1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "block-group.h" 30 31 static struct kmem_cache *extent_state_cache; 32 static struct kmem_cache *extent_buffer_cache; 33 static struct bio_set btrfs_bioset; 34 35 static inline bool extent_state_in_tree(const struct extent_state *state) 36 { 37 return !RB_EMPTY_NODE(&state->rb_node); 38 } 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static LIST_HEAD(states); 42 static DEFINE_SPINLOCK(leak_lock); 43 44 static inline void btrfs_leak_debug_add(spinlock_t *lock, 45 struct list_head *new, 46 struct list_head *head) 47 { 48 unsigned long flags; 49 50 spin_lock_irqsave(lock, flags); 51 list_add(new, head); 52 spin_unlock_irqrestore(lock, flags); 53 } 54 55 static inline void btrfs_leak_debug_del(spinlock_t *lock, 56 struct list_head *entry) 57 { 58 unsigned long flags; 59 60 spin_lock_irqsave(lock, flags); 61 list_del(entry); 62 spin_unlock_irqrestore(lock, flags); 63 } 64 65 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 66 { 67 struct extent_buffer *eb; 68 unsigned long flags; 69 70 /* 71 * If we didn't get into open_ctree our allocated_ebs will not be 72 * initialized, so just skip this. 73 */ 74 if (!fs_info->allocated_ebs.next) 75 return; 76 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 91 static inline void btrfs_extent_state_leak_debug_check(void) 92 { 93 struct extent_state *state; 94 95 while (!list_empty(&states)) { 96 state = list_entry(states.next, struct extent_state, leak_list); 97 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 98 state->start, state->end, state->state, 99 extent_state_in_tree(state), 100 refcount_read(&state->refs)); 101 list_del(&state->leak_list); 102 kmem_cache_free(extent_state_cache, state); 103 } 104 } 105 106 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 107 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 108 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 109 struct extent_io_tree *tree, u64 start, u64 end) 110 { 111 struct inode *inode = tree->private_data; 112 u64 isize; 113 114 if (!inode || !is_data_inode(inode)) 115 return; 116 117 isize = i_size_read(inode); 118 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 119 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 120 "%s: ino %llu isize %llu odd range [%llu,%llu]", 121 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 122 } 123 } 124 #else 125 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 126 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 127 #define btrfs_extent_state_leak_debug_check() do {} while (0) 128 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 129 #endif 130 131 struct tree_entry { 132 u64 start; 133 u64 end; 134 struct rb_node rb_node; 135 }; 136 137 struct extent_page_data { 138 struct bio *bio; 139 /* tells writepage not to lock the state bits for this range 140 * it still does the unlocking 141 */ 142 unsigned int extent_locked:1; 143 144 /* tells the submit_bio code to use REQ_SYNC */ 145 unsigned int sync_io:1; 146 }; 147 148 static int add_extent_changeset(struct extent_state *state, u32 bits, 149 struct extent_changeset *changeset, 150 int set) 151 { 152 int ret; 153 154 if (!changeset) 155 return 0; 156 if (set && (state->state & bits) == bits) 157 return 0; 158 if (!set && (state->state & bits) == 0) 159 return 0; 160 changeset->bytes_changed += state->end - state->start + 1; 161 ret = ulist_add(&changeset->range_changed, state->start, state->end, 162 GFP_ATOMIC); 163 return ret; 164 } 165 166 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 167 unsigned long bio_flags) 168 { 169 blk_status_t ret = 0; 170 struct extent_io_tree *tree = bio->bi_private; 171 172 bio->bi_private = NULL; 173 174 if (is_data_inode(tree->private_data)) 175 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 176 bio_flags); 177 else 178 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 179 mirror_num, bio_flags); 180 181 return blk_status_to_errno(ret); 182 } 183 184 /* Cleanup unsubmitted bios */ 185 static void end_write_bio(struct extent_page_data *epd, int ret) 186 { 187 if (epd->bio) { 188 epd->bio->bi_status = errno_to_blk_status(ret); 189 bio_endio(epd->bio); 190 epd->bio = NULL; 191 } 192 } 193 194 /* 195 * Submit bio from extent page data via submit_one_bio 196 * 197 * Return 0 if everything is OK. 198 * Return <0 for error. 199 */ 200 static int __must_check flush_write_bio(struct extent_page_data *epd) 201 { 202 int ret = 0; 203 204 if (epd->bio) { 205 ret = submit_one_bio(epd->bio, 0, 0); 206 /* 207 * Clean up of epd->bio is handled by its endio function. 208 * And endio is either triggered by successful bio execution 209 * or the error handler of submit bio hook. 210 * So at this point, no matter what happened, we don't need 211 * to clean up epd->bio. 212 */ 213 epd->bio = NULL; 214 } 215 return ret; 216 } 217 218 int __init extent_state_cache_init(void) 219 { 220 extent_state_cache = kmem_cache_create("btrfs_extent_state", 221 sizeof(struct extent_state), 0, 222 SLAB_MEM_SPREAD, NULL); 223 if (!extent_state_cache) 224 return -ENOMEM; 225 return 0; 226 } 227 228 int __init extent_io_init(void) 229 { 230 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 231 sizeof(struct extent_buffer), 0, 232 SLAB_MEM_SPREAD, NULL); 233 if (!extent_buffer_cache) 234 return -ENOMEM; 235 236 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 237 offsetof(struct btrfs_io_bio, bio), 238 BIOSET_NEED_BVECS)) 239 goto free_buffer_cache; 240 241 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 242 goto free_bioset; 243 244 return 0; 245 246 free_bioset: 247 bioset_exit(&btrfs_bioset); 248 249 free_buffer_cache: 250 kmem_cache_destroy(extent_buffer_cache); 251 extent_buffer_cache = NULL; 252 return -ENOMEM; 253 } 254 255 void __cold extent_state_cache_exit(void) 256 { 257 btrfs_extent_state_leak_debug_check(); 258 kmem_cache_destroy(extent_state_cache); 259 } 260 261 void __cold extent_io_exit(void) 262 { 263 /* 264 * Make sure all delayed rcu free are flushed before we 265 * destroy caches. 266 */ 267 rcu_barrier(); 268 kmem_cache_destroy(extent_buffer_cache); 269 bioset_exit(&btrfs_bioset); 270 } 271 272 /* 273 * For the file_extent_tree, we want to hold the inode lock when we lookup and 274 * update the disk_i_size, but lockdep will complain because our io_tree we hold 275 * the tree lock and get the inode lock when setting delalloc. These two things 276 * are unrelated, so make a class for the file_extent_tree so we don't get the 277 * two locking patterns mixed up. 278 */ 279 static struct lock_class_key file_extent_tree_class; 280 281 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 282 struct extent_io_tree *tree, unsigned int owner, 283 void *private_data) 284 { 285 tree->fs_info = fs_info; 286 tree->state = RB_ROOT; 287 tree->dirty_bytes = 0; 288 spin_lock_init(&tree->lock); 289 tree->private_data = private_data; 290 tree->owner = owner; 291 if (owner == IO_TREE_INODE_FILE_EXTENT) 292 lockdep_set_class(&tree->lock, &file_extent_tree_class); 293 } 294 295 void extent_io_tree_release(struct extent_io_tree *tree) 296 { 297 spin_lock(&tree->lock); 298 /* 299 * Do a single barrier for the waitqueue_active check here, the state 300 * of the waitqueue should not change once extent_io_tree_release is 301 * called. 302 */ 303 smp_mb(); 304 while (!RB_EMPTY_ROOT(&tree->state)) { 305 struct rb_node *node; 306 struct extent_state *state; 307 308 node = rb_first(&tree->state); 309 state = rb_entry(node, struct extent_state, rb_node); 310 rb_erase(&state->rb_node, &tree->state); 311 RB_CLEAR_NODE(&state->rb_node); 312 /* 313 * btree io trees aren't supposed to have tasks waiting for 314 * changes in the flags of extent states ever. 315 */ 316 ASSERT(!waitqueue_active(&state->wq)); 317 free_extent_state(state); 318 319 cond_resched_lock(&tree->lock); 320 } 321 spin_unlock(&tree->lock); 322 } 323 324 static struct extent_state *alloc_extent_state(gfp_t mask) 325 { 326 struct extent_state *state; 327 328 /* 329 * The given mask might be not appropriate for the slab allocator, 330 * drop the unsupported bits 331 */ 332 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 333 state = kmem_cache_alloc(extent_state_cache, mask); 334 if (!state) 335 return state; 336 state->state = 0; 337 state->failrec = NULL; 338 RB_CLEAR_NODE(&state->rb_node); 339 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 340 refcount_set(&state->refs, 1); 341 init_waitqueue_head(&state->wq); 342 trace_alloc_extent_state(state, mask, _RET_IP_); 343 return state; 344 } 345 346 void free_extent_state(struct extent_state *state) 347 { 348 if (!state) 349 return; 350 if (refcount_dec_and_test(&state->refs)) { 351 WARN_ON(extent_state_in_tree(state)); 352 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 353 trace_free_extent_state(state, _RET_IP_); 354 kmem_cache_free(extent_state_cache, state); 355 } 356 } 357 358 static struct rb_node *tree_insert(struct rb_root *root, 359 struct rb_node *search_start, 360 u64 offset, 361 struct rb_node *node, 362 struct rb_node ***p_in, 363 struct rb_node **parent_in) 364 { 365 struct rb_node **p; 366 struct rb_node *parent = NULL; 367 struct tree_entry *entry; 368 369 if (p_in && parent_in) { 370 p = *p_in; 371 parent = *parent_in; 372 goto do_insert; 373 } 374 375 p = search_start ? &search_start : &root->rb_node; 376 while (*p) { 377 parent = *p; 378 entry = rb_entry(parent, struct tree_entry, rb_node); 379 380 if (offset < entry->start) 381 p = &(*p)->rb_left; 382 else if (offset > entry->end) 383 p = &(*p)->rb_right; 384 else 385 return parent; 386 } 387 388 do_insert: 389 rb_link_node(node, parent, p); 390 rb_insert_color(node, root); 391 return NULL; 392 } 393 394 /** 395 * Search @tree for an entry that contains @offset. Such entry would have 396 * entry->start <= offset && entry->end >= offset. 397 * 398 * @tree: the tree to search 399 * @offset: offset that should fall within an entry in @tree 400 * @next_ret: pointer to the first entry whose range ends after @offset 401 * @prev_ret: pointer to the first entry whose range begins before @offset 402 * @p_ret: pointer where new node should be anchored (used when inserting an 403 * entry in the tree) 404 * @parent_ret: points to entry which would have been the parent of the entry, 405 * containing @offset 406 * 407 * This function returns a pointer to the entry that contains @offset byte 408 * address. If no such entry exists, then NULL is returned and the other 409 * pointer arguments to the function are filled, otherwise the found entry is 410 * returned and other pointers are left untouched. 411 */ 412 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 413 struct rb_node **next_ret, 414 struct rb_node **prev_ret, 415 struct rb_node ***p_ret, 416 struct rb_node **parent_ret) 417 { 418 struct rb_root *root = &tree->state; 419 struct rb_node **n = &root->rb_node; 420 struct rb_node *prev = NULL; 421 struct rb_node *orig_prev = NULL; 422 struct tree_entry *entry; 423 struct tree_entry *prev_entry = NULL; 424 425 while (*n) { 426 prev = *n; 427 entry = rb_entry(prev, struct tree_entry, rb_node); 428 prev_entry = entry; 429 430 if (offset < entry->start) 431 n = &(*n)->rb_left; 432 else if (offset > entry->end) 433 n = &(*n)->rb_right; 434 else 435 return *n; 436 } 437 438 if (p_ret) 439 *p_ret = n; 440 if (parent_ret) 441 *parent_ret = prev; 442 443 if (next_ret) { 444 orig_prev = prev; 445 while (prev && offset > prev_entry->end) { 446 prev = rb_next(prev); 447 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 448 } 449 *next_ret = prev; 450 prev = orig_prev; 451 } 452 453 if (prev_ret) { 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 while (prev && offset < prev_entry->start) { 456 prev = rb_prev(prev); 457 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 458 } 459 *prev_ret = prev; 460 } 461 return NULL; 462 } 463 464 static inline struct rb_node * 465 tree_search_for_insert(struct extent_io_tree *tree, 466 u64 offset, 467 struct rb_node ***p_ret, 468 struct rb_node **parent_ret) 469 { 470 struct rb_node *next= NULL; 471 struct rb_node *ret; 472 473 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 474 if (!ret) 475 return next; 476 return ret; 477 } 478 479 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 480 u64 offset) 481 { 482 return tree_search_for_insert(tree, offset, NULL, NULL); 483 } 484 485 /* 486 * utility function to look for merge candidates inside a given range. 487 * Any extents with matching state are merged together into a single 488 * extent in the tree. Extents with EXTENT_IO in their state field 489 * are not merged because the end_io handlers need to be able to do 490 * operations on them without sleeping (or doing allocations/splits). 491 * 492 * This should be called with the tree lock held. 493 */ 494 static void merge_state(struct extent_io_tree *tree, 495 struct extent_state *state) 496 { 497 struct extent_state *other; 498 struct rb_node *other_node; 499 500 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 501 return; 502 503 other_node = rb_prev(&state->rb_node); 504 if (other_node) { 505 other = rb_entry(other_node, struct extent_state, rb_node); 506 if (other->end == state->start - 1 && 507 other->state == state->state) { 508 if (tree->private_data && 509 is_data_inode(tree->private_data)) 510 btrfs_merge_delalloc_extent(tree->private_data, 511 state, other); 512 state->start = other->start; 513 rb_erase(&other->rb_node, &tree->state); 514 RB_CLEAR_NODE(&other->rb_node); 515 free_extent_state(other); 516 } 517 } 518 other_node = rb_next(&state->rb_node); 519 if (other_node) { 520 other = rb_entry(other_node, struct extent_state, rb_node); 521 if (other->start == state->end + 1 && 522 other->state == state->state) { 523 if (tree->private_data && 524 is_data_inode(tree->private_data)) 525 btrfs_merge_delalloc_extent(tree->private_data, 526 state, other); 527 state->end = other->end; 528 rb_erase(&other->rb_node, &tree->state); 529 RB_CLEAR_NODE(&other->rb_node); 530 free_extent_state(other); 531 } 532 } 533 } 534 535 static void set_state_bits(struct extent_io_tree *tree, 536 struct extent_state *state, u32 *bits, 537 struct extent_changeset *changeset); 538 539 /* 540 * insert an extent_state struct into the tree. 'bits' are set on the 541 * struct before it is inserted. 542 * 543 * This may return -EEXIST if the extent is already there, in which case the 544 * state struct is freed. 545 * 546 * The tree lock is not taken internally. This is a utility function and 547 * probably isn't what you want to call (see set/clear_extent_bit). 548 */ 549 static int insert_state(struct extent_io_tree *tree, 550 struct extent_state *state, u64 start, u64 end, 551 struct rb_node ***p, 552 struct rb_node **parent, 553 u32 *bits, struct extent_changeset *changeset) 554 { 555 struct rb_node *node; 556 557 if (end < start) { 558 btrfs_err(tree->fs_info, 559 "insert state: end < start %llu %llu", end, start); 560 WARN_ON(1); 561 } 562 state->start = start; 563 state->end = end; 564 565 set_state_bits(tree, state, bits, changeset); 566 567 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 568 if (node) { 569 struct extent_state *found; 570 found = rb_entry(node, struct extent_state, rb_node); 571 btrfs_err(tree->fs_info, 572 "found node %llu %llu on insert of %llu %llu", 573 found->start, found->end, start, end); 574 return -EEXIST; 575 } 576 merge_state(tree, state); 577 return 0; 578 } 579 580 /* 581 * split a given extent state struct in two, inserting the preallocated 582 * struct 'prealloc' as the newly created second half. 'split' indicates an 583 * offset inside 'orig' where it should be split. 584 * 585 * Before calling, 586 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 587 * are two extent state structs in the tree: 588 * prealloc: [orig->start, split - 1] 589 * orig: [ split, orig->end ] 590 * 591 * The tree locks are not taken by this function. They need to be held 592 * by the caller. 593 */ 594 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 595 struct extent_state *prealloc, u64 split) 596 { 597 struct rb_node *node; 598 599 if (tree->private_data && is_data_inode(tree->private_data)) 600 btrfs_split_delalloc_extent(tree->private_data, orig, split); 601 602 prealloc->start = orig->start; 603 prealloc->end = split - 1; 604 prealloc->state = orig->state; 605 orig->start = split; 606 607 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 608 &prealloc->rb_node, NULL, NULL); 609 if (node) { 610 free_extent_state(prealloc); 611 return -EEXIST; 612 } 613 return 0; 614 } 615 616 static struct extent_state *next_state(struct extent_state *state) 617 { 618 struct rb_node *next = rb_next(&state->rb_node); 619 if (next) 620 return rb_entry(next, struct extent_state, rb_node); 621 else 622 return NULL; 623 } 624 625 /* 626 * utility function to clear some bits in an extent state struct. 627 * it will optionally wake up anyone waiting on this state (wake == 1). 628 * 629 * If no bits are set on the state struct after clearing things, the 630 * struct is freed and removed from the tree 631 */ 632 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 633 struct extent_state *state, 634 u32 *bits, int wake, 635 struct extent_changeset *changeset) 636 { 637 struct extent_state *next; 638 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 639 int ret; 640 641 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 642 u64 range = state->end - state->start + 1; 643 WARN_ON(range > tree->dirty_bytes); 644 tree->dirty_bytes -= range; 645 } 646 647 if (tree->private_data && is_data_inode(tree->private_data)) 648 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 649 650 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 651 BUG_ON(ret < 0); 652 state->state &= ~bits_to_clear; 653 if (wake) 654 wake_up(&state->wq); 655 if (state->state == 0) { 656 next = next_state(state); 657 if (extent_state_in_tree(state)) { 658 rb_erase(&state->rb_node, &tree->state); 659 RB_CLEAR_NODE(&state->rb_node); 660 free_extent_state(state); 661 } else { 662 WARN_ON(1); 663 } 664 } else { 665 merge_state(tree, state); 666 next = next_state(state); 667 } 668 return next; 669 } 670 671 static struct extent_state * 672 alloc_extent_state_atomic(struct extent_state *prealloc) 673 { 674 if (!prealloc) 675 prealloc = alloc_extent_state(GFP_ATOMIC); 676 677 return prealloc; 678 } 679 680 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 681 { 682 btrfs_panic(tree->fs_info, err, 683 "locking error: extent tree was modified by another thread while locked"); 684 } 685 686 /* 687 * clear some bits on a range in the tree. This may require splitting 688 * or inserting elements in the tree, so the gfp mask is used to 689 * indicate which allocations or sleeping are allowed. 690 * 691 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 692 * the given range from the tree regardless of state (ie for truncate). 693 * 694 * the range [start, end] is inclusive. 695 * 696 * This takes the tree lock, and returns 0 on success and < 0 on error. 697 */ 698 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 699 u32 bits, int wake, int delete, 700 struct extent_state **cached_state, 701 gfp_t mask, struct extent_changeset *changeset) 702 { 703 struct extent_state *state; 704 struct extent_state *cached; 705 struct extent_state *prealloc = NULL; 706 struct rb_node *node; 707 u64 last_end; 708 int err; 709 int clear = 0; 710 711 btrfs_debug_check_extent_io_range(tree, start, end); 712 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 713 714 if (bits & EXTENT_DELALLOC) 715 bits |= EXTENT_NORESERVE; 716 717 if (delete) 718 bits |= ~EXTENT_CTLBITS; 719 720 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 721 clear = 1; 722 again: 723 if (!prealloc && gfpflags_allow_blocking(mask)) { 724 /* 725 * Don't care for allocation failure here because we might end 726 * up not needing the pre-allocated extent state at all, which 727 * is the case if we only have in the tree extent states that 728 * cover our input range and don't cover too any other range. 729 * If we end up needing a new extent state we allocate it later. 730 */ 731 prealloc = alloc_extent_state(mask); 732 } 733 734 spin_lock(&tree->lock); 735 if (cached_state) { 736 cached = *cached_state; 737 738 if (clear) { 739 *cached_state = NULL; 740 cached_state = NULL; 741 } 742 743 if (cached && extent_state_in_tree(cached) && 744 cached->start <= start && cached->end > start) { 745 if (clear) 746 refcount_dec(&cached->refs); 747 state = cached; 748 goto hit_next; 749 } 750 if (clear) 751 free_extent_state(cached); 752 } 753 /* 754 * this search will find the extents that end after 755 * our range starts 756 */ 757 node = tree_search(tree, start); 758 if (!node) 759 goto out; 760 state = rb_entry(node, struct extent_state, rb_node); 761 hit_next: 762 if (state->start > end) 763 goto out; 764 WARN_ON(state->end < start); 765 last_end = state->end; 766 767 /* the state doesn't have the wanted bits, go ahead */ 768 if (!(state->state & bits)) { 769 state = next_state(state); 770 goto next; 771 } 772 773 /* 774 * | ---- desired range ---- | 775 * | state | or 776 * | ------------- state -------------- | 777 * 778 * We need to split the extent we found, and may flip 779 * bits on second half. 780 * 781 * If the extent we found extends past our range, we 782 * just split and search again. It'll get split again 783 * the next time though. 784 * 785 * If the extent we found is inside our range, we clear 786 * the desired bit on it. 787 */ 788 789 if (state->start < start) { 790 prealloc = alloc_extent_state_atomic(prealloc); 791 BUG_ON(!prealloc); 792 err = split_state(tree, state, prealloc, start); 793 if (err) 794 extent_io_tree_panic(tree, err); 795 796 prealloc = NULL; 797 if (err) 798 goto out; 799 if (state->end <= end) { 800 state = clear_state_bit(tree, state, &bits, wake, 801 changeset); 802 goto next; 803 } 804 goto search_again; 805 } 806 /* 807 * | ---- desired range ---- | 808 * | state | 809 * We need to split the extent, and clear the bit 810 * on the first half 811 */ 812 if (state->start <= end && state->end > end) { 813 prealloc = alloc_extent_state_atomic(prealloc); 814 BUG_ON(!prealloc); 815 err = split_state(tree, state, prealloc, end + 1); 816 if (err) 817 extent_io_tree_panic(tree, err); 818 819 if (wake) 820 wake_up(&state->wq); 821 822 clear_state_bit(tree, prealloc, &bits, wake, changeset); 823 824 prealloc = NULL; 825 goto out; 826 } 827 828 state = clear_state_bit(tree, state, &bits, wake, changeset); 829 next: 830 if (last_end == (u64)-1) 831 goto out; 832 start = last_end + 1; 833 if (start <= end && state && !need_resched()) 834 goto hit_next; 835 836 search_again: 837 if (start > end) 838 goto out; 839 spin_unlock(&tree->lock); 840 if (gfpflags_allow_blocking(mask)) 841 cond_resched(); 842 goto again; 843 844 out: 845 spin_unlock(&tree->lock); 846 if (prealloc) 847 free_extent_state(prealloc); 848 849 return 0; 850 851 } 852 853 static void wait_on_state(struct extent_io_tree *tree, 854 struct extent_state *state) 855 __releases(tree->lock) 856 __acquires(tree->lock) 857 { 858 DEFINE_WAIT(wait); 859 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 860 spin_unlock(&tree->lock); 861 schedule(); 862 spin_lock(&tree->lock); 863 finish_wait(&state->wq, &wait); 864 } 865 866 /* 867 * waits for one or more bits to clear on a range in the state tree. 868 * The range [start, end] is inclusive. 869 * The tree lock is taken by this function 870 */ 871 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 872 u32 bits) 873 { 874 struct extent_state *state; 875 struct rb_node *node; 876 877 btrfs_debug_check_extent_io_range(tree, start, end); 878 879 spin_lock(&tree->lock); 880 again: 881 while (1) { 882 /* 883 * this search will find all the extents that end after 884 * our range starts 885 */ 886 node = tree_search(tree, start); 887 process_node: 888 if (!node) 889 break; 890 891 state = rb_entry(node, struct extent_state, rb_node); 892 893 if (state->start > end) 894 goto out; 895 896 if (state->state & bits) { 897 start = state->start; 898 refcount_inc(&state->refs); 899 wait_on_state(tree, state); 900 free_extent_state(state); 901 goto again; 902 } 903 start = state->end + 1; 904 905 if (start > end) 906 break; 907 908 if (!cond_resched_lock(&tree->lock)) { 909 node = rb_next(node); 910 goto process_node; 911 } 912 } 913 out: 914 spin_unlock(&tree->lock); 915 } 916 917 static void set_state_bits(struct extent_io_tree *tree, 918 struct extent_state *state, 919 u32 *bits, struct extent_changeset *changeset) 920 { 921 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 922 int ret; 923 924 if (tree->private_data && is_data_inode(tree->private_data)) 925 btrfs_set_delalloc_extent(tree->private_data, state, bits); 926 927 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 928 u64 range = state->end - state->start + 1; 929 tree->dirty_bytes += range; 930 } 931 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 932 BUG_ON(ret < 0); 933 state->state |= bits_to_set; 934 } 935 936 static void cache_state_if_flags(struct extent_state *state, 937 struct extent_state **cached_ptr, 938 unsigned flags) 939 { 940 if (cached_ptr && !(*cached_ptr)) { 941 if (!flags || (state->state & flags)) { 942 *cached_ptr = state; 943 refcount_inc(&state->refs); 944 } 945 } 946 } 947 948 static void cache_state(struct extent_state *state, 949 struct extent_state **cached_ptr) 950 { 951 return cache_state_if_flags(state, cached_ptr, 952 EXTENT_LOCKED | EXTENT_BOUNDARY); 953 } 954 955 /* 956 * set some bits on a range in the tree. This may require allocations or 957 * sleeping, so the gfp mask is used to indicate what is allowed. 958 * 959 * If any of the exclusive bits are set, this will fail with -EEXIST if some 960 * part of the range already has the desired bits set. The start of the 961 * existing range is returned in failed_start in this case. 962 * 963 * [start, end] is inclusive This takes the tree lock. 964 */ 965 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 966 u32 exclusive_bits, u64 *failed_start, 967 struct extent_state **cached_state, gfp_t mask, 968 struct extent_changeset *changeset) 969 { 970 struct extent_state *state; 971 struct extent_state *prealloc = NULL; 972 struct rb_node *node; 973 struct rb_node **p; 974 struct rb_node *parent; 975 int err = 0; 976 u64 last_start; 977 u64 last_end; 978 979 btrfs_debug_check_extent_io_range(tree, start, end); 980 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 981 982 if (exclusive_bits) 983 ASSERT(failed_start); 984 else 985 ASSERT(failed_start == NULL); 986 again: 987 if (!prealloc && gfpflags_allow_blocking(mask)) { 988 /* 989 * Don't care for allocation failure here because we might end 990 * up not needing the pre-allocated extent state at all, which 991 * is the case if we only have in the tree extent states that 992 * cover our input range and don't cover too any other range. 993 * If we end up needing a new extent state we allocate it later. 994 */ 995 prealloc = alloc_extent_state(mask); 996 } 997 998 spin_lock(&tree->lock); 999 if (cached_state && *cached_state) { 1000 state = *cached_state; 1001 if (state->start <= start && state->end > start && 1002 extent_state_in_tree(state)) { 1003 node = &state->rb_node; 1004 goto hit_next; 1005 } 1006 } 1007 /* 1008 * this search will find all the extents that end after 1009 * our range starts. 1010 */ 1011 node = tree_search_for_insert(tree, start, &p, &parent); 1012 if (!node) { 1013 prealloc = alloc_extent_state_atomic(prealloc); 1014 BUG_ON(!prealloc); 1015 err = insert_state(tree, prealloc, start, end, 1016 &p, &parent, &bits, changeset); 1017 if (err) 1018 extent_io_tree_panic(tree, err); 1019 1020 cache_state(prealloc, cached_state); 1021 prealloc = NULL; 1022 goto out; 1023 } 1024 state = rb_entry(node, struct extent_state, rb_node); 1025 hit_next: 1026 last_start = state->start; 1027 last_end = state->end; 1028 1029 /* 1030 * | ---- desired range ---- | 1031 * | state | 1032 * 1033 * Just lock what we found and keep going 1034 */ 1035 if (state->start == start && state->end <= end) { 1036 if (state->state & exclusive_bits) { 1037 *failed_start = state->start; 1038 err = -EEXIST; 1039 goto out; 1040 } 1041 1042 set_state_bits(tree, state, &bits, changeset); 1043 cache_state(state, cached_state); 1044 merge_state(tree, state); 1045 if (last_end == (u64)-1) 1046 goto out; 1047 start = last_end + 1; 1048 state = next_state(state); 1049 if (start < end && state && state->start == start && 1050 !need_resched()) 1051 goto hit_next; 1052 goto search_again; 1053 } 1054 1055 /* 1056 * | ---- desired range ---- | 1057 * | state | 1058 * or 1059 * | ------------- state -------------- | 1060 * 1061 * We need to split the extent we found, and may flip bits on 1062 * second half. 1063 * 1064 * If the extent we found extends past our 1065 * range, we just split and search again. It'll get split 1066 * again the next time though. 1067 * 1068 * If the extent we found is inside our range, we set the 1069 * desired bit on it. 1070 */ 1071 if (state->start < start) { 1072 if (state->state & exclusive_bits) { 1073 *failed_start = start; 1074 err = -EEXIST; 1075 goto out; 1076 } 1077 1078 /* 1079 * If this extent already has all the bits we want set, then 1080 * skip it, not necessary to split it or do anything with it. 1081 */ 1082 if ((state->state & bits) == bits) { 1083 start = state->end + 1; 1084 cache_state(state, cached_state); 1085 goto search_again; 1086 } 1087 1088 prealloc = alloc_extent_state_atomic(prealloc); 1089 BUG_ON(!prealloc); 1090 err = split_state(tree, state, prealloc, start); 1091 if (err) 1092 extent_io_tree_panic(tree, err); 1093 1094 prealloc = NULL; 1095 if (err) 1096 goto out; 1097 if (state->end <= end) { 1098 set_state_bits(tree, state, &bits, changeset); 1099 cache_state(state, cached_state); 1100 merge_state(tree, state); 1101 if (last_end == (u64)-1) 1102 goto out; 1103 start = last_end + 1; 1104 state = next_state(state); 1105 if (start < end && state && state->start == start && 1106 !need_resched()) 1107 goto hit_next; 1108 } 1109 goto search_again; 1110 } 1111 /* 1112 * | ---- desired range ---- | 1113 * | state | or | state | 1114 * 1115 * There's a hole, we need to insert something in it and 1116 * ignore the extent we found. 1117 */ 1118 if (state->start > start) { 1119 u64 this_end; 1120 if (end < last_start) 1121 this_end = end; 1122 else 1123 this_end = last_start - 1; 1124 1125 prealloc = alloc_extent_state_atomic(prealloc); 1126 BUG_ON(!prealloc); 1127 1128 /* 1129 * Avoid to free 'prealloc' if it can be merged with 1130 * the later extent. 1131 */ 1132 err = insert_state(tree, prealloc, start, this_end, 1133 NULL, NULL, &bits, changeset); 1134 if (err) 1135 extent_io_tree_panic(tree, err); 1136 1137 cache_state(prealloc, cached_state); 1138 prealloc = NULL; 1139 start = this_end + 1; 1140 goto search_again; 1141 } 1142 /* 1143 * | ---- desired range ---- | 1144 * | state | 1145 * We need to split the extent, and set the bit 1146 * on the first half 1147 */ 1148 if (state->start <= end && state->end > end) { 1149 if (state->state & exclusive_bits) { 1150 *failed_start = start; 1151 err = -EEXIST; 1152 goto out; 1153 } 1154 1155 prealloc = alloc_extent_state_atomic(prealloc); 1156 BUG_ON(!prealloc); 1157 err = split_state(tree, state, prealloc, end + 1); 1158 if (err) 1159 extent_io_tree_panic(tree, err); 1160 1161 set_state_bits(tree, prealloc, &bits, changeset); 1162 cache_state(prealloc, cached_state); 1163 merge_state(tree, prealloc); 1164 prealloc = NULL; 1165 goto out; 1166 } 1167 1168 search_again: 1169 if (start > end) 1170 goto out; 1171 spin_unlock(&tree->lock); 1172 if (gfpflags_allow_blocking(mask)) 1173 cond_resched(); 1174 goto again; 1175 1176 out: 1177 spin_unlock(&tree->lock); 1178 if (prealloc) 1179 free_extent_state(prealloc); 1180 1181 return err; 1182 1183 } 1184 1185 /** 1186 * convert_extent_bit - convert all bits in a given range from one bit to 1187 * another 1188 * @tree: the io tree to search 1189 * @start: the start offset in bytes 1190 * @end: the end offset in bytes (inclusive) 1191 * @bits: the bits to set in this range 1192 * @clear_bits: the bits to clear in this range 1193 * @cached_state: state that we're going to cache 1194 * 1195 * This will go through and set bits for the given range. If any states exist 1196 * already in this range they are set with the given bit and cleared of the 1197 * clear_bits. This is only meant to be used by things that are mergeable, ie 1198 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1199 * boundary bits like LOCK. 1200 * 1201 * All allocations are done with GFP_NOFS. 1202 */ 1203 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1204 u32 bits, u32 clear_bits, 1205 struct extent_state **cached_state) 1206 { 1207 struct extent_state *state; 1208 struct extent_state *prealloc = NULL; 1209 struct rb_node *node; 1210 struct rb_node **p; 1211 struct rb_node *parent; 1212 int err = 0; 1213 u64 last_start; 1214 u64 last_end; 1215 bool first_iteration = true; 1216 1217 btrfs_debug_check_extent_io_range(tree, start, end); 1218 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1219 clear_bits); 1220 1221 again: 1222 if (!prealloc) { 1223 /* 1224 * Best effort, don't worry if extent state allocation fails 1225 * here for the first iteration. We might have a cached state 1226 * that matches exactly the target range, in which case no 1227 * extent state allocations are needed. We'll only know this 1228 * after locking the tree. 1229 */ 1230 prealloc = alloc_extent_state(GFP_NOFS); 1231 if (!prealloc && !first_iteration) 1232 return -ENOMEM; 1233 } 1234 1235 spin_lock(&tree->lock); 1236 if (cached_state && *cached_state) { 1237 state = *cached_state; 1238 if (state->start <= start && state->end > start && 1239 extent_state_in_tree(state)) { 1240 node = &state->rb_node; 1241 goto hit_next; 1242 } 1243 } 1244 1245 /* 1246 * this search will find all the extents that end after 1247 * our range starts. 1248 */ 1249 node = tree_search_for_insert(tree, start, &p, &parent); 1250 if (!node) { 1251 prealloc = alloc_extent_state_atomic(prealloc); 1252 if (!prealloc) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 err = insert_state(tree, prealloc, start, end, 1257 &p, &parent, &bits, NULL); 1258 if (err) 1259 extent_io_tree_panic(tree, err); 1260 cache_state(prealloc, cached_state); 1261 prealloc = NULL; 1262 goto out; 1263 } 1264 state = rb_entry(node, struct extent_state, rb_node); 1265 hit_next: 1266 last_start = state->start; 1267 last_end = state->end; 1268 1269 /* 1270 * | ---- desired range ---- | 1271 * | state | 1272 * 1273 * Just lock what we found and keep going 1274 */ 1275 if (state->start == start && state->end <= end) { 1276 set_state_bits(tree, state, &bits, NULL); 1277 cache_state(state, cached_state); 1278 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1279 if (last_end == (u64)-1) 1280 goto out; 1281 start = last_end + 1; 1282 if (start < end && state && state->start == start && 1283 !need_resched()) 1284 goto hit_next; 1285 goto search_again; 1286 } 1287 1288 /* 1289 * | ---- desired range ---- | 1290 * | state | 1291 * or 1292 * | ------------- state -------------- | 1293 * 1294 * We need to split the extent we found, and may flip bits on 1295 * second half. 1296 * 1297 * If the extent we found extends past our 1298 * range, we just split and search again. It'll get split 1299 * again the next time though. 1300 * 1301 * If the extent we found is inside our range, we set the 1302 * desired bit on it. 1303 */ 1304 if (state->start < start) { 1305 prealloc = alloc_extent_state_atomic(prealloc); 1306 if (!prealloc) { 1307 err = -ENOMEM; 1308 goto out; 1309 } 1310 err = split_state(tree, state, prealloc, start); 1311 if (err) 1312 extent_io_tree_panic(tree, err); 1313 prealloc = NULL; 1314 if (err) 1315 goto out; 1316 if (state->end <= end) { 1317 set_state_bits(tree, state, &bits, NULL); 1318 cache_state(state, cached_state); 1319 state = clear_state_bit(tree, state, &clear_bits, 0, 1320 NULL); 1321 if (last_end == (u64)-1) 1322 goto out; 1323 start = last_end + 1; 1324 if (start < end && state && state->start == start && 1325 !need_resched()) 1326 goto hit_next; 1327 } 1328 goto search_again; 1329 } 1330 /* 1331 * | ---- desired range ---- | 1332 * | state | or | state | 1333 * 1334 * There's a hole, we need to insert something in it and 1335 * ignore the extent we found. 1336 */ 1337 if (state->start > start) { 1338 u64 this_end; 1339 if (end < last_start) 1340 this_end = end; 1341 else 1342 this_end = last_start - 1; 1343 1344 prealloc = alloc_extent_state_atomic(prealloc); 1345 if (!prealloc) { 1346 err = -ENOMEM; 1347 goto out; 1348 } 1349 1350 /* 1351 * Avoid to free 'prealloc' if it can be merged with 1352 * the later extent. 1353 */ 1354 err = insert_state(tree, prealloc, start, this_end, 1355 NULL, NULL, &bits, NULL); 1356 if (err) 1357 extent_io_tree_panic(tree, err); 1358 cache_state(prealloc, cached_state); 1359 prealloc = NULL; 1360 start = this_end + 1; 1361 goto search_again; 1362 } 1363 /* 1364 * | ---- desired range ---- | 1365 * | state | 1366 * We need to split the extent, and set the bit 1367 * on the first half 1368 */ 1369 if (state->start <= end && state->end > end) { 1370 prealloc = alloc_extent_state_atomic(prealloc); 1371 if (!prealloc) { 1372 err = -ENOMEM; 1373 goto out; 1374 } 1375 1376 err = split_state(tree, state, prealloc, end + 1); 1377 if (err) 1378 extent_io_tree_panic(tree, err); 1379 1380 set_state_bits(tree, prealloc, &bits, NULL); 1381 cache_state(prealloc, cached_state); 1382 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1383 prealloc = NULL; 1384 goto out; 1385 } 1386 1387 search_again: 1388 if (start > end) 1389 goto out; 1390 spin_unlock(&tree->lock); 1391 cond_resched(); 1392 first_iteration = false; 1393 goto again; 1394 1395 out: 1396 spin_unlock(&tree->lock); 1397 if (prealloc) 1398 free_extent_state(prealloc); 1399 1400 return err; 1401 } 1402 1403 /* wrappers around set/clear extent bit */ 1404 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1405 u32 bits, struct extent_changeset *changeset) 1406 { 1407 /* 1408 * We don't support EXTENT_LOCKED yet, as current changeset will 1409 * record any bits changed, so for EXTENT_LOCKED case, it will 1410 * either fail with -EEXIST or changeset will record the whole 1411 * range. 1412 */ 1413 BUG_ON(bits & EXTENT_LOCKED); 1414 1415 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1416 changeset); 1417 } 1418 1419 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1420 u32 bits) 1421 { 1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1423 GFP_NOWAIT, NULL); 1424 } 1425 1426 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1427 u32 bits, int wake, int delete, 1428 struct extent_state **cached) 1429 { 1430 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1431 cached, GFP_NOFS, NULL); 1432 } 1433 1434 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1435 u32 bits, struct extent_changeset *changeset) 1436 { 1437 /* 1438 * Don't support EXTENT_LOCKED case, same reason as 1439 * set_record_extent_bits(). 1440 */ 1441 BUG_ON(bits & EXTENT_LOCKED); 1442 1443 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1444 changeset); 1445 } 1446 1447 /* 1448 * either insert or lock state struct between start and end use mask to tell 1449 * us if waiting is desired. 1450 */ 1451 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1452 struct extent_state **cached_state) 1453 { 1454 int err; 1455 u64 failed_start; 1456 1457 while (1) { 1458 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1459 EXTENT_LOCKED, &failed_start, 1460 cached_state, GFP_NOFS, NULL); 1461 if (err == -EEXIST) { 1462 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1463 start = failed_start; 1464 } else 1465 break; 1466 WARN_ON(start > end); 1467 } 1468 return err; 1469 } 1470 1471 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1472 { 1473 int err; 1474 u64 failed_start; 1475 1476 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1477 &failed_start, NULL, GFP_NOFS, NULL); 1478 if (err == -EEXIST) { 1479 if (failed_start > start) 1480 clear_extent_bit(tree, start, failed_start - 1, 1481 EXTENT_LOCKED, 1, 0, NULL); 1482 return 0; 1483 } 1484 return 1; 1485 } 1486 1487 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1488 { 1489 unsigned long index = start >> PAGE_SHIFT; 1490 unsigned long end_index = end >> PAGE_SHIFT; 1491 struct page *page; 1492 1493 while (index <= end_index) { 1494 page = find_get_page(inode->i_mapping, index); 1495 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1496 clear_page_dirty_for_io(page); 1497 put_page(page); 1498 index++; 1499 } 1500 } 1501 1502 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1503 { 1504 unsigned long index = start >> PAGE_SHIFT; 1505 unsigned long end_index = end >> PAGE_SHIFT; 1506 struct page *page; 1507 1508 while (index <= end_index) { 1509 page = find_get_page(inode->i_mapping, index); 1510 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1511 __set_page_dirty_nobuffers(page); 1512 account_page_redirty(page); 1513 put_page(page); 1514 index++; 1515 } 1516 } 1517 1518 /* find the first state struct with 'bits' set after 'start', and 1519 * return it. tree->lock must be held. NULL will returned if 1520 * nothing was found after 'start' 1521 */ 1522 static struct extent_state * 1523 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1524 { 1525 struct rb_node *node; 1526 struct extent_state *state; 1527 1528 /* 1529 * this search will find all the extents that end after 1530 * our range starts. 1531 */ 1532 node = tree_search(tree, start); 1533 if (!node) 1534 goto out; 1535 1536 while (1) { 1537 state = rb_entry(node, struct extent_state, rb_node); 1538 if (state->end >= start && (state->state & bits)) 1539 return state; 1540 1541 node = rb_next(node); 1542 if (!node) 1543 break; 1544 } 1545 out: 1546 return NULL; 1547 } 1548 1549 /* 1550 * Find the first offset in the io tree with one or more @bits set. 1551 * 1552 * Note: If there are multiple bits set in @bits, any of them will match. 1553 * 1554 * Return 0 if we find something, and update @start_ret and @end_ret. 1555 * Return 1 if we found nothing. 1556 */ 1557 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1558 u64 *start_ret, u64 *end_ret, u32 bits, 1559 struct extent_state **cached_state) 1560 { 1561 struct extent_state *state; 1562 int ret = 1; 1563 1564 spin_lock(&tree->lock); 1565 if (cached_state && *cached_state) { 1566 state = *cached_state; 1567 if (state->end == start - 1 && extent_state_in_tree(state)) { 1568 while ((state = next_state(state)) != NULL) { 1569 if (state->state & bits) 1570 goto got_it; 1571 } 1572 free_extent_state(*cached_state); 1573 *cached_state = NULL; 1574 goto out; 1575 } 1576 free_extent_state(*cached_state); 1577 *cached_state = NULL; 1578 } 1579 1580 state = find_first_extent_bit_state(tree, start, bits); 1581 got_it: 1582 if (state) { 1583 cache_state_if_flags(state, cached_state, 0); 1584 *start_ret = state->start; 1585 *end_ret = state->end; 1586 ret = 0; 1587 } 1588 out: 1589 spin_unlock(&tree->lock); 1590 return ret; 1591 } 1592 1593 /** 1594 * Find a contiguous area of bits 1595 * 1596 * @tree: io tree to check 1597 * @start: offset to start the search from 1598 * @start_ret: the first offset we found with the bits set 1599 * @end_ret: the final contiguous range of the bits that were set 1600 * @bits: bits to look for 1601 * 1602 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1603 * to set bits appropriately, and then merge them again. During this time it 1604 * will drop the tree->lock, so use this helper if you want to find the actual 1605 * contiguous area for given bits. We will search to the first bit we find, and 1606 * then walk down the tree until we find a non-contiguous area. The area 1607 * returned will be the full contiguous area with the bits set. 1608 */ 1609 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1610 u64 *start_ret, u64 *end_ret, u32 bits) 1611 { 1612 struct extent_state *state; 1613 int ret = 1; 1614 1615 spin_lock(&tree->lock); 1616 state = find_first_extent_bit_state(tree, start, bits); 1617 if (state) { 1618 *start_ret = state->start; 1619 *end_ret = state->end; 1620 while ((state = next_state(state)) != NULL) { 1621 if (state->start > (*end_ret + 1)) 1622 break; 1623 *end_ret = state->end; 1624 } 1625 ret = 0; 1626 } 1627 spin_unlock(&tree->lock); 1628 return ret; 1629 } 1630 1631 /** 1632 * Find the first range that has @bits not set. This range could start before 1633 * @start. 1634 * 1635 * @tree: the tree to search 1636 * @start: offset at/after which the found extent should start 1637 * @start_ret: records the beginning of the range 1638 * @end_ret: records the end of the range (inclusive) 1639 * @bits: the set of bits which must be unset 1640 * 1641 * Since unallocated range is also considered one which doesn't have the bits 1642 * set it's possible that @end_ret contains -1, this happens in case the range 1643 * spans (last_range_end, end of device]. In this case it's up to the caller to 1644 * trim @end_ret to the appropriate size. 1645 */ 1646 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1647 u64 *start_ret, u64 *end_ret, u32 bits) 1648 { 1649 struct extent_state *state; 1650 struct rb_node *node, *prev = NULL, *next; 1651 1652 spin_lock(&tree->lock); 1653 1654 /* Find first extent with bits cleared */ 1655 while (1) { 1656 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1657 if (!node && !next && !prev) { 1658 /* 1659 * Tree is completely empty, send full range and let 1660 * caller deal with it 1661 */ 1662 *start_ret = 0; 1663 *end_ret = -1; 1664 goto out; 1665 } else if (!node && !next) { 1666 /* 1667 * We are past the last allocated chunk, set start at 1668 * the end of the last extent. 1669 */ 1670 state = rb_entry(prev, struct extent_state, rb_node); 1671 *start_ret = state->end + 1; 1672 *end_ret = -1; 1673 goto out; 1674 } else if (!node) { 1675 node = next; 1676 } 1677 /* 1678 * At this point 'node' either contains 'start' or start is 1679 * before 'node' 1680 */ 1681 state = rb_entry(node, struct extent_state, rb_node); 1682 1683 if (in_range(start, state->start, state->end - state->start + 1)) { 1684 if (state->state & bits) { 1685 /* 1686 * |--range with bits sets--| 1687 * | 1688 * start 1689 */ 1690 start = state->end + 1; 1691 } else { 1692 /* 1693 * 'start' falls within a range that doesn't 1694 * have the bits set, so take its start as 1695 * the beginning of the desired range 1696 * 1697 * |--range with bits cleared----| 1698 * | 1699 * start 1700 */ 1701 *start_ret = state->start; 1702 break; 1703 } 1704 } else { 1705 /* 1706 * |---prev range---|---hole/unset---|---node range---| 1707 * | 1708 * start 1709 * 1710 * or 1711 * 1712 * |---hole/unset--||--first node--| 1713 * 0 | 1714 * start 1715 */ 1716 if (prev) { 1717 state = rb_entry(prev, struct extent_state, 1718 rb_node); 1719 *start_ret = state->end + 1; 1720 } else { 1721 *start_ret = 0; 1722 } 1723 break; 1724 } 1725 } 1726 1727 /* 1728 * Find the longest stretch from start until an entry which has the 1729 * bits set 1730 */ 1731 while (1) { 1732 state = rb_entry(node, struct extent_state, rb_node); 1733 if (state->end >= start && !(state->state & bits)) { 1734 *end_ret = state->end; 1735 } else { 1736 *end_ret = state->start - 1; 1737 break; 1738 } 1739 1740 node = rb_next(node); 1741 if (!node) 1742 break; 1743 } 1744 out: 1745 spin_unlock(&tree->lock); 1746 } 1747 1748 /* 1749 * find a contiguous range of bytes in the file marked as delalloc, not 1750 * more than 'max_bytes'. start and end are used to return the range, 1751 * 1752 * true is returned if we find something, false if nothing was in the tree 1753 */ 1754 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1755 u64 *end, u64 max_bytes, 1756 struct extent_state **cached_state) 1757 { 1758 struct rb_node *node; 1759 struct extent_state *state; 1760 u64 cur_start = *start; 1761 bool found = false; 1762 u64 total_bytes = 0; 1763 1764 spin_lock(&tree->lock); 1765 1766 /* 1767 * this search will find all the extents that end after 1768 * our range starts. 1769 */ 1770 node = tree_search(tree, cur_start); 1771 if (!node) { 1772 *end = (u64)-1; 1773 goto out; 1774 } 1775 1776 while (1) { 1777 state = rb_entry(node, struct extent_state, rb_node); 1778 if (found && (state->start != cur_start || 1779 (state->state & EXTENT_BOUNDARY))) { 1780 goto out; 1781 } 1782 if (!(state->state & EXTENT_DELALLOC)) { 1783 if (!found) 1784 *end = state->end; 1785 goto out; 1786 } 1787 if (!found) { 1788 *start = state->start; 1789 *cached_state = state; 1790 refcount_inc(&state->refs); 1791 } 1792 found = true; 1793 *end = state->end; 1794 cur_start = state->end + 1; 1795 node = rb_next(node); 1796 total_bytes += state->end - state->start + 1; 1797 if (total_bytes >= max_bytes) 1798 break; 1799 if (!node) 1800 break; 1801 } 1802 out: 1803 spin_unlock(&tree->lock); 1804 return found; 1805 } 1806 1807 static int __process_pages_contig(struct address_space *mapping, 1808 struct page *locked_page, 1809 pgoff_t start_index, pgoff_t end_index, 1810 unsigned long page_ops, pgoff_t *index_ret); 1811 1812 static noinline void __unlock_for_delalloc(struct inode *inode, 1813 struct page *locked_page, 1814 u64 start, u64 end) 1815 { 1816 unsigned long index = start >> PAGE_SHIFT; 1817 unsigned long end_index = end >> PAGE_SHIFT; 1818 1819 ASSERT(locked_page); 1820 if (index == locked_page->index && end_index == index) 1821 return; 1822 1823 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1824 PAGE_UNLOCK, NULL); 1825 } 1826 1827 static noinline int lock_delalloc_pages(struct inode *inode, 1828 struct page *locked_page, 1829 u64 delalloc_start, 1830 u64 delalloc_end) 1831 { 1832 unsigned long index = delalloc_start >> PAGE_SHIFT; 1833 unsigned long index_ret = index; 1834 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1835 int ret; 1836 1837 ASSERT(locked_page); 1838 if (index == locked_page->index && index == end_index) 1839 return 0; 1840 1841 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1842 end_index, PAGE_LOCK, &index_ret); 1843 if (ret == -EAGAIN) 1844 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1845 (u64)index_ret << PAGE_SHIFT); 1846 return ret; 1847 } 1848 1849 /* 1850 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1851 * more than @max_bytes. @Start and @end are used to return the range, 1852 * 1853 * Return: true if we find something 1854 * false if nothing was in the tree 1855 */ 1856 EXPORT_FOR_TESTS 1857 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1858 struct page *locked_page, u64 *start, 1859 u64 *end) 1860 { 1861 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1862 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1863 u64 delalloc_start; 1864 u64 delalloc_end; 1865 bool found; 1866 struct extent_state *cached_state = NULL; 1867 int ret; 1868 int loops = 0; 1869 1870 again: 1871 /* step one, find a bunch of delalloc bytes starting at start */ 1872 delalloc_start = *start; 1873 delalloc_end = 0; 1874 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1875 max_bytes, &cached_state); 1876 if (!found || delalloc_end <= *start) { 1877 *start = delalloc_start; 1878 *end = delalloc_end; 1879 free_extent_state(cached_state); 1880 return false; 1881 } 1882 1883 /* 1884 * start comes from the offset of locked_page. We have to lock 1885 * pages in order, so we can't process delalloc bytes before 1886 * locked_page 1887 */ 1888 if (delalloc_start < *start) 1889 delalloc_start = *start; 1890 1891 /* 1892 * make sure to limit the number of pages we try to lock down 1893 */ 1894 if (delalloc_end + 1 - delalloc_start > max_bytes) 1895 delalloc_end = delalloc_start + max_bytes - 1; 1896 1897 /* step two, lock all the pages after the page that has start */ 1898 ret = lock_delalloc_pages(inode, locked_page, 1899 delalloc_start, delalloc_end); 1900 ASSERT(!ret || ret == -EAGAIN); 1901 if (ret == -EAGAIN) { 1902 /* some of the pages are gone, lets avoid looping by 1903 * shortening the size of the delalloc range we're searching 1904 */ 1905 free_extent_state(cached_state); 1906 cached_state = NULL; 1907 if (!loops) { 1908 max_bytes = PAGE_SIZE; 1909 loops = 1; 1910 goto again; 1911 } else { 1912 found = false; 1913 goto out_failed; 1914 } 1915 } 1916 1917 /* step three, lock the state bits for the whole range */ 1918 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1919 1920 /* then test to make sure it is all still delalloc */ 1921 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1922 EXTENT_DELALLOC, 1, cached_state); 1923 if (!ret) { 1924 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1925 &cached_state); 1926 __unlock_for_delalloc(inode, locked_page, 1927 delalloc_start, delalloc_end); 1928 cond_resched(); 1929 goto again; 1930 } 1931 free_extent_state(cached_state); 1932 *start = delalloc_start; 1933 *end = delalloc_end; 1934 out_failed: 1935 return found; 1936 } 1937 1938 static int __process_pages_contig(struct address_space *mapping, 1939 struct page *locked_page, 1940 pgoff_t start_index, pgoff_t end_index, 1941 unsigned long page_ops, pgoff_t *index_ret) 1942 { 1943 unsigned long nr_pages = end_index - start_index + 1; 1944 unsigned long pages_processed = 0; 1945 pgoff_t index = start_index; 1946 struct page *pages[16]; 1947 unsigned ret; 1948 int err = 0; 1949 int i; 1950 1951 if (page_ops & PAGE_LOCK) { 1952 ASSERT(page_ops == PAGE_LOCK); 1953 ASSERT(index_ret && *index_ret == start_index); 1954 } 1955 1956 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1957 mapping_set_error(mapping, -EIO); 1958 1959 while (nr_pages > 0) { 1960 ret = find_get_pages_contig(mapping, index, 1961 min_t(unsigned long, 1962 nr_pages, ARRAY_SIZE(pages)), pages); 1963 if (ret == 0) { 1964 /* 1965 * Only if we're going to lock these pages, 1966 * can we find nothing at @index. 1967 */ 1968 ASSERT(page_ops & PAGE_LOCK); 1969 err = -EAGAIN; 1970 goto out; 1971 } 1972 1973 for (i = 0; i < ret; i++) { 1974 if (page_ops & PAGE_SET_PRIVATE2) 1975 SetPagePrivate2(pages[i]); 1976 1977 if (locked_page && pages[i] == locked_page) { 1978 put_page(pages[i]); 1979 pages_processed++; 1980 continue; 1981 } 1982 if (page_ops & PAGE_START_WRITEBACK) { 1983 clear_page_dirty_for_io(pages[i]); 1984 set_page_writeback(pages[i]); 1985 } 1986 if (page_ops & PAGE_SET_ERROR) 1987 SetPageError(pages[i]); 1988 if (page_ops & PAGE_END_WRITEBACK) 1989 end_page_writeback(pages[i]); 1990 if (page_ops & PAGE_UNLOCK) 1991 unlock_page(pages[i]); 1992 if (page_ops & PAGE_LOCK) { 1993 lock_page(pages[i]); 1994 if (!PageDirty(pages[i]) || 1995 pages[i]->mapping != mapping) { 1996 unlock_page(pages[i]); 1997 for (; i < ret; i++) 1998 put_page(pages[i]); 1999 err = -EAGAIN; 2000 goto out; 2001 } 2002 } 2003 put_page(pages[i]); 2004 pages_processed++; 2005 } 2006 nr_pages -= ret; 2007 index += ret; 2008 cond_resched(); 2009 } 2010 out: 2011 if (err && index_ret) 2012 *index_ret = start_index + pages_processed - 1; 2013 return err; 2014 } 2015 2016 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2017 struct page *locked_page, 2018 u32 clear_bits, unsigned long page_ops) 2019 { 2020 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2021 2022 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2023 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2024 page_ops, NULL); 2025 } 2026 2027 /* 2028 * count the number of bytes in the tree that have a given bit(s) 2029 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2030 * cached. The total number found is returned. 2031 */ 2032 u64 count_range_bits(struct extent_io_tree *tree, 2033 u64 *start, u64 search_end, u64 max_bytes, 2034 u32 bits, int contig) 2035 { 2036 struct rb_node *node; 2037 struct extent_state *state; 2038 u64 cur_start = *start; 2039 u64 total_bytes = 0; 2040 u64 last = 0; 2041 int found = 0; 2042 2043 if (WARN_ON(search_end <= cur_start)) 2044 return 0; 2045 2046 spin_lock(&tree->lock); 2047 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2048 total_bytes = tree->dirty_bytes; 2049 goto out; 2050 } 2051 /* 2052 * this search will find all the extents that end after 2053 * our range starts. 2054 */ 2055 node = tree_search(tree, cur_start); 2056 if (!node) 2057 goto out; 2058 2059 while (1) { 2060 state = rb_entry(node, struct extent_state, rb_node); 2061 if (state->start > search_end) 2062 break; 2063 if (contig && found && state->start > last + 1) 2064 break; 2065 if (state->end >= cur_start && (state->state & bits) == bits) { 2066 total_bytes += min(search_end, state->end) + 1 - 2067 max(cur_start, state->start); 2068 if (total_bytes >= max_bytes) 2069 break; 2070 if (!found) { 2071 *start = max(cur_start, state->start); 2072 found = 1; 2073 } 2074 last = state->end; 2075 } else if (contig && found) { 2076 break; 2077 } 2078 node = rb_next(node); 2079 if (!node) 2080 break; 2081 } 2082 out: 2083 spin_unlock(&tree->lock); 2084 return total_bytes; 2085 } 2086 2087 /* 2088 * set the private field for a given byte offset in the tree. If there isn't 2089 * an extent_state there already, this does nothing. 2090 */ 2091 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2092 struct io_failure_record *failrec) 2093 { 2094 struct rb_node *node; 2095 struct extent_state *state; 2096 int ret = 0; 2097 2098 spin_lock(&tree->lock); 2099 /* 2100 * this search will find all the extents that end after 2101 * our range starts. 2102 */ 2103 node = tree_search(tree, start); 2104 if (!node) { 2105 ret = -ENOENT; 2106 goto out; 2107 } 2108 state = rb_entry(node, struct extent_state, rb_node); 2109 if (state->start != start) { 2110 ret = -ENOENT; 2111 goto out; 2112 } 2113 state->failrec = failrec; 2114 out: 2115 spin_unlock(&tree->lock); 2116 return ret; 2117 } 2118 2119 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2120 { 2121 struct rb_node *node; 2122 struct extent_state *state; 2123 struct io_failure_record *failrec; 2124 2125 spin_lock(&tree->lock); 2126 /* 2127 * this search will find all the extents that end after 2128 * our range starts. 2129 */ 2130 node = tree_search(tree, start); 2131 if (!node) { 2132 failrec = ERR_PTR(-ENOENT); 2133 goto out; 2134 } 2135 state = rb_entry(node, struct extent_state, rb_node); 2136 if (state->start != start) { 2137 failrec = ERR_PTR(-ENOENT); 2138 goto out; 2139 } 2140 2141 failrec = state->failrec; 2142 out: 2143 spin_unlock(&tree->lock); 2144 return failrec; 2145 } 2146 2147 /* 2148 * searches a range in the state tree for a given mask. 2149 * If 'filled' == 1, this returns 1 only if every extent in the tree 2150 * has the bits set. Otherwise, 1 is returned if any bit in the 2151 * range is found set. 2152 */ 2153 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2154 u32 bits, int filled, struct extent_state *cached) 2155 { 2156 struct extent_state *state = NULL; 2157 struct rb_node *node; 2158 int bitset = 0; 2159 2160 spin_lock(&tree->lock); 2161 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2162 cached->end > start) 2163 node = &cached->rb_node; 2164 else 2165 node = tree_search(tree, start); 2166 while (node && start <= end) { 2167 state = rb_entry(node, struct extent_state, rb_node); 2168 2169 if (filled && state->start > start) { 2170 bitset = 0; 2171 break; 2172 } 2173 2174 if (state->start > end) 2175 break; 2176 2177 if (state->state & bits) { 2178 bitset = 1; 2179 if (!filled) 2180 break; 2181 } else if (filled) { 2182 bitset = 0; 2183 break; 2184 } 2185 2186 if (state->end == (u64)-1) 2187 break; 2188 2189 start = state->end + 1; 2190 if (start > end) 2191 break; 2192 node = rb_next(node); 2193 if (!node) { 2194 if (filled) 2195 bitset = 0; 2196 break; 2197 } 2198 } 2199 spin_unlock(&tree->lock); 2200 return bitset; 2201 } 2202 2203 /* 2204 * helper function to set a given page up to date if all the 2205 * extents in the tree for that page are up to date 2206 */ 2207 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2208 { 2209 u64 start = page_offset(page); 2210 u64 end = start + PAGE_SIZE - 1; 2211 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2212 SetPageUptodate(page); 2213 } 2214 2215 int free_io_failure(struct extent_io_tree *failure_tree, 2216 struct extent_io_tree *io_tree, 2217 struct io_failure_record *rec) 2218 { 2219 int ret; 2220 int err = 0; 2221 2222 set_state_failrec(failure_tree, rec->start, NULL); 2223 ret = clear_extent_bits(failure_tree, rec->start, 2224 rec->start + rec->len - 1, 2225 EXTENT_LOCKED | EXTENT_DIRTY); 2226 if (ret) 2227 err = ret; 2228 2229 ret = clear_extent_bits(io_tree, rec->start, 2230 rec->start + rec->len - 1, 2231 EXTENT_DAMAGED); 2232 if (ret && !err) 2233 err = ret; 2234 2235 kfree(rec); 2236 return err; 2237 } 2238 2239 /* 2240 * this bypasses the standard btrfs submit functions deliberately, as 2241 * the standard behavior is to write all copies in a raid setup. here we only 2242 * want to write the one bad copy. so we do the mapping for ourselves and issue 2243 * submit_bio directly. 2244 * to avoid any synchronization issues, wait for the data after writing, which 2245 * actually prevents the read that triggered the error from finishing. 2246 * currently, there can be no more than two copies of every data bit. thus, 2247 * exactly one rewrite is required. 2248 */ 2249 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2250 u64 length, u64 logical, struct page *page, 2251 unsigned int pg_offset, int mirror_num) 2252 { 2253 struct bio *bio; 2254 struct btrfs_device *dev; 2255 u64 map_length = 0; 2256 u64 sector; 2257 struct btrfs_bio *bbio = NULL; 2258 int ret; 2259 2260 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2261 BUG_ON(!mirror_num); 2262 2263 if (btrfs_is_zoned(fs_info)) 2264 return btrfs_repair_one_zone(fs_info, logical); 2265 2266 bio = btrfs_io_bio_alloc(1); 2267 bio->bi_iter.bi_size = 0; 2268 map_length = length; 2269 2270 /* 2271 * Avoid races with device replace and make sure our bbio has devices 2272 * associated to its stripes that don't go away while we are doing the 2273 * read repair operation. 2274 */ 2275 btrfs_bio_counter_inc_blocked(fs_info); 2276 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2277 /* 2278 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2279 * to update all raid stripes, but here we just want to correct 2280 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2281 * stripe's dev and sector. 2282 */ 2283 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2284 &map_length, &bbio, 0); 2285 if (ret) { 2286 btrfs_bio_counter_dec(fs_info); 2287 bio_put(bio); 2288 return -EIO; 2289 } 2290 ASSERT(bbio->mirror_num == 1); 2291 } else { 2292 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2293 &map_length, &bbio, mirror_num); 2294 if (ret) { 2295 btrfs_bio_counter_dec(fs_info); 2296 bio_put(bio); 2297 return -EIO; 2298 } 2299 BUG_ON(mirror_num != bbio->mirror_num); 2300 } 2301 2302 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2303 bio->bi_iter.bi_sector = sector; 2304 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2305 btrfs_put_bbio(bbio); 2306 if (!dev || !dev->bdev || 2307 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2308 btrfs_bio_counter_dec(fs_info); 2309 bio_put(bio); 2310 return -EIO; 2311 } 2312 bio_set_dev(bio, dev->bdev); 2313 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2314 bio_add_page(bio, page, length, pg_offset); 2315 2316 if (btrfsic_submit_bio_wait(bio)) { 2317 /* try to remap that extent elsewhere? */ 2318 btrfs_bio_counter_dec(fs_info); 2319 bio_put(bio); 2320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2321 return -EIO; 2322 } 2323 2324 btrfs_info_rl_in_rcu(fs_info, 2325 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2326 ino, start, 2327 rcu_str_deref(dev->name), sector); 2328 btrfs_bio_counter_dec(fs_info); 2329 bio_put(bio); 2330 return 0; 2331 } 2332 2333 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2334 { 2335 struct btrfs_fs_info *fs_info = eb->fs_info; 2336 u64 start = eb->start; 2337 int i, num_pages = num_extent_pages(eb); 2338 int ret = 0; 2339 2340 if (sb_rdonly(fs_info->sb)) 2341 return -EROFS; 2342 2343 for (i = 0; i < num_pages; i++) { 2344 struct page *p = eb->pages[i]; 2345 2346 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2347 start - page_offset(p), mirror_num); 2348 if (ret) 2349 break; 2350 start += PAGE_SIZE; 2351 } 2352 2353 return ret; 2354 } 2355 2356 /* 2357 * each time an IO finishes, we do a fast check in the IO failure tree 2358 * to see if we need to process or clean up an io_failure_record 2359 */ 2360 int clean_io_failure(struct btrfs_fs_info *fs_info, 2361 struct extent_io_tree *failure_tree, 2362 struct extent_io_tree *io_tree, u64 start, 2363 struct page *page, u64 ino, unsigned int pg_offset) 2364 { 2365 u64 private; 2366 struct io_failure_record *failrec; 2367 struct extent_state *state; 2368 int num_copies; 2369 int ret; 2370 2371 private = 0; 2372 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2373 EXTENT_DIRTY, 0); 2374 if (!ret) 2375 return 0; 2376 2377 failrec = get_state_failrec(failure_tree, start); 2378 if (IS_ERR(failrec)) 2379 return 0; 2380 2381 BUG_ON(!failrec->this_mirror); 2382 2383 if (failrec->in_validation) { 2384 /* there was no real error, just free the record */ 2385 btrfs_debug(fs_info, 2386 "clean_io_failure: freeing dummy error at %llu", 2387 failrec->start); 2388 goto out; 2389 } 2390 if (sb_rdonly(fs_info->sb)) 2391 goto out; 2392 2393 spin_lock(&io_tree->lock); 2394 state = find_first_extent_bit_state(io_tree, 2395 failrec->start, 2396 EXTENT_LOCKED); 2397 spin_unlock(&io_tree->lock); 2398 2399 if (state && state->start <= failrec->start && 2400 state->end >= failrec->start + failrec->len - 1) { 2401 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2402 failrec->len); 2403 if (num_copies > 1) { 2404 repair_io_failure(fs_info, ino, start, failrec->len, 2405 failrec->logical, page, pg_offset, 2406 failrec->failed_mirror); 2407 } 2408 } 2409 2410 out: 2411 free_io_failure(failure_tree, io_tree, failrec); 2412 2413 return 0; 2414 } 2415 2416 /* 2417 * Can be called when 2418 * - hold extent lock 2419 * - under ordered extent 2420 * - the inode is freeing 2421 */ 2422 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2423 { 2424 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2425 struct io_failure_record *failrec; 2426 struct extent_state *state, *next; 2427 2428 if (RB_EMPTY_ROOT(&failure_tree->state)) 2429 return; 2430 2431 spin_lock(&failure_tree->lock); 2432 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2433 while (state) { 2434 if (state->start > end) 2435 break; 2436 2437 ASSERT(state->end <= end); 2438 2439 next = next_state(state); 2440 2441 failrec = state->failrec; 2442 free_extent_state(state); 2443 kfree(failrec); 2444 2445 state = next; 2446 } 2447 spin_unlock(&failure_tree->lock); 2448 } 2449 2450 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2451 u64 start, u64 end) 2452 { 2453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2454 struct io_failure_record *failrec; 2455 struct extent_map *em; 2456 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2457 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2458 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2459 int ret; 2460 u64 logical; 2461 2462 failrec = get_state_failrec(failure_tree, start); 2463 if (!IS_ERR(failrec)) { 2464 btrfs_debug(fs_info, 2465 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2466 failrec->logical, failrec->start, failrec->len, 2467 failrec->in_validation); 2468 /* 2469 * when data can be on disk more than twice, add to failrec here 2470 * (e.g. with a list for failed_mirror) to make 2471 * clean_io_failure() clean all those errors at once. 2472 */ 2473 2474 return failrec; 2475 } 2476 2477 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2478 if (!failrec) 2479 return ERR_PTR(-ENOMEM); 2480 2481 failrec->start = start; 2482 failrec->len = end - start + 1; 2483 failrec->this_mirror = 0; 2484 failrec->bio_flags = 0; 2485 failrec->in_validation = 0; 2486 2487 read_lock(&em_tree->lock); 2488 em = lookup_extent_mapping(em_tree, start, failrec->len); 2489 if (!em) { 2490 read_unlock(&em_tree->lock); 2491 kfree(failrec); 2492 return ERR_PTR(-EIO); 2493 } 2494 2495 if (em->start > start || em->start + em->len <= start) { 2496 free_extent_map(em); 2497 em = NULL; 2498 } 2499 read_unlock(&em_tree->lock); 2500 if (!em) { 2501 kfree(failrec); 2502 return ERR_PTR(-EIO); 2503 } 2504 2505 logical = start - em->start; 2506 logical = em->block_start + logical; 2507 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2508 logical = em->block_start; 2509 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2510 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2511 } 2512 2513 btrfs_debug(fs_info, 2514 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2515 logical, start, failrec->len); 2516 2517 failrec->logical = logical; 2518 free_extent_map(em); 2519 2520 /* Set the bits in the private failure tree */ 2521 ret = set_extent_bits(failure_tree, start, end, 2522 EXTENT_LOCKED | EXTENT_DIRTY); 2523 if (ret >= 0) { 2524 ret = set_state_failrec(failure_tree, start, failrec); 2525 /* Set the bits in the inode's tree */ 2526 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2527 } else if (ret < 0) { 2528 kfree(failrec); 2529 return ERR_PTR(ret); 2530 } 2531 2532 return failrec; 2533 } 2534 2535 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2536 struct io_failure_record *failrec, 2537 int failed_mirror) 2538 { 2539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2540 int num_copies; 2541 2542 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2543 if (num_copies == 1) { 2544 /* 2545 * we only have a single copy of the data, so don't bother with 2546 * all the retry and error correction code that follows. no 2547 * matter what the error is, it is very likely to persist. 2548 */ 2549 btrfs_debug(fs_info, 2550 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2551 num_copies, failrec->this_mirror, failed_mirror); 2552 return false; 2553 } 2554 2555 /* 2556 * there are two premises: 2557 * a) deliver good data to the caller 2558 * b) correct the bad sectors on disk 2559 */ 2560 if (needs_validation) { 2561 /* 2562 * to fulfill b), we need to know the exact failing sectors, as 2563 * we don't want to rewrite any more than the failed ones. thus, 2564 * we need separate read requests for the failed bio 2565 * 2566 * if the following BUG_ON triggers, our validation request got 2567 * merged. we need separate requests for our algorithm to work. 2568 */ 2569 BUG_ON(failrec->in_validation); 2570 failrec->in_validation = 1; 2571 failrec->this_mirror = failed_mirror; 2572 } else { 2573 /* 2574 * we're ready to fulfill a) and b) alongside. get a good copy 2575 * of the failed sector and if we succeed, we have setup 2576 * everything for repair_io_failure to do the rest for us. 2577 */ 2578 if (failrec->in_validation) { 2579 BUG_ON(failrec->this_mirror != failed_mirror); 2580 failrec->in_validation = 0; 2581 failrec->this_mirror = 0; 2582 } 2583 failrec->failed_mirror = failed_mirror; 2584 failrec->this_mirror++; 2585 if (failrec->this_mirror == failed_mirror) 2586 failrec->this_mirror++; 2587 } 2588 2589 if (failrec->this_mirror > num_copies) { 2590 btrfs_debug(fs_info, 2591 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2592 num_copies, failrec->this_mirror, failed_mirror); 2593 return false; 2594 } 2595 2596 return true; 2597 } 2598 2599 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2600 { 2601 u64 len = 0; 2602 const u32 blocksize = inode->i_sb->s_blocksize; 2603 2604 /* 2605 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2606 * I/O error. In this case, we already know exactly which sector was 2607 * bad, so we don't need to validate. 2608 */ 2609 if (bio->bi_status == BLK_STS_OK) 2610 return false; 2611 2612 /* 2613 * We need to validate each sector individually if the failed I/O was 2614 * for multiple sectors. 2615 * 2616 * There are a few possible bios that can end up here: 2617 * 1. A buffered read bio, which is not cloned. 2618 * 2. A direct I/O read bio, which is cloned. 2619 * 3. A (buffered or direct) repair bio, which is not cloned. 2620 * 2621 * For cloned bios (case 2), we can get the size from 2622 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2623 * it from the bvecs. 2624 */ 2625 if (bio_flagged(bio, BIO_CLONED)) { 2626 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2627 return true; 2628 } else { 2629 struct bio_vec *bvec; 2630 int i; 2631 2632 bio_for_each_bvec_all(bvec, bio, i) { 2633 len += bvec->bv_len; 2634 if (len > blocksize) 2635 return true; 2636 } 2637 } 2638 return false; 2639 } 2640 2641 blk_status_t btrfs_submit_read_repair(struct inode *inode, 2642 struct bio *failed_bio, u32 bio_offset, 2643 struct page *page, unsigned int pgoff, 2644 u64 start, u64 end, int failed_mirror, 2645 submit_bio_hook_t *submit_bio_hook) 2646 { 2647 struct io_failure_record *failrec; 2648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2649 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2650 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2651 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2652 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2653 bool need_validation; 2654 struct bio *repair_bio; 2655 struct btrfs_io_bio *repair_io_bio; 2656 blk_status_t status; 2657 2658 btrfs_debug(fs_info, 2659 "repair read error: read error at %llu", start); 2660 2661 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2662 2663 failrec = btrfs_get_io_failure_record(inode, start, end); 2664 if (IS_ERR(failrec)) 2665 return errno_to_blk_status(PTR_ERR(failrec)); 2666 2667 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2668 2669 if (!btrfs_check_repairable(inode, need_validation, failrec, 2670 failed_mirror)) { 2671 free_io_failure(failure_tree, tree, failrec); 2672 return BLK_STS_IOERR; 2673 } 2674 2675 repair_bio = btrfs_io_bio_alloc(1); 2676 repair_io_bio = btrfs_io_bio(repair_bio); 2677 repair_bio->bi_opf = REQ_OP_READ; 2678 if (need_validation) 2679 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2680 repair_bio->bi_end_io = failed_bio->bi_end_io; 2681 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2682 repair_bio->bi_private = failed_bio->bi_private; 2683 2684 if (failed_io_bio->csum) { 2685 const u32 csum_size = fs_info->csum_size; 2686 2687 repair_io_bio->csum = repair_io_bio->csum_inline; 2688 memcpy(repair_io_bio->csum, 2689 failed_io_bio->csum + csum_size * icsum, csum_size); 2690 } 2691 2692 bio_add_page(repair_bio, page, failrec->len, pgoff); 2693 repair_io_bio->logical = failrec->start; 2694 repair_io_bio->iter = repair_bio->bi_iter; 2695 2696 btrfs_debug(btrfs_sb(inode->i_sb), 2697 "repair read error: submitting new read to mirror %d, in_validation=%d", 2698 failrec->this_mirror, failrec->in_validation); 2699 2700 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2701 failrec->bio_flags); 2702 if (status) { 2703 free_io_failure(failure_tree, tree, failrec); 2704 bio_put(repair_bio); 2705 } 2706 return status; 2707 } 2708 2709 /* lots and lots of room for performance fixes in the end_bio funcs */ 2710 2711 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2712 { 2713 int uptodate = (err == 0); 2714 int ret = 0; 2715 2716 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2717 2718 if (!uptodate) { 2719 ClearPageUptodate(page); 2720 SetPageError(page); 2721 ret = err < 0 ? err : -EIO; 2722 mapping_set_error(page->mapping, ret); 2723 } 2724 } 2725 2726 /* 2727 * after a writepage IO is done, we need to: 2728 * clear the uptodate bits on error 2729 * clear the writeback bits in the extent tree for this IO 2730 * end_page_writeback if the page has no more pending IO 2731 * 2732 * Scheduling is not allowed, so the extent state tree is expected 2733 * to have one and only one object corresponding to this IO. 2734 */ 2735 static void end_bio_extent_writepage(struct bio *bio) 2736 { 2737 int error = blk_status_to_errno(bio->bi_status); 2738 struct bio_vec *bvec; 2739 u64 start; 2740 u64 end; 2741 struct bvec_iter_all iter_all; 2742 bool first_bvec = true; 2743 2744 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2745 bio_for_each_segment_all(bvec, bio, iter_all) { 2746 struct page *page = bvec->bv_page; 2747 struct inode *inode = page->mapping->host; 2748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2749 2750 /* We always issue full-page reads, but if some block 2751 * in a page fails to read, blk_update_request() will 2752 * advance bv_offset and adjust bv_len to compensate. 2753 * Print a warning for nonzero offsets, and an error 2754 * if they don't add up to a full page. */ 2755 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2756 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2757 btrfs_err(fs_info, 2758 "partial page write in btrfs with offset %u and length %u", 2759 bvec->bv_offset, bvec->bv_len); 2760 else 2761 btrfs_info(fs_info, 2762 "incomplete page write in btrfs with offset %u and length %u", 2763 bvec->bv_offset, bvec->bv_len); 2764 } 2765 2766 start = page_offset(page); 2767 end = start + bvec->bv_offset + bvec->bv_len - 1; 2768 2769 if (first_bvec) { 2770 btrfs_record_physical_zoned(inode, start, bio); 2771 first_bvec = false; 2772 } 2773 2774 end_extent_writepage(page, error, start, end); 2775 end_page_writeback(page); 2776 } 2777 2778 bio_put(bio); 2779 } 2780 2781 /* 2782 * Record previously processed extent range 2783 * 2784 * For endio_readpage_release_extent() to handle a full extent range, reducing 2785 * the extent io operations. 2786 */ 2787 struct processed_extent { 2788 struct btrfs_inode *inode; 2789 /* Start of the range in @inode */ 2790 u64 start; 2791 /* End of the range in @inode */ 2792 u64 end; 2793 bool uptodate; 2794 }; 2795 2796 /* 2797 * Try to release processed extent range 2798 * 2799 * May not release the extent range right now if the current range is 2800 * contiguous to processed extent. 2801 * 2802 * Will release processed extent when any of @inode, @uptodate, the range is 2803 * no longer contiguous to the processed range. 2804 * 2805 * Passing @inode == NULL will force processed extent to be released. 2806 */ 2807 static void endio_readpage_release_extent(struct processed_extent *processed, 2808 struct btrfs_inode *inode, u64 start, u64 end, 2809 bool uptodate) 2810 { 2811 struct extent_state *cached = NULL; 2812 struct extent_io_tree *tree; 2813 2814 /* The first extent, initialize @processed */ 2815 if (!processed->inode) 2816 goto update; 2817 2818 /* 2819 * Contiguous to processed extent, just uptodate the end. 2820 * 2821 * Several things to notice: 2822 * 2823 * - bio can be merged as long as on-disk bytenr is contiguous 2824 * This means we can have page belonging to other inodes, thus need to 2825 * check if the inode still matches. 2826 * - bvec can contain range beyond current page for multi-page bvec 2827 * Thus we need to do processed->end + 1 >= start check 2828 */ 2829 if (processed->inode == inode && processed->uptodate == uptodate && 2830 processed->end + 1 >= start && end >= processed->end) { 2831 processed->end = end; 2832 return; 2833 } 2834 2835 tree = &processed->inode->io_tree; 2836 /* 2837 * Now we don't have range contiguous to the processed range, release 2838 * the processed range now. 2839 */ 2840 if (processed->uptodate && tree->track_uptodate) 2841 set_extent_uptodate(tree, processed->start, processed->end, 2842 &cached, GFP_ATOMIC); 2843 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2844 &cached); 2845 2846 update: 2847 /* Update processed to current range */ 2848 processed->inode = inode; 2849 processed->start = start; 2850 processed->end = end; 2851 processed->uptodate = uptodate; 2852 } 2853 2854 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2855 { 2856 ASSERT(PageLocked(page)); 2857 if (fs_info->sectorsize == PAGE_SIZE) 2858 return; 2859 2860 ASSERT(PagePrivate(page)); 2861 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2862 } 2863 2864 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2865 { 2866 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2867 2868 ASSERT(page_offset(page) <= start && 2869 start + len <= page_offset(page) + PAGE_SIZE); 2870 2871 if (uptodate) { 2872 btrfs_page_set_uptodate(fs_info, page, start, len); 2873 } else { 2874 btrfs_page_clear_uptodate(fs_info, page, start, len); 2875 btrfs_page_set_error(fs_info, page, start, len); 2876 } 2877 2878 if (fs_info->sectorsize == PAGE_SIZE) 2879 unlock_page(page); 2880 else if (is_data_inode(page->mapping->host)) 2881 /* 2882 * For subpage data, unlock the page if we're the last reader. 2883 * For subpage metadata, page lock is not utilized for read. 2884 */ 2885 btrfs_subpage_end_reader(fs_info, page, start, len); 2886 } 2887 2888 /* 2889 * after a readpage IO is done, we need to: 2890 * clear the uptodate bits on error 2891 * set the uptodate bits if things worked 2892 * set the page up to date if all extents in the tree are uptodate 2893 * clear the lock bit in the extent tree 2894 * unlock the page if there are no other extents locked for it 2895 * 2896 * Scheduling is not allowed, so the extent state tree is expected 2897 * to have one and only one object corresponding to this IO. 2898 */ 2899 static void end_bio_extent_readpage(struct bio *bio) 2900 { 2901 struct bio_vec *bvec; 2902 int uptodate = !bio->bi_status; 2903 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2904 struct extent_io_tree *tree, *failure_tree; 2905 struct processed_extent processed = { 0 }; 2906 /* 2907 * The offset to the beginning of a bio, since one bio can never be 2908 * larger than UINT_MAX, u32 here is enough. 2909 */ 2910 u32 bio_offset = 0; 2911 int mirror; 2912 int ret; 2913 struct bvec_iter_all iter_all; 2914 2915 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2916 bio_for_each_segment_all(bvec, bio, iter_all) { 2917 struct page *page = bvec->bv_page; 2918 struct inode *inode = page->mapping->host; 2919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2920 const u32 sectorsize = fs_info->sectorsize; 2921 u64 start; 2922 u64 end; 2923 u32 len; 2924 2925 btrfs_debug(fs_info, 2926 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2927 bio->bi_iter.bi_sector, bio->bi_status, 2928 io_bio->mirror_num); 2929 tree = &BTRFS_I(inode)->io_tree; 2930 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2931 2932 /* 2933 * We always issue full-sector reads, but if some block in a 2934 * page fails to read, blk_update_request() will advance 2935 * bv_offset and adjust bv_len to compensate. Print a warning 2936 * for unaligned offsets, and an error if they don't add up to 2937 * a full sector. 2938 */ 2939 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2940 btrfs_err(fs_info, 2941 "partial page read in btrfs with offset %u and length %u", 2942 bvec->bv_offset, bvec->bv_len); 2943 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 2944 sectorsize)) 2945 btrfs_info(fs_info, 2946 "incomplete page read with offset %u and length %u", 2947 bvec->bv_offset, bvec->bv_len); 2948 2949 start = page_offset(page) + bvec->bv_offset; 2950 end = start + bvec->bv_len - 1; 2951 len = bvec->bv_len; 2952 2953 mirror = io_bio->mirror_num; 2954 if (likely(uptodate)) { 2955 if (is_data_inode(inode)) 2956 ret = btrfs_verify_data_csum(io_bio, 2957 bio_offset, page, start, end, 2958 mirror); 2959 else 2960 ret = btrfs_validate_metadata_buffer(io_bio, 2961 page, start, end, mirror); 2962 if (ret) 2963 uptodate = 0; 2964 else 2965 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2966 failure_tree, tree, start, 2967 page, 2968 btrfs_ino(BTRFS_I(inode)), 0); 2969 } 2970 2971 if (likely(uptodate)) 2972 goto readpage_ok; 2973 2974 if (is_data_inode(inode)) { 2975 2976 /* 2977 * The generic bio_readpage_error handles errors the 2978 * following way: If possible, new read requests are 2979 * created and submitted and will end up in 2980 * end_bio_extent_readpage as well (if we're lucky, 2981 * not in the !uptodate case). In that case it returns 2982 * 0 and we just go on with the next page in our bio. 2983 * If it can't handle the error it will return -EIO and 2984 * we remain responsible for that page. 2985 */ 2986 if (!btrfs_submit_read_repair(inode, bio, bio_offset, 2987 page, 2988 start - page_offset(page), 2989 start, end, mirror, 2990 btrfs_submit_data_bio)) { 2991 uptodate = !bio->bi_status; 2992 ASSERT(bio_offset + len > bio_offset); 2993 bio_offset += len; 2994 continue; 2995 } 2996 } else { 2997 struct extent_buffer *eb; 2998 2999 eb = (struct extent_buffer *)page->private; 3000 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3001 eb->read_mirror = mirror; 3002 atomic_dec(&eb->io_pages); 3003 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 3004 &eb->bflags)) 3005 btree_readahead_hook(eb, -EIO); 3006 } 3007 readpage_ok: 3008 if (likely(uptodate)) { 3009 loff_t i_size = i_size_read(inode); 3010 pgoff_t end_index = i_size >> PAGE_SHIFT; 3011 unsigned off; 3012 3013 /* Zero out the end if this page straddles i_size */ 3014 off = offset_in_page(i_size); 3015 if (page->index == end_index && off) 3016 zero_user_segment(page, off, PAGE_SIZE); 3017 } 3018 ASSERT(bio_offset + len > bio_offset); 3019 bio_offset += len; 3020 3021 /* Update page status and unlock */ 3022 end_page_read(page, uptodate, start, len); 3023 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3024 start, end, uptodate); 3025 } 3026 /* Release the last extent */ 3027 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3028 btrfs_io_bio_free_csum(io_bio); 3029 bio_put(bio); 3030 } 3031 3032 /* 3033 * Initialize the members up to but not including 'bio'. Use after allocating a 3034 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3035 * 'bio' because use of __GFP_ZERO is not supported. 3036 */ 3037 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 3038 { 3039 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 3040 } 3041 3042 /* 3043 * The following helpers allocate a bio. As it's backed by a bioset, it'll 3044 * never fail. We're returning a bio right now but you can call btrfs_io_bio 3045 * for the appropriate container_of magic 3046 */ 3047 struct bio *btrfs_bio_alloc(u64 first_byte) 3048 { 3049 struct bio *bio; 3050 3051 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 3052 bio->bi_iter.bi_sector = first_byte >> 9; 3053 btrfs_io_bio_init(btrfs_io_bio(bio)); 3054 return bio; 3055 } 3056 3057 struct bio *btrfs_bio_clone(struct bio *bio) 3058 { 3059 struct btrfs_io_bio *btrfs_bio; 3060 struct bio *new; 3061 3062 /* Bio allocation backed by a bioset does not fail */ 3063 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3064 btrfs_bio = btrfs_io_bio(new); 3065 btrfs_io_bio_init(btrfs_bio); 3066 btrfs_bio->iter = bio->bi_iter; 3067 return new; 3068 } 3069 3070 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 3071 { 3072 struct bio *bio; 3073 3074 /* Bio allocation backed by a bioset does not fail */ 3075 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3076 btrfs_io_bio_init(btrfs_io_bio(bio)); 3077 return bio; 3078 } 3079 3080 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 3081 { 3082 struct bio *bio; 3083 struct btrfs_io_bio *btrfs_bio; 3084 3085 /* this will never fail when it's backed by a bioset */ 3086 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3087 ASSERT(bio); 3088 3089 btrfs_bio = btrfs_io_bio(bio); 3090 btrfs_io_bio_init(btrfs_bio); 3091 3092 bio_trim(bio, offset >> 9, size >> 9); 3093 btrfs_bio->iter = bio->bi_iter; 3094 return bio; 3095 } 3096 3097 /** 3098 * Attempt to add a page to bio 3099 * 3100 * @bio: destination bio 3101 * @page: page to add to the bio 3102 * @disk_bytenr: offset of the new bio or to check whether we are adding 3103 * a contiguous page to the previous one 3104 * @pg_offset: starting offset in the page 3105 * @size: portion of page that we want to write 3106 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3107 * @bio_flags: flags of the current bio to see if we can merge them 3108 * @return: true if page was added, false otherwise 3109 * 3110 * Attempt to add a page to bio considering stripe alignment etc. 3111 * 3112 * Return true if successfully page added. Otherwise, return false. 3113 */ 3114 static bool btrfs_bio_add_page(struct bio *bio, struct page *page, 3115 u64 disk_bytenr, unsigned int size, 3116 unsigned int pg_offset, 3117 unsigned long prev_bio_flags, 3118 unsigned long bio_flags) 3119 { 3120 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3121 bool contig; 3122 int ret; 3123 3124 if (prev_bio_flags != bio_flags) 3125 return false; 3126 3127 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3128 contig = bio->bi_iter.bi_sector == sector; 3129 else 3130 contig = bio_end_sector(bio) == sector; 3131 if (!contig) 3132 return false; 3133 3134 if (btrfs_bio_fits_in_stripe(page, size, bio, bio_flags)) 3135 return false; 3136 3137 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3138 struct page *first_page = bio_first_bvec_all(bio)->bv_page; 3139 3140 if (!btrfs_bio_fits_in_ordered_extent(first_page, bio, size)) 3141 return false; 3142 ret = bio_add_zone_append_page(bio, page, size, pg_offset); 3143 } else { 3144 ret = bio_add_page(bio, page, size, pg_offset); 3145 } 3146 3147 return ret == size; 3148 } 3149 3150 /* 3151 * @opf: bio REQ_OP_* and REQ_* flags as one value 3152 * @wbc: optional writeback control for io accounting 3153 * @page: page to add to the bio 3154 * @disk_bytenr: logical bytenr where the write will be 3155 * @size: portion of page that we want to write to 3156 * @pg_offset: offset of the new bio or to check whether we are adding 3157 * a contiguous page to the previous one 3158 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3159 * @end_io_func: end_io callback for new bio 3160 * @mirror_num: desired mirror to read/write 3161 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3162 * @bio_flags: flags of the current bio to see if we can merge them 3163 */ 3164 static int submit_extent_page(unsigned int opf, 3165 struct writeback_control *wbc, 3166 struct page *page, u64 disk_bytenr, 3167 size_t size, unsigned long pg_offset, 3168 struct bio **bio_ret, 3169 bio_end_io_t end_io_func, 3170 int mirror_num, 3171 unsigned long prev_bio_flags, 3172 unsigned long bio_flags, 3173 bool force_bio_submit) 3174 { 3175 int ret = 0; 3176 struct bio *bio; 3177 size_t io_size = min_t(size_t, size, PAGE_SIZE); 3178 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3179 struct extent_io_tree *tree = &inode->io_tree; 3180 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3181 3182 ASSERT(bio_ret); 3183 3184 if (*bio_ret) { 3185 bio = *bio_ret; 3186 if (force_bio_submit || 3187 !btrfs_bio_add_page(bio, page, disk_bytenr, io_size, 3188 pg_offset, prev_bio_flags, bio_flags)) { 3189 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3190 if (ret < 0) { 3191 *bio_ret = NULL; 3192 return ret; 3193 } 3194 bio = NULL; 3195 } else { 3196 if (wbc) 3197 wbc_account_cgroup_owner(wbc, page, io_size); 3198 return 0; 3199 } 3200 } 3201 3202 bio = btrfs_bio_alloc(disk_bytenr); 3203 bio_add_page(bio, page, io_size, pg_offset); 3204 bio->bi_end_io = end_io_func; 3205 bio->bi_private = tree; 3206 bio->bi_write_hint = page->mapping->host->i_write_hint; 3207 bio->bi_opf = opf; 3208 if (wbc) { 3209 struct block_device *bdev; 3210 3211 bdev = fs_info->fs_devices->latest_bdev; 3212 bio_set_dev(bio, bdev); 3213 wbc_init_bio(wbc, bio); 3214 wbc_account_cgroup_owner(wbc, page, io_size); 3215 } 3216 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) { 3217 struct extent_map *em; 3218 struct map_lookup *map; 3219 3220 em = btrfs_get_chunk_map(fs_info, disk_bytenr, io_size); 3221 if (IS_ERR(em)) 3222 return PTR_ERR(em); 3223 3224 map = em->map_lookup; 3225 /* We only support single profile for now */ 3226 ASSERT(map->num_stripes == 1); 3227 btrfs_io_bio(bio)->device = map->stripes[0].dev; 3228 3229 free_extent_map(em); 3230 } 3231 3232 *bio_ret = bio; 3233 3234 return ret; 3235 } 3236 3237 static int attach_extent_buffer_page(struct extent_buffer *eb, 3238 struct page *page, 3239 struct btrfs_subpage *prealloc) 3240 { 3241 struct btrfs_fs_info *fs_info = eb->fs_info; 3242 int ret = 0; 3243 3244 /* 3245 * If the page is mapped to btree inode, we should hold the private 3246 * lock to prevent race. 3247 * For cloned or dummy extent buffers, their pages are not mapped and 3248 * will not race with any other ebs. 3249 */ 3250 if (page->mapping) 3251 lockdep_assert_held(&page->mapping->private_lock); 3252 3253 if (fs_info->sectorsize == PAGE_SIZE) { 3254 if (!PagePrivate(page)) 3255 attach_page_private(page, eb); 3256 else 3257 WARN_ON(page->private != (unsigned long)eb); 3258 return 0; 3259 } 3260 3261 /* Already mapped, just free prealloc */ 3262 if (PagePrivate(page)) { 3263 btrfs_free_subpage(prealloc); 3264 return 0; 3265 } 3266 3267 if (prealloc) 3268 /* Has preallocated memory for subpage */ 3269 attach_page_private(page, prealloc); 3270 else 3271 /* Do new allocation to attach subpage */ 3272 ret = btrfs_attach_subpage(fs_info, page, 3273 BTRFS_SUBPAGE_METADATA); 3274 return ret; 3275 } 3276 3277 int set_page_extent_mapped(struct page *page) 3278 { 3279 struct btrfs_fs_info *fs_info; 3280 3281 ASSERT(page->mapping); 3282 3283 if (PagePrivate(page)) 3284 return 0; 3285 3286 fs_info = btrfs_sb(page->mapping->host->i_sb); 3287 3288 if (fs_info->sectorsize < PAGE_SIZE) 3289 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3290 3291 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3292 return 0; 3293 } 3294 3295 void clear_page_extent_mapped(struct page *page) 3296 { 3297 struct btrfs_fs_info *fs_info; 3298 3299 ASSERT(page->mapping); 3300 3301 if (!PagePrivate(page)) 3302 return; 3303 3304 fs_info = btrfs_sb(page->mapping->host->i_sb); 3305 if (fs_info->sectorsize < PAGE_SIZE) 3306 return btrfs_detach_subpage(fs_info, page); 3307 3308 detach_page_private(page); 3309 } 3310 3311 static struct extent_map * 3312 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3313 u64 start, u64 len, struct extent_map **em_cached) 3314 { 3315 struct extent_map *em; 3316 3317 if (em_cached && *em_cached) { 3318 em = *em_cached; 3319 if (extent_map_in_tree(em) && start >= em->start && 3320 start < extent_map_end(em)) { 3321 refcount_inc(&em->refs); 3322 return em; 3323 } 3324 3325 free_extent_map(em); 3326 *em_cached = NULL; 3327 } 3328 3329 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3330 if (em_cached && !IS_ERR_OR_NULL(em)) { 3331 BUG_ON(*em_cached); 3332 refcount_inc(&em->refs); 3333 *em_cached = em; 3334 } 3335 return em; 3336 } 3337 /* 3338 * basic readpage implementation. Locked extent state structs are inserted 3339 * into the tree that are removed when the IO is done (by the end_io 3340 * handlers) 3341 * XXX JDM: This needs looking at to ensure proper page locking 3342 * return 0 on success, otherwise return error 3343 */ 3344 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3345 struct bio **bio, unsigned long *bio_flags, 3346 unsigned int read_flags, u64 *prev_em_start) 3347 { 3348 struct inode *inode = page->mapping->host; 3349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3350 u64 start = page_offset(page); 3351 const u64 end = start + PAGE_SIZE - 1; 3352 u64 cur = start; 3353 u64 extent_offset; 3354 u64 last_byte = i_size_read(inode); 3355 u64 block_start; 3356 u64 cur_end; 3357 struct extent_map *em; 3358 int ret = 0; 3359 int nr = 0; 3360 size_t pg_offset = 0; 3361 size_t iosize; 3362 size_t blocksize = inode->i_sb->s_blocksize; 3363 unsigned long this_bio_flag = 0; 3364 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3365 3366 ret = set_page_extent_mapped(page); 3367 if (ret < 0) { 3368 unlock_extent(tree, start, end); 3369 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3370 unlock_page(page); 3371 goto out; 3372 } 3373 3374 if (!PageUptodate(page)) { 3375 if (cleancache_get_page(page) == 0) { 3376 BUG_ON(blocksize != PAGE_SIZE); 3377 unlock_extent(tree, start, end); 3378 unlock_page(page); 3379 goto out; 3380 } 3381 } 3382 3383 if (page->index == last_byte >> PAGE_SHIFT) { 3384 char *userpage; 3385 size_t zero_offset = offset_in_page(last_byte); 3386 3387 if (zero_offset) { 3388 iosize = PAGE_SIZE - zero_offset; 3389 userpage = kmap_atomic(page); 3390 memset(userpage + zero_offset, 0, iosize); 3391 flush_dcache_page(page); 3392 kunmap_atomic(userpage); 3393 } 3394 } 3395 begin_page_read(fs_info, page); 3396 while (cur <= end) { 3397 bool force_bio_submit = false; 3398 u64 disk_bytenr; 3399 3400 if (cur >= last_byte) { 3401 char *userpage; 3402 struct extent_state *cached = NULL; 3403 3404 iosize = PAGE_SIZE - pg_offset; 3405 userpage = kmap_atomic(page); 3406 memset(userpage + pg_offset, 0, iosize); 3407 flush_dcache_page(page); 3408 kunmap_atomic(userpage); 3409 set_extent_uptodate(tree, cur, cur + iosize - 1, 3410 &cached, GFP_NOFS); 3411 unlock_extent_cached(tree, cur, 3412 cur + iosize - 1, &cached); 3413 end_page_read(page, true, cur, iosize); 3414 break; 3415 } 3416 em = __get_extent_map(inode, page, pg_offset, cur, 3417 end - cur + 1, em_cached); 3418 if (IS_ERR_OR_NULL(em)) { 3419 unlock_extent(tree, cur, end); 3420 end_page_read(page, false, cur, end + 1 - cur); 3421 break; 3422 } 3423 extent_offset = cur - em->start; 3424 BUG_ON(extent_map_end(em) <= cur); 3425 BUG_ON(end < cur); 3426 3427 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3428 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3429 extent_set_compress_type(&this_bio_flag, 3430 em->compress_type); 3431 } 3432 3433 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3434 cur_end = min(extent_map_end(em) - 1, end); 3435 iosize = ALIGN(iosize, blocksize); 3436 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3437 disk_bytenr = em->block_start; 3438 else 3439 disk_bytenr = em->block_start + extent_offset; 3440 block_start = em->block_start; 3441 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3442 block_start = EXTENT_MAP_HOLE; 3443 3444 /* 3445 * If we have a file range that points to a compressed extent 3446 * and it's followed by a consecutive file range that points 3447 * to the same compressed extent (possibly with a different 3448 * offset and/or length, so it either points to the whole extent 3449 * or only part of it), we must make sure we do not submit a 3450 * single bio to populate the pages for the 2 ranges because 3451 * this makes the compressed extent read zero out the pages 3452 * belonging to the 2nd range. Imagine the following scenario: 3453 * 3454 * File layout 3455 * [0 - 8K] [8K - 24K] 3456 * | | 3457 * | | 3458 * points to extent X, points to extent X, 3459 * offset 4K, length of 8K offset 0, length 16K 3460 * 3461 * [extent X, compressed length = 4K uncompressed length = 16K] 3462 * 3463 * If the bio to read the compressed extent covers both ranges, 3464 * it will decompress extent X into the pages belonging to the 3465 * first range and then it will stop, zeroing out the remaining 3466 * pages that belong to the other range that points to extent X. 3467 * So here we make sure we submit 2 bios, one for the first 3468 * range and another one for the third range. Both will target 3469 * the same physical extent from disk, but we can't currently 3470 * make the compressed bio endio callback populate the pages 3471 * for both ranges because each compressed bio is tightly 3472 * coupled with a single extent map, and each range can have 3473 * an extent map with a different offset value relative to the 3474 * uncompressed data of our extent and different lengths. This 3475 * is a corner case so we prioritize correctness over 3476 * non-optimal behavior (submitting 2 bios for the same extent). 3477 */ 3478 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3479 prev_em_start && *prev_em_start != (u64)-1 && 3480 *prev_em_start != em->start) 3481 force_bio_submit = true; 3482 3483 if (prev_em_start) 3484 *prev_em_start = em->start; 3485 3486 free_extent_map(em); 3487 em = NULL; 3488 3489 /* we've found a hole, just zero and go on */ 3490 if (block_start == EXTENT_MAP_HOLE) { 3491 char *userpage; 3492 struct extent_state *cached = NULL; 3493 3494 userpage = kmap_atomic(page); 3495 memset(userpage + pg_offset, 0, iosize); 3496 flush_dcache_page(page); 3497 kunmap_atomic(userpage); 3498 3499 set_extent_uptodate(tree, cur, cur + iosize - 1, 3500 &cached, GFP_NOFS); 3501 unlock_extent_cached(tree, cur, 3502 cur + iosize - 1, &cached); 3503 end_page_read(page, true, cur, iosize); 3504 cur = cur + iosize; 3505 pg_offset += iosize; 3506 continue; 3507 } 3508 /* the get_extent function already copied into the page */ 3509 if (test_range_bit(tree, cur, cur_end, 3510 EXTENT_UPTODATE, 1, NULL)) { 3511 check_page_uptodate(tree, page); 3512 unlock_extent(tree, cur, cur + iosize - 1); 3513 end_page_read(page, true, cur, iosize); 3514 cur = cur + iosize; 3515 pg_offset += iosize; 3516 continue; 3517 } 3518 /* we have an inline extent but it didn't get marked up 3519 * to date. Error out 3520 */ 3521 if (block_start == EXTENT_MAP_INLINE) { 3522 unlock_extent(tree, cur, cur + iosize - 1); 3523 end_page_read(page, false, cur, iosize); 3524 cur = cur + iosize; 3525 pg_offset += iosize; 3526 continue; 3527 } 3528 3529 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3530 page, disk_bytenr, iosize, 3531 pg_offset, bio, 3532 end_bio_extent_readpage, 0, 3533 *bio_flags, 3534 this_bio_flag, 3535 force_bio_submit); 3536 if (!ret) { 3537 nr++; 3538 *bio_flags = this_bio_flag; 3539 } else { 3540 unlock_extent(tree, cur, cur + iosize - 1); 3541 end_page_read(page, false, cur, iosize); 3542 goto out; 3543 } 3544 cur = cur + iosize; 3545 pg_offset += iosize; 3546 } 3547 out: 3548 return ret; 3549 } 3550 3551 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3552 u64 start, u64 end, 3553 struct extent_map **em_cached, 3554 struct bio **bio, 3555 unsigned long *bio_flags, 3556 u64 *prev_em_start) 3557 { 3558 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3559 int index; 3560 3561 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3562 3563 for (index = 0; index < nr_pages; index++) { 3564 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags, 3565 REQ_RAHEAD, prev_em_start); 3566 put_page(pages[index]); 3567 } 3568 } 3569 3570 static void update_nr_written(struct writeback_control *wbc, 3571 unsigned long nr_written) 3572 { 3573 wbc->nr_to_write -= nr_written; 3574 } 3575 3576 /* 3577 * helper for __extent_writepage, doing all of the delayed allocation setup. 3578 * 3579 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3580 * to write the page (copy into inline extent). In this case the IO has 3581 * been started and the page is already unlocked. 3582 * 3583 * This returns 0 if all went well (page still locked) 3584 * This returns < 0 if there were errors (page still locked) 3585 */ 3586 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3587 struct page *page, struct writeback_control *wbc, 3588 u64 delalloc_start, unsigned long *nr_written) 3589 { 3590 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3591 bool found; 3592 u64 delalloc_to_write = 0; 3593 u64 delalloc_end = 0; 3594 int ret; 3595 int page_started = 0; 3596 3597 3598 while (delalloc_end < page_end) { 3599 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3600 &delalloc_start, 3601 &delalloc_end); 3602 if (!found) { 3603 delalloc_start = delalloc_end + 1; 3604 continue; 3605 } 3606 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3607 delalloc_end, &page_started, nr_written, wbc); 3608 if (ret) { 3609 SetPageError(page); 3610 /* 3611 * btrfs_run_delalloc_range should return < 0 for error 3612 * but just in case, we use > 0 here meaning the IO is 3613 * started, so we don't want to return > 0 unless 3614 * things are going well. 3615 */ 3616 return ret < 0 ? ret : -EIO; 3617 } 3618 /* 3619 * delalloc_end is already one less than the total length, so 3620 * we don't subtract one from PAGE_SIZE 3621 */ 3622 delalloc_to_write += (delalloc_end - delalloc_start + 3623 PAGE_SIZE) >> PAGE_SHIFT; 3624 delalloc_start = delalloc_end + 1; 3625 } 3626 if (wbc->nr_to_write < delalloc_to_write) { 3627 int thresh = 8192; 3628 3629 if (delalloc_to_write < thresh * 2) 3630 thresh = delalloc_to_write; 3631 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3632 thresh); 3633 } 3634 3635 /* did the fill delalloc function already unlock and start 3636 * the IO? 3637 */ 3638 if (page_started) { 3639 /* 3640 * we've unlocked the page, so we can't update 3641 * the mapping's writeback index, just update 3642 * nr_to_write. 3643 */ 3644 wbc->nr_to_write -= *nr_written; 3645 return 1; 3646 } 3647 3648 return 0; 3649 } 3650 3651 /* 3652 * helper for __extent_writepage. This calls the writepage start hooks, 3653 * and does the loop to map the page into extents and bios. 3654 * 3655 * We return 1 if the IO is started and the page is unlocked, 3656 * 0 if all went well (page still locked) 3657 * < 0 if there were errors (page still locked) 3658 */ 3659 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3660 struct page *page, 3661 struct writeback_control *wbc, 3662 struct extent_page_data *epd, 3663 loff_t i_size, 3664 unsigned long nr_written, 3665 int *nr_ret) 3666 { 3667 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3668 struct extent_io_tree *tree = &inode->io_tree; 3669 u64 start = page_offset(page); 3670 u64 end = start + PAGE_SIZE - 1; 3671 u64 cur = start; 3672 u64 extent_offset; 3673 u64 block_start; 3674 struct extent_map *em; 3675 int ret = 0; 3676 int nr = 0; 3677 u32 opf = REQ_OP_WRITE; 3678 const unsigned int write_flags = wbc_to_write_flags(wbc); 3679 bool compressed; 3680 3681 ret = btrfs_writepage_cow_fixup(page, start, end); 3682 if (ret) { 3683 /* Fixup worker will requeue */ 3684 redirty_page_for_writepage(wbc, page); 3685 update_nr_written(wbc, nr_written); 3686 unlock_page(page); 3687 return 1; 3688 } 3689 3690 /* 3691 * we don't want to touch the inode after unlocking the page, 3692 * so we update the mapping writeback index now 3693 */ 3694 update_nr_written(wbc, nr_written + 1); 3695 3696 while (cur <= end) { 3697 u64 disk_bytenr; 3698 u64 em_end; 3699 u32 iosize; 3700 3701 if (cur >= i_size) { 3702 btrfs_writepage_endio_finish_ordered(page, cur, end, 1); 3703 break; 3704 } 3705 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3706 if (IS_ERR_OR_NULL(em)) { 3707 SetPageError(page); 3708 ret = PTR_ERR_OR_ZERO(em); 3709 break; 3710 } 3711 3712 extent_offset = cur - em->start; 3713 em_end = extent_map_end(em); 3714 ASSERT(cur <= em_end); 3715 ASSERT(cur < end); 3716 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3717 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3718 block_start = em->block_start; 3719 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3720 disk_bytenr = em->block_start + extent_offset; 3721 3722 /* Note that em_end from extent_map_end() is exclusive */ 3723 iosize = min(em_end, end + 1) - cur; 3724 3725 if (btrfs_use_zone_append(inode, em)) 3726 opf = REQ_OP_ZONE_APPEND; 3727 3728 free_extent_map(em); 3729 em = NULL; 3730 3731 /* 3732 * compressed and inline extents are written through other 3733 * paths in the FS 3734 */ 3735 if (compressed || block_start == EXTENT_MAP_HOLE || 3736 block_start == EXTENT_MAP_INLINE) { 3737 if (compressed) 3738 nr++; 3739 else 3740 btrfs_writepage_endio_finish_ordered(page, cur, 3741 cur + iosize - 1, 1); 3742 cur += iosize; 3743 continue; 3744 } 3745 3746 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3747 if (!PageWriteback(page)) { 3748 btrfs_err(inode->root->fs_info, 3749 "page %lu not writeback, cur %llu end %llu", 3750 page->index, cur, end); 3751 } 3752 3753 ret = submit_extent_page(opf | write_flags, wbc, page, 3754 disk_bytenr, iosize, 3755 cur - page_offset(page), &epd->bio, 3756 end_bio_extent_writepage, 3757 0, 0, 0, false); 3758 if (ret) { 3759 SetPageError(page); 3760 if (PageWriteback(page)) 3761 end_page_writeback(page); 3762 } 3763 3764 cur += iosize; 3765 nr++; 3766 } 3767 *nr_ret = nr; 3768 return ret; 3769 } 3770 3771 /* 3772 * the writepage semantics are similar to regular writepage. extent 3773 * records are inserted to lock ranges in the tree, and as dirty areas 3774 * are found, they are marked writeback. Then the lock bits are removed 3775 * and the end_io handler clears the writeback ranges 3776 * 3777 * Return 0 if everything goes well. 3778 * Return <0 for error. 3779 */ 3780 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3781 struct extent_page_data *epd) 3782 { 3783 struct inode *inode = page->mapping->host; 3784 u64 start = page_offset(page); 3785 u64 page_end = start + PAGE_SIZE - 1; 3786 int ret; 3787 int nr = 0; 3788 size_t pg_offset; 3789 loff_t i_size = i_size_read(inode); 3790 unsigned long end_index = i_size >> PAGE_SHIFT; 3791 unsigned long nr_written = 0; 3792 3793 trace___extent_writepage(page, inode, wbc); 3794 3795 WARN_ON(!PageLocked(page)); 3796 3797 ClearPageError(page); 3798 3799 pg_offset = offset_in_page(i_size); 3800 if (page->index > end_index || 3801 (page->index == end_index && !pg_offset)) { 3802 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3803 unlock_page(page); 3804 return 0; 3805 } 3806 3807 if (page->index == end_index) { 3808 char *userpage; 3809 3810 userpage = kmap_atomic(page); 3811 memset(userpage + pg_offset, 0, 3812 PAGE_SIZE - pg_offset); 3813 kunmap_atomic(userpage); 3814 flush_dcache_page(page); 3815 } 3816 3817 ret = set_page_extent_mapped(page); 3818 if (ret < 0) { 3819 SetPageError(page); 3820 goto done; 3821 } 3822 3823 if (!epd->extent_locked) { 3824 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 3825 &nr_written); 3826 if (ret == 1) 3827 return 0; 3828 if (ret) 3829 goto done; 3830 } 3831 3832 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 3833 nr_written, &nr); 3834 if (ret == 1) 3835 return 0; 3836 3837 done: 3838 if (nr == 0) { 3839 /* make sure the mapping tag for page dirty gets cleared */ 3840 set_page_writeback(page); 3841 end_page_writeback(page); 3842 } 3843 if (PageError(page)) { 3844 ret = ret < 0 ? ret : -EIO; 3845 end_extent_writepage(page, ret, start, page_end); 3846 } 3847 unlock_page(page); 3848 ASSERT(ret <= 0); 3849 return ret; 3850 } 3851 3852 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3853 { 3854 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3855 TASK_UNINTERRUPTIBLE); 3856 } 3857 3858 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3859 { 3860 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3861 smp_mb__after_atomic(); 3862 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3863 } 3864 3865 /* 3866 * Lock extent buffer status and pages for writeback. 3867 * 3868 * May try to flush write bio if we can't get the lock. 3869 * 3870 * Return 0 if the extent buffer doesn't need to be submitted. 3871 * (E.g. the extent buffer is not dirty) 3872 * Return >0 is the extent buffer is submitted to bio. 3873 * Return <0 if something went wrong, no page is locked. 3874 */ 3875 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3876 struct extent_page_data *epd) 3877 { 3878 struct btrfs_fs_info *fs_info = eb->fs_info; 3879 int i, num_pages, failed_page_nr; 3880 int flush = 0; 3881 int ret = 0; 3882 3883 if (!btrfs_try_tree_write_lock(eb)) { 3884 ret = flush_write_bio(epd); 3885 if (ret < 0) 3886 return ret; 3887 flush = 1; 3888 btrfs_tree_lock(eb); 3889 } 3890 3891 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3892 btrfs_tree_unlock(eb); 3893 if (!epd->sync_io) 3894 return 0; 3895 if (!flush) { 3896 ret = flush_write_bio(epd); 3897 if (ret < 0) 3898 return ret; 3899 flush = 1; 3900 } 3901 while (1) { 3902 wait_on_extent_buffer_writeback(eb); 3903 btrfs_tree_lock(eb); 3904 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3905 break; 3906 btrfs_tree_unlock(eb); 3907 } 3908 } 3909 3910 /* 3911 * We need to do this to prevent races in people who check if the eb is 3912 * under IO since we can end up having no IO bits set for a short period 3913 * of time. 3914 */ 3915 spin_lock(&eb->refs_lock); 3916 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3917 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3918 spin_unlock(&eb->refs_lock); 3919 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3920 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3921 -eb->len, 3922 fs_info->dirty_metadata_batch); 3923 ret = 1; 3924 } else { 3925 spin_unlock(&eb->refs_lock); 3926 } 3927 3928 btrfs_tree_unlock(eb); 3929 3930 if (!ret) 3931 return ret; 3932 3933 num_pages = num_extent_pages(eb); 3934 for (i = 0; i < num_pages; i++) { 3935 struct page *p = eb->pages[i]; 3936 3937 if (!trylock_page(p)) { 3938 if (!flush) { 3939 int err; 3940 3941 err = flush_write_bio(epd); 3942 if (err < 0) { 3943 ret = err; 3944 failed_page_nr = i; 3945 goto err_unlock; 3946 } 3947 flush = 1; 3948 } 3949 lock_page(p); 3950 } 3951 } 3952 3953 return ret; 3954 err_unlock: 3955 /* Unlock already locked pages */ 3956 for (i = 0; i < failed_page_nr; i++) 3957 unlock_page(eb->pages[i]); 3958 /* 3959 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3960 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3961 * be made and undo everything done before. 3962 */ 3963 btrfs_tree_lock(eb); 3964 spin_lock(&eb->refs_lock); 3965 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3966 end_extent_buffer_writeback(eb); 3967 spin_unlock(&eb->refs_lock); 3968 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3969 fs_info->dirty_metadata_batch); 3970 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3971 btrfs_tree_unlock(eb); 3972 return ret; 3973 } 3974 3975 static void set_btree_ioerr(struct page *page) 3976 { 3977 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3978 struct btrfs_fs_info *fs_info; 3979 3980 SetPageError(page); 3981 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3982 return; 3983 3984 /* 3985 * If we error out, we should add back the dirty_metadata_bytes 3986 * to make it consistent. 3987 */ 3988 fs_info = eb->fs_info; 3989 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3990 eb->len, fs_info->dirty_metadata_batch); 3991 3992 /* 3993 * If writeback for a btree extent that doesn't belong to a log tree 3994 * failed, increment the counter transaction->eb_write_errors. 3995 * We do this because while the transaction is running and before it's 3996 * committing (when we call filemap_fdata[write|wait]_range against 3997 * the btree inode), we might have 3998 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3999 * returns an error or an error happens during writeback, when we're 4000 * committing the transaction we wouldn't know about it, since the pages 4001 * can be no longer dirty nor marked anymore for writeback (if a 4002 * subsequent modification to the extent buffer didn't happen before the 4003 * transaction commit), which makes filemap_fdata[write|wait]_range not 4004 * able to find the pages tagged with SetPageError at transaction 4005 * commit time. So if this happens we must abort the transaction, 4006 * otherwise we commit a super block with btree roots that point to 4007 * btree nodes/leafs whose content on disk is invalid - either garbage 4008 * or the content of some node/leaf from a past generation that got 4009 * cowed or deleted and is no longer valid. 4010 * 4011 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4012 * not be enough - we need to distinguish between log tree extents vs 4013 * non-log tree extents, and the next filemap_fdatawait_range() call 4014 * will catch and clear such errors in the mapping - and that call might 4015 * be from a log sync and not from a transaction commit. Also, checking 4016 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4017 * not done and would not be reliable - the eb might have been released 4018 * from memory and reading it back again means that flag would not be 4019 * set (since it's a runtime flag, not persisted on disk). 4020 * 4021 * Using the flags below in the btree inode also makes us achieve the 4022 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4023 * writeback for all dirty pages and before filemap_fdatawait_range() 4024 * is called, the writeback for all dirty pages had already finished 4025 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4026 * filemap_fdatawait_range() would return success, as it could not know 4027 * that writeback errors happened (the pages were no longer tagged for 4028 * writeback). 4029 */ 4030 switch (eb->log_index) { 4031 case -1: 4032 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 4033 break; 4034 case 0: 4035 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 4036 break; 4037 case 1: 4038 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 4039 break; 4040 default: 4041 BUG(); /* unexpected, logic error */ 4042 } 4043 } 4044 4045 static void end_bio_extent_buffer_writepage(struct bio *bio) 4046 { 4047 struct bio_vec *bvec; 4048 struct extent_buffer *eb; 4049 int done; 4050 struct bvec_iter_all iter_all; 4051 4052 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4053 bio_for_each_segment_all(bvec, bio, iter_all) { 4054 struct page *page = bvec->bv_page; 4055 4056 eb = (struct extent_buffer *)page->private; 4057 BUG_ON(!eb); 4058 done = atomic_dec_and_test(&eb->io_pages); 4059 4060 if (bio->bi_status || 4061 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4062 ClearPageUptodate(page); 4063 set_btree_ioerr(page); 4064 } 4065 4066 end_page_writeback(page); 4067 4068 if (!done) 4069 continue; 4070 4071 end_extent_buffer_writeback(eb); 4072 } 4073 4074 bio_put(bio); 4075 } 4076 4077 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4078 struct writeback_control *wbc, 4079 struct extent_page_data *epd) 4080 { 4081 u64 disk_bytenr = eb->start; 4082 u32 nritems; 4083 int i, num_pages; 4084 unsigned long start, end; 4085 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4086 int ret = 0; 4087 4088 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4089 num_pages = num_extent_pages(eb); 4090 atomic_set(&eb->io_pages, num_pages); 4091 4092 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 4093 nritems = btrfs_header_nritems(eb); 4094 if (btrfs_header_level(eb) > 0) { 4095 end = btrfs_node_key_ptr_offset(nritems); 4096 4097 memzero_extent_buffer(eb, end, eb->len - end); 4098 } else { 4099 /* 4100 * leaf: 4101 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4102 */ 4103 start = btrfs_item_nr_offset(nritems); 4104 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4105 memzero_extent_buffer(eb, start, end - start); 4106 } 4107 4108 for (i = 0; i < num_pages; i++) { 4109 struct page *p = eb->pages[i]; 4110 4111 clear_page_dirty_for_io(p); 4112 set_page_writeback(p); 4113 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4114 p, disk_bytenr, PAGE_SIZE, 0, 4115 &epd->bio, 4116 end_bio_extent_buffer_writepage, 4117 0, 0, 0, false); 4118 if (ret) { 4119 set_btree_ioerr(p); 4120 if (PageWriteback(p)) 4121 end_page_writeback(p); 4122 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4123 end_extent_buffer_writeback(eb); 4124 ret = -EIO; 4125 break; 4126 } 4127 disk_bytenr += PAGE_SIZE; 4128 update_nr_written(wbc, 1); 4129 unlock_page(p); 4130 } 4131 4132 if (unlikely(ret)) { 4133 for (; i < num_pages; i++) { 4134 struct page *p = eb->pages[i]; 4135 clear_page_dirty_for_io(p); 4136 unlock_page(p); 4137 } 4138 } 4139 4140 return ret; 4141 } 4142 4143 /* 4144 * Submit all page(s) of one extent buffer. 4145 * 4146 * @page: the page of one extent buffer 4147 * @eb_context: to determine if we need to submit this page, if current page 4148 * belongs to this eb, we don't need to submit 4149 * 4150 * The caller should pass each page in their bytenr order, and here we use 4151 * @eb_context to determine if we have submitted pages of one extent buffer. 4152 * 4153 * If we have, we just skip until we hit a new page that doesn't belong to 4154 * current @eb_context. 4155 * 4156 * If not, we submit all the page(s) of the extent buffer. 4157 * 4158 * Return >0 if we have submitted the extent buffer successfully. 4159 * Return 0 if we don't need to submit the page, as it's already submitted by 4160 * previous call. 4161 * Return <0 for fatal error. 4162 */ 4163 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4164 struct extent_page_data *epd, 4165 struct extent_buffer **eb_context) 4166 { 4167 struct address_space *mapping = page->mapping; 4168 struct btrfs_block_group *cache = NULL; 4169 struct extent_buffer *eb; 4170 int ret; 4171 4172 if (!PagePrivate(page)) 4173 return 0; 4174 4175 spin_lock(&mapping->private_lock); 4176 if (!PagePrivate(page)) { 4177 spin_unlock(&mapping->private_lock); 4178 return 0; 4179 } 4180 4181 eb = (struct extent_buffer *)page->private; 4182 4183 /* 4184 * Shouldn't happen and normally this would be a BUG_ON but no point 4185 * crashing the machine for something we can survive anyway. 4186 */ 4187 if (WARN_ON(!eb)) { 4188 spin_unlock(&mapping->private_lock); 4189 return 0; 4190 } 4191 4192 if (eb == *eb_context) { 4193 spin_unlock(&mapping->private_lock); 4194 return 0; 4195 } 4196 ret = atomic_inc_not_zero(&eb->refs); 4197 spin_unlock(&mapping->private_lock); 4198 if (!ret) 4199 return 0; 4200 4201 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4202 /* 4203 * If for_sync, this hole will be filled with 4204 * trasnsaction commit. 4205 */ 4206 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4207 ret = -EAGAIN; 4208 else 4209 ret = 0; 4210 free_extent_buffer(eb); 4211 return ret; 4212 } 4213 4214 *eb_context = eb; 4215 4216 ret = lock_extent_buffer_for_io(eb, epd); 4217 if (ret <= 0) { 4218 btrfs_revert_meta_write_pointer(cache, eb); 4219 if (cache) 4220 btrfs_put_block_group(cache); 4221 free_extent_buffer(eb); 4222 return ret; 4223 } 4224 if (cache) 4225 btrfs_put_block_group(cache); 4226 ret = write_one_eb(eb, wbc, epd); 4227 free_extent_buffer(eb); 4228 if (ret < 0) 4229 return ret; 4230 return 1; 4231 } 4232 4233 int btree_write_cache_pages(struct address_space *mapping, 4234 struct writeback_control *wbc) 4235 { 4236 struct extent_buffer *eb_context = NULL; 4237 struct extent_page_data epd = { 4238 .bio = NULL, 4239 .extent_locked = 0, 4240 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4241 }; 4242 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4243 int ret = 0; 4244 int done = 0; 4245 int nr_to_write_done = 0; 4246 struct pagevec pvec; 4247 int nr_pages; 4248 pgoff_t index; 4249 pgoff_t end; /* Inclusive */ 4250 int scanned = 0; 4251 xa_mark_t tag; 4252 4253 pagevec_init(&pvec); 4254 if (wbc->range_cyclic) { 4255 index = mapping->writeback_index; /* Start from prev offset */ 4256 end = -1; 4257 /* 4258 * Start from the beginning does not need to cycle over the 4259 * range, mark it as scanned. 4260 */ 4261 scanned = (index == 0); 4262 } else { 4263 index = wbc->range_start >> PAGE_SHIFT; 4264 end = wbc->range_end >> PAGE_SHIFT; 4265 scanned = 1; 4266 } 4267 if (wbc->sync_mode == WB_SYNC_ALL) 4268 tag = PAGECACHE_TAG_TOWRITE; 4269 else 4270 tag = PAGECACHE_TAG_DIRTY; 4271 btrfs_zoned_meta_io_lock(fs_info); 4272 retry: 4273 if (wbc->sync_mode == WB_SYNC_ALL) 4274 tag_pages_for_writeback(mapping, index, end); 4275 while (!done && !nr_to_write_done && (index <= end) && 4276 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4277 tag))) { 4278 unsigned i; 4279 4280 for (i = 0; i < nr_pages; i++) { 4281 struct page *page = pvec.pages[i]; 4282 4283 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4284 if (ret == 0) 4285 continue; 4286 if (ret < 0) { 4287 done = 1; 4288 break; 4289 } 4290 4291 /* 4292 * the filesystem may choose to bump up nr_to_write. 4293 * We have to make sure to honor the new nr_to_write 4294 * at any time 4295 */ 4296 nr_to_write_done = wbc->nr_to_write <= 0; 4297 } 4298 pagevec_release(&pvec); 4299 cond_resched(); 4300 } 4301 if (!scanned && !done) { 4302 /* 4303 * We hit the last page and there is more work to be done: wrap 4304 * back to the start of the file 4305 */ 4306 scanned = 1; 4307 index = 0; 4308 goto retry; 4309 } 4310 if (ret < 0) { 4311 end_write_bio(&epd, ret); 4312 goto out; 4313 } 4314 /* 4315 * If something went wrong, don't allow any metadata write bio to be 4316 * submitted. 4317 * 4318 * This would prevent use-after-free if we had dirty pages not 4319 * cleaned up, which can still happen by fuzzed images. 4320 * 4321 * - Bad extent tree 4322 * Allowing existing tree block to be allocated for other trees. 4323 * 4324 * - Log tree operations 4325 * Exiting tree blocks get allocated to log tree, bumps its 4326 * generation, then get cleaned in tree re-balance. 4327 * Such tree block will not be written back, since it's clean, 4328 * thus no WRITTEN flag set. 4329 * And after log writes back, this tree block is not traced by 4330 * any dirty extent_io_tree. 4331 * 4332 * - Offending tree block gets re-dirtied from its original owner 4333 * Since it has bumped generation, no WRITTEN flag, it can be 4334 * reused without COWing. This tree block will not be traced 4335 * by btrfs_transaction::dirty_pages. 4336 * 4337 * Now such dirty tree block will not be cleaned by any dirty 4338 * extent io tree. Thus we don't want to submit such wild eb 4339 * if the fs already has error. 4340 */ 4341 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4342 ret = flush_write_bio(&epd); 4343 } else { 4344 ret = -EROFS; 4345 end_write_bio(&epd, ret); 4346 } 4347 out: 4348 btrfs_zoned_meta_io_unlock(fs_info); 4349 return ret; 4350 } 4351 4352 /** 4353 * Walk the list of dirty pages of the given address space and write all of them. 4354 * 4355 * @mapping: address space structure to write 4356 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4357 * @epd: holds context for the write, namely the bio 4358 * 4359 * If a page is already under I/O, write_cache_pages() skips it, even 4360 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4361 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4362 * and msync() need to guarantee that all the data which was dirty at the time 4363 * the call was made get new I/O started against them. If wbc->sync_mode is 4364 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4365 * existing IO to complete. 4366 */ 4367 static int extent_write_cache_pages(struct address_space *mapping, 4368 struct writeback_control *wbc, 4369 struct extent_page_data *epd) 4370 { 4371 struct inode *inode = mapping->host; 4372 int ret = 0; 4373 int done = 0; 4374 int nr_to_write_done = 0; 4375 struct pagevec pvec; 4376 int nr_pages; 4377 pgoff_t index; 4378 pgoff_t end; /* Inclusive */ 4379 pgoff_t done_index; 4380 int range_whole = 0; 4381 int scanned = 0; 4382 xa_mark_t tag; 4383 4384 /* 4385 * We have to hold onto the inode so that ordered extents can do their 4386 * work when the IO finishes. The alternative to this is failing to add 4387 * an ordered extent if the igrab() fails there and that is a huge pain 4388 * to deal with, so instead just hold onto the inode throughout the 4389 * writepages operation. If it fails here we are freeing up the inode 4390 * anyway and we'd rather not waste our time writing out stuff that is 4391 * going to be truncated anyway. 4392 */ 4393 if (!igrab(inode)) 4394 return 0; 4395 4396 pagevec_init(&pvec); 4397 if (wbc->range_cyclic) { 4398 index = mapping->writeback_index; /* Start from prev offset */ 4399 end = -1; 4400 /* 4401 * Start from the beginning does not need to cycle over the 4402 * range, mark it as scanned. 4403 */ 4404 scanned = (index == 0); 4405 } else { 4406 index = wbc->range_start >> PAGE_SHIFT; 4407 end = wbc->range_end >> PAGE_SHIFT; 4408 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4409 range_whole = 1; 4410 scanned = 1; 4411 } 4412 4413 /* 4414 * We do the tagged writepage as long as the snapshot flush bit is set 4415 * and we are the first one who do the filemap_flush() on this inode. 4416 * 4417 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4418 * not race in and drop the bit. 4419 */ 4420 if (range_whole && wbc->nr_to_write == LONG_MAX && 4421 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4422 &BTRFS_I(inode)->runtime_flags)) 4423 wbc->tagged_writepages = 1; 4424 4425 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4426 tag = PAGECACHE_TAG_TOWRITE; 4427 else 4428 tag = PAGECACHE_TAG_DIRTY; 4429 retry: 4430 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4431 tag_pages_for_writeback(mapping, index, end); 4432 done_index = index; 4433 while (!done && !nr_to_write_done && (index <= end) && 4434 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4435 &index, end, tag))) { 4436 unsigned i; 4437 4438 for (i = 0; i < nr_pages; i++) { 4439 struct page *page = pvec.pages[i]; 4440 4441 done_index = page->index + 1; 4442 /* 4443 * At this point we hold neither the i_pages lock nor 4444 * the page lock: the page may be truncated or 4445 * invalidated (changing page->mapping to NULL), 4446 * or even swizzled back from swapper_space to 4447 * tmpfs file mapping 4448 */ 4449 if (!trylock_page(page)) { 4450 ret = flush_write_bio(epd); 4451 BUG_ON(ret < 0); 4452 lock_page(page); 4453 } 4454 4455 if (unlikely(page->mapping != mapping)) { 4456 unlock_page(page); 4457 continue; 4458 } 4459 4460 if (wbc->sync_mode != WB_SYNC_NONE) { 4461 if (PageWriteback(page)) { 4462 ret = flush_write_bio(epd); 4463 BUG_ON(ret < 0); 4464 } 4465 wait_on_page_writeback(page); 4466 } 4467 4468 if (PageWriteback(page) || 4469 !clear_page_dirty_for_io(page)) { 4470 unlock_page(page); 4471 continue; 4472 } 4473 4474 ret = __extent_writepage(page, wbc, epd); 4475 if (ret < 0) { 4476 done = 1; 4477 break; 4478 } 4479 4480 /* 4481 * the filesystem may choose to bump up nr_to_write. 4482 * We have to make sure to honor the new nr_to_write 4483 * at any time 4484 */ 4485 nr_to_write_done = wbc->nr_to_write <= 0; 4486 } 4487 pagevec_release(&pvec); 4488 cond_resched(); 4489 } 4490 if (!scanned && !done) { 4491 /* 4492 * We hit the last page and there is more work to be done: wrap 4493 * back to the start of the file 4494 */ 4495 scanned = 1; 4496 index = 0; 4497 4498 /* 4499 * If we're looping we could run into a page that is locked by a 4500 * writer and that writer could be waiting on writeback for a 4501 * page in our current bio, and thus deadlock, so flush the 4502 * write bio here. 4503 */ 4504 ret = flush_write_bio(epd); 4505 if (!ret) 4506 goto retry; 4507 } 4508 4509 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4510 mapping->writeback_index = done_index; 4511 4512 btrfs_add_delayed_iput(inode); 4513 return ret; 4514 } 4515 4516 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4517 { 4518 int ret; 4519 struct extent_page_data epd = { 4520 .bio = NULL, 4521 .extent_locked = 0, 4522 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4523 }; 4524 4525 ret = __extent_writepage(page, wbc, &epd); 4526 ASSERT(ret <= 0); 4527 if (ret < 0) { 4528 end_write_bio(&epd, ret); 4529 return ret; 4530 } 4531 4532 ret = flush_write_bio(&epd); 4533 ASSERT(ret <= 0); 4534 return ret; 4535 } 4536 4537 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4538 int mode) 4539 { 4540 int ret = 0; 4541 struct address_space *mapping = inode->i_mapping; 4542 struct page *page; 4543 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4544 PAGE_SHIFT; 4545 4546 struct extent_page_data epd = { 4547 .bio = NULL, 4548 .extent_locked = 1, 4549 .sync_io = mode == WB_SYNC_ALL, 4550 }; 4551 struct writeback_control wbc_writepages = { 4552 .sync_mode = mode, 4553 .nr_to_write = nr_pages * 2, 4554 .range_start = start, 4555 .range_end = end + 1, 4556 /* We're called from an async helper function */ 4557 .punt_to_cgroup = 1, 4558 .no_cgroup_owner = 1, 4559 }; 4560 4561 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4562 while (start <= end) { 4563 page = find_get_page(mapping, start >> PAGE_SHIFT); 4564 if (clear_page_dirty_for_io(page)) 4565 ret = __extent_writepage(page, &wbc_writepages, &epd); 4566 else { 4567 btrfs_writepage_endio_finish_ordered(page, start, 4568 start + PAGE_SIZE - 1, 1); 4569 unlock_page(page); 4570 } 4571 put_page(page); 4572 start += PAGE_SIZE; 4573 } 4574 4575 ASSERT(ret <= 0); 4576 if (ret == 0) 4577 ret = flush_write_bio(&epd); 4578 else 4579 end_write_bio(&epd, ret); 4580 4581 wbc_detach_inode(&wbc_writepages); 4582 return ret; 4583 } 4584 4585 int extent_writepages(struct address_space *mapping, 4586 struct writeback_control *wbc) 4587 { 4588 int ret = 0; 4589 struct extent_page_data epd = { 4590 .bio = NULL, 4591 .extent_locked = 0, 4592 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4593 }; 4594 4595 ret = extent_write_cache_pages(mapping, wbc, &epd); 4596 ASSERT(ret <= 0); 4597 if (ret < 0) { 4598 end_write_bio(&epd, ret); 4599 return ret; 4600 } 4601 ret = flush_write_bio(&epd); 4602 return ret; 4603 } 4604 4605 void extent_readahead(struct readahead_control *rac) 4606 { 4607 struct bio *bio = NULL; 4608 unsigned long bio_flags = 0; 4609 struct page *pagepool[16]; 4610 struct extent_map *em_cached = NULL; 4611 u64 prev_em_start = (u64)-1; 4612 int nr; 4613 4614 while ((nr = readahead_page_batch(rac, pagepool))) { 4615 u64 contig_start = page_offset(pagepool[0]); 4616 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4617 4618 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4619 4620 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4621 &em_cached, &bio, &bio_flags, &prev_em_start); 4622 } 4623 4624 if (em_cached) 4625 free_extent_map(em_cached); 4626 4627 if (bio) { 4628 if (submit_one_bio(bio, 0, bio_flags)) 4629 return; 4630 } 4631 } 4632 4633 /* 4634 * basic invalidatepage code, this waits on any locked or writeback 4635 * ranges corresponding to the page, and then deletes any extent state 4636 * records from the tree 4637 */ 4638 int extent_invalidatepage(struct extent_io_tree *tree, 4639 struct page *page, unsigned long offset) 4640 { 4641 struct extent_state *cached_state = NULL; 4642 u64 start = page_offset(page); 4643 u64 end = start + PAGE_SIZE - 1; 4644 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4645 4646 /* This function is only called for the btree inode */ 4647 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 4648 4649 start += ALIGN(offset, blocksize); 4650 if (start > end) 4651 return 0; 4652 4653 lock_extent_bits(tree, start, end, &cached_state); 4654 wait_on_page_writeback(page); 4655 4656 /* 4657 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 4658 * so here we only need to unlock the extent range to free any 4659 * existing extent state. 4660 */ 4661 unlock_extent_cached(tree, start, end, &cached_state); 4662 return 0; 4663 } 4664 4665 /* 4666 * a helper for releasepage, this tests for areas of the page that 4667 * are locked or under IO and drops the related state bits if it is safe 4668 * to drop the page. 4669 */ 4670 static int try_release_extent_state(struct extent_io_tree *tree, 4671 struct page *page, gfp_t mask) 4672 { 4673 u64 start = page_offset(page); 4674 u64 end = start + PAGE_SIZE - 1; 4675 int ret = 1; 4676 4677 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4678 ret = 0; 4679 } else { 4680 /* 4681 * At this point we can safely clear everything except the 4682 * locked bit, the nodatasum bit and the delalloc new bit. 4683 * The delalloc new bit will be cleared by ordered extent 4684 * completion. 4685 */ 4686 ret = __clear_extent_bit(tree, start, end, 4687 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 4688 0, 0, NULL, mask, NULL); 4689 4690 /* if clear_extent_bit failed for enomem reasons, 4691 * we can't allow the release to continue. 4692 */ 4693 if (ret < 0) 4694 ret = 0; 4695 else 4696 ret = 1; 4697 } 4698 return ret; 4699 } 4700 4701 /* 4702 * a helper for releasepage. As long as there are no locked extents 4703 * in the range corresponding to the page, both state records and extent 4704 * map records are removed 4705 */ 4706 int try_release_extent_mapping(struct page *page, gfp_t mask) 4707 { 4708 struct extent_map *em; 4709 u64 start = page_offset(page); 4710 u64 end = start + PAGE_SIZE - 1; 4711 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4712 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4713 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4714 4715 if (gfpflags_allow_blocking(mask) && 4716 page->mapping->host->i_size > SZ_16M) { 4717 u64 len; 4718 while (start <= end) { 4719 struct btrfs_fs_info *fs_info; 4720 u64 cur_gen; 4721 4722 len = end - start + 1; 4723 write_lock(&map->lock); 4724 em = lookup_extent_mapping(map, start, len); 4725 if (!em) { 4726 write_unlock(&map->lock); 4727 break; 4728 } 4729 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4730 em->start != start) { 4731 write_unlock(&map->lock); 4732 free_extent_map(em); 4733 break; 4734 } 4735 if (test_range_bit(tree, em->start, 4736 extent_map_end(em) - 1, 4737 EXTENT_LOCKED, 0, NULL)) 4738 goto next; 4739 /* 4740 * If it's not in the list of modified extents, used 4741 * by a fast fsync, we can remove it. If it's being 4742 * logged we can safely remove it since fsync took an 4743 * extra reference on the em. 4744 */ 4745 if (list_empty(&em->list) || 4746 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 4747 goto remove_em; 4748 /* 4749 * If it's in the list of modified extents, remove it 4750 * only if its generation is older then the current one, 4751 * in which case we don't need it for a fast fsync. 4752 * Otherwise don't remove it, we could be racing with an 4753 * ongoing fast fsync that could miss the new extent. 4754 */ 4755 fs_info = btrfs_inode->root->fs_info; 4756 spin_lock(&fs_info->trans_lock); 4757 cur_gen = fs_info->generation; 4758 spin_unlock(&fs_info->trans_lock); 4759 if (em->generation >= cur_gen) 4760 goto next; 4761 remove_em: 4762 /* 4763 * We only remove extent maps that are not in the list of 4764 * modified extents or that are in the list but with a 4765 * generation lower then the current generation, so there 4766 * is no need to set the full fsync flag on the inode (it 4767 * hurts the fsync performance for workloads with a data 4768 * size that exceeds or is close to the system's memory). 4769 */ 4770 remove_extent_mapping(map, em); 4771 /* once for the rb tree */ 4772 free_extent_map(em); 4773 next: 4774 start = extent_map_end(em); 4775 write_unlock(&map->lock); 4776 4777 /* once for us */ 4778 free_extent_map(em); 4779 4780 cond_resched(); /* Allow large-extent preemption. */ 4781 } 4782 } 4783 return try_release_extent_state(tree, page, mask); 4784 } 4785 4786 /* 4787 * helper function for fiemap, which doesn't want to see any holes. 4788 * This maps until we find something past 'last' 4789 */ 4790 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 4791 u64 offset, u64 last) 4792 { 4793 u64 sectorsize = btrfs_inode_sectorsize(inode); 4794 struct extent_map *em; 4795 u64 len; 4796 4797 if (offset >= last) 4798 return NULL; 4799 4800 while (1) { 4801 len = last - offset; 4802 if (len == 0) 4803 break; 4804 len = ALIGN(len, sectorsize); 4805 em = btrfs_get_extent_fiemap(inode, offset, len); 4806 if (IS_ERR_OR_NULL(em)) 4807 return em; 4808 4809 /* if this isn't a hole return it */ 4810 if (em->block_start != EXTENT_MAP_HOLE) 4811 return em; 4812 4813 /* this is a hole, advance to the next extent */ 4814 offset = extent_map_end(em); 4815 free_extent_map(em); 4816 if (offset >= last) 4817 break; 4818 } 4819 return NULL; 4820 } 4821 4822 /* 4823 * To cache previous fiemap extent 4824 * 4825 * Will be used for merging fiemap extent 4826 */ 4827 struct fiemap_cache { 4828 u64 offset; 4829 u64 phys; 4830 u64 len; 4831 u32 flags; 4832 bool cached; 4833 }; 4834 4835 /* 4836 * Helper to submit fiemap extent. 4837 * 4838 * Will try to merge current fiemap extent specified by @offset, @phys, 4839 * @len and @flags with cached one. 4840 * And only when we fails to merge, cached one will be submitted as 4841 * fiemap extent. 4842 * 4843 * Return value is the same as fiemap_fill_next_extent(). 4844 */ 4845 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4846 struct fiemap_cache *cache, 4847 u64 offset, u64 phys, u64 len, u32 flags) 4848 { 4849 int ret = 0; 4850 4851 if (!cache->cached) 4852 goto assign; 4853 4854 /* 4855 * Sanity check, extent_fiemap() should have ensured that new 4856 * fiemap extent won't overlap with cached one. 4857 * Not recoverable. 4858 * 4859 * NOTE: Physical address can overlap, due to compression 4860 */ 4861 if (cache->offset + cache->len > offset) { 4862 WARN_ON(1); 4863 return -EINVAL; 4864 } 4865 4866 /* 4867 * Only merges fiemap extents if 4868 * 1) Their logical addresses are continuous 4869 * 4870 * 2) Their physical addresses are continuous 4871 * So truly compressed (physical size smaller than logical size) 4872 * extents won't get merged with each other 4873 * 4874 * 3) Share same flags except FIEMAP_EXTENT_LAST 4875 * So regular extent won't get merged with prealloc extent 4876 */ 4877 if (cache->offset + cache->len == offset && 4878 cache->phys + cache->len == phys && 4879 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4880 (flags & ~FIEMAP_EXTENT_LAST)) { 4881 cache->len += len; 4882 cache->flags |= flags; 4883 goto try_submit_last; 4884 } 4885 4886 /* Not mergeable, need to submit cached one */ 4887 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4888 cache->len, cache->flags); 4889 cache->cached = false; 4890 if (ret) 4891 return ret; 4892 assign: 4893 cache->cached = true; 4894 cache->offset = offset; 4895 cache->phys = phys; 4896 cache->len = len; 4897 cache->flags = flags; 4898 try_submit_last: 4899 if (cache->flags & FIEMAP_EXTENT_LAST) { 4900 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4901 cache->phys, cache->len, cache->flags); 4902 cache->cached = false; 4903 } 4904 return ret; 4905 } 4906 4907 /* 4908 * Emit last fiemap cache 4909 * 4910 * The last fiemap cache may still be cached in the following case: 4911 * 0 4k 8k 4912 * |<- Fiemap range ->| 4913 * |<------------ First extent ----------->| 4914 * 4915 * In this case, the first extent range will be cached but not emitted. 4916 * So we must emit it before ending extent_fiemap(). 4917 */ 4918 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4919 struct fiemap_cache *cache) 4920 { 4921 int ret; 4922 4923 if (!cache->cached) 4924 return 0; 4925 4926 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4927 cache->len, cache->flags); 4928 cache->cached = false; 4929 if (ret > 0) 4930 ret = 0; 4931 return ret; 4932 } 4933 4934 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 4935 u64 start, u64 len) 4936 { 4937 int ret = 0; 4938 u64 off = start; 4939 u64 max = start + len; 4940 u32 flags = 0; 4941 u32 found_type; 4942 u64 last; 4943 u64 last_for_get_extent = 0; 4944 u64 disko = 0; 4945 u64 isize = i_size_read(&inode->vfs_inode); 4946 struct btrfs_key found_key; 4947 struct extent_map *em = NULL; 4948 struct extent_state *cached_state = NULL; 4949 struct btrfs_path *path; 4950 struct btrfs_root *root = inode->root; 4951 struct fiemap_cache cache = { 0 }; 4952 struct ulist *roots; 4953 struct ulist *tmp_ulist; 4954 int end = 0; 4955 u64 em_start = 0; 4956 u64 em_len = 0; 4957 u64 em_end = 0; 4958 4959 if (len == 0) 4960 return -EINVAL; 4961 4962 path = btrfs_alloc_path(); 4963 if (!path) 4964 return -ENOMEM; 4965 4966 roots = ulist_alloc(GFP_KERNEL); 4967 tmp_ulist = ulist_alloc(GFP_KERNEL); 4968 if (!roots || !tmp_ulist) { 4969 ret = -ENOMEM; 4970 goto out_free_ulist; 4971 } 4972 4973 start = round_down(start, btrfs_inode_sectorsize(inode)); 4974 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4975 4976 /* 4977 * lookup the last file extent. We're not using i_size here 4978 * because there might be preallocation past i_size 4979 */ 4980 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4981 0); 4982 if (ret < 0) { 4983 goto out_free_ulist; 4984 } else { 4985 WARN_ON(!ret); 4986 if (ret == 1) 4987 ret = 0; 4988 } 4989 4990 path->slots[0]--; 4991 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4992 found_type = found_key.type; 4993 4994 /* No extents, but there might be delalloc bits */ 4995 if (found_key.objectid != btrfs_ino(inode) || 4996 found_type != BTRFS_EXTENT_DATA_KEY) { 4997 /* have to trust i_size as the end */ 4998 last = (u64)-1; 4999 last_for_get_extent = isize; 5000 } else { 5001 /* 5002 * remember the start of the last extent. There are a 5003 * bunch of different factors that go into the length of the 5004 * extent, so its much less complex to remember where it started 5005 */ 5006 last = found_key.offset; 5007 last_for_get_extent = last + 1; 5008 } 5009 btrfs_release_path(path); 5010 5011 /* 5012 * we might have some extents allocated but more delalloc past those 5013 * extents. so, we trust isize unless the start of the last extent is 5014 * beyond isize 5015 */ 5016 if (last < isize) { 5017 last = (u64)-1; 5018 last_for_get_extent = isize; 5019 } 5020 5021 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5022 &cached_state); 5023 5024 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5025 if (!em) 5026 goto out; 5027 if (IS_ERR(em)) { 5028 ret = PTR_ERR(em); 5029 goto out; 5030 } 5031 5032 while (!end) { 5033 u64 offset_in_extent = 0; 5034 5035 /* break if the extent we found is outside the range */ 5036 if (em->start >= max || extent_map_end(em) < off) 5037 break; 5038 5039 /* 5040 * get_extent may return an extent that starts before our 5041 * requested range. We have to make sure the ranges 5042 * we return to fiemap always move forward and don't 5043 * overlap, so adjust the offsets here 5044 */ 5045 em_start = max(em->start, off); 5046 5047 /* 5048 * record the offset from the start of the extent 5049 * for adjusting the disk offset below. Only do this if the 5050 * extent isn't compressed since our in ram offset may be past 5051 * what we have actually allocated on disk. 5052 */ 5053 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5054 offset_in_extent = em_start - em->start; 5055 em_end = extent_map_end(em); 5056 em_len = em_end - em_start; 5057 flags = 0; 5058 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5059 disko = em->block_start + offset_in_extent; 5060 else 5061 disko = 0; 5062 5063 /* 5064 * bump off for our next call to get_extent 5065 */ 5066 off = extent_map_end(em); 5067 if (off >= max) 5068 end = 1; 5069 5070 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5071 end = 1; 5072 flags |= FIEMAP_EXTENT_LAST; 5073 } else if (em->block_start == EXTENT_MAP_INLINE) { 5074 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5075 FIEMAP_EXTENT_NOT_ALIGNED); 5076 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5077 flags |= (FIEMAP_EXTENT_DELALLOC | 5078 FIEMAP_EXTENT_UNKNOWN); 5079 } else if (fieinfo->fi_extents_max) { 5080 u64 bytenr = em->block_start - 5081 (em->start - em->orig_start); 5082 5083 /* 5084 * As btrfs supports shared space, this information 5085 * can be exported to userspace tools via 5086 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5087 * then we're just getting a count and we can skip the 5088 * lookup stuff. 5089 */ 5090 ret = btrfs_check_shared(root, btrfs_ino(inode), 5091 bytenr, roots, tmp_ulist); 5092 if (ret < 0) 5093 goto out_free; 5094 if (ret) 5095 flags |= FIEMAP_EXTENT_SHARED; 5096 ret = 0; 5097 } 5098 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5099 flags |= FIEMAP_EXTENT_ENCODED; 5100 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5101 flags |= FIEMAP_EXTENT_UNWRITTEN; 5102 5103 free_extent_map(em); 5104 em = NULL; 5105 if ((em_start >= last) || em_len == (u64)-1 || 5106 (last == (u64)-1 && isize <= em_end)) { 5107 flags |= FIEMAP_EXTENT_LAST; 5108 end = 1; 5109 } 5110 5111 /* now scan forward to see if this is really the last extent. */ 5112 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5113 if (IS_ERR(em)) { 5114 ret = PTR_ERR(em); 5115 goto out; 5116 } 5117 if (!em) { 5118 flags |= FIEMAP_EXTENT_LAST; 5119 end = 1; 5120 } 5121 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5122 em_len, flags); 5123 if (ret) { 5124 if (ret == 1) 5125 ret = 0; 5126 goto out_free; 5127 } 5128 } 5129 out_free: 5130 if (!ret) 5131 ret = emit_last_fiemap_cache(fieinfo, &cache); 5132 free_extent_map(em); 5133 out: 5134 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5135 &cached_state); 5136 5137 out_free_ulist: 5138 btrfs_free_path(path); 5139 ulist_free(roots); 5140 ulist_free(tmp_ulist); 5141 return ret; 5142 } 5143 5144 static void __free_extent_buffer(struct extent_buffer *eb) 5145 { 5146 kmem_cache_free(extent_buffer_cache, eb); 5147 } 5148 5149 int extent_buffer_under_io(const struct extent_buffer *eb) 5150 { 5151 return (atomic_read(&eb->io_pages) || 5152 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5153 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5154 } 5155 5156 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5157 { 5158 struct btrfs_subpage *subpage; 5159 5160 lockdep_assert_held(&page->mapping->private_lock); 5161 5162 if (PagePrivate(page)) { 5163 subpage = (struct btrfs_subpage *)page->private; 5164 if (atomic_read(&subpage->eb_refs)) 5165 return true; 5166 } 5167 return false; 5168 } 5169 5170 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5171 { 5172 struct btrfs_fs_info *fs_info = eb->fs_info; 5173 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5174 5175 /* 5176 * For mapped eb, we're going to change the page private, which should 5177 * be done under the private_lock. 5178 */ 5179 if (mapped) 5180 spin_lock(&page->mapping->private_lock); 5181 5182 if (!PagePrivate(page)) { 5183 if (mapped) 5184 spin_unlock(&page->mapping->private_lock); 5185 return; 5186 } 5187 5188 if (fs_info->sectorsize == PAGE_SIZE) { 5189 /* 5190 * We do this since we'll remove the pages after we've 5191 * removed the eb from the radix tree, so we could race 5192 * and have this page now attached to the new eb. So 5193 * only clear page_private if it's still connected to 5194 * this eb. 5195 */ 5196 if (PagePrivate(page) && 5197 page->private == (unsigned long)eb) { 5198 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5199 BUG_ON(PageDirty(page)); 5200 BUG_ON(PageWriteback(page)); 5201 /* 5202 * We need to make sure we haven't be attached 5203 * to a new eb. 5204 */ 5205 detach_page_private(page); 5206 } 5207 if (mapped) 5208 spin_unlock(&page->mapping->private_lock); 5209 return; 5210 } 5211 5212 /* 5213 * For subpage, we can have dummy eb with page private. In this case, 5214 * we can directly detach the private as such page is only attached to 5215 * one dummy eb, no sharing. 5216 */ 5217 if (!mapped) { 5218 btrfs_detach_subpage(fs_info, page); 5219 return; 5220 } 5221 5222 btrfs_page_dec_eb_refs(fs_info, page); 5223 5224 /* 5225 * We can only detach the page private if there are no other ebs in the 5226 * page range. 5227 */ 5228 if (!page_range_has_eb(fs_info, page)) 5229 btrfs_detach_subpage(fs_info, page); 5230 5231 spin_unlock(&page->mapping->private_lock); 5232 } 5233 5234 /* Release all pages attached to the extent buffer */ 5235 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5236 { 5237 int i; 5238 int num_pages; 5239 5240 ASSERT(!extent_buffer_under_io(eb)); 5241 5242 num_pages = num_extent_pages(eb); 5243 for (i = 0; i < num_pages; i++) { 5244 struct page *page = eb->pages[i]; 5245 5246 if (!page) 5247 continue; 5248 5249 detach_extent_buffer_page(eb, page); 5250 5251 /* One for when we allocated the page */ 5252 put_page(page); 5253 } 5254 } 5255 5256 /* 5257 * Helper for releasing the extent buffer. 5258 */ 5259 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5260 { 5261 btrfs_release_extent_buffer_pages(eb); 5262 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5263 __free_extent_buffer(eb); 5264 } 5265 5266 static struct extent_buffer * 5267 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5268 unsigned long len) 5269 { 5270 struct extent_buffer *eb = NULL; 5271 5272 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5273 eb->start = start; 5274 eb->len = len; 5275 eb->fs_info = fs_info; 5276 eb->bflags = 0; 5277 init_rwsem(&eb->lock); 5278 5279 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5280 &fs_info->allocated_ebs); 5281 INIT_LIST_HEAD(&eb->release_list); 5282 5283 spin_lock_init(&eb->refs_lock); 5284 atomic_set(&eb->refs, 1); 5285 atomic_set(&eb->io_pages, 0); 5286 5287 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5288 5289 return eb; 5290 } 5291 5292 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5293 { 5294 int i; 5295 struct page *p; 5296 struct extent_buffer *new; 5297 int num_pages = num_extent_pages(src); 5298 5299 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5300 if (new == NULL) 5301 return NULL; 5302 5303 /* 5304 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5305 * btrfs_release_extent_buffer() have different behavior for 5306 * UNMAPPED subpage extent buffer. 5307 */ 5308 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5309 5310 for (i = 0; i < num_pages; i++) { 5311 int ret; 5312 5313 p = alloc_page(GFP_NOFS); 5314 if (!p) { 5315 btrfs_release_extent_buffer(new); 5316 return NULL; 5317 } 5318 ret = attach_extent_buffer_page(new, p, NULL); 5319 if (ret < 0) { 5320 put_page(p); 5321 btrfs_release_extent_buffer(new); 5322 return NULL; 5323 } 5324 WARN_ON(PageDirty(p)); 5325 new->pages[i] = p; 5326 copy_page(page_address(p), page_address(src->pages[i])); 5327 } 5328 set_extent_buffer_uptodate(new); 5329 5330 return new; 5331 } 5332 5333 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5334 u64 start, unsigned long len) 5335 { 5336 struct extent_buffer *eb; 5337 int num_pages; 5338 int i; 5339 5340 eb = __alloc_extent_buffer(fs_info, start, len); 5341 if (!eb) 5342 return NULL; 5343 5344 num_pages = num_extent_pages(eb); 5345 for (i = 0; i < num_pages; i++) { 5346 int ret; 5347 5348 eb->pages[i] = alloc_page(GFP_NOFS); 5349 if (!eb->pages[i]) 5350 goto err; 5351 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5352 if (ret < 0) 5353 goto err; 5354 } 5355 set_extent_buffer_uptodate(eb); 5356 btrfs_set_header_nritems(eb, 0); 5357 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5358 5359 return eb; 5360 err: 5361 for (; i > 0; i--) { 5362 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5363 __free_page(eb->pages[i - 1]); 5364 } 5365 __free_extent_buffer(eb); 5366 return NULL; 5367 } 5368 5369 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5370 u64 start) 5371 { 5372 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5373 } 5374 5375 static void check_buffer_tree_ref(struct extent_buffer *eb) 5376 { 5377 int refs; 5378 /* 5379 * The TREE_REF bit is first set when the extent_buffer is added 5380 * to the radix tree. It is also reset, if unset, when a new reference 5381 * is created by find_extent_buffer. 5382 * 5383 * It is only cleared in two cases: freeing the last non-tree 5384 * reference to the extent_buffer when its STALE bit is set or 5385 * calling releasepage when the tree reference is the only reference. 5386 * 5387 * In both cases, care is taken to ensure that the extent_buffer's 5388 * pages are not under io. However, releasepage can be concurrently 5389 * called with creating new references, which is prone to race 5390 * conditions between the calls to check_buffer_tree_ref in those 5391 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5392 * 5393 * The actual lifetime of the extent_buffer in the radix tree is 5394 * adequately protected by the refcount, but the TREE_REF bit and 5395 * its corresponding reference are not. To protect against this 5396 * class of races, we call check_buffer_tree_ref from the codepaths 5397 * which trigger io after they set eb->io_pages. Note that once io is 5398 * initiated, TREE_REF can no longer be cleared, so that is the 5399 * moment at which any such race is best fixed. 5400 */ 5401 refs = atomic_read(&eb->refs); 5402 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5403 return; 5404 5405 spin_lock(&eb->refs_lock); 5406 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5407 atomic_inc(&eb->refs); 5408 spin_unlock(&eb->refs_lock); 5409 } 5410 5411 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5412 struct page *accessed) 5413 { 5414 int num_pages, i; 5415 5416 check_buffer_tree_ref(eb); 5417 5418 num_pages = num_extent_pages(eb); 5419 for (i = 0; i < num_pages; i++) { 5420 struct page *p = eb->pages[i]; 5421 5422 if (p != accessed) 5423 mark_page_accessed(p); 5424 } 5425 } 5426 5427 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5428 u64 start) 5429 { 5430 struct extent_buffer *eb; 5431 5432 rcu_read_lock(); 5433 eb = radix_tree_lookup(&fs_info->buffer_radix, 5434 start >> fs_info->sectorsize_bits); 5435 if (eb && atomic_inc_not_zero(&eb->refs)) { 5436 rcu_read_unlock(); 5437 /* 5438 * Lock our eb's refs_lock to avoid races with 5439 * free_extent_buffer. When we get our eb it might be flagged 5440 * with EXTENT_BUFFER_STALE and another task running 5441 * free_extent_buffer might have seen that flag set, 5442 * eb->refs == 2, that the buffer isn't under IO (dirty and 5443 * writeback flags not set) and it's still in the tree (flag 5444 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5445 * of decrementing the extent buffer's reference count twice. 5446 * So here we could race and increment the eb's reference count, 5447 * clear its stale flag, mark it as dirty and drop our reference 5448 * before the other task finishes executing free_extent_buffer, 5449 * which would later result in an attempt to free an extent 5450 * buffer that is dirty. 5451 */ 5452 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5453 spin_lock(&eb->refs_lock); 5454 spin_unlock(&eb->refs_lock); 5455 } 5456 mark_extent_buffer_accessed(eb, NULL); 5457 return eb; 5458 } 5459 rcu_read_unlock(); 5460 5461 return NULL; 5462 } 5463 5464 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5465 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5466 u64 start) 5467 { 5468 struct extent_buffer *eb, *exists = NULL; 5469 int ret; 5470 5471 eb = find_extent_buffer(fs_info, start); 5472 if (eb) 5473 return eb; 5474 eb = alloc_dummy_extent_buffer(fs_info, start); 5475 if (!eb) 5476 return ERR_PTR(-ENOMEM); 5477 eb->fs_info = fs_info; 5478 again: 5479 ret = radix_tree_preload(GFP_NOFS); 5480 if (ret) { 5481 exists = ERR_PTR(ret); 5482 goto free_eb; 5483 } 5484 spin_lock(&fs_info->buffer_lock); 5485 ret = radix_tree_insert(&fs_info->buffer_radix, 5486 start >> fs_info->sectorsize_bits, eb); 5487 spin_unlock(&fs_info->buffer_lock); 5488 radix_tree_preload_end(); 5489 if (ret == -EEXIST) { 5490 exists = find_extent_buffer(fs_info, start); 5491 if (exists) 5492 goto free_eb; 5493 else 5494 goto again; 5495 } 5496 check_buffer_tree_ref(eb); 5497 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5498 5499 return eb; 5500 free_eb: 5501 btrfs_release_extent_buffer(eb); 5502 return exists; 5503 } 5504 #endif 5505 5506 static struct extent_buffer *grab_extent_buffer( 5507 struct btrfs_fs_info *fs_info, struct page *page) 5508 { 5509 struct extent_buffer *exists; 5510 5511 /* 5512 * For subpage case, we completely rely on radix tree to ensure we 5513 * don't try to insert two ebs for the same bytenr. So here we always 5514 * return NULL and just continue. 5515 */ 5516 if (fs_info->sectorsize < PAGE_SIZE) 5517 return NULL; 5518 5519 /* Page not yet attached to an extent buffer */ 5520 if (!PagePrivate(page)) 5521 return NULL; 5522 5523 /* 5524 * We could have already allocated an eb for this page and attached one 5525 * so lets see if we can get a ref on the existing eb, and if we can we 5526 * know it's good and we can just return that one, else we know we can 5527 * just overwrite page->private. 5528 */ 5529 exists = (struct extent_buffer *)page->private; 5530 if (atomic_inc_not_zero(&exists->refs)) 5531 return exists; 5532 5533 WARN_ON(PageDirty(page)); 5534 detach_page_private(page); 5535 return NULL; 5536 } 5537 5538 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5539 u64 start, u64 owner_root, int level) 5540 { 5541 unsigned long len = fs_info->nodesize; 5542 int num_pages; 5543 int i; 5544 unsigned long index = start >> PAGE_SHIFT; 5545 struct extent_buffer *eb; 5546 struct extent_buffer *exists = NULL; 5547 struct page *p; 5548 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5549 int uptodate = 1; 5550 int ret; 5551 5552 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5553 btrfs_err(fs_info, "bad tree block start %llu", start); 5554 return ERR_PTR(-EINVAL); 5555 } 5556 5557 if (fs_info->sectorsize < PAGE_SIZE && 5558 offset_in_page(start) + len > PAGE_SIZE) { 5559 btrfs_err(fs_info, 5560 "tree block crosses page boundary, start %llu nodesize %lu", 5561 start, len); 5562 return ERR_PTR(-EINVAL); 5563 } 5564 5565 eb = find_extent_buffer(fs_info, start); 5566 if (eb) 5567 return eb; 5568 5569 eb = __alloc_extent_buffer(fs_info, start, len); 5570 if (!eb) 5571 return ERR_PTR(-ENOMEM); 5572 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 5573 5574 num_pages = num_extent_pages(eb); 5575 for (i = 0; i < num_pages; i++, index++) { 5576 struct btrfs_subpage *prealloc = NULL; 5577 5578 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5579 if (!p) { 5580 exists = ERR_PTR(-ENOMEM); 5581 goto free_eb; 5582 } 5583 5584 /* 5585 * Preallocate page->private for subpage case, so that we won't 5586 * allocate memory with private_lock hold. The memory will be 5587 * freed by attach_extent_buffer_page() or freed manually if 5588 * we exit earlier. 5589 * 5590 * Although we have ensured one subpage eb can only have one 5591 * page, but it may change in the future for 16K page size 5592 * support, so we still preallocate the memory in the loop. 5593 */ 5594 ret = btrfs_alloc_subpage(fs_info, &prealloc, 5595 BTRFS_SUBPAGE_METADATA); 5596 if (ret < 0) { 5597 unlock_page(p); 5598 put_page(p); 5599 exists = ERR_PTR(ret); 5600 goto free_eb; 5601 } 5602 5603 spin_lock(&mapping->private_lock); 5604 exists = grab_extent_buffer(fs_info, p); 5605 if (exists) { 5606 spin_unlock(&mapping->private_lock); 5607 unlock_page(p); 5608 put_page(p); 5609 mark_extent_buffer_accessed(exists, p); 5610 btrfs_free_subpage(prealloc); 5611 goto free_eb; 5612 } 5613 /* Should not fail, as we have preallocated the memory */ 5614 ret = attach_extent_buffer_page(eb, p, prealloc); 5615 ASSERT(!ret); 5616 /* 5617 * To inform we have extra eb under allocation, so that 5618 * detach_extent_buffer_page() won't release the page private 5619 * when the eb hasn't yet been inserted into radix tree. 5620 * 5621 * The ref will be decreased when the eb released the page, in 5622 * detach_extent_buffer_page(). 5623 * Thus needs no special handling in error path. 5624 */ 5625 btrfs_page_inc_eb_refs(fs_info, p); 5626 spin_unlock(&mapping->private_lock); 5627 5628 WARN_ON(PageDirty(p)); 5629 eb->pages[i] = p; 5630 if (!PageUptodate(p)) 5631 uptodate = 0; 5632 5633 /* 5634 * We can't unlock the pages just yet since the extent buffer 5635 * hasn't been properly inserted in the radix tree, this 5636 * opens a race with btree_releasepage which can free a page 5637 * while we are still filling in all pages for the buffer and 5638 * we could crash. 5639 */ 5640 } 5641 if (uptodate) 5642 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5643 again: 5644 ret = radix_tree_preload(GFP_NOFS); 5645 if (ret) { 5646 exists = ERR_PTR(ret); 5647 goto free_eb; 5648 } 5649 5650 spin_lock(&fs_info->buffer_lock); 5651 ret = radix_tree_insert(&fs_info->buffer_radix, 5652 start >> fs_info->sectorsize_bits, eb); 5653 spin_unlock(&fs_info->buffer_lock); 5654 radix_tree_preload_end(); 5655 if (ret == -EEXIST) { 5656 exists = find_extent_buffer(fs_info, start); 5657 if (exists) 5658 goto free_eb; 5659 else 5660 goto again; 5661 } 5662 /* add one reference for the tree */ 5663 check_buffer_tree_ref(eb); 5664 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5665 5666 /* 5667 * Now it's safe to unlock the pages because any calls to 5668 * btree_releasepage will correctly detect that a page belongs to a 5669 * live buffer and won't free them prematurely. 5670 */ 5671 for (i = 0; i < num_pages; i++) 5672 unlock_page(eb->pages[i]); 5673 return eb; 5674 5675 free_eb: 5676 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5677 for (i = 0; i < num_pages; i++) { 5678 if (eb->pages[i]) 5679 unlock_page(eb->pages[i]); 5680 } 5681 5682 btrfs_release_extent_buffer(eb); 5683 return exists; 5684 } 5685 5686 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5687 { 5688 struct extent_buffer *eb = 5689 container_of(head, struct extent_buffer, rcu_head); 5690 5691 __free_extent_buffer(eb); 5692 } 5693 5694 static int release_extent_buffer(struct extent_buffer *eb) 5695 __releases(&eb->refs_lock) 5696 { 5697 lockdep_assert_held(&eb->refs_lock); 5698 5699 WARN_ON(atomic_read(&eb->refs) == 0); 5700 if (atomic_dec_and_test(&eb->refs)) { 5701 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5702 struct btrfs_fs_info *fs_info = eb->fs_info; 5703 5704 spin_unlock(&eb->refs_lock); 5705 5706 spin_lock(&fs_info->buffer_lock); 5707 radix_tree_delete(&fs_info->buffer_radix, 5708 eb->start >> fs_info->sectorsize_bits); 5709 spin_unlock(&fs_info->buffer_lock); 5710 } else { 5711 spin_unlock(&eb->refs_lock); 5712 } 5713 5714 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5715 /* Should be safe to release our pages at this point */ 5716 btrfs_release_extent_buffer_pages(eb); 5717 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5718 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5719 __free_extent_buffer(eb); 5720 return 1; 5721 } 5722 #endif 5723 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5724 return 1; 5725 } 5726 spin_unlock(&eb->refs_lock); 5727 5728 return 0; 5729 } 5730 5731 void free_extent_buffer(struct extent_buffer *eb) 5732 { 5733 int refs; 5734 int old; 5735 if (!eb) 5736 return; 5737 5738 while (1) { 5739 refs = atomic_read(&eb->refs); 5740 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5741 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5742 refs == 1)) 5743 break; 5744 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5745 if (old == refs) 5746 return; 5747 } 5748 5749 spin_lock(&eb->refs_lock); 5750 if (atomic_read(&eb->refs) == 2 && 5751 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5752 !extent_buffer_under_io(eb) && 5753 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5754 atomic_dec(&eb->refs); 5755 5756 /* 5757 * I know this is terrible, but it's temporary until we stop tracking 5758 * the uptodate bits and such for the extent buffers. 5759 */ 5760 release_extent_buffer(eb); 5761 } 5762 5763 void free_extent_buffer_stale(struct extent_buffer *eb) 5764 { 5765 if (!eb) 5766 return; 5767 5768 spin_lock(&eb->refs_lock); 5769 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5770 5771 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5772 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5773 atomic_dec(&eb->refs); 5774 release_extent_buffer(eb); 5775 } 5776 5777 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5778 { 5779 int i; 5780 int num_pages; 5781 struct page *page; 5782 5783 num_pages = num_extent_pages(eb); 5784 5785 for (i = 0; i < num_pages; i++) { 5786 page = eb->pages[i]; 5787 if (!PageDirty(page)) 5788 continue; 5789 5790 lock_page(page); 5791 WARN_ON(!PagePrivate(page)); 5792 5793 clear_page_dirty_for_io(page); 5794 xa_lock_irq(&page->mapping->i_pages); 5795 if (!PageDirty(page)) 5796 __xa_clear_mark(&page->mapping->i_pages, 5797 page_index(page), PAGECACHE_TAG_DIRTY); 5798 xa_unlock_irq(&page->mapping->i_pages); 5799 ClearPageError(page); 5800 unlock_page(page); 5801 } 5802 WARN_ON(atomic_read(&eb->refs) == 0); 5803 } 5804 5805 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5806 { 5807 int i; 5808 int num_pages; 5809 bool was_dirty; 5810 5811 check_buffer_tree_ref(eb); 5812 5813 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5814 5815 num_pages = num_extent_pages(eb); 5816 WARN_ON(atomic_read(&eb->refs) == 0); 5817 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5818 5819 if (!was_dirty) 5820 for (i = 0; i < num_pages; i++) 5821 set_page_dirty(eb->pages[i]); 5822 5823 #ifdef CONFIG_BTRFS_DEBUG 5824 for (i = 0; i < num_pages; i++) 5825 ASSERT(PageDirty(eb->pages[i])); 5826 #endif 5827 5828 return was_dirty; 5829 } 5830 5831 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5832 { 5833 struct btrfs_fs_info *fs_info = eb->fs_info; 5834 struct page *page; 5835 int num_pages; 5836 int i; 5837 5838 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5839 num_pages = num_extent_pages(eb); 5840 for (i = 0; i < num_pages; i++) { 5841 page = eb->pages[i]; 5842 if (page) 5843 btrfs_page_clear_uptodate(fs_info, page, 5844 eb->start, eb->len); 5845 } 5846 } 5847 5848 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5849 { 5850 struct btrfs_fs_info *fs_info = eb->fs_info; 5851 struct page *page; 5852 int num_pages; 5853 int i; 5854 5855 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5856 num_pages = num_extent_pages(eb); 5857 for (i = 0; i < num_pages; i++) { 5858 page = eb->pages[i]; 5859 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 5860 } 5861 } 5862 5863 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 5864 int mirror_num) 5865 { 5866 struct btrfs_fs_info *fs_info = eb->fs_info; 5867 struct extent_io_tree *io_tree; 5868 struct page *page = eb->pages[0]; 5869 struct bio *bio = NULL; 5870 int ret = 0; 5871 5872 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 5873 ASSERT(PagePrivate(page)); 5874 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 5875 5876 if (wait == WAIT_NONE) { 5877 ret = try_lock_extent(io_tree, eb->start, 5878 eb->start + eb->len - 1); 5879 if (ret <= 0) 5880 return ret; 5881 } else { 5882 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 5883 if (ret < 0) 5884 return ret; 5885 } 5886 5887 ret = 0; 5888 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 5889 PageUptodate(page) || 5890 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 5891 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5892 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 5893 return ret; 5894 } 5895 5896 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5897 eb->read_mirror = 0; 5898 atomic_set(&eb->io_pages, 1); 5899 check_buffer_tree_ref(eb); 5900 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 5901 5902 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, page, eb->start, 5903 eb->len, eb->start - page_offset(page), &bio, 5904 end_bio_extent_readpage, mirror_num, 0, 0, 5905 true); 5906 if (ret) { 5907 /* 5908 * In the endio function, if we hit something wrong we will 5909 * increase the io_pages, so here we need to decrease it for 5910 * error path. 5911 */ 5912 atomic_dec(&eb->io_pages); 5913 } 5914 if (bio) { 5915 int tmp; 5916 5917 tmp = submit_one_bio(bio, mirror_num, 0); 5918 if (tmp < 0) 5919 return tmp; 5920 } 5921 if (ret || wait != WAIT_COMPLETE) 5922 return ret; 5923 5924 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 5925 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5926 ret = -EIO; 5927 return ret; 5928 } 5929 5930 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5931 { 5932 int i; 5933 struct page *page; 5934 int err; 5935 int ret = 0; 5936 int locked_pages = 0; 5937 int all_uptodate = 1; 5938 int num_pages; 5939 unsigned long num_reads = 0; 5940 struct bio *bio = NULL; 5941 unsigned long bio_flags = 0; 5942 5943 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5944 return 0; 5945 5946 if (eb->fs_info->sectorsize < PAGE_SIZE) 5947 return read_extent_buffer_subpage(eb, wait, mirror_num); 5948 5949 num_pages = num_extent_pages(eb); 5950 for (i = 0; i < num_pages; i++) { 5951 page = eb->pages[i]; 5952 if (wait == WAIT_NONE) { 5953 /* 5954 * WAIT_NONE is only utilized by readahead. If we can't 5955 * acquire the lock atomically it means either the eb 5956 * is being read out or under modification. 5957 * Either way the eb will be or has been cached, 5958 * readahead can exit safely. 5959 */ 5960 if (!trylock_page(page)) 5961 goto unlock_exit; 5962 } else { 5963 lock_page(page); 5964 } 5965 locked_pages++; 5966 } 5967 /* 5968 * We need to firstly lock all pages to make sure that 5969 * the uptodate bit of our pages won't be affected by 5970 * clear_extent_buffer_uptodate(). 5971 */ 5972 for (i = 0; i < num_pages; i++) { 5973 page = eb->pages[i]; 5974 if (!PageUptodate(page)) { 5975 num_reads++; 5976 all_uptodate = 0; 5977 } 5978 } 5979 5980 if (all_uptodate) { 5981 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5982 goto unlock_exit; 5983 } 5984 5985 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5986 eb->read_mirror = 0; 5987 atomic_set(&eb->io_pages, num_reads); 5988 /* 5989 * It is possible for releasepage to clear the TREE_REF bit before we 5990 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 5991 */ 5992 check_buffer_tree_ref(eb); 5993 for (i = 0; i < num_pages; i++) { 5994 page = eb->pages[i]; 5995 5996 if (!PageUptodate(page)) { 5997 if (ret) { 5998 atomic_dec(&eb->io_pages); 5999 unlock_page(page); 6000 continue; 6001 } 6002 6003 ClearPageError(page); 6004 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6005 page, page_offset(page), PAGE_SIZE, 0, 6006 &bio, end_bio_extent_readpage, 6007 mirror_num, 0, 0, false); 6008 if (err) { 6009 /* 6010 * We failed to submit the bio so it's the 6011 * caller's responsibility to perform cleanup 6012 * i.e unlock page/set error bit. 6013 */ 6014 ret = err; 6015 SetPageError(page); 6016 unlock_page(page); 6017 atomic_dec(&eb->io_pages); 6018 } 6019 } else { 6020 unlock_page(page); 6021 } 6022 } 6023 6024 if (bio) { 6025 err = submit_one_bio(bio, mirror_num, bio_flags); 6026 if (err) 6027 return err; 6028 } 6029 6030 if (ret || wait != WAIT_COMPLETE) 6031 return ret; 6032 6033 for (i = 0; i < num_pages; i++) { 6034 page = eb->pages[i]; 6035 wait_on_page_locked(page); 6036 if (!PageUptodate(page)) 6037 ret = -EIO; 6038 } 6039 6040 return ret; 6041 6042 unlock_exit: 6043 while (locked_pages > 0) { 6044 locked_pages--; 6045 page = eb->pages[locked_pages]; 6046 unlock_page(page); 6047 } 6048 return ret; 6049 } 6050 6051 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6052 unsigned long len) 6053 { 6054 btrfs_warn(eb->fs_info, 6055 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6056 eb->start, eb->len, start, len); 6057 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6058 6059 return true; 6060 } 6061 6062 /* 6063 * Check if the [start, start + len) range is valid before reading/writing 6064 * the eb. 6065 * NOTE: @start and @len are offset inside the eb, not logical address. 6066 * 6067 * Caller should not touch the dst/src memory if this function returns error. 6068 */ 6069 static inline int check_eb_range(const struct extent_buffer *eb, 6070 unsigned long start, unsigned long len) 6071 { 6072 unsigned long offset; 6073 6074 /* start, start + len should not go beyond eb->len nor overflow */ 6075 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6076 return report_eb_range(eb, start, len); 6077 6078 return false; 6079 } 6080 6081 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6082 unsigned long start, unsigned long len) 6083 { 6084 size_t cur; 6085 size_t offset; 6086 struct page *page; 6087 char *kaddr; 6088 char *dst = (char *)dstv; 6089 unsigned long i = get_eb_page_index(start); 6090 6091 if (check_eb_range(eb, start, len)) 6092 return; 6093 6094 offset = get_eb_offset_in_page(eb, start); 6095 6096 while (len > 0) { 6097 page = eb->pages[i]; 6098 6099 cur = min(len, (PAGE_SIZE - offset)); 6100 kaddr = page_address(page); 6101 memcpy(dst, kaddr + offset, cur); 6102 6103 dst += cur; 6104 len -= cur; 6105 offset = 0; 6106 i++; 6107 } 6108 } 6109 6110 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6111 void __user *dstv, 6112 unsigned long start, unsigned long len) 6113 { 6114 size_t cur; 6115 size_t offset; 6116 struct page *page; 6117 char *kaddr; 6118 char __user *dst = (char __user *)dstv; 6119 unsigned long i = get_eb_page_index(start); 6120 int ret = 0; 6121 6122 WARN_ON(start > eb->len); 6123 WARN_ON(start + len > eb->start + eb->len); 6124 6125 offset = get_eb_offset_in_page(eb, start); 6126 6127 while (len > 0) { 6128 page = eb->pages[i]; 6129 6130 cur = min(len, (PAGE_SIZE - offset)); 6131 kaddr = page_address(page); 6132 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6133 ret = -EFAULT; 6134 break; 6135 } 6136 6137 dst += cur; 6138 len -= cur; 6139 offset = 0; 6140 i++; 6141 } 6142 6143 return ret; 6144 } 6145 6146 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6147 unsigned long start, unsigned long len) 6148 { 6149 size_t cur; 6150 size_t offset; 6151 struct page *page; 6152 char *kaddr; 6153 char *ptr = (char *)ptrv; 6154 unsigned long i = get_eb_page_index(start); 6155 int ret = 0; 6156 6157 if (check_eb_range(eb, start, len)) 6158 return -EINVAL; 6159 6160 offset = get_eb_offset_in_page(eb, start); 6161 6162 while (len > 0) { 6163 page = eb->pages[i]; 6164 6165 cur = min(len, (PAGE_SIZE - offset)); 6166 6167 kaddr = page_address(page); 6168 ret = memcmp(ptr, kaddr + offset, cur); 6169 if (ret) 6170 break; 6171 6172 ptr += cur; 6173 len -= cur; 6174 offset = 0; 6175 i++; 6176 } 6177 return ret; 6178 } 6179 6180 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6181 const void *srcv) 6182 { 6183 char *kaddr; 6184 6185 WARN_ON(!PageUptodate(eb->pages[0])); 6186 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 6187 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 6188 BTRFS_FSID_SIZE); 6189 } 6190 6191 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6192 { 6193 char *kaddr; 6194 6195 WARN_ON(!PageUptodate(eb->pages[0])); 6196 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 6197 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 6198 BTRFS_FSID_SIZE); 6199 } 6200 6201 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6202 unsigned long start, unsigned long len) 6203 { 6204 size_t cur; 6205 size_t offset; 6206 struct page *page; 6207 char *kaddr; 6208 char *src = (char *)srcv; 6209 unsigned long i = get_eb_page_index(start); 6210 6211 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6212 6213 if (check_eb_range(eb, start, len)) 6214 return; 6215 6216 offset = get_eb_offset_in_page(eb, start); 6217 6218 while (len > 0) { 6219 page = eb->pages[i]; 6220 WARN_ON(!PageUptodate(page)); 6221 6222 cur = min(len, PAGE_SIZE - offset); 6223 kaddr = page_address(page); 6224 memcpy(kaddr + offset, src, cur); 6225 6226 src += cur; 6227 len -= cur; 6228 offset = 0; 6229 i++; 6230 } 6231 } 6232 6233 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6234 unsigned long len) 6235 { 6236 size_t cur; 6237 size_t offset; 6238 struct page *page; 6239 char *kaddr; 6240 unsigned long i = get_eb_page_index(start); 6241 6242 if (check_eb_range(eb, start, len)) 6243 return; 6244 6245 offset = get_eb_offset_in_page(eb, start); 6246 6247 while (len > 0) { 6248 page = eb->pages[i]; 6249 WARN_ON(!PageUptodate(page)); 6250 6251 cur = min(len, PAGE_SIZE - offset); 6252 kaddr = page_address(page); 6253 memset(kaddr + offset, 0, cur); 6254 6255 len -= cur; 6256 offset = 0; 6257 i++; 6258 } 6259 } 6260 6261 void copy_extent_buffer_full(const struct extent_buffer *dst, 6262 const struct extent_buffer *src) 6263 { 6264 int i; 6265 int num_pages; 6266 6267 ASSERT(dst->len == src->len); 6268 6269 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6270 num_pages = num_extent_pages(dst); 6271 for (i = 0; i < num_pages; i++) 6272 copy_page(page_address(dst->pages[i]), 6273 page_address(src->pages[i])); 6274 } else { 6275 size_t src_offset = get_eb_offset_in_page(src, 0); 6276 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6277 6278 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6279 memcpy(page_address(dst->pages[0]) + dst_offset, 6280 page_address(src->pages[0]) + src_offset, 6281 src->len); 6282 } 6283 } 6284 6285 void copy_extent_buffer(const struct extent_buffer *dst, 6286 const struct extent_buffer *src, 6287 unsigned long dst_offset, unsigned long src_offset, 6288 unsigned long len) 6289 { 6290 u64 dst_len = dst->len; 6291 size_t cur; 6292 size_t offset; 6293 struct page *page; 6294 char *kaddr; 6295 unsigned long i = get_eb_page_index(dst_offset); 6296 6297 if (check_eb_range(dst, dst_offset, len) || 6298 check_eb_range(src, src_offset, len)) 6299 return; 6300 6301 WARN_ON(src->len != dst_len); 6302 6303 offset = get_eb_offset_in_page(dst, dst_offset); 6304 6305 while (len > 0) { 6306 page = dst->pages[i]; 6307 WARN_ON(!PageUptodate(page)); 6308 6309 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 6310 6311 kaddr = page_address(page); 6312 read_extent_buffer(src, kaddr + offset, src_offset, cur); 6313 6314 src_offset += cur; 6315 len -= cur; 6316 offset = 0; 6317 i++; 6318 } 6319 } 6320 6321 /* 6322 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 6323 * given bit number 6324 * @eb: the extent buffer 6325 * @start: offset of the bitmap item in the extent buffer 6326 * @nr: bit number 6327 * @page_index: return index of the page in the extent buffer that contains the 6328 * given bit number 6329 * @page_offset: return offset into the page given by page_index 6330 * 6331 * This helper hides the ugliness of finding the byte in an extent buffer which 6332 * contains a given bit. 6333 */ 6334 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 6335 unsigned long start, unsigned long nr, 6336 unsigned long *page_index, 6337 size_t *page_offset) 6338 { 6339 size_t byte_offset = BIT_BYTE(nr); 6340 size_t offset; 6341 6342 /* 6343 * The byte we want is the offset of the extent buffer + the offset of 6344 * the bitmap item in the extent buffer + the offset of the byte in the 6345 * bitmap item. 6346 */ 6347 offset = start + offset_in_page(eb->start) + byte_offset; 6348 6349 *page_index = offset >> PAGE_SHIFT; 6350 *page_offset = offset_in_page(offset); 6351 } 6352 6353 /** 6354 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 6355 * @eb: the extent buffer 6356 * @start: offset of the bitmap item in the extent buffer 6357 * @nr: bit number to test 6358 */ 6359 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 6360 unsigned long nr) 6361 { 6362 u8 *kaddr; 6363 struct page *page; 6364 unsigned long i; 6365 size_t offset; 6366 6367 eb_bitmap_offset(eb, start, nr, &i, &offset); 6368 page = eb->pages[i]; 6369 WARN_ON(!PageUptodate(page)); 6370 kaddr = page_address(page); 6371 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 6372 } 6373 6374 /** 6375 * extent_buffer_bitmap_set - set an area of a bitmap 6376 * @eb: the extent buffer 6377 * @start: offset of the bitmap item in the extent buffer 6378 * @pos: bit number of the first bit 6379 * @len: number of bits to set 6380 */ 6381 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 6382 unsigned long pos, unsigned long len) 6383 { 6384 u8 *kaddr; 6385 struct page *page; 6386 unsigned long i; 6387 size_t offset; 6388 const unsigned int size = pos + len; 6389 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6390 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 6391 6392 eb_bitmap_offset(eb, start, pos, &i, &offset); 6393 page = eb->pages[i]; 6394 WARN_ON(!PageUptodate(page)); 6395 kaddr = page_address(page); 6396 6397 while (len >= bits_to_set) { 6398 kaddr[offset] |= mask_to_set; 6399 len -= bits_to_set; 6400 bits_to_set = BITS_PER_BYTE; 6401 mask_to_set = ~0; 6402 if (++offset >= PAGE_SIZE && len > 0) { 6403 offset = 0; 6404 page = eb->pages[++i]; 6405 WARN_ON(!PageUptodate(page)); 6406 kaddr = page_address(page); 6407 } 6408 } 6409 if (len) { 6410 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 6411 kaddr[offset] |= mask_to_set; 6412 } 6413 } 6414 6415 6416 /** 6417 * extent_buffer_bitmap_clear - clear an area of a bitmap 6418 * @eb: the extent buffer 6419 * @start: offset of the bitmap item in the extent buffer 6420 * @pos: bit number of the first bit 6421 * @len: number of bits to clear 6422 */ 6423 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 6424 unsigned long start, unsigned long pos, 6425 unsigned long len) 6426 { 6427 u8 *kaddr; 6428 struct page *page; 6429 unsigned long i; 6430 size_t offset; 6431 const unsigned int size = pos + len; 6432 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6433 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 6434 6435 eb_bitmap_offset(eb, start, pos, &i, &offset); 6436 page = eb->pages[i]; 6437 WARN_ON(!PageUptodate(page)); 6438 kaddr = page_address(page); 6439 6440 while (len >= bits_to_clear) { 6441 kaddr[offset] &= ~mask_to_clear; 6442 len -= bits_to_clear; 6443 bits_to_clear = BITS_PER_BYTE; 6444 mask_to_clear = ~0; 6445 if (++offset >= PAGE_SIZE && len > 0) { 6446 offset = 0; 6447 page = eb->pages[++i]; 6448 WARN_ON(!PageUptodate(page)); 6449 kaddr = page_address(page); 6450 } 6451 } 6452 if (len) { 6453 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 6454 kaddr[offset] &= ~mask_to_clear; 6455 } 6456 } 6457 6458 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 6459 { 6460 unsigned long distance = (src > dst) ? src - dst : dst - src; 6461 return distance < len; 6462 } 6463 6464 static void copy_pages(struct page *dst_page, struct page *src_page, 6465 unsigned long dst_off, unsigned long src_off, 6466 unsigned long len) 6467 { 6468 char *dst_kaddr = page_address(dst_page); 6469 char *src_kaddr; 6470 int must_memmove = 0; 6471 6472 if (dst_page != src_page) { 6473 src_kaddr = page_address(src_page); 6474 } else { 6475 src_kaddr = dst_kaddr; 6476 if (areas_overlap(src_off, dst_off, len)) 6477 must_memmove = 1; 6478 } 6479 6480 if (must_memmove) 6481 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6482 else 6483 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6484 } 6485 6486 void memcpy_extent_buffer(const struct extent_buffer *dst, 6487 unsigned long dst_offset, unsigned long src_offset, 6488 unsigned long len) 6489 { 6490 size_t cur; 6491 size_t dst_off_in_page; 6492 size_t src_off_in_page; 6493 unsigned long dst_i; 6494 unsigned long src_i; 6495 6496 if (check_eb_range(dst, dst_offset, len) || 6497 check_eb_range(dst, src_offset, len)) 6498 return; 6499 6500 while (len > 0) { 6501 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 6502 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 6503 6504 dst_i = get_eb_page_index(dst_offset); 6505 src_i = get_eb_page_index(src_offset); 6506 6507 cur = min(len, (unsigned long)(PAGE_SIZE - 6508 src_off_in_page)); 6509 cur = min_t(unsigned long, cur, 6510 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6511 6512 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6513 dst_off_in_page, src_off_in_page, cur); 6514 6515 src_offset += cur; 6516 dst_offset += cur; 6517 len -= cur; 6518 } 6519 } 6520 6521 void memmove_extent_buffer(const struct extent_buffer *dst, 6522 unsigned long dst_offset, unsigned long src_offset, 6523 unsigned long len) 6524 { 6525 size_t cur; 6526 size_t dst_off_in_page; 6527 size_t src_off_in_page; 6528 unsigned long dst_end = dst_offset + len - 1; 6529 unsigned long src_end = src_offset + len - 1; 6530 unsigned long dst_i; 6531 unsigned long src_i; 6532 6533 if (check_eb_range(dst, dst_offset, len) || 6534 check_eb_range(dst, src_offset, len)) 6535 return; 6536 if (dst_offset < src_offset) { 6537 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6538 return; 6539 } 6540 while (len > 0) { 6541 dst_i = get_eb_page_index(dst_end); 6542 src_i = get_eb_page_index(src_end); 6543 6544 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 6545 src_off_in_page = get_eb_offset_in_page(dst, src_end); 6546 6547 cur = min_t(unsigned long, len, src_off_in_page + 1); 6548 cur = min(cur, dst_off_in_page + 1); 6549 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6550 dst_off_in_page - cur + 1, 6551 src_off_in_page - cur + 1, cur); 6552 6553 dst_end -= cur; 6554 src_end -= cur; 6555 len -= cur; 6556 } 6557 } 6558 6559 static struct extent_buffer *get_next_extent_buffer( 6560 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 6561 { 6562 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE]; 6563 struct extent_buffer *found = NULL; 6564 u64 page_start = page_offset(page); 6565 int ret; 6566 int i; 6567 6568 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 6569 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE); 6570 lockdep_assert_held(&fs_info->buffer_lock); 6571 6572 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang, 6573 bytenr >> fs_info->sectorsize_bits, 6574 PAGE_SIZE / fs_info->nodesize); 6575 for (i = 0; i < ret; i++) { 6576 /* Already beyond page end */ 6577 if (gang[i]->start >= page_start + PAGE_SIZE) 6578 break; 6579 /* Found one */ 6580 if (gang[i]->start >= bytenr) { 6581 found = gang[i]; 6582 break; 6583 } 6584 } 6585 return found; 6586 } 6587 6588 static int try_release_subpage_extent_buffer(struct page *page) 6589 { 6590 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 6591 u64 cur = page_offset(page); 6592 const u64 end = page_offset(page) + PAGE_SIZE; 6593 int ret; 6594 6595 while (cur < end) { 6596 struct extent_buffer *eb = NULL; 6597 6598 /* 6599 * Unlike try_release_extent_buffer() which uses page->private 6600 * to grab buffer, for subpage case we rely on radix tree, thus 6601 * we need to ensure radix tree consistency. 6602 * 6603 * We also want an atomic snapshot of the radix tree, thus go 6604 * with spinlock rather than RCU. 6605 */ 6606 spin_lock(&fs_info->buffer_lock); 6607 eb = get_next_extent_buffer(fs_info, page, cur); 6608 if (!eb) { 6609 /* No more eb in the page range after or at cur */ 6610 spin_unlock(&fs_info->buffer_lock); 6611 break; 6612 } 6613 cur = eb->start + eb->len; 6614 6615 /* 6616 * The same as try_release_extent_buffer(), to ensure the eb 6617 * won't disappear out from under us. 6618 */ 6619 spin_lock(&eb->refs_lock); 6620 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6621 spin_unlock(&eb->refs_lock); 6622 spin_unlock(&fs_info->buffer_lock); 6623 break; 6624 } 6625 spin_unlock(&fs_info->buffer_lock); 6626 6627 /* 6628 * If tree ref isn't set then we know the ref on this eb is a 6629 * real ref, so just return, this eb will likely be freed soon 6630 * anyway. 6631 */ 6632 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6633 spin_unlock(&eb->refs_lock); 6634 break; 6635 } 6636 6637 /* 6638 * Here we don't care about the return value, we will always 6639 * check the page private at the end. And 6640 * release_extent_buffer() will release the refs_lock. 6641 */ 6642 release_extent_buffer(eb); 6643 } 6644 /* 6645 * Finally to check if we have cleared page private, as if we have 6646 * released all ebs in the page, the page private should be cleared now. 6647 */ 6648 spin_lock(&page->mapping->private_lock); 6649 if (!PagePrivate(page)) 6650 ret = 1; 6651 else 6652 ret = 0; 6653 spin_unlock(&page->mapping->private_lock); 6654 return ret; 6655 6656 } 6657 6658 int try_release_extent_buffer(struct page *page) 6659 { 6660 struct extent_buffer *eb; 6661 6662 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 6663 return try_release_subpage_extent_buffer(page); 6664 6665 /* 6666 * We need to make sure nobody is changing page->private, as we rely on 6667 * page->private as the pointer to extent buffer. 6668 */ 6669 spin_lock(&page->mapping->private_lock); 6670 if (!PagePrivate(page)) { 6671 spin_unlock(&page->mapping->private_lock); 6672 return 1; 6673 } 6674 6675 eb = (struct extent_buffer *)page->private; 6676 BUG_ON(!eb); 6677 6678 /* 6679 * This is a little awful but should be ok, we need to make sure that 6680 * the eb doesn't disappear out from under us while we're looking at 6681 * this page. 6682 */ 6683 spin_lock(&eb->refs_lock); 6684 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6685 spin_unlock(&eb->refs_lock); 6686 spin_unlock(&page->mapping->private_lock); 6687 return 0; 6688 } 6689 spin_unlock(&page->mapping->private_lock); 6690 6691 /* 6692 * If tree ref isn't set then we know the ref on this eb is a real ref, 6693 * so just return, this page will likely be freed soon anyway. 6694 */ 6695 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6696 spin_unlock(&eb->refs_lock); 6697 return 0; 6698 } 6699 6700 return release_extent_buffer(eb); 6701 } 6702 6703 /* 6704 * btrfs_readahead_tree_block - attempt to readahead a child block 6705 * @fs_info: the fs_info 6706 * @bytenr: bytenr to read 6707 * @owner_root: objectid of the root that owns this eb 6708 * @gen: generation for the uptodate check, can be 0 6709 * @level: level for the eb 6710 * 6711 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 6712 * normal uptodate check of the eb, without checking the generation. If we have 6713 * to read the block we will not block on anything. 6714 */ 6715 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 6716 u64 bytenr, u64 owner_root, u64 gen, int level) 6717 { 6718 struct extent_buffer *eb; 6719 int ret; 6720 6721 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 6722 if (IS_ERR(eb)) 6723 return; 6724 6725 if (btrfs_buffer_uptodate(eb, gen, 1)) { 6726 free_extent_buffer(eb); 6727 return; 6728 } 6729 6730 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 6731 if (ret < 0) 6732 free_extent_buffer_stale(eb); 6733 else 6734 free_extent_buffer(eb); 6735 } 6736 6737 /* 6738 * btrfs_readahead_node_child - readahead a node's child block 6739 * @node: parent node we're reading from 6740 * @slot: slot in the parent node for the child we want to read 6741 * 6742 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 6743 * the slot in the node provided. 6744 */ 6745 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 6746 { 6747 btrfs_readahead_tree_block(node->fs_info, 6748 btrfs_node_blockptr(node, slot), 6749 btrfs_header_owner(node), 6750 btrfs_node_ptr_generation(node, slot), 6751 btrfs_header_level(node) - 1); 6752 } 6753