3691 ret = ret < 0 ? ret : -EIO; 3692 end_extent_writepage(page, ret, start, page_end); 3693 } 3694 unlock_page(page); 3695 ASSERT(ret <= 0); 3696 return ret; 3697 } 3698 3699 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3700 { 3701 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3702 TASK_UNINTERRUPTIBLE); 3703 } 3704 3705 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3706 { 3707 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3708 smp_mb__after_atomic(); 3709 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3710 } 3711 3712 /* 3713 * Lock extent buffer status and pages for writeback. 3714 * 3715 * May try to flush write bio if we can't get the lock. 3716 * 3717 * Return 0 if the extent buffer doesn't need to be submitted. 3718 * (E.g. the extent buffer is not dirty) 3719 * Return >0 is the extent buffer is submitted to bio. 3720 * Return <0 if something went wrong, no page is locked. 3721 */ 3722 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3723 struct extent_page_data *epd) 3724 { 3725 struct btrfs_fs_info *fs_info = eb->fs_info; 3726 int i, num_pages, failed_page_nr; 3727 int flush = 0; 3728 int ret = 0; 3729 3730 if (!btrfs_try_tree_write_lock(eb)) { 3731 ret = flush_write_bio(epd); 3732 if (ret < 0) 3733 return ret; 3734 flush = 1; 3735 btrfs_tree_lock(eb); 3736 } 3737 3738 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3739 btrfs_tree_unlock(eb); 3740 if (!epd->sync_io) 3741 return 0; 3742 if (!flush) { 3743 ret = flush_write_bio(epd); 3744 if (ret < 0) 3745 return ret; 3746 flush = 1; 3747 } 3748 while (1) { 3749 wait_on_extent_buffer_writeback(eb); 3750 btrfs_tree_lock(eb); 3751 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3752 break; 3753 btrfs_tree_unlock(eb); 3754 } 3755 } 3756 3757 /* 3758 * We need to do this to prevent races in people who check if the eb is 3759 * under IO since we can end up having no IO bits set for a short period 3760 * of time. 3761 */ 3762 spin_lock(&eb->refs_lock); 3763 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3764 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3765 spin_unlock(&eb->refs_lock); 3766 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3767 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3768 -eb->len, 3769 fs_info->dirty_metadata_batch); 3770 ret = 1; 3771 } else { 3772 spin_unlock(&eb->refs_lock); 3773 } 3774 3775 btrfs_tree_unlock(eb); 3776 3777 if (!ret) 3778 return ret; 3779 3780 num_pages = num_extent_pages(eb); 3781 for (i = 0; i < num_pages; i++) { 3782 struct page *p = eb->pages[i]; 3783 3784 if (!trylock_page(p)) { 3785 if (!flush) { 3786 int err; 3787 3788 err = flush_write_bio(epd); 3789 if (err < 0) { 3790 ret = err; 3791 failed_page_nr = i; 3792 goto err_unlock; 3793 } 3794 flush = 1; 3795 } 3796 lock_page(p); 3797 } 3798 } 3799 3800 return ret; 3801 err_unlock: 3802 /* Unlock already locked pages */ 3803 for (i = 0; i < failed_page_nr; i++) 3804 unlock_page(eb->pages[i]); 3805 /* 3806 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3807 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3808 * be made and undo everything done before. 3809 */ 3810 btrfs_tree_lock(eb); 3811 spin_lock(&eb->refs_lock); 3812 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3813 end_extent_buffer_writeback(eb); 3814 spin_unlock(&eb->refs_lock); 3815 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3816 fs_info->dirty_metadata_batch); 3817 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3818 btrfs_tree_unlock(eb); 3819 return ret; 3820 } 3821 3822 static void set_btree_ioerr(struct page *page) 3823 { 3824 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3825 struct btrfs_fs_info *fs_info; 3826 3827 SetPageError(page); 3828 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3829 return; 3830 3831 /* 3832 * If we error out, we should add back the dirty_metadata_bytes 3833 * to make it consistent. 3834 */ 3835 fs_info = eb->fs_info; 3836 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3837 eb->len, fs_info->dirty_metadata_batch); 3838 3839 /* 3840 * If writeback for a btree extent that doesn't belong to a log tree 3841 * failed, increment the counter transaction->eb_write_errors. 3842 * We do this because while the transaction is running and before it's 3843 * committing (when we call filemap_fdata[write|wait]_range against 3844 * the btree inode), we might have 3845 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3846 * returns an error or an error happens during writeback, when we're 3847 * committing the transaction we wouldn't know about it, since the pages 3848 * can be no longer dirty nor marked anymore for writeback (if a 3849 * subsequent modification to the extent buffer didn't happen before the 3850 * transaction commit), which makes filemap_fdata[write|wait]_range not 3851 * able to find the pages tagged with SetPageError at transaction 3852 * commit time. So if this happens we must abort the transaction, 3853 * otherwise we commit a super block with btree roots that point to 3854 * btree nodes/leafs whose content on disk is invalid - either garbage 3855 * or the content of some node/leaf from a past generation that got 3856 * cowed or deleted and is no longer valid. 3857 * 3858 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3859 * not be enough - we need to distinguish between log tree extents vs 3860 * non-log tree extents, and the next filemap_fdatawait_range() call 3861 * will catch and clear such errors in the mapping - and that call might 3862 * be from a log sync and not from a transaction commit. Also, checking 3863 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3864 * not done and would not be reliable - the eb might have been released 3865 * from memory and reading it back again means that flag would not be 3866 * set (since it's a runtime flag, not persisted on disk). 3867 * 3868 * Using the flags below in the btree inode also makes us achieve the 3869 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3870 * writeback for all dirty pages and before filemap_fdatawait_range() 3871 * is called, the writeback for all dirty pages had already finished 3872 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3873 * filemap_fdatawait_range() would return success, as it could not know 3874 * that writeback errors happened (the pages were no longer tagged for 3875 * writeback). 3876 */ 3877 switch (eb->log_index) { 3878 case -1: 3879 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3880 break; 3881 case 0: 3882 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3883 break; 3884 case 1: 3885 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3886 break; 3887 default: 3888 BUG(); /* unexpected, logic error */ 3889 } 3890 } 3891 3892 static void end_bio_extent_buffer_writepage(struct bio *bio) 3893 { 3894 struct bio_vec *bvec; 3895 struct extent_buffer *eb; 3896 int done; 3897 struct bvec_iter_all iter_all; 3898 3899 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3900 bio_for_each_segment_all(bvec, bio, iter_all) { 3901 struct page *page = bvec->bv_page; 3902 3903 eb = (struct extent_buffer *)page->private; 3904 BUG_ON(!eb); 3905 done = atomic_dec_and_test(&eb->io_pages); 3906 3907 if (bio->bi_status || 3908 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3909 ClearPageUptodate(page); 3910 set_btree_ioerr(page); 3911 } 3912 3913 end_page_writeback(page); 3914 3915 if (!done) 3916 continue; 3917 3918 end_extent_buffer_writeback(eb); 3919 } 3920 3921 bio_put(bio); 3922 } 3923 3924 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3925 struct writeback_control *wbc, 3926 struct extent_page_data *epd) 3927 { 3928 u64 offset = eb->start; 3929 u32 nritems; 3930 int i, num_pages; 3931 unsigned long start, end; 3932 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3933 int ret = 0; 3934 3935 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3936 num_pages = num_extent_pages(eb); 3937 atomic_set(&eb->io_pages, num_pages); 3938 3939 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3940 nritems = btrfs_header_nritems(eb); 3941 if (btrfs_header_level(eb) > 0) { 3942 end = btrfs_node_key_ptr_offset(nritems); 3943 3944 memzero_extent_buffer(eb, end, eb->len - end); 3945 } else { 3946 /* 3947 * leaf: 3948 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3949 */ 3950 start = btrfs_item_nr_offset(nritems); 3951 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3952 memzero_extent_buffer(eb, start, end - start); 3953 } 3954 3955 for (i = 0; i < num_pages; i++) { 3956 struct page *p = eb->pages[i]; 3957 3958 clear_page_dirty_for_io(p); 3959 set_page_writeback(p); 3960 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3961 p, offset, PAGE_SIZE, 0, 3962 &epd->bio, 3963 end_bio_extent_buffer_writepage, 3964 0, 0, 0, false); 3965 if (ret) { 3966 set_btree_ioerr(p); 3967 if (PageWriteback(p)) 3968 end_page_writeback(p); 3969 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3970 end_extent_buffer_writeback(eb); 3971 ret = -EIO; 3972 break; 3973 } 3974 offset += PAGE_SIZE; 3975 update_nr_written(wbc, 1); 3976 unlock_page(p); 3977 } 3978 3979 if (unlikely(ret)) { 3980 for (; i < num_pages; i++) { 3981 struct page *p = eb->pages[i]; 3982 clear_page_dirty_for_io(p); 3983 unlock_page(p); 3984 } 3985 } 3986 3987 return ret; 3988 } 3989 3990 /* 3991 * Submit all page(s) of one extent buffer. 3992 * 3993 * @page: the page of one extent buffer 3994 * @eb_context: to determine if we need to submit this page, if current page 3995 * belongs to this eb, we don't need to submit 3996 * 3997 * The caller should pass each page in their bytenr order, and here we use 3998 * @eb_context to determine if we have submitted pages of one extent buffer. 3999 * 4000 * If we have, we just skip until we hit a new page that doesn't belong to 4001 * current @eb_context. 4002 * 4003 * If not, we submit all the page(s) of the extent buffer. 4004 * 4005 * Return >0 if we have submitted the extent buffer successfully. 4006 * Return 0 if we don't need to submit the page, as it's already submitted by 4007 * previous call. 4008 * Return <0 for fatal error. 4009 */ 4010 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4011 struct extent_page_data *epd, 4012 struct extent_buffer **eb_context) 4013 { 4014 struct address_space *mapping = page->mapping; 4015 struct extent_buffer *eb; 4016 int ret; 4017 4018 if (!PagePrivate(page)) 4019 return 0; 4020 4021 spin_lock(&mapping->private_lock); 4022 if (!PagePrivate(page)) { 4023 spin_unlock(&mapping->private_lock); 4024 return 0; 4025 } 4026 4027 eb = (struct extent_buffer *)page->private; 4028 4029 /* 4030 * Shouldn't happen and normally this would be a BUG_ON but no point 4031 * crashing the machine for something we can survive anyway. 4032 */ 4033 if (WARN_ON(!eb)) { 4034 spin_unlock(&mapping->private_lock); 4035 return 0; 4036 } 4037 4038 if (eb == *eb_context) { 4039 spin_unlock(&mapping->private_lock); 4040 return 0; 4041 } 4042 ret = atomic_inc_not_zero(&eb->refs); 4043 spin_unlock(&mapping->private_lock); 4044 if (!ret) 4045 return 0; 4046 4047 *eb_context = eb; 4048 4049 ret = lock_extent_buffer_for_io(eb, epd); 4050 if (ret <= 0) { 4051 free_extent_buffer(eb); 4052 return ret; 4053 } 4054 ret = write_one_eb(eb, wbc, epd); 4055 free_extent_buffer(eb); 4056 if (ret < 0) 4057 return ret; 4058 return 1; 4059 } 4060 4061 int btree_write_cache_pages(struct address_space *mapping, 4062 struct writeback_control *wbc) 4063 { 4064 struct extent_buffer *eb_context = NULL; 4065 struct extent_page_data epd = { 4066 .bio = NULL, 4067 .extent_locked = 0, 4068 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4069 }; 4070 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4071 int ret = 0; 4072 int done = 0; 4073 int nr_to_write_done = 0; 4074 struct pagevec pvec; 4075 int nr_pages; 4076 pgoff_t index; 4077 pgoff_t end; /* Inclusive */ 4078 int scanned = 0; 4079 xa_mark_t tag; 4080 4081 pagevec_init(&pvec); 4082 if (wbc->range_cyclic) { 4083 index = mapping->writeback_index; /* Start from prev offset */ 4084 end = -1; 4085 /* 4086 * Start from the beginning does not need to cycle over the 4087 * range, mark it as scanned. 4088 */ 4089 scanned = (index == 0); 4090 } else { 4091 index = wbc->range_start >> PAGE_SHIFT; 4092 end = wbc->range_end >> PAGE_SHIFT; 4093 scanned = 1; 4094 } 4095 if (wbc->sync_mode == WB_SYNC_ALL) 4096 tag = PAGECACHE_TAG_TOWRITE; 4097 else 4098 tag = PAGECACHE_TAG_DIRTY; 4099 retry: 4100 if (wbc->sync_mode == WB_SYNC_ALL) 4101 tag_pages_for_writeback(mapping, index, end); 4102 while (!done && !nr_to_write_done && (index <= end) && 4103 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4104 tag))) { 4105 unsigned i; 4106 4107 for (i = 0; i < nr_pages; i++) { 4108 struct page *page = pvec.pages[i]; 4109 4110 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4111 if (ret == 0) 4112 continue; 4113 if (ret < 0) { 4114 done = 1; 4115 break; 4116 } 4117 4118 /* 4119 * the filesystem may choose to bump up nr_to_write. 4120 * We have to make sure to honor the new nr_to_write 4121 * at any time 4122 */ 4123 nr_to_write_done = wbc->nr_to_write <= 0; 4124 } 4125 pagevec_release(&pvec); 4126 cond_resched(); 4127 } 4128 if (!scanned && !done) { 4129 /* 4130 * We hit the last page and there is more work to be done: wrap 4131 * back to the start of the file 4132 */ 4133 scanned = 1; 4134 index = 0; 4135 goto retry; 4136 } 4137 if (ret < 0) { 4138 end_write_bio(&epd, ret); 4139 return ret; 4140 } 4141 /* 4142 * If something went wrong, don't allow any metadata write bio to be 4143 * submitted. 4144 * 4145 * This would prevent use-after-free if we had dirty pages not 4146 * cleaned up, which can still happen by fuzzed images. 4147 * 4148 * - Bad extent tree 4149 * Allowing existing tree block to be allocated for other trees. 4150 * 4151 * - Log tree operations 4152 * Exiting tree blocks get allocated to log tree, bumps its 4153 * generation, then get cleaned in tree re-balance. 4154 * Such tree block will not be written back, since it's clean, 4155 * thus no WRITTEN flag set. 4156 * And after log writes back, this tree block is not traced by 4157 * any dirty extent_io_tree. 4158 * 4159 * - Offending tree block gets re-dirtied from its original owner 4160 * Since it has bumped generation, no WRITTEN flag, it can be 4161 * reused without COWing. This tree block will not be traced 4162 * by btrfs_transaction::dirty_pages. 4163 * 4164 * Now such dirty tree block will not be cleaned by any dirty 4165 * extent io tree. Thus we don't want to submit such wild eb 4166 * if the fs already has error. 4167 */ 4168 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4169 ret = flush_write_bio(&epd); 4170 } else { 4171 ret = -EROFS; 4172 end_write_bio(&epd, ret); 4173 } 4174 return ret; 4175 } 4176 4177 /** 4178 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4179 * @mapping: address space structure to write 4180 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4181 * @data: data passed to __extent_writepage function 4182 * 4183 * If a page is already under I/O, write_cache_pages() skips it, even 4184 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4185 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4186 * and msync() need to guarantee that all the data which was dirty at the time 4187 * the call was made get new I/O started against them. If wbc->sync_mode is 4188 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4189 * existing IO to complete. 4190 */ 4191 static int extent_write_cache_pages(struct address_space *mapping, 4192 struct writeback_control *wbc, 4193 struct extent_page_data *epd) 4194 { 4195 struct inode *inode = mapping->host; 4196 int ret = 0; 4197 int done = 0; 4198 int nr_to_write_done = 0; 4199 struct pagevec pvec; 4200 int nr_pages; 4201 pgoff_t index; 4202 pgoff_t end; /* Inclusive */ 4203 pgoff_t done_index; 4204 int range_whole = 0; 4205 int scanned = 0; 4206 xa_mark_t tag; 4207 4208 /* 4209 * We have to hold onto the inode so that ordered extents can do their 4210 * work when the IO finishes. The alternative to this is failing to add 4211 * an ordered extent if the igrab() fails there and that is a huge pain 4212 * to deal with, so instead just hold onto the inode throughout the 4213 * writepages operation. If it fails here we are freeing up the inode 4214 * anyway and we'd rather not waste our time writing out stuff that is 4215 * going to be truncated anyway. 4216 */ 4217 if (!igrab(inode)) 4218 return 0; 4219 4220 pagevec_init(&pvec); 4221 if (wbc->range_cyclic) { 4222 index = mapping->writeback_index; /* Start from prev offset */ 4223 end = -1; 4224 /* 4225 * Start from the beginning does not need to cycle over the 4226 * range, mark it as scanned. 4227 */ 4228 scanned = (index == 0); 4229 } else { 4230 index = wbc->range_start >> PAGE_SHIFT; 4231 end = wbc->range_end >> PAGE_SHIFT; 4232 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4233 range_whole = 1; 4234 scanned = 1; 4235 } 4236 4237 /* 4238 * We do the tagged writepage as long as the snapshot flush bit is set 4239 * and we are the first one who do the filemap_flush() on this inode. 4240 * 4241 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4242 * not race in and drop the bit. 4243 */ 4244 if (range_whole && wbc->nr_to_write == LONG_MAX && 4245 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4246 &BTRFS_I(inode)->runtime_flags)) 4247 wbc->tagged_writepages = 1; 4248 4249 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4250 tag = PAGECACHE_TAG_TOWRITE; 4251 else 4252 tag = PAGECACHE_TAG_DIRTY; 4253 retry: 4254 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4255 tag_pages_for_writeback(mapping, index, end); 4256 done_index = index; 4257 while (!done && !nr_to_write_done && (index <= end) && 4258 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4259 &index, end, tag))) { 4260 unsigned i; 4261 4262 for (i = 0; i < nr_pages; i++) { 4263 struct page *page = pvec.pages[i]; 4264 4265 done_index = page->index + 1; 4266 /* 4267 * At this point we hold neither the i_pages lock nor 4268 * the page lock: the page may be truncated or 4269 * invalidated (changing page->mapping to NULL), 4270 * or even swizzled back from swapper_space to 4271 * tmpfs file mapping 4272 */ 4273 if (!trylock_page(page)) { 4274 ret = flush_write_bio(epd); 4275 BUG_ON(ret < 0); 4276 lock_page(page); 4277 } 4278 4279 if (unlikely(page->mapping != mapping)) { 4280 unlock_page(page); 4281 continue; 4282 } 4283 4284 if (wbc->sync_mode != WB_SYNC_NONE) { 4285 if (PageWriteback(page)) { 4286 ret = flush_write_bio(epd); 4287 BUG_ON(ret < 0); 4288 } 4289 wait_on_page_writeback(page); 4290 } 4291 4292 if (PageWriteback(page) || 4293 !clear_page_dirty_for_io(page)) { 4294 unlock_page(page); 4295 continue; 4296 } 4297 4298 ret = __extent_writepage(page, wbc, epd); 4299 if (ret < 0) { 4300 done = 1; 4301 break; 4302 } 4303 4304 /* 4305 * the filesystem may choose to bump up nr_to_write. 4306 * We have to make sure to honor the new nr_to_write 4307 * at any time 4308 */ 4309 nr_to_write_done = wbc->nr_to_write <= 0; 4310 } 4311 pagevec_release(&pvec); 4312 cond_resched(); 4313 } 4314 if (!scanned && !done) { 4315 /* 4316 * We hit the last page and there is more work to be done: wrap 4317 * back to the start of the file 4318 */ 4319 scanned = 1; 4320 index = 0; 4321 4322 /* 4323 * If we're looping we could run into a page that is locked by a 4324 * writer and that writer could be waiting on writeback for a 4325 * page in our current bio, and thus deadlock, so flush the 4326 * write bio here. 4327 */ 4328 ret = flush_write_bio(epd); 4329 if (!ret) 4330 goto retry; 4331 } 4332 4333 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4334 mapping->writeback_index = done_index; 4335 4336 btrfs_add_delayed_iput(inode); 4337 return ret; 4338 } 4339 4340 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4341 { 4342 int ret; 4343 struct extent_page_data epd = { 4344 .bio = NULL, 4345 .extent_locked = 0, 4346 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4347 }; 4348 4349 ret = __extent_writepage(page, wbc, &epd); 4350 ASSERT(ret <= 0); 4351 if (ret < 0) { 4352 end_write_bio(&epd, ret); 4353 return ret; 4354 } 4355 4356 ret = flush_write_bio(&epd); 4357 ASSERT(ret <= 0); 4358 return ret; 4359 } 4360 4361 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4362 int mode) 4363 { 4364 int ret = 0; 4365 struct address_space *mapping = inode->i_mapping; 4366 struct page *page; 4367 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4368 PAGE_SHIFT; 4369 4370 struct extent_page_data epd = { 4371 .bio = NULL, 4372 .extent_locked = 1, 4373 .sync_io = mode == WB_SYNC_ALL, 4374 }; 4375 struct writeback_control wbc_writepages = { 4376 .sync_mode = mode, 4377 .nr_to_write = nr_pages * 2, 4378 .range_start = start, 4379 .range_end = end + 1, 4380 /* We're called from an async helper function */ 4381 .punt_to_cgroup = 1, 4382 .no_cgroup_owner = 1, 4383 }; 4384 4385 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4386 while (start <= end) { 4387 page = find_get_page(mapping, start >> PAGE_SHIFT); 4388 if (clear_page_dirty_for_io(page)) 4389 ret = __extent_writepage(page, &wbc_writepages, &epd); 4390 else { 4391 btrfs_writepage_endio_finish_ordered(page, start, 4392 start + PAGE_SIZE - 1, 1); 4393 unlock_page(page); 4394 } 4395 put_page(page); 4396 start += PAGE_SIZE; 4397 } 4398 4399 ASSERT(ret <= 0); 4400 if (ret == 0) 4401 ret = flush_write_bio(&epd); 4402 else 4403 end_write_bio(&epd, ret); 4404 4405 wbc_detach_inode(&wbc_writepages); 4406 return ret; 4407 } 4408 4409 int extent_writepages(struct address_space *mapping, 4410 struct writeback_control *wbc) 4411 { 4412 int ret = 0; 4413 struct extent_page_data epd = { 4414 .bio = NULL, 4415 .extent_locked = 0, 4416 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4417 }; 4418 4419 ret = extent_write_cache_pages(mapping, wbc, &epd); 4420 ASSERT(ret <= 0); 4421 if (ret < 0) { 4422 end_write_bio(&epd, ret); 4423 return ret; 4424 } 4425 ret = flush_write_bio(&epd); 4426 return ret; 4427 } 4428 4429 void extent_readahead(struct readahead_control *rac) 4430 { 4431 struct bio *bio = NULL; 4432 unsigned long bio_flags = 0; 4433 struct page *pagepool[16]; 4434 struct extent_map *em_cached = NULL; 4435 u64 prev_em_start = (u64)-1; 4436 int nr; 4437 4438 while ((nr = readahead_page_batch(rac, pagepool))) { 4439 u64 contig_start = page_offset(pagepool[0]); 4440 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4441 4442 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4443 4444 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4445 &em_cached, &bio, &bio_flags, &prev_em_start); 4446 } 4447 4448 if (em_cached) 4449 free_extent_map(em_cached); 4450 4451 if (bio) { 4452 if (submit_one_bio(bio, 0, bio_flags)) 4453 return; 4454 } 4455 } 4456 4457 /* 4458 * basic invalidatepage code, this waits on any locked or writeback 4459 * ranges corresponding to the page, and then deletes any extent state 4460 * records from the tree 4461 */ 4462 int extent_invalidatepage(struct extent_io_tree *tree, 4463 struct page *page, unsigned long offset) 4464 { 4465 struct extent_state *cached_state = NULL; 4466 u64 start = page_offset(page); 4467 u64 end = start + PAGE_SIZE - 1; 4468 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4469 4470 /* This function is only called for the btree inode */ 4471 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 4472 4473 start += ALIGN(offset, blocksize); 4474 if (start > end) 4475 return 0; 4476 4477 lock_extent_bits(tree, start, end, &cached_state); 4478 wait_on_page_writeback(page); 4479 4480 /* 4481 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 4482 * so here we only need to unlock the extent range to free any 4483 * existing extent state. 4484 */ 4485 unlock_extent_cached(tree, start, end, &cached_state); 4486 return 0; 4487 } 4488 4489 /* 4490 * a helper for releasepage, this tests for areas of the page that 4491 * are locked or under IO and drops the related state bits if it is safe 4492 * to drop the page. 4493 */ 4494 static int try_release_extent_state(struct extent_io_tree *tree, 4495 struct page *page, gfp_t mask) 4496 { 4497 u64 start = page_offset(page); 4498 u64 end = start + PAGE_SIZE - 1; 4499 int ret = 1; 4500 4501 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4502 ret = 0; 4503 } else { 4504 /* 4505 * At this point we can safely clear everything except the 4506 * locked bit, the nodatasum bit and the delalloc new bit. 4507 * The delalloc new bit will be cleared by ordered extent 4508 * completion. 4509 */ 4510 ret = __clear_extent_bit(tree, start, end, 4511 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 4512 0, 0, NULL, mask, NULL); 4513 4514 /* if clear_extent_bit failed for enomem reasons, 4515 * we can't allow the release to continue. 4516 */ 4517 if (ret < 0) 4518 ret = 0; 4519 else 4520 ret = 1; 4521 } 4522 return ret; 4523 } 4524 4525 /* 4526 * a helper for releasepage. As long as there are no locked extents 4527 * in the range corresponding to the page, both state records and extent 4528 * map records are removed 4529 */ 4530 int try_release_extent_mapping(struct page *page, gfp_t mask) 4531 { 4532 struct extent_map *em; 4533 u64 start = page_offset(page); 4534 u64 end = start + PAGE_SIZE - 1; 4535 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4536 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4537 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4538 4539 if (gfpflags_allow_blocking(mask) && 4540 page->mapping->host->i_size > SZ_16M) { 4541 u64 len; 4542 while (start <= end) { 4543 struct btrfs_fs_info *fs_info; 4544 u64 cur_gen; 4545 4546 len = end - start + 1; 4547 write_lock(&map->lock); 4548 em = lookup_extent_mapping(map, start, len); 4549 if (!em) { 4550 write_unlock(&map->lock); 4551 break; 4552 } 4553 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4554 em->start != start) { 4555 write_unlock(&map->lock); 4556 free_extent_map(em); 4557 break; 4558 } 4559 if (test_range_bit(tree, em->start, 4560 extent_map_end(em) - 1, 4561 EXTENT_LOCKED, 0, NULL)) 4562 goto next; 4563 /* 4564 * If it's not in the list of modified extents, used 4565 * by a fast fsync, we can remove it. If it's being 4566 * logged we can safely remove it since fsync took an 4567 * extra reference on the em. 4568 */ 4569 if (list_empty(&em->list) || 4570 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 4571 goto remove_em; 4572 /* 4573 * If it's in the list of modified extents, remove it 4574 * only if its generation is older then the current one, 4575 * in which case we don't need it for a fast fsync. 4576 * Otherwise don't remove it, we could be racing with an 4577 * ongoing fast fsync that could miss the new extent. 4578 */ 4579 fs_info = btrfs_inode->root->fs_info; 4580 spin_lock(&fs_info->trans_lock); 4581 cur_gen = fs_info->generation; 4582 spin_unlock(&fs_info->trans_lock); 4583 if (em->generation >= cur_gen) 4584 goto next; 4585 remove_em: 4586 /* 4587 * We only remove extent maps that are not in the list of 4588 * modified extents or that are in the list but with a 4589 * generation lower then the current generation, so there 4590 * is no need to set the full fsync flag on the inode (it 4591 * hurts the fsync performance for workloads with a data 4592 * size that exceeds or is close to the system's memory). 4593 */ 4594 remove_extent_mapping(map, em); 4595 /* once for the rb tree */ 4596 free_extent_map(em); 4597 next: 4598 start = extent_map_end(em); 4599 write_unlock(&map->lock); 4600 4601 /* once for us */ 4602 free_extent_map(em); 4603 4604 cond_resched(); /* Allow large-extent preemption. */ 4605 } 4606 } 4607 return try_release_extent_state(tree, page, mask); 4608 } 4609 4610 /* 4611 * helper function for fiemap, which doesn't want to see any holes. 4612 * This maps until we find something past 'last' 4613 */ 4614 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 4615 u64 offset, u64 last) 4616 { 4617 u64 sectorsize = btrfs_inode_sectorsize(inode); 4618 struct extent_map *em; 4619 u64 len; 4620 4621 if (offset >= last) 4622 return NULL; 4623 4624 while (1) { 4625 len = last - offset; 4626 if (len == 0) 4627 break; 4628 len = ALIGN(len, sectorsize); 4629 em = btrfs_get_extent_fiemap(inode, offset, len); 4630 if (IS_ERR_OR_NULL(em)) 4631 return em; 4632 4633 /* if this isn't a hole return it */ 4634 if (em->block_start != EXTENT_MAP_HOLE) 4635 return em; 4636 4637 /* this is a hole, advance to the next extent */ 4638 offset = extent_map_end(em); 4639 free_extent_map(em); 4640 if (offset >= last) 4641 break; 4642 } 4643 return NULL; 4644 } 4645 4646 /* 4647 * To cache previous fiemap extent 4648 * 4649 * Will be used for merging fiemap extent 4650 */ 4651 struct fiemap_cache { 4652 u64 offset; 4653 u64 phys; 4654 u64 len; 4655 u32 flags; 4656 bool cached; 4657 }; 4658 4659 /* 4660 * Helper to submit fiemap extent. 4661 * 4662 * Will try to merge current fiemap extent specified by @offset, @phys, 4663 * @len and @flags with cached one. 4664 * And only when we fails to merge, cached one will be submitted as 4665 * fiemap extent. 4666 * 4667 * Return value is the same as fiemap_fill_next_extent(). 4668 */ 4669 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4670 struct fiemap_cache *cache, 4671 u64 offset, u64 phys, u64 len, u32 flags) 4672 { 4673 int ret = 0; 4674 4675 if (!cache->cached) 4676 goto assign; 4677 4678 /* 4679 * Sanity check, extent_fiemap() should have ensured that new 4680 * fiemap extent won't overlap with cached one. 4681 * Not recoverable. 4682 * 4683 * NOTE: Physical address can overlap, due to compression 4684 */ 4685 if (cache->offset + cache->len > offset) { 4686 WARN_ON(1); 4687 return -EINVAL; 4688 } 4689 4690 /* 4691 * Only merges fiemap extents if 4692 * 1) Their logical addresses are continuous 4693 * 4694 * 2) Their physical addresses are continuous 4695 * So truly compressed (physical size smaller than logical size) 4696 * extents won't get merged with each other 4697 * 4698 * 3) Share same flags except FIEMAP_EXTENT_LAST 4699 * So regular extent won't get merged with prealloc extent 4700 */ 4701 if (cache->offset + cache->len == offset && 4702 cache->phys + cache->len == phys && 4703 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4704 (flags & ~FIEMAP_EXTENT_LAST)) { 4705 cache->len += len; 4706 cache->flags |= flags; 4707 goto try_submit_last; 4708 } 4709 4710 /* Not mergeable, need to submit cached one */ 4711 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4712 cache->len, cache->flags); 4713 cache->cached = false; 4714 if (ret) 4715 return ret; 4716 assign: 4717 cache->cached = true; 4718 cache->offset = offset; 4719 cache->phys = phys; 4720 cache->len = len; 4721 cache->flags = flags; 4722 try_submit_last: 4723 if (cache->flags & FIEMAP_EXTENT_LAST) { 4724 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4725 cache->phys, cache->len, cache->flags); 4726 cache->cached = false; 4727 } 4728 return ret; 4729 } 4730 4731 /* 4732 * Emit last fiemap cache 4733 * 4734 * The last fiemap cache may still be cached in the following case: 4735 * 0 4k 8k 4736 * |<- Fiemap range ->| 4737 * |<------------ First extent ----------->| 4738 * 4739 * In this case, the first extent range will be cached but not emitted. 4740 * So we must emit it before ending extent_fiemap(). 4741 */ 4742 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4743 struct fiemap_cache *cache) 4744 { 4745 int ret; 4746 4747 if (!cache->cached) 4748 return 0; 4749 4750 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4751 cache->len, cache->flags); 4752 cache->cached = false; 4753 if (ret > 0) 4754 ret = 0; 4755 return ret; 4756 } 4757 4758 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 4759 u64 start, u64 len) 4760 { 4761 int ret = 0; 4762 u64 off = start; 4763 u64 max = start + len; 4764 u32 flags = 0; 4765 u32 found_type; 4766 u64 last; 4767 u64 last_for_get_extent = 0; 4768 u64 disko = 0; 4769 u64 isize = i_size_read(&inode->vfs_inode); 4770 struct btrfs_key found_key; 4771 struct extent_map *em = NULL; 4772 struct extent_state *cached_state = NULL; 4773 struct btrfs_path *path; 4774 struct btrfs_root *root = inode->root; 4775 struct fiemap_cache cache = { 0 }; 4776 struct ulist *roots; 4777 struct ulist *tmp_ulist; 4778 int end = 0; 4779 u64 em_start = 0; 4780 u64 em_len = 0; 4781 u64 em_end = 0; 4782 4783 if (len == 0) 4784 return -EINVAL; 4785 4786 path = btrfs_alloc_path(); 4787 if (!path) 4788 return -ENOMEM; 4789 4790 roots = ulist_alloc(GFP_KERNEL); 4791 tmp_ulist = ulist_alloc(GFP_KERNEL); 4792 if (!roots || !tmp_ulist) { 4793 ret = -ENOMEM; 4794 goto out_free_ulist; 4795 } 4796 4797 start = round_down(start, btrfs_inode_sectorsize(inode)); 4798 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4799 4800 /* 4801 * lookup the last file extent. We're not using i_size here 4802 * because there might be preallocation past i_size 4803 */ 4804 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4805 0); 4806 if (ret < 0) { 4807 goto out_free_ulist; 4808 } else { 4809 WARN_ON(!ret); 4810 if (ret == 1) 4811 ret = 0; 4812 } 4813 4814 path->slots[0]--; 4815 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4816 found_type = found_key.type; 4817 4818 /* No extents, but there might be delalloc bits */ 4819 if (found_key.objectid != btrfs_ino(inode) || 4820 found_type != BTRFS_EXTENT_DATA_KEY) { 4821 /* have to trust i_size as the end */ 4822 last = (u64)-1; 4823 last_for_get_extent = isize; 4824 } else { 4825 /* 4826 * remember the start of the last extent. There are a 4827 * bunch of different factors that go into the length of the 4828 * extent, so its much less complex to remember where it started 4829 */ 4830 last = found_key.offset; 4831 last_for_get_extent = last + 1; 4832 } 4833 btrfs_release_path(path); 4834 4835 /* 4836 * we might have some extents allocated but more delalloc past those 4837 * extents. so, we trust isize unless the start of the last extent is 4838 * beyond isize 4839 */ 4840 if (last < isize) { 4841 last = (u64)-1; 4842 last_for_get_extent = isize; 4843 } 4844 4845 lock_extent_bits(&inode->io_tree, start, start + len - 1, 4846 &cached_state); 4847 4848 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4849 if (!em) 4850 goto out; 4851 if (IS_ERR(em)) { 4852 ret = PTR_ERR(em); 4853 goto out; 4854 } 4855 4856 while (!end) { 4857 u64 offset_in_extent = 0; 4858 4859 /* break if the extent we found is outside the range */ 4860 if (em->start >= max || extent_map_end(em) < off) 4861 break; 4862 4863 /* 4864 * get_extent may return an extent that starts before our 4865 * requested range. We have to make sure the ranges 4866 * we return to fiemap always move forward and don't 4867 * overlap, so adjust the offsets here 4868 */ 4869 em_start = max(em->start, off); 4870 4871 /* 4872 * record the offset from the start of the extent 4873 * for adjusting the disk offset below. Only do this if the 4874 * extent isn't compressed since our in ram offset may be past 4875 * what we have actually allocated on disk. 4876 */ 4877 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4878 offset_in_extent = em_start - em->start; 4879 em_end = extent_map_end(em); 4880 em_len = em_end - em_start; 4881 flags = 0; 4882 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4883 disko = em->block_start + offset_in_extent; 4884 else 4885 disko = 0; 4886 4887 /* 4888 * bump off for our next call to get_extent 4889 */ 4890 off = extent_map_end(em); 4891 if (off >= max) 4892 end = 1; 4893 4894 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4895 end = 1; 4896 flags |= FIEMAP_EXTENT_LAST; 4897 } else if (em->block_start == EXTENT_MAP_INLINE) { 4898 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4899 FIEMAP_EXTENT_NOT_ALIGNED); 4900 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4901 flags |= (FIEMAP_EXTENT_DELALLOC | 4902 FIEMAP_EXTENT_UNKNOWN); 4903 } else if (fieinfo->fi_extents_max) { 4904 u64 bytenr = em->block_start - 4905 (em->start - em->orig_start); 4906 4907 /* 4908 * As btrfs supports shared space, this information 4909 * can be exported to userspace tools via 4910 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4911 * then we're just getting a count and we can skip the 4912 * lookup stuff. 4913 */ 4914 ret = btrfs_check_shared(root, btrfs_ino(inode), 4915 bytenr, roots, tmp_ulist); 4916 if (ret < 0) 4917 goto out_free; 4918 if (ret) 4919 flags |= FIEMAP_EXTENT_SHARED; 4920 ret = 0; 4921 } 4922 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4923 flags |= FIEMAP_EXTENT_ENCODED; 4924 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4925 flags |= FIEMAP_EXTENT_UNWRITTEN; 4926 4927 free_extent_map(em); 4928 em = NULL; 4929 if ((em_start >= last) || em_len == (u64)-1 || 4930 (last == (u64)-1 && isize <= em_end)) { 4931 flags |= FIEMAP_EXTENT_LAST; 4932 end = 1; 4933 } 4934 4935 /* now scan forward to see if this is really the last extent. */ 4936 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4937 if (IS_ERR(em)) { 4938 ret = PTR_ERR(em); 4939 goto out; 4940 } 4941 if (!em) { 4942 flags |= FIEMAP_EXTENT_LAST; 4943 end = 1; 4944 } 4945 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4946 em_len, flags); 4947 if (ret) { 4948 if (ret == 1) 4949 ret = 0; 4950 goto out_free; 4951 } 4952 } 4953 out_free: 4954 if (!ret) 4955 ret = emit_last_fiemap_cache(fieinfo, &cache); 4956 free_extent_map(em); 4957 out: 4958 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 4959 &cached_state); 4960 4961 out_free_ulist: 4962 btrfs_free_path(path); 4963 ulist_free(roots); 4964 ulist_free(tmp_ulist); 4965 return ret; 4966 } 4967 4968 static void __free_extent_buffer(struct extent_buffer *eb) 4969 { 4970 kmem_cache_free(extent_buffer_cache, eb); 4971 } 4972 4973 int extent_buffer_under_io(const struct extent_buffer *eb) 4974 { 4975 return (atomic_read(&eb->io_pages) || 4976 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4977 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4978 } 4979 4980 /* 4981 * Release all pages attached to the extent buffer. 4982 */ 4983 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4984 { 4985 int i; 4986 int num_pages; 4987 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4988 4989 BUG_ON(extent_buffer_under_io(eb)); 4990 4991 num_pages = num_extent_pages(eb); 4992 for (i = 0; i < num_pages; i++) { 4993 struct page *page = eb->pages[i]; 4994 4995 if (!page) 4996 continue; 4997 if (mapped) 4998 spin_lock(&page->mapping->private_lock); 4999 /* 5000 * We do this since we'll remove the pages after we've 5001 * removed the eb from the radix tree, so we could race 5002 * and have this page now attached to the new eb. So 5003 * only clear page_private if it's still connected to 5004 * this eb. 5005 */ 5006 if (PagePrivate(page) && 5007 page->private == (unsigned long)eb) { 5008 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5009 BUG_ON(PageDirty(page)); 5010 BUG_ON(PageWriteback(page)); 5011 /* 5012 * We need to make sure we haven't be attached 5013 * to a new eb. 5014 */ 5015 detach_page_private(page); 5016 } 5017 5018 if (mapped) 5019 spin_unlock(&page->mapping->private_lock); 5020 5021 /* One for when we allocated the page */ 5022 put_page(page); 5023 } 5024 } 5025 5026 /* 5027 * Helper for releasing the extent buffer. 5028 */ 5029 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5030 { 5031 btrfs_release_extent_buffer_pages(eb); 5032 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5033 __free_extent_buffer(eb); 5034 } 5035 5036 static struct extent_buffer * 5037 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5038 unsigned long len) 5039 { 5040 struct extent_buffer *eb = NULL; 5041 5042 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5043 eb->start = start; 5044 eb->len = len; 5045 eb->fs_info = fs_info; 5046 eb->bflags = 0; 5047 init_rwsem(&eb->lock); 5048 5049 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5050 &fs_info->allocated_ebs); 5051 5052 spin_lock_init(&eb->refs_lock); 5053 atomic_set(&eb->refs, 1); 5054 atomic_set(&eb->io_pages, 0); 5055 5056 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5057 5058 return eb; 5059 } 5060 5061 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5062 { 5063 int i; 5064 struct page *p; 5065 struct extent_buffer *new; 5066 int num_pages = num_extent_pages(src); 5067 5068 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5069 if (new == NULL) 5070 return NULL; 5071 5072 for (i = 0; i < num_pages; i++) { 5073 p = alloc_page(GFP_NOFS); 5074 if (!p) { 5075 btrfs_release_extent_buffer(new); 5076 return NULL; 5077 } 5078 attach_extent_buffer_page(new, p); 5079 WARN_ON(PageDirty(p)); 5080 SetPageUptodate(p); 5081 new->pages[i] = p; 5082 copy_page(page_address(p), page_address(src->pages[i])); 5083 } 5084 5085 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 5086 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5087 5088 return new; 5089 } 5090 5091 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5092 u64 start, unsigned long len) 5093 { 5094 struct extent_buffer *eb; 5095 int num_pages; 5096 int i; 5097 5098 eb = __alloc_extent_buffer(fs_info, start, len); 5099 if (!eb) 5100 return NULL; 5101 5102 num_pages = num_extent_pages(eb); 5103 for (i = 0; i < num_pages; i++) { 5104 eb->pages[i] = alloc_page(GFP_NOFS); 5105 if (!eb->pages[i]) 5106 goto err; 5107 } 5108 set_extent_buffer_uptodate(eb); 5109 btrfs_set_header_nritems(eb, 0); 5110 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5111 5112 return eb; 5113 err: 5114 for (; i > 0; i--) 5115 __free_page(eb->pages[i - 1]); 5116 __free_extent_buffer(eb); 5117 return NULL; 5118 } 5119 5120 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5121 u64 start) 5122 { 5123 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5124 } 5125 5126 static void check_buffer_tree_ref(struct extent_buffer *eb) 5127 { 5128 int refs; 5129 /* 5130 * The TREE_REF bit is first set when the extent_buffer is added 5131 * to the radix tree. It is also reset, if unset, when a new reference 5132 * is created by find_extent_buffer. 5133 * 5134 * It is only cleared in two cases: freeing the last non-tree 5135 * reference to the extent_buffer when its STALE bit is set or 5136 * calling releasepage when the tree reference is the only reference. 5137 * 5138 * In both cases, care is taken to ensure that the extent_buffer's 5139 * pages are not under io. However, releasepage can be concurrently 5140 * called with creating new references, which is prone to race 5141 * conditions between the calls to check_buffer_tree_ref in those 5142 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5143 * 5144 * The actual lifetime of the extent_buffer in the radix tree is 5145 * adequately protected by the refcount, but the TREE_REF bit and 5146 * its corresponding reference are not. To protect against this 5147 * class of races, we call check_buffer_tree_ref from the codepaths 5148 * which trigger io after they set eb->io_pages. Note that once io is 5149 * initiated, TREE_REF can no longer be cleared, so that is the 5150 * moment at which any such race is best fixed. 5151 */ 5152 refs = atomic_read(&eb->refs); 5153 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5154 return; 5155 5156 spin_lock(&eb->refs_lock); 5157 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5158 atomic_inc(&eb->refs); 5159 spin_unlock(&eb->refs_lock); 5160 } 5161 5162 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5163 struct page *accessed) 5164 { 5165 int num_pages, i; 5166 5167 check_buffer_tree_ref(eb); 5168 5169 num_pages = num_extent_pages(eb); 5170 for (i = 0; i < num_pages; i++) { 5171 struct page *p = eb->pages[i]; 5172 5173 if (p != accessed) 5174 mark_page_accessed(p); 5175 } 5176 } 5177 5178 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5179 u64 start) 5180 { 5181 struct extent_buffer *eb; 5182 5183 rcu_read_lock(); 5184 eb = radix_tree_lookup(&fs_info->buffer_radix, 5185 start >> fs_info->sectorsize_bits); 5186 if (eb && atomic_inc_not_zero(&eb->refs)) { 5187 rcu_read_unlock(); 5188 /* 5189 * Lock our eb's refs_lock to avoid races with 5190 * free_extent_buffer. When we get our eb it might be flagged 5191 * with EXTENT_BUFFER_STALE and another task running 5192 * free_extent_buffer might have seen that flag set, 5193 * eb->refs == 2, that the buffer isn't under IO (dirty and 5194 * writeback flags not set) and it's still in the tree (flag 5195 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5196 * of decrementing the extent buffer's reference count twice. 5197 * So here we could race and increment the eb's reference count, 5198 * clear its stale flag, mark it as dirty and drop our reference 5199 * before the other task finishes executing free_extent_buffer, 5200 * which would later result in an attempt to free an extent 5201 * buffer that is dirty. 5202 */ 5203 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5204 spin_lock(&eb->refs_lock); 5205 spin_unlock(&eb->refs_lock); 5206 } 5207 mark_extent_buffer_accessed(eb, NULL); 5208 return eb; 5209 } 5210 rcu_read_unlock(); 5211 5212 return NULL; 5213 } 5214 5215 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5216 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5217 u64 start) 5218 { 5219 struct extent_buffer *eb, *exists = NULL; 5220 int ret; 5221 5222 eb = find_extent_buffer(fs_info, start); 5223 if (eb) 5224 return eb; 5225 eb = alloc_dummy_extent_buffer(fs_info, start); 5226 if (!eb) 5227 return ERR_PTR(-ENOMEM); 5228 eb->fs_info = fs_info; 5229 again: 5230 ret = radix_tree_preload(GFP_NOFS); 5231 if (ret) { 5232 exists = ERR_PTR(ret); 5233 goto free_eb; 5234 } 5235 spin_lock(&fs_info->buffer_lock); 5236 ret = radix_tree_insert(&fs_info->buffer_radix, 5237 start >> fs_info->sectorsize_bits, eb); 5238 spin_unlock(&fs_info->buffer_lock); 5239 radix_tree_preload_end(); 5240 if (ret == -EEXIST) { 5241 exists = find_extent_buffer(fs_info, start); 5242 if (exists) 5243 goto free_eb; 5244 else 5245 goto again; 5246 } 5247 check_buffer_tree_ref(eb); 5248 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5249 5250 return eb; 5251 free_eb: 5252 btrfs_release_extent_buffer(eb); 5253 return exists; 5254 } 5255 #endif 5256 5257 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5258 u64 start, u64 owner_root, int level) 5259 { 5260 unsigned long len = fs_info->nodesize; 5261 int num_pages; 5262 int i; 5263 unsigned long index = start >> PAGE_SHIFT; 5264 struct extent_buffer *eb; 5265 struct extent_buffer *exists = NULL; 5266 struct page *p; 5267 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5268 int uptodate = 1; 5269 int ret; 5270 5271 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5272 btrfs_err(fs_info, "bad tree block start %llu", start); 5273 return ERR_PTR(-EINVAL); 5274 } 5275 5276 if (fs_info->sectorsize < PAGE_SIZE && 5277 offset_in_page(start) + len > PAGE_SIZE) { 5278 btrfs_err(fs_info, 5279 "tree block crosses page boundary, start %llu nodesize %lu", 5280 start, len); 5281 return ERR_PTR(-EINVAL); 5282 } 5283 5284 eb = find_extent_buffer(fs_info, start); 5285 if (eb) 5286 return eb; 5287 5288 eb = __alloc_extent_buffer(fs_info, start, len); 5289 if (!eb) 5290 return ERR_PTR(-ENOMEM); 5291 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 5292 5293 num_pages = num_extent_pages(eb); 5294 for (i = 0; i < num_pages; i++, index++) { 5295 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5296 if (!p) { 5297 exists = ERR_PTR(-ENOMEM); 5298 goto free_eb; 5299 } 5300 5301 spin_lock(&mapping->private_lock); 5302 if (PagePrivate(p)) { 5303 /* 5304 * We could have already allocated an eb for this page 5305 * and attached one so lets see if we can get a ref on 5306 * the existing eb, and if we can we know it's good and 5307 * we can just return that one, else we know we can just 5308 * overwrite page->private. 5309 */ 5310 exists = (struct extent_buffer *)p->private; 5311 if (atomic_inc_not_zero(&exists->refs)) { 5312 spin_unlock(&mapping->private_lock); 5313 unlock_page(p); 5314 put_page(p); 5315 mark_extent_buffer_accessed(exists, p); 5316 goto free_eb; 5317 } 5318 exists = NULL; 5319 5320 WARN_ON(PageDirty(p)); 5321 detach_page_private(p); 5322 } 5323 attach_extent_buffer_page(eb, p); 5324 spin_unlock(&mapping->private_lock); 5325 WARN_ON(PageDirty(p)); 5326 eb->pages[i] = p; 5327 if (!PageUptodate(p)) 5328 uptodate = 0; 5329 5330 /* 5331 * We can't unlock the pages just yet since the extent buffer 5332 * hasn't been properly inserted in the radix tree, this 5333 * opens a race with btree_releasepage which can free a page 5334 * while we are still filling in all pages for the buffer and 5335 * we could crash. 5336 */ 5337 } 5338 if (uptodate) 5339 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5340 again: 5341 ret = radix_tree_preload(GFP_NOFS); 5342 if (ret) { 5343 exists = ERR_PTR(ret); 5344 goto free_eb; 5345 } 5346 5347 spin_lock(&fs_info->buffer_lock); 5348 ret = radix_tree_insert(&fs_info->buffer_radix, 5349 start >> fs_info->sectorsize_bits, eb); 5350 spin_unlock(&fs_info->buffer_lock); 5351 radix_tree_preload_end(); 5352 if (ret == -EEXIST) { 5353 exists = find_extent_buffer(fs_info, start); 5354 if (exists) 5355 goto free_eb; 5356 else 5357 goto again; 5358 } 5359 /* add one reference for the tree */ 5360 check_buffer_tree_ref(eb); 5361 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5362 5363 /* 5364 * Now it's safe to unlock the pages because any calls to 5365 * btree_releasepage will correctly detect that a page belongs to a 5366 * live buffer and won't free them prematurely. 5367 */ 5368 for (i = 0; i < num_pages; i++) 5369 unlock_page(eb->pages[i]); 5370 return eb; 5371 5372 free_eb: 5373 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5374 for (i = 0; i < num_pages; i++) { 5375 if (eb->pages[i]) 5376 unlock_page(eb->pages[i]); 5377 } 5378 5379 btrfs_release_extent_buffer(eb); 5380 return exists; 5381 } 5382 5383 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5384 { 5385 struct extent_buffer *eb = 5386 container_of(head, struct extent_buffer, rcu_head); 5387 5388 __free_extent_buffer(eb); 5389 } 5390 5391 static int release_extent_buffer(struct extent_buffer *eb) 5392 __releases(&eb->refs_lock) 5393 { 5394 lockdep_assert_held(&eb->refs_lock); 5395 5396 WARN_ON(atomic_read(&eb->refs) == 0); 5397 if (atomic_dec_and_test(&eb->refs)) { 5398 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5399 struct btrfs_fs_info *fs_info = eb->fs_info; 5400 5401 spin_unlock(&eb->refs_lock); 5402 5403 spin_lock(&fs_info->buffer_lock); 5404 radix_tree_delete(&fs_info->buffer_radix, 5405 eb->start >> fs_info->sectorsize_bits); 5406 spin_unlock(&fs_info->buffer_lock); 5407 } else { 5408 spin_unlock(&eb->refs_lock); 5409 } 5410 5411 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5412 /* Should be safe to release our pages at this point */ 5413 btrfs_release_extent_buffer_pages(eb); 5414 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5415 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5416 __free_extent_buffer(eb); 5417 return 1; 5418 } 5419 #endif 5420 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5421 return 1; 5422 } 5423 spin_unlock(&eb->refs_lock); 5424 5425 return 0; 5426 } 5427 5428 void free_extent_buffer(struct extent_buffer *eb) 5429 { 5430 int refs; 5431 int old; 5432 if (!eb) 5433 return; 5434 5435 while (1) { 5436 refs = atomic_read(&eb->refs); 5437 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5438 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5439 refs == 1)) 5440 break; 5441 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5442 if (old == refs) 5443 return; 5444 } 5445 5446 spin_lock(&eb->refs_lock); 5447 if (atomic_read(&eb->refs) == 2 && 5448 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5449 !extent_buffer_under_io(eb) && 5450 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5451 atomic_dec(&eb->refs); 5452 5453 /* 5454 * I know this is terrible, but it's temporary until we stop tracking 5455 * the uptodate bits and such for the extent buffers. 5456 */ 5457 release_extent_buffer(eb); 5458 } 5459 5460 void free_extent_buffer_stale(struct extent_buffer *eb) 5461 { 5462 if (!eb) 5463 return; 5464 5465 spin_lock(&eb->refs_lock); 5466 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5467 5468 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5469 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5470 atomic_dec(&eb->refs); 5471 release_extent_buffer(eb); 5472 } 5473 5474 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5475 { 5476 int i; 5477 int num_pages; 5478 struct page *page; 5479 5480 num_pages = num_extent_pages(eb); 5481 5482 for (i = 0; i < num_pages; i++) { 5483 page = eb->pages[i]; 5484 if (!PageDirty(page)) 5485 continue; 5486 5487 lock_page(page); 5488 WARN_ON(!PagePrivate(page)); 5489 5490 clear_page_dirty_for_io(page); 5491 xa_lock_irq(&page->mapping->i_pages); 5492 if (!PageDirty(page)) 5493 __xa_clear_mark(&page->mapping->i_pages, 5494 page_index(page), PAGECACHE_TAG_DIRTY); 5495 xa_unlock_irq(&page->mapping->i_pages); 5496 ClearPageError(page); 5497 unlock_page(page); 5498 } 5499 WARN_ON(atomic_read(&eb->refs) == 0); 5500 } 5501 5502 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5503 { 5504 int i; 5505 int num_pages; 5506 bool was_dirty; 5507 5508 check_buffer_tree_ref(eb); 5509 5510 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5511 5512 num_pages = num_extent_pages(eb); 5513 WARN_ON(atomic_read(&eb->refs) == 0); 5514 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5515 5516 if (!was_dirty) 5517 for (i = 0; i < num_pages; i++) 5518 set_page_dirty(eb->pages[i]); 5519 5520 #ifdef CONFIG_BTRFS_DEBUG 5521 for (i = 0; i < num_pages; i++) 5522 ASSERT(PageDirty(eb->pages[i])); 5523 #endif 5524 5525 return was_dirty; 5526 } 5527 5528 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5529 { 5530 int i; 5531 struct page *page; 5532 int num_pages; 5533 5534 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5535 num_pages = num_extent_pages(eb); 5536 for (i = 0; i < num_pages; i++) { 5537 page = eb->pages[i]; 5538 if (page) 5539 ClearPageUptodate(page); 5540 } 5541 } 5542 5543 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5544 { 5545 int i; 5546 struct page *page; 5547 int num_pages; 5548 5549 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5550 num_pages = num_extent_pages(eb); 5551 for (i = 0; i < num_pages; i++) { 5552 page = eb->pages[i]; 5553 SetPageUptodate(page); 5554 } 5555 } 5556 5557 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5558 { 5559 int i; 5560 struct page *page; 5561 int err; 5562 int ret = 0; 5563 int locked_pages = 0; 5564 int all_uptodate = 1; 5565 int num_pages; 5566 unsigned long num_reads = 0; 5567 struct bio *bio = NULL; 5568 unsigned long bio_flags = 0; 5569 5570 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5571 return 0; 5572 5573 num_pages = num_extent_pages(eb); 5574 for (i = 0; i < num_pages; i++) { 5575 page = eb->pages[i]; 5576 if (wait == WAIT_NONE) { 5577 if (!trylock_page(page)) 5578 goto unlock_exit; 5579 } else { 5580 lock_page(page); 5581 } 5582 locked_pages++; 5583 } 5584 /* 5585 * We need to firstly lock all pages to make sure that 5586 * the uptodate bit of our pages won't be affected by 5587 * clear_extent_buffer_uptodate(). 5588 */ 5589 for (i = 0; i < num_pages; i++) { 5590 page = eb->pages[i]; 5591 if (!PageUptodate(page)) { 5592 num_reads++; 5593 all_uptodate = 0; 5594 } 5595 } 5596 5597 if (all_uptodate) { 5598 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5599 goto unlock_exit; 5600 } 5601 5602 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5603 eb->read_mirror = 0; 5604 atomic_set(&eb->io_pages, num_reads); 5605 /* 5606 * It is possible for releasepage to clear the TREE_REF bit before we 5607 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 5608 */ 5609 check_buffer_tree_ref(eb); 5610 for (i = 0; i < num_pages; i++) { 5611 page = eb->pages[i]; 5612 5613 if (!PageUptodate(page)) { 5614 if (ret) { 5615 atomic_dec(&eb->io_pages); 5616 unlock_page(page); 5617 continue; 5618 } 5619 5620 ClearPageError(page); 5621 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 5622 page, page_offset(page), PAGE_SIZE, 0, 5623 &bio, end_bio_extent_readpage, 5624 mirror_num, 0, 0, false); 5625 if (err) { 5626 /* 5627 * We failed to submit the bio so it's the 5628 * caller's responsibility to perform cleanup 5629 * i.e unlock page/set error bit. 5630 */ 5631 ret = err; 5632 SetPageError(page); 5633 unlock_page(page); 5634 atomic_dec(&eb->io_pages); 5635 } 5636 } else { 5637 unlock_page(page); 5638 } 5639 } 5640 5641 if (bio) { 5642 err = submit_one_bio(bio, mirror_num, bio_flags); 5643 if (err) 5644 return err; 5645 } 5646 5647 if (ret || wait != WAIT_COMPLETE) 5648 return ret; 5649 5650 for (i = 0; i < num_pages; i++) { 5651 page = eb->pages[i]; 5652 wait_on_page_locked(page); 5653 if (!PageUptodate(page)) 5654 ret = -EIO; 5655 } 5656 5657 return ret; 5658 5659 unlock_exit: 5660 while (locked_pages > 0) { 5661 locked_pages--; 5662 page = eb->pages[locked_pages]; 5663 unlock_page(page); 5664 } 5665 return ret; 5666 } 5667 5668 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5669 unsigned long len) 5670 { 5671 btrfs_warn(eb->fs_info, 5672 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5673 eb->start, eb->len, start, len); 5674 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5675 5676 return true; 5677 } 5678 5679 /* 5680 * Check if the [start, start + len) range is valid before reading/writing 5681 * the eb. 5682 * NOTE: @start and @len are offset inside the eb, not logical address. 5683 * 5684 * Caller should not touch the dst/src memory if this function returns error. 5685 */ 5686 static inline int check_eb_range(const struct extent_buffer *eb, 5687 unsigned long start, unsigned long len) 5688 { 5689 unsigned long offset; 5690 5691 /* start, start + len should not go beyond eb->len nor overflow */ 5692 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5693 return report_eb_range(eb, start, len); 5694 5695 return false; 5696 } 5697 5698 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5699 unsigned long start, unsigned long len) 5700 { 5701 size_t cur; 5702 size_t offset; 5703 struct page *page; 5704 char *kaddr; 5705 char *dst = (char *)dstv; 5706 unsigned long i = get_eb_page_index(start); 5707 5708 if (check_eb_range(eb, start, len)) 5709 return; 5710 5711 offset = get_eb_offset_in_page(eb, start); 5712 5713 while (len > 0) { 5714 page = eb->pages[i]; 5715 5716 cur = min(len, (PAGE_SIZE - offset)); 5717 kaddr = page_address(page); 5718 memcpy(dst, kaddr + offset, cur); 5719 5720 dst += cur; 5721 len -= cur; 5722 offset = 0; 5723 i++; 5724 } 5725 } 5726 5727 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5728 void __user *dstv, 5729 unsigned long start, unsigned long len) 5730 { 5731 size_t cur; 5732 size_t offset; 5733 struct page *page; 5734 char *kaddr; 5735 char __user *dst = (char __user *)dstv; 5736 unsigned long i = get_eb_page_index(start); 5737 int ret = 0; 5738 5739 WARN_ON(start > eb->len); 5740 WARN_ON(start + len > eb->start + eb->len); 5741 5742 offset = get_eb_offset_in_page(eb, start); 5743 5744 while (len > 0) { 5745 page = eb->pages[i]; 5746 5747 cur = min(len, (PAGE_SIZE - offset)); 5748 kaddr = page_address(page); 5749 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5750 ret = -EFAULT; 5751 break; 5752 } 5753 5754 dst += cur; 5755 len -= cur; 5756 offset = 0; 5757 i++; 5758 } 5759 5760 return ret; 5761 } 5762 5763 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5764 unsigned long start, unsigned long len) 5765 { 5766 size_t cur; 5767 size_t offset; 5768 struct page *page; 5769 char *kaddr; 5770 char *ptr = (char *)ptrv; 5771 unsigned long i = get_eb_page_index(start); 5772 int ret = 0; 5773 5774 if (check_eb_range(eb, start, len)) 5775 return -EINVAL; 5776 5777 offset = get_eb_offset_in_page(eb, start); 5778 5779 while (len > 0) { 5780 page = eb->pages[i]; 5781 5782 cur = min(len, (PAGE_SIZE - offset)); 5783 5784 kaddr = page_address(page); 5785 ret = memcmp(ptr, kaddr + offset, cur); 5786 if (ret) 5787 break; 5788 5789 ptr += cur; 5790 len -= cur; 5791 offset = 0; 5792 i++; 5793 } 5794 return ret; 5795 } 5796 5797 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5798 const void *srcv) 5799 { 5800 char *kaddr; 5801 5802 WARN_ON(!PageUptodate(eb->pages[0])); 5803 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 5804 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5805 BTRFS_FSID_SIZE); 5806 } 5807 5808 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5809 { 5810 char *kaddr; 5811 5812 WARN_ON(!PageUptodate(eb->pages[0])); 5813 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 5814 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5815 BTRFS_FSID_SIZE); 5816 } 5817 5818 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5819 unsigned long start, unsigned long len) 5820 { 5821 size_t cur; 5822 size_t offset; 5823 struct page *page; 5824 char *kaddr; 5825 char *src = (char *)srcv; 5826 unsigned long i = get_eb_page_index(start); 5827 5828 if (check_eb_range(eb, start, len)) 5829 return; 5830 5831 offset = get_eb_offset_in_page(eb, start); 5832 5833 while (len > 0) { 5834 page = eb->pages[i]; 5835 WARN_ON(!PageUptodate(page)); 5836 5837 cur = min(len, PAGE_SIZE - offset); 5838 kaddr = page_address(page); 5839 memcpy(kaddr + offset, src, cur); 5840 5841 src += cur; 5842 len -= cur; 5843 offset = 0; 5844 i++; 5845 } 5846 } 5847 5848 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5849 unsigned long len) 5850 { 5851 size_t cur; 5852 size_t offset; 5853 struct page *page; 5854 char *kaddr; 5855 unsigned long i = get_eb_page_index(start); 5856 5857 if (check_eb_range(eb, start, len)) 5858 return; 5859 5860 offset = get_eb_offset_in_page(eb, start); 5861 5862 while (len > 0) { 5863 page = eb->pages[i]; 5864 WARN_ON(!PageUptodate(page)); 5865 5866 cur = min(len, PAGE_SIZE - offset); 5867 kaddr = page_address(page); 5868 memset(kaddr + offset, 0, cur); 5869 5870 len -= cur; 5871 offset = 0; 5872 i++; 5873 } 5874 } 5875 5876 void copy_extent_buffer_full(const struct extent_buffer *dst, 5877 const struct extent_buffer *src) 5878 { 5879 int i; 5880 int num_pages; 5881 5882 ASSERT(dst->len == src->len); 5883 5884 if (dst->fs_info->sectorsize == PAGE_SIZE) { 5885 num_pages = num_extent_pages(dst); 5886 for (i = 0; i < num_pages; i++) 5887 copy_page(page_address(dst->pages[i]), 5888 page_address(src->pages[i])); 5889 } else { 5890 size_t src_offset = get_eb_offset_in_page(src, 0); 5891 size_t dst_offset = get_eb_offset_in_page(dst, 0); 5892 5893 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 5894 memcpy(page_address(dst->pages[0]) + dst_offset, 5895 page_address(src->pages[0]) + src_offset, 5896 src->len); 5897 } 5898 } 5899 5900 void copy_extent_buffer(const struct extent_buffer *dst, 5901 const struct extent_buffer *src, 5902 unsigned long dst_offset, unsigned long src_offset, 5903 unsigned long len) 5904 { 5905 u64 dst_len = dst->len; 5906 size_t cur; 5907 size_t offset; 5908 struct page *page; 5909 char *kaddr; 5910 unsigned long i = get_eb_page_index(dst_offset); 5911 5912 if (check_eb_range(dst, dst_offset, len) || 5913 check_eb_range(src, src_offset, len)) 5914 return; 5915 5916 WARN_ON(src->len != dst_len); 5917 5918 offset = get_eb_offset_in_page(dst, dst_offset); 5919 5920 while (len > 0) { 5921 page = dst->pages[i]; 5922 WARN_ON(!PageUptodate(page)); 5923 5924 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5925 5926 kaddr = page_address(page); 5927 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5928 5929 src_offset += cur; 5930 len -= cur; 5931 offset = 0; 5932 i++; 5933 } 5934 } 5935 5936 /* 5937 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5938 * given bit number 5939 * @eb: the extent buffer 5940 * @start: offset of the bitmap item in the extent buffer 5941 * @nr: bit number 5942 * @page_index: return index of the page in the extent buffer that contains the 5943 * given bit number 5944 * @page_offset: return offset into the page given by page_index 5945 * 5946 * This helper hides the ugliness of finding the byte in an extent buffer which 5947 * contains a given bit. 5948 */ 5949 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5950 unsigned long start, unsigned long nr, 5951 unsigned long *page_index, 5952 size_t *page_offset) 5953 { 5954 size_t byte_offset = BIT_BYTE(nr); 5955 size_t offset; 5956 5957 /* 5958 * The byte we want is the offset of the extent buffer + the offset of 5959 * the bitmap item in the extent buffer + the offset of the byte in the 5960 * bitmap item. 5961 */ 5962 offset = start + offset_in_page(eb->start) + byte_offset; 5963 5964 *page_index = offset >> PAGE_SHIFT; 5965 *page_offset = offset_in_page(offset); 5966 } 5967 5968 /** 5969 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5970 * @eb: the extent buffer 5971 * @start: offset of the bitmap item in the extent buffer 5972 * @nr: bit number to test 5973 */ 5974 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5975 unsigned long nr) 5976 { 5977 u8 *kaddr; 5978 struct page *page; 5979 unsigned long i; 5980 size_t offset; 5981 5982 eb_bitmap_offset(eb, start, nr, &i, &offset); 5983 page = eb->pages[i]; 5984 WARN_ON(!PageUptodate(page)); 5985 kaddr = page_address(page); 5986 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5987 } 5988 5989 /** 5990 * extent_buffer_bitmap_set - set an area of a bitmap 5991 * @eb: the extent buffer 5992 * @start: offset of the bitmap item in the extent buffer 5993 * @pos: bit number of the first bit 5994 * @len: number of bits to set 5995 */ 5996 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5997 unsigned long pos, unsigned long len) 5998 { 5999 u8 *kaddr; 6000 struct page *page; 6001 unsigned long i; 6002 size_t offset; 6003 const unsigned int size = pos + len; 6004 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6005 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 6006 6007 eb_bitmap_offset(eb, start, pos, &i, &offset); 6008 page = eb->pages[i]; 6009 WARN_ON(!PageUptodate(page)); 6010 kaddr = page_address(page); 6011 6012 while (len >= bits_to_set) { 6013 kaddr[offset] |= mask_to_set; 6014 len -= bits_to_set; 6015 bits_to_set = BITS_PER_BYTE; 6016 mask_to_set = ~0; 6017 if (++offset >= PAGE_SIZE && len > 0) { 6018 offset = 0; 6019 page = eb->pages[++i]; 6020 WARN_ON(!PageUptodate(page)); 6021 kaddr = page_address(page); 6022 } 6023 } 6024 if (len) { 6025 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 6026 kaddr[offset] |= mask_to_set; 6027 } 6028 } 6029 6030 6031 /** 6032 * extent_buffer_bitmap_clear - clear an area of a bitmap 6033 * @eb: the extent buffer 6034 * @start: offset of the bitmap item in the extent buffer 6035 * @pos: bit number of the first bit 6036 * @len: number of bits to clear 6037 */ 6038 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 6039 unsigned long start, unsigned long pos, 6040 unsigned long len) 6041 { 6042 u8 *kaddr; 6043 struct page *page; 6044 unsigned long i; 6045 size_t offset; 6046 const unsigned int size = pos + len; 6047 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6048 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 6049 6050 eb_bitmap_offset(eb, start, pos, &i, &offset); 6051 page = eb->pages[i]; 6052 WARN_ON(!PageUptodate(page)); 6053 kaddr = page_address(page); 6054 6055 while (len >= bits_to_clear) { 6056 kaddr[offset] &= ~mask_to_clear; 6057 len -= bits_to_clear; 6058 bits_to_clear = BITS_PER_BYTE; 6059 mask_to_clear = ~0; 6060 if (++offset >= PAGE_SIZE && len > 0) { 6061 offset = 0; 6062 page = eb->pages[++i]; 6063 WARN_ON(!PageUptodate(page)); 6064 kaddr = page_address(page); 6065 } 6066 } 6067 if (len) { 6068 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 6069 kaddr[offset] &= ~mask_to_clear; 6070 } 6071 } 6072 6073 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 6074 { 6075 unsigned long distance = (src > dst) ? src - dst : dst - src; 6076 return distance < len; 6077 } 6078 6079 static void copy_pages(struct page *dst_page, struct page *src_page, 6080 unsigned long dst_off, unsigned long src_off, 6081 unsigned long len) 6082 { 6083 char *dst_kaddr = page_address(dst_page); 6084 char *src_kaddr; 6085 int must_memmove = 0; 6086 6087 if (dst_page != src_page) { 6088 src_kaddr = page_address(src_page); 6089 } else { 6090 src_kaddr = dst_kaddr; 6091 if (areas_overlap(src_off, dst_off, len)) 6092 must_memmove = 1; 6093 } 6094 6095 if (must_memmove) 6096 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6097 else 6098 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6099 } 6100 6101 void memcpy_extent_buffer(const struct extent_buffer *dst, 6102 unsigned long dst_offset, unsigned long src_offset, 6103 unsigned long len) 6104 { 6105 size_t cur; 6106 size_t dst_off_in_page; 6107 size_t src_off_in_page; 6108 unsigned long dst_i; 6109 unsigned long src_i; 6110 6111 if (check_eb_range(dst, dst_offset, len) || 6112 check_eb_range(dst, src_offset, len)) 6113 return; 6114 6115 while (len > 0) { 6116 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 6117 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 6118 6119 dst_i = get_eb_page_index(dst_offset); 6120 src_i = get_eb_page_index(src_offset); 6121 6122 cur = min(len, (unsigned long)(PAGE_SIZE - 6123 src_off_in_page)); 6124 cur = min_t(unsigned long, cur, 6125 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6126 6127 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6128 dst_off_in_page, src_off_in_page, cur); 6129 6130 src_offset += cur; 6131 dst_offset += cur; 6132 len -= cur; 6133 } 6134 } 6135 6136 void memmove_extent_buffer(const struct extent_buffer *dst, 6137 unsigned long dst_offset, unsigned long src_offset, 6138 unsigned long len) 6139 { 6140 size_t cur; 6141 size_t dst_off_in_page; 6142 size_t src_off_in_page; 6143 unsigned long dst_end = dst_offset + len - 1; 6144 unsigned long src_end = src_offset + len - 1; 6145 unsigned long dst_i; 6146 unsigned long src_i; 6147 6148 if (check_eb_range(dst, dst_offset, len) || 6149 check_eb_range(dst, src_offset, len)) 6150 return; 6151 if (dst_offset < src_offset) { 6152 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6153 return; 6154 } 6155 while (len > 0) { 6156 dst_i = get_eb_page_index(dst_end); 6157 src_i = get_eb_page_index(src_end); 6158 6159 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 6160 src_off_in_page = get_eb_offset_in_page(dst, src_end); 6161 6162 cur = min_t(unsigned long, len, src_off_in_page + 1); 6163 cur = min(cur, dst_off_in_page + 1); 6164 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6165 dst_off_in_page - cur + 1, 6166 src_off_in_page - cur + 1, cur); 6167 6168 dst_end -= cur; 6169 src_end -= cur; 6170 len -= cur; 6171 } 6172 } 6173 6174 int try_release_extent_buffer(struct page *page) 6175 { 6176 struct extent_buffer *eb; 6177 6178 /* 6179 * We need to make sure nobody is attaching this page to an eb right 6180 * now. 6181 */ 6182 spin_lock(&page->mapping->private_lock); 6183 if (!PagePrivate(page)) { 6184 spin_unlock(&page->mapping->private_lock); 6185 return 1; 6186 } 6187 6188 eb = (struct extent_buffer *)page->private; 6189 BUG_ON(!eb); 6190 6191 /* 6192 * This is a little awful but should be ok, we need to make sure that 6193 * the eb doesn't disappear out from under us while we're looking at 6194 * this page. 6195 */ 6196 spin_lock(&eb->refs_lock); 6197 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6198 spin_unlock(&eb->refs_lock); 6199 spin_unlock(&page->mapping->private_lock); 6200 return 0; 6201 } 6202 spin_unlock(&page->mapping->private_lock); 6203 6204 /* 6205 * If tree ref isn't set then we know the ref on this eb is a real ref, 6206 * so just return, this page will likely be freed soon anyway. 6207 */ 6208 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6209 spin_unlock(&eb->refs_lock); 6210 return 0; 6211 } 6212 6213 return release_extent_buffer(eb); 6214 } 6215 6216 /* 6217 * btrfs_readahead_tree_block - attempt to readahead a child block 6218 * @fs_info: the fs_info 6219 * @bytenr: bytenr to read 6220 * @owner_root: objectid of the root that owns this eb 6221 * @gen: generation for the uptodate check, can be 0 6222 * @level: level for the eb 6223 * 6224 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 6225 * normal uptodate check of the eb, without checking the generation. If we have 6226 * to read the block we will not block on anything. 6227 */ 6228 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 6229 u64 bytenr, u64 owner_root, u64 gen, int level) 6230 { 6231 struct extent_buffer *eb; 6232 int ret; 6233 6234 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 6235 if (IS_ERR(eb)) 6236 return; 6237 6238 if (btrfs_buffer_uptodate(eb, gen, 1)) { 6239 free_extent_buffer(eb); 6240 return; 6241 } 6242 6243 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 6244 if (ret < 0) 6245 free_extent_buffer_stale(eb); 6246 else 6247 free_extent_buffer(eb); 6248 } 6249 6250 /* 6251 * btrfs_readahead_node_child - readahead a node's child block 6252 * @node: parent node we're reading from 6253 * @slot: slot in the parent node for the child we want to read 6254 * 6255 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 6256 * the slot in the node provided. 6257 */ 6258 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 6259 { 6260 btrfs_readahead_tree_block(node->fs_info, 6261 btrfs_node_blockptr(node, slot), 6262 btrfs_header_owner(node), 6263 btrfs_node_ptr_generation(node, slot), 6264 btrfs_header_level(node) - 1); 6265 } 6266