1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/slab.h> 4 #include <linux/bio.h> 5 #include <linux/mm.h> 6 #include <linux/pagemap.h> 7 #include <linux/page-flags.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 #include "backref.h" 24 #include "disk-io.h" 25 26 static struct kmem_cache *extent_state_cache; 27 static struct kmem_cache *extent_buffer_cache; 28 static struct bio_set *btrfs_bioset; 29 30 static inline bool extent_state_in_tree(const struct extent_state *state) 31 { 32 return !RB_EMPTY_NODE(&state->rb_node); 33 } 34 35 #ifdef CONFIG_BTRFS_DEBUG 36 static LIST_HEAD(buffers); 37 static LIST_HEAD(states); 38 39 static DEFINE_SPINLOCK(leak_lock); 40 41 static inline 42 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 43 { 44 unsigned long flags; 45 46 spin_lock_irqsave(&leak_lock, flags); 47 list_add(new, head); 48 spin_unlock_irqrestore(&leak_lock, flags); 49 } 50 51 static inline 52 void btrfs_leak_debug_del(struct list_head *entry) 53 { 54 unsigned long flags; 55 56 spin_lock_irqsave(&leak_lock, flags); 57 list_del(entry); 58 spin_unlock_irqrestore(&leak_lock, flags); 59 } 60 61 static inline 62 void btrfs_leak_debug_check(void) 63 { 64 struct extent_state *state; 65 struct extent_buffer *eb; 66 67 while (!list_empty(&states)) { 68 state = list_entry(states.next, struct extent_state, leak_list); 69 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 70 state->start, state->end, state->state, 71 extent_state_in_tree(state), 72 refcount_read(&state->refs)); 73 list_del(&state->leak_list); 74 kmem_cache_free(extent_state_cache, state); 75 } 76 77 while (!list_empty(&buffers)) { 78 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 79 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n", 80 eb->start, eb->len, atomic_read(&eb->refs)); 81 list_del(&eb->leak_list); 82 kmem_cache_free(extent_buffer_cache, eb); 83 } 84 } 85 86 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 87 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 88 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 89 struct extent_io_tree *tree, u64 start, u64 end) 90 { 91 if (tree->ops && tree->ops->check_extent_io_range) 92 tree->ops->check_extent_io_range(tree->private_data, caller, 93 start, end); 94 } 95 #else 96 #define btrfs_leak_debug_add(new, head) do {} while (0) 97 #define btrfs_leak_debug_del(entry) do {} while (0) 98 #define btrfs_leak_debug_check() do {} while (0) 99 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 100 #endif 101 102 #define BUFFER_LRU_MAX 64 103 104 struct tree_entry { 105 u64 start; 106 u64 end; 107 struct rb_node rb_node; 108 }; 109 110 struct extent_page_data { 111 struct bio *bio; 112 struct extent_io_tree *tree; 113 /* tells writepage not to lock the state bits for this range 114 * it still does the unlocking 115 */ 116 unsigned int extent_locked:1; 117 118 /* tells the submit_bio code to use REQ_SYNC */ 119 unsigned int sync_io:1; 120 }; 121 122 static void add_extent_changeset(struct extent_state *state, unsigned bits, 123 struct extent_changeset *changeset, 124 int set) 125 { 126 int ret; 127 128 if (!changeset) 129 return; 130 if (set && (state->state & bits) == bits) 131 return; 132 if (!set && (state->state & bits) == 0) 133 return; 134 changeset->bytes_changed += state->end - state->start + 1; 135 ret = ulist_add(&changeset->range_changed, state->start, state->end, 136 GFP_ATOMIC); 137 /* ENOMEM */ 138 BUG_ON(ret < 0); 139 } 140 141 static void flush_write_bio(struct extent_page_data *epd); 142 143 static inline struct btrfs_fs_info * 144 tree_fs_info(struct extent_io_tree *tree) 145 { 146 if (tree->ops) 147 return tree->ops->tree_fs_info(tree->private_data); 148 return NULL; 149 } 150 151 int __init extent_io_init(void) 152 { 153 extent_state_cache = kmem_cache_create("btrfs_extent_state", 154 sizeof(struct extent_state), 0, 155 SLAB_MEM_SPREAD, NULL); 156 if (!extent_state_cache) 157 return -ENOMEM; 158 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 160 sizeof(struct extent_buffer), 0, 161 SLAB_MEM_SPREAD, NULL); 162 if (!extent_buffer_cache) 163 goto free_state_cache; 164 165 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 166 offsetof(struct btrfs_io_bio, bio), 167 BIOSET_NEED_BVECS); 168 if (!btrfs_bioset) 169 goto free_buffer_cache; 170 171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 172 goto free_bioset; 173 174 return 0; 175 176 free_bioset: 177 bioset_free(btrfs_bioset); 178 btrfs_bioset = NULL; 179 180 free_buffer_cache: 181 kmem_cache_destroy(extent_buffer_cache); 182 extent_buffer_cache = NULL; 183 184 free_state_cache: 185 kmem_cache_destroy(extent_state_cache); 186 extent_state_cache = NULL; 187 return -ENOMEM; 188 } 189 190 void extent_io_exit(void) 191 { 192 btrfs_leak_debug_check(); 193 194 /* 195 * Make sure all delayed rcu free are flushed before we 196 * destroy caches. 197 */ 198 rcu_barrier(); 199 kmem_cache_destroy(extent_state_cache); 200 kmem_cache_destroy(extent_buffer_cache); 201 if (btrfs_bioset) 202 bioset_free(btrfs_bioset); 203 } 204 205 void extent_io_tree_init(struct extent_io_tree *tree, 206 void *private_data) 207 { 208 tree->state = RB_ROOT; 209 tree->ops = NULL; 210 tree->dirty_bytes = 0; 211 spin_lock_init(&tree->lock); 212 tree->private_data = private_data; 213 } 214 215 static struct extent_state *alloc_extent_state(gfp_t mask) 216 { 217 struct extent_state *state; 218 219 /* 220 * The given mask might be not appropriate for the slab allocator, 221 * drop the unsupported bits 222 */ 223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 224 state = kmem_cache_alloc(extent_state_cache, mask); 225 if (!state) 226 return state; 227 state->state = 0; 228 state->failrec = NULL; 229 RB_CLEAR_NODE(&state->rb_node); 230 btrfs_leak_debug_add(&state->leak_list, &states); 231 refcount_set(&state->refs, 1); 232 init_waitqueue_head(&state->wq); 233 trace_alloc_extent_state(state, mask, _RET_IP_); 234 return state; 235 } 236 237 void free_extent_state(struct extent_state *state) 238 { 239 if (!state) 240 return; 241 if (refcount_dec_and_test(&state->refs)) { 242 WARN_ON(extent_state_in_tree(state)); 243 btrfs_leak_debug_del(&state->leak_list); 244 trace_free_extent_state(state, _RET_IP_); 245 kmem_cache_free(extent_state_cache, state); 246 } 247 } 248 249 static struct rb_node *tree_insert(struct rb_root *root, 250 struct rb_node *search_start, 251 u64 offset, 252 struct rb_node *node, 253 struct rb_node ***p_in, 254 struct rb_node **parent_in) 255 { 256 struct rb_node **p; 257 struct rb_node *parent = NULL; 258 struct tree_entry *entry; 259 260 if (p_in && parent_in) { 261 p = *p_in; 262 parent = *parent_in; 263 goto do_insert; 264 } 265 266 p = search_start ? &search_start : &root->rb_node; 267 while (*p) { 268 parent = *p; 269 entry = rb_entry(parent, struct tree_entry, rb_node); 270 271 if (offset < entry->start) 272 p = &(*p)->rb_left; 273 else if (offset > entry->end) 274 p = &(*p)->rb_right; 275 else 276 return parent; 277 } 278 279 do_insert: 280 rb_link_node(node, parent, p); 281 rb_insert_color(node, root); 282 return NULL; 283 } 284 285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 286 struct rb_node **prev_ret, 287 struct rb_node **next_ret, 288 struct rb_node ***p_ret, 289 struct rb_node **parent_ret) 290 { 291 struct rb_root *root = &tree->state; 292 struct rb_node **n = &root->rb_node; 293 struct rb_node *prev = NULL; 294 struct rb_node *orig_prev = NULL; 295 struct tree_entry *entry; 296 struct tree_entry *prev_entry = NULL; 297 298 while (*n) { 299 prev = *n; 300 entry = rb_entry(prev, struct tree_entry, rb_node); 301 prev_entry = entry; 302 303 if (offset < entry->start) 304 n = &(*n)->rb_left; 305 else if (offset > entry->end) 306 n = &(*n)->rb_right; 307 else 308 return *n; 309 } 310 311 if (p_ret) 312 *p_ret = n; 313 if (parent_ret) 314 *parent_ret = prev; 315 316 if (prev_ret) { 317 orig_prev = prev; 318 while (prev && offset > prev_entry->end) { 319 prev = rb_next(prev); 320 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 321 } 322 *prev_ret = prev; 323 prev = orig_prev; 324 } 325 326 if (next_ret) { 327 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 328 while (prev && offset < prev_entry->start) { 329 prev = rb_prev(prev); 330 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 331 } 332 *next_ret = prev; 333 } 334 return NULL; 335 } 336 337 static inline struct rb_node * 338 tree_search_for_insert(struct extent_io_tree *tree, 339 u64 offset, 340 struct rb_node ***p_ret, 341 struct rb_node **parent_ret) 342 { 343 struct rb_node *prev = NULL; 344 struct rb_node *ret; 345 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 347 if (!ret) 348 return prev; 349 return ret; 350 } 351 352 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 353 u64 offset) 354 { 355 return tree_search_for_insert(tree, offset, NULL, NULL); 356 } 357 358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 359 struct extent_state *other) 360 { 361 if (tree->ops && tree->ops->merge_extent_hook) 362 tree->ops->merge_extent_hook(tree->private_data, new, other); 363 } 364 365 /* 366 * utility function to look for merge candidates inside a given range. 367 * Any extents with matching state are merged together into a single 368 * extent in the tree. Extents with EXTENT_IO in their state field 369 * are not merged because the end_io handlers need to be able to do 370 * operations on them without sleeping (or doing allocations/splits). 371 * 372 * This should be called with the tree lock held. 373 */ 374 static void merge_state(struct extent_io_tree *tree, 375 struct extent_state *state) 376 { 377 struct extent_state *other; 378 struct rb_node *other_node; 379 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 381 return; 382 383 other_node = rb_prev(&state->rb_node); 384 if (other_node) { 385 other = rb_entry(other_node, struct extent_state, rb_node); 386 if (other->end == state->start - 1 && 387 other->state == state->state) { 388 merge_cb(tree, state, other); 389 state->start = other->start; 390 rb_erase(&other->rb_node, &tree->state); 391 RB_CLEAR_NODE(&other->rb_node); 392 free_extent_state(other); 393 } 394 } 395 other_node = rb_next(&state->rb_node); 396 if (other_node) { 397 other = rb_entry(other_node, struct extent_state, rb_node); 398 if (other->start == state->end + 1 && 399 other->state == state->state) { 400 merge_cb(tree, state, other); 401 state->end = other->end; 402 rb_erase(&other->rb_node, &tree->state); 403 RB_CLEAR_NODE(&other->rb_node); 404 free_extent_state(other); 405 } 406 } 407 } 408 409 static void set_state_cb(struct extent_io_tree *tree, 410 struct extent_state *state, unsigned *bits) 411 { 412 if (tree->ops && tree->ops->set_bit_hook) 413 tree->ops->set_bit_hook(tree->private_data, state, bits); 414 } 415 416 static void clear_state_cb(struct extent_io_tree *tree, 417 struct extent_state *state, unsigned *bits) 418 { 419 if (tree->ops && tree->ops->clear_bit_hook) 420 tree->ops->clear_bit_hook(tree->private_data, state, bits); 421 } 422 423 static void set_state_bits(struct extent_io_tree *tree, 424 struct extent_state *state, unsigned *bits, 425 struct extent_changeset *changeset); 426 427 /* 428 * insert an extent_state struct into the tree. 'bits' are set on the 429 * struct before it is inserted. 430 * 431 * This may return -EEXIST if the extent is already there, in which case the 432 * state struct is freed. 433 * 434 * The tree lock is not taken internally. This is a utility function and 435 * probably isn't what you want to call (see set/clear_extent_bit). 436 */ 437 static int insert_state(struct extent_io_tree *tree, 438 struct extent_state *state, u64 start, u64 end, 439 struct rb_node ***p, 440 struct rb_node **parent, 441 unsigned *bits, struct extent_changeset *changeset) 442 { 443 struct rb_node *node; 444 445 if (end < start) 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 447 end, start); 448 state->start = start; 449 state->end = end; 450 451 set_state_bits(tree, state, bits, changeset); 452 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 454 if (node) { 455 struct extent_state *found; 456 found = rb_entry(node, struct extent_state, rb_node); 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 458 found->start, found->end, start, end); 459 return -EEXIST; 460 } 461 merge_state(tree, state); 462 return 0; 463 } 464 465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 466 u64 split) 467 { 468 if (tree->ops && tree->ops->split_extent_hook) 469 tree->ops->split_extent_hook(tree->private_data, orig, split); 470 } 471 472 /* 473 * split a given extent state struct in two, inserting the preallocated 474 * struct 'prealloc' as the newly created second half. 'split' indicates an 475 * offset inside 'orig' where it should be split. 476 * 477 * Before calling, 478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 479 * are two extent state structs in the tree: 480 * prealloc: [orig->start, split - 1] 481 * orig: [ split, orig->end ] 482 * 483 * The tree locks are not taken by this function. They need to be held 484 * by the caller. 485 */ 486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 487 struct extent_state *prealloc, u64 split) 488 { 489 struct rb_node *node; 490 491 split_cb(tree, orig, split); 492 493 prealloc->start = orig->start; 494 prealloc->end = split - 1; 495 prealloc->state = orig->state; 496 orig->start = split; 497 498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 499 &prealloc->rb_node, NULL, NULL); 500 if (node) { 501 free_extent_state(prealloc); 502 return -EEXIST; 503 } 504 return 0; 505 } 506 507 static struct extent_state *next_state(struct extent_state *state) 508 { 509 struct rb_node *next = rb_next(&state->rb_node); 510 if (next) 511 return rb_entry(next, struct extent_state, rb_node); 512 else 513 return NULL; 514 } 515 516 /* 517 * utility function to clear some bits in an extent state struct. 518 * it will optionally wake up any one waiting on this state (wake == 1). 519 * 520 * If no bits are set on the state struct after clearing things, the 521 * struct is freed and removed from the tree 522 */ 523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 524 struct extent_state *state, 525 unsigned *bits, int wake, 526 struct extent_changeset *changeset) 527 { 528 struct extent_state *next; 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 530 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 532 u64 range = state->end - state->start + 1; 533 WARN_ON(range > tree->dirty_bytes); 534 tree->dirty_bytes -= range; 535 } 536 clear_state_cb(tree, state, bits); 537 add_extent_changeset(state, bits_to_clear, changeset, 0); 538 state->state &= ~bits_to_clear; 539 if (wake) 540 wake_up(&state->wq); 541 if (state->state == 0) { 542 next = next_state(state); 543 if (extent_state_in_tree(state)) { 544 rb_erase(&state->rb_node, &tree->state); 545 RB_CLEAR_NODE(&state->rb_node); 546 free_extent_state(state); 547 } else { 548 WARN_ON(1); 549 } 550 } else { 551 merge_state(tree, state); 552 next = next_state(state); 553 } 554 return next; 555 } 556 557 static struct extent_state * 558 alloc_extent_state_atomic(struct extent_state *prealloc) 559 { 560 if (!prealloc) 561 prealloc = alloc_extent_state(GFP_ATOMIC); 562 563 return prealloc; 564 } 565 566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 567 { 568 btrfs_panic(tree_fs_info(tree), err, 569 "Locking error: Extent tree was modified by another thread while locked."); 570 } 571 572 /* 573 * clear some bits on a range in the tree. This may require splitting 574 * or inserting elements in the tree, so the gfp mask is used to 575 * indicate which allocations or sleeping are allowed. 576 * 577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 578 * the given range from the tree regardless of state (ie for truncate). 579 * 580 * the range [start, end] is inclusive. 581 * 582 * This takes the tree lock, and returns 0 on success and < 0 on error. 583 */ 584 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 585 unsigned bits, int wake, int delete, 586 struct extent_state **cached_state, 587 gfp_t mask, struct extent_changeset *changeset) 588 { 589 struct extent_state *state; 590 struct extent_state *cached; 591 struct extent_state *prealloc = NULL; 592 struct rb_node *node; 593 u64 last_end; 594 int err; 595 int clear = 0; 596 597 btrfs_debug_check_extent_io_range(tree, start, end); 598 599 if (bits & EXTENT_DELALLOC) 600 bits |= EXTENT_NORESERVE; 601 602 if (delete) 603 bits |= ~EXTENT_CTLBITS; 604 bits |= EXTENT_FIRST_DELALLOC; 605 606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 607 clear = 1; 608 again: 609 if (!prealloc && gfpflags_allow_blocking(mask)) { 610 /* 611 * Don't care for allocation failure here because we might end 612 * up not needing the pre-allocated extent state at all, which 613 * is the case if we only have in the tree extent states that 614 * cover our input range and don't cover too any other range. 615 * If we end up needing a new extent state we allocate it later. 616 */ 617 prealloc = alloc_extent_state(mask); 618 } 619 620 spin_lock(&tree->lock); 621 if (cached_state) { 622 cached = *cached_state; 623 624 if (clear) { 625 *cached_state = NULL; 626 cached_state = NULL; 627 } 628 629 if (cached && extent_state_in_tree(cached) && 630 cached->start <= start && cached->end > start) { 631 if (clear) 632 refcount_dec(&cached->refs); 633 state = cached; 634 goto hit_next; 635 } 636 if (clear) 637 free_extent_state(cached); 638 } 639 /* 640 * this search will find the extents that end after 641 * our range starts 642 */ 643 node = tree_search(tree, start); 644 if (!node) 645 goto out; 646 state = rb_entry(node, struct extent_state, rb_node); 647 hit_next: 648 if (state->start > end) 649 goto out; 650 WARN_ON(state->end < start); 651 last_end = state->end; 652 653 /* the state doesn't have the wanted bits, go ahead */ 654 if (!(state->state & bits)) { 655 state = next_state(state); 656 goto next; 657 } 658 659 /* 660 * | ---- desired range ---- | 661 * | state | or 662 * | ------------- state -------------- | 663 * 664 * We need to split the extent we found, and may flip 665 * bits on second half. 666 * 667 * If the extent we found extends past our range, we 668 * just split and search again. It'll get split again 669 * the next time though. 670 * 671 * If the extent we found is inside our range, we clear 672 * the desired bit on it. 673 */ 674 675 if (state->start < start) { 676 prealloc = alloc_extent_state_atomic(prealloc); 677 BUG_ON(!prealloc); 678 err = split_state(tree, state, prealloc, start); 679 if (err) 680 extent_io_tree_panic(tree, err); 681 682 prealloc = NULL; 683 if (err) 684 goto out; 685 if (state->end <= end) { 686 state = clear_state_bit(tree, state, &bits, wake, 687 changeset); 688 goto next; 689 } 690 goto search_again; 691 } 692 /* 693 * | ---- desired range ---- | 694 * | state | 695 * We need to split the extent, and clear the bit 696 * on the first half 697 */ 698 if (state->start <= end && state->end > end) { 699 prealloc = alloc_extent_state_atomic(prealloc); 700 BUG_ON(!prealloc); 701 err = split_state(tree, state, prealloc, end + 1); 702 if (err) 703 extent_io_tree_panic(tree, err); 704 705 if (wake) 706 wake_up(&state->wq); 707 708 clear_state_bit(tree, prealloc, &bits, wake, changeset); 709 710 prealloc = NULL; 711 goto out; 712 } 713 714 state = clear_state_bit(tree, state, &bits, wake, changeset); 715 next: 716 if (last_end == (u64)-1) 717 goto out; 718 start = last_end + 1; 719 if (start <= end && state && !need_resched()) 720 goto hit_next; 721 722 search_again: 723 if (start > end) 724 goto out; 725 spin_unlock(&tree->lock); 726 if (gfpflags_allow_blocking(mask)) 727 cond_resched(); 728 goto again; 729 730 out: 731 spin_unlock(&tree->lock); 732 if (prealloc) 733 free_extent_state(prealloc); 734 735 return 0; 736 737 } 738 739 static void wait_on_state(struct extent_io_tree *tree, 740 struct extent_state *state) 741 __releases(tree->lock) 742 __acquires(tree->lock) 743 { 744 DEFINE_WAIT(wait); 745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 746 spin_unlock(&tree->lock); 747 schedule(); 748 spin_lock(&tree->lock); 749 finish_wait(&state->wq, &wait); 750 } 751 752 /* 753 * waits for one or more bits to clear on a range in the state tree. 754 * The range [start, end] is inclusive. 755 * The tree lock is taken by this function 756 */ 757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 758 unsigned long bits) 759 { 760 struct extent_state *state; 761 struct rb_node *node; 762 763 btrfs_debug_check_extent_io_range(tree, start, end); 764 765 spin_lock(&tree->lock); 766 again: 767 while (1) { 768 /* 769 * this search will find all the extents that end after 770 * our range starts 771 */ 772 node = tree_search(tree, start); 773 process_node: 774 if (!node) 775 break; 776 777 state = rb_entry(node, struct extent_state, rb_node); 778 779 if (state->start > end) 780 goto out; 781 782 if (state->state & bits) { 783 start = state->start; 784 refcount_inc(&state->refs); 785 wait_on_state(tree, state); 786 free_extent_state(state); 787 goto again; 788 } 789 start = state->end + 1; 790 791 if (start > end) 792 break; 793 794 if (!cond_resched_lock(&tree->lock)) { 795 node = rb_next(node); 796 goto process_node; 797 } 798 } 799 out: 800 spin_unlock(&tree->lock); 801 } 802 803 static void set_state_bits(struct extent_io_tree *tree, 804 struct extent_state *state, 805 unsigned *bits, struct extent_changeset *changeset) 806 { 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 808 809 set_state_cb(tree, state, bits); 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 811 u64 range = state->end - state->start + 1; 812 tree->dirty_bytes += range; 813 } 814 add_extent_changeset(state, bits_to_set, changeset, 1); 815 state->state |= bits_to_set; 816 } 817 818 static void cache_state_if_flags(struct extent_state *state, 819 struct extent_state **cached_ptr, 820 unsigned flags) 821 { 822 if (cached_ptr && !(*cached_ptr)) { 823 if (!flags || (state->state & flags)) { 824 *cached_ptr = state; 825 refcount_inc(&state->refs); 826 } 827 } 828 } 829 830 static void cache_state(struct extent_state *state, 831 struct extent_state **cached_ptr) 832 { 833 return cache_state_if_flags(state, cached_ptr, 834 EXTENT_IOBITS | EXTENT_BOUNDARY); 835 } 836 837 /* 838 * set some bits on a range in the tree. This may require allocations or 839 * sleeping, so the gfp mask is used to indicate what is allowed. 840 * 841 * If any of the exclusive bits are set, this will fail with -EEXIST if some 842 * part of the range already has the desired bits set. The start of the 843 * existing range is returned in failed_start in this case. 844 * 845 * [start, end] is inclusive This takes the tree lock. 846 */ 847 848 static int __must_check 849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 850 unsigned bits, unsigned exclusive_bits, 851 u64 *failed_start, struct extent_state **cached_state, 852 gfp_t mask, struct extent_changeset *changeset) 853 { 854 struct extent_state *state; 855 struct extent_state *prealloc = NULL; 856 struct rb_node *node; 857 struct rb_node **p; 858 struct rb_node *parent; 859 int err = 0; 860 u64 last_start; 861 u64 last_end; 862 863 btrfs_debug_check_extent_io_range(tree, start, end); 864 865 bits |= EXTENT_FIRST_DELALLOC; 866 again: 867 if (!prealloc && gfpflags_allow_blocking(mask)) { 868 /* 869 * Don't care for allocation failure here because we might end 870 * up not needing the pre-allocated extent state at all, which 871 * is the case if we only have in the tree extent states that 872 * cover our input range and don't cover too any other range. 873 * If we end up needing a new extent state we allocate it later. 874 */ 875 prealloc = alloc_extent_state(mask); 876 } 877 878 spin_lock(&tree->lock); 879 if (cached_state && *cached_state) { 880 state = *cached_state; 881 if (state->start <= start && state->end > start && 882 extent_state_in_tree(state)) { 883 node = &state->rb_node; 884 goto hit_next; 885 } 886 } 887 /* 888 * this search will find all the extents that end after 889 * our range starts. 890 */ 891 node = tree_search_for_insert(tree, start, &p, &parent); 892 if (!node) { 893 prealloc = alloc_extent_state_atomic(prealloc); 894 BUG_ON(!prealloc); 895 err = insert_state(tree, prealloc, start, end, 896 &p, &parent, &bits, changeset); 897 if (err) 898 extent_io_tree_panic(tree, err); 899 900 cache_state(prealloc, cached_state); 901 prealloc = NULL; 902 goto out; 903 } 904 state = rb_entry(node, struct extent_state, rb_node); 905 hit_next: 906 last_start = state->start; 907 last_end = state->end; 908 909 /* 910 * | ---- desired range ---- | 911 * | state | 912 * 913 * Just lock what we found and keep going 914 */ 915 if (state->start == start && state->end <= end) { 916 if (state->state & exclusive_bits) { 917 *failed_start = state->start; 918 err = -EEXIST; 919 goto out; 920 } 921 922 set_state_bits(tree, state, &bits, changeset); 923 cache_state(state, cached_state); 924 merge_state(tree, state); 925 if (last_end == (u64)-1) 926 goto out; 927 start = last_end + 1; 928 state = next_state(state); 929 if (start < end && state && state->start == start && 930 !need_resched()) 931 goto hit_next; 932 goto search_again; 933 } 934 935 /* 936 * | ---- desired range ---- | 937 * | state | 938 * or 939 * | ------------- state -------------- | 940 * 941 * We need to split the extent we found, and may flip bits on 942 * second half. 943 * 944 * If the extent we found extends past our 945 * range, we just split and search again. It'll get split 946 * again the next time though. 947 * 948 * If the extent we found is inside our range, we set the 949 * desired bit on it. 950 */ 951 if (state->start < start) { 952 if (state->state & exclusive_bits) { 953 *failed_start = start; 954 err = -EEXIST; 955 goto out; 956 } 957 958 prealloc = alloc_extent_state_atomic(prealloc); 959 BUG_ON(!prealloc); 960 err = split_state(tree, state, prealloc, start); 961 if (err) 962 extent_io_tree_panic(tree, err); 963 964 prealloc = NULL; 965 if (err) 966 goto out; 967 if (state->end <= end) { 968 set_state_bits(tree, state, &bits, changeset); 969 cache_state(state, cached_state); 970 merge_state(tree, state); 971 if (last_end == (u64)-1) 972 goto out; 973 start = last_end + 1; 974 state = next_state(state); 975 if (start < end && state && state->start == start && 976 !need_resched()) 977 goto hit_next; 978 } 979 goto search_again; 980 } 981 /* 982 * | ---- desired range ---- | 983 * | state | or | state | 984 * 985 * There's a hole, we need to insert something in it and 986 * ignore the extent we found. 987 */ 988 if (state->start > start) { 989 u64 this_end; 990 if (end < last_start) 991 this_end = end; 992 else 993 this_end = last_start - 1; 994 995 prealloc = alloc_extent_state_atomic(prealloc); 996 BUG_ON(!prealloc); 997 998 /* 999 * Avoid to free 'prealloc' if it can be merged with 1000 * the later extent. 1001 */ 1002 err = insert_state(tree, prealloc, start, this_end, 1003 NULL, NULL, &bits, changeset); 1004 if (err) 1005 extent_io_tree_panic(tree, err); 1006 1007 cache_state(prealloc, cached_state); 1008 prealloc = NULL; 1009 start = this_end + 1; 1010 goto search_again; 1011 } 1012 /* 1013 * | ---- desired range ---- | 1014 * | state | 1015 * We need to split the extent, and set the bit 1016 * on the first half 1017 */ 1018 if (state->start <= end && state->end > end) { 1019 if (state->state & exclusive_bits) { 1020 *failed_start = start; 1021 err = -EEXIST; 1022 goto out; 1023 } 1024 1025 prealloc = alloc_extent_state_atomic(prealloc); 1026 BUG_ON(!prealloc); 1027 err = split_state(tree, state, prealloc, end + 1); 1028 if (err) 1029 extent_io_tree_panic(tree, err); 1030 1031 set_state_bits(tree, prealloc, &bits, changeset); 1032 cache_state(prealloc, cached_state); 1033 merge_state(tree, prealloc); 1034 prealloc = NULL; 1035 goto out; 1036 } 1037 1038 search_again: 1039 if (start > end) 1040 goto out; 1041 spin_unlock(&tree->lock); 1042 if (gfpflags_allow_blocking(mask)) 1043 cond_resched(); 1044 goto again; 1045 1046 out: 1047 spin_unlock(&tree->lock); 1048 if (prealloc) 1049 free_extent_state(prealloc); 1050 1051 return err; 1052 1053 } 1054 1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1056 unsigned bits, u64 * failed_start, 1057 struct extent_state **cached_state, gfp_t mask) 1058 { 1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1060 cached_state, mask, NULL); 1061 } 1062 1063 1064 /** 1065 * convert_extent_bit - convert all bits in a given range from one bit to 1066 * another 1067 * @tree: the io tree to search 1068 * @start: the start offset in bytes 1069 * @end: the end offset in bytes (inclusive) 1070 * @bits: the bits to set in this range 1071 * @clear_bits: the bits to clear in this range 1072 * @cached_state: state that we're going to cache 1073 * 1074 * This will go through and set bits for the given range. If any states exist 1075 * already in this range they are set with the given bit and cleared of the 1076 * clear_bits. This is only meant to be used by things that are mergeable, ie 1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1078 * boundary bits like LOCK. 1079 * 1080 * All allocations are done with GFP_NOFS. 1081 */ 1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1083 unsigned bits, unsigned clear_bits, 1084 struct extent_state **cached_state) 1085 { 1086 struct extent_state *state; 1087 struct extent_state *prealloc = NULL; 1088 struct rb_node *node; 1089 struct rb_node **p; 1090 struct rb_node *parent; 1091 int err = 0; 1092 u64 last_start; 1093 u64 last_end; 1094 bool first_iteration = true; 1095 1096 btrfs_debug_check_extent_io_range(tree, start, end); 1097 1098 again: 1099 if (!prealloc) { 1100 /* 1101 * Best effort, don't worry if extent state allocation fails 1102 * here for the first iteration. We might have a cached state 1103 * that matches exactly the target range, in which case no 1104 * extent state allocations are needed. We'll only know this 1105 * after locking the tree. 1106 */ 1107 prealloc = alloc_extent_state(GFP_NOFS); 1108 if (!prealloc && !first_iteration) 1109 return -ENOMEM; 1110 } 1111 1112 spin_lock(&tree->lock); 1113 if (cached_state && *cached_state) { 1114 state = *cached_state; 1115 if (state->start <= start && state->end > start && 1116 extent_state_in_tree(state)) { 1117 node = &state->rb_node; 1118 goto hit_next; 1119 } 1120 } 1121 1122 /* 1123 * this search will find all the extents that end after 1124 * our range starts. 1125 */ 1126 node = tree_search_for_insert(tree, start, &p, &parent); 1127 if (!node) { 1128 prealloc = alloc_extent_state_atomic(prealloc); 1129 if (!prealloc) { 1130 err = -ENOMEM; 1131 goto out; 1132 } 1133 err = insert_state(tree, prealloc, start, end, 1134 &p, &parent, &bits, NULL); 1135 if (err) 1136 extent_io_tree_panic(tree, err); 1137 cache_state(prealloc, cached_state); 1138 prealloc = NULL; 1139 goto out; 1140 } 1141 state = rb_entry(node, struct extent_state, rb_node); 1142 hit_next: 1143 last_start = state->start; 1144 last_end = state->end; 1145 1146 /* 1147 * | ---- desired range ---- | 1148 * | state | 1149 * 1150 * Just lock what we found and keep going 1151 */ 1152 if (state->start == start && state->end <= end) { 1153 set_state_bits(tree, state, &bits, NULL); 1154 cache_state(state, cached_state); 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1156 if (last_end == (u64)-1) 1157 goto out; 1158 start = last_end + 1; 1159 if (start < end && state && state->start == start && 1160 !need_resched()) 1161 goto hit_next; 1162 goto search_again; 1163 } 1164 1165 /* 1166 * | ---- desired range ---- | 1167 * | state | 1168 * or 1169 * | ------------- state -------------- | 1170 * 1171 * We need to split the extent we found, and may flip bits on 1172 * second half. 1173 * 1174 * If the extent we found extends past our 1175 * range, we just split and search again. It'll get split 1176 * again the next time though. 1177 * 1178 * If the extent we found is inside our range, we set the 1179 * desired bit on it. 1180 */ 1181 if (state->start < start) { 1182 prealloc = alloc_extent_state_atomic(prealloc); 1183 if (!prealloc) { 1184 err = -ENOMEM; 1185 goto out; 1186 } 1187 err = split_state(tree, state, prealloc, start); 1188 if (err) 1189 extent_io_tree_panic(tree, err); 1190 prealloc = NULL; 1191 if (err) 1192 goto out; 1193 if (state->end <= end) { 1194 set_state_bits(tree, state, &bits, NULL); 1195 cache_state(state, cached_state); 1196 state = clear_state_bit(tree, state, &clear_bits, 0, 1197 NULL); 1198 if (last_end == (u64)-1) 1199 goto out; 1200 start = last_end + 1; 1201 if (start < end && state && state->start == start && 1202 !need_resched()) 1203 goto hit_next; 1204 } 1205 goto search_again; 1206 } 1207 /* 1208 * | ---- desired range ---- | 1209 * | state | or | state | 1210 * 1211 * There's a hole, we need to insert something in it and 1212 * ignore the extent we found. 1213 */ 1214 if (state->start > start) { 1215 u64 this_end; 1216 if (end < last_start) 1217 this_end = end; 1218 else 1219 this_end = last_start - 1; 1220 1221 prealloc = alloc_extent_state_atomic(prealloc); 1222 if (!prealloc) { 1223 err = -ENOMEM; 1224 goto out; 1225 } 1226 1227 /* 1228 * Avoid to free 'prealloc' if it can be merged with 1229 * the later extent. 1230 */ 1231 err = insert_state(tree, prealloc, start, this_end, 1232 NULL, NULL, &bits, NULL); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 cache_state(prealloc, cached_state); 1236 prealloc = NULL; 1237 start = this_end + 1; 1238 goto search_again; 1239 } 1240 /* 1241 * | ---- desired range ---- | 1242 * | state | 1243 * We need to split the extent, and set the bit 1244 * on the first half 1245 */ 1246 if (state->start <= end && state->end > end) { 1247 prealloc = alloc_extent_state_atomic(prealloc); 1248 if (!prealloc) { 1249 err = -ENOMEM; 1250 goto out; 1251 } 1252 1253 err = split_state(tree, state, prealloc, end + 1); 1254 if (err) 1255 extent_io_tree_panic(tree, err); 1256 1257 set_state_bits(tree, prealloc, &bits, NULL); 1258 cache_state(prealloc, cached_state); 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1260 prealloc = NULL; 1261 goto out; 1262 } 1263 1264 search_again: 1265 if (start > end) 1266 goto out; 1267 spin_unlock(&tree->lock); 1268 cond_resched(); 1269 first_iteration = false; 1270 goto again; 1271 1272 out: 1273 spin_unlock(&tree->lock); 1274 if (prealloc) 1275 free_extent_state(prealloc); 1276 1277 return err; 1278 } 1279 1280 /* wrappers around set/clear extent bit */ 1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1282 unsigned bits, struct extent_changeset *changeset) 1283 { 1284 /* 1285 * We don't support EXTENT_LOCKED yet, as current changeset will 1286 * record any bits changed, so for EXTENT_LOCKED case, it will 1287 * either fail with -EEXIST or changeset will record the whole 1288 * range. 1289 */ 1290 BUG_ON(bits & EXTENT_LOCKED); 1291 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1293 changeset); 1294 } 1295 1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1297 unsigned bits, int wake, int delete, 1298 struct extent_state **cached) 1299 { 1300 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1301 cached, GFP_NOFS, NULL); 1302 } 1303 1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1305 unsigned bits, struct extent_changeset *changeset) 1306 { 1307 /* 1308 * Don't support EXTENT_LOCKED case, same reason as 1309 * set_record_extent_bits(). 1310 */ 1311 BUG_ON(bits & EXTENT_LOCKED); 1312 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1314 changeset); 1315 } 1316 1317 /* 1318 * either insert or lock state struct between start and end use mask to tell 1319 * us if waiting is desired. 1320 */ 1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1322 struct extent_state **cached_state) 1323 { 1324 int err; 1325 u64 failed_start; 1326 1327 while (1) { 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1329 EXTENT_LOCKED, &failed_start, 1330 cached_state, GFP_NOFS, NULL); 1331 if (err == -EEXIST) { 1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1333 start = failed_start; 1334 } else 1335 break; 1336 WARN_ON(start > end); 1337 } 1338 return err; 1339 } 1340 1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1342 { 1343 int err; 1344 u64 failed_start; 1345 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1347 &failed_start, NULL, GFP_NOFS, NULL); 1348 if (err == -EEXIST) { 1349 if (failed_start > start) 1350 clear_extent_bit(tree, start, failed_start - 1, 1351 EXTENT_LOCKED, 1, 0, NULL); 1352 return 0; 1353 } 1354 return 1; 1355 } 1356 1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1358 { 1359 unsigned long index = start >> PAGE_SHIFT; 1360 unsigned long end_index = end >> PAGE_SHIFT; 1361 struct page *page; 1362 1363 while (index <= end_index) { 1364 page = find_get_page(inode->i_mapping, index); 1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1366 clear_page_dirty_for_io(page); 1367 put_page(page); 1368 index++; 1369 } 1370 } 1371 1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1373 { 1374 unsigned long index = start >> PAGE_SHIFT; 1375 unsigned long end_index = end >> PAGE_SHIFT; 1376 struct page *page; 1377 1378 while (index <= end_index) { 1379 page = find_get_page(inode->i_mapping, index); 1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1381 __set_page_dirty_nobuffers(page); 1382 account_page_redirty(page); 1383 put_page(page); 1384 index++; 1385 } 1386 } 1387 1388 /* 1389 * helper function to set both pages and extents in the tree writeback 1390 */ 1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1392 { 1393 tree->ops->set_range_writeback(tree->private_data, start, end); 1394 } 1395 1396 /* find the first state struct with 'bits' set after 'start', and 1397 * return it. tree->lock must be held. NULL will returned if 1398 * nothing was found after 'start' 1399 */ 1400 static struct extent_state * 1401 find_first_extent_bit_state(struct extent_io_tree *tree, 1402 u64 start, unsigned bits) 1403 { 1404 struct rb_node *node; 1405 struct extent_state *state; 1406 1407 /* 1408 * this search will find all the extents that end after 1409 * our range starts. 1410 */ 1411 node = tree_search(tree, start); 1412 if (!node) 1413 goto out; 1414 1415 while (1) { 1416 state = rb_entry(node, struct extent_state, rb_node); 1417 if (state->end >= start && (state->state & bits)) 1418 return state; 1419 1420 node = rb_next(node); 1421 if (!node) 1422 break; 1423 } 1424 out: 1425 return NULL; 1426 } 1427 1428 /* 1429 * find the first offset in the io tree with 'bits' set. zero is 1430 * returned if we find something, and *start_ret and *end_ret are 1431 * set to reflect the state struct that was found. 1432 * 1433 * If nothing was found, 1 is returned. If found something, return 0. 1434 */ 1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1436 u64 *start_ret, u64 *end_ret, unsigned bits, 1437 struct extent_state **cached_state) 1438 { 1439 struct extent_state *state; 1440 struct rb_node *n; 1441 int ret = 1; 1442 1443 spin_lock(&tree->lock); 1444 if (cached_state && *cached_state) { 1445 state = *cached_state; 1446 if (state->end == start - 1 && extent_state_in_tree(state)) { 1447 n = rb_next(&state->rb_node); 1448 while (n) { 1449 state = rb_entry(n, struct extent_state, 1450 rb_node); 1451 if (state->state & bits) 1452 goto got_it; 1453 n = rb_next(n); 1454 } 1455 free_extent_state(*cached_state); 1456 *cached_state = NULL; 1457 goto out; 1458 } 1459 free_extent_state(*cached_state); 1460 *cached_state = NULL; 1461 } 1462 1463 state = find_first_extent_bit_state(tree, start, bits); 1464 got_it: 1465 if (state) { 1466 cache_state_if_flags(state, cached_state, 0); 1467 *start_ret = state->start; 1468 *end_ret = state->end; 1469 ret = 0; 1470 } 1471 out: 1472 spin_unlock(&tree->lock); 1473 return ret; 1474 } 1475 1476 /* 1477 * find a contiguous range of bytes in the file marked as delalloc, not 1478 * more than 'max_bytes'. start and end are used to return the range, 1479 * 1480 * 1 is returned if we find something, 0 if nothing was in the tree 1481 */ 1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1483 u64 *start, u64 *end, u64 max_bytes, 1484 struct extent_state **cached_state) 1485 { 1486 struct rb_node *node; 1487 struct extent_state *state; 1488 u64 cur_start = *start; 1489 u64 found = 0; 1490 u64 total_bytes = 0; 1491 1492 spin_lock(&tree->lock); 1493 1494 /* 1495 * this search will find all the extents that end after 1496 * our range starts. 1497 */ 1498 node = tree_search(tree, cur_start); 1499 if (!node) { 1500 if (!found) 1501 *end = (u64)-1; 1502 goto out; 1503 } 1504 1505 while (1) { 1506 state = rb_entry(node, struct extent_state, rb_node); 1507 if (found && (state->start != cur_start || 1508 (state->state & EXTENT_BOUNDARY))) { 1509 goto out; 1510 } 1511 if (!(state->state & EXTENT_DELALLOC)) { 1512 if (!found) 1513 *end = state->end; 1514 goto out; 1515 } 1516 if (!found) { 1517 *start = state->start; 1518 *cached_state = state; 1519 refcount_inc(&state->refs); 1520 } 1521 found++; 1522 *end = state->end; 1523 cur_start = state->end + 1; 1524 node = rb_next(node); 1525 total_bytes += state->end - state->start + 1; 1526 if (total_bytes >= max_bytes) 1527 break; 1528 if (!node) 1529 break; 1530 } 1531 out: 1532 spin_unlock(&tree->lock); 1533 return found; 1534 } 1535 1536 static int __process_pages_contig(struct address_space *mapping, 1537 struct page *locked_page, 1538 pgoff_t start_index, pgoff_t end_index, 1539 unsigned long page_ops, pgoff_t *index_ret); 1540 1541 static noinline void __unlock_for_delalloc(struct inode *inode, 1542 struct page *locked_page, 1543 u64 start, u64 end) 1544 { 1545 unsigned long index = start >> PAGE_SHIFT; 1546 unsigned long end_index = end >> PAGE_SHIFT; 1547 1548 ASSERT(locked_page); 1549 if (index == locked_page->index && end_index == index) 1550 return; 1551 1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1553 PAGE_UNLOCK, NULL); 1554 } 1555 1556 static noinline int lock_delalloc_pages(struct inode *inode, 1557 struct page *locked_page, 1558 u64 delalloc_start, 1559 u64 delalloc_end) 1560 { 1561 unsigned long index = delalloc_start >> PAGE_SHIFT; 1562 unsigned long index_ret = index; 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1564 int ret; 1565 1566 ASSERT(locked_page); 1567 if (index == locked_page->index && index == end_index) 1568 return 0; 1569 1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1571 end_index, PAGE_LOCK, &index_ret); 1572 if (ret == -EAGAIN) 1573 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1574 (u64)index_ret << PAGE_SHIFT); 1575 return ret; 1576 } 1577 1578 /* 1579 * find a contiguous range of bytes in the file marked as delalloc, not 1580 * more than 'max_bytes'. start and end are used to return the range, 1581 * 1582 * 1 is returned if we find something, 0 if nothing was in the tree 1583 */ 1584 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1585 struct extent_io_tree *tree, 1586 struct page *locked_page, u64 *start, 1587 u64 *end, u64 max_bytes) 1588 { 1589 u64 delalloc_start; 1590 u64 delalloc_end; 1591 u64 found; 1592 struct extent_state *cached_state = NULL; 1593 int ret; 1594 int loops = 0; 1595 1596 again: 1597 /* step one, find a bunch of delalloc bytes starting at start */ 1598 delalloc_start = *start; 1599 delalloc_end = 0; 1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1601 max_bytes, &cached_state); 1602 if (!found || delalloc_end <= *start) { 1603 *start = delalloc_start; 1604 *end = delalloc_end; 1605 free_extent_state(cached_state); 1606 return 0; 1607 } 1608 1609 /* 1610 * start comes from the offset of locked_page. We have to lock 1611 * pages in order, so we can't process delalloc bytes before 1612 * locked_page 1613 */ 1614 if (delalloc_start < *start) 1615 delalloc_start = *start; 1616 1617 /* 1618 * make sure to limit the number of pages we try to lock down 1619 */ 1620 if (delalloc_end + 1 - delalloc_start > max_bytes) 1621 delalloc_end = delalloc_start + max_bytes - 1; 1622 1623 /* step two, lock all the pages after the page that has start */ 1624 ret = lock_delalloc_pages(inode, locked_page, 1625 delalloc_start, delalloc_end); 1626 if (ret == -EAGAIN) { 1627 /* some of the pages are gone, lets avoid looping by 1628 * shortening the size of the delalloc range we're searching 1629 */ 1630 free_extent_state(cached_state); 1631 cached_state = NULL; 1632 if (!loops) { 1633 max_bytes = PAGE_SIZE; 1634 loops = 1; 1635 goto again; 1636 } else { 1637 found = 0; 1638 goto out_failed; 1639 } 1640 } 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1642 1643 /* step three, lock the state bits for the whole range */ 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1645 1646 /* then test to make sure it is all still delalloc */ 1647 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1648 EXTENT_DELALLOC, 1, cached_state); 1649 if (!ret) { 1650 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1651 &cached_state); 1652 __unlock_for_delalloc(inode, locked_page, 1653 delalloc_start, delalloc_end); 1654 cond_resched(); 1655 goto again; 1656 } 1657 free_extent_state(cached_state); 1658 *start = delalloc_start; 1659 *end = delalloc_end; 1660 out_failed: 1661 return found; 1662 } 1663 1664 static int __process_pages_contig(struct address_space *mapping, 1665 struct page *locked_page, 1666 pgoff_t start_index, pgoff_t end_index, 1667 unsigned long page_ops, pgoff_t *index_ret) 1668 { 1669 unsigned long nr_pages = end_index - start_index + 1; 1670 unsigned long pages_locked = 0; 1671 pgoff_t index = start_index; 1672 struct page *pages[16]; 1673 unsigned ret; 1674 int err = 0; 1675 int i; 1676 1677 if (page_ops & PAGE_LOCK) { 1678 ASSERT(page_ops == PAGE_LOCK); 1679 ASSERT(index_ret && *index_ret == start_index); 1680 } 1681 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1683 mapping_set_error(mapping, -EIO); 1684 1685 while (nr_pages > 0) { 1686 ret = find_get_pages_contig(mapping, index, 1687 min_t(unsigned long, 1688 nr_pages, ARRAY_SIZE(pages)), pages); 1689 if (ret == 0) { 1690 /* 1691 * Only if we're going to lock these pages, 1692 * can we find nothing at @index. 1693 */ 1694 ASSERT(page_ops & PAGE_LOCK); 1695 err = -EAGAIN; 1696 goto out; 1697 } 1698 1699 for (i = 0; i < ret; i++) { 1700 if (page_ops & PAGE_SET_PRIVATE2) 1701 SetPagePrivate2(pages[i]); 1702 1703 if (pages[i] == locked_page) { 1704 put_page(pages[i]); 1705 pages_locked++; 1706 continue; 1707 } 1708 if (page_ops & PAGE_CLEAR_DIRTY) 1709 clear_page_dirty_for_io(pages[i]); 1710 if (page_ops & PAGE_SET_WRITEBACK) 1711 set_page_writeback(pages[i]); 1712 if (page_ops & PAGE_SET_ERROR) 1713 SetPageError(pages[i]); 1714 if (page_ops & PAGE_END_WRITEBACK) 1715 end_page_writeback(pages[i]); 1716 if (page_ops & PAGE_UNLOCK) 1717 unlock_page(pages[i]); 1718 if (page_ops & PAGE_LOCK) { 1719 lock_page(pages[i]); 1720 if (!PageDirty(pages[i]) || 1721 pages[i]->mapping != mapping) { 1722 unlock_page(pages[i]); 1723 put_page(pages[i]); 1724 err = -EAGAIN; 1725 goto out; 1726 } 1727 } 1728 put_page(pages[i]); 1729 pages_locked++; 1730 } 1731 nr_pages -= ret; 1732 index += ret; 1733 cond_resched(); 1734 } 1735 out: 1736 if (err && index_ret) 1737 *index_ret = start_index + pages_locked - 1; 1738 return err; 1739 } 1740 1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1742 u64 delalloc_end, struct page *locked_page, 1743 unsigned clear_bits, 1744 unsigned long page_ops) 1745 { 1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1747 NULL); 1748 1749 __process_pages_contig(inode->i_mapping, locked_page, 1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1751 page_ops, NULL); 1752 } 1753 1754 /* 1755 * count the number of bytes in the tree that have a given bit(s) 1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1757 * cached. The total number found is returned. 1758 */ 1759 u64 count_range_bits(struct extent_io_tree *tree, 1760 u64 *start, u64 search_end, u64 max_bytes, 1761 unsigned bits, int contig) 1762 { 1763 struct rb_node *node; 1764 struct extent_state *state; 1765 u64 cur_start = *start; 1766 u64 total_bytes = 0; 1767 u64 last = 0; 1768 int found = 0; 1769 1770 if (WARN_ON(search_end <= cur_start)) 1771 return 0; 1772 1773 spin_lock(&tree->lock); 1774 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1775 total_bytes = tree->dirty_bytes; 1776 goto out; 1777 } 1778 /* 1779 * this search will find all the extents that end after 1780 * our range starts. 1781 */ 1782 node = tree_search(tree, cur_start); 1783 if (!node) 1784 goto out; 1785 1786 while (1) { 1787 state = rb_entry(node, struct extent_state, rb_node); 1788 if (state->start > search_end) 1789 break; 1790 if (contig && found && state->start > last + 1) 1791 break; 1792 if (state->end >= cur_start && (state->state & bits) == bits) { 1793 total_bytes += min(search_end, state->end) + 1 - 1794 max(cur_start, state->start); 1795 if (total_bytes >= max_bytes) 1796 break; 1797 if (!found) { 1798 *start = max(cur_start, state->start); 1799 found = 1; 1800 } 1801 last = state->end; 1802 } else if (contig && found) { 1803 break; 1804 } 1805 node = rb_next(node); 1806 if (!node) 1807 break; 1808 } 1809 out: 1810 spin_unlock(&tree->lock); 1811 return total_bytes; 1812 } 1813 1814 /* 1815 * set the private field for a given byte offset in the tree. If there isn't 1816 * an extent_state there already, this does nothing. 1817 */ 1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1819 struct io_failure_record *failrec) 1820 { 1821 struct rb_node *node; 1822 struct extent_state *state; 1823 int ret = 0; 1824 1825 spin_lock(&tree->lock); 1826 /* 1827 * this search will find all the extents that end after 1828 * our range starts. 1829 */ 1830 node = tree_search(tree, start); 1831 if (!node) { 1832 ret = -ENOENT; 1833 goto out; 1834 } 1835 state = rb_entry(node, struct extent_state, rb_node); 1836 if (state->start != start) { 1837 ret = -ENOENT; 1838 goto out; 1839 } 1840 state->failrec = failrec; 1841 out: 1842 spin_unlock(&tree->lock); 1843 return ret; 1844 } 1845 1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1847 struct io_failure_record **failrec) 1848 { 1849 struct rb_node *node; 1850 struct extent_state *state; 1851 int ret = 0; 1852 1853 spin_lock(&tree->lock); 1854 /* 1855 * this search will find all the extents that end after 1856 * our range starts. 1857 */ 1858 node = tree_search(tree, start); 1859 if (!node) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 if (state->start != start) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 *failrec = state->failrec; 1869 out: 1870 spin_unlock(&tree->lock); 1871 return ret; 1872 } 1873 1874 /* 1875 * searches a range in the state tree for a given mask. 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree 1877 * has the bits set. Otherwise, 1 is returned if any bit in the 1878 * range is found set. 1879 */ 1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1881 unsigned bits, int filled, struct extent_state *cached) 1882 { 1883 struct extent_state *state = NULL; 1884 struct rb_node *node; 1885 int bitset = 0; 1886 1887 spin_lock(&tree->lock); 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1889 cached->end > start) 1890 node = &cached->rb_node; 1891 else 1892 node = tree_search(tree, start); 1893 while (node && start <= end) { 1894 state = rb_entry(node, struct extent_state, rb_node); 1895 1896 if (filled && state->start > start) { 1897 bitset = 0; 1898 break; 1899 } 1900 1901 if (state->start > end) 1902 break; 1903 1904 if (state->state & bits) { 1905 bitset = 1; 1906 if (!filled) 1907 break; 1908 } else if (filled) { 1909 bitset = 0; 1910 break; 1911 } 1912 1913 if (state->end == (u64)-1) 1914 break; 1915 1916 start = state->end + 1; 1917 if (start > end) 1918 break; 1919 node = rb_next(node); 1920 if (!node) { 1921 if (filled) 1922 bitset = 0; 1923 break; 1924 } 1925 } 1926 spin_unlock(&tree->lock); 1927 return bitset; 1928 } 1929 1930 /* 1931 * helper function to set a given page up to date if all the 1932 * extents in the tree for that page are up to date 1933 */ 1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1935 { 1936 u64 start = page_offset(page); 1937 u64 end = start + PAGE_SIZE - 1; 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1939 SetPageUptodate(page); 1940 } 1941 1942 int free_io_failure(struct extent_io_tree *failure_tree, 1943 struct extent_io_tree *io_tree, 1944 struct io_failure_record *rec) 1945 { 1946 int ret; 1947 int err = 0; 1948 1949 set_state_failrec(failure_tree, rec->start, NULL); 1950 ret = clear_extent_bits(failure_tree, rec->start, 1951 rec->start + rec->len - 1, 1952 EXTENT_LOCKED | EXTENT_DIRTY); 1953 if (ret) 1954 err = ret; 1955 1956 ret = clear_extent_bits(io_tree, rec->start, 1957 rec->start + rec->len - 1, 1958 EXTENT_DAMAGED); 1959 if (ret && !err) 1960 err = ret; 1961 1962 kfree(rec); 1963 return err; 1964 } 1965 1966 /* 1967 * this bypasses the standard btrfs submit functions deliberately, as 1968 * the standard behavior is to write all copies in a raid setup. here we only 1969 * want to write the one bad copy. so we do the mapping for ourselves and issue 1970 * submit_bio directly. 1971 * to avoid any synchronization issues, wait for the data after writing, which 1972 * actually prevents the read that triggered the error from finishing. 1973 * currently, there can be no more than two copies of every data bit. thus, 1974 * exactly one rewrite is required. 1975 */ 1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1977 u64 length, u64 logical, struct page *page, 1978 unsigned int pg_offset, int mirror_num) 1979 { 1980 struct bio *bio; 1981 struct btrfs_device *dev; 1982 u64 map_length = 0; 1983 u64 sector; 1984 struct btrfs_bio *bbio = NULL; 1985 int ret; 1986 1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1988 BUG_ON(!mirror_num); 1989 1990 bio = btrfs_io_bio_alloc(1); 1991 bio->bi_iter.bi_size = 0; 1992 map_length = length; 1993 1994 /* 1995 * Avoid races with device replace and make sure our bbio has devices 1996 * associated to its stripes that don't go away while we are doing the 1997 * read repair operation. 1998 */ 1999 btrfs_bio_counter_inc_blocked(fs_info); 2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2001 /* 2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2003 * to update all raid stripes, but here we just want to correct 2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2005 * stripe's dev and sector. 2006 */ 2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2008 &map_length, &bbio, 0); 2009 if (ret) { 2010 btrfs_bio_counter_dec(fs_info); 2011 bio_put(bio); 2012 return -EIO; 2013 } 2014 ASSERT(bbio->mirror_num == 1); 2015 } else { 2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2017 &map_length, &bbio, mirror_num); 2018 if (ret) { 2019 btrfs_bio_counter_dec(fs_info); 2020 bio_put(bio); 2021 return -EIO; 2022 } 2023 BUG_ON(mirror_num != bbio->mirror_num); 2024 } 2025 2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2027 bio->bi_iter.bi_sector = sector; 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2029 btrfs_put_bbio(bbio); 2030 if (!dev || !dev->bdev || 2031 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2032 btrfs_bio_counter_dec(fs_info); 2033 bio_put(bio); 2034 return -EIO; 2035 } 2036 bio_set_dev(bio, dev->bdev); 2037 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2038 bio_add_page(bio, page, length, pg_offset); 2039 2040 if (btrfsic_submit_bio_wait(bio)) { 2041 /* try to remap that extent elsewhere? */ 2042 btrfs_bio_counter_dec(fs_info); 2043 bio_put(bio); 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2045 return -EIO; 2046 } 2047 2048 btrfs_info_rl_in_rcu(fs_info, 2049 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2050 ino, start, 2051 rcu_str_deref(dev->name), sector); 2052 btrfs_bio_counter_dec(fs_info); 2053 bio_put(bio); 2054 return 0; 2055 } 2056 2057 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2058 struct extent_buffer *eb, int mirror_num) 2059 { 2060 u64 start = eb->start; 2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2062 int ret = 0; 2063 2064 if (sb_rdonly(fs_info->sb)) 2065 return -EROFS; 2066 2067 for (i = 0; i < num_pages; i++) { 2068 struct page *p = eb->pages[i]; 2069 2070 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2071 start - page_offset(p), mirror_num); 2072 if (ret) 2073 break; 2074 start += PAGE_SIZE; 2075 } 2076 2077 return ret; 2078 } 2079 2080 /* 2081 * each time an IO finishes, we do a fast check in the IO failure tree 2082 * to see if we need to process or clean up an io_failure_record 2083 */ 2084 int clean_io_failure(struct btrfs_fs_info *fs_info, 2085 struct extent_io_tree *failure_tree, 2086 struct extent_io_tree *io_tree, u64 start, 2087 struct page *page, u64 ino, unsigned int pg_offset) 2088 { 2089 u64 private; 2090 struct io_failure_record *failrec; 2091 struct extent_state *state; 2092 int num_copies; 2093 int ret; 2094 2095 private = 0; 2096 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2097 EXTENT_DIRTY, 0); 2098 if (!ret) 2099 return 0; 2100 2101 ret = get_state_failrec(failure_tree, start, &failrec); 2102 if (ret) 2103 return 0; 2104 2105 BUG_ON(!failrec->this_mirror); 2106 2107 if (failrec->in_validation) { 2108 /* there was no real error, just free the record */ 2109 btrfs_debug(fs_info, 2110 "clean_io_failure: freeing dummy error at %llu", 2111 failrec->start); 2112 goto out; 2113 } 2114 if (sb_rdonly(fs_info->sb)) 2115 goto out; 2116 2117 spin_lock(&io_tree->lock); 2118 state = find_first_extent_bit_state(io_tree, 2119 failrec->start, 2120 EXTENT_LOCKED); 2121 spin_unlock(&io_tree->lock); 2122 2123 if (state && state->start <= failrec->start && 2124 state->end >= failrec->start + failrec->len - 1) { 2125 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2126 failrec->len); 2127 if (num_copies > 1) { 2128 repair_io_failure(fs_info, ino, start, failrec->len, 2129 failrec->logical, page, pg_offset, 2130 failrec->failed_mirror); 2131 } 2132 } 2133 2134 out: 2135 free_io_failure(failure_tree, io_tree, failrec); 2136 2137 return 0; 2138 } 2139 2140 /* 2141 * Can be called when 2142 * - hold extent lock 2143 * - under ordered extent 2144 * - the inode is freeing 2145 */ 2146 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2147 { 2148 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2149 struct io_failure_record *failrec; 2150 struct extent_state *state, *next; 2151 2152 if (RB_EMPTY_ROOT(&failure_tree->state)) 2153 return; 2154 2155 spin_lock(&failure_tree->lock); 2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2157 while (state) { 2158 if (state->start > end) 2159 break; 2160 2161 ASSERT(state->end <= end); 2162 2163 next = next_state(state); 2164 2165 failrec = state->failrec; 2166 free_extent_state(state); 2167 kfree(failrec); 2168 2169 state = next; 2170 } 2171 spin_unlock(&failure_tree->lock); 2172 } 2173 2174 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2175 struct io_failure_record **failrec_ret) 2176 { 2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2178 struct io_failure_record *failrec; 2179 struct extent_map *em; 2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2183 int ret; 2184 u64 logical; 2185 2186 ret = get_state_failrec(failure_tree, start, &failrec); 2187 if (ret) { 2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2189 if (!failrec) 2190 return -ENOMEM; 2191 2192 failrec->start = start; 2193 failrec->len = end - start + 1; 2194 failrec->this_mirror = 0; 2195 failrec->bio_flags = 0; 2196 failrec->in_validation = 0; 2197 2198 read_lock(&em_tree->lock); 2199 em = lookup_extent_mapping(em_tree, start, failrec->len); 2200 if (!em) { 2201 read_unlock(&em_tree->lock); 2202 kfree(failrec); 2203 return -EIO; 2204 } 2205 2206 if (em->start > start || em->start + em->len <= start) { 2207 free_extent_map(em); 2208 em = NULL; 2209 } 2210 read_unlock(&em_tree->lock); 2211 if (!em) { 2212 kfree(failrec); 2213 return -EIO; 2214 } 2215 2216 logical = start - em->start; 2217 logical = em->block_start + logical; 2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2219 logical = em->block_start; 2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2221 extent_set_compress_type(&failrec->bio_flags, 2222 em->compress_type); 2223 } 2224 2225 btrfs_debug(fs_info, 2226 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2227 logical, start, failrec->len); 2228 2229 failrec->logical = logical; 2230 free_extent_map(em); 2231 2232 /* set the bits in the private failure tree */ 2233 ret = set_extent_bits(failure_tree, start, end, 2234 EXTENT_LOCKED | EXTENT_DIRTY); 2235 if (ret >= 0) 2236 ret = set_state_failrec(failure_tree, start, failrec); 2237 /* set the bits in the inode's tree */ 2238 if (ret >= 0) 2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2240 if (ret < 0) { 2241 kfree(failrec); 2242 return ret; 2243 } 2244 } else { 2245 btrfs_debug(fs_info, 2246 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2247 failrec->logical, failrec->start, failrec->len, 2248 failrec->in_validation); 2249 /* 2250 * when data can be on disk more than twice, add to failrec here 2251 * (e.g. with a list for failed_mirror) to make 2252 * clean_io_failure() clean all those errors at once. 2253 */ 2254 } 2255 2256 *failrec_ret = failrec; 2257 2258 return 0; 2259 } 2260 2261 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2262 struct io_failure_record *failrec, int failed_mirror) 2263 { 2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2265 int num_copies; 2266 2267 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2268 if (num_copies == 1) { 2269 /* 2270 * we only have a single copy of the data, so don't bother with 2271 * all the retry and error correction code that follows. no 2272 * matter what the error is, it is very likely to persist. 2273 */ 2274 btrfs_debug(fs_info, 2275 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2276 num_copies, failrec->this_mirror, failed_mirror); 2277 return false; 2278 } 2279 2280 /* 2281 * there are two premises: 2282 * a) deliver good data to the caller 2283 * b) correct the bad sectors on disk 2284 */ 2285 if (failed_bio_pages > 1) { 2286 /* 2287 * to fulfill b), we need to know the exact failing sectors, as 2288 * we don't want to rewrite any more than the failed ones. thus, 2289 * we need separate read requests for the failed bio 2290 * 2291 * if the following BUG_ON triggers, our validation request got 2292 * merged. we need separate requests for our algorithm to work. 2293 */ 2294 BUG_ON(failrec->in_validation); 2295 failrec->in_validation = 1; 2296 failrec->this_mirror = failed_mirror; 2297 } else { 2298 /* 2299 * we're ready to fulfill a) and b) alongside. get a good copy 2300 * of the failed sector and if we succeed, we have setup 2301 * everything for repair_io_failure to do the rest for us. 2302 */ 2303 if (failrec->in_validation) { 2304 BUG_ON(failrec->this_mirror != failed_mirror); 2305 failrec->in_validation = 0; 2306 failrec->this_mirror = 0; 2307 } 2308 failrec->failed_mirror = failed_mirror; 2309 failrec->this_mirror++; 2310 if (failrec->this_mirror == failed_mirror) 2311 failrec->this_mirror++; 2312 } 2313 2314 if (failrec->this_mirror > num_copies) { 2315 btrfs_debug(fs_info, 2316 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2317 num_copies, failrec->this_mirror, failed_mirror); 2318 return false; 2319 } 2320 2321 return true; 2322 } 2323 2324 2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2326 struct io_failure_record *failrec, 2327 struct page *page, int pg_offset, int icsum, 2328 bio_end_io_t *endio_func, void *data) 2329 { 2330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2331 struct bio *bio; 2332 struct btrfs_io_bio *btrfs_failed_bio; 2333 struct btrfs_io_bio *btrfs_bio; 2334 2335 bio = btrfs_io_bio_alloc(1); 2336 bio->bi_end_io = endio_func; 2337 bio->bi_iter.bi_sector = failrec->logical >> 9; 2338 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2339 bio->bi_iter.bi_size = 0; 2340 bio->bi_private = data; 2341 2342 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2343 if (btrfs_failed_bio->csum) { 2344 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2345 2346 btrfs_bio = btrfs_io_bio(bio); 2347 btrfs_bio->csum = btrfs_bio->csum_inline; 2348 icsum *= csum_size; 2349 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2350 csum_size); 2351 } 2352 2353 bio_add_page(bio, page, failrec->len, pg_offset); 2354 2355 return bio; 2356 } 2357 2358 /* 2359 * this is a generic handler for readpage errors (default 2360 * readpage_io_failed_hook). if other copies exist, read those and write back 2361 * good data to the failed position. does not investigate in remapping the 2362 * failed extent elsewhere, hoping the device will be smart enough to do this as 2363 * needed 2364 */ 2365 2366 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2367 struct page *page, u64 start, u64 end, 2368 int failed_mirror) 2369 { 2370 struct io_failure_record *failrec; 2371 struct inode *inode = page->mapping->host; 2372 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2373 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2374 struct bio *bio; 2375 int read_mode = 0; 2376 blk_status_t status; 2377 int ret; 2378 unsigned failed_bio_pages = bio_pages_all(failed_bio); 2379 2380 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2381 2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2383 if (ret) 2384 return ret; 2385 2386 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2387 failed_mirror)) { 2388 free_io_failure(failure_tree, tree, failrec); 2389 return -EIO; 2390 } 2391 2392 if (failed_bio_pages > 1) 2393 read_mode |= REQ_FAILFAST_DEV; 2394 2395 phy_offset >>= inode->i_sb->s_blocksize_bits; 2396 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2397 start - page_offset(page), 2398 (int)phy_offset, failed_bio->bi_end_io, 2399 NULL); 2400 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2401 2402 btrfs_debug(btrfs_sb(inode->i_sb), 2403 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2404 read_mode, failrec->this_mirror, failrec->in_validation); 2405 2406 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2407 failrec->bio_flags, 0); 2408 if (status) { 2409 free_io_failure(failure_tree, tree, failrec); 2410 bio_put(bio); 2411 ret = blk_status_to_errno(status); 2412 } 2413 2414 return ret; 2415 } 2416 2417 /* lots and lots of room for performance fixes in the end_bio funcs */ 2418 2419 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2420 { 2421 int uptodate = (err == 0); 2422 struct extent_io_tree *tree; 2423 int ret = 0; 2424 2425 tree = &BTRFS_I(page->mapping->host)->io_tree; 2426 2427 if (tree->ops && tree->ops->writepage_end_io_hook) 2428 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2429 uptodate); 2430 2431 if (!uptodate) { 2432 ClearPageUptodate(page); 2433 SetPageError(page); 2434 ret = err < 0 ? err : -EIO; 2435 mapping_set_error(page->mapping, ret); 2436 } 2437 } 2438 2439 /* 2440 * after a writepage IO is done, we need to: 2441 * clear the uptodate bits on error 2442 * clear the writeback bits in the extent tree for this IO 2443 * end_page_writeback if the page has no more pending IO 2444 * 2445 * Scheduling is not allowed, so the extent state tree is expected 2446 * to have one and only one object corresponding to this IO. 2447 */ 2448 static void end_bio_extent_writepage(struct bio *bio) 2449 { 2450 int error = blk_status_to_errno(bio->bi_status); 2451 struct bio_vec *bvec; 2452 u64 start; 2453 u64 end; 2454 int i; 2455 2456 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2457 bio_for_each_segment_all(bvec, bio, i) { 2458 struct page *page = bvec->bv_page; 2459 struct inode *inode = page->mapping->host; 2460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2461 2462 /* We always issue full-page reads, but if some block 2463 * in a page fails to read, blk_update_request() will 2464 * advance bv_offset and adjust bv_len to compensate. 2465 * Print a warning for nonzero offsets, and an error 2466 * if they don't add up to a full page. */ 2467 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2468 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2469 btrfs_err(fs_info, 2470 "partial page write in btrfs with offset %u and length %u", 2471 bvec->bv_offset, bvec->bv_len); 2472 else 2473 btrfs_info(fs_info, 2474 "incomplete page write in btrfs with offset %u and length %u", 2475 bvec->bv_offset, bvec->bv_len); 2476 } 2477 2478 start = page_offset(page); 2479 end = start + bvec->bv_offset + bvec->bv_len - 1; 2480 2481 end_extent_writepage(page, error, start, end); 2482 end_page_writeback(page); 2483 } 2484 2485 bio_put(bio); 2486 } 2487 2488 static void 2489 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2490 int uptodate) 2491 { 2492 struct extent_state *cached = NULL; 2493 u64 end = start + len - 1; 2494 2495 if (uptodate && tree->track_uptodate) 2496 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2497 unlock_extent_cached_atomic(tree, start, end, &cached); 2498 } 2499 2500 /* 2501 * after a readpage IO is done, we need to: 2502 * clear the uptodate bits on error 2503 * set the uptodate bits if things worked 2504 * set the page up to date if all extents in the tree are uptodate 2505 * clear the lock bit in the extent tree 2506 * unlock the page if there are no other extents locked for it 2507 * 2508 * Scheduling is not allowed, so the extent state tree is expected 2509 * to have one and only one object corresponding to this IO. 2510 */ 2511 static void end_bio_extent_readpage(struct bio *bio) 2512 { 2513 struct bio_vec *bvec; 2514 int uptodate = !bio->bi_status; 2515 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2516 struct extent_io_tree *tree, *failure_tree; 2517 u64 offset = 0; 2518 u64 start; 2519 u64 end; 2520 u64 len; 2521 u64 extent_start = 0; 2522 u64 extent_len = 0; 2523 int mirror; 2524 int ret; 2525 int i; 2526 2527 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2528 bio_for_each_segment_all(bvec, bio, i) { 2529 struct page *page = bvec->bv_page; 2530 struct inode *inode = page->mapping->host; 2531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2532 2533 btrfs_debug(fs_info, 2534 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2535 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2536 io_bio->mirror_num); 2537 tree = &BTRFS_I(inode)->io_tree; 2538 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2539 2540 /* We always issue full-page reads, but if some block 2541 * in a page fails to read, blk_update_request() will 2542 * advance bv_offset and adjust bv_len to compensate. 2543 * Print a warning for nonzero offsets, and an error 2544 * if they don't add up to a full page. */ 2545 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2546 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2547 btrfs_err(fs_info, 2548 "partial page read in btrfs with offset %u and length %u", 2549 bvec->bv_offset, bvec->bv_len); 2550 else 2551 btrfs_info(fs_info, 2552 "incomplete page read in btrfs with offset %u and length %u", 2553 bvec->bv_offset, bvec->bv_len); 2554 } 2555 2556 start = page_offset(page); 2557 end = start + bvec->bv_offset + bvec->bv_len - 1; 2558 len = bvec->bv_len; 2559 2560 mirror = io_bio->mirror_num; 2561 if (likely(uptodate && tree->ops)) { 2562 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2563 page, start, end, 2564 mirror); 2565 if (ret) 2566 uptodate = 0; 2567 else 2568 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2569 failure_tree, tree, start, 2570 page, 2571 btrfs_ino(BTRFS_I(inode)), 0); 2572 } 2573 2574 if (likely(uptodate)) 2575 goto readpage_ok; 2576 2577 if (tree->ops) { 2578 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2579 if (ret == -EAGAIN) { 2580 /* 2581 * Data inode's readpage_io_failed_hook() always 2582 * returns -EAGAIN. 2583 * 2584 * The generic bio_readpage_error handles errors 2585 * the following way: If possible, new read 2586 * requests are created and submitted and will 2587 * end up in end_bio_extent_readpage as well (if 2588 * we're lucky, not in the !uptodate case). In 2589 * that case it returns 0 and we just go on with 2590 * the next page in our bio. If it can't handle 2591 * the error it will return -EIO and we remain 2592 * responsible for that page. 2593 */ 2594 ret = bio_readpage_error(bio, offset, page, 2595 start, end, mirror); 2596 if (ret == 0) { 2597 uptodate = !bio->bi_status; 2598 offset += len; 2599 continue; 2600 } 2601 } 2602 2603 /* 2604 * metadata's readpage_io_failed_hook() always returns 2605 * -EIO and fixes nothing. -EIO is also returned if 2606 * data inode error could not be fixed. 2607 */ 2608 ASSERT(ret == -EIO); 2609 } 2610 readpage_ok: 2611 if (likely(uptodate)) { 2612 loff_t i_size = i_size_read(inode); 2613 pgoff_t end_index = i_size >> PAGE_SHIFT; 2614 unsigned off; 2615 2616 /* Zero out the end if this page straddles i_size */ 2617 off = i_size & (PAGE_SIZE-1); 2618 if (page->index == end_index && off) 2619 zero_user_segment(page, off, PAGE_SIZE); 2620 SetPageUptodate(page); 2621 } else { 2622 ClearPageUptodate(page); 2623 SetPageError(page); 2624 } 2625 unlock_page(page); 2626 offset += len; 2627 2628 if (unlikely(!uptodate)) { 2629 if (extent_len) { 2630 endio_readpage_release_extent(tree, 2631 extent_start, 2632 extent_len, 1); 2633 extent_start = 0; 2634 extent_len = 0; 2635 } 2636 endio_readpage_release_extent(tree, start, 2637 end - start + 1, 0); 2638 } else if (!extent_len) { 2639 extent_start = start; 2640 extent_len = end + 1 - start; 2641 } else if (extent_start + extent_len == start) { 2642 extent_len += end + 1 - start; 2643 } else { 2644 endio_readpage_release_extent(tree, extent_start, 2645 extent_len, uptodate); 2646 extent_start = start; 2647 extent_len = end + 1 - start; 2648 } 2649 } 2650 2651 if (extent_len) 2652 endio_readpage_release_extent(tree, extent_start, extent_len, 2653 uptodate); 2654 if (io_bio->end_io) 2655 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2656 bio_put(bio); 2657 } 2658 2659 /* 2660 * Initialize the members up to but not including 'bio'. Use after allocating a 2661 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2662 * 'bio' because use of __GFP_ZERO is not supported. 2663 */ 2664 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2665 { 2666 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2667 } 2668 2669 /* 2670 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2671 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2672 * for the appropriate container_of magic 2673 */ 2674 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2675 { 2676 struct bio *bio; 2677 2678 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset); 2679 bio_set_dev(bio, bdev); 2680 bio->bi_iter.bi_sector = first_byte >> 9; 2681 btrfs_io_bio_init(btrfs_io_bio(bio)); 2682 return bio; 2683 } 2684 2685 struct bio *btrfs_bio_clone(struct bio *bio) 2686 { 2687 struct btrfs_io_bio *btrfs_bio; 2688 struct bio *new; 2689 2690 /* Bio allocation backed by a bioset does not fail */ 2691 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset); 2692 btrfs_bio = btrfs_io_bio(new); 2693 btrfs_io_bio_init(btrfs_bio); 2694 btrfs_bio->iter = bio->bi_iter; 2695 return new; 2696 } 2697 2698 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2699 { 2700 struct bio *bio; 2701 2702 /* Bio allocation backed by a bioset does not fail */ 2703 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset); 2704 btrfs_io_bio_init(btrfs_io_bio(bio)); 2705 return bio; 2706 } 2707 2708 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2709 { 2710 struct bio *bio; 2711 struct btrfs_io_bio *btrfs_bio; 2712 2713 /* this will never fail when it's backed by a bioset */ 2714 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset); 2715 ASSERT(bio); 2716 2717 btrfs_bio = btrfs_io_bio(bio); 2718 btrfs_io_bio_init(btrfs_bio); 2719 2720 bio_trim(bio, offset >> 9, size >> 9); 2721 btrfs_bio->iter = bio->bi_iter; 2722 return bio; 2723 } 2724 2725 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2726 unsigned long bio_flags) 2727 { 2728 blk_status_t ret = 0; 2729 struct bio_vec *bvec = bio_last_bvec_all(bio); 2730 struct page *page = bvec->bv_page; 2731 struct extent_io_tree *tree = bio->bi_private; 2732 u64 start; 2733 2734 start = page_offset(page) + bvec->bv_offset; 2735 2736 bio->bi_private = NULL; 2737 2738 if (tree->ops) 2739 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2740 mirror_num, bio_flags, start); 2741 else 2742 btrfsic_submit_bio(bio); 2743 2744 return blk_status_to_errno(ret); 2745 } 2746 2747 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2748 unsigned long offset, size_t size, struct bio *bio, 2749 unsigned long bio_flags) 2750 { 2751 int ret = 0; 2752 if (tree->ops) 2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2754 bio_flags); 2755 return ret; 2756 2757 } 2758 2759 /* 2760 * @opf: bio REQ_OP_* and REQ_* flags as one value 2761 */ 2762 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2763 struct writeback_control *wbc, 2764 struct page *page, u64 offset, 2765 size_t size, unsigned long pg_offset, 2766 struct block_device *bdev, 2767 struct bio **bio_ret, 2768 bio_end_io_t end_io_func, 2769 int mirror_num, 2770 unsigned long prev_bio_flags, 2771 unsigned long bio_flags, 2772 bool force_bio_submit) 2773 { 2774 int ret = 0; 2775 struct bio *bio; 2776 int contig = 0; 2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2778 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2779 sector_t sector = offset >> 9; 2780 2781 if (bio_ret && *bio_ret) { 2782 bio = *bio_ret; 2783 if (old_compressed) 2784 contig = bio->bi_iter.bi_sector == sector; 2785 else 2786 contig = bio_end_sector(bio) == sector; 2787 2788 if (prev_bio_flags != bio_flags || !contig || 2789 force_bio_submit || 2790 merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) || 2791 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2793 if (ret < 0) { 2794 *bio_ret = NULL; 2795 return ret; 2796 } 2797 bio = NULL; 2798 } else { 2799 if (wbc) 2800 wbc_account_io(wbc, page, page_size); 2801 return 0; 2802 } 2803 } 2804 2805 bio = btrfs_bio_alloc(bdev, offset); 2806 bio_add_page(bio, page, page_size, pg_offset); 2807 bio->bi_end_io = end_io_func; 2808 bio->bi_private = tree; 2809 bio->bi_write_hint = page->mapping->host->i_write_hint; 2810 bio->bi_opf = opf; 2811 if (wbc) { 2812 wbc_init_bio(wbc, bio); 2813 wbc_account_io(wbc, page, page_size); 2814 } 2815 2816 if (bio_ret) 2817 *bio_ret = bio; 2818 else 2819 ret = submit_one_bio(bio, mirror_num, bio_flags); 2820 2821 return ret; 2822 } 2823 2824 static void attach_extent_buffer_page(struct extent_buffer *eb, 2825 struct page *page) 2826 { 2827 if (!PagePrivate(page)) { 2828 SetPagePrivate(page); 2829 get_page(page); 2830 set_page_private(page, (unsigned long)eb); 2831 } else { 2832 WARN_ON(page->private != (unsigned long)eb); 2833 } 2834 } 2835 2836 void set_page_extent_mapped(struct page *page) 2837 { 2838 if (!PagePrivate(page)) { 2839 SetPagePrivate(page); 2840 get_page(page); 2841 set_page_private(page, EXTENT_PAGE_PRIVATE); 2842 } 2843 } 2844 2845 static struct extent_map * 2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2847 u64 start, u64 len, get_extent_t *get_extent, 2848 struct extent_map **em_cached) 2849 { 2850 struct extent_map *em; 2851 2852 if (em_cached && *em_cached) { 2853 em = *em_cached; 2854 if (extent_map_in_tree(em) && start >= em->start && 2855 start < extent_map_end(em)) { 2856 refcount_inc(&em->refs); 2857 return em; 2858 } 2859 2860 free_extent_map(em); 2861 *em_cached = NULL; 2862 } 2863 2864 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2865 if (em_cached && !IS_ERR_OR_NULL(em)) { 2866 BUG_ON(*em_cached); 2867 refcount_inc(&em->refs); 2868 *em_cached = em; 2869 } 2870 return em; 2871 } 2872 /* 2873 * basic readpage implementation. Locked extent state structs are inserted 2874 * into the tree that are removed when the IO is done (by the end_io 2875 * handlers) 2876 * XXX JDM: This needs looking at to ensure proper page locking 2877 * return 0 on success, otherwise return error 2878 */ 2879 static int __do_readpage(struct extent_io_tree *tree, 2880 struct page *page, 2881 get_extent_t *get_extent, 2882 struct extent_map **em_cached, 2883 struct bio **bio, int mirror_num, 2884 unsigned long *bio_flags, unsigned int read_flags, 2885 u64 *prev_em_start) 2886 { 2887 struct inode *inode = page->mapping->host; 2888 u64 start = page_offset(page); 2889 u64 page_end = start + PAGE_SIZE - 1; 2890 u64 end; 2891 u64 cur = start; 2892 u64 extent_offset; 2893 u64 last_byte = i_size_read(inode); 2894 u64 block_start; 2895 u64 cur_end; 2896 struct extent_map *em; 2897 struct block_device *bdev; 2898 int ret = 0; 2899 int nr = 0; 2900 size_t pg_offset = 0; 2901 size_t iosize; 2902 size_t disk_io_size; 2903 size_t blocksize = inode->i_sb->s_blocksize; 2904 unsigned long this_bio_flag = 0; 2905 2906 set_page_extent_mapped(page); 2907 2908 end = page_end; 2909 if (!PageUptodate(page)) { 2910 if (cleancache_get_page(page) == 0) { 2911 BUG_ON(blocksize != PAGE_SIZE); 2912 unlock_extent(tree, start, end); 2913 goto out; 2914 } 2915 } 2916 2917 if (page->index == last_byte >> PAGE_SHIFT) { 2918 char *userpage; 2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2920 2921 if (zero_offset) { 2922 iosize = PAGE_SIZE - zero_offset; 2923 userpage = kmap_atomic(page); 2924 memset(userpage + zero_offset, 0, iosize); 2925 flush_dcache_page(page); 2926 kunmap_atomic(userpage); 2927 } 2928 } 2929 while (cur <= end) { 2930 bool force_bio_submit = false; 2931 u64 offset; 2932 2933 if (cur >= last_byte) { 2934 char *userpage; 2935 struct extent_state *cached = NULL; 2936 2937 iosize = PAGE_SIZE - pg_offset; 2938 userpage = kmap_atomic(page); 2939 memset(userpage + pg_offset, 0, iosize); 2940 flush_dcache_page(page); 2941 kunmap_atomic(userpage); 2942 set_extent_uptodate(tree, cur, cur + iosize - 1, 2943 &cached, GFP_NOFS); 2944 unlock_extent_cached(tree, cur, 2945 cur + iosize - 1, &cached); 2946 break; 2947 } 2948 em = __get_extent_map(inode, page, pg_offset, cur, 2949 end - cur + 1, get_extent, em_cached); 2950 if (IS_ERR_OR_NULL(em)) { 2951 SetPageError(page); 2952 unlock_extent(tree, cur, end); 2953 break; 2954 } 2955 extent_offset = cur - em->start; 2956 BUG_ON(extent_map_end(em) <= cur); 2957 BUG_ON(end < cur); 2958 2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2960 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2961 extent_set_compress_type(&this_bio_flag, 2962 em->compress_type); 2963 } 2964 2965 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2966 cur_end = min(extent_map_end(em) - 1, end); 2967 iosize = ALIGN(iosize, blocksize); 2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2969 disk_io_size = em->block_len; 2970 offset = em->block_start; 2971 } else { 2972 offset = em->block_start + extent_offset; 2973 disk_io_size = iosize; 2974 } 2975 bdev = em->bdev; 2976 block_start = em->block_start; 2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2978 block_start = EXTENT_MAP_HOLE; 2979 2980 /* 2981 * If we have a file range that points to a compressed extent 2982 * and it's followed by a consecutive file range that points to 2983 * to the same compressed extent (possibly with a different 2984 * offset and/or length, so it either points to the whole extent 2985 * or only part of it), we must make sure we do not submit a 2986 * single bio to populate the pages for the 2 ranges because 2987 * this makes the compressed extent read zero out the pages 2988 * belonging to the 2nd range. Imagine the following scenario: 2989 * 2990 * File layout 2991 * [0 - 8K] [8K - 24K] 2992 * | | 2993 * | | 2994 * points to extent X, points to extent X, 2995 * offset 4K, length of 8K offset 0, length 16K 2996 * 2997 * [extent X, compressed length = 4K uncompressed length = 16K] 2998 * 2999 * If the bio to read the compressed extent covers both ranges, 3000 * it will decompress extent X into the pages belonging to the 3001 * first range and then it will stop, zeroing out the remaining 3002 * pages that belong to the other range that points to extent X. 3003 * So here we make sure we submit 2 bios, one for the first 3004 * range and another one for the third range. Both will target 3005 * the same physical extent from disk, but we can't currently 3006 * make the compressed bio endio callback populate the pages 3007 * for both ranges because each compressed bio is tightly 3008 * coupled with a single extent map, and each range can have 3009 * an extent map with a different offset value relative to the 3010 * uncompressed data of our extent and different lengths. This 3011 * is a corner case so we prioritize correctness over 3012 * non-optimal behavior (submitting 2 bios for the same extent). 3013 */ 3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3015 prev_em_start && *prev_em_start != (u64)-1 && 3016 *prev_em_start != em->orig_start) 3017 force_bio_submit = true; 3018 3019 if (prev_em_start) 3020 *prev_em_start = em->orig_start; 3021 3022 free_extent_map(em); 3023 em = NULL; 3024 3025 /* we've found a hole, just zero and go on */ 3026 if (block_start == EXTENT_MAP_HOLE) { 3027 char *userpage; 3028 struct extent_state *cached = NULL; 3029 3030 userpage = kmap_atomic(page); 3031 memset(userpage + pg_offset, 0, iosize); 3032 flush_dcache_page(page); 3033 kunmap_atomic(userpage); 3034 3035 set_extent_uptodate(tree, cur, cur + iosize - 1, 3036 &cached, GFP_NOFS); 3037 unlock_extent_cached(tree, cur, 3038 cur + iosize - 1, &cached); 3039 cur = cur + iosize; 3040 pg_offset += iosize; 3041 continue; 3042 } 3043 /* the get_extent function already copied into the page */ 3044 if (test_range_bit(tree, cur, cur_end, 3045 EXTENT_UPTODATE, 1, NULL)) { 3046 check_page_uptodate(tree, page); 3047 unlock_extent(tree, cur, cur + iosize - 1); 3048 cur = cur + iosize; 3049 pg_offset += iosize; 3050 continue; 3051 } 3052 /* we have an inline extent but it didn't get marked up 3053 * to date. Error out 3054 */ 3055 if (block_start == EXTENT_MAP_INLINE) { 3056 SetPageError(page); 3057 unlock_extent(tree, cur, cur + iosize - 1); 3058 cur = cur + iosize; 3059 pg_offset += iosize; 3060 continue; 3061 } 3062 3063 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3064 page, offset, disk_io_size, 3065 pg_offset, bdev, bio, 3066 end_bio_extent_readpage, mirror_num, 3067 *bio_flags, 3068 this_bio_flag, 3069 force_bio_submit); 3070 if (!ret) { 3071 nr++; 3072 *bio_flags = this_bio_flag; 3073 } else { 3074 SetPageError(page); 3075 unlock_extent(tree, cur, cur + iosize - 1); 3076 goto out; 3077 } 3078 cur = cur + iosize; 3079 pg_offset += iosize; 3080 } 3081 out: 3082 if (!nr) { 3083 if (!PageError(page)) 3084 SetPageUptodate(page); 3085 unlock_page(page); 3086 } 3087 return ret; 3088 } 3089 3090 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3091 struct page *pages[], int nr_pages, 3092 u64 start, u64 end, 3093 struct extent_map **em_cached, 3094 struct bio **bio, 3095 unsigned long *bio_flags, 3096 u64 *prev_em_start) 3097 { 3098 struct inode *inode; 3099 struct btrfs_ordered_extent *ordered; 3100 int index; 3101 3102 inode = pages[0]->mapping->host; 3103 while (1) { 3104 lock_extent(tree, start, end); 3105 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3106 end - start + 1); 3107 if (!ordered) 3108 break; 3109 unlock_extent(tree, start, end); 3110 btrfs_start_ordered_extent(inode, ordered, 1); 3111 btrfs_put_ordered_extent(ordered); 3112 } 3113 3114 for (index = 0; index < nr_pages; index++) { 3115 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3116 bio, 0, bio_flags, 0, prev_em_start); 3117 put_page(pages[index]); 3118 } 3119 } 3120 3121 static void __extent_readpages(struct extent_io_tree *tree, 3122 struct page *pages[], 3123 int nr_pages, 3124 struct extent_map **em_cached, 3125 struct bio **bio, unsigned long *bio_flags, 3126 u64 *prev_em_start) 3127 { 3128 u64 start = 0; 3129 u64 end = 0; 3130 u64 page_start; 3131 int index; 3132 int first_index = 0; 3133 3134 for (index = 0; index < nr_pages; index++) { 3135 page_start = page_offset(pages[index]); 3136 if (!end) { 3137 start = page_start; 3138 end = start + PAGE_SIZE - 1; 3139 first_index = index; 3140 } else if (end + 1 == page_start) { 3141 end += PAGE_SIZE; 3142 } else { 3143 __do_contiguous_readpages(tree, &pages[first_index], 3144 index - first_index, start, 3145 end, em_cached, 3146 bio, bio_flags, 3147 prev_em_start); 3148 start = page_start; 3149 end = start + PAGE_SIZE - 1; 3150 first_index = index; 3151 } 3152 } 3153 3154 if (end) 3155 __do_contiguous_readpages(tree, &pages[first_index], 3156 index - first_index, start, 3157 end, em_cached, bio, 3158 bio_flags, prev_em_start); 3159 } 3160 3161 static int __extent_read_full_page(struct extent_io_tree *tree, 3162 struct page *page, 3163 get_extent_t *get_extent, 3164 struct bio **bio, int mirror_num, 3165 unsigned long *bio_flags, 3166 unsigned int read_flags) 3167 { 3168 struct inode *inode = page->mapping->host; 3169 struct btrfs_ordered_extent *ordered; 3170 u64 start = page_offset(page); 3171 u64 end = start + PAGE_SIZE - 1; 3172 int ret; 3173 3174 while (1) { 3175 lock_extent(tree, start, end); 3176 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3177 PAGE_SIZE); 3178 if (!ordered) 3179 break; 3180 unlock_extent(tree, start, end); 3181 btrfs_start_ordered_extent(inode, ordered, 1); 3182 btrfs_put_ordered_extent(ordered); 3183 } 3184 3185 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3186 bio_flags, read_flags, NULL); 3187 return ret; 3188 } 3189 3190 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3191 get_extent_t *get_extent, int mirror_num) 3192 { 3193 struct bio *bio = NULL; 3194 unsigned long bio_flags = 0; 3195 int ret; 3196 3197 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3198 &bio_flags, 0); 3199 if (bio) 3200 ret = submit_one_bio(bio, mirror_num, bio_flags); 3201 return ret; 3202 } 3203 3204 static void update_nr_written(struct writeback_control *wbc, 3205 unsigned long nr_written) 3206 { 3207 wbc->nr_to_write -= nr_written; 3208 } 3209 3210 /* 3211 * helper for __extent_writepage, doing all of the delayed allocation setup. 3212 * 3213 * This returns 1 if our fill_delalloc function did all the work required 3214 * to write the page (copy into inline extent). In this case the IO has 3215 * been started and the page is already unlocked. 3216 * 3217 * This returns 0 if all went well (page still locked) 3218 * This returns < 0 if there were errors (page still locked) 3219 */ 3220 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3221 struct page *page, struct writeback_control *wbc, 3222 struct extent_page_data *epd, 3223 u64 delalloc_start, 3224 unsigned long *nr_written) 3225 { 3226 struct extent_io_tree *tree = epd->tree; 3227 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3228 u64 nr_delalloc; 3229 u64 delalloc_to_write = 0; 3230 u64 delalloc_end = 0; 3231 int ret; 3232 int page_started = 0; 3233 3234 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3235 return 0; 3236 3237 while (delalloc_end < page_end) { 3238 nr_delalloc = find_lock_delalloc_range(inode, tree, 3239 page, 3240 &delalloc_start, 3241 &delalloc_end, 3242 BTRFS_MAX_EXTENT_SIZE); 3243 if (nr_delalloc == 0) { 3244 delalloc_start = delalloc_end + 1; 3245 continue; 3246 } 3247 ret = tree->ops->fill_delalloc(inode, page, 3248 delalloc_start, 3249 delalloc_end, 3250 &page_started, 3251 nr_written, wbc); 3252 /* File system has been set read-only */ 3253 if (ret) { 3254 SetPageError(page); 3255 /* fill_delalloc should be return < 0 for error 3256 * but just in case, we use > 0 here meaning the 3257 * IO is started, so we don't want to return > 0 3258 * unless things are going well. 3259 */ 3260 ret = ret < 0 ? ret : -EIO; 3261 goto done; 3262 } 3263 /* 3264 * delalloc_end is already one less than the total length, so 3265 * we don't subtract one from PAGE_SIZE 3266 */ 3267 delalloc_to_write += (delalloc_end - delalloc_start + 3268 PAGE_SIZE) >> PAGE_SHIFT; 3269 delalloc_start = delalloc_end + 1; 3270 } 3271 if (wbc->nr_to_write < delalloc_to_write) { 3272 int thresh = 8192; 3273 3274 if (delalloc_to_write < thresh * 2) 3275 thresh = delalloc_to_write; 3276 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3277 thresh); 3278 } 3279 3280 /* did the fill delalloc function already unlock and start 3281 * the IO? 3282 */ 3283 if (page_started) { 3284 /* 3285 * we've unlocked the page, so we can't update 3286 * the mapping's writeback index, just update 3287 * nr_to_write. 3288 */ 3289 wbc->nr_to_write -= *nr_written; 3290 return 1; 3291 } 3292 3293 ret = 0; 3294 3295 done: 3296 return ret; 3297 } 3298 3299 /* 3300 * helper for __extent_writepage. This calls the writepage start hooks, 3301 * and does the loop to map the page into extents and bios. 3302 * 3303 * We return 1 if the IO is started and the page is unlocked, 3304 * 0 if all went well (page still locked) 3305 * < 0 if there were errors (page still locked) 3306 */ 3307 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3308 struct page *page, 3309 struct writeback_control *wbc, 3310 struct extent_page_data *epd, 3311 loff_t i_size, 3312 unsigned long nr_written, 3313 unsigned int write_flags, int *nr_ret) 3314 { 3315 struct extent_io_tree *tree = epd->tree; 3316 u64 start = page_offset(page); 3317 u64 page_end = start + PAGE_SIZE - 1; 3318 u64 end; 3319 u64 cur = start; 3320 u64 extent_offset; 3321 u64 block_start; 3322 u64 iosize; 3323 struct extent_map *em; 3324 struct block_device *bdev; 3325 size_t pg_offset = 0; 3326 size_t blocksize; 3327 int ret = 0; 3328 int nr = 0; 3329 bool compressed; 3330 3331 if (tree->ops && tree->ops->writepage_start_hook) { 3332 ret = tree->ops->writepage_start_hook(page, start, 3333 page_end); 3334 if (ret) { 3335 /* Fixup worker will requeue */ 3336 if (ret == -EBUSY) 3337 wbc->pages_skipped++; 3338 else 3339 redirty_page_for_writepage(wbc, page); 3340 3341 update_nr_written(wbc, nr_written); 3342 unlock_page(page); 3343 return 1; 3344 } 3345 } 3346 3347 /* 3348 * we don't want to touch the inode after unlocking the page, 3349 * so we update the mapping writeback index now 3350 */ 3351 update_nr_written(wbc, nr_written + 1); 3352 3353 end = page_end; 3354 if (i_size <= start) { 3355 if (tree->ops && tree->ops->writepage_end_io_hook) 3356 tree->ops->writepage_end_io_hook(page, start, 3357 page_end, NULL, 1); 3358 goto done; 3359 } 3360 3361 blocksize = inode->i_sb->s_blocksize; 3362 3363 while (cur <= end) { 3364 u64 em_end; 3365 u64 offset; 3366 3367 if (cur >= i_size) { 3368 if (tree->ops && tree->ops->writepage_end_io_hook) 3369 tree->ops->writepage_end_io_hook(page, cur, 3370 page_end, NULL, 1); 3371 break; 3372 } 3373 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3374 end - cur + 1, 1); 3375 if (IS_ERR_OR_NULL(em)) { 3376 SetPageError(page); 3377 ret = PTR_ERR_OR_ZERO(em); 3378 break; 3379 } 3380 3381 extent_offset = cur - em->start; 3382 em_end = extent_map_end(em); 3383 BUG_ON(em_end <= cur); 3384 BUG_ON(end < cur); 3385 iosize = min(em_end - cur, end - cur + 1); 3386 iosize = ALIGN(iosize, blocksize); 3387 offset = em->block_start + extent_offset; 3388 bdev = em->bdev; 3389 block_start = em->block_start; 3390 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3391 free_extent_map(em); 3392 em = NULL; 3393 3394 /* 3395 * compressed and inline extents are written through other 3396 * paths in the FS 3397 */ 3398 if (compressed || block_start == EXTENT_MAP_HOLE || 3399 block_start == EXTENT_MAP_INLINE) { 3400 /* 3401 * end_io notification does not happen here for 3402 * compressed extents 3403 */ 3404 if (!compressed && tree->ops && 3405 tree->ops->writepage_end_io_hook) 3406 tree->ops->writepage_end_io_hook(page, cur, 3407 cur + iosize - 1, 3408 NULL, 1); 3409 else if (compressed) { 3410 /* we don't want to end_page_writeback on 3411 * a compressed extent. this happens 3412 * elsewhere 3413 */ 3414 nr++; 3415 } 3416 3417 cur += iosize; 3418 pg_offset += iosize; 3419 continue; 3420 } 3421 3422 set_range_writeback(tree, cur, cur + iosize - 1); 3423 if (!PageWriteback(page)) { 3424 btrfs_err(BTRFS_I(inode)->root->fs_info, 3425 "page %lu not writeback, cur %llu end %llu", 3426 page->index, cur, end); 3427 } 3428 3429 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3430 page, offset, iosize, pg_offset, 3431 bdev, &epd->bio, 3432 end_bio_extent_writepage, 3433 0, 0, 0, false); 3434 if (ret) { 3435 SetPageError(page); 3436 if (PageWriteback(page)) 3437 end_page_writeback(page); 3438 } 3439 3440 cur = cur + iosize; 3441 pg_offset += iosize; 3442 nr++; 3443 } 3444 done: 3445 *nr_ret = nr; 3446 return ret; 3447 } 3448 3449 /* 3450 * the writepage semantics are similar to regular writepage. extent 3451 * records are inserted to lock ranges in the tree, and as dirty areas 3452 * are found, they are marked writeback. Then the lock bits are removed 3453 * and the end_io handler clears the writeback ranges 3454 */ 3455 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3456 struct extent_page_data *epd) 3457 { 3458 struct inode *inode = page->mapping->host; 3459 u64 start = page_offset(page); 3460 u64 page_end = start + PAGE_SIZE - 1; 3461 int ret; 3462 int nr = 0; 3463 size_t pg_offset = 0; 3464 loff_t i_size = i_size_read(inode); 3465 unsigned long end_index = i_size >> PAGE_SHIFT; 3466 unsigned int write_flags = 0; 3467 unsigned long nr_written = 0; 3468 3469 write_flags = wbc_to_write_flags(wbc); 3470 3471 trace___extent_writepage(page, inode, wbc); 3472 3473 WARN_ON(!PageLocked(page)); 3474 3475 ClearPageError(page); 3476 3477 pg_offset = i_size & (PAGE_SIZE - 1); 3478 if (page->index > end_index || 3479 (page->index == end_index && !pg_offset)) { 3480 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3481 unlock_page(page); 3482 return 0; 3483 } 3484 3485 if (page->index == end_index) { 3486 char *userpage; 3487 3488 userpage = kmap_atomic(page); 3489 memset(userpage + pg_offset, 0, 3490 PAGE_SIZE - pg_offset); 3491 kunmap_atomic(userpage); 3492 flush_dcache_page(page); 3493 } 3494 3495 pg_offset = 0; 3496 3497 set_page_extent_mapped(page); 3498 3499 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3500 if (ret == 1) 3501 goto done_unlocked; 3502 if (ret) 3503 goto done; 3504 3505 ret = __extent_writepage_io(inode, page, wbc, epd, 3506 i_size, nr_written, write_flags, &nr); 3507 if (ret == 1) 3508 goto done_unlocked; 3509 3510 done: 3511 if (nr == 0) { 3512 /* make sure the mapping tag for page dirty gets cleared */ 3513 set_page_writeback(page); 3514 end_page_writeback(page); 3515 } 3516 if (PageError(page)) { 3517 ret = ret < 0 ? ret : -EIO; 3518 end_extent_writepage(page, ret, start, page_end); 3519 } 3520 unlock_page(page); 3521 return ret; 3522 3523 done_unlocked: 3524 return 0; 3525 } 3526 3527 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3528 { 3529 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3530 TASK_UNINTERRUPTIBLE); 3531 } 3532 3533 static noinline_for_stack int 3534 lock_extent_buffer_for_io(struct extent_buffer *eb, 3535 struct btrfs_fs_info *fs_info, 3536 struct extent_page_data *epd) 3537 { 3538 unsigned long i, num_pages; 3539 int flush = 0; 3540 int ret = 0; 3541 3542 if (!btrfs_try_tree_write_lock(eb)) { 3543 flush = 1; 3544 flush_write_bio(epd); 3545 btrfs_tree_lock(eb); 3546 } 3547 3548 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3549 btrfs_tree_unlock(eb); 3550 if (!epd->sync_io) 3551 return 0; 3552 if (!flush) { 3553 flush_write_bio(epd); 3554 flush = 1; 3555 } 3556 while (1) { 3557 wait_on_extent_buffer_writeback(eb); 3558 btrfs_tree_lock(eb); 3559 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3560 break; 3561 btrfs_tree_unlock(eb); 3562 } 3563 } 3564 3565 /* 3566 * We need to do this to prevent races in people who check if the eb is 3567 * under IO since we can end up having no IO bits set for a short period 3568 * of time. 3569 */ 3570 spin_lock(&eb->refs_lock); 3571 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3572 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3573 spin_unlock(&eb->refs_lock); 3574 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3575 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3576 -eb->len, 3577 fs_info->dirty_metadata_batch); 3578 ret = 1; 3579 } else { 3580 spin_unlock(&eb->refs_lock); 3581 } 3582 3583 btrfs_tree_unlock(eb); 3584 3585 if (!ret) 3586 return ret; 3587 3588 num_pages = num_extent_pages(eb->start, eb->len); 3589 for (i = 0; i < num_pages; i++) { 3590 struct page *p = eb->pages[i]; 3591 3592 if (!trylock_page(p)) { 3593 if (!flush) { 3594 flush_write_bio(epd); 3595 flush = 1; 3596 } 3597 lock_page(p); 3598 } 3599 } 3600 3601 return ret; 3602 } 3603 3604 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3605 { 3606 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3607 smp_mb__after_atomic(); 3608 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3609 } 3610 3611 static void set_btree_ioerr(struct page *page) 3612 { 3613 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3614 3615 SetPageError(page); 3616 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3617 return; 3618 3619 /* 3620 * If writeback for a btree extent that doesn't belong to a log tree 3621 * failed, increment the counter transaction->eb_write_errors. 3622 * We do this because while the transaction is running and before it's 3623 * committing (when we call filemap_fdata[write|wait]_range against 3624 * the btree inode), we might have 3625 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3626 * returns an error or an error happens during writeback, when we're 3627 * committing the transaction we wouldn't know about it, since the pages 3628 * can be no longer dirty nor marked anymore for writeback (if a 3629 * subsequent modification to the extent buffer didn't happen before the 3630 * transaction commit), which makes filemap_fdata[write|wait]_range not 3631 * able to find the pages tagged with SetPageError at transaction 3632 * commit time. So if this happens we must abort the transaction, 3633 * otherwise we commit a super block with btree roots that point to 3634 * btree nodes/leafs whose content on disk is invalid - either garbage 3635 * or the content of some node/leaf from a past generation that got 3636 * cowed or deleted and is no longer valid. 3637 * 3638 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3639 * not be enough - we need to distinguish between log tree extents vs 3640 * non-log tree extents, and the next filemap_fdatawait_range() call 3641 * will catch and clear such errors in the mapping - and that call might 3642 * be from a log sync and not from a transaction commit. Also, checking 3643 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3644 * not done and would not be reliable - the eb might have been released 3645 * from memory and reading it back again means that flag would not be 3646 * set (since it's a runtime flag, not persisted on disk). 3647 * 3648 * Using the flags below in the btree inode also makes us achieve the 3649 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3650 * writeback for all dirty pages and before filemap_fdatawait_range() 3651 * is called, the writeback for all dirty pages had already finished 3652 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3653 * filemap_fdatawait_range() would return success, as it could not know 3654 * that writeback errors happened (the pages were no longer tagged for 3655 * writeback). 3656 */ 3657 switch (eb->log_index) { 3658 case -1: 3659 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3660 break; 3661 case 0: 3662 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3663 break; 3664 case 1: 3665 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3666 break; 3667 default: 3668 BUG(); /* unexpected, logic error */ 3669 } 3670 } 3671 3672 static void end_bio_extent_buffer_writepage(struct bio *bio) 3673 { 3674 struct bio_vec *bvec; 3675 struct extent_buffer *eb; 3676 int i, done; 3677 3678 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3679 bio_for_each_segment_all(bvec, bio, i) { 3680 struct page *page = bvec->bv_page; 3681 3682 eb = (struct extent_buffer *)page->private; 3683 BUG_ON(!eb); 3684 done = atomic_dec_and_test(&eb->io_pages); 3685 3686 if (bio->bi_status || 3687 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3688 ClearPageUptodate(page); 3689 set_btree_ioerr(page); 3690 } 3691 3692 end_page_writeback(page); 3693 3694 if (!done) 3695 continue; 3696 3697 end_extent_buffer_writeback(eb); 3698 } 3699 3700 bio_put(bio); 3701 } 3702 3703 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3704 struct btrfs_fs_info *fs_info, 3705 struct writeback_control *wbc, 3706 struct extent_page_data *epd) 3707 { 3708 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3709 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3710 u64 offset = eb->start; 3711 u32 nritems; 3712 unsigned long i, num_pages; 3713 unsigned long start, end; 3714 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3715 int ret = 0; 3716 3717 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3718 num_pages = num_extent_pages(eb->start, eb->len); 3719 atomic_set(&eb->io_pages, num_pages); 3720 3721 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3722 nritems = btrfs_header_nritems(eb); 3723 if (btrfs_header_level(eb) > 0) { 3724 end = btrfs_node_key_ptr_offset(nritems); 3725 3726 memzero_extent_buffer(eb, end, eb->len - end); 3727 } else { 3728 /* 3729 * leaf: 3730 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3731 */ 3732 start = btrfs_item_nr_offset(nritems); 3733 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3734 memzero_extent_buffer(eb, start, end - start); 3735 } 3736 3737 for (i = 0; i < num_pages; i++) { 3738 struct page *p = eb->pages[i]; 3739 3740 clear_page_dirty_for_io(p); 3741 set_page_writeback(p); 3742 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3743 p, offset, PAGE_SIZE, 0, bdev, 3744 &epd->bio, 3745 end_bio_extent_buffer_writepage, 3746 0, 0, 0, false); 3747 if (ret) { 3748 set_btree_ioerr(p); 3749 if (PageWriteback(p)) 3750 end_page_writeback(p); 3751 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3752 end_extent_buffer_writeback(eb); 3753 ret = -EIO; 3754 break; 3755 } 3756 offset += PAGE_SIZE; 3757 update_nr_written(wbc, 1); 3758 unlock_page(p); 3759 } 3760 3761 if (unlikely(ret)) { 3762 for (; i < num_pages; i++) { 3763 struct page *p = eb->pages[i]; 3764 clear_page_dirty_for_io(p); 3765 unlock_page(p); 3766 } 3767 } 3768 3769 return ret; 3770 } 3771 3772 int btree_write_cache_pages(struct address_space *mapping, 3773 struct writeback_control *wbc) 3774 { 3775 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3776 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3777 struct extent_buffer *eb, *prev_eb = NULL; 3778 struct extent_page_data epd = { 3779 .bio = NULL, 3780 .tree = tree, 3781 .extent_locked = 0, 3782 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3783 }; 3784 int ret = 0; 3785 int done = 0; 3786 int nr_to_write_done = 0; 3787 struct pagevec pvec; 3788 int nr_pages; 3789 pgoff_t index; 3790 pgoff_t end; /* Inclusive */ 3791 int scanned = 0; 3792 int tag; 3793 3794 pagevec_init(&pvec); 3795 if (wbc->range_cyclic) { 3796 index = mapping->writeback_index; /* Start from prev offset */ 3797 end = -1; 3798 } else { 3799 index = wbc->range_start >> PAGE_SHIFT; 3800 end = wbc->range_end >> PAGE_SHIFT; 3801 scanned = 1; 3802 } 3803 if (wbc->sync_mode == WB_SYNC_ALL) 3804 tag = PAGECACHE_TAG_TOWRITE; 3805 else 3806 tag = PAGECACHE_TAG_DIRTY; 3807 retry: 3808 if (wbc->sync_mode == WB_SYNC_ALL) 3809 tag_pages_for_writeback(mapping, index, end); 3810 while (!done && !nr_to_write_done && (index <= end) && 3811 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3812 tag))) { 3813 unsigned i; 3814 3815 scanned = 1; 3816 for (i = 0; i < nr_pages; i++) { 3817 struct page *page = pvec.pages[i]; 3818 3819 if (!PagePrivate(page)) 3820 continue; 3821 3822 spin_lock(&mapping->private_lock); 3823 if (!PagePrivate(page)) { 3824 spin_unlock(&mapping->private_lock); 3825 continue; 3826 } 3827 3828 eb = (struct extent_buffer *)page->private; 3829 3830 /* 3831 * Shouldn't happen and normally this would be a BUG_ON 3832 * but no sense in crashing the users box for something 3833 * we can survive anyway. 3834 */ 3835 if (WARN_ON(!eb)) { 3836 spin_unlock(&mapping->private_lock); 3837 continue; 3838 } 3839 3840 if (eb == prev_eb) { 3841 spin_unlock(&mapping->private_lock); 3842 continue; 3843 } 3844 3845 ret = atomic_inc_not_zero(&eb->refs); 3846 spin_unlock(&mapping->private_lock); 3847 if (!ret) 3848 continue; 3849 3850 prev_eb = eb; 3851 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3852 if (!ret) { 3853 free_extent_buffer(eb); 3854 continue; 3855 } 3856 3857 ret = write_one_eb(eb, fs_info, wbc, &epd); 3858 if (ret) { 3859 done = 1; 3860 free_extent_buffer(eb); 3861 break; 3862 } 3863 free_extent_buffer(eb); 3864 3865 /* 3866 * the filesystem may choose to bump up nr_to_write. 3867 * We have to make sure to honor the new nr_to_write 3868 * at any time 3869 */ 3870 nr_to_write_done = wbc->nr_to_write <= 0; 3871 } 3872 pagevec_release(&pvec); 3873 cond_resched(); 3874 } 3875 if (!scanned && !done) { 3876 /* 3877 * We hit the last page and there is more work to be done: wrap 3878 * back to the start of the file 3879 */ 3880 scanned = 1; 3881 index = 0; 3882 goto retry; 3883 } 3884 flush_write_bio(&epd); 3885 return ret; 3886 } 3887 3888 /** 3889 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3890 * @mapping: address space structure to write 3891 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3892 * @data: data passed to __extent_writepage function 3893 * 3894 * If a page is already under I/O, write_cache_pages() skips it, even 3895 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3896 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3897 * and msync() need to guarantee that all the data which was dirty at the time 3898 * the call was made get new I/O started against them. If wbc->sync_mode is 3899 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3900 * existing IO to complete. 3901 */ 3902 static int extent_write_cache_pages(struct address_space *mapping, 3903 struct writeback_control *wbc, 3904 struct extent_page_data *epd) 3905 { 3906 struct inode *inode = mapping->host; 3907 int ret = 0; 3908 int done = 0; 3909 int nr_to_write_done = 0; 3910 struct pagevec pvec; 3911 int nr_pages; 3912 pgoff_t index; 3913 pgoff_t end; /* Inclusive */ 3914 pgoff_t done_index; 3915 int range_whole = 0; 3916 int scanned = 0; 3917 int tag; 3918 3919 /* 3920 * We have to hold onto the inode so that ordered extents can do their 3921 * work when the IO finishes. The alternative to this is failing to add 3922 * an ordered extent if the igrab() fails there and that is a huge pain 3923 * to deal with, so instead just hold onto the inode throughout the 3924 * writepages operation. If it fails here we are freeing up the inode 3925 * anyway and we'd rather not waste our time writing out stuff that is 3926 * going to be truncated anyway. 3927 */ 3928 if (!igrab(inode)) 3929 return 0; 3930 3931 pagevec_init(&pvec); 3932 if (wbc->range_cyclic) { 3933 index = mapping->writeback_index; /* Start from prev offset */ 3934 end = -1; 3935 } else { 3936 index = wbc->range_start >> PAGE_SHIFT; 3937 end = wbc->range_end >> PAGE_SHIFT; 3938 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3939 range_whole = 1; 3940 scanned = 1; 3941 } 3942 if (wbc->sync_mode == WB_SYNC_ALL) 3943 tag = PAGECACHE_TAG_TOWRITE; 3944 else 3945 tag = PAGECACHE_TAG_DIRTY; 3946 retry: 3947 if (wbc->sync_mode == WB_SYNC_ALL) 3948 tag_pages_for_writeback(mapping, index, end); 3949 done_index = index; 3950 while (!done && !nr_to_write_done && (index <= end) && 3951 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3952 &index, end, tag))) { 3953 unsigned i; 3954 3955 scanned = 1; 3956 for (i = 0; i < nr_pages; i++) { 3957 struct page *page = pvec.pages[i]; 3958 3959 done_index = page->index; 3960 /* 3961 * At this point we hold neither mapping->tree_lock nor 3962 * lock on the page itself: the page may be truncated or 3963 * invalidated (changing page->mapping to NULL), or even 3964 * swizzled back from swapper_space to tmpfs file 3965 * mapping 3966 */ 3967 if (!trylock_page(page)) { 3968 flush_write_bio(epd); 3969 lock_page(page); 3970 } 3971 3972 if (unlikely(page->mapping != mapping)) { 3973 unlock_page(page); 3974 continue; 3975 } 3976 3977 if (wbc->sync_mode != WB_SYNC_NONE) { 3978 if (PageWriteback(page)) 3979 flush_write_bio(epd); 3980 wait_on_page_writeback(page); 3981 } 3982 3983 if (PageWriteback(page) || 3984 !clear_page_dirty_for_io(page)) { 3985 unlock_page(page); 3986 continue; 3987 } 3988 3989 ret = __extent_writepage(page, wbc, epd); 3990 3991 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3992 unlock_page(page); 3993 ret = 0; 3994 } 3995 if (ret < 0) { 3996 /* 3997 * done_index is set past this page, 3998 * so media errors will not choke 3999 * background writeout for the entire 4000 * file. This has consequences for 4001 * range_cyclic semantics (ie. it may 4002 * not be suitable for data integrity 4003 * writeout). 4004 */ 4005 done_index = page->index + 1; 4006 done = 1; 4007 break; 4008 } 4009 4010 /* 4011 * the filesystem may choose to bump up nr_to_write. 4012 * We have to make sure to honor the new nr_to_write 4013 * at any time 4014 */ 4015 nr_to_write_done = wbc->nr_to_write <= 0; 4016 } 4017 pagevec_release(&pvec); 4018 cond_resched(); 4019 } 4020 if (!scanned && !done) { 4021 /* 4022 * We hit the last page and there is more work to be done: wrap 4023 * back to the start of the file 4024 */ 4025 scanned = 1; 4026 index = 0; 4027 goto retry; 4028 } 4029 4030 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4031 mapping->writeback_index = done_index; 4032 4033 btrfs_add_delayed_iput(inode); 4034 return ret; 4035 } 4036 4037 static void flush_write_bio(struct extent_page_data *epd) 4038 { 4039 if (epd->bio) { 4040 int ret; 4041 4042 ret = submit_one_bio(epd->bio, 0, 0); 4043 BUG_ON(ret < 0); /* -ENOMEM */ 4044 epd->bio = NULL; 4045 } 4046 } 4047 4048 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4049 { 4050 int ret; 4051 struct extent_page_data epd = { 4052 .bio = NULL, 4053 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4054 .extent_locked = 0, 4055 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4056 }; 4057 4058 ret = __extent_writepage(page, wbc, &epd); 4059 4060 flush_write_bio(&epd); 4061 return ret; 4062 } 4063 4064 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4065 int mode) 4066 { 4067 int ret = 0; 4068 struct address_space *mapping = inode->i_mapping; 4069 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4070 struct page *page; 4071 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4072 PAGE_SHIFT; 4073 4074 struct extent_page_data epd = { 4075 .bio = NULL, 4076 .tree = tree, 4077 .extent_locked = 1, 4078 .sync_io = mode == WB_SYNC_ALL, 4079 }; 4080 struct writeback_control wbc_writepages = { 4081 .sync_mode = mode, 4082 .nr_to_write = nr_pages * 2, 4083 .range_start = start, 4084 .range_end = end + 1, 4085 }; 4086 4087 while (start <= end) { 4088 page = find_get_page(mapping, start >> PAGE_SHIFT); 4089 if (clear_page_dirty_for_io(page)) 4090 ret = __extent_writepage(page, &wbc_writepages, &epd); 4091 else { 4092 if (tree->ops && tree->ops->writepage_end_io_hook) 4093 tree->ops->writepage_end_io_hook(page, start, 4094 start + PAGE_SIZE - 1, 4095 NULL, 1); 4096 unlock_page(page); 4097 } 4098 put_page(page); 4099 start += PAGE_SIZE; 4100 } 4101 4102 flush_write_bio(&epd); 4103 return ret; 4104 } 4105 4106 int extent_writepages(struct extent_io_tree *tree, 4107 struct address_space *mapping, 4108 struct writeback_control *wbc) 4109 { 4110 int ret = 0; 4111 struct extent_page_data epd = { 4112 .bio = NULL, 4113 .tree = tree, 4114 .extent_locked = 0, 4115 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4116 }; 4117 4118 ret = extent_write_cache_pages(mapping, wbc, &epd); 4119 flush_write_bio(&epd); 4120 return ret; 4121 } 4122 4123 int extent_readpages(struct extent_io_tree *tree, 4124 struct address_space *mapping, 4125 struct list_head *pages, unsigned nr_pages) 4126 { 4127 struct bio *bio = NULL; 4128 unsigned page_idx; 4129 unsigned long bio_flags = 0; 4130 struct page *pagepool[16]; 4131 struct page *page; 4132 struct extent_map *em_cached = NULL; 4133 int nr = 0; 4134 u64 prev_em_start = (u64)-1; 4135 4136 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4137 page = list_entry(pages->prev, struct page, lru); 4138 4139 prefetchw(&page->flags); 4140 list_del(&page->lru); 4141 if (add_to_page_cache_lru(page, mapping, 4142 page->index, 4143 readahead_gfp_mask(mapping))) { 4144 put_page(page); 4145 continue; 4146 } 4147 4148 pagepool[nr++] = page; 4149 if (nr < ARRAY_SIZE(pagepool)) 4150 continue; 4151 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4152 &bio_flags, &prev_em_start); 4153 nr = 0; 4154 } 4155 if (nr) 4156 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4157 &bio_flags, &prev_em_start); 4158 4159 if (em_cached) 4160 free_extent_map(em_cached); 4161 4162 BUG_ON(!list_empty(pages)); 4163 if (bio) 4164 return submit_one_bio(bio, 0, bio_flags); 4165 return 0; 4166 } 4167 4168 /* 4169 * basic invalidatepage code, this waits on any locked or writeback 4170 * ranges corresponding to the page, and then deletes any extent state 4171 * records from the tree 4172 */ 4173 int extent_invalidatepage(struct extent_io_tree *tree, 4174 struct page *page, unsigned long offset) 4175 { 4176 struct extent_state *cached_state = NULL; 4177 u64 start = page_offset(page); 4178 u64 end = start + PAGE_SIZE - 1; 4179 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4180 4181 start += ALIGN(offset, blocksize); 4182 if (start > end) 4183 return 0; 4184 4185 lock_extent_bits(tree, start, end, &cached_state); 4186 wait_on_page_writeback(page); 4187 clear_extent_bit(tree, start, end, 4188 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4189 EXTENT_DO_ACCOUNTING, 4190 1, 1, &cached_state); 4191 return 0; 4192 } 4193 4194 /* 4195 * a helper for releasepage, this tests for areas of the page that 4196 * are locked or under IO and drops the related state bits if it is safe 4197 * to drop the page. 4198 */ 4199 static int try_release_extent_state(struct extent_map_tree *map, 4200 struct extent_io_tree *tree, 4201 struct page *page, gfp_t mask) 4202 { 4203 u64 start = page_offset(page); 4204 u64 end = start + PAGE_SIZE - 1; 4205 int ret = 1; 4206 4207 if (test_range_bit(tree, start, end, 4208 EXTENT_IOBITS, 0, NULL)) 4209 ret = 0; 4210 else { 4211 /* 4212 * at this point we can safely clear everything except the 4213 * locked bit and the nodatasum bit 4214 */ 4215 ret = __clear_extent_bit(tree, start, end, 4216 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4217 0, 0, NULL, mask, NULL); 4218 4219 /* if clear_extent_bit failed for enomem reasons, 4220 * we can't allow the release to continue. 4221 */ 4222 if (ret < 0) 4223 ret = 0; 4224 else 4225 ret = 1; 4226 } 4227 return ret; 4228 } 4229 4230 /* 4231 * a helper for releasepage. As long as there are no locked extents 4232 * in the range corresponding to the page, both state records and extent 4233 * map records are removed 4234 */ 4235 int try_release_extent_mapping(struct extent_map_tree *map, 4236 struct extent_io_tree *tree, struct page *page, 4237 gfp_t mask) 4238 { 4239 struct extent_map *em; 4240 u64 start = page_offset(page); 4241 u64 end = start + PAGE_SIZE - 1; 4242 4243 if (gfpflags_allow_blocking(mask) && 4244 page->mapping->host->i_size > SZ_16M) { 4245 u64 len; 4246 while (start <= end) { 4247 len = end - start + 1; 4248 write_lock(&map->lock); 4249 em = lookup_extent_mapping(map, start, len); 4250 if (!em) { 4251 write_unlock(&map->lock); 4252 break; 4253 } 4254 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4255 em->start != start) { 4256 write_unlock(&map->lock); 4257 free_extent_map(em); 4258 break; 4259 } 4260 if (!test_range_bit(tree, em->start, 4261 extent_map_end(em) - 1, 4262 EXTENT_LOCKED | EXTENT_WRITEBACK, 4263 0, NULL)) { 4264 remove_extent_mapping(map, em); 4265 /* once for the rb tree */ 4266 free_extent_map(em); 4267 } 4268 start = extent_map_end(em); 4269 write_unlock(&map->lock); 4270 4271 /* once for us */ 4272 free_extent_map(em); 4273 } 4274 } 4275 return try_release_extent_state(map, tree, page, mask); 4276 } 4277 4278 /* 4279 * helper function for fiemap, which doesn't want to see any holes. 4280 * This maps until we find something past 'last' 4281 */ 4282 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4283 u64 offset, u64 last) 4284 { 4285 u64 sectorsize = btrfs_inode_sectorsize(inode); 4286 struct extent_map *em; 4287 u64 len; 4288 4289 if (offset >= last) 4290 return NULL; 4291 4292 while (1) { 4293 len = last - offset; 4294 if (len == 0) 4295 break; 4296 len = ALIGN(len, sectorsize); 4297 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset, 4298 len, 0); 4299 if (IS_ERR_OR_NULL(em)) 4300 return em; 4301 4302 /* if this isn't a hole return it */ 4303 if (em->block_start != EXTENT_MAP_HOLE) 4304 return em; 4305 4306 /* this is a hole, advance to the next extent */ 4307 offset = extent_map_end(em); 4308 free_extent_map(em); 4309 if (offset >= last) 4310 break; 4311 } 4312 return NULL; 4313 } 4314 4315 /* 4316 * To cache previous fiemap extent 4317 * 4318 * Will be used for merging fiemap extent 4319 */ 4320 struct fiemap_cache { 4321 u64 offset; 4322 u64 phys; 4323 u64 len; 4324 u32 flags; 4325 bool cached; 4326 }; 4327 4328 /* 4329 * Helper to submit fiemap extent. 4330 * 4331 * Will try to merge current fiemap extent specified by @offset, @phys, 4332 * @len and @flags with cached one. 4333 * And only when we fails to merge, cached one will be submitted as 4334 * fiemap extent. 4335 * 4336 * Return value is the same as fiemap_fill_next_extent(). 4337 */ 4338 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4339 struct fiemap_cache *cache, 4340 u64 offset, u64 phys, u64 len, u32 flags) 4341 { 4342 int ret = 0; 4343 4344 if (!cache->cached) 4345 goto assign; 4346 4347 /* 4348 * Sanity check, extent_fiemap() should have ensured that new 4349 * fiemap extent won't overlap with cahced one. 4350 * Not recoverable. 4351 * 4352 * NOTE: Physical address can overlap, due to compression 4353 */ 4354 if (cache->offset + cache->len > offset) { 4355 WARN_ON(1); 4356 return -EINVAL; 4357 } 4358 4359 /* 4360 * Only merges fiemap extents if 4361 * 1) Their logical addresses are continuous 4362 * 4363 * 2) Their physical addresses are continuous 4364 * So truly compressed (physical size smaller than logical size) 4365 * extents won't get merged with each other 4366 * 4367 * 3) Share same flags except FIEMAP_EXTENT_LAST 4368 * So regular extent won't get merged with prealloc extent 4369 */ 4370 if (cache->offset + cache->len == offset && 4371 cache->phys + cache->len == phys && 4372 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4373 (flags & ~FIEMAP_EXTENT_LAST)) { 4374 cache->len += len; 4375 cache->flags |= flags; 4376 goto try_submit_last; 4377 } 4378 4379 /* Not mergeable, need to submit cached one */ 4380 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4381 cache->len, cache->flags); 4382 cache->cached = false; 4383 if (ret) 4384 return ret; 4385 assign: 4386 cache->cached = true; 4387 cache->offset = offset; 4388 cache->phys = phys; 4389 cache->len = len; 4390 cache->flags = flags; 4391 try_submit_last: 4392 if (cache->flags & FIEMAP_EXTENT_LAST) { 4393 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4394 cache->phys, cache->len, cache->flags); 4395 cache->cached = false; 4396 } 4397 return ret; 4398 } 4399 4400 /* 4401 * Emit last fiemap cache 4402 * 4403 * The last fiemap cache may still be cached in the following case: 4404 * 0 4k 8k 4405 * |<- Fiemap range ->| 4406 * |<------------ First extent ----------->| 4407 * 4408 * In this case, the first extent range will be cached but not emitted. 4409 * So we must emit it before ending extent_fiemap(). 4410 */ 4411 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4412 struct fiemap_extent_info *fieinfo, 4413 struct fiemap_cache *cache) 4414 { 4415 int ret; 4416 4417 if (!cache->cached) 4418 return 0; 4419 4420 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4421 cache->len, cache->flags); 4422 cache->cached = false; 4423 if (ret > 0) 4424 ret = 0; 4425 return ret; 4426 } 4427 4428 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4429 __u64 start, __u64 len) 4430 { 4431 int ret = 0; 4432 u64 off = start; 4433 u64 max = start + len; 4434 u32 flags = 0; 4435 u32 found_type; 4436 u64 last; 4437 u64 last_for_get_extent = 0; 4438 u64 disko = 0; 4439 u64 isize = i_size_read(inode); 4440 struct btrfs_key found_key; 4441 struct extent_map *em = NULL; 4442 struct extent_state *cached_state = NULL; 4443 struct btrfs_path *path; 4444 struct btrfs_root *root = BTRFS_I(inode)->root; 4445 struct fiemap_cache cache = { 0 }; 4446 int end = 0; 4447 u64 em_start = 0; 4448 u64 em_len = 0; 4449 u64 em_end = 0; 4450 4451 if (len == 0) 4452 return -EINVAL; 4453 4454 path = btrfs_alloc_path(); 4455 if (!path) 4456 return -ENOMEM; 4457 path->leave_spinning = 1; 4458 4459 start = round_down(start, btrfs_inode_sectorsize(inode)); 4460 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4461 4462 /* 4463 * lookup the last file extent. We're not using i_size here 4464 * because there might be preallocation past i_size 4465 */ 4466 ret = btrfs_lookup_file_extent(NULL, root, path, 4467 btrfs_ino(BTRFS_I(inode)), -1, 0); 4468 if (ret < 0) { 4469 btrfs_free_path(path); 4470 return ret; 4471 } else { 4472 WARN_ON(!ret); 4473 if (ret == 1) 4474 ret = 0; 4475 } 4476 4477 path->slots[0]--; 4478 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4479 found_type = found_key.type; 4480 4481 /* No extents, but there might be delalloc bits */ 4482 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4483 found_type != BTRFS_EXTENT_DATA_KEY) { 4484 /* have to trust i_size as the end */ 4485 last = (u64)-1; 4486 last_for_get_extent = isize; 4487 } else { 4488 /* 4489 * remember the start of the last extent. There are a 4490 * bunch of different factors that go into the length of the 4491 * extent, so its much less complex to remember where it started 4492 */ 4493 last = found_key.offset; 4494 last_for_get_extent = last + 1; 4495 } 4496 btrfs_release_path(path); 4497 4498 /* 4499 * we might have some extents allocated but more delalloc past those 4500 * extents. so, we trust isize unless the start of the last extent is 4501 * beyond isize 4502 */ 4503 if (last < isize) { 4504 last = (u64)-1; 4505 last_for_get_extent = isize; 4506 } 4507 4508 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4509 &cached_state); 4510 4511 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4512 if (!em) 4513 goto out; 4514 if (IS_ERR(em)) { 4515 ret = PTR_ERR(em); 4516 goto out; 4517 } 4518 4519 while (!end) { 4520 u64 offset_in_extent = 0; 4521 4522 /* break if the extent we found is outside the range */ 4523 if (em->start >= max || extent_map_end(em) < off) 4524 break; 4525 4526 /* 4527 * get_extent may return an extent that starts before our 4528 * requested range. We have to make sure the ranges 4529 * we return to fiemap always move forward and don't 4530 * overlap, so adjust the offsets here 4531 */ 4532 em_start = max(em->start, off); 4533 4534 /* 4535 * record the offset from the start of the extent 4536 * for adjusting the disk offset below. Only do this if the 4537 * extent isn't compressed since our in ram offset may be past 4538 * what we have actually allocated on disk. 4539 */ 4540 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4541 offset_in_extent = em_start - em->start; 4542 em_end = extent_map_end(em); 4543 em_len = em_end - em_start; 4544 disko = 0; 4545 flags = 0; 4546 4547 /* 4548 * bump off for our next call to get_extent 4549 */ 4550 off = extent_map_end(em); 4551 if (off >= max) 4552 end = 1; 4553 4554 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4555 end = 1; 4556 flags |= FIEMAP_EXTENT_LAST; 4557 } else if (em->block_start == EXTENT_MAP_INLINE) { 4558 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4559 FIEMAP_EXTENT_NOT_ALIGNED); 4560 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4561 flags |= (FIEMAP_EXTENT_DELALLOC | 4562 FIEMAP_EXTENT_UNKNOWN); 4563 } else if (fieinfo->fi_extents_max) { 4564 u64 bytenr = em->block_start - 4565 (em->start - em->orig_start); 4566 4567 disko = em->block_start + offset_in_extent; 4568 4569 /* 4570 * As btrfs supports shared space, this information 4571 * can be exported to userspace tools via 4572 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4573 * then we're just getting a count and we can skip the 4574 * lookup stuff. 4575 */ 4576 ret = btrfs_check_shared(root, 4577 btrfs_ino(BTRFS_I(inode)), 4578 bytenr); 4579 if (ret < 0) 4580 goto out_free; 4581 if (ret) 4582 flags |= FIEMAP_EXTENT_SHARED; 4583 ret = 0; 4584 } 4585 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4586 flags |= FIEMAP_EXTENT_ENCODED; 4587 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4588 flags |= FIEMAP_EXTENT_UNWRITTEN; 4589 4590 free_extent_map(em); 4591 em = NULL; 4592 if ((em_start >= last) || em_len == (u64)-1 || 4593 (last == (u64)-1 && isize <= em_end)) { 4594 flags |= FIEMAP_EXTENT_LAST; 4595 end = 1; 4596 } 4597 4598 /* now scan forward to see if this is really the last extent. */ 4599 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4600 if (IS_ERR(em)) { 4601 ret = PTR_ERR(em); 4602 goto out; 4603 } 4604 if (!em) { 4605 flags |= FIEMAP_EXTENT_LAST; 4606 end = 1; 4607 } 4608 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4609 em_len, flags); 4610 if (ret) { 4611 if (ret == 1) 4612 ret = 0; 4613 goto out_free; 4614 } 4615 } 4616 out_free: 4617 if (!ret) 4618 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4619 free_extent_map(em); 4620 out: 4621 btrfs_free_path(path); 4622 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4623 &cached_state); 4624 return ret; 4625 } 4626 4627 static void __free_extent_buffer(struct extent_buffer *eb) 4628 { 4629 btrfs_leak_debug_del(&eb->leak_list); 4630 kmem_cache_free(extent_buffer_cache, eb); 4631 } 4632 4633 int extent_buffer_under_io(struct extent_buffer *eb) 4634 { 4635 return (atomic_read(&eb->io_pages) || 4636 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4637 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4638 } 4639 4640 /* 4641 * Helper for releasing extent buffer page. 4642 */ 4643 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4644 { 4645 unsigned long index; 4646 struct page *page; 4647 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4648 4649 BUG_ON(extent_buffer_under_io(eb)); 4650 4651 index = num_extent_pages(eb->start, eb->len); 4652 if (index == 0) 4653 return; 4654 4655 do { 4656 index--; 4657 page = eb->pages[index]; 4658 if (!page) 4659 continue; 4660 if (mapped) 4661 spin_lock(&page->mapping->private_lock); 4662 /* 4663 * We do this since we'll remove the pages after we've 4664 * removed the eb from the radix tree, so we could race 4665 * and have this page now attached to the new eb. So 4666 * only clear page_private if it's still connected to 4667 * this eb. 4668 */ 4669 if (PagePrivate(page) && 4670 page->private == (unsigned long)eb) { 4671 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4672 BUG_ON(PageDirty(page)); 4673 BUG_ON(PageWriteback(page)); 4674 /* 4675 * We need to make sure we haven't be attached 4676 * to a new eb. 4677 */ 4678 ClearPagePrivate(page); 4679 set_page_private(page, 0); 4680 /* One for the page private */ 4681 put_page(page); 4682 } 4683 4684 if (mapped) 4685 spin_unlock(&page->mapping->private_lock); 4686 4687 /* One for when we allocated the page */ 4688 put_page(page); 4689 } while (index != 0); 4690 } 4691 4692 /* 4693 * Helper for releasing the extent buffer. 4694 */ 4695 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4696 { 4697 btrfs_release_extent_buffer_page(eb); 4698 __free_extent_buffer(eb); 4699 } 4700 4701 static struct extent_buffer * 4702 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4703 unsigned long len) 4704 { 4705 struct extent_buffer *eb = NULL; 4706 4707 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4708 eb->start = start; 4709 eb->len = len; 4710 eb->fs_info = fs_info; 4711 eb->bflags = 0; 4712 rwlock_init(&eb->lock); 4713 atomic_set(&eb->write_locks, 0); 4714 atomic_set(&eb->read_locks, 0); 4715 atomic_set(&eb->blocking_readers, 0); 4716 atomic_set(&eb->blocking_writers, 0); 4717 atomic_set(&eb->spinning_readers, 0); 4718 atomic_set(&eb->spinning_writers, 0); 4719 eb->lock_nested = 0; 4720 init_waitqueue_head(&eb->write_lock_wq); 4721 init_waitqueue_head(&eb->read_lock_wq); 4722 4723 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4724 4725 spin_lock_init(&eb->refs_lock); 4726 atomic_set(&eb->refs, 1); 4727 atomic_set(&eb->io_pages, 0); 4728 4729 /* 4730 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4731 */ 4732 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4733 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4734 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4735 4736 return eb; 4737 } 4738 4739 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4740 { 4741 unsigned long i; 4742 struct page *p; 4743 struct extent_buffer *new; 4744 unsigned long num_pages = num_extent_pages(src->start, src->len); 4745 4746 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4747 if (new == NULL) 4748 return NULL; 4749 4750 for (i = 0; i < num_pages; i++) { 4751 p = alloc_page(GFP_NOFS); 4752 if (!p) { 4753 btrfs_release_extent_buffer(new); 4754 return NULL; 4755 } 4756 attach_extent_buffer_page(new, p); 4757 WARN_ON(PageDirty(p)); 4758 SetPageUptodate(p); 4759 new->pages[i] = p; 4760 copy_page(page_address(p), page_address(src->pages[i])); 4761 } 4762 4763 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4764 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4765 4766 return new; 4767 } 4768 4769 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4770 u64 start, unsigned long len) 4771 { 4772 struct extent_buffer *eb; 4773 unsigned long num_pages; 4774 unsigned long i; 4775 4776 num_pages = num_extent_pages(start, len); 4777 4778 eb = __alloc_extent_buffer(fs_info, start, len); 4779 if (!eb) 4780 return NULL; 4781 4782 for (i = 0; i < num_pages; i++) { 4783 eb->pages[i] = alloc_page(GFP_NOFS); 4784 if (!eb->pages[i]) 4785 goto err; 4786 } 4787 set_extent_buffer_uptodate(eb); 4788 btrfs_set_header_nritems(eb, 0); 4789 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4790 4791 return eb; 4792 err: 4793 for (; i > 0; i--) 4794 __free_page(eb->pages[i - 1]); 4795 __free_extent_buffer(eb); 4796 return NULL; 4797 } 4798 4799 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4800 u64 start) 4801 { 4802 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4803 } 4804 4805 static void check_buffer_tree_ref(struct extent_buffer *eb) 4806 { 4807 int refs; 4808 /* the ref bit is tricky. We have to make sure it is set 4809 * if we have the buffer dirty. Otherwise the 4810 * code to free a buffer can end up dropping a dirty 4811 * page 4812 * 4813 * Once the ref bit is set, it won't go away while the 4814 * buffer is dirty or in writeback, and it also won't 4815 * go away while we have the reference count on the 4816 * eb bumped. 4817 * 4818 * We can't just set the ref bit without bumping the 4819 * ref on the eb because free_extent_buffer might 4820 * see the ref bit and try to clear it. If this happens 4821 * free_extent_buffer might end up dropping our original 4822 * ref by mistake and freeing the page before we are able 4823 * to add one more ref. 4824 * 4825 * So bump the ref count first, then set the bit. If someone 4826 * beat us to it, drop the ref we added. 4827 */ 4828 refs = atomic_read(&eb->refs); 4829 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4830 return; 4831 4832 spin_lock(&eb->refs_lock); 4833 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4834 atomic_inc(&eb->refs); 4835 spin_unlock(&eb->refs_lock); 4836 } 4837 4838 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4839 struct page *accessed) 4840 { 4841 unsigned long num_pages, i; 4842 4843 check_buffer_tree_ref(eb); 4844 4845 num_pages = num_extent_pages(eb->start, eb->len); 4846 for (i = 0; i < num_pages; i++) { 4847 struct page *p = eb->pages[i]; 4848 4849 if (p != accessed) 4850 mark_page_accessed(p); 4851 } 4852 } 4853 4854 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4855 u64 start) 4856 { 4857 struct extent_buffer *eb; 4858 4859 rcu_read_lock(); 4860 eb = radix_tree_lookup(&fs_info->buffer_radix, 4861 start >> PAGE_SHIFT); 4862 if (eb && atomic_inc_not_zero(&eb->refs)) { 4863 rcu_read_unlock(); 4864 /* 4865 * Lock our eb's refs_lock to avoid races with 4866 * free_extent_buffer. When we get our eb it might be flagged 4867 * with EXTENT_BUFFER_STALE and another task running 4868 * free_extent_buffer might have seen that flag set, 4869 * eb->refs == 2, that the buffer isn't under IO (dirty and 4870 * writeback flags not set) and it's still in the tree (flag 4871 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4872 * of decrementing the extent buffer's reference count twice. 4873 * So here we could race and increment the eb's reference count, 4874 * clear its stale flag, mark it as dirty and drop our reference 4875 * before the other task finishes executing free_extent_buffer, 4876 * which would later result in an attempt to free an extent 4877 * buffer that is dirty. 4878 */ 4879 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4880 spin_lock(&eb->refs_lock); 4881 spin_unlock(&eb->refs_lock); 4882 } 4883 mark_extent_buffer_accessed(eb, NULL); 4884 return eb; 4885 } 4886 rcu_read_unlock(); 4887 4888 return NULL; 4889 } 4890 4891 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4892 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4893 u64 start) 4894 { 4895 struct extent_buffer *eb, *exists = NULL; 4896 int ret; 4897 4898 eb = find_extent_buffer(fs_info, start); 4899 if (eb) 4900 return eb; 4901 eb = alloc_dummy_extent_buffer(fs_info, start); 4902 if (!eb) 4903 return NULL; 4904 eb->fs_info = fs_info; 4905 again: 4906 ret = radix_tree_preload(GFP_NOFS); 4907 if (ret) 4908 goto free_eb; 4909 spin_lock(&fs_info->buffer_lock); 4910 ret = radix_tree_insert(&fs_info->buffer_radix, 4911 start >> PAGE_SHIFT, eb); 4912 spin_unlock(&fs_info->buffer_lock); 4913 radix_tree_preload_end(); 4914 if (ret == -EEXIST) { 4915 exists = find_extent_buffer(fs_info, start); 4916 if (exists) 4917 goto free_eb; 4918 else 4919 goto again; 4920 } 4921 check_buffer_tree_ref(eb); 4922 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4923 4924 /* 4925 * We will free dummy extent buffer's if they come into 4926 * free_extent_buffer with a ref count of 2, but if we are using this we 4927 * want the buffers to stay in memory until we're done with them, so 4928 * bump the ref count again. 4929 */ 4930 atomic_inc(&eb->refs); 4931 return eb; 4932 free_eb: 4933 btrfs_release_extent_buffer(eb); 4934 return exists; 4935 } 4936 #endif 4937 4938 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4939 u64 start) 4940 { 4941 unsigned long len = fs_info->nodesize; 4942 unsigned long num_pages = num_extent_pages(start, len); 4943 unsigned long i; 4944 unsigned long index = start >> PAGE_SHIFT; 4945 struct extent_buffer *eb; 4946 struct extent_buffer *exists = NULL; 4947 struct page *p; 4948 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4949 int uptodate = 1; 4950 int ret; 4951 4952 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4953 btrfs_err(fs_info, "bad tree block start %llu", start); 4954 return ERR_PTR(-EINVAL); 4955 } 4956 4957 eb = find_extent_buffer(fs_info, start); 4958 if (eb) 4959 return eb; 4960 4961 eb = __alloc_extent_buffer(fs_info, start, len); 4962 if (!eb) 4963 return ERR_PTR(-ENOMEM); 4964 4965 for (i = 0; i < num_pages; i++, index++) { 4966 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4967 if (!p) { 4968 exists = ERR_PTR(-ENOMEM); 4969 goto free_eb; 4970 } 4971 4972 spin_lock(&mapping->private_lock); 4973 if (PagePrivate(p)) { 4974 /* 4975 * We could have already allocated an eb for this page 4976 * and attached one so lets see if we can get a ref on 4977 * the existing eb, and if we can we know it's good and 4978 * we can just return that one, else we know we can just 4979 * overwrite page->private. 4980 */ 4981 exists = (struct extent_buffer *)p->private; 4982 if (atomic_inc_not_zero(&exists->refs)) { 4983 spin_unlock(&mapping->private_lock); 4984 unlock_page(p); 4985 put_page(p); 4986 mark_extent_buffer_accessed(exists, p); 4987 goto free_eb; 4988 } 4989 exists = NULL; 4990 4991 /* 4992 * Do this so attach doesn't complain and we need to 4993 * drop the ref the old guy had. 4994 */ 4995 ClearPagePrivate(p); 4996 WARN_ON(PageDirty(p)); 4997 put_page(p); 4998 } 4999 attach_extent_buffer_page(eb, p); 5000 spin_unlock(&mapping->private_lock); 5001 WARN_ON(PageDirty(p)); 5002 eb->pages[i] = p; 5003 if (!PageUptodate(p)) 5004 uptodate = 0; 5005 5006 /* 5007 * see below about how we avoid a nasty race with release page 5008 * and why we unlock later 5009 */ 5010 } 5011 if (uptodate) 5012 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5013 again: 5014 ret = radix_tree_preload(GFP_NOFS); 5015 if (ret) { 5016 exists = ERR_PTR(ret); 5017 goto free_eb; 5018 } 5019 5020 spin_lock(&fs_info->buffer_lock); 5021 ret = radix_tree_insert(&fs_info->buffer_radix, 5022 start >> PAGE_SHIFT, eb); 5023 spin_unlock(&fs_info->buffer_lock); 5024 radix_tree_preload_end(); 5025 if (ret == -EEXIST) { 5026 exists = find_extent_buffer(fs_info, start); 5027 if (exists) 5028 goto free_eb; 5029 else 5030 goto again; 5031 } 5032 /* add one reference for the tree */ 5033 check_buffer_tree_ref(eb); 5034 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5035 5036 /* 5037 * there is a race where release page may have 5038 * tried to find this extent buffer in the radix 5039 * but failed. It will tell the VM it is safe to 5040 * reclaim the, and it will clear the page private bit. 5041 * We must make sure to set the page private bit properly 5042 * after the extent buffer is in the radix tree so 5043 * it doesn't get lost 5044 */ 5045 SetPageChecked(eb->pages[0]); 5046 for (i = 1; i < num_pages; i++) { 5047 p = eb->pages[i]; 5048 ClearPageChecked(p); 5049 unlock_page(p); 5050 } 5051 unlock_page(eb->pages[0]); 5052 return eb; 5053 5054 free_eb: 5055 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5056 for (i = 0; i < num_pages; i++) { 5057 if (eb->pages[i]) 5058 unlock_page(eb->pages[i]); 5059 } 5060 5061 btrfs_release_extent_buffer(eb); 5062 return exists; 5063 } 5064 5065 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5066 { 5067 struct extent_buffer *eb = 5068 container_of(head, struct extent_buffer, rcu_head); 5069 5070 __free_extent_buffer(eb); 5071 } 5072 5073 /* Expects to have eb->eb_lock already held */ 5074 static int release_extent_buffer(struct extent_buffer *eb) 5075 { 5076 WARN_ON(atomic_read(&eb->refs) == 0); 5077 if (atomic_dec_and_test(&eb->refs)) { 5078 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5079 struct btrfs_fs_info *fs_info = eb->fs_info; 5080 5081 spin_unlock(&eb->refs_lock); 5082 5083 spin_lock(&fs_info->buffer_lock); 5084 radix_tree_delete(&fs_info->buffer_radix, 5085 eb->start >> PAGE_SHIFT); 5086 spin_unlock(&fs_info->buffer_lock); 5087 } else { 5088 spin_unlock(&eb->refs_lock); 5089 } 5090 5091 /* Should be safe to release our pages at this point */ 5092 btrfs_release_extent_buffer_page(eb); 5093 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5094 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5095 __free_extent_buffer(eb); 5096 return 1; 5097 } 5098 #endif 5099 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5100 return 1; 5101 } 5102 spin_unlock(&eb->refs_lock); 5103 5104 return 0; 5105 } 5106 5107 void free_extent_buffer(struct extent_buffer *eb) 5108 { 5109 int refs; 5110 int old; 5111 if (!eb) 5112 return; 5113 5114 while (1) { 5115 refs = atomic_read(&eb->refs); 5116 if (refs <= 3) 5117 break; 5118 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5119 if (old == refs) 5120 return; 5121 } 5122 5123 spin_lock(&eb->refs_lock); 5124 if (atomic_read(&eb->refs) == 2 && 5125 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5126 atomic_dec(&eb->refs); 5127 5128 if (atomic_read(&eb->refs) == 2 && 5129 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5130 !extent_buffer_under_io(eb) && 5131 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5132 atomic_dec(&eb->refs); 5133 5134 /* 5135 * I know this is terrible, but it's temporary until we stop tracking 5136 * the uptodate bits and such for the extent buffers. 5137 */ 5138 release_extent_buffer(eb); 5139 } 5140 5141 void free_extent_buffer_stale(struct extent_buffer *eb) 5142 { 5143 if (!eb) 5144 return; 5145 5146 spin_lock(&eb->refs_lock); 5147 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5148 5149 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5150 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5151 atomic_dec(&eb->refs); 5152 release_extent_buffer(eb); 5153 } 5154 5155 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5156 { 5157 unsigned long i; 5158 unsigned long num_pages; 5159 struct page *page; 5160 5161 num_pages = num_extent_pages(eb->start, eb->len); 5162 5163 for (i = 0; i < num_pages; i++) { 5164 page = eb->pages[i]; 5165 if (!PageDirty(page)) 5166 continue; 5167 5168 lock_page(page); 5169 WARN_ON(!PagePrivate(page)); 5170 5171 clear_page_dirty_for_io(page); 5172 spin_lock_irq(&page->mapping->tree_lock); 5173 if (!PageDirty(page)) { 5174 radix_tree_tag_clear(&page->mapping->page_tree, 5175 page_index(page), 5176 PAGECACHE_TAG_DIRTY); 5177 } 5178 spin_unlock_irq(&page->mapping->tree_lock); 5179 ClearPageError(page); 5180 unlock_page(page); 5181 } 5182 WARN_ON(atomic_read(&eb->refs) == 0); 5183 } 5184 5185 int set_extent_buffer_dirty(struct extent_buffer *eb) 5186 { 5187 unsigned long i; 5188 unsigned long num_pages; 5189 int was_dirty = 0; 5190 5191 check_buffer_tree_ref(eb); 5192 5193 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5194 5195 num_pages = num_extent_pages(eb->start, eb->len); 5196 WARN_ON(atomic_read(&eb->refs) == 0); 5197 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5198 5199 for (i = 0; i < num_pages; i++) 5200 set_page_dirty(eb->pages[i]); 5201 return was_dirty; 5202 } 5203 5204 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5205 { 5206 unsigned long i; 5207 struct page *page; 5208 unsigned long num_pages; 5209 5210 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5211 num_pages = num_extent_pages(eb->start, eb->len); 5212 for (i = 0; i < num_pages; i++) { 5213 page = eb->pages[i]; 5214 if (page) 5215 ClearPageUptodate(page); 5216 } 5217 } 5218 5219 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5220 { 5221 unsigned long i; 5222 struct page *page; 5223 unsigned long num_pages; 5224 5225 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5226 num_pages = num_extent_pages(eb->start, eb->len); 5227 for (i = 0; i < num_pages; i++) { 5228 page = eb->pages[i]; 5229 SetPageUptodate(page); 5230 } 5231 } 5232 5233 int extent_buffer_uptodate(struct extent_buffer *eb) 5234 { 5235 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5236 } 5237 5238 int read_extent_buffer_pages(struct extent_io_tree *tree, 5239 struct extent_buffer *eb, int wait, int mirror_num) 5240 { 5241 unsigned long i; 5242 struct page *page; 5243 int err; 5244 int ret = 0; 5245 int locked_pages = 0; 5246 int all_uptodate = 1; 5247 unsigned long num_pages; 5248 unsigned long num_reads = 0; 5249 struct bio *bio = NULL; 5250 unsigned long bio_flags = 0; 5251 5252 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5253 return 0; 5254 5255 num_pages = num_extent_pages(eb->start, eb->len); 5256 for (i = 0; i < num_pages; i++) { 5257 page = eb->pages[i]; 5258 if (wait == WAIT_NONE) { 5259 if (!trylock_page(page)) 5260 goto unlock_exit; 5261 } else { 5262 lock_page(page); 5263 } 5264 locked_pages++; 5265 } 5266 /* 5267 * We need to firstly lock all pages to make sure that 5268 * the uptodate bit of our pages won't be affected by 5269 * clear_extent_buffer_uptodate(). 5270 */ 5271 for (i = 0; i < num_pages; i++) { 5272 page = eb->pages[i]; 5273 if (!PageUptodate(page)) { 5274 num_reads++; 5275 all_uptodate = 0; 5276 } 5277 } 5278 5279 if (all_uptodate) { 5280 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5281 goto unlock_exit; 5282 } 5283 5284 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5285 eb->read_mirror = 0; 5286 atomic_set(&eb->io_pages, num_reads); 5287 for (i = 0; i < num_pages; i++) { 5288 page = eb->pages[i]; 5289 5290 if (!PageUptodate(page)) { 5291 if (ret) { 5292 atomic_dec(&eb->io_pages); 5293 unlock_page(page); 5294 continue; 5295 } 5296 5297 ClearPageError(page); 5298 err = __extent_read_full_page(tree, page, 5299 btree_get_extent, &bio, 5300 mirror_num, &bio_flags, 5301 REQ_META); 5302 if (err) { 5303 ret = err; 5304 /* 5305 * We use &bio in above __extent_read_full_page, 5306 * so we ensure that if it returns error, the 5307 * current page fails to add itself to bio and 5308 * it's been unlocked. 5309 * 5310 * We must dec io_pages by ourselves. 5311 */ 5312 atomic_dec(&eb->io_pages); 5313 } 5314 } else { 5315 unlock_page(page); 5316 } 5317 } 5318 5319 if (bio) { 5320 err = submit_one_bio(bio, mirror_num, bio_flags); 5321 if (err) 5322 return err; 5323 } 5324 5325 if (ret || wait != WAIT_COMPLETE) 5326 return ret; 5327 5328 for (i = 0; i < num_pages; i++) { 5329 page = eb->pages[i]; 5330 wait_on_page_locked(page); 5331 if (!PageUptodate(page)) 5332 ret = -EIO; 5333 } 5334 5335 return ret; 5336 5337 unlock_exit: 5338 while (locked_pages > 0) { 5339 locked_pages--; 5340 page = eb->pages[locked_pages]; 5341 unlock_page(page); 5342 } 5343 return ret; 5344 } 5345 5346 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5347 unsigned long start, unsigned long len) 5348 { 5349 size_t cur; 5350 size_t offset; 5351 struct page *page; 5352 char *kaddr; 5353 char *dst = (char *)dstv; 5354 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5355 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5356 5357 if (start + len > eb->len) { 5358 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5359 eb->start, eb->len, start, len); 5360 memset(dst, 0, len); 5361 return; 5362 } 5363 5364 offset = (start_offset + start) & (PAGE_SIZE - 1); 5365 5366 while (len > 0) { 5367 page = eb->pages[i]; 5368 5369 cur = min(len, (PAGE_SIZE - offset)); 5370 kaddr = page_address(page); 5371 memcpy(dst, kaddr + offset, cur); 5372 5373 dst += cur; 5374 len -= cur; 5375 offset = 0; 5376 i++; 5377 } 5378 } 5379 5380 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5381 void __user *dstv, 5382 unsigned long start, unsigned long len) 5383 { 5384 size_t cur; 5385 size_t offset; 5386 struct page *page; 5387 char *kaddr; 5388 char __user *dst = (char __user *)dstv; 5389 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5390 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5391 int ret = 0; 5392 5393 WARN_ON(start > eb->len); 5394 WARN_ON(start + len > eb->start + eb->len); 5395 5396 offset = (start_offset + start) & (PAGE_SIZE - 1); 5397 5398 while (len > 0) { 5399 page = eb->pages[i]; 5400 5401 cur = min(len, (PAGE_SIZE - offset)); 5402 kaddr = page_address(page); 5403 if (copy_to_user(dst, kaddr + offset, cur)) { 5404 ret = -EFAULT; 5405 break; 5406 } 5407 5408 dst += cur; 5409 len -= cur; 5410 offset = 0; 5411 i++; 5412 } 5413 5414 return ret; 5415 } 5416 5417 /* 5418 * return 0 if the item is found within a page. 5419 * return 1 if the item spans two pages. 5420 * return -EINVAL otherwise. 5421 */ 5422 int map_private_extent_buffer(const struct extent_buffer *eb, 5423 unsigned long start, unsigned long min_len, 5424 char **map, unsigned long *map_start, 5425 unsigned long *map_len) 5426 { 5427 size_t offset = start & (PAGE_SIZE - 1); 5428 char *kaddr; 5429 struct page *p; 5430 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5431 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5432 unsigned long end_i = (start_offset + start + min_len - 1) >> 5433 PAGE_SHIFT; 5434 5435 if (start + min_len > eb->len) { 5436 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5437 eb->start, eb->len, start, min_len); 5438 return -EINVAL; 5439 } 5440 5441 if (i != end_i) 5442 return 1; 5443 5444 if (i == 0) { 5445 offset = start_offset; 5446 *map_start = 0; 5447 } else { 5448 offset = 0; 5449 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5450 } 5451 5452 p = eb->pages[i]; 5453 kaddr = page_address(p); 5454 *map = kaddr + offset; 5455 *map_len = PAGE_SIZE - offset; 5456 return 0; 5457 } 5458 5459 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5460 unsigned long start, unsigned long len) 5461 { 5462 size_t cur; 5463 size_t offset; 5464 struct page *page; 5465 char *kaddr; 5466 char *ptr = (char *)ptrv; 5467 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5468 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5469 int ret = 0; 5470 5471 WARN_ON(start > eb->len); 5472 WARN_ON(start + len > eb->start + eb->len); 5473 5474 offset = (start_offset + start) & (PAGE_SIZE - 1); 5475 5476 while (len > 0) { 5477 page = eb->pages[i]; 5478 5479 cur = min(len, (PAGE_SIZE - offset)); 5480 5481 kaddr = page_address(page); 5482 ret = memcmp(ptr, kaddr + offset, cur); 5483 if (ret) 5484 break; 5485 5486 ptr += cur; 5487 len -= cur; 5488 offset = 0; 5489 i++; 5490 } 5491 return ret; 5492 } 5493 5494 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5495 const void *srcv) 5496 { 5497 char *kaddr; 5498 5499 WARN_ON(!PageUptodate(eb->pages[0])); 5500 kaddr = page_address(eb->pages[0]); 5501 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5502 BTRFS_FSID_SIZE); 5503 } 5504 5505 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5506 { 5507 char *kaddr; 5508 5509 WARN_ON(!PageUptodate(eb->pages[0])); 5510 kaddr = page_address(eb->pages[0]); 5511 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5512 BTRFS_FSID_SIZE); 5513 } 5514 5515 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5516 unsigned long start, unsigned long len) 5517 { 5518 size_t cur; 5519 size_t offset; 5520 struct page *page; 5521 char *kaddr; 5522 char *src = (char *)srcv; 5523 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5524 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5525 5526 WARN_ON(start > eb->len); 5527 WARN_ON(start + len > eb->start + eb->len); 5528 5529 offset = (start_offset + start) & (PAGE_SIZE - 1); 5530 5531 while (len > 0) { 5532 page = eb->pages[i]; 5533 WARN_ON(!PageUptodate(page)); 5534 5535 cur = min(len, PAGE_SIZE - offset); 5536 kaddr = page_address(page); 5537 memcpy(kaddr + offset, src, cur); 5538 5539 src += cur; 5540 len -= cur; 5541 offset = 0; 5542 i++; 5543 } 5544 } 5545 5546 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5547 unsigned long len) 5548 { 5549 size_t cur; 5550 size_t offset; 5551 struct page *page; 5552 char *kaddr; 5553 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5554 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5555 5556 WARN_ON(start > eb->len); 5557 WARN_ON(start + len > eb->start + eb->len); 5558 5559 offset = (start_offset + start) & (PAGE_SIZE - 1); 5560 5561 while (len > 0) { 5562 page = eb->pages[i]; 5563 WARN_ON(!PageUptodate(page)); 5564 5565 cur = min(len, PAGE_SIZE - offset); 5566 kaddr = page_address(page); 5567 memset(kaddr + offset, 0, cur); 5568 5569 len -= cur; 5570 offset = 0; 5571 i++; 5572 } 5573 } 5574 5575 void copy_extent_buffer_full(struct extent_buffer *dst, 5576 struct extent_buffer *src) 5577 { 5578 int i; 5579 unsigned num_pages; 5580 5581 ASSERT(dst->len == src->len); 5582 5583 num_pages = num_extent_pages(dst->start, dst->len); 5584 for (i = 0; i < num_pages; i++) 5585 copy_page(page_address(dst->pages[i]), 5586 page_address(src->pages[i])); 5587 } 5588 5589 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5590 unsigned long dst_offset, unsigned long src_offset, 5591 unsigned long len) 5592 { 5593 u64 dst_len = dst->len; 5594 size_t cur; 5595 size_t offset; 5596 struct page *page; 5597 char *kaddr; 5598 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5599 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5600 5601 WARN_ON(src->len != dst_len); 5602 5603 offset = (start_offset + dst_offset) & 5604 (PAGE_SIZE - 1); 5605 5606 while (len > 0) { 5607 page = dst->pages[i]; 5608 WARN_ON(!PageUptodate(page)); 5609 5610 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5611 5612 kaddr = page_address(page); 5613 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5614 5615 src_offset += cur; 5616 len -= cur; 5617 offset = 0; 5618 i++; 5619 } 5620 } 5621 5622 void le_bitmap_set(u8 *map, unsigned int start, int len) 5623 { 5624 u8 *p = map + BIT_BYTE(start); 5625 const unsigned int size = start + len; 5626 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5627 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 5628 5629 while (len - bits_to_set >= 0) { 5630 *p |= mask_to_set; 5631 len -= bits_to_set; 5632 bits_to_set = BITS_PER_BYTE; 5633 mask_to_set = ~0; 5634 p++; 5635 } 5636 if (len) { 5637 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5638 *p |= mask_to_set; 5639 } 5640 } 5641 5642 void le_bitmap_clear(u8 *map, unsigned int start, int len) 5643 { 5644 u8 *p = map + BIT_BYTE(start); 5645 const unsigned int size = start + len; 5646 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5647 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start); 5648 5649 while (len - bits_to_clear >= 0) { 5650 *p &= ~mask_to_clear; 5651 len -= bits_to_clear; 5652 bits_to_clear = BITS_PER_BYTE; 5653 mask_to_clear = ~0; 5654 p++; 5655 } 5656 if (len) { 5657 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5658 *p &= ~mask_to_clear; 5659 } 5660 } 5661 5662 /* 5663 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5664 * given bit number 5665 * @eb: the extent buffer 5666 * @start: offset of the bitmap item in the extent buffer 5667 * @nr: bit number 5668 * @page_index: return index of the page in the extent buffer that contains the 5669 * given bit number 5670 * @page_offset: return offset into the page given by page_index 5671 * 5672 * This helper hides the ugliness of finding the byte in an extent buffer which 5673 * contains a given bit. 5674 */ 5675 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5676 unsigned long start, unsigned long nr, 5677 unsigned long *page_index, 5678 size_t *page_offset) 5679 { 5680 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5681 size_t byte_offset = BIT_BYTE(nr); 5682 size_t offset; 5683 5684 /* 5685 * The byte we want is the offset of the extent buffer + the offset of 5686 * the bitmap item in the extent buffer + the offset of the byte in the 5687 * bitmap item. 5688 */ 5689 offset = start_offset + start + byte_offset; 5690 5691 *page_index = offset >> PAGE_SHIFT; 5692 *page_offset = offset & (PAGE_SIZE - 1); 5693 } 5694 5695 /** 5696 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5697 * @eb: the extent buffer 5698 * @start: offset of the bitmap item in the extent buffer 5699 * @nr: bit number to test 5700 */ 5701 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5702 unsigned long nr) 5703 { 5704 u8 *kaddr; 5705 struct page *page; 5706 unsigned long i; 5707 size_t offset; 5708 5709 eb_bitmap_offset(eb, start, nr, &i, &offset); 5710 page = eb->pages[i]; 5711 WARN_ON(!PageUptodate(page)); 5712 kaddr = page_address(page); 5713 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5714 } 5715 5716 /** 5717 * extent_buffer_bitmap_set - set an area of a bitmap 5718 * @eb: the extent buffer 5719 * @start: offset of the bitmap item in the extent buffer 5720 * @pos: bit number of the first bit 5721 * @len: number of bits to set 5722 */ 5723 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5724 unsigned long pos, unsigned long len) 5725 { 5726 u8 *kaddr; 5727 struct page *page; 5728 unsigned long i; 5729 size_t offset; 5730 const unsigned int size = pos + len; 5731 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5732 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5733 5734 eb_bitmap_offset(eb, start, pos, &i, &offset); 5735 page = eb->pages[i]; 5736 WARN_ON(!PageUptodate(page)); 5737 kaddr = page_address(page); 5738 5739 while (len >= bits_to_set) { 5740 kaddr[offset] |= mask_to_set; 5741 len -= bits_to_set; 5742 bits_to_set = BITS_PER_BYTE; 5743 mask_to_set = ~0; 5744 if (++offset >= PAGE_SIZE && len > 0) { 5745 offset = 0; 5746 page = eb->pages[++i]; 5747 WARN_ON(!PageUptodate(page)); 5748 kaddr = page_address(page); 5749 } 5750 } 5751 if (len) { 5752 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5753 kaddr[offset] |= mask_to_set; 5754 } 5755 } 5756 5757 5758 /** 5759 * extent_buffer_bitmap_clear - clear an area of a bitmap 5760 * @eb: the extent buffer 5761 * @start: offset of the bitmap item in the extent buffer 5762 * @pos: bit number of the first bit 5763 * @len: number of bits to clear 5764 */ 5765 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5766 unsigned long pos, unsigned long len) 5767 { 5768 u8 *kaddr; 5769 struct page *page; 5770 unsigned long i; 5771 size_t offset; 5772 const unsigned int size = pos + len; 5773 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5774 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5775 5776 eb_bitmap_offset(eb, start, pos, &i, &offset); 5777 page = eb->pages[i]; 5778 WARN_ON(!PageUptodate(page)); 5779 kaddr = page_address(page); 5780 5781 while (len >= bits_to_clear) { 5782 kaddr[offset] &= ~mask_to_clear; 5783 len -= bits_to_clear; 5784 bits_to_clear = BITS_PER_BYTE; 5785 mask_to_clear = ~0; 5786 if (++offset >= PAGE_SIZE && len > 0) { 5787 offset = 0; 5788 page = eb->pages[++i]; 5789 WARN_ON(!PageUptodate(page)); 5790 kaddr = page_address(page); 5791 } 5792 } 5793 if (len) { 5794 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5795 kaddr[offset] &= ~mask_to_clear; 5796 } 5797 } 5798 5799 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5800 { 5801 unsigned long distance = (src > dst) ? src - dst : dst - src; 5802 return distance < len; 5803 } 5804 5805 static void copy_pages(struct page *dst_page, struct page *src_page, 5806 unsigned long dst_off, unsigned long src_off, 5807 unsigned long len) 5808 { 5809 char *dst_kaddr = page_address(dst_page); 5810 char *src_kaddr; 5811 int must_memmove = 0; 5812 5813 if (dst_page != src_page) { 5814 src_kaddr = page_address(src_page); 5815 } else { 5816 src_kaddr = dst_kaddr; 5817 if (areas_overlap(src_off, dst_off, len)) 5818 must_memmove = 1; 5819 } 5820 5821 if (must_memmove) 5822 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5823 else 5824 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5825 } 5826 5827 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5828 unsigned long src_offset, unsigned long len) 5829 { 5830 struct btrfs_fs_info *fs_info = dst->fs_info; 5831 size_t cur; 5832 size_t dst_off_in_page; 5833 size_t src_off_in_page; 5834 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5835 unsigned long dst_i; 5836 unsigned long src_i; 5837 5838 if (src_offset + len > dst->len) { 5839 btrfs_err(fs_info, 5840 "memmove bogus src_offset %lu move len %lu dst len %lu", 5841 src_offset, len, dst->len); 5842 BUG_ON(1); 5843 } 5844 if (dst_offset + len > dst->len) { 5845 btrfs_err(fs_info, 5846 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5847 dst_offset, len, dst->len); 5848 BUG_ON(1); 5849 } 5850 5851 while (len > 0) { 5852 dst_off_in_page = (start_offset + dst_offset) & 5853 (PAGE_SIZE - 1); 5854 src_off_in_page = (start_offset + src_offset) & 5855 (PAGE_SIZE - 1); 5856 5857 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5858 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5859 5860 cur = min(len, (unsigned long)(PAGE_SIZE - 5861 src_off_in_page)); 5862 cur = min_t(unsigned long, cur, 5863 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5864 5865 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5866 dst_off_in_page, src_off_in_page, cur); 5867 5868 src_offset += cur; 5869 dst_offset += cur; 5870 len -= cur; 5871 } 5872 } 5873 5874 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5875 unsigned long src_offset, unsigned long len) 5876 { 5877 struct btrfs_fs_info *fs_info = dst->fs_info; 5878 size_t cur; 5879 size_t dst_off_in_page; 5880 size_t src_off_in_page; 5881 unsigned long dst_end = dst_offset + len - 1; 5882 unsigned long src_end = src_offset + len - 1; 5883 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5884 unsigned long dst_i; 5885 unsigned long src_i; 5886 5887 if (src_offset + len > dst->len) { 5888 btrfs_err(fs_info, 5889 "memmove bogus src_offset %lu move len %lu len %lu", 5890 src_offset, len, dst->len); 5891 BUG_ON(1); 5892 } 5893 if (dst_offset + len > dst->len) { 5894 btrfs_err(fs_info, 5895 "memmove bogus dst_offset %lu move len %lu len %lu", 5896 dst_offset, len, dst->len); 5897 BUG_ON(1); 5898 } 5899 if (dst_offset < src_offset) { 5900 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5901 return; 5902 } 5903 while (len > 0) { 5904 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5905 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5906 5907 dst_off_in_page = (start_offset + dst_end) & 5908 (PAGE_SIZE - 1); 5909 src_off_in_page = (start_offset + src_end) & 5910 (PAGE_SIZE - 1); 5911 5912 cur = min_t(unsigned long, len, src_off_in_page + 1); 5913 cur = min(cur, dst_off_in_page + 1); 5914 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5915 dst_off_in_page - cur + 1, 5916 src_off_in_page - cur + 1, cur); 5917 5918 dst_end -= cur; 5919 src_end -= cur; 5920 len -= cur; 5921 } 5922 } 5923 5924 int try_release_extent_buffer(struct page *page) 5925 { 5926 struct extent_buffer *eb; 5927 5928 /* 5929 * We need to make sure nobody is attaching this page to an eb right 5930 * now. 5931 */ 5932 spin_lock(&page->mapping->private_lock); 5933 if (!PagePrivate(page)) { 5934 spin_unlock(&page->mapping->private_lock); 5935 return 1; 5936 } 5937 5938 eb = (struct extent_buffer *)page->private; 5939 BUG_ON(!eb); 5940 5941 /* 5942 * This is a little awful but should be ok, we need to make sure that 5943 * the eb doesn't disappear out from under us while we're looking at 5944 * this page. 5945 */ 5946 spin_lock(&eb->refs_lock); 5947 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5948 spin_unlock(&eb->refs_lock); 5949 spin_unlock(&page->mapping->private_lock); 5950 return 0; 5951 } 5952 spin_unlock(&page->mapping->private_lock); 5953 5954 /* 5955 * If tree ref isn't set then we know the ref on this eb is a real ref, 5956 * so just return, this page will likely be freed soon anyway. 5957 */ 5958 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5959 spin_unlock(&eb->refs_lock); 5960 return 0; 5961 } 5962 5963 return release_extent_buffer(eb); 5964 } 5965