xref: /openbmc/linux/fs/btrfs/extent_io.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "block-group.h"
30 
31 static struct kmem_cache *extent_state_cache;
32 static struct kmem_cache *extent_buffer_cache;
33 static struct bio_set btrfs_bioset;
34 
35 static inline bool extent_state_in_tree(const struct extent_state *state)
36 {
37 	return !RB_EMPTY_NODE(&state->rb_node);
38 }
39 
40 #ifdef CONFIG_BTRFS_DEBUG
41 static LIST_HEAD(states);
42 static DEFINE_SPINLOCK(leak_lock);
43 
44 static inline void btrfs_leak_debug_add(spinlock_t *lock,
45 					struct list_head *new,
46 					struct list_head *head)
47 {
48 	unsigned long flags;
49 
50 	spin_lock_irqsave(lock, flags);
51 	list_add(new, head);
52 	spin_unlock_irqrestore(lock, flags);
53 }
54 
55 static inline void btrfs_leak_debug_del(spinlock_t *lock,
56 					struct list_head *entry)
57 {
58 	unsigned long flags;
59 
60 	spin_lock_irqsave(lock, flags);
61 	list_del(entry);
62 	spin_unlock_irqrestore(lock, flags);
63 }
64 
65 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
66 {
67 	struct extent_buffer *eb;
68 	unsigned long flags;
69 
70 	/*
71 	 * If we didn't get into open_ctree our allocated_ebs will not be
72 	 * initialized, so just skip this.
73 	 */
74 	if (!fs_info->allocated_ebs.next)
75 		return;
76 
77 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 	while (!list_empty(&fs_info->allocated_ebs)) {
79 		eb = list_first_entry(&fs_info->allocated_ebs,
80 				      struct extent_buffer, leak_list);
81 		pr_err(
82 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 		       btrfs_header_owner(eb));
85 		list_del(&eb->leak_list);
86 		kmem_cache_free(extent_buffer_cache, eb);
87 	}
88 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 }
90 
91 static inline void btrfs_extent_state_leak_debug_check(void)
92 {
93 	struct extent_state *state;
94 
95 	while (!list_empty(&states)) {
96 		state = list_entry(states.next, struct extent_state, leak_list);
97 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
98 		       state->start, state->end, state->state,
99 		       extent_state_in_tree(state),
100 		       refcount_read(&state->refs));
101 		list_del(&state->leak_list);
102 		kmem_cache_free(extent_state_cache, state);
103 	}
104 }
105 
106 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
107 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
108 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
109 		struct extent_io_tree *tree, u64 start, u64 end)
110 {
111 	struct inode *inode = tree->private_data;
112 	u64 isize;
113 
114 	if (!inode || !is_data_inode(inode))
115 		return;
116 
117 	isize = i_size_read(inode);
118 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
119 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
120 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
121 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
122 	}
123 }
124 #else
125 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
126 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
127 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
128 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
129 #endif
130 
131 struct tree_entry {
132 	u64 start;
133 	u64 end;
134 	struct rb_node rb_node;
135 };
136 
137 struct extent_page_data {
138 	struct bio *bio;
139 	/* tells writepage not to lock the state bits for this range
140 	 * it still does the unlocking
141 	 */
142 	unsigned int extent_locked:1;
143 
144 	/* tells the submit_bio code to use REQ_SYNC */
145 	unsigned int sync_io:1;
146 };
147 
148 static int add_extent_changeset(struct extent_state *state, u32 bits,
149 				 struct extent_changeset *changeset,
150 				 int set)
151 {
152 	int ret;
153 
154 	if (!changeset)
155 		return 0;
156 	if (set && (state->state & bits) == bits)
157 		return 0;
158 	if (!set && (state->state & bits) == 0)
159 		return 0;
160 	changeset->bytes_changed += state->end - state->start + 1;
161 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
162 			GFP_ATOMIC);
163 	return ret;
164 }
165 
166 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
167 				unsigned long bio_flags)
168 {
169 	blk_status_t ret = 0;
170 	struct extent_io_tree *tree = bio->bi_private;
171 
172 	bio->bi_private = NULL;
173 
174 	if (is_data_inode(tree->private_data))
175 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
176 					    bio_flags);
177 	else
178 		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
179 						mirror_num, bio_flags);
180 
181 	return blk_status_to_errno(ret);
182 }
183 
184 /* Cleanup unsubmitted bios */
185 static void end_write_bio(struct extent_page_data *epd, int ret)
186 {
187 	if (epd->bio) {
188 		epd->bio->bi_status = errno_to_blk_status(ret);
189 		bio_endio(epd->bio);
190 		epd->bio = NULL;
191 	}
192 }
193 
194 /*
195  * Submit bio from extent page data via submit_one_bio
196  *
197  * Return 0 if everything is OK.
198  * Return <0 for error.
199  */
200 static int __must_check flush_write_bio(struct extent_page_data *epd)
201 {
202 	int ret = 0;
203 
204 	if (epd->bio) {
205 		ret = submit_one_bio(epd->bio, 0, 0);
206 		/*
207 		 * Clean up of epd->bio is handled by its endio function.
208 		 * And endio is either triggered by successful bio execution
209 		 * or the error handler of submit bio hook.
210 		 * So at this point, no matter what happened, we don't need
211 		 * to clean up epd->bio.
212 		 */
213 		epd->bio = NULL;
214 	}
215 	return ret;
216 }
217 
218 int __init extent_state_cache_init(void)
219 {
220 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
221 			sizeof(struct extent_state), 0,
222 			SLAB_MEM_SPREAD, NULL);
223 	if (!extent_state_cache)
224 		return -ENOMEM;
225 	return 0;
226 }
227 
228 int __init extent_io_init(void)
229 {
230 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
231 			sizeof(struct extent_buffer), 0,
232 			SLAB_MEM_SPREAD, NULL);
233 	if (!extent_buffer_cache)
234 		return -ENOMEM;
235 
236 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
237 			offsetof(struct btrfs_io_bio, bio),
238 			BIOSET_NEED_BVECS))
239 		goto free_buffer_cache;
240 
241 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
242 		goto free_bioset;
243 
244 	return 0;
245 
246 free_bioset:
247 	bioset_exit(&btrfs_bioset);
248 
249 free_buffer_cache:
250 	kmem_cache_destroy(extent_buffer_cache);
251 	extent_buffer_cache = NULL;
252 	return -ENOMEM;
253 }
254 
255 void __cold extent_state_cache_exit(void)
256 {
257 	btrfs_extent_state_leak_debug_check();
258 	kmem_cache_destroy(extent_state_cache);
259 }
260 
261 void __cold extent_io_exit(void)
262 {
263 	/*
264 	 * Make sure all delayed rcu free are flushed before we
265 	 * destroy caches.
266 	 */
267 	rcu_barrier();
268 	kmem_cache_destroy(extent_buffer_cache);
269 	bioset_exit(&btrfs_bioset);
270 }
271 
272 /*
273  * For the file_extent_tree, we want to hold the inode lock when we lookup and
274  * update the disk_i_size, but lockdep will complain because our io_tree we hold
275  * the tree lock and get the inode lock when setting delalloc.  These two things
276  * are unrelated, so make a class for the file_extent_tree so we don't get the
277  * two locking patterns mixed up.
278  */
279 static struct lock_class_key file_extent_tree_class;
280 
281 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
282 			 struct extent_io_tree *tree, unsigned int owner,
283 			 void *private_data)
284 {
285 	tree->fs_info = fs_info;
286 	tree->state = RB_ROOT;
287 	tree->dirty_bytes = 0;
288 	spin_lock_init(&tree->lock);
289 	tree->private_data = private_data;
290 	tree->owner = owner;
291 	if (owner == IO_TREE_INODE_FILE_EXTENT)
292 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
293 }
294 
295 void extent_io_tree_release(struct extent_io_tree *tree)
296 {
297 	spin_lock(&tree->lock);
298 	/*
299 	 * Do a single barrier for the waitqueue_active check here, the state
300 	 * of the waitqueue should not change once extent_io_tree_release is
301 	 * called.
302 	 */
303 	smp_mb();
304 	while (!RB_EMPTY_ROOT(&tree->state)) {
305 		struct rb_node *node;
306 		struct extent_state *state;
307 
308 		node = rb_first(&tree->state);
309 		state = rb_entry(node, struct extent_state, rb_node);
310 		rb_erase(&state->rb_node, &tree->state);
311 		RB_CLEAR_NODE(&state->rb_node);
312 		/*
313 		 * btree io trees aren't supposed to have tasks waiting for
314 		 * changes in the flags of extent states ever.
315 		 */
316 		ASSERT(!waitqueue_active(&state->wq));
317 		free_extent_state(state);
318 
319 		cond_resched_lock(&tree->lock);
320 	}
321 	spin_unlock(&tree->lock);
322 }
323 
324 static struct extent_state *alloc_extent_state(gfp_t mask)
325 {
326 	struct extent_state *state;
327 
328 	/*
329 	 * The given mask might be not appropriate for the slab allocator,
330 	 * drop the unsupported bits
331 	 */
332 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
333 	state = kmem_cache_alloc(extent_state_cache, mask);
334 	if (!state)
335 		return state;
336 	state->state = 0;
337 	state->failrec = NULL;
338 	RB_CLEAR_NODE(&state->rb_node);
339 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
340 	refcount_set(&state->refs, 1);
341 	init_waitqueue_head(&state->wq);
342 	trace_alloc_extent_state(state, mask, _RET_IP_);
343 	return state;
344 }
345 
346 void free_extent_state(struct extent_state *state)
347 {
348 	if (!state)
349 		return;
350 	if (refcount_dec_and_test(&state->refs)) {
351 		WARN_ON(extent_state_in_tree(state));
352 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
353 		trace_free_extent_state(state, _RET_IP_);
354 		kmem_cache_free(extent_state_cache, state);
355 	}
356 }
357 
358 static struct rb_node *tree_insert(struct rb_root *root,
359 				   struct rb_node *search_start,
360 				   u64 offset,
361 				   struct rb_node *node,
362 				   struct rb_node ***p_in,
363 				   struct rb_node **parent_in)
364 {
365 	struct rb_node **p;
366 	struct rb_node *parent = NULL;
367 	struct tree_entry *entry;
368 
369 	if (p_in && parent_in) {
370 		p = *p_in;
371 		parent = *parent_in;
372 		goto do_insert;
373 	}
374 
375 	p = search_start ? &search_start : &root->rb_node;
376 	while (*p) {
377 		parent = *p;
378 		entry = rb_entry(parent, struct tree_entry, rb_node);
379 
380 		if (offset < entry->start)
381 			p = &(*p)->rb_left;
382 		else if (offset > entry->end)
383 			p = &(*p)->rb_right;
384 		else
385 			return parent;
386 	}
387 
388 do_insert:
389 	rb_link_node(node, parent, p);
390 	rb_insert_color(node, root);
391 	return NULL;
392 }
393 
394 /**
395  * Search @tree for an entry that contains @offset. Such entry would have
396  * entry->start <= offset && entry->end >= offset.
397  *
398  * @tree:       the tree to search
399  * @offset:     offset that should fall within an entry in @tree
400  * @next_ret:   pointer to the first entry whose range ends after @offset
401  * @prev_ret:   pointer to the first entry whose range begins before @offset
402  * @p_ret:      pointer where new node should be anchored (used when inserting an
403  *	        entry in the tree)
404  * @parent_ret: points to entry which would have been the parent of the entry,
405  *               containing @offset
406  *
407  * This function returns a pointer to the entry that contains @offset byte
408  * address. If no such entry exists, then NULL is returned and the other
409  * pointer arguments to the function are filled, otherwise the found entry is
410  * returned and other pointers are left untouched.
411  */
412 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
413 				      struct rb_node **next_ret,
414 				      struct rb_node **prev_ret,
415 				      struct rb_node ***p_ret,
416 				      struct rb_node **parent_ret)
417 {
418 	struct rb_root *root = &tree->state;
419 	struct rb_node **n = &root->rb_node;
420 	struct rb_node *prev = NULL;
421 	struct rb_node *orig_prev = NULL;
422 	struct tree_entry *entry;
423 	struct tree_entry *prev_entry = NULL;
424 
425 	while (*n) {
426 		prev = *n;
427 		entry = rb_entry(prev, struct tree_entry, rb_node);
428 		prev_entry = entry;
429 
430 		if (offset < entry->start)
431 			n = &(*n)->rb_left;
432 		else if (offset > entry->end)
433 			n = &(*n)->rb_right;
434 		else
435 			return *n;
436 	}
437 
438 	if (p_ret)
439 		*p_ret = n;
440 	if (parent_ret)
441 		*parent_ret = prev;
442 
443 	if (next_ret) {
444 		orig_prev = prev;
445 		while (prev && offset > prev_entry->end) {
446 			prev = rb_next(prev);
447 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
448 		}
449 		*next_ret = prev;
450 		prev = orig_prev;
451 	}
452 
453 	if (prev_ret) {
454 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		while (prev && offset < prev_entry->start) {
456 			prev = rb_prev(prev);
457 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
458 		}
459 		*prev_ret = prev;
460 	}
461 	return NULL;
462 }
463 
464 static inline struct rb_node *
465 tree_search_for_insert(struct extent_io_tree *tree,
466 		       u64 offset,
467 		       struct rb_node ***p_ret,
468 		       struct rb_node **parent_ret)
469 {
470 	struct rb_node *next= NULL;
471 	struct rb_node *ret;
472 
473 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
474 	if (!ret)
475 		return next;
476 	return ret;
477 }
478 
479 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
480 					  u64 offset)
481 {
482 	return tree_search_for_insert(tree, offset, NULL, NULL);
483 }
484 
485 /*
486  * utility function to look for merge candidates inside a given range.
487  * Any extents with matching state are merged together into a single
488  * extent in the tree.  Extents with EXTENT_IO in their state field
489  * are not merged because the end_io handlers need to be able to do
490  * operations on them without sleeping (or doing allocations/splits).
491  *
492  * This should be called with the tree lock held.
493  */
494 static void merge_state(struct extent_io_tree *tree,
495 		        struct extent_state *state)
496 {
497 	struct extent_state *other;
498 	struct rb_node *other_node;
499 
500 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
501 		return;
502 
503 	other_node = rb_prev(&state->rb_node);
504 	if (other_node) {
505 		other = rb_entry(other_node, struct extent_state, rb_node);
506 		if (other->end == state->start - 1 &&
507 		    other->state == state->state) {
508 			if (tree->private_data &&
509 			    is_data_inode(tree->private_data))
510 				btrfs_merge_delalloc_extent(tree->private_data,
511 							    state, other);
512 			state->start = other->start;
513 			rb_erase(&other->rb_node, &tree->state);
514 			RB_CLEAR_NODE(&other->rb_node);
515 			free_extent_state(other);
516 		}
517 	}
518 	other_node = rb_next(&state->rb_node);
519 	if (other_node) {
520 		other = rb_entry(other_node, struct extent_state, rb_node);
521 		if (other->start == state->end + 1 &&
522 		    other->state == state->state) {
523 			if (tree->private_data &&
524 			    is_data_inode(tree->private_data))
525 				btrfs_merge_delalloc_extent(tree->private_data,
526 							    state, other);
527 			state->end = other->end;
528 			rb_erase(&other->rb_node, &tree->state);
529 			RB_CLEAR_NODE(&other->rb_node);
530 			free_extent_state(other);
531 		}
532 	}
533 }
534 
535 static void set_state_bits(struct extent_io_tree *tree,
536 			   struct extent_state *state, u32 *bits,
537 			   struct extent_changeset *changeset);
538 
539 /*
540  * insert an extent_state struct into the tree.  'bits' are set on the
541  * struct before it is inserted.
542  *
543  * This may return -EEXIST if the extent is already there, in which case the
544  * state struct is freed.
545  *
546  * The tree lock is not taken internally.  This is a utility function and
547  * probably isn't what you want to call (see set/clear_extent_bit).
548  */
549 static int insert_state(struct extent_io_tree *tree,
550 			struct extent_state *state, u64 start, u64 end,
551 			struct rb_node ***p,
552 			struct rb_node **parent,
553 			u32 *bits, struct extent_changeset *changeset)
554 {
555 	struct rb_node *node;
556 
557 	if (end < start) {
558 		btrfs_err(tree->fs_info,
559 			"insert state: end < start %llu %llu", end, start);
560 		WARN_ON(1);
561 	}
562 	state->start = start;
563 	state->end = end;
564 
565 	set_state_bits(tree, state, bits, changeset);
566 
567 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
568 	if (node) {
569 		struct extent_state *found;
570 		found = rb_entry(node, struct extent_state, rb_node);
571 		btrfs_err(tree->fs_info,
572 		       "found node %llu %llu on insert of %llu %llu",
573 		       found->start, found->end, start, end);
574 		return -EEXIST;
575 	}
576 	merge_state(tree, state);
577 	return 0;
578 }
579 
580 /*
581  * split a given extent state struct in two, inserting the preallocated
582  * struct 'prealloc' as the newly created second half.  'split' indicates an
583  * offset inside 'orig' where it should be split.
584  *
585  * Before calling,
586  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
587  * are two extent state structs in the tree:
588  * prealloc: [orig->start, split - 1]
589  * orig: [ split, orig->end ]
590  *
591  * The tree locks are not taken by this function. They need to be held
592  * by the caller.
593  */
594 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
595 		       struct extent_state *prealloc, u64 split)
596 {
597 	struct rb_node *node;
598 
599 	if (tree->private_data && is_data_inode(tree->private_data))
600 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
601 
602 	prealloc->start = orig->start;
603 	prealloc->end = split - 1;
604 	prealloc->state = orig->state;
605 	orig->start = split;
606 
607 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
608 			   &prealloc->rb_node, NULL, NULL);
609 	if (node) {
610 		free_extent_state(prealloc);
611 		return -EEXIST;
612 	}
613 	return 0;
614 }
615 
616 static struct extent_state *next_state(struct extent_state *state)
617 {
618 	struct rb_node *next = rb_next(&state->rb_node);
619 	if (next)
620 		return rb_entry(next, struct extent_state, rb_node);
621 	else
622 		return NULL;
623 }
624 
625 /*
626  * utility function to clear some bits in an extent state struct.
627  * it will optionally wake up anyone waiting on this state (wake == 1).
628  *
629  * If no bits are set on the state struct after clearing things, the
630  * struct is freed and removed from the tree
631  */
632 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
633 					    struct extent_state *state,
634 					    u32 *bits, int wake,
635 					    struct extent_changeset *changeset)
636 {
637 	struct extent_state *next;
638 	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
639 	int ret;
640 
641 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
642 		u64 range = state->end - state->start + 1;
643 		WARN_ON(range > tree->dirty_bytes);
644 		tree->dirty_bytes -= range;
645 	}
646 
647 	if (tree->private_data && is_data_inode(tree->private_data))
648 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
649 
650 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
651 	BUG_ON(ret < 0);
652 	state->state &= ~bits_to_clear;
653 	if (wake)
654 		wake_up(&state->wq);
655 	if (state->state == 0) {
656 		next = next_state(state);
657 		if (extent_state_in_tree(state)) {
658 			rb_erase(&state->rb_node, &tree->state);
659 			RB_CLEAR_NODE(&state->rb_node);
660 			free_extent_state(state);
661 		} else {
662 			WARN_ON(1);
663 		}
664 	} else {
665 		merge_state(tree, state);
666 		next = next_state(state);
667 	}
668 	return next;
669 }
670 
671 static struct extent_state *
672 alloc_extent_state_atomic(struct extent_state *prealloc)
673 {
674 	if (!prealloc)
675 		prealloc = alloc_extent_state(GFP_ATOMIC);
676 
677 	return prealloc;
678 }
679 
680 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
681 {
682 	btrfs_panic(tree->fs_info, err,
683 	"locking error: extent tree was modified by another thread while locked");
684 }
685 
686 /*
687  * clear some bits on a range in the tree.  This may require splitting
688  * or inserting elements in the tree, so the gfp mask is used to
689  * indicate which allocations or sleeping are allowed.
690  *
691  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
692  * the given range from the tree regardless of state (ie for truncate).
693  *
694  * the range [start, end] is inclusive.
695  *
696  * This takes the tree lock, and returns 0 on success and < 0 on error.
697  */
698 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 		       u32 bits, int wake, int delete,
700 		       struct extent_state **cached_state,
701 		       gfp_t mask, struct extent_changeset *changeset)
702 {
703 	struct extent_state *state;
704 	struct extent_state *cached;
705 	struct extent_state *prealloc = NULL;
706 	struct rb_node *node;
707 	u64 last_end;
708 	int err;
709 	int clear = 0;
710 
711 	btrfs_debug_check_extent_io_range(tree, start, end);
712 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
713 
714 	if (bits & EXTENT_DELALLOC)
715 		bits |= EXTENT_NORESERVE;
716 
717 	if (delete)
718 		bits |= ~EXTENT_CTLBITS;
719 
720 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
721 		clear = 1;
722 again:
723 	if (!prealloc && gfpflags_allow_blocking(mask)) {
724 		/*
725 		 * Don't care for allocation failure here because we might end
726 		 * up not needing the pre-allocated extent state at all, which
727 		 * is the case if we only have in the tree extent states that
728 		 * cover our input range and don't cover too any other range.
729 		 * If we end up needing a new extent state we allocate it later.
730 		 */
731 		prealloc = alloc_extent_state(mask);
732 	}
733 
734 	spin_lock(&tree->lock);
735 	if (cached_state) {
736 		cached = *cached_state;
737 
738 		if (clear) {
739 			*cached_state = NULL;
740 			cached_state = NULL;
741 		}
742 
743 		if (cached && extent_state_in_tree(cached) &&
744 		    cached->start <= start && cached->end > start) {
745 			if (clear)
746 				refcount_dec(&cached->refs);
747 			state = cached;
748 			goto hit_next;
749 		}
750 		if (clear)
751 			free_extent_state(cached);
752 	}
753 	/*
754 	 * this search will find the extents that end after
755 	 * our range starts
756 	 */
757 	node = tree_search(tree, start);
758 	if (!node)
759 		goto out;
760 	state = rb_entry(node, struct extent_state, rb_node);
761 hit_next:
762 	if (state->start > end)
763 		goto out;
764 	WARN_ON(state->end < start);
765 	last_end = state->end;
766 
767 	/* the state doesn't have the wanted bits, go ahead */
768 	if (!(state->state & bits)) {
769 		state = next_state(state);
770 		goto next;
771 	}
772 
773 	/*
774 	 *     | ---- desired range ---- |
775 	 *  | state | or
776 	 *  | ------------- state -------------- |
777 	 *
778 	 * We need to split the extent we found, and may flip
779 	 * bits on second half.
780 	 *
781 	 * If the extent we found extends past our range, we
782 	 * just split and search again.  It'll get split again
783 	 * the next time though.
784 	 *
785 	 * If the extent we found is inside our range, we clear
786 	 * the desired bit on it.
787 	 */
788 
789 	if (state->start < start) {
790 		prealloc = alloc_extent_state_atomic(prealloc);
791 		BUG_ON(!prealloc);
792 		err = split_state(tree, state, prealloc, start);
793 		if (err)
794 			extent_io_tree_panic(tree, err);
795 
796 		prealloc = NULL;
797 		if (err)
798 			goto out;
799 		if (state->end <= end) {
800 			state = clear_state_bit(tree, state, &bits, wake,
801 						changeset);
802 			goto next;
803 		}
804 		goto search_again;
805 	}
806 	/*
807 	 * | ---- desired range ---- |
808 	 *                        | state |
809 	 * We need to split the extent, and clear the bit
810 	 * on the first half
811 	 */
812 	if (state->start <= end && state->end > end) {
813 		prealloc = alloc_extent_state_atomic(prealloc);
814 		BUG_ON(!prealloc);
815 		err = split_state(tree, state, prealloc, end + 1);
816 		if (err)
817 			extent_io_tree_panic(tree, err);
818 
819 		if (wake)
820 			wake_up(&state->wq);
821 
822 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
823 
824 		prealloc = NULL;
825 		goto out;
826 	}
827 
828 	state = clear_state_bit(tree, state, &bits, wake, changeset);
829 next:
830 	if (last_end == (u64)-1)
831 		goto out;
832 	start = last_end + 1;
833 	if (start <= end && state && !need_resched())
834 		goto hit_next;
835 
836 search_again:
837 	if (start > end)
838 		goto out;
839 	spin_unlock(&tree->lock);
840 	if (gfpflags_allow_blocking(mask))
841 		cond_resched();
842 	goto again;
843 
844 out:
845 	spin_unlock(&tree->lock);
846 	if (prealloc)
847 		free_extent_state(prealloc);
848 
849 	return 0;
850 
851 }
852 
853 static void wait_on_state(struct extent_io_tree *tree,
854 			  struct extent_state *state)
855 		__releases(tree->lock)
856 		__acquires(tree->lock)
857 {
858 	DEFINE_WAIT(wait);
859 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
860 	spin_unlock(&tree->lock);
861 	schedule();
862 	spin_lock(&tree->lock);
863 	finish_wait(&state->wq, &wait);
864 }
865 
866 /*
867  * waits for one or more bits to clear on a range in the state tree.
868  * The range [start, end] is inclusive.
869  * The tree lock is taken by this function
870  */
871 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
872 			    u32 bits)
873 {
874 	struct extent_state *state;
875 	struct rb_node *node;
876 
877 	btrfs_debug_check_extent_io_range(tree, start, end);
878 
879 	spin_lock(&tree->lock);
880 again:
881 	while (1) {
882 		/*
883 		 * this search will find all the extents that end after
884 		 * our range starts
885 		 */
886 		node = tree_search(tree, start);
887 process_node:
888 		if (!node)
889 			break;
890 
891 		state = rb_entry(node, struct extent_state, rb_node);
892 
893 		if (state->start > end)
894 			goto out;
895 
896 		if (state->state & bits) {
897 			start = state->start;
898 			refcount_inc(&state->refs);
899 			wait_on_state(tree, state);
900 			free_extent_state(state);
901 			goto again;
902 		}
903 		start = state->end + 1;
904 
905 		if (start > end)
906 			break;
907 
908 		if (!cond_resched_lock(&tree->lock)) {
909 			node = rb_next(node);
910 			goto process_node;
911 		}
912 	}
913 out:
914 	spin_unlock(&tree->lock);
915 }
916 
917 static void set_state_bits(struct extent_io_tree *tree,
918 			   struct extent_state *state,
919 			   u32 *bits, struct extent_changeset *changeset)
920 {
921 	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
922 	int ret;
923 
924 	if (tree->private_data && is_data_inode(tree->private_data))
925 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
926 
927 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
928 		u64 range = state->end - state->start + 1;
929 		tree->dirty_bytes += range;
930 	}
931 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
932 	BUG_ON(ret < 0);
933 	state->state |= bits_to_set;
934 }
935 
936 static void cache_state_if_flags(struct extent_state *state,
937 				 struct extent_state **cached_ptr,
938 				 unsigned flags)
939 {
940 	if (cached_ptr && !(*cached_ptr)) {
941 		if (!flags || (state->state & flags)) {
942 			*cached_ptr = state;
943 			refcount_inc(&state->refs);
944 		}
945 	}
946 }
947 
948 static void cache_state(struct extent_state *state,
949 			struct extent_state **cached_ptr)
950 {
951 	return cache_state_if_flags(state, cached_ptr,
952 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
953 }
954 
955 /*
956  * set some bits on a range in the tree.  This may require allocations or
957  * sleeping, so the gfp mask is used to indicate what is allowed.
958  *
959  * If any of the exclusive bits are set, this will fail with -EEXIST if some
960  * part of the range already has the desired bits set.  The start of the
961  * existing range is returned in failed_start in this case.
962  *
963  * [start, end] is inclusive This takes the tree lock.
964  */
965 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
966 		   u32 exclusive_bits, u64 *failed_start,
967 		   struct extent_state **cached_state, gfp_t mask,
968 		   struct extent_changeset *changeset)
969 {
970 	struct extent_state *state;
971 	struct extent_state *prealloc = NULL;
972 	struct rb_node *node;
973 	struct rb_node **p;
974 	struct rb_node *parent;
975 	int err = 0;
976 	u64 last_start;
977 	u64 last_end;
978 
979 	btrfs_debug_check_extent_io_range(tree, start, end);
980 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
981 
982 	if (exclusive_bits)
983 		ASSERT(failed_start);
984 	else
985 		ASSERT(failed_start == NULL);
986 again:
987 	if (!prealloc && gfpflags_allow_blocking(mask)) {
988 		/*
989 		 * Don't care for allocation failure here because we might end
990 		 * up not needing the pre-allocated extent state at all, which
991 		 * is the case if we only have in the tree extent states that
992 		 * cover our input range and don't cover too any other range.
993 		 * If we end up needing a new extent state we allocate it later.
994 		 */
995 		prealloc = alloc_extent_state(mask);
996 	}
997 
998 	spin_lock(&tree->lock);
999 	if (cached_state && *cached_state) {
1000 		state = *cached_state;
1001 		if (state->start <= start && state->end > start &&
1002 		    extent_state_in_tree(state)) {
1003 			node = &state->rb_node;
1004 			goto hit_next;
1005 		}
1006 	}
1007 	/*
1008 	 * this search will find all the extents that end after
1009 	 * our range starts.
1010 	 */
1011 	node = tree_search_for_insert(tree, start, &p, &parent);
1012 	if (!node) {
1013 		prealloc = alloc_extent_state_atomic(prealloc);
1014 		BUG_ON(!prealloc);
1015 		err = insert_state(tree, prealloc, start, end,
1016 				   &p, &parent, &bits, changeset);
1017 		if (err)
1018 			extent_io_tree_panic(tree, err);
1019 
1020 		cache_state(prealloc, cached_state);
1021 		prealloc = NULL;
1022 		goto out;
1023 	}
1024 	state = rb_entry(node, struct extent_state, rb_node);
1025 hit_next:
1026 	last_start = state->start;
1027 	last_end = state->end;
1028 
1029 	/*
1030 	 * | ---- desired range ---- |
1031 	 * | state |
1032 	 *
1033 	 * Just lock what we found and keep going
1034 	 */
1035 	if (state->start == start && state->end <= end) {
1036 		if (state->state & exclusive_bits) {
1037 			*failed_start = state->start;
1038 			err = -EEXIST;
1039 			goto out;
1040 		}
1041 
1042 		set_state_bits(tree, state, &bits, changeset);
1043 		cache_state(state, cached_state);
1044 		merge_state(tree, state);
1045 		if (last_end == (u64)-1)
1046 			goto out;
1047 		start = last_end + 1;
1048 		state = next_state(state);
1049 		if (start < end && state && state->start == start &&
1050 		    !need_resched())
1051 			goto hit_next;
1052 		goto search_again;
1053 	}
1054 
1055 	/*
1056 	 *     | ---- desired range ---- |
1057 	 * | state |
1058 	 *   or
1059 	 * | ------------- state -------------- |
1060 	 *
1061 	 * We need to split the extent we found, and may flip bits on
1062 	 * second half.
1063 	 *
1064 	 * If the extent we found extends past our
1065 	 * range, we just split and search again.  It'll get split
1066 	 * again the next time though.
1067 	 *
1068 	 * If the extent we found is inside our range, we set the
1069 	 * desired bit on it.
1070 	 */
1071 	if (state->start < start) {
1072 		if (state->state & exclusive_bits) {
1073 			*failed_start = start;
1074 			err = -EEXIST;
1075 			goto out;
1076 		}
1077 
1078 		/*
1079 		 * If this extent already has all the bits we want set, then
1080 		 * skip it, not necessary to split it or do anything with it.
1081 		 */
1082 		if ((state->state & bits) == bits) {
1083 			start = state->end + 1;
1084 			cache_state(state, cached_state);
1085 			goto search_again;
1086 		}
1087 
1088 		prealloc = alloc_extent_state_atomic(prealloc);
1089 		BUG_ON(!prealloc);
1090 		err = split_state(tree, state, prealloc, start);
1091 		if (err)
1092 			extent_io_tree_panic(tree, err);
1093 
1094 		prealloc = NULL;
1095 		if (err)
1096 			goto out;
1097 		if (state->end <= end) {
1098 			set_state_bits(tree, state, &bits, changeset);
1099 			cache_state(state, cached_state);
1100 			merge_state(tree, state);
1101 			if (last_end == (u64)-1)
1102 				goto out;
1103 			start = last_end + 1;
1104 			state = next_state(state);
1105 			if (start < end && state && state->start == start &&
1106 			    !need_resched())
1107 				goto hit_next;
1108 		}
1109 		goto search_again;
1110 	}
1111 	/*
1112 	 * | ---- desired range ---- |
1113 	 *     | state | or               | state |
1114 	 *
1115 	 * There's a hole, we need to insert something in it and
1116 	 * ignore the extent we found.
1117 	 */
1118 	if (state->start > start) {
1119 		u64 this_end;
1120 		if (end < last_start)
1121 			this_end = end;
1122 		else
1123 			this_end = last_start - 1;
1124 
1125 		prealloc = alloc_extent_state_atomic(prealloc);
1126 		BUG_ON(!prealloc);
1127 
1128 		/*
1129 		 * Avoid to free 'prealloc' if it can be merged with
1130 		 * the later extent.
1131 		 */
1132 		err = insert_state(tree, prealloc, start, this_end,
1133 				   NULL, NULL, &bits, changeset);
1134 		if (err)
1135 			extent_io_tree_panic(tree, err);
1136 
1137 		cache_state(prealloc, cached_state);
1138 		prealloc = NULL;
1139 		start = this_end + 1;
1140 		goto search_again;
1141 	}
1142 	/*
1143 	 * | ---- desired range ---- |
1144 	 *                        | state |
1145 	 * We need to split the extent, and set the bit
1146 	 * on the first half
1147 	 */
1148 	if (state->start <= end && state->end > end) {
1149 		if (state->state & exclusive_bits) {
1150 			*failed_start = start;
1151 			err = -EEXIST;
1152 			goto out;
1153 		}
1154 
1155 		prealloc = alloc_extent_state_atomic(prealloc);
1156 		BUG_ON(!prealloc);
1157 		err = split_state(tree, state, prealloc, end + 1);
1158 		if (err)
1159 			extent_io_tree_panic(tree, err);
1160 
1161 		set_state_bits(tree, prealloc, &bits, changeset);
1162 		cache_state(prealloc, cached_state);
1163 		merge_state(tree, prealloc);
1164 		prealloc = NULL;
1165 		goto out;
1166 	}
1167 
1168 search_again:
1169 	if (start > end)
1170 		goto out;
1171 	spin_unlock(&tree->lock);
1172 	if (gfpflags_allow_blocking(mask))
1173 		cond_resched();
1174 	goto again;
1175 
1176 out:
1177 	spin_unlock(&tree->lock);
1178 	if (prealloc)
1179 		free_extent_state(prealloc);
1180 
1181 	return err;
1182 
1183 }
1184 
1185 /**
1186  * convert_extent_bit - convert all bits in a given range from one bit to
1187  * 			another
1188  * @tree:	the io tree to search
1189  * @start:	the start offset in bytes
1190  * @end:	the end offset in bytes (inclusive)
1191  * @bits:	the bits to set in this range
1192  * @clear_bits:	the bits to clear in this range
1193  * @cached_state:	state that we're going to cache
1194  *
1195  * This will go through and set bits for the given range.  If any states exist
1196  * already in this range they are set with the given bit and cleared of the
1197  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1198  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1199  * boundary bits like LOCK.
1200  *
1201  * All allocations are done with GFP_NOFS.
1202  */
1203 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1204 		       u32 bits, u32 clear_bits,
1205 		       struct extent_state **cached_state)
1206 {
1207 	struct extent_state *state;
1208 	struct extent_state *prealloc = NULL;
1209 	struct rb_node *node;
1210 	struct rb_node **p;
1211 	struct rb_node *parent;
1212 	int err = 0;
1213 	u64 last_start;
1214 	u64 last_end;
1215 	bool first_iteration = true;
1216 
1217 	btrfs_debug_check_extent_io_range(tree, start, end);
1218 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1219 				       clear_bits);
1220 
1221 again:
1222 	if (!prealloc) {
1223 		/*
1224 		 * Best effort, don't worry if extent state allocation fails
1225 		 * here for the first iteration. We might have a cached state
1226 		 * that matches exactly the target range, in which case no
1227 		 * extent state allocations are needed. We'll only know this
1228 		 * after locking the tree.
1229 		 */
1230 		prealloc = alloc_extent_state(GFP_NOFS);
1231 		if (!prealloc && !first_iteration)
1232 			return -ENOMEM;
1233 	}
1234 
1235 	spin_lock(&tree->lock);
1236 	if (cached_state && *cached_state) {
1237 		state = *cached_state;
1238 		if (state->start <= start && state->end > start &&
1239 		    extent_state_in_tree(state)) {
1240 			node = &state->rb_node;
1241 			goto hit_next;
1242 		}
1243 	}
1244 
1245 	/*
1246 	 * this search will find all the extents that end after
1247 	 * our range starts.
1248 	 */
1249 	node = tree_search_for_insert(tree, start, &p, &parent);
1250 	if (!node) {
1251 		prealloc = alloc_extent_state_atomic(prealloc);
1252 		if (!prealloc) {
1253 			err = -ENOMEM;
1254 			goto out;
1255 		}
1256 		err = insert_state(tree, prealloc, start, end,
1257 				   &p, &parent, &bits, NULL);
1258 		if (err)
1259 			extent_io_tree_panic(tree, err);
1260 		cache_state(prealloc, cached_state);
1261 		prealloc = NULL;
1262 		goto out;
1263 	}
1264 	state = rb_entry(node, struct extent_state, rb_node);
1265 hit_next:
1266 	last_start = state->start;
1267 	last_end = state->end;
1268 
1269 	/*
1270 	 * | ---- desired range ---- |
1271 	 * | state |
1272 	 *
1273 	 * Just lock what we found and keep going
1274 	 */
1275 	if (state->start == start && state->end <= end) {
1276 		set_state_bits(tree, state, &bits, NULL);
1277 		cache_state(state, cached_state);
1278 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1279 		if (last_end == (u64)-1)
1280 			goto out;
1281 		start = last_end + 1;
1282 		if (start < end && state && state->start == start &&
1283 		    !need_resched())
1284 			goto hit_next;
1285 		goto search_again;
1286 	}
1287 
1288 	/*
1289 	 *     | ---- desired range ---- |
1290 	 * | state |
1291 	 *   or
1292 	 * | ------------- state -------------- |
1293 	 *
1294 	 * We need to split the extent we found, and may flip bits on
1295 	 * second half.
1296 	 *
1297 	 * If the extent we found extends past our
1298 	 * range, we just split and search again.  It'll get split
1299 	 * again the next time though.
1300 	 *
1301 	 * If the extent we found is inside our range, we set the
1302 	 * desired bit on it.
1303 	 */
1304 	if (state->start < start) {
1305 		prealloc = alloc_extent_state_atomic(prealloc);
1306 		if (!prealloc) {
1307 			err = -ENOMEM;
1308 			goto out;
1309 		}
1310 		err = split_state(tree, state, prealloc, start);
1311 		if (err)
1312 			extent_io_tree_panic(tree, err);
1313 		prealloc = NULL;
1314 		if (err)
1315 			goto out;
1316 		if (state->end <= end) {
1317 			set_state_bits(tree, state, &bits, NULL);
1318 			cache_state(state, cached_state);
1319 			state = clear_state_bit(tree, state, &clear_bits, 0,
1320 						NULL);
1321 			if (last_end == (u64)-1)
1322 				goto out;
1323 			start = last_end + 1;
1324 			if (start < end && state && state->start == start &&
1325 			    !need_resched())
1326 				goto hit_next;
1327 		}
1328 		goto search_again;
1329 	}
1330 	/*
1331 	 * | ---- desired range ---- |
1332 	 *     | state | or               | state |
1333 	 *
1334 	 * There's a hole, we need to insert something in it and
1335 	 * ignore the extent we found.
1336 	 */
1337 	if (state->start > start) {
1338 		u64 this_end;
1339 		if (end < last_start)
1340 			this_end = end;
1341 		else
1342 			this_end = last_start - 1;
1343 
1344 		prealloc = alloc_extent_state_atomic(prealloc);
1345 		if (!prealloc) {
1346 			err = -ENOMEM;
1347 			goto out;
1348 		}
1349 
1350 		/*
1351 		 * Avoid to free 'prealloc' if it can be merged with
1352 		 * the later extent.
1353 		 */
1354 		err = insert_state(tree, prealloc, start, this_end,
1355 				   NULL, NULL, &bits, NULL);
1356 		if (err)
1357 			extent_io_tree_panic(tree, err);
1358 		cache_state(prealloc, cached_state);
1359 		prealloc = NULL;
1360 		start = this_end + 1;
1361 		goto search_again;
1362 	}
1363 	/*
1364 	 * | ---- desired range ---- |
1365 	 *                        | state |
1366 	 * We need to split the extent, and set the bit
1367 	 * on the first half
1368 	 */
1369 	if (state->start <= end && state->end > end) {
1370 		prealloc = alloc_extent_state_atomic(prealloc);
1371 		if (!prealloc) {
1372 			err = -ENOMEM;
1373 			goto out;
1374 		}
1375 
1376 		err = split_state(tree, state, prealloc, end + 1);
1377 		if (err)
1378 			extent_io_tree_panic(tree, err);
1379 
1380 		set_state_bits(tree, prealloc, &bits, NULL);
1381 		cache_state(prealloc, cached_state);
1382 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1383 		prealloc = NULL;
1384 		goto out;
1385 	}
1386 
1387 search_again:
1388 	if (start > end)
1389 		goto out;
1390 	spin_unlock(&tree->lock);
1391 	cond_resched();
1392 	first_iteration = false;
1393 	goto again;
1394 
1395 out:
1396 	spin_unlock(&tree->lock);
1397 	if (prealloc)
1398 		free_extent_state(prealloc);
1399 
1400 	return err;
1401 }
1402 
1403 /* wrappers around set/clear extent bit */
1404 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1405 			   u32 bits, struct extent_changeset *changeset)
1406 {
1407 	/*
1408 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1409 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1410 	 * either fail with -EEXIST or changeset will record the whole
1411 	 * range.
1412 	 */
1413 	BUG_ON(bits & EXTENT_LOCKED);
1414 
1415 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1416 			      changeset);
1417 }
1418 
1419 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1420 			   u32 bits)
1421 {
1422 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1423 			      GFP_NOWAIT, NULL);
1424 }
1425 
1426 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1427 		     u32 bits, int wake, int delete,
1428 		     struct extent_state **cached)
1429 {
1430 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1431 				  cached, GFP_NOFS, NULL);
1432 }
1433 
1434 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1435 		u32 bits, struct extent_changeset *changeset)
1436 {
1437 	/*
1438 	 * Don't support EXTENT_LOCKED case, same reason as
1439 	 * set_record_extent_bits().
1440 	 */
1441 	BUG_ON(bits & EXTENT_LOCKED);
1442 
1443 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1444 				  changeset);
1445 }
1446 
1447 /*
1448  * either insert or lock state struct between start and end use mask to tell
1449  * us if waiting is desired.
1450  */
1451 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1452 		     struct extent_state **cached_state)
1453 {
1454 	int err;
1455 	u64 failed_start;
1456 
1457 	while (1) {
1458 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1459 				     EXTENT_LOCKED, &failed_start,
1460 				     cached_state, GFP_NOFS, NULL);
1461 		if (err == -EEXIST) {
1462 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1463 			start = failed_start;
1464 		} else
1465 			break;
1466 		WARN_ON(start > end);
1467 	}
1468 	return err;
1469 }
1470 
1471 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1472 {
1473 	int err;
1474 	u64 failed_start;
1475 
1476 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1477 			     &failed_start, NULL, GFP_NOFS, NULL);
1478 	if (err == -EEXIST) {
1479 		if (failed_start > start)
1480 			clear_extent_bit(tree, start, failed_start - 1,
1481 					 EXTENT_LOCKED, 1, 0, NULL);
1482 		return 0;
1483 	}
1484 	return 1;
1485 }
1486 
1487 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1488 {
1489 	unsigned long index = start >> PAGE_SHIFT;
1490 	unsigned long end_index = end >> PAGE_SHIFT;
1491 	struct page *page;
1492 
1493 	while (index <= end_index) {
1494 		page = find_get_page(inode->i_mapping, index);
1495 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1496 		clear_page_dirty_for_io(page);
1497 		put_page(page);
1498 		index++;
1499 	}
1500 }
1501 
1502 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1503 {
1504 	unsigned long index = start >> PAGE_SHIFT;
1505 	unsigned long end_index = end >> PAGE_SHIFT;
1506 	struct page *page;
1507 
1508 	while (index <= end_index) {
1509 		page = find_get_page(inode->i_mapping, index);
1510 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1511 		__set_page_dirty_nobuffers(page);
1512 		account_page_redirty(page);
1513 		put_page(page);
1514 		index++;
1515 	}
1516 }
1517 
1518 /* find the first state struct with 'bits' set after 'start', and
1519  * return it.  tree->lock must be held.  NULL will returned if
1520  * nothing was found after 'start'
1521  */
1522 static struct extent_state *
1523 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1524 {
1525 	struct rb_node *node;
1526 	struct extent_state *state;
1527 
1528 	/*
1529 	 * this search will find all the extents that end after
1530 	 * our range starts.
1531 	 */
1532 	node = tree_search(tree, start);
1533 	if (!node)
1534 		goto out;
1535 
1536 	while (1) {
1537 		state = rb_entry(node, struct extent_state, rb_node);
1538 		if (state->end >= start && (state->state & bits))
1539 			return state;
1540 
1541 		node = rb_next(node);
1542 		if (!node)
1543 			break;
1544 	}
1545 out:
1546 	return NULL;
1547 }
1548 
1549 /*
1550  * Find the first offset in the io tree with one or more @bits set.
1551  *
1552  * Note: If there are multiple bits set in @bits, any of them will match.
1553  *
1554  * Return 0 if we find something, and update @start_ret and @end_ret.
1555  * Return 1 if we found nothing.
1556  */
1557 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1558 			  u64 *start_ret, u64 *end_ret, u32 bits,
1559 			  struct extent_state **cached_state)
1560 {
1561 	struct extent_state *state;
1562 	int ret = 1;
1563 
1564 	spin_lock(&tree->lock);
1565 	if (cached_state && *cached_state) {
1566 		state = *cached_state;
1567 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1568 			while ((state = next_state(state)) != NULL) {
1569 				if (state->state & bits)
1570 					goto got_it;
1571 			}
1572 			free_extent_state(*cached_state);
1573 			*cached_state = NULL;
1574 			goto out;
1575 		}
1576 		free_extent_state(*cached_state);
1577 		*cached_state = NULL;
1578 	}
1579 
1580 	state = find_first_extent_bit_state(tree, start, bits);
1581 got_it:
1582 	if (state) {
1583 		cache_state_if_flags(state, cached_state, 0);
1584 		*start_ret = state->start;
1585 		*end_ret = state->end;
1586 		ret = 0;
1587 	}
1588 out:
1589 	spin_unlock(&tree->lock);
1590 	return ret;
1591 }
1592 
1593 /**
1594  * Find a contiguous area of bits
1595  *
1596  * @tree:      io tree to check
1597  * @start:     offset to start the search from
1598  * @start_ret: the first offset we found with the bits set
1599  * @end_ret:   the final contiguous range of the bits that were set
1600  * @bits:      bits to look for
1601  *
1602  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1603  * to set bits appropriately, and then merge them again.  During this time it
1604  * will drop the tree->lock, so use this helper if you want to find the actual
1605  * contiguous area for given bits.  We will search to the first bit we find, and
1606  * then walk down the tree until we find a non-contiguous area.  The area
1607  * returned will be the full contiguous area with the bits set.
1608  */
1609 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1610 			       u64 *start_ret, u64 *end_ret, u32 bits)
1611 {
1612 	struct extent_state *state;
1613 	int ret = 1;
1614 
1615 	spin_lock(&tree->lock);
1616 	state = find_first_extent_bit_state(tree, start, bits);
1617 	if (state) {
1618 		*start_ret = state->start;
1619 		*end_ret = state->end;
1620 		while ((state = next_state(state)) != NULL) {
1621 			if (state->start > (*end_ret + 1))
1622 				break;
1623 			*end_ret = state->end;
1624 		}
1625 		ret = 0;
1626 	}
1627 	spin_unlock(&tree->lock);
1628 	return ret;
1629 }
1630 
1631 /**
1632  * Find the first range that has @bits not set. This range could start before
1633  * @start.
1634  *
1635  * @tree:      the tree to search
1636  * @start:     offset at/after which the found extent should start
1637  * @start_ret: records the beginning of the range
1638  * @end_ret:   records the end of the range (inclusive)
1639  * @bits:      the set of bits which must be unset
1640  *
1641  * Since unallocated range is also considered one which doesn't have the bits
1642  * set it's possible that @end_ret contains -1, this happens in case the range
1643  * spans (last_range_end, end of device]. In this case it's up to the caller to
1644  * trim @end_ret to the appropriate size.
1645  */
1646 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1647 				 u64 *start_ret, u64 *end_ret, u32 bits)
1648 {
1649 	struct extent_state *state;
1650 	struct rb_node *node, *prev = NULL, *next;
1651 
1652 	spin_lock(&tree->lock);
1653 
1654 	/* Find first extent with bits cleared */
1655 	while (1) {
1656 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1657 		if (!node && !next && !prev) {
1658 			/*
1659 			 * Tree is completely empty, send full range and let
1660 			 * caller deal with it
1661 			 */
1662 			*start_ret = 0;
1663 			*end_ret = -1;
1664 			goto out;
1665 		} else if (!node && !next) {
1666 			/*
1667 			 * We are past the last allocated chunk, set start at
1668 			 * the end of the last extent.
1669 			 */
1670 			state = rb_entry(prev, struct extent_state, rb_node);
1671 			*start_ret = state->end + 1;
1672 			*end_ret = -1;
1673 			goto out;
1674 		} else if (!node) {
1675 			node = next;
1676 		}
1677 		/*
1678 		 * At this point 'node' either contains 'start' or start is
1679 		 * before 'node'
1680 		 */
1681 		state = rb_entry(node, struct extent_state, rb_node);
1682 
1683 		if (in_range(start, state->start, state->end - state->start + 1)) {
1684 			if (state->state & bits) {
1685 				/*
1686 				 * |--range with bits sets--|
1687 				 *    |
1688 				 *    start
1689 				 */
1690 				start = state->end + 1;
1691 			} else {
1692 				/*
1693 				 * 'start' falls within a range that doesn't
1694 				 * have the bits set, so take its start as
1695 				 * the beginning of the desired range
1696 				 *
1697 				 * |--range with bits cleared----|
1698 				 *      |
1699 				 *      start
1700 				 */
1701 				*start_ret = state->start;
1702 				break;
1703 			}
1704 		} else {
1705 			/*
1706 			 * |---prev range---|---hole/unset---|---node range---|
1707 			 *                          |
1708 			 *                        start
1709 			 *
1710 			 *                        or
1711 			 *
1712 			 * |---hole/unset--||--first node--|
1713 			 * 0   |
1714 			 *    start
1715 			 */
1716 			if (prev) {
1717 				state = rb_entry(prev, struct extent_state,
1718 						 rb_node);
1719 				*start_ret = state->end + 1;
1720 			} else {
1721 				*start_ret = 0;
1722 			}
1723 			break;
1724 		}
1725 	}
1726 
1727 	/*
1728 	 * Find the longest stretch from start until an entry which has the
1729 	 * bits set
1730 	 */
1731 	while (1) {
1732 		state = rb_entry(node, struct extent_state, rb_node);
1733 		if (state->end >= start && !(state->state & bits)) {
1734 			*end_ret = state->end;
1735 		} else {
1736 			*end_ret = state->start - 1;
1737 			break;
1738 		}
1739 
1740 		node = rb_next(node);
1741 		if (!node)
1742 			break;
1743 	}
1744 out:
1745 	spin_unlock(&tree->lock);
1746 }
1747 
1748 /*
1749  * find a contiguous range of bytes in the file marked as delalloc, not
1750  * more than 'max_bytes'.  start and end are used to return the range,
1751  *
1752  * true is returned if we find something, false if nothing was in the tree
1753  */
1754 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1755 			       u64 *end, u64 max_bytes,
1756 			       struct extent_state **cached_state)
1757 {
1758 	struct rb_node *node;
1759 	struct extent_state *state;
1760 	u64 cur_start = *start;
1761 	bool found = false;
1762 	u64 total_bytes = 0;
1763 
1764 	spin_lock(&tree->lock);
1765 
1766 	/*
1767 	 * this search will find all the extents that end after
1768 	 * our range starts.
1769 	 */
1770 	node = tree_search(tree, cur_start);
1771 	if (!node) {
1772 		*end = (u64)-1;
1773 		goto out;
1774 	}
1775 
1776 	while (1) {
1777 		state = rb_entry(node, struct extent_state, rb_node);
1778 		if (found && (state->start != cur_start ||
1779 			      (state->state & EXTENT_BOUNDARY))) {
1780 			goto out;
1781 		}
1782 		if (!(state->state & EXTENT_DELALLOC)) {
1783 			if (!found)
1784 				*end = state->end;
1785 			goto out;
1786 		}
1787 		if (!found) {
1788 			*start = state->start;
1789 			*cached_state = state;
1790 			refcount_inc(&state->refs);
1791 		}
1792 		found = true;
1793 		*end = state->end;
1794 		cur_start = state->end + 1;
1795 		node = rb_next(node);
1796 		total_bytes += state->end - state->start + 1;
1797 		if (total_bytes >= max_bytes)
1798 			break;
1799 		if (!node)
1800 			break;
1801 	}
1802 out:
1803 	spin_unlock(&tree->lock);
1804 	return found;
1805 }
1806 
1807 static int __process_pages_contig(struct address_space *mapping,
1808 				  struct page *locked_page,
1809 				  pgoff_t start_index, pgoff_t end_index,
1810 				  unsigned long page_ops, pgoff_t *index_ret);
1811 
1812 static noinline void __unlock_for_delalloc(struct inode *inode,
1813 					   struct page *locked_page,
1814 					   u64 start, u64 end)
1815 {
1816 	unsigned long index = start >> PAGE_SHIFT;
1817 	unsigned long end_index = end >> PAGE_SHIFT;
1818 
1819 	ASSERT(locked_page);
1820 	if (index == locked_page->index && end_index == index)
1821 		return;
1822 
1823 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1824 			       PAGE_UNLOCK, NULL);
1825 }
1826 
1827 static noinline int lock_delalloc_pages(struct inode *inode,
1828 					struct page *locked_page,
1829 					u64 delalloc_start,
1830 					u64 delalloc_end)
1831 {
1832 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1833 	unsigned long index_ret = index;
1834 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1835 	int ret;
1836 
1837 	ASSERT(locked_page);
1838 	if (index == locked_page->index && index == end_index)
1839 		return 0;
1840 
1841 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1842 				     end_index, PAGE_LOCK, &index_ret);
1843 	if (ret == -EAGAIN)
1844 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1845 				      (u64)index_ret << PAGE_SHIFT);
1846 	return ret;
1847 }
1848 
1849 /*
1850  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1851  * more than @max_bytes.  @Start and @end are used to return the range,
1852  *
1853  * Return: true if we find something
1854  *         false if nothing was in the tree
1855  */
1856 EXPORT_FOR_TESTS
1857 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1858 				    struct page *locked_page, u64 *start,
1859 				    u64 *end)
1860 {
1861 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1862 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1863 	u64 delalloc_start;
1864 	u64 delalloc_end;
1865 	bool found;
1866 	struct extent_state *cached_state = NULL;
1867 	int ret;
1868 	int loops = 0;
1869 
1870 again:
1871 	/* step one, find a bunch of delalloc bytes starting at start */
1872 	delalloc_start = *start;
1873 	delalloc_end = 0;
1874 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1875 					  max_bytes, &cached_state);
1876 	if (!found || delalloc_end <= *start) {
1877 		*start = delalloc_start;
1878 		*end = delalloc_end;
1879 		free_extent_state(cached_state);
1880 		return false;
1881 	}
1882 
1883 	/*
1884 	 * start comes from the offset of locked_page.  We have to lock
1885 	 * pages in order, so we can't process delalloc bytes before
1886 	 * locked_page
1887 	 */
1888 	if (delalloc_start < *start)
1889 		delalloc_start = *start;
1890 
1891 	/*
1892 	 * make sure to limit the number of pages we try to lock down
1893 	 */
1894 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1895 		delalloc_end = delalloc_start + max_bytes - 1;
1896 
1897 	/* step two, lock all the pages after the page that has start */
1898 	ret = lock_delalloc_pages(inode, locked_page,
1899 				  delalloc_start, delalloc_end);
1900 	ASSERT(!ret || ret == -EAGAIN);
1901 	if (ret == -EAGAIN) {
1902 		/* some of the pages are gone, lets avoid looping by
1903 		 * shortening the size of the delalloc range we're searching
1904 		 */
1905 		free_extent_state(cached_state);
1906 		cached_state = NULL;
1907 		if (!loops) {
1908 			max_bytes = PAGE_SIZE;
1909 			loops = 1;
1910 			goto again;
1911 		} else {
1912 			found = false;
1913 			goto out_failed;
1914 		}
1915 	}
1916 
1917 	/* step three, lock the state bits for the whole range */
1918 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1919 
1920 	/* then test to make sure it is all still delalloc */
1921 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1922 			     EXTENT_DELALLOC, 1, cached_state);
1923 	if (!ret) {
1924 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1925 				     &cached_state);
1926 		__unlock_for_delalloc(inode, locked_page,
1927 			      delalloc_start, delalloc_end);
1928 		cond_resched();
1929 		goto again;
1930 	}
1931 	free_extent_state(cached_state);
1932 	*start = delalloc_start;
1933 	*end = delalloc_end;
1934 out_failed:
1935 	return found;
1936 }
1937 
1938 static int __process_pages_contig(struct address_space *mapping,
1939 				  struct page *locked_page,
1940 				  pgoff_t start_index, pgoff_t end_index,
1941 				  unsigned long page_ops, pgoff_t *index_ret)
1942 {
1943 	unsigned long nr_pages = end_index - start_index + 1;
1944 	unsigned long pages_processed = 0;
1945 	pgoff_t index = start_index;
1946 	struct page *pages[16];
1947 	unsigned ret;
1948 	int err = 0;
1949 	int i;
1950 
1951 	if (page_ops & PAGE_LOCK) {
1952 		ASSERT(page_ops == PAGE_LOCK);
1953 		ASSERT(index_ret && *index_ret == start_index);
1954 	}
1955 
1956 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1957 		mapping_set_error(mapping, -EIO);
1958 
1959 	while (nr_pages > 0) {
1960 		ret = find_get_pages_contig(mapping, index,
1961 				     min_t(unsigned long,
1962 				     nr_pages, ARRAY_SIZE(pages)), pages);
1963 		if (ret == 0) {
1964 			/*
1965 			 * Only if we're going to lock these pages,
1966 			 * can we find nothing at @index.
1967 			 */
1968 			ASSERT(page_ops & PAGE_LOCK);
1969 			err = -EAGAIN;
1970 			goto out;
1971 		}
1972 
1973 		for (i = 0; i < ret; i++) {
1974 			if (page_ops & PAGE_SET_PRIVATE2)
1975 				SetPagePrivate2(pages[i]);
1976 
1977 			if (locked_page && pages[i] == locked_page) {
1978 				put_page(pages[i]);
1979 				pages_processed++;
1980 				continue;
1981 			}
1982 			if (page_ops & PAGE_START_WRITEBACK) {
1983 				clear_page_dirty_for_io(pages[i]);
1984 				set_page_writeback(pages[i]);
1985 			}
1986 			if (page_ops & PAGE_SET_ERROR)
1987 				SetPageError(pages[i]);
1988 			if (page_ops & PAGE_END_WRITEBACK)
1989 				end_page_writeback(pages[i]);
1990 			if (page_ops & PAGE_UNLOCK)
1991 				unlock_page(pages[i]);
1992 			if (page_ops & PAGE_LOCK) {
1993 				lock_page(pages[i]);
1994 				if (!PageDirty(pages[i]) ||
1995 				    pages[i]->mapping != mapping) {
1996 					unlock_page(pages[i]);
1997 					for (; i < ret; i++)
1998 						put_page(pages[i]);
1999 					err = -EAGAIN;
2000 					goto out;
2001 				}
2002 			}
2003 			put_page(pages[i]);
2004 			pages_processed++;
2005 		}
2006 		nr_pages -= ret;
2007 		index += ret;
2008 		cond_resched();
2009 	}
2010 out:
2011 	if (err && index_ret)
2012 		*index_ret = start_index + pages_processed - 1;
2013 	return err;
2014 }
2015 
2016 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2017 				  struct page *locked_page,
2018 				  u32 clear_bits, unsigned long page_ops)
2019 {
2020 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2021 
2022 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2023 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2024 			       page_ops, NULL);
2025 }
2026 
2027 /*
2028  * count the number of bytes in the tree that have a given bit(s)
2029  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2030  * cached.  The total number found is returned.
2031  */
2032 u64 count_range_bits(struct extent_io_tree *tree,
2033 		     u64 *start, u64 search_end, u64 max_bytes,
2034 		     u32 bits, int contig)
2035 {
2036 	struct rb_node *node;
2037 	struct extent_state *state;
2038 	u64 cur_start = *start;
2039 	u64 total_bytes = 0;
2040 	u64 last = 0;
2041 	int found = 0;
2042 
2043 	if (WARN_ON(search_end <= cur_start))
2044 		return 0;
2045 
2046 	spin_lock(&tree->lock);
2047 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2048 		total_bytes = tree->dirty_bytes;
2049 		goto out;
2050 	}
2051 	/*
2052 	 * this search will find all the extents that end after
2053 	 * our range starts.
2054 	 */
2055 	node = tree_search(tree, cur_start);
2056 	if (!node)
2057 		goto out;
2058 
2059 	while (1) {
2060 		state = rb_entry(node, struct extent_state, rb_node);
2061 		if (state->start > search_end)
2062 			break;
2063 		if (contig && found && state->start > last + 1)
2064 			break;
2065 		if (state->end >= cur_start && (state->state & bits) == bits) {
2066 			total_bytes += min(search_end, state->end) + 1 -
2067 				       max(cur_start, state->start);
2068 			if (total_bytes >= max_bytes)
2069 				break;
2070 			if (!found) {
2071 				*start = max(cur_start, state->start);
2072 				found = 1;
2073 			}
2074 			last = state->end;
2075 		} else if (contig && found) {
2076 			break;
2077 		}
2078 		node = rb_next(node);
2079 		if (!node)
2080 			break;
2081 	}
2082 out:
2083 	spin_unlock(&tree->lock);
2084 	return total_bytes;
2085 }
2086 
2087 /*
2088  * set the private field for a given byte offset in the tree.  If there isn't
2089  * an extent_state there already, this does nothing.
2090  */
2091 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2092 		      struct io_failure_record *failrec)
2093 {
2094 	struct rb_node *node;
2095 	struct extent_state *state;
2096 	int ret = 0;
2097 
2098 	spin_lock(&tree->lock);
2099 	/*
2100 	 * this search will find all the extents that end after
2101 	 * our range starts.
2102 	 */
2103 	node = tree_search(tree, start);
2104 	if (!node) {
2105 		ret = -ENOENT;
2106 		goto out;
2107 	}
2108 	state = rb_entry(node, struct extent_state, rb_node);
2109 	if (state->start != start) {
2110 		ret = -ENOENT;
2111 		goto out;
2112 	}
2113 	state->failrec = failrec;
2114 out:
2115 	spin_unlock(&tree->lock);
2116 	return ret;
2117 }
2118 
2119 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2120 {
2121 	struct rb_node *node;
2122 	struct extent_state *state;
2123 	struct io_failure_record *failrec;
2124 
2125 	spin_lock(&tree->lock);
2126 	/*
2127 	 * this search will find all the extents that end after
2128 	 * our range starts.
2129 	 */
2130 	node = tree_search(tree, start);
2131 	if (!node) {
2132 		failrec = ERR_PTR(-ENOENT);
2133 		goto out;
2134 	}
2135 	state = rb_entry(node, struct extent_state, rb_node);
2136 	if (state->start != start) {
2137 		failrec = ERR_PTR(-ENOENT);
2138 		goto out;
2139 	}
2140 
2141 	failrec = state->failrec;
2142 out:
2143 	spin_unlock(&tree->lock);
2144 	return failrec;
2145 }
2146 
2147 /*
2148  * searches a range in the state tree for a given mask.
2149  * If 'filled' == 1, this returns 1 only if every extent in the tree
2150  * has the bits set.  Otherwise, 1 is returned if any bit in the
2151  * range is found set.
2152  */
2153 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2154 		   u32 bits, int filled, struct extent_state *cached)
2155 {
2156 	struct extent_state *state = NULL;
2157 	struct rb_node *node;
2158 	int bitset = 0;
2159 
2160 	spin_lock(&tree->lock);
2161 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2162 	    cached->end > start)
2163 		node = &cached->rb_node;
2164 	else
2165 		node = tree_search(tree, start);
2166 	while (node && start <= end) {
2167 		state = rb_entry(node, struct extent_state, rb_node);
2168 
2169 		if (filled && state->start > start) {
2170 			bitset = 0;
2171 			break;
2172 		}
2173 
2174 		if (state->start > end)
2175 			break;
2176 
2177 		if (state->state & bits) {
2178 			bitset = 1;
2179 			if (!filled)
2180 				break;
2181 		} else if (filled) {
2182 			bitset = 0;
2183 			break;
2184 		}
2185 
2186 		if (state->end == (u64)-1)
2187 			break;
2188 
2189 		start = state->end + 1;
2190 		if (start > end)
2191 			break;
2192 		node = rb_next(node);
2193 		if (!node) {
2194 			if (filled)
2195 				bitset = 0;
2196 			break;
2197 		}
2198 	}
2199 	spin_unlock(&tree->lock);
2200 	return bitset;
2201 }
2202 
2203 /*
2204  * helper function to set a given page up to date if all the
2205  * extents in the tree for that page are up to date
2206  */
2207 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2208 {
2209 	u64 start = page_offset(page);
2210 	u64 end = start + PAGE_SIZE - 1;
2211 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2212 		SetPageUptodate(page);
2213 }
2214 
2215 int free_io_failure(struct extent_io_tree *failure_tree,
2216 		    struct extent_io_tree *io_tree,
2217 		    struct io_failure_record *rec)
2218 {
2219 	int ret;
2220 	int err = 0;
2221 
2222 	set_state_failrec(failure_tree, rec->start, NULL);
2223 	ret = clear_extent_bits(failure_tree, rec->start,
2224 				rec->start + rec->len - 1,
2225 				EXTENT_LOCKED | EXTENT_DIRTY);
2226 	if (ret)
2227 		err = ret;
2228 
2229 	ret = clear_extent_bits(io_tree, rec->start,
2230 				rec->start + rec->len - 1,
2231 				EXTENT_DAMAGED);
2232 	if (ret && !err)
2233 		err = ret;
2234 
2235 	kfree(rec);
2236 	return err;
2237 }
2238 
2239 /*
2240  * this bypasses the standard btrfs submit functions deliberately, as
2241  * the standard behavior is to write all copies in a raid setup. here we only
2242  * want to write the one bad copy. so we do the mapping for ourselves and issue
2243  * submit_bio directly.
2244  * to avoid any synchronization issues, wait for the data after writing, which
2245  * actually prevents the read that triggered the error from finishing.
2246  * currently, there can be no more than two copies of every data bit. thus,
2247  * exactly one rewrite is required.
2248  */
2249 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2250 		      u64 length, u64 logical, struct page *page,
2251 		      unsigned int pg_offset, int mirror_num)
2252 {
2253 	struct bio *bio;
2254 	struct btrfs_device *dev;
2255 	u64 map_length = 0;
2256 	u64 sector;
2257 	struct btrfs_bio *bbio = NULL;
2258 	int ret;
2259 
2260 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2261 	BUG_ON(!mirror_num);
2262 
2263 	if (btrfs_is_zoned(fs_info))
2264 		return btrfs_repair_one_zone(fs_info, logical);
2265 
2266 	bio = btrfs_io_bio_alloc(1);
2267 	bio->bi_iter.bi_size = 0;
2268 	map_length = length;
2269 
2270 	/*
2271 	 * Avoid races with device replace and make sure our bbio has devices
2272 	 * associated to its stripes that don't go away while we are doing the
2273 	 * read repair operation.
2274 	 */
2275 	btrfs_bio_counter_inc_blocked(fs_info);
2276 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2277 		/*
2278 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2279 		 * to update all raid stripes, but here we just want to correct
2280 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2281 		 * stripe's dev and sector.
2282 		 */
2283 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2284 				      &map_length, &bbio, 0);
2285 		if (ret) {
2286 			btrfs_bio_counter_dec(fs_info);
2287 			bio_put(bio);
2288 			return -EIO;
2289 		}
2290 		ASSERT(bbio->mirror_num == 1);
2291 	} else {
2292 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2293 				      &map_length, &bbio, mirror_num);
2294 		if (ret) {
2295 			btrfs_bio_counter_dec(fs_info);
2296 			bio_put(bio);
2297 			return -EIO;
2298 		}
2299 		BUG_ON(mirror_num != bbio->mirror_num);
2300 	}
2301 
2302 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2303 	bio->bi_iter.bi_sector = sector;
2304 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2305 	btrfs_put_bbio(bbio);
2306 	if (!dev || !dev->bdev ||
2307 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2308 		btrfs_bio_counter_dec(fs_info);
2309 		bio_put(bio);
2310 		return -EIO;
2311 	}
2312 	bio_set_dev(bio, dev->bdev);
2313 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2314 	bio_add_page(bio, page, length, pg_offset);
2315 
2316 	if (btrfsic_submit_bio_wait(bio)) {
2317 		/* try to remap that extent elsewhere? */
2318 		btrfs_bio_counter_dec(fs_info);
2319 		bio_put(bio);
2320 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2321 		return -EIO;
2322 	}
2323 
2324 	btrfs_info_rl_in_rcu(fs_info,
2325 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2326 				  ino, start,
2327 				  rcu_str_deref(dev->name), sector);
2328 	btrfs_bio_counter_dec(fs_info);
2329 	bio_put(bio);
2330 	return 0;
2331 }
2332 
2333 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2334 {
2335 	struct btrfs_fs_info *fs_info = eb->fs_info;
2336 	u64 start = eb->start;
2337 	int i, num_pages = num_extent_pages(eb);
2338 	int ret = 0;
2339 
2340 	if (sb_rdonly(fs_info->sb))
2341 		return -EROFS;
2342 
2343 	for (i = 0; i < num_pages; i++) {
2344 		struct page *p = eb->pages[i];
2345 
2346 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2347 					start - page_offset(p), mirror_num);
2348 		if (ret)
2349 			break;
2350 		start += PAGE_SIZE;
2351 	}
2352 
2353 	return ret;
2354 }
2355 
2356 /*
2357  * each time an IO finishes, we do a fast check in the IO failure tree
2358  * to see if we need to process or clean up an io_failure_record
2359  */
2360 int clean_io_failure(struct btrfs_fs_info *fs_info,
2361 		     struct extent_io_tree *failure_tree,
2362 		     struct extent_io_tree *io_tree, u64 start,
2363 		     struct page *page, u64 ino, unsigned int pg_offset)
2364 {
2365 	u64 private;
2366 	struct io_failure_record *failrec;
2367 	struct extent_state *state;
2368 	int num_copies;
2369 	int ret;
2370 
2371 	private = 0;
2372 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2373 			       EXTENT_DIRTY, 0);
2374 	if (!ret)
2375 		return 0;
2376 
2377 	failrec = get_state_failrec(failure_tree, start);
2378 	if (IS_ERR(failrec))
2379 		return 0;
2380 
2381 	BUG_ON(!failrec->this_mirror);
2382 
2383 	if (failrec->in_validation) {
2384 		/* there was no real error, just free the record */
2385 		btrfs_debug(fs_info,
2386 			"clean_io_failure: freeing dummy error at %llu",
2387 			failrec->start);
2388 		goto out;
2389 	}
2390 	if (sb_rdonly(fs_info->sb))
2391 		goto out;
2392 
2393 	spin_lock(&io_tree->lock);
2394 	state = find_first_extent_bit_state(io_tree,
2395 					    failrec->start,
2396 					    EXTENT_LOCKED);
2397 	spin_unlock(&io_tree->lock);
2398 
2399 	if (state && state->start <= failrec->start &&
2400 	    state->end >= failrec->start + failrec->len - 1) {
2401 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2402 					      failrec->len);
2403 		if (num_copies > 1)  {
2404 			repair_io_failure(fs_info, ino, start, failrec->len,
2405 					  failrec->logical, page, pg_offset,
2406 					  failrec->failed_mirror);
2407 		}
2408 	}
2409 
2410 out:
2411 	free_io_failure(failure_tree, io_tree, failrec);
2412 
2413 	return 0;
2414 }
2415 
2416 /*
2417  * Can be called when
2418  * - hold extent lock
2419  * - under ordered extent
2420  * - the inode is freeing
2421  */
2422 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2423 {
2424 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2425 	struct io_failure_record *failrec;
2426 	struct extent_state *state, *next;
2427 
2428 	if (RB_EMPTY_ROOT(&failure_tree->state))
2429 		return;
2430 
2431 	spin_lock(&failure_tree->lock);
2432 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2433 	while (state) {
2434 		if (state->start > end)
2435 			break;
2436 
2437 		ASSERT(state->end <= end);
2438 
2439 		next = next_state(state);
2440 
2441 		failrec = state->failrec;
2442 		free_extent_state(state);
2443 		kfree(failrec);
2444 
2445 		state = next;
2446 	}
2447 	spin_unlock(&failure_tree->lock);
2448 }
2449 
2450 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2451 							     u64 start, u64 end)
2452 {
2453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2454 	struct io_failure_record *failrec;
2455 	struct extent_map *em;
2456 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2457 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2458 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2459 	int ret;
2460 	u64 logical;
2461 
2462 	failrec = get_state_failrec(failure_tree, start);
2463 	if (!IS_ERR(failrec)) {
2464 		btrfs_debug(fs_info,
2465 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2466 			failrec->logical, failrec->start, failrec->len,
2467 			failrec->in_validation);
2468 		/*
2469 		 * when data can be on disk more than twice, add to failrec here
2470 		 * (e.g. with a list for failed_mirror) to make
2471 		 * clean_io_failure() clean all those errors at once.
2472 		 */
2473 
2474 		return failrec;
2475 	}
2476 
2477 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2478 	if (!failrec)
2479 		return ERR_PTR(-ENOMEM);
2480 
2481 	failrec->start = start;
2482 	failrec->len = end - start + 1;
2483 	failrec->this_mirror = 0;
2484 	failrec->bio_flags = 0;
2485 	failrec->in_validation = 0;
2486 
2487 	read_lock(&em_tree->lock);
2488 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2489 	if (!em) {
2490 		read_unlock(&em_tree->lock);
2491 		kfree(failrec);
2492 		return ERR_PTR(-EIO);
2493 	}
2494 
2495 	if (em->start > start || em->start + em->len <= start) {
2496 		free_extent_map(em);
2497 		em = NULL;
2498 	}
2499 	read_unlock(&em_tree->lock);
2500 	if (!em) {
2501 		kfree(failrec);
2502 		return ERR_PTR(-EIO);
2503 	}
2504 
2505 	logical = start - em->start;
2506 	logical = em->block_start + logical;
2507 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2508 		logical = em->block_start;
2509 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2510 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2511 	}
2512 
2513 	btrfs_debug(fs_info,
2514 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2515 		    logical, start, failrec->len);
2516 
2517 	failrec->logical = logical;
2518 	free_extent_map(em);
2519 
2520 	/* Set the bits in the private failure tree */
2521 	ret = set_extent_bits(failure_tree, start, end,
2522 			      EXTENT_LOCKED | EXTENT_DIRTY);
2523 	if (ret >= 0) {
2524 		ret = set_state_failrec(failure_tree, start, failrec);
2525 		/* Set the bits in the inode's tree */
2526 		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2527 	} else if (ret < 0) {
2528 		kfree(failrec);
2529 		return ERR_PTR(ret);
2530 	}
2531 
2532 	return failrec;
2533 }
2534 
2535 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2536 				   struct io_failure_record *failrec,
2537 				   int failed_mirror)
2538 {
2539 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2540 	int num_copies;
2541 
2542 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2543 	if (num_copies == 1) {
2544 		/*
2545 		 * we only have a single copy of the data, so don't bother with
2546 		 * all the retry and error correction code that follows. no
2547 		 * matter what the error is, it is very likely to persist.
2548 		 */
2549 		btrfs_debug(fs_info,
2550 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2551 			num_copies, failrec->this_mirror, failed_mirror);
2552 		return false;
2553 	}
2554 
2555 	/*
2556 	 * there are two premises:
2557 	 *	a) deliver good data to the caller
2558 	 *	b) correct the bad sectors on disk
2559 	 */
2560 	if (needs_validation) {
2561 		/*
2562 		 * to fulfill b), we need to know the exact failing sectors, as
2563 		 * we don't want to rewrite any more than the failed ones. thus,
2564 		 * we need separate read requests for the failed bio
2565 		 *
2566 		 * if the following BUG_ON triggers, our validation request got
2567 		 * merged. we need separate requests for our algorithm to work.
2568 		 */
2569 		BUG_ON(failrec->in_validation);
2570 		failrec->in_validation = 1;
2571 		failrec->this_mirror = failed_mirror;
2572 	} else {
2573 		/*
2574 		 * we're ready to fulfill a) and b) alongside. get a good copy
2575 		 * of the failed sector and if we succeed, we have setup
2576 		 * everything for repair_io_failure to do the rest for us.
2577 		 */
2578 		if (failrec->in_validation) {
2579 			BUG_ON(failrec->this_mirror != failed_mirror);
2580 			failrec->in_validation = 0;
2581 			failrec->this_mirror = 0;
2582 		}
2583 		failrec->failed_mirror = failed_mirror;
2584 		failrec->this_mirror++;
2585 		if (failrec->this_mirror == failed_mirror)
2586 			failrec->this_mirror++;
2587 	}
2588 
2589 	if (failrec->this_mirror > num_copies) {
2590 		btrfs_debug(fs_info,
2591 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2592 			num_copies, failrec->this_mirror, failed_mirror);
2593 		return false;
2594 	}
2595 
2596 	return true;
2597 }
2598 
2599 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2600 {
2601 	u64 len = 0;
2602 	const u32 blocksize = inode->i_sb->s_blocksize;
2603 
2604 	/*
2605 	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2606 	 * I/O error. In this case, we already know exactly which sector was
2607 	 * bad, so we don't need to validate.
2608 	 */
2609 	if (bio->bi_status == BLK_STS_OK)
2610 		return false;
2611 
2612 	/*
2613 	 * We need to validate each sector individually if the failed I/O was
2614 	 * for multiple sectors.
2615 	 *
2616 	 * There are a few possible bios that can end up here:
2617 	 * 1. A buffered read bio, which is not cloned.
2618 	 * 2. A direct I/O read bio, which is cloned.
2619 	 * 3. A (buffered or direct) repair bio, which is not cloned.
2620 	 *
2621 	 * For cloned bios (case 2), we can get the size from
2622 	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2623 	 * it from the bvecs.
2624 	 */
2625 	if (bio_flagged(bio, BIO_CLONED)) {
2626 		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2627 			return true;
2628 	} else {
2629 		struct bio_vec *bvec;
2630 		int i;
2631 
2632 		bio_for_each_bvec_all(bvec, bio, i) {
2633 			len += bvec->bv_len;
2634 			if (len > blocksize)
2635 				return true;
2636 		}
2637 	}
2638 	return false;
2639 }
2640 
2641 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2642 				      struct bio *failed_bio, u32 bio_offset,
2643 				      struct page *page, unsigned int pgoff,
2644 				      u64 start, u64 end, int failed_mirror,
2645 				      submit_bio_hook_t *submit_bio_hook)
2646 {
2647 	struct io_failure_record *failrec;
2648 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2649 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2650 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2651 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2652 	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2653 	bool need_validation;
2654 	struct bio *repair_bio;
2655 	struct btrfs_io_bio *repair_io_bio;
2656 	blk_status_t status;
2657 
2658 	btrfs_debug(fs_info,
2659 		   "repair read error: read error at %llu", start);
2660 
2661 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2662 
2663 	failrec = btrfs_get_io_failure_record(inode, start, end);
2664 	if (IS_ERR(failrec))
2665 		return errno_to_blk_status(PTR_ERR(failrec));
2666 
2667 	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2668 
2669 	if (!btrfs_check_repairable(inode, need_validation, failrec,
2670 				    failed_mirror)) {
2671 		free_io_failure(failure_tree, tree, failrec);
2672 		return BLK_STS_IOERR;
2673 	}
2674 
2675 	repair_bio = btrfs_io_bio_alloc(1);
2676 	repair_io_bio = btrfs_io_bio(repair_bio);
2677 	repair_bio->bi_opf = REQ_OP_READ;
2678 	if (need_validation)
2679 		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2680 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2681 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2682 	repair_bio->bi_private = failed_bio->bi_private;
2683 
2684 	if (failed_io_bio->csum) {
2685 		const u32 csum_size = fs_info->csum_size;
2686 
2687 		repair_io_bio->csum = repair_io_bio->csum_inline;
2688 		memcpy(repair_io_bio->csum,
2689 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2690 	}
2691 
2692 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2693 	repair_io_bio->logical = failrec->start;
2694 	repair_io_bio->iter = repair_bio->bi_iter;
2695 
2696 	btrfs_debug(btrfs_sb(inode->i_sb),
2697 "repair read error: submitting new read to mirror %d, in_validation=%d",
2698 		    failrec->this_mirror, failrec->in_validation);
2699 
2700 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2701 				 failrec->bio_flags);
2702 	if (status) {
2703 		free_io_failure(failure_tree, tree, failrec);
2704 		bio_put(repair_bio);
2705 	}
2706 	return status;
2707 }
2708 
2709 /* lots and lots of room for performance fixes in the end_bio funcs */
2710 
2711 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2712 {
2713 	int uptodate = (err == 0);
2714 	int ret = 0;
2715 
2716 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2717 
2718 	if (!uptodate) {
2719 		ClearPageUptodate(page);
2720 		SetPageError(page);
2721 		ret = err < 0 ? err : -EIO;
2722 		mapping_set_error(page->mapping, ret);
2723 	}
2724 }
2725 
2726 /*
2727  * after a writepage IO is done, we need to:
2728  * clear the uptodate bits on error
2729  * clear the writeback bits in the extent tree for this IO
2730  * end_page_writeback if the page has no more pending IO
2731  *
2732  * Scheduling is not allowed, so the extent state tree is expected
2733  * to have one and only one object corresponding to this IO.
2734  */
2735 static void end_bio_extent_writepage(struct bio *bio)
2736 {
2737 	int error = blk_status_to_errno(bio->bi_status);
2738 	struct bio_vec *bvec;
2739 	u64 start;
2740 	u64 end;
2741 	struct bvec_iter_all iter_all;
2742 	bool first_bvec = true;
2743 
2744 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2745 	bio_for_each_segment_all(bvec, bio, iter_all) {
2746 		struct page *page = bvec->bv_page;
2747 		struct inode *inode = page->mapping->host;
2748 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2749 
2750 		/* We always issue full-page reads, but if some block
2751 		 * in a page fails to read, blk_update_request() will
2752 		 * advance bv_offset and adjust bv_len to compensate.
2753 		 * Print a warning for nonzero offsets, and an error
2754 		 * if they don't add up to a full page.  */
2755 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2756 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2757 				btrfs_err(fs_info,
2758 				   "partial page write in btrfs with offset %u and length %u",
2759 					bvec->bv_offset, bvec->bv_len);
2760 			else
2761 				btrfs_info(fs_info,
2762 				   "incomplete page write in btrfs with offset %u and length %u",
2763 					bvec->bv_offset, bvec->bv_len);
2764 		}
2765 
2766 		start = page_offset(page);
2767 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2768 
2769 		if (first_bvec) {
2770 			btrfs_record_physical_zoned(inode, start, bio);
2771 			first_bvec = false;
2772 		}
2773 
2774 		end_extent_writepage(page, error, start, end);
2775 		end_page_writeback(page);
2776 	}
2777 
2778 	bio_put(bio);
2779 }
2780 
2781 /*
2782  * Record previously processed extent range
2783  *
2784  * For endio_readpage_release_extent() to handle a full extent range, reducing
2785  * the extent io operations.
2786  */
2787 struct processed_extent {
2788 	struct btrfs_inode *inode;
2789 	/* Start of the range in @inode */
2790 	u64 start;
2791 	/* End of the range in @inode */
2792 	u64 end;
2793 	bool uptodate;
2794 };
2795 
2796 /*
2797  * Try to release processed extent range
2798  *
2799  * May not release the extent range right now if the current range is
2800  * contiguous to processed extent.
2801  *
2802  * Will release processed extent when any of @inode, @uptodate, the range is
2803  * no longer contiguous to the processed range.
2804  *
2805  * Passing @inode == NULL will force processed extent to be released.
2806  */
2807 static void endio_readpage_release_extent(struct processed_extent *processed,
2808 			      struct btrfs_inode *inode, u64 start, u64 end,
2809 			      bool uptodate)
2810 {
2811 	struct extent_state *cached = NULL;
2812 	struct extent_io_tree *tree;
2813 
2814 	/* The first extent, initialize @processed */
2815 	if (!processed->inode)
2816 		goto update;
2817 
2818 	/*
2819 	 * Contiguous to processed extent, just uptodate the end.
2820 	 *
2821 	 * Several things to notice:
2822 	 *
2823 	 * - bio can be merged as long as on-disk bytenr is contiguous
2824 	 *   This means we can have page belonging to other inodes, thus need to
2825 	 *   check if the inode still matches.
2826 	 * - bvec can contain range beyond current page for multi-page bvec
2827 	 *   Thus we need to do processed->end + 1 >= start check
2828 	 */
2829 	if (processed->inode == inode && processed->uptodate == uptodate &&
2830 	    processed->end + 1 >= start && end >= processed->end) {
2831 		processed->end = end;
2832 		return;
2833 	}
2834 
2835 	tree = &processed->inode->io_tree;
2836 	/*
2837 	 * Now we don't have range contiguous to the processed range, release
2838 	 * the processed range now.
2839 	 */
2840 	if (processed->uptodate && tree->track_uptodate)
2841 		set_extent_uptodate(tree, processed->start, processed->end,
2842 				    &cached, GFP_ATOMIC);
2843 	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2844 				    &cached);
2845 
2846 update:
2847 	/* Update processed to current range */
2848 	processed->inode = inode;
2849 	processed->start = start;
2850 	processed->end = end;
2851 	processed->uptodate = uptodate;
2852 }
2853 
2854 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2855 {
2856 	ASSERT(PageLocked(page));
2857 	if (fs_info->sectorsize == PAGE_SIZE)
2858 		return;
2859 
2860 	ASSERT(PagePrivate(page));
2861 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2862 }
2863 
2864 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2865 {
2866 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2867 
2868 	ASSERT(page_offset(page) <= start &&
2869 		start + len <= page_offset(page) + PAGE_SIZE);
2870 
2871 	if (uptodate) {
2872 		btrfs_page_set_uptodate(fs_info, page, start, len);
2873 	} else {
2874 		btrfs_page_clear_uptodate(fs_info, page, start, len);
2875 		btrfs_page_set_error(fs_info, page, start, len);
2876 	}
2877 
2878 	if (fs_info->sectorsize == PAGE_SIZE)
2879 		unlock_page(page);
2880 	else if (is_data_inode(page->mapping->host))
2881 		/*
2882 		 * For subpage data, unlock the page if we're the last reader.
2883 		 * For subpage metadata, page lock is not utilized for read.
2884 		 */
2885 		btrfs_subpage_end_reader(fs_info, page, start, len);
2886 }
2887 
2888 /*
2889  * Find extent buffer for a givne bytenr.
2890  *
2891  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2892  * in endio context.
2893  */
2894 static struct extent_buffer *find_extent_buffer_readpage(
2895 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2896 {
2897 	struct extent_buffer *eb;
2898 
2899 	/*
2900 	 * For regular sectorsize, we can use page->private to grab extent
2901 	 * buffer
2902 	 */
2903 	if (fs_info->sectorsize == PAGE_SIZE) {
2904 		ASSERT(PagePrivate(page) && page->private);
2905 		return (struct extent_buffer *)page->private;
2906 	}
2907 
2908 	/* For subpage case, we need to lookup buffer radix tree */
2909 	rcu_read_lock();
2910 	eb = radix_tree_lookup(&fs_info->buffer_radix,
2911 			       bytenr >> fs_info->sectorsize_bits);
2912 	rcu_read_unlock();
2913 	ASSERT(eb);
2914 	return eb;
2915 }
2916 
2917 /*
2918  * after a readpage IO is done, we need to:
2919  * clear the uptodate bits on error
2920  * set the uptodate bits if things worked
2921  * set the page up to date if all extents in the tree are uptodate
2922  * clear the lock bit in the extent tree
2923  * unlock the page if there are no other extents locked for it
2924  *
2925  * Scheduling is not allowed, so the extent state tree is expected
2926  * to have one and only one object corresponding to this IO.
2927  */
2928 static void end_bio_extent_readpage(struct bio *bio)
2929 {
2930 	struct bio_vec *bvec;
2931 	int uptodate = !bio->bi_status;
2932 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2933 	struct extent_io_tree *tree, *failure_tree;
2934 	struct processed_extent processed = { 0 };
2935 	/*
2936 	 * The offset to the beginning of a bio, since one bio can never be
2937 	 * larger than UINT_MAX, u32 here is enough.
2938 	 */
2939 	u32 bio_offset = 0;
2940 	int mirror;
2941 	int ret;
2942 	struct bvec_iter_all iter_all;
2943 
2944 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2945 	bio_for_each_segment_all(bvec, bio, iter_all) {
2946 		struct page *page = bvec->bv_page;
2947 		struct inode *inode = page->mapping->host;
2948 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2949 		const u32 sectorsize = fs_info->sectorsize;
2950 		u64 start;
2951 		u64 end;
2952 		u32 len;
2953 
2954 		btrfs_debug(fs_info,
2955 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2956 			bio->bi_iter.bi_sector, bio->bi_status,
2957 			io_bio->mirror_num);
2958 		tree = &BTRFS_I(inode)->io_tree;
2959 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2960 
2961 		/*
2962 		 * We always issue full-sector reads, but if some block in a
2963 		 * page fails to read, blk_update_request() will advance
2964 		 * bv_offset and adjust bv_len to compensate.  Print a warning
2965 		 * for unaligned offsets, and an error if they don't add up to
2966 		 * a full sector.
2967 		 */
2968 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2969 			btrfs_err(fs_info,
2970 		"partial page read in btrfs with offset %u and length %u",
2971 				  bvec->bv_offset, bvec->bv_len);
2972 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
2973 				     sectorsize))
2974 			btrfs_info(fs_info,
2975 		"incomplete page read with offset %u and length %u",
2976 				   bvec->bv_offset, bvec->bv_len);
2977 
2978 		start = page_offset(page) + bvec->bv_offset;
2979 		end = start + bvec->bv_len - 1;
2980 		len = bvec->bv_len;
2981 
2982 		mirror = io_bio->mirror_num;
2983 		if (likely(uptodate)) {
2984 			if (is_data_inode(inode))
2985 				ret = btrfs_verify_data_csum(io_bio,
2986 						bio_offset, page, start, end,
2987 						mirror);
2988 			else
2989 				ret = btrfs_validate_metadata_buffer(io_bio,
2990 					page, start, end, mirror);
2991 			if (ret)
2992 				uptodate = 0;
2993 			else
2994 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2995 						 failure_tree, tree, start,
2996 						 page,
2997 						 btrfs_ino(BTRFS_I(inode)), 0);
2998 		}
2999 
3000 		if (likely(uptodate))
3001 			goto readpage_ok;
3002 
3003 		if (is_data_inode(inode)) {
3004 
3005 			/*
3006 			 * The generic bio_readpage_error handles errors the
3007 			 * following way: If possible, new read requests are
3008 			 * created and submitted and will end up in
3009 			 * end_bio_extent_readpage as well (if we're lucky,
3010 			 * not in the !uptodate case). In that case it returns
3011 			 * 0 and we just go on with the next page in our bio.
3012 			 * If it can't handle the error it will return -EIO and
3013 			 * we remain responsible for that page.
3014 			 */
3015 			if (!btrfs_submit_read_repair(inode, bio, bio_offset,
3016 						page,
3017 						start - page_offset(page),
3018 						start, end, mirror,
3019 						btrfs_submit_data_bio)) {
3020 				uptodate = !bio->bi_status;
3021 				ASSERT(bio_offset + len > bio_offset);
3022 				bio_offset += len;
3023 				continue;
3024 			}
3025 		} else {
3026 			struct extent_buffer *eb;
3027 
3028 			eb = find_extent_buffer_readpage(fs_info, page, start);
3029 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3030 			eb->read_mirror = mirror;
3031 			atomic_dec(&eb->io_pages);
3032 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3033 					       &eb->bflags))
3034 				btree_readahead_hook(eb, -EIO);
3035 		}
3036 readpage_ok:
3037 		if (likely(uptodate)) {
3038 			loff_t i_size = i_size_read(inode);
3039 			pgoff_t end_index = i_size >> PAGE_SHIFT;
3040 
3041 			/*
3042 			 * Zero out the remaining part if this range straddles
3043 			 * i_size.
3044 			 *
3045 			 * Here we should only zero the range inside the bvec,
3046 			 * not touch anything else.
3047 			 *
3048 			 * NOTE: i_size is exclusive while end is inclusive.
3049 			 */
3050 			if (page->index == end_index && i_size <= end) {
3051 				u32 zero_start = max(offset_in_page(i_size),
3052 						     offset_in_page(start));
3053 
3054 				zero_user_segment(page, zero_start,
3055 						  offset_in_page(end) + 1);
3056 			}
3057 		}
3058 		ASSERT(bio_offset + len > bio_offset);
3059 		bio_offset += len;
3060 
3061 		/* Update page status and unlock */
3062 		end_page_read(page, uptodate, start, len);
3063 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3064 					      start, end, uptodate);
3065 	}
3066 	/* Release the last extent */
3067 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3068 	btrfs_io_bio_free_csum(io_bio);
3069 	bio_put(bio);
3070 }
3071 
3072 /*
3073  * Initialize the members up to but not including 'bio'. Use after allocating a
3074  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3075  * 'bio' because use of __GFP_ZERO is not supported.
3076  */
3077 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3078 {
3079 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3080 }
3081 
3082 /*
3083  * The following helpers allocate a bio. As it's backed by a bioset, it'll
3084  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3085  * for the appropriate container_of magic
3086  */
3087 struct bio *btrfs_bio_alloc(u64 first_byte)
3088 {
3089 	struct bio *bio;
3090 
3091 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3092 	bio->bi_iter.bi_sector = first_byte >> 9;
3093 	btrfs_io_bio_init(btrfs_io_bio(bio));
3094 	return bio;
3095 }
3096 
3097 struct bio *btrfs_bio_clone(struct bio *bio)
3098 {
3099 	struct btrfs_io_bio *btrfs_bio;
3100 	struct bio *new;
3101 
3102 	/* Bio allocation backed by a bioset does not fail */
3103 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3104 	btrfs_bio = btrfs_io_bio(new);
3105 	btrfs_io_bio_init(btrfs_bio);
3106 	btrfs_bio->iter = bio->bi_iter;
3107 	return new;
3108 }
3109 
3110 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3111 {
3112 	struct bio *bio;
3113 
3114 	/* Bio allocation backed by a bioset does not fail */
3115 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3116 	btrfs_io_bio_init(btrfs_io_bio(bio));
3117 	return bio;
3118 }
3119 
3120 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3121 {
3122 	struct bio *bio;
3123 	struct btrfs_io_bio *btrfs_bio;
3124 
3125 	/* this will never fail when it's backed by a bioset */
3126 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3127 	ASSERT(bio);
3128 
3129 	btrfs_bio = btrfs_io_bio(bio);
3130 	btrfs_io_bio_init(btrfs_bio);
3131 
3132 	bio_trim(bio, offset >> 9, size >> 9);
3133 	btrfs_bio->iter = bio->bi_iter;
3134 	return bio;
3135 }
3136 
3137 /**
3138  * Attempt to add a page to bio
3139  *
3140  * @bio:	destination bio
3141  * @page:	page to add to the bio
3142  * @disk_bytenr:  offset of the new bio or to check whether we are adding
3143  *                a contiguous page to the previous one
3144  * @pg_offset:	starting offset in the page
3145  * @size:	portion of page that we want to write
3146  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3147  * @bio_flags:	flags of the current bio to see if we can merge them
3148  * @return:	true if page was added, false otherwise
3149  *
3150  * Attempt to add a page to bio considering stripe alignment etc.
3151  *
3152  * Return true if successfully page added. Otherwise, return false.
3153  */
3154 static bool btrfs_bio_add_page(struct bio *bio, struct page *page,
3155 			       u64 disk_bytenr, unsigned int size,
3156 			       unsigned int pg_offset,
3157 			       unsigned long prev_bio_flags,
3158 			       unsigned long bio_flags)
3159 {
3160 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3161 	bool contig;
3162 	int ret;
3163 
3164 	if (prev_bio_flags != bio_flags)
3165 		return false;
3166 
3167 	if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3168 		contig = bio->bi_iter.bi_sector == sector;
3169 	else
3170 		contig = bio_end_sector(bio) == sector;
3171 	if (!contig)
3172 		return false;
3173 
3174 	if (btrfs_bio_fits_in_stripe(page, size, bio, bio_flags))
3175 		return false;
3176 
3177 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
3178 		struct page *first_page = bio_first_bvec_all(bio)->bv_page;
3179 
3180 		if (!btrfs_bio_fits_in_ordered_extent(first_page, bio, size))
3181 			return false;
3182 		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3183 	} else {
3184 		ret = bio_add_page(bio, page, size, pg_offset);
3185 	}
3186 
3187 	return ret == size;
3188 }
3189 
3190 /*
3191  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3192  * @wbc:	optional writeback control for io accounting
3193  * @page:	page to add to the bio
3194  * @disk_bytenr: logical bytenr where the write will be
3195  * @size:	portion of page that we want to write to
3196  * @pg_offset:	offset of the new bio or to check whether we are adding
3197  *              a contiguous page to the previous one
3198  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3199  * @end_io_func:     end_io callback for new bio
3200  * @mirror_num:	     desired mirror to read/write
3201  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3202  * @bio_flags:	flags of the current bio to see if we can merge them
3203  */
3204 static int submit_extent_page(unsigned int opf,
3205 			      struct writeback_control *wbc,
3206 			      struct page *page, u64 disk_bytenr,
3207 			      size_t size, unsigned long pg_offset,
3208 			      struct bio **bio_ret,
3209 			      bio_end_io_t end_io_func,
3210 			      int mirror_num,
3211 			      unsigned long prev_bio_flags,
3212 			      unsigned long bio_flags,
3213 			      bool force_bio_submit)
3214 {
3215 	int ret = 0;
3216 	struct bio *bio;
3217 	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3218 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3219 	struct extent_io_tree *tree = &inode->io_tree;
3220 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3221 
3222 	ASSERT(bio_ret);
3223 
3224 	if (*bio_ret) {
3225 		bio = *bio_ret;
3226 		if (force_bio_submit ||
3227 		    !btrfs_bio_add_page(bio, page, disk_bytenr, io_size,
3228 					pg_offset, prev_bio_flags, bio_flags)) {
3229 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3230 			if (ret < 0) {
3231 				*bio_ret = NULL;
3232 				return ret;
3233 			}
3234 			bio = NULL;
3235 		} else {
3236 			if (wbc)
3237 				wbc_account_cgroup_owner(wbc, page, io_size);
3238 			return 0;
3239 		}
3240 	}
3241 
3242 	bio = btrfs_bio_alloc(disk_bytenr);
3243 	bio_add_page(bio, page, io_size, pg_offset);
3244 	bio->bi_end_io = end_io_func;
3245 	bio->bi_private = tree;
3246 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3247 	bio->bi_opf = opf;
3248 	if (wbc) {
3249 		struct block_device *bdev;
3250 
3251 		bdev = fs_info->fs_devices->latest_bdev;
3252 		bio_set_dev(bio, bdev);
3253 		wbc_init_bio(wbc, bio);
3254 		wbc_account_cgroup_owner(wbc, page, io_size);
3255 	}
3256 	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3257 		struct extent_map *em;
3258 		struct map_lookup *map;
3259 
3260 		em = btrfs_get_chunk_map(fs_info, disk_bytenr, io_size);
3261 		if (IS_ERR(em))
3262 			return PTR_ERR(em);
3263 
3264 		map = em->map_lookup;
3265 		/* We only support single profile for now */
3266 		ASSERT(map->num_stripes == 1);
3267 		btrfs_io_bio(bio)->device = map->stripes[0].dev;
3268 
3269 		free_extent_map(em);
3270 	}
3271 
3272 	*bio_ret = bio;
3273 
3274 	return ret;
3275 }
3276 
3277 static int attach_extent_buffer_page(struct extent_buffer *eb,
3278 				     struct page *page,
3279 				     struct btrfs_subpage *prealloc)
3280 {
3281 	struct btrfs_fs_info *fs_info = eb->fs_info;
3282 	int ret = 0;
3283 
3284 	/*
3285 	 * If the page is mapped to btree inode, we should hold the private
3286 	 * lock to prevent race.
3287 	 * For cloned or dummy extent buffers, their pages are not mapped and
3288 	 * will not race with any other ebs.
3289 	 */
3290 	if (page->mapping)
3291 		lockdep_assert_held(&page->mapping->private_lock);
3292 
3293 	if (fs_info->sectorsize == PAGE_SIZE) {
3294 		if (!PagePrivate(page))
3295 			attach_page_private(page, eb);
3296 		else
3297 			WARN_ON(page->private != (unsigned long)eb);
3298 		return 0;
3299 	}
3300 
3301 	/* Already mapped, just free prealloc */
3302 	if (PagePrivate(page)) {
3303 		btrfs_free_subpage(prealloc);
3304 		return 0;
3305 	}
3306 
3307 	if (prealloc)
3308 		/* Has preallocated memory for subpage */
3309 		attach_page_private(page, prealloc);
3310 	else
3311 		/* Do new allocation to attach subpage */
3312 		ret = btrfs_attach_subpage(fs_info, page,
3313 					   BTRFS_SUBPAGE_METADATA);
3314 	return ret;
3315 }
3316 
3317 int set_page_extent_mapped(struct page *page)
3318 {
3319 	struct btrfs_fs_info *fs_info;
3320 
3321 	ASSERT(page->mapping);
3322 
3323 	if (PagePrivate(page))
3324 		return 0;
3325 
3326 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3327 
3328 	if (fs_info->sectorsize < PAGE_SIZE)
3329 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3330 
3331 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3332 	return 0;
3333 }
3334 
3335 void clear_page_extent_mapped(struct page *page)
3336 {
3337 	struct btrfs_fs_info *fs_info;
3338 
3339 	ASSERT(page->mapping);
3340 
3341 	if (!PagePrivate(page))
3342 		return;
3343 
3344 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3345 	if (fs_info->sectorsize < PAGE_SIZE)
3346 		return btrfs_detach_subpage(fs_info, page);
3347 
3348 	detach_page_private(page);
3349 }
3350 
3351 static struct extent_map *
3352 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3353 		 u64 start, u64 len, struct extent_map **em_cached)
3354 {
3355 	struct extent_map *em;
3356 
3357 	if (em_cached && *em_cached) {
3358 		em = *em_cached;
3359 		if (extent_map_in_tree(em) && start >= em->start &&
3360 		    start < extent_map_end(em)) {
3361 			refcount_inc(&em->refs);
3362 			return em;
3363 		}
3364 
3365 		free_extent_map(em);
3366 		*em_cached = NULL;
3367 	}
3368 
3369 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3370 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3371 		BUG_ON(*em_cached);
3372 		refcount_inc(&em->refs);
3373 		*em_cached = em;
3374 	}
3375 	return em;
3376 }
3377 /*
3378  * basic readpage implementation.  Locked extent state structs are inserted
3379  * into the tree that are removed when the IO is done (by the end_io
3380  * handlers)
3381  * XXX JDM: This needs looking at to ensure proper page locking
3382  * return 0 on success, otherwise return error
3383  */
3384 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3385 		      struct bio **bio, unsigned long *bio_flags,
3386 		      unsigned int read_flags, u64 *prev_em_start)
3387 {
3388 	struct inode *inode = page->mapping->host;
3389 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3390 	u64 start = page_offset(page);
3391 	const u64 end = start + PAGE_SIZE - 1;
3392 	u64 cur = start;
3393 	u64 extent_offset;
3394 	u64 last_byte = i_size_read(inode);
3395 	u64 block_start;
3396 	u64 cur_end;
3397 	struct extent_map *em;
3398 	int ret = 0;
3399 	int nr = 0;
3400 	size_t pg_offset = 0;
3401 	size_t iosize;
3402 	size_t blocksize = inode->i_sb->s_blocksize;
3403 	unsigned long this_bio_flag = 0;
3404 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3405 
3406 	ret = set_page_extent_mapped(page);
3407 	if (ret < 0) {
3408 		unlock_extent(tree, start, end);
3409 		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3410 		unlock_page(page);
3411 		goto out;
3412 	}
3413 
3414 	if (!PageUptodate(page)) {
3415 		if (cleancache_get_page(page) == 0) {
3416 			BUG_ON(blocksize != PAGE_SIZE);
3417 			unlock_extent(tree, start, end);
3418 			unlock_page(page);
3419 			goto out;
3420 		}
3421 	}
3422 
3423 	if (page->index == last_byte >> PAGE_SHIFT) {
3424 		char *userpage;
3425 		size_t zero_offset = offset_in_page(last_byte);
3426 
3427 		if (zero_offset) {
3428 			iosize = PAGE_SIZE - zero_offset;
3429 			userpage = kmap_atomic(page);
3430 			memset(userpage + zero_offset, 0, iosize);
3431 			flush_dcache_page(page);
3432 			kunmap_atomic(userpage);
3433 		}
3434 	}
3435 	begin_page_read(fs_info, page);
3436 	while (cur <= end) {
3437 		bool force_bio_submit = false;
3438 		u64 disk_bytenr;
3439 
3440 		if (cur >= last_byte) {
3441 			char *userpage;
3442 			struct extent_state *cached = NULL;
3443 
3444 			iosize = PAGE_SIZE - pg_offset;
3445 			userpage = kmap_atomic(page);
3446 			memset(userpage + pg_offset, 0, iosize);
3447 			flush_dcache_page(page);
3448 			kunmap_atomic(userpage);
3449 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3450 					    &cached, GFP_NOFS);
3451 			unlock_extent_cached(tree, cur,
3452 					     cur + iosize - 1, &cached);
3453 			end_page_read(page, true, cur, iosize);
3454 			break;
3455 		}
3456 		em = __get_extent_map(inode, page, pg_offset, cur,
3457 				      end - cur + 1, em_cached);
3458 		if (IS_ERR_OR_NULL(em)) {
3459 			unlock_extent(tree, cur, end);
3460 			end_page_read(page, false, cur, end + 1 - cur);
3461 			break;
3462 		}
3463 		extent_offset = cur - em->start;
3464 		BUG_ON(extent_map_end(em) <= cur);
3465 		BUG_ON(end < cur);
3466 
3467 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3468 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3469 			extent_set_compress_type(&this_bio_flag,
3470 						 em->compress_type);
3471 		}
3472 
3473 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3474 		cur_end = min(extent_map_end(em) - 1, end);
3475 		iosize = ALIGN(iosize, blocksize);
3476 		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3477 			disk_bytenr = em->block_start;
3478 		else
3479 			disk_bytenr = em->block_start + extent_offset;
3480 		block_start = em->block_start;
3481 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3482 			block_start = EXTENT_MAP_HOLE;
3483 
3484 		/*
3485 		 * If we have a file range that points to a compressed extent
3486 		 * and it's followed by a consecutive file range that points
3487 		 * to the same compressed extent (possibly with a different
3488 		 * offset and/or length, so it either points to the whole extent
3489 		 * or only part of it), we must make sure we do not submit a
3490 		 * single bio to populate the pages for the 2 ranges because
3491 		 * this makes the compressed extent read zero out the pages
3492 		 * belonging to the 2nd range. Imagine the following scenario:
3493 		 *
3494 		 *  File layout
3495 		 *  [0 - 8K]                     [8K - 24K]
3496 		 *    |                               |
3497 		 *    |                               |
3498 		 * points to extent X,         points to extent X,
3499 		 * offset 4K, length of 8K     offset 0, length 16K
3500 		 *
3501 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3502 		 *
3503 		 * If the bio to read the compressed extent covers both ranges,
3504 		 * it will decompress extent X into the pages belonging to the
3505 		 * first range and then it will stop, zeroing out the remaining
3506 		 * pages that belong to the other range that points to extent X.
3507 		 * So here we make sure we submit 2 bios, one for the first
3508 		 * range and another one for the third range. Both will target
3509 		 * the same physical extent from disk, but we can't currently
3510 		 * make the compressed bio endio callback populate the pages
3511 		 * for both ranges because each compressed bio is tightly
3512 		 * coupled with a single extent map, and each range can have
3513 		 * an extent map with a different offset value relative to the
3514 		 * uncompressed data of our extent and different lengths. This
3515 		 * is a corner case so we prioritize correctness over
3516 		 * non-optimal behavior (submitting 2 bios for the same extent).
3517 		 */
3518 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3519 		    prev_em_start && *prev_em_start != (u64)-1 &&
3520 		    *prev_em_start != em->start)
3521 			force_bio_submit = true;
3522 
3523 		if (prev_em_start)
3524 			*prev_em_start = em->start;
3525 
3526 		free_extent_map(em);
3527 		em = NULL;
3528 
3529 		/* we've found a hole, just zero and go on */
3530 		if (block_start == EXTENT_MAP_HOLE) {
3531 			char *userpage;
3532 			struct extent_state *cached = NULL;
3533 
3534 			userpage = kmap_atomic(page);
3535 			memset(userpage + pg_offset, 0, iosize);
3536 			flush_dcache_page(page);
3537 			kunmap_atomic(userpage);
3538 
3539 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3540 					    &cached, GFP_NOFS);
3541 			unlock_extent_cached(tree, cur,
3542 					     cur + iosize - 1, &cached);
3543 			end_page_read(page, true, cur, iosize);
3544 			cur = cur + iosize;
3545 			pg_offset += iosize;
3546 			continue;
3547 		}
3548 		/* the get_extent function already copied into the page */
3549 		if (test_range_bit(tree, cur, cur_end,
3550 				   EXTENT_UPTODATE, 1, NULL)) {
3551 			check_page_uptodate(tree, page);
3552 			unlock_extent(tree, cur, cur + iosize - 1);
3553 			end_page_read(page, true, cur, iosize);
3554 			cur = cur + iosize;
3555 			pg_offset += iosize;
3556 			continue;
3557 		}
3558 		/* we have an inline extent but it didn't get marked up
3559 		 * to date.  Error out
3560 		 */
3561 		if (block_start == EXTENT_MAP_INLINE) {
3562 			unlock_extent(tree, cur, cur + iosize - 1);
3563 			end_page_read(page, false, cur, iosize);
3564 			cur = cur + iosize;
3565 			pg_offset += iosize;
3566 			continue;
3567 		}
3568 
3569 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3570 					 page, disk_bytenr, iosize,
3571 					 pg_offset, bio,
3572 					 end_bio_extent_readpage, 0,
3573 					 *bio_flags,
3574 					 this_bio_flag,
3575 					 force_bio_submit);
3576 		if (!ret) {
3577 			nr++;
3578 			*bio_flags = this_bio_flag;
3579 		} else {
3580 			unlock_extent(tree, cur, cur + iosize - 1);
3581 			end_page_read(page, false, cur, iosize);
3582 			goto out;
3583 		}
3584 		cur = cur + iosize;
3585 		pg_offset += iosize;
3586 	}
3587 out:
3588 	return ret;
3589 }
3590 
3591 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3592 					     u64 start, u64 end,
3593 					     struct extent_map **em_cached,
3594 					     struct bio **bio,
3595 					     unsigned long *bio_flags,
3596 					     u64 *prev_em_start)
3597 {
3598 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3599 	int index;
3600 
3601 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3602 
3603 	for (index = 0; index < nr_pages; index++) {
3604 		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3605 				  REQ_RAHEAD, prev_em_start);
3606 		put_page(pages[index]);
3607 	}
3608 }
3609 
3610 static void update_nr_written(struct writeback_control *wbc,
3611 			      unsigned long nr_written)
3612 {
3613 	wbc->nr_to_write -= nr_written;
3614 }
3615 
3616 /*
3617  * helper for __extent_writepage, doing all of the delayed allocation setup.
3618  *
3619  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3620  * to write the page (copy into inline extent).  In this case the IO has
3621  * been started and the page is already unlocked.
3622  *
3623  * This returns 0 if all went well (page still locked)
3624  * This returns < 0 if there were errors (page still locked)
3625  */
3626 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3627 		struct page *page, struct writeback_control *wbc,
3628 		u64 delalloc_start, unsigned long *nr_written)
3629 {
3630 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3631 	bool found;
3632 	u64 delalloc_to_write = 0;
3633 	u64 delalloc_end = 0;
3634 	int ret;
3635 	int page_started = 0;
3636 
3637 
3638 	while (delalloc_end < page_end) {
3639 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3640 					       &delalloc_start,
3641 					       &delalloc_end);
3642 		if (!found) {
3643 			delalloc_start = delalloc_end + 1;
3644 			continue;
3645 		}
3646 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3647 				delalloc_end, &page_started, nr_written, wbc);
3648 		if (ret) {
3649 			SetPageError(page);
3650 			/*
3651 			 * btrfs_run_delalloc_range should return < 0 for error
3652 			 * but just in case, we use > 0 here meaning the IO is
3653 			 * started, so we don't want to return > 0 unless
3654 			 * things are going well.
3655 			 */
3656 			return ret < 0 ? ret : -EIO;
3657 		}
3658 		/*
3659 		 * delalloc_end is already one less than the total length, so
3660 		 * we don't subtract one from PAGE_SIZE
3661 		 */
3662 		delalloc_to_write += (delalloc_end - delalloc_start +
3663 				      PAGE_SIZE) >> PAGE_SHIFT;
3664 		delalloc_start = delalloc_end + 1;
3665 	}
3666 	if (wbc->nr_to_write < delalloc_to_write) {
3667 		int thresh = 8192;
3668 
3669 		if (delalloc_to_write < thresh * 2)
3670 			thresh = delalloc_to_write;
3671 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3672 					 thresh);
3673 	}
3674 
3675 	/* did the fill delalloc function already unlock and start
3676 	 * the IO?
3677 	 */
3678 	if (page_started) {
3679 		/*
3680 		 * we've unlocked the page, so we can't update
3681 		 * the mapping's writeback index, just update
3682 		 * nr_to_write.
3683 		 */
3684 		wbc->nr_to_write -= *nr_written;
3685 		return 1;
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 /*
3692  * helper for __extent_writepage.  This calls the writepage start hooks,
3693  * and does the loop to map the page into extents and bios.
3694  *
3695  * We return 1 if the IO is started and the page is unlocked,
3696  * 0 if all went well (page still locked)
3697  * < 0 if there were errors (page still locked)
3698  */
3699 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3700 				 struct page *page,
3701 				 struct writeback_control *wbc,
3702 				 struct extent_page_data *epd,
3703 				 loff_t i_size,
3704 				 unsigned long nr_written,
3705 				 int *nr_ret)
3706 {
3707 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3708 	struct extent_io_tree *tree = &inode->io_tree;
3709 	u64 start = page_offset(page);
3710 	u64 end = start + PAGE_SIZE - 1;
3711 	u64 cur = start;
3712 	u64 extent_offset;
3713 	u64 block_start;
3714 	struct extent_map *em;
3715 	int ret = 0;
3716 	int nr = 0;
3717 	u32 opf = REQ_OP_WRITE;
3718 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3719 	bool compressed;
3720 
3721 	ret = btrfs_writepage_cow_fixup(page, start, end);
3722 	if (ret) {
3723 		/* Fixup worker will requeue */
3724 		redirty_page_for_writepage(wbc, page);
3725 		update_nr_written(wbc, nr_written);
3726 		unlock_page(page);
3727 		return 1;
3728 	}
3729 
3730 	/*
3731 	 * we don't want to touch the inode after unlocking the page,
3732 	 * so we update the mapping writeback index now
3733 	 */
3734 	update_nr_written(wbc, nr_written + 1);
3735 
3736 	while (cur <= end) {
3737 		u64 disk_bytenr;
3738 		u64 em_end;
3739 		u32 iosize;
3740 
3741 		if (cur >= i_size) {
3742 			btrfs_writepage_endio_finish_ordered(page, cur, end, 1);
3743 			break;
3744 		}
3745 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3746 		if (IS_ERR_OR_NULL(em)) {
3747 			SetPageError(page);
3748 			ret = PTR_ERR_OR_ZERO(em);
3749 			break;
3750 		}
3751 
3752 		extent_offset = cur - em->start;
3753 		em_end = extent_map_end(em);
3754 		ASSERT(cur <= em_end);
3755 		ASSERT(cur < end);
3756 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3757 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3758 		block_start = em->block_start;
3759 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3760 		disk_bytenr = em->block_start + extent_offset;
3761 
3762 		/* Note that em_end from extent_map_end() is exclusive */
3763 		iosize = min(em_end, end + 1) - cur;
3764 
3765 		if (btrfs_use_zone_append(inode, em))
3766 			opf = REQ_OP_ZONE_APPEND;
3767 
3768 		free_extent_map(em);
3769 		em = NULL;
3770 
3771 		/*
3772 		 * compressed and inline extents are written through other
3773 		 * paths in the FS
3774 		 */
3775 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3776 		    block_start == EXTENT_MAP_INLINE) {
3777 			if (compressed)
3778 				nr++;
3779 			else
3780 				btrfs_writepage_endio_finish_ordered(page, cur,
3781 							cur + iosize - 1, 1);
3782 			cur += iosize;
3783 			continue;
3784 		}
3785 
3786 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3787 		if (!PageWriteback(page)) {
3788 			btrfs_err(inode->root->fs_info,
3789 				   "page %lu not writeback, cur %llu end %llu",
3790 			       page->index, cur, end);
3791 		}
3792 
3793 		ret = submit_extent_page(opf | write_flags, wbc, page,
3794 					 disk_bytenr, iosize,
3795 					 cur - page_offset(page), &epd->bio,
3796 					 end_bio_extent_writepage,
3797 					 0, 0, 0, false);
3798 		if (ret) {
3799 			SetPageError(page);
3800 			if (PageWriteback(page))
3801 				end_page_writeback(page);
3802 		}
3803 
3804 		cur += iosize;
3805 		nr++;
3806 	}
3807 	*nr_ret = nr;
3808 	return ret;
3809 }
3810 
3811 /*
3812  * the writepage semantics are similar to regular writepage.  extent
3813  * records are inserted to lock ranges in the tree, and as dirty areas
3814  * are found, they are marked writeback.  Then the lock bits are removed
3815  * and the end_io handler clears the writeback ranges
3816  *
3817  * Return 0 if everything goes well.
3818  * Return <0 for error.
3819  */
3820 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3821 			      struct extent_page_data *epd)
3822 {
3823 	struct inode *inode = page->mapping->host;
3824 	u64 start = page_offset(page);
3825 	u64 page_end = start + PAGE_SIZE - 1;
3826 	int ret;
3827 	int nr = 0;
3828 	size_t pg_offset;
3829 	loff_t i_size = i_size_read(inode);
3830 	unsigned long end_index = i_size >> PAGE_SHIFT;
3831 	unsigned long nr_written = 0;
3832 
3833 	trace___extent_writepage(page, inode, wbc);
3834 
3835 	WARN_ON(!PageLocked(page));
3836 
3837 	ClearPageError(page);
3838 
3839 	pg_offset = offset_in_page(i_size);
3840 	if (page->index > end_index ||
3841 	   (page->index == end_index && !pg_offset)) {
3842 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3843 		unlock_page(page);
3844 		return 0;
3845 	}
3846 
3847 	if (page->index == end_index) {
3848 		char *userpage;
3849 
3850 		userpage = kmap_atomic(page);
3851 		memset(userpage + pg_offset, 0,
3852 		       PAGE_SIZE - pg_offset);
3853 		kunmap_atomic(userpage);
3854 		flush_dcache_page(page);
3855 	}
3856 
3857 	ret = set_page_extent_mapped(page);
3858 	if (ret < 0) {
3859 		SetPageError(page);
3860 		goto done;
3861 	}
3862 
3863 	if (!epd->extent_locked) {
3864 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3865 					 &nr_written);
3866 		if (ret == 1)
3867 			return 0;
3868 		if (ret)
3869 			goto done;
3870 	}
3871 
3872 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3873 				    nr_written, &nr);
3874 	if (ret == 1)
3875 		return 0;
3876 
3877 done:
3878 	if (nr == 0) {
3879 		/* make sure the mapping tag for page dirty gets cleared */
3880 		set_page_writeback(page);
3881 		end_page_writeback(page);
3882 	}
3883 	if (PageError(page)) {
3884 		ret = ret < 0 ? ret : -EIO;
3885 		end_extent_writepage(page, ret, start, page_end);
3886 	}
3887 	unlock_page(page);
3888 	ASSERT(ret <= 0);
3889 	return ret;
3890 }
3891 
3892 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3893 {
3894 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3895 		       TASK_UNINTERRUPTIBLE);
3896 }
3897 
3898 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3899 {
3900 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3901 	smp_mb__after_atomic();
3902 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3903 }
3904 
3905 /*
3906  * Lock extent buffer status and pages for writeback.
3907  *
3908  * May try to flush write bio if we can't get the lock.
3909  *
3910  * Return  0 if the extent buffer doesn't need to be submitted.
3911  *           (E.g. the extent buffer is not dirty)
3912  * Return >0 is the extent buffer is submitted to bio.
3913  * Return <0 if something went wrong, no page is locked.
3914  */
3915 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3916 			  struct extent_page_data *epd)
3917 {
3918 	struct btrfs_fs_info *fs_info = eb->fs_info;
3919 	int i, num_pages, failed_page_nr;
3920 	int flush = 0;
3921 	int ret = 0;
3922 
3923 	if (!btrfs_try_tree_write_lock(eb)) {
3924 		ret = flush_write_bio(epd);
3925 		if (ret < 0)
3926 			return ret;
3927 		flush = 1;
3928 		btrfs_tree_lock(eb);
3929 	}
3930 
3931 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3932 		btrfs_tree_unlock(eb);
3933 		if (!epd->sync_io)
3934 			return 0;
3935 		if (!flush) {
3936 			ret = flush_write_bio(epd);
3937 			if (ret < 0)
3938 				return ret;
3939 			flush = 1;
3940 		}
3941 		while (1) {
3942 			wait_on_extent_buffer_writeback(eb);
3943 			btrfs_tree_lock(eb);
3944 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3945 				break;
3946 			btrfs_tree_unlock(eb);
3947 		}
3948 	}
3949 
3950 	/*
3951 	 * We need to do this to prevent races in people who check if the eb is
3952 	 * under IO since we can end up having no IO bits set for a short period
3953 	 * of time.
3954 	 */
3955 	spin_lock(&eb->refs_lock);
3956 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3957 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3958 		spin_unlock(&eb->refs_lock);
3959 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3960 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3961 					 -eb->len,
3962 					 fs_info->dirty_metadata_batch);
3963 		ret = 1;
3964 	} else {
3965 		spin_unlock(&eb->refs_lock);
3966 	}
3967 
3968 	btrfs_tree_unlock(eb);
3969 
3970 	if (!ret)
3971 		return ret;
3972 
3973 	num_pages = num_extent_pages(eb);
3974 	for (i = 0; i < num_pages; i++) {
3975 		struct page *p = eb->pages[i];
3976 
3977 		if (!trylock_page(p)) {
3978 			if (!flush) {
3979 				int err;
3980 
3981 				err = flush_write_bio(epd);
3982 				if (err < 0) {
3983 					ret = err;
3984 					failed_page_nr = i;
3985 					goto err_unlock;
3986 				}
3987 				flush = 1;
3988 			}
3989 			lock_page(p);
3990 		}
3991 	}
3992 
3993 	return ret;
3994 err_unlock:
3995 	/* Unlock already locked pages */
3996 	for (i = 0; i < failed_page_nr; i++)
3997 		unlock_page(eb->pages[i]);
3998 	/*
3999 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4000 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4001 	 * be made and undo everything done before.
4002 	 */
4003 	btrfs_tree_lock(eb);
4004 	spin_lock(&eb->refs_lock);
4005 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4006 	end_extent_buffer_writeback(eb);
4007 	spin_unlock(&eb->refs_lock);
4008 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4009 				 fs_info->dirty_metadata_batch);
4010 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4011 	btrfs_tree_unlock(eb);
4012 	return ret;
4013 }
4014 
4015 static void set_btree_ioerr(struct page *page)
4016 {
4017 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
4018 	struct btrfs_fs_info *fs_info;
4019 
4020 	SetPageError(page);
4021 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4022 		return;
4023 
4024 	/*
4025 	 * If we error out, we should add back the dirty_metadata_bytes
4026 	 * to make it consistent.
4027 	 */
4028 	fs_info = eb->fs_info;
4029 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4030 				 eb->len, fs_info->dirty_metadata_batch);
4031 
4032 	/*
4033 	 * If writeback for a btree extent that doesn't belong to a log tree
4034 	 * failed, increment the counter transaction->eb_write_errors.
4035 	 * We do this because while the transaction is running and before it's
4036 	 * committing (when we call filemap_fdata[write|wait]_range against
4037 	 * the btree inode), we might have
4038 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4039 	 * returns an error or an error happens during writeback, when we're
4040 	 * committing the transaction we wouldn't know about it, since the pages
4041 	 * can be no longer dirty nor marked anymore for writeback (if a
4042 	 * subsequent modification to the extent buffer didn't happen before the
4043 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4044 	 * able to find the pages tagged with SetPageError at transaction
4045 	 * commit time. So if this happens we must abort the transaction,
4046 	 * otherwise we commit a super block with btree roots that point to
4047 	 * btree nodes/leafs whose content on disk is invalid - either garbage
4048 	 * or the content of some node/leaf from a past generation that got
4049 	 * cowed or deleted and is no longer valid.
4050 	 *
4051 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4052 	 * not be enough - we need to distinguish between log tree extents vs
4053 	 * non-log tree extents, and the next filemap_fdatawait_range() call
4054 	 * will catch and clear such errors in the mapping - and that call might
4055 	 * be from a log sync and not from a transaction commit. Also, checking
4056 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4057 	 * not done and would not be reliable - the eb might have been released
4058 	 * from memory and reading it back again means that flag would not be
4059 	 * set (since it's a runtime flag, not persisted on disk).
4060 	 *
4061 	 * Using the flags below in the btree inode also makes us achieve the
4062 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4063 	 * writeback for all dirty pages and before filemap_fdatawait_range()
4064 	 * is called, the writeback for all dirty pages had already finished
4065 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4066 	 * filemap_fdatawait_range() would return success, as it could not know
4067 	 * that writeback errors happened (the pages were no longer tagged for
4068 	 * writeback).
4069 	 */
4070 	switch (eb->log_index) {
4071 	case -1:
4072 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
4073 		break;
4074 	case 0:
4075 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
4076 		break;
4077 	case 1:
4078 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
4079 		break;
4080 	default:
4081 		BUG(); /* unexpected, logic error */
4082 	}
4083 }
4084 
4085 static void end_bio_extent_buffer_writepage(struct bio *bio)
4086 {
4087 	struct bio_vec *bvec;
4088 	struct extent_buffer *eb;
4089 	int done;
4090 	struct bvec_iter_all iter_all;
4091 
4092 	ASSERT(!bio_flagged(bio, BIO_CLONED));
4093 	bio_for_each_segment_all(bvec, bio, iter_all) {
4094 		struct page *page = bvec->bv_page;
4095 
4096 		eb = (struct extent_buffer *)page->private;
4097 		BUG_ON(!eb);
4098 		done = atomic_dec_and_test(&eb->io_pages);
4099 
4100 		if (bio->bi_status ||
4101 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4102 			ClearPageUptodate(page);
4103 			set_btree_ioerr(page);
4104 		}
4105 
4106 		end_page_writeback(page);
4107 
4108 		if (!done)
4109 			continue;
4110 
4111 		end_extent_buffer_writeback(eb);
4112 	}
4113 
4114 	bio_put(bio);
4115 }
4116 
4117 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4118 			struct writeback_control *wbc,
4119 			struct extent_page_data *epd)
4120 {
4121 	u64 disk_bytenr = eb->start;
4122 	u32 nritems;
4123 	int i, num_pages;
4124 	unsigned long start, end;
4125 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4126 	int ret = 0;
4127 
4128 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4129 	num_pages = num_extent_pages(eb);
4130 	atomic_set(&eb->io_pages, num_pages);
4131 
4132 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
4133 	nritems = btrfs_header_nritems(eb);
4134 	if (btrfs_header_level(eb) > 0) {
4135 		end = btrfs_node_key_ptr_offset(nritems);
4136 
4137 		memzero_extent_buffer(eb, end, eb->len - end);
4138 	} else {
4139 		/*
4140 		 * leaf:
4141 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4142 		 */
4143 		start = btrfs_item_nr_offset(nritems);
4144 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4145 		memzero_extent_buffer(eb, start, end - start);
4146 	}
4147 
4148 	for (i = 0; i < num_pages; i++) {
4149 		struct page *p = eb->pages[i];
4150 
4151 		clear_page_dirty_for_io(p);
4152 		set_page_writeback(p);
4153 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4154 					 p, disk_bytenr, PAGE_SIZE, 0,
4155 					 &epd->bio,
4156 					 end_bio_extent_buffer_writepage,
4157 					 0, 0, 0, false);
4158 		if (ret) {
4159 			set_btree_ioerr(p);
4160 			if (PageWriteback(p))
4161 				end_page_writeback(p);
4162 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4163 				end_extent_buffer_writeback(eb);
4164 			ret = -EIO;
4165 			break;
4166 		}
4167 		disk_bytenr += PAGE_SIZE;
4168 		update_nr_written(wbc, 1);
4169 		unlock_page(p);
4170 	}
4171 
4172 	if (unlikely(ret)) {
4173 		for (; i < num_pages; i++) {
4174 			struct page *p = eb->pages[i];
4175 			clear_page_dirty_for_io(p);
4176 			unlock_page(p);
4177 		}
4178 	}
4179 
4180 	return ret;
4181 }
4182 
4183 /*
4184  * Submit all page(s) of one extent buffer.
4185  *
4186  * @page:	the page of one extent buffer
4187  * @eb_context:	to determine if we need to submit this page, if current page
4188  *		belongs to this eb, we don't need to submit
4189  *
4190  * The caller should pass each page in their bytenr order, and here we use
4191  * @eb_context to determine if we have submitted pages of one extent buffer.
4192  *
4193  * If we have, we just skip until we hit a new page that doesn't belong to
4194  * current @eb_context.
4195  *
4196  * If not, we submit all the page(s) of the extent buffer.
4197  *
4198  * Return >0 if we have submitted the extent buffer successfully.
4199  * Return 0 if we don't need to submit the page, as it's already submitted by
4200  * previous call.
4201  * Return <0 for fatal error.
4202  */
4203 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4204 			  struct extent_page_data *epd,
4205 			  struct extent_buffer **eb_context)
4206 {
4207 	struct address_space *mapping = page->mapping;
4208 	struct btrfs_block_group *cache = NULL;
4209 	struct extent_buffer *eb;
4210 	int ret;
4211 
4212 	if (!PagePrivate(page))
4213 		return 0;
4214 
4215 	spin_lock(&mapping->private_lock);
4216 	if (!PagePrivate(page)) {
4217 		spin_unlock(&mapping->private_lock);
4218 		return 0;
4219 	}
4220 
4221 	eb = (struct extent_buffer *)page->private;
4222 
4223 	/*
4224 	 * Shouldn't happen and normally this would be a BUG_ON but no point
4225 	 * crashing the machine for something we can survive anyway.
4226 	 */
4227 	if (WARN_ON(!eb)) {
4228 		spin_unlock(&mapping->private_lock);
4229 		return 0;
4230 	}
4231 
4232 	if (eb == *eb_context) {
4233 		spin_unlock(&mapping->private_lock);
4234 		return 0;
4235 	}
4236 	ret = atomic_inc_not_zero(&eb->refs);
4237 	spin_unlock(&mapping->private_lock);
4238 	if (!ret)
4239 		return 0;
4240 
4241 	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4242 		/*
4243 		 * If for_sync, this hole will be filled with
4244 		 * trasnsaction commit.
4245 		 */
4246 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4247 			ret = -EAGAIN;
4248 		else
4249 			ret = 0;
4250 		free_extent_buffer(eb);
4251 		return ret;
4252 	}
4253 
4254 	*eb_context = eb;
4255 
4256 	ret = lock_extent_buffer_for_io(eb, epd);
4257 	if (ret <= 0) {
4258 		btrfs_revert_meta_write_pointer(cache, eb);
4259 		if (cache)
4260 			btrfs_put_block_group(cache);
4261 		free_extent_buffer(eb);
4262 		return ret;
4263 	}
4264 	if (cache)
4265 		btrfs_put_block_group(cache);
4266 	ret = write_one_eb(eb, wbc, epd);
4267 	free_extent_buffer(eb);
4268 	if (ret < 0)
4269 		return ret;
4270 	return 1;
4271 }
4272 
4273 int btree_write_cache_pages(struct address_space *mapping,
4274 				   struct writeback_control *wbc)
4275 {
4276 	struct extent_buffer *eb_context = NULL;
4277 	struct extent_page_data epd = {
4278 		.bio = NULL,
4279 		.extent_locked = 0,
4280 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4281 	};
4282 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4283 	int ret = 0;
4284 	int done = 0;
4285 	int nr_to_write_done = 0;
4286 	struct pagevec pvec;
4287 	int nr_pages;
4288 	pgoff_t index;
4289 	pgoff_t end;		/* Inclusive */
4290 	int scanned = 0;
4291 	xa_mark_t tag;
4292 
4293 	pagevec_init(&pvec);
4294 	if (wbc->range_cyclic) {
4295 		index = mapping->writeback_index; /* Start from prev offset */
4296 		end = -1;
4297 		/*
4298 		 * Start from the beginning does not need to cycle over the
4299 		 * range, mark it as scanned.
4300 		 */
4301 		scanned = (index == 0);
4302 	} else {
4303 		index = wbc->range_start >> PAGE_SHIFT;
4304 		end = wbc->range_end >> PAGE_SHIFT;
4305 		scanned = 1;
4306 	}
4307 	if (wbc->sync_mode == WB_SYNC_ALL)
4308 		tag = PAGECACHE_TAG_TOWRITE;
4309 	else
4310 		tag = PAGECACHE_TAG_DIRTY;
4311 	btrfs_zoned_meta_io_lock(fs_info);
4312 retry:
4313 	if (wbc->sync_mode == WB_SYNC_ALL)
4314 		tag_pages_for_writeback(mapping, index, end);
4315 	while (!done && !nr_to_write_done && (index <= end) &&
4316 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4317 			tag))) {
4318 		unsigned i;
4319 
4320 		for (i = 0; i < nr_pages; i++) {
4321 			struct page *page = pvec.pages[i];
4322 
4323 			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4324 			if (ret == 0)
4325 				continue;
4326 			if (ret < 0) {
4327 				done = 1;
4328 				break;
4329 			}
4330 
4331 			/*
4332 			 * the filesystem may choose to bump up nr_to_write.
4333 			 * We have to make sure to honor the new nr_to_write
4334 			 * at any time
4335 			 */
4336 			nr_to_write_done = wbc->nr_to_write <= 0;
4337 		}
4338 		pagevec_release(&pvec);
4339 		cond_resched();
4340 	}
4341 	if (!scanned && !done) {
4342 		/*
4343 		 * We hit the last page and there is more work to be done: wrap
4344 		 * back to the start of the file
4345 		 */
4346 		scanned = 1;
4347 		index = 0;
4348 		goto retry;
4349 	}
4350 	if (ret < 0) {
4351 		end_write_bio(&epd, ret);
4352 		goto out;
4353 	}
4354 	/*
4355 	 * If something went wrong, don't allow any metadata write bio to be
4356 	 * submitted.
4357 	 *
4358 	 * This would prevent use-after-free if we had dirty pages not
4359 	 * cleaned up, which can still happen by fuzzed images.
4360 	 *
4361 	 * - Bad extent tree
4362 	 *   Allowing existing tree block to be allocated for other trees.
4363 	 *
4364 	 * - Log tree operations
4365 	 *   Exiting tree blocks get allocated to log tree, bumps its
4366 	 *   generation, then get cleaned in tree re-balance.
4367 	 *   Such tree block will not be written back, since it's clean,
4368 	 *   thus no WRITTEN flag set.
4369 	 *   And after log writes back, this tree block is not traced by
4370 	 *   any dirty extent_io_tree.
4371 	 *
4372 	 * - Offending tree block gets re-dirtied from its original owner
4373 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4374 	 *   reused without COWing. This tree block will not be traced
4375 	 *   by btrfs_transaction::dirty_pages.
4376 	 *
4377 	 *   Now such dirty tree block will not be cleaned by any dirty
4378 	 *   extent io tree. Thus we don't want to submit such wild eb
4379 	 *   if the fs already has error.
4380 	 */
4381 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4382 		ret = flush_write_bio(&epd);
4383 	} else {
4384 		ret = -EROFS;
4385 		end_write_bio(&epd, ret);
4386 	}
4387 out:
4388 	btrfs_zoned_meta_io_unlock(fs_info);
4389 	return ret;
4390 }
4391 
4392 /**
4393  * Walk the list of dirty pages of the given address space and write all of them.
4394  *
4395  * @mapping: address space structure to write
4396  * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4397  * @epd:     holds context for the write, namely the bio
4398  *
4399  * If a page is already under I/O, write_cache_pages() skips it, even
4400  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4401  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4402  * and msync() need to guarantee that all the data which was dirty at the time
4403  * the call was made get new I/O started against them.  If wbc->sync_mode is
4404  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4405  * existing IO to complete.
4406  */
4407 static int extent_write_cache_pages(struct address_space *mapping,
4408 			     struct writeback_control *wbc,
4409 			     struct extent_page_data *epd)
4410 {
4411 	struct inode *inode = mapping->host;
4412 	int ret = 0;
4413 	int done = 0;
4414 	int nr_to_write_done = 0;
4415 	struct pagevec pvec;
4416 	int nr_pages;
4417 	pgoff_t index;
4418 	pgoff_t end;		/* Inclusive */
4419 	pgoff_t done_index;
4420 	int range_whole = 0;
4421 	int scanned = 0;
4422 	xa_mark_t tag;
4423 
4424 	/*
4425 	 * We have to hold onto the inode so that ordered extents can do their
4426 	 * work when the IO finishes.  The alternative to this is failing to add
4427 	 * an ordered extent if the igrab() fails there and that is a huge pain
4428 	 * to deal with, so instead just hold onto the inode throughout the
4429 	 * writepages operation.  If it fails here we are freeing up the inode
4430 	 * anyway and we'd rather not waste our time writing out stuff that is
4431 	 * going to be truncated anyway.
4432 	 */
4433 	if (!igrab(inode))
4434 		return 0;
4435 
4436 	pagevec_init(&pvec);
4437 	if (wbc->range_cyclic) {
4438 		index = mapping->writeback_index; /* Start from prev offset */
4439 		end = -1;
4440 		/*
4441 		 * Start from the beginning does not need to cycle over the
4442 		 * range, mark it as scanned.
4443 		 */
4444 		scanned = (index == 0);
4445 	} else {
4446 		index = wbc->range_start >> PAGE_SHIFT;
4447 		end = wbc->range_end >> PAGE_SHIFT;
4448 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4449 			range_whole = 1;
4450 		scanned = 1;
4451 	}
4452 
4453 	/*
4454 	 * We do the tagged writepage as long as the snapshot flush bit is set
4455 	 * and we are the first one who do the filemap_flush() on this inode.
4456 	 *
4457 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4458 	 * not race in and drop the bit.
4459 	 */
4460 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4461 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4462 			       &BTRFS_I(inode)->runtime_flags))
4463 		wbc->tagged_writepages = 1;
4464 
4465 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4466 		tag = PAGECACHE_TAG_TOWRITE;
4467 	else
4468 		tag = PAGECACHE_TAG_DIRTY;
4469 retry:
4470 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4471 		tag_pages_for_writeback(mapping, index, end);
4472 	done_index = index;
4473 	while (!done && !nr_to_write_done && (index <= end) &&
4474 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4475 						&index, end, tag))) {
4476 		unsigned i;
4477 
4478 		for (i = 0; i < nr_pages; i++) {
4479 			struct page *page = pvec.pages[i];
4480 
4481 			done_index = page->index + 1;
4482 			/*
4483 			 * At this point we hold neither the i_pages lock nor
4484 			 * the page lock: the page may be truncated or
4485 			 * invalidated (changing page->mapping to NULL),
4486 			 * or even swizzled back from swapper_space to
4487 			 * tmpfs file mapping
4488 			 */
4489 			if (!trylock_page(page)) {
4490 				ret = flush_write_bio(epd);
4491 				BUG_ON(ret < 0);
4492 				lock_page(page);
4493 			}
4494 
4495 			if (unlikely(page->mapping != mapping)) {
4496 				unlock_page(page);
4497 				continue;
4498 			}
4499 
4500 			if (wbc->sync_mode != WB_SYNC_NONE) {
4501 				if (PageWriteback(page)) {
4502 					ret = flush_write_bio(epd);
4503 					BUG_ON(ret < 0);
4504 				}
4505 				wait_on_page_writeback(page);
4506 			}
4507 
4508 			if (PageWriteback(page) ||
4509 			    !clear_page_dirty_for_io(page)) {
4510 				unlock_page(page);
4511 				continue;
4512 			}
4513 
4514 			ret = __extent_writepage(page, wbc, epd);
4515 			if (ret < 0) {
4516 				done = 1;
4517 				break;
4518 			}
4519 
4520 			/*
4521 			 * the filesystem may choose to bump up nr_to_write.
4522 			 * We have to make sure to honor the new nr_to_write
4523 			 * at any time
4524 			 */
4525 			nr_to_write_done = wbc->nr_to_write <= 0;
4526 		}
4527 		pagevec_release(&pvec);
4528 		cond_resched();
4529 	}
4530 	if (!scanned && !done) {
4531 		/*
4532 		 * We hit the last page and there is more work to be done: wrap
4533 		 * back to the start of the file
4534 		 */
4535 		scanned = 1;
4536 		index = 0;
4537 
4538 		/*
4539 		 * If we're looping we could run into a page that is locked by a
4540 		 * writer and that writer could be waiting on writeback for a
4541 		 * page in our current bio, and thus deadlock, so flush the
4542 		 * write bio here.
4543 		 */
4544 		ret = flush_write_bio(epd);
4545 		if (!ret)
4546 			goto retry;
4547 	}
4548 
4549 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4550 		mapping->writeback_index = done_index;
4551 
4552 	btrfs_add_delayed_iput(inode);
4553 	return ret;
4554 }
4555 
4556 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4557 {
4558 	int ret;
4559 	struct extent_page_data epd = {
4560 		.bio = NULL,
4561 		.extent_locked = 0,
4562 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4563 	};
4564 
4565 	ret = __extent_writepage(page, wbc, &epd);
4566 	ASSERT(ret <= 0);
4567 	if (ret < 0) {
4568 		end_write_bio(&epd, ret);
4569 		return ret;
4570 	}
4571 
4572 	ret = flush_write_bio(&epd);
4573 	ASSERT(ret <= 0);
4574 	return ret;
4575 }
4576 
4577 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4578 			      int mode)
4579 {
4580 	int ret = 0;
4581 	struct address_space *mapping = inode->i_mapping;
4582 	struct page *page;
4583 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4584 		PAGE_SHIFT;
4585 
4586 	struct extent_page_data epd = {
4587 		.bio = NULL,
4588 		.extent_locked = 1,
4589 		.sync_io = mode == WB_SYNC_ALL,
4590 	};
4591 	struct writeback_control wbc_writepages = {
4592 		.sync_mode	= mode,
4593 		.nr_to_write	= nr_pages * 2,
4594 		.range_start	= start,
4595 		.range_end	= end + 1,
4596 		/* We're called from an async helper function */
4597 		.punt_to_cgroup	= 1,
4598 		.no_cgroup_owner = 1,
4599 	};
4600 
4601 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4602 	while (start <= end) {
4603 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4604 		if (clear_page_dirty_for_io(page))
4605 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4606 		else {
4607 			btrfs_writepage_endio_finish_ordered(page, start,
4608 						    start + PAGE_SIZE - 1, 1);
4609 			unlock_page(page);
4610 		}
4611 		put_page(page);
4612 		start += PAGE_SIZE;
4613 	}
4614 
4615 	ASSERT(ret <= 0);
4616 	if (ret == 0)
4617 		ret = flush_write_bio(&epd);
4618 	else
4619 		end_write_bio(&epd, ret);
4620 
4621 	wbc_detach_inode(&wbc_writepages);
4622 	return ret;
4623 }
4624 
4625 int extent_writepages(struct address_space *mapping,
4626 		      struct writeback_control *wbc)
4627 {
4628 	int ret = 0;
4629 	struct extent_page_data epd = {
4630 		.bio = NULL,
4631 		.extent_locked = 0,
4632 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4633 	};
4634 
4635 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4636 	ASSERT(ret <= 0);
4637 	if (ret < 0) {
4638 		end_write_bio(&epd, ret);
4639 		return ret;
4640 	}
4641 	ret = flush_write_bio(&epd);
4642 	return ret;
4643 }
4644 
4645 void extent_readahead(struct readahead_control *rac)
4646 {
4647 	struct bio *bio = NULL;
4648 	unsigned long bio_flags = 0;
4649 	struct page *pagepool[16];
4650 	struct extent_map *em_cached = NULL;
4651 	u64 prev_em_start = (u64)-1;
4652 	int nr;
4653 
4654 	while ((nr = readahead_page_batch(rac, pagepool))) {
4655 		u64 contig_start = page_offset(pagepool[0]);
4656 		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4657 
4658 		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4659 
4660 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4661 				&em_cached, &bio, &bio_flags, &prev_em_start);
4662 	}
4663 
4664 	if (em_cached)
4665 		free_extent_map(em_cached);
4666 
4667 	if (bio) {
4668 		if (submit_one_bio(bio, 0, bio_flags))
4669 			return;
4670 	}
4671 }
4672 
4673 /*
4674  * basic invalidatepage code, this waits on any locked or writeback
4675  * ranges corresponding to the page, and then deletes any extent state
4676  * records from the tree
4677  */
4678 int extent_invalidatepage(struct extent_io_tree *tree,
4679 			  struct page *page, unsigned long offset)
4680 {
4681 	struct extent_state *cached_state = NULL;
4682 	u64 start = page_offset(page);
4683 	u64 end = start + PAGE_SIZE - 1;
4684 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4685 
4686 	/* This function is only called for the btree inode */
4687 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
4688 
4689 	start += ALIGN(offset, blocksize);
4690 	if (start > end)
4691 		return 0;
4692 
4693 	lock_extent_bits(tree, start, end, &cached_state);
4694 	wait_on_page_writeback(page);
4695 
4696 	/*
4697 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
4698 	 * so here we only need to unlock the extent range to free any
4699 	 * existing extent state.
4700 	 */
4701 	unlock_extent_cached(tree, start, end, &cached_state);
4702 	return 0;
4703 }
4704 
4705 /*
4706  * a helper for releasepage, this tests for areas of the page that
4707  * are locked or under IO and drops the related state bits if it is safe
4708  * to drop the page.
4709  */
4710 static int try_release_extent_state(struct extent_io_tree *tree,
4711 				    struct page *page, gfp_t mask)
4712 {
4713 	u64 start = page_offset(page);
4714 	u64 end = start + PAGE_SIZE - 1;
4715 	int ret = 1;
4716 
4717 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4718 		ret = 0;
4719 	} else {
4720 		/*
4721 		 * At this point we can safely clear everything except the
4722 		 * locked bit, the nodatasum bit and the delalloc new bit.
4723 		 * The delalloc new bit will be cleared by ordered extent
4724 		 * completion.
4725 		 */
4726 		ret = __clear_extent_bit(tree, start, end,
4727 			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
4728 			 0, 0, NULL, mask, NULL);
4729 
4730 		/* if clear_extent_bit failed for enomem reasons,
4731 		 * we can't allow the release to continue.
4732 		 */
4733 		if (ret < 0)
4734 			ret = 0;
4735 		else
4736 			ret = 1;
4737 	}
4738 	return ret;
4739 }
4740 
4741 /*
4742  * a helper for releasepage.  As long as there are no locked extents
4743  * in the range corresponding to the page, both state records and extent
4744  * map records are removed
4745  */
4746 int try_release_extent_mapping(struct page *page, gfp_t mask)
4747 {
4748 	struct extent_map *em;
4749 	u64 start = page_offset(page);
4750 	u64 end = start + PAGE_SIZE - 1;
4751 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4752 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4753 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4754 
4755 	if (gfpflags_allow_blocking(mask) &&
4756 	    page->mapping->host->i_size > SZ_16M) {
4757 		u64 len;
4758 		while (start <= end) {
4759 			struct btrfs_fs_info *fs_info;
4760 			u64 cur_gen;
4761 
4762 			len = end - start + 1;
4763 			write_lock(&map->lock);
4764 			em = lookup_extent_mapping(map, start, len);
4765 			if (!em) {
4766 				write_unlock(&map->lock);
4767 				break;
4768 			}
4769 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4770 			    em->start != start) {
4771 				write_unlock(&map->lock);
4772 				free_extent_map(em);
4773 				break;
4774 			}
4775 			if (test_range_bit(tree, em->start,
4776 					   extent_map_end(em) - 1,
4777 					   EXTENT_LOCKED, 0, NULL))
4778 				goto next;
4779 			/*
4780 			 * If it's not in the list of modified extents, used
4781 			 * by a fast fsync, we can remove it. If it's being
4782 			 * logged we can safely remove it since fsync took an
4783 			 * extra reference on the em.
4784 			 */
4785 			if (list_empty(&em->list) ||
4786 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4787 				goto remove_em;
4788 			/*
4789 			 * If it's in the list of modified extents, remove it
4790 			 * only if its generation is older then the current one,
4791 			 * in which case we don't need it for a fast fsync.
4792 			 * Otherwise don't remove it, we could be racing with an
4793 			 * ongoing fast fsync that could miss the new extent.
4794 			 */
4795 			fs_info = btrfs_inode->root->fs_info;
4796 			spin_lock(&fs_info->trans_lock);
4797 			cur_gen = fs_info->generation;
4798 			spin_unlock(&fs_info->trans_lock);
4799 			if (em->generation >= cur_gen)
4800 				goto next;
4801 remove_em:
4802 			/*
4803 			 * We only remove extent maps that are not in the list of
4804 			 * modified extents or that are in the list but with a
4805 			 * generation lower then the current generation, so there
4806 			 * is no need to set the full fsync flag on the inode (it
4807 			 * hurts the fsync performance for workloads with a data
4808 			 * size that exceeds or is close to the system's memory).
4809 			 */
4810 			remove_extent_mapping(map, em);
4811 			/* once for the rb tree */
4812 			free_extent_map(em);
4813 next:
4814 			start = extent_map_end(em);
4815 			write_unlock(&map->lock);
4816 
4817 			/* once for us */
4818 			free_extent_map(em);
4819 
4820 			cond_resched(); /* Allow large-extent preemption. */
4821 		}
4822 	}
4823 	return try_release_extent_state(tree, page, mask);
4824 }
4825 
4826 /*
4827  * helper function for fiemap, which doesn't want to see any holes.
4828  * This maps until we find something past 'last'
4829  */
4830 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4831 						u64 offset, u64 last)
4832 {
4833 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4834 	struct extent_map *em;
4835 	u64 len;
4836 
4837 	if (offset >= last)
4838 		return NULL;
4839 
4840 	while (1) {
4841 		len = last - offset;
4842 		if (len == 0)
4843 			break;
4844 		len = ALIGN(len, sectorsize);
4845 		em = btrfs_get_extent_fiemap(inode, offset, len);
4846 		if (IS_ERR_OR_NULL(em))
4847 			return em;
4848 
4849 		/* if this isn't a hole return it */
4850 		if (em->block_start != EXTENT_MAP_HOLE)
4851 			return em;
4852 
4853 		/* this is a hole, advance to the next extent */
4854 		offset = extent_map_end(em);
4855 		free_extent_map(em);
4856 		if (offset >= last)
4857 			break;
4858 	}
4859 	return NULL;
4860 }
4861 
4862 /*
4863  * To cache previous fiemap extent
4864  *
4865  * Will be used for merging fiemap extent
4866  */
4867 struct fiemap_cache {
4868 	u64 offset;
4869 	u64 phys;
4870 	u64 len;
4871 	u32 flags;
4872 	bool cached;
4873 };
4874 
4875 /*
4876  * Helper to submit fiemap extent.
4877  *
4878  * Will try to merge current fiemap extent specified by @offset, @phys,
4879  * @len and @flags with cached one.
4880  * And only when we fails to merge, cached one will be submitted as
4881  * fiemap extent.
4882  *
4883  * Return value is the same as fiemap_fill_next_extent().
4884  */
4885 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4886 				struct fiemap_cache *cache,
4887 				u64 offset, u64 phys, u64 len, u32 flags)
4888 {
4889 	int ret = 0;
4890 
4891 	if (!cache->cached)
4892 		goto assign;
4893 
4894 	/*
4895 	 * Sanity check, extent_fiemap() should have ensured that new
4896 	 * fiemap extent won't overlap with cached one.
4897 	 * Not recoverable.
4898 	 *
4899 	 * NOTE: Physical address can overlap, due to compression
4900 	 */
4901 	if (cache->offset + cache->len > offset) {
4902 		WARN_ON(1);
4903 		return -EINVAL;
4904 	}
4905 
4906 	/*
4907 	 * Only merges fiemap extents if
4908 	 * 1) Their logical addresses are continuous
4909 	 *
4910 	 * 2) Their physical addresses are continuous
4911 	 *    So truly compressed (physical size smaller than logical size)
4912 	 *    extents won't get merged with each other
4913 	 *
4914 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4915 	 *    So regular extent won't get merged with prealloc extent
4916 	 */
4917 	if (cache->offset + cache->len  == offset &&
4918 	    cache->phys + cache->len == phys  &&
4919 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4920 			(flags & ~FIEMAP_EXTENT_LAST)) {
4921 		cache->len += len;
4922 		cache->flags |= flags;
4923 		goto try_submit_last;
4924 	}
4925 
4926 	/* Not mergeable, need to submit cached one */
4927 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4928 				      cache->len, cache->flags);
4929 	cache->cached = false;
4930 	if (ret)
4931 		return ret;
4932 assign:
4933 	cache->cached = true;
4934 	cache->offset = offset;
4935 	cache->phys = phys;
4936 	cache->len = len;
4937 	cache->flags = flags;
4938 try_submit_last:
4939 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4940 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4941 				cache->phys, cache->len, cache->flags);
4942 		cache->cached = false;
4943 	}
4944 	return ret;
4945 }
4946 
4947 /*
4948  * Emit last fiemap cache
4949  *
4950  * The last fiemap cache may still be cached in the following case:
4951  * 0		      4k		    8k
4952  * |<- Fiemap range ->|
4953  * |<------------  First extent ----------->|
4954  *
4955  * In this case, the first extent range will be cached but not emitted.
4956  * So we must emit it before ending extent_fiemap().
4957  */
4958 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4959 				  struct fiemap_cache *cache)
4960 {
4961 	int ret;
4962 
4963 	if (!cache->cached)
4964 		return 0;
4965 
4966 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4967 				      cache->len, cache->flags);
4968 	cache->cached = false;
4969 	if (ret > 0)
4970 		ret = 0;
4971 	return ret;
4972 }
4973 
4974 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4975 		  u64 start, u64 len)
4976 {
4977 	int ret = 0;
4978 	u64 off = start;
4979 	u64 max = start + len;
4980 	u32 flags = 0;
4981 	u32 found_type;
4982 	u64 last;
4983 	u64 last_for_get_extent = 0;
4984 	u64 disko = 0;
4985 	u64 isize = i_size_read(&inode->vfs_inode);
4986 	struct btrfs_key found_key;
4987 	struct extent_map *em = NULL;
4988 	struct extent_state *cached_state = NULL;
4989 	struct btrfs_path *path;
4990 	struct btrfs_root *root = inode->root;
4991 	struct fiemap_cache cache = { 0 };
4992 	struct ulist *roots;
4993 	struct ulist *tmp_ulist;
4994 	int end = 0;
4995 	u64 em_start = 0;
4996 	u64 em_len = 0;
4997 	u64 em_end = 0;
4998 
4999 	if (len == 0)
5000 		return -EINVAL;
5001 
5002 	path = btrfs_alloc_path();
5003 	if (!path)
5004 		return -ENOMEM;
5005 
5006 	roots = ulist_alloc(GFP_KERNEL);
5007 	tmp_ulist = ulist_alloc(GFP_KERNEL);
5008 	if (!roots || !tmp_ulist) {
5009 		ret = -ENOMEM;
5010 		goto out_free_ulist;
5011 	}
5012 
5013 	start = round_down(start, btrfs_inode_sectorsize(inode));
5014 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5015 
5016 	/*
5017 	 * lookup the last file extent.  We're not using i_size here
5018 	 * because there might be preallocation past i_size
5019 	 */
5020 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5021 				       0);
5022 	if (ret < 0) {
5023 		goto out_free_ulist;
5024 	} else {
5025 		WARN_ON(!ret);
5026 		if (ret == 1)
5027 			ret = 0;
5028 	}
5029 
5030 	path->slots[0]--;
5031 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5032 	found_type = found_key.type;
5033 
5034 	/* No extents, but there might be delalloc bits */
5035 	if (found_key.objectid != btrfs_ino(inode) ||
5036 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5037 		/* have to trust i_size as the end */
5038 		last = (u64)-1;
5039 		last_for_get_extent = isize;
5040 	} else {
5041 		/*
5042 		 * remember the start of the last extent.  There are a
5043 		 * bunch of different factors that go into the length of the
5044 		 * extent, so its much less complex to remember where it started
5045 		 */
5046 		last = found_key.offset;
5047 		last_for_get_extent = last + 1;
5048 	}
5049 	btrfs_release_path(path);
5050 
5051 	/*
5052 	 * we might have some extents allocated but more delalloc past those
5053 	 * extents.  so, we trust isize unless the start of the last extent is
5054 	 * beyond isize
5055 	 */
5056 	if (last < isize) {
5057 		last = (u64)-1;
5058 		last_for_get_extent = isize;
5059 	}
5060 
5061 	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5062 			 &cached_state);
5063 
5064 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5065 	if (!em)
5066 		goto out;
5067 	if (IS_ERR(em)) {
5068 		ret = PTR_ERR(em);
5069 		goto out;
5070 	}
5071 
5072 	while (!end) {
5073 		u64 offset_in_extent = 0;
5074 
5075 		/* break if the extent we found is outside the range */
5076 		if (em->start >= max || extent_map_end(em) < off)
5077 			break;
5078 
5079 		/*
5080 		 * get_extent may return an extent that starts before our
5081 		 * requested range.  We have to make sure the ranges
5082 		 * we return to fiemap always move forward and don't
5083 		 * overlap, so adjust the offsets here
5084 		 */
5085 		em_start = max(em->start, off);
5086 
5087 		/*
5088 		 * record the offset from the start of the extent
5089 		 * for adjusting the disk offset below.  Only do this if the
5090 		 * extent isn't compressed since our in ram offset may be past
5091 		 * what we have actually allocated on disk.
5092 		 */
5093 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5094 			offset_in_extent = em_start - em->start;
5095 		em_end = extent_map_end(em);
5096 		em_len = em_end - em_start;
5097 		flags = 0;
5098 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5099 			disko = em->block_start + offset_in_extent;
5100 		else
5101 			disko = 0;
5102 
5103 		/*
5104 		 * bump off for our next call to get_extent
5105 		 */
5106 		off = extent_map_end(em);
5107 		if (off >= max)
5108 			end = 1;
5109 
5110 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5111 			end = 1;
5112 			flags |= FIEMAP_EXTENT_LAST;
5113 		} else if (em->block_start == EXTENT_MAP_INLINE) {
5114 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5115 				  FIEMAP_EXTENT_NOT_ALIGNED);
5116 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5117 			flags |= (FIEMAP_EXTENT_DELALLOC |
5118 				  FIEMAP_EXTENT_UNKNOWN);
5119 		} else if (fieinfo->fi_extents_max) {
5120 			u64 bytenr = em->block_start -
5121 				(em->start - em->orig_start);
5122 
5123 			/*
5124 			 * As btrfs supports shared space, this information
5125 			 * can be exported to userspace tools via
5126 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5127 			 * then we're just getting a count and we can skip the
5128 			 * lookup stuff.
5129 			 */
5130 			ret = btrfs_check_shared(root, btrfs_ino(inode),
5131 						 bytenr, roots, tmp_ulist);
5132 			if (ret < 0)
5133 				goto out_free;
5134 			if (ret)
5135 				flags |= FIEMAP_EXTENT_SHARED;
5136 			ret = 0;
5137 		}
5138 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5139 			flags |= FIEMAP_EXTENT_ENCODED;
5140 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5141 			flags |= FIEMAP_EXTENT_UNWRITTEN;
5142 
5143 		free_extent_map(em);
5144 		em = NULL;
5145 		if ((em_start >= last) || em_len == (u64)-1 ||
5146 		   (last == (u64)-1 && isize <= em_end)) {
5147 			flags |= FIEMAP_EXTENT_LAST;
5148 			end = 1;
5149 		}
5150 
5151 		/* now scan forward to see if this is really the last extent. */
5152 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5153 		if (IS_ERR(em)) {
5154 			ret = PTR_ERR(em);
5155 			goto out;
5156 		}
5157 		if (!em) {
5158 			flags |= FIEMAP_EXTENT_LAST;
5159 			end = 1;
5160 		}
5161 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5162 					   em_len, flags);
5163 		if (ret) {
5164 			if (ret == 1)
5165 				ret = 0;
5166 			goto out_free;
5167 		}
5168 	}
5169 out_free:
5170 	if (!ret)
5171 		ret = emit_last_fiemap_cache(fieinfo, &cache);
5172 	free_extent_map(em);
5173 out:
5174 	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5175 			     &cached_state);
5176 
5177 out_free_ulist:
5178 	btrfs_free_path(path);
5179 	ulist_free(roots);
5180 	ulist_free(tmp_ulist);
5181 	return ret;
5182 }
5183 
5184 static void __free_extent_buffer(struct extent_buffer *eb)
5185 {
5186 	kmem_cache_free(extent_buffer_cache, eb);
5187 }
5188 
5189 int extent_buffer_under_io(const struct extent_buffer *eb)
5190 {
5191 	return (atomic_read(&eb->io_pages) ||
5192 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5193 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5194 }
5195 
5196 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5197 {
5198 	struct btrfs_subpage *subpage;
5199 
5200 	lockdep_assert_held(&page->mapping->private_lock);
5201 
5202 	if (PagePrivate(page)) {
5203 		subpage = (struct btrfs_subpage *)page->private;
5204 		if (atomic_read(&subpage->eb_refs))
5205 			return true;
5206 	}
5207 	return false;
5208 }
5209 
5210 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5211 {
5212 	struct btrfs_fs_info *fs_info = eb->fs_info;
5213 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5214 
5215 	/*
5216 	 * For mapped eb, we're going to change the page private, which should
5217 	 * be done under the private_lock.
5218 	 */
5219 	if (mapped)
5220 		spin_lock(&page->mapping->private_lock);
5221 
5222 	if (!PagePrivate(page)) {
5223 		if (mapped)
5224 			spin_unlock(&page->mapping->private_lock);
5225 		return;
5226 	}
5227 
5228 	if (fs_info->sectorsize == PAGE_SIZE) {
5229 		/*
5230 		 * We do this since we'll remove the pages after we've
5231 		 * removed the eb from the radix tree, so we could race
5232 		 * and have this page now attached to the new eb.  So
5233 		 * only clear page_private if it's still connected to
5234 		 * this eb.
5235 		 */
5236 		if (PagePrivate(page) &&
5237 		    page->private == (unsigned long)eb) {
5238 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5239 			BUG_ON(PageDirty(page));
5240 			BUG_ON(PageWriteback(page));
5241 			/*
5242 			 * We need to make sure we haven't be attached
5243 			 * to a new eb.
5244 			 */
5245 			detach_page_private(page);
5246 		}
5247 		if (mapped)
5248 			spin_unlock(&page->mapping->private_lock);
5249 		return;
5250 	}
5251 
5252 	/*
5253 	 * For subpage, we can have dummy eb with page private.  In this case,
5254 	 * we can directly detach the private as such page is only attached to
5255 	 * one dummy eb, no sharing.
5256 	 */
5257 	if (!mapped) {
5258 		btrfs_detach_subpage(fs_info, page);
5259 		return;
5260 	}
5261 
5262 	btrfs_page_dec_eb_refs(fs_info, page);
5263 
5264 	/*
5265 	 * We can only detach the page private if there are no other ebs in the
5266 	 * page range.
5267 	 */
5268 	if (!page_range_has_eb(fs_info, page))
5269 		btrfs_detach_subpage(fs_info, page);
5270 
5271 	spin_unlock(&page->mapping->private_lock);
5272 }
5273 
5274 /* Release all pages attached to the extent buffer */
5275 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5276 {
5277 	int i;
5278 	int num_pages;
5279 
5280 	ASSERT(!extent_buffer_under_io(eb));
5281 
5282 	num_pages = num_extent_pages(eb);
5283 	for (i = 0; i < num_pages; i++) {
5284 		struct page *page = eb->pages[i];
5285 
5286 		if (!page)
5287 			continue;
5288 
5289 		detach_extent_buffer_page(eb, page);
5290 
5291 		/* One for when we allocated the page */
5292 		put_page(page);
5293 	}
5294 }
5295 
5296 /*
5297  * Helper for releasing the extent buffer.
5298  */
5299 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5300 {
5301 	btrfs_release_extent_buffer_pages(eb);
5302 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5303 	__free_extent_buffer(eb);
5304 }
5305 
5306 static struct extent_buffer *
5307 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5308 		      unsigned long len)
5309 {
5310 	struct extent_buffer *eb = NULL;
5311 
5312 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5313 	eb->start = start;
5314 	eb->len = len;
5315 	eb->fs_info = fs_info;
5316 	eb->bflags = 0;
5317 	init_rwsem(&eb->lock);
5318 
5319 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5320 			     &fs_info->allocated_ebs);
5321 	INIT_LIST_HEAD(&eb->release_list);
5322 
5323 	spin_lock_init(&eb->refs_lock);
5324 	atomic_set(&eb->refs, 1);
5325 	atomic_set(&eb->io_pages, 0);
5326 
5327 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5328 
5329 	return eb;
5330 }
5331 
5332 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5333 {
5334 	int i;
5335 	struct page *p;
5336 	struct extent_buffer *new;
5337 	int num_pages = num_extent_pages(src);
5338 
5339 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5340 	if (new == NULL)
5341 		return NULL;
5342 
5343 	/*
5344 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5345 	 * btrfs_release_extent_buffer() have different behavior for
5346 	 * UNMAPPED subpage extent buffer.
5347 	 */
5348 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5349 
5350 	for (i = 0; i < num_pages; i++) {
5351 		int ret;
5352 
5353 		p = alloc_page(GFP_NOFS);
5354 		if (!p) {
5355 			btrfs_release_extent_buffer(new);
5356 			return NULL;
5357 		}
5358 		ret = attach_extent_buffer_page(new, p, NULL);
5359 		if (ret < 0) {
5360 			put_page(p);
5361 			btrfs_release_extent_buffer(new);
5362 			return NULL;
5363 		}
5364 		WARN_ON(PageDirty(p));
5365 		new->pages[i] = p;
5366 		copy_page(page_address(p), page_address(src->pages[i]));
5367 	}
5368 	set_extent_buffer_uptodate(new);
5369 
5370 	return new;
5371 }
5372 
5373 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5374 						  u64 start, unsigned long len)
5375 {
5376 	struct extent_buffer *eb;
5377 	int num_pages;
5378 	int i;
5379 
5380 	eb = __alloc_extent_buffer(fs_info, start, len);
5381 	if (!eb)
5382 		return NULL;
5383 
5384 	num_pages = num_extent_pages(eb);
5385 	for (i = 0; i < num_pages; i++) {
5386 		int ret;
5387 
5388 		eb->pages[i] = alloc_page(GFP_NOFS);
5389 		if (!eb->pages[i])
5390 			goto err;
5391 		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5392 		if (ret < 0)
5393 			goto err;
5394 	}
5395 	set_extent_buffer_uptodate(eb);
5396 	btrfs_set_header_nritems(eb, 0);
5397 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5398 
5399 	return eb;
5400 err:
5401 	for (; i > 0; i--) {
5402 		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5403 		__free_page(eb->pages[i - 1]);
5404 	}
5405 	__free_extent_buffer(eb);
5406 	return NULL;
5407 }
5408 
5409 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5410 						u64 start)
5411 {
5412 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5413 }
5414 
5415 static void check_buffer_tree_ref(struct extent_buffer *eb)
5416 {
5417 	int refs;
5418 	/*
5419 	 * The TREE_REF bit is first set when the extent_buffer is added
5420 	 * to the radix tree. It is also reset, if unset, when a new reference
5421 	 * is created by find_extent_buffer.
5422 	 *
5423 	 * It is only cleared in two cases: freeing the last non-tree
5424 	 * reference to the extent_buffer when its STALE bit is set or
5425 	 * calling releasepage when the tree reference is the only reference.
5426 	 *
5427 	 * In both cases, care is taken to ensure that the extent_buffer's
5428 	 * pages are not under io. However, releasepage can be concurrently
5429 	 * called with creating new references, which is prone to race
5430 	 * conditions between the calls to check_buffer_tree_ref in those
5431 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5432 	 *
5433 	 * The actual lifetime of the extent_buffer in the radix tree is
5434 	 * adequately protected by the refcount, but the TREE_REF bit and
5435 	 * its corresponding reference are not. To protect against this
5436 	 * class of races, we call check_buffer_tree_ref from the codepaths
5437 	 * which trigger io after they set eb->io_pages. Note that once io is
5438 	 * initiated, TREE_REF can no longer be cleared, so that is the
5439 	 * moment at which any such race is best fixed.
5440 	 */
5441 	refs = atomic_read(&eb->refs);
5442 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5443 		return;
5444 
5445 	spin_lock(&eb->refs_lock);
5446 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5447 		atomic_inc(&eb->refs);
5448 	spin_unlock(&eb->refs_lock);
5449 }
5450 
5451 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5452 		struct page *accessed)
5453 {
5454 	int num_pages, i;
5455 
5456 	check_buffer_tree_ref(eb);
5457 
5458 	num_pages = num_extent_pages(eb);
5459 	for (i = 0; i < num_pages; i++) {
5460 		struct page *p = eb->pages[i];
5461 
5462 		if (p != accessed)
5463 			mark_page_accessed(p);
5464 	}
5465 }
5466 
5467 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5468 					 u64 start)
5469 {
5470 	struct extent_buffer *eb;
5471 
5472 	rcu_read_lock();
5473 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5474 			       start >> fs_info->sectorsize_bits);
5475 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5476 		rcu_read_unlock();
5477 		/*
5478 		 * Lock our eb's refs_lock to avoid races with
5479 		 * free_extent_buffer. When we get our eb it might be flagged
5480 		 * with EXTENT_BUFFER_STALE and another task running
5481 		 * free_extent_buffer might have seen that flag set,
5482 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5483 		 * writeback flags not set) and it's still in the tree (flag
5484 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5485 		 * of decrementing the extent buffer's reference count twice.
5486 		 * So here we could race and increment the eb's reference count,
5487 		 * clear its stale flag, mark it as dirty and drop our reference
5488 		 * before the other task finishes executing free_extent_buffer,
5489 		 * which would later result in an attempt to free an extent
5490 		 * buffer that is dirty.
5491 		 */
5492 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5493 			spin_lock(&eb->refs_lock);
5494 			spin_unlock(&eb->refs_lock);
5495 		}
5496 		mark_extent_buffer_accessed(eb, NULL);
5497 		return eb;
5498 	}
5499 	rcu_read_unlock();
5500 
5501 	return NULL;
5502 }
5503 
5504 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5505 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5506 					u64 start)
5507 {
5508 	struct extent_buffer *eb, *exists = NULL;
5509 	int ret;
5510 
5511 	eb = find_extent_buffer(fs_info, start);
5512 	if (eb)
5513 		return eb;
5514 	eb = alloc_dummy_extent_buffer(fs_info, start);
5515 	if (!eb)
5516 		return ERR_PTR(-ENOMEM);
5517 	eb->fs_info = fs_info;
5518 again:
5519 	ret = radix_tree_preload(GFP_NOFS);
5520 	if (ret) {
5521 		exists = ERR_PTR(ret);
5522 		goto free_eb;
5523 	}
5524 	spin_lock(&fs_info->buffer_lock);
5525 	ret = radix_tree_insert(&fs_info->buffer_radix,
5526 				start >> fs_info->sectorsize_bits, eb);
5527 	spin_unlock(&fs_info->buffer_lock);
5528 	radix_tree_preload_end();
5529 	if (ret == -EEXIST) {
5530 		exists = find_extent_buffer(fs_info, start);
5531 		if (exists)
5532 			goto free_eb;
5533 		else
5534 			goto again;
5535 	}
5536 	check_buffer_tree_ref(eb);
5537 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5538 
5539 	return eb;
5540 free_eb:
5541 	btrfs_release_extent_buffer(eb);
5542 	return exists;
5543 }
5544 #endif
5545 
5546 static struct extent_buffer *grab_extent_buffer(
5547 		struct btrfs_fs_info *fs_info, struct page *page)
5548 {
5549 	struct extent_buffer *exists;
5550 
5551 	/*
5552 	 * For subpage case, we completely rely on radix tree to ensure we
5553 	 * don't try to insert two ebs for the same bytenr.  So here we always
5554 	 * return NULL and just continue.
5555 	 */
5556 	if (fs_info->sectorsize < PAGE_SIZE)
5557 		return NULL;
5558 
5559 	/* Page not yet attached to an extent buffer */
5560 	if (!PagePrivate(page))
5561 		return NULL;
5562 
5563 	/*
5564 	 * We could have already allocated an eb for this page and attached one
5565 	 * so lets see if we can get a ref on the existing eb, and if we can we
5566 	 * know it's good and we can just return that one, else we know we can
5567 	 * just overwrite page->private.
5568 	 */
5569 	exists = (struct extent_buffer *)page->private;
5570 	if (atomic_inc_not_zero(&exists->refs))
5571 		return exists;
5572 
5573 	WARN_ON(PageDirty(page));
5574 	detach_page_private(page);
5575 	return NULL;
5576 }
5577 
5578 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5579 					  u64 start, u64 owner_root, int level)
5580 {
5581 	unsigned long len = fs_info->nodesize;
5582 	int num_pages;
5583 	int i;
5584 	unsigned long index = start >> PAGE_SHIFT;
5585 	struct extent_buffer *eb;
5586 	struct extent_buffer *exists = NULL;
5587 	struct page *p;
5588 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5589 	int uptodate = 1;
5590 	int ret;
5591 
5592 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5593 		btrfs_err(fs_info, "bad tree block start %llu", start);
5594 		return ERR_PTR(-EINVAL);
5595 	}
5596 
5597 	if (fs_info->sectorsize < PAGE_SIZE &&
5598 	    offset_in_page(start) + len > PAGE_SIZE) {
5599 		btrfs_err(fs_info,
5600 		"tree block crosses page boundary, start %llu nodesize %lu",
5601 			  start, len);
5602 		return ERR_PTR(-EINVAL);
5603 	}
5604 
5605 	eb = find_extent_buffer(fs_info, start);
5606 	if (eb)
5607 		return eb;
5608 
5609 	eb = __alloc_extent_buffer(fs_info, start, len);
5610 	if (!eb)
5611 		return ERR_PTR(-ENOMEM);
5612 	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
5613 
5614 	num_pages = num_extent_pages(eb);
5615 	for (i = 0; i < num_pages; i++, index++) {
5616 		struct btrfs_subpage *prealloc = NULL;
5617 
5618 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5619 		if (!p) {
5620 			exists = ERR_PTR(-ENOMEM);
5621 			goto free_eb;
5622 		}
5623 
5624 		/*
5625 		 * Preallocate page->private for subpage case, so that we won't
5626 		 * allocate memory with private_lock hold.  The memory will be
5627 		 * freed by attach_extent_buffer_page() or freed manually if
5628 		 * we exit earlier.
5629 		 *
5630 		 * Although we have ensured one subpage eb can only have one
5631 		 * page, but it may change in the future for 16K page size
5632 		 * support, so we still preallocate the memory in the loop.
5633 		 */
5634 		ret = btrfs_alloc_subpage(fs_info, &prealloc,
5635 					  BTRFS_SUBPAGE_METADATA);
5636 		if (ret < 0) {
5637 			unlock_page(p);
5638 			put_page(p);
5639 			exists = ERR_PTR(ret);
5640 			goto free_eb;
5641 		}
5642 
5643 		spin_lock(&mapping->private_lock);
5644 		exists = grab_extent_buffer(fs_info, p);
5645 		if (exists) {
5646 			spin_unlock(&mapping->private_lock);
5647 			unlock_page(p);
5648 			put_page(p);
5649 			mark_extent_buffer_accessed(exists, p);
5650 			btrfs_free_subpage(prealloc);
5651 			goto free_eb;
5652 		}
5653 		/* Should not fail, as we have preallocated the memory */
5654 		ret = attach_extent_buffer_page(eb, p, prealloc);
5655 		ASSERT(!ret);
5656 		/*
5657 		 * To inform we have extra eb under allocation, so that
5658 		 * detach_extent_buffer_page() won't release the page private
5659 		 * when the eb hasn't yet been inserted into radix tree.
5660 		 *
5661 		 * The ref will be decreased when the eb released the page, in
5662 		 * detach_extent_buffer_page().
5663 		 * Thus needs no special handling in error path.
5664 		 */
5665 		btrfs_page_inc_eb_refs(fs_info, p);
5666 		spin_unlock(&mapping->private_lock);
5667 
5668 		WARN_ON(PageDirty(p));
5669 		eb->pages[i] = p;
5670 		if (!PageUptodate(p))
5671 			uptodate = 0;
5672 
5673 		/*
5674 		 * We can't unlock the pages just yet since the extent buffer
5675 		 * hasn't been properly inserted in the radix tree, this
5676 		 * opens a race with btree_releasepage which can free a page
5677 		 * while we are still filling in all pages for the buffer and
5678 		 * we could crash.
5679 		 */
5680 	}
5681 	if (uptodate)
5682 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5683 again:
5684 	ret = radix_tree_preload(GFP_NOFS);
5685 	if (ret) {
5686 		exists = ERR_PTR(ret);
5687 		goto free_eb;
5688 	}
5689 
5690 	spin_lock(&fs_info->buffer_lock);
5691 	ret = radix_tree_insert(&fs_info->buffer_radix,
5692 				start >> fs_info->sectorsize_bits, eb);
5693 	spin_unlock(&fs_info->buffer_lock);
5694 	radix_tree_preload_end();
5695 	if (ret == -EEXIST) {
5696 		exists = find_extent_buffer(fs_info, start);
5697 		if (exists)
5698 			goto free_eb;
5699 		else
5700 			goto again;
5701 	}
5702 	/* add one reference for the tree */
5703 	check_buffer_tree_ref(eb);
5704 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5705 
5706 	/*
5707 	 * Now it's safe to unlock the pages because any calls to
5708 	 * btree_releasepage will correctly detect that a page belongs to a
5709 	 * live buffer and won't free them prematurely.
5710 	 */
5711 	for (i = 0; i < num_pages; i++)
5712 		unlock_page(eb->pages[i]);
5713 	return eb;
5714 
5715 free_eb:
5716 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5717 	for (i = 0; i < num_pages; i++) {
5718 		if (eb->pages[i])
5719 			unlock_page(eb->pages[i]);
5720 	}
5721 
5722 	btrfs_release_extent_buffer(eb);
5723 	return exists;
5724 }
5725 
5726 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5727 {
5728 	struct extent_buffer *eb =
5729 			container_of(head, struct extent_buffer, rcu_head);
5730 
5731 	__free_extent_buffer(eb);
5732 }
5733 
5734 static int release_extent_buffer(struct extent_buffer *eb)
5735 	__releases(&eb->refs_lock)
5736 {
5737 	lockdep_assert_held(&eb->refs_lock);
5738 
5739 	WARN_ON(atomic_read(&eb->refs) == 0);
5740 	if (atomic_dec_and_test(&eb->refs)) {
5741 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5742 			struct btrfs_fs_info *fs_info = eb->fs_info;
5743 
5744 			spin_unlock(&eb->refs_lock);
5745 
5746 			spin_lock(&fs_info->buffer_lock);
5747 			radix_tree_delete(&fs_info->buffer_radix,
5748 					  eb->start >> fs_info->sectorsize_bits);
5749 			spin_unlock(&fs_info->buffer_lock);
5750 		} else {
5751 			spin_unlock(&eb->refs_lock);
5752 		}
5753 
5754 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5755 		/* Should be safe to release our pages at this point */
5756 		btrfs_release_extent_buffer_pages(eb);
5757 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5758 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5759 			__free_extent_buffer(eb);
5760 			return 1;
5761 		}
5762 #endif
5763 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5764 		return 1;
5765 	}
5766 	spin_unlock(&eb->refs_lock);
5767 
5768 	return 0;
5769 }
5770 
5771 void free_extent_buffer(struct extent_buffer *eb)
5772 {
5773 	int refs;
5774 	int old;
5775 	if (!eb)
5776 		return;
5777 
5778 	while (1) {
5779 		refs = atomic_read(&eb->refs);
5780 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5781 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5782 			refs == 1))
5783 			break;
5784 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5785 		if (old == refs)
5786 			return;
5787 	}
5788 
5789 	spin_lock(&eb->refs_lock);
5790 	if (atomic_read(&eb->refs) == 2 &&
5791 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5792 	    !extent_buffer_under_io(eb) &&
5793 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5794 		atomic_dec(&eb->refs);
5795 
5796 	/*
5797 	 * I know this is terrible, but it's temporary until we stop tracking
5798 	 * the uptodate bits and such for the extent buffers.
5799 	 */
5800 	release_extent_buffer(eb);
5801 }
5802 
5803 void free_extent_buffer_stale(struct extent_buffer *eb)
5804 {
5805 	if (!eb)
5806 		return;
5807 
5808 	spin_lock(&eb->refs_lock);
5809 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5810 
5811 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5812 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5813 		atomic_dec(&eb->refs);
5814 	release_extent_buffer(eb);
5815 }
5816 
5817 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5818 {
5819 	int i;
5820 	int num_pages;
5821 	struct page *page;
5822 
5823 	num_pages = num_extent_pages(eb);
5824 
5825 	for (i = 0; i < num_pages; i++) {
5826 		page = eb->pages[i];
5827 		if (!PageDirty(page))
5828 			continue;
5829 
5830 		lock_page(page);
5831 		WARN_ON(!PagePrivate(page));
5832 
5833 		clear_page_dirty_for_io(page);
5834 		xa_lock_irq(&page->mapping->i_pages);
5835 		if (!PageDirty(page))
5836 			__xa_clear_mark(&page->mapping->i_pages,
5837 					page_index(page), PAGECACHE_TAG_DIRTY);
5838 		xa_unlock_irq(&page->mapping->i_pages);
5839 		ClearPageError(page);
5840 		unlock_page(page);
5841 	}
5842 	WARN_ON(atomic_read(&eb->refs) == 0);
5843 }
5844 
5845 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5846 {
5847 	int i;
5848 	int num_pages;
5849 	bool was_dirty;
5850 
5851 	check_buffer_tree_ref(eb);
5852 
5853 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5854 
5855 	num_pages = num_extent_pages(eb);
5856 	WARN_ON(atomic_read(&eb->refs) == 0);
5857 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5858 
5859 	if (!was_dirty)
5860 		for (i = 0; i < num_pages; i++)
5861 			set_page_dirty(eb->pages[i]);
5862 
5863 #ifdef CONFIG_BTRFS_DEBUG
5864 	for (i = 0; i < num_pages; i++)
5865 		ASSERT(PageDirty(eb->pages[i]));
5866 #endif
5867 
5868 	return was_dirty;
5869 }
5870 
5871 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5872 {
5873 	struct btrfs_fs_info *fs_info = eb->fs_info;
5874 	struct page *page;
5875 	int num_pages;
5876 	int i;
5877 
5878 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5879 	num_pages = num_extent_pages(eb);
5880 	for (i = 0; i < num_pages; i++) {
5881 		page = eb->pages[i];
5882 		if (page)
5883 			btrfs_page_clear_uptodate(fs_info, page,
5884 						  eb->start, eb->len);
5885 	}
5886 }
5887 
5888 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5889 {
5890 	struct btrfs_fs_info *fs_info = eb->fs_info;
5891 	struct page *page;
5892 	int num_pages;
5893 	int i;
5894 
5895 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5896 	num_pages = num_extent_pages(eb);
5897 	for (i = 0; i < num_pages; i++) {
5898 		page = eb->pages[i];
5899 		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
5900 	}
5901 }
5902 
5903 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
5904 				      int mirror_num)
5905 {
5906 	struct btrfs_fs_info *fs_info = eb->fs_info;
5907 	struct extent_io_tree *io_tree;
5908 	struct page *page = eb->pages[0];
5909 	struct bio *bio = NULL;
5910 	int ret = 0;
5911 
5912 	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
5913 	ASSERT(PagePrivate(page));
5914 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
5915 
5916 	if (wait == WAIT_NONE) {
5917 		ret = try_lock_extent(io_tree, eb->start,
5918 				      eb->start + eb->len - 1);
5919 		if (ret <= 0)
5920 			return ret;
5921 	} else {
5922 		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
5923 		if (ret < 0)
5924 			return ret;
5925 	}
5926 
5927 	ret = 0;
5928 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
5929 	    PageUptodate(page) ||
5930 	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
5931 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5932 		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
5933 		return ret;
5934 	}
5935 
5936 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5937 	eb->read_mirror = 0;
5938 	atomic_set(&eb->io_pages, 1);
5939 	check_buffer_tree_ref(eb);
5940 	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
5941 
5942 	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, page, eb->start,
5943 				 eb->len, eb->start - page_offset(page), &bio,
5944 				 end_bio_extent_readpage, mirror_num, 0, 0,
5945 				 true);
5946 	if (ret) {
5947 		/*
5948 		 * In the endio function, if we hit something wrong we will
5949 		 * increase the io_pages, so here we need to decrease it for
5950 		 * error path.
5951 		 */
5952 		atomic_dec(&eb->io_pages);
5953 	}
5954 	if (bio) {
5955 		int tmp;
5956 
5957 		tmp = submit_one_bio(bio, mirror_num, 0);
5958 		if (tmp < 0)
5959 			return tmp;
5960 	}
5961 	if (ret || wait != WAIT_COMPLETE)
5962 		return ret;
5963 
5964 	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
5965 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5966 		ret = -EIO;
5967 	return ret;
5968 }
5969 
5970 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5971 {
5972 	int i;
5973 	struct page *page;
5974 	int err;
5975 	int ret = 0;
5976 	int locked_pages = 0;
5977 	int all_uptodate = 1;
5978 	int num_pages;
5979 	unsigned long num_reads = 0;
5980 	struct bio *bio = NULL;
5981 	unsigned long bio_flags = 0;
5982 
5983 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5984 		return 0;
5985 
5986 	if (eb->fs_info->sectorsize < PAGE_SIZE)
5987 		return read_extent_buffer_subpage(eb, wait, mirror_num);
5988 
5989 	num_pages = num_extent_pages(eb);
5990 	for (i = 0; i < num_pages; i++) {
5991 		page = eb->pages[i];
5992 		if (wait == WAIT_NONE) {
5993 			/*
5994 			 * WAIT_NONE is only utilized by readahead. If we can't
5995 			 * acquire the lock atomically it means either the eb
5996 			 * is being read out or under modification.
5997 			 * Either way the eb will be or has been cached,
5998 			 * readahead can exit safely.
5999 			 */
6000 			if (!trylock_page(page))
6001 				goto unlock_exit;
6002 		} else {
6003 			lock_page(page);
6004 		}
6005 		locked_pages++;
6006 	}
6007 	/*
6008 	 * We need to firstly lock all pages to make sure that
6009 	 * the uptodate bit of our pages won't be affected by
6010 	 * clear_extent_buffer_uptodate().
6011 	 */
6012 	for (i = 0; i < num_pages; i++) {
6013 		page = eb->pages[i];
6014 		if (!PageUptodate(page)) {
6015 			num_reads++;
6016 			all_uptodate = 0;
6017 		}
6018 	}
6019 
6020 	if (all_uptodate) {
6021 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6022 		goto unlock_exit;
6023 	}
6024 
6025 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6026 	eb->read_mirror = 0;
6027 	atomic_set(&eb->io_pages, num_reads);
6028 	/*
6029 	 * It is possible for releasepage to clear the TREE_REF bit before we
6030 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6031 	 */
6032 	check_buffer_tree_ref(eb);
6033 	for (i = 0; i < num_pages; i++) {
6034 		page = eb->pages[i];
6035 
6036 		if (!PageUptodate(page)) {
6037 			if (ret) {
6038 				atomic_dec(&eb->io_pages);
6039 				unlock_page(page);
6040 				continue;
6041 			}
6042 
6043 			ClearPageError(page);
6044 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6045 					 page, page_offset(page), PAGE_SIZE, 0,
6046 					 &bio, end_bio_extent_readpage,
6047 					 mirror_num, 0, 0, false);
6048 			if (err) {
6049 				/*
6050 				 * We failed to submit the bio so it's the
6051 				 * caller's responsibility to perform cleanup
6052 				 * i.e unlock page/set error bit.
6053 				 */
6054 				ret = err;
6055 				SetPageError(page);
6056 				unlock_page(page);
6057 				atomic_dec(&eb->io_pages);
6058 			}
6059 		} else {
6060 			unlock_page(page);
6061 		}
6062 	}
6063 
6064 	if (bio) {
6065 		err = submit_one_bio(bio, mirror_num, bio_flags);
6066 		if (err)
6067 			return err;
6068 	}
6069 
6070 	if (ret || wait != WAIT_COMPLETE)
6071 		return ret;
6072 
6073 	for (i = 0; i < num_pages; i++) {
6074 		page = eb->pages[i];
6075 		wait_on_page_locked(page);
6076 		if (!PageUptodate(page))
6077 			ret = -EIO;
6078 	}
6079 
6080 	return ret;
6081 
6082 unlock_exit:
6083 	while (locked_pages > 0) {
6084 		locked_pages--;
6085 		page = eb->pages[locked_pages];
6086 		unlock_page(page);
6087 	}
6088 	return ret;
6089 }
6090 
6091 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6092 			    unsigned long len)
6093 {
6094 	btrfs_warn(eb->fs_info,
6095 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6096 		eb->start, eb->len, start, len);
6097 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6098 
6099 	return true;
6100 }
6101 
6102 /*
6103  * Check if the [start, start + len) range is valid before reading/writing
6104  * the eb.
6105  * NOTE: @start and @len are offset inside the eb, not logical address.
6106  *
6107  * Caller should not touch the dst/src memory if this function returns error.
6108  */
6109 static inline int check_eb_range(const struct extent_buffer *eb,
6110 				 unsigned long start, unsigned long len)
6111 {
6112 	unsigned long offset;
6113 
6114 	/* start, start + len should not go beyond eb->len nor overflow */
6115 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6116 		return report_eb_range(eb, start, len);
6117 
6118 	return false;
6119 }
6120 
6121 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6122 			unsigned long start, unsigned long len)
6123 {
6124 	size_t cur;
6125 	size_t offset;
6126 	struct page *page;
6127 	char *kaddr;
6128 	char *dst = (char *)dstv;
6129 	unsigned long i = get_eb_page_index(start);
6130 
6131 	if (check_eb_range(eb, start, len))
6132 		return;
6133 
6134 	offset = get_eb_offset_in_page(eb, start);
6135 
6136 	while (len > 0) {
6137 		page = eb->pages[i];
6138 
6139 		cur = min(len, (PAGE_SIZE - offset));
6140 		kaddr = page_address(page);
6141 		memcpy(dst, kaddr + offset, cur);
6142 
6143 		dst += cur;
6144 		len -= cur;
6145 		offset = 0;
6146 		i++;
6147 	}
6148 }
6149 
6150 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6151 				       void __user *dstv,
6152 				       unsigned long start, unsigned long len)
6153 {
6154 	size_t cur;
6155 	size_t offset;
6156 	struct page *page;
6157 	char *kaddr;
6158 	char __user *dst = (char __user *)dstv;
6159 	unsigned long i = get_eb_page_index(start);
6160 	int ret = 0;
6161 
6162 	WARN_ON(start > eb->len);
6163 	WARN_ON(start + len > eb->start + eb->len);
6164 
6165 	offset = get_eb_offset_in_page(eb, start);
6166 
6167 	while (len > 0) {
6168 		page = eb->pages[i];
6169 
6170 		cur = min(len, (PAGE_SIZE - offset));
6171 		kaddr = page_address(page);
6172 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6173 			ret = -EFAULT;
6174 			break;
6175 		}
6176 
6177 		dst += cur;
6178 		len -= cur;
6179 		offset = 0;
6180 		i++;
6181 	}
6182 
6183 	return ret;
6184 }
6185 
6186 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6187 			 unsigned long start, unsigned long len)
6188 {
6189 	size_t cur;
6190 	size_t offset;
6191 	struct page *page;
6192 	char *kaddr;
6193 	char *ptr = (char *)ptrv;
6194 	unsigned long i = get_eb_page_index(start);
6195 	int ret = 0;
6196 
6197 	if (check_eb_range(eb, start, len))
6198 		return -EINVAL;
6199 
6200 	offset = get_eb_offset_in_page(eb, start);
6201 
6202 	while (len > 0) {
6203 		page = eb->pages[i];
6204 
6205 		cur = min(len, (PAGE_SIZE - offset));
6206 
6207 		kaddr = page_address(page);
6208 		ret = memcmp(ptr, kaddr + offset, cur);
6209 		if (ret)
6210 			break;
6211 
6212 		ptr += cur;
6213 		len -= cur;
6214 		offset = 0;
6215 		i++;
6216 	}
6217 	return ret;
6218 }
6219 
6220 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6221 		const void *srcv)
6222 {
6223 	char *kaddr;
6224 
6225 	WARN_ON(!PageUptodate(eb->pages[0]));
6226 	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6227 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
6228 			BTRFS_FSID_SIZE);
6229 }
6230 
6231 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6232 {
6233 	char *kaddr;
6234 
6235 	WARN_ON(!PageUptodate(eb->pages[0]));
6236 	kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0);
6237 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
6238 			BTRFS_FSID_SIZE);
6239 }
6240 
6241 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6242 			 unsigned long start, unsigned long len)
6243 {
6244 	size_t cur;
6245 	size_t offset;
6246 	struct page *page;
6247 	char *kaddr;
6248 	char *src = (char *)srcv;
6249 	unsigned long i = get_eb_page_index(start);
6250 
6251 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6252 
6253 	if (check_eb_range(eb, start, len))
6254 		return;
6255 
6256 	offset = get_eb_offset_in_page(eb, start);
6257 
6258 	while (len > 0) {
6259 		page = eb->pages[i];
6260 		WARN_ON(!PageUptodate(page));
6261 
6262 		cur = min(len, PAGE_SIZE - offset);
6263 		kaddr = page_address(page);
6264 		memcpy(kaddr + offset, src, cur);
6265 
6266 		src += cur;
6267 		len -= cur;
6268 		offset = 0;
6269 		i++;
6270 	}
6271 }
6272 
6273 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6274 		unsigned long len)
6275 {
6276 	size_t cur;
6277 	size_t offset;
6278 	struct page *page;
6279 	char *kaddr;
6280 	unsigned long i = get_eb_page_index(start);
6281 
6282 	if (check_eb_range(eb, start, len))
6283 		return;
6284 
6285 	offset = get_eb_offset_in_page(eb, start);
6286 
6287 	while (len > 0) {
6288 		page = eb->pages[i];
6289 		WARN_ON(!PageUptodate(page));
6290 
6291 		cur = min(len, PAGE_SIZE - offset);
6292 		kaddr = page_address(page);
6293 		memset(kaddr + offset, 0, cur);
6294 
6295 		len -= cur;
6296 		offset = 0;
6297 		i++;
6298 	}
6299 }
6300 
6301 void copy_extent_buffer_full(const struct extent_buffer *dst,
6302 			     const struct extent_buffer *src)
6303 {
6304 	int i;
6305 	int num_pages;
6306 
6307 	ASSERT(dst->len == src->len);
6308 
6309 	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6310 		num_pages = num_extent_pages(dst);
6311 		for (i = 0; i < num_pages; i++)
6312 			copy_page(page_address(dst->pages[i]),
6313 				  page_address(src->pages[i]));
6314 	} else {
6315 		size_t src_offset = get_eb_offset_in_page(src, 0);
6316 		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6317 
6318 		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6319 		memcpy(page_address(dst->pages[0]) + dst_offset,
6320 		       page_address(src->pages[0]) + src_offset,
6321 		       src->len);
6322 	}
6323 }
6324 
6325 void copy_extent_buffer(const struct extent_buffer *dst,
6326 			const struct extent_buffer *src,
6327 			unsigned long dst_offset, unsigned long src_offset,
6328 			unsigned long len)
6329 {
6330 	u64 dst_len = dst->len;
6331 	size_t cur;
6332 	size_t offset;
6333 	struct page *page;
6334 	char *kaddr;
6335 	unsigned long i = get_eb_page_index(dst_offset);
6336 
6337 	if (check_eb_range(dst, dst_offset, len) ||
6338 	    check_eb_range(src, src_offset, len))
6339 		return;
6340 
6341 	WARN_ON(src->len != dst_len);
6342 
6343 	offset = get_eb_offset_in_page(dst, dst_offset);
6344 
6345 	while (len > 0) {
6346 		page = dst->pages[i];
6347 		WARN_ON(!PageUptodate(page));
6348 
6349 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6350 
6351 		kaddr = page_address(page);
6352 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6353 
6354 		src_offset += cur;
6355 		len -= cur;
6356 		offset = 0;
6357 		i++;
6358 	}
6359 }
6360 
6361 /*
6362  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6363  * given bit number
6364  * @eb: the extent buffer
6365  * @start: offset of the bitmap item in the extent buffer
6366  * @nr: bit number
6367  * @page_index: return index of the page in the extent buffer that contains the
6368  * given bit number
6369  * @page_offset: return offset into the page given by page_index
6370  *
6371  * This helper hides the ugliness of finding the byte in an extent buffer which
6372  * contains a given bit.
6373  */
6374 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6375 				    unsigned long start, unsigned long nr,
6376 				    unsigned long *page_index,
6377 				    size_t *page_offset)
6378 {
6379 	size_t byte_offset = BIT_BYTE(nr);
6380 	size_t offset;
6381 
6382 	/*
6383 	 * The byte we want is the offset of the extent buffer + the offset of
6384 	 * the bitmap item in the extent buffer + the offset of the byte in the
6385 	 * bitmap item.
6386 	 */
6387 	offset = start + offset_in_page(eb->start) + byte_offset;
6388 
6389 	*page_index = offset >> PAGE_SHIFT;
6390 	*page_offset = offset_in_page(offset);
6391 }
6392 
6393 /**
6394  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6395  * @eb: the extent buffer
6396  * @start: offset of the bitmap item in the extent buffer
6397  * @nr: bit number to test
6398  */
6399 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6400 			   unsigned long nr)
6401 {
6402 	u8 *kaddr;
6403 	struct page *page;
6404 	unsigned long i;
6405 	size_t offset;
6406 
6407 	eb_bitmap_offset(eb, start, nr, &i, &offset);
6408 	page = eb->pages[i];
6409 	WARN_ON(!PageUptodate(page));
6410 	kaddr = page_address(page);
6411 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6412 }
6413 
6414 /**
6415  * extent_buffer_bitmap_set - set an area of a bitmap
6416  * @eb: the extent buffer
6417  * @start: offset of the bitmap item in the extent buffer
6418  * @pos: bit number of the first bit
6419  * @len: number of bits to set
6420  */
6421 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6422 			      unsigned long pos, unsigned long len)
6423 {
6424 	u8 *kaddr;
6425 	struct page *page;
6426 	unsigned long i;
6427 	size_t offset;
6428 	const unsigned int size = pos + len;
6429 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6430 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6431 
6432 	eb_bitmap_offset(eb, start, pos, &i, &offset);
6433 	page = eb->pages[i];
6434 	WARN_ON(!PageUptodate(page));
6435 	kaddr = page_address(page);
6436 
6437 	while (len >= bits_to_set) {
6438 		kaddr[offset] |= mask_to_set;
6439 		len -= bits_to_set;
6440 		bits_to_set = BITS_PER_BYTE;
6441 		mask_to_set = ~0;
6442 		if (++offset >= PAGE_SIZE && len > 0) {
6443 			offset = 0;
6444 			page = eb->pages[++i];
6445 			WARN_ON(!PageUptodate(page));
6446 			kaddr = page_address(page);
6447 		}
6448 	}
6449 	if (len) {
6450 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6451 		kaddr[offset] |= mask_to_set;
6452 	}
6453 }
6454 
6455 
6456 /**
6457  * extent_buffer_bitmap_clear - clear an area of a bitmap
6458  * @eb: the extent buffer
6459  * @start: offset of the bitmap item in the extent buffer
6460  * @pos: bit number of the first bit
6461  * @len: number of bits to clear
6462  */
6463 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6464 				unsigned long start, unsigned long pos,
6465 				unsigned long len)
6466 {
6467 	u8 *kaddr;
6468 	struct page *page;
6469 	unsigned long i;
6470 	size_t offset;
6471 	const unsigned int size = pos + len;
6472 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6473 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6474 
6475 	eb_bitmap_offset(eb, start, pos, &i, &offset);
6476 	page = eb->pages[i];
6477 	WARN_ON(!PageUptodate(page));
6478 	kaddr = page_address(page);
6479 
6480 	while (len >= bits_to_clear) {
6481 		kaddr[offset] &= ~mask_to_clear;
6482 		len -= bits_to_clear;
6483 		bits_to_clear = BITS_PER_BYTE;
6484 		mask_to_clear = ~0;
6485 		if (++offset >= PAGE_SIZE && len > 0) {
6486 			offset = 0;
6487 			page = eb->pages[++i];
6488 			WARN_ON(!PageUptodate(page));
6489 			kaddr = page_address(page);
6490 		}
6491 	}
6492 	if (len) {
6493 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6494 		kaddr[offset] &= ~mask_to_clear;
6495 	}
6496 }
6497 
6498 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6499 {
6500 	unsigned long distance = (src > dst) ? src - dst : dst - src;
6501 	return distance < len;
6502 }
6503 
6504 static void copy_pages(struct page *dst_page, struct page *src_page,
6505 		       unsigned long dst_off, unsigned long src_off,
6506 		       unsigned long len)
6507 {
6508 	char *dst_kaddr = page_address(dst_page);
6509 	char *src_kaddr;
6510 	int must_memmove = 0;
6511 
6512 	if (dst_page != src_page) {
6513 		src_kaddr = page_address(src_page);
6514 	} else {
6515 		src_kaddr = dst_kaddr;
6516 		if (areas_overlap(src_off, dst_off, len))
6517 			must_memmove = 1;
6518 	}
6519 
6520 	if (must_memmove)
6521 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6522 	else
6523 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6524 }
6525 
6526 void memcpy_extent_buffer(const struct extent_buffer *dst,
6527 			  unsigned long dst_offset, unsigned long src_offset,
6528 			  unsigned long len)
6529 {
6530 	size_t cur;
6531 	size_t dst_off_in_page;
6532 	size_t src_off_in_page;
6533 	unsigned long dst_i;
6534 	unsigned long src_i;
6535 
6536 	if (check_eb_range(dst, dst_offset, len) ||
6537 	    check_eb_range(dst, src_offset, len))
6538 		return;
6539 
6540 	while (len > 0) {
6541 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6542 		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6543 
6544 		dst_i = get_eb_page_index(dst_offset);
6545 		src_i = get_eb_page_index(src_offset);
6546 
6547 		cur = min(len, (unsigned long)(PAGE_SIZE -
6548 					       src_off_in_page));
6549 		cur = min_t(unsigned long, cur,
6550 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6551 
6552 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6553 			   dst_off_in_page, src_off_in_page, cur);
6554 
6555 		src_offset += cur;
6556 		dst_offset += cur;
6557 		len -= cur;
6558 	}
6559 }
6560 
6561 void memmove_extent_buffer(const struct extent_buffer *dst,
6562 			   unsigned long dst_offset, unsigned long src_offset,
6563 			   unsigned long len)
6564 {
6565 	size_t cur;
6566 	size_t dst_off_in_page;
6567 	size_t src_off_in_page;
6568 	unsigned long dst_end = dst_offset + len - 1;
6569 	unsigned long src_end = src_offset + len - 1;
6570 	unsigned long dst_i;
6571 	unsigned long src_i;
6572 
6573 	if (check_eb_range(dst, dst_offset, len) ||
6574 	    check_eb_range(dst, src_offset, len))
6575 		return;
6576 	if (dst_offset < src_offset) {
6577 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6578 		return;
6579 	}
6580 	while (len > 0) {
6581 		dst_i = get_eb_page_index(dst_end);
6582 		src_i = get_eb_page_index(src_end);
6583 
6584 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
6585 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
6586 
6587 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6588 		cur = min(cur, dst_off_in_page + 1);
6589 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6590 			   dst_off_in_page - cur + 1,
6591 			   src_off_in_page - cur + 1, cur);
6592 
6593 		dst_end -= cur;
6594 		src_end -= cur;
6595 		len -= cur;
6596 	}
6597 }
6598 
6599 static struct extent_buffer *get_next_extent_buffer(
6600 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
6601 {
6602 	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
6603 	struct extent_buffer *found = NULL;
6604 	u64 page_start = page_offset(page);
6605 	int ret;
6606 	int i;
6607 
6608 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
6609 	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
6610 	lockdep_assert_held(&fs_info->buffer_lock);
6611 
6612 	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
6613 			bytenr >> fs_info->sectorsize_bits,
6614 			PAGE_SIZE / fs_info->nodesize);
6615 	for (i = 0; i < ret; i++) {
6616 		/* Already beyond page end */
6617 		if (gang[i]->start >= page_start + PAGE_SIZE)
6618 			break;
6619 		/* Found one */
6620 		if (gang[i]->start >= bytenr) {
6621 			found = gang[i];
6622 			break;
6623 		}
6624 	}
6625 	return found;
6626 }
6627 
6628 static int try_release_subpage_extent_buffer(struct page *page)
6629 {
6630 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
6631 	u64 cur = page_offset(page);
6632 	const u64 end = page_offset(page) + PAGE_SIZE;
6633 	int ret;
6634 
6635 	while (cur < end) {
6636 		struct extent_buffer *eb = NULL;
6637 
6638 		/*
6639 		 * Unlike try_release_extent_buffer() which uses page->private
6640 		 * to grab buffer, for subpage case we rely on radix tree, thus
6641 		 * we need to ensure radix tree consistency.
6642 		 *
6643 		 * We also want an atomic snapshot of the radix tree, thus go
6644 		 * with spinlock rather than RCU.
6645 		 */
6646 		spin_lock(&fs_info->buffer_lock);
6647 		eb = get_next_extent_buffer(fs_info, page, cur);
6648 		if (!eb) {
6649 			/* No more eb in the page range after or at cur */
6650 			spin_unlock(&fs_info->buffer_lock);
6651 			break;
6652 		}
6653 		cur = eb->start + eb->len;
6654 
6655 		/*
6656 		 * The same as try_release_extent_buffer(), to ensure the eb
6657 		 * won't disappear out from under us.
6658 		 */
6659 		spin_lock(&eb->refs_lock);
6660 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6661 			spin_unlock(&eb->refs_lock);
6662 			spin_unlock(&fs_info->buffer_lock);
6663 			break;
6664 		}
6665 		spin_unlock(&fs_info->buffer_lock);
6666 
6667 		/*
6668 		 * If tree ref isn't set then we know the ref on this eb is a
6669 		 * real ref, so just return, this eb will likely be freed soon
6670 		 * anyway.
6671 		 */
6672 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6673 			spin_unlock(&eb->refs_lock);
6674 			break;
6675 		}
6676 
6677 		/*
6678 		 * Here we don't care about the return value, we will always
6679 		 * check the page private at the end.  And
6680 		 * release_extent_buffer() will release the refs_lock.
6681 		 */
6682 		release_extent_buffer(eb);
6683 	}
6684 	/*
6685 	 * Finally to check if we have cleared page private, as if we have
6686 	 * released all ebs in the page, the page private should be cleared now.
6687 	 */
6688 	spin_lock(&page->mapping->private_lock);
6689 	if (!PagePrivate(page))
6690 		ret = 1;
6691 	else
6692 		ret = 0;
6693 	spin_unlock(&page->mapping->private_lock);
6694 	return ret;
6695 
6696 }
6697 
6698 int try_release_extent_buffer(struct page *page)
6699 {
6700 	struct extent_buffer *eb;
6701 
6702 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
6703 		return try_release_subpage_extent_buffer(page);
6704 
6705 	/*
6706 	 * We need to make sure nobody is changing page->private, as we rely on
6707 	 * page->private as the pointer to extent buffer.
6708 	 */
6709 	spin_lock(&page->mapping->private_lock);
6710 	if (!PagePrivate(page)) {
6711 		spin_unlock(&page->mapping->private_lock);
6712 		return 1;
6713 	}
6714 
6715 	eb = (struct extent_buffer *)page->private;
6716 	BUG_ON(!eb);
6717 
6718 	/*
6719 	 * This is a little awful but should be ok, we need to make sure that
6720 	 * the eb doesn't disappear out from under us while we're looking at
6721 	 * this page.
6722 	 */
6723 	spin_lock(&eb->refs_lock);
6724 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6725 		spin_unlock(&eb->refs_lock);
6726 		spin_unlock(&page->mapping->private_lock);
6727 		return 0;
6728 	}
6729 	spin_unlock(&page->mapping->private_lock);
6730 
6731 	/*
6732 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6733 	 * so just return, this page will likely be freed soon anyway.
6734 	 */
6735 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6736 		spin_unlock(&eb->refs_lock);
6737 		return 0;
6738 	}
6739 
6740 	return release_extent_buffer(eb);
6741 }
6742 
6743 /*
6744  * btrfs_readahead_tree_block - attempt to readahead a child block
6745  * @fs_info:	the fs_info
6746  * @bytenr:	bytenr to read
6747  * @owner_root: objectid of the root that owns this eb
6748  * @gen:	generation for the uptodate check, can be 0
6749  * @level:	level for the eb
6750  *
6751  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
6752  * normal uptodate check of the eb, without checking the generation.  If we have
6753  * to read the block we will not block on anything.
6754  */
6755 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
6756 				u64 bytenr, u64 owner_root, u64 gen, int level)
6757 {
6758 	struct extent_buffer *eb;
6759 	int ret;
6760 
6761 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
6762 	if (IS_ERR(eb))
6763 		return;
6764 
6765 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
6766 		free_extent_buffer(eb);
6767 		return;
6768 	}
6769 
6770 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
6771 	if (ret < 0)
6772 		free_extent_buffer_stale(eb);
6773 	else
6774 		free_extent_buffer(eb);
6775 }
6776 
6777 /*
6778  * btrfs_readahead_node_child - readahead a node's child block
6779  * @node:	parent node we're reading from
6780  * @slot:	slot in the parent node for the child we want to read
6781  *
6782  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
6783  * the slot in the node provided.
6784  */
6785 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
6786 {
6787 	btrfs_readahead_tree_block(node->fs_info,
6788 				   btrfs_node_blockptr(node, slot),
6789 				   btrfs_header_owner(node),
6790 				   btrfs_node_ptr_generation(node, slot),
6791 				   btrfs_header_level(node) - 1);
6792 }
6793