xref: /openbmc/linux/fs/btrfs/extent_io.c (revision caa80275)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "volumes.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 
33 static struct kmem_cache *extent_state_cache;
34 static struct kmem_cache *extent_buffer_cache;
35 static struct bio_set btrfs_bioset;
36 
37 static inline bool extent_state_in_tree(const struct extent_state *state)
38 {
39 	return !RB_EMPTY_NODE(&state->rb_node);
40 }
41 
42 #ifdef CONFIG_BTRFS_DEBUG
43 static LIST_HEAD(states);
44 static DEFINE_SPINLOCK(leak_lock);
45 
46 static inline void btrfs_leak_debug_add(spinlock_t *lock,
47 					struct list_head *new,
48 					struct list_head *head)
49 {
50 	unsigned long flags;
51 
52 	spin_lock_irqsave(lock, flags);
53 	list_add(new, head);
54 	spin_unlock_irqrestore(lock, flags);
55 }
56 
57 static inline void btrfs_leak_debug_del(spinlock_t *lock,
58 					struct list_head *entry)
59 {
60 	unsigned long flags;
61 
62 	spin_lock_irqsave(lock, flags);
63 	list_del(entry);
64 	spin_unlock_irqrestore(lock, flags);
65 }
66 
67 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
68 {
69 	struct extent_buffer *eb;
70 	unsigned long flags;
71 
72 	/*
73 	 * If we didn't get into open_ctree our allocated_ebs will not be
74 	 * initialized, so just skip this.
75 	 */
76 	if (!fs_info->allocated_ebs.next)
77 		return;
78 
79 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
80 	while (!list_empty(&fs_info->allocated_ebs)) {
81 		eb = list_first_entry(&fs_info->allocated_ebs,
82 				      struct extent_buffer, leak_list);
83 		pr_err(
84 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
85 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
86 		       btrfs_header_owner(eb));
87 		list_del(&eb->leak_list);
88 		kmem_cache_free(extent_buffer_cache, eb);
89 	}
90 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 }
92 
93 static inline void btrfs_extent_state_leak_debug_check(void)
94 {
95 	struct extent_state *state;
96 
97 	while (!list_empty(&states)) {
98 		state = list_entry(states.next, struct extent_state, leak_list);
99 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
100 		       state->start, state->end, state->state,
101 		       extent_state_in_tree(state),
102 		       refcount_read(&state->refs));
103 		list_del(&state->leak_list);
104 		kmem_cache_free(extent_state_cache, state);
105 	}
106 }
107 
108 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
109 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
110 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
111 		struct extent_io_tree *tree, u64 start, u64 end)
112 {
113 	struct inode *inode = tree->private_data;
114 	u64 isize;
115 
116 	if (!inode || !is_data_inode(inode))
117 		return;
118 
119 	isize = i_size_read(inode);
120 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
121 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
122 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
123 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
124 	}
125 }
126 #else
127 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
128 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
129 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
130 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
131 #endif
132 
133 struct tree_entry {
134 	u64 start;
135 	u64 end;
136 	struct rb_node rb_node;
137 };
138 
139 struct extent_page_data {
140 	struct btrfs_bio_ctrl bio_ctrl;
141 	/* tells writepage not to lock the state bits for this range
142 	 * it still does the unlocking
143 	 */
144 	unsigned int extent_locked:1;
145 
146 	/* tells the submit_bio code to use REQ_SYNC */
147 	unsigned int sync_io:1;
148 };
149 
150 static int add_extent_changeset(struct extent_state *state, u32 bits,
151 				 struct extent_changeset *changeset,
152 				 int set)
153 {
154 	int ret;
155 
156 	if (!changeset)
157 		return 0;
158 	if (set && (state->state & bits) == bits)
159 		return 0;
160 	if (!set && (state->state & bits) == 0)
161 		return 0;
162 	changeset->bytes_changed += state->end - state->start + 1;
163 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
164 			GFP_ATOMIC);
165 	return ret;
166 }
167 
168 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
169 				unsigned long bio_flags)
170 {
171 	blk_status_t ret = 0;
172 	struct extent_io_tree *tree = bio->bi_private;
173 
174 	bio->bi_private = NULL;
175 
176 	/* Caller should ensure the bio has at least some range added */
177 	ASSERT(bio->bi_iter.bi_size);
178 	if (is_data_inode(tree->private_data))
179 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
180 					    bio_flags);
181 	else
182 		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
183 						mirror_num, bio_flags);
184 
185 	return blk_status_to_errno(ret);
186 }
187 
188 /* Cleanup unsubmitted bios */
189 static void end_write_bio(struct extent_page_data *epd, int ret)
190 {
191 	struct bio *bio = epd->bio_ctrl.bio;
192 
193 	if (bio) {
194 		bio->bi_status = errno_to_blk_status(ret);
195 		bio_endio(bio);
196 		epd->bio_ctrl.bio = NULL;
197 	}
198 }
199 
200 /*
201  * Submit bio from extent page data via submit_one_bio
202  *
203  * Return 0 if everything is OK.
204  * Return <0 for error.
205  */
206 static int __must_check flush_write_bio(struct extent_page_data *epd)
207 {
208 	int ret = 0;
209 	struct bio *bio = epd->bio_ctrl.bio;
210 
211 	if (bio) {
212 		ret = submit_one_bio(bio, 0, 0);
213 		/*
214 		 * Clean up of epd->bio is handled by its endio function.
215 		 * And endio is either triggered by successful bio execution
216 		 * or the error handler of submit bio hook.
217 		 * So at this point, no matter what happened, we don't need
218 		 * to clean up epd->bio.
219 		 */
220 		epd->bio_ctrl.bio = NULL;
221 	}
222 	return ret;
223 }
224 
225 int __init extent_state_cache_init(void)
226 {
227 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
228 			sizeof(struct extent_state), 0,
229 			SLAB_MEM_SPREAD, NULL);
230 	if (!extent_state_cache)
231 		return -ENOMEM;
232 	return 0;
233 }
234 
235 int __init extent_io_init(void)
236 {
237 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
238 			sizeof(struct extent_buffer), 0,
239 			SLAB_MEM_SPREAD, NULL);
240 	if (!extent_buffer_cache)
241 		return -ENOMEM;
242 
243 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
244 			offsetof(struct btrfs_io_bio, bio),
245 			BIOSET_NEED_BVECS))
246 		goto free_buffer_cache;
247 
248 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
249 		goto free_bioset;
250 
251 	return 0;
252 
253 free_bioset:
254 	bioset_exit(&btrfs_bioset);
255 
256 free_buffer_cache:
257 	kmem_cache_destroy(extent_buffer_cache);
258 	extent_buffer_cache = NULL;
259 	return -ENOMEM;
260 }
261 
262 void __cold extent_state_cache_exit(void)
263 {
264 	btrfs_extent_state_leak_debug_check();
265 	kmem_cache_destroy(extent_state_cache);
266 }
267 
268 void __cold extent_io_exit(void)
269 {
270 	/*
271 	 * Make sure all delayed rcu free are flushed before we
272 	 * destroy caches.
273 	 */
274 	rcu_barrier();
275 	kmem_cache_destroy(extent_buffer_cache);
276 	bioset_exit(&btrfs_bioset);
277 }
278 
279 /*
280  * For the file_extent_tree, we want to hold the inode lock when we lookup and
281  * update the disk_i_size, but lockdep will complain because our io_tree we hold
282  * the tree lock and get the inode lock when setting delalloc.  These two things
283  * are unrelated, so make a class for the file_extent_tree so we don't get the
284  * two locking patterns mixed up.
285  */
286 static struct lock_class_key file_extent_tree_class;
287 
288 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
289 			 struct extent_io_tree *tree, unsigned int owner,
290 			 void *private_data)
291 {
292 	tree->fs_info = fs_info;
293 	tree->state = RB_ROOT;
294 	tree->dirty_bytes = 0;
295 	spin_lock_init(&tree->lock);
296 	tree->private_data = private_data;
297 	tree->owner = owner;
298 	if (owner == IO_TREE_INODE_FILE_EXTENT)
299 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
300 }
301 
302 void extent_io_tree_release(struct extent_io_tree *tree)
303 {
304 	spin_lock(&tree->lock);
305 	/*
306 	 * Do a single barrier for the waitqueue_active check here, the state
307 	 * of the waitqueue should not change once extent_io_tree_release is
308 	 * called.
309 	 */
310 	smp_mb();
311 	while (!RB_EMPTY_ROOT(&tree->state)) {
312 		struct rb_node *node;
313 		struct extent_state *state;
314 
315 		node = rb_first(&tree->state);
316 		state = rb_entry(node, struct extent_state, rb_node);
317 		rb_erase(&state->rb_node, &tree->state);
318 		RB_CLEAR_NODE(&state->rb_node);
319 		/*
320 		 * btree io trees aren't supposed to have tasks waiting for
321 		 * changes in the flags of extent states ever.
322 		 */
323 		ASSERT(!waitqueue_active(&state->wq));
324 		free_extent_state(state);
325 
326 		cond_resched_lock(&tree->lock);
327 	}
328 	spin_unlock(&tree->lock);
329 }
330 
331 static struct extent_state *alloc_extent_state(gfp_t mask)
332 {
333 	struct extent_state *state;
334 
335 	/*
336 	 * The given mask might be not appropriate for the slab allocator,
337 	 * drop the unsupported bits
338 	 */
339 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
340 	state = kmem_cache_alloc(extent_state_cache, mask);
341 	if (!state)
342 		return state;
343 	state->state = 0;
344 	state->failrec = NULL;
345 	RB_CLEAR_NODE(&state->rb_node);
346 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
347 	refcount_set(&state->refs, 1);
348 	init_waitqueue_head(&state->wq);
349 	trace_alloc_extent_state(state, mask, _RET_IP_);
350 	return state;
351 }
352 
353 void free_extent_state(struct extent_state *state)
354 {
355 	if (!state)
356 		return;
357 	if (refcount_dec_and_test(&state->refs)) {
358 		WARN_ON(extent_state_in_tree(state));
359 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
360 		trace_free_extent_state(state, _RET_IP_);
361 		kmem_cache_free(extent_state_cache, state);
362 	}
363 }
364 
365 static struct rb_node *tree_insert(struct rb_root *root,
366 				   struct rb_node *search_start,
367 				   u64 offset,
368 				   struct rb_node *node,
369 				   struct rb_node ***p_in,
370 				   struct rb_node **parent_in)
371 {
372 	struct rb_node **p;
373 	struct rb_node *parent = NULL;
374 	struct tree_entry *entry;
375 
376 	if (p_in && parent_in) {
377 		p = *p_in;
378 		parent = *parent_in;
379 		goto do_insert;
380 	}
381 
382 	p = search_start ? &search_start : &root->rb_node;
383 	while (*p) {
384 		parent = *p;
385 		entry = rb_entry(parent, struct tree_entry, rb_node);
386 
387 		if (offset < entry->start)
388 			p = &(*p)->rb_left;
389 		else if (offset > entry->end)
390 			p = &(*p)->rb_right;
391 		else
392 			return parent;
393 	}
394 
395 do_insert:
396 	rb_link_node(node, parent, p);
397 	rb_insert_color(node, root);
398 	return NULL;
399 }
400 
401 /**
402  * Search @tree for an entry that contains @offset. Such entry would have
403  * entry->start <= offset && entry->end >= offset.
404  *
405  * @tree:       the tree to search
406  * @offset:     offset that should fall within an entry in @tree
407  * @next_ret:   pointer to the first entry whose range ends after @offset
408  * @prev_ret:   pointer to the first entry whose range begins before @offset
409  * @p_ret:      pointer where new node should be anchored (used when inserting an
410  *	        entry in the tree)
411  * @parent_ret: points to entry which would have been the parent of the entry,
412  *               containing @offset
413  *
414  * This function returns a pointer to the entry that contains @offset byte
415  * address. If no such entry exists, then NULL is returned and the other
416  * pointer arguments to the function are filled, otherwise the found entry is
417  * returned and other pointers are left untouched.
418  */
419 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
420 				      struct rb_node **next_ret,
421 				      struct rb_node **prev_ret,
422 				      struct rb_node ***p_ret,
423 				      struct rb_node **parent_ret)
424 {
425 	struct rb_root *root = &tree->state;
426 	struct rb_node **n = &root->rb_node;
427 	struct rb_node *prev = NULL;
428 	struct rb_node *orig_prev = NULL;
429 	struct tree_entry *entry;
430 	struct tree_entry *prev_entry = NULL;
431 
432 	while (*n) {
433 		prev = *n;
434 		entry = rb_entry(prev, struct tree_entry, rb_node);
435 		prev_entry = entry;
436 
437 		if (offset < entry->start)
438 			n = &(*n)->rb_left;
439 		else if (offset > entry->end)
440 			n = &(*n)->rb_right;
441 		else
442 			return *n;
443 	}
444 
445 	if (p_ret)
446 		*p_ret = n;
447 	if (parent_ret)
448 		*parent_ret = prev;
449 
450 	if (next_ret) {
451 		orig_prev = prev;
452 		while (prev && offset > prev_entry->end) {
453 			prev = rb_next(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*next_ret = prev;
457 		prev = orig_prev;
458 	}
459 
460 	if (prev_ret) {
461 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
462 		while (prev && offset < prev_entry->start) {
463 			prev = rb_prev(prev);
464 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
465 		}
466 		*prev_ret = prev;
467 	}
468 	return NULL;
469 }
470 
471 static inline struct rb_node *
472 tree_search_for_insert(struct extent_io_tree *tree,
473 		       u64 offset,
474 		       struct rb_node ***p_ret,
475 		       struct rb_node **parent_ret)
476 {
477 	struct rb_node *next= NULL;
478 	struct rb_node *ret;
479 
480 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
481 	if (!ret)
482 		return next;
483 	return ret;
484 }
485 
486 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
487 					  u64 offset)
488 {
489 	return tree_search_for_insert(tree, offset, NULL, NULL);
490 }
491 
492 /*
493  * utility function to look for merge candidates inside a given range.
494  * Any extents with matching state are merged together into a single
495  * extent in the tree.  Extents with EXTENT_IO in their state field
496  * are not merged because the end_io handlers need to be able to do
497  * operations on them without sleeping (or doing allocations/splits).
498  *
499  * This should be called with the tree lock held.
500  */
501 static void merge_state(struct extent_io_tree *tree,
502 		        struct extent_state *state)
503 {
504 	struct extent_state *other;
505 	struct rb_node *other_node;
506 
507 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
508 		return;
509 
510 	other_node = rb_prev(&state->rb_node);
511 	if (other_node) {
512 		other = rb_entry(other_node, struct extent_state, rb_node);
513 		if (other->end == state->start - 1 &&
514 		    other->state == state->state) {
515 			if (tree->private_data &&
516 			    is_data_inode(tree->private_data))
517 				btrfs_merge_delalloc_extent(tree->private_data,
518 							    state, other);
519 			state->start = other->start;
520 			rb_erase(&other->rb_node, &tree->state);
521 			RB_CLEAR_NODE(&other->rb_node);
522 			free_extent_state(other);
523 		}
524 	}
525 	other_node = rb_next(&state->rb_node);
526 	if (other_node) {
527 		other = rb_entry(other_node, struct extent_state, rb_node);
528 		if (other->start == state->end + 1 &&
529 		    other->state == state->state) {
530 			if (tree->private_data &&
531 			    is_data_inode(tree->private_data))
532 				btrfs_merge_delalloc_extent(tree->private_data,
533 							    state, other);
534 			state->end = other->end;
535 			rb_erase(&other->rb_node, &tree->state);
536 			RB_CLEAR_NODE(&other->rb_node);
537 			free_extent_state(other);
538 		}
539 	}
540 }
541 
542 static void set_state_bits(struct extent_io_tree *tree,
543 			   struct extent_state *state, u32 *bits,
544 			   struct extent_changeset *changeset);
545 
546 /*
547  * insert an extent_state struct into the tree.  'bits' are set on the
548  * struct before it is inserted.
549  *
550  * This may return -EEXIST if the extent is already there, in which case the
551  * state struct is freed.
552  *
553  * The tree lock is not taken internally.  This is a utility function and
554  * probably isn't what you want to call (see set/clear_extent_bit).
555  */
556 static int insert_state(struct extent_io_tree *tree,
557 			struct extent_state *state, u64 start, u64 end,
558 			struct rb_node ***p,
559 			struct rb_node **parent,
560 			u32 *bits, struct extent_changeset *changeset)
561 {
562 	struct rb_node *node;
563 
564 	if (end < start) {
565 		btrfs_err(tree->fs_info,
566 			"insert state: end < start %llu %llu", end, start);
567 		WARN_ON(1);
568 	}
569 	state->start = start;
570 	state->end = end;
571 
572 	set_state_bits(tree, state, bits, changeset);
573 
574 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
575 	if (node) {
576 		struct extent_state *found;
577 		found = rb_entry(node, struct extent_state, rb_node);
578 		btrfs_err(tree->fs_info,
579 		       "found node %llu %llu on insert of %llu %llu",
580 		       found->start, found->end, start, end);
581 		return -EEXIST;
582 	}
583 	merge_state(tree, state);
584 	return 0;
585 }
586 
587 /*
588  * split a given extent state struct in two, inserting the preallocated
589  * struct 'prealloc' as the newly created second half.  'split' indicates an
590  * offset inside 'orig' where it should be split.
591  *
592  * Before calling,
593  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
594  * are two extent state structs in the tree:
595  * prealloc: [orig->start, split - 1]
596  * orig: [ split, orig->end ]
597  *
598  * The tree locks are not taken by this function. They need to be held
599  * by the caller.
600  */
601 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
602 		       struct extent_state *prealloc, u64 split)
603 {
604 	struct rb_node *node;
605 
606 	if (tree->private_data && is_data_inode(tree->private_data))
607 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
608 
609 	prealloc->start = orig->start;
610 	prealloc->end = split - 1;
611 	prealloc->state = orig->state;
612 	orig->start = split;
613 
614 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
615 			   &prealloc->rb_node, NULL, NULL);
616 	if (node) {
617 		free_extent_state(prealloc);
618 		return -EEXIST;
619 	}
620 	return 0;
621 }
622 
623 static struct extent_state *next_state(struct extent_state *state)
624 {
625 	struct rb_node *next = rb_next(&state->rb_node);
626 	if (next)
627 		return rb_entry(next, struct extent_state, rb_node);
628 	else
629 		return NULL;
630 }
631 
632 /*
633  * utility function to clear some bits in an extent state struct.
634  * it will optionally wake up anyone waiting on this state (wake == 1).
635  *
636  * If no bits are set on the state struct after clearing things, the
637  * struct is freed and removed from the tree
638  */
639 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
640 					    struct extent_state *state,
641 					    u32 *bits, int wake,
642 					    struct extent_changeset *changeset)
643 {
644 	struct extent_state *next;
645 	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
646 	int ret;
647 
648 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
649 		u64 range = state->end - state->start + 1;
650 		WARN_ON(range > tree->dirty_bytes);
651 		tree->dirty_bytes -= range;
652 	}
653 
654 	if (tree->private_data && is_data_inode(tree->private_data))
655 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
656 
657 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
658 	BUG_ON(ret < 0);
659 	state->state &= ~bits_to_clear;
660 	if (wake)
661 		wake_up(&state->wq);
662 	if (state->state == 0) {
663 		next = next_state(state);
664 		if (extent_state_in_tree(state)) {
665 			rb_erase(&state->rb_node, &tree->state);
666 			RB_CLEAR_NODE(&state->rb_node);
667 			free_extent_state(state);
668 		} else {
669 			WARN_ON(1);
670 		}
671 	} else {
672 		merge_state(tree, state);
673 		next = next_state(state);
674 	}
675 	return next;
676 }
677 
678 static struct extent_state *
679 alloc_extent_state_atomic(struct extent_state *prealloc)
680 {
681 	if (!prealloc)
682 		prealloc = alloc_extent_state(GFP_ATOMIC);
683 
684 	return prealloc;
685 }
686 
687 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
688 {
689 	btrfs_panic(tree->fs_info, err,
690 	"locking error: extent tree was modified by another thread while locked");
691 }
692 
693 /*
694  * clear some bits on a range in the tree.  This may require splitting
695  * or inserting elements in the tree, so the gfp mask is used to
696  * indicate which allocations or sleeping are allowed.
697  *
698  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
699  * the given range from the tree regardless of state (ie for truncate).
700  *
701  * the range [start, end] is inclusive.
702  *
703  * This takes the tree lock, and returns 0 on success and < 0 on error.
704  */
705 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 		       u32 bits, int wake, int delete,
707 		       struct extent_state **cached_state,
708 		       gfp_t mask, struct extent_changeset *changeset)
709 {
710 	struct extent_state *state;
711 	struct extent_state *cached;
712 	struct extent_state *prealloc = NULL;
713 	struct rb_node *node;
714 	u64 last_end;
715 	int err;
716 	int clear = 0;
717 
718 	btrfs_debug_check_extent_io_range(tree, start, end);
719 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
720 
721 	if (bits & EXTENT_DELALLOC)
722 		bits |= EXTENT_NORESERVE;
723 
724 	if (delete)
725 		bits |= ~EXTENT_CTLBITS;
726 
727 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
728 		clear = 1;
729 again:
730 	if (!prealloc && gfpflags_allow_blocking(mask)) {
731 		/*
732 		 * Don't care for allocation failure here because we might end
733 		 * up not needing the pre-allocated extent state at all, which
734 		 * is the case if we only have in the tree extent states that
735 		 * cover our input range and don't cover too any other range.
736 		 * If we end up needing a new extent state we allocate it later.
737 		 */
738 		prealloc = alloc_extent_state(mask);
739 	}
740 
741 	spin_lock(&tree->lock);
742 	if (cached_state) {
743 		cached = *cached_state;
744 
745 		if (clear) {
746 			*cached_state = NULL;
747 			cached_state = NULL;
748 		}
749 
750 		if (cached && extent_state_in_tree(cached) &&
751 		    cached->start <= start && cached->end > start) {
752 			if (clear)
753 				refcount_dec(&cached->refs);
754 			state = cached;
755 			goto hit_next;
756 		}
757 		if (clear)
758 			free_extent_state(cached);
759 	}
760 	/*
761 	 * this search will find the extents that end after
762 	 * our range starts
763 	 */
764 	node = tree_search(tree, start);
765 	if (!node)
766 		goto out;
767 	state = rb_entry(node, struct extent_state, rb_node);
768 hit_next:
769 	if (state->start > end)
770 		goto out;
771 	WARN_ON(state->end < start);
772 	last_end = state->end;
773 
774 	/* the state doesn't have the wanted bits, go ahead */
775 	if (!(state->state & bits)) {
776 		state = next_state(state);
777 		goto next;
778 	}
779 
780 	/*
781 	 *     | ---- desired range ---- |
782 	 *  | state | or
783 	 *  | ------------- state -------------- |
784 	 *
785 	 * We need to split the extent we found, and may flip
786 	 * bits on second half.
787 	 *
788 	 * If the extent we found extends past our range, we
789 	 * just split and search again.  It'll get split again
790 	 * the next time though.
791 	 *
792 	 * If the extent we found is inside our range, we clear
793 	 * the desired bit on it.
794 	 */
795 
796 	if (state->start < start) {
797 		prealloc = alloc_extent_state_atomic(prealloc);
798 		BUG_ON(!prealloc);
799 		err = split_state(tree, state, prealloc, start);
800 		if (err)
801 			extent_io_tree_panic(tree, err);
802 
803 		prealloc = NULL;
804 		if (err)
805 			goto out;
806 		if (state->end <= end) {
807 			state = clear_state_bit(tree, state, &bits, wake,
808 						changeset);
809 			goto next;
810 		}
811 		goto search_again;
812 	}
813 	/*
814 	 * | ---- desired range ---- |
815 	 *                        | state |
816 	 * We need to split the extent, and clear the bit
817 	 * on the first half
818 	 */
819 	if (state->start <= end && state->end > end) {
820 		prealloc = alloc_extent_state_atomic(prealloc);
821 		BUG_ON(!prealloc);
822 		err = split_state(tree, state, prealloc, end + 1);
823 		if (err)
824 			extent_io_tree_panic(tree, err);
825 
826 		if (wake)
827 			wake_up(&state->wq);
828 
829 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
830 
831 		prealloc = NULL;
832 		goto out;
833 	}
834 
835 	state = clear_state_bit(tree, state, &bits, wake, changeset);
836 next:
837 	if (last_end == (u64)-1)
838 		goto out;
839 	start = last_end + 1;
840 	if (start <= end && state && !need_resched())
841 		goto hit_next;
842 
843 search_again:
844 	if (start > end)
845 		goto out;
846 	spin_unlock(&tree->lock);
847 	if (gfpflags_allow_blocking(mask))
848 		cond_resched();
849 	goto again;
850 
851 out:
852 	spin_unlock(&tree->lock);
853 	if (prealloc)
854 		free_extent_state(prealloc);
855 
856 	return 0;
857 
858 }
859 
860 static void wait_on_state(struct extent_io_tree *tree,
861 			  struct extent_state *state)
862 		__releases(tree->lock)
863 		__acquires(tree->lock)
864 {
865 	DEFINE_WAIT(wait);
866 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
867 	spin_unlock(&tree->lock);
868 	schedule();
869 	spin_lock(&tree->lock);
870 	finish_wait(&state->wq, &wait);
871 }
872 
873 /*
874  * waits for one or more bits to clear on a range in the state tree.
875  * The range [start, end] is inclusive.
876  * The tree lock is taken by this function
877  */
878 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
879 			    u32 bits)
880 {
881 	struct extent_state *state;
882 	struct rb_node *node;
883 
884 	btrfs_debug_check_extent_io_range(tree, start, end);
885 
886 	spin_lock(&tree->lock);
887 again:
888 	while (1) {
889 		/*
890 		 * this search will find all the extents that end after
891 		 * our range starts
892 		 */
893 		node = tree_search(tree, start);
894 process_node:
895 		if (!node)
896 			break;
897 
898 		state = rb_entry(node, struct extent_state, rb_node);
899 
900 		if (state->start > end)
901 			goto out;
902 
903 		if (state->state & bits) {
904 			start = state->start;
905 			refcount_inc(&state->refs);
906 			wait_on_state(tree, state);
907 			free_extent_state(state);
908 			goto again;
909 		}
910 		start = state->end + 1;
911 
912 		if (start > end)
913 			break;
914 
915 		if (!cond_resched_lock(&tree->lock)) {
916 			node = rb_next(node);
917 			goto process_node;
918 		}
919 	}
920 out:
921 	spin_unlock(&tree->lock);
922 }
923 
924 static void set_state_bits(struct extent_io_tree *tree,
925 			   struct extent_state *state,
926 			   u32 *bits, struct extent_changeset *changeset)
927 {
928 	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
929 	int ret;
930 
931 	if (tree->private_data && is_data_inode(tree->private_data))
932 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
933 
934 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
935 		u64 range = state->end - state->start + 1;
936 		tree->dirty_bytes += range;
937 	}
938 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
939 	BUG_ON(ret < 0);
940 	state->state |= bits_to_set;
941 }
942 
943 static void cache_state_if_flags(struct extent_state *state,
944 				 struct extent_state **cached_ptr,
945 				 unsigned flags)
946 {
947 	if (cached_ptr && !(*cached_ptr)) {
948 		if (!flags || (state->state & flags)) {
949 			*cached_ptr = state;
950 			refcount_inc(&state->refs);
951 		}
952 	}
953 }
954 
955 static void cache_state(struct extent_state *state,
956 			struct extent_state **cached_ptr)
957 {
958 	return cache_state_if_flags(state, cached_ptr,
959 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
960 }
961 
962 /*
963  * set some bits on a range in the tree.  This may require allocations or
964  * sleeping, so the gfp mask is used to indicate what is allowed.
965  *
966  * If any of the exclusive bits are set, this will fail with -EEXIST if some
967  * part of the range already has the desired bits set.  The start of the
968  * existing range is returned in failed_start in this case.
969  *
970  * [start, end] is inclusive This takes the tree lock.
971  */
972 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
973 		   u32 exclusive_bits, u64 *failed_start,
974 		   struct extent_state **cached_state, gfp_t mask,
975 		   struct extent_changeset *changeset)
976 {
977 	struct extent_state *state;
978 	struct extent_state *prealloc = NULL;
979 	struct rb_node *node;
980 	struct rb_node **p;
981 	struct rb_node *parent;
982 	int err = 0;
983 	u64 last_start;
984 	u64 last_end;
985 
986 	btrfs_debug_check_extent_io_range(tree, start, end);
987 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
988 
989 	if (exclusive_bits)
990 		ASSERT(failed_start);
991 	else
992 		ASSERT(failed_start == NULL);
993 again:
994 	if (!prealloc && gfpflags_allow_blocking(mask)) {
995 		/*
996 		 * Don't care for allocation failure here because we might end
997 		 * up not needing the pre-allocated extent state at all, which
998 		 * is the case if we only have in the tree extent states that
999 		 * cover our input range and don't cover too any other range.
1000 		 * If we end up needing a new extent state we allocate it later.
1001 		 */
1002 		prealloc = alloc_extent_state(mask);
1003 	}
1004 
1005 	spin_lock(&tree->lock);
1006 	if (cached_state && *cached_state) {
1007 		state = *cached_state;
1008 		if (state->start <= start && state->end > start &&
1009 		    extent_state_in_tree(state)) {
1010 			node = &state->rb_node;
1011 			goto hit_next;
1012 		}
1013 	}
1014 	/*
1015 	 * this search will find all the extents that end after
1016 	 * our range starts.
1017 	 */
1018 	node = tree_search_for_insert(tree, start, &p, &parent);
1019 	if (!node) {
1020 		prealloc = alloc_extent_state_atomic(prealloc);
1021 		BUG_ON(!prealloc);
1022 		err = insert_state(tree, prealloc, start, end,
1023 				   &p, &parent, &bits, changeset);
1024 		if (err)
1025 			extent_io_tree_panic(tree, err);
1026 
1027 		cache_state(prealloc, cached_state);
1028 		prealloc = NULL;
1029 		goto out;
1030 	}
1031 	state = rb_entry(node, struct extent_state, rb_node);
1032 hit_next:
1033 	last_start = state->start;
1034 	last_end = state->end;
1035 
1036 	/*
1037 	 * | ---- desired range ---- |
1038 	 * | state |
1039 	 *
1040 	 * Just lock what we found and keep going
1041 	 */
1042 	if (state->start == start && state->end <= end) {
1043 		if (state->state & exclusive_bits) {
1044 			*failed_start = state->start;
1045 			err = -EEXIST;
1046 			goto out;
1047 		}
1048 
1049 		set_state_bits(tree, state, &bits, changeset);
1050 		cache_state(state, cached_state);
1051 		merge_state(tree, state);
1052 		if (last_end == (u64)-1)
1053 			goto out;
1054 		start = last_end + 1;
1055 		state = next_state(state);
1056 		if (start < end && state && state->start == start &&
1057 		    !need_resched())
1058 			goto hit_next;
1059 		goto search_again;
1060 	}
1061 
1062 	/*
1063 	 *     | ---- desired range ---- |
1064 	 * | state |
1065 	 *   or
1066 	 * | ------------- state -------------- |
1067 	 *
1068 	 * We need to split the extent we found, and may flip bits on
1069 	 * second half.
1070 	 *
1071 	 * If the extent we found extends past our
1072 	 * range, we just split and search again.  It'll get split
1073 	 * again the next time though.
1074 	 *
1075 	 * If the extent we found is inside our range, we set the
1076 	 * desired bit on it.
1077 	 */
1078 	if (state->start < start) {
1079 		if (state->state & exclusive_bits) {
1080 			*failed_start = start;
1081 			err = -EEXIST;
1082 			goto out;
1083 		}
1084 
1085 		/*
1086 		 * If this extent already has all the bits we want set, then
1087 		 * skip it, not necessary to split it or do anything with it.
1088 		 */
1089 		if ((state->state & bits) == bits) {
1090 			start = state->end + 1;
1091 			cache_state(state, cached_state);
1092 			goto search_again;
1093 		}
1094 
1095 		prealloc = alloc_extent_state_atomic(prealloc);
1096 		BUG_ON(!prealloc);
1097 		err = split_state(tree, state, prealloc, start);
1098 		if (err)
1099 			extent_io_tree_panic(tree, err);
1100 
1101 		prealloc = NULL;
1102 		if (err)
1103 			goto out;
1104 		if (state->end <= end) {
1105 			set_state_bits(tree, state, &bits, changeset);
1106 			cache_state(state, cached_state);
1107 			merge_state(tree, state);
1108 			if (last_end == (u64)-1)
1109 				goto out;
1110 			start = last_end + 1;
1111 			state = next_state(state);
1112 			if (start < end && state && state->start == start &&
1113 			    !need_resched())
1114 				goto hit_next;
1115 		}
1116 		goto search_again;
1117 	}
1118 	/*
1119 	 * | ---- desired range ---- |
1120 	 *     | state | or               | state |
1121 	 *
1122 	 * There's a hole, we need to insert something in it and
1123 	 * ignore the extent we found.
1124 	 */
1125 	if (state->start > start) {
1126 		u64 this_end;
1127 		if (end < last_start)
1128 			this_end = end;
1129 		else
1130 			this_end = last_start - 1;
1131 
1132 		prealloc = alloc_extent_state_atomic(prealloc);
1133 		BUG_ON(!prealloc);
1134 
1135 		/*
1136 		 * Avoid to free 'prealloc' if it can be merged with
1137 		 * the later extent.
1138 		 */
1139 		err = insert_state(tree, prealloc, start, this_end,
1140 				   NULL, NULL, &bits, changeset);
1141 		if (err)
1142 			extent_io_tree_panic(tree, err);
1143 
1144 		cache_state(prealloc, cached_state);
1145 		prealloc = NULL;
1146 		start = this_end + 1;
1147 		goto search_again;
1148 	}
1149 	/*
1150 	 * | ---- desired range ---- |
1151 	 *                        | state |
1152 	 * We need to split the extent, and set the bit
1153 	 * on the first half
1154 	 */
1155 	if (state->start <= end && state->end > end) {
1156 		if (state->state & exclusive_bits) {
1157 			*failed_start = start;
1158 			err = -EEXIST;
1159 			goto out;
1160 		}
1161 
1162 		prealloc = alloc_extent_state_atomic(prealloc);
1163 		BUG_ON(!prealloc);
1164 		err = split_state(tree, state, prealloc, end + 1);
1165 		if (err)
1166 			extent_io_tree_panic(tree, err);
1167 
1168 		set_state_bits(tree, prealloc, &bits, changeset);
1169 		cache_state(prealloc, cached_state);
1170 		merge_state(tree, prealloc);
1171 		prealloc = NULL;
1172 		goto out;
1173 	}
1174 
1175 search_again:
1176 	if (start > end)
1177 		goto out;
1178 	spin_unlock(&tree->lock);
1179 	if (gfpflags_allow_blocking(mask))
1180 		cond_resched();
1181 	goto again;
1182 
1183 out:
1184 	spin_unlock(&tree->lock);
1185 	if (prealloc)
1186 		free_extent_state(prealloc);
1187 
1188 	return err;
1189 
1190 }
1191 
1192 /**
1193  * convert_extent_bit - convert all bits in a given range from one bit to
1194  * 			another
1195  * @tree:	the io tree to search
1196  * @start:	the start offset in bytes
1197  * @end:	the end offset in bytes (inclusive)
1198  * @bits:	the bits to set in this range
1199  * @clear_bits:	the bits to clear in this range
1200  * @cached_state:	state that we're going to cache
1201  *
1202  * This will go through and set bits for the given range.  If any states exist
1203  * already in this range they are set with the given bit and cleared of the
1204  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1205  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1206  * boundary bits like LOCK.
1207  *
1208  * All allocations are done with GFP_NOFS.
1209  */
1210 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1211 		       u32 bits, u32 clear_bits,
1212 		       struct extent_state **cached_state)
1213 {
1214 	struct extent_state *state;
1215 	struct extent_state *prealloc = NULL;
1216 	struct rb_node *node;
1217 	struct rb_node **p;
1218 	struct rb_node *parent;
1219 	int err = 0;
1220 	u64 last_start;
1221 	u64 last_end;
1222 	bool first_iteration = true;
1223 
1224 	btrfs_debug_check_extent_io_range(tree, start, end);
1225 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1226 				       clear_bits);
1227 
1228 again:
1229 	if (!prealloc) {
1230 		/*
1231 		 * Best effort, don't worry if extent state allocation fails
1232 		 * here for the first iteration. We might have a cached state
1233 		 * that matches exactly the target range, in which case no
1234 		 * extent state allocations are needed. We'll only know this
1235 		 * after locking the tree.
1236 		 */
1237 		prealloc = alloc_extent_state(GFP_NOFS);
1238 		if (!prealloc && !first_iteration)
1239 			return -ENOMEM;
1240 	}
1241 
1242 	spin_lock(&tree->lock);
1243 	if (cached_state && *cached_state) {
1244 		state = *cached_state;
1245 		if (state->start <= start && state->end > start &&
1246 		    extent_state_in_tree(state)) {
1247 			node = &state->rb_node;
1248 			goto hit_next;
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * this search will find all the extents that end after
1254 	 * our range starts.
1255 	 */
1256 	node = tree_search_for_insert(tree, start, &p, &parent);
1257 	if (!node) {
1258 		prealloc = alloc_extent_state_atomic(prealloc);
1259 		if (!prealloc) {
1260 			err = -ENOMEM;
1261 			goto out;
1262 		}
1263 		err = insert_state(tree, prealloc, start, end,
1264 				   &p, &parent, &bits, NULL);
1265 		if (err)
1266 			extent_io_tree_panic(tree, err);
1267 		cache_state(prealloc, cached_state);
1268 		prealloc = NULL;
1269 		goto out;
1270 	}
1271 	state = rb_entry(node, struct extent_state, rb_node);
1272 hit_next:
1273 	last_start = state->start;
1274 	last_end = state->end;
1275 
1276 	/*
1277 	 * | ---- desired range ---- |
1278 	 * | state |
1279 	 *
1280 	 * Just lock what we found and keep going
1281 	 */
1282 	if (state->start == start && state->end <= end) {
1283 		set_state_bits(tree, state, &bits, NULL);
1284 		cache_state(state, cached_state);
1285 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1286 		if (last_end == (u64)-1)
1287 			goto out;
1288 		start = last_end + 1;
1289 		if (start < end && state && state->start == start &&
1290 		    !need_resched())
1291 			goto hit_next;
1292 		goto search_again;
1293 	}
1294 
1295 	/*
1296 	 *     | ---- desired range ---- |
1297 	 * | state |
1298 	 *   or
1299 	 * | ------------- state -------------- |
1300 	 *
1301 	 * We need to split the extent we found, and may flip bits on
1302 	 * second half.
1303 	 *
1304 	 * If the extent we found extends past our
1305 	 * range, we just split and search again.  It'll get split
1306 	 * again the next time though.
1307 	 *
1308 	 * If the extent we found is inside our range, we set the
1309 	 * desired bit on it.
1310 	 */
1311 	if (state->start < start) {
1312 		prealloc = alloc_extent_state_atomic(prealloc);
1313 		if (!prealloc) {
1314 			err = -ENOMEM;
1315 			goto out;
1316 		}
1317 		err = split_state(tree, state, prealloc, start);
1318 		if (err)
1319 			extent_io_tree_panic(tree, err);
1320 		prealloc = NULL;
1321 		if (err)
1322 			goto out;
1323 		if (state->end <= end) {
1324 			set_state_bits(tree, state, &bits, NULL);
1325 			cache_state(state, cached_state);
1326 			state = clear_state_bit(tree, state, &clear_bits, 0,
1327 						NULL);
1328 			if (last_end == (u64)-1)
1329 				goto out;
1330 			start = last_end + 1;
1331 			if (start < end && state && state->start == start &&
1332 			    !need_resched())
1333 				goto hit_next;
1334 		}
1335 		goto search_again;
1336 	}
1337 	/*
1338 	 * | ---- desired range ---- |
1339 	 *     | state | or               | state |
1340 	 *
1341 	 * There's a hole, we need to insert something in it and
1342 	 * ignore the extent we found.
1343 	 */
1344 	if (state->start > start) {
1345 		u64 this_end;
1346 		if (end < last_start)
1347 			this_end = end;
1348 		else
1349 			this_end = last_start - 1;
1350 
1351 		prealloc = alloc_extent_state_atomic(prealloc);
1352 		if (!prealloc) {
1353 			err = -ENOMEM;
1354 			goto out;
1355 		}
1356 
1357 		/*
1358 		 * Avoid to free 'prealloc' if it can be merged with
1359 		 * the later extent.
1360 		 */
1361 		err = insert_state(tree, prealloc, start, this_end,
1362 				   NULL, NULL, &bits, NULL);
1363 		if (err)
1364 			extent_io_tree_panic(tree, err);
1365 		cache_state(prealloc, cached_state);
1366 		prealloc = NULL;
1367 		start = this_end + 1;
1368 		goto search_again;
1369 	}
1370 	/*
1371 	 * | ---- desired range ---- |
1372 	 *                        | state |
1373 	 * We need to split the extent, and set the bit
1374 	 * on the first half
1375 	 */
1376 	if (state->start <= end && state->end > end) {
1377 		prealloc = alloc_extent_state_atomic(prealloc);
1378 		if (!prealloc) {
1379 			err = -ENOMEM;
1380 			goto out;
1381 		}
1382 
1383 		err = split_state(tree, state, prealloc, end + 1);
1384 		if (err)
1385 			extent_io_tree_panic(tree, err);
1386 
1387 		set_state_bits(tree, prealloc, &bits, NULL);
1388 		cache_state(prealloc, cached_state);
1389 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1390 		prealloc = NULL;
1391 		goto out;
1392 	}
1393 
1394 search_again:
1395 	if (start > end)
1396 		goto out;
1397 	spin_unlock(&tree->lock);
1398 	cond_resched();
1399 	first_iteration = false;
1400 	goto again;
1401 
1402 out:
1403 	spin_unlock(&tree->lock);
1404 	if (prealloc)
1405 		free_extent_state(prealloc);
1406 
1407 	return err;
1408 }
1409 
1410 /* wrappers around set/clear extent bit */
1411 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412 			   u32 bits, struct extent_changeset *changeset)
1413 {
1414 	/*
1415 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1416 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1417 	 * either fail with -EEXIST or changeset will record the whole
1418 	 * range.
1419 	 */
1420 	BUG_ON(bits & EXTENT_LOCKED);
1421 
1422 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1423 			      changeset);
1424 }
1425 
1426 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1427 			   u32 bits)
1428 {
1429 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1430 			      GFP_NOWAIT, NULL);
1431 }
1432 
1433 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1434 		     u32 bits, int wake, int delete,
1435 		     struct extent_state **cached)
1436 {
1437 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1438 				  cached, GFP_NOFS, NULL);
1439 }
1440 
1441 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1442 		u32 bits, struct extent_changeset *changeset)
1443 {
1444 	/*
1445 	 * Don't support EXTENT_LOCKED case, same reason as
1446 	 * set_record_extent_bits().
1447 	 */
1448 	BUG_ON(bits & EXTENT_LOCKED);
1449 
1450 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1451 				  changeset);
1452 }
1453 
1454 /*
1455  * either insert or lock state struct between start and end use mask to tell
1456  * us if waiting is desired.
1457  */
1458 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1459 		     struct extent_state **cached_state)
1460 {
1461 	int err;
1462 	u64 failed_start;
1463 
1464 	while (1) {
1465 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1466 				     EXTENT_LOCKED, &failed_start,
1467 				     cached_state, GFP_NOFS, NULL);
1468 		if (err == -EEXIST) {
1469 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1470 			start = failed_start;
1471 		} else
1472 			break;
1473 		WARN_ON(start > end);
1474 	}
1475 	return err;
1476 }
1477 
1478 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1479 {
1480 	int err;
1481 	u64 failed_start;
1482 
1483 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1484 			     &failed_start, NULL, GFP_NOFS, NULL);
1485 	if (err == -EEXIST) {
1486 		if (failed_start > start)
1487 			clear_extent_bit(tree, start, failed_start - 1,
1488 					 EXTENT_LOCKED, 1, 0, NULL);
1489 		return 0;
1490 	}
1491 	return 1;
1492 }
1493 
1494 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1495 {
1496 	unsigned long index = start >> PAGE_SHIFT;
1497 	unsigned long end_index = end >> PAGE_SHIFT;
1498 	struct page *page;
1499 
1500 	while (index <= end_index) {
1501 		page = find_get_page(inode->i_mapping, index);
1502 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1503 		clear_page_dirty_for_io(page);
1504 		put_page(page);
1505 		index++;
1506 	}
1507 }
1508 
1509 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1510 {
1511 	unsigned long index = start >> PAGE_SHIFT;
1512 	unsigned long end_index = end >> PAGE_SHIFT;
1513 	struct page *page;
1514 
1515 	while (index <= end_index) {
1516 		page = find_get_page(inode->i_mapping, index);
1517 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1518 		__set_page_dirty_nobuffers(page);
1519 		account_page_redirty(page);
1520 		put_page(page);
1521 		index++;
1522 	}
1523 }
1524 
1525 /* find the first state struct with 'bits' set after 'start', and
1526  * return it.  tree->lock must be held.  NULL will returned if
1527  * nothing was found after 'start'
1528  */
1529 static struct extent_state *
1530 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1531 {
1532 	struct rb_node *node;
1533 	struct extent_state *state;
1534 
1535 	/*
1536 	 * this search will find all the extents that end after
1537 	 * our range starts.
1538 	 */
1539 	node = tree_search(tree, start);
1540 	if (!node)
1541 		goto out;
1542 
1543 	while (1) {
1544 		state = rb_entry(node, struct extent_state, rb_node);
1545 		if (state->end >= start && (state->state & bits))
1546 			return state;
1547 
1548 		node = rb_next(node);
1549 		if (!node)
1550 			break;
1551 	}
1552 out:
1553 	return NULL;
1554 }
1555 
1556 /*
1557  * Find the first offset in the io tree with one or more @bits set.
1558  *
1559  * Note: If there are multiple bits set in @bits, any of them will match.
1560  *
1561  * Return 0 if we find something, and update @start_ret and @end_ret.
1562  * Return 1 if we found nothing.
1563  */
1564 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1565 			  u64 *start_ret, u64 *end_ret, u32 bits,
1566 			  struct extent_state **cached_state)
1567 {
1568 	struct extent_state *state;
1569 	int ret = 1;
1570 
1571 	spin_lock(&tree->lock);
1572 	if (cached_state && *cached_state) {
1573 		state = *cached_state;
1574 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1575 			while ((state = next_state(state)) != NULL) {
1576 				if (state->state & bits)
1577 					goto got_it;
1578 			}
1579 			free_extent_state(*cached_state);
1580 			*cached_state = NULL;
1581 			goto out;
1582 		}
1583 		free_extent_state(*cached_state);
1584 		*cached_state = NULL;
1585 	}
1586 
1587 	state = find_first_extent_bit_state(tree, start, bits);
1588 got_it:
1589 	if (state) {
1590 		cache_state_if_flags(state, cached_state, 0);
1591 		*start_ret = state->start;
1592 		*end_ret = state->end;
1593 		ret = 0;
1594 	}
1595 out:
1596 	spin_unlock(&tree->lock);
1597 	return ret;
1598 }
1599 
1600 /**
1601  * Find a contiguous area of bits
1602  *
1603  * @tree:      io tree to check
1604  * @start:     offset to start the search from
1605  * @start_ret: the first offset we found with the bits set
1606  * @end_ret:   the final contiguous range of the bits that were set
1607  * @bits:      bits to look for
1608  *
1609  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1610  * to set bits appropriately, and then merge them again.  During this time it
1611  * will drop the tree->lock, so use this helper if you want to find the actual
1612  * contiguous area for given bits.  We will search to the first bit we find, and
1613  * then walk down the tree until we find a non-contiguous area.  The area
1614  * returned will be the full contiguous area with the bits set.
1615  */
1616 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1617 			       u64 *start_ret, u64 *end_ret, u32 bits)
1618 {
1619 	struct extent_state *state;
1620 	int ret = 1;
1621 
1622 	spin_lock(&tree->lock);
1623 	state = find_first_extent_bit_state(tree, start, bits);
1624 	if (state) {
1625 		*start_ret = state->start;
1626 		*end_ret = state->end;
1627 		while ((state = next_state(state)) != NULL) {
1628 			if (state->start > (*end_ret + 1))
1629 				break;
1630 			*end_ret = state->end;
1631 		}
1632 		ret = 0;
1633 	}
1634 	spin_unlock(&tree->lock);
1635 	return ret;
1636 }
1637 
1638 /**
1639  * Find the first range that has @bits not set. This range could start before
1640  * @start.
1641  *
1642  * @tree:      the tree to search
1643  * @start:     offset at/after which the found extent should start
1644  * @start_ret: records the beginning of the range
1645  * @end_ret:   records the end of the range (inclusive)
1646  * @bits:      the set of bits which must be unset
1647  *
1648  * Since unallocated range is also considered one which doesn't have the bits
1649  * set it's possible that @end_ret contains -1, this happens in case the range
1650  * spans (last_range_end, end of device]. In this case it's up to the caller to
1651  * trim @end_ret to the appropriate size.
1652  */
1653 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1654 				 u64 *start_ret, u64 *end_ret, u32 bits)
1655 {
1656 	struct extent_state *state;
1657 	struct rb_node *node, *prev = NULL, *next;
1658 
1659 	spin_lock(&tree->lock);
1660 
1661 	/* Find first extent with bits cleared */
1662 	while (1) {
1663 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1664 		if (!node && !next && !prev) {
1665 			/*
1666 			 * Tree is completely empty, send full range and let
1667 			 * caller deal with it
1668 			 */
1669 			*start_ret = 0;
1670 			*end_ret = -1;
1671 			goto out;
1672 		} else if (!node && !next) {
1673 			/*
1674 			 * We are past the last allocated chunk, set start at
1675 			 * the end of the last extent.
1676 			 */
1677 			state = rb_entry(prev, struct extent_state, rb_node);
1678 			*start_ret = state->end + 1;
1679 			*end_ret = -1;
1680 			goto out;
1681 		} else if (!node) {
1682 			node = next;
1683 		}
1684 		/*
1685 		 * At this point 'node' either contains 'start' or start is
1686 		 * before 'node'
1687 		 */
1688 		state = rb_entry(node, struct extent_state, rb_node);
1689 
1690 		if (in_range(start, state->start, state->end - state->start + 1)) {
1691 			if (state->state & bits) {
1692 				/*
1693 				 * |--range with bits sets--|
1694 				 *    |
1695 				 *    start
1696 				 */
1697 				start = state->end + 1;
1698 			} else {
1699 				/*
1700 				 * 'start' falls within a range that doesn't
1701 				 * have the bits set, so take its start as
1702 				 * the beginning of the desired range
1703 				 *
1704 				 * |--range with bits cleared----|
1705 				 *      |
1706 				 *      start
1707 				 */
1708 				*start_ret = state->start;
1709 				break;
1710 			}
1711 		} else {
1712 			/*
1713 			 * |---prev range---|---hole/unset---|---node range---|
1714 			 *                          |
1715 			 *                        start
1716 			 *
1717 			 *                        or
1718 			 *
1719 			 * |---hole/unset--||--first node--|
1720 			 * 0   |
1721 			 *    start
1722 			 */
1723 			if (prev) {
1724 				state = rb_entry(prev, struct extent_state,
1725 						 rb_node);
1726 				*start_ret = state->end + 1;
1727 			} else {
1728 				*start_ret = 0;
1729 			}
1730 			break;
1731 		}
1732 	}
1733 
1734 	/*
1735 	 * Find the longest stretch from start until an entry which has the
1736 	 * bits set
1737 	 */
1738 	while (1) {
1739 		state = rb_entry(node, struct extent_state, rb_node);
1740 		if (state->end >= start && !(state->state & bits)) {
1741 			*end_ret = state->end;
1742 		} else {
1743 			*end_ret = state->start - 1;
1744 			break;
1745 		}
1746 
1747 		node = rb_next(node);
1748 		if (!node)
1749 			break;
1750 	}
1751 out:
1752 	spin_unlock(&tree->lock);
1753 }
1754 
1755 /*
1756  * find a contiguous range of bytes in the file marked as delalloc, not
1757  * more than 'max_bytes'.  start and end are used to return the range,
1758  *
1759  * true is returned if we find something, false if nothing was in the tree
1760  */
1761 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1762 			       u64 *end, u64 max_bytes,
1763 			       struct extent_state **cached_state)
1764 {
1765 	struct rb_node *node;
1766 	struct extent_state *state;
1767 	u64 cur_start = *start;
1768 	bool found = false;
1769 	u64 total_bytes = 0;
1770 
1771 	spin_lock(&tree->lock);
1772 
1773 	/*
1774 	 * this search will find all the extents that end after
1775 	 * our range starts.
1776 	 */
1777 	node = tree_search(tree, cur_start);
1778 	if (!node) {
1779 		*end = (u64)-1;
1780 		goto out;
1781 	}
1782 
1783 	while (1) {
1784 		state = rb_entry(node, struct extent_state, rb_node);
1785 		if (found && (state->start != cur_start ||
1786 			      (state->state & EXTENT_BOUNDARY))) {
1787 			goto out;
1788 		}
1789 		if (!(state->state & EXTENT_DELALLOC)) {
1790 			if (!found)
1791 				*end = state->end;
1792 			goto out;
1793 		}
1794 		if (!found) {
1795 			*start = state->start;
1796 			*cached_state = state;
1797 			refcount_inc(&state->refs);
1798 		}
1799 		found = true;
1800 		*end = state->end;
1801 		cur_start = state->end + 1;
1802 		node = rb_next(node);
1803 		total_bytes += state->end - state->start + 1;
1804 		if (total_bytes >= max_bytes)
1805 			break;
1806 		if (!node)
1807 			break;
1808 	}
1809 out:
1810 	spin_unlock(&tree->lock);
1811 	return found;
1812 }
1813 
1814 /*
1815  * Process one page for __process_pages_contig().
1816  *
1817  * Return >0 if we hit @page == @locked_page.
1818  * Return 0 if we updated the page status.
1819  * Return -EGAIN if the we need to try again.
1820  * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1821  */
1822 static int process_one_page(struct btrfs_fs_info *fs_info,
1823 			    struct address_space *mapping,
1824 			    struct page *page, struct page *locked_page,
1825 			    unsigned long page_ops, u64 start, u64 end)
1826 {
1827 	u32 len;
1828 
1829 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1830 	len = end + 1 - start;
1831 
1832 	if (page_ops & PAGE_SET_ORDERED)
1833 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1834 	if (page_ops & PAGE_SET_ERROR)
1835 		btrfs_page_clamp_set_error(fs_info, page, start, len);
1836 	if (page_ops & PAGE_START_WRITEBACK) {
1837 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1838 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1839 	}
1840 	if (page_ops & PAGE_END_WRITEBACK)
1841 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1842 
1843 	if (page == locked_page)
1844 		return 1;
1845 
1846 	if (page_ops & PAGE_LOCK) {
1847 		int ret;
1848 
1849 		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1850 		if (ret)
1851 			return ret;
1852 		if (!PageDirty(page) || page->mapping != mapping) {
1853 			btrfs_page_end_writer_lock(fs_info, page, start, len);
1854 			return -EAGAIN;
1855 		}
1856 	}
1857 	if (page_ops & PAGE_UNLOCK)
1858 		btrfs_page_end_writer_lock(fs_info, page, start, len);
1859 	return 0;
1860 }
1861 
1862 static int __process_pages_contig(struct address_space *mapping,
1863 				  struct page *locked_page,
1864 				  u64 start, u64 end, unsigned long page_ops,
1865 				  u64 *processed_end)
1866 {
1867 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1868 	pgoff_t start_index = start >> PAGE_SHIFT;
1869 	pgoff_t end_index = end >> PAGE_SHIFT;
1870 	pgoff_t index = start_index;
1871 	unsigned long nr_pages = end_index - start_index + 1;
1872 	unsigned long pages_processed = 0;
1873 	struct page *pages[16];
1874 	int err = 0;
1875 	int i;
1876 
1877 	if (page_ops & PAGE_LOCK) {
1878 		ASSERT(page_ops == PAGE_LOCK);
1879 		ASSERT(processed_end && *processed_end == start);
1880 	}
1881 
1882 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1883 		mapping_set_error(mapping, -EIO);
1884 
1885 	while (nr_pages > 0) {
1886 		int found_pages;
1887 
1888 		found_pages = find_get_pages_contig(mapping, index,
1889 				     min_t(unsigned long,
1890 				     nr_pages, ARRAY_SIZE(pages)), pages);
1891 		if (found_pages == 0) {
1892 			/*
1893 			 * Only if we're going to lock these pages, we can find
1894 			 * nothing at @index.
1895 			 */
1896 			ASSERT(page_ops & PAGE_LOCK);
1897 			err = -EAGAIN;
1898 			goto out;
1899 		}
1900 
1901 		for (i = 0; i < found_pages; i++) {
1902 			int process_ret;
1903 
1904 			process_ret = process_one_page(fs_info, mapping,
1905 					pages[i], locked_page, page_ops,
1906 					start, end);
1907 			if (process_ret < 0) {
1908 				for (; i < found_pages; i++)
1909 					put_page(pages[i]);
1910 				err = -EAGAIN;
1911 				goto out;
1912 			}
1913 			put_page(pages[i]);
1914 			pages_processed++;
1915 		}
1916 		nr_pages -= found_pages;
1917 		index += found_pages;
1918 		cond_resched();
1919 	}
1920 out:
1921 	if (err && processed_end) {
1922 		/*
1923 		 * Update @processed_end. I know this is awful since it has
1924 		 * two different return value patterns (inclusive vs exclusive).
1925 		 *
1926 		 * But the exclusive pattern is necessary if @start is 0, or we
1927 		 * underflow and check against processed_end won't work as
1928 		 * expected.
1929 		 */
1930 		if (pages_processed)
1931 			*processed_end = min(end,
1932 			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1933 		else
1934 			*processed_end = start;
1935 	}
1936 	return err;
1937 }
1938 
1939 static noinline void __unlock_for_delalloc(struct inode *inode,
1940 					   struct page *locked_page,
1941 					   u64 start, u64 end)
1942 {
1943 	unsigned long index = start >> PAGE_SHIFT;
1944 	unsigned long end_index = end >> PAGE_SHIFT;
1945 
1946 	ASSERT(locked_page);
1947 	if (index == locked_page->index && end_index == index)
1948 		return;
1949 
1950 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1951 			       PAGE_UNLOCK, NULL);
1952 }
1953 
1954 static noinline int lock_delalloc_pages(struct inode *inode,
1955 					struct page *locked_page,
1956 					u64 delalloc_start,
1957 					u64 delalloc_end)
1958 {
1959 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1960 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1961 	u64 processed_end = delalloc_start;
1962 	int ret;
1963 
1964 	ASSERT(locked_page);
1965 	if (index == locked_page->index && index == end_index)
1966 		return 0;
1967 
1968 	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1969 				     delalloc_end, PAGE_LOCK, &processed_end);
1970 	if (ret == -EAGAIN && processed_end > delalloc_start)
1971 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1972 				      processed_end);
1973 	return ret;
1974 }
1975 
1976 /*
1977  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1978  * more than @max_bytes.  @Start and @end are used to return the range,
1979  *
1980  * Return: true if we find something
1981  *         false if nothing was in the tree
1982  */
1983 EXPORT_FOR_TESTS
1984 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1985 				    struct page *locked_page, u64 *start,
1986 				    u64 *end)
1987 {
1988 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1989 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1990 	u64 delalloc_start;
1991 	u64 delalloc_end;
1992 	bool found;
1993 	struct extent_state *cached_state = NULL;
1994 	int ret;
1995 	int loops = 0;
1996 
1997 again:
1998 	/* step one, find a bunch of delalloc bytes starting at start */
1999 	delalloc_start = *start;
2000 	delalloc_end = 0;
2001 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2002 					  max_bytes, &cached_state);
2003 	if (!found || delalloc_end <= *start) {
2004 		*start = delalloc_start;
2005 		*end = delalloc_end;
2006 		free_extent_state(cached_state);
2007 		return false;
2008 	}
2009 
2010 	/*
2011 	 * start comes from the offset of locked_page.  We have to lock
2012 	 * pages in order, so we can't process delalloc bytes before
2013 	 * locked_page
2014 	 */
2015 	if (delalloc_start < *start)
2016 		delalloc_start = *start;
2017 
2018 	/*
2019 	 * make sure to limit the number of pages we try to lock down
2020 	 */
2021 	if (delalloc_end + 1 - delalloc_start > max_bytes)
2022 		delalloc_end = delalloc_start + max_bytes - 1;
2023 
2024 	/* step two, lock all the pages after the page that has start */
2025 	ret = lock_delalloc_pages(inode, locked_page,
2026 				  delalloc_start, delalloc_end);
2027 	ASSERT(!ret || ret == -EAGAIN);
2028 	if (ret == -EAGAIN) {
2029 		/* some of the pages are gone, lets avoid looping by
2030 		 * shortening the size of the delalloc range we're searching
2031 		 */
2032 		free_extent_state(cached_state);
2033 		cached_state = NULL;
2034 		if (!loops) {
2035 			max_bytes = PAGE_SIZE;
2036 			loops = 1;
2037 			goto again;
2038 		} else {
2039 			found = false;
2040 			goto out_failed;
2041 		}
2042 	}
2043 
2044 	/* step three, lock the state bits for the whole range */
2045 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2046 
2047 	/* then test to make sure it is all still delalloc */
2048 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2049 			     EXTENT_DELALLOC, 1, cached_state);
2050 	if (!ret) {
2051 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2052 				     &cached_state);
2053 		__unlock_for_delalloc(inode, locked_page,
2054 			      delalloc_start, delalloc_end);
2055 		cond_resched();
2056 		goto again;
2057 	}
2058 	free_extent_state(cached_state);
2059 	*start = delalloc_start;
2060 	*end = delalloc_end;
2061 out_failed:
2062 	return found;
2063 }
2064 
2065 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2066 				  struct page *locked_page,
2067 				  u32 clear_bits, unsigned long page_ops)
2068 {
2069 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2070 
2071 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2072 			       start, end, page_ops, NULL);
2073 }
2074 
2075 /*
2076  * count the number of bytes in the tree that have a given bit(s)
2077  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2078  * cached.  The total number found is returned.
2079  */
2080 u64 count_range_bits(struct extent_io_tree *tree,
2081 		     u64 *start, u64 search_end, u64 max_bytes,
2082 		     u32 bits, int contig)
2083 {
2084 	struct rb_node *node;
2085 	struct extent_state *state;
2086 	u64 cur_start = *start;
2087 	u64 total_bytes = 0;
2088 	u64 last = 0;
2089 	int found = 0;
2090 
2091 	if (WARN_ON(search_end <= cur_start))
2092 		return 0;
2093 
2094 	spin_lock(&tree->lock);
2095 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2096 		total_bytes = tree->dirty_bytes;
2097 		goto out;
2098 	}
2099 	/*
2100 	 * this search will find all the extents that end after
2101 	 * our range starts.
2102 	 */
2103 	node = tree_search(tree, cur_start);
2104 	if (!node)
2105 		goto out;
2106 
2107 	while (1) {
2108 		state = rb_entry(node, struct extent_state, rb_node);
2109 		if (state->start > search_end)
2110 			break;
2111 		if (contig && found && state->start > last + 1)
2112 			break;
2113 		if (state->end >= cur_start && (state->state & bits) == bits) {
2114 			total_bytes += min(search_end, state->end) + 1 -
2115 				       max(cur_start, state->start);
2116 			if (total_bytes >= max_bytes)
2117 				break;
2118 			if (!found) {
2119 				*start = max(cur_start, state->start);
2120 				found = 1;
2121 			}
2122 			last = state->end;
2123 		} else if (contig && found) {
2124 			break;
2125 		}
2126 		node = rb_next(node);
2127 		if (!node)
2128 			break;
2129 	}
2130 out:
2131 	spin_unlock(&tree->lock);
2132 	return total_bytes;
2133 }
2134 
2135 /*
2136  * set the private field for a given byte offset in the tree.  If there isn't
2137  * an extent_state there already, this does nothing.
2138  */
2139 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2140 		      struct io_failure_record *failrec)
2141 {
2142 	struct rb_node *node;
2143 	struct extent_state *state;
2144 	int ret = 0;
2145 
2146 	spin_lock(&tree->lock);
2147 	/*
2148 	 * this search will find all the extents that end after
2149 	 * our range starts.
2150 	 */
2151 	node = tree_search(tree, start);
2152 	if (!node) {
2153 		ret = -ENOENT;
2154 		goto out;
2155 	}
2156 	state = rb_entry(node, struct extent_state, rb_node);
2157 	if (state->start != start) {
2158 		ret = -ENOENT;
2159 		goto out;
2160 	}
2161 	state->failrec = failrec;
2162 out:
2163 	spin_unlock(&tree->lock);
2164 	return ret;
2165 }
2166 
2167 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2168 {
2169 	struct rb_node *node;
2170 	struct extent_state *state;
2171 	struct io_failure_record *failrec;
2172 
2173 	spin_lock(&tree->lock);
2174 	/*
2175 	 * this search will find all the extents that end after
2176 	 * our range starts.
2177 	 */
2178 	node = tree_search(tree, start);
2179 	if (!node) {
2180 		failrec = ERR_PTR(-ENOENT);
2181 		goto out;
2182 	}
2183 	state = rb_entry(node, struct extent_state, rb_node);
2184 	if (state->start != start) {
2185 		failrec = ERR_PTR(-ENOENT);
2186 		goto out;
2187 	}
2188 
2189 	failrec = state->failrec;
2190 out:
2191 	spin_unlock(&tree->lock);
2192 	return failrec;
2193 }
2194 
2195 /*
2196  * searches a range in the state tree for a given mask.
2197  * If 'filled' == 1, this returns 1 only if every extent in the tree
2198  * has the bits set.  Otherwise, 1 is returned if any bit in the
2199  * range is found set.
2200  */
2201 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2202 		   u32 bits, int filled, struct extent_state *cached)
2203 {
2204 	struct extent_state *state = NULL;
2205 	struct rb_node *node;
2206 	int bitset = 0;
2207 
2208 	spin_lock(&tree->lock);
2209 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2210 	    cached->end > start)
2211 		node = &cached->rb_node;
2212 	else
2213 		node = tree_search(tree, start);
2214 	while (node && start <= end) {
2215 		state = rb_entry(node, struct extent_state, rb_node);
2216 
2217 		if (filled && state->start > start) {
2218 			bitset = 0;
2219 			break;
2220 		}
2221 
2222 		if (state->start > end)
2223 			break;
2224 
2225 		if (state->state & bits) {
2226 			bitset = 1;
2227 			if (!filled)
2228 				break;
2229 		} else if (filled) {
2230 			bitset = 0;
2231 			break;
2232 		}
2233 
2234 		if (state->end == (u64)-1)
2235 			break;
2236 
2237 		start = state->end + 1;
2238 		if (start > end)
2239 			break;
2240 		node = rb_next(node);
2241 		if (!node) {
2242 			if (filled)
2243 				bitset = 0;
2244 			break;
2245 		}
2246 	}
2247 	spin_unlock(&tree->lock);
2248 	return bitset;
2249 }
2250 
2251 int free_io_failure(struct extent_io_tree *failure_tree,
2252 		    struct extent_io_tree *io_tree,
2253 		    struct io_failure_record *rec)
2254 {
2255 	int ret;
2256 	int err = 0;
2257 
2258 	set_state_failrec(failure_tree, rec->start, NULL);
2259 	ret = clear_extent_bits(failure_tree, rec->start,
2260 				rec->start + rec->len - 1,
2261 				EXTENT_LOCKED | EXTENT_DIRTY);
2262 	if (ret)
2263 		err = ret;
2264 
2265 	ret = clear_extent_bits(io_tree, rec->start,
2266 				rec->start + rec->len - 1,
2267 				EXTENT_DAMAGED);
2268 	if (ret && !err)
2269 		err = ret;
2270 
2271 	kfree(rec);
2272 	return err;
2273 }
2274 
2275 /*
2276  * this bypasses the standard btrfs submit functions deliberately, as
2277  * the standard behavior is to write all copies in a raid setup. here we only
2278  * want to write the one bad copy. so we do the mapping for ourselves and issue
2279  * submit_bio directly.
2280  * to avoid any synchronization issues, wait for the data after writing, which
2281  * actually prevents the read that triggered the error from finishing.
2282  * currently, there can be no more than two copies of every data bit. thus,
2283  * exactly one rewrite is required.
2284  */
2285 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2286 		      u64 length, u64 logical, struct page *page,
2287 		      unsigned int pg_offset, int mirror_num)
2288 {
2289 	struct bio *bio;
2290 	struct btrfs_device *dev;
2291 	u64 map_length = 0;
2292 	u64 sector;
2293 	struct btrfs_bio *bbio = NULL;
2294 	int ret;
2295 
2296 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2297 	BUG_ON(!mirror_num);
2298 
2299 	if (btrfs_is_zoned(fs_info))
2300 		return btrfs_repair_one_zone(fs_info, logical);
2301 
2302 	bio = btrfs_io_bio_alloc(1);
2303 	bio->bi_iter.bi_size = 0;
2304 	map_length = length;
2305 
2306 	/*
2307 	 * Avoid races with device replace and make sure our bbio has devices
2308 	 * associated to its stripes that don't go away while we are doing the
2309 	 * read repair operation.
2310 	 */
2311 	btrfs_bio_counter_inc_blocked(fs_info);
2312 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2313 		/*
2314 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2315 		 * to update all raid stripes, but here we just want to correct
2316 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2317 		 * stripe's dev and sector.
2318 		 */
2319 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2320 				      &map_length, &bbio, 0);
2321 		if (ret) {
2322 			btrfs_bio_counter_dec(fs_info);
2323 			bio_put(bio);
2324 			return -EIO;
2325 		}
2326 		ASSERT(bbio->mirror_num == 1);
2327 	} else {
2328 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2329 				      &map_length, &bbio, mirror_num);
2330 		if (ret) {
2331 			btrfs_bio_counter_dec(fs_info);
2332 			bio_put(bio);
2333 			return -EIO;
2334 		}
2335 		BUG_ON(mirror_num != bbio->mirror_num);
2336 	}
2337 
2338 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2339 	bio->bi_iter.bi_sector = sector;
2340 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2341 	btrfs_put_bbio(bbio);
2342 	if (!dev || !dev->bdev ||
2343 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2344 		btrfs_bio_counter_dec(fs_info);
2345 		bio_put(bio);
2346 		return -EIO;
2347 	}
2348 	bio_set_dev(bio, dev->bdev);
2349 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2350 	bio_add_page(bio, page, length, pg_offset);
2351 
2352 	if (btrfsic_submit_bio_wait(bio)) {
2353 		/* try to remap that extent elsewhere? */
2354 		btrfs_bio_counter_dec(fs_info);
2355 		bio_put(bio);
2356 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2357 		return -EIO;
2358 	}
2359 
2360 	btrfs_info_rl_in_rcu(fs_info,
2361 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2362 				  ino, start,
2363 				  rcu_str_deref(dev->name), sector);
2364 	btrfs_bio_counter_dec(fs_info);
2365 	bio_put(bio);
2366 	return 0;
2367 }
2368 
2369 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2370 {
2371 	struct btrfs_fs_info *fs_info = eb->fs_info;
2372 	u64 start = eb->start;
2373 	int i, num_pages = num_extent_pages(eb);
2374 	int ret = 0;
2375 
2376 	if (sb_rdonly(fs_info->sb))
2377 		return -EROFS;
2378 
2379 	for (i = 0; i < num_pages; i++) {
2380 		struct page *p = eb->pages[i];
2381 
2382 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2383 					start - page_offset(p), mirror_num);
2384 		if (ret)
2385 			break;
2386 		start += PAGE_SIZE;
2387 	}
2388 
2389 	return ret;
2390 }
2391 
2392 /*
2393  * each time an IO finishes, we do a fast check in the IO failure tree
2394  * to see if we need to process or clean up an io_failure_record
2395  */
2396 int clean_io_failure(struct btrfs_fs_info *fs_info,
2397 		     struct extent_io_tree *failure_tree,
2398 		     struct extent_io_tree *io_tree, u64 start,
2399 		     struct page *page, u64 ino, unsigned int pg_offset)
2400 {
2401 	u64 private;
2402 	struct io_failure_record *failrec;
2403 	struct extent_state *state;
2404 	int num_copies;
2405 	int ret;
2406 
2407 	private = 0;
2408 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2409 			       EXTENT_DIRTY, 0);
2410 	if (!ret)
2411 		return 0;
2412 
2413 	failrec = get_state_failrec(failure_tree, start);
2414 	if (IS_ERR(failrec))
2415 		return 0;
2416 
2417 	BUG_ON(!failrec->this_mirror);
2418 
2419 	if (sb_rdonly(fs_info->sb))
2420 		goto out;
2421 
2422 	spin_lock(&io_tree->lock);
2423 	state = find_first_extent_bit_state(io_tree,
2424 					    failrec->start,
2425 					    EXTENT_LOCKED);
2426 	spin_unlock(&io_tree->lock);
2427 
2428 	if (state && state->start <= failrec->start &&
2429 	    state->end >= failrec->start + failrec->len - 1) {
2430 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2431 					      failrec->len);
2432 		if (num_copies > 1)  {
2433 			repair_io_failure(fs_info, ino, start, failrec->len,
2434 					  failrec->logical, page, pg_offset,
2435 					  failrec->failed_mirror);
2436 		}
2437 	}
2438 
2439 out:
2440 	free_io_failure(failure_tree, io_tree, failrec);
2441 
2442 	return 0;
2443 }
2444 
2445 /*
2446  * Can be called when
2447  * - hold extent lock
2448  * - under ordered extent
2449  * - the inode is freeing
2450  */
2451 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2452 {
2453 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2454 	struct io_failure_record *failrec;
2455 	struct extent_state *state, *next;
2456 
2457 	if (RB_EMPTY_ROOT(&failure_tree->state))
2458 		return;
2459 
2460 	spin_lock(&failure_tree->lock);
2461 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2462 	while (state) {
2463 		if (state->start > end)
2464 			break;
2465 
2466 		ASSERT(state->end <= end);
2467 
2468 		next = next_state(state);
2469 
2470 		failrec = state->failrec;
2471 		free_extent_state(state);
2472 		kfree(failrec);
2473 
2474 		state = next;
2475 	}
2476 	spin_unlock(&failure_tree->lock);
2477 }
2478 
2479 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2480 							     u64 start)
2481 {
2482 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2483 	struct io_failure_record *failrec;
2484 	struct extent_map *em;
2485 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2486 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2487 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2488 	const u32 sectorsize = fs_info->sectorsize;
2489 	int ret;
2490 	u64 logical;
2491 
2492 	failrec = get_state_failrec(failure_tree, start);
2493 	if (!IS_ERR(failrec)) {
2494 		btrfs_debug(fs_info,
2495 	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2496 			failrec->logical, failrec->start, failrec->len);
2497 		/*
2498 		 * when data can be on disk more than twice, add to failrec here
2499 		 * (e.g. with a list for failed_mirror) to make
2500 		 * clean_io_failure() clean all those errors at once.
2501 		 */
2502 
2503 		return failrec;
2504 	}
2505 
2506 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2507 	if (!failrec)
2508 		return ERR_PTR(-ENOMEM);
2509 
2510 	failrec->start = start;
2511 	failrec->len = sectorsize;
2512 	failrec->this_mirror = 0;
2513 	failrec->bio_flags = 0;
2514 
2515 	read_lock(&em_tree->lock);
2516 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2517 	if (!em) {
2518 		read_unlock(&em_tree->lock);
2519 		kfree(failrec);
2520 		return ERR_PTR(-EIO);
2521 	}
2522 
2523 	if (em->start > start || em->start + em->len <= start) {
2524 		free_extent_map(em);
2525 		em = NULL;
2526 	}
2527 	read_unlock(&em_tree->lock);
2528 	if (!em) {
2529 		kfree(failrec);
2530 		return ERR_PTR(-EIO);
2531 	}
2532 
2533 	logical = start - em->start;
2534 	logical = em->block_start + logical;
2535 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2536 		logical = em->block_start;
2537 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2538 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2539 	}
2540 
2541 	btrfs_debug(fs_info,
2542 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2543 		    logical, start, failrec->len);
2544 
2545 	failrec->logical = logical;
2546 	free_extent_map(em);
2547 
2548 	/* Set the bits in the private failure tree */
2549 	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2550 			      EXTENT_LOCKED | EXTENT_DIRTY);
2551 	if (ret >= 0) {
2552 		ret = set_state_failrec(failure_tree, start, failrec);
2553 		/* Set the bits in the inode's tree */
2554 		ret = set_extent_bits(tree, start, start + sectorsize - 1,
2555 				      EXTENT_DAMAGED);
2556 	} else if (ret < 0) {
2557 		kfree(failrec);
2558 		return ERR_PTR(ret);
2559 	}
2560 
2561 	return failrec;
2562 }
2563 
2564 static bool btrfs_check_repairable(struct inode *inode,
2565 				   struct io_failure_record *failrec,
2566 				   int failed_mirror)
2567 {
2568 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2569 	int num_copies;
2570 
2571 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2572 	if (num_copies == 1) {
2573 		/*
2574 		 * we only have a single copy of the data, so don't bother with
2575 		 * all the retry and error correction code that follows. no
2576 		 * matter what the error is, it is very likely to persist.
2577 		 */
2578 		btrfs_debug(fs_info,
2579 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2580 			num_copies, failrec->this_mirror, failed_mirror);
2581 		return false;
2582 	}
2583 
2584 	/* The failure record should only contain one sector */
2585 	ASSERT(failrec->len == fs_info->sectorsize);
2586 
2587 	/*
2588 	 * There are two premises:
2589 	 * a) deliver good data to the caller
2590 	 * b) correct the bad sectors on disk
2591 	 *
2592 	 * Since we're only doing repair for one sector, we only need to get
2593 	 * a good copy of the failed sector and if we succeed, we have setup
2594 	 * everything for repair_io_failure to do the rest for us.
2595 	 */
2596 	failrec->failed_mirror = failed_mirror;
2597 	failrec->this_mirror++;
2598 	if (failrec->this_mirror == failed_mirror)
2599 		failrec->this_mirror++;
2600 
2601 	if (failrec->this_mirror > num_copies) {
2602 		btrfs_debug(fs_info,
2603 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2604 			num_copies, failrec->this_mirror, failed_mirror);
2605 		return false;
2606 	}
2607 
2608 	return true;
2609 }
2610 
2611 int btrfs_repair_one_sector(struct inode *inode,
2612 			    struct bio *failed_bio, u32 bio_offset,
2613 			    struct page *page, unsigned int pgoff,
2614 			    u64 start, int failed_mirror,
2615 			    submit_bio_hook_t *submit_bio_hook)
2616 {
2617 	struct io_failure_record *failrec;
2618 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2619 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2620 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2621 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2622 	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2623 	struct bio *repair_bio;
2624 	struct btrfs_io_bio *repair_io_bio;
2625 	blk_status_t status;
2626 
2627 	btrfs_debug(fs_info,
2628 		   "repair read error: read error at %llu", start);
2629 
2630 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2631 
2632 	failrec = btrfs_get_io_failure_record(inode, start);
2633 	if (IS_ERR(failrec))
2634 		return PTR_ERR(failrec);
2635 
2636 
2637 	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2638 		free_io_failure(failure_tree, tree, failrec);
2639 		return -EIO;
2640 	}
2641 
2642 	repair_bio = btrfs_io_bio_alloc(1);
2643 	repair_io_bio = btrfs_io_bio(repair_bio);
2644 	repair_bio->bi_opf = REQ_OP_READ;
2645 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2646 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2647 	repair_bio->bi_private = failed_bio->bi_private;
2648 
2649 	if (failed_io_bio->csum) {
2650 		const u32 csum_size = fs_info->csum_size;
2651 
2652 		repair_io_bio->csum = repair_io_bio->csum_inline;
2653 		memcpy(repair_io_bio->csum,
2654 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2655 	}
2656 
2657 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2658 	repair_io_bio->logical = failrec->start;
2659 	repair_io_bio->iter = repair_bio->bi_iter;
2660 
2661 	btrfs_debug(btrfs_sb(inode->i_sb),
2662 		    "repair read error: submitting new read to mirror %d",
2663 		    failrec->this_mirror);
2664 
2665 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2666 				 failrec->bio_flags);
2667 	if (status) {
2668 		free_io_failure(failure_tree, tree, failrec);
2669 		bio_put(repair_bio);
2670 	}
2671 	return blk_status_to_errno(status);
2672 }
2673 
2674 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2675 {
2676 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2677 
2678 	ASSERT(page_offset(page) <= start &&
2679 	       start + len <= page_offset(page) + PAGE_SIZE);
2680 
2681 	if (uptodate) {
2682 		if (fsverity_active(page->mapping->host) &&
2683 		    !PageError(page) &&
2684 		    !PageUptodate(page) &&
2685 		    start < i_size_read(page->mapping->host) &&
2686 		    !fsverity_verify_page(page)) {
2687 			btrfs_page_set_error(fs_info, page, start, len);
2688 		} else {
2689 			btrfs_page_set_uptodate(fs_info, page, start, len);
2690 		}
2691 	} else {
2692 		btrfs_page_clear_uptodate(fs_info, page, start, len);
2693 		btrfs_page_set_error(fs_info, page, start, len);
2694 	}
2695 
2696 	if (fs_info->sectorsize == PAGE_SIZE)
2697 		unlock_page(page);
2698 	else
2699 		btrfs_subpage_end_reader(fs_info, page, start, len);
2700 }
2701 
2702 static blk_status_t submit_read_repair(struct inode *inode,
2703 				      struct bio *failed_bio, u32 bio_offset,
2704 				      struct page *page, unsigned int pgoff,
2705 				      u64 start, u64 end, int failed_mirror,
2706 				      unsigned int error_bitmap,
2707 				      submit_bio_hook_t *submit_bio_hook)
2708 {
2709 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2710 	const u32 sectorsize = fs_info->sectorsize;
2711 	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2712 	int error = 0;
2713 	int i;
2714 
2715 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2716 
2717 	/* We're here because we had some read errors or csum mismatch */
2718 	ASSERT(error_bitmap);
2719 
2720 	/*
2721 	 * We only get called on buffered IO, thus page must be mapped and bio
2722 	 * must not be cloned.
2723 	 */
2724 	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2725 
2726 	/* Iterate through all the sectors in the range */
2727 	for (i = 0; i < nr_bits; i++) {
2728 		const unsigned int offset = i * sectorsize;
2729 		struct extent_state *cached = NULL;
2730 		bool uptodate = false;
2731 		int ret;
2732 
2733 		if (!(error_bitmap & (1U << i))) {
2734 			/*
2735 			 * This sector has no error, just end the page read
2736 			 * and unlock the range.
2737 			 */
2738 			uptodate = true;
2739 			goto next;
2740 		}
2741 
2742 		ret = btrfs_repair_one_sector(inode, failed_bio,
2743 				bio_offset + offset,
2744 				page, pgoff + offset, start + offset,
2745 				failed_mirror, submit_bio_hook);
2746 		if (!ret) {
2747 			/*
2748 			 * We have submitted the read repair, the page release
2749 			 * will be handled by the endio function of the
2750 			 * submitted repair bio.
2751 			 * Thus we don't need to do any thing here.
2752 			 */
2753 			continue;
2754 		}
2755 		/*
2756 		 * Repair failed, just record the error but still continue.
2757 		 * Or the remaining sectors will not be properly unlocked.
2758 		 */
2759 		if (!error)
2760 			error = ret;
2761 next:
2762 		end_page_read(page, uptodate, start + offset, sectorsize);
2763 		if (uptodate)
2764 			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2765 					start + offset,
2766 					start + offset + sectorsize - 1,
2767 					&cached, GFP_ATOMIC);
2768 		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2769 				start + offset,
2770 				start + offset + sectorsize - 1,
2771 				&cached);
2772 	}
2773 	return errno_to_blk_status(error);
2774 }
2775 
2776 /* lots and lots of room for performance fixes in the end_bio funcs */
2777 
2778 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2779 {
2780 	struct btrfs_inode *inode;
2781 	const bool uptodate = (err == 0);
2782 	int ret = 0;
2783 
2784 	ASSERT(page && page->mapping);
2785 	inode = BTRFS_I(page->mapping->host);
2786 	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2787 
2788 	if (!uptodate) {
2789 		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2790 		u32 len;
2791 
2792 		ASSERT(end + 1 - start <= U32_MAX);
2793 		len = end + 1 - start;
2794 
2795 		btrfs_page_clear_uptodate(fs_info, page, start, len);
2796 		btrfs_page_set_error(fs_info, page, start, len);
2797 		ret = err < 0 ? err : -EIO;
2798 		mapping_set_error(page->mapping, ret);
2799 	}
2800 }
2801 
2802 /*
2803  * after a writepage IO is done, we need to:
2804  * clear the uptodate bits on error
2805  * clear the writeback bits in the extent tree for this IO
2806  * end_page_writeback if the page has no more pending IO
2807  *
2808  * Scheduling is not allowed, so the extent state tree is expected
2809  * to have one and only one object corresponding to this IO.
2810  */
2811 static void end_bio_extent_writepage(struct bio *bio)
2812 {
2813 	int error = blk_status_to_errno(bio->bi_status);
2814 	struct bio_vec *bvec;
2815 	u64 start;
2816 	u64 end;
2817 	struct bvec_iter_all iter_all;
2818 	bool first_bvec = true;
2819 
2820 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2821 	bio_for_each_segment_all(bvec, bio, iter_all) {
2822 		struct page *page = bvec->bv_page;
2823 		struct inode *inode = page->mapping->host;
2824 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2825 		const u32 sectorsize = fs_info->sectorsize;
2826 
2827 		/* Our read/write should always be sector aligned. */
2828 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2829 			btrfs_err(fs_info,
2830 		"partial page write in btrfs with offset %u and length %u",
2831 				  bvec->bv_offset, bvec->bv_len);
2832 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2833 			btrfs_info(fs_info,
2834 		"incomplete page write with offset %u and length %u",
2835 				   bvec->bv_offset, bvec->bv_len);
2836 
2837 		start = page_offset(page) + bvec->bv_offset;
2838 		end = start + bvec->bv_len - 1;
2839 
2840 		if (first_bvec) {
2841 			btrfs_record_physical_zoned(inode, start, bio);
2842 			first_bvec = false;
2843 		}
2844 
2845 		end_extent_writepage(page, error, start, end);
2846 
2847 		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2848 	}
2849 
2850 	bio_put(bio);
2851 }
2852 
2853 /*
2854  * Record previously processed extent range
2855  *
2856  * For endio_readpage_release_extent() to handle a full extent range, reducing
2857  * the extent io operations.
2858  */
2859 struct processed_extent {
2860 	struct btrfs_inode *inode;
2861 	/* Start of the range in @inode */
2862 	u64 start;
2863 	/* End of the range in @inode */
2864 	u64 end;
2865 	bool uptodate;
2866 };
2867 
2868 /*
2869  * Try to release processed extent range
2870  *
2871  * May not release the extent range right now if the current range is
2872  * contiguous to processed extent.
2873  *
2874  * Will release processed extent when any of @inode, @uptodate, the range is
2875  * no longer contiguous to the processed range.
2876  *
2877  * Passing @inode == NULL will force processed extent to be released.
2878  */
2879 static void endio_readpage_release_extent(struct processed_extent *processed,
2880 			      struct btrfs_inode *inode, u64 start, u64 end,
2881 			      bool uptodate)
2882 {
2883 	struct extent_state *cached = NULL;
2884 	struct extent_io_tree *tree;
2885 
2886 	/* The first extent, initialize @processed */
2887 	if (!processed->inode)
2888 		goto update;
2889 
2890 	/*
2891 	 * Contiguous to processed extent, just uptodate the end.
2892 	 *
2893 	 * Several things to notice:
2894 	 *
2895 	 * - bio can be merged as long as on-disk bytenr is contiguous
2896 	 *   This means we can have page belonging to other inodes, thus need to
2897 	 *   check if the inode still matches.
2898 	 * - bvec can contain range beyond current page for multi-page bvec
2899 	 *   Thus we need to do processed->end + 1 >= start check
2900 	 */
2901 	if (processed->inode == inode && processed->uptodate == uptodate &&
2902 	    processed->end + 1 >= start && end >= processed->end) {
2903 		processed->end = end;
2904 		return;
2905 	}
2906 
2907 	tree = &processed->inode->io_tree;
2908 	/*
2909 	 * Now we don't have range contiguous to the processed range, release
2910 	 * the processed range now.
2911 	 */
2912 	if (processed->uptodate && tree->track_uptodate)
2913 		set_extent_uptodate(tree, processed->start, processed->end,
2914 				    &cached, GFP_ATOMIC);
2915 	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2916 				    &cached);
2917 
2918 update:
2919 	/* Update processed to current range */
2920 	processed->inode = inode;
2921 	processed->start = start;
2922 	processed->end = end;
2923 	processed->uptodate = uptodate;
2924 }
2925 
2926 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2927 {
2928 	ASSERT(PageLocked(page));
2929 	if (fs_info->sectorsize == PAGE_SIZE)
2930 		return;
2931 
2932 	ASSERT(PagePrivate(page));
2933 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2934 }
2935 
2936 /*
2937  * Find extent buffer for a givne bytenr.
2938  *
2939  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2940  * in endio context.
2941  */
2942 static struct extent_buffer *find_extent_buffer_readpage(
2943 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2944 {
2945 	struct extent_buffer *eb;
2946 
2947 	/*
2948 	 * For regular sectorsize, we can use page->private to grab extent
2949 	 * buffer
2950 	 */
2951 	if (fs_info->sectorsize == PAGE_SIZE) {
2952 		ASSERT(PagePrivate(page) && page->private);
2953 		return (struct extent_buffer *)page->private;
2954 	}
2955 
2956 	/* For subpage case, we need to lookup buffer radix tree */
2957 	rcu_read_lock();
2958 	eb = radix_tree_lookup(&fs_info->buffer_radix,
2959 			       bytenr >> fs_info->sectorsize_bits);
2960 	rcu_read_unlock();
2961 	ASSERT(eb);
2962 	return eb;
2963 }
2964 
2965 /*
2966  * after a readpage IO is done, we need to:
2967  * clear the uptodate bits on error
2968  * set the uptodate bits if things worked
2969  * set the page up to date if all extents in the tree are uptodate
2970  * clear the lock bit in the extent tree
2971  * unlock the page if there are no other extents locked for it
2972  *
2973  * Scheduling is not allowed, so the extent state tree is expected
2974  * to have one and only one object corresponding to this IO.
2975  */
2976 static void end_bio_extent_readpage(struct bio *bio)
2977 {
2978 	struct bio_vec *bvec;
2979 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2980 	struct extent_io_tree *tree, *failure_tree;
2981 	struct processed_extent processed = { 0 };
2982 	/*
2983 	 * The offset to the beginning of a bio, since one bio can never be
2984 	 * larger than UINT_MAX, u32 here is enough.
2985 	 */
2986 	u32 bio_offset = 0;
2987 	int mirror;
2988 	int ret;
2989 	struct bvec_iter_all iter_all;
2990 
2991 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2992 	bio_for_each_segment_all(bvec, bio, iter_all) {
2993 		bool uptodate = !bio->bi_status;
2994 		struct page *page = bvec->bv_page;
2995 		struct inode *inode = page->mapping->host;
2996 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2997 		const u32 sectorsize = fs_info->sectorsize;
2998 		unsigned int error_bitmap = (unsigned int)-1;
2999 		u64 start;
3000 		u64 end;
3001 		u32 len;
3002 
3003 		btrfs_debug(fs_info,
3004 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3005 			bio->bi_iter.bi_sector, bio->bi_status,
3006 			io_bio->mirror_num);
3007 		tree = &BTRFS_I(inode)->io_tree;
3008 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3009 
3010 		/*
3011 		 * We always issue full-sector reads, but if some block in a
3012 		 * page fails to read, blk_update_request() will advance
3013 		 * bv_offset and adjust bv_len to compensate.  Print a warning
3014 		 * for unaligned offsets, and an error if they don't add up to
3015 		 * a full sector.
3016 		 */
3017 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3018 			btrfs_err(fs_info,
3019 		"partial page read in btrfs with offset %u and length %u",
3020 				  bvec->bv_offset, bvec->bv_len);
3021 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3022 				     sectorsize))
3023 			btrfs_info(fs_info,
3024 		"incomplete page read with offset %u and length %u",
3025 				   bvec->bv_offset, bvec->bv_len);
3026 
3027 		start = page_offset(page) + bvec->bv_offset;
3028 		end = start + bvec->bv_len - 1;
3029 		len = bvec->bv_len;
3030 
3031 		mirror = io_bio->mirror_num;
3032 		if (likely(uptodate)) {
3033 			if (is_data_inode(inode)) {
3034 				error_bitmap = btrfs_verify_data_csum(io_bio,
3035 						bio_offset, page, start, end);
3036 				ret = error_bitmap;
3037 			} else {
3038 				ret = btrfs_validate_metadata_buffer(io_bio,
3039 					page, start, end, mirror);
3040 			}
3041 			if (ret)
3042 				uptodate = false;
3043 			else
3044 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
3045 						 failure_tree, tree, start,
3046 						 page,
3047 						 btrfs_ino(BTRFS_I(inode)), 0);
3048 		}
3049 
3050 		if (likely(uptodate))
3051 			goto readpage_ok;
3052 
3053 		if (is_data_inode(inode)) {
3054 			/*
3055 			 * btrfs_submit_read_repair() will handle all the good
3056 			 * and bad sectors, we just continue to the next bvec.
3057 			 */
3058 			submit_read_repair(inode, bio, bio_offset, page,
3059 					   start - page_offset(page), start,
3060 					   end, mirror, error_bitmap,
3061 					   btrfs_submit_data_bio);
3062 
3063 			ASSERT(bio_offset + len > bio_offset);
3064 			bio_offset += len;
3065 			continue;
3066 		} else {
3067 			struct extent_buffer *eb;
3068 
3069 			eb = find_extent_buffer_readpage(fs_info, page, start);
3070 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3071 			eb->read_mirror = mirror;
3072 			atomic_dec(&eb->io_pages);
3073 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3074 					       &eb->bflags))
3075 				btree_readahead_hook(eb, -EIO);
3076 		}
3077 readpage_ok:
3078 		if (likely(uptodate)) {
3079 			loff_t i_size = i_size_read(inode);
3080 			pgoff_t end_index = i_size >> PAGE_SHIFT;
3081 
3082 			/*
3083 			 * Zero out the remaining part if this range straddles
3084 			 * i_size.
3085 			 *
3086 			 * Here we should only zero the range inside the bvec,
3087 			 * not touch anything else.
3088 			 *
3089 			 * NOTE: i_size is exclusive while end is inclusive.
3090 			 */
3091 			if (page->index == end_index && i_size <= end) {
3092 				u32 zero_start = max(offset_in_page(i_size),
3093 						     offset_in_page(start));
3094 
3095 				zero_user_segment(page, zero_start,
3096 						  offset_in_page(end) + 1);
3097 			}
3098 		}
3099 		ASSERT(bio_offset + len > bio_offset);
3100 		bio_offset += len;
3101 
3102 		/* Update page status and unlock */
3103 		end_page_read(page, uptodate, start, len);
3104 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3105 					      start, end, PageUptodate(page));
3106 	}
3107 	/* Release the last extent */
3108 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3109 	btrfs_io_bio_free_csum(io_bio);
3110 	bio_put(bio);
3111 }
3112 
3113 /*
3114  * Initialize the members up to but not including 'bio'. Use after allocating a
3115  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3116  * 'bio' because use of __GFP_ZERO is not supported.
3117  */
3118 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3119 {
3120 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3121 }
3122 
3123 /*
3124  * The following helpers allocate a bio. As it's backed by a bioset, it'll
3125  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3126  * for the appropriate container_of magic
3127  */
3128 struct bio *btrfs_bio_alloc(u64 first_byte)
3129 {
3130 	struct bio *bio;
3131 
3132 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3133 	bio->bi_iter.bi_sector = first_byte >> 9;
3134 	btrfs_io_bio_init(btrfs_io_bio(bio));
3135 	return bio;
3136 }
3137 
3138 struct bio *btrfs_bio_clone(struct bio *bio)
3139 {
3140 	struct btrfs_io_bio *btrfs_bio;
3141 	struct bio *new;
3142 
3143 	/* Bio allocation backed by a bioset does not fail */
3144 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3145 	btrfs_bio = btrfs_io_bio(new);
3146 	btrfs_io_bio_init(btrfs_bio);
3147 	btrfs_bio->iter = bio->bi_iter;
3148 	return new;
3149 }
3150 
3151 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3152 {
3153 	struct bio *bio;
3154 
3155 	/* Bio allocation backed by a bioset does not fail */
3156 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3157 	btrfs_io_bio_init(btrfs_io_bio(bio));
3158 	return bio;
3159 }
3160 
3161 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3162 {
3163 	struct bio *bio;
3164 	struct btrfs_io_bio *btrfs_bio;
3165 
3166 	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3167 
3168 	/* this will never fail when it's backed by a bioset */
3169 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3170 	ASSERT(bio);
3171 
3172 	btrfs_bio = btrfs_io_bio(bio);
3173 	btrfs_io_bio_init(btrfs_bio);
3174 
3175 	bio_trim(bio, offset >> 9, size >> 9);
3176 	btrfs_bio->iter = bio->bi_iter;
3177 	return bio;
3178 }
3179 
3180 /**
3181  * Attempt to add a page to bio
3182  *
3183  * @bio:	destination bio
3184  * @page:	page to add to the bio
3185  * @disk_bytenr:  offset of the new bio or to check whether we are adding
3186  *                a contiguous page to the previous one
3187  * @pg_offset:	starting offset in the page
3188  * @size:	portion of page that we want to write
3189  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3190  * @bio_flags:	flags of the current bio to see if we can merge them
3191  *
3192  * Attempt to add a page to bio considering stripe alignment etc.
3193  *
3194  * Return >= 0 for the number of bytes added to the bio.
3195  * Can return 0 if the current bio is already at stripe/zone boundary.
3196  * Return <0 for error.
3197  */
3198 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3199 			      struct page *page,
3200 			      u64 disk_bytenr, unsigned int size,
3201 			      unsigned int pg_offset,
3202 			      unsigned long bio_flags)
3203 {
3204 	struct bio *bio = bio_ctrl->bio;
3205 	u32 bio_size = bio->bi_iter.bi_size;
3206 	u32 real_size;
3207 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3208 	bool contig;
3209 	int ret;
3210 
3211 	ASSERT(bio);
3212 	/* The limit should be calculated when bio_ctrl->bio is allocated */
3213 	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3214 	if (bio_ctrl->bio_flags != bio_flags)
3215 		return 0;
3216 
3217 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3218 		contig = bio->bi_iter.bi_sector == sector;
3219 	else
3220 		contig = bio_end_sector(bio) == sector;
3221 	if (!contig)
3222 		return 0;
3223 
3224 	real_size = min(bio_ctrl->len_to_oe_boundary,
3225 			bio_ctrl->len_to_stripe_boundary) - bio_size;
3226 	real_size = min(real_size, size);
3227 
3228 	/*
3229 	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3230 	 * bio will still execute its endio function on the page!
3231 	 */
3232 	if (real_size == 0)
3233 		return 0;
3234 
3235 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3236 		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3237 	else
3238 		ret = bio_add_page(bio, page, real_size, pg_offset);
3239 
3240 	return ret;
3241 }
3242 
3243 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3244 			       struct btrfs_inode *inode, u64 file_offset)
3245 {
3246 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3247 	struct btrfs_io_geometry geom;
3248 	struct btrfs_ordered_extent *ordered;
3249 	struct extent_map *em;
3250 	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3251 	int ret;
3252 
3253 	/*
3254 	 * Pages for compressed extent are never submitted to disk directly,
3255 	 * thus it has no real boundary, just set them to U32_MAX.
3256 	 *
3257 	 * The split happens for real compressed bio, which happens in
3258 	 * btrfs_submit_compressed_read/write().
3259 	 */
3260 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3261 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3262 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3263 		return 0;
3264 	}
3265 	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3266 	if (IS_ERR(em))
3267 		return PTR_ERR(em);
3268 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3269 				    logical, &geom);
3270 	free_extent_map(em);
3271 	if (ret < 0) {
3272 		return ret;
3273 	}
3274 	if (geom.len > U32_MAX)
3275 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3276 	else
3277 		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3278 
3279 	if (!btrfs_is_zoned(fs_info) ||
3280 	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3281 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3282 		return 0;
3283 	}
3284 
3285 	/* Ordered extent not yet created, so we're good */
3286 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3287 	if (!ordered) {
3288 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3289 		return 0;
3290 	}
3291 
3292 	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3293 		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3294 	btrfs_put_ordered_extent(ordered);
3295 	return 0;
3296 }
3297 
3298 static int alloc_new_bio(struct btrfs_inode *inode,
3299 			 struct btrfs_bio_ctrl *bio_ctrl,
3300 			 struct writeback_control *wbc,
3301 			 unsigned int opf,
3302 			 bio_end_io_t end_io_func,
3303 			 u64 disk_bytenr, u32 offset, u64 file_offset,
3304 			 unsigned long bio_flags)
3305 {
3306 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3307 	struct bio *bio;
3308 	int ret;
3309 
3310 	/*
3311 	 * For compressed page range, its disk_bytenr is always @disk_bytenr
3312 	 * passed in, no matter if we have added any range into previous bio.
3313 	 */
3314 	if (bio_flags & EXTENT_BIO_COMPRESSED)
3315 		bio = btrfs_bio_alloc(disk_bytenr);
3316 	else
3317 		bio = btrfs_bio_alloc(disk_bytenr + offset);
3318 	bio_ctrl->bio = bio;
3319 	bio_ctrl->bio_flags = bio_flags;
3320 	bio->bi_end_io = end_io_func;
3321 	bio->bi_private = &inode->io_tree;
3322 	bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3323 	bio->bi_opf = opf;
3324 	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3325 	if (ret < 0)
3326 		goto error;
3327 	if (wbc) {
3328 		struct block_device *bdev;
3329 
3330 		bdev = fs_info->fs_devices->latest_bdev;
3331 		bio_set_dev(bio, bdev);
3332 		wbc_init_bio(wbc, bio);
3333 	}
3334 	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3335 		struct btrfs_device *device;
3336 
3337 		device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3338 						fs_info->sectorsize);
3339 		if (IS_ERR(device)) {
3340 			ret = PTR_ERR(device);
3341 			goto error;
3342 		}
3343 
3344 		btrfs_io_bio(bio)->device = device;
3345 	}
3346 	return 0;
3347 error:
3348 	bio_ctrl->bio = NULL;
3349 	bio->bi_status = errno_to_blk_status(ret);
3350 	bio_endio(bio);
3351 	return ret;
3352 }
3353 
3354 /*
3355  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3356  * @wbc:	optional writeback control for io accounting
3357  * @page:	page to add to the bio
3358  * @disk_bytenr: logical bytenr where the write will be
3359  * @size:	portion of page that we want to write to
3360  * @pg_offset:	offset of the new bio or to check whether we are adding
3361  *              a contiguous page to the previous one
3362  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3363  * @end_io_func:     end_io callback for new bio
3364  * @mirror_num:	     desired mirror to read/write
3365  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3366  * @bio_flags:	flags of the current bio to see if we can merge them
3367  */
3368 static int submit_extent_page(unsigned int opf,
3369 			      struct writeback_control *wbc,
3370 			      struct btrfs_bio_ctrl *bio_ctrl,
3371 			      struct page *page, u64 disk_bytenr,
3372 			      size_t size, unsigned long pg_offset,
3373 			      bio_end_io_t end_io_func,
3374 			      int mirror_num,
3375 			      unsigned long bio_flags,
3376 			      bool force_bio_submit)
3377 {
3378 	int ret = 0;
3379 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3380 	unsigned int cur = pg_offset;
3381 
3382 	ASSERT(bio_ctrl);
3383 
3384 	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3385 	       pg_offset + size <= PAGE_SIZE);
3386 	if (force_bio_submit && bio_ctrl->bio) {
3387 		ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3388 		bio_ctrl->bio = NULL;
3389 		if (ret < 0)
3390 			return ret;
3391 	}
3392 
3393 	while (cur < pg_offset + size) {
3394 		u32 offset = cur - pg_offset;
3395 		int added;
3396 
3397 		/* Allocate new bio if needed */
3398 		if (!bio_ctrl->bio) {
3399 			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3400 					    end_io_func, disk_bytenr, offset,
3401 					    page_offset(page) + cur,
3402 					    bio_flags);
3403 			if (ret < 0)
3404 				return ret;
3405 		}
3406 		/*
3407 		 * We must go through btrfs_bio_add_page() to ensure each
3408 		 * page range won't cross various boundaries.
3409 		 */
3410 		if (bio_flags & EXTENT_BIO_COMPRESSED)
3411 			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3412 					size - offset, pg_offset + offset,
3413 					bio_flags);
3414 		else
3415 			added = btrfs_bio_add_page(bio_ctrl, page,
3416 					disk_bytenr + offset, size - offset,
3417 					pg_offset + offset, bio_flags);
3418 
3419 		/* Metadata page range should never be split */
3420 		if (!is_data_inode(&inode->vfs_inode))
3421 			ASSERT(added == 0 || added == size - offset);
3422 
3423 		/* At least we added some page, update the account */
3424 		if (wbc && added)
3425 			wbc_account_cgroup_owner(wbc, page, added);
3426 
3427 		/* We have reached boundary, submit right now */
3428 		if (added < size - offset) {
3429 			/* The bio should contain some page(s) */
3430 			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3431 			ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3432 					bio_ctrl->bio_flags);
3433 			bio_ctrl->bio = NULL;
3434 			if (ret < 0)
3435 				return ret;
3436 		}
3437 		cur += added;
3438 	}
3439 	return 0;
3440 }
3441 
3442 static int attach_extent_buffer_page(struct extent_buffer *eb,
3443 				     struct page *page,
3444 				     struct btrfs_subpage *prealloc)
3445 {
3446 	struct btrfs_fs_info *fs_info = eb->fs_info;
3447 	int ret = 0;
3448 
3449 	/*
3450 	 * If the page is mapped to btree inode, we should hold the private
3451 	 * lock to prevent race.
3452 	 * For cloned or dummy extent buffers, their pages are not mapped and
3453 	 * will not race with any other ebs.
3454 	 */
3455 	if (page->mapping)
3456 		lockdep_assert_held(&page->mapping->private_lock);
3457 
3458 	if (fs_info->sectorsize == PAGE_SIZE) {
3459 		if (!PagePrivate(page))
3460 			attach_page_private(page, eb);
3461 		else
3462 			WARN_ON(page->private != (unsigned long)eb);
3463 		return 0;
3464 	}
3465 
3466 	/* Already mapped, just free prealloc */
3467 	if (PagePrivate(page)) {
3468 		btrfs_free_subpage(prealloc);
3469 		return 0;
3470 	}
3471 
3472 	if (prealloc)
3473 		/* Has preallocated memory for subpage */
3474 		attach_page_private(page, prealloc);
3475 	else
3476 		/* Do new allocation to attach subpage */
3477 		ret = btrfs_attach_subpage(fs_info, page,
3478 					   BTRFS_SUBPAGE_METADATA);
3479 	return ret;
3480 }
3481 
3482 int set_page_extent_mapped(struct page *page)
3483 {
3484 	struct btrfs_fs_info *fs_info;
3485 
3486 	ASSERT(page->mapping);
3487 
3488 	if (PagePrivate(page))
3489 		return 0;
3490 
3491 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3492 
3493 	if (fs_info->sectorsize < PAGE_SIZE)
3494 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3495 
3496 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3497 	return 0;
3498 }
3499 
3500 void clear_page_extent_mapped(struct page *page)
3501 {
3502 	struct btrfs_fs_info *fs_info;
3503 
3504 	ASSERT(page->mapping);
3505 
3506 	if (!PagePrivate(page))
3507 		return;
3508 
3509 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3510 	if (fs_info->sectorsize < PAGE_SIZE)
3511 		return btrfs_detach_subpage(fs_info, page);
3512 
3513 	detach_page_private(page);
3514 }
3515 
3516 static struct extent_map *
3517 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3518 		 u64 start, u64 len, struct extent_map **em_cached)
3519 {
3520 	struct extent_map *em;
3521 
3522 	if (em_cached && *em_cached) {
3523 		em = *em_cached;
3524 		if (extent_map_in_tree(em) && start >= em->start &&
3525 		    start < extent_map_end(em)) {
3526 			refcount_inc(&em->refs);
3527 			return em;
3528 		}
3529 
3530 		free_extent_map(em);
3531 		*em_cached = NULL;
3532 	}
3533 
3534 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3535 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3536 		BUG_ON(*em_cached);
3537 		refcount_inc(&em->refs);
3538 		*em_cached = em;
3539 	}
3540 	return em;
3541 }
3542 /*
3543  * basic readpage implementation.  Locked extent state structs are inserted
3544  * into the tree that are removed when the IO is done (by the end_io
3545  * handlers)
3546  * XXX JDM: This needs looking at to ensure proper page locking
3547  * return 0 on success, otherwise return error
3548  */
3549 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3550 		      struct btrfs_bio_ctrl *bio_ctrl,
3551 		      unsigned int read_flags, u64 *prev_em_start)
3552 {
3553 	struct inode *inode = page->mapping->host;
3554 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3555 	u64 start = page_offset(page);
3556 	const u64 end = start + PAGE_SIZE - 1;
3557 	u64 cur = start;
3558 	u64 extent_offset;
3559 	u64 last_byte = i_size_read(inode);
3560 	u64 block_start;
3561 	u64 cur_end;
3562 	struct extent_map *em;
3563 	int ret = 0;
3564 	int nr = 0;
3565 	size_t pg_offset = 0;
3566 	size_t iosize;
3567 	size_t blocksize = inode->i_sb->s_blocksize;
3568 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3569 
3570 	ret = set_page_extent_mapped(page);
3571 	if (ret < 0) {
3572 		unlock_extent(tree, start, end);
3573 		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3574 		unlock_page(page);
3575 		goto out;
3576 	}
3577 
3578 	if (!PageUptodate(page)) {
3579 		if (cleancache_get_page(page) == 0) {
3580 			BUG_ON(blocksize != PAGE_SIZE);
3581 			unlock_extent(tree, start, end);
3582 			unlock_page(page);
3583 			goto out;
3584 		}
3585 	}
3586 
3587 	if (page->index == last_byte >> PAGE_SHIFT) {
3588 		size_t zero_offset = offset_in_page(last_byte);
3589 
3590 		if (zero_offset) {
3591 			iosize = PAGE_SIZE - zero_offset;
3592 			memzero_page(page, zero_offset, iosize);
3593 			flush_dcache_page(page);
3594 		}
3595 	}
3596 	begin_page_read(fs_info, page);
3597 	while (cur <= end) {
3598 		unsigned long this_bio_flag = 0;
3599 		bool force_bio_submit = false;
3600 		u64 disk_bytenr;
3601 
3602 		if (cur >= last_byte) {
3603 			struct extent_state *cached = NULL;
3604 
3605 			iosize = PAGE_SIZE - pg_offset;
3606 			memzero_page(page, pg_offset, iosize);
3607 			flush_dcache_page(page);
3608 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3609 					    &cached, GFP_NOFS);
3610 			unlock_extent_cached(tree, cur,
3611 					     cur + iosize - 1, &cached);
3612 			end_page_read(page, true, cur, iosize);
3613 			break;
3614 		}
3615 		em = __get_extent_map(inode, page, pg_offset, cur,
3616 				      end - cur + 1, em_cached);
3617 		if (IS_ERR_OR_NULL(em)) {
3618 			unlock_extent(tree, cur, end);
3619 			end_page_read(page, false, cur, end + 1 - cur);
3620 			break;
3621 		}
3622 		extent_offset = cur - em->start;
3623 		BUG_ON(extent_map_end(em) <= cur);
3624 		BUG_ON(end < cur);
3625 
3626 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3627 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3628 			extent_set_compress_type(&this_bio_flag,
3629 						 em->compress_type);
3630 		}
3631 
3632 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3633 		cur_end = min(extent_map_end(em) - 1, end);
3634 		iosize = ALIGN(iosize, blocksize);
3635 		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3636 			disk_bytenr = em->block_start;
3637 		else
3638 			disk_bytenr = em->block_start + extent_offset;
3639 		block_start = em->block_start;
3640 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3641 			block_start = EXTENT_MAP_HOLE;
3642 
3643 		/*
3644 		 * If we have a file range that points to a compressed extent
3645 		 * and it's followed by a consecutive file range that points
3646 		 * to the same compressed extent (possibly with a different
3647 		 * offset and/or length, so it either points to the whole extent
3648 		 * or only part of it), we must make sure we do not submit a
3649 		 * single bio to populate the pages for the 2 ranges because
3650 		 * this makes the compressed extent read zero out the pages
3651 		 * belonging to the 2nd range. Imagine the following scenario:
3652 		 *
3653 		 *  File layout
3654 		 *  [0 - 8K]                     [8K - 24K]
3655 		 *    |                               |
3656 		 *    |                               |
3657 		 * points to extent X,         points to extent X,
3658 		 * offset 4K, length of 8K     offset 0, length 16K
3659 		 *
3660 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3661 		 *
3662 		 * If the bio to read the compressed extent covers both ranges,
3663 		 * it will decompress extent X into the pages belonging to the
3664 		 * first range and then it will stop, zeroing out the remaining
3665 		 * pages that belong to the other range that points to extent X.
3666 		 * So here we make sure we submit 2 bios, one for the first
3667 		 * range and another one for the third range. Both will target
3668 		 * the same physical extent from disk, but we can't currently
3669 		 * make the compressed bio endio callback populate the pages
3670 		 * for both ranges because each compressed bio is tightly
3671 		 * coupled with a single extent map, and each range can have
3672 		 * an extent map with a different offset value relative to the
3673 		 * uncompressed data of our extent and different lengths. This
3674 		 * is a corner case so we prioritize correctness over
3675 		 * non-optimal behavior (submitting 2 bios for the same extent).
3676 		 */
3677 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3678 		    prev_em_start && *prev_em_start != (u64)-1 &&
3679 		    *prev_em_start != em->start)
3680 			force_bio_submit = true;
3681 
3682 		if (prev_em_start)
3683 			*prev_em_start = em->start;
3684 
3685 		free_extent_map(em);
3686 		em = NULL;
3687 
3688 		/* we've found a hole, just zero and go on */
3689 		if (block_start == EXTENT_MAP_HOLE) {
3690 			struct extent_state *cached = NULL;
3691 
3692 			memzero_page(page, pg_offset, iosize);
3693 			flush_dcache_page(page);
3694 
3695 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3696 					    &cached, GFP_NOFS);
3697 			unlock_extent_cached(tree, cur,
3698 					     cur + iosize - 1, &cached);
3699 			end_page_read(page, true, cur, iosize);
3700 			cur = cur + iosize;
3701 			pg_offset += iosize;
3702 			continue;
3703 		}
3704 		/* the get_extent function already copied into the page */
3705 		if (test_range_bit(tree, cur, cur_end,
3706 				   EXTENT_UPTODATE, 1, NULL)) {
3707 			unlock_extent(tree, cur, cur + iosize - 1);
3708 			end_page_read(page, true, cur, iosize);
3709 			cur = cur + iosize;
3710 			pg_offset += iosize;
3711 			continue;
3712 		}
3713 		/* we have an inline extent but it didn't get marked up
3714 		 * to date.  Error out
3715 		 */
3716 		if (block_start == EXTENT_MAP_INLINE) {
3717 			unlock_extent(tree, cur, cur + iosize - 1);
3718 			end_page_read(page, false, cur, iosize);
3719 			cur = cur + iosize;
3720 			pg_offset += iosize;
3721 			continue;
3722 		}
3723 
3724 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3725 					 bio_ctrl, page, disk_bytenr, iosize,
3726 					 pg_offset,
3727 					 end_bio_extent_readpage, 0,
3728 					 this_bio_flag,
3729 					 force_bio_submit);
3730 		if (!ret) {
3731 			nr++;
3732 		} else {
3733 			unlock_extent(tree, cur, cur + iosize - 1);
3734 			end_page_read(page, false, cur, iosize);
3735 			goto out;
3736 		}
3737 		cur = cur + iosize;
3738 		pg_offset += iosize;
3739 	}
3740 out:
3741 	return ret;
3742 }
3743 
3744 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3745 					u64 start, u64 end,
3746 					struct extent_map **em_cached,
3747 					struct btrfs_bio_ctrl *bio_ctrl,
3748 					u64 *prev_em_start)
3749 {
3750 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3751 	int index;
3752 
3753 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3754 
3755 	for (index = 0; index < nr_pages; index++) {
3756 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3757 				  REQ_RAHEAD, prev_em_start);
3758 		put_page(pages[index]);
3759 	}
3760 }
3761 
3762 static void update_nr_written(struct writeback_control *wbc,
3763 			      unsigned long nr_written)
3764 {
3765 	wbc->nr_to_write -= nr_written;
3766 }
3767 
3768 /*
3769  * helper for __extent_writepage, doing all of the delayed allocation setup.
3770  *
3771  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3772  * to write the page (copy into inline extent).  In this case the IO has
3773  * been started and the page is already unlocked.
3774  *
3775  * This returns 0 if all went well (page still locked)
3776  * This returns < 0 if there were errors (page still locked)
3777  */
3778 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3779 		struct page *page, struct writeback_control *wbc,
3780 		u64 delalloc_start, unsigned long *nr_written)
3781 {
3782 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3783 	bool found;
3784 	u64 delalloc_to_write = 0;
3785 	u64 delalloc_end = 0;
3786 	int ret;
3787 	int page_started = 0;
3788 
3789 
3790 	while (delalloc_end < page_end) {
3791 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3792 					       &delalloc_start,
3793 					       &delalloc_end);
3794 		if (!found) {
3795 			delalloc_start = delalloc_end + 1;
3796 			continue;
3797 		}
3798 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3799 				delalloc_end, &page_started, nr_written, wbc);
3800 		if (ret) {
3801 			btrfs_page_set_error(inode->root->fs_info, page,
3802 					     page_offset(page), PAGE_SIZE);
3803 			return ret;
3804 		}
3805 		/*
3806 		 * delalloc_end is already one less than the total length, so
3807 		 * we don't subtract one from PAGE_SIZE
3808 		 */
3809 		delalloc_to_write += (delalloc_end - delalloc_start +
3810 				      PAGE_SIZE) >> PAGE_SHIFT;
3811 		delalloc_start = delalloc_end + 1;
3812 	}
3813 	if (wbc->nr_to_write < delalloc_to_write) {
3814 		int thresh = 8192;
3815 
3816 		if (delalloc_to_write < thresh * 2)
3817 			thresh = delalloc_to_write;
3818 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3819 					 thresh);
3820 	}
3821 
3822 	/* did the fill delalloc function already unlock and start
3823 	 * the IO?
3824 	 */
3825 	if (page_started) {
3826 		/*
3827 		 * we've unlocked the page, so we can't update
3828 		 * the mapping's writeback index, just update
3829 		 * nr_to_write.
3830 		 */
3831 		wbc->nr_to_write -= *nr_written;
3832 		return 1;
3833 	}
3834 
3835 	return 0;
3836 }
3837 
3838 /*
3839  * Find the first byte we need to write.
3840  *
3841  * For subpage, one page can contain several sectors, and
3842  * __extent_writepage_io() will just grab all extent maps in the page
3843  * range and try to submit all non-inline/non-compressed extents.
3844  *
3845  * This is a big problem for subpage, we shouldn't re-submit already written
3846  * data at all.
3847  * This function will lookup subpage dirty bit to find which range we really
3848  * need to submit.
3849  *
3850  * Return the next dirty range in [@start, @end).
3851  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3852  */
3853 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3854 				 struct page *page, u64 *start, u64 *end)
3855 {
3856 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3857 	u64 orig_start = *start;
3858 	/* Declare as unsigned long so we can use bitmap ops */
3859 	unsigned long dirty_bitmap;
3860 	unsigned long flags;
3861 	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3862 	int range_start_bit = nbits;
3863 	int range_end_bit;
3864 
3865 	/*
3866 	 * For regular sector size == page size case, since one page only
3867 	 * contains one sector, we return the page offset directly.
3868 	 */
3869 	if (fs_info->sectorsize == PAGE_SIZE) {
3870 		*start = page_offset(page);
3871 		*end = page_offset(page) + PAGE_SIZE;
3872 		return;
3873 	}
3874 
3875 	/* We should have the page locked, but just in case */
3876 	spin_lock_irqsave(&subpage->lock, flags);
3877 	dirty_bitmap = subpage->dirty_bitmap;
3878 	spin_unlock_irqrestore(&subpage->lock, flags);
3879 
3880 	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3881 			       BTRFS_SUBPAGE_BITMAP_SIZE);
3882 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3883 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3884 }
3885 
3886 /*
3887  * helper for __extent_writepage.  This calls the writepage start hooks,
3888  * and does the loop to map the page into extents and bios.
3889  *
3890  * We return 1 if the IO is started and the page is unlocked,
3891  * 0 if all went well (page still locked)
3892  * < 0 if there were errors (page still locked)
3893  */
3894 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3895 				 struct page *page,
3896 				 struct writeback_control *wbc,
3897 				 struct extent_page_data *epd,
3898 				 loff_t i_size,
3899 				 unsigned long nr_written,
3900 				 int *nr_ret)
3901 {
3902 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3903 	u64 cur = page_offset(page);
3904 	u64 end = cur + PAGE_SIZE - 1;
3905 	u64 extent_offset;
3906 	u64 block_start;
3907 	struct extent_map *em;
3908 	int ret = 0;
3909 	int nr = 0;
3910 	u32 opf = REQ_OP_WRITE;
3911 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3912 	bool compressed;
3913 
3914 	ret = btrfs_writepage_cow_fixup(page);
3915 	if (ret) {
3916 		/* Fixup worker will requeue */
3917 		redirty_page_for_writepage(wbc, page);
3918 		update_nr_written(wbc, nr_written);
3919 		unlock_page(page);
3920 		return 1;
3921 	}
3922 
3923 	/*
3924 	 * we don't want to touch the inode after unlocking the page,
3925 	 * so we update the mapping writeback index now
3926 	 */
3927 	update_nr_written(wbc, nr_written + 1);
3928 
3929 	while (cur <= end) {
3930 		u64 disk_bytenr;
3931 		u64 em_end;
3932 		u64 dirty_range_start = cur;
3933 		u64 dirty_range_end;
3934 		u32 iosize;
3935 
3936 		if (cur >= i_size) {
3937 			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3938 							     end, true);
3939 			/*
3940 			 * This range is beyond i_size, thus we don't need to
3941 			 * bother writing back.
3942 			 * But we still need to clear the dirty subpage bit, or
3943 			 * the next time the page gets dirtied, we will try to
3944 			 * writeback the sectors with subpage dirty bits,
3945 			 * causing writeback without ordered extent.
3946 			 */
3947 			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3948 			break;
3949 		}
3950 
3951 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
3952 				     &dirty_range_end);
3953 		if (cur < dirty_range_start) {
3954 			cur = dirty_range_start;
3955 			continue;
3956 		}
3957 
3958 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3959 		if (IS_ERR_OR_NULL(em)) {
3960 			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3961 			ret = PTR_ERR_OR_ZERO(em);
3962 			break;
3963 		}
3964 
3965 		extent_offset = cur - em->start;
3966 		em_end = extent_map_end(em);
3967 		ASSERT(cur <= em_end);
3968 		ASSERT(cur < end);
3969 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3970 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3971 		block_start = em->block_start;
3972 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3973 		disk_bytenr = em->block_start + extent_offset;
3974 
3975 		/*
3976 		 * Note that em_end from extent_map_end() and dirty_range_end from
3977 		 * find_next_dirty_byte() are all exclusive
3978 		 */
3979 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3980 
3981 		if (btrfs_use_zone_append(inode, em->block_start))
3982 			opf = REQ_OP_ZONE_APPEND;
3983 
3984 		free_extent_map(em);
3985 		em = NULL;
3986 
3987 		/*
3988 		 * compressed and inline extents are written through other
3989 		 * paths in the FS
3990 		 */
3991 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3992 		    block_start == EXTENT_MAP_INLINE) {
3993 			if (compressed)
3994 				nr++;
3995 			else
3996 				btrfs_writepage_endio_finish_ordered(inode,
3997 						page, cur, cur + iosize - 1, true);
3998 			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3999 			cur += iosize;
4000 			continue;
4001 		}
4002 
4003 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4004 		if (!PageWriteback(page)) {
4005 			btrfs_err(inode->root->fs_info,
4006 				   "page %lu not writeback, cur %llu end %llu",
4007 			       page->index, cur, end);
4008 		}
4009 
4010 		/*
4011 		 * Although the PageDirty bit is cleared before entering this
4012 		 * function, subpage dirty bit is not cleared.
4013 		 * So clear subpage dirty bit here so next time we won't submit
4014 		 * page for range already written to disk.
4015 		 */
4016 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4017 
4018 		ret = submit_extent_page(opf | write_flags, wbc,
4019 					 &epd->bio_ctrl, page,
4020 					 disk_bytenr, iosize,
4021 					 cur - page_offset(page),
4022 					 end_bio_extent_writepage,
4023 					 0, 0, false);
4024 		if (ret) {
4025 			btrfs_page_set_error(fs_info, page, cur, iosize);
4026 			if (PageWriteback(page))
4027 				btrfs_page_clear_writeback(fs_info, page, cur,
4028 							   iosize);
4029 		}
4030 
4031 		cur += iosize;
4032 		nr++;
4033 	}
4034 	/*
4035 	 * If we finish without problem, we should not only clear page dirty,
4036 	 * but also empty subpage dirty bits
4037 	 */
4038 	if (!ret)
4039 		btrfs_page_assert_not_dirty(fs_info, page);
4040 	*nr_ret = nr;
4041 	return ret;
4042 }
4043 
4044 /*
4045  * the writepage semantics are similar to regular writepage.  extent
4046  * records are inserted to lock ranges in the tree, and as dirty areas
4047  * are found, they are marked writeback.  Then the lock bits are removed
4048  * and the end_io handler clears the writeback ranges
4049  *
4050  * Return 0 if everything goes well.
4051  * Return <0 for error.
4052  */
4053 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4054 			      struct extent_page_data *epd)
4055 {
4056 	struct inode *inode = page->mapping->host;
4057 	u64 start = page_offset(page);
4058 	u64 page_end = start + PAGE_SIZE - 1;
4059 	int ret;
4060 	int nr = 0;
4061 	size_t pg_offset;
4062 	loff_t i_size = i_size_read(inode);
4063 	unsigned long end_index = i_size >> PAGE_SHIFT;
4064 	unsigned long nr_written = 0;
4065 
4066 	trace___extent_writepage(page, inode, wbc);
4067 
4068 	WARN_ON(!PageLocked(page));
4069 
4070 	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4071 			       page_offset(page), PAGE_SIZE);
4072 
4073 	pg_offset = offset_in_page(i_size);
4074 	if (page->index > end_index ||
4075 	   (page->index == end_index && !pg_offset)) {
4076 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
4077 		unlock_page(page);
4078 		return 0;
4079 	}
4080 
4081 	if (page->index == end_index) {
4082 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4083 		flush_dcache_page(page);
4084 	}
4085 
4086 	ret = set_page_extent_mapped(page);
4087 	if (ret < 0) {
4088 		SetPageError(page);
4089 		goto done;
4090 	}
4091 
4092 	if (!epd->extent_locked) {
4093 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4094 					 &nr_written);
4095 		if (ret == 1)
4096 			return 0;
4097 		if (ret)
4098 			goto done;
4099 	}
4100 
4101 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4102 				    nr_written, &nr);
4103 	if (ret == 1)
4104 		return 0;
4105 
4106 done:
4107 	if (nr == 0) {
4108 		/* make sure the mapping tag for page dirty gets cleared */
4109 		set_page_writeback(page);
4110 		end_page_writeback(page);
4111 	}
4112 	/*
4113 	 * Here we used to have a check for PageError() and then set @ret and
4114 	 * call end_extent_writepage().
4115 	 *
4116 	 * But in fact setting @ret here will cause different error paths
4117 	 * between subpage and regular sectorsize.
4118 	 *
4119 	 * For regular page size, we never submit current page, but only add
4120 	 * current page to current bio.
4121 	 * The bio submission can only happen in next page.
4122 	 * Thus if we hit the PageError() branch, @ret is already set to
4123 	 * non-zero value and will not get updated for regular sectorsize.
4124 	 *
4125 	 * But for subpage case, it's possible we submit part of current page,
4126 	 * thus can get PageError() set by submitted bio of the same page,
4127 	 * while our @ret is still 0.
4128 	 *
4129 	 * So here we unify the behavior and don't set @ret.
4130 	 * Error can still be properly passed to higher layer as page will
4131 	 * be set error, here we just don't handle the IO failure.
4132 	 *
4133 	 * NOTE: This is just a hotfix for subpage.
4134 	 * The root fix will be properly ending ordered extent when we hit
4135 	 * an error during writeback.
4136 	 *
4137 	 * But that needs a bigger refactoring, as we not only need to grab the
4138 	 * submitted OE, but also need to know exactly at which bytenr we hit
4139 	 * the error.
4140 	 * Currently the full page based __extent_writepage_io() is not
4141 	 * capable of that.
4142 	 */
4143 	if (PageError(page))
4144 		end_extent_writepage(page, ret, start, page_end);
4145 	unlock_page(page);
4146 	ASSERT(ret <= 0);
4147 	return ret;
4148 }
4149 
4150 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4151 {
4152 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4153 		       TASK_UNINTERRUPTIBLE);
4154 }
4155 
4156 static void end_extent_buffer_writeback(struct extent_buffer *eb)
4157 {
4158 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4159 	smp_mb__after_atomic();
4160 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4161 }
4162 
4163 /*
4164  * Lock extent buffer status and pages for writeback.
4165  *
4166  * May try to flush write bio if we can't get the lock.
4167  *
4168  * Return  0 if the extent buffer doesn't need to be submitted.
4169  *           (E.g. the extent buffer is not dirty)
4170  * Return >0 is the extent buffer is submitted to bio.
4171  * Return <0 if something went wrong, no page is locked.
4172  */
4173 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4174 			  struct extent_page_data *epd)
4175 {
4176 	struct btrfs_fs_info *fs_info = eb->fs_info;
4177 	int i, num_pages, failed_page_nr;
4178 	int flush = 0;
4179 	int ret = 0;
4180 
4181 	if (!btrfs_try_tree_write_lock(eb)) {
4182 		ret = flush_write_bio(epd);
4183 		if (ret < 0)
4184 			return ret;
4185 		flush = 1;
4186 		btrfs_tree_lock(eb);
4187 	}
4188 
4189 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4190 		btrfs_tree_unlock(eb);
4191 		if (!epd->sync_io)
4192 			return 0;
4193 		if (!flush) {
4194 			ret = flush_write_bio(epd);
4195 			if (ret < 0)
4196 				return ret;
4197 			flush = 1;
4198 		}
4199 		while (1) {
4200 			wait_on_extent_buffer_writeback(eb);
4201 			btrfs_tree_lock(eb);
4202 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4203 				break;
4204 			btrfs_tree_unlock(eb);
4205 		}
4206 	}
4207 
4208 	/*
4209 	 * We need to do this to prevent races in people who check if the eb is
4210 	 * under IO since we can end up having no IO bits set for a short period
4211 	 * of time.
4212 	 */
4213 	spin_lock(&eb->refs_lock);
4214 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4215 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4216 		spin_unlock(&eb->refs_lock);
4217 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4218 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4219 					 -eb->len,
4220 					 fs_info->dirty_metadata_batch);
4221 		ret = 1;
4222 	} else {
4223 		spin_unlock(&eb->refs_lock);
4224 	}
4225 
4226 	btrfs_tree_unlock(eb);
4227 
4228 	/*
4229 	 * Either we don't need to submit any tree block, or we're submitting
4230 	 * subpage eb.
4231 	 * Subpage metadata doesn't use page locking at all, so we can skip
4232 	 * the page locking.
4233 	 */
4234 	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4235 		return ret;
4236 
4237 	num_pages = num_extent_pages(eb);
4238 	for (i = 0; i < num_pages; i++) {
4239 		struct page *p = eb->pages[i];
4240 
4241 		if (!trylock_page(p)) {
4242 			if (!flush) {
4243 				int err;
4244 
4245 				err = flush_write_bio(epd);
4246 				if (err < 0) {
4247 					ret = err;
4248 					failed_page_nr = i;
4249 					goto err_unlock;
4250 				}
4251 				flush = 1;
4252 			}
4253 			lock_page(p);
4254 		}
4255 	}
4256 
4257 	return ret;
4258 err_unlock:
4259 	/* Unlock already locked pages */
4260 	for (i = 0; i < failed_page_nr; i++)
4261 		unlock_page(eb->pages[i]);
4262 	/*
4263 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4264 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4265 	 * be made and undo everything done before.
4266 	 */
4267 	btrfs_tree_lock(eb);
4268 	spin_lock(&eb->refs_lock);
4269 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4270 	end_extent_buffer_writeback(eb);
4271 	spin_unlock(&eb->refs_lock);
4272 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4273 				 fs_info->dirty_metadata_batch);
4274 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4275 	btrfs_tree_unlock(eb);
4276 	return ret;
4277 }
4278 
4279 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4280 {
4281 	struct btrfs_fs_info *fs_info = eb->fs_info;
4282 
4283 	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4284 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4285 		return;
4286 
4287 	/*
4288 	 * If we error out, we should add back the dirty_metadata_bytes
4289 	 * to make it consistent.
4290 	 */
4291 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4292 				 eb->len, fs_info->dirty_metadata_batch);
4293 
4294 	/*
4295 	 * If writeback for a btree extent that doesn't belong to a log tree
4296 	 * failed, increment the counter transaction->eb_write_errors.
4297 	 * We do this because while the transaction is running and before it's
4298 	 * committing (when we call filemap_fdata[write|wait]_range against
4299 	 * the btree inode), we might have
4300 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4301 	 * returns an error or an error happens during writeback, when we're
4302 	 * committing the transaction we wouldn't know about it, since the pages
4303 	 * can be no longer dirty nor marked anymore for writeback (if a
4304 	 * subsequent modification to the extent buffer didn't happen before the
4305 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4306 	 * able to find the pages tagged with SetPageError at transaction
4307 	 * commit time. So if this happens we must abort the transaction,
4308 	 * otherwise we commit a super block with btree roots that point to
4309 	 * btree nodes/leafs whose content on disk is invalid - either garbage
4310 	 * or the content of some node/leaf from a past generation that got
4311 	 * cowed or deleted and is no longer valid.
4312 	 *
4313 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4314 	 * not be enough - we need to distinguish between log tree extents vs
4315 	 * non-log tree extents, and the next filemap_fdatawait_range() call
4316 	 * will catch and clear such errors in the mapping - and that call might
4317 	 * be from a log sync and not from a transaction commit. Also, checking
4318 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4319 	 * not done and would not be reliable - the eb might have been released
4320 	 * from memory and reading it back again means that flag would not be
4321 	 * set (since it's a runtime flag, not persisted on disk).
4322 	 *
4323 	 * Using the flags below in the btree inode also makes us achieve the
4324 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4325 	 * writeback for all dirty pages and before filemap_fdatawait_range()
4326 	 * is called, the writeback for all dirty pages had already finished
4327 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4328 	 * filemap_fdatawait_range() would return success, as it could not know
4329 	 * that writeback errors happened (the pages were no longer tagged for
4330 	 * writeback).
4331 	 */
4332 	switch (eb->log_index) {
4333 	case -1:
4334 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4335 		break;
4336 	case 0:
4337 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4338 		break;
4339 	case 1:
4340 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4341 		break;
4342 	default:
4343 		BUG(); /* unexpected, logic error */
4344 	}
4345 }
4346 
4347 /*
4348  * The endio specific version which won't touch any unsafe spinlock in endio
4349  * context.
4350  */
4351 static struct extent_buffer *find_extent_buffer_nolock(
4352 		struct btrfs_fs_info *fs_info, u64 start)
4353 {
4354 	struct extent_buffer *eb;
4355 
4356 	rcu_read_lock();
4357 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4358 			       start >> fs_info->sectorsize_bits);
4359 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4360 		rcu_read_unlock();
4361 		return eb;
4362 	}
4363 	rcu_read_unlock();
4364 	return NULL;
4365 }
4366 
4367 /*
4368  * The endio function for subpage extent buffer write.
4369  *
4370  * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4371  * after all extent buffers in the page has finished their writeback.
4372  */
4373 static void end_bio_subpage_eb_writepage(struct bio *bio)
4374 {
4375 	struct btrfs_fs_info *fs_info;
4376 	struct bio_vec *bvec;
4377 	struct bvec_iter_all iter_all;
4378 
4379 	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4380 	ASSERT(fs_info->sectorsize < PAGE_SIZE);
4381 
4382 	ASSERT(!bio_flagged(bio, BIO_CLONED));
4383 	bio_for_each_segment_all(bvec, bio, iter_all) {
4384 		struct page *page = bvec->bv_page;
4385 		u64 bvec_start = page_offset(page) + bvec->bv_offset;
4386 		u64 bvec_end = bvec_start + bvec->bv_len - 1;
4387 		u64 cur_bytenr = bvec_start;
4388 
4389 		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4390 
4391 		/* Iterate through all extent buffers in the range */
4392 		while (cur_bytenr <= bvec_end) {
4393 			struct extent_buffer *eb;
4394 			int done;
4395 
4396 			/*
4397 			 * Here we can't use find_extent_buffer(), as it may
4398 			 * try to lock eb->refs_lock, which is not safe in endio
4399 			 * context.
4400 			 */
4401 			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4402 			ASSERT(eb);
4403 
4404 			cur_bytenr = eb->start + eb->len;
4405 
4406 			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4407 			done = atomic_dec_and_test(&eb->io_pages);
4408 			ASSERT(done);
4409 
4410 			if (bio->bi_status ||
4411 			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4412 				ClearPageUptodate(page);
4413 				set_btree_ioerr(page, eb);
4414 			}
4415 
4416 			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4417 						      eb->len);
4418 			end_extent_buffer_writeback(eb);
4419 			/*
4420 			 * free_extent_buffer() will grab spinlock which is not
4421 			 * safe in endio context. Thus here we manually dec
4422 			 * the ref.
4423 			 */
4424 			atomic_dec(&eb->refs);
4425 		}
4426 	}
4427 	bio_put(bio);
4428 }
4429 
4430 static void end_bio_extent_buffer_writepage(struct bio *bio)
4431 {
4432 	struct bio_vec *bvec;
4433 	struct extent_buffer *eb;
4434 	int done;
4435 	struct bvec_iter_all iter_all;
4436 
4437 	ASSERT(!bio_flagged(bio, BIO_CLONED));
4438 	bio_for_each_segment_all(bvec, bio, iter_all) {
4439 		struct page *page = bvec->bv_page;
4440 
4441 		eb = (struct extent_buffer *)page->private;
4442 		BUG_ON(!eb);
4443 		done = atomic_dec_and_test(&eb->io_pages);
4444 
4445 		if (bio->bi_status ||
4446 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4447 			ClearPageUptodate(page);
4448 			set_btree_ioerr(page, eb);
4449 		}
4450 
4451 		end_page_writeback(page);
4452 
4453 		if (!done)
4454 			continue;
4455 
4456 		end_extent_buffer_writeback(eb);
4457 	}
4458 
4459 	bio_put(bio);
4460 }
4461 
4462 static void prepare_eb_write(struct extent_buffer *eb)
4463 {
4464 	u32 nritems;
4465 	unsigned long start;
4466 	unsigned long end;
4467 
4468 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4469 	atomic_set(&eb->io_pages, num_extent_pages(eb));
4470 
4471 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
4472 	nritems = btrfs_header_nritems(eb);
4473 	if (btrfs_header_level(eb) > 0) {
4474 		end = btrfs_node_key_ptr_offset(nritems);
4475 		memzero_extent_buffer(eb, end, eb->len - end);
4476 	} else {
4477 		/*
4478 		 * Leaf:
4479 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4480 		 */
4481 		start = btrfs_item_nr_offset(nritems);
4482 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4483 		memzero_extent_buffer(eb, start, end - start);
4484 	}
4485 }
4486 
4487 /*
4488  * Unlike the work in write_one_eb(), we rely completely on extent locking.
4489  * Page locking is only utilized at minimum to keep the VMM code happy.
4490  */
4491 static int write_one_subpage_eb(struct extent_buffer *eb,
4492 				struct writeback_control *wbc,
4493 				struct extent_page_data *epd)
4494 {
4495 	struct btrfs_fs_info *fs_info = eb->fs_info;
4496 	struct page *page = eb->pages[0];
4497 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4498 	bool no_dirty_ebs = false;
4499 	int ret;
4500 
4501 	prepare_eb_write(eb);
4502 
4503 	/* clear_page_dirty_for_io() in subpage helper needs page locked */
4504 	lock_page(page);
4505 	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4506 
4507 	/* Check if this is the last dirty bit to update nr_written */
4508 	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4509 							  eb->start, eb->len);
4510 	if (no_dirty_ebs)
4511 		clear_page_dirty_for_io(page);
4512 
4513 	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4514 			&epd->bio_ctrl, page, eb->start, eb->len,
4515 			eb->start - page_offset(page),
4516 			end_bio_subpage_eb_writepage, 0, 0, false);
4517 	if (ret) {
4518 		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4519 		set_btree_ioerr(page, eb);
4520 		unlock_page(page);
4521 
4522 		if (atomic_dec_and_test(&eb->io_pages))
4523 			end_extent_buffer_writeback(eb);
4524 		return -EIO;
4525 	}
4526 	unlock_page(page);
4527 	/*
4528 	 * Submission finished without problem, if no range of the page is
4529 	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4530 	 */
4531 	if (no_dirty_ebs)
4532 		update_nr_written(wbc, 1);
4533 	return ret;
4534 }
4535 
4536 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4537 			struct writeback_control *wbc,
4538 			struct extent_page_data *epd)
4539 {
4540 	u64 disk_bytenr = eb->start;
4541 	int i, num_pages;
4542 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4543 	int ret = 0;
4544 
4545 	prepare_eb_write(eb);
4546 
4547 	num_pages = num_extent_pages(eb);
4548 	for (i = 0; i < num_pages; i++) {
4549 		struct page *p = eb->pages[i];
4550 
4551 		clear_page_dirty_for_io(p);
4552 		set_page_writeback(p);
4553 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4554 					 &epd->bio_ctrl, p, disk_bytenr,
4555 					 PAGE_SIZE, 0,
4556 					 end_bio_extent_buffer_writepage,
4557 					 0, 0, false);
4558 		if (ret) {
4559 			set_btree_ioerr(p, eb);
4560 			if (PageWriteback(p))
4561 				end_page_writeback(p);
4562 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4563 				end_extent_buffer_writeback(eb);
4564 			ret = -EIO;
4565 			break;
4566 		}
4567 		disk_bytenr += PAGE_SIZE;
4568 		update_nr_written(wbc, 1);
4569 		unlock_page(p);
4570 	}
4571 
4572 	if (unlikely(ret)) {
4573 		for (; i < num_pages; i++) {
4574 			struct page *p = eb->pages[i];
4575 			clear_page_dirty_for_io(p);
4576 			unlock_page(p);
4577 		}
4578 	}
4579 
4580 	return ret;
4581 }
4582 
4583 /*
4584  * Submit one subpage btree page.
4585  *
4586  * The main difference to submit_eb_page() is:
4587  * - Page locking
4588  *   For subpage, we don't rely on page locking at all.
4589  *
4590  * - Flush write bio
4591  *   We only flush bio if we may be unable to fit current extent buffers into
4592  *   current bio.
4593  *
4594  * Return >=0 for the number of submitted extent buffers.
4595  * Return <0 for fatal error.
4596  */
4597 static int submit_eb_subpage(struct page *page,
4598 			     struct writeback_control *wbc,
4599 			     struct extent_page_data *epd)
4600 {
4601 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4602 	int submitted = 0;
4603 	u64 page_start = page_offset(page);
4604 	int bit_start = 0;
4605 	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4606 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4607 	int ret;
4608 
4609 	/* Lock and write each dirty extent buffers in the range */
4610 	while (bit_start < nbits) {
4611 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4612 		struct extent_buffer *eb;
4613 		unsigned long flags;
4614 		u64 start;
4615 
4616 		/*
4617 		 * Take private lock to ensure the subpage won't be detached
4618 		 * in the meantime.
4619 		 */
4620 		spin_lock(&page->mapping->private_lock);
4621 		if (!PagePrivate(page)) {
4622 			spin_unlock(&page->mapping->private_lock);
4623 			break;
4624 		}
4625 		spin_lock_irqsave(&subpage->lock, flags);
4626 		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4627 			spin_unlock_irqrestore(&subpage->lock, flags);
4628 			spin_unlock(&page->mapping->private_lock);
4629 			bit_start++;
4630 			continue;
4631 		}
4632 
4633 		start = page_start + bit_start * fs_info->sectorsize;
4634 		bit_start += sectors_per_node;
4635 
4636 		/*
4637 		 * Here we just want to grab the eb without touching extra
4638 		 * spin locks, so call find_extent_buffer_nolock().
4639 		 */
4640 		eb = find_extent_buffer_nolock(fs_info, start);
4641 		spin_unlock_irqrestore(&subpage->lock, flags);
4642 		spin_unlock(&page->mapping->private_lock);
4643 
4644 		/*
4645 		 * The eb has already reached 0 refs thus find_extent_buffer()
4646 		 * doesn't return it. We don't need to write back such eb
4647 		 * anyway.
4648 		 */
4649 		if (!eb)
4650 			continue;
4651 
4652 		ret = lock_extent_buffer_for_io(eb, epd);
4653 		if (ret == 0) {
4654 			free_extent_buffer(eb);
4655 			continue;
4656 		}
4657 		if (ret < 0) {
4658 			free_extent_buffer(eb);
4659 			goto cleanup;
4660 		}
4661 		ret = write_one_subpage_eb(eb, wbc, epd);
4662 		free_extent_buffer(eb);
4663 		if (ret < 0)
4664 			goto cleanup;
4665 		submitted++;
4666 	}
4667 	return submitted;
4668 
4669 cleanup:
4670 	/* We hit error, end bio for the submitted extent buffers */
4671 	end_write_bio(epd, ret);
4672 	return ret;
4673 }
4674 
4675 /*
4676  * Submit all page(s) of one extent buffer.
4677  *
4678  * @page:	the page of one extent buffer
4679  * @eb_context:	to determine if we need to submit this page, if current page
4680  *		belongs to this eb, we don't need to submit
4681  *
4682  * The caller should pass each page in their bytenr order, and here we use
4683  * @eb_context to determine if we have submitted pages of one extent buffer.
4684  *
4685  * If we have, we just skip until we hit a new page that doesn't belong to
4686  * current @eb_context.
4687  *
4688  * If not, we submit all the page(s) of the extent buffer.
4689  *
4690  * Return >0 if we have submitted the extent buffer successfully.
4691  * Return 0 if we don't need to submit the page, as it's already submitted by
4692  * previous call.
4693  * Return <0 for fatal error.
4694  */
4695 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4696 			  struct extent_page_data *epd,
4697 			  struct extent_buffer **eb_context)
4698 {
4699 	struct address_space *mapping = page->mapping;
4700 	struct btrfs_block_group *cache = NULL;
4701 	struct extent_buffer *eb;
4702 	int ret;
4703 
4704 	if (!PagePrivate(page))
4705 		return 0;
4706 
4707 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4708 		return submit_eb_subpage(page, wbc, epd);
4709 
4710 	spin_lock(&mapping->private_lock);
4711 	if (!PagePrivate(page)) {
4712 		spin_unlock(&mapping->private_lock);
4713 		return 0;
4714 	}
4715 
4716 	eb = (struct extent_buffer *)page->private;
4717 
4718 	/*
4719 	 * Shouldn't happen and normally this would be a BUG_ON but no point
4720 	 * crashing the machine for something we can survive anyway.
4721 	 */
4722 	if (WARN_ON(!eb)) {
4723 		spin_unlock(&mapping->private_lock);
4724 		return 0;
4725 	}
4726 
4727 	if (eb == *eb_context) {
4728 		spin_unlock(&mapping->private_lock);
4729 		return 0;
4730 	}
4731 	ret = atomic_inc_not_zero(&eb->refs);
4732 	spin_unlock(&mapping->private_lock);
4733 	if (!ret)
4734 		return 0;
4735 
4736 	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4737 		/*
4738 		 * If for_sync, this hole will be filled with
4739 		 * trasnsaction commit.
4740 		 */
4741 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4742 			ret = -EAGAIN;
4743 		else
4744 			ret = 0;
4745 		free_extent_buffer(eb);
4746 		return ret;
4747 	}
4748 
4749 	*eb_context = eb;
4750 
4751 	ret = lock_extent_buffer_for_io(eb, epd);
4752 	if (ret <= 0) {
4753 		btrfs_revert_meta_write_pointer(cache, eb);
4754 		if (cache)
4755 			btrfs_put_block_group(cache);
4756 		free_extent_buffer(eb);
4757 		return ret;
4758 	}
4759 	if (cache)
4760 		btrfs_put_block_group(cache);
4761 	ret = write_one_eb(eb, wbc, epd);
4762 	free_extent_buffer(eb);
4763 	if (ret < 0)
4764 		return ret;
4765 	return 1;
4766 }
4767 
4768 int btree_write_cache_pages(struct address_space *mapping,
4769 				   struct writeback_control *wbc)
4770 {
4771 	struct extent_buffer *eb_context = NULL;
4772 	struct extent_page_data epd = {
4773 		.bio_ctrl = { 0 },
4774 		.extent_locked = 0,
4775 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4776 	};
4777 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4778 	int ret = 0;
4779 	int done = 0;
4780 	int nr_to_write_done = 0;
4781 	struct pagevec pvec;
4782 	int nr_pages;
4783 	pgoff_t index;
4784 	pgoff_t end;		/* Inclusive */
4785 	int scanned = 0;
4786 	xa_mark_t tag;
4787 
4788 	pagevec_init(&pvec);
4789 	if (wbc->range_cyclic) {
4790 		index = mapping->writeback_index; /* Start from prev offset */
4791 		end = -1;
4792 		/*
4793 		 * Start from the beginning does not need to cycle over the
4794 		 * range, mark it as scanned.
4795 		 */
4796 		scanned = (index == 0);
4797 	} else {
4798 		index = wbc->range_start >> PAGE_SHIFT;
4799 		end = wbc->range_end >> PAGE_SHIFT;
4800 		scanned = 1;
4801 	}
4802 	if (wbc->sync_mode == WB_SYNC_ALL)
4803 		tag = PAGECACHE_TAG_TOWRITE;
4804 	else
4805 		tag = PAGECACHE_TAG_DIRTY;
4806 	btrfs_zoned_meta_io_lock(fs_info);
4807 retry:
4808 	if (wbc->sync_mode == WB_SYNC_ALL)
4809 		tag_pages_for_writeback(mapping, index, end);
4810 	while (!done && !nr_to_write_done && (index <= end) &&
4811 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4812 			tag))) {
4813 		unsigned i;
4814 
4815 		for (i = 0; i < nr_pages; i++) {
4816 			struct page *page = pvec.pages[i];
4817 
4818 			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4819 			if (ret == 0)
4820 				continue;
4821 			if (ret < 0) {
4822 				done = 1;
4823 				break;
4824 			}
4825 
4826 			/*
4827 			 * the filesystem may choose to bump up nr_to_write.
4828 			 * We have to make sure to honor the new nr_to_write
4829 			 * at any time
4830 			 */
4831 			nr_to_write_done = wbc->nr_to_write <= 0;
4832 		}
4833 		pagevec_release(&pvec);
4834 		cond_resched();
4835 	}
4836 	if (!scanned && !done) {
4837 		/*
4838 		 * We hit the last page and there is more work to be done: wrap
4839 		 * back to the start of the file
4840 		 */
4841 		scanned = 1;
4842 		index = 0;
4843 		goto retry;
4844 	}
4845 	if (ret < 0) {
4846 		end_write_bio(&epd, ret);
4847 		goto out;
4848 	}
4849 	/*
4850 	 * If something went wrong, don't allow any metadata write bio to be
4851 	 * submitted.
4852 	 *
4853 	 * This would prevent use-after-free if we had dirty pages not
4854 	 * cleaned up, which can still happen by fuzzed images.
4855 	 *
4856 	 * - Bad extent tree
4857 	 *   Allowing existing tree block to be allocated for other trees.
4858 	 *
4859 	 * - Log tree operations
4860 	 *   Exiting tree blocks get allocated to log tree, bumps its
4861 	 *   generation, then get cleaned in tree re-balance.
4862 	 *   Such tree block will not be written back, since it's clean,
4863 	 *   thus no WRITTEN flag set.
4864 	 *   And after log writes back, this tree block is not traced by
4865 	 *   any dirty extent_io_tree.
4866 	 *
4867 	 * - Offending tree block gets re-dirtied from its original owner
4868 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4869 	 *   reused without COWing. This tree block will not be traced
4870 	 *   by btrfs_transaction::dirty_pages.
4871 	 *
4872 	 *   Now such dirty tree block will not be cleaned by any dirty
4873 	 *   extent io tree. Thus we don't want to submit such wild eb
4874 	 *   if the fs already has error.
4875 	 */
4876 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4877 		ret = flush_write_bio(&epd);
4878 	} else {
4879 		ret = -EROFS;
4880 		end_write_bio(&epd, ret);
4881 	}
4882 out:
4883 	btrfs_zoned_meta_io_unlock(fs_info);
4884 	return ret;
4885 }
4886 
4887 /**
4888  * Walk the list of dirty pages of the given address space and write all of them.
4889  *
4890  * @mapping: address space structure to write
4891  * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4892  * @epd:     holds context for the write, namely the bio
4893  *
4894  * If a page is already under I/O, write_cache_pages() skips it, even
4895  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4896  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4897  * and msync() need to guarantee that all the data which was dirty at the time
4898  * the call was made get new I/O started against them.  If wbc->sync_mode is
4899  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4900  * existing IO to complete.
4901  */
4902 static int extent_write_cache_pages(struct address_space *mapping,
4903 			     struct writeback_control *wbc,
4904 			     struct extent_page_data *epd)
4905 {
4906 	struct inode *inode = mapping->host;
4907 	int ret = 0;
4908 	int done = 0;
4909 	int nr_to_write_done = 0;
4910 	struct pagevec pvec;
4911 	int nr_pages;
4912 	pgoff_t index;
4913 	pgoff_t end;		/* Inclusive */
4914 	pgoff_t done_index;
4915 	int range_whole = 0;
4916 	int scanned = 0;
4917 	xa_mark_t tag;
4918 
4919 	/*
4920 	 * We have to hold onto the inode so that ordered extents can do their
4921 	 * work when the IO finishes.  The alternative to this is failing to add
4922 	 * an ordered extent if the igrab() fails there and that is a huge pain
4923 	 * to deal with, so instead just hold onto the inode throughout the
4924 	 * writepages operation.  If it fails here we are freeing up the inode
4925 	 * anyway and we'd rather not waste our time writing out stuff that is
4926 	 * going to be truncated anyway.
4927 	 */
4928 	if (!igrab(inode))
4929 		return 0;
4930 
4931 	pagevec_init(&pvec);
4932 	if (wbc->range_cyclic) {
4933 		index = mapping->writeback_index; /* Start from prev offset */
4934 		end = -1;
4935 		/*
4936 		 * Start from the beginning does not need to cycle over the
4937 		 * range, mark it as scanned.
4938 		 */
4939 		scanned = (index == 0);
4940 	} else {
4941 		index = wbc->range_start >> PAGE_SHIFT;
4942 		end = wbc->range_end >> PAGE_SHIFT;
4943 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4944 			range_whole = 1;
4945 		scanned = 1;
4946 	}
4947 
4948 	/*
4949 	 * We do the tagged writepage as long as the snapshot flush bit is set
4950 	 * and we are the first one who do the filemap_flush() on this inode.
4951 	 *
4952 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4953 	 * not race in and drop the bit.
4954 	 */
4955 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4956 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4957 			       &BTRFS_I(inode)->runtime_flags))
4958 		wbc->tagged_writepages = 1;
4959 
4960 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4961 		tag = PAGECACHE_TAG_TOWRITE;
4962 	else
4963 		tag = PAGECACHE_TAG_DIRTY;
4964 retry:
4965 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4966 		tag_pages_for_writeback(mapping, index, end);
4967 	done_index = index;
4968 	while (!done && !nr_to_write_done && (index <= end) &&
4969 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4970 						&index, end, tag))) {
4971 		unsigned i;
4972 
4973 		for (i = 0; i < nr_pages; i++) {
4974 			struct page *page = pvec.pages[i];
4975 
4976 			done_index = page->index + 1;
4977 			/*
4978 			 * At this point we hold neither the i_pages lock nor
4979 			 * the page lock: the page may be truncated or
4980 			 * invalidated (changing page->mapping to NULL),
4981 			 * or even swizzled back from swapper_space to
4982 			 * tmpfs file mapping
4983 			 */
4984 			if (!trylock_page(page)) {
4985 				ret = flush_write_bio(epd);
4986 				BUG_ON(ret < 0);
4987 				lock_page(page);
4988 			}
4989 
4990 			if (unlikely(page->mapping != mapping)) {
4991 				unlock_page(page);
4992 				continue;
4993 			}
4994 
4995 			if (wbc->sync_mode != WB_SYNC_NONE) {
4996 				if (PageWriteback(page)) {
4997 					ret = flush_write_bio(epd);
4998 					BUG_ON(ret < 0);
4999 				}
5000 				wait_on_page_writeback(page);
5001 			}
5002 
5003 			if (PageWriteback(page) ||
5004 			    !clear_page_dirty_for_io(page)) {
5005 				unlock_page(page);
5006 				continue;
5007 			}
5008 
5009 			ret = __extent_writepage(page, wbc, epd);
5010 			if (ret < 0) {
5011 				done = 1;
5012 				break;
5013 			}
5014 
5015 			/*
5016 			 * the filesystem may choose to bump up nr_to_write.
5017 			 * We have to make sure to honor the new nr_to_write
5018 			 * at any time
5019 			 */
5020 			nr_to_write_done = wbc->nr_to_write <= 0;
5021 		}
5022 		pagevec_release(&pvec);
5023 		cond_resched();
5024 	}
5025 	if (!scanned && !done) {
5026 		/*
5027 		 * We hit the last page and there is more work to be done: wrap
5028 		 * back to the start of the file
5029 		 */
5030 		scanned = 1;
5031 		index = 0;
5032 
5033 		/*
5034 		 * If we're looping we could run into a page that is locked by a
5035 		 * writer and that writer could be waiting on writeback for a
5036 		 * page in our current bio, and thus deadlock, so flush the
5037 		 * write bio here.
5038 		 */
5039 		ret = flush_write_bio(epd);
5040 		if (!ret)
5041 			goto retry;
5042 	}
5043 
5044 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5045 		mapping->writeback_index = done_index;
5046 
5047 	btrfs_add_delayed_iput(inode);
5048 	return ret;
5049 }
5050 
5051 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5052 {
5053 	int ret;
5054 	struct extent_page_data epd = {
5055 		.bio_ctrl = { 0 },
5056 		.extent_locked = 0,
5057 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5058 	};
5059 
5060 	ret = __extent_writepage(page, wbc, &epd);
5061 	ASSERT(ret <= 0);
5062 	if (ret < 0) {
5063 		end_write_bio(&epd, ret);
5064 		return ret;
5065 	}
5066 
5067 	ret = flush_write_bio(&epd);
5068 	ASSERT(ret <= 0);
5069 	return ret;
5070 }
5071 
5072 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
5073 			      int mode)
5074 {
5075 	int ret = 0;
5076 	struct address_space *mapping = inode->i_mapping;
5077 	struct page *page;
5078 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
5079 		PAGE_SHIFT;
5080 
5081 	struct extent_page_data epd = {
5082 		.bio_ctrl = { 0 },
5083 		.extent_locked = 1,
5084 		.sync_io = mode == WB_SYNC_ALL,
5085 	};
5086 	struct writeback_control wbc_writepages = {
5087 		.sync_mode	= mode,
5088 		.nr_to_write	= nr_pages * 2,
5089 		.range_start	= start,
5090 		.range_end	= end + 1,
5091 		/* We're called from an async helper function */
5092 		.punt_to_cgroup	= 1,
5093 		.no_cgroup_owner = 1,
5094 	};
5095 
5096 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5097 	while (start <= end) {
5098 		page = find_get_page(mapping, start >> PAGE_SHIFT);
5099 		if (clear_page_dirty_for_io(page))
5100 			ret = __extent_writepage(page, &wbc_writepages, &epd);
5101 		else {
5102 			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
5103 					page, start, start + PAGE_SIZE - 1, true);
5104 			unlock_page(page);
5105 		}
5106 		put_page(page);
5107 		start += PAGE_SIZE;
5108 	}
5109 
5110 	ASSERT(ret <= 0);
5111 	if (ret == 0)
5112 		ret = flush_write_bio(&epd);
5113 	else
5114 		end_write_bio(&epd, ret);
5115 
5116 	wbc_detach_inode(&wbc_writepages);
5117 	return ret;
5118 }
5119 
5120 int extent_writepages(struct address_space *mapping,
5121 		      struct writeback_control *wbc)
5122 {
5123 	int ret = 0;
5124 	struct extent_page_data epd = {
5125 		.bio_ctrl = { 0 },
5126 		.extent_locked = 0,
5127 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5128 	};
5129 
5130 	ret = extent_write_cache_pages(mapping, wbc, &epd);
5131 	ASSERT(ret <= 0);
5132 	if (ret < 0) {
5133 		end_write_bio(&epd, ret);
5134 		return ret;
5135 	}
5136 	ret = flush_write_bio(&epd);
5137 	return ret;
5138 }
5139 
5140 void extent_readahead(struct readahead_control *rac)
5141 {
5142 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
5143 	struct page *pagepool[16];
5144 	struct extent_map *em_cached = NULL;
5145 	u64 prev_em_start = (u64)-1;
5146 	int nr;
5147 
5148 	while ((nr = readahead_page_batch(rac, pagepool))) {
5149 		u64 contig_start = readahead_pos(rac);
5150 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5151 
5152 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5153 				&em_cached, &bio_ctrl, &prev_em_start);
5154 	}
5155 
5156 	if (em_cached)
5157 		free_extent_map(em_cached);
5158 
5159 	if (bio_ctrl.bio) {
5160 		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5161 			return;
5162 	}
5163 }
5164 
5165 /*
5166  * basic invalidatepage code, this waits on any locked or writeback
5167  * ranges corresponding to the page, and then deletes any extent state
5168  * records from the tree
5169  */
5170 int extent_invalidatepage(struct extent_io_tree *tree,
5171 			  struct page *page, unsigned long offset)
5172 {
5173 	struct extent_state *cached_state = NULL;
5174 	u64 start = page_offset(page);
5175 	u64 end = start + PAGE_SIZE - 1;
5176 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5177 
5178 	/* This function is only called for the btree inode */
5179 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5180 
5181 	start += ALIGN(offset, blocksize);
5182 	if (start > end)
5183 		return 0;
5184 
5185 	lock_extent_bits(tree, start, end, &cached_state);
5186 	wait_on_page_writeback(page);
5187 
5188 	/*
5189 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5190 	 * so here we only need to unlock the extent range to free any
5191 	 * existing extent state.
5192 	 */
5193 	unlock_extent_cached(tree, start, end, &cached_state);
5194 	return 0;
5195 }
5196 
5197 /*
5198  * a helper for releasepage, this tests for areas of the page that
5199  * are locked or under IO and drops the related state bits if it is safe
5200  * to drop the page.
5201  */
5202 static int try_release_extent_state(struct extent_io_tree *tree,
5203 				    struct page *page, gfp_t mask)
5204 {
5205 	u64 start = page_offset(page);
5206 	u64 end = start + PAGE_SIZE - 1;
5207 	int ret = 1;
5208 
5209 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5210 		ret = 0;
5211 	} else {
5212 		/*
5213 		 * At this point we can safely clear everything except the
5214 		 * locked bit, the nodatasum bit and the delalloc new bit.
5215 		 * The delalloc new bit will be cleared by ordered extent
5216 		 * completion.
5217 		 */
5218 		ret = __clear_extent_bit(tree, start, end,
5219 			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5220 			 0, 0, NULL, mask, NULL);
5221 
5222 		/* if clear_extent_bit failed for enomem reasons,
5223 		 * we can't allow the release to continue.
5224 		 */
5225 		if (ret < 0)
5226 			ret = 0;
5227 		else
5228 			ret = 1;
5229 	}
5230 	return ret;
5231 }
5232 
5233 /*
5234  * a helper for releasepage.  As long as there are no locked extents
5235  * in the range corresponding to the page, both state records and extent
5236  * map records are removed
5237  */
5238 int try_release_extent_mapping(struct page *page, gfp_t mask)
5239 {
5240 	struct extent_map *em;
5241 	u64 start = page_offset(page);
5242 	u64 end = start + PAGE_SIZE - 1;
5243 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5244 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
5245 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5246 
5247 	if (gfpflags_allow_blocking(mask) &&
5248 	    page->mapping->host->i_size > SZ_16M) {
5249 		u64 len;
5250 		while (start <= end) {
5251 			struct btrfs_fs_info *fs_info;
5252 			u64 cur_gen;
5253 
5254 			len = end - start + 1;
5255 			write_lock(&map->lock);
5256 			em = lookup_extent_mapping(map, start, len);
5257 			if (!em) {
5258 				write_unlock(&map->lock);
5259 				break;
5260 			}
5261 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5262 			    em->start != start) {
5263 				write_unlock(&map->lock);
5264 				free_extent_map(em);
5265 				break;
5266 			}
5267 			if (test_range_bit(tree, em->start,
5268 					   extent_map_end(em) - 1,
5269 					   EXTENT_LOCKED, 0, NULL))
5270 				goto next;
5271 			/*
5272 			 * If it's not in the list of modified extents, used
5273 			 * by a fast fsync, we can remove it. If it's being
5274 			 * logged we can safely remove it since fsync took an
5275 			 * extra reference on the em.
5276 			 */
5277 			if (list_empty(&em->list) ||
5278 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5279 				goto remove_em;
5280 			/*
5281 			 * If it's in the list of modified extents, remove it
5282 			 * only if its generation is older then the current one,
5283 			 * in which case we don't need it for a fast fsync.
5284 			 * Otherwise don't remove it, we could be racing with an
5285 			 * ongoing fast fsync that could miss the new extent.
5286 			 */
5287 			fs_info = btrfs_inode->root->fs_info;
5288 			spin_lock(&fs_info->trans_lock);
5289 			cur_gen = fs_info->generation;
5290 			spin_unlock(&fs_info->trans_lock);
5291 			if (em->generation >= cur_gen)
5292 				goto next;
5293 remove_em:
5294 			/*
5295 			 * We only remove extent maps that are not in the list of
5296 			 * modified extents or that are in the list but with a
5297 			 * generation lower then the current generation, so there
5298 			 * is no need to set the full fsync flag on the inode (it
5299 			 * hurts the fsync performance for workloads with a data
5300 			 * size that exceeds or is close to the system's memory).
5301 			 */
5302 			remove_extent_mapping(map, em);
5303 			/* once for the rb tree */
5304 			free_extent_map(em);
5305 next:
5306 			start = extent_map_end(em);
5307 			write_unlock(&map->lock);
5308 
5309 			/* once for us */
5310 			free_extent_map(em);
5311 
5312 			cond_resched(); /* Allow large-extent preemption. */
5313 		}
5314 	}
5315 	return try_release_extent_state(tree, page, mask);
5316 }
5317 
5318 /*
5319  * helper function for fiemap, which doesn't want to see any holes.
5320  * This maps until we find something past 'last'
5321  */
5322 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5323 						u64 offset, u64 last)
5324 {
5325 	u64 sectorsize = btrfs_inode_sectorsize(inode);
5326 	struct extent_map *em;
5327 	u64 len;
5328 
5329 	if (offset >= last)
5330 		return NULL;
5331 
5332 	while (1) {
5333 		len = last - offset;
5334 		if (len == 0)
5335 			break;
5336 		len = ALIGN(len, sectorsize);
5337 		em = btrfs_get_extent_fiemap(inode, offset, len);
5338 		if (IS_ERR_OR_NULL(em))
5339 			return em;
5340 
5341 		/* if this isn't a hole return it */
5342 		if (em->block_start != EXTENT_MAP_HOLE)
5343 			return em;
5344 
5345 		/* this is a hole, advance to the next extent */
5346 		offset = extent_map_end(em);
5347 		free_extent_map(em);
5348 		if (offset >= last)
5349 			break;
5350 	}
5351 	return NULL;
5352 }
5353 
5354 /*
5355  * To cache previous fiemap extent
5356  *
5357  * Will be used for merging fiemap extent
5358  */
5359 struct fiemap_cache {
5360 	u64 offset;
5361 	u64 phys;
5362 	u64 len;
5363 	u32 flags;
5364 	bool cached;
5365 };
5366 
5367 /*
5368  * Helper to submit fiemap extent.
5369  *
5370  * Will try to merge current fiemap extent specified by @offset, @phys,
5371  * @len and @flags with cached one.
5372  * And only when we fails to merge, cached one will be submitted as
5373  * fiemap extent.
5374  *
5375  * Return value is the same as fiemap_fill_next_extent().
5376  */
5377 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5378 				struct fiemap_cache *cache,
5379 				u64 offset, u64 phys, u64 len, u32 flags)
5380 {
5381 	int ret = 0;
5382 
5383 	if (!cache->cached)
5384 		goto assign;
5385 
5386 	/*
5387 	 * Sanity check, extent_fiemap() should have ensured that new
5388 	 * fiemap extent won't overlap with cached one.
5389 	 * Not recoverable.
5390 	 *
5391 	 * NOTE: Physical address can overlap, due to compression
5392 	 */
5393 	if (cache->offset + cache->len > offset) {
5394 		WARN_ON(1);
5395 		return -EINVAL;
5396 	}
5397 
5398 	/*
5399 	 * Only merges fiemap extents if
5400 	 * 1) Their logical addresses are continuous
5401 	 *
5402 	 * 2) Their physical addresses are continuous
5403 	 *    So truly compressed (physical size smaller than logical size)
5404 	 *    extents won't get merged with each other
5405 	 *
5406 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
5407 	 *    So regular extent won't get merged with prealloc extent
5408 	 */
5409 	if (cache->offset + cache->len  == offset &&
5410 	    cache->phys + cache->len == phys  &&
5411 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5412 			(flags & ~FIEMAP_EXTENT_LAST)) {
5413 		cache->len += len;
5414 		cache->flags |= flags;
5415 		goto try_submit_last;
5416 	}
5417 
5418 	/* Not mergeable, need to submit cached one */
5419 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5420 				      cache->len, cache->flags);
5421 	cache->cached = false;
5422 	if (ret)
5423 		return ret;
5424 assign:
5425 	cache->cached = true;
5426 	cache->offset = offset;
5427 	cache->phys = phys;
5428 	cache->len = len;
5429 	cache->flags = flags;
5430 try_submit_last:
5431 	if (cache->flags & FIEMAP_EXTENT_LAST) {
5432 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5433 				cache->phys, cache->len, cache->flags);
5434 		cache->cached = false;
5435 	}
5436 	return ret;
5437 }
5438 
5439 /*
5440  * Emit last fiemap cache
5441  *
5442  * The last fiemap cache may still be cached in the following case:
5443  * 0		      4k		    8k
5444  * |<- Fiemap range ->|
5445  * |<------------  First extent ----------->|
5446  *
5447  * In this case, the first extent range will be cached but not emitted.
5448  * So we must emit it before ending extent_fiemap().
5449  */
5450 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5451 				  struct fiemap_cache *cache)
5452 {
5453 	int ret;
5454 
5455 	if (!cache->cached)
5456 		return 0;
5457 
5458 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5459 				      cache->len, cache->flags);
5460 	cache->cached = false;
5461 	if (ret > 0)
5462 		ret = 0;
5463 	return ret;
5464 }
5465 
5466 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5467 		  u64 start, u64 len)
5468 {
5469 	int ret = 0;
5470 	u64 off;
5471 	u64 max = start + len;
5472 	u32 flags = 0;
5473 	u32 found_type;
5474 	u64 last;
5475 	u64 last_for_get_extent = 0;
5476 	u64 disko = 0;
5477 	u64 isize = i_size_read(&inode->vfs_inode);
5478 	struct btrfs_key found_key;
5479 	struct extent_map *em = NULL;
5480 	struct extent_state *cached_state = NULL;
5481 	struct btrfs_path *path;
5482 	struct btrfs_root *root = inode->root;
5483 	struct fiemap_cache cache = { 0 };
5484 	struct ulist *roots;
5485 	struct ulist *tmp_ulist;
5486 	int end = 0;
5487 	u64 em_start = 0;
5488 	u64 em_len = 0;
5489 	u64 em_end = 0;
5490 
5491 	if (len == 0)
5492 		return -EINVAL;
5493 
5494 	path = btrfs_alloc_path();
5495 	if (!path)
5496 		return -ENOMEM;
5497 
5498 	roots = ulist_alloc(GFP_KERNEL);
5499 	tmp_ulist = ulist_alloc(GFP_KERNEL);
5500 	if (!roots || !tmp_ulist) {
5501 		ret = -ENOMEM;
5502 		goto out_free_ulist;
5503 	}
5504 
5505 	/*
5506 	 * We can't initialize that to 'start' as this could miss extents due
5507 	 * to extent item merging
5508 	 */
5509 	off = 0;
5510 	start = round_down(start, btrfs_inode_sectorsize(inode));
5511 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5512 
5513 	/*
5514 	 * lookup the last file extent.  We're not using i_size here
5515 	 * because there might be preallocation past i_size
5516 	 */
5517 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5518 				       0);
5519 	if (ret < 0) {
5520 		goto out_free_ulist;
5521 	} else {
5522 		WARN_ON(!ret);
5523 		if (ret == 1)
5524 			ret = 0;
5525 	}
5526 
5527 	path->slots[0]--;
5528 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5529 	found_type = found_key.type;
5530 
5531 	/* No extents, but there might be delalloc bits */
5532 	if (found_key.objectid != btrfs_ino(inode) ||
5533 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5534 		/* have to trust i_size as the end */
5535 		last = (u64)-1;
5536 		last_for_get_extent = isize;
5537 	} else {
5538 		/*
5539 		 * remember the start of the last extent.  There are a
5540 		 * bunch of different factors that go into the length of the
5541 		 * extent, so its much less complex to remember where it started
5542 		 */
5543 		last = found_key.offset;
5544 		last_for_get_extent = last + 1;
5545 	}
5546 	btrfs_release_path(path);
5547 
5548 	/*
5549 	 * we might have some extents allocated but more delalloc past those
5550 	 * extents.  so, we trust isize unless the start of the last extent is
5551 	 * beyond isize
5552 	 */
5553 	if (last < isize) {
5554 		last = (u64)-1;
5555 		last_for_get_extent = isize;
5556 	}
5557 
5558 	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5559 			 &cached_state);
5560 
5561 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5562 	if (!em)
5563 		goto out;
5564 	if (IS_ERR(em)) {
5565 		ret = PTR_ERR(em);
5566 		goto out;
5567 	}
5568 
5569 	while (!end) {
5570 		u64 offset_in_extent = 0;
5571 
5572 		/* break if the extent we found is outside the range */
5573 		if (em->start >= max || extent_map_end(em) < off)
5574 			break;
5575 
5576 		/*
5577 		 * get_extent may return an extent that starts before our
5578 		 * requested range.  We have to make sure the ranges
5579 		 * we return to fiemap always move forward and don't
5580 		 * overlap, so adjust the offsets here
5581 		 */
5582 		em_start = max(em->start, off);
5583 
5584 		/*
5585 		 * record the offset from the start of the extent
5586 		 * for adjusting the disk offset below.  Only do this if the
5587 		 * extent isn't compressed since our in ram offset may be past
5588 		 * what we have actually allocated on disk.
5589 		 */
5590 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5591 			offset_in_extent = em_start - em->start;
5592 		em_end = extent_map_end(em);
5593 		em_len = em_end - em_start;
5594 		flags = 0;
5595 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5596 			disko = em->block_start + offset_in_extent;
5597 		else
5598 			disko = 0;
5599 
5600 		/*
5601 		 * bump off for our next call to get_extent
5602 		 */
5603 		off = extent_map_end(em);
5604 		if (off >= max)
5605 			end = 1;
5606 
5607 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5608 			end = 1;
5609 			flags |= FIEMAP_EXTENT_LAST;
5610 		} else if (em->block_start == EXTENT_MAP_INLINE) {
5611 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5612 				  FIEMAP_EXTENT_NOT_ALIGNED);
5613 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5614 			flags |= (FIEMAP_EXTENT_DELALLOC |
5615 				  FIEMAP_EXTENT_UNKNOWN);
5616 		} else if (fieinfo->fi_extents_max) {
5617 			u64 bytenr = em->block_start -
5618 				(em->start - em->orig_start);
5619 
5620 			/*
5621 			 * As btrfs supports shared space, this information
5622 			 * can be exported to userspace tools via
5623 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5624 			 * then we're just getting a count and we can skip the
5625 			 * lookup stuff.
5626 			 */
5627 			ret = btrfs_check_shared(root, btrfs_ino(inode),
5628 						 bytenr, roots, tmp_ulist);
5629 			if (ret < 0)
5630 				goto out_free;
5631 			if (ret)
5632 				flags |= FIEMAP_EXTENT_SHARED;
5633 			ret = 0;
5634 		}
5635 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5636 			flags |= FIEMAP_EXTENT_ENCODED;
5637 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5638 			flags |= FIEMAP_EXTENT_UNWRITTEN;
5639 
5640 		free_extent_map(em);
5641 		em = NULL;
5642 		if ((em_start >= last) || em_len == (u64)-1 ||
5643 		   (last == (u64)-1 && isize <= em_end)) {
5644 			flags |= FIEMAP_EXTENT_LAST;
5645 			end = 1;
5646 		}
5647 
5648 		/* now scan forward to see if this is really the last extent. */
5649 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5650 		if (IS_ERR(em)) {
5651 			ret = PTR_ERR(em);
5652 			goto out;
5653 		}
5654 		if (!em) {
5655 			flags |= FIEMAP_EXTENT_LAST;
5656 			end = 1;
5657 		}
5658 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5659 					   em_len, flags);
5660 		if (ret) {
5661 			if (ret == 1)
5662 				ret = 0;
5663 			goto out_free;
5664 		}
5665 	}
5666 out_free:
5667 	if (!ret)
5668 		ret = emit_last_fiemap_cache(fieinfo, &cache);
5669 	free_extent_map(em);
5670 out:
5671 	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5672 			     &cached_state);
5673 
5674 out_free_ulist:
5675 	btrfs_free_path(path);
5676 	ulist_free(roots);
5677 	ulist_free(tmp_ulist);
5678 	return ret;
5679 }
5680 
5681 static void __free_extent_buffer(struct extent_buffer *eb)
5682 {
5683 	kmem_cache_free(extent_buffer_cache, eb);
5684 }
5685 
5686 int extent_buffer_under_io(const struct extent_buffer *eb)
5687 {
5688 	return (atomic_read(&eb->io_pages) ||
5689 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5690 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5691 }
5692 
5693 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5694 {
5695 	struct btrfs_subpage *subpage;
5696 
5697 	lockdep_assert_held(&page->mapping->private_lock);
5698 
5699 	if (PagePrivate(page)) {
5700 		subpage = (struct btrfs_subpage *)page->private;
5701 		if (atomic_read(&subpage->eb_refs))
5702 			return true;
5703 		/*
5704 		 * Even there is no eb refs here, we may still have
5705 		 * end_page_read() call relying on page::private.
5706 		 */
5707 		if (atomic_read(&subpage->readers))
5708 			return true;
5709 	}
5710 	return false;
5711 }
5712 
5713 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5714 {
5715 	struct btrfs_fs_info *fs_info = eb->fs_info;
5716 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5717 
5718 	/*
5719 	 * For mapped eb, we're going to change the page private, which should
5720 	 * be done under the private_lock.
5721 	 */
5722 	if (mapped)
5723 		spin_lock(&page->mapping->private_lock);
5724 
5725 	if (!PagePrivate(page)) {
5726 		if (mapped)
5727 			spin_unlock(&page->mapping->private_lock);
5728 		return;
5729 	}
5730 
5731 	if (fs_info->sectorsize == PAGE_SIZE) {
5732 		/*
5733 		 * We do this since we'll remove the pages after we've
5734 		 * removed the eb from the radix tree, so we could race
5735 		 * and have this page now attached to the new eb.  So
5736 		 * only clear page_private if it's still connected to
5737 		 * this eb.
5738 		 */
5739 		if (PagePrivate(page) &&
5740 		    page->private == (unsigned long)eb) {
5741 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5742 			BUG_ON(PageDirty(page));
5743 			BUG_ON(PageWriteback(page));
5744 			/*
5745 			 * We need to make sure we haven't be attached
5746 			 * to a new eb.
5747 			 */
5748 			detach_page_private(page);
5749 		}
5750 		if (mapped)
5751 			spin_unlock(&page->mapping->private_lock);
5752 		return;
5753 	}
5754 
5755 	/*
5756 	 * For subpage, we can have dummy eb with page private.  In this case,
5757 	 * we can directly detach the private as such page is only attached to
5758 	 * one dummy eb, no sharing.
5759 	 */
5760 	if (!mapped) {
5761 		btrfs_detach_subpage(fs_info, page);
5762 		return;
5763 	}
5764 
5765 	btrfs_page_dec_eb_refs(fs_info, page);
5766 
5767 	/*
5768 	 * We can only detach the page private if there are no other ebs in the
5769 	 * page range and no unfinished IO.
5770 	 */
5771 	if (!page_range_has_eb(fs_info, page))
5772 		btrfs_detach_subpage(fs_info, page);
5773 
5774 	spin_unlock(&page->mapping->private_lock);
5775 }
5776 
5777 /* Release all pages attached to the extent buffer */
5778 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5779 {
5780 	int i;
5781 	int num_pages;
5782 
5783 	ASSERT(!extent_buffer_under_io(eb));
5784 
5785 	num_pages = num_extent_pages(eb);
5786 	for (i = 0; i < num_pages; i++) {
5787 		struct page *page = eb->pages[i];
5788 
5789 		if (!page)
5790 			continue;
5791 
5792 		detach_extent_buffer_page(eb, page);
5793 
5794 		/* One for when we allocated the page */
5795 		put_page(page);
5796 	}
5797 }
5798 
5799 /*
5800  * Helper for releasing the extent buffer.
5801  */
5802 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5803 {
5804 	btrfs_release_extent_buffer_pages(eb);
5805 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5806 	__free_extent_buffer(eb);
5807 }
5808 
5809 static struct extent_buffer *
5810 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5811 		      unsigned long len)
5812 {
5813 	struct extent_buffer *eb = NULL;
5814 
5815 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5816 	eb->start = start;
5817 	eb->len = len;
5818 	eb->fs_info = fs_info;
5819 	eb->bflags = 0;
5820 	init_rwsem(&eb->lock);
5821 
5822 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5823 			     &fs_info->allocated_ebs);
5824 	INIT_LIST_HEAD(&eb->release_list);
5825 
5826 	spin_lock_init(&eb->refs_lock);
5827 	atomic_set(&eb->refs, 1);
5828 	atomic_set(&eb->io_pages, 0);
5829 
5830 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5831 
5832 	return eb;
5833 }
5834 
5835 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5836 {
5837 	int i;
5838 	struct page *p;
5839 	struct extent_buffer *new;
5840 	int num_pages = num_extent_pages(src);
5841 
5842 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5843 	if (new == NULL)
5844 		return NULL;
5845 
5846 	/*
5847 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5848 	 * btrfs_release_extent_buffer() have different behavior for
5849 	 * UNMAPPED subpage extent buffer.
5850 	 */
5851 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5852 
5853 	for (i = 0; i < num_pages; i++) {
5854 		int ret;
5855 
5856 		p = alloc_page(GFP_NOFS);
5857 		if (!p) {
5858 			btrfs_release_extent_buffer(new);
5859 			return NULL;
5860 		}
5861 		ret = attach_extent_buffer_page(new, p, NULL);
5862 		if (ret < 0) {
5863 			put_page(p);
5864 			btrfs_release_extent_buffer(new);
5865 			return NULL;
5866 		}
5867 		WARN_ON(PageDirty(p));
5868 		new->pages[i] = p;
5869 		copy_page(page_address(p), page_address(src->pages[i]));
5870 	}
5871 	set_extent_buffer_uptodate(new);
5872 
5873 	return new;
5874 }
5875 
5876 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5877 						  u64 start, unsigned long len)
5878 {
5879 	struct extent_buffer *eb;
5880 	int num_pages;
5881 	int i;
5882 
5883 	eb = __alloc_extent_buffer(fs_info, start, len);
5884 	if (!eb)
5885 		return NULL;
5886 
5887 	num_pages = num_extent_pages(eb);
5888 	for (i = 0; i < num_pages; i++) {
5889 		int ret;
5890 
5891 		eb->pages[i] = alloc_page(GFP_NOFS);
5892 		if (!eb->pages[i])
5893 			goto err;
5894 		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5895 		if (ret < 0)
5896 			goto err;
5897 	}
5898 	set_extent_buffer_uptodate(eb);
5899 	btrfs_set_header_nritems(eb, 0);
5900 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5901 
5902 	return eb;
5903 err:
5904 	for (; i > 0; i--) {
5905 		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5906 		__free_page(eb->pages[i - 1]);
5907 	}
5908 	__free_extent_buffer(eb);
5909 	return NULL;
5910 }
5911 
5912 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5913 						u64 start)
5914 {
5915 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5916 }
5917 
5918 static void check_buffer_tree_ref(struct extent_buffer *eb)
5919 {
5920 	int refs;
5921 	/*
5922 	 * The TREE_REF bit is first set when the extent_buffer is added
5923 	 * to the radix tree. It is also reset, if unset, when a new reference
5924 	 * is created by find_extent_buffer.
5925 	 *
5926 	 * It is only cleared in two cases: freeing the last non-tree
5927 	 * reference to the extent_buffer when its STALE bit is set or
5928 	 * calling releasepage when the tree reference is the only reference.
5929 	 *
5930 	 * In both cases, care is taken to ensure that the extent_buffer's
5931 	 * pages are not under io. However, releasepage can be concurrently
5932 	 * called with creating new references, which is prone to race
5933 	 * conditions between the calls to check_buffer_tree_ref in those
5934 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5935 	 *
5936 	 * The actual lifetime of the extent_buffer in the radix tree is
5937 	 * adequately protected by the refcount, but the TREE_REF bit and
5938 	 * its corresponding reference are not. To protect against this
5939 	 * class of races, we call check_buffer_tree_ref from the codepaths
5940 	 * which trigger io after they set eb->io_pages. Note that once io is
5941 	 * initiated, TREE_REF can no longer be cleared, so that is the
5942 	 * moment at which any such race is best fixed.
5943 	 */
5944 	refs = atomic_read(&eb->refs);
5945 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5946 		return;
5947 
5948 	spin_lock(&eb->refs_lock);
5949 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5950 		atomic_inc(&eb->refs);
5951 	spin_unlock(&eb->refs_lock);
5952 }
5953 
5954 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5955 		struct page *accessed)
5956 {
5957 	int num_pages, i;
5958 
5959 	check_buffer_tree_ref(eb);
5960 
5961 	num_pages = num_extent_pages(eb);
5962 	for (i = 0; i < num_pages; i++) {
5963 		struct page *p = eb->pages[i];
5964 
5965 		if (p != accessed)
5966 			mark_page_accessed(p);
5967 	}
5968 }
5969 
5970 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5971 					 u64 start)
5972 {
5973 	struct extent_buffer *eb;
5974 
5975 	eb = find_extent_buffer_nolock(fs_info, start);
5976 	if (!eb)
5977 		return NULL;
5978 	/*
5979 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5980 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5981 	 * another task running free_extent_buffer() might have seen that flag
5982 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5983 	 * writeback flags not set) and it's still in the tree (flag
5984 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5985 	 * decrementing the extent buffer's reference count twice.  So here we
5986 	 * could race and increment the eb's reference count, clear its stale
5987 	 * flag, mark it as dirty and drop our reference before the other task
5988 	 * finishes executing free_extent_buffer, which would later result in
5989 	 * an attempt to free an extent buffer that is dirty.
5990 	 */
5991 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5992 		spin_lock(&eb->refs_lock);
5993 		spin_unlock(&eb->refs_lock);
5994 	}
5995 	mark_extent_buffer_accessed(eb, NULL);
5996 	return eb;
5997 }
5998 
5999 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6000 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6001 					u64 start)
6002 {
6003 	struct extent_buffer *eb, *exists = NULL;
6004 	int ret;
6005 
6006 	eb = find_extent_buffer(fs_info, start);
6007 	if (eb)
6008 		return eb;
6009 	eb = alloc_dummy_extent_buffer(fs_info, start);
6010 	if (!eb)
6011 		return ERR_PTR(-ENOMEM);
6012 	eb->fs_info = fs_info;
6013 again:
6014 	ret = radix_tree_preload(GFP_NOFS);
6015 	if (ret) {
6016 		exists = ERR_PTR(ret);
6017 		goto free_eb;
6018 	}
6019 	spin_lock(&fs_info->buffer_lock);
6020 	ret = radix_tree_insert(&fs_info->buffer_radix,
6021 				start >> fs_info->sectorsize_bits, eb);
6022 	spin_unlock(&fs_info->buffer_lock);
6023 	radix_tree_preload_end();
6024 	if (ret == -EEXIST) {
6025 		exists = find_extent_buffer(fs_info, start);
6026 		if (exists)
6027 			goto free_eb;
6028 		else
6029 			goto again;
6030 	}
6031 	check_buffer_tree_ref(eb);
6032 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6033 
6034 	return eb;
6035 free_eb:
6036 	btrfs_release_extent_buffer(eb);
6037 	return exists;
6038 }
6039 #endif
6040 
6041 static struct extent_buffer *grab_extent_buffer(
6042 		struct btrfs_fs_info *fs_info, struct page *page)
6043 {
6044 	struct extent_buffer *exists;
6045 
6046 	/*
6047 	 * For subpage case, we completely rely on radix tree to ensure we
6048 	 * don't try to insert two ebs for the same bytenr.  So here we always
6049 	 * return NULL and just continue.
6050 	 */
6051 	if (fs_info->sectorsize < PAGE_SIZE)
6052 		return NULL;
6053 
6054 	/* Page not yet attached to an extent buffer */
6055 	if (!PagePrivate(page))
6056 		return NULL;
6057 
6058 	/*
6059 	 * We could have already allocated an eb for this page and attached one
6060 	 * so lets see if we can get a ref on the existing eb, and if we can we
6061 	 * know it's good and we can just return that one, else we know we can
6062 	 * just overwrite page->private.
6063 	 */
6064 	exists = (struct extent_buffer *)page->private;
6065 	if (atomic_inc_not_zero(&exists->refs))
6066 		return exists;
6067 
6068 	WARN_ON(PageDirty(page));
6069 	detach_page_private(page);
6070 	return NULL;
6071 }
6072 
6073 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6074 					  u64 start, u64 owner_root, int level)
6075 {
6076 	unsigned long len = fs_info->nodesize;
6077 	int num_pages;
6078 	int i;
6079 	unsigned long index = start >> PAGE_SHIFT;
6080 	struct extent_buffer *eb;
6081 	struct extent_buffer *exists = NULL;
6082 	struct page *p;
6083 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6084 	int uptodate = 1;
6085 	int ret;
6086 
6087 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6088 		btrfs_err(fs_info, "bad tree block start %llu", start);
6089 		return ERR_PTR(-EINVAL);
6090 	}
6091 
6092 #if BITS_PER_LONG == 32
6093 	if (start >= MAX_LFS_FILESIZE) {
6094 		btrfs_err_rl(fs_info,
6095 		"extent buffer %llu is beyond 32bit page cache limit", start);
6096 		btrfs_err_32bit_limit(fs_info);
6097 		return ERR_PTR(-EOVERFLOW);
6098 	}
6099 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6100 		btrfs_warn_32bit_limit(fs_info);
6101 #endif
6102 
6103 	if (fs_info->sectorsize < PAGE_SIZE &&
6104 	    offset_in_page(start) + len > PAGE_SIZE) {
6105 		btrfs_err(fs_info,
6106 		"tree block crosses page boundary, start %llu nodesize %lu",
6107 			  start, len);
6108 		return ERR_PTR(-EINVAL);
6109 	}
6110 
6111 	eb = find_extent_buffer(fs_info, start);
6112 	if (eb)
6113 		return eb;
6114 
6115 	eb = __alloc_extent_buffer(fs_info, start, len);
6116 	if (!eb)
6117 		return ERR_PTR(-ENOMEM);
6118 	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6119 
6120 	num_pages = num_extent_pages(eb);
6121 	for (i = 0; i < num_pages; i++, index++) {
6122 		struct btrfs_subpage *prealloc = NULL;
6123 
6124 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6125 		if (!p) {
6126 			exists = ERR_PTR(-ENOMEM);
6127 			goto free_eb;
6128 		}
6129 
6130 		/*
6131 		 * Preallocate page->private for subpage case, so that we won't
6132 		 * allocate memory with private_lock hold.  The memory will be
6133 		 * freed by attach_extent_buffer_page() or freed manually if
6134 		 * we exit earlier.
6135 		 *
6136 		 * Although we have ensured one subpage eb can only have one
6137 		 * page, but it may change in the future for 16K page size
6138 		 * support, so we still preallocate the memory in the loop.
6139 		 */
6140 		ret = btrfs_alloc_subpage(fs_info, &prealloc,
6141 					  BTRFS_SUBPAGE_METADATA);
6142 		if (ret < 0) {
6143 			unlock_page(p);
6144 			put_page(p);
6145 			exists = ERR_PTR(ret);
6146 			goto free_eb;
6147 		}
6148 
6149 		spin_lock(&mapping->private_lock);
6150 		exists = grab_extent_buffer(fs_info, p);
6151 		if (exists) {
6152 			spin_unlock(&mapping->private_lock);
6153 			unlock_page(p);
6154 			put_page(p);
6155 			mark_extent_buffer_accessed(exists, p);
6156 			btrfs_free_subpage(prealloc);
6157 			goto free_eb;
6158 		}
6159 		/* Should not fail, as we have preallocated the memory */
6160 		ret = attach_extent_buffer_page(eb, p, prealloc);
6161 		ASSERT(!ret);
6162 		/*
6163 		 * To inform we have extra eb under allocation, so that
6164 		 * detach_extent_buffer_page() won't release the page private
6165 		 * when the eb hasn't yet been inserted into radix tree.
6166 		 *
6167 		 * The ref will be decreased when the eb released the page, in
6168 		 * detach_extent_buffer_page().
6169 		 * Thus needs no special handling in error path.
6170 		 */
6171 		btrfs_page_inc_eb_refs(fs_info, p);
6172 		spin_unlock(&mapping->private_lock);
6173 
6174 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6175 		eb->pages[i] = p;
6176 		if (!PageUptodate(p))
6177 			uptodate = 0;
6178 
6179 		/*
6180 		 * We can't unlock the pages just yet since the extent buffer
6181 		 * hasn't been properly inserted in the radix tree, this
6182 		 * opens a race with btree_releasepage which can free a page
6183 		 * while we are still filling in all pages for the buffer and
6184 		 * we could crash.
6185 		 */
6186 	}
6187 	if (uptodate)
6188 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6189 again:
6190 	ret = radix_tree_preload(GFP_NOFS);
6191 	if (ret) {
6192 		exists = ERR_PTR(ret);
6193 		goto free_eb;
6194 	}
6195 
6196 	spin_lock(&fs_info->buffer_lock);
6197 	ret = radix_tree_insert(&fs_info->buffer_radix,
6198 				start >> fs_info->sectorsize_bits, eb);
6199 	spin_unlock(&fs_info->buffer_lock);
6200 	radix_tree_preload_end();
6201 	if (ret == -EEXIST) {
6202 		exists = find_extent_buffer(fs_info, start);
6203 		if (exists)
6204 			goto free_eb;
6205 		else
6206 			goto again;
6207 	}
6208 	/* add one reference for the tree */
6209 	check_buffer_tree_ref(eb);
6210 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6211 
6212 	/*
6213 	 * Now it's safe to unlock the pages because any calls to
6214 	 * btree_releasepage will correctly detect that a page belongs to a
6215 	 * live buffer and won't free them prematurely.
6216 	 */
6217 	for (i = 0; i < num_pages; i++)
6218 		unlock_page(eb->pages[i]);
6219 	return eb;
6220 
6221 free_eb:
6222 	WARN_ON(!atomic_dec_and_test(&eb->refs));
6223 	for (i = 0; i < num_pages; i++) {
6224 		if (eb->pages[i])
6225 			unlock_page(eb->pages[i]);
6226 	}
6227 
6228 	btrfs_release_extent_buffer(eb);
6229 	return exists;
6230 }
6231 
6232 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6233 {
6234 	struct extent_buffer *eb =
6235 			container_of(head, struct extent_buffer, rcu_head);
6236 
6237 	__free_extent_buffer(eb);
6238 }
6239 
6240 static int release_extent_buffer(struct extent_buffer *eb)
6241 	__releases(&eb->refs_lock)
6242 {
6243 	lockdep_assert_held(&eb->refs_lock);
6244 
6245 	WARN_ON(atomic_read(&eb->refs) == 0);
6246 	if (atomic_dec_and_test(&eb->refs)) {
6247 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6248 			struct btrfs_fs_info *fs_info = eb->fs_info;
6249 
6250 			spin_unlock(&eb->refs_lock);
6251 
6252 			spin_lock(&fs_info->buffer_lock);
6253 			radix_tree_delete(&fs_info->buffer_radix,
6254 					  eb->start >> fs_info->sectorsize_bits);
6255 			spin_unlock(&fs_info->buffer_lock);
6256 		} else {
6257 			spin_unlock(&eb->refs_lock);
6258 		}
6259 
6260 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6261 		/* Should be safe to release our pages at this point */
6262 		btrfs_release_extent_buffer_pages(eb);
6263 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6264 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6265 			__free_extent_buffer(eb);
6266 			return 1;
6267 		}
6268 #endif
6269 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6270 		return 1;
6271 	}
6272 	spin_unlock(&eb->refs_lock);
6273 
6274 	return 0;
6275 }
6276 
6277 void free_extent_buffer(struct extent_buffer *eb)
6278 {
6279 	int refs;
6280 	int old;
6281 	if (!eb)
6282 		return;
6283 
6284 	while (1) {
6285 		refs = atomic_read(&eb->refs);
6286 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6287 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6288 			refs == 1))
6289 			break;
6290 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6291 		if (old == refs)
6292 			return;
6293 	}
6294 
6295 	spin_lock(&eb->refs_lock);
6296 	if (atomic_read(&eb->refs) == 2 &&
6297 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6298 	    !extent_buffer_under_io(eb) &&
6299 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6300 		atomic_dec(&eb->refs);
6301 
6302 	/*
6303 	 * I know this is terrible, but it's temporary until we stop tracking
6304 	 * the uptodate bits and such for the extent buffers.
6305 	 */
6306 	release_extent_buffer(eb);
6307 }
6308 
6309 void free_extent_buffer_stale(struct extent_buffer *eb)
6310 {
6311 	if (!eb)
6312 		return;
6313 
6314 	spin_lock(&eb->refs_lock);
6315 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6316 
6317 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6318 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6319 		atomic_dec(&eb->refs);
6320 	release_extent_buffer(eb);
6321 }
6322 
6323 static void btree_clear_page_dirty(struct page *page)
6324 {
6325 	ASSERT(PageDirty(page));
6326 	ASSERT(PageLocked(page));
6327 	clear_page_dirty_for_io(page);
6328 	xa_lock_irq(&page->mapping->i_pages);
6329 	if (!PageDirty(page))
6330 		__xa_clear_mark(&page->mapping->i_pages,
6331 				page_index(page), PAGECACHE_TAG_DIRTY);
6332 	xa_unlock_irq(&page->mapping->i_pages);
6333 }
6334 
6335 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6336 {
6337 	struct btrfs_fs_info *fs_info = eb->fs_info;
6338 	struct page *page = eb->pages[0];
6339 	bool last;
6340 
6341 	/* btree_clear_page_dirty() needs page locked */
6342 	lock_page(page);
6343 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6344 						  eb->len);
6345 	if (last)
6346 		btree_clear_page_dirty(page);
6347 	unlock_page(page);
6348 	WARN_ON(atomic_read(&eb->refs) == 0);
6349 }
6350 
6351 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6352 {
6353 	int i;
6354 	int num_pages;
6355 	struct page *page;
6356 
6357 	if (eb->fs_info->sectorsize < PAGE_SIZE)
6358 		return clear_subpage_extent_buffer_dirty(eb);
6359 
6360 	num_pages = num_extent_pages(eb);
6361 
6362 	for (i = 0; i < num_pages; i++) {
6363 		page = eb->pages[i];
6364 		if (!PageDirty(page))
6365 			continue;
6366 		lock_page(page);
6367 		btree_clear_page_dirty(page);
6368 		ClearPageError(page);
6369 		unlock_page(page);
6370 	}
6371 	WARN_ON(atomic_read(&eb->refs) == 0);
6372 }
6373 
6374 bool set_extent_buffer_dirty(struct extent_buffer *eb)
6375 {
6376 	int i;
6377 	int num_pages;
6378 	bool was_dirty;
6379 
6380 	check_buffer_tree_ref(eb);
6381 
6382 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6383 
6384 	num_pages = num_extent_pages(eb);
6385 	WARN_ON(atomic_read(&eb->refs) == 0);
6386 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6387 
6388 	if (!was_dirty) {
6389 		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6390 
6391 		/*
6392 		 * For subpage case, we can have other extent buffers in the
6393 		 * same page, and in clear_subpage_extent_buffer_dirty() we
6394 		 * have to clear page dirty without subpage lock held.
6395 		 * This can cause race where our page gets dirty cleared after
6396 		 * we just set it.
6397 		 *
6398 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6399 		 * its page for other reasons, we can use page lock to prevent
6400 		 * the above race.
6401 		 */
6402 		if (subpage)
6403 			lock_page(eb->pages[0]);
6404 		for (i = 0; i < num_pages; i++)
6405 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6406 					     eb->start, eb->len);
6407 		if (subpage)
6408 			unlock_page(eb->pages[0]);
6409 	}
6410 #ifdef CONFIG_BTRFS_DEBUG
6411 	for (i = 0; i < num_pages; i++)
6412 		ASSERT(PageDirty(eb->pages[i]));
6413 #endif
6414 
6415 	return was_dirty;
6416 }
6417 
6418 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6419 {
6420 	struct btrfs_fs_info *fs_info = eb->fs_info;
6421 	struct page *page;
6422 	int num_pages;
6423 	int i;
6424 
6425 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6426 	num_pages = num_extent_pages(eb);
6427 	for (i = 0; i < num_pages; i++) {
6428 		page = eb->pages[i];
6429 		if (page)
6430 			btrfs_page_clear_uptodate(fs_info, page,
6431 						  eb->start, eb->len);
6432 	}
6433 }
6434 
6435 void set_extent_buffer_uptodate(struct extent_buffer *eb)
6436 {
6437 	struct btrfs_fs_info *fs_info = eb->fs_info;
6438 	struct page *page;
6439 	int num_pages;
6440 	int i;
6441 
6442 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6443 	num_pages = num_extent_pages(eb);
6444 	for (i = 0; i < num_pages; i++) {
6445 		page = eb->pages[i];
6446 		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6447 	}
6448 }
6449 
6450 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6451 				      int mirror_num)
6452 {
6453 	struct btrfs_fs_info *fs_info = eb->fs_info;
6454 	struct extent_io_tree *io_tree;
6455 	struct page *page = eb->pages[0];
6456 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6457 	int ret = 0;
6458 
6459 	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6460 	ASSERT(PagePrivate(page));
6461 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6462 
6463 	if (wait == WAIT_NONE) {
6464 		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6465 			return -EAGAIN;
6466 	} else {
6467 		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6468 		if (ret < 0)
6469 			return ret;
6470 	}
6471 
6472 	ret = 0;
6473 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6474 	    PageUptodate(page) ||
6475 	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6476 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6477 		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6478 		return ret;
6479 	}
6480 
6481 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6482 	eb->read_mirror = 0;
6483 	atomic_set(&eb->io_pages, 1);
6484 	check_buffer_tree_ref(eb);
6485 	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6486 
6487 	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6488 	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6489 				 page, eb->start, eb->len,
6490 				 eb->start - page_offset(page),
6491 				 end_bio_extent_readpage, mirror_num, 0,
6492 				 true);
6493 	if (ret) {
6494 		/*
6495 		 * In the endio function, if we hit something wrong we will
6496 		 * increase the io_pages, so here we need to decrease it for
6497 		 * error path.
6498 		 */
6499 		atomic_dec(&eb->io_pages);
6500 	}
6501 	if (bio_ctrl.bio) {
6502 		int tmp;
6503 
6504 		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6505 		bio_ctrl.bio = NULL;
6506 		if (tmp < 0)
6507 			return tmp;
6508 	}
6509 	if (ret || wait != WAIT_COMPLETE)
6510 		return ret;
6511 
6512 	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6513 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6514 		ret = -EIO;
6515 	return ret;
6516 }
6517 
6518 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6519 {
6520 	int i;
6521 	struct page *page;
6522 	int err;
6523 	int ret = 0;
6524 	int locked_pages = 0;
6525 	int all_uptodate = 1;
6526 	int num_pages;
6527 	unsigned long num_reads = 0;
6528 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6529 
6530 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6531 		return 0;
6532 
6533 	if (eb->fs_info->sectorsize < PAGE_SIZE)
6534 		return read_extent_buffer_subpage(eb, wait, mirror_num);
6535 
6536 	num_pages = num_extent_pages(eb);
6537 	for (i = 0; i < num_pages; i++) {
6538 		page = eb->pages[i];
6539 		if (wait == WAIT_NONE) {
6540 			/*
6541 			 * WAIT_NONE is only utilized by readahead. If we can't
6542 			 * acquire the lock atomically it means either the eb
6543 			 * is being read out or under modification.
6544 			 * Either way the eb will be or has been cached,
6545 			 * readahead can exit safely.
6546 			 */
6547 			if (!trylock_page(page))
6548 				goto unlock_exit;
6549 		} else {
6550 			lock_page(page);
6551 		}
6552 		locked_pages++;
6553 	}
6554 	/*
6555 	 * We need to firstly lock all pages to make sure that
6556 	 * the uptodate bit of our pages won't be affected by
6557 	 * clear_extent_buffer_uptodate().
6558 	 */
6559 	for (i = 0; i < num_pages; i++) {
6560 		page = eb->pages[i];
6561 		if (!PageUptodate(page)) {
6562 			num_reads++;
6563 			all_uptodate = 0;
6564 		}
6565 	}
6566 
6567 	if (all_uptodate) {
6568 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6569 		goto unlock_exit;
6570 	}
6571 
6572 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6573 	eb->read_mirror = 0;
6574 	atomic_set(&eb->io_pages, num_reads);
6575 	/*
6576 	 * It is possible for releasepage to clear the TREE_REF bit before we
6577 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6578 	 */
6579 	check_buffer_tree_ref(eb);
6580 	for (i = 0; i < num_pages; i++) {
6581 		page = eb->pages[i];
6582 
6583 		if (!PageUptodate(page)) {
6584 			if (ret) {
6585 				atomic_dec(&eb->io_pages);
6586 				unlock_page(page);
6587 				continue;
6588 			}
6589 
6590 			ClearPageError(page);
6591 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6592 					 &bio_ctrl, page, page_offset(page),
6593 					 PAGE_SIZE, 0, end_bio_extent_readpage,
6594 					 mirror_num, 0, false);
6595 			if (err) {
6596 				/*
6597 				 * We failed to submit the bio so it's the
6598 				 * caller's responsibility to perform cleanup
6599 				 * i.e unlock page/set error bit.
6600 				 */
6601 				ret = err;
6602 				SetPageError(page);
6603 				unlock_page(page);
6604 				atomic_dec(&eb->io_pages);
6605 			}
6606 		} else {
6607 			unlock_page(page);
6608 		}
6609 	}
6610 
6611 	if (bio_ctrl.bio) {
6612 		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6613 		bio_ctrl.bio = NULL;
6614 		if (err)
6615 			return err;
6616 	}
6617 
6618 	if (ret || wait != WAIT_COMPLETE)
6619 		return ret;
6620 
6621 	for (i = 0; i < num_pages; i++) {
6622 		page = eb->pages[i];
6623 		wait_on_page_locked(page);
6624 		if (!PageUptodate(page))
6625 			ret = -EIO;
6626 	}
6627 
6628 	return ret;
6629 
6630 unlock_exit:
6631 	while (locked_pages > 0) {
6632 		locked_pages--;
6633 		page = eb->pages[locked_pages];
6634 		unlock_page(page);
6635 	}
6636 	return ret;
6637 }
6638 
6639 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6640 			    unsigned long len)
6641 {
6642 	btrfs_warn(eb->fs_info,
6643 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6644 		eb->start, eb->len, start, len);
6645 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6646 
6647 	return true;
6648 }
6649 
6650 /*
6651  * Check if the [start, start + len) range is valid before reading/writing
6652  * the eb.
6653  * NOTE: @start and @len are offset inside the eb, not logical address.
6654  *
6655  * Caller should not touch the dst/src memory if this function returns error.
6656  */
6657 static inline int check_eb_range(const struct extent_buffer *eb,
6658 				 unsigned long start, unsigned long len)
6659 {
6660 	unsigned long offset;
6661 
6662 	/* start, start + len should not go beyond eb->len nor overflow */
6663 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6664 		return report_eb_range(eb, start, len);
6665 
6666 	return false;
6667 }
6668 
6669 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6670 			unsigned long start, unsigned long len)
6671 {
6672 	size_t cur;
6673 	size_t offset;
6674 	struct page *page;
6675 	char *kaddr;
6676 	char *dst = (char *)dstv;
6677 	unsigned long i = get_eb_page_index(start);
6678 
6679 	if (check_eb_range(eb, start, len))
6680 		return;
6681 
6682 	offset = get_eb_offset_in_page(eb, start);
6683 
6684 	while (len > 0) {
6685 		page = eb->pages[i];
6686 
6687 		cur = min(len, (PAGE_SIZE - offset));
6688 		kaddr = page_address(page);
6689 		memcpy(dst, kaddr + offset, cur);
6690 
6691 		dst += cur;
6692 		len -= cur;
6693 		offset = 0;
6694 		i++;
6695 	}
6696 }
6697 
6698 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6699 				       void __user *dstv,
6700 				       unsigned long start, unsigned long len)
6701 {
6702 	size_t cur;
6703 	size_t offset;
6704 	struct page *page;
6705 	char *kaddr;
6706 	char __user *dst = (char __user *)dstv;
6707 	unsigned long i = get_eb_page_index(start);
6708 	int ret = 0;
6709 
6710 	WARN_ON(start > eb->len);
6711 	WARN_ON(start + len > eb->start + eb->len);
6712 
6713 	offset = get_eb_offset_in_page(eb, start);
6714 
6715 	while (len > 0) {
6716 		page = eb->pages[i];
6717 
6718 		cur = min(len, (PAGE_SIZE - offset));
6719 		kaddr = page_address(page);
6720 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6721 			ret = -EFAULT;
6722 			break;
6723 		}
6724 
6725 		dst += cur;
6726 		len -= cur;
6727 		offset = 0;
6728 		i++;
6729 	}
6730 
6731 	return ret;
6732 }
6733 
6734 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6735 			 unsigned long start, unsigned long len)
6736 {
6737 	size_t cur;
6738 	size_t offset;
6739 	struct page *page;
6740 	char *kaddr;
6741 	char *ptr = (char *)ptrv;
6742 	unsigned long i = get_eb_page_index(start);
6743 	int ret = 0;
6744 
6745 	if (check_eb_range(eb, start, len))
6746 		return -EINVAL;
6747 
6748 	offset = get_eb_offset_in_page(eb, start);
6749 
6750 	while (len > 0) {
6751 		page = eb->pages[i];
6752 
6753 		cur = min(len, (PAGE_SIZE - offset));
6754 
6755 		kaddr = page_address(page);
6756 		ret = memcmp(ptr, kaddr + offset, cur);
6757 		if (ret)
6758 			break;
6759 
6760 		ptr += cur;
6761 		len -= cur;
6762 		offset = 0;
6763 		i++;
6764 	}
6765 	return ret;
6766 }
6767 
6768 /*
6769  * Check that the extent buffer is uptodate.
6770  *
6771  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6772  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6773  */
6774 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6775 				    struct page *page)
6776 {
6777 	struct btrfs_fs_info *fs_info = eb->fs_info;
6778 
6779 	if (fs_info->sectorsize < PAGE_SIZE) {
6780 		bool uptodate;
6781 
6782 		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6783 						       eb->start, eb->len);
6784 		WARN_ON(!uptodate);
6785 	} else {
6786 		WARN_ON(!PageUptodate(page));
6787 	}
6788 }
6789 
6790 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6791 		const void *srcv)
6792 {
6793 	char *kaddr;
6794 
6795 	assert_eb_page_uptodate(eb, eb->pages[0]);
6796 	kaddr = page_address(eb->pages[0]) +
6797 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6798 						   chunk_tree_uuid));
6799 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6800 }
6801 
6802 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6803 {
6804 	char *kaddr;
6805 
6806 	assert_eb_page_uptodate(eb, eb->pages[0]);
6807 	kaddr = page_address(eb->pages[0]) +
6808 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6809 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6810 }
6811 
6812 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6813 			 unsigned long start, unsigned long len)
6814 {
6815 	size_t cur;
6816 	size_t offset;
6817 	struct page *page;
6818 	char *kaddr;
6819 	char *src = (char *)srcv;
6820 	unsigned long i = get_eb_page_index(start);
6821 
6822 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6823 
6824 	if (check_eb_range(eb, start, len))
6825 		return;
6826 
6827 	offset = get_eb_offset_in_page(eb, start);
6828 
6829 	while (len > 0) {
6830 		page = eb->pages[i];
6831 		assert_eb_page_uptodate(eb, page);
6832 
6833 		cur = min(len, PAGE_SIZE - offset);
6834 		kaddr = page_address(page);
6835 		memcpy(kaddr + offset, src, cur);
6836 
6837 		src += cur;
6838 		len -= cur;
6839 		offset = 0;
6840 		i++;
6841 	}
6842 }
6843 
6844 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6845 		unsigned long len)
6846 {
6847 	size_t cur;
6848 	size_t offset;
6849 	struct page *page;
6850 	char *kaddr;
6851 	unsigned long i = get_eb_page_index(start);
6852 
6853 	if (check_eb_range(eb, start, len))
6854 		return;
6855 
6856 	offset = get_eb_offset_in_page(eb, start);
6857 
6858 	while (len > 0) {
6859 		page = eb->pages[i];
6860 		assert_eb_page_uptodate(eb, page);
6861 
6862 		cur = min(len, PAGE_SIZE - offset);
6863 		kaddr = page_address(page);
6864 		memset(kaddr + offset, 0, cur);
6865 
6866 		len -= cur;
6867 		offset = 0;
6868 		i++;
6869 	}
6870 }
6871 
6872 void copy_extent_buffer_full(const struct extent_buffer *dst,
6873 			     const struct extent_buffer *src)
6874 {
6875 	int i;
6876 	int num_pages;
6877 
6878 	ASSERT(dst->len == src->len);
6879 
6880 	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6881 		num_pages = num_extent_pages(dst);
6882 		for (i = 0; i < num_pages; i++)
6883 			copy_page(page_address(dst->pages[i]),
6884 				  page_address(src->pages[i]));
6885 	} else {
6886 		size_t src_offset = get_eb_offset_in_page(src, 0);
6887 		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6888 
6889 		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6890 		memcpy(page_address(dst->pages[0]) + dst_offset,
6891 		       page_address(src->pages[0]) + src_offset,
6892 		       src->len);
6893 	}
6894 }
6895 
6896 void copy_extent_buffer(const struct extent_buffer *dst,
6897 			const struct extent_buffer *src,
6898 			unsigned long dst_offset, unsigned long src_offset,
6899 			unsigned long len)
6900 {
6901 	u64 dst_len = dst->len;
6902 	size_t cur;
6903 	size_t offset;
6904 	struct page *page;
6905 	char *kaddr;
6906 	unsigned long i = get_eb_page_index(dst_offset);
6907 
6908 	if (check_eb_range(dst, dst_offset, len) ||
6909 	    check_eb_range(src, src_offset, len))
6910 		return;
6911 
6912 	WARN_ON(src->len != dst_len);
6913 
6914 	offset = get_eb_offset_in_page(dst, dst_offset);
6915 
6916 	while (len > 0) {
6917 		page = dst->pages[i];
6918 		assert_eb_page_uptodate(dst, page);
6919 
6920 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6921 
6922 		kaddr = page_address(page);
6923 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6924 
6925 		src_offset += cur;
6926 		len -= cur;
6927 		offset = 0;
6928 		i++;
6929 	}
6930 }
6931 
6932 /*
6933  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6934  * given bit number
6935  * @eb: the extent buffer
6936  * @start: offset of the bitmap item in the extent buffer
6937  * @nr: bit number
6938  * @page_index: return index of the page in the extent buffer that contains the
6939  * given bit number
6940  * @page_offset: return offset into the page given by page_index
6941  *
6942  * This helper hides the ugliness of finding the byte in an extent buffer which
6943  * contains a given bit.
6944  */
6945 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6946 				    unsigned long start, unsigned long nr,
6947 				    unsigned long *page_index,
6948 				    size_t *page_offset)
6949 {
6950 	size_t byte_offset = BIT_BYTE(nr);
6951 	size_t offset;
6952 
6953 	/*
6954 	 * The byte we want is the offset of the extent buffer + the offset of
6955 	 * the bitmap item in the extent buffer + the offset of the byte in the
6956 	 * bitmap item.
6957 	 */
6958 	offset = start + offset_in_page(eb->start) + byte_offset;
6959 
6960 	*page_index = offset >> PAGE_SHIFT;
6961 	*page_offset = offset_in_page(offset);
6962 }
6963 
6964 /**
6965  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6966  * @eb: the extent buffer
6967  * @start: offset of the bitmap item in the extent buffer
6968  * @nr: bit number to test
6969  */
6970 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6971 			   unsigned long nr)
6972 {
6973 	u8 *kaddr;
6974 	struct page *page;
6975 	unsigned long i;
6976 	size_t offset;
6977 
6978 	eb_bitmap_offset(eb, start, nr, &i, &offset);
6979 	page = eb->pages[i];
6980 	assert_eb_page_uptodate(eb, page);
6981 	kaddr = page_address(page);
6982 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6983 }
6984 
6985 /**
6986  * extent_buffer_bitmap_set - set an area of a bitmap
6987  * @eb: the extent buffer
6988  * @start: offset of the bitmap item in the extent buffer
6989  * @pos: bit number of the first bit
6990  * @len: number of bits to set
6991  */
6992 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6993 			      unsigned long pos, unsigned long len)
6994 {
6995 	u8 *kaddr;
6996 	struct page *page;
6997 	unsigned long i;
6998 	size_t offset;
6999 	const unsigned int size = pos + len;
7000 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7001 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7002 
7003 	eb_bitmap_offset(eb, start, pos, &i, &offset);
7004 	page = eb->pages[i];
7005 	assert_eb_page_uptodate(eb, page);
7006 	kaddr = page_address(page);
7007 
7008 	while (len >= bits_to_set) {
7009 		kaddr[offset] |= mask_to_set;
7010 		len -= bits_to_set;
7011 		bits_to_set = BITS_PER_BYTE;
7012 		mask_to_set = ~0;
7013 		if (++offset >= PAGE_SIZE && len > 0) {
7014 			offset = 0;
7015 			page = eb->pages[++i];
7016 			assert_eb_page_uptodate(eb, page);
7017 			kaddr = page_address(page);
7018 		}
7019 	}
7020 	if (len) {
7021 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7022 		kaddr[offset] |= mask_to_set;
7023 	}
7024 }
7025 
7026 
7027 /**
7028  * extent_buffer_bitmap_clear - clear an area of a bitmap
7029  * @eb: the extent buffer
7030  * @start: offset of the bitmap item in the extent buffer
7031  * @pos: bit number of the first bit
7032  * @len: number of bits to clear
7033  */
7034 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7035 				unsigned long start, unsigned long pos,
7036 				unsigned long len)
7037 {
7038 	u8 *kaddr;
7039 	struct page *page;
7040 	unsigned long i;
7041 	size_t offset;
7042 	const unsigned int size = pos + len;
7043 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7044 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7045 
7046 	eb_bitmap_offset(eb, start, pos, &i, &offset);
7047 	page = eb->pages[i];
7048 	assert_eb_page_uptodate(eb, page);
7049 	kaddr = page_address(page);
7050 
7051 	while (len >= bits_to_clear) {
7052 		kaddr[offset] &= ~mask_to_clear;
7053 		len -= bits_to_clear;
7054 		bits_to_clear = BITS_PER_BYTE;
7055 		mask_to_clear = ~0;
7056 		if (++offset >= PAGE_SIZE && len > 0) {
7057 			offset = 0;
7058 			page = eb->pages[++i];
7059 			assert_eb_page_uptodate(eb, page);
7060 			kaddr = page_address(page);
7061 		}
7062 	}
7063 	if (len) {
7064 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7065 		kaddr[offset] &= ~mask_to_clear;
7066 	}
7067 }
7068 
7069 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7070 {
7071 	unsigned long distance = (src > dst) ? src - dst : dst - src;
7072 	return distance < len;
7073 }
7074 
7075 static void copy_pages(struct page *dst_page, struct page *src_page,
7076 		       unsigned long dst_off, unsigned long src_off,
7077 		       unsigned long len)
7078 {
7079 	char *dst_kaddr = page_address(dst_page);
7080 	char *src_kaddr;
7081 	int must_memmove = 0;
7082 
7083 	if (dst_page != src_page) {
7084 		src_kaddr = page_address(src_page);
7085 	} else {
7086 		src_kaddr = dst_kaddr;
7087 		if (areas_overlap(src_off, dst_off, len))
7088 			must_memmove = 1;
7089 	}
7090 
7091 	if (must_memmove)
7092 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7093 	else
7094 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7095 }
7096 
7097 void memcpy_extent_buffer(const struct extent_buffer *dst,
7098 			  unsigned long dst_offset, unsigned long src_offset,
7099 			  unsigned long len)
7100 {
7101 	size_t cur;
7102 	size_t dst_off_in_page;
7103 	size_t src_off_in_page;
7104 	unsigned long dst_i;
7105 	unsigned long src_i;
7106 
7107 	if (check_eb_range(dst, dst_offset, len) ||
7108 	    check_eb_range(dst, src_offset, len))
7109 		return;
7110 
7111 	while (len > 0) {
7112 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7113 		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7114 
7115 		dst_i = get_eb_page_index(dst_offset);
7116 		src_i = get_eb_page_index(src_offset);
7117 
7118 		cur = min(len, (unsigned long)(PAGE_SIZE -
7119 					       src_off_in_page));
7120 		cur = min_t(unsigned long, cur,
7121 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7122 
7123 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7124 			   dst_off_in_page, src_off_in_page, cur);
7125 
7126 		src_offset += cur;
7127 		dst_offset += cur;
7128 		len -= cur;
7129 	}
7130 }
7131 
7132 void memmove_extent_buffer(const struct extent_buffer *dst,
7133 			   unsigned long dst_offset, unsigned long src_offset,
7134 			   unsigned long len)
7135 {
7136 	size_t cur;
7137 	size_t dst_off_in_page;
7138 	size_t src_off_in_page;
7139 	unsigned long dst_end = dst_offset + len - 1;
7140 	unsigned long src_end = src_offset + len - 1;
7141 	unsigned long dst_i;
7142 	unsigned long src_i;
7143 
7144 	if (check_eb_range(dst, dst_offset, len) ||
7145 	    check_eb_range(dst, src_offset, len))
7146 		return;
7147 	if (dst_offset < src_offset) {
7148 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7149 		return;
7150 	}
7151 	while (len > 0) {
7152 		dst_i = get_eb_page_index(dst_end);
7153 		src_i = get_eb_page_index(src_end);
7154 
7155 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7156 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7157 
7158 		cur = min_t(unsigned long, len, src_off_in_page + 1);
7159 		cur = min(cur, dst_off_in_page + 1);
7160 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7161 			   dst_off_in_page - cur + 1,
7162 			   src_off_in_page - cur + 1, cur);
7163 
7164 		dst_end -= cur;
7165 		src_end -= cur;
7166 		len -= cur;
7167 	}
7168 }
7169 
7170 static struct extent_buffer *get_next_extent_buffer(
7171 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7172 {
7173 	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7174 	struct extent_buffer *found = NULL;
7175 	u64 page_start = page_offset(page);
7176 	int ret;
7177 	int i;
7178 
7179 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7180 	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7181 	lockdep_assert_held(&fs_info->buffer_lock);
7182 
7183 	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7184 			bytenr >> fs_info->sectorsize_bits,
7185 			PAGE_SIZE / fs_info->nodesize);
7186 	for (i = 0; i < ret; i++) {
7187 		/* Already beyond page end */
7188 		if (gang[i]->start >= page_start + PAGE_SIZE)
7189 			break;
7190 		/* Found one */
7191 		if (gang[i]->start >= bytenr) {
7192 			found = gang[i];
7193 			break;
7194 		}
7195 	}
7196 	return found;
7197 }
7198 
7199 static int try_release_subpage_extent_buffer(struct page *page)
7200 {
7201 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7202 	u64 cur = page_offset(page);
7203 	const u64 end = page_offset(page) + PAGE_SIZE;
7204 	int ret;
7205 
7206 	while (cur < end) {
7207 		struct extent_buffer *eb = NULL;
7208 
7209 		/*
7210 		 * Unlike try_release_extent_buffer() which uses page->private
7211 		 * to grab buffer, for subpage case we rely on radix tree, thus
7212 		 * we need to ensure radix tree consistency.
7213 		 *
7214 		 * We also want an atomic snapshot of the radix tree, thus go
7215 		 * with spinlock rather than RCU.
7216 		 */
7217 		spin_lock(&fs_info->buffer_lock);
7218 		eb = get_next_extent_buffer(fs_info, page, cur);
7219 		if (!eb) {
7220 			/* No more eb in the page range after or at cur */
7221 			spin_unlock(&fs_info->buffer_lock);
7222 			break;
7223 		}
7224 		cur = eb->start + eb->len;
7225 
7226 		/*
7227 		 * The same as try_release_extent_buffer(), to ensure the eb
7228 		 * won't disappear out from under us.
7229 		 */
7230 		spin_lock(&eb->refs_lock);
7231 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7232 			spin_unlock(&eb->refs_lock);
7233 			spin_unlock(&fs_info->buffer_lock);
7234 			break;
7235 		}
7236 		spin_unlock(&fs_info->buffer_lock);
7237 
7238 		/*
7239 		 * If tree ref isn't set then we know the ref on this eb is a
7240 		 * real ref, so just return, this eb will likely be freed soon
7241 		 * anyway.
7242 		 */
7243 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7244 			spin_unlock(&eb->refs_lock);
7245 			break;
7246 		}
7247 
7248 		/*
7249 		 * Here we don't care about the return value, we will always
7250 		 * check the page private at the end.  And
7251 		 * release_extent_buffer() will release the refs_lock.
7252 		 */
7253 		release_extent_buffer(eb);
7254 	}
7255 	/*
7256 	 * Finally to check if we have cleared page private, as if we have
7257 	 * released all ebs in the page, the page private should be cleared now.
7258 	 */
7259 	spin_lock(&page->mapping->private_lock);
7260 	if (!PagePrivate(page))
7261 		ret = 1;
7262 	else
7263 		ret = 0;
7264 	spin_unlock(&page->mapping->private_lock);
7265 	return ret;
7266 
7267 }
7268 
7269 int try_release_extent_buffer(struct page *page)
7270 {
7271 	struct extent_buffer *eb;
7272 
7273 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7274 		return try_release_subpage_extent_buffer(page);
7275 
7276 	/*
7277 	 * We need to make sure nobody is changing page->private, as we rely on
7278 	 * page->private as the pointer to extent buffer.
7279 	 */
7280 	spin_lock(&page->mapping->private_lock);
7281 	if (!PagePrivate(page)) {
7282 		spin_unlock(&page->mapping->private_lock);
7283 		return 1;
7284 	}
7285 
7286 	eb = (struct extent_buffer *)page->private;
7287 	BUG_ON(!eb);
7288 
7289 	/*
7290 	 * This is a little awful but should be ok, we need to make sure that
7291 	 * the eb doesn't disappear out from under us while we're looking at
7292 	 * this page.
7293 	 */
7294 	spin_lock(&eb->refs_lock);
7295 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7296 		spin_unlock(&eb->refs_lock);
7297 		spin_unlock(&page->mapping->private_lock);
7298 		return 0;
7299 	}
7300 	spin_unlock(&page->mapping->private_lock);
7301 
7302 	/*
7303 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
7304 	 * so just return, this page will likely be freed soon anyway.
7305 	 */
7306 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7307 		spin_unlock(&eb->refs_lock);
7308 		return 0;
7309 	}
7310 
7311 	return release_extent_buffer(eb);
7312 }
7313 
7314 /*
7315  * btrfs_readahead_tree_block - attempt to readahead a child block
7316  * @fs_info:	the fs_info
7317  * @bytenr:	bytenr to read
7318  * @owner_root: objectid of the root that owns this eb
7319  * @gen:	generation for the uptodate check, can be 0
7320  * @level:	level for the eb
7321  *
7322  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7323  * normal uptodate check of the eb, without checking the generation.  If we have
7324  * to read the block we will not block on anything.
7325  */
7326 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7327 				u64 bytenr, u64 owner_root, u64 gen, int level)
7328 {
7329 	struct extent_buffer *eb;
7330 	int ret;
7331 
7332 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7333 	if (IS_ERR(eb))
7334 		return;
7335 
7336 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
7337 		free_extent_buffer(eb);
7338 		return;
7339 	}
7340 
7341 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7342 	if (ret < 0)
7343 		free_extent_buffer_stale(eb);
7344 	else
7345 		free_extent_buffer(eb);
7346 }
7347 
7348 /*
7349  * btrfs_readahead_node_child - readahead a node's child block
7350  * @node:	parent node we're reading from
7351  * @slot:	slot in the parent node for the child we want to read
7352  *
7353  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7354  * the slot in the node provided.
7355  */
7356 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7357 {
7358 	btrfs_readahead_tree_block(node->fs_info,
7359 				   btrfs_node_blockptr(node, slot),
7360 				   btrfs_header_owner(node),
7361 				   btrfs_node_ptr_generation(node, slot),
7362 				   btrfs_header_level(node) - 1);
7363 }
7364