xref: /openbmc/linux/fs/btrfs/extent_io.c (revision ddc141e5)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/slab.h>
4 #include <linux/bio.h>
5 #include <linux/mm.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 #include "backref.h"
24 #include "disk-io.h"
25 
26 static struct kmem_cache *extent_state_cache;
27 static struct kmem_cache *extent_buffer_cache;
28 static struct bio_set *btrfs_bioset;
29 
30 static inline bool extent_state_in_tree(const struct extent_state *state)
31 {
32 	return !RB_EMPTY_NODE(&state->rb_node);
33 }
34 
35 #ifdef CONFIG_BTRFS_DEBUG
36 static LIST_HEAD(buffers);
37 static LIST_HEAD(states);
38 
39 static DEFINE_SPINLOCK(leak_lock);
40 
41 static inline
42 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
43 {
44 	unsigned long flags;
45 
46 	spin_lock_irqsave(&leak_lock, flags);
47 	list_add(new, head);
48 	spin_unlock_irqrestore(&leak_lock, flags);
49 }
50 
51 static inline
52 void btrfs_leak_debug_del(struct list_head *entry)
53 {
54 	unsigned long flags;
55 
56 	spin_lock_irqsave(&leak_lock, flags);
57 	list_del(entry);
58 	spin_unlock_irqrestore(&leak_lock, flags);
59 }
60 
61 static inline
62 void btrfs_leak_debug_check(void)
63 {
64 	struct extent_state *state;
65 	struct extent_buffer *eb;
66 
67 	while (!list_empty(&states)) {
68 		state = list_entry(states.next, struct extent_state, leak_list);
69 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
70 		       state->start, state->end, state->state,
71 		       extent_state_in_tree(state),
72 		       refcount_read(&state->refs));
73 		list_del(&state->leak_list);
74 		kmem_cache_free(extent_state_cache, state);
75 	}
76 
77 	while (!list_empty(&buffers)) {
78 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
79 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs));
81 		list_del(&eb->leak_list);
82 		kmem_cache_free(extent_buffer_cache, eb);
83 	}
84 }
85 
86 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
87 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
88 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
89 		struct extent_io_tree *tree, u64 start, u64 end)
90 {
91 	if (tree->ops && tree->ops->check_extent_io_range)
92 		tree->ops->check_extent_io_range(tree->private_data, caller,
93 						 start, end);
94 }
95 #else
96 #define btrfs_leak_debug_add(new, head)	do {} while (0)
97 #define btrfs_leak_debug_del(entry)	do {} while (0)
98 #define btrfs_leak_debug_check()	do {} while (0)
99 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
100 #endif
101 
102 #define BUFFER_LRU_MAX 64
103 
104 struct tree_entry {
105 	u64 start;
106 	u64 end;
107 	struct rb_node rb_node;
108 };
109 
110 struct extent_page_data {
111 	struct bio *bio;
112 	struct extent_io_tree *tree;
113 	/* tells writepage not to lock the state bits for this range
114 	 * it still does the unlocking
115 	 */
116 	unsigned int extent_locked:1;
117 
118 	/* tells the submit_bio code to use REQ_SYNC */
119 	unsigned int sync_io:1;
120 };
121 
122 static void add_extent_changeset(struct extent_state *state, unsigned bits,
123 				 struct extent_changeset *changeset,
124 				 int set)
125 {
126 	int ret;
127 
128 	if (!changeset)
129 		return;
130 	if (set && (state->state & bits) == bits)
131 		return;
132 	if (!set && (state->state & bits) == 0)
133 		return;
134 	changeset->bytes_changed += state->end - state->start + 1;
135 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
136 			GFP_ATOMIC);
137 	/* ENOMEM */
138 	BUG_ON(ret < 0);
139 }
140 
141 static void flush_write_bio(struct extent_page_data *epd);
142 
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
145 {
146 	if (tree->ops)
147 		return tree->ops->tree_fs_info(tree->private_data);
148 	return NULL;
149 }
150 
151 int __init extent_io_init(void)
152 {
153 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 			sizeof(struct extent_state), 0,
155 			SLAB_MEM_SPREAD, NULL);
156 	if (!extent_state_cache)
157 		return -ENOMEM;
158 
159 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 			sizeof(struct extent_buffer), 0,
161 			SLAB_MEM_SPREAD, NULL);
162 	if (!extent_buffer_cache)
163 		goto free_state_cache;
164 
165 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 				     offsetof(struct btrfs_io_bio, bio),
167 				     BIOSET_NEED_BVECS);
168 	if (!btrfs_bioset)
169 		goto free_buffer_cache;
170 
171 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 		goto free_bioset;
173 
174 	return 0;
175 
176 free_bioset:
177 	bioset_free(btrfs_bioset);
178 	btrfs_bioset = NULL;
179 
180 free_buffer_cache:
181 	kmem_cache_destroy(extent_buffer_cache);
182 	extent_buffer_cache = NULL;
183 
184 free_state_cache:
185 	kmem_cache_destroy(extent_state_cache);
186 	extent_state_cache = NULL;
187 	return -ENOMEM;
188 }
189 
190 void extent_io_exit(void)
191 {
192 	btrfs_leak_debug_check();
193 
194 	/*
195 	 * Make sure all delayed rcu free are flushed before we
196 	 * destroy caches.
197 	 */
198 	rcu_barrier();
199 	kmem_cache_destroy(extent_state_cache);
200 	kmem_cache_destroy(extent_buffer_cache);
201 	if (btrfs_bioset)
202 		bioset_free(btrfs_bioset);
203 }
204 
205 void extent_io_tree_init(struct extent_io_tree *tree,
206 			 void *private_data)
207 {
208 	tree->state = RB_ROOT;
209 	tree->ops = NULL;
210 	tree->dirty_bytes = 0;
211 	spin_lock_init(&tree->lock);
212 	tree->private_data = private_data;
213 }
214 
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217 	struct extent_state *state;
218 
219 	/*
220 	 * The given mask might be not appropriate for the slab allocator,
221 	 * drop the unsupported bits
222 	 */
223 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 	state = kmem_cache_alloc(extent_state_cache, mask);
225 	if (!state)
226 		return state;
227 	state->state = 0;
228 	state->failrec = NULL;
229 	RB_CLEAR_NODE(&state->rb_node);
230 	btrfs_leak_debug_add(&state->leak_list, &states);
231 	refcount_set(&state->refs, 1);
232 	init_waitqueue_head(&state->wq);
233 	trace_alloc_extent_state(state, mask, _RET_IP_);
234 	return state;
235 }
236 
237 void free_extent_state(struct extent_state *state)
238 {
239 	if (!state)
240 		return;
241 	if (refcount_dec_and_test(&state->refs)) {
242 		WARN_ON(extent_state_in_tree(state));
243 		btrfs_leak_debug_del(&state->leak_list);
244 		trace_free_extent_state(state, _RET_IP_);
245 		kmem_cache_free(extent_state_cache, state);
246 	}
247 }
248 
249 static struct rb_node *tree_insert(struct rb_root *root,
250 				   struct rb_node *search_start,
251 				   u64 offset,
252 				   struct rb_node *node,
253 				   struct rb_node ***p_in,
254 				   struct rb_node **parent_in)
255 {
256 	struct rb_node **p;
257 	struct rb_node *parent = NULL;
258 	struct tree_entry *entry;
259 
260 	if (p_in && parent_in) {
261 		p = *p_in;
262 		parent = *parent_in;
263 		goto do_insert;
264 	}
265 
266 	p = search_start ? &search_start : &root->rb_node;
267 	while (*p) {
268 		parent = *p;
269 		entry = rb_entry(parent, struct tree_entry, rb_node);
270 
271 		if (offset < entry->start)
272 			p = &(*p)->rb_left;
273 		else if (offset > entry->end)
274 			p = &(*p)->rb_right;
275 		else
276 			return parent;
277 	}
278 
279 do_insert:
280 	rb_link_node(node, parent, p);
281 	rb_insert_color(node, root);
282 	return NULL;
283 }
284 
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 				      struct rb_node **prev_ret,
287 				      struct rb_node **next_ret,
288 				      struct rb_node ***p_ret,
289 				      struct rb_node **parent_ret)
290 {
291 	struct rb_root *root = &tree->state;
292 	struct rb_node **n = &root->rb_node;
293 	struct rb_node *prev = NULL;
294 	struct rb_node *orig_prev = NULL;
295 	struct tree_entry *entry;
296 	struct tree_entry *prev_entry = NULL;
297 
298 	while (*n) {
299 		prev = *n;
300 		entry = rb_entry(prev, struct tree_entry, rb_node);
301 		prev_entry = entry;
302 
303 		if (offset < entry->start)
304 			n = &(*n)->rb_left;
305 		else if (offset > entry->end)
306 			n = &(*n)->rb_right;
307 		else
308 			return *n;
309 	}
310 
311 	if (p_ret)
312 		*p_ret = n;
313 	if (parent_ret)
314 		*parent_ret = prev;
315 
316 	if (prev_ret) {
317 		orig_prev = prev;
318 		while (prev && offset > prev_entry->end) {
319 			prev = rb_next(prev);
320 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 		}
322 		*prev_ret = prev;
323 		prev = orig_prev;
324 	}
325 
326 	if (next_ret) {
327 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 		while (prev && offset < prev_entry->start) {
329 			prev = rb_prev(prev);
330 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 		}
332 		*next_ret = prev;
333 	}
334 	return NULL;
335 }
336 
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339 		       u64 offset,
340 		       struct rb_node ***p_ret,
341 		       struct rb_node **parent_ret)
342 {
343 	struct rb_node *prev = NULL;
344 	struct rb_node *ret;
345 
346 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 	if (!ret)
348 		return prev;
349 	return ret;
350 }
351 
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 					  u64 offset)
354 {
355 	return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357 
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 		     struct extent_state *other)
360 {
361 	if (tree->ops && tree->ops->merge_extent_hook)
362 		tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364 
365 /*
366  * utility function to look for merge candidates inside a given range.
367  * Any extents with matching state are merged together into a single
368  * extent in the tree.  Extents with EXTENT_IO in their state field
369  * are not merged because the end_io handlers need to be able to do
370  * operations on them without sleeping (or doing allocations/splits).
371  *
372  * This should be called with the tree lock held.
373  */
374 static void merge_state(struct extent_io_tree *tree,
375 		        struct extent_state *state)
376 {
377 	struct extent_state *other;
378 	struct rb_node *other_node;
379 
380 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 		return;
382 
383 	other_node = rb_prev(&state->rb_node);
384 	if (other_node) {
385 		other = rb_entry(other_node, struct extent_state, rb_node);
386 		if (other->end == state->start - 1 &&
387 		    other->state == state->state) {
388 			merge_cb(tree, state, other);
389 			state->start = other->start;
390 			rb_erase(&other->rb_node, &tree->state);
391 			RB_CLEAR_NODE(&other->rb_node);
392 			free_extent_state(other);
393 		}
394 	}
395 	other_node = rb_next(&state->rb_node);
396 	if (other_node) {
397 		other = rb_entry(other_node, struct extent_state, rb_node);
398 		if (other->start == state->end + 1 &&
399 		    other->state == state->state) {
400 			merge_cb(tree, state, other);
401 			state->end = other->end;
402 			rb_erase(&other->rb_node, &tree->state);
403 			RB_CLEAR_NODE(&other->rb_node);
404 			free_extent_state(other);
405 		}
406 	}
407 }
408 
409 static void set_state_cb(struct extent_io_tree *tree,
410 			 struct extent_state *state, unsigned *bits)
411 {
412 	if (tree->ops && tree->ops->set_bit_hook)
413 		tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415 
416 static void clear_state_cb(struct extent_io_tree *tree,
417 			   struct extent_state *state, unsigned *bits)
418 {
419 	if (tree->ops && tree->ops->clear_bit_hook)
420 		tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422 
423 static void set_state_bits(struct extent_io_tree *tree,
424 			   struct extent_state *state, unsigned *bits,
425 			   struct extent_changeset *changeset);
426 
427 /*
428  * insert an extent_state struct into the tree.  'bits' are set on the
429  * struct before it is inserted.
430  *
431  * This may return -EEXIST if the extent is already there, in which case the
432  * state struct is freed.
433  *
434  * The tree lock is not taken internally.  This is a utility function and
435  * probably isn't what you want to call (see set/clear_extent_bit).
436  */
437 static int insert_state(struct extent_io_tree *tree,
438 			struct extent_state *state, u64 start, u64 end,
439 			struct rb_node ***p,
440 			struct rb_node **parent,
441 			unsigned *bits, struct extent_changeset *changeset)
442 {
443 	struct rb_node *node;
444 
445 	if (end < start)
446 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 		       end, start);
448 	state->start = start;
449 	state->end = end;
450 
451 	set_state_bits(tree, state, bits, changeset);
452 
453 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 	if (node) {
455 		struct extent_state *found;
456 		found = rb_entry(node, struct extent_state, rb_node);
457 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 		       found->start, found->end, start, end);
459 		return -EEXIST;
460 	}
461 	merge_state(tree, state);
462 	return 0;
463 }
464 
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 		     u64 split)
467 {
468 	if (tree->ops && tree->ops->split_extent_hook)
469 		tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471 
472 /*
473  * split a given extent state struct in two, inserting the preallocated
474  * struct 'prealloc' as the newly created second half.  'split' indicates an
475  * offset inside 'orig' where it should be split.
476  *
477  * Before calling,
478  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
479  * are two extent state structs in the tree:
480  * prealloc: [orig->start, split - 1]
481  * orig: [ split, orig->end ]
482  *
483  * The tree locks are not taken by this function. They need to be held
484  * by the caller.
485  */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 		       struct extent_state *prealloc, u64 split)
488 {
489 	struct rb_node *node;
490 
491 	split_cb(tree, orig, split);
492 
493 	prealloc->start = orig->start;
494 	prealloc->end = split - 1;
495 	prealloc->state = orig->state;
496 	orig->start = split;
497 
498 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 			   &prealloc->rb_node, NULL, NULL);
500 	if (node) {
501 		free_extent_state(prealloc);
502 		return -EEXIST;
503 	}
504 	return 0;
505 }
506 
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509 	struct rb_node *next = rb_next(&state->rb_node);
510 	if (next)
511 		return rb_entry(next, struct extent_state, rb_node);
512 	else
513 		return NULL;
514 }
515 
516 /*
517  * utility function to clear some bits in an extent state struct.
518  * it will optionally wake up any one waiting on this state (wake == 1).
519  *
520  * If no bits are set on the state struct after clearing things, the
521  * struct is freed and removed from the tree
522  */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 					    struct extent_state *state,
525 					    unsigned *bits, int wake,
526 					    struct extent_changeset *changeset)
527 {
528 	struct extent_state *next;
529 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530 
531 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532 		u64 range = state->end - state->start + 1;
533 		WARN_ON(range > tree->dirty_bytes);
534 		tree->dirty_bytes -= range;
535 	}
536 	clear_state_cb(tree, state, bits);
537 	add_extent_changeset(state, bits_to_clear, changeset, 0);
538 	state->state &= ~bits_to_clear;
539 	if (wake)
540 		wake_up(&state->wq);
541 	if (state->state == 0) {
542 		next = next_state(state);
543 		if (extent_state_in_tree(state)) {
544 			rb_erase(&state->rb_node, &tree->state);
545 			RB_CLEAR_NODE(&state->rb_node);
546 			free_extent_state(state);
547 		} else {
548 			WARN_ON(1);
549 		}
550 	} else {
551 		merge_state(tree, state);
552 		next = next_state(state);
553 	}
554 	return next;
555 }
556 
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
559 {
560 	if (!prealloc)
561 		prealloc = alloc_extent_state(GFP_ATOMIC);
562 
563 	return prealloc;
564 }
565 
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567 {
568 	btrfs_panic(tree_fs_info(tree), err,
569 		    "Locking error: Extent tree was modified by another thread while locked.");
570 }
571 
572 /*
573  * clear some bits on a range in the tree.  This may require splitting
574  * or inserting elements in the tree, so the gfp mask is used to
575  * indicate which allocations or sleeping are allowed.
576  *
577  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578  * the given range from the tree regardless of state (ie for truncate).
579  *
580  * the range [start, end] is inclusive.
581  *
582  * This takes the tree lock, and returns 0 on success and < 0 on error.
583  */
584 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 			      unsigned bits, int wake, int delete,
586 			      struct extent_state **cached_state,
587 			      gfp_t mask, struct extent_changeset *changeset)
588 {
589 	struct extent_state *state;
590 	struct extent_state *cached;
591 	struct extent_state *prealloc = NULL;
592 	struct rb_node *node;
593 	u64 last_end;
594 	int err;
595 	int clear = 0;
596 
597 	btrfs_debug_check_extent_io_range(tree, start, end);
598 
599 	if (bits & EXTENT_DELALLOC)
600 		bits |= EXTENT_NORESERVE;
601 
602 	if (delete)
603 		bits |= ~EXTENT_CTLBITS;
604 	bits |= EXTENT_FIRST_DELALLOC;
605 
606 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 		clear = 1;
608 again:
609 	if (!prealloc && gfpflags_allow_blocking(mask)) {
610 		/*
611 		 * Don't care for allocation failure here because we might end
612 		 * up not needing the pre-allocated extent state at all, which
613 		 * is the case if we only have in the tree extent states that
614 		 * cover our input range and don't cover too any other range.
615 		 * If we end up needing a new extent state we allocate it later.
616 		 */
617 		prealloc = alloc_extent_state(mask);
618 	}
619 
620 	spin_lock(&tree->lock);
621 	if (cached_state) {
622 		cached = *cached_state;
623 
624 		if (clear) {
625 			*cached_state = NULL;
626 			cached_state = NULL;
627 		}
628 
629 		if (cached && extent_state_in_tree(cached) &&
630 		    cached->start <= start && cached->end > start) {
631 			if (clear)
632 				refcount_dec(&cached->refs);
633 			state = cached;
634 			goto hit_next;
635 		}
636 		if (clear)
637 			free_extent_state(cached);
638 	}
639 	/*
640 	 * this search will find the extents that end after
641 	 * our range starts
642 	 */
643 	node = tree_search(tree, start);
644 	if (!node)
645 		goto out;
646 	state = rb_entry(node, struct extent_state, rb_node);
647 hit_next:
648 	if (state->start > end)
649 		goto out;
650 	WARN_ON(state->end < start);
651 	last_end = state->end;
652 
653 	/* the state doesn't have the wanted bits, go ahead */
654 	if (!(state->state & bits)) {
655 		state = next_state(state);
656 		goto next;
657 	}
658 
659 	/*
660 	 *     | ---- desired range ---- |
661 	 *  | state | or
662 	 *  | ------------- state -------------- |
663 	 *
664 	 * We need to split the extent we found, and may flip
665 	 * bits on second half.
666 	 *
667 	 * If the extent we found extends past our range, we
668 	 * just split and search again.  It'll get split again
669 	 * the next time though.
670 	 *
671 	 * If the extent we found is inside our range, we clear
672 	 * the desired bit on it.
673 	 */
674 
675 	if (state->start < start) {
676 		prealloc = alloc_extent_state_atomic(prealloc);
677 		BUG_ON(!prealloc);
678 		err = split_state(tree, state, prealloc, start);
679 		if (err)
680 			extent_io_tree_panic(tree, err);
681 
682 		prealloc = NULL;
683 		if (err)
684 			goto out;
685 		if (state->end <= end) {
686 			state = clear_state_bit(tree, state, &bits, wake,
687 						changeset);
688 			goto next;
689 		}
690 		goto search_again;
691 	}
692 	/*
693 	 * | ---- desired range ---- |
694 	 *                        | state |
695 	 * We need to split the extent, and clear the bit
696 	 * on the first half
697 	 */
698 	if (state->start <= end && state->end > end) {
699 		prealloc = alloc_extent_state_atomic(prealloc);
700 		BUG_ON(!prealloc);
701 		err = split_state(tree, state, prealloc, end + 1);
702 		if (err)
703 			extent_io_tree_panic(tree, err);
704 
705 		if (wake)
706 			wake_up(&state->wq);
707 
708 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
709 
710 		prealloc = NULL;
711 		goto out;
712 	}
713 
714 	state = clear_state_bit(tree, state, &bits, wake, changeset);
715 next:
716 	if (last_end == (u64)-1)
717 		goto out;
718 	start = last_end + 1;
719 	if (start <= end && state && !need_resched())
720 		goto hit_next;
721 
722 search_again:
723 	if (start > end)
724 		goto out;
725 	spin_unlock(&tree->lock);
726 	if (gfpflags_allow_blocking(mask))
727 		cond_resched();
728 	goto again;
729 
730 out:
731 	spin_unlock(&tree->lock);
732 	if (prealloc)
733 		free_extent_state(prealloc);
734 
735 	return 0;
736 
737 }
738 
739 static void wait_on_state(struct extent_io_tree *tree,
740 			  struct extent_state *state)
741 		__releases(tree->lock)
742 		__acquires(tree->lock)
743 {
744 	DEFINE_WAIT(wait);
745 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746 	spin_unlock(&tree->lock);
747 	schedule();
748 	spin_lock(&tree->lock);
749 	finish_wait(&state->wq, &wait);
750 }
751 
752 /*
753  * waits for one or more bits to clear on a range in the state tree.
754  * The range [start, end] is inclusive.
755  * The tree lock is taken by this function
756  */
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 			    unsigned long bits)
759 {
760 	struct extent_state *state;
761 	struct rb_node *node;
762 
763 	btrfs_debug_check_extent_io_range(tree, start, end);
764 
765 	spin_lock(&tree->lock);
766 again:
767 	while (1) {
768 		/*
769 		 * this search will find all the extents that end after
770 		 * our range starts
771 		 */
772 		node = tree_search(tree, start);
773 process_node:
774 		if (!node)
775 			break;
776 
777 		state = rb_entry(node, struct extent_state, rb_node);
778 
779 		if (state->start > end)
780 			goto out;
781 
782 		if (state->state & bits) {
783 			start = state->start;
784 			refcount_inc(&state->refs);
785 			wait_on_state(tree, state);
786 			free_extent_state(state);
787 			goto again;
788 		}
789 		start = state->end + 1;
790 
791 		if (start > end)
792 			break;
793 
794 		if (!cond_resched_lock(&tree->lock)) {
795 			node = rb_next(node);
796 			goto process_node;
797 		}
798 	}
799 out:
800 	spin_unlock(&tree->lock);
801 }
802 
803 static void set_state_bits(struct extent_io_tree *tree,
804 			   struct extent_state *state,
805 			   unsigned *bits, struct extent_changeset *changeset)
806 {
807 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
808 
809 	set_state_cb(tree, state, bits);
810 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 		u64 range = state->end - state->start + 1;
812 		tree->dirty_bytes += range;
813 	}
814 	add_extent_changeset(state, bits_to_set, changeset, 1);
815 	state->state |= bits_to_set;
816 }
817 
818 static void cache_state_if_flags(struct extent_state *state,
819 				 struct extent_state **cached_ptr,
820 				 unsigned flags)
821 {
822 	if (cached_ptr && !(*cached_ptr)) {
823 		if (!flags || (state->state & flags)) {
824 			*cached_ptr = state;
825 			refcount_inc(&state->refs);
826 		}
827 	}
828 }
829 
830 static void cache_state(struct extent_state *state,
831 			struct extent_state **cached_ptr)
832 {
833 	return cache_state_if_flags(state, cached_ptr,
834 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
835 }
836 
837 /*
838  * set some bits on a range in the tree.  This may require allocations or
839  * sleeping, so the gfp mask is used to indicate what is allowed.
840  *
841  * If any of the exclusive bits are set, this will fail with -EEXIST if some
842  * part of the range already has the desired bits set.  The start of the
843  * existing range is returned in failed_start in this case.
844  *
845  * [start, end] is inclusive This takes the tree lock.
846  */
847 
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850 		 unsigned bits, unsigned exclusive_bits,
851 		 u64 *failed_start, struct extent_state **cached_state,
852 		 gfp_t mask, struct extent_changeset *changeset)
853 {
854 	struct extent_state *state;
855 	struct extent_state *prealloc = NULL;
856 	struct rb_node *node;
857 	struct rb_node **p;
858 	struct rb_node *parent;
859 	int err = 0;
860 	u64 last_start;
861 	u64 last_end;
862 
863 	btrfs_debug_check_extent_io_range(tree, start, end);
864 
865 	bits |= EXTENT_FIRST_DELALLOC;
866 again:
867 	if (!prealloc && gfpflags_allow_blocking(mask)) {
868 		/*
869 		 * Don't care for allocation failure here because we might end
870 		 * up not needing the pre-allocated extent state at all, which
871 		 * is the case if we only have in the tree extent states that
872 		 * cover our input range and don't cover too any other range.
873 		 * If we end up needing a new extent state we allocate it later.
874 		 */
875 		prealloc = alloc_extent_state(mask);
876 	}
877 
878 	spin_lock(&tree->lock);
879 	if (cached_state && *cached_state) {
880 		state = *cached_state;
881 		if (state->start <= start && state->end > start &&
882 		    extent_state_in_tree(state)) {
883 			node = &state->rb_node;
884 			goto hit_next;
885 		}
886 	}
887 	/*
888 	 * this search will find all the extents that end after
889 	 * our range starts.
890 	 */
891 	node = tree_search_for_insert(tree, start, &p, &parent);
892 	if (!node) {
893 		prealloc = alloc_extent_state_atomic(prealloc);
894 		BUG_ON(!prealloc);
895 		err = insert_state(tree, prealloc, start, end,
896 				   &p, &parent, &bits, changeset);
897 		if (err)
898 			extent_io_tree_panic(tree, err);
899 
900 		cache_state(prealloc, cached_state);
901 		prealloc = NULL;
902 		goto out;
903 	}
904 	state = rb_entry(node, struct extent_state, rb_node);
905 hit_next:
906 	last_start = state->start;
907 	last_end = state->end;
908 
909 	/*
910 	 * | ---- desired range ---- |
911 	 * | state |
912 	 *
913 	 * Just lock what we found and keep going
914 	 */
915 	if (state->start == start && state->end <= end) {
916 		if (state->state & exclusive_bits) {
917 			*failed_start = state->start;
918 			err = -EEXIST;
919 			goto out;
920 		}
921 
922 		set_state_bits(tree, state, &bits, changeset);
923 		cache_state(state, cached_state);
924 		merge_state(tree, state);
925 		if (last_end == (u64)-1)
926 			goto out;
927 		start = last_end + 1;
928 		state = next_state(state);
929 		if (start < end && state && state->start == start &&
930 		    !need_resched())
931 			goto hit_next;
932 		goto search_again;
933 	}
934 
935 	/*
936 	 *     | ---- desired range ---- |
937 	 * | state |
938 	 *   or
939 	 * | ------------- state -------------- |
940 	 *
941 	 * We need to split the extent we found, and may flip bits on
942 	 * second half.
943 	 *
944 	 * If the extent we found extends past our
945 	 * range, we just split and search again.  It'll get split
946 	 * again the next time though.
947 	 *
948 	 * If the extent we found is inside our range, we set the
949 	 * desired bit on it.
950 	 */
951 	if (state->start < start) {
952 		if (state->state & exclusive_bits) {
953 			*failed_start = start;
954 			err = -EEXIST;
955 			goto out;
956 		}
957 
958 		prealloc = alloc_extent_state_atomic(prealloc);
959 		BUG_ON(!prealloc);
960 		err = split_state(tree, state, prealloc, start);
961 		if (err)
962 			extent_io_tree_panic(tree, err);
963 
964 		prealloc = NULL;
965 		if (err)
966 			goto out;
967 		if (state->end <= end) {
968 			set_state_bits(tree, state, &bits, changeset);
969 			cache_state(state, cached_state);
970 			merge_state(tree, state);
971 			if (last_end == (u64)-1)
972 				goto out;
973 			start = last_end + 1;
974 			state = next_state(state);
975 			if (start < end && state && state->start == start &&
976 			    !need_resched())
977 				goto hit_next;
978 		}
979 		goto search_again;
980 	}
981 	/*
982 	 * | ---- desired range ---- |
983 	 *     | state | or               | state |
984 	 *
985 	 * There's a hole, we need to insert something in it and
986 	 * ignore the extent we found.
987 	 */
988 	if (state->start > start) {
989 		u64 this_end;
990 		if (end < last_start)
991 			this_end = end;
992 		else
993 			this_end = last_start - 1;
994 
995 		prealloc = alloc_extent_state_atomic(prealloc);
996 		BUG_ON(!prealloc);
997 
998 		/*
999 		 * Avoid to free 'prealloc' if it can be merged with
1000 		 * the later extent.
1001 		 */
1002 		err = insert_state(tree, prealloc, start, this_end,
1003 				   NULL, NULL, &bits, changeset);
1004 		if (err)
1005 			extent_io_tree_panic(tree, err);
1006 
1007 		cache_state(prealloc, cached_state);
1008 		prealloc = NULL;
1009 		start = this_end + 1;
1010 		goto search_again;
1011 	}
1012 	/*
1013 	 * | ---- desired range ---- |
1014 	 *                        | state |
1015 	 * We need to split the extent, and set the bit
1016 	 * on the first half
1017 	 */
1018 	if (state->start <= end && state->end > end) {
1019 		if (state->state & exclusive_bits) {
1020 			*failed_start = start;
1021 			err = -EEXIST;
1022 			goto out;
1023 		}
1024 
1025 		prealloc = alloc_extent_state_atomic(prealloc);
1026 		BUG_ON(!prealloc);
1027 		err = split_state(tree, state, prealloc, end + 1);
1028 		if (err)
1029 			extent_io_tree_panic(tree, err);
1030 
1031 		set_state_bits(tree, prealloc, &bits, changeset);
1032 		cache_state(prealloc, cached_state);
1033 		merge_state(tree, prealloc);
1034 		prealloc = NULL;
1035 		goto out;
1036 	}
1037 
1038 search_again:
1039 	if (start > end)
1040 		goto out;
1041 	spin_unlock(&tree->lock);
1042 	if (gfpflags_allow_blocking(mask))
1043 		cond_resched();
1044 	goto again;
1045 
1046 out:
1047 	spin_unlock(&tree->lock);
1048 	if (prealloc)
1049 		free_extent_state(prealloc);
1050 
1051 	return err;
1052 
1053 }
1054 
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056 		   unsigned bits, u64 * failed_start,
1057 		   struct extent_state **cached_state, gfp_t mask)
1058 {
1059 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060 				cached_state, mask, NULL);
1061 }
1062 
1063 
1064 /**
1065  * convert_extent_bit - convert all bits in a given range from one bit to
1066  * 			another
1067  * @tree:	the io tree to search
1068  * @start:	the start offset in bytes
1069  * @end:	the end offset in bytes (inclusive)
1070  * @bits:	the bits to set in this range
1071  * @clear_bits:	the bits to clear in this range
1072  * @cached_state:	state that we're going to cache
1073  *
1074  * This will go through and set bits for the given range.  If any states exist
1075  * already in this range they are set with the given bit and cleared of the
1076  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1077  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1078  * boundary bits like LOCK.
1079  *
1080  * All allocations are done with GFP_NOFS.
1081  */
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083 		       unsigned bits, unsigned clear_bits,
1084 		       struct extent_state **cached_state)
1085 {
1086 	struct extent_state *state;
1087 	struct extent_state *prealloc = NULL;
1088 	struct rb_node *node;
1089 	struct rb_node **p;
1090 	struct rb_node *parent;
1091 	int err = 0;
1092 	u64 last_start;
1093 	u64 last_end;
1094 	bool first_iteration = true;
1095 
1096 	btrfs_debug_check_extent_io_range(tree, start, end);
1097 
1098 again:
1099 	if (!prealloc) {
1100 		/*
1101 		 * Best effort, don't worry if extent state allocation fails
1102 		 * here for the first iteration. We might have a cached state
1103 		 * that matches exactly the target range, in which case no
1104 		 * extent state allocations are needed. We'll only know this
1105 		 * after locking the tree.
1106 		 */
1107 		prealloc = alloc_extent_state(GFP_NOFS);
1108 		if (!prealloc && !first_iteration)
1109 			return -ENOMEM;
1110 	}
1111 
1112 	spin_lock(&tree->lock);
1113 	if (cached_state && *cached_state) {
1114 		state = *cached_state;
1115 		if (state->start <= start && state->end > start &&
1116 		    extent_state_in_tree(state)) {
1117 			node = &state->rb_node;
1118 			goto hit_next;
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * this search will find all the extents that end after
1124 	 * our range starts.
1125 	 */
1126 	node = tree_search_for_insert(tree, start, &p, &parent);
1127 	if (!node) {
1128 		prealloc = alloc_extent_state_atomic(prealloc);
1129 		if (!prealloc) {
1130 			err = -ENOMEM;
1131 			goto out;
1132 		}
1133 		err = insert_state(tree, prealloc, start, end,
1134 				   &p, &parent, &bits, NULL);
1135 		if (err)
1136 			extent_io_tree_panic(tree, err);
1137 		cache_state(prealloc, cached_state);
1138 		prealloc = NULL;
1139 		goto out;
1140 	}
1141 	state = rb_entry(node, struct extent_state, rb_node);
1142 hit_next:
1143 	last_start = state->start;
1144 	last_end = state->end;
1145 
1146 	/*
1147 	 * | ---- desired range ---- |
1148 	 * | state |
1149 	 *
1150 	 * Just lock what we found and keep going
1151 	 */
1152 	if (state->start == start && state->end <= end) {
1153 		set_state_bits(tree, state, &bits, NULL);
1154 		cache_state(state, cached_state);
1155 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156 		if (last_end == (u64)-1)
1157 			goto out;
1158 		start = last_end + 1;
1159 		if (start < end && state && state->start == start &&
1160 		    !need_resched())
1161 			goto hit_next;
1162 		goto search_again;
1163 	}
1164 
1165 	/*
1166 	 *     | ---- desired range ---- |
1167 	 * | state |
1168 	 *   or
1169 	 * | ------------- state -------------- |
1170 	 *
1171 	 * We need to split the extent we found, and may flip bits on
1172 	 * second half.
1173 	 *
1174 	 * If the extent we found extends past our
1175 	 * range, we just split and search again.  It'll get split
1176 	 * again the next time though.
1177 	 *
1178 	 * If the extent we found is inside our range, we set the
1179 	 * desired bit on it.
1180 	 */
1181 	if (state->start < start) {
1182 		prealloc = alloc_extent_state_atomic(prealloc);
1183 		if (!prealloc) {
1184 			err = -ENOMEM;
1185 			goto out;
1186 		}
1187 		err = split_state(tree, state, prealloc, start);
1188 		if (err)
1189 			extent_io_tree_panic(tree, err);
1190 		prealloc = NULL;
1191 		if (err)
1192 			goto out;
1193 		if (state->end <= end) {
1194 			set_state_bits(tree, state, &bits, NULL);
1195 			cache_state(state, cached_state);
1196 			state = clear_state_bit(tree, state, &clear_bits, 0,
1197 						NULL);
1198 			if (last_end == (u64)-1)
1199 				goto out;
1200 			start = last_end + 1;
1201 			if (start < end && state && state->start == start &&
1202 			    !need_resched())
1203 				goto hit_next;
1204 		}
1205 		goto search_again;
1206 	}
1207 	/*
1208 	 * | ---- desired range ---- |
1209 	 *     | state | or               | state |
1210 	 *
1211 	 * There's a hole, we need to insert something in it and
1212 	 * ignore the extent we found.
1213 	 */
1214 	if (state->start > start) {
1215 		u64 this_end;
1216 		if (end < last_start)
1217 			this_end = end;
1218 		else
1219 			this_end = last_start - 1;
1220 
1221 		prealloc = alloc_extent_state_atomic(prealloc);
1222 		if (!prealloc) {
1223 			err = -ENOMEM;
1224 			goto out;
1225 		}
1226 
1227 		/*
1228 		 * Avoid to free 'prealloc' if it can be merged with
1229 		 * the later extent.
1230 		 */
1231 		err = insert_state(tree, prealloc, start, this_end,
1232 				   NULL, NULL, &bits, NULL);
1233 		if (err)
1234 			extent_io_tree_panic(tree, err);
1235 		cache_state(prealloc, cached_state);
1236 		prealloc = NULL;
1237 		start = this_end + 1;
1238 		goto search_again;
1239 	}
1240 	/*
1241 	 * | ---- desired range ---- |
1242 	 *                        | state |
1243 	 * We need to split the extent, and set the bit
1244 	 * on the first half
1245 	 */
1246 	if (state->start <= end && state->end > end) {
1247 		prealloc = alloc_extent_state_atomic(prealloc);
1248 		if (!prealloc) {
1249 			err = -ENOMEM;
1250 			goto out;
1251 		}
1252 
1253 		err = split_state(tree, state, prealloc, end + 1);
1254 		if (err)
1255 			extent_io_tree_panic(tree, err);
1256 
1257 		set_state_bits(tree, prealloc, &bits, NULL);
1258 		cache_state(prealloc, cached_state);
1259 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1260 		prealloc = NULL;
1261 		goto out;
1262 	}
1263 
1264 search_again:
1265 	if (start > end)
1266 		goto out;
1267 	spin_unlock(&tree->lock);
1268 	cond_resched();
1269 	first_iteration = false;
1270 	goto again;
1271 
1272 out:
1273 	spin_unlock(&tree->lock);
1274 	if (prealloc)
1275 		free_extent_state(prealloc);
1276 
1277 	return err;
1278 }
1279 
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282 			   unsigned bits, struct extent_changeset *changeset)
1283 {
1284 	/*
1285 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 	 * either fail with -EEXIST or changeset will record the whole
1288 	 * range.
1289 	 */
1290 	BUG_ON(bits & EXTENT_LOCKED);
1291 
1292 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1293 				changeset);
1294 }
1295 
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 		     unsigned bits, int wake, int delete,
1298 		     struct extent_state **cached)
1299 {
1300 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 				  cached, GFP_NOFS, NULL);
1302 }
1303 
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305 		unsigned bits, struct extent_changeset *changeset)
1306 {
1307 	/*
1308 	 * Don't support EXTENT_LOCKED case, same reason as
1309 	 * set_record_extent_bits().
1310 	 */
1311 	BUG_ON(bits & EXTENT_LOCKED);
1312 
1313 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1314 				  changeset);
1315 }
1316 
1317 /*
1318  * either insert or lock state struct between start and end use mask to tell
1319  * us if waiting is desired.
1320  */
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 		     struct extent_state **cached_state)
1323 {
1324 	int err;
1325 	u64 failed_start;
1326 
1327 	while (1) {
1328 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329 				       EXTENT_LOCKED, &failed_start,
1330 				       cached_state, GFP_NOFS, NULL);
1331 		if (err == -EEXIST) {
1332 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 			start = failed_start;
1334 		} else
1335 			break;
1336 		WARN_ON(start > end);
1337 	}
1338 	return err;
1339 }
1340 
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1342 {
1343 	int err;
1344 	u64 failed_start;
1345 
1346 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347 			       &failed_start, NULL, GFP_NOFS, NULL);
1348 	if (err == -EEXIST) {
1349 		if (failed_start > start)
1350 			clear_extent_bit(tree, start, failed_start - 1,
1351 					 EXTENT_LOCKED, 1, 0, NULL);
1352 		return 0;
1353 	}
1354 	return 1;
1355 }
1356 
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1358 {
1359 	unsigned long index = start >> PAGE_SHIFT;
1360 	unsigned long end_index = end >> PAGE_SHIFT;
1361 	struct page *page;
1362 
1363 	while (index <= end_index) {
1364 		page = find_get_page(inode->i_mapping, index);
1365 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 		clear_page_dirty_for_io(page);
1367 		put_page(page);
1368 		index++;
1369 	}
1370 }
1371 
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374 	unsigned long index = start >> PAGE_SHIFT;
1375 	unsigned long end_index = end >> PAGE_SHIFT;
1376 	struct page *page;
1377 
1378 	while (index <= end_index) {
1379 		page = find_get_page(inode->i_mapping, index);
1380 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 		__set_page_dirty_nobuffers(page);
1382 		account_page_redirty(page);
1383 		put_page(page);
1384 		index++;
1385 	}
1386 }
1387 
1388 /*
1389  * helper function to set both pages and extents in the tree writeback
1390  */
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393 	tree->ops->set_range_writeback(tree->private_data, start, end);
1394 }
1395 
1396 /* find the first state struct with 'bits' set after 'start', and
1397  * return it.  tree->lock must be held.  NULL will returned if
1398  * nothing was found after 'start'
1399  */
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402 			    u64 start, unsigned bits)
1403 {
1404 	struct rb_node *node;
1405 	struct extent_state *state;
1406 
1407 	/*
1408 	 * this search will find all the extents that end after
1409 	 * our range starts.
1410 	 */
1411 	node = tree_search(tree, start);
1412 	if (!node)
1413 		goto out;
1414 
1415 	while (1) {
1416 		state = rb_entry(node, struct extent_state, rb_node);
1417 		if (state->end >= start && (state->state & bits))
1418 			return state;
1419 
1420 		node = rb_next(node);
1421 		if (!node)
1422 			break;
1423 	}
1424 out:
1425 	return NULL;
1426 }
1427 
1428 /*
1429  * find the first offset in the io tree with 'bits' set. zero is
1430  * returned if we find something, and *start_ret and *end_ret are
1431  * set to reflect the state struct that was found.
1432  *
1433  * If nothing was found, 1 is returned. If found something, return 0.
1434  */
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1437 			  struct extent_state **cached_state)
1438 {
1439 	struct extent_state *state;
1440 	struct rb_node *n;
1441 	int ret = 1;
1442 
1443 	spin_lock(&tree->lock);
1444 	if (cached_state && *cached_state) {
1445 		state = *cached_state;
1446 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1447 			n = rb_next(&state->rb_node);
1448 			while (n) {
1449 				state = rb_entry(n, struct extent_state,
1450 						 rb_node);
1451 				if (state->state & bits)
1452 					goto got_it;
1453 				n = rb_next(n);
1454 			}
1455 			free_extent_state(*cached_state);
1456 			*cached_state = NULL;
1457 			goto out;
1458 		}
1459 		free_extent_state(*cached_state);
1460 		*cached_state = NULL;
1461 	}
1462 
1463 	state = find_first_extent_bit_state(tree, start, bits);
1464 got_it:
1465 	if (state) {
1466 		cache_state_if_flags(state, cached_state, 0);
1467 		*start_ret = state->start;
1468 		*end_ret = state->end;
1469 		ret = 0;
1470 	}
1471 out:
1472 	spin_unlock(&tree->lock);
1473 	return ret;
1474 }
1475 
1476 /*
1477  * find a contiguous range of bytes in the file marked as delalloc, not
1478  * more than 'max_bytes'.  start and end are used to return the range,
1479  *
1480  * 1 is returned if we find something, 0 if nothing was in the tree
1481  */
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483 					u64 *start, u64 *end, u64 max_bytes,
1484 					struct extent_state **cached_state)
1485 {
1486 	struct rb_node *node;
1487 	struct extent_state *state;
1488 	u64 cur_start = *start;
1489 	u64 found = 0;
1490 	u64 total_bytes = 0;
1491 
1492 	spin_lock(&tree->lock);
1493 
1494 	/*
1495 	 * this search will find all the extents that end after
1496 	 * our range starts.
1497 	 */
1498 	node = tree_search(tree, cur_start);
1499 	if (!node) {
1500 		if (!found)
1501 			*end = (u64)-1;
1502 		goto out;
1503 	}
1504 
1505 	while (1) {
1506 		state = rb_entry(node, struct extent_state, rb_node);
1507 		if (found && (state->start != cur_start ||
1508 			      (state->state & EXTENT_BOUNDARY))) {
1509 			goto out;
1510 		}
1511 		if (!(state->state & EXTENT_DELALLOC)) {
1512 			if (!found)
1513 				*end = state->end;
1514 			goto out;
1515 		}
1516 		if (!found) {
1517 			*start = state->start;
1518 			*cached_state = state;
1519 			refcount_inc(&state->refs);
1520 		}
1521 		found++;
1522 		*end = state->end;
1523 		cur_start = state->end + 1;
1524 		node = rb_next(node);
1525 		total_bytes += state->end - state->start + 1;
1526 		if (total_bytes >= max_bytes)
1527 			break;
1528 		if (!node)
1529 			break;
1530 	}
1531 out:
1532 	spin_unlock(&tree->lock);
1533 	return found;
1534 }
1535 
1536 static int __process_pages_contig(struct address_space *mapping,
1537 				  struct page *locked_page,
1538 				  pgoff_t start_index, pgoff_t end_index,
1539 				  unsigned long page_ops, pgoff_t *index_ret);
1540 
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542 					   struct page *locked_page,
1543 					   u64 start, u64 end)
1544 {
1545 	unsigned long index = start >> PAGE_SHIFT;
1546 	unsigned long end_index = end >> PAGE_SHIFT;
1547 
1548 	ASSERT(locked_page);
1549 	if (index == locked_page->index && end_index == index)
1550 		return;
1551 
1552 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 			       PAGE_UNLOCK, NULL);
1554 }
1555 
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557 					struct page *locked_page,
1558 					u64 delalloc_start,
1559 					u64 delalloc_end)
1560 {
1561 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1562 	unsigned long index_ret = index;
1563 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1564 	int ret;
1565 
1566 	ASSERT(locked_page);
1567 	if (index == locked_page->index && index == end_index)
1568 		return 0;
1569 
1570 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 				     end_index, PAGE_LOCK, &index_ret);
1572 	if (ret == -EAGAIN)
1573 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 				      (u64)index_ret << PAGE_SHIFT);
1575 	return ret;
1576 }
1577 
1578 /*
1579  * find a contiguous range of bytes in the file marked as delalloc, not
1580  * more than 'max_bytes'.  start and end are used to return the range,
1581  *
1582  * 1 is returned if we find something, 0 if nothing was in the tree
1583  */
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 				    struct extent_io_tree *tree,
1586 				    struct page *locked_page, u64 *start,
1587 				    u64 *end, u64 max_bytes)
1588 {
1589 	u64 delalloc_start;
1590 	u64 delalloc_end;
1591 	u64 found;
1592 	struct extent_state *cached_state = NULL;
1593 	int ret;
1594 	int loops = 0;
1595 
1596 again:
1597 	/* step one, find a bunch of delalloc bytes starting at start */
1598 	delalloc_start = *start;
1599 	delalloc_end = 0;
1600 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601 				    max_bytes, &cached_state);
1602 	if (!found || delalloc_end <= *start) {
1603 		*start = delalloc_start;
1604 		*end = delalloc_end;
1605 		free_extent_state(cached_state);
1606 		return 0;
1607 	}
1608 
1609 	/*
1610 	 * start comes from the offset of locked_page.  We have to lock
1611 	 * pages in order, so we can't process delalloc bytes before
1612 	 * locked_page
1613 	 */
1614 	if (delalloc_start < *start)
1615 		delalloc_start = *start;
1616 
1617 	/*
1618 	 * make sure to limit the number of pages we try to lock down
1619 	 */
1620 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 		delalloc_end = delalloc_start + max_bytes - 1;
1622 
1623 	/* step two, lock all the pages after the page that has start */
1624 	ret = lock_delalloc_pages(inode, locked_page,
1625 				  delalloc_start, delalloc_end);
1626 	if (ret == -EAGAIN) {
1627 		/* some of the pages are gone, lets avoid looping by
1628 		 * shortening the size of the delalloc range we're searching
1629 		 */
1630 		free_extent_state(cached_state);
1631 		cached_state = NULL;
1632 		if (!loops) {
1633 			max_bytes = PAGE_SIZE;
1634 			loops = 1;
1635 			goto again;
1636 		} else {
1637 			found = 0;
1638 			goto out_failed;
1639 		}
1640 	}
1641 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1642 
1643 	/* step three, lock the state bits for the whole range */
1644 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1645 
1646 	/* then test to make sure it is all still delalloc */
1647 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648 			     EXTENT_DELALLOC, 1, cached_state);
1649 	if (!ret) {
1650 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 				     &cached_state);
1652 		__unlock_for_delalloc(inode, locked_page,
1653 			      delalloc_start, delalloc_end);
1654 		cond_resched();
1655 		goto again;
1656 	}
1657 	free_extent_state(cached_state);
1658 	*start = delalloc_start;
1659 	*end = delalloc_end;
1660 out_failed:
1661 	return found;
1662 }
1663 
1664 static int __process_pages_contig(struct address_space *mapping,
1665 				  struct page *locked_page,
1666 				  pgoff_t start_index, pgoff_t end_index,
1667 				  unsigned long page_ops, pgoff_t *index_ret)
1668 {
1669 	unsigned long nr_pages = end_index - start_index + 1;
1670 	unsigned long pages_locked = 0;
1671 	pgoff_t index = start_index;
1672 	struct page *pages[16];
1673 	unsigned ret;
1674 	int err = 0;
1675 	int i;
1676 
1677 	if (page_ops & PAGE_LOCK) {
1678 		ASSERT(page_ops == PAGE_LOCK);
1679 		ASSERT(index_ret && *index_ret == start_index);
1680 	}
1681 
1682 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683 		mapping_set_error(mapping, -EIO);
1684 
1685 	while (nr_pages > 0) {
1686 		ret = find_get_pages_contig(mapping, index,
1687 				     min_t(unsigned long,
1688 				     nr_pages, ARRAY_SIZE(pages)), pages);
1689 		if (ret == 0) {
1690 			/*
1691 			 * Only if we're going to lock these pages,
1692 			 * can we find nothing at @index.
1693 			 */
1694 			ASSERT(page_ops & PAGE_LOCK);
1695 			err = -EAGAIN;
1696 			goto out;
1697 		}
1698 
1699 		for (i = 0; i < ret; i++) {
1700 			if (page_ops & PAGE_SET_PRIVATE2)
1701 				SetPagePrivate2(pages[i]);
1702 
1703 			if (pages[i] == locked_page) {
1704 				put_page(pages[i]);
1705 				pages_locked++;
1706 				continue;
1707 			}
1708 			if (page_ops & PAGE_CLEAR_DIRTY)
1709 				clear_page_dirty_for_io(pages[i]);
1710 			if (page_ops & PAGE_SET_WRITEBACK)
1711 				set_page_writeback(pages[i]);
1712 			if (page_ops & PAGE_SET_ERROR)
1713 				SetPageError(pages[i]);
1714 			if (page_ops & PAGE_END_WRITEBACK)
1715 				end_page_writeback(pages[i]);
1716 			if (page_ops & PAGE_UNLOCK)
1717 				unlock_page(pages[i]);
1718 			if (page_ops & PAGE_LOCK) {
1719 				lock_page(pages[i]);
1720 				if (!PageDirty(pages[i]) ||
1721 				    pages[i]->mapping != mapping) {
1722 					unlock_page(pages[i]);
1723 					put_page(pages[i]);
1724 					err = -EAGAIN;
1725 					goto out;
1726 				}
1727 			}
1728 			put_page(pages[i]);
1729 			pages_locked++;
1730 		}
1731 		nr_pages -= ret;
1732 		index += ret;
1733 		cond_resched();
1734 	}
1735 out:
1736 	if (err && index_ret)
1737 		*index_ret = start_index + pages_locked - 1;
1738 	return err;
1739 }
1740 
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 				 u64 delalloc_end, struct page *locked_page,
1743 				 unsigned clear_bits,
1744 				 unsigned long page_ops)
1745 {
1746 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 			 NULL);
1748 
1749 	__process_pages_contig(inode->i_mapping, locked_page,
1750 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1751 			       page_ops, NULL);
1752 }
1753 
1754 /*
1755  * count the number of bytes in the tree that have a given bit(s)
1756  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1757  * cached.  The total number found is returned.
1758  */
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760 		     u64 *start, u64 search_end, u64 max_bytes,
1761 		     unsigned bits, int contig)
1762 {
1763 	struct rb_node *node;
1764 	struct extent_state *state;
1765 	u64 cur_start = *start;
1766 	u64 total_bytes = 0;
1767 	u64 last = 0;
1768 	int found = 0;
1769 
1770 	if (WARN_ON(search_end <= cur_start))
1771 		return 0;
1772 
1773 	spin_lock(&tree->lock);
1774 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 		total_bytes = tree->dirty_bytes;
1776 		goto out;
1777 	}
1778 	/*
1779 	 * this search will find all the extents that end after
1780 	 * our range starts.
1781 	 */
1782 	node = tree_search(tree, cur_start);
1783 	if (!node)
1784 		goto out;
1785 
1786 	while (1) {
1787 		state = rb_entry(node, struct extent_state, rb_node);
1788 		if (state->start > search_end)
1789 			break;
1790 		if (contig && found && state->start > last + 1)
1791 			break;
1792 		if (state->end >= cur_start && (state->state & bits) == bits) {
1793 			total_bytes += min(search_end, state->end) + 1 -
1794 				       max(cur_start, state->start);
1795 			if (total_bytes >= max_bytes)
1796 				break;
1797 			if (!found) {
1798 				*start = max(cur_start, state->start);
1799 				found = 1;
1800 			}
1801 			last = state->end;
1802 		} else if (contig && found) {
1803 			break;
1804 		}
1805 		node = rb_next(node);
1806 		if (!node)
1807 			break;
1808 	}
1809 out:
1810 	spin_unlock(&tree->lock);
1811 	return total_bytes;
1812 }
1813 
1814 /*
1815  * set the private field for a given byte offset in the tree.  If there isn't
1816  * an extent_state there already, this does nothing.
1817  */
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819 		struct io_failure_record *failrec)
1820 {
1821 	struct rb_node *node;
1822 	struct extent_state *state;
1823 	int ret = 0;
1824 
1825 	spin_lock(&tree->lock);
1826 	/*
1827 	 * this search will find all the extents that end after
1828 	 * our range starts.
1829 	 */
1830 	node = tree_search(tree, start);
1831 	if (!node) {
1832 		ret = -ENOENT;
1833 		goto out;
1834 	}
1835 	state = rb_entry(node, struct extent_state, rb_node);
1836 	if (state->start != start) {
1837 		ret = -ENOENT;
1838 		goto out;
1839 	}
1840 	state->failrec = failrec;
1841 out:
1842 	spin_unlock(&tree->lock);
1843 	return ret;
1844 }
1845 
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847 		struct io_failure_record **failrec)
1848 {
1849 	struct rb_node *node;
1850 	struct extent_state *state;
1851 	int ret = 0;
1852 
1853 	spin_lock(&tree->lock);
1854 	/*
1855 	 * this search will find all the extents that end after
1856 	 * our range starts.
1857 	 */
1858 	node = tree_search(tree, start);
1859 	if (!node) {
1860 		ret = -ENOENT;
1861 		goto out;
1862 	}
1863 	state = rb_entry(node, struct extent_state, rb_node);
1864 	if (state->start != start) {
1865 		ret = -ENOENT;
1866 		goto out;
1867 	}
1868 	*failrec = state->failrec;
1869 out:
1870 	spin_unlock(&tree->lock);
1871 	return ret;
1872 }
1873 
1874 /*
1875  * searches a range in the state tree for a given mask.
1876  * If 'filled' == 1, this returns 1 only if every extent in the tree
1877  * has the bits set.  Otherwise, 1 is returned if any bit in the
1878  * range is found set.
1879  */
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881 		   unsigned bits, int filled, struct extent_state *cached)
1882 {
1883 	struct extent_state *state = NULL;
1884 	struct rb_node *node;
1885 	int bitset = 0;
1886 
1887 	spin_lock(&tree->lock);
1888 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889 	    cached->end > start)
1890 		node = &cached->rb_node;
1891 	else
1892 		node = tree_search(tree, start);
1893 	while (node && start <= end) {
1894 		state = rb_entry(node, struct extent_state, rb_node);
1895 
1896 		if (filled && state->start > start) {
1897 			bitset = 0;
1898 			break;
1899 		}
1900 
1901 		if (state->start > end)
1902 			break;
1903 
1904 		if (state->state & bits) {
1905 			bitset = 1;
1906 			if (!filled)
1907 				break;
1908 		} else if (filled) {
1909 			bitset = 0;
1910 			break;
1911 		}
1912 
1913 		if (state->end == (u64)-1)
1914 			break;
1915 
1916 		start = state->end + 1;
1917 		if (start > end)
1918 			break;
1919 		node = rb_next(node);
1920 		if (!node) {
1921 			if (filled)
1922 				bitset = 0;
1923 			break;
1924 		}
1925 	}
1926 	spin_unlock(&tree->lock);
1927 	return bitset;
1928 }
1929 
1930 /*
1931  * helper function to set a given page up to date if all the
1932  * extents in the tree for that page are up to date
1933  */
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1935 {
1936 	u64 start = page_offset(page);
1937 	u64 end = start + PAGE_SIZE - 1;
1938 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939 		SetPageUptodate(page);
1940 }
1941 
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943 		    struct extent_io_tree *io_tree,
1944 		    struct io_failure_record *rec)
1945 {
1946 	int ret;
1947 	int err = 0;
1948 
1949 	set_state_failrec(failure_tree, rec->start, NULL);
1950 	ret = clear_extent_bits(failure_tree, rec->start,
1951 				rec->start + rec->len - 1,
1952 				EXTENT_LOCKED | EXTENT_DIRTY);
1953 	if (ret)
1954 		err = ret;
1955 
1956 	ret = clear_extent_bits(io_tree, rec->start,
1957 				rec->start + rec->len - 1,
1958 				EXTENT_DAMAGED);
1959 	if (ret && !err)
1960 		err = ret;
1961 
1962 	kfree(rec);
1963 	return err;
1964 }
1965 
1966 /*
1967  * this bypasses the standard btrfs submit functions deliberately, as
1968  * the standard behavior is to write all copies in a raid setup. here we only
1969  * want to write the one bad copy. so we do the mapping for ourselves and issue
1970  * submit_bio directly.
1971  * to avoid any synchronization issues, wait for the data after writing, which
1972  * actually prevents the read that triggered the error from finishing.
1973  * currently, there can be no more than two copies of every data bit. thus,
1974  * exactly one rewrite is required.
1975  */
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 		      u64 length, u64 logical, struct page *page,
1978 		      unsigned int pg_offset, int mirror_num)
1979 {
1980 	struct bio *bio;
1981 	struct btrfs_device *dev;
1982 	u64 map_length = 0;
1983 	u64 sector;
1984 	struct btrfs_bio *bbio = NULL;
1985 	int ret;
1986 
1987 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1988 	BUG_ON(!mirror_num);
1989 
1990 	bio = btrfs_io_bio_alloc(1);
1991 	bio->bi_iter.bi_size = 0;
1992 	map_length = length;
1993 
1994 	/*
1995 	 * Avoid races with device replace and make sure our bbio has devices
1996 	 * associated to its stripes that don't go away while we are doing the
1997 	 * read repair operation.
1998 	 */
1999 	btrfs_bio_counter_inc_blocked(fs_info);
2000 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2001 		/*
2002 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 		 * to update all raid stripes, but here we just want to correct
2004 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 		 * stripe's dev and sector.
2006 		 */
2007 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 				      &map_length, &bbio, 0);
2009 		if (ret) {
2010 			btrfs_bio_counter_dec(fs_info);
2011 			bio_put(bio);
2012 			return -EIO;
2013 		}
2014 		ASSERT(bbio->mirror_num == 1);
2015 	} else {
2016 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 				      &map_length, &bbio, mirror_num);
2018 		if (ret) {
2019 			btrfs_bio_counter_dec(fs_info);
2020 			bio_put(bio);
2021 			return -EIO;
2022 		}
2023 		BUG_ON(mirror_num != bbio->mirror_num);
2024 	}
2025 
2026 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027 	bio->bi_iter.bi_sector = sector;
2028 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029 	btrfs_put_bbio(bbio);
2030 	if (!dev || !dev->bdev ||
2031 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2032 		btrfs_bio_counter_dec(fs_info);
2033 		bio_put(bio);
2034 		return -EIO;
2035 	}
2036 	bio_set_dev(bio, dev->bdev);
2037 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2038 	bio_add_page(bio, page, length, pg_offset);
2039 
2040 	if (btrfsic_submit_bio_wait(bio)) {
2041 		/* try to remap that extent elsewhere? */
2042 		btrfs_bio_counter_dec(fs_info);
2043 		bio_put(bio);
2044 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2045 		return -EIO;
2046 	}
2047 
2048 	btrfs_info_rl_in_rcu(fs_info,
2049 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2050 				  ino, start,
2051 				  rcu_str_deref(dev->name), sector);
2052 	btrfs_bio_counter_dec(fs_info);
2053 	bio_put(bio);
2054 	return 0;
2055 }
2056 
2057 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 			 struct extent_buffer *eb, int mirror_num)
2059 {
2060 	u64 start = eb->start;
2061 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2062 	int ret = 0;
2063 
2064 	if (sb_rdonly(fs_info->sb))
2065 		return -EROFS;
2066 
2067 	for (i = 0; i < num_pages; i++) {
2068 		struct page *p = eb->pages[i];
2069 
2070 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2071 					start - page_offset(p), mirror_num);
2072 		if (ret)
2073 			break;
2074 		start += PAGE_SIZE;
2075 	}
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * each time an IO finishes, we do a fast check in the IO failure tree
2082  * to see if we need to process or clean up an io_failure_record
2083  */
2084 int clean_io_failure(struct btrfs_fs_info *fs_info,
2085 		     struct extent_io_tree *failure_tree,
2086 		     struct extent_io_tree *io_tree, u64 start,
2087 		     struct page *page, u64 ino, unsigned int pg_offset)
2088 {
2089 	u64 private;
2090 	struct io_failure_record *failrec;
2091 	struct extent_state *state;
2092 	int num_copies;
2093 	int ret;
2094 
2095 	private = 0;
2096 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2097 			       EXTENT_DIRTY, 0);
2098 	if (!ret)
2099 		return 0;
2100 
2101 	ret = get_state_failrec(failure_tree, start, &failrec);
2102 	if (ret)
2103 		return 0;
2104 
2105 	BUG_ON(!failrec->this_mirror);
2106 
2107 	if (failrec->in_validation) {
2108 		/* there was no real error, just free the record */
2109 		btrfs_debug(fs_info,
2110 			"clean_io_failure: freeing dummy error at %llu",
2111 			failrec->start);
2112 		goto out;
2113 	}
2114 	if (sb_rdonly(fs_info->sb))
2115 		goto out;
2116 
2117 	spin_lock(&io_tree->lock);
2118 	state = find_first_extent_bit_state(io_tree,
2119 					    failrec->start,
2120 					    EXTENT_LOCKED);
2121 	spin_unlock(&io_tree->lock);
2122 
2123 	if (state && state->start <= failrec->start &&
2124 	    state->end >= failrec->start + failrec->len - 1) {
2125 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 					      failrec->len);
2127 		if (num_copies > 1)  {
2128 			repair_io_failure(fs_info, ino, start, failrec->len,
2129 					  failrec->logical, page, pg_offset,
2130 					  failrec->failed_mirror);
2131 		}
2132 	}
2133 
2134 out:
2135 	free_io_failure(failure_tree, io_tree, failrec);
2136 
2137 	return 0;
2138 }
2139 
2140 /*
2141  * Can be called when
2142  * - hold extent lock
2143  * - under ordered extent
2144  * - the inode is freeing
2145  */
2146 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2147 {
2148 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2149 	struct io_failure_record *failrec;
2150 	struct extent_state *state, *next;
2151 
2152 	if (RB_EMPTY_ROOT(&failure_tree->state))
2153 		return;
2154 
2155 	spin_lock(&failure_tree->lock);
2156 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 	while (state) {
2158 		if (state->start > end)
2159 			break;
2160 
2161 		ASSERT(state->end <= end);
2162 
2163 		next = next_state(state);
2164 
2165 		failrec = state->failrec;
2166 		free_extent_state(state);
2167 		kfree(failrec);
2168 
2169 		state = next;
2170 	}
2171 	spin_unlock(&failure_tree->lock);
2172 }
2173 
2174 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2175 		struct io_failure_record **failrec_ret)
2176 {
2177 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2178 	struct io_failure_record *failrec;
2179 	struct extent_map *em;
2180 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2183 	int ret;
2184 	u64 logical;
2185 
2186 	ret = get_state_failrec(failure_tree, start, &failrec);
2187 	if (ret) {
2188 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 		if (!failrec)
2190 			return -ENOMEM;
2191 
2192 		failrec->start = start;
2193 		failrec->len = end - start + 1;
2194 		failrec->this_mirror = 0;
2195 		failrec->bio_flags = 0;
2196 		failrec->in_validation = 0;
2197 
2198 		read_lock(&em_tree->lock);
2199 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 		if (!em) {
2201 			read_unlock(&em_tree->lock);
2202 			kfree(failrec);
2203 			return -EIO;
2204 		}
2205 
2206 		if (em->start > start || em->start + em->len <= start) {
2207 			free_extent_map(em);
2208 			em = NULL;
2209 		}
2210 		read_unlock(&em_tree->lock);
2211 		if (!em) {
2212 			kfree(failrec);
2213 			return -EIO;
2214 		}
2215 
2216 		logical = start - em->start;
2217 		logical = em->block_start + logical;
2218 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 			logical = em->block_start;
2220 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 			extent_set_compress_type(&failrec->bio_flags,
2222 						 em->compress_type);
2223 		}
2224 
2225 		btrfs_debug(fs_info,
2226 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 			logical, start, failrec->len);
2228 
2229 		failrec->logical = logical;
2230 		free_extent_map(em);
2231 
2232 		/* set the bits in the private failure tree */
2233 		ret = set_extent_bits(failure_tree, start, end,
2234 					EXTENT_LOCKED | EXTENT_DIRTY);
2235 		if (ret >= 0)
2236 			ret = set_state_failrec(failure_tree, start, failrec);
2237 		/* set the bits in the inode's tree */
2238 		if (ret >= 0)
2239 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2240 		if (ret < 0) {
2241 			kfree(failrec);
2242 			return ret;
2243 		}
2244 	} else {
2245 		btrfs_debug(fs_info,
2246 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 			failrec->logical, failrec->start, failrec->len,
2248 			failrec->in_validation);
2249 		/*
2250 		 * when data can be on disk more than twice, add to failrec here
2251 		 * (e.g. with a list for failed_mirror) to make
2252 		 * clean_io_failure() clean all those errors at once.
2253 		 */
2254 	}
2255 
2256 	*failrec_ret = failrec;
2257 
2258 	return 0;
2259 }
2260 
2261 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2262 			   struct io_failure_record *failrec, int failed_mirror)
2263 {
2264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265 	int num_copies;
2266 
2267 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2268 	if (num_copies == 1) {
2269 		/*
2270 		 * we only have a single copy of the data, so don't bother with
2271 		 * all the retry and error correction code that follows. no
2272 		 * matter what the error is, it is very likely to persist.
2273 		 */
2274 		btrfs_debug(fs_info,
2275 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 			num_copies, failrec->this_mirror, failed_mirror);
2277 		return false;
2278 	}
2279 
2280 	/*
2281 	 * there are two premises:
2282 	 *	a) deliver good data to the caller
2283 	 *	b) correct the bad sectors on disk
2284 	 */
2285 	if (failed_bio_pages > 1) {
2286 		/*
2287 		 * to fulfill b), we need to know the exact failing sectors, as
2288 		 * we don't want to rewrite any more than the failed ones. thus,
2289 		 * we need separate read requests for the failed bio
2290 		 *
2291 		 * if the following BUG_ON triggers, our validation request got
2292 		 * merged. we need separate requests for our algorithm to work.
2293 		 */
2294 		BUG_ON(failrec->in_validation);
2295 		failrec->in_validation = 1;
2296 		failrec->this_mirror = failed_mirror;
2297 	} else {
2298 		/*
2299 		 * we're ready to fulfill a) and b) alongside. get a good copy
2300 		 * of the failed sector and if we succeed, we have setup
2301 		 * everything for repair_io_failure to do the rest for us.
2302 		 */
2303 		if (failrec->in_validation) {
2304 			BUG_ON(failrec->this_mirror != failed_mirror);
2305 			failrec->in_validation = 0;
2306 			failrec->this_mirror = 0;
2307 		}
2308 		failrec->failed_mirror = failed_mirror;
2309 		failrec->this_mirror++;
2310 		if (failrec->this_mirror == failed_mirror)
2311 			failrec->this_mirror++;
2312 	}
2313 
2314 	if (failrec->this_mirror > num_copies) {
2315 		btrfs_debug(fs_info,
2316 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 			num_copies, failrec->this_mirror, failed_mirror);
2318 		return false;
2319 	}
2320 
2321 	return true;
2322 }
2323 
2324 
2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 				    struct io_failure_record *failrec,
2327 				    struct page *page, int pg_offset, int icsum,
2328 				    bio_end_io_t *endio_func, void *data)
2329 {
2330 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2331 	struct bio *bio;
2332 	struct btrfs_io_bio *btrfs_failed_bio;
2333 	struct btrfs_io_bio *btrfs_bio;
2334 
2335 	bio = btrfs_io_bio_alloc(1);
2336 	bio->bi_end_io = endio_func;
2337 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2338 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2339 	bio->bi_iter.bi_size = 0;
2340 	bio->bi_private = data;
2341 
2342 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2343 	if (btrfs_failed_bio->csum) {
2344 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345 
2346 		btrfs_bio = btrfs_io_bio(bio);
2347 		btrfs_bio->csum = btrfs_bio->csum_inline;
2348 		icsum *= csum_size;
2349 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2350 		       csum_size);
2351 	}
2352 
2353 	bio_add_page(bio, page, failrec->len, pg_offset);
2354 
2355 	return bio;
2356 }
2357 
2358 /*
2359  * this is a generic handler for readpage errors (default
2360  * readpage_io_failed_hook). if other copies exist, read those and write back
2361  * good data to the failed position. does not investigate in remapping the
2362  * failed extent elsewhere, hoping the device will be smart enough to do this as
2363  * needed
2364  */
2365 
2366 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 			      struct page *page, u64 start, u64 end,
2368 			      int failed_mirror)
2369 {
2370 	struct io_failure_record *failrec;
2371 	struct inode *inode = page->mapping->host;
2372 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2373 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2374 	struct bio *bio;
2375 	int read_mode = 0;
2376 	blk_status_t status;
2377 	int ret;
2378 	unsigned failed_bio_pages = bio_pages_all(failed_bio);
2379 
2380 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2381 
2382 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 	if (ret)
2384 		return ret;
2385 
2386 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2387 				    failed_mirror)) {
2388 		free_io_failure(failure_tree, tree, failrec);
2389 		return -EIO;
2390 	}
2391 
2392 	if (failed_bio_pages > 1)
2393 		read_mode |= REQ_FAILFAST_DEV;
2394 
2395 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2396 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2397 				      start - page_offset(page),
2398 				      (int)phy_offset, failed_bio->bi_end_io,
2399 				      NULL);
2400 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2401 
2402 	btrfs_debug(btrfs_sb(inode->i_sb),
2403 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2404 		read_mode, failrec->this_mirror, failrec->in_validation);
2405 
2406 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2407 					 failrec->bio_flags, 0);
2408 	if (status) {
2409 		free_io_failure(failure_tree, tree, failrec);
2410 		bio_put(bio);
2411 		ret = blk_status_to_errno(status);
2412 	}
2413 
2414 	return ret;
2415 }
2416 
2417 /* lots and lots of room for performance fixes in the end_bio funcs */
2418 
2419 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2420 {
2421 	int uptodate = (err == 0);
2422 	struct extent_io_tree *tree;
2423 	int ret = 0;
2424 
2425 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2426 
2427 	if (tree->ops && tree->ops->writepage_end_io_hook)
2428 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2429 				uptodate);
2430 
2431 	if (!uptodate) {
2432 		ClearPageUptodate(page);
2433 		SetPageError(page);
2434 		ret = err < 0 ? err : -EIO;
2435 		mapping_set_error(page->mapping, ret);
2436 	}
2437 }
2438 
2439 /*
2440  * after a writepage IO is done, we need to:
2441  * clear the uptodate bits on error
2442  * clear the writeback bits in the extent tree for this IO
2443  * end_page_writeback if the page has no more pending IO
2444  *
2445  * Scheduling is not allowed, so the extent state tree is expected
2446  * to have one and only one object corresponding to this IO.
2447  */
2448 static void end_bio_extent_writepage(struct bio *bio)
2449 {
2450 	int error = blk_status_to_errno(bio->bi_status);
2451 	struct bio_vec *bvec;
2452 	u64 start;
2453 	u64 end;
2454 	int i;
2455 
2456 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2457 	bio_for_each_segment_all(bvec, bio, i) {
2458 		struct page *page = bvec->bv_page;
2459 		struct inode *inode = page->mapping->host;
2460 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2461 
2462 		/* We always issue full-page reads, but if some block
2463 		 * in a page fails to read, blk_update_request() will
2464 		 * advance bv_offset and adjust bv_len to compensate.
2465 		 * Print a warning for nonzero offsets, and an error
2466 		 * if they don't add up to a full page.  */
2467 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2468 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2469 				btrfs_err(fs_info,
2470 				   "partial page write in btrfs with offset %u and length %u",
2471 					bvec->bv_offset, bvec->bv_len);
2472 			else
2473 				btrfs_info(fs_info,
2474 				   "incomplete page write in btrfs with offset %u and length %u",
2475 					bvec->bv_offset, bvec->bv_len);
2476 		}
2477 
2478 		start = page_offset(page);
2479 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2480 
2481 		end_extent_writepage(page, error, start, end);
2482 		end_page_writeback(page);
2483 	}
2484 
2485 	bio_put(bio);
2486 }
2487 
2488 static void
2489 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2490 			      int uptodate)
2491 {
2492 	struct extent_state *cached = NULL;
2493 	u64 end = start + len - 1;
2494 
2495 	if (uptodate && tree->track_uptodate)
2496 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2497 	unlock_extent_cached_atomic(tree, start, end, &cached);
2498 }
2499 
2500 /*
2501  * after a readpage IO is done, we need to:
2502  * clear the uptodate bits on error
2503  * set the uptodate bits if things worked
2504  * set the page up to date if all extents in the tree are uptodate
2505  * clear the lock bit in the extent tree
2506  * unlock the page if there are no other extents locked for it
2507  *
2508  * Scheduling is not allowed, so the extent state tree is expected
2509  * to have one and only one object corresponding to this IO.
2510  */
2511 static void end_bio_extent_readpage(struct bio *bio)
2512 {
2513 	struct bio_vec *bvec;
2514 	int uptodate = !bio->bi_status;
2515 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2516 	struct extent_io_tree *tree, *failure_tree;
2517 	u64 offset = 0;
2518 	u64 start;
2519 	u64 end;
2520 	u64 len;
2521 	u64 extent_start = 0;
2522 	u64 extent_len = 0;
2523 	int mirror;
2524 	int ret;
2525 	int i;
2526 
2527 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2528 	bio_for_each_segment_all(bvec, bio, i) {
2529 		struct page *page = bvec->bv_page;
2530 		struct inode *inode = page->mapping->host;
2531 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2532 
2533 		btrfs_debug(fs_info,
2534 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2535 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2536 			io_bio->mirror_num);
2537 		tree = &BTRFS_I(inode)->io_tree;
2538 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2539 
2540 		/* We always issue full-page reads, but if some block
2541 		 * in a page fails to read, blk_update_request() will
2542 		 * advance bv_offset and adjust bv_len to compensate.
2543 		 * Print a warning for nonzero offsets, and an error
2544 		 * if they don't add up to a full page.  */
2545 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2546 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2547 				btrfs_err(fs_info,
2548 					"partial page read in btrfs with offset %u and length %u",
2549 					bvec->bv_offset, bvec->bv_len);
2550 			else
2551 				btrfs_info(fs_info,
2552 					"incomplete page read in btrfs with offset %u and length %u",
2553 					bvec->bv_offset, bvec->bv_len);
2554 		}
2555 
2556 		start = page_offset(page);
2557 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 		len = bvec->bv_len;
2559 
2560 		mirror = io_bio->mirror_num;
2561 		if (likely(uptodate && tree->ops)) {
2562 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2563 							      page, start, end,
2564 							      mirror);
2565 			if (ret)
2566 				uptodate = 0;
2567 			else
2568 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2569 						 failure_tree, tree, start,
2570 						 page,
2571 						 btrfs_ino(BTRFS_I(inode)), 0);
2572 		}
2573 
2574 		if (likely(uptodate))
2575 			goto readpage_ok;
2576 
2577 		if (tree->ops) {
2578 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2579 			if (ret == -EAGAIN) {
2580 				/*
2581 				 * Data inode's readpage_io_failed_hook() always
2582 				 * returns -EAGAIN.
2583 				 *
2584 				 * The generic bio_readpage_error handles errors
2585 				 * the following way: If possible, new read
2586 				 * requests are created and submitted and will
2587 				 * end up in end_bio_extent_readpage as well (if
2588 				 * we're lucky, not in the !uptodate case). In
2589 				 * that case it returns 0 and we just go on with
2590 				 * the next page in our bio. If it can't handle
2591 				 * the error it will return -EIO and we remain
2592 				 * responsible for that page.
2593 				 */
2594 				ret = bio_readpage_error(bio, offset, page,
2595 							 start, end, mirror);
2596 				if (ret == 0) {
2597 					uptodate = !bio->bi_status;
2598 					offset += len;
2599 					continue;
2600 				}
2601 			}
2602 
2603 			/*
2604 			 * metadata's readpage_io_failed_hook() always returns
2605 			 * -EIO and fixes nothing.  -EIO is also returned if
2606 			 * data inode error could not be fixed.
2607 			 */
2608 			ASSERT(ret == -EIO);
2609 		}
2610 readpage_ok:
2611 		if (likely(uptodate)) {
2612 			loff_t i_size = i_size_read(inode);
2613 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2614 			unsigned off;
2615 
2616 			/* Zero out the end if this page straddles i_size */
2617 			off = i_size & (PAGE_SIZE-1);
2618 			if (page->index == end_index && off)
2619 				zero_user_segment(page, off, PAGE_SIZE);
2620 			SetPageUptodate(page);
2621 		} else {
2622 			ClearPageUptodate(page);
2623 			SetPageError(page);
2624 		}
2625 		unlock_page(page);
2626 		offset += len;
2627 
2628 		if (unlikely(!uptodate)) {
2629 			if (extent_len) {
2630 				endio_readpage_release_extent(tree,
2631 							      extent_start,
2632 							      extent_len, 1);
2633 				extent_start = 0;
2634 				extent_len = 0;
2635 			}
2636 			endio_readpage_release_extent(tree, start,
2637 						      end - start + 1, 0);
2638 		} else if (!extent_len) {
2639 			extent_start = start;
2640 			extent_len = end + 1 - start;
2641 		} else if (extent_start + extent_len == start) {
2642 			extent_len += end + 1 - start;
2643 		} else {
2644 			endio_readpage_release_extent(tree, extent_start,
2645 						      extent_len, uptodate);
2646 			extent_start = start;
2647 			extent_len = end + 1 - start;
2648 		}
2649 	}
2650 
2651 	if (extent_len)
2652 		endio_readpage_release_extent(tree, extent_start, extent_len,
2653 					      uptodate);
2654 	if (io_bio->end_io)
2655 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2656 	bio_put(bio);
2657 }
2658 
2659 /*
2660  * Initialize the members up to but not including 'bio'. Use after allocating a
2661  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2662  * 'bio' because use of __GFP_ZERO is not supported.
2663  */
2664 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2665 {
2666 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2667 }
2668 
2669 /*
2670  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2671  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2672  * for the appropriate container_of magic
2673  */
2674 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2675 {
2676 	struct bio *bio;
2677 
2678 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2679 	bio_set_dev(bio, bdev);
2680 	bio->bi_iter.bi_sector = first_byte >> 9;
2681 	btrfs_io_bio_init(btrfs_io_bio(bio));
2682 	return bio;
2683 }
2684 
2685 struct bio *btrfs_bio_clone(struct bio *bio)
2686 {
2687 	struct btrfs_io_bio *btrfs_bio;
2688 	struct bio *new;
2689 
2690 	/* Bio allocation backed by a bioset does not fail */
2691 	new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2692 	btrfs_bio = btrfs_io_bio(new);
2693 	btrfs_io_bio_init(btrfs_bio);
2694 	btrfs_bio->iter = bio->bi_iter;
2695 	return new;
2696 }
2697 
2698 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2699 {
2700 	struct bio *bio;
2701 
2702 	/* Bio allocation backed by a bioset does not fail */
2703 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2704 	btrfs_io_bio_init(btrfs_io_bio(bio));
2705 	return bio;
2706 }
2707 
2708 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2709 {
2710 	struct bio *bio;
2711 	struct btrfs_io_bio *btrfs_bio;
2712 
2713 	/* this will never fail when it's backed by a bioset */
2714 	bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2715 	ASSERT(bio);
2716 
2717 	btrfs_bio = btrfs_io_bio(bio);
2718 	btrfs_io_bio_init(btrfs_bio);
2719 
2720 	bio_trim(bio, offset >> 9, size >> 9);
2721 	btrfs_bio->iter = bio->bi_iter;
2722 	return bio;
2723 }
2724 
2725 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2726 				       unsigned long bio_flags)
2727 {
2728 	blk_status_t ret = 0;
2729 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2730 	struct page *page = bvec->bv_page;
2731 	struct extent_io_tree *tree = bio->bi_private;
2732 	u64 start;
2733 
2734 	start = page_offset(page) + bvec->bv_offset;
2735 
2736 	bio->bi_private = NULL;
2737 
2738 	if (tree->ops)
2739 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2740 					   mirror_num, bio_flags, start);
2741 	else
2742 		btrfsic_submit_bio(bio);
2743 
2744 	return blk_status_to_errno(ret);
2745 }
2746 
2747 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2748 		     unsigned long offset, size_t size, struct bio *bio,
2749 		     unsigned long bio_flags)
2750 {
2751 	int ret = 0;
2752 	if (tree->ops)
2753 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2754 						bio_flags);
2755 	return ret;
2756 
2757 }
2758 
2759 /*
2760  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2761  */
2762 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2763 			      struct writeback_control *wbc,
2764 			      struct page *page, u64 offset,
2765 			      size_t size, unsigned long pg_offset,
2766 			      struct block_device *bdev,
2767 			      struct bio **bio_ret,
2768 			      bio_end_io_t end_io_func,
2769 			      int mirror_num,
2770 			      unsigned long prev_bio_flags,
2771 			      unsigned long bio_flags,
2772 			      bool force_bio_submit)
2773 {
2774 	int ret = 0;
2775 	struct bio *bio;
2776 	int contig = 0;
2777 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2778 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2779 	sector_t sector = offset >> 9;
2780 
2781 	if (bio_ret && *bio_ret) {
2782 		bio = *bio_ret;
2783 		if (old_compressed)
2784 			contig = bio->bi_iter.bi_sector == sector;
2785 		else
2786 			contig = bio_end_sector(bio) == sector;
2787 
2788 		if (prev_bio_flags != bio_flags || !contig ||
2789 		    force_bio_submit ||
2790 		    merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) ||
2791 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2792 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 			if (ret < 0) {
2794 				*bio_ret = NULL;
2795 				return ret;
2796 			}
2797 			bio = NULL;
2798 		} else {
2799 			if (wbc)
2800 				wbc_account_io(wbc, page, page_size);
2801 			return 0;
2802 		}
2803 	}
2804 
2805 	bio = btrfs_bio_alloc(bdev, offset);
2806 	bio_add_page(bio, page, page_size, pg_offset);
2807 	bio->bi_end_io = end_io_func;
2808 	bio->bi_private = tree;
2809 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2810 	bio->bi_opf = opf;
2811 	if (wbc) {
2812 		wbc_init_bio(wbc, bio);
2813 		wbc_account_io(wbc, page, page_size);
2814 	}
2815 
2816 	if (bio_ret)
2817 		*bio_ret = bio;
2818 	else
2819 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2820 
2821 	return ret;
2822 }
2823 
2824 static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 				      struct page *page)
2826 {
2827 	if (!PagePrivate(page)) {
2828 		SetPagePrivate(page);
2829 		get_page(page);
2830 		set_page_private(page, (unsigned long)eb);
2831 	} else {
2832 		WARN_ON(page->private != (unsigned long)eb);
2833 	}
2834 }
2835 
2836 void set_page_extent_mapped(struct page *page)
2837 {
2838 	if (!PagePrivate(page)) {
2839 		SetPagePrivate(page);
2840 		get_page(page);
2841 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 	}
2843 }
2844 
2845 static struct extent_map *
2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 		 u64 start, u64 len, get_extent_t *get_extent,
2848 		 struct extent_map **em_cached)
2849 {
2850 	struct extent_map *em;
2851 
2852 	if (em_cached && *em_cached) {
2853 		em = *em_cached;
2854 		if (extent_map_in_tree(em) && start >= em->start &&
2855 		    start < extent_map_end(em)) {
2856 			refcount_inc(&em->refs);
2857 			return em;
2858 		}
2859 
2860 		free_extent_map(em);
2861 		*em_cached = NULL;
2862 	}
2863 
2864 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2865 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 		BUG_ON(*em_cached);
2867 		refcount_inc(&em->refs);
2868 		*em_cached = em;
2869 	}
2870 	return em;
2871 }
2872 /*
2873  * basic readpage implementation.  Locked extent state structs are inserted
2874  * into the tree that are removed when the IO is done (by the end_io
2875  * handlers)
2876  * XXX JDM: This needs looking at to ensure proper page locking
2877  * return 0 on success, otherwise return error
2878  */
2879 static int __do_readpage(struct extent_io_tree *tree,
2880 			 struct page *page,
2881 			 get_extent_t *get_extent,
2882 			 struct extent_map **em_cached,
2883 			 struct bio **bio, int mirror_num,
2884 			 unsigned long *bio_flags, unsigned int read_flags,
2885 			 u64 *prev_em_start)
2886 {
2887 	struct inode *inode = page->mapping->host;
2888 	u64 start = page_offset(page);
2889 	u64 page_end = start + PAGE_SIZE - 1;
2890 	u64 end;
2891 	u64 cur = start;
2892 	u64 extent_offset;
2893 	u64 last_byte = i_size_read(inode);
2894 	u64 block_start;
2895 	u64 cur_end;
2896 	struct extent_map *em;
2897 	struct block_device *bdev;
2898 	int ret = 0;
2899 	int nr = 0;
2900 	size_t pg_offset = 0;
2901 	size_t iosize;
2902 	size_t disk_io_size;
2903 	size_t blocksize = inode->i_sb->s_blocksize;
2904 	unsigned long this_bio_flag = 0;
2905 
2906 	set_page_extent_mapped(page);
2907 
2908 	end = page_end;
2909 	if (!PageUptodate(page)) {
2910 		if (cleancache_get_page(page) == 0) {
2911 			BUG_ON(blocksize != PAGE_SIZE);
2912 			unlock_extent(tree, start, end);
2913 			goto out;
2914 		}
2915 	}
2916 
2917 	if (page->index == last_byte >> PAGE_SHIFT) {
2918 		char *userpage;
2919 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2920 
2921 		if (zero_offset) {
2922 			iosize = PAGE_SIZE - zero_offset;
2923 			userpage = kmap_atomic(page);
2924 			memset(userpage + zero_offset, 0, iosize);
2925 			flush_dcache_page(page);
2926 			kunmap_atomic(userpage);
2927 		}
2928 	}
2929 	while (cur <= end) {
2930 		bool force_bio_submit = false;
2931 		u64 offset;
2932 
2933 		if (cur >= last_byte) {
2934 			char *userpage;
2935 			struct extent_state *cached = NULL;
2936 
2937 			iosize = PAGE_SIZE - pg_offset;
2938 			userpage = kmap_atomic(page);
2939 			memset(userpage + pg_offset, 0, iosize);
2940 			flush_dcache_page(page);
2941 			kunmap_atomic(userpage);
2942 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2943 					    &cached, GFP_NOFS);
2944 			unlock_extent_cached(tree, cur,
2945 					     cur + iosize - 1, &cached);
2946 			break;
2947 		}
2948 		em = __get_extent_map(inode, page, pg_offset, cur,
2949 				      end - cur + 1, get_extent, em_cached);
2950 		if (IS_ERR_OR_NULL(em)) {
2951 			SetPageError(page);
2952 			unlock_extent(tree, cur, end);
2953 			break;
2954 		}
2955 		extent_offset = cur - em->start;
2956 		BUG_ON(extent_map_end(em) <= cur);
2957 		BUG_ON(end < cur);
2958 
2959 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2960 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2961 			extent_set_compress_type(&this_bio_flag,
2962 						 em->compress_type);
2963 		}
2964 
2965 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 		cur_end = min(extent_map_end(em) - 1, end);
2967 		iosize = ALIGN(iosize, blocksize);
2968 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 			disk_io_size = em->block_len;
2970 			offset = em->block_start;
2971 		} else {
2972 			offset = em->block_start + extent_offset;
2973 			disk_io_size = iosize;
2974 		}
2975 		bdev = em->bdev;
2976 		block_start = em->block_start;
2977 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 			block_start = EXTENT_MAP_HOLE;
2979 
2980 		/*
2981 		 * If we have a file range that points to a compressed extent
2982 		 * and it's followed by a consecutive file range that points to
2983 		 * to the same compressed extent (possibly with a different
2984 		 * offset and/or length, so it either points to the whole extent
2985 		 * or only part of it), we must make sure we do not submit a
2986 		 * single bio to populate the pages for the 2 ranges because
2987 		 * this makes the compressed extent read zero out the pages
2988 		 * belonging to the 2nd range. Imagine the following scenario:
2989 		 *
2990 		 *  File layout
2991 		 *  [0 - 8K]                     [8K - 24K]
2992 		 *    |                               |
2993 		 *    |                               |
2994 		 * points to extent X,         points to extent X,
2995 		 * offset 4K, length of 8K     offset 0, length 16K
2996 		 *
2997 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 		 *
2999 		 * If the bio to read the compressed extent covers both ranges,
3000 		 * it will decompress extent X into the pages belonging to the
3001 		 * first range and then it will stop, zeroing out the remaining
3002 		 * pages that belong to the other range that points to extent X.
3003 		 * So here we make sure we submit 2 bios, one for the first
3004 		 * range and another one for the third range. Both will target
3005 		 * the same physical extent from disk, but we can't currently
3006 		 * make the compressed bio endio callback populate the pages
3007 		 * for both ranges because each compressed bio is tightly
3008 		 * coupled with a single extent map, and each range can have
3009 		 * an extent map with a different offset value relative to the
3010 		 * uncompressed data of our extent and different lengths. This
3011 		 * is a corner case so we prioritize correctness over
3012 		 * non-optimal behavior (submitting 2 bios for the same extent).
3013 		 */
3014 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 		    prev_em_start && *prev_em_start != (u64)-1 &&
3016 		    *prev_em_start != em->orig_start)
3017 			force_bio_submit = true;
3018 
3019 		if (prev_em_start)
3020 			*prev_em_start = em->orig_start;
3021 
3022 		free_extent_map(em);
3023 		em = NULL;
3024 
3025 		/* we've found a hole, just zero and go on */
3026 		if (block_start == EXTENT_MAP_HOLE) {
3027 			char *userpage;
3028 			struct extent_state *cached = NULL;
3029 
3030 			userpage = kmap_atomic(page);
3031 			memset(userpage + pg_offset, 0, iosize);
3032 			flush_dcache_page(page);
3033 			kunmap_atomic(userpage);
3034 
3035 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3036 					    &cached, GFP_NOFS);
3037 			unlock_extent_cached(tree, cur,
3038 					     cur + iosize - 1, &cached);
3039 			cur = cur + iosize;
3040 			pg_offset += iosize;
3041 			continue;
3042 		}
3043 		/* the get_extent function already copied into the page */
3044 		if (test_range_bit(tree, cur, cur_end,
3045 				   EXTENT_UPTODATE, 1, NULL)) {
3046 			check_page_uptodate(tree, page);
3047 			unlock_extent(tree, cur, cur + iosize - 1);
3048 			cur = cur + iosize;
3049 			pg_offset += iosize;
3050 			continue;
3051 		}
3052 		/* we have an inline extent but it didn't get marked up
3053 		 * to date.  Error out
3054 		 */
3055 		if (block_start == EXTENT_MAP_INLINE) {
3056 			SetPageError(page);
3057 			unlock_extent(tree, cur, cur + iosize - 1);
3058 			cur = cur + iosize;
3059 			pg_offset += iosize;
3060 			continue;
3061 		}
3062 
3063 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3064 					 page, offset, disk_io_size,
3065 					 pg_offset, bdev, bio,
3066 					 end_bio_extent_readpage, mirror_num,
3067 					 *bio_flags,
3068 					 this_bio_flag,
3069 					 force_bio_submit);
3070 		if (!ret) {
3071 			nr++;
3072 			*bio_flags = this_bio_flag;
3073 		} else {
3074 			SetPageError(page);
3075 			unlock_extent(tree, cur, cur + iosize - 1);
3076 			goto out;
3077 		}
3078 		cur = cur + iosize;
3079 		pg_offset += iosize;
3080 	}
3081 out:
3082 	if (!nr) {
3083 		if (!PageError(page))
3084 			SetPageUptodate(page);
3085 		unlock_page(page);
3086 	}
3087 	return ret;
3088 }
3089 
3090 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3091 					     struct page *pages[], int nr_pages,
3092 					     u64 start, u64 end,
3093 					     struct extent_map **em_cached,
3094 					     struct bio **bio,
3095 					     unsigned long *bio_flags,
3096 					     u64 *prev_em_start)
3097 {
3098 	struct inode *inode;
3099 	struct btrfs_ordered_extent *ordered;
3100 	int index;
3101 
3102 	inode = pages[0]->mapping->host;
3103 	while (1) {
3104 		lock_extent(tree, start, end);
3105 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3106 						     end - start + 1);
3107 		if (!ordered)
3108 			break;
3109 		unlock_extent(tree, start, end);
3110 		btrfs_start_ordered_extent(inode, ordered, 1);
3111 		btrfs_put_ordered_extent(ordered);
3112 	}
3113 
3114 	for (index = 0; index < nr_pages; index++) {
3115 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3116 				bio, 0, bio_flags, 0, prev_em_start);
3117 		put_page(pages[index]);
3118 	}
3119 }
3120 
3121 static void __extent_readpages(struct extent_io_tree *tree,
3122 			       struct page *pages[],
3123 			       int nr_pages,
3124 			       struct extent_map **em_cached,
3125 			       struct bio **bio, unsigned long *bio_flags,
3126 			       u64 *prev_em_start)
3127 {
3128 	u64 start = 0;
3129 	u64 end = 0;
3130 	u64 page_start;
3131 	int index;
3132 	int first_index = 0;
3133 
3134 	for (index = 0; index < nr_pages; index++) {
3135 		page_start = page_offset(pages[index]);
3136 		if (!end) {
3137 			start = page_start;
3138 			end = start + PAGE_SIZE - 1;
3139 			first_index = index;
3140 		} else if (end + 1 == page_start) {
3141 			end += PAGE_SIZE;
3142 		} else {
3143 			__do_contiguous_readpages(tree, &pages[first_index],
3144 						  index - first_index, start,
3145 						  end, em_cached,
3146 						  bio, bio_flags,
3147 						  prev_em_start);
3148 			start = page_start;
3149 			end = start + PAGE_SIZE - 1;
3150 			first_index = index;
3151 		}
3152 	}
3153 
3154 	if (end)
3155 		__do_contiguous_readpages(tree, &pages[first_index],
3156 					  index - first_index, start,
3157 					  end, em_cached, bio,
3158 					  bio_flags, prev_em_start);
3159 }
3160 
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 				   struct page *page,
3163 				   get_extent_t *get_extent,
3164 				   struct bio **bio, int mirror_num,
3165 				   unsigned long *bio_flags,
3166 				   unsigned int read_flags)
3167 {
3168 	struct inode *inode = page->mapping->host;
3169 	struct btrfs_ordered_extent *ordered;
3170 	u64 start = page_offset(page);
3171 	u64 end = start + PAGE_SIZE - 1;
3172 	int ret;
3173 
3174 	while (1) {
3175 		lock_extent(tree, start, end);
3176 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3177 						PAGE_SIZE);
3178 		if (!ordered)
3179 			break;
3180 		unlock_extent(tree, start, end);
3181 		btrfs_start_ordered_extent(inode, ordered, 1);
3182 		btrfs_put_ordered_extent(ordered);
3183 	}
3184 
3185 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3186 			    bio_flags, read_flags, NULL);
3187 	return ret;
3188 }
3189 
3190 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3191 			    get_extent_t *get_extent, int mirror_num)
3192 {
3193 	struct bio *bio = NULL;
3194 	unsigned long bio_flags = 0;
3195 	int ret;
3196 
3197 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3198 				      &bio_flags, 0);
3199 	if (bio)
3200 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3201 	return ret;
3202 }
3203 
3204 static void update_nr_written(struct writeback_control *wbc,
3205 			      unsigned long nr_written)
3206 {
3207 	wbc->nr_to_write -= nr_written;
3208 }
3209 
3210 /*
3211  * helper for __extent_writepage, doing all of the delayed allocation setup.
3212  *
3213  * This returns 1 if our fill_delalloc function did all the work required
3214  * to write the page (copy into inline extent).  In this case the IO has
3215  * been started and the page is already unlocked.
3216  *
3217  * This returns 0 if all went well (page still locked)
3218  * This returns < 0 if there were errors (page still locked)
3219  */
3220 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3221 			      struct page *page, struct writeback_control *wbc,
3222 			      struct extent_page_data *epd,
3223 			      u64 delalloc_start,
3224 			      unsigned long *nr_written)
3225 {
3226 	struct extent_io_tree *tree = epd->tree;
3227 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3228 	u64 nr_delalloc;
3229 	u64 delalloc_to_write = 0;
3230 	u64 delalloc_end = 0;
3231 	int ret;
3232 	int page_started = 0;
3233 
3234 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3235 		return 0;
3236 
3237 	while (delalloc_end < page_end) {
3238 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3239 					       page,
3240 					       &delalloc_start,
3241 					       &delalloc_end,
3242 					       BTRFS_MAX_EXTENT_SIZE);
3243 		if (nr_delalloc == 0) {
3244 			delalloc_start = delalloc_end + 1;
3245 			continue;
3246 		}
3247 		ret = tree->ops->fill_delalloc(inode, page,
3248 					       delalloc_start,
3249 					       delalloc_end,
3250 					       &page_started,
3251 					       nr_written, wbc);
3252 		/* File system has been set read-only */
3253 		if (ret) {
3254 			SetPageError(page);
3255 			/* fill_delalloc should be return < 0 for error
3256 			 * but just in case, we use > 0 here meaning the
3257 			 * IO is started, so we don't want to return > 0
3258 			 * unless things are going well.
3259 			 */
3260 			ret = ret < 0 ? ret : -EIO;
3261 			goto done;
3262 		}
3263 		/*
3264 		 * delalloc_end is already one less than the total length, so
3265 		 * we don't subtract one from PAGE_SIZE
3266 		 */
3267 		delalloc_to_write += (delalloc_end - delalloc_start +
3268 				      PAGE_SIZE) >> PAGE_SHIFT;
3269 		delalloc_start = delalloc_end + 1;
3270 	}
3271 	if (wbc->nr_to_write < delalloc_to_write) {
3272 		int thresh = 8192;
3273 
3274 		if (delalloc_to_write < thresh * 2)
3275 			thresh = delalloc_to_write;
3276 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3277 					 thresh);
3278 	}
3279 
3280 	/* did the fill delalloc function already unlock and start
3281 	 * the IO?
3282 	 */
3283 	if (page_started) {
3284 		/*
3285 		 * we've unlocked the page, so we can't update
3286 		 * the mapping's writeback index, just update
3287 		 * nr_to_write.
3288 		 */
3289 		wbc->nr_to_write -= *nr_written;
3290 		return 1;
3291 	}
3292 
3293 	ret = 0;
3294 
3295 done:
3296 	return ret;
3297 }
3298 
3299 /*
3300  * helper for __extent_writepage.  This calls the writepage start hooks,
3301  * and does the loop to map the page into extents and bios.
3302  *
3303  * We return 1 if the IO is started and the page is unlocked,
3304  * 0 if all went well (page still locked)
3305  * < 0 if there were errors (page still locked)
3306  */
3307 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3308 				 struct page *page,
3309 				 struct writeback_control *wbc,
3310 				 struct extent_page_data *epd,
3311 				 loff_t i_size,
3312 				 unsigned long nr_written,
3313 				 unsigned int write_flags, int *nr_ret)
3314 {
3315 	struct extent_io_tree *tree = epd->tree;
3316 	u64 start = page_offset(page);
3317 	u64 page_end = start + PAGE_SIZE - 1;
3318 	u64 end;
3319 	u64 cur = start;
3320 	u64 extent_offset;
3321 	u64 block_start;
3322 	u64 iosize;
3323 	struct extent_map *em;
3324 	struct block_device *bdev;
3325 	size_t pg_offset = 0;
3326 	size_t blocksize;
3327 	int ret = 0;
3328 	int nr = 0;
3329 	bool compressed;
3330 
3331 	if (tree->ops && tree->ops->writepage_start_hook) {
3332 		ret = tree->ops->writepage_start_hook(page, start,
3333 						      page_end);
3334 		if (ret) {
3335 			/* Fixup worker will requeue */
3336 			if (ret == -EBUSY)
3337 				wbc->pages_skipped++;
3338 			else
3339 				redirty_page_for_writepage(wbc, page);
3340 
3341 			update_nr_written(wbc, nr_written);
3342 			unlock_page(page);
3343 			return 1;
3344 		}
3345 	}
3346 
3347 	/*
3348 	 * we don't want to touch the inode after unlocking the page,
3349 	 * so we update the mapping writeback index now
3350 	 */
3351 	update_nr_written(wbc, nr_written + 1);
3352 
3353 	end = page_end;
3354 	if (i_size <= start) {
3355 		if (tree->ops && tree->ops->writepage_end_io_hook)
3356 			tree->ops->writepage_end_io_hook(page, start,
3357 							 page_end, NULL, 1);
3358 		goto done;
3359 	}
3360 
3361 	blocksize = inode->i_sb->s_blocksize;
3362 
3363 	while (cur <= end) {
3364 		u64 em_end;
3365 		u64 offset;
3366 
3367 		if (cur >= i_size) {
3368 			if (tree->ops && tree->ops->writepage_end_io_hook)
3369 				tree->ops->writepage_end_io_hook(page, cur,
3370 							 page_end, NULL, 1);
3371 			break;
3372 		}
3373 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3374 				     end - cur + 1, 1);
3375 		if (IS_ERR_OR_NULL(em)) {
3376 			SetPageError(page);
3377 			ret = PTR_ERR_OR_ZERO(em);
3378 			break;
3379 		}
3380 
3381 		extent_offset = cur - em->start;
3382 		em_end = extent_map_end(em);
3383 		BUG_ON(em_end <= cur);
3384 		BUG_ON(end < cur);
3385 		iosize = min(em_end - cur, end - cur + 1);
3386 		iosize = ALIGN(iosize, blocksize);
3387 		offset = em->block_start + extent_offset;
3388 		bdev = em->bdev;
3389 		block_start = em->block_start;
3390 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3391 		free_extent_map(em);
3392 		em = NULL;
3393 
3394 		/*
3395 		 * compressed and inline extents are written through other
3396 		 * paths in the FS
3397 		 */
3398 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3399 		    block_start == EXTENT_MAP_INLINE) {
3400 			/*
3401 			 * end_io notification does not happen here for
3402 			 * compressed extents
3403 			 */
3404 			if (!compressed && tree->ops &&
3405 			    tree->ops->writepage_end_io_hook)
3406 				tree->ops->writepage_end_io_hook(page, cur,
3407 							 cur + iosize - 1,
3408 							 NULL, 1);
3409 			else if (compressed) {
3410 				/* we don't want to end_page_writeback on
3411 				 * a compressed extent.  this happens
3412 				 * elsewhere
3413 				 */
3414 				nr++;
3415 			}
3416 
3417 			cur += iosize;
3418 			pg_offset += iosize;
3419 			continue;
3420 		}
3421 
3422 		set_range_writeback(tree, cur, cur + iosize - 1);
3423 		if (!PageWriteback(page)) {
3424 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3425 				   "page %lu not writeback, cur %llu end %llu",
3426 			       page->index, cur, end);
3427 		}
3428 
3429 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3430 					 page, offset, iosize, pg_offset,
3431 					 bdev, &epd->bio,
3432 					 end_bio_extent_writepage,
3433 					 0, 0, 0, false);
3434 		if (ret) {
3435 			SetPageError(page);
3436 			if (PageWriteback(page))
3437 				end_page_writeback(page);
3438 		}
3439 
3440 		cur = cur + iosize;
3441 		pg_offset += iosize;
3442 		nr++;
3443 	}
3444 done:
3445 	*nr_ret = nr;
3446 	return ret;
3447 }
3448 
3449 /*
3450  * the writepage semantics are similar to regular writepage.  extent
3451  * records are inserted to lock ranges in the tree, and as dirty areas
3452  * are found, they are marked writeback.  Then the lock bits are removed
3453  * and the end_io handler clears the writeback ranges
3454  */
3455 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3456 			      struct extent_page_data *epd)
3457 {
3458 	struct inode *inode = page->mapping->host;
3459 	u64 start = page_offset(page);
3460 	u64 page_end = start + PAGE_SIZE - 1;
3461 	int ret;
3462 	int nr = 0;
3463 	size_t pg_offset = 0;
3464 	loff_t i_size = i_size_read(inode);
3465 	unsigned long end_index = i_size >> PAGE_SHIFT;
3466 	unsigned int write_flags = 0;
3467 	unsigned long nr_written = 0;
3468 
3469 	write_flags = wbc_to_write_flags(wbc);
3470 
3471 	trace___extent_writepage(page, inode, wbc);
3472 
3473 	WARN_ON(!PageLocked(page));
3474 
3475 	ClearPageError(page);
3476 
3477 	pg_offset = i_size & (PAGE_SIZE - 1);
3478 	if (page->index > end_index ||
3479 	   (page->index == end_index && !pg_offset)) {
3480 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3481 		unlock_page(page);
3482 		return 0;
3483 	}
3484 
3485 	if (page->index == end_index) {
3486 		char *userpage;
3487 
3488 		userpage = kmap_atomic(page);
3489 		memset(userpage + pg_offset, 0,
3490 		       PAGE_SIZE - pg_offset);
3491 		kunmap_atomic(userpage);
3492 		flush_dcache_page(page);
3493 	}
3494 
3495 	pg_offset = 0;
3496 
3497 	set_page_extent_mapped(page);
3498 
3499 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3500 	if (ret == 1)
3501 		goto done_unlocked;
3502 	if (ret)
3503 		goto done;
3504 
3505 	ret = __extent_writepage_io(inode, page, wbc, epd,
3506 				    i_size, nr_written, write_flags, &nr);
3507 	if (ret == 1)
3508 		goto done_unlocked;
3509 
3510 done:
3511 	if (nr == 0) {
3512 		/* make sure the mapping tag for page dirty gets cleared */
3513 		set_page_writeback(page);
3514 		end_page_writeback(page);
3515 	}
3516 	if (PageError(page)) {
3517 		ret = ret < 0 ? ret : -EIO;
3518 		end_extent_writepage(page, ret, start, page_end);
3519 	}
3520 	unlock_page(page);
3521 	return ret;
3522 
3523 done_unlocked:
3524 	return 0;
3525 }
3526 
3527 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3528 {
3529 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3530 		       TASK_UNINTERRUPTIBLE);
3531 }
3532 
3533 static noinline_for_stack int
3534 lock_extent_buffer_for_io(struct extent_buffer *eb,
3535 			  struct btrfs_fs_info *fs_info,
3536 			  struct extent_page_data *epd)
3537 {
3538 	unsigned long i, num_pages;
3539 	int flush = 0;
3540 	int ret = 0;
3541 
3542 	if (!btrfs_try_tree_write_lock(eb)) {
3543 		flush = 1;
3544 		flush_write_bio(epd);
3545 		btrfs_tree_lock(eb);
3546 	}
3547 
3548 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3549 		btrfs_tree_unlock(eb);
3550 		if (!epd->sync_io)
3551 			return 0;
3552 		if (!flush) {
3553 			flush_write_bio(epd);
3554 			flush = 1;
3555 		}
3556 		while (1) {
3557 			wait_on_extent_buffer_writeback(eb);
3558 			btrfs_tree_lock(eb);
3559 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3560 				break;
3561 			btrfs_tree_unlock(eb);
3562 		}
3563 	}
3564 
3565 	/*
3566 	 * We need to do this to prevent races in people who check if the eb is
3567 	 * under IO since we can end up having no IO bits set for a short period
3568 	 * of time.
3569 	 */
3570 	spin_lock(&eb->refs_lock);
3571 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3572 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3573 		spin_unlock(&eb->refs_lock);
3574 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3575 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3576 					 -eb->len,
3577 					 fs_info->dirty_metadata_batch);
3578 		ret = 1;
3579 	} else {
3580 		spin_unlock(&eb->refs_lock);
3581 	}
3582 
3583 	btrfs_tree_unlock(eb);
3584 
3585 	if (!ret)
3586 		return ret;
3587 
3588 	num_pages = num_extent_pages(eb->start, eb->len);
3589 	for (i = 0; i < num_pages; i++) {
3590 		struct page *p = eb->pages[i];
3591 
3592 		if (!trylock_page(p)) {
3593 			if (!flush) {
3594 				flush_write_bio(epd);
3595 				flush = 1;
3596 			}
3597 			lock_page(p);
3598 		}
3599 	}
3600 
3601 	return ret;
3602 }
3603 
3604 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3605 {
3606 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3607 	smp_mb__after_atomic();
3608 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3609 }
3610 
3611 static void set_btree_ioerr(struct page *page)
3612 {
3613 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3614 
3615 	SetPageError(page);
3616 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3617 		return;
3618 
3619 	/*
3620 	 * If writeback for a btree extent that doesn't belong to a log tree
3621 	 * failed, increment the counter transaction->eb_write_errors.
3622 	 * We do this because while the transaction is running and before it's
3623 	 * committing (when we call filemap_fdata[write|wait]_range against
3624 	 * the btree inode), we might have
3625 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3626 	 * returns an error or an error happens during writeback, when we're
3627 	 * committing the transaction we wouldn't know about it, since the pages
3628 	 * can be no longer dirty nor marked anymore for writeback (if a
3629 	 * subsequent modification to the extent buffer didn't happen before the
3630 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3631 	 * able to find the pages tagged with SetPageError at transaction
3632 	 * commit time. So if this happens we must abort the transaction,
3633 	 * otherwise we commit a super block with btree roots that point to
3634 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3635 	 * or the content of some node/leaf from a past generation that got
3636 	 * cowed or deleted and is no longer valid.
3637 	 *
3638 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3639 	 * not be enough - we need to distinguish between log tree extents vs
3640 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3641 	 * will catch and clear such errors in the mapping - and that call might
3642 	 * be from a log sync and not from a transaction commit. Also, checking
3643 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3644 	 * not done and would not be reliable - the eb might have been released
3645 	 * from memory and reading it back again means that flag would not be
3646 	 * set (since it's a runtime flag, not persisted on disk).
3647 	 *
3648 	 * Using the flags below in the btree inode also makes us achieve the
3649 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3650 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3651 	 * is called, the writeback for all dirty pages had already finished
3652 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3653 	 * filemap_fdatawait_range() would return success, as it could not know
3654 	 * that writeback errors happened (the pages were no longer tagged for
3655 	 * writeback).
3656 	 */
3657 	switch (eb->log_index) {
3658 	case -1:
3659 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3660 		break;
3661 	case 0:
3662 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3663 		break;
3664 	case 1:
3665 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3666 		break;
3667 	default:
3668 		BUG(); /* unexpected, logic error */
3669 	}
3670 }
3671 
3672 static void end_bio_extent_buffer_writepage(struct bio *bio)
3673 {
3674 	struct bio_vec *bvec;
3675 	struct extent_buffer *eb;
3676 	int i, done;
3677 
3678 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3679 	bio_for_each_segment_all(bvec, bio, i) {
3680 		struct page *page = bvec->bv_page;
3681 
3682 		eb = (struct extent_buffer *)page->private;
3683 		BUG_ON(!eb);
3684 		done = atomic_dec_and_test(&eb->io_pages);
3685 
3686 		if (bio->bi_status ||
3687 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3688 			ClearPageUptodate(page);
3689 			set_btree_ioerr(page);
3690 		}
3691 
3692 		end_page_writeback(page);
3693 
3694 		if (!done)
3695 			continue;
3696 
3697 		end_extent_buffer_writeback(eb);
3698 	}
3699 
3700 	bio_put(bio);
3701 }
3702 
3703 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3704 			struct btrfs_fs_info *fs_info,
3705 			struct writeback_control *wbc,
3706 			struct extent_page_data *epd)
3707 {
3708 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3709 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3710 	u64 offset = eb->start;
3711 	u32 nritems;
3712 	unsigned long i, num_pages;
3713 	unsigned long start, end;
3714 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3715 	int ret = 0;
3716 
3717 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3718 	num_pages = num_extent_pages(eb->start, eb->len);
3719 	atomic_set(&eb->io_pages, num_pages);
3720 
3721 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3722 	nritems = btrfs_header_nritems(eb);
3723 	if (btrfs_header_level(eb) > 0) {
3724 		end = btrfs_node_key_ptr_offset(nritems);
3725 
3726 		memzero_extent_buffer(eb, end, eb->len - end);
3727 	} else {
3728 		/*
3729 		 * leaf:
3730 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3731 		 */
3732 		start = btrfs_item_nr_offset(nritems);
3733 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3734 		memzero_extent_buffer(eb, start, end - start);
3735 	}
3736 
3737 	for (i = 0; i < num_pages; i++) {
3738 		struct page *p = eb->pages[i];
3739 
3740 		clear_page_dirty_for_io(p);
3741 		set_page_writeback(p);
3742 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3743 					 p, offset, PAGE_SIZE, 0, bdev,
3744 					 &epd->bio,
3745 					 end_bio_extent_buffer_writepage,
3746 					 0, 0, 0, false);
3747 		if (ret) {
3748 			set_btree_ioerr(p);
3749 			if (PageWriteback(p))
3750 				end_page_writeback(p);
3751 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3752 				end_extent_buffer_writeback(eb);
3753 			ret = -EIO;
3754 			break;
3755 		}
3756 		offset += PAGE_SIZE;
3757 		update_nr_written(wbc, 1);
3758 		unlock_page(p);
3759 	}
3760 
3761 	if (unlikely(ret)) {
3762 		for (; i < num_pages; i++) {
3763 			struct page *p = eb->pages[i];
3764 			clear_page_dirty_for_io(p);
3765 			unlock_page(p);
3766 		}
3767 	}
3768 
3769 	return ret;
3770 }
3771 
3772 int btree_write_cache_pages(struct address_space *mapping,
3773 				   struct writeback_control *wbc)
3774 {
3775 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3776 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3777 	struct extent_buffer *eb, *prev_eb = NULL;
3778 	struct extent_page_data epd = {
3779 		.bio = NULL,
3780 		.tree = tree,
3781 		.extent_locked = 0,
3782 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3783 	};
3784 	int ret = 0;
3785 	int done = 0;
3786 	int nr_to_write_done = 0;
3787 	struct pagevec pvec;
3788 	int nr_pages;
3789 	pgoff_t index;
3790 	pgoff_t end;		/* Inclusive */
3791 	int scanned = 0;
3792 	int tag;
3793 
3794 	pagevec_init(&pvec);
3795 	if (wbc->range_cyclic) {
3796 		index = mapping->writeback_index; /* Start from prev offset */
3797 		end = -1;
3798 	} else {
3799 		index = wbc->range_start >> PAGE_SHIFT;
3800 		end = wbc->range_end >> PAGE_SHIFT;
3801 		scanned = 1;
3802 	}
3803 	if (wbc->sync_mode == WB_SYNC_ALL)
3804 		tag = PAGECACHE_TAG_TOWRITE;
3805 	else
3806 		tag = PAGECACHE_TAG_DIRTY;
3807 retry:
3808 	if (wbc->sync_mode == WB_SYNC_ALL)
3809 		tag_pages_for_writeback(mapping, index, end);
3810 	while (!done && !nr_to_write_done && (index <= end) &&
3811 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3812 			tag))) {
3813 		unsigned i;
3814 
3815 		scanned = 1;
3816 		for (i = 0; i < nr_pages; i++) {
3817 			struct page *page = pvec.pages[i];
3818 
3819 			if (!PagePrivate(page))
3820 				continue;
3821 
3822 			spin_lock(&mapping->private_lock);
3823 			if (!PagePrivate(page)) {
3824 				spin_unlock(&mapping->private_lock);
3825 				continue;
3826 			}
3827 
3828 			eb = (struct extent_buffer *)page->private;
3829 
3830 			/*
3831 			 * Shouldn't happen and normally this would be a BUG_ON
3832 			 * but no sense in crashing the users box for something
3833 			 * we can survive anyway.
3834 			 */
3835 			if (WARN_ON(!eb)) {
3836 				spin_unlock(&mapping->private_lock);
3837 				continue;
3838 			}
3839 
3840 			if (eb == prev_eb) {
3841 				spin_unlock(&mapping->private_lock);
3842 				continue;
3843 			}
3844 
3845 			ret = atomic_inc_not_zero(&eb->refs);
3846 			spin_unlock(&mapping->private_lock);
3847 			if (!ret)
3848 				continue;
3849 
3850 			prev_eb = eb;
3851 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3852 			if (!ret) {
3853 				free_extent_buffer(eb);
3854 				continue;
3855 			}
3856 
3857 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3858 			if (ret) {
3859 				done = 1;
3860 				free_extent_buffer(eb);
3861 				break;
3862 			}
3863 			free_extent_buffer(eb);
3864 
3865 			/*
3866 			 * the filesystem may choose to bump up nr_to_write.
3867 			 * We have to make sure to honor the new nr_to_write
3868 			 * at any time
3869 			 */
3870 			nr_to_write_done = wbc->nr_to_write <= 0;
3871 		}
3872 		pagevec_release(&pvec);
3873 		cond_resched();
3874 	}
3875 	if (!scanned && !done) {
3876 		/*
3877 		 * We hit the last page and there is more work to be done: wrap
3878 		 * back to the start of the file
3879 		 */
3880 		scanned = 1;
3881 		index = 0;
3882 		goto retry;
3883 	}
3884 	flush_write_bio(&epd);
3885 	return ret;
3886 }
3887 
3888 /**
3889  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3890  * @mapping: address space structure to write
3891  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3892  * @data: data passed to __extent_writepage function
3893  *
3894  * If a page is already under I/O, write_cache_pages() skips it, even
3895  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3896  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3897  * and msync() need to guarantee that all the data which was dirty at the time
3898  * the call was made get new I/O started against them.  If wbc->sync_mode is
3899  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3900  * existing IO to complete.
3901  */
3902 static int extent_write_cache_pages(struct address_space *mapping,
3903 			     struct writeback_control *wbc,
3904 			     struct extent_page_data *epd)
3905 {
3906 	struct inode *inode = mapping->host;
3907 	int ret = 0;
3908 	int done = 0;
3909 	int nr_to_write_done = 0;
3910 	struct pagevec pvec;
3911 	int nr_pages;
3912 	pgoff_t index;
3913 	pgoff_t end;		/* Inclusive */
3914 	pgoff_t done_index;
3915 	int range_whole = 0;
3916 	int scanned = 0;
3917 	int tag;
3918 
3919 	/*
3920 	 * We have to hold onto the inode so that ordered extents can do their
3921 	 * work when the IO finishes.  The alternative to this is failing to add
3922 	 * an ordered extent if the igrab() fails there and that is a huge pain
3923 	 * to deal with, so instead just hold onto the inode throughout the
3924 	 * writepages operation.  If it fails here we are freeing up the inode
3925 	 * anyway and we'd rather not waste our time writing out stuff that is
3926 	 * going to be truncated anyway.
3927 	 */
3928 	if (!igrab(inode))
3929 		return 0;
3930 
3931 	pagevec_init(&pvec);
3932 	if (wbc->range_cyclic) {
3933 		index = mapping->writeback_index; /* Start from prev offset */
3934 		end = -1;
3935 	} else {
3936 		index = wbc->range_start >> PAGE_SHIFT;
3937 		end = wbc->range_end >> PAGE_SHIFT;
3938 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3939 			range_whole = 1;
3940 		scanned = 1;
3941 	}
3942 	if (wbc->sync_mode == WB_SYNC_ALL)
3943 		tag = PAGECACHE_TAG_TOWRITE;
3944 	else
3945 		tag = PAGECACHE_TAG_DIRTY;
3946 retry:
3947 	if (wbc->sync_mode == WB_SYNC_ALL)
3948 		tag_pages_for_writeback(mapping, index, end);
3949 	done_index = index;
3950 	while (!done && !nr_to_write_done && (index <= end) &&
3951 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3952 						&index, end, tag))) {
3953 		unsigned i;
3954 
3955 		scanned = 1;
3956 		for (i = 0; i < nr_pages; i++) {
3957 			struct page *page = pvec.pages[i];
3958 
3959 			done_index = page->index;
3960 			/*
3961 			 * At this point we hold neither mapping->tree_lock nor
3962 			 * lock on the page itself: the page may be truncated or
3963 			 * invalidated (changing page->mapping to NULL), or even
3964 			 * swizzled back from swapper_space to tmpfs file
3965 			 * mapping
3966 			 */
3967 			if (!trylock_page(page)) {
3968 				flush_write_bio(epd);
3969 				lock_page(page);
3970 			}
3971 
3972 			if (unlikely(page->mapping != mapping)) {
3973 				unlock_page(page);
3974 				continue;
3975 			}
3976 
3977 			if (wbc->sync_mode != WB_SYNC_NONE) {
3978 				if (PageWriteback(page))
3979 					flush_write_bio(epd);
3980 				wait_on_page_writeback(page);
3981 			}
3982 
3983 			if (PageWriteback(page) ||
3984 			    !clear_page_dirty_for_io(page)) {
3985 				unlock_page(page);
3986 				continue;
3987 			}
3988 
3989 			ret = __extent_writepage(page, wbc, epd);
3990 
3991 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3992 				unlock_page(page);
3993 				ret = 0;
3994 			}
3995 			if (ret < 0) {
3996 				/*
3997 				 * done_index is set past this page,
3998 				 * so media errors will not choke
3999 				 * background writeout for the entire
4000 				 * file. This has consequences for
4001 				 * range_cyclic semantics (ie. it may
4002 				 * not be suitable for data integrity
4003 				 * writeout).
4004 				 */
4005 				done_index = page->index + 1;
4006 				done = 1;
4007 				break;
4008 			}
4009 
4010 			/*
4011 			 * the filesystem may choose to bump up nr_to_write.
4012 			 * We have to make sure to honor the new nr_to_write
4013 			 * at any time
4014 			 */
4015 			nr_to_write_done = wbc->nr_to_write <= 0;
4016 		}
4017 		pagevec_release(&pvec);
4018 		cond_resched();
4019 	}
4020 	if (!scanned && !done) {
4021 		/*
4022 		 * We hit the last page and there is more work to be done: wrap
4023 		 * back to the start of the file
4024 		 */
4025 		scanned = 1;
4026 		index = 0;
4027 		goto retry;
4028 	}
4029 
4030 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4031 		mapping->writeback_index = done_index;
4032 
4033 	btrfs_add_delayed_iput(inode);
4034 	return ret;
4035 }
4036 
4037 static void flush_write_bio(struct extent_page_data *epd)
4038 {
4039 	if (epd->bio) {
4040 		int ret;
4041 
4042 		ret = submit_one_bio(epd->bio, 0, 0);
4043 		BUG_ON(ret < 0); /* -ENOMEM */
4044 		epd->bio = NULL;
4045 	}
4046 }
4047 
4048 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4049 {
4050 	int ret;
4051 	struct extent_page_data epd = {
4052 		.bio = NULL,
4053 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4054 		.extent_locked = 0,
4055 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4056 	};
4057 
4058 	ret = __extent_writepage(page, wbc, &epd);
4059 
4060 	flush_write_bio(&epd);
4061 	return ret;
4062 }
4063 
4064 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4065 			      int mode)
4066 {
4067 	int ret = 0;
4068 	struct address_space *mapping = inode->i_mapping;
4069 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4070 	struct page *page;
4071 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4072 		PAGE_SHIFT;
4073 
4074 	struct extent_page_data epd = {
4075 		.bio = NULL,
4076 		.tree = tree,
4077 		.extent_locked = 1,
4078 		.sync_io = mode == WB_SYNC_ALL,
4079 	};
4080 	struct writeback_control wbc_writepages = {
4081 		.sync_mode	= mode,
4082 		.nr_to_write	= nr_pages * 2,
4083 		.range_start	= start,
4084 		.range_end	= end + 1,
4085 	};
4086 
4087 	while (start <= end) {
4088 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4089 		if (clear_page_dirty_for_io(page))
4090 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4091 		else {
4092 			if (tree->ops && tree->ops->writepage_end_io_hook)
4093 				tree->ops->writepage_end_io_hook(page, start,
4094 						 start + PAGE_SIZE - 1,
4095 						 NULL, 1);
4096 			unlock_page(page);
4097 		}
4098 		put_page(page);
4099 		start += PAGE_SIZE;
4100 	}
4101 
4102 	flush_write_bio(&epd);
4103 	return ret;
4104 }
4105 
4106 int extent_writepages(struct extent_io_tree *tree,
4107 		      struct address_space *mapping,
4108 		      struct writeback_control *wbc)
4109 {
4110 	int ret = 0;
4111 	struct extent_page_data epd = {
4112 		.bio = NULL,
4113 		.tree = tree,
4114 		.extent_locked = 0,
4115 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4116 	};
4117 
4118 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4119 	flush_write_bio(&epd);
4120 	return ret;
4121 }
4122 
4123 int extent_readpages(struct extent_io_tree *tree,
4124 		     struct address_space *mapping,
4125 		     struct list_head *pages, unsigned nr_pages)
4126 {
4127 	struct bio *bio = NULL;
4128 	unsigned page_idx;
4129 	unsigned long bio_flags = 0;
4130 	struct page *pagepool[16];
4131 	struct page *page;
4132 	struct extent_map *em_cached = NULL;
4133 	int nr = 0;
4134 	u64 prev_em_start = (u64)-1;
4135 
4136 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4137 		page = list_entry(pages->prev, struct page, lru);
4138 
4139 		prefetchw(&page->flags);
4140 		list_del(&page->lru);
4141 		if (add_to_page_cache_lru(page, mapping,
4142 					page->index,
4143 					readahead_gfp_mask(mapping))) {
4144 			put_page(page);
4145 			continue;
4146 		}
4147 
4148 		pagepool[nr++] = page;
4149 		if (nr < ARRAY_SIZE(pagepool))
4150 			continue;
4151 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4152 				&bio_flags, &prev_em_start);
4153 		nr = 0;
4154 	}
4155 	if (nr)
4156 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4157 				&bio_flags, &prev_em_start);
4158 
4159 	if (em_cached)
4160 		free_extent_map(em_cached);
4161 
4162 	BUG_ON(!list_empty(pages));
4163 	if (bio)
4164 		return submit_one_bio(bio, 0, bio_flags);
4165 	return 0;
4166 }
4167 
4168 /*
4169  * basic invalidatepage code, this waits on any locked or writeback
4170  * ranges corresponding to the page, and then deletes any extent state
4171  * records from the tree
4172  */
4173 int extent_invalidatepage(struct extent_io_tree *tree,
4174 			  struct page *page, unsigned long offset)
4175 {
4176 	struct extent_state *cached_state = NULL;
4177 	u64 start = page_offset(page);
4178 	u64 end = start + PAGE_SIZE - 1;
4179 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4180 
4181 	start += ALIGN(offset, blocksize);
4182 	if (start > end)
4183 		return 0;
4184 
4185 	lock_extent_bits(tree, start, end, &cached_state);
4186 	wait_on_page_writeback(page);
4187 	clear_extent_bit(tree, start, end,
4188 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4189 			 EXTENT_DO_ACCOUNTING,
4190 			 1, 1, &cached_state);
4191 	return 0;
4192 }
4193 
4194 /*
4195  * a helper for releasepage, this tests for areas of the page that
4196  * are locked or under IO and drops the related state bits if it is safe
4197  * to drop the page.
4198  */
4199 static int try_release_extent_state(struct extent_map_tree *map,
4200 				    struct extent_io_tree *tree,
4201 				    struct page *page, gfp_t mask)
4202 {
4203 	u64 start = page_offset(page);
4204 	u64 end = start + PAGE_SIZE - 1;
4205 	int ret = 1;
4206 
4207 	if (test_range_bit(tree, start, end,
4208 			   EXTENT_IOBITS, 0, NULL))
4209 		ret = 0;
4210 	else {
4211 		/*
4212 		 * at this point we can safely clear everything except the
4213 		 * locked bit and the nodatasum bit
4214 		 */
4215 		ret = __clear_extent_bit(tree, start, end,
4216 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4217 				 0, 0, NULL, mask, NULL);
4218 
4219 		/* if clear_extent_bit failed for enomem reasons,
4220 		 * we can't allow the release to continue.
4221 		 */
4222 		if (ret < 0)
4223 			ret = 0;
4224 		else
4225 			ret = 1;
4226 	}
4227 	return ret;
4228 }
4229 
4230 /*
4231  * a helper for releasepage.  As long as there are no locked extents
4232  * in the range corresponding to the page, both state records and extent
4233  * map records are removed
4234  */
4235 int try_release_extent_mapping(struct extent_map_tree *map,
4236 			       struct extent_io_tree *tree, struct page *page,
4237 			       gfp_t mask)
4238 {
4239 	struct extent_map *em;
4240 	u64 start = page_offset(page);
4241 	u64 end = start + PAGE_SIZE - 1;
4242 
4243 	if (gfpflags_allow_blocking(mask) &&
4244 	    page->mapping->host->i_size > SZ_16M) {
4245 		u64 len;
4246 		while (start <= end) {
4247 			len = end - start + 1;
4248 			write_lock(&map->lock);
4249 			em = lookup_extent_mapping(map, start, len);
4250 			if (!em) {
4251 				write_unlock(&map->lock);
4252 				break;
4253 			}
4254 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4255 			    em->start != start) {
4256 				write_unlock(&map->lock);
4257 				free_extent_map(em);
4258 				break;
4259 			}
4260 			if (!test_range_bit(tree, em->start,
4261 					    extent_map_end(em) - 1,
4262 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4263 					    0, NULL)) {
4264 				remove_extent_mapping(map, em);
4265 				/* once for the rb tree */
4266 				free_extent_map(em);
4267 			}
4268 			start = extent_map_end(em);
4269 			write_unlock(&map->lock);
4270 
4271 			/* once for us */
4272 			free_extent_map(em);
4273 		}
4274 	}
4275 	return try_release_extent_state(map, tree, page, mask);
4276 }
4277 
4278 /*
4279  * helper function for fiemap, which doesn't want to see any holes.
4280  * This maps until we find something past 'last'
4281  */
4282 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4283 						u64 offset, u64 last)
4284 {
4285 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4286 	struct extent_map *em;
4287 	u64 len;
4288 
4289 	if (offset >= last)
4290 		return NULL;
4291 
4292 	while (1) {
4293 		len = last - offset;
4294 		if (len == 0)
4295 			break;
4296 		len = ALIGN(len, sectorsize);
4297 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4298 				len, 0);
4299 		if (IS_ERR_OR_NULL(em))
4300 			return em;
4301 
4302 		/* if this isn't a hole return it */
4303 		if (em->block_start != EXTENT_MAP_HOLE)
4304 			return em;
4305 
4306 		/* this is a hole, advance to the next extent */
4307 		offset = extent_map_end(em);
4308 		free_extent_map(em);
4309 		if (offset >= last)
4310 			break;
4311 	}
4312 	return NULL;
4313 }
4314 
4315 /*
4316  * To cache previous fiemap extent
4317  *
4318  * Will be used for merging fiemap extent
4319  */
4320 struct fiemap_cache {
4321 	u64 offset;
4322 	u64 phys;
4323 	u64 len;
4324 	u32 flags;
4325 	bool cached;
4326 };
4327 
4328 /*
4329  * Helper to submit fiemap extent.
4330  *
4331  * Will try to merge current fiemap extent specified by @offset, @phys,
4332  * @len and @flags with cached one.
4333  * And only when we fails to merge, cached one will be submitted as
4334  * fiemap extent.
4335  *
4336  * Return value is the same as fiemap_fill_next_extent().
4337  */
4338 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4339 				struct fiemap_cache *cache,
4340 				u64 offset, u64 phys, u64 len, u32 flags)
4341 {
4342 	int ret = 0;
4343 
4344 	if (!cache->cached)
4345 		goto assign;
4346 
4347 	/*
4348 	 * Sanity check, extent_fiemap() should have ensured that new
4349 	 * fiemap extent won't overlap with cahced one.
4350 	 * Not recoverable.
4351 	 *
4352 	 * NOTE: Physical address can overlap, due to compression
4353 	 */
4354 	if (cache->offset + cache->len > offset) {
4355 		WARN_ON(1);
4356 		return -EINVAL;
4357 	}
4358 
4359 	/*
4360 	 * Only merges fiemap extents if
4361 	 * 1) Their logical addresses are continuous
4362 	 *
4363 	 * 2) Their physical addresses are continuous
4364 	 *    So truly compressed (physical size smaller than logical size)
4365 	 *    extents won't get merged with each other
4366 	 *
4367 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4368 	 *    So regular extent won't get merged with prealloc extent
4369 	 */
4370 	if (cache->offset + cache->len  == offset &&
4371 	    cache->phys + cache->len == phys  &&
4372 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4373 			(flags & ~FIEMAP_EXTENT_LAST)) {
4374 		cache->len += len;
4375 		cache->flags |= flags;
4376 		goto try_submit_last;
4377 	}
4378 
4379 	/* Not mergeable, need to submit cached one */
4380 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4381 				      cache->len, cache->flags);
4382 	cache->cached = false;
4383 	if (ret)
4384 		return ret;
4385 assign:
4386 	cache->cached = true;
4387 	cache->offset = offset;
4388 	cache->phys = phys;
4389 	cache->len = len;
4390 	cache->flags = flags;
4391 try_submit_last:
4392 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4393 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4394 				cache->phys, cache->len, cache->flags);
4395 		cache->cached = false;
4396 	}
4397 	return ret;
4398 }
4399 
4400 /*
4401  * Emit last fiemap cache
4402  *
4403  * The last fiemap cache may still be cached in the following case:
4404  * 0		      4k		    8k
4405  * |<- Fiemap range ->|
4406  * |<------------  First extent ----------->|
4407  *
4408  * In this case, the first extent range will be cached but not emitted.
4409  * So we must emit it before ending extent_fiemap().
4410  */
4411 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4412 				  struct fiemap_extent_info *fieinfo,
4413 				  struct fiemap_cache *cache)
4414 {
4415 	int ret;
4416 
4417 	if (!cache->cached)
4418 		return 0;
4419 
4420 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4421 				      cache->len, cache->flags);
4422 	cache->cached = false;
4423 	if (ret > 0)
4424 		ret = 0;
4425 	return ret;
4426 }
4427 
4428 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4429 		__u64 start, __u64 len)
4430 {
4431 	int ret = 0;
4432 	u64 off = start;
4433 	u64 max = start + len;
4434 	u32 flags = 0;
4435 	u32 found_type;
4436 	u64 last;
4437 	u64 last_for_get_extent = 0;
4438 	u64 disko = 0;
4439 	u64 isize = i_size_read(inode);
4440 	struct btrfs_key found_key;
4441 	struct extent_map *em = NULL;
4442 	struct extent_state *cached_state = NULL;
4443 	struct btrfs_path *path;
4444 	struct btrfs_root *root = BTRFS_I(inode)->root;
4445 	struct fiemap_cache cache = { 0 };
4446 	int end = 0;
4447 	u64 em_start = 0;
4448 	u64 em_len = 0;
4449 	u64 em_end = 0;
4450 
4451 	if (len == 0)
4452 		return -EINVAL;
4453 
4454 	path = btrfs_alloc_path();
4455 	if (!path)
4456 		return -ENOMEM;
4457 	path->leave_spinning = 1;
4458 
4459 	start = round_down(start, btrfs_inode_sectorsize(inode));
4460 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4461 
4462 	/*
4463 	 * lookup the last file extent.  We're not using i_size here
4464 	 * because there might be preallocation past i_size
4465 	 */
4466 	ret = btrfs_lookup_file_extent(NULL, root, path,
4467 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4468 	if (ret < 0) {
4469 		btrfs_free_path(path);
4470 		return ret;
4471 	} else {
4472 		WARN_ON(!ret);
4473 		if (ret == 1)
4474 			ret = 0;
4475 	}
4476 
4477 	path->slots[0]--;
4478 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4479 	found_type = found_key.type;
4480 
4481 	/* No extents, but there might be delalloc bits */
4482 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4483 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4484 		/* have to trust i_size as the end */
4485 		last = (u64)-1;
4486 		last_for_get_extent = isize;
4487 	} else {
4488 		/*
4489 		 * remember the start of the last extent.  There are a
4490 		 * bunch of different factors that go into the length of the
4491 		 * extent, so its much less complex to remember where it started
4492 		 */
4493 		last = found_key.offset;
4494 		last_for_get_extent = last + 1;
4495 	}
4496 	btrfs_release_path(path);
4497 
4498 	/*
4499 	 * we might have some extents allocated but more delalloc past those
4500 	 * extents.  so, we trust isize unless the start of the last extent is
4501 	 * beyond isize
4502 	 */
4503 	if (last < isize) {
4504 		last = (u64)-1;
4505 		last_for_get_extent = isize;
4506 	}
4507 
4508 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4509 			 &cached_state);
4510 
4511 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4512 	if (!em)
4513 		goto out;
4514 	if (IS_ERR(em)) {
4515 		ret = PTR_ERR(em);
4516 		goto out;
4517 	}
4518 
4519 	while (!end) {
4520 		u64 offset_in_extent = 0;
4521 
4522 		/* break if the extent we found is outside the range */
4523 		if (em->start >= max || extent_map_end(em) < off)
4524 			break;
4525 
4526 		/*
4527 		 * get_extent may return an extent that starts before our
4528 		 * requested range.  We have to make sure the ranges
4529 		 * we return to fiemap always move forward and don't
4530 		 * overlap, so adjust the offsets here
4531 		 */
4532 		em_start = max(em->start, off);
4533 
4534 		/*
4535 		 * record the offset from the start of the extent
4536 		 * for adjusting the disk offset below.  Only do this if the
4537 		 * extent isn't compressed since our in ram offset may be past
4538 		 * what we have actually allocated on disk.
4539 		 */
4540 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4541 			offset_in_extent = em_start - em->start;
4542 		em_end = extent_map_end(em);
4543 		em_len = em_end - em_start;
4544 		disko = 0;
4545 		flags = 0;
4546 
4547 		/*
4548 		 * bump off for our next call to get_extent
4549 		 */
4550 		off = extent_map_end(em);
4551 		if (off >= max)
4552 			end = 1;
4553 
4554 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4555 			end = 1;
4556 			flags |= FIEMAP_EXTENT_LAST;
4557 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4558 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4559 				  FIEMAP_EXTENT_NOT_ALIGNED);
4560 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4561 			flags |= (FIEMAP_EXTENT_DELALLOC |
4562 				  FIEMAP_EXTENT_UNKNOWN);
4563 		} else if (fieinfo->fi_extents_max) {
4564 			u64 bytenr = em->block_start -
4565 				(em->start - em->orig_start);
4566 
4567 			disko = em->block_start + offset_in_extent;
4568 
4569 			/*
4570 			 * As btrfs supports shared space, this information
4571 			 * can be exported to userspace tools via
4572 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4573 			 * then we're just getting a count and we can skip the
4574 			 * lookup stuff.
4575 			 */
4576 			ret = btrfs_check_shared(root,
4577 						 btrfs_ino(BTRFS_I(inode)),
4578 						 bytenr);
4579 			if (ret < 0)
4580 				goto out_free;
4581 			if (ret)
4582 				flags |= FIEMAP_EXTENT_SHARED;
4583 			ret = 0;
4584 		}
4585 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4586 			flags |= FIEMAP_EXTENT_ENCODED;
4587 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4588 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4589 
4590 		free_extent_map(em);
4591 		em = NULL;
4592 		if ((em_start >= last) || em_len == (u64)-1 ||
4593 		   (last == (u64)-1 && isize <= em_end)) {
4594 			flags |= FIEMAP_EXTENT_LAST;
4595 			end = 1;
4596 		}
4597 
4598 		/* now scan forward to see if this is really the last extent. */
4599 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4600 		if (IS_ERR(em)) {
4601 			ret = PTR_ERR(em);
4602 			goto out;
4603 		}
4604 		if (!em) {
4605 			flags |= FIEMAP_EXTENT_LAST;
4606 			end = 1;
4607 		}
4608 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4609 					   em_len, flags);
4610 		if (ret) {
4611 			if (ret == 1)
4612 				ret = 0;
4613 			goto out_free;
4614 		}
4615 	}
4616 out_free:
4617 	if (!ret)
4618 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4619 	free_extent_map(em);
4620 out:
4621 	btrfs_free_path(path);
4622 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4623 			     &cached_state);
4624 	return ret;
4625 }
4626 
4627 static void __free_extent_buffer(struct extent_buffer *eb)
4628 {
4629 	btrfs_leak_debug_del(&eb->leak_list);
4630 	kmem_cache_free(extent_buffer_cache, eb);
4631 }
4632 
4633 int extent_buffer_under_io(struct extent_buffer *eb)
4634 {
4635 	return (atomic_read(&eb->io_pages) ||
4636 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4637 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4638 }
4639 
4640 /*
4641  * Helper for releasing extent buffer page.
4642  */
4643 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4644 {
4645 	unsigned long index;
4646 	struct page *page;
4647 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4648 
4649 	BUG_ON(extent_buffer_under_io(eb));
4650 
4651 	index = num_extent_pages(eb->start, eb->len);
4652 	if (index == 0)
4653 		return;
4654 
4655 	do {
4656 		index--;
4657 		page = eb->pages[index];
4658 		if (!page)
4659 			continue;
4660 		if (mapped)
4661 			spin_lock(&page->mapping->private_lock);
4662 		/*
4663 		 * We do this since we'll remove the pages after we've
4664 		 * removed the eb from the radix tree, so we could race
4665 		 * and have this page now attached to the new eb.  So
4666 		 * only clear page_private if it's still connected to
4667 		 * this eb.
4668 		 */
4669 		if (PagePrivate(page) &&
4670 		    page->private == (unsigned long)eb) {
4671 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4672 			BUG_ON(PageDirty(page));
4673 			BUG_ON(PageWriteback(page));
4674 			/*
4675 			 * We need to make sure we haven't be attached
4676 			 * to a new eb.
4677 			 */
4678 			ClearPagePrivate(page);
4679 			set_page_private(page, 0);
4680 			/* One for the page private */
4681 			put_page(page);
4682 		}
4683 
4684 		if (mapped)
4685 			spin_unlock(&page->mapping->private_lock);
4686 
4687 		/* One for when we allocated the page */
4688 		put_page(page);
4689 	} while (index != 0);
4690 }
4691 
4692 /*
4693  * Helper for releasing the extent buffer.
4694  */
4695 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4696 {
4697 	btrfs_release_extent_buffer_page(eb);
4698 	__free_extent_buffer(eb);
4699 }
4700 
4701 static struct extent_buffer *
4702 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4703 		      unsigned long len)
4704 {
4705 	struct extent_buffer *eb = NULL;
4706 
4707 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4708 	eb->start = start;
4709 	eb->len = len;
4710 	eb->fs_info = fs_info;
4711 	eb->bflags = 0;
4712 	rwlock_init(&eb->lock);
4713 	atomic_set(&eb->write_locks, 0);
4714 	atomic_set(&eb->read_locks, 0);
4715 	atomic_set(&eb->blocking_readers, 0);
4716 	atomic_set(&eb->blocking_writers, 0);
4717 	atomic_set(&eb->spinning_readers, 0);
4718 	atomic_set(&eb->spinning_writers, 0);
4719 	eb->lock_nested = 0;
4720 	init_waitqueue_head(&eb->write_lock_wq);
4721 	init_waitqueue_head(&eb->read_lock_wq);
4722 
4723 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4724 
4725 	spin_lock_init(&eb->refs_lock);
4726 	atomic_set(&eb->refs, 1);
4727 	atomic_set(&eb->io_pages, 0);
4728 
4729 	/*
4730 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4731 	 */
4732 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4733 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4734 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4735 
4736 	return eb;
4737 }
4738 
4739 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4740 {
4741 	unsigned long i;
4742 	struct page *p;
4743 	struct extent_buffer *new;
4744 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4745 
4746 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4747 	if (new == NULL)
4748 		return NULL;
4749 
4750 	for (i = 0; i < num_pages; i++) {
4751 		p = alloc_page(GFP_NOFS);
4752 		if (!p) {
4753 			btrfs_release_extent_buffer(new);
4754 			return NULL;
4755 		}
4756 		attach_extent_buffer_page(new, p);
4757 		WARN_ON(PageDirty(p));
4758 		SetPageUptodate(p);
4759 		new->pages[i] = p;
4760 		copy_page(page_address(p), page_address(src->pages[i]));
4761 	}
4762 
4763 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4764 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4765 
4766 	return new;
4767 }
4768 
4769 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4770 						  u64 start, unsigned long len)
4771 {
4772 	struct extent_buffer *eb;
4773 	unsigned long num_pages;
4774 	unsigned long i;
4775 
4776 	num_pages = num_extent_pages(start, len);
4777 
4778 	eb = __alloc_extent_buffer(fs_info, start, len);
4779 	if (!eb)
4780 		return NULL;
4781 
4782 	for (i = 0; i < num_pages; i++) {
4783 		eb->pages[i] = alloc_page(GFP_NOFS);
4784 		if (!eb->pages[i])
4785 			goto err;
4786 	}
4787 	set_extent_buffer_uptodate(eb);
4788 	btrfs_set_header_nritems(eb, 0);
4789 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4790 
4791 	return eb;
4792 err:
4793 	for (; i > 0; i--)
4794 		__free_page(eb->pages[i - 1]);
4795 	__free_extent_buffer(eb);
4796 	return NULL;
4797 }
4798 
4799 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4800 						u64 start)
4801 {
4802 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4803 }
4804 
4805 static void check_buffer_tree_ref(struct extent_buffer *eb)
4806 {
4807 	int refs;
4808 	/* the ref bit is tricky.  We have to make sure it is set
4809 	 * if we have the buffer dirty.   Otherwise the
4810 	 * code to free a buffer can end up dropping a dirty
4811 	 * page
4812 	 *
4813 	 * Once the ref bit is set, it won't go away while the
4814 	 * buffer is dirty or in writeback, and it also won't
4815 	 * go away while we have the reference count on the
4816 	 * eb bumped.
4817 	 *
4818 	 * We can't just set the ref bit without bumping the
4819 	 * ref on the eb because free_extent_buffer might
4820 	 * see the ref bit and try to clear it.  If this happens
4821 	 * free_extent_buffer might end up dropping our original
4822 	 * ref by mistake and freeing the page before we are able
4823 	 * to add one more ref.
4824 	 *
4825 	 * So bump the ref count first, then set the bit.  If someone
4826 	 * beat us to it, drop the ref we added.
4827 	 */
4828 	refs = atomic_read(&eb->refs);
4829 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4830 		return;
4831 
4832 	spin_lock(&eb->refs_lock);
4833 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4834 		atomic_inc(&eb->refs);
4835 	spin_unlock(&eb->refs_lock);
4836 }
4837 
4838 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4839 		struct page *accessed)
4840 {
4841 	unsigned long num_pages, i;
4842 
4843 	check_buffer_tree_ref(eb);
4844 
4845 	num_pages = num_extent_pages(eb->start, eb->len);
4846 	for (i = 0; i < num_pages; i++) {
4847 		struct page *p = eb->pages[i];
4848 
4849 		if (p != accessed)
4850 			mark_page_accessed(p);
4851 	}
4852 }
4853 
4854 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4855 					 u64 start)
4856 {
4857 	struct extent_buffer *eb;
4858 
4859 	rcu_read_lock();
4860 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4861 			       start >> PAGE_SHIFT);
4862 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4863 		rcu_read_unlock();
4864 		/*
4865 		 * Lock our eb's refs_lock to avoid races with
4866 		 * free_extent_buffer. When we get our eb it might be flagged
4867 		 * with EXTENT_BUFFER_STALE and another task running
4868 		 * free_extent_buffer might have seen that flag set,
4869 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4870 		 * writeback flags not set) and it's still in the tree (flag
4871 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4872 		 * of decrementing the extent buffer's reference count twice.
4873 		 * So here we could race and increment the eb's reference count,
4874 		 * clear its stale flag, mark it as dirty and drop our reference
4875 		 * before the other task finishes executing free_extent_buffer,
4876 		 * which would later result in an attempt to free an extent
4877 		 * buffer that is dirty.
4878 		 */
4879 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4880 			spin_lock(&eb->refs_lock);
4881 			spin_unlock(&eb->refs_lock);
4882 		}
4883 		mark_extent_buffer_accessed(eb, NULL);
4884 		return eb;
4885 	}
4886 	rcu_read_unlock();
4887 
4888 	return NULL;
4889 }
4890 
4891 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4892 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4893 					u64 start)
4894 {
4895 	struct extent_buffer *eb, *exists = NULL;
4896 	int ret;
4897 
4898 	eb = find_extent_buffer(fs_info, start);
4899 	if (eb)
4900 		return eb;
4901 	eb = alloc_dummy_extent_buffer(fs_info, start);
4902 	if (!eb)
4903 		return NULL;
4904 	eb->fs_info = fs_info;
4905 again:
4906 	ret = radix_tree_preload(GFP_NOFS);
4907 	if (ret)
4908 		goto free_eb;
4909 	spin_lock(&fs_info->buffer_lock);
4910 	ret = radix_tree_insert(&fs_info->buffer_radix,
4911 				start >> PAGE_SHIFT, eb);
4912 	spin_unlock(&fs_info->buffer_lock);
4913 	radix_tree_preload_end();
4914 	if (ret == -EEXIST) {
4915 		exists = find_extent_buffer(fs_info, start);
4916 		if (exists)
4917 			goto free_eb;
4918 		else
4919 			goto again;
4920 	}
4921 	check_buffer_tree_ref(eb);
4922 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4923 
4924 	/*
4925 	 * We will free dummy extent buffer's if they come into
4926 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4927 	 * want the buffers to stay in memory until we're done with them, so
4928 	 * bump the ref count again.
4929 	 */
4930 	atomic_inc(&eb->refs);
4931 	return eb;
4932 free_eb:
4933 	btrfs_release_extent_buffer(eb);
4934 	return exists;
4935 }
4936 #endif
4937 
4938 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4939 					  u64 start)
4940 {
4941 	unsigned long len = fs_info->nodesize;
4942 	unsigned long num_pages = num_extent_pages(start, len);
4943 	unsigned long i;
4944 	unsigned long index = start >> PAGE_SHIFT;
4945 	struct extent_buffer *eb;
4946 	struct extent_buffer *exists = NULL;
4947 	struct page *p;
4948 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4949 	int uptodate = 1;
4950 	int ret;
4951 
4952 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4953 		btrfs_err(fs_info, "bad tree block start %llu", start);
4954 		return ERR_PTR(-EINVAL);
4955 	}
4956 
4957 	eb = find_extent_buffer(fs_info, start);
4958 	if (eb)
4959 		return eb;
4960 
4961 	eb = __alloc_extent_buffer(fs_info, start, len);
4962 	if (!eb)
4963 		return ERR_PTR(-ENOMEM);
4964 
4965 	for (i = 0; i < num_pages; i++, index++) {
4966 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4967 		if (!p) {
4968 			exists = ERR_PTR(-ENOMEM);
4969 			goto free_eb;
4970 		}
4971 
4972 		spin_lock(&mapping->private_lock);
4973 		if (PagePrivate(p)) {
4974 			/*
4975 			 * We could have already allocated an eb for this page
4976 			 * and attached one so lets see if we can get a ref on
4977 			 * the existing eb, and if we can we know it's good and
4978 			 * we can just return that one, else we know we can just
4979 			 * overwrite page->private.
4980 			 */
4981 			exists = (struct extent_buffer *)p->private;
4982 			if (atomic_inc_not_zero(&exists->refs)) {
4983 				spin_unlock(&mapping->private_lock);
4984 				unlock_page(p);
4985 				put_page(p);
4986 				mark_extent_buffer_accessed(exists, p);
4987 				goto free_eb;
4988 			}
4989 			exists = NULL;
4990 
4991 			/*
4992 			 * Do this so attach doesn't complain and we need to
4993 			 * drop the ref the old guy had.
4994 			 */
4995 			ClearPagePrivate(p);
4996 			WARN_ON(PageDirty(p));
4997 			put_page(p);
4998 		}
4999 		attach_extent_buffer_page(eb, p);
5000 		spin_unlock(&mapping->private_lock);
5001 		WARN_ON(PageDirty(p));
5002 		eb->pages[i] = p;
5003 		if (!PageUptodate(p))
5004 			uptodate = 0;
5005 
5006 		/*
5007 		 * see below about how we avoid a nasty race with release page
5008 		 * and why we unlock later
5009 		 */
5010 	}
5011 	if (uptodate)
5012 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5013 again:
5014 	ret = radix_tree_preload(GFP_NOFS);
5015 	if (ret) {
5016 		exists = ERR_PTR(ret);
5017 		goto free_eb;
5018 	}
5019 
5020 	spin_lock(&fs_info->buffer_lock);
5021 	ret = radix_tree_insert(&fs_info->buffer_radix,
5022 				start >> PAGE_SHIFT, eb);
5023 	spin_unlock(&fs_info->buffer_lock);
5024 	radix_tree_preload_end();
5025 	if (ret == -EEXIST) {
5026 		exists = find_extent_buffer(fs_info, start);
5027 		if (exists)
5028 			goto free_eb;
5029 		else
5030 			goto again;
5031 	}
5032 	/* add one reference for the tree */
5033 	check_buffer_tree_ref(eb);
5034 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5035 
5036 	/*
5037 	 * there is a race where release page may have
5038 	 * tried to find this extent buffer in the radix
5039 	 * but failed.  It will tell the VM it is safe to
5040 	 * reclaim the, and it will clear the page private bit.
5041 	 * We must make sure to set the page private bit properly
5042 	 * after the extent buffer is in the radix tree so
5043 	 * it doesn't get lost
5044 	 */
5045 	SetPageChecked(eb->pages[0]);
5046 	for (i = 1; i < num_pages; i++) {
5047 		p = eb->pages[i];
5048 		ClearPageChecked(p);
5049 		unlock_page(p);
5050 	}
5051 	unlock_page(eb->pages[0]);
5052 	return eb;
5053 
5054 free_eb:
5055 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5056 	for (i = 0; i < num_pages; i++) {
5057 		if (eb->pages[i])
5058 			unlock_page(eb->pages[i]);
5059 	}
5060 
5061 	btrfs_release_extent_buffer(eb);
5062 	return exists;
5063 }
5064 
5065 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5066 {
5067 	struct extent_buffer *eb =
5068 			container_of(head, struct extent_buffer, rcu_head);
5069 
5070 	__free_extent_buffer(eb);
5071 }
5072 
5073 /* Expects to have eb->eb_lock already held */
5074 static int release_extent_buffer(struct extent_buffer *eb)
5075 {
5076 	WARN_ON(atomic_read(&eb->refs) == 0);
5077 	if (atomic_dec_and_test(&eb->refs)) {
5078 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5079 			struct btrfs_fs_info *fs_info = eb->fs_info;
5080 
5081 			spin_unlock(&eb->refs_lock);
5082 
5083 			spin_lock(&fs_info->buffer_lock);
5084 			radix_tree_delete(&fs_info->buffer_radix,
5085 					  eb->start >> PAGE_SHIFT);
5086 			spin_unlock(&fs_info->buffer_lock);
5087 		} else {
5088 			spin_unlock(&eb->refs_lock);
5089 		}
5090 
5091 		/* Should be safe to release our pages at this point */
5092 		btrfs_release_extent_buffer_page(eb);
5093 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5094 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5095 			__free_extent_buffer(eb);
5096 			return 1;
5097 		}
5098 #endif
5099 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5100 		return 1;
5101 	}
5102 	spin_unlock(&eb->refs_lock);
5103 
5104 	return 0;
5105 }
5106 
5107 void free_extent_buffer(struct extent_buffer *eb)
5108 {
5109 	int refs;
5110 	int old;
5111 	if (!eb)
5112 		return;
5113 
5114 	while (1) {
5115 		refs = atomic_read(&eb->refs);
5116 		if (refs <= 3)
5117 			break;
5118 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5119 		if (old == refs)
5120 			return;
5121 	}
5122 
5123 	spin_lock(&eb->refs_lock);
5124 	if (atomic_read(&eb->refs) == 2 &&
5125 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5126 		atomic_dec(&eb->refs);
5127 
5128 	if (atomic_read(&eb->refs) == 2 &&
5129 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5130 	    !extent_buffer_under_io(eb) &&
5131 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5132 		atomic_dec(&eb->refs);
5133 
5134 	/*
5135 	 * I know this is terrible, but it's temporary until we stop tracking
5136 	 * the uptodate bits and such for the extent buffers.
5137 	 */
5138 	release_extent_buffer(eb);
5139 }
5140 
5141 void free_extent_buffer_stale(struct extent_buffer *eb)
5142 {
5143 	if (!eb)
5144 		return;
5145 
5146 	spin_lock(&eb->refs_lock);
5147 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5148 
5149 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5150 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5151 		atomic_dec(&eb->refs);
5152 	release_extent_buffer(eb);
5153 }
5154 
5155 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5156 {
5157 	unsigned long i;
5158 	unsigned long num_pages;
5159 	struct page *page;
5160 
5161 	num_pages = num_extent_pages(eb->start, eb->len);
5162 
5163 	for (i = 0; i < num_pages; i++) {
5164 		page = eb->pages[i];
5165 		if (!PageDirty(page))
5166 			continue;
5167 
5168 		lock_page(page);
5169 		WARN_ON(!PagePrivate(page));
5170 
5171 		clear_page_dirty_for_io(page);
5172 		spin_lock_irq(&page->mapping->tree_lock);
5173 		if (!PageDirty(page)) {
5174 			radix_tree_tag_clear(&page->mapping->page_tree,
5175 						page_index(page),
5176 						PAGECACHE_TAG_DIRTY);
5177 		}
5178 		spin_unlock_irq(&page->mapping->tree_lock);
5179 		ClearPageError(page);
5180 		unlock_page(page);
5181 	}
5182 	WARN_ON(atomic_read(&eb->refs) == 0);
5183 }
5184 
5185 int set_extent_buffer_dirty(struct extent_buffer *eb)
5186 {
5187 	unsigned long i;
5188 	unsigned long num_pages;
5189 	int was_dirty = 0;
5190 
5191 	check_buffer_tree_ref(eb);
5192 
5193 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5194 
5195 	num_pages = num_extent_pages(eb->start, eb->len);
5196 	WARN_ON(atomic_read(&eb->refs) == 0);
5197 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5198 
5199 	for (i = 0; i < num_pages; i++)
5200 		set_page_dirty(eb->pages[i]);
5201 	return was_dirty;
5202 }
5203 
5204 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5205 {
5206 	unsigned long i;
5207 	struct page *page;
5208 	unsigned long num_pages;
5209 
5210 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5211 	num_pages = num_extent_pages(eb->start, eb->len);
5212 	for (i = 0; i < num_pages; i++) {
5213 		page = eb->pages[i];
5214 		if (page)
5215 			ClearPageUptodate(page);
5216 	}
5217 }
5218 
5219 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5220 {
5221 	unsigned long i;
5222 	struct page *page;
5223 	unsigned long num_pages;
5224 
5225 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5226 	num_pages = num_extent_pages(eb->start, eb->len);
5227 	for (i = 0; i < num_pages; i++) {
5228 		page = eb->pages[i];
5229 		SetPageUptodate(page);
5230 	}
5231 }
5232 
5233 int extent_buffer_uptodate(struct extent_buffer *eb)
5234 {
5235 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5236 }
5237 
5238 int read_extent_buffer_pages(struct extent_io_tree *tree,
5239 			     struct extent_buffer *eb, int wait, int mirror_num)
5240 {
5241 	unsigned long i;
5242 	struct page *page;
5243 	int err;
5244 	int ret = 0;
5245 	int locked_pages = 0;
5246 	int all_uptodate = 1;
5247 	unsigned long num_pages;
5248 	unsigned long num_reads = 0;
5249 	struct bio *bio = NULL;
5250 	unsigned long bio_flags = 0;
5251 
5252 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5253 		return 0;
5254 
5255 	num_pages = num_extent_pages(eb->start, eb->len);
5256 	for (i = 0; i < num_pages; i++) {
5257 		page = eb->pages[i];
5258 		if (wait == WAIT_NONE) {
5259 			if (!trylock_page(page))
5260 				goto unlock_exit;
5261 		} else {
5262 			lock_page(page);
5263 		}
5264 		locked_pages++;
5265 	}
5266 	/*
5267 	 * We need to firstly lock all pages to make sure that
5268 	 * the uptodate bit of our pages won't be affected by
5269 	 * clear_extent_buffer_uptodate().
5270 	 */
5271 	for (i = 0; i < num_pages; i++) {
5272 		page = eb->pages[i];
5273 		if (!PageUptodate(page)) {
5274 			num_reads++;
5275 			all_uptodate = 0;
5276 		}
5277 	}
5278 
5279 	if (all_uptodate) {
5280 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5281 		goto unlock_exit;
5282 	}
5283 
5284 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5285 	eb->read_mirror = 0;
5286 	atomic_set(&eb->io_pages, num_reads);
5287 	for (i = 0; i < num_pages; i++) {
5288 		page = eb->pages[i];
5289 
5290 		if (!PageUptodate(page)) {
5291 			if (ret) {
5292 				atomic_dec(&eb->io_pages);
5293 				unlock_page(page);
5294 				continue;
5295 			}
5296 
5297 			ClearPageError(page);
5298 			err = __extent_read_full_page(tree, page,
5299 						      btree_get_extent, &bio,
5300 						      mirror_num, &bio_flags,
5301 						      REQ_META);
5302 			if (err) {
5303 				ret = err;
5304 				/*
5305 				 * We use &bio in above __extent_read_full_page,
5306 				 * so we ensure that if it returns error, the
5307 				 * current page fails to add itself to bio and
5308 				 * it's been unlocked.
5309 				 *
5310 				 * We must dec io_pages by ourselves.
5311 				 */
5312 				atomic_dec(&eb->io_pages);
5313 			}
5314 		} else {
5315 			unlock_page(page);
5316 		}
5317 	}
5318 
5319 	if (bio) {
5320 		err = submit_one_bio(bio, mirror_num, bio_flags);
5321 		if (err)
5322 			return err;
5323 	}
5324 
5325 	if (ret || wait != WAIT_COMPLETE)
5326 		return ret;
5327 
5328 	for (i = 0; i < num_pages; i++) {
5329 		page = eb->pages[i];
5330 		wait_on_page_locked(page);
5331 		if (!PageUptodate(page))
5332 			ret = -EIO;
5333 	}
5334 
5335 	return ret;
5336 
5337 unlock_exit:
5338 	while (locked_pages > 0) {
5339 		locked_pages--;
5340 		page = eb->pages[locked_pages];
5341 		unlock_page(page);
5342 	}
5343 	return ret;
5344 }
5345 
5346 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5347 			unsigned long start, unsigned long len)
5348 {
5349 	size_t cur;
5350 	size_t offset;
5351 	struct page *page;
5352 	char *kaddr;
5353 	char *dst = (char *)dstv;
5354 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5355 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5356 
5357 	if (start + len > eb->len) {
5358 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5359 		     eb->start, eb->len, start, len);
5360 		memset(dst, 0, len);
5361 		return;
5362 	}
5363 
5364 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5365 
5366 	while (len > 0) {
5367 		page = eb->pages[i];
5368 
5369 		cur = min(len, (PAGE_SIZE - offset));
5370 		kaddr = page_address(page);
5371 		memcpy(dst, kaddr + offset, cur);
5372 
5373 		dst += cur;
5374 		len -= cur;
5375 		offset = 0;
5376 		i++;
5377 	}
5378 }
5379 
5380 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5381 			       void __user *dstv,
5382 			       unsigned long start, unsigned long len)
5383 {
5384 	size_t cur;
5385 	size_t offset;
5386 	struct page *page;
5387 	char *kaddr;
5388 	char __user *dst = (char __user *)dstv;
5389 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5390 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5391 	int ret = 0;
5392 
5393 	WARN_ON(start > eb->len);
5394 	WARN_ON(start + len > eb->start + eb->len);
5395 
5396 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5397 
5398 	while (len > 0) {
5399 		page = eb->pages[i];
5400 
5401 		cur = min(len, (PAGE_SIZE - offset));
5402 		kaddr = page_address(page);
5403 		if (copy_to_user(dst, kaddr + offset, cur)) {
5404 			ret = -EFAULT;
5405 			break;
5406 		}
5407 
5408 		dst += cur;
5409 		len -= cur;
5410 		offset = 0;
5411 		i++;
5412 	}
5413 
5414 	return ret;
5415 }
5416 
5417 /*
5418  * return 0 if the item is found within a page.
5419  * return 1 if the item spans two pages.
5420  * return -EINVAL otherwise.
5421  */
5422 int map_private_extent_buffer(const struct extent_buffer *eb,
5423 			      unsigned long start, unsigned long min_len,
5424 			      char **map, unsigned long *map_start,
5425 			      unsigned long *map_len)
5426 {
5427 	size_t offset = start & (PAGE_SIZE - 1);
5428 	char *kaddr;
5429 	struct page *p;
5430 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5431 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5432 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5433 		PAGE_SHIFT;
5434 
5435 	if (start + min_len > eb->len) {
5436 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5437 		       eb->start, eb->len, start, min_len);
5438 		return -EINVAL;
5439 	}
5440 
5441 	if (i != end_i)
5442 		return 1;
5443 
5444 	if (i == 0) {
5445 		offset = start_offset;
5446 		*map_start = 0;
5447 	} else {
5448 		offset = 0;
5449 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5450 	}
5451 
5452 	p = eb->pages[i];
5453 	kaddr = page_address(p);
5454 	*map = kaddr + offset;
5455 	*map_len = PAGE_SIZE - offset;
5456 	return 0;
5457 }
5458 
5459 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5460 			 unsigned long start, unsigned long len)
5461 {
5462 	size_t cur;
5463 	size_t offset;
5464 	struct page *page;
5465 	char *kaddr;
5466 	char *ptr = (char *)ptrv;
5467 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5468 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5469 	int ret = 0;
5470 
5471 	WARN_ON(start > eb->len);
5472 	WARN_ON(start + len > eb->start + eb->len);
5473 
5474 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5475 
5476 	while (len > 0) {
5477 		page = eb->pages[i];
5478 
5479 		cur = min(len, (PAGE_SIZE - offset));
5480 
5481 		kaddr = page_address(page);
5482 		ret = memcmp(ptr, kaddr + offset, cur);
5483 		if (ret)
5484 			break;
5485 
5486 		ptr += cur;
5487 		len -= cur;
5488 		offset = 0;
5489 		i++;
5490 	}
5491 	return ret;
5492 }
5493 
5494 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5495 		const void *srcv)
5496 {
5497 	char *kaddr;
5498 
5499 	WARN_ON(!PageUptodate(eb->pages[0]));
5500 	kaddr = page_address(eb->pages[0]);
5501 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5502 			BTRFS_FSID_SIZE);
5503 }
5504 
5505 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5506 {
5507 	char *kaddr;
5508 
5509 	WARN_ON(!PageUptodate(eb->pages[0]));
5510 	kaddr = page_address(eb->pages[0]);
5511 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5512 			BTRFS_FSID_SIZE);
5513 }
5514 
5515 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5516 			 unsigned long start, unsigned long len)
5517 {
5518 	size_t cur;
5519 	size_t offset;
5520 	struct page *page;
5521 	char *kaddr;
5522 	char *src = (char *)srcv;
5523 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5524 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5525 
5526 	WARN_ON(start > eb->len);
5527 	WARN_ON(start + len > eb->start + eb->len);
5528 
5529 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5530 
5531 	while (len > 0) {
5532 		page = eb->pages[i];
5533 		WARN_ON(!PageUptodate(page));
5534 
5535 		cur = min(len, PAGE_SIZE - offset);
5536 		kaddr = page_address(page);
5537 		memcpy(kaddr + offset, src, cur);
5538 
5539 		src += cur;
5540 		len -= cur;
5541 		offset = 0;
5542 		i++;
5543 	}
5544 }
5545 
5546 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5547 		unsigned long len)
5548 {
5549 	size_t cur;
5550 	size_t offset;
5551 	struct page *page;
5552 	char *kaddr;
5553 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5554 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5555 
5556 	WARN_ON(start > eb->len);
5557 	WARN_ON(start + len > eb->start + eb->len);
5558 
5559 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5560 
5561 	while (len > 0) {
5562 		page = eb->pages[i];
5563 		WARN_ON(!PageUptodate(page));
5564 
5565 		cur = min(len, PAGE_SIZE - offset);
5566 		kaddr = page_address(page);
5567 		memset(kaddr + offset, 0, cur);
5568 
5569 		len -= cur;
5570 		offset = 0;
5571 		i++;
5572 	}
5573 }
5574 
5575 void copy_extent_buffer_full(struct extent_buffer *dst,
5576 			     struct extent_buffer *src)
5577 {
5578 	int i;
5579 	unsigned num_pages;
5580 
5581 	ASSERT(dst->len == src->len);
5582 
5583 	num_pages = num_extent_pages(dst->start, dst->len);
5584 	for (i = 0; i < num_pages; i++)
5585 		copy_page(page_address(dst->pages[i]),
5586 				page_address(src->pages[i]));
5587 }
5588 
5589 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5590 			unsigned long dst_offset, unsigned long src_offset,
5591 			unsigned long len)
5592 {
5593 	u64 dst_len = dst->len;
5594 	size_t cur;
5595 	size_t offset;
5596 	struct page *page;
5597 	char *kaddr;
5598 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5599 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5600 
5601 	WARN_ON(src->len != dst_len);
5602 
5603 	offset = (start_offset + dst_offset) &
5604 		(PAGE_SIZE - 1);
5605 
5606 	while (len > 0) {
5607 		page = dst->pages[i];
5608 		WARN_ON(!PageUptodate(page));
5609 
5610 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5611 
5612 		kaddr = page_address(page);
5613 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5614 
5615 		src_offset += cur;
5616 		len -= cur;
5617 		offset = 0;
5618 		i++;
5619 	}
5620 }
5621 
5622 void le_bitmap_set(u8 *map, unsigned int start, int len)
5623 {
5624 	u8 *p = map + BIT_BYTE(start);
5625 	const unsigned int size = start + len;
5626 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5627 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5628 
5629 	while (len - bits_to_set >= 0) {
5630 		*p |= mask_to_set;
5631 		len -= bits_to_set;
5632 		bits_to_set = BITS_PER_BYTE;
5633 		mask_to_set = ~0;
5634 		p++;
5635 	}
5636 	if (len) {
5637 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5638 		*p |= mask_to_set;
5639 	}
5640 }
5641 
5642 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5643 {
5644 	u8 *p = map + BIT_BYTE(start);
5645 	const unsigned int size = start + len;
5646 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5647 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5648 
5649 	while (len - bits_to_clear >= 0) {
5650 		*p &= ~mask_to_clear;
5651 		len -= bits_to_clear;
5652 		bits_to_clear = BITS_PER_BYTE;
5653 		mask_to_clear = ~0;
5654 		p++;
5655 	}
5656 	if (len) {
5657 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5658 		*p &= ~mask_to_clear;
5659 	}
5660 }
5661 
5662 /*
5663  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5664  * given bit number
5665  * @eb: the extent buffer
5666  * @start: offset of the bitmap item in the extent buffer
5667  * @nr: bit number
5668  * @page_index: return index of the page in the extent buffer that contains the
5669  * given bit number
5670  * @page_offset: return offset into the page given by page_index
5671  *
5672  * This helper hides the ugliness of finding the byte in an extent buffer which
5673  * contains a given bit.
5674  */
5675 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5676 				    unsigned long start, unsigned long nr,
5677 				    unsigned long *page_index,
5678 				    size_t *page_offset)
5679 {
5680 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5681 	size_t byte_offset = BIT_BYTE(nr);
5682 	size_t offset;
5683 
5684 	/*
5685 	 * The byte we want is the offset of the extent buffer + the offset of
5686 	 * the bitmap item in the extent buffer + the offset of the byte in the
5687 	 * bitmap item.
5688 	 */
5689 	offset = start_offset + start + byte_offset;
5690 
5691 	*page_index = offset >> PAGE_SHIFT;
5692 	*page_offset = offset & (PAGE_SIZE - 1);
5693 }
5694 
5695 /**
5696  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5697  * @eb: the extent buffer
5698  * @start: offset of the bitmap item in the extent buffer
5699  * @nr: bit number to test
5700  */
5701 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5702 			   unsigned long nr)
5703 {
5704 	u8 *kaddr;
5705 	struct page *page;
5706 	unsigned long i;
5707 	size_t offset;
5708 
5709 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5710 	page = eb->pages[i];
5711 	WARN_ON(!PageUptodate(page));
5712 	kaddr = page_address(page);
5713 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5714 }
5715 
5716 /**
5717  * extent_buffer_bitmap_set - set an area of a bitmap
5718  * @eb: the extent buffer
5719  * @start: offset of the bitmap item in the extent buffer
5720  * @pos: bit number of the first bit
5721  * @len: number of bits to set
5722  */
5723 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5724 			      unsigned long pos, unsigned long len)
5725 {
5726 	u8 *kaddr;
5727 	struct page *page;
5728 	unsigned long i;
5729 	size_t offset;
5730 	const unsigned int size = pos + len;
5731 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5732 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5733 
5734 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5735 	page = eb->pages[i];
5736 	WARN_ON(!PageUptodate(page));
5737 	kaddr = page_address(page);
5738 
5739 	while (len >= bits_to_set) {
5740 		kaddr[offset] |= mask_to_set;
5741 		len -= bits_to_set;
5742 		bits_to_set = BITS_PER_BYTE;
5743 		mask_to_set = ~0;
5744 		if (++offset >= PAGE_SIZE && len > 0) {
5745 			offset = 0;
5746 			page = eb->pages[++i];
5747 			WARN_ON(!PageUptodate(page));
5748 			kaddr = page_address(page);
5749 		}
5750 	}
5751 	if (len) {
5752 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5753 		kaddr[offset] |= mask_to_set;
5754 	}
5755 }
5756 
5757 
5758 /**
5759  * extent_buffer_bitmap_clear - clear an area of a bitmap
5760  * @eb: the extent buffer
5761  * @start: offset of the bitmap item in the extent buffer
5762  * @pos: bit number of the first bit
5763  * @len: number of bits to clear
5764  */
5765 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5766 				unsigned long pos, unsigned long len)
5767 {
5768 	u8 *kaddr;
5769 	struct page *page;
5770 	unsigned long i;
5771 	size_t offset;
5772 	const unsigned int size = pos + len;
5773 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5774 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5775 
5776 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5777 	page = eb->pages[i];
5778 	WARN_ON(!PageUptodate(page));
5779 	kaddr = page_address(page);
5780 
5781 	while (len >= bits_to_clear) {
5782 		kaddr[offset] &= ~mask_to_clear;
5783 		len -= bits_to_clear;
5784 		bits_to_clear = BITS_PER_BYTE;
5785 		mask_to_clear = ~0;
5786 		if (++offset >= PAGE_SIZE && len > 0) {
5787 			offset = 0;
5788 			page = eb->pages[++i];
5789 			WARN_ON(!PageUptodate(page));
5790 			kaddr = page_address(page);
5791 		}
5792 	}
5793 	if (len) {
5794 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5795 		kaddr[offset] &= ~mask_to_clear;
5796 	}
5797 }
5798 
5799 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5800 {
5801 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5802 	return distance < len;
5803 }
5804 
5805 static void copy_pages(struct page *dst_page, struct page *src_page,
5806 		       unsigned long dst_off, unsigned long src_off,
5807 		       unsigned long len)
5808 {
5809 	char *dst_kaddr = page_address(dst_page);
5810 	char *src_kaddr;
5811 	int must_memmove = 0;
5812 
5813 	if (dst_page != src_page) {
5814 		src_kaddr = page_address(src_page);
5815 	} else {
5816 		src_kaddr = dst_kaddr;
5817 		if (areas_overlap(src_off, dst_off, len))
5818 			must_memmove = 1;
5819 	}
5820 
5821 	if (must_memmove)
5822 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5823 	else
5824 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5825 }
5826 
5827 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5828 			   unsigned long src_offset, unsigned long len)
5829 {
5830 	struct btrfs_fs_info *fs_info = dst->fs_info;
5831 	size_t cur;
5832 	size_t dst_off_in_page;
5833 	size_t src_off_in_page;
5834 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5835 	unsigned long dst_i;
5836 	unsigned long src_i;
5837 
5838 	if (src_offset + len > dst->len) {
5839 		btrfs_err(fs_info,
5840 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5841 			 src_offset, len, dst->len);
5842 		BUG_ON(1);
5843 	}
5844 	if (dst_offset + len > dst->len) {
5845 		btrfs_err(fs_info,
5846 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5847 			 dst_offset, len, dst->len);
5848 		BUG_ON(1);
5849 	}
5850 
5851 	while (len > 0) {
5852 		dst_off_in_page = (start_offset + dst_offset) &
5853 			(PAGE_SIZE - 1);
5854 		src_off_in_page = (start_offset + src_offset) &
5855 			(PAGE_SIZE - 1);
5856 
5857 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5858 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5859 
5860 		cur = min(len, (unsigned long)(PAGE_SIZE -
5861 					       src_off_in_page));
5862 		cur = min_t(unsigned long, cur,
5863 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5864 
5865 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5866 			   dst_off_in_page, src_off_in_page, cur);
5867 
5868 		src_offset += cur;
5869 		dst_offset += cur;
5870 		len -= cur;
5871 	}
5872 }
5873 
5874 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5875 			   unsigned long src_offset, unsigned long len)
5876 {
5877 	struct btrfs_fs_info *fs_info = dst->fs_info;
5878 	size_t cur;
5879 	size_t dst_off_in_page;
5880 	size_t src_off_in_page;
5881 	unsigned long dst_end = dst_offset + len - 1;
5882 	unsigned long src_end = src_offset + len - 1;
5883 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5884 	unsigned long dst_i;
5885 	unsigned long src_i;
5886 
5887 	if (src_offset + len > dst->len) {
5888 		btrfs_err(fs_info,
5889 			  "memmove bogus src_offset %lu move len %lu len %lu",
5890 			  src_offset, len, dst->len);
5891 		BUG_ON(1);
5892 	}
5893 	if (dst_offset + len > dst->len) {
5894 		btrfs_err(fs_info,
5895 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5896 			  dst_offset, len, dst->len);
5897 		BUG_ON(1);
5898 	}
5899 	if (dst_offset < src_offset) {
5900 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5901 		return;
5902 	}
5903 	while (len > 0) {
5904 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5905 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5906 
5907 		dst_off_in_page = (start_offset + dst_end) &
5908 			(PAGE_SIZE - 1);
5909 		src_off_in_page = (start_offset + src_end) &
5910 			(PAGE_SIZE - 1);
5911 
5912 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5913 		cur = min(cur, dst_off_in_page + 1);
5914 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5915 			   dst_off_in_page - cur + 1,
5916 			   src_off_in_page - cur + 1, cur);
5917 
5918 		dst_end -= cur;
5919 		src_end -= cur;
5920 		len -= cur;
5921 	}
5922 }
5923 
5924 int try_release_extent_buffer(struct page *page)
5925 {
5926 	struct extent_buffer *eb;
5927 
5928 	/*
5929 	 * We need to make sure nobody is attaching this page to an eb right
5930 	 * now.
5931 	 */
5932 	spin_lock(&page->mapping->private_lock);
5933 	if (!PagePrivate(page)) {
5934 		spin_unlock(&page->mapping->private_lock);
5935 		return 1;
5936 	}
5937 
5938 	eb = (struct extent_buffer *)page->private;
5939 	BUG_ON(!eb);
5940 
5941 	/*
5942 	 * This is a little awful but should be ok, we need to make sure that
5943 	 * the eb doesn't disappear out from under us while we're looking at
5944 	 * this page.
5945 	 */
5946 	spin_lock(&eb->refs_lock);
5947 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5948 		spin_unlock(&eb->refs_lock);
5949 		spin_unlock(&page->mapping->private_lock);
5950 		return 0;
5951 	}
5952 	spin_unlock(&page->mapping->private_lock);
5953 
5954 	/*
5955 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5956 	 * so just return, this page will likely be freed soon anyway.
5957 	 */
5958 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5959 		spin_unlock(&eb->refs_lock);
5960 		return 0;
5961 	}
5962 
5963 	return release_extent_buffer(eb);
5964 }
5965