1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "block-group.h" 30 31 static struct kmem_cache *extent_state_cache; 32 static struct kmem_cache *extent_buffer_cache; 33 static struct bio_set btrfs_bioset; 34 35 static inline bool extent_state_in_tree(const struct extent_state *state) 36 { 37 return !RB_EMPTY_NODE(&state->rb_node); 38 } 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static LIST_HEAD(states); 42 static DEFINE_SPINLOCK(leak_lock); 43 44 static inline void btrfs_leak_debug_add(spinlock_t *lock, 45 struct list_head *new, 46 struct list_head *head) 47 { 48 unsigned long flags; 49 50 spin_lock_irqsave(lock, flags); 51 list_add(new, head); 52 spin_unlock_irqrestore(lock, flags); 53 } 54 55 static inline void btrfs_leak_debug_del(spinlock_t *lock, 56 struct list_head *entry) 57 { 58 unsigned long flags; 59 60 spin_lock_irqsave(lock, flags); 61 list_del(entry); 62 spin_unlock_irqrestore(lock, flags); 63 } 64 65 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 66 { 67 struct extent_buffer *eb; 68 unsigned long flags; 69 70 /* 71 * If we didn't get into open_ctree our allocated_ebs will not be 72 * initialized, so just skip this. 73 */ 74 if (!fs_info->allocated_ebs.next) 75 return; 76 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 91 static inline void btrfs_extent_state_leak_debug_check(void) 92 { 93 struct extent_state *state; 94 95 while (!list_empty(&states)) { 96 state = list_entry(states.next, struct extent_state, leak_list); 97 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 98 state->start, state->end, state->state, 99 extent_state_in_tree(state), 100 refcount_read(&state->refs)); 101 list_del(&state->leak_list); 102 kmem_cache_free(extent_state_cache, state); 103 } 104 } 105 106 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 107 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 108 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 109 struct extent_io_tree *tree, u64 start, u64 end) 110 { 111 struct inode *inode = tree->private_data; 112 u64 isize; 113 114 if (!inode || !is_data_inode(inode)) 115 return; 116 117 isize = i_size_read(inode); 118 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 119 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 120 "%s: ino %llu isize %llu odd range [%llu,%llu]", 121 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 122 } 123 } 124 #else 125 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 126 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 127 #define btrfs_extent_state_leak_debug_check() do {} while (0) 128 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 129 #endif 130 131 struct tree_entry { 132 u64 start; 133 u64 end; 134 struct rb_node rb_node; 135 }; 136 137 struct extent_page_data { 138 struct bio *bio; 139 /* tells writepage not to lock the state bits for this range 140 * it still does the unlocking 141 */ 142 unsigned int extent_locked:1; 143 144 /* tells the submit_bio code to use REQ_SYNC */ 145 unsigned int sync_io:1; 146 }; 147 148 static int add_extent_changeset(struct extent_state *state, u32 bits, 149 struct extent_changeset *changeset, 150 int set) 151 { 152 int ret; 153 154 if (!changeset) 155 return 0; 156 if (set && (state->state & bits) == bits) 157 return 0; 158 if (!set && (state->state & bits) == 0) 159 return 0; 160 changeset->bytes_changed += state->end - state->start + 1; 161 ret = ulist_add(&changeset->range_changed, state->start, state->end, 162 GFP_ATOMIC); 163 return ret; 164 } 165 166 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 167 unsigned long bio_flags) 168 { 169 blk_status_t ret = 0; 170 struct extent_io_tree *tree = bio->bi_private; 171 172 bio->bi_private = NULL; 173 174 if (is_data_inode(tree->private_data)) 175 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 176 bio_flags); 177 else 178 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 179 mirror_num, bio_flags); 180 181 return blk_status_to_errno(ret); 182 } 183 184 /* Cleanup unsubmitted bios */ 185 static void end_write_bio(struct extent_page_data *epd, int ret) 186 { 187 if (epd->bio) { 188 epd->bio->bi_status = errno_to_blk_status(ret); 189 bio_endio(epd->bio); 190 epd->bio = NULL; 191 } 192 } 193 194 /* 195 * Submit bio from extent page data via submit_one_bio 196 * 197 * Return 0 if everything is OK. 198 * Return <0 for error. 199 */ 200 static int __must_check flush_write_bio(struct extent_page_data *epd) 201 { 202 int ret = 0; 203 204 if (epd->bio) { 205 ret = submit_one_bio(epd->bio, 0, 0); 206 /* 207 * Clean up of epd->bio is handled by its endio function. 208 * And endio is either triggered by successful bio execution 209 * or the error handler of submit bio hook. 210 * So at this point, no matter what happened, we don't need 211 * to clean up epd->bio. 212 */ 213 epd->bio = NULL; 214 } 215 return ret; 216 } 217 218 int __init extent_state_cache_init(void) 219 { 220 extent_state_cache = kmem_cache_create("btrfs_extent_state", 221 sizeof(struct extent_state), 0, 222 SLAB_MEM_SPREAD, NULL); 223 if (!extent_state_cache) 224 return -ENOMEM; 225 return 0; 226 } 227 228 int __init extent_io_init(void) 229 { 230 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 231 sizeof(struct extent_buffer), 0, 232 SLAB_MEM_SPREAD, NULL); 233 if (!extent_buffer_cache) 234 return -ENOMEM; 235 236 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 237 offsetof(struct btrfs_io_bio, bio), 238 BIOSET_NEED_BVECS)) 239 goto free_buffer_cache; 240 241 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 242 goto free_bioset; 243 244 return 0; 245 246 free_bioset: 247 bioset_exit(&btrfs_bioset); 248 249 free_buffer_cache: 250 kmem_cache_destroy(extent_buffer_cache); 251 extent_buffer_cache = NULL; 252 return -ENOMEM; 253 } 254 255 void __cold extent_state_cache_exit(void) 256 { 257 btrfs_extent_state_leak_debug_check(); 258 kmem_cache_destroy(extent_state_cache); 259 } 260 261 void __cold extent_io_exit(void) 262 { 263 /* 264 * Make sure all delayed rcu free are flushed before we 265 * destroy caches. 266 */ 267 rcu_barrier(); 268 kmem_cache_destroy(extent_buffer_cache); 269 bioset_exit(&btrfs_bioset); 270 } 271 272 /* 273 * For the file_extent_tree, we want to hold the inode lock when we lookup and 274 * update the disk_i_size, but lockdep will complain because our io_tree we hold 275 * the tree lock and get the inode lock when setting delalloc. These two things 276 * are unrelated, so make a class for the file_extent_tree so we don't get the 277 * two locking patterns mixed up. 278 */ 279 static struct lock_class_key file_extent_tree_class; 280 281 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 282 struct extent_io_tree *tree, unsigned int owner, 283 void *private_data) 284 { 285 tree->fs_info = fs_info; 286 tree->state = RB_ROOT; 287 tree->dirty_bytes = 0; 288 spin_lock_init(&tree->lock); 289 tree->private_data = private_data; 290 tree->owner = owner; 291 if (owner == IO_TREE_INODE_FILE_EXTENT) 292 lockdep_set_class(&tree->lock, &file_extent_tree_class); 293 } 294 295 void extent_io_tree_release(struct extent_io_tree *tree) 296 { 297 spin_lock(&tree->lock); 298 /* 299 * Do a single barrier for the waitqueue_active check here, the state 300 * of the waitqueue should not change once extent_io_tree_release is 301 * called. 302 */ 303 smp_mb(); 304 while (!RB_EMPTY_ROOT(&tree->state)) { 305 struct rb_node *node; 306 struct extent_state *state; 307 308 node = rb_first(&tree->state); 309 state = rb_entry(node, struct extent_state, rb_node); 310 rb_erase(&state->rb_node, &tree->state); 311 RB_CLEAR_NODE(&state->rb_node); 312 /* 313 * btree io trees aren't supposed to have tasks waiting for 314 * changes in the flags of extent states ever. 315 */ 316 ASSERT(!waitqueue_active(&state->wq)); 317 free_extent_state(state); 318 319 cond_resched_lock(&tree->lock); 320 } 321 spin_unlock(&tree->lock); 322 } 323 324 static struct extent_state *alloc_extent_state(gfp_t mask) 325 { 326 struct extent_state *state; 327 328 /* 329 * The given mask might be not appropriate for the slab allocator, 330 * drop the unsupported bits 331 */ 332 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 333 state = kmem_cache_alloc(extent_state_cache, mask); 334 if (!state) 335 return state; 336 state->state = 0; 337 state->failrec = NULL; 338 RB_CLEAR_NODE(&state->rb_node); 339 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 340 refcount_set(&state->refs, 1); 341 init_waitqueue_head(&state->wq); 342 trace_alloc_extent_state(state, mask, _RET_IP_); 343 return state; 344 } 345 346 void free_extent_state(struct extent_state *state) 347 { 348 if (!state) 349 return; 350 if (refcount_dec_and_test(&state->refs)) { 351 WARN_ON(extent_state_in_tree(state)); 352 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 353 trace_free_extent_state(state, _RET_IP_); 354 kmem_cache_free(extent_state_cache, state); 355 } 356 } 357 358 static struct rb_node *tree_insert(struct rb_root *root, 359 struct rb_node *search_start, 360 u64 offset, 361 struct rb_node *node, 362 struct rb_node ***p_in, 363 struct rb_node **parent_in) 364 { 365 struct rb_node **p; 366 struct rb_node *parent = NULL; 367 struct tree_entry *entry; 368 369 if (p_in && parent_in) { 370 p = *p_in; 371 parent = *parent_in; 372 goto do_insert; 373 } 374 375 p = search_start ? &search_start : &root->rb_node; 376 while (*p) { 377 parent = *p; 378 entry = rb_entry(parent, struct tree_entry, rb_node); 379 380 if (offset < entry->start) 381 p = &(*p)->rb_left; 382 else if (offset > entry->end) 383 p = &(*p)->rb_right; 384 else 385 return parent; 386 } 387 388 do_insert: 389 rb_link_node(node, parent, p); 390 rb_insert_color(node, root); 391 return NULL; 392 } 393 394 /** 395 * Search @tree for an entry that contains @offset. Such entry would have 396 * entry->start <= offset && entry->end >= offset. 397 * 398 * @tree: the tree to search 399 * @offset: offset that should fall within an entry in @tree 400 * @next_ret: pointer to the first entry whose range ends after @offset 401 * @prev_ret: pointer to the first entry whose range begins before @offset 402 * @p_ret: pointer where new node should be anchored (used when inserting an 403 * entry in the tree) 404 * @parent_ret: points to entry which would have been the parent of the entry, 405 * containing @offset 406 * 407 * This function returns a pointer to the entry that contains @offset byte 408 * address. If no such entry exists, then NULL is returned and the other 409 * pointer arguments to the function are filled, otherwise the found entry is 410 * returned and other pointers are left untouched. 411 */ 412 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 413 struct rb_node **next_ret, 414 struct rb_node **prev_ret, 415 struct rb_node ***p_ret, 416 struct rb_node **parent_ret) 417 { 418 struct rb_root *root = &tree->state; 419 struct rb_node **n = &root->rb_node; 420 struct rb_node *prev = NULL; 421 struct rb_node *orig_prev = NULL; 422 struct tree_entry *entry; 423 struct tree_entry *prev_entry = NULL; 424 425 while (*n) { 426 prev = *n; 427 entry = rb_entry(prev, struct tree_entry, rb_node); 428 prev_entry = entry; 429 430 if (offset < entry->start) 431 n = &(*n)->rb_left; 432 else if (offset > entry->end) 433 n = &(*n)->rb_right; 434 else 435 return *n; 436 } 437 438 if (p_ret) 439 *p_ret = n; 440 if (parent_ret) 441 *parent_ret = prev; 442 443 if (next_ret) { 444 orig_prev = prev; 445 while (prev && offset > prev_entry->end) { 446 prev = rb_next(prev); 447 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 448 } 449 *next_ret = prev; 450 prev = orig_prev; 451 } 452 453 if (prev_ret) { 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 while (prev && offset < prev_entry->start) { 456 prev = rb_prev(prev); 457 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 458 } 459 *prev_ret = prev; 460 } 461 return NULL; 462 } 463 464 static inline struct rb_node * 465 tree_search_for_insert(struct extent_io_tree *tree, 466 u64 offset, 467 struct rb_node ***p_ret, 468 struct rb_node **parent_ret) 469 { 470 struct rb_node *next= NULL; 471 struct rb_node *ret; 472 473 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 474 if (!ret) 475 return next; 476 return ret; 477 } 478 479 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 480 u64 offset) 481 { 482 return tree_search_for_insert(tree, offset, NULL, NULL); 483 } 484 485 /* 486 * utility function to look for merge candidates inside a given range. 487 * Any extents with matching state are merged together into a single 488 * extent in the tree. Extents with EXTENT_IO in their state field 489 * are not merged because the end_io handlers need to be able to do 490 * operations on them without sleeping (or doing allocations/splits). 491 * 492 * This should be called with the tree lock held. 493 */ 494 static void merge_state(struct extent_io_tree *tree, 495 struct extent_state *state) 496 { 497 struct extent_state *other; 498 struct rb_node *other_node; 499 500 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 501 return; 502 503 other_node = rb_prev(&state->rb_node); 504 if (other_node) { 505 other = rb_entry(other_node, struct extent_state, rb_node); 506 if (other->end == state->start - 1 && 507 other->state == state->state) { 508 if (tree->private_data && 509 is_data_inode(tree->private_data)) 510 btrfs_merge_delalloc_extent(tree->private_data, 511 state, other); 512 state->start = other->start; 513 rb_erase(&other->rb_node, &tree->state); 514 RB_CLEAR_NODE(&other->rb_node); 515 free_extent_state(other); 516 } 517 } 518 other_node = rb_next(&state->rb_node); 519 if (other_node) { 520 other = rb_entry(other_node, struct extent_state, rb_node); 521 if (other->start == state->end + 1 && 522 other->state == state->state) { 523 if (tree->private_data && 524 is_data_inode(tree->private_data)) 525 btrfs_merge_delalloc_extent(tree->private_data, 526 state, other); 527 state->end = other->end; 528 rb_erase(&other->rb_node, &tree->state); 529 RB_CLEAR_NODE(&other->rb_node); 530 free_extent_state(other); 531 } 532 } 533 } 534 535 static void set_state_bits(struct extent_io_tree *tree, 536 struct extent_state *state, u32 *bits, 537 struct extent_changeset *changeset); 538 539 /* 540 * insert an extent_state struct into the tree. 'bits' are set on the 541 * struct before it is inserted. 542 * 543 * This may return -EEXIST if the extent is already there, in which case the 544 * state struct is freed. 545 * 546 * The tree lock is not taken internally. This is a utility function and 547 * probably isn't what you want to call (see set/clear_extent_bit). 548 */ 549 static int insert_state(struct extent_io_tree *tree, 550 struct extent_state *state, u64 start, u64 end, 551 struct rb_node ***p, 552 struct rb_node **parent, 553 u32 *bits, struct extent_changeset *changeset) 554 { 555 struct rb_node *node; 556 557 if (end < start) { 558 btrfs_err(tree->fs_info, 559 "insert state: end < start %llu %llu", end, start); 560 WARN_ON(1); 561 } 562 state->start = start; 563 state->end = end; 564 565 set_state_bits(tree, state, bits, changeset); 566 567 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 568 if (node) { 569 struct extent_state *found; 570 found = rb_entry(node, struct extent_state, rb_node); 571 btrfs_err(tree->fs_info, 572 "found node %llu %llu on insert of %llu %llu", 573 found->start, found->end, start, end); 574 return -EEXIST; 575 } 576 merge_state(tree, state); 577 return 0; 578 } 579 580 /* 581 * split a given extent state struct in two, inserting the preallocated 582 * struct 'prealloc' as the newly created second half. 'split' indicates an 583 * offset inside 'orig' where it should be split. 584 * 585 * Before calling, 586 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 587 * are two extent state structs in the tree: 588 * prealloc: [orig->start, split - 1] 589 * orig: [ split, orig->end ] 590 * 591 * The tree locks are not taken by this function. They need to be held 592 * by the caller. 593 */ 594 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 595 struct extent_state *prealloc, u64 split) 596 { 597 struct rb_node *node; 598 599 if (tree->private_data && is_data_inode(tree->private_data)) 600 btrfs_split_delalloc_extent(tree->private_data, orig, split); 601 602 prealloc->start = orig->start; 603 prealloc->end = split - 1; 604 prealloc->state = orig->state; 605 orig->start = split; 606 607 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 608 &prealloc->rb_node, NULL, NULL); 609 if (node) { 610 free_extent_state(prealloc); 611 return -EEXIST; 612 } 613 return 0; 614 } 615 616 static struct extent_state *next_state(struct extent_state *state) 617 { 618 struct rb_node *next = rb_next(&state->rb_node); 619 if (next) 620 return rb_entry(next, struct extent_state, rb_node); 621 else 622 return NULL; 623 } 624 625 /* 626 * utility function to clear some bits in an extent state struct. 627 * it will optionally wake up anyone waiting on this state (wake == 1). 628 * 629 * If no bits are set on the state struct after clearing things, the 630 * struct is freed and removed from the tree 631 */ 632 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 633 struct extent_state *state, 634 u32 *bits, int wake, 635 struct extent_changeset *changeset) 636 { 637 struct extent_state *next; 638 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 639 int ret; 640 641 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 642 u64 range = state->end - state->start + 1; 643 WARN_ON(range > tree->dirty_bytes); 644 tree->dirty_bytes -= range; 645 } 646 647 if (tree->private_data && is_data_inode(tree->private_data)) 648 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 649 650 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 651 BUG_ON(ret < 0); 652 state->state &= ~bits_to_clear; 653 if (wake) 654 wake_up(&state->wq); 655 if (state->state == 0) { 656 next = next_state(state); 657 if (extent_state_in_tree(state)) { 658 rb_erase(&state->rb_node, &tree->state); 659 RB_CLEAR_NODE(&state->rb_node); 660 free_extent_state(state); 661 } else { 662 WARN_ON(1); 663 } 664 } else { 665 merge_state(tree, state); 666 next = next_state(state); 667 } 668 return next; 669 } 670 671 static struct extent_state * 672 alloc_extent_state_atomic(struct extent_state *prealloc) 673 { 674 if (!prealloc) 675 prealloc = alloc_extent_state(GFP_ATOMIC); 676 677 return prealloc; 678 } 679 680 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 681 { 682 btrfs_panic(tree->fs_info, err, 683 "locking error: extent tree was modified by another thread while locked"); 684 } 685 686 /* 687 * clear some bits on a range in the tree. This may require splitting 688 * or inserting elements in the tree, so the gfp mask is used to 689 * indicate which allocations or sleeping are allowed. 690 * 691 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 692 * the given range from the tree regardless of state (ie for truncate). 693 * 694 * the range [start, end] is inclusive. 695 * 696 * This takes the tree lock, and returns 0 on success and < 0 on error. 697 */ 698 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 699 u32 bits, int wake, int delete, 700 struct extent_state **cached_state, 701 gfp_t mask, struct extent_changeset *changeset) 702 { 703 struct extent_state *state; 704 struct extent_state *cached; 705 struct extent_state *prealloc = NULL; 706 struct rb_node *node; 707 u64 last_end; 708 int err; 709 int clear = 0; 710 711 btrfs_debug_check_extent_io_range(tree, start, end); 712 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 713 714 if (bits & EXTENT_DELALLOC) 715 bits |= EXTENT_NORESERVE; 716 717 if (delete) 718 bits |= ~EXTENT_CTLBITS; 719 720 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 721 clear = 1; 722 again: 723 if (!prealloc && gfpflags_allow_blocking(mask)) { 724 /* 725 * Don't care for allocation failure here because we might end 726 * up not needing the pre-allocated extent state at all, which 727 * is the case if we only have in the tree extent states that 728 * cover our input range and don't cover too any other range. 729 * If we end up needing a new extent state we allocate it later. 730 */ 731 prealloc = alloc_extent_state(mask); 732 } 733 734 spin_lock(&tree->lock); 735 if (cached_state) { 736 cached = *cached_state; 737 738 if (clear) { 739 *cached_state = NULL; 740 cached_state = NULL; 741 } 742 743 if (cached && extent_state_in_tree(cached) && 744 cached->start <= start && cached->end > start) { 745 if (clear) 746 refcount_dec(&cached->refs); 747 state = cached; 748 goto hit_next; 749 } 750 if (clear) 751 free_extent_state(cached); 752 } 753 /* 754 * this search will find the extents that end after 755 * our range starts 756 */ 757 node = tree_search(tree, start); 758 if (!node) 759 goto out; 760 state = rb_entry(node, struct extent_state, rb_node); 761 hit_next: 762 if (state->start > end) 763 goto out; 764 WARN_ON(state->end < start); 765 last_end = state->end; 766 767 /* the state doesn't have the wanted bits, go ahead */ 768 if (!(state->state & bits)) { 769 state = next_state(state); 770 goto next; 771 } 772 773 /* 774 * | ---- desired range ---- | 775 * | state | or 776 * | ------------- state -------------- | 777 * 778 * We need to split the extent we found, and may flip 779 * bits on second half. 780 * 781 * If the extent we found extends past our range, we 782 * just split and search again. It'll get split again 783 * the next time though. 784 * 785 * If the extent we found is inside our range, we clear 786 * the desired bit on it. 787 */ 788 789 if (state->start < start) { 790 prealloc = alloc_extent_state_atomic(prealloc); 791 BUG_ON(!prealloc); 792 err = split_state(tree, state, prealloc, start); 793 if (err) 794 extent_io_tree_panic(tree, err); 795 796 prealloc = NULL; 797 if (err) 798 goto out; 799 if (state->end <= end) { 800 state = clear_state_bit(tree, state, &bits, wake, 801 changeset); 802 goto next; 803 } 804 goto search_again; 805 } 806 /* 807 * | ---- desired range ---- | 808 * | state | 809 * We need to split the extent, and clear the bit 810 * on the first half 811 */ 812 if (state->start <= end && state->end > end) { 813 prealloc = alloc_extent_state_atomic(prealloc); 814 BUG_ON(!prealloc); 815 err = split_state(tree, state, prealloc, end + 1); 816 if (err) 817 extent_io_tree_panic(tree, err); 818 819 if (wake) 820 wake_up(&state->wq); 821 822 clear_state_bit(tree, prealloc, &bits, wake, changeset); 823 824 prealloc = NULL; 825 goto out; 826 } 827 828 state = clear_state_bit(tree, state, &bits, wake, changeset); 829 next: 830 if (last_end == (u64)-1) 831 goto out; 832 start = last_end + 1; 833 if (start <= end && state && !need_resched()) 834 goto hit_next; 835 836 search_again: 837 if (start > end) 838 goto out; 839 spin_unlock(&tree->lock); 840 if (gfpflags_allow_blocking(mask)) 841 cond_resched(); 842 goto again; 843 844 out: 845 spin_unlock(&tree->lock); 846 if (prealloc) 847 free_extent_state(prealloc); 848 849 return 0; 850 851 } 852 853 static void wait_on_state(struct extent_io_tree *tree, 854 struct extent_state *state) 855 __releases(tree->lock) 856 __acquires(tree->lock) 857 { 858 DEFINE_WAIT(wait); 859 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 860 spin_unlock(&tree->lock); 861 schedule(); 862 spin_lock(&tree->lock); 863 finish_wait(&state->wq, &wait); 864 } 865 866 /* 867 * waits for one or more bits to clear on a range in the state tree. 868 * The range [start, end] is inclusive. 869 * The tree lock is taken by this function 870 */ 871 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 872 u32 bits) 873 { 874 struct extent_state *state; 875 struct rb_node *node; 876 877 btrfs_debug_check_extent_io_range(tree, start, end); 878 879 spin_lock(&tree->lock); 880 again: 881 while (1) { 882 /* 883 * this search will find all the extents that end after 884 * our range starts 885 */ 886 node = tree_search(tree, start); 887 process_node: 888 if (!node) 889 break; 890 891 state = rb_entry(node, struct extent_state, rb_node); 892 893 if (state->start > end) 894 goto out; 895 896 if (state->state & bits) { 897 start = state->start; 898 refcount_inc(&state->refs); 899 wait_on_state(tree, state); 900 free_extent_state(state); 901 goto again; 902 } 903 start = state->end + 1; 904 905 if (start > end) 906 break; 907 908 if (!cond_resched_lock(&tree->lock)) { 909 node = rb_next(node); 910 goto process_node; 911 } 912 } 913 out: 914 spin_unlock(&tree->lock); 915 } 916 917 static void set_state_bits(struct extent_io_tree *tree, 918 struct extent_state *state, 919 u32 *bits, struct extent_changeset *changeset) 920 { 921 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 922 int ret; 923 924 if (tree->private_data && is_data_inode(tree->private_data)) 925 btrfs_set_delalloc_extent(tree->private_data, state, bits); 926 927 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 928 u64 range = state->end - state->start + 1; 929 tree->dirty_bytes += range; 930 } 931 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 932 BUG_ON(ret < 0); 933 state->state |= bits_to_set; 934 } 935 936 static void cache_state_if_flags(struct extent_state *state, 937 struct extent_state **cached_ptr, 938 unsigned flags) 939 { 940 if (cached_ptr && !(*cached_ptr)) { 941 if (!flags || (state->state & flags)) { 942 *cached_ptr = state; 943 refcount_inc(&state->refs); 944 } 945 } 946 } 947 948 static void cache_state(struct extent_state *state, 949 struct extent_state **cached_ptr) 950 { 951 return cache_state_if_flags(state, cached_ptr, 952 EXTENT_LOCKED | EXTENT_BOUNDARY); 953 } 954 955 /* 956 * set some bits on a range in the tree. This may require allocations or 957 * sleeping, so the gfp mask is used to indicate what is allowed. 958 * 959 * If any of the exclusive bits are set, this will fail with -EEXIST if some 960 * part of the range already has the desired bits set. The start of the 961 * existing range is returned in failed_start in this case. 962 * 963 * [start, end] is inclusive This takes the tree lock. 964 */ 965 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 966 u32 exclusive_bits, u64 *failed_start, 967 struct extent_state **cached_state, gfp_t mask, 968 struct extent_changeset *changeset) 969 { 970 struct extent_state *state; 971 struct extent_state *prealloc = NULL; 972 struct rb_node *node; 973 struct rb_node **p; 974 struct rb_node *parent; 975 int err = 0; 976 u64 last_start; 977 u64 last_end; 978 979 btrfs_debug_check_extent_io_range(tree, start, end); 980 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 981 982 if (exclusive_bits) 983 ASSERT(failed_start); 984 else 985 ASSERT(failed_start == NULL); 986 again: 987 if (!prealloc && gfpflags_allow_blocking(mask)) { 988 /* 989 * Don't care for allocation failure here because we might end 990 * up not needing the pre-allocated extent state at all, which 991 * is the case if we only have in the tree extent states that 992 * cover our input range and don't cover too any other range. 993 * If we end up needing a new extent state we allocate it later. 994 */ 995 prealloc = alloc_extent_state(mask); 996 } 997 998 spin_lock(&tree->lock); 999 if (cached_state && *cached_state) { 1000 state = *cached_state; 1001 if (state->start <= start && state->end > start && 1002 extent_state_in_tree(state)) { 1003 node = &state->rb_node; 1004 goto hit_next; 1005 } 1006 } 1007 /* 1008 * this search will find all the extents that end after 1009 * our range starts. 1010 */ 1011 node = tree_search_for_insert(tree, start, &p, &parent); 1012 if (!node) { 1013 prealloc = alloc_extent_state_atomic(prealloc); 1014 BUG_ON(!prealloc); 1015 err = insert_state(tree, prealloc, start, end, 1016 &p, &parent, &bits, changeset); 1017 if (err) 1018 extent_io_tree_panic(tree, err); 1019 1020 cache_state(prealloc, cached_state); 1021 prealloc = NULL; 1022 goto out; 1023 } 1024 state = rb_entry(node, struct extent_state, rb_node); 1025 hit_next: 1026 last_start = state->start; 1027 last_end = state->end; 1028 1029 /* 1030 * | ---- desired range ---- | 1031 * | state | 1032 * 1033 * Just lock what we found and keep going 1034 */ 1035 if (state->start == start && state->end <= end) { 1036 if (state->state & exclusive_bits) { 1037 *failed_start = state->start; 1038 err = -EEXIST; 1039 goto out; 1040 } 1041 1042 set_state_bits(tree, state, &bits, changeset); 1043 cache_state(state, cached_state); 1044 merge_state(tree, state); 1045 if (last_end == (u64)-1) 1046 goto out; 1047 start = last_end + 1; 1048 state = next_state(state); 1049 if (start < end && state && state->start == start && 1050 !need_resched()) 1051 goto hit_next; 1052 goto search_again; 1053 } 1054 1055 /* 1056 * | ---- desired range ---- | 1057 * | state | 1058 * or 1059 * | ------------- state -------------- | 1060 * 1061 * We need to split the extent we found, and may flip bits on 1062 * second half. 1063 * 1064 * If the extent we found extends past our 1065 * range, we just split and search again. It'll get split 1066 * again the next time though. 1067 * 1068 * If the extent we found is inside our range, we set the 1069 * desired bit on it. 1070 */ 1071 if (state->start < start) { 1072 if (state->state & exclusive_bits) { 1073 *failed_start = start; 1074 err = -EEXIST; 1075 goto out; 1076 } 1077 1078 /* 1079 * If this extent already has all the bits we want set, then 1080 * skip it, not necessary to split it or do anything with it. 1081 */ 1082 if ((state->state & bits) == bits) { 1083 start = state->end + 1; 1084 cache_state(state, cached_state); 1085 goto search_again; 1086 } 1087 1088 prealloc = alloc_extent_state_atomic(prealloc); 1089 BUG_ON(!prealloc); 1090 err = split_state(tree, state, prealloc, start); 1091 if (err) 1092 extent_io_tree_panic(tree, err); 1093 1094 prealloc = NULL; 1095 if (err) 1096 goto out; 1097 if (state->end <= end) { 1098 set_state_bits(tree, state, &bits, changeset); 1099 cache_state(state, cached_state); 1100 merge_state(tree, state); 1101 if (last_end == (u64)-1) 1102 goto out; 1103 start = last_end + 1; 1104 state = next_state(state); 1105 if (start < end && state && state->start == start && 1106 !need_resched()) 1107 goto hit_next; 1108 } 1109 goto search_again; 1110 } 1111 /* 1112 * | ---- desired range ---- | 1113 * | state | or | state | 1114 * 1115 * There's a hole, we need to insert something in it and 1116 * ignore the extent we found. 1117 */ 1118 if (state->start > start) { 1119 u64 this_end; 1120 if (end < last_start) 1121 this_end = end; 1122 else 1123 this_end = last_start - 1; 1124 1125 prealloc = alloc_extent_state_atomic(prealloc); 1126 BUG_ON(!prealloc); 1127 1128 /* 1129 * Avoid to free 'prealloc' if it can be merged with 1130 * the later extent. 1131 */ 1132 err = insert_state(tree, prealloc, start, this_end, 1133 NULL, NULL, &bits, changeset); 1134 if (err) 1135 extent_io_tree_panic(tree, err); 1136 1137 cache_state(prealloc, cached_state); 1138 prealloc = NULL; 1139 start = this_end + 1; 1140 goto search_again; 1141 } 1142 /* 1143 * | ---- desired range ---- | 1144 * | state | 1145 * We need to split the extent, and set the bit 1146 * on the first half 1147 */ 1148 if (state->start <= end && state->end > end) { 1149 if (state->state & exclusive_bits) { 1150 *failed_start = start; 1151 err = -EEXIST; 1152 goto out; 1153 } 1154 1155 prealloc = alloc_extent_state_atomic(prealloc); 1156 BUG_ON(!prealloc); 1157 err = split_state(tree, state, prealloc, end + 1); 1158 if (err) 1159 extent_io_tree_panic(tree, err); 1160 1161 set_state_bits(tree, prealloc, &bits, changeset); 1162 cache_state(prealloc, cached_state); 1163 merge_state(tree, prealloc); 1164 prealloc = NULL; 1165 goto out; 1166 } 1167 1168 search_again: 1169 if (start > end) 1170 goto out; 1171 spin_unlock(&tree->lock); 1172 if (gfpflags_allow_blocking(mask)) 1173 cond_resched(); 1174 goto again; 1175 1176 out: 1177 spin_unlock(&tree->lock); 1178 if (prealloc) 1179 free_extent_state(prealloc); 1180 1181 return err; 1182 1183 } 1184 1185 /** 1186 * convert_extent_bit - convert all bits in a given range from one bit to 1187 * another 1188 * @tree: the io tree to search 1189 * @start: the start offset in bytes 1190 * @end: the end offset in bytes (inclusive) 1191 * @bits: the bits to set in this range 1192 * @clear_bits: the bits to clear in this range 1193 * @cached_state: state that we're going to cache 1194 * 1195 * This will go through and set bits for the given range. If any states exist 1196 * already in this range they are set with the given bit and cleared of the 1197 * clear_bits. This is only meant to be used by things that are mergeable, ie 1198 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1199 * boundary bits like LOCK. 1200 * 1201 * All allocations are done with GFP_NOFS. 1202 */ 1203 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1204 u32 bits, u32 clear_bits, 1205 struct extent_state **cached_state) 1206 { 1207 struct extent_state *state; 1208 struct extent_state *prealloc = NULL; 1209 struct rb_node *node; 1210 struct rb_node **p; 1211 struct rb_node *parent; 1212 int err = 0; 1213 u64 last_start; 1214 u64 last_end; 1215 bool first_iteration = true; 1216 1217 btrfs_debug_check_extent_io_range(tree, start, end); 1218 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1219 clear_bits); 1220 1221 again: 1222 if (!prealloc) { 1223 /* 1224 * Best effort, don't worry if extent state allocation fails 1225 * here for the first iteration. We might have a cached state 1226 * that matches exactly the target range, in which case no 1227 * extent state allocations are needed. We'll only know this 1228 * after locking the tree. 1229 */ 1230 prealloc = alloc_extent_state(GFP_NOFS); 1231 if (!prealloc && !first_iteration) 1232 return -ENOMEM; 1233 } 1234 1235 spin_lock(&tree->lock); 1236 if (cached_state && *cached_state) { 1237 state = *cached_state; 1238 if (state->start <= start && state->end > start && 1239 extent_state_in_tree(state)) { 1240 node = &state->rb_node; 1241 goto hit_next; 1242 } 1243 } 1244 1245 /* 1246 * this search will find all the extents that end after 1247 * our range starts. 1248 */ 1249 node = tree_search_for_insert(tree, start, &p, &parent); 1250 if (!node) { 1251 prealloc = alloc_extent_state_atomic(prealloc); 1252 if (!prealloc) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 err = insert_state(tree, prealloc, start, end, 1257 &p, &parent, &bits, NULL); 1258 if (err) 1259 extent_io_tree_panic(tree, err); 1260 cache_state(prealloc, cached_state); 1261 prealloc = NULL; 1262 goto out; 1263 } 1264 state = rb_entry(node, struct extent_state, rb_node); 1265 hit_next: 1266 last_start = state->start; 1267 last_end = state->end; 1268 1269 /* 1270 * | ---- desired range ---- | 1271 * | state | 1272 * 1273 * Just lock what we found and keep going 1274 */ 1275 if (state->start == start && state->end <= end) { 1276 set_state_bits(tree, state, &bits, NULL); 1277 cache_state(state, cached_state); 1278 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1279 if (last_end == (u64)-1) 1280 goto out; 1281 start = last_end + 1; 1282 if (start < end && state && state->start == start && 1283 !need_resched()) 1284 goto hit_next; 1285 goto search_again; 1286 } 1287 1288 /* 1289 * | ---- desired range ---- | 1290 * | state | 1291 * or 1292 * | ------------- state -------------- | 1293 * 1294 * We need to split the extent we found, and may flip bits on 1295 * second half. 1296 * 1297 * If the extent we found extends past our 1298 * range, we just split and search again. It'll get split 1299 * again the next time though. 1300 * 1301 * If the extent we found is inside our range, we set the 1302 * desired bit on it. 1303 */ 1304 if (state->start < start) { 1305 prealloc = alloc_extent_state_atomic(prealloc); 1306 if (!prealloc) { 1307 err = -ENOMEM; 1308 goto out; 1309 } 1310 err = split_state(tree, state, prealloc, start); 1311 if (err) 1312 extent_io_tree_panic(tree, err); 1313 prealloc = NULL; 1314 if (err) 1315 goto out; 1316 if (state->end <= end) { 1317 set_state_bits(tree, state, &bits, NULL); 1318 cache_state(state, cached_state); 1319 state = clear_state_bit(tree, state, &clear_bits, 0, 1320 NULL); 1321 if (last_end == (u64)-1) 1322 goto out; 1323 start = last_end + 1; 1324 if (start < end && state && state->start == start && 1325 !need_resched()) 1326 goto hit_next; 1327 } 1328 goto search_again; 1329 } 1330 /* 1331 * | ---- desired range ---- | 1332 * | state | or | state | 1333 * 1334 * There's a hole, we need to insert something in it and 1335 * ignore the extent we found. 1336 */ 1337 if (state->start > start) { 1338 u64 this_end; 1339 if (end < last_start) 1340 this_end = end; 1341 else 1342 this_end = last_start - 1; 1343 1344 prealloc = alloc_extent_state_atomic(prealloc); 1345 if (!prealloc) { 1346 err = -ENOMEM; 1347 goto out; 1348 } 1349 1350 /* 1351 * Avoid to free 'prealloc' if it can be merged with 1352 * the later extent. 1353 */ 1354 err = insert_state(tree, prealloc, start, this_end, 1355 NULL, NULL, &bits, NULL); 1356 if (err) 1357 extent_io_tree_panic(tree, err); 1358 cache_state(prealloc, cached_state); 1359 prealloc = NULL; 1360 start = this_end + 1; 1361 goto search_again; 1362 } 1363 /* 1364 * | ---- desired range ---- | 1365 * | state | 1366 * We need to split the extent, and set the bit 1367 * on the first half 1368 */ 1369 if (state->start <= end && state->end > end) { 1370 prealloc = alloc_extent_state_atomic(prealloc); 1371 if (!prealloc) { 1372 err = -ENOMEM; 1373 goto out; 1374 } 1375 1376 err = split_state(tree, state, prealloc, end + 1); 1377 if (err) 1378 extent_io_tree_panic(tree, err); 1379 1380 set_state_bits(tree, prealloc, &bits, NULL); 1381 cache_state(prealloc, cached_state); 1382 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1383 prealloc = NULL; 1384 goto out; 1385 } 1386 1387 search_again: 1388 if (start > end) 1389 goto out; 1390 spin_unlock(&tree->lock); 1391 cond_resched(); 1392 first_iteration = false; 1393 goto again; 1394 1395 out: 1396 spin_unlock(&tree->lock); 1397 if (prealloc) 1398 free_extent_state(prealloc); 1399 1400 return err; 1401 } 1402 1403 /* wrappers around set/clear extent bit */ 1404 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1405 u32 bits, struct extent_changeset *changeset) 1406 { 1407 /* 1408 * We don't support EXTENT_LOCKED yet, as current changeset will 1409 * record any bits changed, so for EXTENT_LOCKED case, it will 1410 * either fail with -EEXIST or changeset will record the whole 1411 * range. 1412 */ 1413 BUG_ON(bits & EXTENT_LOCKED); 1414 1415 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1416 changeset); 1417 } 1418 1419 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1420 u32 bits) 1421 { 1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1423 GFP_NOWAIT, NULL); 1424 } 1425 1426 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1427 u32 bits, int wake, int delete, 1428 struct extent_state **cached) 1429 { 1430 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1431 cached, GFP_NOFS, NULL); 1432 } 1433 1434 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1435 u32 bits, struct extent_changeset *changeset) 1436 { 1437 /* 1438 * Don't support EXTENT_LOCKED case, same reason as 1439 * set_record_extent_bits(). 1440 */ 1441 BUG_ON(bits & EXTENT_LOCKED); 1442 1443 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1444 changeset); 1445 } 1446 1447 /* 1448 * either insert or lock state struct between start and end use mask to tell 1449 * us if waiting is desired. 1450 */ 1451 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1452 struct extent_state **cached_state) 1453 { 1454 int err; 1455 u64 failed_start; 1456 1457 while (1) { 1458 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1459 EXTENT_LOCKED, &failed_start, 1460 cached_state, GFP_NOFS, NULL); 1461 if (err == -EEXIST) { 1462 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1463 start = failed_start; 1464 } else 1465 break; 1466 WARN_ON(start > end); 1467 } 1468 return err; 1469 } 1470 1471 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1472 { 1473 int err; 1474 u64 failed_start; 1475 1476 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1477 &failed_start, NULL, GFP_NOFS, NULL); 1478 if (err == -EEXIST) { 1479 if (failed_start > start) 1480 clear_extent_bit(tree, start, failed_start - 1, 1481 EXTENT_LOCKED, 1, 0, NULL); 1482 return 0; 1483 } 1484 return 1; 1485 } 1486 1487 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1488 { 1489 unsigned long index = start >> PAGE_SHIFT; 1490 unsigned long end_index = end >> PAGE_SHIFT; 1491 struct page *page; 1492 1493 while (index <= end_index) { 1494 page = find_get_page(inode->i_mapping, index); 1495 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1496 clear_page_dirty_for_io(page); 1497 put_page(page); 1498 index++; 1499 } 1500 } 1501 1502 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1503 { 1504 unsigned long index = start >> PAGE_SHIFT; 1505 unsigned long end_index = end >> PAGE_SHIFT; 1506 struct page *page; 1507 1508 while (index <= end_index) { 1509 page = find_get_page(inode->i_mapping, index); 1510 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1511 __set_page_dirty_nobuffers(page); 1512 account_page_redirty(page); 1513 put_page(page); 1514 index++; 1515 } 1516 } 1517 1518 /* find the first state struct with 'bits' set after 'start', and 1519 * return it. tree->lock must be held. NULL will returned if 1520 * nothing was found after 'start' 1521 */ 1522 static struct extent_state * 1523 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1524 { 1525 struct rb_node *node; 1526 struct extent_state *state; 1527 1528 /* 1529 * this search will find all the extents that end after 1530 * our range starts. 1531 */ 1532 node = tree_search(tree, start); 1533 if (!node) 1534 goto out; 1535 1536 while (1) { 1537 state = rb_entry(node, struct extent_state, rb_node); 1538 if (state->end >= start && (state->state & bits)) 1539 return state; 1540 1541 node = rb_next(node); 1542 if (!node) 1543 break; 1544 } 1545 out: 1546 return NULL; 1547 } 1548 1549 /* 1550 * Find the first offset in the io tree with one or more @bits set. 1551 * 1552 * Note: If there are multiple bits set in @bits, any of them will match. 1553 * 1554 * Return 0 if we find something, and update @start_ret and @end_ret. 1555 * Return 1 if we found nothing. 1556 */ 1557 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1558 u64 *start_ret, u64 *end_ret, u32 bits, 1559 struct extent_state **cached_state) 1560 { 1561 struct extent_state *state; 1562 int ret = 1; 1563 1564 spin_lock(&tree->lock); 1565 if (cached_state && *cached_state) { 1566 state = *cached_state; 1567 if (state->end == start - 1 && extent_state_in_tree(state)) { 1568 while ((state = next_state(state)) != NULL) { 1569 if (state->state & bits) 1570 goto got_it; 1571 } 1572 free_extent_state(*cached_state); 1573 *cached_state = NULL; 1574 goto out; 1575 } 1576 free_extent_state(*cached_state); 1577 *cached_state = NULL; 1578 } 1579 1580 state = find_first_extent_bit_state(tree, start, bits); 1581 got_it: 1582 if (state) { 1583 cache_state_if_flags(state, cached_state, 0); 1584 *start_ret = state->start; 1585 *end_ret = state->end; 1586 ret = 0; 1587 } 1588 out: 1589 spin_unlock(&tree->lock); 1590 return ret; 1591 } 1592 1593 /** 1594 * Find a contiguous area of bits 1595 * 1596 * @tree: io tree to check 1597 * @start: offset to start the search from 1598 * @start_ret: the first offset we found with the bits set 1599 * @end_ret: the final contiguous range of the bits that were set 1600 * @bits: bits to look for 1601 * 1602 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1603 * to set bits appropriately, and then merge them again. During this time it 1604 * will drop the tree->lock, so use this helper if you want to find the actual 1605 * contiguous area for given bits. We will search to the first bit we find, and 1606 * then walk down the tree until we find a non-contiguous area. The area 1607 * returned will be the full contiguous area with the bits set. 1608 */ 1609 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1610 u64 *start_ret, u64 *end_ret, u32 bits) 1611 { 1612 struct extent_state *state; 1613 int ret = 1; 1614 1615 spin_lock(&tree->lock); 1616 state = find_first_extent_bit_state(tree, start, bits); 1617 if (state) { 1618 *start_ret = state->start; 1619 *end_ret = state->end; 1620 while ((state = next_state(state)) != NULL) { 1621 if (state->start > (*end_ret + 1)) 1622 break; 1623 *end_ret = state->end; 1624 } 1625 ret = 0; 1626 } 1627 spin_unlock(&tree->lock); 1628 return ret; 1629 } 1630 1631 /** 1632 * Find the first range that has @bits not set. This range could start before 1633 * @start. 1634 * 1635 * @tree: the tree to search 1636 * @start: offset at/after which the found extent should start 1637 * @start_ret: records the beginning of the range 1638 * @end_ret: records the end of the range (inclusive) 1639 * @bits: the set of bits which must be unset 1640 * 1641 * Since unallocated range is also considered one which doesn't have the bits 1642 * set it's possible that @end_ret contains -1, this happens in case the range 1643 * spans (last_range_end, end of device]. In this case it's up to the caller to 1644 * trim @end_ret to the appropriate size. 1645 */ 1646 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1647 u64 *start_ret, u64 *end_ret, u32 bits) 1648 { 1649 struct extent_state *state; 1650 struct rb_node *node, *prev = NULL, *next; 1651 1652 spin_lock(&tree->lock); 1653 1654 /* Find first extent with bits cleared */ 1655 while (1) { 1656 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1657 if (!node && !next && !prev) { 1658 /* 1659 * Tree is completely empty, send full range and let 1660 * caller deal with it 1661 */ 1662 *start_ret = 0; 1663 *end_ret = -1; 1664 goto out; 1665 } else if (!node && !next) { 1666 /* 1667 * We are past the last allocated chunk, set start at 1668 * the end of the last extent. 1669 */ 1670 state = rb_entry(prev, struct extent_state, rb_node); 1671 *start_ret = state->end + 1; 1672 *end_ret = -1; 1673 goto out; 1674 } else if (!node) { 1675 node = next; 1676 } 1677 /* 1678 * At this point 'node' either contains 'start' or start is 1679 * before 'node' 1680 */ 1681 state = rb_entry(node, struct extent_state, rb_node); 1682 1683 if (in_range(start, state->start, state->end - state->start + 1)) { 1684 if (state->state & bits) { 1685 /* 1686 * |--range with bits sets--| 1687 * | 1688 * start 1689 */ 1690 start = state->end + 1; 1691 } else { 1692 /* 1693 * 'start' falls within a range that doesn't 1694 * have the bits set, so take its start as 1695 * the beginning of the desired range 1696 * 1697 * |--range with bits cleared----| 1698 * | 1699 * start 1700 */ 1701 *start_ret = state->start; 1702 break; 1703 } 1704 } else { 1705 /* 1706 * |---prev range---|---hole/unset---|---node range---| 1707 * | 1708 * start 1709 * 1710 * or 1711 * 1712 * |---hole/unset--||--first node--| 1713 * 0 | 1714 * start 1715 */ 1716 if (prev) { 1717 state = rb_entry(prev, struct extent_state, 1718 rb_node); 1719 *start_ret = state->end + 1; 1720 } else { 1721 *start_ret = 0; 1722 } 1723 break; 1724 } 1725 } 1726 1727 /* 1728 * Find the longest stretch from start until an entry which has the 1729 * bits set 1730 */ 1731 while (1) { 1732 state = rb_entry(node, struct extent_state, rb_node); 1733 if (state->end >= start && !(state->state & bits)) { 1734 *end_ret = state->end; 1735 } else { 1736 *end_ret = state->start - 1; 1737 break; 1738 } 1739 1740 node = rb_next(node); 1741 if (!node) 1742 break; 1743 } 1744 out: 1745 spin_unlock(&tree->lock); 1746 } 1747 1748 /* 1749 * find a contiguous range of bytes in the file marked as delalloc, not 1750 * more than 'max_bytes'. start and end are used to return the range, 1751 * 1752 * true is returned if we find something, false if nothing was in the tree 1753 */ 1754 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1755 u64 *end, u64 max_bytes, 1756 struct extent_state **cached_state) 1757 { 1758 struct rb_node *node; 1759 struct extent_state *state; 1760 u64 cur_start = *start; 1761 bool found = false; 1762 u64 total_bytes = 0; 1763 1764 spin_lock(&tree->lock); 1765 1766 /* 1767 * this search will find all the extents that end after 1768 * our range starts. 1769 */ 1770 node = tree_search(tree, cur_start); 1771 if (!node) { 1772 *end = (u64)-1; 1773 goto out; 1774 } 1775 1776 while (1) { 1777 state = rb_entry(node, struct extent_state, rb_node); 1778 if (found && (state->start != cur_start || 1779 (state->state & EXTENT_BOUNDARY))) { 1780 goto out; 1781 } 1782 if (!(state->state & EXTENT_DELALLOC)) { 1783 if (!found) 1784 *end = state->end; 1785 goto out; 1786 } 1787 if (!found) { 1788 *start = state->start; 1789 *cached_state = state; 1790 refcount_inc(&state->refs); 1791 } 1792 found = true; 1793 *end = state->end; 1794 cur_start = state->end + 1; 1795 node = rb_next(node); 1796 total_bytes += state->end - state->start + 1; 1797 if (total_bytes >= max_bytes) 1798 break; 1799 if (!node) 1800 break; 1801 } 1802 out: 1803 spin_unlock(&tree->lock); 1804 return found; 1805 } 1806 1807 static int __process_pages_contig(struct address_space *mapping, 1808 struct page *locked_page, 1809 pgoff_t start_index, pgoff_t end_index, 1810 unsigned long page_ops, pgoff_t *index_ret); 1811 1812 static noinline void __unlock_for_delalloc(struct inode *inode, 1813 struct page *locked_page, 1814 u64 start, u64 end) 1815 { 1816 unsigned long index = start >> PAGE_SHIFT; 1817 unsigned long end_index = end >> PAGE_SHIFT; 1818 1819 ASSERT(locked_page); 1820 if (index == locked_page->index && end_index == index) 1821 return; 1822 1823 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1824 PAGE_UNLOCK, NULL); 1825 } 1826 1827 static noinline int lock_delalloc_pages(struct inode *inode, 1828 struct page *locked_page, 1829 u64 delalloc_start, 1830 u64 delalloc_end) 1831 { 1832 unsigned long index = delalloc_start >> PAGE_SHIFT; 1833 unsigned long index_ret = index; 1834 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1835 int ret; 1836 1837 ASSERT(locked_page); 1838 if (index == locked_page->index && index == end_index) 1839 return 0; 1840 1841 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1842 end_index, PAGE_LOCK, &index_ret); 1843 if (ret == -EAGAIN) 1844 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1845 (u64)index_ret << PAGE_SHIFT); 1846 return ret; 1847 } 1848 1849 /* 1850 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1851 * more than @max_bytes. @Start and @end are used to return the range, 1852 * 1853 * Return: true if we find something 1854 * false if nothing was in the tree 1855 */ 1856 EXPORT_FOR_TESTS 1857 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1858 struct page *locked_page, u64 *start, 1859 u64 *end) 1860 { 1861 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1862 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1863 u64 delalloc_start; 1864 u64 delalloc_end; 1865 bool found; 1866 struct extent_state *cached_state = NULL; 1867 int ret; 1868 int loops = 0; 1869 1870 again: 1871 /* step one, find a bunch of delalloc bytes starting at start */ 1872 delalloc_start = *start; 1873 delalloc_end = 0; 1874 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1875 max_bytes, &cached_state); 1876 if (!found || delalloc_end <= *start) { 1877 *start = delalloc_start; 1878 *end = delalloc_end; 1879 free_extent_state(cached_state); 1880 return false; 1881 } 1882 1883 /* 1884 * start comes from the offset of locked_page. We have to lock 1885 * pages in order, so we can't process delalloc bytes before 1886 * locked_page 1887 */ 1888 if (delalloc_start < *start) 1889 delalloc_start = *start; 1890 1891 /* 1892 * make sure to limit the number of pages we try to lock down 1893 */ 1894 if (delalloc_end + 1 - delalloc_start > max_bytes) 1895 delalloc_end = delalloc_start + max_bytes - 1; 1896 1897 /* step two, lock all the pages after the page that has start */ 1898 ret = lock_delalloc_pages(inode, locked_page, 1899 delalloc_start, delalloc_end); 1900 ASSERT(!ret || ret == -EAGAIN); 1901 if (ret == -EAGAIN) { 1902 /* some of the pages are gone, lets avoid looping by 1903 * shortening the size of the delalloc range we're searching 1904 */ 1905 free_extent_state(cached_state); 1906 cached_state = NULL; 1907 if (!loops) { 1908 max_bytes = PAGE_SIZE; 1909 loops = 1; 1910 goto again; 1911 } else { 1912 found = false; 1913 goto out_failed; 1914 } 1915 } 1916 1917 /* step three, lock the state bits for the whole range */ 1918 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1919 1920 /* then test to make sure it is all still delalloc */ 1921 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1922 EXTENT_DELALLOC, 1, cached_state); 1923 if (!ret) { 1924 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1925 &cached_state); 1926 __unlock_for_delalloc(inode, locked_page, 1927 delalloc_start, delalloc_end); 1928 cond_resched(); 1929 goto again; 1930 } 1931 free_extent_state(cached_state); 1932 *start = delalloc_start; 1933 *end = delalloc_end; 1934 out_failed: 1935 return found; 1936 } 1937 1938 static int __process_pages_contig(struct address_space *mapping, 1939 struct page *locked_page, 1940 pgoff_t start_index, pgoff_t end_index, 1941 unsigned long page_ops, pgoff_t *index_ret) 1942 { 1943 unsigned long nr_pages = end_index - start_index + 1; 1944 unsigned long pages_processed = 0; 1945 pgoff_t index = start_index; 1946 struct page *pages[16]; 1947 unsigned ret; 1948 int err = 0; 1949 int i; 1950 1951 if (page_ops & PAGE_LOCK) { 1952 ASSERT(page_ops == PAGE_LOCK); 1953 ASSERT(index_ret && *index_ret == start_index); 1954 } 1955 1956 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1957 mapping_set_error(mapping, -EIO); 1958 1959 while (nr_pages > 0) { 1960 ret = find_get_pages_contig(mapping, index, 1961 min_t(unsigned long, 1962 nr_pages, ARRAY_SIZE(pages)), pages); 1963 if (ret == 0) { 1964 /* 1965 * Only if we're going to lock these pages, 1966 * can we find nothing at @index. 1967 */ 1968 ASSERT(page_ops & PAGE_LOCK); 1969 err = -EAGAIN; 1970 goto out; 1971 } 1972 1973 for (i = 0; i < ret; i++) { 1974 if (page_ops & PAGE_SET_PRIVATE2) 1975 SetPagePrivate2(pages[i]); 1976 1977 if (locked_page && pages[i] == locked_page) { 1978 put_page(pages[i]); 1979 pages_processed++; 1980 continue; 1981 } 1982 if (page_ops & PAGE_START_WRITEBACK) { 1983 clear_page_dirty_for_io(pages[i]); 1984 set_page_writeback(pages[i]); 1985 } 1986 if (page_ops & PAGE_SET_ERROR) 1987 SetPageError(pages[i]); 1988 if (page_ops & PAGE_END_WRITEBACK) 1989 end_page_writeback(pages[i]); 1990 if (page_ops & PAGE_UNLOCK) 1991 unlock_page(pages[i]); 1992 if (page_ops & PAGE_LOCK) { 1993 lock_page(pages[i]); 1994 if (!PageDirty(pages[i]) || 1995 pages[i]->mapping != mapping) { 1996 unlock_page(pages[i]); 1997 for (; i < ret; i++) 1998 put_page(pages[i]); 1999 err = -EAGAIN; 2000 goto out; 2001 } 2002 } 2003 put_page(pages[i]); 2004 pages_processed++; 2005 } 2006 nr_pages -= ret; 2007 index += ret; 2008 cond_resched(); 2009 } 2010 out: 2011 if (err && index_ret) 2012 *index_ret = start_index + pages_processed - 1; 2013 return err; 2014 } 2015 2016 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2017 struct page *locked_page, 2018 u32 clear_bits, unsigned long page_ops) 2019 { 2020 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2021 2022 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2023 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2024 page_ops, NULL); 2025 } 2026 2027 /* 2028 * count the number of bytes in the tree that have a given bit(s) 2029 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2030 * cached. The total number found is returned. 2031 */ 2032 u64 count_range_bits(struct extent_io_tree *tree, 2033 u64 *start, u64 search_end, u64 max_bytes, 2034 u32 bits, int contig) 2035 { 2036 struct rb_node *node; 2037 struct extent_state *state; 2038 u64 cur_start = *start; 2039 u64 total_bytes = 0; 2040 u64 last = 0; 2041 int found = 0; 2042 2043 if (WARN_ON(search_end <= cur_start)) 2044 return 0; 2045 2046 spin_lock(&tree->lock); 2047 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2048 total_bytes = tree->dirty_bytes; 2049 goto out; 2050 } 2051 /* 2052 * this search will find all the extents that end after 2053 * our range starts. 2054 */ 2055 node = tree_search(tree, cur_start); 2056 if (!node) 2057 goto out; 2058 2059 while (1) { 2060 state = rb_entry(node, struct extent_state, rb_node); 2061 if (state->start > search_end) 2062 break; 2063 if (contig && found && state->start > last + 1) 2064 break; 2065 if (state->end >= cur_start && (state->state & bits) == bits) { 2066 total_bytes += min(search_end, state->end) + 1 - 2067 max(cur_start, state->start); 2068 if (total_bytes >= max_bytes) 2069 break; 2070 if (!found) { 2071 *start = max(cur_start, state->start); 2072 found = 1; 2073 } 2074 last = state->end; 2075 } else if (contig && found) { 2076 break; 2077 } 2078 node = rb_next(node); 2079 if (!node) 2080 break; 2081 } 2082 out: 2083 spin_unlock(&tree->lock); 2084 return total_bytes; 2085 } 2086 2087 /* 2088 * set the private field for a given byte offset in the tree. If there isn't 2089 * an extent_state there already, this does nothing. 2090 */ 2091 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2092 struct io_failure_record *failrec) 2093 { 2094 struct rb_node *node; 2095 struct extent_state *state; 2096 int ret = 0; 2097 2098 spin_lock(&tree->lock); 2099 /* 2100 * this search will find all the extents that end after 2101 * our range starts. 2102 */ 2103 node = tree_search(tree, start); 2104 if (!node) { 2105 ret = -ENOENT; 2106 goto out; 2107 } 2108 state = rb_entry(node, struct extent_state, rb_node); 2109 if (state->start != start) { 2110 ret = -ENOENT; 2111 goto out; 2112 } 2113 state->failrec = failrec; 2114 out: 2115 spin_unlock(&tree->lock); 2116 return ret; 2117 } 2118 2119 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2120 { 2121 struct rb_node *node; 2122 struct extent_state *state; 2123 struct io_failure_record *failrec; 2124 2125 spin_lock(&tree->lock); 2126 /* 2127 * this search will find all the extents that end after 2128 * our range starts. 2129 */ 2130 node = tree_search(tree, start); 2131 if (!node) { 2132 failrec = ERR_PTR(-ENOENT); 2133 goto out; 2134 } 2135 state = rb_entry(node, struct extent_state, rb_node); 2136 if (state->start != start) { 2137 failrec = ERR_PTR(-ENOENT); 2138 goto out; 2139 } 2140 2141 failrec = state->failrec; 2142 out: 2143 spin_unlock(&tree->lock); 2144 return failrec; 2145 } 2146 2147 /* 2148 * searches a range in the state tree for a given mask. 2149 * If 'filled' == 1, this returns 1 only if every extent in the tree 2150 * has the bits set. Otherwise, 1 is returned if any bit in the 2151 * range is found set. 2152 */ 2153 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2154 u32 bits, int filled, struct extent_state *cached) 2155 { 2156 struct extent_state *state = NULL; 2157 struct rb_node *node; 2158 int bitset = 0; 2159 2160 spin_lock(&tree->lock); 2161 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2162 cached->end > start) 2163 node = &cached->rb_node; 2164 else 2165 node = tree_search(tree, start); 2166 while (node && start <= end) { 2167 state = rb_entry(node, struct extent_state, rb_node); 2168 2169 if (filled && state->start > start) { 2170 bitset = 0; 2171 break; 2172 } 2173 2174 if (state->start > end) 2175 break; 2176 2177 if (state->state & bits) { 2178 bitset = 1; 2179 if (!filled) 2180 break; 2181 } else if (filled) { 2182 bitset = 0; 2183 break; 2184 } 2185 2186 if (state->end == (u64)-1) 2187 break; 2188 2189 start = state->end + 1; 2190 if (start > end) 2191 break; 2192 node = rb_next(node); 2193 if (!node) { 2194 if (filled) 2195 bitset = 0; 2196 break; 2197 } 2198 } 2199 spin_unlock(&tree->lock); 2200 return bitset; 2201 } 2202 2203 /* 2204 * helper function to set a given page up to date if all the 2205 * extents in the tree for that page are up to date 2206 */ 2207 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2208 { 2209 u64 start = page_offset(page); 2210 u64 end = start + PAGE_SIZE - 1; 2211 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2212 SetPageUptodate(page); 2213 } 2214 2215 int free_io_failure(struct extent_io_tree *failure_tree, 2216 struct extent_io_tree *io_tree, 2217 struct io_failure_record *rec) 2218 { 2219 int ret; 2220 int err = 0; 2221 2222 set_state_failrec(failure_tree, rec->start, NULL); 2223 ret = clear_extent_bits(failure_tree, rec->start, 2224 rec->start + rec->len - 1, 2225 EXTENT_LOCKED | EXTENT_DIRTY); 2226 if (ret) 2227 err = ret; 2228 2229 ret = clear_extent_bits(io_tree, rec->start, 2230 rec->start + rec->len - 1, 2231 EXTENT_DAMAGED); 2232 if (ret && !err) 2233 err = ret; 2234 2235 kfree(rec); 2236 return err; 2237 } 2238 2239 /* 2240 * this bypasses the standard btrfs submit functions deliberately, as 2241 * the standard behavior is to write all copies in a raid setup. here we only 2242 * want to write the one bad copy. so we do the mapping for ourselves and issue 2243 * submit_bio directly. 2244 * to avoid any synchronization issues, wait for the data after writing, which 2245 * actually prevents the read that triggered the error from finishing. 2246 * currently, there can be no more than two copies of every data bit. thus, 2247 * exactly one rewrite is required. 2248 */ 2249 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2250 u64 length, u64 logical, struct page *page, 2251 unsigned int pg_offset, int mirror_num) 2252 { 2253 struct bio *bio; 2254 struct btrfs_device *dev; 2255 u64 map_length = 0; 2256 u64 sector; 2257 struct btrfs_bio *bbio = NULL; 2258 int ret; 2259 2260 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2261 BUG_ON(!mirror_num); 2262 2263 if (btrfs_is_zoned(fs_info)) 2264 return btrfs_repair_one_zone(fs_info, logical); 2265 2266 bio = btrfs_io_bio_alloc(1); 2267 bio->bi_iter.bi_size = 0; 2268 map_length = length; 2269 2270 /* 2271 * Avoid races with device replace and make sure our bbio has devices 2272 * associated to its stripes that don't go away while we are doing the 2273 * read repair operation. 2274 */ 2275 btrfs_bio_counter_inc_blocked(fs_info); 2276 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2277 /* 2278 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2279 * to update all raid stripes, but here we just want to correct 2280 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2281 * stripe's dev and sector. 2282 */ 2283 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2284 &map_length, &bbio, 0); 2285 if (ret) { 2286 btrfs_bio_counter_dec(fs_info); 2287 bio_put(bio); 2288 return -EIO; 2289 } 2290 ASSERT(bbio->mirror_num == 1); 2291 } else { 2292 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2293 &map_length, &bbio, mirror_num); 2294 if (ret) { 2295 btrfs_bio_counter_dec(fs_info); 2296 bio_put(bio); 2297 return -EIO; 2298 } 2299 BUG_ON(mirror_num != bbio->mirror_num); 2300 } 2301 2302 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2303 bio->bi_iter.bi_sector = sector; 2304 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2305 btrfs_put_bbio(bbio); 2306 if (!dev || !dev->bdev || 2307 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2308 btrfs_bio_counter_dec(fs_info); 2309 bio_put(bio); 2310 return -EIO; 2311 } 2312 bio_set_dev(bio, dev->bdev); 2313 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2314 bio_add_page(bio, page, length, pg_offset); 2315 2316 if (btrfsic_submit_bio_wait(bio)) { 2317 /* try to remap that extent elsewhere? */ 2318 btrfs_bio_counter_dec(fs_info); 2319 bio_put(bio); 2320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2321 return -EIO; 2322 } 2323 2324 btrfs_info_rl_in_rcu(fs_info, 2325 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2326 ino, start, 2327 rcu_str_deref(dev->name), sector); 2328 btrfs_bio_counter_dec(fs_info); 2329 bio_put(bio); 2330 return 0; 2331 } 2332 2333 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2334 { 2335 struct btrfs_fs_info *fs_info = eb->fs_info; 2336 u64 start = eb->start; 2337 int i, num_pages = num_extent_pages(eb); 2338 int ret = 0; 2339 2340 if (sb_rdonly(fs_info->sb)) 2341 return -EROFS; 2342 2343 for (i = 0; i < num_pages; i++) { 2344 struct page *p = eb->pages[i]; 2345 2346 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2347 start - page_offset(p), mirror_num); 2348 if (ret) 2349 break; 2350 start += PAGE_SIZE; 2351 } 2352 2353 return ret; 2354 } 2355 2356 /* 2357 * each time an IO finishes, we do a fast check in the IO failure tree 2358 * to see if we need to process or clean up an io_failure_record 2359 */ 2360 int clean_io_failure(struct btrfs_fs_info *fs_info, 2361 struct extent_io_tree *failure_tree, 2362 struct extent_io_tree *io_tree, u64 start, 2363 struct page *page, u64 ino, unsigned int pg_offset) 2364 { 2365 u64 private; 2366 struct io_failure_record *failrec; 2367 struct extent_state *state; 2368 int num_copies; 2369 int ret; 2370 2371 private = 0; 2372 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2373 EXTENT_DIRTY, 0); 2374 if (!ret) 2375 return 0; 2376 2377 failrec = get_state_failrec(failure_tree, start); 2378 if (IS_ERR(failrec)) 2379 return 0; 2380 2381 BUG_ON(!failrec->this_mirror); 2382 2383 if (failrec->in_validation) { 2384 /* there was no real error, just free the record */ 2385 btrfs_debug(fs_info, 2386 "clean_io_failure: freeing dummy error at %llu", 2387 failrec->start); 2388 goto out; 2389 } 2390 if (sb_rdonly(fs_info->sb)) 2391 goto out; 2392 2393 spin_lock(&io_tree->lock); 2394 state = find_first_extent_bit_state(io_tree, 2395 failrec->start, 2396 EXTENT_LOCKED); 2397 spin_unlock(&io_tree->lock); 2398 2399 if (state && state->start <= failrec->start && 2400 state->end >= failrec->start + failrec->len - 1) { 2401 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2402 failrec->len); 2403 if (num_copies > 1) { 2404 repair_io_failure(fs_info, ino, start, failrec->len, 2405 failrec->logical, page, pg_offset, 2406 failrec->failed_mirror); 2407 } 2408 } 2409 2410 out: 2411 free_io_failure(failure_tree, io_tree, failrec); 2412 2413 return 0; 2414 } 2415 2416 /* 2417 * Can be called when 2418 * - hold extent lock 2419 * - under ordered extent 2420 * - the inode is freeing 2421 */ 2422 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2423 { 2424 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2425 struct io_failure_record *failrec; 2426 struct extent_state *state, *next; 2427 2428 if (RB_EMPTY_ROOT(&failure_tree->state)) 2429 return; 2430 2431 spin_lock(&failure_tree->lock); 2432 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2433 while (state) { 2434 if (state->start > end) 2435 break; 2436 2437 ASSERT(state->end <= end); 2438 2439 next = next_state(state); 2440 2441 failrec = state->failrec; 2442 free_extent_state(state); 2443 kfree(failrec); 2444 2445 state = next; 2446 } 2447 spin_unlock(&failure_tree->lock); 2448 } 2449 2450 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2451 u64 start, u64 end) 2452 { 2453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2454 struct io_failure_record *failrec; 2455 struct extent_map *em; 2456 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2457 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2458 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2459 int ret; 2460 u64 logical; 2461 2462 failrec = get_state_failrec(failure_tree, start); 2463 if (!IS_ERR(failrec)) { 2464 btrfs_debug(fs_info, 2465 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2466 failrec->logical, failrec->start, failrec->len, 2467 failrec->in_validation); 2468 /* 2469 * when data can be on disk more than twice, add to failrec here 2470 * (e.g. with a list for failed_mirror) to make 2471 * clean_io_failure() clean all those errors at once. 2472 */ 2473 2474 return failrec; 2475 } 2476 2477 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2478 if (!failrec) 2479 return ERR_PTR(-ENOMEM); 2480 2481 failrec->start = start; 2482 failrec->len = end - start + 1; 2483 failrec->this_mirror = 0; 2484 failrec->bio_flags = 0; 2485 failrec->in_validation = 0; 2486 2487 read_lock(&em_tree->lock); 2488 em = lookup_extent_mapping(em_tree, start, failrec->len); 2489 if (!em) { 2490 read_unlock(&em_tree->lock); 2491 kfree(failrec); 2492 return ERR_PTR(-EIO); 2493 } 2494 2495 if (em->start > start || em->start + em->len <= start) { 2496 free_extent_map(em); 2497 em = NULL; 2498 } 2499 read_unlock(&em_tree->lock); 2500 if (!em) { 2501 kfree(failrec); 2502 return ERR_PTR(-EIO); 2503 } 2504 2505 logical = start - em->start; 2506 logical = em->block_start + logical; 2507 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2508 logical = em->block_start; 2509 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2510 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2511 } 2512 2513 btrfs_debug(fs_info, 2514 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2515 logical, start, failrec->len); 2516 2517 failrec->logical = logical; 2518 free_extent_map(em); 2519 2520 /* Set the bits in the private failure tree */ 2521 ret = set_extent_bits(failure_tree, start, end, 2522 EXTENT_LOCKED | EXTENT_DIRTY); 2523 if (ret >= 0) { 2524 ret = set_state_failrec(failure_tree, start, failrec); 2525 /* Set the bits in the inode's tree */ 2526 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2527 } else if (ret < 0) { 2528 kfree(failrec); 2529 return ERR_PTR(ret); 2530 } 2531 2532 return failrec; 2533 } 2534 2535 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2536 struct io_failure_record *failrec, 2537 int failed_mirror) 2538 { 2539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2540 int num_copies; 2541 2542 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2543 if (num_copies == 1) { 2544 /* 2545 * we only have a single copy of the data, so don't bother with 2546 * all the retry and error correction code that follows. no 2547 * matter what the error is, it is very likely to persist. 2548 */ 2549 btrfs_debug(fs_info, 2550 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2551 num_copies, failrec->this_mirror, failed_mirror); 2552 return false; 2553 } 2554 2555 /* 2556 * there are two premises: 2557 * a) deliver good data to the caller 2558 * b) correct the bad sectors on disk 2559 */ 2560 if (needs_validation) { 2561 /* 2562 * to fulfill b), we need to know the exact failing sectors, as 2563 * we don't want to rewrite any more than the failed ones. thus, 2564 * we need separate read requests for the failed bio 2565 * 2566 * if the following BUG_ON triggers, our validation request got 2567 * merged. we need separate requests for our algorithm to work. 2568 */ 2569 BUG_ON(failrec->in_validation); 2570 failrec->in_validation = 1; 2571 failrec->this_mirror = failed_mirror; 2572 } else { 2573 /* 2574 * we're ready to fulfill a) and b) alongside. get a good copy 2575 * of the failed sector and if we succeed, we have setup 2576 * everything for repair_io_failure to do the rest for us. 2577 */ 2578 if (failrec->in_validation) { 2579 BUG_ON(failrec->this_mirror != failed_mirror); 2580 failrec->in_validation = 0; 2581 failrec->this_mirror = 0; 2582 } 2583 failrec->failed_mirror = failed_mirror; 2584 failrec->this_mirror++; 2585 if (failrec->this_mirror == failed_mirror) 2586 failrec->this_mirror++; 2587 } 2588 2589 if (failrec->this_mirror > num_copies) { 2590 btrfs_debug(fs_info, 2591 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2592 num_copies, failrec->this_mirror, failed_mirror); 2593 return false; 2594 } 2595 2596 return true; 2597 } 2598 2599 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2600 { 2601 u64 len = 0; 2602 const u32 blocksize = inode->i_sb->s_blocksize; 2603 2604 /* 2605 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2606 * I/O error. In this case, we already know exactly which sector was 2607 * bad, so we don't need to validate. 2608 */ 2609 if (bio->bi_status == BLK_STS_OK) 2610 return false; 2611 2612 /* 2613 * We need to validate each sector individually if the failed I/O was 2614 * for multiple sectors. 2615 * 2616 * There are a few possible bios that can end up here: 2617 * 1. A buffered read bio, which is not cloned. 2618 * 2. A direct I/O read bio, which is cloned. 2619 * 3. A (buffered or direct) repair bio, which is not cloned. 2620 * 2621 * For cloned bios (case 2), we can get the size from 2622 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2623 * it from the bvecs. 2624 */ 2625 if (bio_flagged(bio, BIO_CLONED)) { 2626 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2627 return true; 2628 } else { 2629 struct bio_vec *bvec; 2630 int i; 2631 2632 bio_for_each_bvec_all(bvec, bio, i) { 2633 len += bvec->bv_len; 2634 if (len > blocksize) 2635 return true; 2636 } 2637 } 2638 return false; 2639 } 2640 2641 blk_status_t btrfs_submit_read_repair(struct inode *inode, 2642 struct bio *failed_bio, u32 bio_offset, 2643 struct page *page, unsigned int pgoff, 2644 u64 start, u64 end, int failed_mirror, 2645 submit_bio_hook_t *submit_bio_hook) 2646 { 2647 struct io_failure_record *failrec; 2648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2649 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2650 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2651 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2652 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2653 bool need_validation; 2654 struct bio *repair_bio; 2655 struct btrfs_io_bio *repair_io_bio; 2656 blk_status_t status; 2657 2658 btrfs_debug(fs_info, 2659 "repair read error: read error at %llu", start); 2660 2661 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2662 2663 failrec = btrfs_get_io_failure_record(inode, start, end); 2664 if (IS_ERR(failrec)) 2665 return errno_to_blk_status(PTR_ERR(failrec)); 2666 2667 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2668 2669 if (!btrfs_check_repairable(inode, need_validation, failrec, 2670 failed_mirror)) { 2671 free_io_failure(failure_tree, tree, failrec); 2672 return BLK_STS_IOERR; 2673 } 2674 2675 repair_bio = btrfs_io_bio_alloc(1); 2676 repair_io_bio = btrfs_io_bio(repair_bio); 2677 repair_bio->bi_opf = REQ_OP_READ; 2678 if (need_validation) 2679 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2680 repair_bio->bi_end_io = failed_bio->bi_end_io; 2681 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2682 repair_bio->bi_private = failed_bio->bi_private; 2683 2684 if (failed_io_bio->csum) { 2685 const u32 csum_size = fs_info->csum_size; 2686 2687 repair_io_bio->csum = repair_io_bio->csum_inline; 2688 memcpy(repair_io_bio->csum, 2689 failed_io_bio->csum + csum_size * icsum, csum_size); 2690 } 2691 2692 bio_add_page(repair_bio, page, failrec->len, pgoff); 2693 repair_io_bio->logical = failrec->start; 2694 repair_io_bio->iter = repair_bio->bi_iter; 2695 2696 btrfs_debug(btrfs_sb(inode->i_sb), 2697 "repair read error: submitting new read to mirror %d, in_validation=%d", 2698 failrec->this_mirror, failrec->in_validation); 2699 2700 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2701 failrec->bio_flags); 2702 if (status) { 2703 free_io_failure(failure_tree, tree, failrec); 2704 bio_put(repair_bio); 2705 } 2706 return status; 2707 } 2708 2709 /* lots and lots of room for performance fixes in the end_bio funcs */ 2710 2711 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2712 { 2713 int uptodate = (err == 0); 2714 int ret = 0; 2715 2716 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2717 2718 if (!uptodate) { 2719 ClearPageUptodate(page); 2720 SetPageError(page); 2721 ret = err < 0 ? err : -EIO; 2722 mapping_set_error(page->mapping, ret); 2723 } 2724 } 2725 2726 /* 2727 * after a writepage IO is done, we need to: 2728 * clear the uptodate bits on error 2729 * clear the writeback bits in the extent tree for this IO 2730 * end_page_writeback if the page has no more pending IO 2731 * 2732 * Scheduling is not allowed, so the extent state tree is expected 2733 * to have one and only one object corresponding to this IO. 2734 */ 2735 static void end_bio_extent_writepage(struct bio *bio) 2736 { 2737 int error = blk_status_to_errno(bio->bi_status); 2738 struct bio_vec *bvec; 2739 u64 start; 2740 u64 end; 2741 struct bvec_iter_all iter_all; 2742 bool first_bvec = true; 2743 2744 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2745 bio_for_each_segment_all(bvec, bio, iter_all) { 2746 struct page *page = bvec->bv_page; 2747 struct inode *inode = page->mapping->host; 2748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2749 2750 /* We always issue full-page reads, but if some block 2751 * in a page fails to read, blk_update_request() will 2752 * advance bv_offset and adjust bv_len to compensate. 2753 * Print a warning for nonzero offsets, and an error 2754 * if they don't add up to a full page. */ 2755 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2756 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2757 btrfs_err(fs_info, 2758 "partial page write in btrfs with offset %u and length %u", 2759 bvec->bv_offset, bvec->bv_len); 2760 else 2761 btrfs_info(fs_info, 2762 "incomplete page write in btrfs with offset %u and length %u", 2763 bvec->bv_offset, bvec->bv_len); 2764 } 2765 2766 start = page_offset(page); 2767 end = start + bvec->bv_offset + bvec->bv_len - 1; 2768 2769 if (first_bvec) { 2770 btrfs_record_physical_zoned(inode, start, bio); 2771 first_bvec = false; 2772 } 2773 2774 end_extent_writepage(page, error, start, end); 2775 end_page_writeback(page); 2776 } 2777 2778 bio_put(bio); 2779 } 2780 2781 /* 2782 * Record previously processed extent range 2783 * 2784 * For endio_readpage_release_extent() to handle a full extent range, reducing 2785 * the extent io operations. 2786 */ 2787 struct processed_extent { 2788 struct btrfs_inode *inode; 2789 /* Start of the range in @inode */ 2790 u64 start; 2791 /* End of the range in @inode */ 2792 u64 end; 2793 bool uptodate; 2794 }; 2795 2796 /* 2797 * Try to release processed extent range 2798 * 2799 * May not release the extent range right now if the current range is 2800 * contiguous to processed extent. 2801 * 2802 * Will release processed extent when any of @inode, @uptodate, the range is 2803 * no longer contiguous to the processed range. 2804 * 2805 * Passing @inode == NULL will force processed extent to be released. 2806 */ 2807 static void endio_readpage_release_extent(struct processed_extent *processed, 2808 struct btrfs_inode *inode, u64 start, u64 end, 2809 bool uptodate) 2810 { 2811 struct extent_state *cached = NULL; 2812 struct extent_io_tree *tree; 2813 2814 /* The first extent, initialize @processed */ 2815 if (!processed->inode) 2816 goto update; 2817 2818 /* 2819 * Contiguous to processed extent, just uptodate the end. 2820 * 2821 * Several things to notice: 2822 * 2823 * - bio can be merged as long as on-disk bytenr is contiguous 2824 * This means we can have page belonging to other inodes, thus need to 2825 * check if the inode still matches. 2826 * - bvec can contain range beyond current page for multi-page bvec 2827 * Thus we need to do processed->end + 1 >= start check 2828 */ 2829 if (processed->inode == inode && processed->uptodate == uptodate && 2830 processed->end + 1 >= start && end >= processed->end) { 2831 processed->end = end; 2832 return; 2833 } 2834 2835 tree = &processed->inode->io_tree; 2836 /* 2837 * Now we don't have range contiguous to the processed range, release 2838 * the processed range now. 2839 */ 2840 if (processed->uptodate && tree->track_uptodate) 2841 set_extent_uptodate(tree, processed->start, processed->end, 2842 &cached, GFP_ATOMIC); 2843 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2844 &cached); 2845 2846 update: 2847 /* Update processed to current range */ 2848 processed->inode = inode; 2849 processed->start = start; 2850 processed->end = end; 2851 processed->uptodate = uptodate; 2852 } 2853 2854 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2855 { 2856 ASSERT(PageLocked(page)); 2857 if (fs_info->sectorsize == PAGE_SIZE) 2858 return; 2859 2860 ASSERT(PagePrivate(page)); 2861 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2862 } 2863 2864 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2865 { 2866 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2867 2868 ASSERT(page_offset(page) <= start && 2869 start + len <= page_offset(page) + PAGE_SIZE); 2870 2871 if (uptodate) { 2872 btrfs_page_set_uptodate(fs_info, page, start, len); 2873 } else { 2874 btrfs_page_clear_uptodate(fs_info, page, start, len); 2875 btrfs_page_set_error(fs_info, page, start, len); 2876 } 2877 2878 if (fs_info->sectorsize == PAGE_SIZE) 2879 unlock_page(page); 2880 else if (is_data_inode(page->mapping->host)) 2881 /* 2882 * For subpage data, unlock the page if we're the last reader. 2883 * For subpage metadata, page lock is not utilized for read. 2884 */ 2885 btrfs_subpage_end_reader(fs_info, page, start, len); 2886 } 2887 2888 /* 2889 * Find extent buffer for a givne bytenr. 2890 * 2891 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2892 * in endio context. 2893 */ 2894 static struct extent_buffer *find_extent_buffer_readpage( 2895 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2896 { 2897 struct extent_buffer *eb; 2898 2899 /* 2900 * For regular sectorsize, we can use page->private to grab extent 2901 * buffer 2902 */ 2903 if (fs_info->sectorsize == PAGE_SIZE) { 2904 ASSERT(PagePrivate(page) && page->private); 2905 return (struct extent_buffer *)page->private; 2906 } 2907 2908 /* For subpage case, we need to lookup buffer radix tree */ 2909 rcu_read_lock(); 2910 eb = radix_tree_lookup(&fs_info->buffer_radix, 2911 bytenr >> fs_info->sectorsize_bits); 2912 rcu_read_unlock(); 2913 ASSERT(eb); 2914 return eb; 2915 } 2916 2917 /* 2918 * after a readpage IO is done, we need to: 2919 * clear the uptodate bits on error 2920 * set the uptodate bits if things worked 2921 * set the page up to date if all extents in the tree are uptodate 2922 * clear the lock bit in the extent tree 2923 * unlock the page if there are no other extents locked for it 2924 * 2925 * Scheduling is not allowed, so the extent state tree is expected 2926 * to have one and only one object corresponding to this IO. 2927 */ 2928 static void end_bio_extent_readpage(struct bio *bio) 2929 { 2930 struct bio_vec *bvec; 2931 int uptodate = !bio->bi_status; 2932 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2933 struct extent_io_tree *tree, *failure_tree; 2934 struct processed_extent processed = { 0 }; 2935 /* 2936 * The offset to the beginning of a bio, since one bio can never be 2937 * larger than UINT_MAX, u32 here is enough. 2938 */ 2939 u32 bio_offset = 0; 2940 int mirror; 2941 int ret; 2942 struct bvec_iter_all iter_all; 2943 2944 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2945 bio_for_each_segment_all(bvec, bio, iter_all) { 2946 struct page *page = bvec->bv_page; 2947 struct inode *inode = page->mapping->host; 2948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2949 const u32 sectorsize = fs_info->sectorsize; 2950 u64 start; 2951 u64 end; 2952 u32 len; 2953 2954 btrfs_debug(fs_info, 2955 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2956 bio->bi_iter.bi_sector, bio->bi_status, 2957 io_bio->mirror_num); 2958 tree = &BTRFS_I(inode)->io_tree; 2959 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2960 2961 /* 2962 * We always issue full-sector reads, but if some block in a 2963 * page fails to read, blk_update_request() will advance 2964 * bv_offset and adjust bv_len to compensate. Print a warning 2965 * for unaligned offsets, and an error if they don't add up to 2966 * a full sector. 2967 */ 2968 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2969 btrfs_err(fs_info, 2970 "partial page read in btrfs with offset %u and length %u", 2971 bvec->bv_offset, bvec->bv_len); 2972 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 2973 sectorsize)) 2974 btrfs_info(fs_info, 2975 "incomplete page read with offset %u and length %u", 2976 bvec->bv_offset, bvec->bv_len); 2977 2978 start = page_offset(page) + bvec->bv_offset; 2979 end = start + bvec->bv_len - 1; 2980 len = bvec->bv_len; 2981 2982 mirror = io_bio->mirror_num; 2983 if (likely(uptodate)) { 2984 if (is_data_inode(inode)) 2985 ret = btrfs_verify_data_csum(io_bio, 2986 bio_offset, page, start, end, 2987 mirror); 2988 else 2989 ret = btrfs_validate_metadata_buffer(io_bio, 2990 page, start, end, mirror); 2991 if (ret) 2992 uptodate = 0; 2993 else 2994 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2995 failure_tree, tree, start, 2996 page, 2997 btrfs_ino(BTRFS_I(inode)), 0); 2998 } 2999 3000 if (likely(uptodate)) 3001 goto readpage_ok; 3002 3003 if (is_data_inode(inode)) { 3004 3005 /* 3006 * The generic bio_readpage_error handles errors the 3007 * following way: If possible, new read requests are 3008 * created and submitted and will end up in 3009 * end_bio_extent_readpage as well (if we're lucky, 3010 * not in the !uptodate case). In that case it returns 3011 * 0 and we just go on with the next page in our bio. 3012 * If it can't handle the error it will return -EIO and 3013 * we remain responsible for that page. 3014 */ 3015 if (!btrfs_submit_read_repair(inode, bio, bio_offset, 3016 page, 3017 start - page_offset(page), 3018 start, end, mirror, 3019 btrfs_submit_data_bio)) { 3020 uptodate = !bio->bi_status; 3021 ASSERT(bio_offset + len > bio_offset); 3022 bio_offset += len; 3023 continue; 3024 } 3025 } else { 3026 struct extent_buffer *eb; 3027 3028 eb = find_extent_buffer_readpage(fs_info, page, start); 3029 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3030 eb->read_mirror = mirror; 3031 atomic_dec(&eb->io_pages); 3032 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 3033 &eb->bflags)) 3034 btree_readahead_hook(eb, -EIO); 3035 } 3036 readpage_ok: 3037 if (likely(uptodate)) { 3038 loff_t i_size = i_size_read(inode); 3039 pgoff_t end_index = i_size >> PAGE_SHIFT; 3040 3041 /* 3042 * Zero out the remaining part if this range straddles 3043 * i_size. 3044 * 3045 * Here we should only zero the range inside the bvec, 3046 * not touch anything else. 3047 * 3048 * NOTE: i_size is exclusive while end is inclusive. 3049 */ 3050 if (page->index == end_index && i_size <= end) { 3051 u32 zero_start = max(offset_in_page(i_size), 3052 offset_in_page(start)); 3053 3054 zero_user_segment(page, zero_start, 3055 offset_in_page(end) + 1); 3056 } 3057 } 3058 ASSERT(bio_offset + len > bio_offset); 3059 bio_offset += len; 3060 3061 /* Update page status and unlock */ 3062 end_page_read(page, uptodate, start, len); 3063 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3064 start, end, uptodate); 3065 } 3066 /* Release the last extent */ 3067 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3068 btrfs_io_bio_free_csum(io_bio); 3069 bio_put(bio); 3070 } 3071 3072 /* 3073 * Initialize the members up to but not including 'bio'. Use after allocating a 3074 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3075 * 'bio' because use of __GFP_ZERO is not supported. 3076 */ 3077 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 3078 { 3079 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 3080 } 3081 3082 /* 3083 * The following helpers allocate a bio. As it's backed by a bioset, it'll 3084 * never fail. We're returning a bio right now but you can call btrfs_io_bio 3085 * for the appropriate container_of magic 3086 */ 3087 struct bio *btrfs_bio_alloc(u64 first_byte) 3088 { 3089 struct bio *bio; 3090 3091 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset); 3092 bio->bi_iter.bi_sector = first_byte >> 9; 3093 btrfs_io_bio_init(btrfs_io_bio(bio)); 3094 return bio; 3095 } 3096 3097 struct bio *btrfs_bio_clone(struct bio *bio) 3098 { 3099 struct btrfs_io_bio *btrfs_bio; 3100 struct bio *new; 3101 3102 /* Bio allocation backed by a bioset does not fail */ 3103 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3104 btrfs_bio = btrfs_io_bio(new); 3105 btrfs_io_bio_init(btrfs_bio); 3106 btrfs_bio->iter = bio->bi_iter; 3107 return new; 3108 } 3109 3110 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 3111 { 3112 struct bio *bio; 3113 3114 /* Bio allocation backed by a bioset does not fail */ 3115 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3116 btrfs_io_bio_init(btrfs_io_bio(bio)); 3117 return bio; 3118 } 3119 3120 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 3121 { 3122 struct bio *bio; 3123 struct btrfs_io_bio *btrfs_bio; 3124 3125 /* this will never fail when it's backed by a bioset */ 3126 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3127 ASSERT(bio); 3128 3129 btrfs_bio = btrfs_io_bio(bio); 3130 btrfs_io_bio_init(btrfs_bio); 3131 3132 bio_trim(bio, offset >> 9, size >> 9); 3133 btrfs_bio->iter = bio->bi_iter; 3134 return bio; 3135 } 3136 3137 /** 3138 * Attempt to add a page to bio 3139 * 3140 * @bio: destination bio 3141 * @page: page to add to the bio 3142 * @disk_bytenr: offset of the new bio or to check whether we are adding 3143 * a contiguous page to the previous one 3144 * @pg_offset: starting offset in the page 3145 * @size: portion of page that we want to write 3146 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3147 * @bio_flags: flags of the current bio to see if we can merge them 3148 * @return: true if page was added, false otherwise 3149 * 3150 * Attempt to add a page to bio considering stripe alignment etc. 3151 * 3152 * Return true if successfully page added. Otherwise, return false. 3153 */ 3154 static bool btrfs_bio_add_page(struct bio *bio, struct page *page, 3155 u64 disk_bytenr, unsigned int size, 3156 unsigned int pg_offset, 3157 unsigned long prev_bio_flags, 3158 unsigned long bio_flags) 3159 { 3160 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3161 bool contig; 3162 int ret; 3163 3164 if (prev_bio_flags != bio_flags) 3165 return false; 3166 3167 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3168 contig = bio->bi_iter.bi_sector == sector; 3169 else 3170 contig = bio_end_sector(bio) == sector; 3171 if (!contig) 3172 return false; 3173 3174 if (btrfs_bio_fits_in_stripe(page, size, bio, bio_flags)) 3175 return false; 3176 3177 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3178 struct page *first_page = bio_first_bvec_all(bio)->bv_page; 3179 3180 if (!btrfs_bio_fits_in_ordered_extent(first_page, bio, size)) 3181 return false; 3182 ret = bio_add_zone_append_page(bio, page, size, pg_offset); 3183 } else { 3184 ret = bio_add_page(bio, page, size, pg_offset); 3185 } 3186 3187 return ret == size; 3188 } 3189 3190 /* 3191 * @opf: bio REQ_OP_* and REQ_* flags as one value 3192 * @wbc: optional writeback control for io accounting 3193 * @page: page to add to the bio 3194 * @disk_bytenr: logical bytenr where the write will be 3195 * @size: portion of page that we want to write to 3196 * @pg_offset: offset of the new bio or to check whether we are adding 3197 * a contiguous page to the previous one 3198 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3199 * @end_io_func: end_io callback for new bio 3200 * @mirror_num: desired mirror to read/write 3201 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3202 * @bio_flags: flags of the current bio to see if we can merge them 3203 */ 3204 static int submit_extent_page(unsigned int opf, 3205 struct writeback_control *wbc, 3206 struct page *page, u64 disk_bytenr, 3207 size_t size, unsigned long pg_offset, 3208 struct bio **bio_ret, 3209 bio_end_io_t end_io_func, 3210 int mirror_num, 3211 unsigned long prev_bio_flags, 3212 unsigned long bio_flags, 3213 bool force_bio_submit) 3214 { 3215 int ret = 0; 3216 struct bio *bio; 3217 size_t io_size = min_t(size_t, size, PAGE_SIZE); 3218 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3219 struct extent_io_tree *tree = &inode->io_tree; 3220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3221 3222 ASSERT(bio_ret); 3223 3224 if (*bio_ret) { 3225 bio = *bio_ret; 3226 if (force_bio_submit || 3227 !btrfs_bio_add_page(bio, page, disk_bytenr, io_size, 3228 pg_offset, prev_bio_flags, bio_flags)) { 3229 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3230 if (ret < 0) { 3231 *bio_ret = NULL; 3232 return ret; 3233 } 3234 bio = NULL; 3235 } else { 3236 if (wbc) 3237 wbc_account_cgroup_owner(wbc, page, io_size); 3238 return 0; 3239 } 3240 } 3241 3242 bio = btrfs_bio_alloc(disk_bytenr); 3243 bio_add_page(bio, page, io_size, pg_offset); 3244 bio->bi_end_io = end_io_func; 3245 bio->bi_private = tree; 3246 bio->bi_write_hint = page->mapping->host->i_write_hint; 3247 bio->bi_opf = opf; 3248 if (wbc) { 3249 struct block_device *bdev; 3250 3251 bdev = fs_info->fs_devices->latest_bdev; 3252 bio_set_dev(bio, bdev); 3253 wbc_init_bio(wbc, bio); 3254 wbc_account_cgroup_owner(wbc, page, io_size); 3255 } 3256 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) { 3257 struct extent_map *em; 3258 struct map_lookup *map; 3259 3260 em = btrfs_get_chunk_map(fs_info, disk_bytenr, io_size); 3261 if (IS_ERR(em)) 3262 return PTR_ERR(em); 3263 3264 map = em->map_lookup; 3265 /* We only support single profile for now */ 3266 ASSERT(map->num_stripes == 1); 3267 btrfs_io_bio(bio)->device = map->stripes[0].dev; 3268 3269 free_extent_map(em); 3270 } 3271 3272 *bio_ret = bio; 3273 3274 return ret; 3275 } 3276 3277 static int attach_extent_buffer_page(struct extent_buffer *eb, 3278 struct page *page, 3279 struct btrfs_subpage *prealloc) 3280 { 3281 struct btrfs_fs_info *fs_info = eb->fs_info; 3282 int ret = 0; 3283 3284 /* 3285 * If the page is mapped to btree inode, we should hold the private 3286 * lock to prevent race. 3287 * For cloned or dummy extent buffers, their pages are not mapped and 3288 * will not race with any other ebs. 3289 */ 3290 if (page->mapping) 3291 lockdep_assert_held(&page->mapping->private_lock); 3292 3293 if (fs_info->sectorsize == PAGE_SIZE) { 3294 if (!PagePrivate(page)) 3295 attach_page_private(page, eb); 3296 else 3297 WARN_ON(page->private != (unsigned long)eb); 3298 return 0; 3299 } 3300 3301 /* Already mapped, just free prealloc */ 3302 if (PagePrivate(page)) { 3303 btrfs_free_subpage(prealloc); 3304 return 0; 3305 } 3306 3307 if (prealloc) 3308 /* Has preallocated memory for subpage */ 3309 attach_page_private(page, prealloc); 3310 else 3311 /* Do new allocation to attach subpage */ 3312 ret = btrfs_attach_subpage(fs_info, page, 3313 BTRFS_SUBPAGE_METADATA); 3314 return ret; 3315 } 3316 3317 int set_page_extent_mapped(struct page *page) 3318 { 3319 struct btrfs_fs_info *fs_info; 3320 3321 ASSERT(page->mapping); 3322 3323 if (PagePrivate(page)) 3324 return 0; 3325 3326 fs_info = btrfs_sb(page->mapping->host->i_sb); 3327 3328 if (fs_info->sectorsize < PAGE_SIZE) 3329 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3330 3331 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3332 return 0; 3333 } 3334 3335 void clear_page_extent_mapped(struct page *page) 3336 { 3337 struct btrfs_fs_info *fs_info; 3338 3339 ASSERT(page->mapping); 3340 3341 if (!PagePrivate(page)) 3342 return; 3343 3344 fs_info = btrfs_sb(page->mapping->host->i_sb); 3345 if (fs_info->sectorsize < PAGE_SIZE) 3346 return btrfs_detach_subpage(fs_info, page); 3347 3348 detach_page_private(page); 3349 } 3350 3351 static struct extent_map * 3352 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3353 u64 start, u64 len, struct extent_map **em_cached) 3354 { 3355 struct extent_map *em; 3356 3357 if (em_cached && *em_cached) { 3358 em = *em_cached; 3359 if (extent_map_in_tree(em) && start >= em->start && 3360 start < extent_map_end(em)) { 3361 refcount_inc(&em->refs); 3362 return em; 3363 } 3364 3365 free_extent_map(em); 3366 *em_cached = NULL; 3367 } 3368 3369 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3370 if (em_cached && !IS_ERR_OR_NULL(em)) { 3371 BUG_ON(*em_cached); 3372 refcount_inc(&em->refs); 3373 *em_cached = em; 3374 } 3375 return em; 3376 } 3377 /* 3378 * basic readpage implementation. Locked extent state structs are inserted 3379 * into the tree that are removed when the IO is done (by the end_io 3380 * handlers) 3381 * XXX JDM: This needs looking at to ensure proper page locking 3382 * return 0 on success, otherwise return error 3383 */ 3384 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3385 struct bio **bio, unsigned long *bio_flags, 3386 unsigned int read_flags, u64 *prev_em_start) 3387 { 3388 struct inode *inode = page->mapping->host; 3389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3390 u64 start = page_offset(page); 3391 const u64 end = start + PAGE_SIZE - 1; 3392 u64 cur = start; 3393 u64 extent_offset; 3394 u64 last_byte = i_size_read(inode); 3395 u64 block_start; 3396 u64 cur_end; 3397 struct extent_map *em; 3398 int ret = 0; 3399 int nr = 0; 3400 size_t pg_offset = 0; 3401 size_t iosize; 3402 size_t blocksize = inode->i_sb->s_blocksize; 3403 unsigned long this_bio_flag = 0; 3404 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3405 3406 ret = set_page_extent_mapped(page); 3407 if (ret < 0) { 3408 unlock_extent(tree, start, end); 3409 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3410 unlock_page(page); 3411 goto out; 3412 } 3413 3414 if (!PageUptodate(page)) { 3415 if (cleancache_get_page(page) == 0) { 3416 BUG_ON(blocksize != PAGE_SIZE); 3417 unlock_extent(tree, start, end); 3418 unlock_page(page); 3419 goto out; 3420 } 3421 } 3422 3423 if (page->index == last_byte >> PAGE_SHIFT) { 3424 char *userpage; 3425 size_t zero_offset = offset_in_page(last_byte); 3426 3427 if (zero_offset) { 3428 iosize = PAGE_SIZE - zero_offset; 3429 userpage = kmap_atomic(page); 3430 memset(userpage + zero_offset, 0, iosize); 3431 flush_dcache_page(page); 3432 kunmap_atomic(userpage); 3433 } 3434 } 3435 begin_page_read(fs_info, page); 3436 while (cur <= end) { 3437 bool force_bio_submit = false; 3438 u64 disk_bytenr; 3439 3440 if (cur >= last_byte) { 3441 char *userpage; 3442 struct extent_state *cached = NULL; 3443 3444 iosize = PAGE_SIZE - pg_offset; 3445 userpage = kmap_atomic(page); 3446 memset(userpage + pg_offset, 0, iosize); 3447 flush_dcache_page(page); 3448 kunmap_atomic(userpage); 3449 set_extent_uptodate(tree, cur, cur + iosize - 1, 3450 &cached, GFP_NOFS); 3451 unlock_extent_cached(tree, cur, 3452 cur + iosize - 1, &cached); 3453 end_page_read(page, true, cur, iosize); 3454 break; 3455 } 3456 em = __get_extent_map(inode, page, pg_offset, cur, 3457 end - cur + 1, em_cached); 3458 if (IS_ERR_OR_NULL(em)) { 3459 unlock_extent(tree, cur, end); 3460 end_page_read(page, false, cur, end + 1 - cur); 3461 break; 3462 } 3463 extent_offset = cur - em->start; 3464 BUG_ON(extent_map_end(em) <= cur); 3465 BUG_ON(end < cur); 3466 3467 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3468 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3469 extent_set_compress_type(&this_bio_flag, 3470 em->compress_type); 3471 } 3472 3473 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3474 cur_end = min(extent_map_end(em) - 1, end); 3475 iosize = ALIGN(iosize, blocksize); 3476 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3477 disk_bytenr = em->block_start; 3478 else 3479 disk_bytenr = em->block_start + extent_offset; 3480 block_start = em->block_start; 3481 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3482 block_start = EXTENT_MAP_HOLE; 3483 3484 /* 3485 * If we have a file range that points to a compressed extent 3486 * and it's followed by a consecutive file range that points 3487 * to the same compressed extent (possibly with a different 3488 * offset and/or length, so it either points to the whole extent 3489 * or only part of it), we must make sure we do not submit a 3490 * single bio to populate the pages for the 2 ranges because 3491 * this makes the compressed extent read zero out the pages 3492 * belonging to the 2nd range. Imagine the following scenario: 3493 * 3494 * File layout 3495 * [0 - 8K] [8K - 24K] 3496 * | | 3497 * | | 3498 * points to extent X, points to extent X, 3499 * offset 4K, length of 8K offset 0, length 16K 3500 * 3501 * [extent X, compressed length = 4K uncompressed length = 16K] 3502 * 3503 * If the bio to read the compressed extent covers both ranges, 3504 * it will decompress extent X into the pages belonging to the 3505 * first range and then it will stop, zeroing out the remaining 3506 * pages that belong to the other range that points to extent X. 3507 * So here we make sure we submit 2 bios, one for the first 3508 * range and another one for the third range. Both will target 3509 * the same physical extent from disk, but we can't currently 3510 * make the compressed bio endio callback populate the pages 3511 * for both ranges because each compressed bio is tightly 3512 * coupled with a single extent map, and each range can have 3513 * an extent map with a different offset value relative to the 3514 * uncompressed data of our extent and different lengths. This 3515 * is a corner case so we prioritize correctness over 3516 * non-optimal behavior (submitting 2 bios for the same extent). 3517 */ 3518 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3519 prev_em_start && *prev_em_start != (u64)-1 && 3520 *prev_em_start != em->start) 3521 force_bio_submit = true; 3522 3523 if (prev_em_start) 3524 *prev_em_start = em->start; 3525 3526 free_extent_map(em); 3527 em = NULL; 3528 3529 /* we've found a hole, just zero and go on */ 3530 if (block_start == EXTENT_MAP_HOLE) { 3531 char *userpage; 3532 struct extent_state *cached = NULL; 3533 3534 userpage = kmap_atomic(page); 3535 memset(userpage + pg_offset, 0, iosize); 3536 flush_dcache_page(page); 3537 kunmap_atomic(userpage); 3538 3539 set_extent_uptodate(tree, cur, cur + iosize - 1, 3540 &cached, GFP_NOFS); 3541 unlock_extent_cached(tree, cur, 3542 cur + iosize - 1, &cached); 3543 end_page_read(page, true, cur, iosize); 3544 cur = cur + iosize; 3545 pg_offset += iosize; 3546 continue; 3547 } 3548 /* the get_extent function already copied into the page */ 3549 if (test_range_bit(tree, cur, cur_end, 3550 EXTENT_UPTODATE, 1, NULL)) { 3551 check_page_uptodate(tree, page); 3552 unlock_extent(tree, cur, cur + iosize - 1); 3553 end_page_read(page, true, cur, iosize); 3554 cur = cur + iosize; 3555 pg_offset += iosize; 3556 continue; 3557 } 3558 /* we have an inline extent but it didn't get marked up 3559 * to date. Error out 3560 */ 3561 if (block_start == EXTENT_MAP_INLINE) { 3562 unlock_extent(tree, cur, cur + iosize - 1); 3563 end_page_read(page, false, cur, iosize); 3564 cur = cur + iosize; 3565 pg_offset += iosize; 3566 continue; 3567 } 3568 3569 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3570 page, disk_bytenr, iosize, 3571 pg_offset, bio, 3572 end_bio_extent_readpage, 0, 3573 *bio_flags, 3574 this_bio_flag, 3575 force_bio_submit); 3576 if (!ret) { 3577 nr++; 3578 *bio_flags = this_bio_flag; 3579 } else { 3580 unlock_extent(tree, cur, cur + iosize - 1); 3581 end_page_read(page, false, cur, iosize); 3582 goto out; 3583 } 3584 cur = cur + iosize; 3585 pg_offset += iosize; 3586 } 3587 out: 3588 return ret; 3589 } 3590 3591 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3592 u64 start, u64 end, 3593 struct extent_map **em_cached, 3594 struct bio **bio, 3595 unsigned long *bio_flags, 3596 u64 *prev_em_start) 3597 { 3598 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3599 int index; 3600 3601 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3602 3603 for (index = 0; index < nr_pages; index++) { 3604 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags, 3605 REQ_RAHEAD, prev_em_start); 3606 put_page(pages[index]); 3607 } 3608 } 3609 3610 static void update_nr_written(struct writeback_control *wbc, 3611 unsigned long nr_written) 3612 { 3613 wbc->nr_to_write -= nr_written; 3614 } 3615 3616 /* 3617 * helper for __extent_writepage, doing all of the delayed allocation setup. 3618 * 3619 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3620 * to write the page (copy into inline extent). In this case the IO has 3621 * been started and the page is already unlocked. 3622 * 3623 * This returns 0 if all went well (page still locked) 3624 * This returns < 0 if there were errors (page still locked) 3625 */ 3626 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3627 struct page *page, struct writeback_control *wbc, 3628 u64 delalloc_start, unsigned long *nr_written) 3629 { 3630 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3631 bool found; 3632 u64 delalloc_to_write = 0; 3633 u64 delalloc_end = 0; 3634 int ret; 3635 int page_started = 0; 3636 3637 3638 while (delalloc_end < page_end) { 3639 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3640 &delalloc_start, 3641 &delalloc_end); 3642 if (!found) { 3643 delalloc_start = delalloc_end + 1; 3644 continue; 3645 } 3646 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3647 delalloc_end, &page_started, nr_written, wbc); 3648 if (ret) { 3649 SetPageError(page); 3650 /* 3651 * btrfs_run_delalloc_range should return < 0 for error 3652 * but just in case, we use > 0 here meaning the IO is 3653 * started, so we don't want to return > 0 unless 3654 * things are going well. 3655 */ 3656 return ret < 0 ? ret : -EIO; 3657 } 3658 /* 3659 * delalloc_end is already one less than the total length, so 3660 * we don't subtract one from PAGE_SIZE 3661 */ 3662 delalloc_to_write += (delalloc_end - delalloc_start + 3663 PAGE_SIZE) >> PAGE_SHIFT; 3664 delalloc_start = delalloc_end + 1; 3665 } 3666 if (wbc->nr_to_write < delalloc_to_write) { 3667 int thresh = 8192; 3668 3669 if (delalloc_to_write < thresh * 2) 3670 thresh = delalloc_to_write; 3671 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3672 thresh); 3673 } 3674 3675 /* did the fill delalloc function already unlock and start 3676 * the IO? 3677 */ 3678 if (page_started) { 3679 /* 3680 * we've unlocked the page, so we can't update 3681 * the mapping's writeback index, just update 3682 * nr_to_write. 3683 */ 3684 wbc->nr_to_write -= *nr_written; 3685 return 1; 3686 } 3687 3688 return 0; 3689 } 3690 3691 /* 3692 * helper for __extent_writepage. This calls the writepage start hooks, 3693 * and does the loop to map the page into extents and bios. 3694 * 3695 * We return 1 if the IO is started and the page is unlocked, 3696 * 0 if all went well (page still locked) 3697 * < 0 if there were errors (page still locked) 3698 */ 3699 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3700 struct page *page, 3701 struct writeback_control *wbc, 3702 struct extent_page_data *epd, 3703 loff_t i_size, 3704 unsigned long nr_written, 3705 int *nr_ret) 3706 { 3707 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3708 struct extent_io_tree *tree = &inode->io_tree; 3709 u64 start = page_offset(page); 3710 u64 end = start + PAGE_SIZE - 1; 3711 u64 cur = start; 3712 u64 extent_offset; 3713 u64 block_start; 3714 struct extent_map *em; 3715 int ret = 0; 3716 int nr = 0; 3717 u32 opf = REQ_OP_WRITE; 3718 const unsigned int write_flags = wbc_to_write_flags(wbc); 3719 bool compressed; 3720 3721 ret = btrfs_writepage_cow_fixup(page, start, end); 3722 if (ret) { 3723 /* Fixup worker will requeue */ 3724 redirty_page_for_writepage(wbc, page); 3725 update_nr_written(wbc, nr_written); 3726 unlock_page(page); 3727 return 1; 3728 } 3729 3730 /* 3731 * we don't want to touch the inode after unlocking the page, 3732 * so we update the mapping writeback index now 3733 */ 3734 update_nr_written(wbc, nr_written + 1); 3735 3736 while (cur <= end) { 3737 u64 disk_bytenr; 3738 u64 em_end; 3739 u32 iosize; 3740 3741 if (cur >= i_size) { 3742 btrfs_writepage_endio_finish_ordered(page, cur, end, 1); 3743 break; 3744 } 3745 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3746 if (IS_ERR_OR_NULL(em)) { 3747 SetPageError(page); 3748 ret = PTR_ERR_OR_ZERO(em); 3749 break; 3750 } 3751 3752 extent_offset = cur - em->start; 3753 em_end = extent_map_end(em); 3754 ASSERT(cur <= em_end); 3755 ASSERT(cur < end); 3756 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3757 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3758 block_start = em->block_start; 3759 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3760 disk_bytenr = em->block_start + extent_offset; 3761 3762 /* Note that em_end from extent_map_end() is exclusive */ 3763 iosize = min(em_end, end + 1) - cur; 3764 3765 if (btrfs_use_zone_append(inode, em)) 3766 opf = REQ_OP_ZONE_APPEND; 3767 3768 free_extent_map(em); 3769 em = NULL; 3770 3771 /* 3772 * compressed and inline extents are written through other 3773 * paths in the FS 3774 */ 3775 if (compressed || block_start == EXTENT_MAP_HOLE || 3776 block_start == EXTENT_MAP_INLINE) { 3777 if (compressed) 3778 nr++; 3779 else 3780 btrfs_writepage_endio_finish_ordered(page, cur, 3781 cur + iosize - 1, 1); 3782 cur += iosize; 3783 continue; 3784 } 3785 3786 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3787 if (!PageWriteback(page)) { 3788 btrfs_err(inode->root->fs_info, 3789 "page %lu not writeback, cur %llu end %llu", 3790 page->index, cur, end); 3791 } 3792 3793 ret = submit_extent_page(opf | write_flags, wbc, page, 3794 disk_bytenr, iosize, 3795 cur - page_offset(page), &epd->bio, 3796 end_bio_extent_writepage, 3797 0, 0, 0, false); 3798 if (ret) { 3799 SetPageError(page); 3800 if (PageWriteback(page)) 3801 end_page_writeback(page); 3802 } 3803 3804 cur += iosize; 3805 nr++; 3806 } 3807 *nr_ret = nr; 3808 return ret; 3809 } 3810 3811 /* 3812 * the writepage semantics are similar to regular writepage. extent 3813 * records are inserted to lock ranges in the tree, and as dirty areas 3814 * are found, they are marked writeback. Then the lock bits are removed 3815 * and the end_io handler clears the writeback ranges 3816 * 3817 * Return 0 if everything goes well. 3818 * Return <0 for error. 3819 */ 3820 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3821 struct extent_page_data *epd) 3822 { 3823 struct inode *inode = page->mapping->host; 3824 u64 start = page_offset(page); 3825 u64 page_end = start + PAGE_SIZE - 1; 3826 int ret; 3827 int nr = 0; 3828 size_t pg_offset; 3829 loff_t i_size = i_size_read(inode); 3830 unsigned long end_index = i_size >> PAGE_SHIFT; 3831 unsigned long nr_written = 0; 3832 3833 trace___extent_writepage(page, inode, wbc); 3834 3835 WARN_ON(!PageLocked(page)); 3836 3837 ClearPageError(page); 3838 3839 pg_offset = offset_in_page(i_size); 3840 if (page->index > end_index || 3841 (page->index == end_index && !pg_offset)) { 3842 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3843 unlock_page(page); 3844 return 0; 3845 } 3846 3847 if (page->index == end_index) { 3848 char *userpage; 3849 3850 userpage = kmap_atomic(page); 3851 memset(userpage + pg_offset, 0, 3852 PAGE_SIZE - pg_offset); 3853 kunmap_atomic(userpage); 3854 flush_dcache_page(page); 3855 } 3856 3857 ret = set_page_extent_mapped(page); 3858 if (ret < 0) { 3859 SetPageError(page); 3860 goto done; 3861 } 3862 3863 if (!epd->extent_locked) { 3864 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 3865 &nr_written); 3866 if (ret == 1) 3867 return 0; 3868 if (ret) 3869 goto done; 3870 } 3871 3872 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 3873 nr_written, &nr); 3874 if (ret == 1) 3875 return 0; 3876 3877 done: 3878 if (nr == 0) { 3879 /* make sure the mapping tag for page dirty gets cleared */ 3880 set_page_writeback(page); 3881 end_page_writeback(page); 3882 } 3883 if (PageError(page)) { 3884 ret = ret < 0 ? ret : -EIO; 3885 end_extent_writepage(page, ret, start, page_end); 3886 } 3887 unlock_page(page); 3888 ASSERT(ret <= 0); 3889 return ret; 3890 } 3891 3892 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3893 { 3894 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3895 TASK_UNINTERRUPTIBLE); 3896 } 3897 3898 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3899 { 3900 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3901 smp_mb__after_atomic(); 3902 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3903 } 3904 3905 /* 3906 * Lock extent buffer status and pages for writeback. 3907 * 3908 * May try to flush write bio if we can't get the lock. 3909 * 3910 * Return 0 if the extent buffer doesn't need to be submitted. 3911 * (E.g. the extent buffer is not dirty) 3912 * Return >0 is the extent buffer is submitted to bio. 3913 * Return <0 if something went wrong, no page is locked. 3914 */ 3915 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3916 struct extent_page_data *epd) 3917 { 3918 struct btrfs_fs_info *fs_info = eb->fs_info; 3919 int i, num_pages, failed_page_nr; 3920 int flush = 0; 3921 int ret = 0; 3922 3923 if (!btrfs_try_tree_write_lock(eb)) { 3924 ret = flush_write_bio(epd); 3925 if (ret < 0) 3926 return ret; 3927 flush = 1; 3928 btrfs_tree_lock(eb); 3929 } 3930 3931 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3932 btrfs_tree_unlock(eb); 3933 if (!epd->sync_io) 3934 return 0; 3935 if (!flush) { 3936 ret = flush_write_bio(epd); 3937 if (ret < 0) 3938 return ret; 3939 flush = 1; 3940 } 3941 while (1) { 3942 wait_on_extent_buffer_writeback(eb); 3943 btrfs_tree_lock(eb); 3944 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3945 break; 3946 btrfs_tree_unlock(eb); 3947 } 3948 } 3949 3950 /* 3951 * We need to do this to prevent races in people who check if the eb is 3952 * under IO since we can end up having no IO bits set for a short period 3953 * of time. 3954 */ 3955 spin_lock(&eb->refs_lock); 3956 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3957 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3958 spin_unlock(&eb->refs_lock); 3959 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3960 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3961 -eb->len, 3962 fs_info->dirty_metadata_batch); 3963 ret = 1; 3964 } else { 3965 spin_unlock(&eb->refs_lock); 3966 } 3967 3968 btrfs_tree_unlock(eb); 3969 3970 if (!ret) 3971 return ret; 3972 3973 num_pages = num_extent_pages(eb); 3974 for (i = 0; i < num_pages; i++) { 3975 struct page *p = eb->pages[i]; 3976 3977 if (!trylock_page(p)) { 3978 if (!flush) { 3979 int err; 3980 3981 err = flush_write_bio(epd); 3982 if (err < 0) { 3983 ret = err; 3984 failed_page_nr = i; 3985 goto err_unlock; 3986 } 3987 flush = 1; 3988 } 3989 lock_page(p); 3990 } 3991 } 3992 3993 return ret; 3994 err_unlock: 3995 /* Unlock already locked pages */ 3996 for (i = 0; i < failed_page_nr; i++) 3997 unlock_page(eb->pages[i]); 3998 /* 3999 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 4000 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 4001 * be made and undo everything done before. 4002 */ 4003 btrfs_tree_lock(eb); 4004 spin_lock(&eb->refs_lock); 4005 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4006 end_extent_buffer_writeback(eb); 4007 spin_unlock(&eb->refs_lock); 4008 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 4009 fs_info->dirty_metadata_batch); 4010 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4011 btrfs_tree_unlock(eb); 4012 return ret; 4013 } 4014 4015 static void set_btree_ioerr(struct page *page) 4016 { 4017 struct extent_buffer *eb = (struct extent_buffer *)page->private; 4018 struct btrfs_fs_info *fs_info; 4019 4020 SetPageError(page); 4021 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4022 return; 4023 4024 /* 4025 * If we error out, we should add back the dirty_metadata_bytes 4026 * to make it consistent. 4027 */ 4028 fs_info = eb->fs_info; 4029 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4030 eb->len, fs_info->dirty_metadata_batch); 4031 4032 /* 4033 * If writeback for a btree extent that doesn't belong to a log tree 4034 * failed, increment the counter transaction->eb_write_errors. 4035 * We do this because while the transaction is running and before it's 4036 * committing (when we call filemap_fdata[write|wait]_range against 4037 * the btree inode), we might have 4038 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4039 * returns an error or an error happens during writeback, when we're 4040 * committing the transaction we wouldn't know about it, since the pages 4041 * can be no longer dirty nor marked anymore for writeback (if a 4042 * subsequent modification to the extent buffer didn't happen before the 4043 * transaction commit), which makes filemap_fdata[write|wait]_range not 4044 * able to find the pages tagged with SetPageError at transaction 4045 * commit time. So if this happens we must abort the transaction, 4046 * otherwise we commit a super block with btree roots that point to 4047 * btree nodes/leafs whose content on disk is invalid - either garbage 4048 * or the content of some node/leaf from a past generation that got 4049 * cowed or deleted and is no longer valid. 4050 * 4051 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4052 * not be enough - we need to distinguish between log tree extents vs 4053 * non-log tree extents, and the next filemap_fdatawait_range() call 4054 * will catch and clear such errors in the mapping - and that call might 4055 * be from a log sync and not from a transaction commit. Also, checking 4056 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4057 * not done and would not be reliable - the eb might have been released 4058 * from memory and reading it back again means that flag would not be 4059 * set (since it's a runtime flag, not persisted on disk). 4060 * 4061 * Using the flags below in the btree inode also makes us achieve the 4062 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4063 * writeback for all dirty pages and before filemap_fdatawait_range() 4064 * is called, the writeback for all dirty pages had already finished 4065 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4066 * filemap_fdatawait_range() would return success, as it could not know 4067 * that writeback errors happened (the pages were no longer tagged for 4068 * writeback). 4069 */ 4070 switch (eb->log_index) { 4071 case -1: 4072 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 4073 break; 4074 case 0: 4075 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 4076 break; 4077 case 1: 4078 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 4079 break; 4080 default: 4081 BUG(); /* unexpected, logic error */ 4082 } 4083 } 4084 4085 static void end_bio_extent_buffer_writepage(struct bio *bio) 4086 { 4087 struct bio_vec *bvec; 4088 struct extent_buffer *eb; 4089 int done; 4090 struct bvec_iter_all iter_all; 4091 4092 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4093 bio_for_each_segment_all(bvec, bio, iter_all) { 4094 struct page *page = bvec->bv_page; 4095 4096 eb = (struct extent_buffer *)page->private; 4097 BUG_ON(!eb); 4098 done = atomic_dec_and_test(&eb->io_pages); 4099 4100 if (bio->bi_status || 4101 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4102 ClearPageUptodate(page); 4103 set_btree_ioerr(page); 4104 } 4105 4106 end_page_writeback(page); 4107 4108 if (!done) 4109 continue; 4110 4111 end_extent_buffer_writeback(eb); 4112 } 4113 4114 bio_put(bio); 4115 } 4116 4117 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4118 struct writeback_control *wbc, 4119 struct extent_page_data *epd) 4120 { 4121 u64 disk_bytenr = eb->start; 4122 u32 nritems; 4123 int i, num_pages; 4124 unsigned long start, end; 4125 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4126 int ret = 0; 4127 4128 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4129 num_pages = num_extent_pages(eb); 4130 atomic_set(&eb->io_pages, num_pages); 4131 4132 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 4133 nritems = btrfs_header_nritems(eb); 4134 if (btrfs_header_level(eb) > 0) { 4135 end = btrfs_node_key_ptr_offset(nritems); 4136 4137 memzero_extent_buffer(eb, end, eb->len - end); 4138 } else { 4139 /* 4140 * leaf: 4141 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4142 */ 4143 start = btrfs_item_nr_offset(nritems); 4144 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4145 memzero_extent_buffer(eb, start, end - start); 4146 } 4147 4148 for (i = 0; i < num_pages; i++) { 4149 struct page *p = eb->pages[i]; 4150 4151 clear_page_dirty_for_io(p); 4152 set_page_writeback(p); 4153 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4154 p, disk_bytenr, PAGE_SIZE, 0, 4155 &epd->bio, 4156 end_bio_extent_buffer_writepage, 4157 0, 0, 0, false); 4158 if (ret) { 4159 set_btree_ioerr(p); 4160 if (PageWriteback(p)) 4161 end_page_writeback(p); 4162 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4163 end_extent_buffer_writeback(eb); 4164 ret = -EIO; 4165 break; 4166 } 4167 disk_bytenr += PAGE_SIZE; 4168 update_nr_written(wbc, 1); 4169 unlock_page(p); 4170 } 4171 4172 if (unlikely(ret)) { 4173 for (; i < num_pages; i++) { 4174 struct page *p = eb->pages[i]; 4175 clear_page_dirty_for_io(p); 4176 unlock_page(p); 4177 } 4178 } 4179 4180 return ret; 4181 } 4182 4183 /* 4184 * Submit all page(s) of one extent buffer. 4185 * 4186 * @page: the page of one extent buffer 4187 * @eb_context: to determine if we need to submit this page, if current page 4188 * belongs to this eb, we don't need to submit 4189 * 4190 * The caller should pass each page in their bytenr order, and here we use 4191 * @eb_context to determine if we have submitted pages of one extent buffer. 4192 * 4193 * If we have, we just skip until we hit a new page that doesn't belong to 4194 * current @eb_context. 4195 * 4196 * If not, we submit all the page(s) of the extent buffer. 4197 * 4198 * Return >0 if we have submitted the extent buffer successfully. 4199 * Return 0 if we don't need to submit the page, as it's already submitted by 4200 * previous call. 4201 * Return <0 for fatal error. 4202 */ 4203 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4204 struct extent_page_data *epd, 4205 struct extent_buffer **eb_context) 4206 { 4207 struct address_space *mapping = page->mapping; 4208 struct btrfs_block_group *cache = NULL; 4209 struct extent_buffer *eb; 4210 int ret; 4211 4212 if (!PagePrivate(page)) 4213 return 0; 4214 4215 spin_lock(&mapping->private_lock); 4216 if (!PagePrivate(page)) { 4217 spin_unlock(&mapping->private_lock); 4218 return 0; 4219 } 4220 4221 eb = (struct extent_buffer *)page->private; 4222 4223 /* 4224 * Shouldn't happen and normally this would be a BUG_ON but no point 4225 * crashing the machine for something we can survive anyway. 4226 */ 4227 if (WARN_ON(!eb)) { 4228 spin_unlock(&mapping->private_lock); 4229 return 0; 4230 } 4231 4232 if (eb == *eb_context) { 4233 spin_unlock(&mapping->private_lock); 4234 return 0; 4235 } 4236 ret = atomic_inc_not_zero(&eb->refs); 4237 spin_unlock(&mapping->private_lock); 4238 if (!ret) 4239 return 0; 4240 4241 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4242 /* 4243 * If for_sync, this hole will be filled with 4244 * trasnsaction commit. 4245 */ 4246 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4247 ret = -EAGAIN; 4248 else 4249 ret = 0; 4250 free_extent_buffer(eb); 4251 return ret; 4252 } 4253 4254 *eb_context = eb; 4255 4256 ret = lock_extent_buffer_for_io(eb, epd); 4257 if (ret <= 0) { 4258 btrfs_revert_meta_write_pointer(cache, eb); 4259 if (cache) 4260 btrfs_put_block_group(cache); 4261 free_extent_buffer(eb); 4262 return ret; 4263 } 4264 if (cache) 4265 btrfs_put_block_group(cache); 4266 ret = write_one_eb(eb, wbc, epd); 4267 free_extent_buffer(eb); 4268 if (ret < 0) 4269 return ret; 4270 return 1; 4271 } 4272 4273 int btree_write_cache_pages(struct address_space *mapping, 4274 struct writeback_control *wbc) 4275 { 4276 struct extent_buffer *eb_context = NULL; 4277 struct extent_page_data epd = { 4278 .bio = NULL, 4279 .extent_locked = 0, 4280 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4281 }; 4282 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4283 int ret = 0; 4284 int done = 0; 4285 int nr_to_write_done = 0; 4286 struct pagevec pvec; 4287 int nr_pages; 4288 pgoff_t index; 4289 pgoff_t end; /* Inclusive */ 4290 int scanned = 0; 4291 xa_mark_t tag; 4292 4293 pagevec_init(&pvec); 4294 if (wbc->range_cyclic) { 4295 index = mapping->writeback_index; /* Start from prev offset */ 4296 end = -1; 4297 /* 4298 * Start from the beginning does not need to cycle over the 4299 * range, mark it as scanned. 4300 */ 4301 scanned = (index == 0); 4302 } else { 4303 index = wbc->range_start >> PAGE_SHIFT; 4304 end = wbc->range_end >> PAGE_SHIFT; 4305 scanned = 1; 4306 } 4307 if (wbc->sync_mode == WB_SYNC_ALL) 4308 tag = PAGECACHE_TAG_TOWRITE; 4309 else 4310 tag = PAGECACHE_TAG_DIRTY; 4311 btrfs_zoned_meta_io_lock(fs_info); 4312 retry: 4313 if (wbc->sync_mode == WB_SYNC_ALL) 4314 tag_pages_for_writeback(mapping, index, end); 4315 while (!done && !nr_to_write_done && (index <= end) && 4316 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4317 tag))) { 4318 unsigned i; 4319 4320 for (i = 0; i < nr_pages; i++) { 4321 struct page *page = pvec.pages[i]; 4322 4323 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4324 if (ret == 0) 4325 continue; 4326 if (ret < 0) { 4327 done = 1; 4328 break; 4329 } 4330 4331 /* 4332 * the filesystem may choose to bump up nr_to_write. 4333 * We have to make sure to honor the new nr_to_write 4334 * at any time 4335 */ 4336 nr_to_write_done = wbc->nr_to_write <= 0; 4337 } 4338 pagevec_release(&pvec); 4339 cond_resched(); 4340 } 4341 if (!scanned && !done) { 4342 /* 4343 * We hit the last page and there is more work to be done: wrap 4344 * back to the start of the file 4345 */ 4346 scanned = 1; 4347 index = 0; 4348 goto retry; 4349 } 4350 if (ret < 0) { 4351 end_write_bio(&epd, ret); 4352 goto out; 4353 } 4354 /* 4355 * If something went wrong, don't allow any metadata write bio to be 4356 * submitted. 4357 * 4358 * This would prevent use-after-free if we had dirty pages not 4359 * cleaned up, which can still happen by fuzzed images. 4360 * 4361 * - Bad extent tree 4362 * Allowing existing tree block to be allocated for other trees. 4363 * 4364 * - Log tree operations 4365 * Exiting tree blocks get allocated to log tree, bumps its 4366 * generation, then get cleaned in tree re-balance. 4367 * Such tree block will not be written back, since it's clean, 4368 * thus no WRITTEN flag set. 4369 * And after log writes back, this tree block is not traced by 4370 * any dirty extent_io_tree. 4371 * 4372 * - Offending tree block gets re-dirtied from its original owner 4373 * Since it has bumped generation, no WRITTEN flag, it can be 4374 * reused without COWing. This tree block will not be traced 4375 * by btrfs_transaction::dirty_pages. 4376 * 4377 * Now such dirty tree block will not be cleaned by any dirty 4378 * extent io tree. Thus we don't want to submit such wild eb 4379 * if the fs already has error. 4380 */ 4381 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4382 ret = flush_write_bio(&epd); 4383 } else { 4384 ret = -EROFS; 4385 end_write_bio(&epd, ret); 4386 } 4387 out: 4388 btrfs_zoned_meta_io_unlock(fs_info); 4389 return ret; 4390 } 4391 4392 /** 4393 * Walk the list of dirty pages of the given address space and write all of them. 4394 * 4395 * @mapping: address space structure to write 4396 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4397 * @epd: holds context for the write, namely the bio 4398 * 4399 * If a page is already under I/O, write_cache_pages() skips it, even 4400 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4401 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4402 * and msync() need to guarantee that all the data which was dirty at the time 4403 * the call was made get new I/O started against them. If wbc->sync_mode is 4404 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4405 * existing IO to complete. 4406 */ 4407 static int extent_write_cache_pages(struct address_space *mapping, 4408 struct writeback_control *wbc, 4409 struct extent_page_data *epd) 4410 { 4411 struct inode *inode = mapping->host; 4412 int ret = 0; 4413 int done = 0; 4414 int nr_to_write_done = 0; 4415 struct pagevec pvec; 4416 int nr_pages; 4417 pgoff_t index; 4418 pgoff_t end; /* Inclusive */ 4419 pgoff_t done_index; 4420 int range_whole = 0; 4421 int scanned = 0; 4422 xa_mark_t tag; 4423 4424 /* 4425 * We have to hold onto the inode so that ordered extents can do their 4426 * work when the IO finishes. The alternative to this is failing to add 4427 * an ordered extent if the igrab() fails there and that is a huge pain 4428 * to deal with, so instead just hold onto the inode throughout the 4429 * writepages operation. If it fails here we are freeing up the inode 4430 * anyway and we'd rather not waste our time writing out stuff that is 4431 * going to be truncated anyway. 4432 */ 4433 if (!igrab(inode)) 4434 return 0; 4435 4436 pagevec_init(&pvec); 4437 if (wbc->range_cyclic) { 4438 index = mapping->writeback_index; /* Start from prev offset */ 4439 end = -1; 4440 /* 4441 * Start from the beginning does not need to cycle over the 4442 * range, mark it as scanned. 4443 */ 4444 scanned = (index == 0); 4445 } else { 4446 index = wbc->range_start >> PAGE_SHIFT; 4447 end = wbc->range_end >> PAGE_SHIFT; 4448 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4449 range_whole = 1; 4450 scanned = 1; 4451 } 4452 4453 /* 4454 * We do the tagged writepage as long as the snapshot flush bit is set 4455 * and we are the first one who do the filemap_flush() on this inode. 4456 * 4457 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4458 * not race in and drop the bit. 4459 */ 4460 if (range_whole && wbc->nr_to_write == LONG_MAX && 4461 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4462 &BTRFS_I(inode)->runtime_flags)) 4463 wbc->tagged_writepages = 1; 4464 4465 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4466 tag = PAGECACHE_TAG_TOWRITE; 4467 else 4468 tag = PAGECACHE_TAG_DIRTY; 4469 retry: 4470 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4471 tag_pages_for_writeback(mapping, index, end); 4472 done_index = index; 4473 while (!done && !nr_to_write_done && (index <= end) && 4474 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4475 &index, end, tag))) { 4476 unsigned i; 4477 4478 for (i = 0; i < nr_pages; i++) { 4479 struct page *page = pvec.pages[i]; 4480 4481 done_index = page->index + 1; 4482 /* 4483 * At this point we hold neither the i_pages lock nor 4484 * the page lock: the page may be truncated or 4485 * invalidated (changing page->mapping to NULL), 4486 * or even swizzled back from swapper_space to 4487 * tmpfs file mapping 4488 */ 4489 if (!trylock_page(page)) { 4490 ret = flush_write_bio(epd); 4491 BUG_ON(ret < 0); 4492 lock_page(page); 4493 } 4494 4495 if (unlikely(page->mapping != mapping)) { 4496 unlock_page(page); 4497 continue; 4498 } 4499 4500 if (wbc->sync_mode != WB_SYNC_NONE) { 4501 if (PageWriteback(page)) { 4502 ret = flush_write_bio(epd); 4503 BUG_ON(ret < 0); 4504 } 4505 wait_on_page_writeback(page); 4506 } 4507 4508 if (PageWriteback(page) || 4509 !clear_page_dirty_for_io(page)) { 4510 unlock_page(page); 4511 continue; 4512 } 4513 4514 ret = __extent_writepage(page, wbc, epd); 4515 if (ret < 0) { 4516 done = 1; 4517 break; 4518 } 4519 4520 /* 4521 * the filesystem may choose to bump up nr_to_write. 4522 * We have to make sure to honor the new nr_to_write 4523 * at any time 4524 */ 4525 nr_to_write_done = wbc->nr_to_write <= 0; 4526 } 4527 pagevec_release(&pvec); 4528 cond_resched(); 4529 } 4530 if (!scanned && !done) { 4531 /* 4532 * We hit the last page and there is more work to be done: wrap 4533 * back to the start of the file 4534 */ 4535 scanned = 1; 4536 index = 0; 4537 4538 /* 4539 * If we're looping we could run into a page that is locked by a 4540 * writer and that writer could be waiting on writeback for a 4541 * page in our current bio, and thus deadlock, so flush the 4542 * write bio here. 4543 */ 4544 ret = flush_write_bio(epd); 4545 if (!ret) 4546 goto retry; 4547 } 4548 4549 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4550 mapping->writeback_index = done_index; 4551 4552 btrfs_add_delayed_iput(inode); 4553 return ret; 4554 } 4555 4556 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4557 { 4558 int ret; 4559 struct extent_page_data epd = { 4560 .bio = NULL, 4561 .extent_locked = 0, 4562 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4563 }; 4564 4565 ret = __extent_writepage(page, wbc, &epd); 4566 ASSERT(ret <= 0); 4567 if (ret < 0) { 4568 end_write_bio(&epd, ret); 4569 return ret; 4570 } 4571 4572 ret = flush_write_bio(&epd); 4573 ASSERT(ret <= 0); 4574 return ret; 4575 } 4576 4577 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4578 int mode) 4579 { 4580 int ret = 0; 4581 struct address_space *mapping = inode->i_mapping; 4582 struct page *page; 4583 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4584 PAGE_SHIFT; 4585 4586 struct extent_page_data epd = { 4587 .bio = NULL, 4588 .extent_locked = 1, 4589 .sync_io = mode == WB_SYNC_ALL, 4590 }; 4591 struct writeback_control wbc_writepages = { 4592 .sync_mode = mode, 4593 .nr_to_write = nr_pages * 2, 4594 .range_start = start, 4595 .range_end = end + 1, 4596 /* We're called from an async helper function */ 4597 .punt_to_cgroup = 1, 4598 .no_cgroup_owner = 1, 4599 }; 4600 4601 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4602 while (start <= end) { 4603 page = find_get_page(mapping, start >> PAGE_SHIFT); 4604 if (clear_page_dirty_for_io(page)) 4605 ret = __extent_writepage(page, &wbc_writepages, &epd); 4606 else { 4607 btrfs_writepage_endio_finish_ordered(page, start, 4608 start + PAGE_SIZE - 1, 1); 4609 unlock_page(page); 4610 } 4611 put_page(page); 4612 start += PAGE_SIZE; 4613 } 4614 4615 ASSERT(ret <= 0); 4616 if (ret == 0) 4617 ret = flush_write_bio(&epd); 4618 else 4619 end_write_bio(&epd, ret); 4620 4621 wbc_detach_inode(&wbc_writepages); 4622 return ret; 4623 } 4624 4625 int extent_writepages(struct address_space *mapping, 4626 struct writeback_control *wbc) 4627 { 4628 int ret = 0; 4629 struct extent_page_data epd = { 4630 .bio = NULL, 4631 .extent_locked = 0, 4632 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4633 }; 4634 4635 ret = extent_write_cache_pages(mapping, wbc, &epd); 4636 ASSERT(ret <= 0); 4637 if (ret < 0) { 4638 end_write_bio(&epd, ret); 4639 return ret; 4640 } 4641 ret = flush_write_bio(&epd); 4642 return ret; 4643 } 4644 4645 void extent_readahead(struct readahead_control *rac) 4646 { 4647 struct bio *bio = NULL; 4648 unsigned long bio_flags = 0; 4649 struct page *pagepool[16]; 4650 struct extent_map *em_cached = NULL; 4651 u64 prev_em_start = (u64)-1; 4652 int nr; 4653 4654 while ((nr = readahead_page_batch(rac, pagepool))) { 4655 u64 contig_start = page_offset(pagepool[0]); 4656 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4657 4658 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4659 4660 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4661 &em_cached, &bio, &bio_flags, &prev_em_start); 4662 } 4663 4664 if (em_cached) 4665 free_extent_map(em_cached); 4666 4667 if (bio) { 4668 if (submit_one_bio(bio, 0, bio_flags)) 4669 return; 4670 } 4671 } 4672 4673 /* 4674 * basic invalidatepage code, this waits on any locked or writeback 4675 * ranges corresponding to the page, and then deletes any extent state 4676 * records from the tree 4677 */ 4678 int extent_invalidatepage(struct extent_io_tree *tree, 4679 struct page *page, unsigned long offset) 4680 { 4681 struct extent_state *cached_state = NULL; 4682 u64 start = page_offset(page); 4683 u64 end = start + PAGE_SIZE - 1; 4684 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4685 4686 /* This function is only called for the btree inode */ 4687 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 4688 4689 start += ALIGN(offset, blocksize); 4690 if (start > end) 4691 return 0; 4692 4693 lock_extent_bits(tree, start, end, &cached_state); 4694 wait_on_page_writeback(page); 4695 4696 /* 4697 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 4698 * so here we only need to unlock the extent range to free any 4699 * existing extent state. 4700 */ 4701 unlock_extent_cached(tree, start, end, &cached_state); 4702 return 0; 4703 } 4704 4705 /* 4706 * a helper for releasepage, this tests for areas of the page that 4707 * are locked or under IO and drops the related state bits if it is safe 4708 * to drop the page. 4709 */ 4710 static int try_release_extent_state(struct extent_io_tree *tree, 4711 struct page *page, gfp_t mask) 4712 { 4713 u64 start = page_offset(page); 4714 u64 end = start + PAGE_SIZE - 1; 4715 int ret = 1; 4716 4717 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4718 ret = 0; 4719 } else { 4720 /* 4721 * At this point we can safely clear everything except the 4722 * locked bit, the nodatasum bit and the delalloc new bit. 4723 * The delalloc new bit will be cleared by ordered extent 4724 * completion. 4725 */ 4726 ret = __clear_extent_bit(tree, start, end, 4727 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 4728 0, 0, NULL, mask, NULL); 4729 4730 /* if clear_extent_bit failed for enomem reasons, 4731 * we can't allow the release to continue. 4732 */ 4733 if (ret < 0) 4734 ret = 0; 4735 else 4736 ret = 1; 4737 } 4738 return ret; 4739 } 4740 4741 /* 4742 * a helper for releasepage. As long as there are no locked extents 4743 * in the range corresponding to the page, both state records and extent 4744 * map records are removed 4745 */ 4746 int try_release_extent_mapping(struct page *page, gfp_t mask) 4747 { 4748 struct extent_map *em; 4749 u64 start = page_offset(page); 4750 u64 end = start + PAGE_SIZE - 1; 4751 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4752 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4753 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4754 4755 if (gfpflags_allow_blocking(mask) && 4756 page->mapping->host->i_size > SZ_16M) { 4757 u64 len; 4758 while (start <= end) { 4759 struct btrfs_fs_info *fs_info; 4760 u64 cur_gen; 4761 4762 len = end - start + 1; 4763 write_lock(&map->lock); 4764 em = lookup_extent_mapping(map, start, len); 4765 if (!em) { 4766 write_unlock(&map->lock); 4767 break; 4768 } 4769 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4770 em->start != start) { 4771 write_unlock(&map->lock); 4772 free_extent_map(em); 4773 break; 4774 } 4775 if (test_range_bit(tree, em->start, 4776 extent_map_end(em) - 1, 4777 EXTENT_LOCKED, 0, NULL)) 4778 goto next; 4779 /* 4780 * If it's not in the list of modified extents, used 4781 * by a fast fsync, we can remove it. If it's being 4782 * logged we can safely remove it since fsync took an 4783 * extra reference on the em. 4784 */ 4785 if (list_empty(&em->list) || 4786 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 4787 goto remove_em; 4788 /* 4789 * If it's in the list of modified extents, remove it 4790 * only if its generation is older then the current one, 4791 * in which case we don't need it for a fast fsync. 4792 * Otherwise don't remove it, we could be racing with an 4793 * ongoing fast fsync that could miss the new extent. 4794 */ 4795 fs_info = btrfs_inode->root->fs_info; 4796 spin_lock(&fs_info->trans_lock); 4797 cur_gen = fs_info->generation; 4798 spin_unlock(&fs_info->trans_lock); 4799 if (em->generation >= cur_gen) 4800 goto next; 4801 remove_em: 4802 /* 4803 * We only remove extent maps that are not in the list of 4804 * modified extents or that are in the list but with a 4805 * generation lower then the current generation, so there 4806 * is no need to set the full fsync flag on the inode (it 4807 * hurts the fsync performance for workloads with a data 4808 * size that exceeds or is close to the system's memory). 4809 */ 4810 remove_extent_mapping(map, em); 4811 /* once for the rb tree */ 4812 free_extent_map(em); 4813 next: 4814 start = extent_map_end(em); 4815 write_unlock(&map->lock); 4816 4817 /* once for us */ 4818 free_extent_map(em); 4819 4820 cond_resched(); /* Allow large-extent preemption. */ 4821 } 4822 } 4823 return try_release_extent_state(tree, page, mask); 4824 } 4825 4826 /* 4827 * helper function for fiemap, which doesn't want to see any holes. 4828 * This maps until we find something past 'last' 4829 */ 4830 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 4831 u64 offset, u64 last) 4832 { 4833 u64 sectorsize = btrfs_inode_sectorsize(inode); 4834 struct extent_map *em; 4835 u64 len; 4836 4837 if (offset >= last) 4838 return NULL; 4839 4840 while (1) { 4841 len = last - offset; 4842 if (len == 0) 4843 break; 4844 len = ALIGN(len, sectorsize); 4845 em = btrfs_get_extent_fiemap(inode, offset, len); 4846 if (IS_ERR_OR_NULL(em)) 4847 return em; 4848 4849 /* if this isn't a hole return it */ 4850 if (em->block_start != EXTENT_MAP_HOLE) 4851 return em; 4852 4853 /* this is a hole, advance to the next extent */ 4854 offset = extent_map_end(em); 4855 free_extent_map(em); 4856 if (offset >= last) 4857 break; 4858 } 4859 return NULL; 4860 } 4861 4862 /* 4863 * To cache previous fiemap extent 4864 * 4865 * Will be used for merging fiemap extent 4866 */ 4867 struct fiemap_cache { 4868 u64 offset; 4869 u64 phys; 4870 u64 len; 4871 u32 flags; 4872 bool cached; 4873 }; 4874 4875 /* 4876 * Helper to submit fiemap extent. 4877 * 4878 * Will try to merge current fiemap extent specified by @offset, @phys, 4879 * @len and @flags with cached one. 4880 * And only when we fails to merge, cached one will be submitted as 4881 * fiemap extent. 4882 * 4883 * Return value is the same as fiemap_fill_next_extent(). 4884 */ 4885 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4886 struct fiemap_cache *cache, 4887 u64 offset, u64 phys, u64 len, u32 flags) 4888 { 4889 int ret = 0; 4890 4891 if (!cache->cached) 4892 goto assign; 4893 4894 /* 4895 * Sanity check, extent_fiemap() should have ensured that new 4896 * fiemap extent won't overlap with cached one. 4897 * Not recoverable. 4898 * 4899 * NOTE: Physical address can overlap, due to compression 4900 */ 4901 if (cache->offset + cache->len > offset) { 4902 WARN_ON(1); 4903 return -EINVAL; 4904 } 4905 4906 /* 4907 * Only merges fiemap extents if 4908 * 1) Their logical addresses are continuous 4909 * 4910 * 2) Their physical addresses are continuous 4911 * So truly compressed (physical size smaller than logical size) 4912 * extents won't get merged with each other 4913 * 4914 * 3) Share same flags except FIEMAP_EXTENT_LAST 4915 * So regular extent won't get merged with prealloc extent 4916 */ 4917 if (cache->offset + cache->len == offset && 4918 cache->phys + cache->len == phys && 4919 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4920 (flags & ~FIEMAP_EXTENT_LAST)) { 4921 cache->len += len; 4922 cache->flags |= flags; 4923 goto try_submit_last; 4924 } 4925 4926 /* Not mergeable, need to submit cached one */ 4927 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4928 cache->len, cache->flags); 4929 cache->cached = false; 4930 if (ret) 4931 return ret; 4932 assign: 4933 cache->cached = true; 4934 cache->offset = offset; 4935 cache->phys = phys; 4936 cache->len = len; 4937 cache->flags = flags; 4938 try_submit_last: 4939 if (cache->flags & FIEMAP_EXTENT_LAST) { 4940 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4941 cache->phys, cache->len, cache->flags); 4942 cache->cached = false; 4943 } 4944 return ret; 4945 } 4946 4947 /* 4948 * Emit last fiemap cache 4949 * 4950 * The last fiemap cache may still be cached in the following case: 4951 * 0 4k 8k 4952 * |<- Fiemap range ->| 4953 * |<------------ First extent ----------->| 4954 * 4955 * In this case, the first extent range will be cached but not emitted. 4956 * So we must emit it before ending extent_fiemap(). 4957 */ 4958 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4959 struct fiemap_cache *cache) 4960 { 4961 int ret; 4962 4963 if (!cache->cached) 4964 return 0; 4965 4966 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4967 cache->len, cache->flags); 4968 cache->cached = false; 4969 if (ret > 0) 4970 ret = 0; 4971 return ret; 4972 } 4973 4974 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 4975 u64 start, u64 len) 4976 { 4977 int ret = 0; 4978 u64 off = start; 4979 u64 max = start + len; 4980 u32 flags = 0; 4981 u32 found_type; 4982 u64 last; 4983 u64 last_for_get_extent = 0; 4984 u64 disko = 0; 4985 u64 isize = i_size_read(&inode->vfs_inode); 4986 struct btrfs_key found_key; 4987 struct extent_map *em = NULL; 4988 struct extent_state *cached_state = NULL; 4989 struct btrfs_path *path; 4990 struct btrfs_root *root = inode->root; 4991 struct fiemap_cache cache = { 0 }; 4992 struct ulist *roots; 4993 struct ulist *tmp_ulist; 4994 int end = 0; 4995 u64 em_start = 0; 4996 u64 em_len = 0; 4997 u64 em_end = 0; 4998 4999 if (len == 0) 5000 return -EINVAL; 5001 5002 path = btrfs_alloc_path(); 5003 if (!path) 5004 return -ENOMEM; 5005 5006 roots = ulist_alloc(GFP_KERNEL); 5007 tmp_ulist = ulist_alloc(GFP_KERNEL); 5008 if (!roots || !tmp_ulist) { 5009 ret = -ENOMEM; 5010 goto out_free_ulist; 5011 } 5012 5013 start = round_down(start, btrfs_inode_sectorsize(inode)); 5014 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5015 5016 /* 5017 * lookup the last file extent. We're not using i_size here 5018 * because there might be preallocation past i_size 5019 */ 5020 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5021 0); 5022 if (ret < 0) { 5023 goto out_free_ulist; 5024 } else { 5025 WARN_ON(!ret); 5026 if (ret == 1) 5027 ret = 0; 5028 } 5029 5030 path->slots[0]--; 5031 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5032 found_type = found_key.type; 5033 5034 /* No extents, but there might be delalloc bits */ 5035 if (found_key.objectid != btrfs_ino(inode) || 5036 found_type != BTRFS_EXTENT_DATA_KEY) { 5037 /* have to trust i_size as the end */ 5038 last = (u64)-1; 5039 last_for_get_extent = isize; 5040 } else { 5041 /* 5042 * remember the start of the last extent. There are a 5043 * bunch of different factors that go into the length of the 5044 * extent, so its much less complex to remember where it started 5045 */ 5046 last = found_key.offset; 5047 last_for_get_extent = last + 1; 5048 } 5049 btrfs_release_path(path); 5050 5051 /* 5052 * we might have some extents allocated but more delalloc past those 5053 * extents. so, we trust isize unless the start of the last extent is 5054 * beyond isize 5055 */ 5056 if (last < isize) { 5057 last = (u64)-1; 5058 last_for_get_extent = isize; 5059 } 5060 5061 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5062 &cached_state); 5063 5064 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5065 if (!em) 5066 goto out; 5067 if (IS_ERR(em)) { 5068 ret = PTR_ERR(em); 5069 goto out; 5070 } 5071 5072 while (!end) { 5073 u64 offset_in_extent = 0; 5074 5075 /* break if the extent we found is outside the range */ 5076 if (em->start >= max || extent_map_end(em) < off) 5077 break; 5078 5079 /* 5080 * get_extent may return an extent that starts before our 5081 * requested range. We have to make sure the ranges 5082 * we return to fiemap always move forward and don't 5083 * overlap, so adjust the offsets here 5084 */ 5085 em_start = max(em->start, off); 5086 5087 /* 5088 * record the offset from the start of the extent 5089 * for adjusting the disk offset below. Only do this if the 5090 * extent isn't compressed since our in ram offset may be past 5091 * what we have actually allocated on disk. 5092 */ 5093 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5094 offset_in_extent = em_start - em->start; 5095 em_end = extent_map_end(em); 5096 em_len = em_end - em_start; 5097 flags = 0; 5098 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5099 disko = em->block_start + offset_in_extent; 5100 else 5101 disko = 0; 5102 5103 /* 5104 * bump off for our next call to get_extent 5105 */ 5106 off = extent_map_end(em); 5107 if (off >= max) 5108 end = 1; 5109 5110 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5111 end = 1; 5112 flags |= FIEMAP_EXTENT_LAST; 5113 } else if (em->block_start == EXTENT_MAP_INLINE) { 5114 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5115 FIEMAP_EXTENT_NOT_ALIGNED); 5116 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5117 flags |= (FIEMAP_EXTENT_DELALLOC | 5118 FIEMAP_EXTENT_UNKNOWN); 5119 } else if (fieinfo->fi_extents_max) { 5120 u64 bytenr = em->block_start - 5121 (em->start - em->orig_start); 5122 5123 /* 5124 * As btrfs supports shared space, this information 5125 * can be exported to userspace tools via 5126 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5127 * then we're just getting a count and we can skip the 5128 * lookup stuff. 5129 */ 5130 ret = btrfs_check_shared(root, btrfs_ino(inode), 5131 bytenr, roots, tmp_ulist); 5132 if (ret < 0) 5133 goto out_free; 5134 if (ret) 5135 flags |= FIEMAP_EXTENT_SHARED; 5136 ret = 0; 5137 } 5138 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5139 flags |= FIEMAP_EXTENT_ENCODED; 5140 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5141 flags |= FIEMAP_EXTENT_UNWRITTEN; 5142 5143 free_extent_map(em); 5144 em = NULL; 5145 if ((em_start >= last) || em_len == (u64)-1 || 5146 (last == (u64)-1 && isize <= em_end)) { 5147 flags |= FIEMAP_EXTENT_LAST; 5148 end = 1; 5149 } 5150 5151 /* now scan forward to see if this is really the last extent. */ 5152 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5153 if (IS_ERR(em)) { 5154 ret = PTR_ERR(em); 5155 goto out; 5156 } 5157 if (!em) { 5158 flags |= FIEMAP_EXTENT_LAST; 5159 end = 1; 5160 } 5161 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5162 em_len, flags); 5163 if (ret) { 5164 if (ret == 1) 5165 ret = 0; 5166 goto out_free; 5167 } 5168 } 5169 out_free: 5170 if (!ret) 5171 ret = emit_last_fiemap_cache(fieinfo, &cache); 5172 free_extent_map(em); 5173 out: 5174 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5175 &cached_state); 5176 5177 out_free_ulist: 5178 btrfs_free_path(path); 5179 ulist_free(roots); 5180 ulist_free(tmp_ulist); 5181 return ret; 5182 } 5183 5184 static void __free_extent_buffer(struct extent_buffer *eb) 5185 { 5186 kmem_cache_free(extent_buffer_cache, eb); 5187 } 5188 5189 int extent_buffer_under_io(const struct extent_buffer *eb) 5190 { 5191 return (atomic_read(&eb->io_pages) || 5192 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5193 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5194 } 5195 5196 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5197 { 5198 struct btrfs_subpage *subpage; 5199 5200 lockdep_assert_held(&page->mapping->private_lock); 5201 5202 if (PagePrivate(page)) { 5203 subpage = (struct btrfs_subpage *)page->private; 5204 if (atomic_read(&subpage->eb_refs)) 5205 return true; 5206 } 5207 return false; 5208 } 5209 5210 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5211 { 5212 struct btrfs_fs_info *fs_info = eb->fs_info; 5213 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5214 5215 /* 5216 * For mapped eb, we're going to change the page private, which should 5217 * be done under the private_lock. 5218 */ 5219 if (mapped) 5220 spin_lock(&page->mapping->private_lock); 5221 5222 if (!PagePrivate(page)) { 5223 if (mapped) 5224 spin_unlock(&page->mapping->private_lock); 5225 return; 5226 } 5227 5228 if (fs_info->sectorsize == PAGE_SIZE) { 5229 /* 5230 * We do this since we'll remove the pages after we've 5231 * removed the eb from the radix tree, so we could race 5232 * and have this page now attached to the new eb. So 5233 * only clear page_private if it's still connected to 5234 * this eb. 5235 */ 5236 if (PagePrivate(page) && 5237 page->private == (unsigned long)eb) { 5238 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5239 BUG_ON(PageDirty(page)); 5240 BUG_ON(PageWriteback(page)); 5241 /* 5242 * We need to make sure we haven't be attached 5243 * to a new eb. 5244 */ 5245 detach_page_private(page); 5246 } 5247 if (mapped) 5248 spin_unlock(&page->mapping->private_lock); 5249 return; 5250 } 5251 5252 /* 5253 * For subpage, we can have dummy eb with page private. In this case, 5254 * we can directly detach the private as such page is only attached to 5255 * one dummy eb, no sharing. 5256 */ 5257 if (!mapped) { 5258 btrfs_detach_subpage(fs_info, page); 5259 return; 5260 } 5261 5262 btrfs_page_dec_eb_refs(fs_info, page); 5263 5264 /* 5265 * We can only detach the page private if there are no other ebs in the 5266 * page range. 5267 */ 5268 if (!page_range_has_eb(fs_info, page)) 5269 btrfs_detach_subpage(fs_info, page); 5270 5271 spin_unlock(&page->mapping->private_lock); 5272 } 5273 5274 /* Release all pages attached to the extent buffer */ 5275 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5276 { 5277 int i; 5278 int num_pages; 5279 5280 ASSERT(!extent_buffer_under_io(eb)); 5281 5282 num_pages = num_extent_pages(eb); 5283 for (i = 0; i < num_pages; i++) { 5284 struct page *page = eb->pages[i]; 5285 5286 if (!page) 5287 continue; 5288 5289 detach_extent_buffer_page(eb, page); 5290 5291 /* One for when we allocated the page */ 5292 put_page(page); 5293 } 5294 } 5295 5296 /* 5297 * Helper for releasing the extent buffer. 5298 */ 5299 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5300 { 5301 btrfs_release_extent_buffer_pages(eb); 5302 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5303 __free_extent_buffer(eb); 5304 } 5305 5306 static struct extent_buffer * 5307 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5308 unsigned long len) 5309 { 5310 struct extent_buffer *eb = NULL; 5311 5312 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5313 eb->start = start; 5314 eb->len = len; 5315 eb->fs_info = fs_info; 5316 eb->bflags = 0; 5317 init_rwsem(&eb->lock); 5318 5319 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5320 &fs_info->allocated_ebs); 5321 INIT_LIST_HEAD(&eb->release_list); 5322 5323 spin_lock_init(&eb->refs_lock); 5324 atomic_set(&eb->refs, 1); 5325 atomic_set(&eb->io_pages, 0); 5326 5327 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5328 5329 return eb; 5330 } 5331 5332 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5333 { 5334 int i; 5335 struct page *p; 5336 struct extent_buffer *new; 5337 int num_pages = num_extent_pages(src); 5338 5339 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5340 if (new == NULL) 5341 return NULL; 5342 5343 /* 5344 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5345 * btrfs_release_extent_buffer() have different behavior for 5346 * UNMAPPED subpage extent buffer. 5347 */ 5348 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5349 5350 for (i = 0; i < num_pages; i++) { 5351 int ret; 5352 5353 p = alloc_page(GFP_NOFS); 5354 if (!p) { 5355 btrfs_release_extent_buffer(new); 5356 return NULL; 5357 } 5358 ret = attach_extent_buffer_page(new, p, NULL); 5359 if (ret < 0) { 5360 put_page(p); 5361 btrfs_release_extent_buffer(new); 5362 return NULL; 5363 } 5364 WARN_ON(PageDirty(p)); 5365 new->pages[i] = p; 5366 copy_page(page_address(p), page_address(src->pages[i])); 5367 } 5368 set_extent_buffer_uptodate(new); 5369 5370 return new; 5371 } 5372 5373 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5374 u64 start, unsigned long len) 5375 { 5376 struct extent_buffer *eb; 5377 int num_pages; 5378 int i; 5379 5380 eb = __alloc_extent_buffer(fs_info, start, len); 5381 if (!eb) 5382 return NULL; 5383 5384 num_pages = num_extent_pages(eb); 5385 for (i = 0; i < num_pages; i++) { 5386 int ret; 5387 5388 eb->pages[i] = alloc_page(GFP_NOFS); 5389 if (!eb->pages[i]) 5390 goto err; 5391 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5392 if (ret < 0) 5393 goto err; 5394 } 5395 set_extent_buffer_uptodate(eb); 5396 btrfs_set_header_nritems(eb, 0); 5397 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5398 5399 return eb; 5400 err: 5401 for (; i > 0; i--) { 5402 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5403 __free_page(eb->pages[i - 1]); 5404 } 5405 __free_extent_buffer(eb); 5406 return NULL; 5407 } 5408 5409 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5410 u64 start) 5411 { 5412 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5413 } 5414 5415 static void check_buffer_tree_ref(struct extent_buffer *eb) 5416 { 5417 int refs; 5418 /* 5419 * The TREE_REF bit is first set when the extent_buffer is added 5420 * to the radix tree. It is also reset, if unset, when a new reference 5421 * is created by find_extent_buffer. 5422 * 5423 * It is only cleared in two cases: freeing the last non-tree 5424 * reference to the extent_buffer when its STALE bit is set or 5425 * calling releasepage when the tree reference is the only reference. 5426 * 5427 * In both cases, care is taken to ensure that the extent_buffer's 5428 * pages are not under io. However, releasepage can be concurrently 5429 * called with creating new references, which is prone to race 5430 * conditions between the calls to check_buffer_tree_ref in those 5431 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5432 * 5433 * The actual lifetime of the extent_buffer in the radix tree is 5434 * adequately protected by the refcount, but the TREE_REF bit and 5435 * its corresponding reference are not. To protect against this 5436 * class of races, we call check_buffer_tree_ref from the codepaths 5437 * which trigger io after they set eb->io_pages. Note that once io is 5438 * initiated, TREE_REF can no longer be cleared, so that is the 5439 * moment at which any such race is best fixed. 5440 */ 5441 refs = atomic_read(&eb->refs); 5442 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5443 return; 5444 5445 spin_lock(&eb->refs_lock); 5446 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5447 atomic_inc(&eb->refs); 5448 spin_unlock(&eb->refs_lock); 5449 } 5450 5451 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5452 struct page *accessed) 5453 { 5454 int num_pages, i; 5455 5456 check_buffer_tree_ref(eb); 5457 5458 num_pages = num_extent_pages(eb); 5459 for (i = 0; i < num_pages; i++) { 5460 struct page *p = eb->pages[i]; 5461 5462 if (p != accessed) 5463 mark_page_accessed(p); 5464 } 5465 } 5466 5467 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5468 u64 start) 5469 { 5470 struct extent_buffer *eb; 5471 5472 rcu_read_lock(); 5473 eb = radix_tree_lookup(&fs_info->buffer_radix, 5474 start >> fs_info->sectorsize_bits); 5475 if (eb && atomic_inc_not_zero(&eb->refs)) { 5476 rcu_read_unlock(); 5477 /* 5478 * Lock our eb's refs_lock to avoid races with 5479 * free_extent_buffer. When we get our eb it might be flagged 5480 * with EXTENT_BUFFER_STALE and another task running 5481 * free_extent_buffer might have seen that flag set, 5482 * eb->refs == 2, that the buffer isn't under IO (dirty and 5483 * writeback flags not set) and it's still in the tree (flag 5484 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5485 * of decrementing the extent buffer's reference count twice. 5486 * So here we could race and increment the eb's reference count, 5487 * clear its stale flag, mark it as dirty and drop our reference 5488 * before the other task finishes executing free_extent_buffer, 5489 * which would later result in an attempt to free an extent 5490 * buffer that is dirty. 5491 */ 5492 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5493 spin_lock(&eb->refs_lock); 5494 spin_unlock(&eb->refs_lock); 5495 } 5496 mark_extent_buffer_accessed(eb, NULL); 5497 return eb; 5498 } 5499 rcu_read_unlock(); 5500 5501 return NULL; 5502 } 5503 5504 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5505 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5506 u64 start) 5507 { 5508 struct extent_buffer *eb, *exists = NULL; 5509 int ret; 5510 5511 eb = find_extent_buffer(fs_info, start); 5512 if (eb) 5513 return eb; 5514 eb = alloc_dummy_extent_buffer(fs_info, start); 5515 if (!eb) 5516 return ERR_PTR(-ENOMEM); 5517 eb->fs_info = fs_info; 5518 again: 5519 ret = radix_tree_preload(GFP_NOFS); 5520 if (ret) { 5521 exists = ERR_PTR(ret); 5522 goto free_eb; 5523 } 5524 spin_lock(&fs_info->buffer_lock); 5525 ret = radix_tree_insert(&fs_info->buffer_radix, 5526 start >> fs_info->sectorsize_bits, eb); 5527 spin_unlock(&fs_info->buffer_lock); 5528 radix_tree_preload_end(); 5529 if (ret == -EEXIST) { 5530 exists = find_extent_buffer(fs_info, start); 5531 if (exists) 5532 goto free_eb; 5533 else 5534 goto again; 5535 } 5536 check_buffer_tree_ref(eb); 5537 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5538 5539 return eb; 5540 free_eb: 5541 btrfs_release_extent_buffer(eb); 5542 return exists; 5543 } 5544 #endif 5545 5546 static struct extent_buffer *grab_extent_buffer( 5547 struct btrfs_fs_info *fs_info, struct page *page) 5548 { 5549 struct extent_buffer *exists; 5550 5551 /* 5552 * For subpage case, we completely rely on radix tree to ensure we 5553 * don't try to insert two ebs for the same bytenr. So here we always 5554 * return NULL and just continue. 5555 */ 5556 if (fs_info->sectorsize < PAGE_SIZE) 5557 return NULL; 5558 5559 /* Page not yet attached to an extent buffer */ 5560 if (!PagePrivate(page)) 5561 return NULL; 5562 5563 /* 5564 * We could have already allocated an eb for this page and attached one 5565 * so lets see if we can get a ref on the existing eb, and if we can we 5566 * know it's good and we can just return that one, else we know we can 5567 * just overwrite page->private. 5568 */ 5569 exists = (struct extent_buffer *)page->private; 5570 if (atomic_inc_not_zero(&exists->refs)) 5571 return exists; 5572 5573 WARN_ON(PageDirty(page)); 5574 detach_page_private(page); 5575 return NULL; 5576 } 5577 5578 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5579 u64 start, u64 owner_root, int level) 5580 { 5581 unsigned long len = fs_info->nodesize; 5582 int num_pages; 5583 int i; 5584 unsigned long index = start >> PAGE_SHIFT; 5585 struct extent_buffer *eb; 5586 struct extent_buffer *exists = NULL; 5587 struct page *p; 5588 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5589 int uptodate = 1; 5590 int ret; 5591 5592 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5593 btrfs_err(fs_info, "bad tree block start %llu", start); 5594 return ERR_PTR(-EINVAL); 5595 } 5596 5597 if (fs_info->sectorsize < PAGE_SIZE && 5598 offset_in_page(start) + len > PAGE_SIZE) { 5599 btrfs_err(fs_info, 5600 "tree block crosses page boundary, start %llu nodesize %lu", 5601 start, len); 5602 return ERR_PTR(-EINVAL); 5603 } 5604 5605 eb = find_extent_buffer(fs_info, start); 5606 if (eb) 5607 return eb; 5608 5609 eb = __alloc_extent_buffer(fs_info, start, len); 5610 if (!eb) 5611 return ERR_PTR(-ENOMEM); 5612 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 5613 5614 num_pages = num_extent_pages(eb); 5615 for (i = 0; i < num_pages; i++, index++) { 5616 struct btrfs_subpage *prealloc = NULL; 5617 5618 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5619 if (!p) { 5620 exists = ERR_PTR(-ENOMEM); 5621 goto free_eb; 5622 } 5623 5624 /* 5625 * Preallocate page->private for subpage case, so that we won't 5626 * allocate memory with private_lock hold. The memory will be 5627 * freed by attach_extent_buffer_page() or freed manually if 5628 * we exit earlier. 5629 * 5630 * Although we have ensured one subpage eb can only have one 5631 * page, but it may change in the future for 16K page size 5632 * support, so we still preallocate the memory in the loop. 5633 */ 5634 ret = btrfs_alloc_subpage(fs_info, &prealloc, 5635 BTRFS_SUBPAGE_METADATA); 5636 if (ret < 0) { 5637 unlock_page(p); 5638 put_page(p); 5639 exists = ERR_PTR(ret); 5640 goto free_eb; 5641 } 5642 5643 spin_lock(&mapping->private_lock); 5644 exists = grab_extent_buffer(fs_info, p); 5645 if (exists) { 5646 spin_unlock(&mapping->private_lock); 5647 unlock_page(p); 5648 put_page(p); 5649 mark_extent_buffer_accessed(exists, p); 5650 btrfs_free_subpage(prealloc); 5651 goto free_eb; 5652 } 5653 /* Should not fail, as we have preallocated the memory */ 5654 ret = attach_extent_buffer_page(eb, p, prealloc); 5655 ASSERT(!ret); 5656 /* 5657 * To inform we have extra eb under allocation, so that 5658 * detach_extent_buffer_page() won't release the page private 5659 * when the eb hasn't yet been inserted into radix tree. 5660 * 5661 * The ref will be decreased when the eb released the page, in 5662 * detach_extent_buffer_page(). 5663 * Thus needs no special handling in error path. 5664 */ 5665 btrfs_page_inc_eb_refs(fs_info, p); 5666 spin_unlock(&mapping->private_lock); 5667 5668 WARN_ON(PageDirty(p)); 5669 eb->pages[i] = p; 5670 if (!PageUptodate(p)) 5671 uptodate = 0; 5672 5673 /* 5674 * We can't unlock the pages just yet since the extent buffer 5675 * hasn't been properly inserted in the radix tree, this 5676 * opens a race with btree_releasepage which can free a page 5677 * while we are still filling in all pages for the buffer and 5678 * we could crash. 5679 */ 5680 } 5681 if (uptodate) 5682 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5683 again: 5684 ret = radix_tree_preload(GFP_NOFS); 5685 if (ret) { 5686 exists = ERR_PTR(ret); 5687 goto free_eb; 5688 } 5689 5690 spin_lock(&fs_info->buffer_lock); 5691 ret = radix_tree_insert(&fs_info->buffer_radix, 5692 start >> fs_info->sectorsize_bits, eb); 5693 spin_unlock(&fs_info->buffer_lock); 5694 radix_tree_preload_end(); 5695 if (ret == -EEXIST) { 5696 exists = find_extent_buffer(fs_info, start); 5697 if (exists) 5698 goto free_eb; 5699 else 5700 goto again; 5701 } 5702 /* add one reference for the tree */ 5703 check_buffer_tree_ref(eb); 5704 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5705 5706 /* 5707 * Now it's safe to unlock the pages because any calls to 5708 * btree_releasepage will correctly detect that a page belongs to a 5709 * live buffer and won't free them prematurely. 5710 */ 5711 for (i = 0; i < num_pages; i++) 5712 unlock_page(eb->pages[i]); 5713 return eb; 5714 5715 free_eb: 5716 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5717 for (i = 0; i < num_pages; i++) { 5718 if (eb->pages[i]) 5719 unlock_page(eb->pages[i]); 5720 } 5721 5722 btrfs_release_extent_buffer(eb); 5723 return exists; 5724 } 5725 5726 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5727 { 5728 struct extent_buffer *eb = 5729 container_of(head, struct extent_buffer, rcu_head); 5730 5731 __free_extent_buffer(eb); 5732 } 5733 5734 static int release_extent_buffer(struct extent_buffer *eb) 5735 __releases(&eb->refs_lock) 5736 { 5737 lockdep_assert_held(&eb->refs_lock); 5738 5739 WARN_ON(atomic_read(&eb->refs) == 0); 5740 if (atomic_dec_and_test(&eb->refs)) { 5741 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5742 struct btrfs_fs_info *fs_info = eb->fs_info; 5743 5744 spin_unlock(&eb->refs_lock); 5745 5746 spin_lock(&fs_info->buffer_lock); 5747 radix_tree_delete(&fs_info->buffer_radix, 5748 eb->start >> fs_info->sectorsize_bits); 5749 spin_unlock(&fs_info->buffer_lock); 5750 } else { 5751 spin_unlock(&eb->refs_lock); 5752 } 5753 5754 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5755 /* Should be safe to release our pages at this point */ 5756 btrfs_release_extent_buffer_pages(eb); 5757 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5758 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5759 __free_extent_buffer(eb); 5760 return 1; 5761 } 5762 #endif 5763 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5764 return 1; 5765 } 5766 spin_unlock(&eb->refs_lock); 5767 5768 return 0; 5769 } 5770 5771 void free_extent_buffer(struct extent_buffer *eb) 5772 { 5773 int refs; 5774 int old; 5775 if (!eb) 5776 return; 5777 5778 while (1) { 5779 refs = atomic_read(&eb->refs); 5780 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5781 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5782 refs == 1)) 5783 break; 5784 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5785 if (old == refs) 5786 return; 5787 } 5788 5789 spin_lock(&eb->refs_lock); 5790 if (atomic_read(&eb->refs) == 2 && 5791 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5792 !extent_buffer_under_io(eb) && 5793 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5794 atomic_dec(&eb->refs); 5795 5796 /* 5797 * I know this is terrible, but it's temporary until we stop tracking 5798 * the uptodate bits and such for the extent buffers. 5799 */ 5800 release_extent_buffer(eb); 5801 } 5802 5803 void free_extent_buffer_stale(struct extent_buffer *eb) 5804 { 5805 if (!eb) 5806 return; 5807 5808 spin_lock(&eb->refs_lock); 5809 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5810 5811 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5812 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5813 atomic_dec(&eb->refs); 5814 release_extent_buffer(eb); 5815 } 5816 5817 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5818 { 5819 int i; 5820 int num_pages; 5821 struct page *page; 5822 5823 num_pages = num_extent_pages(eb); 5824 5825 for (i = 0; i < num_pages; i++) { 5826 page = eb->pages[i]; 5827 if (!PageDirty(page)) 5828 continue; 5829 5830 lock_page(page); 5831 WARN_ON(!PagePrivate(page)); 5832 5833 clear_page_dirty_for_io(page); 5834 xa_lock_irq(&page->mapping->i_pages); 5835 if (!PageDirty(page)) 5836 __xa_clear_mark(&page->mapping->i_pages, 5837 page_index(page), PAGECACHE_TAG_DIRTY); 5838 xa_unlock_irq(&page->mapping->i_pages); 5839 ClearPageError(page); 5840 unlock_page(page); 5841 } 5842 WARN_ON(atomic_read(&eb->refs) == 0); 5843 } 5844 5845 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5846 { 5847 int i; 5848 int num_pages; 5849 bool was_dirty; 5850 5851 check_buffer_tree_ref(eb); 5852 5853 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5854 5855 num_pages = num_extent_pages(eb); 5856 WARN_ON(atomic_read(&eb->refs) == 0); 5857 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5858 5859 if (!was_dirty) 5860 for (i = 0; i < num_pages; i++) 5861 set_page_dirty(eb->pages[i]); 5862 5863 #ifdef CONFIG_BTRFS_DEBUG 5864 for (i = 0; i < num_pages; i++) 5865 ASSERT(PageDirty(eb->pages[i])); 5866 #endif 5867 5868 return was_dirty; 5869 } 5870 5871 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5872 { 5873 struct btrfs_fs_info *fs_info = eb->fs_info; 5874 struct page *page; 5875 int num_pages; 5876 int i; 5877 5878 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5879 num_pages = num_extent_pages(eb); 5880 for (i = 0; i < num_pages; i++) { 5881 page = eb->pages[i]; 5882 if (page) 5883 btrfs_page_clear_uptodate(fs_info, page, 5884 eb->start, eb->len); 5885 } 5886 } 5887 5888 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5889 { 5890 struct btrfs_fs_info *fs_info = eb->fs_info; 5891 struct page *page; 5892 int num_pages; 5893 int i; 5894 5895 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5896 num_pages = num_extent_pages(eb); 5897 for (i = 0; i < num_pages; i++) { 5898 page = eb->pages[i]; 5899 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 5900 } 5901 } 5902 5903 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 5904 int mirror_num) 5905 { 5906 struct btrfs_fs_info *fs_info = eb->fs_info; 5907 struct extent_io_tree *io_tree; 5908 struct page *page = eb->pages[0]; 5909 struct bio *bio = NULL; 5910 int ret = 0; 5911 5912 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 5913 ASSERT(PagePrivate(page)); 5914 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 5915 5916 if (wait == WAIT_NONE) { 5917 ret = try_lock_extent(io_tree, eb->start, 5918 eb->start + eb->len - 1); 5919 if (ret <= 0) 5920 return ret; 5921 } else { 5922 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 5923 if (ret < 0) 5924 return ret; 5925 } 5926 5927 ret = 0; 5928 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 5929 PageUptodate(page) || 5930 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 5931 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5932 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 5933 return ret; 5934 } 5935 5936 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5937 eb->read_mirror = 0; 5938 atomic_set(&eb->io_pages, 1); 5939 check_buffer_tree_ref(eb); 5940 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 5941 5942 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, page, eb->start, 5943 eb->len, eb->start - page_offset(page), &bio, 5944 end_bio_extent_readpage, mirror_num, 0, 0, 5945 true); 5946 if (ret) { 5947 /* 5948 * In the endio function, if we hit something wrong we will 5949 * increase the io_pages, so here we need to decrease it for 5950 * error path. 5951 */ 5952 atomic_dec(&eb->io_pages); 5953 } 5954 if (bio) { 5955 int tmp; 5956 5957 tmp = submit_one_bio(bio, mirror_num, 0); 5958 if (tmp < 0) 5959 return tmp; 5960 } 5961 if (ret || wait != WAIT_COMPLETE) 5962 return ret; 5963 5964 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 5965 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5966 ret = -EIO; 5967 return ret; 5968 } 5969 5970 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5971 { 5972 int i; 5973 struct page *page; 5974 int err; 5975 int ret = 0; 5976 int locked_pages = 0; 5977 int all_uptodate = 1; 5978 int num_pages; 5979 unsigned long num_reads = 0; 5980 struct bio *bio = NULL; 5981 unsigned long bio_flags = 0; 5982 5983 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5984 return 0; 5985 5986 if (eb->fs_info->sectorsize < PAGE_SIZE) 5987 return read_extent_buffer_subpage(eb, wait, mirror_num); 5988 5989 num_pages = num_extent_pages(eb); 5990 for (i = 0; i < num_pages; i++) { 5991 page = eb->pages[i]; 5992 if (wait == WAIT_NONE) { 5993 /* 5994 * WAIT_NONE is only utilized by readahead. If we can't 5995 * acquire the lock atomically it means either the eb 5996 * is being read out or under modification. 5997 * Either way the eb will be or has been cached, 5998 * readahead can exit safely. 5999 */ 6000 if (!trylock_page(page)) 6001 goto unlock_exit; 6002 } else { 6003 lock_page(page); 6004 } 6005 locked_pages++; 6006 } 6007 /* 6008 * We need to firstly lock all pages to make sure that 6009 * the uptodate bit of our pages won't be affected by 6010 * clear_extent_buffer_uptodate(). 6011 */ 6012 for (i = 0; i < num_pages; i++) { 6013 page = eb->pages[i]; 6014 if (!PageUptodate(page)) { 6015 num_reads++; 6016 all_uptodate = 0; 6017 } 6018 } 6019 6020 if (all_uptodate) { 6021 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6022 goto unlock_exit; 6023 } 6024 6025 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6026 eb->read_mirror = 0; 6027 atomic_set(&eb->io_pages, num_reads); 6028 /* 6029 * It is possible for releasepage to clear the TREE_REF bit before we 6030 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6031 */ 6032 check_buffer_tree_ref(eb); 6033 for (i = 0; i < num_pages; i++) { 6034 page = eb->pages[i]; 6035 6036 if (!PageUptodate(page)) { 6037 if (ret) { 6038 atomic_dec(&eb->io_pages); 6039 unlock_page(page); 6040 continue; 6041 } 6042 6043 ClearPageError(page); 6044 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6045 page, page_offset(page), PAGE_SIZE, 0, 6046 &bio, end_bio_extent_readpage, 6047 mirror_num, 0, 0, false); 6048 if (err) { 6049 /* 6050 * We failed to submit the bio so it's the 6051 * caller's responsibility to perform cleanup 6052 * i.e unlock page/set error bit. 6053 */ 6054 ret = err; 6055 SetPageError(page); 6056 unlock_page(page); 6057 atomic_dec(&eb->io_pages); 6058 } 6059 } else { 6060 unlock_page(page); 6061 } 6062 } 6063 6064 if (bio) { 6065 err = submit_one_bio(bio, mirror_num, bio_flags); 6066 if (err) 6067 return err; 6068 } 6069 6070 if (ret || wait != WAIT_COMPLETE) 6071 return ret; 6072 6073 for (i = 0; i < num_pages; i++) { 6074 page = eb->pages[i]; 6075 wait_on_page_locked(page); 6076 if (!PageUptodate(page)) 6077 ret = -EIO; 6078 } 6079 6080 return ret; 6081 6082 unlock_exit: 6083 while (locked_pages > 0) { 6084 locked_pages--; 6085 page = eb->pages[locked_pages]; 6086 unlock_page(page); 6087 } 6088 return ret; 6089 } 6090 6091 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6092 unsigned long len) 6093 { 6094 btrfs_warn(eb->fs_info, 6095 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6096 eb->start, eb->len, start, len); 6097 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6098 6099 return true; 6100 } 6101 6102 /* 6103 * Check if the [start, start + len) range is valid before reading/writing 6104 * the eb. 6105 * NOTE: @start and @len are offset inside the eb, not logical address. 6106 * 6107 * Caller should not touch the dst/src memory if this function returns error. 6108 */ 6109 static inline int check_eb_range(const struct extent_buffer *eb, 6110 unsigned long start, unsigned long len) 6111 { 6112 unsigned long offset; 6113 6114 /* start, start + len should not go beyond eb->len nor overflow */ 6115 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6116 return report_eb_range(eb, start, len); 6117 6118 return false; 6119 } 6120 6121 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6122 unsigned long start, unsigned long len) 6123 { 6124 size_t cur; 6125 size_t offset; 6126 struct page *page; 6127 char *kaddr; 6128 char *dst = (char *)dstv; 6129 unsigned long i = get_eb_page_index(start); 6130 6131 if (check_eb_range(eb, start, len)) 6132 return; 6133 6134 offset = get_eb_offset_in_page(eb, start); 6135 6136 while (len > 0) { 6137 page = eb->pages[i]; 6138 6139 cur = min(len, (PAGE_SIZE - offset)); 6140 kaddr = page_address(page); 6141 memcpy(dst, kaddr + offset, cur); 6142 6143 dst += cur; 6144 len -= cur; 6145 offset = 0; 6146 i++; 6147 } 6148 } 6149 6150 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6151 void __user *dstv, 6152 unsigned long start, unsigned long len) 6153 { 6154 size_t cur; 6155 size_t offset; 6156 struct page *page; 6157 char *kaddr; 6158 char __user *dst = (char __user *)dstv; 6159 unsigned long i = get_eb_page_index(start); 6160 int ret = 0; 6161 6162 WARN_ON(start > eb->len); 6163 WARN_ON(start + len > eb->start + eb->len); 6164 6165 offset = get_eb_offset_in_page(eb, start); 6166 6167 while (len > 0) { 6168 page = eb->pages[i]; 6169 6170 cur = min(len, (PAGE_SIZE - offset)); 6171 kaddr = page_address(page); 6172 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6173 ret = -EFAULT; 6174 break; 6175 } 6176 6177 dst += cur; 6178 len -= cur; 6179 offset = 0; 6180 i++; 6181 } 6182 6183 return ret; 6184 } 6185 6186 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6187 unsigned long start, unsigned long len) 6188 { 6189 size_t cur; 6190 size_t offset; 6191 struct page *page; 6192 char *kaddr; 6193 char *ptr = (char *)ptrv; 6194 unsigned long i = get_eb_page_index(start); 6195 int ret = 0; 6196 6197 if (check_eb_range(eb, start, len)) 6198 return -EINVAL; 6199 6200 offset = get_eb_offset_in_page(eb, start); 6201 6202 while (len > 0) { 6203 page = eb->pages[i]; 6204 6205 cur = min(len, (PAGE_SIZE - offset)); 6206 6207 kaddr = page_address(page); 6208 ret = memcmp(ptr, kaddr + offset, cur); 6209 if (ret) 6210 break; 6211 6212 ptr += cur; 6213 len -= cur; 6214 offset = 0; 6215 i++; 6216 } 6217 return ret; 6218 } 6219 6220 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6221 const void *srcv) 6222 { 6223 char *kaddr; 6224 6225 WARN_ON(!PageUptodate(eb->pages[0])); 6226 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 6227 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 6228 BTRFS_FSID_SIZE); 6229 } 6230 6231 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6232 { 6233 char *kaddr; 6234 6235 WARN_ON(!PageUptodate(eb->pages[0])); 6236 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 6237 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 6238 BTRFS_FSID_SIZE); 6239 } 6240 6241 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6242 unsigned long start, unsigned long len) 6243 { 6244 size_t cur; 6245 size_t offset; 6246 struct page *page; 6247 char *kaddr; 6248 char *src = (char *)srcv; 6249 unsigned long i = get_eb_page_index(start); 6250 6251 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6252 6253 if (check_eb_range(eb, start, len)) 6254 return; 6255 6256 offset = get_eb_offset_in_page(eb, start); 6257 6258 while (len > 0) { 6259 page = eb->pages[i]; 6260 WARN_ON(!PageUptodate(page)); 6261 6262 cur = min(len, PAGE_SIZE - offset); 6263 kaddr = page_address(page); 6264 memcpy(kaddr + offset, src, cur); 6265 6266 src += cur; 6267 len -= cur; 6268 offset = 0; 6269 i++; 6270 } 6271 } 6272 6273 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6274 unsigned long len) 6275 { 6276 size_t cur; 6277 size_t offset; 6278 struct page *page; 6279 char *kaddr; 6280 unsigned long i = get_eb_page_index(start); 6281 6282 if (check_eb_range(eb, start, len)) 6283 return; 6284 6285 offset = get_eb_offset_in_page(eb, start); 6286 6287 while (len > 0) { 6288 page = eb->pages[i]; 6289 WARN_ON(!PageUptodate(page)); 6290 6291 cur = min(len, PAGE_SIZE - offset); 6292 kaddr = page_address(page); 6293 memset(kaddr + offset, 0, cur); 6294 6295 len -= cur; 6296 offset = 0; 6297 i++; 6298 } 6299 } 6300 6301 void copy_extent_buffer_full(const struct extent_buffer *dst, 6302 const struct extent_buffer *src) 6303 { 6304 int i; 6305 int num_pages; 6306 6307 ASSERT(dst->len == src->len); 6308 6309 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6310 num_pages = num_extent_pages(dst); 6311 for (i = 0; i < num_pages; i++) 6312 copy_page(page_address(dst->pages[i]), 6313 page_address(src->pages[i])); 6314 } else { 6315 size_t src_offset = get_eb_offset_in_page(src, 0); 6316 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6317 6318 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6319 memcpy(page_address(dst->pages[0]) + dst_offset, 6320 page_address(src->pages[0]) + src_offset, 6321 src->len); 6322 } 6323 } 6324 6325 void copy_extent_buffer(const struct extent_buffer *dst, 6326 const struct extent_buffer *src, 6327 unsigned long dst_offset, unsigned long src_offset, 6328 unsigned long len) 6329 { 6330 u64 dst_len = dst->len; 6331 size_t cur; 6332 size_t offset; 6333 struct page *page; 6334 char *kaddr; 6335 unsigned long i = get_eb_page_index(dst_offset); 6336 6337 if (check_eb_range(dst, dst_offset, len) || 6338 check_eb_range(src, src_offset, len)) 6339 return; 6340 6341 WARN_ON(src->len != dst_len); 6342 6343 offset = get_eb_offset_in_page(dst, dst_offset); 6344 6345 while (len > 0) { 6346 page = dst->pages[i]; 6347 WARN_ON(!PageUptodate(page)); 6348 6349 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 6350 6351 kaddr = page_address(page); 6352 read_extent_buffer(src, kaddr + offset, src_offset, cur); 6353 6354 src_offset += cur; 6355 len -= cur; 6356 offset = 0; 6357 i++; 6358 } 6359 } 6360 6361 /* 6362 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 6363 * given bit number 6364 * @eb: the extent buffer 6365 * @start: offset of the bitmap item in the extent buffer 6366 * @nr: bit number 6367 * @page_index: return index of the page in the extent buffer that contains the 6368 * given bit number 6369 * @page_offset: return offset into the page given by page_index 6370 * 6371 * This helper hides the ugliness of finding the byte in an extent buffer which 6372 * contains a given bit. 6373 */ 6374 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 6375 unsigned long start, unsigned long nr, 6376 unsigned long *page_index, 6377 size_t *page_offset) 6378 { 6379 size_t byte_offset = BIT_BYTE(nr); 6380 size_t offset; 6381 6382 /* 6383 * The byte we want is the offset of the extent buffer + the offset of 6384 * the bitmap item in the extent buffer + the offset of the byte in the 6385 * bitmap item. 6386 */ 6387 offset = start + offset_in_page(eb->start) + byte_offset; 6388 6389 *page_index = offset >> PAGE_SHIFT; 6390 *page_offset = offset_in_page(offset); 6391 } 6392 6393 /** 6394 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 6395 * @eb: the extent buffer 6396 * @start: offset of the bitmap item in the extent buffer 6397 * @nr: bit number to test 6398 */ 6399 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 6400 unsigned long nr) 6401 { 6402 u8 *kaddr; 6403 struct page *page; 6404 unsigned long i; 6405 size_t offset; 6406 6407 eb_bitmap_offset(eb, start, nr, &i, &offset); 6408 page = eb->pages[i]; 6409 WARN_ON(!PageUptodate(page)); 6410 kaddr = page_address(page); 6411 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 6412 } 6413 6414 /** 6415 * extent_buffer_bitmap_set - set an area of a bitmap 6416 * @eb: the extent buffer 6417 * @start: offset of the bitmap item in the extent buffer 6418 * @pos: bit number of the first bit 6419 * @len: number of bits to set 6420 */ 6421 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 6422 unsigned long pos, unsigned long len) 6423 { 6424 u8 *kaddr; 6425 struct page *page; 6426 unsigned long i; 6427 size_t offset; 6428 const unsigned int size = pos + len; 6429 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6430 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 6431 6432 eb_bitmap_offset(eb, start, pos, &i, &offset); 6433 page = eb->pages[i]; 6434 WARN_ON(!PageUptodate(page)); 6435 kaddr = page_address(page); 6436 6437 while (len >= bits_to_set) { 6438 kaddr[offset] |= mask_to_set; 6439 len -= bits_to_set; 6440 bits_to_set = BITS_PER_BYTE; 6441 mask_to_set = ~0; 6442 if (++offset >= PAGE_SIZE && len > 0) { 6443 offset = 0; 6444 page = eb->pages[++i]; 6445 WARN_ON(!PageUptodate(page)); 6446 kaddr = page_address(page); 6447 } 6448 } 6449 if (len) { 6450 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 6451 kaddr[offset] |= mask_to_set; 6452 } 6453 } 6454 6455 6456 /** 6457 * extent_buffer_bitmap_clear - clear an area of a bitmap 6458 * @eb: the extent buffer 6459 * @start: offset of the bitmap item in the extent buffer 6460 * @pos: bit number of the first bit 6461 * @len: number of bits to clear 6462 */ 6463 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 6464 unsigned long start, unsigned long pos, 6465 unsigned long len) 6466 { 6467 u8 *kaddr; 6468 struct page *page; 6469 unsigned long i; 6470 size_t offset; 6471 const unsigned int size = pos + len; 6472 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6473 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 6474 6475 eb_bitmap_offset(eb, start, pos, &i, &offset); 6476 page = eb->pages[i]; 6477 WARN_ON(!PageUptodate(page)); 6478 kaddr = page_address(page); 6479 6480 while (len >= bits_to_clear) { 6481 kaddr[offset] &= ~mask_to_clear; 6482 len -= bits_to_clear; 6483 bits_to_clear = BITS_PER_BYTE; 6484 mask_to_clear = ~0; 6485 if (++offset >= PAGE_SIZE && len > 0) { 6486 offset = 0; 6487 page = eb->pages[++i]; 6488 WARN_ON(!PageUptodate(page)); 6489 kaddr = page_address(page); 6490 } 6491 } 6492 if (len) { 6493 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 6494 kaddr[offset] &= ~mask_to_clear; 6495 } 6496 } 6497 6498 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 6499 { 6500 unsigned long distance = (src > dst) ? src - dst : dst - src; 6501 return distance < len; 6502 } 6503 6504 static void copy_pages(struct page *dst_page, struct page *src_page, 6505 unsigned long dst_off, unsigned long src_off, 6506 unsigned long len) 6507 { 6508 char *dst_kaddr = page_address(dst_page); 6509 char *src_kaddr; 6510 int must_memmove = 0; 6511 6512 if (dst_page != src_page) { 6513 src_kaddr = page_address(src_page); 6514 } else { 6515 src_kaddr = dst_kaddr; 6516 if (areas_overlap(src_off, dst_off, len)) 6517 must_memmove = 1; 6518 } 6519 6520 if (must_memmove) 6521 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6522 else 6523 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6524 } 6525 6526 void memcpy_extent_buffer(const struct extent_buffer *dst, 6527 unsigned long dst_offset, unsigned long src_offset, 6528 unsigned long len) 6529 { 6530 size_t cur; 6531 size_t dst_off_in_page; 6532 size_t src_off_in_page; 6533 unsigned long dst_i; 6534 unsigned long src_i; 6535 6536 if (check_eb_range(dst, dst_offset, len) || 6537 check_eb_range(dst, src_offset, len)) 6538 return; 6539 6540 while (len > 0) { 6541 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 6542 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 6543 6544 dst_i = get_eb_page_index(dst_offset); 6545 src_i = get_eb_page_index(src_offset); 6546 6547 cur = min(len, (unsigned long)(PAGE_SIZE - 6548 src_off_in_page)); 6549 cur = min_t(unsigned long, cur, 6550 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6551 6552 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6553 dst_off_in_page, src_off_in_page, cur); 6554 6555 src_offset += cur; 6556 dst_offset += cur; 6557 len -= cur; 6558 } 6559 } 6560 6561 void memmove_extent_buffer(const struct extent_buffer *dst, 6562 unsigned long dst_offset, unsigned long src_offset, 6563 unsigned long len) 6564 { 6565 size_t cur; 6566 size_t dst_off_in_page; 6567 size_t src_off_in_page; 6568 unsigned long dst_end = dst_offset + len - 1; 6569 unsigned long src_end = src_offset + len - 1; 6570 unsigned long dst_i; 6571 unsigned long src_i; 6572 6573 if (check_eb_range(dst, dst_offset, len) || 6574 check_eb_range(dst, src_offset, len)) 6575 return; 6576 if (dst_offset < src_offset) { 6577 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6578 return; 6579 } 6580 while (len > 0) { 6581 dst_i = get_eb_page_index(dst_end); 6582 src_i = get_eb_page_index(src_end); 6583 6584 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 6585 src_off_in_page = get_eb_offset_in_page(dst, src_end); 6586 6587 cur = min_t(unsigned long, len, src_off_in_page + 1); 6588 cur = min(cur, dst_off_in_page + 1); 6589 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6590 dst_off_in_page - cur + 1, 6591 src_off_in_page - cur + 1, cur); 6592 6593 dst_end -= cur; 6594 src_end -= cur; 6595 len -= cur; 6596 } 6597 } 6598 6599 static struct extent_buffer *get_next_extent_buffer( 6600 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 6601 { 6602 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE]; 6603 struct extent_buffer *found = NULL; 6604 u64 page_start = page_offset(page); 6605 int ret; 6606 int i; 6607 6608 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 6609 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE); 6610 lockdep_assert_held(&fs_info->buffer_lock); 6611 6612 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang, 6613 bytenr >> fs_info->sectorsize_bits, 6614 PAGE_SIZE / fs_info->nodesize); 6615 for (i = 0; i < ret; i++) { 6616 /* Already beyond page end */ 6617 if (gang[i]->start >= page_start + PAGE_SIZE) 6618 break; 6619 /* Found one */ 6620 if (gang[i]->start >= bytenr) { 6621 found = gang[i]; 6622 break; 6623 } 6624 } 6625 return found; 6626 } 6627 6628 static int try_release_subpage_extent_buffer(struct page *page) 6629 { 6630 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 6631 u64 cur = page_offset(page); 6632 const u64 end = page_offset(page) + PAGE_SIZE; 6633 int ret; 6634 6635 while (cur < end) { 6636 struct extent_buffer *eb = NULL; 6637 6638 /* 6639 * Unlike try_release_extent_buffer() which uses page->private 6640 * to grab buffer, for subpage case we rely on radix tree, thus 6641 * we need to ensure radix tree consistency. 6642 * 6643 * We also want an atomic snapshot of the radix tree, thus go 6644 * with spinlock rather than RCU. 6645 */ 6646 spin_lock(&fs_info->buffer_lock); 6647 eb = get_next_extent_buffer(fs_info, page, cur); 6648 if (!eb) { 6649 /* No more eb in the page range after or at cur */ 6650 spin_unlock(&fs_info->buffer_lock); 6651 break; 6652 } 6653 cur = eb->start + eb->len; 6654 6655 /* 6656 * The same as try_release_extent_buffer(), to ensure the eb 6657 * won't disappear out from under us. 6658 */ 6659 spin_lock(&eb->refs_lock); 6660 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6661 spin_unlock(&eb->refs_lock); 6662 spin_unlock(&fs_info->buffer_lock); 6663 break; 6664 } 6665 spin_unlock(&fs_info->buffer_lock); 6666 6667 /* 6668 * If tree ref isn't set then we know the ref on this eb is a 6669 * real ref, so just return, this eb will likely be freed soon 6670 * anyway. 6671 */ 6672 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6673 spin_unlock(&eb->refs_lock); 6674 break; 6675 } 6676 6677 /* 6678 * Here we don't care about the return value, we will always 6679 * check the page private at the end. And 6680 * release_extent_buffer() will release the refs_lock. 6681 */ 6682 release_extent_buffer(eb); 6683 } 6684 /* 6685 * Finally to check if we have cleared page private, as if we have 6686 * released all ebs in the page, the page private should be cleared now. 6687 */ 6688 spin_lock(&page->mapping->private_lock); 6689 if (!PagePrivate(page)) 6690 ret = 1; 6691 else 6692 ret = 0; 6693 spin_unlock(&page->mapping->private_lock); 6694 return ret; 6695 6696 } 6697 6698 int try_release_extent_buffer(struct page *page) 6699 { 6700 struct extent_buffer *eb; 6701 6702 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 6703 return try_release_subpage_extent_buffer(page); 6704 6705 /* 6706 * We need to make sure nobody is changing page->private, as we rely on 6707 * page->private as the pointer to extent buffer. 6708 */ 6709 spin_lock(&page->mapping->private_lock); 6710 if (!PagePrivate(page)) { 6711 spin_unlock(&page->mapping->private_lock); 6712 return 1; 6713 } 6714 6715 eb = (struct extent_buffer *)page->private; 6716 BUG_ON(!eb); 6717 6718 /* 6719 * This is a little awful but should be ok, we need to make sure that 6720 * the eb doesn't disappear out from under us while we're looking at 6721 * this page. 6722 */ 6723 spin_lock(&eb->refs_lock); 6724 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6725 spin_unlock(&eb->refs_lock); 6726 spin_unlock(&page->mapping->private_lock); 6727 return 0; 6728 } 6729 spin_unlock(&page->mapping->private_lock); 6730 6731 /* 6732 * If tree ref isn't set then we know the ref on this eb is a real ref, 6733 * so just return, this page will likely be freed soon anyway. 6734 */ 6735 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6736 spin_unlock(&eb->refs_lock); 6737 return 0; 6738 } 6739 6740 return release_extent_buffer(eb); 6741 } 6742 6743 /* 6744 * btrfs_readahead_tree_block - attempt to readahead a child block 6745 * @fs_info: the fs_info 6746 * @bytenr: bytenr to read 6747 * @owner_root: objectid of the root that owns this eb 6748 * @gen: generation for the uptodate check, can be 0 6749 * @level: level for the eb 6750 * 6751 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 6752 * normal uptodate check of the eb, without checking the generation. If we have 6753 * to read the block we will not block on anything. 6754 */ 6755 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 6756 u64 bytenr, u64 owner_root, u64 gen, int level) 6757 { 6758 struct extent_buffer *eb; 6759 int ret; 6760 6761 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 6762 if (IS_ERR(eb)) 6763 return; 6764 6765 if (btrfs_buffer_uptodate(eb, gen, 1)) { 6766 free_extent_buffer(eb); 6767 return; 6768 } 6769 6770 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 6771 if (ret < 0) 6772 free_extent_buffer_stale(eb); 6773 else 6774 free_extent_buffer(eb); 6775 } 6776 6777 /* 6778 * btrfs_readahead_node_child - readahead a node's child block 6779 * @node: parent node we're reading from 6780 * @slot: slot in the parent node for the child we want to read 6781 * 6782 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 6783 * the slot in the node provided. 6784 */ 6785 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 6786 { 6787 btrfs_readahead_tree_block(node->fs_info, 6788 btrfs_node_blockptr(node, slot), 6789 btrfs_header_owner(node), 6790 btrfs_node_ptr_generation(node, slot), 6791 btrfs_header_level(node) - 1); 6792 } 6793