1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 }; 107 108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 109 { 110 struct btrfs_bio *bbio = bio_ctrl->bbio; 111 112 if (!bbio) 113 return; 114 115 /* Caller should ensure the bio has at least some range added */ 116 ASSERT(bbio->bio.bi_iter.bi_size); 117 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 120 btrfs_submit_compressed_read(bbio); 121 else 122 btrfs_submit_bio(bbio, 0); 123 124 /* The bbio is owned by the end_io handler now */ 125 bio_ctrl->bbio = NULL; 126 } 127 128 /* 129 * Submit or fail the current bio in the bio_ctrl structure. 130 */ 131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 132 { 133 struct btrfs_bio *bbio = bio_ctrl->bbio; 134 135 if (!bbio) 136 return; 137 138 if (ret) { 139 ASSERT(ret < 0); 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 141 /* The bio is owned by the end_io handler now */ 142 bio_ctrl->bbio = NULL; 143 } else { 144 submit_one_bio(bio_ctrl); 145 } 146 } 147 148 int __init extent_buffer_init_cachep(void) 149 { 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 151 sizeof(struct extent_buffer), 0, 152 SLAB_MEM_SPREAD, NULL); 153 if (!extent_buffer_cache) 154 return -ENOMEM; 155 156 return 0; 157 } 158 159 void __cold extent_buffer_free_cachep(void) 160 { 161 /* 162 * Make sure all delayed rcu free are flushed before we 163 * destroy caches. 164 */ 165 rcu_barrier(); 166 kmem_cache_destroy(extent_buffer_cache); 167 } 168 169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 170 { 171 unsigned long index = start >> PAGE_SHIFT; 172 unsigned long end_index = end >> PAGE_SHIFT; 173 struct page *page; 174 175 while (index <= end_index) { 176 page = find_get_page(inode->i_mapping, index); 177 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 178 clear_page_dirty_for_io(page); 179 put_page(page); 180 index++; 181 } 182 } 183 184 static void process_one_page(struct btrfs_fs_info *fs_info, 185 struct page *page, struct page *locked_page, 186 unsigned long page_ops, u64 start, u64 end) 187 { 188 u32 len; 189 190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 191 len = end + 1 - start; 192 193 if (page_ops & PAGE_SET_ORDERED) 194 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 195 if (page_ops & PAGE_START_WRITEBACK) { 196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 197 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 198 } 199 if (page_ops & PAGE_END_WRITEBACK) 200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 201 202 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 203 btrfs_page_end_writer_lock(fs_info, page, start, len); 204 } 205 206 static void __process_pages_contig(struct address_space *mapping, 207 struct page *locked_page, u64 start, u64 end, 208 unsigned long page_ops) 209 { 210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 211 pgoff_t start_index = start >> PAGE_SHIFT; 212 pgoff_t end_index = end >> PAGE_SHIFT; 213 pgoff_t index = start_index; 214 struct folio_batch fbatch; 215 int i; 216 217 folio_batch_init(&fbatch); 218 while (index <= end_index) { 219 int found_folios; 220 221 found_folios = filemap_get_folios_contig(mapping, &index, 222 end_index, &fbatch); 223 for (i = 0; i < found_folios; i++) { 224 struct folio *folio = fbatch.folios[i]; 225 226 process_one_page(fs_info, &folio->page, locked_page, 227 page_ops, start, end); 228 } 229 folio_batch_release(&fbatch); 230 cond_resched(); 231 } 232 } 233 234 static noinline void __unlock_for_delalloc(struct inode *inode, 235 struct page *locked_page, 236 u64 start, u64 end) 237 { 238 unsigned long index = start >> PAGE_SHIFT; 239 unsigned long end_index = end >> PAGE_SHIFT; 240 241 ASSERT(locked_page); 242 if (index == locked_page->index && end_index == index) 243 return; 244 245 __process_pages_contig(inode->i_mapping, locked_page, start, end, 246 PAGE_UNLOCK); 247 } 248 249 static noinline int lock_delalloc_pages(struct inode *inode, 250 struct page *locked_page, 251 u64 start, 252 u64 end) 253 { 254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 255 struct address_space *mapping = inode->i_mapping; 256 pgoff_t start_index = start >> PAGE_SHIFT; 257 pgoff_t end_index = end >> PAGE_SHIFT; 258 pgoff_t index = start_index; 259 u64 processed_end = start; 260 struct folio_batch fbatch; 261 262 if (index == locked_page->index && index == end_index) 263 return 0; 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 unsigned int found_folios, i; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 if (found_folios == 0) 272 goto out; 273 274 for (i = 0; i < found_folios; i++) { 275 struct page *page = &fbatch.folios[i]->page; 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_page_start_writer_lock(fs_info, page, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_page_end_writer_lock(fs_info, page, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, 1, cached_state); 399 if (!ret) { 400 unlock_extent(tree, delalloc_start, delalloc_end, 401 &cached_state); 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 free_extent_state(cached_state); 408 *start = delalloc_start; 409 *end = delalloc_end; 410 out_failed: 411 return found; 412 } 413 414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 415 struct page *locked_page, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 436 437 ASSERT(page_offset(page) <= start && 438 start + len <= page_offset(page) + PAGE_SIZE); 439 440 if (uptodate && btrfs_verify_page(page, start)) 441 btrfs_page_set_uptodate(fs_info, page, start, len); 442 else 443 btrfs_page_clear_uptodate(fs_info, page, start, len); 444 445 if (!btrfs_is_subpage(fs_info, page)) 446 unlock_page(page); 447 else 448 btrfs_subpage_end_reader(fs_info, page, start, len); 449 } 450 451 /* 452 * after a writepage IO is done, we need to: 453 * clear the uptodate bits on error 454 * clear the writeback bits in the extent tree for this IO 455 * end_page_writeback if the page has no more pending IO 456 * 457 * Scheduling is not allowed, so the extent state tree is expected 458 * to have one and only one object corresponding to this IO. 459 */ 460 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 461 { 462 struct bio *bio = &bbio->bio; 463 int error = blk_status_to_errno(bio->bi_status); 464 struct bio_vec *bvec; 465 struct bvec_iter_all iter_all; 466 467 ASSERT(!bio_flagged(bio, BIO_CLONED)); 468 bio_for_each_segment_all(bvec, bio, iter_all) { 469 struct page *page = bvec->bv_page; 470 struct inode *inode = page->mapping->host; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 const u32 sectorsize = fs_info->sectorsize; 473 u64 start = page_offset(page) + bvec->bv_offset; 474 u32 len = bvec->bv_len; 475 476 /* Our read/write should always be sector aligned. */ 477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 478 btrfs_err(fs_info, 479 "partial page write in btrfs with offset %u and length %u", 480 bvec->bv_offset, bvec->bv_len); 481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 482 btrfs_info(fs_info, 483 "incomplete page write with offset %u and length %u", 484 bvec->bv_offset, bvec->bv_len); 485 486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 487 if (error) 488 mapping_set_error(page->mapping, error); 489 btrfs_page_clear_writeback(fs_info, page, start, len); 490 } 491 492 bio_put(bio); 493 } 494 495 /* 496 * Record previously processed extent range 497 * 498 * For endio_readpage_release_extent() to handle a full extent range, reducing 499 * the extent io operations. 500 */ 501 struct processed_extent { 502 struct btrfs_inode *inode; 503 /* Start of the range in @inode */ 504 u64 start; 505 /* End of the range in @inode */ 506 u64 end; 507 bool uptodate; 508 }; 509 510 /* 511 * Try to release processed extent range 512 * 513 * May not release the extent range right now if the current range is 514 * contiguous to processed extent. 515 * 516 * Will release processed extent when any of @inode, @uptodate, the range is 517 * no longer contiguous to the processed range. 518 * 519 * Passing @inode == NULL will force processed extent to be released. 520 */ 521 static void endio_readpage_release_extent(struct processed_extent *processed, 522 struct btrfs_inode *inode, u64 start, u64 end, 523 bool uptodate) 524 { 525 struct extent_state *cached = NULL; 526 struct extent_io_tree *tree; 527 528 /* The first extent, initialize @processed */ 529 if (!processed->inode) 530 goto update; 531 532 /* 533 * Contiguous to processed extent, just uptodate the end. 534 * 535 * Several things to notice: 536 * 537 * - bio can be merged as long as on-disk bytenr is contiguous 538 * This means we can have page belonging to other inodes, thus need to 539 * check if the inode still matches. 540 * - bvec can contain range beyond current page for multi-page bvec 541 * Thus we need to do processed->end + 1 >= start check 542 */ 543 if (processed->inode == inode && processed->uptodate == uptodate && 544 processed->end + 1 >= start && end >= processed->end) { 545 processed->end = end; 546 return; 547 } 548 549 tree = &processed->inode->io_tree; 550 /* 551 * Now we don't have range contiguous to the processed range, release 552 * the processed range now. 553 */ 554 unlock_extent(tree, processed->start, processed->end, &cached); 555 556 update: 557 /* Update processed to current range */ 558 processed->inode = inode; 559 processed->start = start; 560 processed->end = end; 561 processed->uptodate = uptodate; 562 } 563 564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 565 { 566 ASSERT(PageLocked(page)); 567 if (!btrfs_is_subpage(fs_info, page)) 568 return; 569 570 ASSERT(PagePrivate(page)); 571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 572 } 573 574 /* 575 * after a readpage IO is done, we need to: 576 * clear the uptodate bits on error 577 * set the uptodate bits if things worked 578 * set the page up to date if all extents in the tree are uptodate 579 * clear the lock bit in the extent tree 580 * unlock the page if there are no other extents locked for it 581 * 582 * Scheduling is not allowed, so the extent state tree is expected 583 * to have one and only one object corresponding to this IO. 584 */ 585 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 586 { 587 struct bio *bio = &bbio->bio; 588 struct bio_vec *bvec; 589 struct processed_extent processed = { 0 }; 590 /* 591 * The offset to the beginning of a bio, since one bio can never be 592 * larger than UINT_MAX, u32 here is enough. 593 */ 594 u32 bio_offset = 0; 595 struct bvec_iter_all iter_all; 596 597 ASSERT(!bio_flagged(bio, BIO_CLONED)); 598 bio_for_each_segment_all(bvec, bio, iter_all) { 599 bool uptodate = !bio->bi_status; 600 struct page *page = bvec->bv_page; 601 struct inode *inode = page->mapping->host; 602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 603 const u32 sectorsize = fs_info->sectorsize; 604 u64 start; 605 u64 end; 606 u32 len; 607 608 btrfs_debug(fs_info, 609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 610 bio->bi_iter.bi_sector, bio->bi_status, 611 bbio->mirror_num); 612 613 /* 614 * We always issue full-sector reads, but if some block in a 615 * page fails to read, blk_update_request() will advance 616 * bv_offset and adjust bv_len to compensate. Print a warning 617 * for unaligned offsets, and an error if they don't add up to 618 * a full sector. 619 */ 620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 621 btrfs_err(fs_info, 622 "partial page read in btrfs with offset %u and length %u", 623 bvec->bv_offset, bvec->bv_len); 624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 625 sectorsize)) 626 btrfs_info(fs_info, 627 "incomplete page read with offset %u and length %u", 628 bvec->bv_offset, bvec->bv_len); 629 630 start = page_offset(page) + bvec->bv_offset; 631 end = start + bvec->bv_len - 1; 632 len = bvec->bv_len; 633 634 if (likely(uptodate)) { 635 loff_t i_size = i_size_read(inode); 636 pgoff_t end_index = i_size >> PAGE_SHIFT; 637 638 /* 639 * Zero out the remaining part if this range straddles 640 * i_size. 641 * 642 * Here we should only zero the range inside the bvec, 643 * not touch anything else. 644 * 645 * NOTE: i_size is exclusive while end is inclusive. 646 */ 647 if (page->index == end_index && i_size <= end) { 648 u32 zero_start = max(offset_in_page(i_size), 649 offset_in_page(start)); 650 651 zero_user_segment(page, zero_start, 652 offset_in_page(end) + 1); 653 } 654 } 655 656 /* Update page status and unlock. */ 657 end_page_read(page, uptodate, start, len); 658 endio_readpage_release_extent(&processed, BTRFS_I(inode), 659 start, end, uptodate); 660 661 ASSERT(bio_offset + len > bio_offset); 662 bio_offset += len; 663 664 } 665 /* Release the last extent */ 666 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 667 bio_put(bio); 668 } 669 670 /* 671 * Populate every free slot in a provided array with pages. 672 * 673 * @nr_pages: number of pages to allocate 674 * @page_array: the array to fill with pages; any existing non-null entries in 675 * the array will be skipped 676 * 677 * Return: 0 if all pages were able to be allocated; 678 * -ENOMEM otherwise, the partially allocated pages would be freed and 679 * the array slots zeroed 680 */ 681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 682 { 683 unsigned int allocated; 684 685 for (allocated = 0; allocated < nr_pages;) { 686 unsigned int last = allocated; 687 688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 689 if (unlikely(allocated == last)) { 690 /* No progress, fail and do cleanup. */ 691 for (int i = 0; i < allocated; i++) { 692 __free_page(page_array[i]); 693 page_array[i] = NULL; 694 } 695 return -ENOMEM; 696 } 697 } 698 return 0; 699 } 700 701 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 702 struct page *page, u64 disk_bytenr, 703 unsigned int pg_offset) 704 { 705 struct bio *bio = &bio_ctrl->bbio->bio; 706 struct bio_vec *bvec = bio_last_bvec_all(bio); 707 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 708 709 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 710 /* 711 * For compression, all IO should have its logical bytenr set 712 * to the starting bytenr of the compressed extent. 713 */ 714 return bio->bi_iter.bi_sector == sector; 715 } 716 717 /* 718 * The contig check requires the following conditions to be met: 719 * 720 * 1) The pages are belonging to the same inode 721 * This is implied by the call chain. 722 * 723 * 2) The range has adjacent logical bytenr 724 * 725 * 3) The range has adjacent file offset 726 * This is required for the usage of btrfs_bio->file_offset. 727 */ 728 return bio_end_sector(bio) == sector && 729 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 730 page_offset(page) + pg_offset; 731 } 732 733 static void alloc_new_bio(struct btrfs_inode *inode, 734 struct btrfs_bio_ctrl *bio_ctrl, 735 u64 disk_bytenr, u64 file_offset) 736 { 737 struct btrfs_fs_info *fs_info = inode->root->fs_info; 738 struct btrfs_bio *bbio; 739 740 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 741 bio_ctrl->end_io_func, NULL); 742 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 743 bbio->inode = inode; 744 bbio->file_offset = file_offset; 745 bio_ctrl->bbio = bbio; 746 bio_ctrl->len_to_oe_boundary = U32_MAX; 747 748 /* Limit data write bios to the ordered boundary. */ 749 if (bio_ctrl->wbc) { 750 struct btrfs_ordered_extent *ordered; 751 752 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 753 if (ordered) { 754 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 755 ordered->file_offset + 756 ordered->disk_num_bytes - file_offset); 757 bbio->ordered = ordered; 758 } 759 760 /* 761 * Pick the last added device to support cgroup writeback. For 762 * multi-device file systems this means blk-cgroup policies have 763 * to always be set on the last added/replaced device. 764 * This is a bit odd but has been like that for a long time. 765 */ 766 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 767 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 768 } 769 } 770 771 /* 772 * @disk_bytenr: logical bytenr where the write will be 773 * @page: page to add to the bio 774 * @size: portion of page that we want to write to 775 * @pg_offset: offset of the new bio or to check whether we are adding 776 * a contiguous page to the previous one 777 * 778 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 779 * new one in @bio_ctrl->bbio. 780 * The mirror number for this IO should already be initizlied in 781 * @bio_ctrl->mirror_num. 782 */ 783 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 784 u64 disk_bytenr, struct page *page, 785 size_t size, unsigned long pg_offset) 786 { 787 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 788 789 ASSERT(pg_offset + size <= PAGE_SIZE); 790 ASSERT(bio_ctrl->end_io_func); 791 792 if (bio_ctrl->bbio && 793 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 794 submit_one_bio(bio_ctrl); 795 796 do { 797 u32 len = size; 798 799 /* Allocate new bio if needed */ 800 if (!bio_ctrl->bbio) { 801 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 802 page_offset(page) + pg_offset); 803 } 804 805 /* Cap to the current ordered extent boundary if there is one. */ 806 if (len > bio_ctrl->len_to_oe_boundary) { 807 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 808 ASSERT(is_data_inode(&inode->vfs_inode)); 809 len = bio_ctrl->len_to_oe_boundary; 810 } 811 812 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 813 /* bio full: move on to a new one */ 814 submit_one_bio(bio_ctrl); 815 continue; 816 } 817 818 if (bio_ctrl->wbc) 819 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 820 821 size -= len; 822 pg_offset += len; 823 disk_bytenr += len; 824 825 /* 826 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 827 * sector aligned. alloc_new_bio() then sets it to the end of 828 * our ordered extent for writes into zoned devices. 829 * 830 * When len_to_oe_boundary is tracking an ordered extent, we 831 * trust the ordered extent code to align things properly, and 832 * the check above to cap our write to the ordered extent 833 * boundary is correct. 834 * 835 * When len_to_oe_boundary is U32_MAX, the cap above would 836 * result in a 4095 byte IO for the last page right before 837 * we hit the bio limit of UINT_MAX. bio_add_page() has all 838 * the checks required to make sure we don't overflow the bio, 839 * and we should just ignore len_to_oe_boundary completely 840 * unless we're using it to track an ordered extent. 841 * 842 * It's pretty hard to make a bio sized U32_MAX, but it can 843 * happen when the page cache is able to feed us contiguous 844 * pages for large extents. 845 */ 846 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 847 bio_ctrl->len_to_oe_boundary -= len; 848 849 /* Ordered extent boundary: move on to a new bio. */ 850 if (bio_ctrl->len_to_oe_boundary == 0) 851 submit_one_bio(bio_ctrl); 852 } while (size); 853 } 854 855 static int attach_extent_buffer_page(struct extent_buffer *eb, 856 struct page *page, 857 struct btrfs_subpage *prealloc) 858 { 859 struct btrfs_fs_info *fs_info = eb->fs_info; 860 int ret = 0; 861 862 /* 863 * If the page is mapped to btree inode, we should hold the private 864 * lock to prevent race. 865 * For cloned or dummy extent buffers, their pages are not mapped and 866 * will not race with any other ebs. 867 */ 868 if (page->mapping) 869 lockdep_assert_held(&page->mapping->private_lock); 870 871 if (fs_info->nodesize >= PAGE_SIZE) { 872 if (!PagePrivate(page)) 873 attach_page_private(page, eb); 874 else 875 WARN_ON(page->private != (unsigned long)eb); 876 return 0; 877 } 878 879 /* Already mapped, just free prealloc */ 880 if (PagePrivate(page)) { 881 btrfs_free_subpage(prealloc); 882 return 0; 883 } 884 885 if (prealloc) 886 /* Has preallocated memory for subpage */ 887 attach_page_private(page, prealloc); 888 else 889 /* Do new allocation to attach subpage */ 890 ret = btrfs_attach_subpage(fs_info, page, 891 BTRFS_SUBPAGE_METADATA); 892 return ret; 893 } 894 895 int set_page_extent_mapped(struct page *page) 896 { 897 struct btrfs_fs_info *fs_info; 898 899 ASSERT(page->mapping); 900 901 if (PagePrivate(page)) 902 return 0; 903 904 fs_info = btrfs_sb(page->mapping->host->i_sb); 905 906 if (btrfs_is_subpage(fs_info, page)) 907 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 908 909 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 910 return 0; 911 } 912 913 void clear_page_extent_mapped(struct page *page) 914 { 915 struct btrfs_fs_info *fs_info; 916 917 ASSERT(page->mapping); 918 919 if (!PagePrivate(page)) 920 return; 921 922 fs_info = btrfs_sb(page->mapping->host->i_sb); 923 if (btrfs_is_subpage(fs_info, page)) 924 return btrfs_detach_subpage(fs_info, page); 925 926 detach_page_private(page); 927 } 928 929 static struct extent_map * 930 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 931 u64 start, u64 len, struct extent_map **em_cached) 932 { 933 struct extent_map *em; 934 935 if (em_cached && *em_cached) { 936 em = *em_cached; 937 if (extent_map_in_tree(em) && start >= em->start && 938 start < extent_map_end(em)) { 939 refcount_inc(&em->refs); 940 return em; 941 } 942 943 free_extent_map(em); 944 *em_cached = NULL; 945 } 946 947 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 948 if (em_cached && !IS_ERR(em)) { 949 BUG_ON(*em_cached); 950 refcount_inc(&em->refs); 951 *em_cached = em; 952 } 953 return em; 954 } 955 /* 956 * basic readpage implementation. Locked extent state structs are inserted 957 * into the tree that are removed when the IO is done (by the end_io 958 * handlers) 959 * XXX JDM: This needs looking at to ensure proper page locking 960 * return 0 on success, otherwise return error 961 */ 962 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 963 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 964 { 965 struct inode *inode = page->mapping->host; 966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 967 u64 start = page_offset(page); 968 const u64 end = start + PAGE_SIZE - 1; 969 u64 cur = start; 970 u64 extent_offset; 971 u64 last_byte = i_size_read(inode); 972 u64 block_start; 973 struct extent_map *em; 974 int ret = 0; 975 size_t pg_offset = 0; 976 size_t iosize; 977 size_t blocksize = inode->i_sb->s_blocksize; 978 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 979 980 ret = set_page_extent_mapped(page); 981 if (ret < 0) { 982 unlock_extent(tree, start, end, NULL); 983 unlock_page(page); 984 return ret; 985 } 986 987 if (page->index == last_byte >> PAGE_SHIFT) { 988 size_t zero_offset = offset_in_page(last_byte); 989 990 if (zero_offset) { 991 iosize = PAGE_SIZE - zero_offset; 992 memzero_page(page, zero_offset, iosize); 993 } 994 } 995 bio_ctrl->end_io_func = end_bio_extent_readpage; 996 begin_page_read(fs_info, page); 997 while (cur <= end) { 998 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 999 bool force_bio_submit = false; 1000 u64 disk_bytenr; 1001 1002 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1003 if (cur >= last_byte) { 1004 iosize = PAGE_SIZE - pg_offset; 1005 memzero_page(page, pg_offset, iosize); 1006 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1007 end_page_read(page, true, cur, iosize); 1008 break; 1009 } 1010 em = __get_extent_map(inode, page, pg_offset, cur, 1011 end - cur + 1, em_cached); 1012 if (IS_ERR(em)) { 1013 unlock_extent(tree, cur, end, NULL); 1014 end_page_read(page, false, cur, end + 1 - cur); 1015 return PTR_ERR(em); 1016 } 1017 extent_offset = cur - em->start; 1018 BUG_ON(extent_map_end(em) <= cur); 1019 BUG_ON(end < cur); 1020 1021 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1022 compress_type = em->compress_type; 1023 1024 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1025 iosize = ALIGN(iosize, blocksize); 1026 if (compress_type != BTRFS_COMPRESS_NONE) 1027 disk_bytenr = em->block_start; 1028 else 1029 disk_bytenr = em->block_start + extent_offset; 1030 block_start = em->block_start; 1031 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1032 block_start = EXTENT_MAP_HOLE; 1033 1034 /* 1035 * If we have a file range that points to a compressed extent 1036 * and it's followed by a consecutive file range that points 1037 * to the same compressed extent (possibly with a different 1038 * offset and/or length, so it either points to the whole extent 1039 * or only part of it), we must make sure we do not submit a 1040 * single bio to populate the pages for the 2 ranges because 1041 * this makes the compressed extent read zero out the pages 1042 * belonging to the 2nd range. Imagine the following scenario: 1043 * 1044 * File layout 1045 * [0 - 8K] [8K - 24K] 1046 * | | 1047 * | | 1048 * points to extent X, points to extent X, 1049 * offset 4K, length of 8K offset 0, length 16K 1050 * 1051 * [extent X, compressed length = 4K uncompressed length = 16K] 1052 * 1053 * If the bio to read the compressed extent covers both ranges, 1054 * it will decompress extent X into the pages belonging to the 1055 * first range and then it will stop, zeroing out the remaining 1056 * pages that belong to the other range that points to extent X. 1057 * So here we make sure we submit 2 bios, one for the first 1058 * range and another one for the third range. Both will target 1059 * the same physical extent from disk, but we can't currently 1060 * make the compressed bio endio callback populate the pages 1061 * for both ranges because each compressed bio is tightly 1062 * coupled with a single extent map, and each range can have 1063 * an extent map with a different offset value relative to the 1064 * uncompressed data of our extent and different lengths. This 1065 * is a corner case so we prioritize correctness over 1066 * non-optimal behavior (submitting 2 bios for the same extent). 1067 */ 1068 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1069 prev_em_start && *prev_em_start != (u64)-1 && 1070 *prev_em_start != em->start) 1071 force_bio_submit = true; 1072 1073 if (prev_em_start) 1074 *prev_em_start = em->start; 1075 1076 free_extent_map(em); 1077 em = NULL; 1078 1079 /* we've found a hole, just zero and go on */ 1080 if (block_start == EXTENT_MAP_HOLE) { 1081 memzero_page(page, pg_offset, iosize); 1082 1083 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1084 end_page_read(page, true, cur, iosize); 1085 cur = cur + iosize; 1086 pg_offset += iosize; 1087 continue; 1088 } 1089 /* the get_extent function already copied into the page */ 1090 if (block_start == EXTENT_MAP_INLINE) { 1091 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1092 end_page_read(page, true, cur, iosize); 1093 cur = cur + iosize; 1094 pg_offset += iosize; 1095 continue; 1096 } 1097 1098 if (bio_ctrl->compress_type != compress_type) { 1099 submit_one_bio(bio_ctrl); 1100 bio_ctrl->compress_type = compress_type; 1101 } 1102 1103 if (force_bio_submit) 1104 submit_one_bio(bio_ctrl); 1105 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1106 pg_offset); 1107 cur = cur + iosize; 1108 pg_offset += iosize; 1109 } 1110 1111 return 0; 1112 } 1113 1114 int btrfs_read_folio(struct file *file, struct folio *folio) 1115 { 1116 struct page *page = &folio->page; 1117 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1118 u64 start = page_offset(page); 1119 u64 end = start + PAGE_SIZE - 1; 1120 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1121 int ret; 1122 1123 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1124 1125 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1126 /* 1127 * If btrfs_do_readpage() failed we will want to submit the assembled 1128 * bio to do the cleanup. 1129 */ 1130 submit_one_bio(&bio_ctrl); 1131 return ret; 1132 } 1133 1134 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1135 u64 start, u64 end, 1136 struct extent_map **em_cached, 1137 struct btrfs_bio_ctrl *bio_ctrl, 1138 u64 *prev_em_start) 1139 { 1140 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1141 int index; 1142 1143 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1144 1145 for (index = 0; index < nr_pages; index++) { 1146 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1147 prev_em_start); 1148 put_page(pages[index]); 1149 } 1150 } 1151 1152 /* 1153 * helper for __extent_writepage, doing all of the delayed allocation setup. 1154 * 1155 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1156 * to write the page (copy into inline extent). In this case the IO has 1157 * been started and the page is already unlocked. 1158 * 1159 * This returns 0 if all went well (page still locked) 1160 * This returns < 0 if there were errors (page still locked) 1161 */ 1162 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1163 struct page *page, struct writeback_control *wbc) 1164 { 1165 const u64 page_start = page_offset(page); 1166 const u64 page_end = page_start + PAGE_SIZE - 1; 1167 u64 delalloc_start = page_start; 1168 u64 delalloc_end = page_end; 1169 u64 delalloc_to_write = 0; 1170 int ret = 0; 1171 1172 while (delalloc_start < page_end) { 1173 delalloc_end = page_end; 1174 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1175 &delalloc_start, &delalloc_end)) { 1176 delalloc_start = delalloc_end + 1; 1177 continue; 1178 } 1179 1180 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1181 delalloc_end, wbc); 1182 if (ret < 0) 1183 return ret; 1184 1185 delalloc_start = delalloc_end + 1; 1186 } 1187 1188 /* 1189 * delalloc_end is already one less than the total length, so 1190 * we don't subtract one from PAGE_SIZE 1191 */ 1192 delalloc_to_write += 1193 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1194 1195 /* 1196 * If btrfs_run_dealloc_range() already started I/O and unlocked 1197 * the pages, we just need to account for them here. 1198 */ 1199 if (ret == 1) { 1200 wbc->nr_to_write -= delalloc_to_write; 1201 return 1; 1202 } 1203 1204 if (wbc->nr_to_write < delalloc_to_write) { 1205 int thresh = 8192; 1206 1207 if (delalloc_to_write < thresh * 2) 1208 thresh = delalloc_to_write; 1209 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1210 thresh); 1211 } 1212 1213 return 0; 1214 } 1215 1216 /* 1217 * Find the first byte we need to write. 1218 * 1219 * For subpage, one page can contain several sectors, and 1220 * __extent_writepage_io() will just grab all extent maps in the page 1221 * range and try to submit all non-inline/non-compressed extents. 1222 * 1223 * This is a big problem for subpage, we shouldn't re-submit already written 1224 * data at all. 1225 * This function will lookup subpage dirty bit to find which range we really 1226 * need to submit. 1227 * 1228 * Return the next dirty range in [@start, @end). 1229 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1230 */ 1231 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1232 struct page *page, u64 *start, u64 *end) 1233 { 1234 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1235 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1236 u64 orig_start = *start; 1237 /* Declare as unsigned long so we can use bitmap ops */ 1238 unsigned long flags; 1239 int range_start_bit; 1240 int range_end_bit; 1241 1242 /* 1243 * For regular sector size == page size case, since one page only 1244 * contains one sector, we return the page offset directly. 1245 */ 1246 if (!btrfs_is_subpage(fs_info, page)) { 1247 *start = page_offset(page); 1248 *end = page_offset(page) + PAGE_SIZE; 1249 return; 1250 } 1251 1252 range_start_bit = spi->dirty_offset + 1253 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1254 1255 /* We should have the page locked, but just in case */ 1256 spin_lock_irqsave(&subpage->lock, flags); 1257 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1258 spi->dirty_offset + spi->bitmap_nr_bits); 1259 spin_unlock_irqrestore(&subpage->lock, flags); 1260 1261 range_start_bit -= spi->dirty_offset; 1262 range_end_bit -= spi->dirty_offset; 1263 1264 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1265 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1266 } 1267 1268 /* 1269 * helper for __extent_writepage. This calls the writepage start hooks, 1270 * and does the loop to map the page into extents and bios. 1271 * 1272 * We return 1 if the IO is started and the page is unlocked, 1273 * 0 if all went well (page still locked) 1274 * < 0 if there were errors (page still locked) 1275 */ 1276 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1277 struct page *page, 1278 struct btrfs_bio_ctrl *bio_ctrl, 1279 loff_t i_size, 1280 int *nr_ret) 1281 { 1282 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1283 u64 cur = page_offset(page); 1284 u64 end = cur + PAGE_SIZE - 1; 1285 u64 extent_offset; 1286 u64 block_start; 1287 struct extent_map *em; 1288 int ret = 0; 1289 int nr = 0; 1290 1291 ret = btrfs_writepage_cow_fixup(page); 1292 if (ret) { 1293 /* Fixup worker will requeue */ 1294 redirty_page_for_writepage(bio_ctrl->wbc, page); 1295 unlock_page(page); 1296 return 1; 1297 } 1298 1299 bio_ctrl->end_io_func = end_bio_extent_writepage; 1300 while (cur <= end) { 1301 u32 len = end - cur + 1; 1302 u64 disk_bytenr; 1303 u64 em_end; 1304 u64 dirty_range_start = cur; 1305 u64 dirty_range_end; 1306 u32 iosize; 1307 1308 if (cur >= i_size) { 1309 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1310 true); 1311 /* 1312 * This range is beyond i_size, thus we don't need to 1313 * bother writing back. 1314 * But we still need to clear the dirty subpage bit, or 1315 * the next time the page gets dirtied, we will try to 1316 * writeback the sectors with subpage dirty bits, 1317 * causing writeback without ordered extent. 1318 */ 1319 btrfs_page_clear_dirty(fs_info, page, cur, len); 1320 break; 1321 } 1322 1323 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1324 &dirty_range_end); 1325 if (cur < dirty_range_start) { 1326 cur = dirty_range_start; 1327 continue; 1328 } 1329 1330 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1331 if (IS_ERR(em)) { 1332 ret = PTR_ERR_OR_ZERO(em); 1333 goto out_error; 1334 } 1335 1336 extent_offset = cur - em->start; 1337 em_end = extent_map_end(em); 1338 ASSERT(cur <= em_end); 1339 ASSERT(cur < end); 1340 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1341 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1342 1343 block_start = em->block_start; 1344 disk_bytenr = em->block_start + extent_offset; 1345 1346 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1347 ASSERT(block_start != EXTENT_MAP_HOLE); 1348 ASSERT(block_start != EXTENT_MAP_INLINE); 1349 1350 /* 1351 * Note that em_end from extent_map_end() and dirty_range_end from 1352 * find_next_dirty_byte() are all exclusive 1353 */ 1354 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1355 free_extent_map(em); 1356 em = NULL; 1357 1358 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1359 if (!PageWriteback(page)) { 1360 btrfs_err(inode->root->fs_info, 1361 "page %lu not writeback, cur %llu end %llu", 1362 page->index, cur, end); 1363 } 1364 1365 /* 1366 * Although the PageDirty bit is cleared before entering this 1367 * function, subpage dirty bit is not cleared. 1368 * So clear subpage dirty bit here so next time we won't submit 1369 * page for range already written to disk. 1370 */ 1371 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1372 1373 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1374 cur - page_offset(page)); 1375 cur += iosize; 1376 nr++; 1377 } 1378 1379 btrfs_page_assert_not_dirty(fs_info, page); 1380 *nr_ret = nr; 1381 return 0; 1382 1383 out_error: 1384 /* 1385 * If we finish without problem, we should not only clear page dirty, 1386 * but also empty subpage dirty bits 1387 */ 1388 *nr_ret = nr; 1389 return ret; 1390 } 1391 1392 /* 1393 * the writepage semantics are similar to regular writepage. extent 1394 * records are inserted to lock ranges in the tree, and as dirty areas 1395 * are found, they are marked writeback. Then the lock bits are removed 1396 * and the end_io handler clears the writeback ranges 1397 * 1398 * Return 0 if everything goes well. 1399 * Return <0 for error. 1400 */ 1401 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1402 { 1403 struct folio *folio = page_folio(page); 1404 struct inode *inode = page->mapping->host; 1405 const u64 page_start = page_offset(page); 1406 int ret; 1407 int nr = 0; 1408 size_t pg_offset; 1409 loff_t i_size = i_size_read(inode); 1410 unsigned long end_index = i_size >> PAGE_SHIFT; 1411 1412 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1413 1414 WARN_ON(!PageLocked(page)); 1415 1416 pg_offset = offset_in_page(i_size); 1417 if (page->index > end_index || 1418 (page->index == end_index && !pg_offset)) { 1419 folio_invalidate(folio, 0, folio_size(folio)); 1420 folio_unlock(folio); 1421 return 0; 1422 } 1423 1424 if (page->index == end_index) 1425 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1426 1427 ret = set_page_extent_mapped(page); 1428 if (ret < 0) 1429 goto done; 1430 1431 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1432 if (ret == 1) 1433 return 0; 1434 if (ret) 1435 goto done; 1436 1437 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1438 if (ret == 1) 1439 return 0; 1440 1441 bio_ctrl->wbc->nr_to_write--; 1442 1443 done: 1444 if (nr == 0) { 1445 /* make sure the mapping tag for page dirty gets cleared */ 1446 set_page_writeback(page); 1447 end_page_writeback(page); 1448 } 1449 if (ret) { 1450 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1451 PAGE_SIZE, !ret); 1452 mapping_set_error(page->mapping, ret); 1453 } 1454 unlock_page(page); 1455 ASSERT(ret <= 0); 1456 return ret; 1457 } 1458 1459 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1460 { 1461 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1462 TASK_UNINTERRUPTIBLE); 1463 } 1464 1465 /* 1466 * Lock extent buffer status and pages for writeback. 1467 * 1468 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1469 * extent buffer is not dirty) 1470 * Return %true is the extent buffer is submitted to bio. 1471 */ 1472 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1473 struct writeback_control *wbc) 1474 { 1475 struct btrfs_fs_info *fs_info = eb->fs_info; 1476 bool ret = false; 1477 1478 btrfs_tree_lock(eb); 1479 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1480 btrfs_tree_unlock(eb); 1481 if (wbc->sync_mode != WB_SYNC_ALL) 1482 return false; 1483 wait_on_extent_buffer_writeback(eb); 1484 btrfs_tree_lock(eb); 1485 } 1486 1487 /* 1488 * We need to do this to prevent races in people who check if the eb is 1489 * under IO since we can end up having no IO bits set for a short period 1490 * of time. 1491 */ 1492 spin_lock(&eb->refs_lock); 1493 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1494 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1495 spin_unlock(&eb->refs_lock); 1496 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1497 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1498 -eb->len, 1499 fs_info->dirty_metadata_batch); 1500 ret = true; 1501 } else { 1502 spin_unlock(&eb->refs_lock); 1503 } 1504 btrfs_tree_unlock(eb); 1505 return ret; 1506 } 1507 1508 static void set_btree_ioerr(struct extent_buffer *eb) 1509 { 1510 struct btrfs_fs_info *fs_info = eb->fs_info; 1511 1512 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1513 1514 /* 1515 * A read may stumble upon this buffer later, make sure that it gets an 1516 * error and knows there was an error. 1517 */ 1518 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1519 1520 /* 1521 * We need to set the mapping with the io error as well because a write 1522 * error will flip the file system readonly, and then syncfs() will 1523 * return a 0 because we are readonly if we don't modify the err seq for 1524 * the superblock. 1525 */ 1526 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1527 1528 /* 1529 * If writeback for a btree extent that doesn't belong to a log tree 1530 * failed, increment the counter transaction->eb_write_errors. 1531 * We do this because while the transaction is running and before it's 1532 * committing (when we call filemap_fdata[write|wait]_range against 1533 * the btree inode), we might have 1534 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1535 * returns an error or an error happens during writeback, when we're 1536 * committing the transaction we wouldn't know about it, since the pages 1537 * can be no longer dirty nor marked anymore for writeback (if a 1538 * subsequent modification to the extent buffer didn't happen before the 1539 * transaction commit), which makes filemap_fdata[write|wait]_range not 1540 * able to find the pages tagged with SetPageError at transaction 1541 * commit time. So if this happens we must abort the transaction, 1542 * otherwise we commit a super block with btree roots that point to 1543 * btree nodes/leafs whose content on disk is invalid - either garbage 1544 * or the content of some node/leaf from a past generation that got 1545 * cowed or deleted and is no longer valid. 1546 * 1547 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1548 * not be enough - we need to distinguish between log tree extents vs 1549 * non-log tree extents, and the next filemap_fdatawait_range() call 1550 * will catch and clear such errors in the mapping - and that call might 1551 * be from a log sync and not from a transaction commit. Also, checking 1552 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1553 * not done and would not be reliable - the eb might have been released 1554 * from memory and reading it back again means that flag would not be 1555 * set (since it's a runtime flag, not persisted on disk). 1556 * 1557 * Using the flags below in the btree inode also makes us achieve the 1558 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1559 * writeback for all dirty pages and before filemap_fdatawait_range() 1560 * is called, the writeback for all dirty pages had already finished 1561 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1562 * filemap_fdatawait_range() would return success, as it could not know 1563 * that writeback errors happened (the pages were no longer tagged for 1564 * writeback). 1565 */ 1566 switch (eb->log_index) { 1567 case -1: 1568 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1569 break; 1570 case 0: 1571 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1572 break; 1573 case 1: 1574 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1575 break; 1576 default: 1577 BUG(); /* unexpected, logic error */ 1578 } 1579 } 1580 1581 /* 1582 * The endio specific version which won't touch any unsafe spinlock in endio 1583 * context. 1584 */ 1585 static struct extent_buffer *find_extent_buffer_nolock( 1586 struct btrfs_fs_info *fs_info, u64 start) 1587 { 1588 struct extent_buffer *eb; 1589 1590 rcu_read_lock(); 1591 eb = radix_tree_lookup(&fs_info->buffer_radix, 1592 start >> fs_info->sectorsize_bits); 1593 if (eb && atomic_inc_not_zero(&eb->refs)) { 1594 rcu_read_unlock(); 1595 return eb; 1596 } 1597 rcu_read_unlock(); 1598 return NULL; 1599 } 1600 1601 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1602 { 1603 struct extent_buffer *eb = bbio->private; 1604 struct btrfs_fs_info *fs_info = eb->fs_info; 1605 bool uptodate = !bbio->bio.bi_status; 1606 struct bvec_iter_all iter_all; 1607 struct bio_vec *bvec; 1608 u32 bio_offset = 0; 1609 1610 if (!uptodate) 1611 set_btree_ioerr(eb); 1612 1613 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1614 u64 start = eb->start + bio_offset; 1615 struct page *page = bvec->bv_page; 1616 u32 len = bvec->bv_len; 1617 1618 btrfs_page_clear_writeback(fs_info, page, start, len); 1619 bio_offset += len; 1620 } 1621 1622 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1623 smp_mb__after_atomic(); 1624 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1625 1626 bio_put(&bbio->bio); 1627 } 1628 1629 static void prepare_eb_write(struct extent_buffer *eb) 1630 { 1631 u32 nritems; 1632 unsigned long start; 1633 unsigned long end; 1634 1635 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1636 1637 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1638 nritems = btrfs_header_nritems(eb); 1639 if (btrfs_header_level(eb) > 0) { 1640 end = btrfs_node_key_ptr_offset(eb, nritems); 1641 memzero_extent_buffer(eb, end, eb->len - end); 1642 } else { 1643 /* 1644 * Leaf: 1645 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1646 */ 1647 start = btrfs_item_nr_offset(eb, nritems); 1648 end = btrfs_item_nr_offset(eb, 0); 1649 if (nritems == 0) 1650 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1651 else 1652 end += btrfs_item_offset(eb, nritems - 1); 1653 memzero_extent_buffer(eb, start, end - start); 1654 } 1655 } 1656 1657 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1658 struct writeback_control *wbc) 1659 { 1660 struct btrfs_fs_info *fs_info = eb->fs_info; 1661 struct btrfs_bio *bbio; 1662 1663 prepare_eb_write(eb); 1664 1665 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1666 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1667 eb->fs_info, extent_buffer_write_end_io, eb); 1668 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1669 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1670 wbc_init_bio(wbc, &bbio->bio); 1671 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1672 bbio->file_offset = eb->start; 1673 if (fs_info->nodesize < PAGE_SIZE) { 1674 struct page *p = eb->pages[0]; 1675 1676 lock_page(p); 1677 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1678 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1679 eb->len)) { 1680 clear_page_dirty_for_io(p); 1681 wbc->nr_to_write--; 1682 } 1683 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1684 wbc_account_cgroup_owner(wbc, p, eb->len); 1685 unlock_page(p); 1686 } else { 1687 for (int i = 0; i < num_extent_pages(eb); i++) { 1688 struct page *p = eb->pages[i]; 1689 1690 lock_page(p); 1691 clear_page_dirty_for_io(p); 1692 set_page_writeback(p); 1693 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1694 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1695 wbc->nr_to_write--; 1696 unlock_page(p); 1697 } 1698 } 1699 btrfs_submit_bio(bbio, 0); 1700 } 1701 1702 /* 1703 * Submit one subpage btree page. 1704 * 1705 * The main difference to submit_eb_page() is: 1706 * - Page locking 1707 * For subpage, we don't rely on page locking at all. 1708 * 1709 * - Flush write bio 1710 * We only flush bio if we may be unable to fit current extent buffers into 1711 * current bio. 1712 * 1713 * Return >=0 for the number of submitted extent buffers. 1714 * Return <0 for fatal error. 1715 */ 1716 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1717 { 1718 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1719 int submitted = 0; 1720 u64 page_start = page_offset(page); 1721 int bit_start = 0; 1722 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1723 1724 /* Lock and write each dirty extent buffers in the range */ 1725 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1726 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1727 struct extent_buffer *eb; 1728 unsigned long flags; 1729 u64 start; 1730 1731 /* 1732 * Take private lock to ensure the subpage won't be detached 1733 * in the meantime. 1734 */ 1735 spin_lock(&page->mapping->private_lock); 1736 if (!PagePrivate(page)) { 1737 spin_unlock(&page->mapping->private_lock); 1738 break; 1739 } 1740 spin_lock_irqsave(&subpage->lock, flags); 1741 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1742 subpage->bitmaps)) { 1743 spin_unlock_irqrestore(&subpage->lock, flags); 1744 spin_unlock(&page->mapping->private_lock); 1745 bit_start++; 1746 continue; 1747 } 1748 1749 start = page_start + bit_start * fs_info->sectorsize; 1750 bit_start += sectors_per_node; 1751 1752 /* 1753 * Here we just want to grab the eb without touching extra 1754 * spin locks, so call find_extent_buffer_nolock(). 1755 */ 1756 eb = find_extent_buffer_nolock(fs_info, start); 1757 spin_unlock_irqrestore(&subpage->lock, flags); 1758 spin_unlock(&page->mapping->private_lock); 1759 1760 /* 1761 * The eb has already reached 0 refs thus find_extent_buffer() 1762 * doesn't return it. We don't need to write back such eb 1763 * anyway. 1764 */ 1765 if (!eb) 1766 continue; 1767 1768 if (lock_extent_buffer_for_io(eb, wbc)) { 1769 write_one_eb(eb, wbc); 1770 submitted++; 1771 } 1772 free_extent_buffer(eb); 1773 } 1774 return submitted; 1775 } 1776 1777 /* 1778 * Submit all page(s) of one extent buffer. 1779 * 1780 * @page: the page of one extent buffer 1781 * @eb_context: to determine if we need to submit this page, if current page 1782 * belongs to this eb, we don't need to submit 1783 * 1784 * The caller should pass each page in their bytenr order, and here we use 1785 * @eb_context to determine if we have submitted pages of one extent buffer. 1786 * 1787 * If we have, we just skip until we hit a new page that doesn't belong to 1788 * current @eb_context. 1789 * 1790 * If not, we submit all the page(s) of the extent buffer. 1791 * 1792 * Return >0 if we have submitted the extent buffer successfully. 1793 * Return 0 if we don't need to submit the page, as it's already submitted by 1794 * previous call. 1795 * Return <0 for fatal error. 1796 */ 1797 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1798 { 1799 struct writeback_control *wbc = ctx->wbc; 1800 struct address_space *mapping = page->mapping; 1801 struct extent_buffer *eb; 1802 int ret; 1803 1804 if (!PagePrivate(page)) 1805 return 0; 1806 1807 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1808 return submit_eb_subpage(page, wbc); 1809 1810 spin_lock(&mapping->private_lock); 1811 if (!PagePrivate(page)) { 1812 spin_unlock(&mapping->private_lock); 1813 return 0; 1814 } 1815 1816 eb = (struct extent_buffer *)page->private; 1817 1818 /* 1819 * Shouldn't happen and normally this would be a BUG_ON but no point 1820 * crashing the machine for something we can survive anyway. 1821 */ 1822 if (WARN_ON(!eb)) { 1823 spin_unlock(&mapping->private_lock); 1824 return 0; 1825 } 1826 1827 if (eb == ctx->eb) { 1828 spin_unlock(&mapping->private_lock); 1829 return 0; 1830 } 1831 ret = atomic_inc_not_zero(&eb->refs); 1832 spin_unlock(&mapping->private_lock); 1833 if (!ret) 1834 return 0; 1835 1836 ctx->eb = eb; 1837 1838 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1839 if (ret) { 1840 if (ret == -EBUSY) 1841 ret = 0; 1842 free_extent_buffer(eb); 1843 return ret; 1844 } 1845 1846 if (!lock_extent_buffer_for_io(eb, wbc)) { 1847 free_extent_buffer(eb); 1848 return 0; 1849 } 1850 /* Implies write in zoned mode. */ 1851 if (ctx->zoned_bg) { 1852 /* Mark the last eb in the block group. */ 1853 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1854 ctx->zoned_bg->meta_write_pointer += eb->len; 1855 } 1856 write_one_eb(eb, wbc); 1857 free_extent_buffer(eb); 1858 return 1; 1859 } 1860 1861 int btree_write_cache_pages(struct address_space *mapping, 1862 struct writeback_control *wbc) 1863 { 1864 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1865 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1866 int ret = 0; 1867 int done = 0; 1868 int nr_to_write_done = 0; 1869 struct folio_batch fbatch; 1870 unsigned int nr_folios; 1871 pgoff_t index; 1872 pgoff_t end; /* Inclusive */ 1873 int scanned = 0; 1874 xa_mark_t tag; 1875 1876 folio_batch_init(&fbatch); 1877 if (wbc->range_cyclic) { 1878 index = mapping->writeback_index; /* Start from prev offset */ 1879 end = -1; 1880 /* 1881 * Start from the beginning does not need to cycle over the 1882 * range, mark it as scanned. 1883 */ 1884 scanned = (index == 0); 1885 } else { 1886 index = wbc->range_start >> PAGE_SHIFT; 1887 end = wbc->range_end >> PAGE_SHIFT; 1888 scanned = 1; 1889 } 1890 if (wbc->sync_mode == WB_SYNC_ALL) 1891 tag = PAGECACHE_TAG_TOWRITE; 1892 else 1893 tag = PAGECACHE_TAG_DIRTY; 1894 btrfs_zoned_meta_io_lock(fs_info); 1895 retry: 1896 if (wbc->sync_mode == WB_SYNC_ALL) 1897 tag_pages_for_writeback(mapping, index, end); 1898 while (!done && !nr_to_write_done && (index <= end) && 1899 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1900 tag, &fbatch))) { 1901 unsigned i; 1902 1903 for (i = 0; i < nr_folios; i++) { 1904 struct folio *folio = fbatch.folios[i]; 1905 1906 ret = submit_eb_page(&folio->page, &ctx); 1907 if (ret == 0) 1908 continue; 1909 if (ret < 0) { 1910 done = 1; 1911 break; 1912 } 1913 1914 /* 1915 * the filesystem may choose to bump up nr_to_write. 1916 * We have to make sure to honor the new nr_to_write 1917 * at any time 1918 */ 1919 nr_to_write_done = wbc->nr_to_write <= 0; 1920 } 1921 folio_batch_release(&fbatch); 1922 cond_resched(); 1923 } 1924 if (!scanned && !done) { 1925 /* 1926 * We hit the last page and there is more work to be done: wrap 1927 * back to the start of the file 1928 */ 1929 scanned = 1; 1930 index = 0; 1931 goto retry; 1932 } 1933 /* 1934 * If something went wrong, don't allow any metadata write bio to be 1935 * submitted. 1936 * 1937 * This would prevent use-after-free if we had dirty pages not 1938 * cleaned up, which can still happen by fuzzed images. 1939 * 1940 * - Bad extent tree 1941 * Allowing existing tree block to be allocated for other trees. 1942 * 1943 * - Log tree operations 1944 * Exiting tree blocks get allocated to log tree, bumps its 1945 * generation, then get cleaned in tree re-balance. 1946 * Such tree block will not be written back, since it's clean, 1947 * thus no WRITTEN flag set. 1948 * And after log writes back, this tree block is not traced by 1949 * any dirty extent_io_tree. 1950 * 1951 * - Offending tree block gets re-dirtied from its original owner 1952 * Since it has bumped generation, no WRITTEN flag, it can be 1953 * reused without COWing. This tree block will not be traced 1954 * by btrfs_transaction::dirty_pages. 1955 * 1956 * Now such dirty tree block will not be cleaned by any dirty 1957 * extent io tree. Thus we don't want to submit such wild eb 1958 * if the fs already has error. 1959 * 1960 * We can get ret > 0 from submit_extent_page() indicating how many ebs 1961 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1962 */ 1963 if (ret > 0) 1964 ret = 0; 1965 if (!ret && BTRFS_FS_ERROR(fs_info)) 1966 ret = -EROFS; 1967 1968 if (ctx.zoned_bg) 1969 btrfs_put_block_group(ctx.zoned_bg); 1970 btrfs_zoned_meta_io_unlock(fs_info); 1971 return ret; 1972 } 1973 1974 /* 1975 * Walk the list of dirty pages of the given address space and write all of them. 1976 * 1977 * @mapping: address space structure to write 1978 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1979 * @bio_ctrl: holds context for the write, namely the bio 1980 * 1981 * If a page is already under I/O, write_cache_pages() skips it, even 1982 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1983 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1984 * and msync() need to guarantee that all the data which was dirty at the time 1985 * the call was made get new I/O started against them. If wbc->sync_mode is 1986 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1987 * existing IO to complete. 1988 */ 1989 static int extent_write_cache_pages(struct address_space *mapping, 1990 struct btrfs_bio_ctrl *bio_ctrl) 1991 { 1992 struct writeback_control *wbc = bio_ctrl->wbc; 1993 struct inode *inode = mapping->host; 1994 int ret = 0; 1995 int done = 0; 1996 int nr_to_write_done = 0; 1997 struct folio_batch fbatch; 1998 unsigned int nr_folios; 1999 pgoff_t index; 2000 pgoff_t end; /* Inclusive */ 2001 pgoff_t done_index; 2002 int range_whole = 0; 2003 int scanned = 0; 2004 xa_mark_t tag; 2005 2006 /* 2007 * We have to hold onto the inode so that ordered extents can do their 2008 * work when the IO finishes. The alternative to this is failing to add 2009 * an ordered extent if the igrab() fails there and that is a huge pain 2010 * to deal with, so instead just hold onto the inode throughout the 2011 * writepages operation. If it fails here we are freeing up the inode 2012 * anyway and we'd rather not waste our time writing out stuff that is 2013 * going to be truncated anyway. 2014 */ 2015 if (!igrab(inode)) 2016 return 0; 2017 2018 folio_batch_init(&fbatch); 2019 if (wbc->range_cyclic) { 2020 index = mapping->writeback_index; /* Start from prev offset */ 2021 end = -1; 2022 /* 2023 * Start from the beginning does not need to cycle over the 2024 * range, mark it as scanned. 2025 */ 2026 scanned = (index == 0); 2027 } else { 2028 index = wbc->range_start >> PAGE_SHIFT; 2029 end = wbc->range_end >> PAGE_SHIFT; 2030 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2031 range_whole = 1; 2032 scanned = 1; 2033 } 2034 2035 /* 2036 * We do the tagged writepage as long as the snapshot flush bit is set 2037 * and we are the first one who do the filemap_flush() on this inode. 2038 * 2039 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2040 * not race in and drop the bit. 2041 */ 2042 if (range_whole && wbc->nr_to_write == LONG_MAX && 2043 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2044 &BTRFS_I(inode)->runtime_flags)) 2045 wbc->tagged_writepages = 1; 2046 2047 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2048 tag = PAGECACHE_TAG_TOWRITE; 2049 else 2050 tag = PAGECACHE_TAG_DIRTY; 2051 retry: 2052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2053 tag_pages_for_writeback(mapping, index, end); 2054 done_index = index; 2055 while (!done && !nr_to_write_done && (index <= end) && 2056 (nr_folios = filemap_get_folios_tag(mapping, &index, 2057 end, tag, &fbatch))) { 2058 unsigned i; 2059 2060 for (i = 0; i < nr_folios; i++) { 2061 struct folio *folio = fbatch.folios[i]; 2062 2063 done_index = folio_next_index(folio); 2064 /* 2065 * At this point we hold neither the i_pages lock nor 2066 * the page lock: the page may be truncated or 2067 * invalidated (changing page->mapping to NULL), 2068 * or even swizzled back from swapper_space to 2069 * tmpfs file mapping 2070 */ 2071 if (!folio_trylock(folio)) { 2072 submit_write_bio(bio_ctrl, 0); 2073 folio_lock(folio); 2074 } 2075 2076 if (unlikely(folio->mapping != mapping)) { 2077 folio_unlock(folio); 2078 continue; 2079 } 2080 2081 if (!folio_test_dirty(folio)) { 2082 /* Someone wrote it for us. */ 2083 folio_unlock(folio); 2084 continue; 2085 } 2086 2087 if (wbc->sync_mode != WB_SYNC_NONE) { 2088 if (folio_test_writeback(folio)) 2089 submit_write_bio(bio_ctrl, 0); 2090 folio_wait_writeback(folio); 2091 } 2092 2093 if (folio_test_writeback(folio) || 2094 !folio_clear_dirty_for_io(folio)) { 2095 folio_unlock(folio); 2096 continue; 2097 } 2098 2099 ret = __extent_writepage(&folio->page, bio_ctrl); 2100 if (ret < 0) { 2101 done = 1; 2102 break; 2103 } 2104 2105 /* 2106 * The filesystem may choose to bump up nr_to_write. 2107 * We have to make sure to honor the new nr_to_write 2108 * at any time. 2109 */ 2110 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2111 wbc->nr_to_write <= 0); 2112 } 2113 folio_batch_release(&fbatch); 2114 cond_resched(); 2115 } 2116 if (!scanned && !done) { 2117 /* 2118 * We hit the last page and there is more work to be done: wrap 2119 * back to the start of the file 2120 */ 2121 scanned = 1; 2122 index = 0; 2123 2124 /* 2125 * If we're looping we could run into a page that is locked by a 2126 * writer and that writer could be waiting on writeback for a 2127 * page in our current bio, and thus deadlock, so flush the 2128 * write bio here. 2129 */ 2130 submit_write_bio(bio_ctrl, 0); 2131 goto retry; 2132 } 2133 2134 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2135 mapping->writeback_index = done_index; 2136 2137 btrfs_add_delayed_iput(BTRFS_I(inode)); 2138 return ret; 2139 } 2140 2141 /* 2142 * Submit the pages in the range to bio for call sites which delalloc range has 2143 * already been ran (aka, ordered extent inserted) and all pages are still 2144 * locked. 2145 */ 2146 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2147 u64 start, u64 end, struct writeback_control *wbc, 2148 bool pages_dirty) 2149 { 2150 bool found_error = false; 2151 int ret = 0; 2152 struct address_space *mapping = inode->i_mapping; 2153 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2154 const u32 sectorsize = fs_info->sectorsize; 2155 loff_t i_size = i_size_read(inode); 2156 u64 cur = start; 2157 struct btrfs_bio_ctrl bio_ctrl = { 2158 .wbc = wbc, 2159 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2160 }; 2161 2162 if (wbc->no_cgroup_owner) 2163 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2164 2165 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2166 2167 while (cur <= end) { 2168 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2169 u32 cur_len = cur_end + 1 - cur; 2170 struct page *page; 2171 int nr = 0; 2172 2173 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2174 ASSERT(PageLocked(page)); 2175 if (pages_dirty && page != locked_page) 2176 ASSERT(PageDirty(page)); 2177 2178 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2179 i_size, &nr); 2180 if (ret == 1) 2181 goto next_page; 2182 2183 /* Make sure the mapping tag for page dirty gets cleared. */ 2184 if (nr == 0) { 2185 set_page_writeback(page); 2186 end_page_writeback(page); 2187 } 2188 if (ret) { 2189 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2190 cur, cur_len, !ret); 2191 mapping_set_error(page->mapping, ret); 2192 } 2193 btrfs_page_unlock_writer(fs_info, page, cur, cur_len); 2194 if (ret < 0) 2195 found_error = true; 2196 next_page: 2197 put_page(page); 2198 cur = cur_end + 1; 2199 } 2200 2201 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2202 } 2203 2204 int extent_writepages(struct address_space *mapping, 2205 struct writeback_control *wbc) 2206 { 2207 struct inode *inode = mapping->host; 2208 int ret = 0; 2209 struct btrfs_bio_ctrl bio_ctrl = { 2210 .wbc = wbc, 2211 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2212 }; 2213 2214 /* 2215 * Allow only a single thread to do the reloc work in zoned mode to 2216 * protect the write pointer updates. 2217 */ 2218 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2219 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2220 submit_write_bio(&bio_ctrl, ret); 2221 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2222 return ret; 2223 } 2224 2225 void extent_readahead(struct readahead_control *rac) 2226 { 2227 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2228 struct page *pagepool[16]; 2229 struct extent_map *em_cached = NULL; 2230 u64 prev_em_start = (u64)-1; 2231 int nr; 2232 2233 while ((nr = readahead_page_batch(rac, pagepool))) { 2234 u64 contig_start = readahead_pos(rac); 2235 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2236 2237 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2238 &em_cached, &bio_ctrl, &prev_em_start); 2239 } 2240 2241 if (em_cached) 2242 free_extent_map(em_cached); 2243 submit_one_bio(&bio_ctrl); 2244 } 2245 2246 /* 2247 * basic invalidate_folio code, this waits on any locked or writeback 2248 * ranges corresponding to the folio, and then deletes any extent state 2249 * records from the tree 2250 */ 2251 int extent_invalidate_folio(struct extent_io_tree *tree, 2252 struct folio *folio, size_t offset) 2253 { 2254 struct extent_state *cached_state = NULL; 2255 u64 start = folio_pos(folio); 2256 u64 end = start + folio_size(folio) - 1; 2257 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2258 2259 /* This function is only called for the btree inode */ 2260 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2261 2262 start += ALIGN(offset, blocksize); 2263 if (start > end) 2264 return 0; 2265 2266 lock_extent(tree, start, end, &cached_state); 2267 folio_wait_writeback(folio); 2268 2269 /* 2270 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2271 * so here we only need to unlock the extent range to free any 2272 * existing extent state. 2273 */ 2274 unlock_extent(tree, start, end, &cached_state); 2275 return 0; 2276 } 2277 2278 /* 2279 * a helper for release_folio, this tests for areas of the page that 2280 * are locked or under IO and drops the related state bits if it is safe 2281 * to drop the page. 2282 */ 2283 static int try_release_extent_state(struct extent_io_tree *tree, 2284 struct page *page, gfp_t mask) 2285 { 2286 u64 start = page_offset(page); 2287 u64 end = start + PAGE_SIZE - 1; 2288 int ret = 1; 2289 2290 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2291 ret = 0; 2292 } else { 2293 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2294 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2295 EXTENT_QGROUP_RESERVED); 2296 2297 /* 2298 * At this point we can safely clear everything except the 2299 * locked bit, the nodatasum bit and the delalloc new bit. 2300 * The delalloc new bit will be cleared by ordered extent 2301 * completion. 2302 */ 2303 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2304 2305 /* if clear_extent_bit failed for enomem reasons, 2306 * we can't allow the release to continue. 2307 */ 2308 if (ret < 0) 2309 ret = 0; 2310 else 2311 ret = 1; 2312 } 2313 return ret; 2314 } 2315 2316 /* 2317 * a helper for release_folio. As long as there are no locked extents 2318 * in the range corresponding to the page, both state records and extent 2319 * map records are removed 2320 */ 2321 int try_release_extent_mapping(struct page *page, gfp_t mask) 2322 { 2323 struct extent_map *em; 2324 u64 start = page_offset(page); 2325 u64 end = start + PAGE_SIZE - 1; 2326 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2327 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2328 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2329 2330 if (gfpflags_allow_blocking(mask) && 2331 page->mapping->host->i_size > SZ_16M) { 2332 u64 len; 2333 while (start <= end) { 2334 struct btrfs_fs_info *fs_info; 2335 u64 cur_gen; 2336 2337 len = end - start + 1; 2338 write_lock(&map->lock); 2339 em = lookup_extent_mapping(map, start, len); 2340 if (!em) { 2341 write_unlock(&map->lock); 2342 break; 2343 } 2344 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2345 em->start != start) { 2346 write_unlock(&map->lock); 2347 free_extent_map(em); 2348 break; 2349 } 2350 if (test_range_bit(tree, em->start, 2351 extent_map_end(em) - 1, 2352 EXTENT_LOCKED, 0, NULL)) 2353 goto next; 2354 /* 2355 * If it's not in the list of modified extents, used 2356 * by a fast fsync, we can remove it. If it's being 2357 * logged we can safely remove it since fsync took an 2358 * extra reference on the em. 2359 */ 2360 if (list_empty(&em->list) || 2361 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2362 goto remove_em; 2363 /* 2364 * If it's in the list of modified extents, remove it 2365 * only if its generation is older then the current one, 2366 * in which case we don't need it for a fast fsync. 2367 * Otherwise don't remove it, we could be racing with an 2368 * ongoing fast fsync that could miss the new extent. 2369 */ 2370 fs_info = btrfs_inode->root->fs_info; 2371 spin_lock(&fs_info->trans_lock); 2372 cur_gen = fs_info->generation; 2373 spin_unlock(&fs_info->trans_lock); 2374 if (em->generation >= cur_gen) 2375 goto next; 2376 remove_em: 2377 /* 2378 * We only remove extent maps that are not in the list of 2379 * modified extents or that are in the list but with a 2380 * generation lower then the current generation, so there 2381 * is no need to set the full fsync flag on the inode (it 2382 * hurts the fsync performance for workloads with a data 2383 * size that exceeds or is close to the system's memory). 2384 */ 2385 remove_extent_mapping(map, em); 2386 /* once for the rb tree */ 2387 free_extent_map(em); 2388 next: 2389 start = extent_map_end(em); 2390 write_unlock(&map->lock); 2391 2392 /* once for us */ 2393 free_extent_map(em); 2394 2395 cond_resched(); /* Allow large-extent preemption. */ 2396 } 2397 } 2398 return try_release_extent_state(tree, page, mask); 2399 } 2400 2401 struct btrfs_fiemap_entry { 2402 u64 offset; 2403 u64 phys; 2404 u64 len; 2405 u32 flags; 2406 }; 2407 2408 /* 2409 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file 2410 * range from the inode's io tree, unlock the subvolume tree search path, flush 2411 * the fiemap cache and relock the file range and research the subvolume tree. 2412 * The value here is something negative that can't be confused with a valid 2413 * errno value and different from 1 because that's also a return value from 2414 * fiemap_fill_next_extent() and also it's often used to mean some btree search 2415 * did not find a key, so make it some distinct negative value. 2416 */ 2417 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1)) 2418 2419 /* 2420 * Used to: 2421 * 2422 * - Cache the next entry to be emitted to the fiemap buffer, so that we can 2423 * merge extents that are contiguous and can be grouped as a single one; 2424 * 2425 * - Store extents ready to be written to the fiemap buffer in an intermediary 2426 * buffer. This intermediary buffer is to ensure that in case the fiemap 2427 * buffer is memory mapped to the fiemap target file, we don't deadlock 2428 * during btrfs_page_mkwrite(). This is because during fiemap we are locking 2429 * an extent range in order to prevent races with delalloc flushing and 2430 * ordered extent completion, which is needed in order to reliably detect 2431 * delalloc in holes and prealloc extents. And this can lead to a deadlock 2432 * if the fiemap buffer is memory mapped to the file we are running fiemap 2433 * against (a silly, useless in practice scenario, but possible) because 2434 * btrfs_page_mkwrite() will try to lock the same extent range. 2435 */ 2436 struct fiemap_cache { 2437 /* An array of ready fiemap entries. */ 2438 struct btrfs_fiemap_entry *entries; 2439 /* Number of entries in the entries array. */ 2440 int entries_size; 2441 /* Index of the next entry in the entries array to write to. */ 2442 int entries_pos; 2443 /* 2444 * Once the entries array is full, this indicates what's the offset for 2445 * the next file extent item we must search for in the inode's subvolume 2446 * tree after unlocking the extent range in the inode's io tree and 2447 * releasing the search path. 2448 */ 2449 u64 next_search_offset; 2450 /* 2451 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it 2452 * to count ourselves emitted extents and stop instead of relying on 2453 * fiemap_fill_next_extent() because we buffer ready fiemap entries at 2454 * the @entries array, and we want to stop as soon as we hit the max 2455 * amount of extents to map, not just to save time but also to make the 2456 * logic at extent_fiemap() simpler. 2457 */ 2458 unsigned int extents_mapped; 2459 /* Fields for the cached extent (unsubmitted, not ready, extent). */ 2460 u64 offset; 2461 u64 phys; 2462 u64 len; 2463 u32 flags; 2464 bool cached; 2465 }; 2466 2467 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo, 2468 struct fiemap_cache *cache) 2469 { 2470 for (int i = 0; i < cache->entries_pos; i++) { 2471 struct btrfs_fiemap_entry *entry = &cache->entries[i]; 2472 int ret; 2473 2474 ret = fiemap_fill_next_extent(fieinfo, entry->offset, 2475 entry->phys, entry->len, 2476 entry->flags); 2477 /* 2478 * Ignore 1 (reached max entries) because we keep track of that 2479 * ourselves in emit_fiemap_extent(). 2480 */ 2481 if (ret < 0) 2482 return ret; 2483 } 2484 cache->entries_pos = 0; 2485 2486 return 0; 2487 } 2488 2489 /* 2490 * Helper to submit fiemap extent. 2491 * 2492 * Will try to merge current fiemap extent specified by @offset, @phys, 2493 * @len and @flags with cached one. 2494 * And only when we fails to merge, cached one will be submitted as 2495 * fiemap extent. 2496 * 2497 * Return value is the same as fiemap_fill_next_extent(). 2498 */ 2499 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2500 struct fiemap_cache *cache, 2501 u64 offset, u64 phys, u64 len, u32 flags) 2502 { 2503 struct btrfs_fiemap_entry *entry; 2504 u64 cache_end; 2505 2506 /* Set at the end of extent_fiemap(). */ 2507 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2508 2509 if (!cache->cached) 2510 goto assign; 2511 2512 /* 2513 * When iterating the extents of the inode, at extent_fiemap(), we may 2514 * find an extent that starts at an offset behind the end offset of the 2515 * previous extent we processed. This happens if fiemap is called 2516 * without FIEMAP_FLAG_SYNC and there are ordered extents completing 2517 * after we had to unlock the file range, release the search path, emit 2518 * the fiemap extents stored in the buffer (cache->entries array) and 2519 * the lock the remainder of the range and re-search the btree. 2520 * 2521 * For example we are in leaf X processing its last item, which is the 2522 * file extent item for file range [512K, 1M[, and after 2523 * btrfs_next_leaf() releases the path, there's an ordered extent that 2524 * completes for the file range [768K, 2M[, and that results in trimming 2525 * the file extent item so that it now corresponds to the file range 2526 * [512K, 768K[ and a new file extent item is inserted for the file 2527 * range [768K, 2M[, which may end up as the last item of leaf X or as 2528 * the first item of the next leaf - in either case btrfs_next_leaf() 2529 * will leave us with a path pointing to the new extent item, for the 2530 * file range [768K, 2M[, since that's the first key that follows the 2531 * last one we processed. So in order not to report overlapping extents 2532 * to user space, we trim the length of the previously cached extent and 2533 * emit it. 2534 * 2535 * Upon calling btrfs_next_leaf() we may also find an extent with an 2536 * offset smaller than or equals to cache->offset, and this happens 2537 * when we had a hole or prealloc extent with several delalloc ranges in 2538 * it, but after btrfs_next_leaf() released the path, delalloc was 2539 * flushed and the resulting ordered extents were completed, so we can 2540 * now have found a file extent item for an offset that is smaller than 2541 * or equals to what we have in cache->offset. We deal with this as 2542 * described below. 2543 */ 2544 cache_end = cache->offset + cache->len; 2545 if (cache_end > offset) { 2546 if (offset == cache->offset) { 2547 /* 2548 * We cached a dealloc range (found in the io tree) for 2549 * a hole or prealloc extent and we have now found a 2550 * file extent item for the same offset. What we have 2551 * now is more recent and up to date, so discard what 2552 * we had in the cache and use what we have just found. 2553 */ 2554 goto assign; 2555 } else if (offset > cache->offset) { 2556 /* 2557 * The extent range we previously found ends after the 2558 * offset of the file extent item we found and that 2559 * offset falls somewhere in the middle of that previous 2560 * extent range. So adjust the range we previously found 2561 * to end at the offset of the file extent item we have 2562 * just found, since this extent is more up to date. 2563 * Emit that adjusted range and cache the file extent 2564 * item we have just found. This corresponds to the case 2565 * where a previously found file extent item was split 2566 * due to an ordered extent completing. 2567 */ 2568 cache->len = offset - cache->offset; 2569 goto emit; 2570 } else { 2571 const u64 range_end = offset + len; 2572 2573 /* 2574 * The offset of the file extent item we have just found 2575 * is behind the cached offset. This means we were 2576 * processing a hole or prealloc extent for which we 2577 * have found delalloc ranges (in the io tree), so what 2578 * we have in the cache is the last delalloc range we 2579 * found while the file extent item we found can be 2580 * either for a whole delalloc range we previously 2581 * emmitted or only a part of that range. 2582 * 2583 * We have two cases here: 2584 * 2585 * 1) The file extent item's range ends at or behind the 2586 * cached extent's end. In this case just ignore the 2587 * current file extent item because we don't want to 2588 * overlap with previous ranges that may have been 2589 * emmitted already; 2590 * 2591 * 2) The file extent item starts behind the currently 2592 * cached extent but its end offset goes beyond the 2593 * end offset of the cached extent. We don't want to 2594 * overlap with a previous range that may have been 2595 * emmitted already, so we emit the currently cached 2596 * extent and then partially store the current file 2597 * extent item's range in the cache, for the subrange 2598 * going the cached extent's end to the end of the 2599 * file extent item. 2600 */ 2601 if (range_end <= cache_end) 2602 return 0; 2603 2604 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC))) 2605 phys += cache_end - offset; 2606 2607 offset = cache_end; 2608 len = range_end - cache_end; 2609 goto emit; 2610 } 2611 } 2612 2613 /* 2614 * Only merges fiemap extents if 2615 * 1) Their logical addresses are continuous 2616 * 2617 * 2) Their physical addresses are continuous 2618 * So truly compressed (physical size smaller than logical size) 2619 * extents won't get merged with each other 2620 * 2621 * 3) Share same flags 2622 */ 2623 if (cache->offset + cache->len == offset && 2624 cache->phys + cache->len == phys && 2625 cache->flags == flags) { 2626 cache->len += len; 2627 return 0; 2628 } 2629 2630 emit: 2631 /* Not mergeable, need to submit cached one */ 2632 2633 if (cache->entries_pos == cache->entries_size) { 2634 /* 2635 * We will need to research for the end offset of the last 2636 * stored extent and not from the current offset, because after 2637 * unlocking the range and releasing the path, if there's a hole 2638 * between that end offset and this current offset, a new extent 2639 * may have been inserted due to a new write, so we don't want 2640 * to miss it. 2641 */ 2642 entry = &cache->entries[cache->entries_size - 1]; 2643 cache->next_search_offset = entry->offset + entry->len; 2644 cache->cached = false; 2645 2646 return BTRFS_FIEMAP_FLUSH_CACHE; 2647 } 2648 2649 entry = &cache->entries[cache->entries_pos]; 2650 entry->offset = cache->offset; 2651 entry->phys = cache->phys; 2652 entry->len = cache->len; 2653 entry->flags = cache->flags; 2654 cache->entries_pos++; 2655 cache->extents_mapped++; 2656 2657 if (cache->extents_mapped == fieinfo->fi_extents_max) { 2658 cache->cached = false; 2659 return 1; 2660 } 2661 assign: 2662 cache->cached = true; 2663 cache->offset = offset; 2664 cache->phys = phys; 2665 cache->len = len; 2666 cache->flags = flags; 2667 2668 return 0; 2669 } 2670 2671 /* 2672 * Emit last fiemap cache 2673 * 2674 * The last fiemap cache may still be cached in the following case: 2675 * 0 4k 8k 2676 * |<- Fiemap range ->| 2677 * |<------------ First extent ----------->| 2678 * 2679 * In this case, the first extent range will be cached but not emitted. 2680 * So we must emit it before ending extent_fiemap(). 2681 */ 2682 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2683 struct fiemap_cache *cache) 2684 { 2685 int ret; 2686 2687 if (!cache->cached) 2688 return 0; 2689 2690 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2691 cache->len, cache->flags); 2692 cache->cached = false; 2693 if (ret > 0) 2694 ret = 0; 2695 return ret; 2696 } 2697 2698 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2699 { 2700 struct extent_buffer *clone; 2701 struct btrfs_key key; 2702 int slot; 2703 int ret; 2704 2705 path->slots[0]++; 2706 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2707 return 0; 2708 2709 ret = btrfs_next_leaf(inode->root, path); 2710 if (ret != 0) 2711 return ret; 2712 2713 /* 2714 * Don't bother with cloning if there are no more file extent items for 2715 * our inode. 2716 */ 2717 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2718 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2719 return 1; 2720 2721 /* See the comment at fiemap_search_slot() about why we clone. */ 2722 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2723 if (!clone) 2724 return -ENOMEM; 2725 2726 slot = path->slots[0]; 2727 btrfs_release_path(path); 2728 path->nodes[0] = clone; 2729 path->slots[0] = slot; 2730 2731 return 0; 2732 } 2733 2734 /* 2735 * Search for the first file extent item that starts at a given file offset or 2736 * the one that starts immediately before that offset. 2737 * Returns: 0 on success, < 0 on error, 1 if not found. 2738 */ 2739 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2740 u64 file_offset) 2741 { 2742 const u64 ino = btrfs_ino(inode); 2743 struct btrfs_root *root = inode->root; 2744 struct extent_buffer *clone; 2745 struct btrfs_key key; 2746 int slot; 2747 int ret; 2748 2749 key.objectid = ino; 2750 key.type = BTRFS_EXTENT_DATA_KEY; 2751 key.offset = file_offset; 2752 2753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2754 if (ret < 0) 2755 return ret; 2756 2757 if (ret > 0 && path->slots[0] > 0) { 2758 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2759 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2760 path->slots[0]--; 2761 } 2762 2763 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2764 ret = btrfs_next_leaf(root, path); 2765 if (ret != 0) 2766 return ret; 2767 2768 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2769 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2770 return 1; 2771 } 2772 2773 /* 2774 * We clone the leaf and use it during fiemap. This is because while 2775 * using the leaf we do expensive things like checking if an extent is 2776 * shared, which can take a long time. In order to prevent blocking 2777 * other tasks for too long, we use a clone of the leaf. We have locked 2778 * the file range in the inode's io tree, so we know none of our file 2779 * extent items can change. This way we avoid blocking other tasks that 2780 * want to insert items for other inodes in the same leaf or b+tree 2781 * rebalance operations (triggered for example when someone is trying 2782 * to push items into this leaf when trying to insert an item in a 2783 * neighbour leaf). 2784 * We also need the private clone because holding a read lock on an 2785 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2786 * when we check if extents are shared, as backref walking may need to 2787 * lock the same leaf we are processing. 2788 */ 2789 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2790 if (!clone) 2791 return -ENOMEM; 2792 2793 slot = path->slots[0]; 2794 btrfs_release_path(path); 2795 path->nodes[0] = clone; 2796 path->slots[0] = slot; 2797 2798 return 0; 2799 } 2800 2801 /* 2802 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2803 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2804 * extent. The end offset (@end) is inclusive. 2805 */ 2806 static int fiemap_process_hole(struct btrfs_inode *inode, 2807 struct fiemap_extent_info *fieinfo, 2808 struct fiemap_cache *cache, 2809 struct extent_state **delalloc_cached_state, 2810 struct btrfs_backref_share_check_ctx *backref_ctx, 2811 u64 disk_bytenr, u64 extent_offset, 2812 u64 extent_gen, 2813 u64 start, u64 end) 2814 { 2815 const u64 i_size = i_size_read(&inode->vfs_inode); 2816 u64 cur_offset = start; 2817 u64 last_delalloc_end = 0; 2818 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2819 bool checked_extent_shared = false; 2820 int ret; 2821 2822 /* 2823 * There can be no delalloc past i_size, so don't waste time looking for 2824 * it beyond i_size. 2825 */ 2826 while (cur_offset < end && cur_offset < i_size) { 2827 u64 delalloc_start; 2828 u64 delalloc_end; 2829 u64 prealloc_start; 2830 u64 prealloc_len = 0; 2831 bool delalloc; 2832 2833 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2834 delalloc_cached_state, 2835 &delalloc_start, 2836 &delalloc_end); 2837 if (!delalloc) 2838 break; 2839 2840 /* 2841 * If this is a prealloc extent we have to report every section 2842 * of it that has no delalloc. 2843 */ 2844 if (disk_bytenr != 0) { 2845 if (last_delalloc_end == 0) { 2846 prealloc_start = start; 2847 prealloc_len = delalloc_start - start; 2848 } else { 2849 prealloc_start = last_delalloc_end + 1; 2850 prealloc_len = delalloc_start - prealloc_start; 2851 } 2852 } 2853 2854 if (prealloc_len > 0) { 2855 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2856 ret = btrfs_is_data_extent_shared(inode, 2857 disk_bytenr, 2858 extent_gen, 2859 backref_ctx); 2860 if (ret < 0) 2861 return ret; 2862 else if (ret > 0) 2863 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2864 2865 checked_extent_shared = true; 2866 } 2867 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2868 disk_bytenr + extent_offset, 2869 prealloc_len, prealloc_flags); 2870 if (ret) 2871 return ret; 2872 extent_offset += prealloc_len; 2873 } 2874 2875 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2876 delalloc_end + 1 - delalloc_start, 2877 FIEMAP_EXTENT_DELALLOC | 2878 FIEMAP_EXTENT_UNKNOWN); 2879 if (ret) 2880 return ret; 2881 2882 last_delalloc_end = delalloc_end; 2883 cur_offset = delalloc_end + 1; 2884 extent_offset += cur_offset - delalloc_start; 2885 cond_resched(); 2886 } 2887 2888 /* 2889 * Either we found no delalloc for the whole prealloc extent or we have 2890 * a prealloc extent that spans i_size or starts at or after i_size. 2891 */ 2892 if (disk_bytenr != 0 && last_delalloc_end < end) { 2893 u64 prealloc_start; 2894 u64 prealloc_len; 2895 2896 if (last_delalloc_end == 0) { 2897 prealloc_start = start; 2898 prealloc_len = end + 1 - start; 2899 } else { 2900 prealloc_start = last_delalloc_end + 1; 2901 prealloc_len = end + 1 - prealloc_start; 2902 } 2903 2904 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2905 ret = btrfs_is_data_extent_shared(inode, 2906 disk_bytenr, 2907 extent_gen, 2908 backref_ctx); 2909 if (ret < 0) 2910 return ret; 2911 else if (ret > 0) 2912 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2913 } 2914 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2915 disk_bytenr + extent_offset, 2916 prealloc_len, prealloc_flags); 2917 if (ret) 2918 return ret; 2919 } 2920 2921 return 0; 2922 } 2923 2924 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2925 struct btrfs_path *path, 2926 u64 *last_extent_end_ret) 2927 { 2928 const u64 ino = btrfs_ino(inode); 2929 struct btrfs_root *root = inode->root; 2930 struct extent_buffer *leaf; 2931 struct btrfs_file_extent_item *ei; 2932 struct btrfs_key key; 2933 u64 disk_bytenr; 2934 int ret; 2935 2936 /* 2937 * Lookup the last file extent. We're not using i_size here because 2938 * there might be preallocation past i_size. 2939 */ 2940 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2941 /* There can't be a file extent item at offset (u64)-1 */ 2942 ASSERT(ret != 0); 2943 if (ret < 0) 2944 return ret; 2945 2946 /* 2947 * For a non-existing key, btrfs_search_slot() always leaves us at a 2948 * slot > 0, except if the btree is empty, which is impossible because 2949 * at least it has the inode item for this inode and all the items for 2950 * the root inode 256. 2951 */ 2952 ASSERT(path->slots[0] > 0); 2953 path->slots[0]--; 2954 leaf = path->nodes[0]; 2955 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2956 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2957 /* No file extent items in the subvolume tree. */ 2958 *last_extent_end_ret = 0; 2959 return 0; 2960 } 2961 2962 /* 2963 * For an inline extent, the disk_bytenr is where inline data starts at, 2964 * so first check if we have an inline extent item before checking if we 2965 * have an implicit hole (disk_bytenr == 0). 2966 */ 2967 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2968 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2969 *last_extent_end_ret = btrfs_file_extent_end(path); 2970 return 0; 2971 } 2972 2973 /* 2974 * Find the last file extent item that is not a hole (when NO_HOLES is 2975 * not enabled). This should take at most 2 iterations in the worst 2976 * case: we have one hole file extent item at slot 0 of a leaf and 2977 * another hole file extent item as the last item in the previous leaf. 2978 * This is because we merge file extent items that represent holes. 2979 */ 2980 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2981 while (disk_bytenr == 0) { 2982 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2983 if (ret < 0) { 2984 return ret; 2985 } else if (ret > 0) { 2986 /* No file extent items that are not holes. */ 2987 *last_extent_end_ret = 0; 2988 return 0; 2989 } 2990 leaf = path->nodes[0]; 2991 ei = btrfs_item_ptr(leaf, path->slots[0], 2992 struct btrfs_file_extent_item); 2993 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2994 } 2995 2996 *last_extent_end_ret = btrfs_file_extent_end(path); 2997 return 0; 2998 } 2999 3000 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3001 u64 start, u64 len) 3002 { 3003 const u64 ino = btrfs_ino(inode); 3004 struct extent_state *cached_state = NULL; 3005 struct extent_state *delalloc_cached_state = NULL; 3006 struct btrfs_path *path; 3007 struct fiemap_cache cache = { 0 }; 3008 struct btrfs_backref_share_check_ctx *backref_ctx; 3009 u64 last_extent_end; 3010 u64 prev_extent_end; 3011 u64 range_start; 3012 u64 range_end; 3013 const u64 sectorsize = inode->root->fs_info->sectorsize; 3014 bool stopped = false; 3015 int ret; 3016 3017 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry); 3018 cache.entries = kmalloc_array(cache.entries_size, 3019 sizeof(struct btrfs_fiemap_entry), 3020 GFP_KERNEL); 3021 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3022 path = btrfs_alloc_path(); 3023 if (!cache.entries || !backref_ctx || !path) { 3024 ret = -ENOMEM; 3025 goto out; 3026 } 3027 3028 restart: 3029 range_start = round_down(start, sectorsize); 3030 range_end = round_up(start + len, sectorsize); 3031 prev_extent_end = range_start; 3032 3033 lock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3034 3035 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3036 if (ret < 0) 3037 goto out_unlock; 3038 btrfs_release_path(path); 3039 3040 path->reada = READA_FORWARD; 3041 ret = fiemap_search_slot(inode, path, range_start); 3042 if (ret < 0) { 3043 goto out_unlock; 3044 } else if (ret > 0) { 3045 /* 3046 * No file extent item found, but we may have delalloc between 3047 * the current offset and i_size. So check for that. 3048 */ 3049 ret = 0; 3050 goto check_eof_delalloc; 3051 } 3052 3053 while (prev_extent_end < range_end) { 3054 struct extent_buffer *leaf = path->nodes[0]; 3055 struct btrfs_file_extent_item *ei; 3056 struct btrfs_key key; 3057 u64 extent_end; 3058 u64 extent_len; 3059 u64 extent_offset = 0; 3060 u64 extent_gen; 3061 u64 disk_bytenr = 0; 3062 u64 flags = 0; 3063 int extent_type; 3064 u8 compression; 3065 3066 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3067 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3068 break; 3069 3070 extent_end = btrfs_file_extent_end(path); 3071 3072 /* 3073 * The first iteration can leave us at an extent item that ends 3074 * before our range's start. Move to the next item. 3075 */ 3076 if (extent_end <= range_start) 3077 goto next_item; 3078 3079 backref_ctx->curr_leaf_bytenr = leaf->start; 3080 3081 /* We have in implicit hole (NO_HOLES feature enabled). */ 3082 if (prev_extent_end < key.offset) { 3083 const u64 hole_end = min(key.offset, range_end) - 1; 3084 3085 ret = fiemap_process_hole(inode, fieinfo, &cache, 3086 &delalloc_cached_state, 3087 backref_ctx, 0, 0, 0, 3088 prev_extent_end, hole_end); 3089 if (ret < 0) { 3090 goto out_unlock; 3091 } else if (ret > 0) { 3092 /* fiemap_fill_next_extent() told us to stop. */ 3093 stopped = true; 3094 break; 3095 } 3096 3097 /* We've reached the end of the fiemap range, stop. */ 3098 if (key.offset >= range_end) { 3099 stopped = true; 3100 break; 3101 } 3102 } 3103 3104 extent_len = extent_end - key.offset; 3105 ei = btrfs_item_ptr(leaf, path->slots[0], 3106 struct btrfs_file_extent_item); 3107 compression = btrfs_file_extent_compression(leaf, ei); 3108 extent_type = btrfs_file_extent_type(leaf, ei); 3109 extent_gen = btrfs_file_extent_generation(leaf, ei); 3110 3111 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3112 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3113 if (compression == BTRFS_COMPRESS_NONE) 3114 extent_offset = btrfs_file_extent_offset(leaf, ei); 3115 } 3116 3117 if (compression != BTRFS_COMPRESS_NONE) 3118 flags |= FIEMAP_EXTENT_ENCODED; 3119 3120 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3121 flags |= FIEMAP_EXTENT_DATA_INLINE; 3122 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3123 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3124 extent_len, flags); 3125 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3126 ret = fiemap_process_hole(inode, fieinfo, &cache, 3127 &delalloc_cached_state, 3128 backref_ctx, 3129 disk_bytenr, extent_offset, 3130 extent_gen, key.offset, 3131 extent_end - 1); 3132 } else if (disk_bytenr == 0) { 3133 /* We have an explicit hole. */ 3134 ret = fiemap_process_hole(inode, fieinfo, &cache, 3135 &delalloc_cached_state, 3136 backref_ctx, 0, 0, 0, 3137 key.offset, extent_end - 1); 3138 } else { 3139 /* We have a regular extent. */ 3140 if (fieinfo->fi_extents_max) { 3141 ret = btrfs_is_data_extent_shared(inode, 3142 disk_bytenr, 3143 extent_gen, 3144 backref_ctx); 3145 if (ret < 0) 3146 goto out_unlock; 3147 else if (ret > 0) 3148 flags |= FIEMAP_EXTENT_SHARED; 3149 } 3150 3151 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3152 disk_bytenr + extent_offset, 3153 extent_len, flags); 3154 } 3155 3156 if (ret < 0) { 3157 goto out_unlock; 3158 } else if (ret > 0) { 3159 /* emit_fiemap_extent() told us to stop. */ 3160 stopped = true; 3161 break; 3162 } 3163 3164 prev_extent_end = extent_end; 3165 next_item: 3166 if (fatal_signal_pending(current)) { 3167 ret = -EINTR; 3168 goto out_unlock; 3169 } 3170 3171 ret = fiemap_next_leaf_item(inode, path); 3172 if (ret < 0) { 3173 goto out_unlock; 3174 } else if (ret > 0) { 3175 /* No more file extent items for this inode. */ 3176 break; 3177 } 3178 cond_resched(); 3179 } 3180 3181 check_eof_delalloc: 3182 if (!stopped && prev_extent_end < range_end) { 3183 ret = fiemap_process_hole(inode, fieinfo, &cache, 3184 &delalloc_cached_state, backref_ctx, 3185 0, 0, 0, prev_extent_end, range_end - 1); 3186 if (ret < 0) 3187 goto out_unlock; 3188 prev_extent_end = range_end; 3189 } 3190 3191 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3192 const u64 i_size = i_size_read(&inode->vfs_inode); 3193 3194 if (prev_extent_end < i_size) { 3195 u64 delalloc_start; 3196 u64 delalloc_end; 3197 bool delalloc; 3198 3199 delalloc = btrfs_find_delalloc_in_range(inode, 3200 prev_extent_end, 3201 i_size - 1, 3202 &delalloc_cached_state, 3203 &delalloc_start, 3204 &delalloc_end); 3205 if (!delalloc) 3206 cache.flags |= FIEMAP_EXTENT_LAST; 3207 } else { 3208 cache.flags |= FIEMAP_EXTENT_LAST; 3209 } 3210 } 3211 3212 out_unlock: 3213 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3214 3215 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) { 3216 btrfs_release_path(path); 3217 ret = flush_fiemap_cache(fieinfo, &cache); 3218 if (ret) 3219 goto out; 3220 len -= cache.next_search_offset - start; 3221 start = cache.next_search_offset; 3222 goto restart; 3223 } else if (ret < 0) { 3224 goto out; 3225 } 3226 3227 /* 3228 * Must free the path before emitting to the fiemap buffer because we 3229 * may have a non-cloned leaf and if the fiemap buffer is memory mapped 3230 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger 3231 * waiting for an ordered extent that in order to complete needs to 3232 * modify that leaf, therefore leading to a deadlock. 3233 */ 3234 btrfs_free_path(path); 3235 path = NULL; 3236 3237 ret = flush_fiemap_cache(fieinfo, &cache); 3238 if (ret) 3239 goto out; 3240 3241 ret = emit_last_fiemap_cache(fieinfo, &cache); 3242 out: 3243 free_extent_state(delalloc_cached_state); 3244 kfree(cache.entries); 3245 btrfs_free_backref_share_ctx(backref_ctx); 3246 btrfs_free_path(path); 3247 return ret; 3248 } 3249 3250 static void __free_extent_buffer(struct extent_buffer *eb) 3251 { 3252 kmem_cache_free(extent_buffer_cache, eb); 3253 } 3254 3255 static int extent_buffer_under_io(const struct extent_buffer *eb) 3256 { 3257 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3258 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3259 } 3260 3261 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3262 { 3263 struct btrfs_subpage *subpage; 3264 3265 lockdep_assert_held(&page->mapping->private_lock); 3266 3267 if (PagePrivate(page)) { 3268 subpage = (struct btrfs_subpage *)page->private; 3269 if (atomic_read(&subpage->eb_refs)) 3270 return true; 3271 /* 3272 * Even there is no eb refs here, we may still have 3273 * end_page_read() call relying on page::private. 3274 */ 3275 if (atomic_read(&subpage->readers)) 3276 return true; 3277 } 3278 return false; 3279 } 3280 3281 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3282 { 3283 struct btrfs_fs_info *fs_info = eb->fs_info; 3284 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3285 3286 /* 3287 * For mapped eb, we're going to change the page private, which should 3288 * be done under the private_lock. 3289 */ 3290 if (mapped) 3291 spin_lock(&page->mapping->private_lock); 3292 3293 if (!PagePrivate(page)) { 3294 if (mapped) 3295 spin_unlock(&page->mapping->private_lock); 3296 return; 3297 } 3298 3299 if (fs_info->nodesize >= PAGE_SIZE) { 3300 /* 3301 * We do this since we'll remove the pages after we've 3302 * removed the eb from the radix tree, so we could race 3303 * and have this page now attached to the new eb. So 3304 * only clear page_private if it's still connected to 3305 * this eb. 3306 */ 3307 if (PagePrivate(page) && 3308 page->private == (unsigned long)eb) { 3309 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3310 BUG_ON(PageDirty(page)); 3311 BUG_ON(PageWriteback(page)); 3312 /* 3313 * We need to make sure we haven't be attached 3314 * to a new eb. 3315 */ 3316 detach_page_private(page); 3317 } 3318 if (mapped) 3319 spin_unlock(&page->mapping->private_lock); 3320 return; 3321 } 3322 3323 /* 3324 * For subpage, we can have dummy eb with page private. In this case, 3325 * we can directly detach the private as such page is only attached to 3326 * one dummy eb, no sharing. 3327 */ 3328 if (!mapped) { 3329 btrfs_detach_subpage(fs_info, page); 3330 return; 3331 } 3332 3333 btrfs_page_dec_eb_refs(fs_info, page); 3334 3335 /* 3336 * We can only detach the page private if there are no other ebs in the 3337 * page range and no unfinished IO. 3338 */ 3339 if (!page_range_has_eb(fs_info, page)) 3340 btrfs_detach_subpage(fs_info, page); 3341 3342 spin_unlock(&page->mapping->private_lock); 3343 } 3344 3345 /* Release all pages attached to the extent buffer */ 3346 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3347 { 3348 int i; 3349 int num_pages; 3350 3351 ASSERT(!extent_buffer_under_io(eb)); 3352 3353 num_pages = num_extent_pages(eb); 3354 for (i = 0; i < num_pages; i++) { 3355 struct page *page = eb->pages[i]; 3356 3357 if (!page) 3358 continue; 3359 3360 detach_extent_buffer_page(eb, page); 3361 3362 /* One for when we allocated the page */ 3363 put_page(page); 3364 } 3365 } 3366 3367 /* 3368 * Helper for releasing the extent buffer. 3369 */ 3370 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3371 { 3372 btrfs_release_extent_buffer_pages(eb); 3373 btrfs_leak_debug_del_eb(eb); 3374 __free_extent_buffer(eb); 3375 } 3376 3377 static struct extent_buffer * 3378 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3379 unsigned long len) 3380 { 3381 struct extent_buffer *eb = NULL; 3382 3383 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3384 eb->start = start; 3385 eb->len = len; 3386 eb->fs_info = fs_info; 3387 init_rwsem(&eb->lock); 3388 3389 btrfs_leak_debug_add_eb(eb); 3390 3391 spin_lock_init(&eb->refs_lock); 3392 atomic_set(&eb->refs, 1); 3393 3394 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3395 3396 return eb; 3397 } 3398 3399 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3400 { 3401 int i; 3402 struct extent_buffer *new; 3403 int num_pages = num_extent_pages(src); 3404 int ret; 3405 3406 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3407 if (new == NULL) 3408 return NULL; 3409 3410 /* 3411 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3412 * btrfs_release_extent_buffer() have different behavior for 3413 * UNMAPPED subpage extent buffer. 3414 */ 3415 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3416 3417 ret = btrfs_alloc_page_array(num_pages, new->pages); 3418 if (ret) { 3419 btrfs_release_extent_buffer(new); 3420 return NULL; 3421 } 3422 3423 for (i = 0; i < num_pages; i++) { 3424 int ret; 3425 struct page *p = new->pages[i]; 3426 3427 ret = attach_extent_buffer_page(new, p, NULL); 3428 if (ret < 0) { 3429 btrfs_release_extent_buffer(new); 3430 return NULL; 3431 } 3432 WARN_ON(PageDirty(p)); 3433 } 3434 copy_extent_buffer_full(new, src); 3435 set_extent_buffer_uptodate(new); 3436 3437 return new; 3438 } 3439 3440 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3441 u64 start, unsigned long len) 3442 { 3443 struct extent_buffer *eb; 3444 int num_pages; 3445 int i; 3446 int ret; 3447 3448 eb = __alloc_extent_buffer(fs_info, start, len); 3449 if (!eb) 3450 return NULL; 3451 3452 num_pages = num_extent_pages(eb); 3453 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3454 if (ret) 3455 goto err; 3456 3457 for (i = 0; i < num_pages; i++) { 3458 struct page *p = eb->pages[i]; 3459 3460 ret = attach_extent_buffer_page(eb, p, NULL); 3461 if (ret < 0) 3462 goto err; 3463 } 3464 3465 set_extent_buffer_uptodate(eb); 3466 btrfs_set_header_nritems(eb, 0); 3467 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3468 3469 return eb; 3470 err: 3471 for (i = 0; i < num_pages; i++) { 3472 if (eb->pages[i]) { 3473 detach_extent_buffer_page(eb, eb->pages[i]); 3474 __free_page(eb->pages[i]); 3475 } 3476 } 3477 __free_extent_buffer(eb); 3478 return NULL; 3479 } 3480 3481 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3482 u64 start) 3483 { 3484 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3485 } 3486 3487 static void check_buffer_tree_ref(struct extent_buffer *eb) 3488 { 3489 int refs; 3490 /* 3491 * The TREE_REF bit is first set when the extent_buffer is added 3492 * to the radix tree. It is also reset, if unset, when a new reference 3493 * is created by find_extent_buffer. 3494 * 3495 * It is only cleared in two cases: freeing the last non-tree 3496 * reference to the extent_buffer when its STALE bit is set or 3497 * calling release_folio when the tree reference is the only reference. 3498 * 3499 * In both cases, care is taken to ensure that the extent_buffer's 3500 * pages are not under io. However, release_folio can be concurrently 3501 * called with creating new references, which is prone to race 3502 * conditions between the calls to check_buffer_tree_ref in those 3503 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3504 * 3505 * The actual lifetime of the extent_buffer in the radix tree is 3506 * adequately protected by the refcount, but the TREE_REF bit and 3507 * its corresponding reference are not. To protect against this 3508 * class of races, we call check_buffer_tree_ref from the codepaths 3509 * which trigger io. Note that once io is initiated, TREE_REF can no 3510 * longer be cleared, so that is the moment at which any such race is 3511 * best fixed. 3512 */ 3513 refs = atomic_read(&eb->refs); 3514 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3515 return; 3516 3517 spin_lock(&eb->refs_lock); 3518 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3519 atomic_inc(&eb->refs); 3520 spin_unlock(&eb->refs_lock); 3521 } 3522 3523 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3524 struct page *accessed) 3525 { 3526 int num_pages, i; 3527 3528 check_buffer_tree_ref(eb); 3529 3530 num_pages = num_extent_pages(eb); 3531 for (i = 0; i < num_pages; i++) { 3532 struct page *p = eb->pages[i]; 3533 3534 if (p != accessed) 3535 mark_page_accessed(p); 3536 } 3537 } 3538 3539 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3540 u64 start) 3541 { 3542 struct extent_buffer *eb; 3543 3544 eb = find_extent_buffer_nolock(fs_info, start); 3545 if (!eb) 3546 return NULL; 3547 /* 3548 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3549 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3550 * another task running free_extent_buffer() might have seen that flag 3551 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3552 * writeback flags not set) and it's still in the tree (flag 3553 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3554 * decrementing the extent buffer's reference count twice. So here we 3555 * could race and increment the eb's reference count, clear its stale 3556 * flag, mark it as dirty and drop our reference before the other task 3557 * finishes executing free_extent_buffer, which would later result in 3558 * an attempt to free an extent buffer that is dirty. 3559 */ 3560 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3561 spin_lock(&eb->refs_lock); 3562 spin_unlock(&eb->refs_lock); 3563 } 3564 mark_extent_buffer_accessed(eb, NULL); 3565 return eb; 3566 } 3567 3568 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3569 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3570 u64 start) 3571 { 3572 struct extent_buffer *eb, *exists = NULL; 3573 int ret; 3574 3575 eb = find_extent_buffer(fs_info, start); 3576 if (eb) 3577 return eb; 3578 eb = alloc_dummy_extent_buffer(fs_info, start); 3579 if (!eb) 3580 return ERR_PTR(-ENOMEM); 3581 eb->fs_info = fs_info; 3582 again: 3583 ret = radix_tree_preload(GFP_NOFS); 3584 if (ret) { 3585 exists = ERR_PTR(ret); 3586 goto free_eb; 3587 } 3588 spin_lock(&fs_info->buffer_lock); 3589 ret = radix_tree_insert(&fs_info->buffer_radix, 3590 start >> fs_info->sectorsize_bits, eb); 3591 spin_unlock(&fs_info->buffer_lock); 3592 radix_tree_preload_end(); 3593 if (ret == -EEXIST) { 3594 exists = find_extent_buffer(fs_info, start); 3595 if (exists) 3596 goto free_eb; 3597 else 3598 goto again; 3599 } 3600 check_buffer_tree_ref(eb); 3601 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3602 3603 return eb; 3604 free_eb: 3605 btrfs_release_extent_buffer(eb); 3606 return exists; 3607 } 3608 #endif 3609 3610 static struct extent_buffer *grab_extent_buffer( 3611 struct btrfs_fs_info *fs_info, struct page *page) 3612 { 3613 struct extent_buffer *exists; 3614 3615 /* 3616 * For subpage case, we completely rely on radix tree to ensure we 3617 * don't try to insert two ebs for the same bytenr. So here we always 3618 * return NULL and just continue. 3619 */ 3620 if (fs_info->nodesize < PAGE_SIZE) 3621 return NULL; 3622 3623 /* Page not yet attached to an extent buffer */ 3624 if (!PagePrivate(page)) 3625 return NULL; 3626 3627 /* 3628 * We could have already allocated an eb for this page and attached one 3629 * so lets see if we can get a ref on the existing eb, and if we can we 3630 * know it's good and we can just return that one, else we know we can 3631 * just overwrite page->private. 3632 */ 3633 exists = (struct extent_buffer *)page->private; 3634 if (atomic_inc_not_zero(&exists->refs)) 3635 return exists; 3636 3637 WARN_ON(PageDirty(page)); 3638 detach_page_private(page); 3639 return NULL; 3640 } 3641 3642 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3643 { 3644 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3645 btrfs_err(fs_info, "bad tree block start %llu", start); 3646 return -EINVAL; 3647 } 3648 3649 if (fs_info->nodesize < PAGE_SIZE && 3650 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3651 btrfs_err(fs_info, 3652 "tree block crosses page boundary, start %llu nodesize %u", 3653 start, fs_info->nodesize); 3654 return -EINVAL; 3655 } 3656 if (fs_info->nodesize >= PAGE_SIZE && 3657 !PAGE_ALIGNED(start)) { 3658 btrfs_err(fs_info, 3659 "tree block is not page aligned, start %llu nodesize %u", 3660 start, fs_info->nodesize); 3661 return -EINVAL; 3662 } 3663 return 0; 3664 } 3665 3666 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3667 u64 start, u64 owner_root, int level) 3668 { 3669 unsigned long len = fs_info->nodesize; 3670 int num_pages; 3671 int i; 3672 unsigned long index = start >> PAGE_SHIFT; 3673 struct extent_buffer *eb; 3674 struct extent_buffer *exists = NULL; 3675 struct page *p; 3676 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3677 struct btrfs_subpage *prealloc = NULL; 3678 u64 lockdep_owner = owner_root; 3679 int uptodate = 1; 3680 int ret; 3681 3682 if (check_eb_alignment(fs_info, start)) 3683 return ERR_PTR(-EINVAL); 3684 3685 #if BITS_PER_LONG == 32 3686 if (start >= MAX_LFS_FILESIZE) { 3687 btrfs_err_rl(fs_info, 3688 "extent buffer %llu is beyond 32bit page cache limit", start); 3689 btrfs_err_32bit_limit(fs_info); 3690 return ERR_PTR(-EOVERFLOW); 3691 } 3692 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3693 btrfs_warn_32bit_limit(fs_info); 3694 #endif 3695 3696 eb = find_extent_buffer(fs_info, start); 3697 if (eb) 3698 return eb; 3699 3700 eb = __alloc_extent_buffer(fs_info, start, len); 3701 if (!eb) 3702 return ERR_PTR(-ENOMEM); 3703 3704 /* 3705 * The reloc trees are just snapshots, so we need them to appear to be 3706 * just like any other fs tree WRT lockdep. 3707 */ 3708 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3709 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3710 3711 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3712 3713 num_pages = num_extent_pages(eb); 3714 3715 /* 3716 * Preallocate page->private for subpage case, so that we won't 3717 * allocate memory with private_lock nor page lock hold. 3718 * 3719 * The memory will be freed by attach_extent_buffer_page() or freed 3720 * manually if we exit earlier. 3721 */ 3722 if (fs_info->nodesize < PAGE_SIZE) { 3723 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3724 if (IS_ERR(prealloc)) { 3725 exists = ERR_CAST(prealloc); 3726 goto free_eb; 3727 } 3728 } 3729 3730 for (i = 0; i < num_pages; i++, index++) { 3731 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3732 if (!p) { 3733 exists = ERR_PTR(-ENOMEM); 3734 btrfs_free_subpage(prealloc); 3735 goto free_eb; 3736 } 3737 3738 spin_lock(&mapping->private_lock); 3739 exists = grab_extent_buffer(fs_info, p); 3740 if (exists) { 3741 spin_unlock(&mapping->private_lock); 3742 unlock_page(p); 3743 put_page(p); 3744 mark_extent_buffer_accessed(exists, p); 3745 btrfs_free_subpage(prealloc); 3746 goto free_eb; 3747 } 3748 /* Should not fail, as we have preallocated the memory */ 3749 ret = attach_extent_buffer_page(eb, p, prealloc); 3750 ASSERT(!ret); 3751 /* 3752 * To inform we have extra eb under allocation, so that 3753 * detach_extent_buffer_page() won't release the page private 3754 * when the eb hasn't yet been inserted into radix tree. 3755 * 3756 * The ref will be decreased when the eb released the page, in 3757 * detach_extent_buffer_page(). 3758 * Thus needs no special handling in error path. 3759 */ 3760 btrfs_page_inc_eb_refs(fs_info, p); 3761 spin_unlock(&mapping->private_lock); 3762 3763 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3764 eb->pages[i] = p; 3765 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3766 uptodate = 0; 3767 3768 /* 3769 * We can't unlock the pages just yet since the extent buffer 3770 * hasn't been properly inserted in the radix tree, this 3771 * opens a race with btree_release_folio which can free a page 3772 * while we are still filling in all pages for the buffer and 3773 * we could crash. 3774 */ 3775 } 3776 if (uptodate) 3777 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3778 again: 3779 ret = radix_tree_preload(GFP_NOFS); 3780 if (ret) { 3781 exists = ERR_PTR(ret); 3782 goto free_eb; 3783 } 3784 3785 spin_lock(&fs_info->buffer_lock); 3786 ret = radix_tree_insert(&fs_info->buffer_radix, 3787 start >> fs_info->sectorsize_bits, eb); 3788 spin_unlock(&fs_info->buffer_lock); 3789 radix_tree_preload_end(); 3790 if (ret == -EEXIST) { 3791 exists = find_extent_buffer(fs_info, start); 3792 if (exists) 3793 goto free_eb; 3794 else 3795 goto again; 3796 } 3797 /* add one reference for the tree */ 3798 check_buffer_tree_ref(eb); 3799 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3800 3801 /* 3802 * Now it's safe to unlock the pages because any calls to 3803 * btree_release_folio will correctly detect that a page belongs to a 3804 * live buffer and won't free them prematurely. 3805 */ 3806 for (i = 0; i < num_pages; i++) 3807 unlock_page(eb->pages[i]); 3808 return eb; 3809 3810 free_eb: 3811 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3812 for (i = 0; i < num_pages; i++) { 3813 if (eb->pages[i]) 3814 unlock_page(eb->pages[i]); 3815 } 3816 3817 btrfs_release_extent_buffer(eb); 3818 return exists; 3819 } 3820 3821 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3822 { 3823 struct extent_buffer *eb = 3824 container_of(head, struct extent_buffer, rcu_head); 3825 3826 __free_extent_buffer(eb); 3827 } 3828 3829 static int release_extent_buffer(struct extent_buffer *eb) 3830 __releases(&eb->refs_lock) 3831 { 3832 lockdep_assert_held(&eb->refs_lock); 3833 3834 WARN_ON(atomic_read(&eb->refs) == 0); 3835 if (atomic_dec_and_test(&eb->refs)) { 3836 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3837 struct btrfs_fs_info *fs_info = eb->fs_info; 3838 3839 spin_unlock(&eb->refs_lock); 3840 3841 spin_lock(&fs_info->buffer_lock); 3842 radix_tree_delete(&fs_info->buffer_radix, 3843 eb->start >> fs_info->sectorsize_bits); 3844 spin_unlock(&fs_info->buffer_lock); 3845 } else { 3846 spin_unlock(&eb->refs_lock); 3847 } 3848 3849 btrfs_leak_debug_del_eb(eb); 3850 /* Should be safe to release our pages at this point */ 3851 btrfs_release_extent_buffer_pages(eb); 3852 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3853 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3854 __free_extent_buffer(eb); 3855 return 1; 3856 } 3857 #endif 3858 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3859 return 1; 3860 } 3861 spin_unlock(&eb->refs_lock); 3862 3863 return 0; 3864 } 3865 3866 void free_extent_buffer(struct extent_buffer *eb) 3867 { 3868 int refs; 3869 if (!eb) 3870 return; 3871 3872 refs = atomic_read(&eb->refs); 3873 while (1) { 3874 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3875 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3876 refs == 1)) 3877 break; 3878 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3879 return; 3880 } 3881 3882 spin_lock(&eb->refs_lock); 3883 if (atomic_read(&eb->refs) == 2 && 3884 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3885 !extent_buffer_under_io(eb) && 3886 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3887 atomic_dec(&eb->refs); 3888 3889 /* 3890 * I know this is terrible, but it's temporary until we stop tracking 3891 * the uptodate bits and such for the extent buffers. 3892 */ 3893 release_extent_buffer(eb); 3894 } 3895 3896 void free_extent_buffer_stale(struct extent_buffer *eb) 3897 { 3898 if (!eb) 3899 return; 3900 3901 spin_lock(&eb->refs_lock); 3902 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3903 3904 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3905 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3906 atomic_dec(&eb->refs); 3907 release_extent_buffer(eb); 3908 } 3909 3910 static void btree_clear_page_dirty(struct page *page) 3911 { 3912 ASSERT(PageDirty(page)); 3913 ASSERT(PageLocked(page)); 3914 clear_page_dirty_for_io(page); 3915 xa_lock_irq(&page->mapping->i_pages); 3916 if (!PageDirty(page)) 3917 __xa_clear_mark(&page->mapping->i_pages, 3918 page_index(page), PAGECACHE_TAG_DIRTY); 3919 xa_unlock_irq(&page->mapping->i_pages); 3920 } 3921 3922 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3923 { 3924 struct btrfs_fs_info *fs_info = eb->fs_info; 3925 struct page *page = eb->pages[0]; 3926 bool last; 3927 3928 /* btree_clear_page_dirty() needs page locked */ 3929 lock_page(page); 3930 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3931 eb->len); 3932 if (last) 3933 btree_clear_page_dirty(page); 3934 unlock_page(page); 3935 WARN_ON(atomic_read(&eb->refs) == 0); 3936 } 3937 3938 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3939 struct extent_buffer *eb) 3940 { 3941 struct btrfs_fs_info *fs_info = eb->fs_info; 3942 int i; 3943 int num_pages; 3944 struct page *page; 3945 3946 btrfs_assert_tree_write_locked(eb); 3947 3948 if (trans && btrfs_header_generation(eb) != trans->transid) 3949 return; 3950 3951 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3952 return; 3953 3954 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3955 fs_info->dirty_metadata_batch); 3956 3957 if (eb->fs_info->nodesize < PAGE_SIZE) 3958 return clear_subpage_extent_buffer_dirty(eb); 3959 3960 num_pages = num_extent_pages(eb); 3961 3962 for (i = 0; i < num_pages; i++) { 3963 page = eb->pages[i]; 3964 if (!PageDirty(page)) 3965 continue; 3966 lock_page(page); 3967 btree_clear_page_dirty(page); 3968 unlock_page(page); 3969 } 3970 WARN_ON(atomic_read(&eb->refs) == 0); 3971 } 3972 3973 void set_extent_buffer_dirty(struct extent_buffer *eb) 3974 { 3975 int i; 3976 int num_pages; 3977 bool was_dirty; 3978 3979 check_buffer_tree_ref(eb); 3980 3981 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3982 3983 num_pages = num_extent_pages(eb); 3984 WARN_ON(atomic_read(&eb->refs) == 0); 3985 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3986 3987 if (!was_dirty) { 3988 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3989 3990 /* 3991 * For subpage case, we can have other extent buffers in the 3992 * same page, and in clear_subpage_extent_buffer_dirty() we 3993 * have to clear page dirty without subpage lock held. 3994 * This can cause race where our page gets dirty cleared after 3995 * we just set it. 3996 * 3997 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3998 * its page for other reasons, we can use page lock to prevent 3999 * the above race. 4000 */ 4001 if (subpage) 4002 lock_page(eb->pages[0]); 4003 for (i = 0; i < num_pages; i++) 4004 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4005 eb->start, eb->len); 4006 if (subpage) 4007 unlock_page(eb->pages[0]); 4008 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 4009 eb->len, 4010 eb->fs_info->dirty_metadata_batch); 4011 } 4012 #ifdef CONFIG_BTRFS_DEBUG 4013 for (i = 0; i < num_pages; i++) 4014 ASSERT(PageDirty(eb->pages[i])); 4015 #endif 4016 } 4017 4018 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4019 { 4020 struct btrfs_fs_info *fs_info = eb->fs_info; 4021 struct page *page; 4022 int num_pages; 4023 int i; 4024 4025 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4026 num_pages = num_extent_pages(eb); 4027 for (i = 0; i < num_pages; i++) { 4028 page = eb->pages[i]; 4029 if (!page) 4030 continue; 4031 4032 /* 4033 * This is special handling for metadata subpage, as regular 4034 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4035 */ 4036 if (fs_info->nodesize >= PAGE_SIZE) 4037 ClearPageUptodate(page); 4038 else 4039 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4040 eb->len); 4041 } 4042 } 4043 4044 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4045 { 4046 struct btrfs_fs_info *fs_info = eb->fs_info; 4047 struct page *page; 4048 int num_pages; 4049 int i; 4050 4051 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4052 num_pages = num_extent_pages(eb); 4053 for (i = 0; i < num_pages; i++) { 4054 page = eb->pages[i]; 4055 4056 /* 4057 * This is special handling for metadata subpage, as regular 4058 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4059 */ 4060 if (fs_info->nodesize >= PAGE_SIZE) 4061 SetPageUptodate(page); 4062 else 4063 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4064 eb->len); 4065 } 4066 } 4067 4068 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 4069 { 4070 struct extent_buffer *eb = bbio->private; 4071 struct btrfs_fs_info *fs_info = eb->fs_info; 4072 bool uptodate = !bbio->bio.bi_status; 4073 struct bvec_iter_all iter_all; 4074 struct bio_vec *bvec; 4075 u32 bio_offset = 0; 4076 4077 eb->read_mirror = bbio->mirror_num; 4078 4079 if (uptodate && 4080 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 4081 uptodate = false; 4082 4083 if (uptodate) { 4084 set_extent_buffer_uptodate(eb); 4085 } else { 4086 clear_extent_buffer_uptodate(eb); 4087 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4088 } 4089 4090 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 4091 u64 start = eb->start + bio_offset; 4092 struct page *page = bvec->bv_page; 4093 u32 len = bvec->bv_len; 4094 4095 if (uptodate) 4096 btrfs_page_set_uptodate(fs_info, page, start, len); 4097 else 4098 btrfs_page_clear_uptodate(fs_info, page, start, len); 4099 4100 bio_offset += len; 4101 } 4102 4103 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4104 smp_mb__after_atomic(); 4105 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4106 free_extent_buffer(eb); 4107 4108 bio_put(&bbio->bio); 4109 } 4110 4111 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4112 struct btrfs_tree_parent_check *check) 4113 { 4114 int num_pages = num_extent_pages(eb), i; 4115 struct btrfs_bio *bbio; 4116 4117 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4118 return 0; 4119 4120 /* 4121 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4122 * operation, which could potentially still be in flight. In this case 4123 * we simply want to return an error. 4124 */ 4125 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4126 return -EIO; 4127 4128 /* Someone else is already reading the buffer, just wait for it. */ 4129 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 4130 goto done; 4131 4132 /* 4133 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 4134 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 4135 * started and finished reading the same eb. In this case, UPTODATE 4136 * will now be set, and we shouldn't read it in again. 4137 */ 4138 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 4139 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4140 smp_mb__after_atomic(); 4141 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4142 return 0; 4143 } 4144 4145 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4146 eb->read_mirror = 0; 4147 check_buffer_tree_ref(eb); 4148 atomic_inc(&eb->refs); 4149 4150 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4151 REQ_OP_READ | REQ_META, eb->fs_info, 4152 extent_buffer_read_end_io, eb); 4153 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4154 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4155 bbio->file_offset = eb->start; 4156 memcpy(&bbio->parent_check, check, sizeof(*check)); 4157 if (eb->fs_info->nodesize < PAGE_SIZE) { 4158 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 4159 eb->start - page_offset(eb->pages[0])); 4160 } else { 4161 for (i = 0; i < num_pages; i++) 4162 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 4163 } 4164 btrfs_submit_bio(bbio, mirror_num); 4165 4166 done: 4167 if (wait == WAIT_COMPLETE) { 4168 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4169 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4170 return -EIO; 4171 } 4172 4173 return 0; 4174 } 4175 4176 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4177 unsigned long len) 4178 { 4179 btrfs_warn(eb->fs_info, 4180 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4181 eb->start, eb->len, start, len); 4182 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4183 4184 return true; 4185 } 4186 4187 /* 4188 * Check if the [start, start + len) range is valid before reading/writing 4189 * the eb. 4190 * NOTE: @start and @len are offset inside the eb, not logical address. 4191 * 4192 * Caller should not touch the dst/src memory if this function returns error. 4193 */ 4194 static inline int check_eb_range(const struct extent_buffer *eb, 4195 unsigned long start, unsigned long len) 4196 { 4197 unsigned long offset; 4198 4199 /* start, start + len should not go beyond eb->len nor overflow */ 4200 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4201 return report_eb_range(eb, start, len); 4202 4203 return false; 4204 } 4205 4206 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4207 unsigned long start, unsigned long len) 4208 { 4209 size_t cur; 4210 size_t offset; 4211 struct page *page; 4212 char *kaddr; 4213 char *dst = (char *)dstv; 4214 unsigned long i = get_eb_page_index(start); 4215 4216 if (check_eb_range(eb, start, len)) { 4217 /* 4218 * Invalid range hit, reset the memory, so callers won't get 4219 * some random garbage for their uninitialzed memory. 4220 */ 4221 memset(dstv, 0, len); 4222 return; 4223 } 4224 4225 offset = get_eb_offset_in_page(eb, start); 4226 4227 while (len > 0) { 4228 page = eb->pages[i]; 4229 4230 cur = min(len, (PAGE_SIZE - offset)); 4231 kaddr = page_address(page); 4232 memcpy(dst, kaddr + offset, cur); 4233 4234 dst += cur; 4235 len -= cur; 4236 offset = 0; 4237 i++; 4238 } 4239 } 4240 4241 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4242 void __user *dstv, 4243 unsigned long start, unsigned long len) 4244 { 4245 size_t cur; 4246 size_t offset; 4247 struct page *page; 4248 char *kaddr; 4249 char __user *dst = (char __user *)dstv; 4250 unsigned long i = get_eb_page_index(start); 4251 int ret = 0; 4252 4253 WARN_ON(start > eb->len); 4254 WARN_ON(start + len > eb->start + eb->len); 4255 4256 offset = get_eb_offset_in_page(eb, start); 4257 4258 while (len > 0) { 4259 page = eb->pages[i]; 4260 4261 cur = min(len, (PAGE_SIZE - offset)); 4262 kaddr = page_address(page); 4263 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4264 ret = -EFAULT; 4265 break; 4266 } 4267 4268 dst += cur; 4269 len -= cur; 4270 offset = 0; 4271 i++; 4272 } 4273 4274 return ret; 4275 } 4276 4277 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4278 unsigned long start, unsigned long len) 4279 { 4280 size_t cur; 4281 size_t offset; 4282 struct page *page; 4283 char *kaddr; 4284 char *ptr = (char *)ptrv; 4285 unsigned long i = get_eb_page_index(start); 4286 int ret = 0; 4287 4288 if (check_eb_range(eb, start, len)) 4289 return -EINVAL; 4290 4291 offset = get_eb_offset_in_page(eb, start); 4292 4293 while (len > 0) { 4294 page = eb->pages[i]; 4295 4296 cur = min(len, (PAGE_SIZE - offset)); 4297 4298 kaddr = page_address(page); 4299 ret = memcmp(ptr, kaddr + offset, cur); 4300 if (ret) 4301 break; 4302 4303 ptr += cur; 4304 len -= cur; 4305 offset = 0; 4306 i++; 4307 } 4308 return ret; 4309 } 4310 4311 /* 4312 * Check that the extent buffer is uptodate. 4313 * 4314 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4315 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4316 */ 4317 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4318 struct page *page) 4319 { 4320 struct btrfs_fs_info *fs_info = eb->fs_info; 4321 4322 /* 4323 * If we are using the commit root we could potentially clear a page 4324 * Uptodate while we're using the extent buffer that we've previously 4325 * looked up. We don't want to complain in this case, as the page was 4326 * valid before, we just didn't write it out. Instead we want to catch 4327 * the case where we didn't actually read the block properly, which 4328 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4329 */ 4330 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4331 return; 4332 4333 if (fs_info->nodesize < PAGE_SIZE) { 4334 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4335 eb->start, eb->len))) 4336 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4337 } else { 4338 WARN_ON(!PageUptodate(page)); 4339 } 4340 } 4341 4342 static void __write_extent_buffer(const struct extent_buffer *eb, 4343 const void *srcv, unsigned long start, 4344 unsigned long len, bool use_memmove) 4345 { 4346 size_t cur; 4347 size_t offset; 4348 struct page *page; 4349 char *kaddr; 4350 char *src = (char *)srcv; 4351 unsigned long i = get_eb_page_index(start); 4352 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4353 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4354 4355 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4356 4357 if (check_eb_range(eb, start, len)) 4358 return; 4359 4360 offset = get_eb_offset_in_page(eb, start); 4361 4362 while (len > 0) { 4363 page = eb->pages[i]; 4364 if (check_uptodate) 4365 assert_eb_page_uptodate(eb, page); 4366 4367 cur = min(len, PAGE_SIZE - offset); 4368 kaddr = page_address(page); 4369 if (use_memmove) 4370 memmove(kaddr + offset, src, cur); 4371 else 4372 memcpy(kaddr + offset, src, cur); 4373 4374 src += cur; 4375 len -= cur; 4376 offset = 0; 4377 i++; 4378 } 4379 } 4380 4381 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4382 unsigned long start, unsigned long len) 4383 { 4384 return __write_extent_buffer(eb, srcv, start, len, false); 4385 } 4386 4387 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4388 unsigned long start, unsigned long len) 4389 { 4390 unsigned long cur = start; 4391 4392 while (cur < start + len) { 4393 unsigned long index = get_eb_page_index(cur); 4394 unsigned int offset = get_eb_offset_in_page(eb, cur); 4395 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset); 4396 struct page *page = eb->pages[index]; 4397 4398 assert_eb_page_uptodate(eb, page); 4399 memset(page_address(page) + offset, c, cur_len); 4400 4401 cur += cur_len; 4402 } 4403 } 4404 4405 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4406 unsigned long len) 4407 { 4408 if (check_eb_range(eb, start, len)) 4409 return; 4410 return memset_extent_buffer(eb, 0, start, len); 4411 } 4412 4413 void copy_extent_buffer_full(const struct extent_buffer *dst, 4414 const struct extent_buffer *src) 4415 { 4416 unsigned long cur = 0; 4417 4418 ASSERT(dst->len == src->len); 4419 4420 while (cur < src->len) { 4421 unsigned long index = get_eb_page_index(cur); 4422 unsigned long offset = get_eb_offset_in_page(src, cur); 4423 unsigned long cur_len = min(src->len, PAGE_SIZE - offset); 4424 void *addr = page_address(src->pages[index]) + offset; 4425 4426 write_extent_buffer(dst, addr, cur, cur_len); 4427 4428 cur += cur_len; 4429 } 4430 } 4431 4432 void copy_extent_buffer(const struct extent_buffer *dst, 4433 const struct extent_buffer *src, 4434 unsigned long dst_offset, unsigned long src_offset, 4435 unsigned long len) 4436 { 4437 u64 dst_len = dst->len; 4438 size_t cur; 4439 size_t offset; 4440 struct page *page; 4441 char *kaddr; 4442 unsigned long i = get_eb_page_index(dst_offset); 4443 4444 if (check_eb_range(dst, dst_offset, len) || 4445 check_eb_range(src, src_offset, len)) 4446 return; 4447 4448 WARN_ON(src->len != dst_len); 4449 4450 offset = get_eb_offset_in_page(dst, dst_offset); 4451 4452 while (len > 0) { 4453 page = dst->pages[i]; 4454 assert_eb_page_uptodate(dst, page); 4455 4456 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4457 4458 kaddr = page_address(page); 4459 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4460 4461 src_offset += cur; 4462 len -= cur; 4463 offset = 0; 4464 i++; 4465 } 4466 } 4467 4468 /* 4469 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4470 * given bit number 4471 * @eb: the extent buffer 4472 * @start: offset of the bitmap item in the extent buffer 4473 * @nr: bit number 4474 * @page_index: return index of the page in the extent buffer that contains the 4475 * given bit number 4476 * @page_offset: return offset into the page given by page_index 4477 * 4478 * This helper hides the ugliness of finding the byte in an extent buffer which 4479 * contains a given bit. 4480 */ 4481 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4482 unsigned long start, unsigned long nr, 4483 unsigned long *page_index, 4484 size_t *page_offset) 4485 { 4486 size_t byte_offset = BIT_BYTE(nr); 4487 size_t offset; 4488 4489 /* 4490 * The byte we want is the offset of the extent buffer + the offset of 4491 * the bitmap item in the extent buffer + the offset of the byte in the 4492 * bitmap item. 4493 */ 4494 offset = start + offset_in_page(eb->start) + byte_offset; 4495 4496 *page_index = offset >> PAGE_SHIFT; 4497 *page_offset = offset_in_page(offset); 4498 } 4499 4500 /* 4501 * Determine whether a bit in a bitmap item is set. 4502 * 4503 * @eb: the extent buffer 4504 * @start: offset of the bitmap item in the extent buffer 4505 * @nr: bit number to test 4506 */ 4507 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4508 unsigned long nr) 4509 { 4510 u8 *kaddr; 4511 struct page *page; 4512 unsigned long i; 4513 size_t offset; 4514 4515 eb_bitmap_offset(eb, start, nr, &i, &offset); 4516 page = eb->pages[i]; 4517 assert_eb_page_uptodate(eb, page); 4518 kaddr = page_address(page); 4519 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4520 } 4521 4522 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4523 { 4524 unsigned long index = get_eb_page_index(bytenr); 4525 4526 if (check_eb_range(eb, bytenr, 1)) 4527 return NULL; 4528 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr); 4529 } 4530 4531 /* 4532 * Set an area of a bitmap to 1. 4533 * 4534 * @eb: the extent buffer 4535 * @start: offset of the bitmap item in the extent buffer 4536 * @pos: bit number of the first bit 4537 * @len: number of bits to set 4538 */ 4539 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4540 unsigned long pos, unsigned long len) 4541 { 4542 unsigned int first_byte = start + BIT_BYTE(pos); 4543 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4544 const bool same_byte = (first_byte == last_byte); 4545 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4546 u8 *kaddr; 4547 4548 if (same_byte) 4549 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4550 4551 /* Handle the first byte. */ 4552 kaddr = extent_buffer_get_byte(eb, first_byte); 4553 *kaddr |= mask; 4554 if (same_byte) 4555 return; 4556 4557 /* Handle the byte aligned part. */ 4558 ASSERT(first_byte + 1 <= last_byte); 4559 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4560 4561 /* Handle the last byte. */ 4562 kaddr = extent_buffer_get_byte(eb, last_byte); 4563 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4564 } 4565 4566 4567 /* 4568 * Clear an area of a bitmap. 4569 * 4570 * @eb: the extent buffer 4571 * @start: offset of the bitmap item in the extent buffer 4572 * @pos: bit number of the first bit 4573 * @len: number of bits to clear 4574 */ 4575 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4576 unsigned long start, unsigned long pos, 4577 unsigned long len) 4578 { 4579 unsigned int first_byte = start + BIT_BYTE(pos); 4580 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4581 const bool same_byte = (first_byte == last_byte); 4582 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4583 u8 *kaddr; 4584 4585 if (same_byte) 4586 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4587 4588 /* Handle the first byte. */ 4589 kaddr = extent_buffer_get_byte(eb, first_byte); 4590 *kaddr &= ~mask; 4591 if (same_byte) 4592 return; 4593 4594 /* Handle the byte aligned part. */ 4595 ASSERT(first_byte + 1 <= last_byte); 4596 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4597 4598 /* Handle the last byte. */ 4599 kaddr = extent_buffer_get_byte(eb, last_byte); 4600 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4601 } 4602 4603 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4604 { 4605 unsigned long distance = (src > dst) ? src - dst : dst - src; 4606 return distance < len; 4607 } 4608 4609 void memcpy_extent_buffer(const struct extent_buffer *dst, 4610 unsigned long dst_offset, unsigned long src_offset, 4611 unsigned long len) 4612 { 4613 unsigned long cur_off = 0; 4614 4615 if (check_eb_range(dst, dst_offset, len) || 4616 check_eb_range(dst, src_offset, len)) 4617 return; 4618 4619 while (cur_off < len) { 4620 unsigned long cur_src = cur_off + src_offset; 4621 unsigned long pg_index = get_eb_page_index(cur_src); 4622 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src); 4623 unsigned long cur_len = min(src_offset + len - cur_src, 4624 PAGE_SIZE - pg_off); 4625 void *src_addr = page_address(dst->pages[pg_index]) + pg_off; 4626 const bool use_memmove = areas_overlap(src_offset + cur_off, 4627 dst_offset + cur_off, cur_len); 4628 4629 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4630 use_memmove); 4631 cur_off += cur_len; 4632 } 4633 } 4634 4635 void memmove_extent_buffer(const struct extent_buffer *dst, 4636 unsigned long dst_offset, unsigned long src_offset, 4637 unsigned long len) 4638 { 4639 unsigned long dst_end = dst_offset + len - 1; 4640 unsigned long src_end = src_offset + len - 1; 4641 4642 if (check_eb_range(dst, dst_offset, len) || 4643 check_eb_range(dst, src_offset, len)) 4644 return; 4645 4646 if (dst_offset < src_offset) { 4647 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4648 return; 4649 } 4650 4651 while (len > 0) { 4652 unsigned long src_i; 4653 size_t cur; 4654 size_t dst_off_in_page; 4655 size_t src_off_in_page; 4656 void *src_addr; 4657 bool use_memmove; 4658 4659 src_i = get_eb_page_index(src_end); 4660 4661 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4662 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4663 4664 cur = min_t(unsigned long, len, src_off_in_page + 1); 4665 cur = min(cur, dst_off_in_page + 1); 4666 4667 src_addr = page_address(dst->pages[src_i]) + src_off_in_page - 4668 cur + 1; 4669 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4670 cur); 4671 4672 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4673 use_memmove); 4674 4675 dst_end -= cur; 4676 src_end -= cur; 4677 len -= cur; 4678 } 4679 } 4680 4681 #define GANG_LOOKUP_SIZE 16 4682 static struct extent_buffer *get_next_extent_buffer( 4683 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4684 { 4685 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4686 struct extent_buffer *found = NULL; 4687 u64 page_start = page_offset(page); 4688 u64 cur = page_start; 4689 4690 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4691 lockdep_assert_held(&fs_info->buffer_lock); 4692 4693 while (cur < page_start + PAGE_SIZE) { 4694 int ret; 4695 int i; 4696 4697 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4698 (void **)gang, cur >> fs_info->sectorsize_bits, 4699 min_t(unsigned int, GANG_LOOKUP_SIZE, 4700 PAGE_SIZE / fs_info->nodesize)); 4701 if (ret == 0) 4702 goto out; 4703 for (i = 0; i < ret; i++) { 4704 /* Already beyond page end */ 4705 if (gang[i]->start >= page_start + PAGE_SIZE) 4706 goto out; 4707 /* Found one */ 4708 if (gang[i]->start >= bytenr) { 4709 found = gang[i]; 4710 goto out; 4711 } 4712 } 4713 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4714 } 4715 out: 4716 return found; 4717 } 4718 4719 static int try_release_subpage_extent_buffer(struct page *page) 4720 { 4721 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4722 u64 cur = page_offset(page); 4723 const u64 end = page_offset(page) + PAGE_SIZE; 4724 int ret; 4725 4726 while (cur < end) { 4727 struct extent_buffer *eb = NULL; 4728 4729 /* 4730 * Unlike try_release_extent_buffer() which uses page->private 4731 * to grab buffer, for subpage case we rely on radix tree, thus 4732 * we need to ensure radix tree consistency. 4733 * 4734 * We also want an atomic snapshot of the radix tree, thus go 4735 * with spinlock rather than RCU. 4736 */ 4737 spin_lock(&fs_info->buffer_lock); 4738 eb = get_next_extent_buffer(fs_info, page, cur); 4739 if (!eb) { 4740 /* No more eb in the page range after or at cur */ 4741 spin_unlock(&fs_info->buffer_lock); 4742 break; 4743 } 4744 cur = eb->start + eb->len; 4745 4746 /* 4747 * The same as try_release_extent_buffer(), to ensure the eb 4748 * won't disappear out from under us. 4749 */ 4750 spin_lock(&eb->refs_lock); 4751 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4752 spin_unlock(&eb->refs_lock); 4753 spin_unlock(&fs_info->buffer_lock); 4754 break; 4755 } 4756 spin_unlock(&fs_info->buffer_lock); 4757 4758 /* 4759 * If tree ref isn't set then we know the ref on this eb is a 4760 * real ref, so just return, this eb will likely be freed soon 4761 * anyway. 4762 */ 4763 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4764 spin_unlock(&eb->refs_lock); 4765 break; 4766 } 4767 4768 /* 4769 * Here we don't care about the return value, we will always 4770 * check the page private at the end. And 4771 * release_extent_buffer() will release the refs_lock. 4772 */ 4773 release_extent_buffer(eb); 4774 } 4775 /* 4776 * Finally to check if we have cleared page private, as if we have 4777 * released all ebs in the page, the page private should be cleared now. 4778 */ 4779 spin_lock(&page->mapping->private_lock); 4780 if (!PagePrivate(page)) 4781 ret = 1; 4782 else 4783 ret = 0; 4784 spin_unlock(&page->mapping->private_lock); 4785 return ret; 4786 4787 } 4788 4789 int try_release_extent_buffer(struct page *page) 4790 { 4791 struct extent_buffer *eb; 4792 4793 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4794 return try_release_subpage_extent_buffer(page); 4795 4796 /* 4797 * We need to make sure nobody is changing page->private, as we rely on 4798 * page->private as the pointer to extent buffer. 4799 */ 4800 spin_lock(&page->mapping->private_lock); 4801 if (!PagePrivate(page)) { 4802 spin_unlock(&page->mapping->private_lock); 4803 return 1; 4804 } 4805 4806 eb = (struct extent_buffer *)page->private; 4807 BUG_ON(!eb); 4808 4809 /* 4810 * This is a little awful but should be ok, we need to make sure that 4811 * the eb doesn't disappear out from under us while we're looking at 4812 * this page. 4813 */ 4814 spin_lock(&eb->refs_lock); 4815 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4816 spin_unlock(&eb->refs_lock); 4817 spin_unlock(&page->mapping->private_lock); 4818 return 0; 4819 } 4820 spin_unlock(&page->mapping->private_lock); 4821 4822 /* 4823 * If tree ref isn't set then we know the ref on this eb is a real ref, 4824 * so just return, this page will likely be freed soon anyway. 4825 */ 4826 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4827 spin_unlock(&eb->refs_lock); 4828 return 0; 4829 } 4830 4831 return release_extent_buffer(eb); 4832 } 4833 4834 /* 4835 * btrfs_readahead_tree_block - attempt to readahead a child block 4836 * @fs_info: the fs_info 4837 * @bytenr: bytenr to read 4838 * @owner_root: objectid of the root that owns this eb 4839 * @gen: generation for the uptodate check, can be 0 4840 * @level: level for the eb 4841 * 4842 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4843 * normal uptodate check of the eb, without checking the generation. If we have 4844 * to read the block we will not block on anything. 4845 */ 4846 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4847 u64 bytenr, u64 owner_root, u64 gen, int level) 4848 { 4849 struct btrfs_tree_parent_check check = { 4850 .has_first_key = 0, 4851 .level = level, 4852 .transid = gen 4853 }; 4854 struct extent_buffer *eb; 4855 int ret; 4856 4857 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4858 if (IS_ERR(eb)) 4859 return; 4860 4861 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4862 free_extent_buffer(eb); 4863 return; 4864 } 4865 4866 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4867 if (ret < 0) 4868 free_extent_buffer_stale(eb); 4869 else 4870 free_extent_buffer(eb); 4871 } 4872 4873 /* 4874 * btrfs_readahead_node_child - readahead a node's child block 4875 * @node: parent node we're reading from 4876 * @slot: slot in the parent node for the child we want to read 4877 * 4878 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4879 * the slot in the node provided. 4880 */ 4881 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4882 { 4883 btrfs_readahead_tree_block(node->fs_info, 4884 btrfs_node_blockptr(node, slot), 4885 btrfs_header_owner(node), 4886 btrfs_node_ptr_generation(node, slot), 4887 btrfs_header_level(node) - 1); 4888 } 4889