1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/fsverity.h> 16 #include "misc.h" 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "volumes.h" 23 #include "check-integrity.h" 24 #include "locking.h" 25 #include "rcu-string.h" 26 #include "backref.h" 27 #include "disk-io.h" 28 #include "subpage.h" 29 #include "zoned.h" 30 #include "block-group.h" 31 32 static struct kmem_cache *extent_state_cache; 33 static struct kmem_cache *extent_buffer_cache; 34 static struct bio_set btrfs_bioset; 35 36 static inline bool extent_state_in_tree(const struct extent_state *state) 37 { 38 return !RB_EMPTY_NODE(&state->rb_node); 39 } 40 41 #ifdef CONFIG_BTRFS_DEBUG 42 static LIST_HEAD(states); 43 static DEFINE_SPINLOCK(leak_lock); 44 45 static inline void btrfs_leak_debug_add(spinlock_t *lock, 46 struct list_head *new, 47 struct list_head *head) 48 { 49 unsigned long flags; 50 51 spin_lock_irqsave(lock, flags); 52 list_add(new, head); 53 spin_unlock_irqrestore(lock, flags); 54 } 55 56 static inline void btrfs_leak_debug_del(spinlock_t *lock, 57 struct list_head *entry) 58 { 59 unsigned long flags; 60 61 spin_lock_irqsave(lock, flags); 62 list_del(entry); 63 spin_unlock_irqrestore(lock, flags); 64 } 65 66 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 67 { 68 struct extent_buffer *eb; 69 unsigned long flags; 70 71 /* 72 * If we didn't get into open_ctree our allocated_ebs will not be 73 * initialized, so just skip this. 74 */ 75 if (!fs_info->allocated_ebs.next) 76 return; 77 78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 79 while (!list_empty(&fs_info->allocated_ebs)) { 80 eb = list_first_entry(&fs_info->allocated_ebs, 81 struct extent_buffer, leak_list); 82 pr_err( 83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 85 btrfs_header_owner(eb)); 86 list_del(&eb->leak_list); 87 kmem_cache_free(extent_buffer_cache, eb); 88 } 89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 90 } 91 92 static inline void btrfs_extent_state_leak_debug_check(void) 93 { 94 struct extent_state *state; 95 96 while (!list_empty(&states)) { 97 state = list_entry(states.next, struct extent_state, leak_list); 98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 99 state->start, state->end, state->state, 100 extent_state_in_tree(state), 101 refcount_read(&state->refs)); 102 list_del(&state->leak_list); 103 kmem_cache_free(extent_state_cache, state); 104 } 105 } 106 107 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 109 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 110 struct extent_io_tree *tree, u64 start, u64 end) 111 { 112 struct inode *inode = tree->private_data; 113 u64 isize; 114 115 if (!inode || !is_data_inode(inode)) 116 return; 117 118 isize = i_size_read(inode); 119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 121 "%s: ino %llu isize %llu odd range [%llu,%llu]", 122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 123 } 124 } 125 #else 126 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 127 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 128 #define btrfs_extent_state_leak_debug_check() do {} while (0) 129 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 130 #endif 131 132 struct tree_entry { 133 u64 start; 134 u64 end; 135 struct rb_node rb_node; 136 }; 137 138 struct extent_page_data { 139 struct btrfs_bio_ctrl bio_ctrl; 140 /* tells writepage not to lock the state bits for this range 141 * it still does the unlocking 142 */ 143 unsigned int extent_locked:1; 144 145 /* tells the submit_bio code to use REQ_SYNC */ 146 unsigned int sync_io:1; 147 }; 148 149 static int add_extent_changeset(struct extent_state *state, u32 bits, 150 struct extent_changeset *changeset, 151 int set) 152 { 153 int ret; 154 155 if (!changeset) 156 return 0; 157 if (set && (state->state & bits) == bits) 158 return 0; 159 if (!set && (state->state & bits) == 0) 160 return 0; 161 changeset->bytes_changed += state->end - state->start + 1; 162 ret = ulist_add(&changeset->range_changed, state->start, state->end, 163 GFP_ATOMIC); 164 return ret; 165 } 166 167 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 168 unsigned long bio_flags) 169 { 170 blk_status_t ret = 0; 171 struct extent_io_tree *tree = bio->bi_private; 172 173 bio->bi_private = NULL; 174 175 /* Caller should ensure the bio has at least some range added */ 176 ASSERT(bio->bi_iter.bi_size); 177 if (is_data_inode(tree->private_data)) 178 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 179 bio_flags); 180 else 181 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 182 mirror_num, bio_flags); 183 184 return blk_status_to_errno(ret); 185 } 186 187 /* Cleanup unsubmitted bios */ 188 static void end_write_bio(struct extent_page_data *epd, int ret) 189 { 190 struct bio *bio = epd->bio_ctrl.bio; 191 192 if (bio) { 193 bio->bi_status = errno_to_blk_status(ret); 194 bio_endio(bio); 195 epd->bio_ctrl.bio = NULL; 196 } 197 } 198 199 /* 200 * Submit bio from extent page data via submit_one_bio 201 * 202 * Return 0 if everything is OK. 203 * Return <0 for error. 204 */ 205 static int __must_check flush_write_bio(struct extent_page_data *epd) 206 { 207 int ret = 0; 208 struct bio *bio = epd->bio_ctrl.bio; 209 210 if (bio) { 211 ret = submit_one_bio(bio, 0, 0); 212 /* 213 * Clean up of epd->bio is handled by its endio function. 214 * And endio is either triggered by successful bio execution 215 * or the error handler of submit bio hook. 216 * So at this point, no matter what happened, we don't need 217 * to clean up epd->bio. 218 */ 219 epd->bio_ctrl.bio = NULL; 220 } 221 return ret; 222 } 223 224 int __init extent_state_cache_init(void) 225 { 226 extent_state_cache = kmem_cache_create("btrfs_extent_state", 227 sizeof(struct extent_state), 0, 228 SLAB_MEM_SPREAD, NULL); 229 if (!extent_state_cache) 230 return -ENOMEM; 231 return 0; 232 } 233 234 int __init extent_io_init(void) 235 { 236 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 237 sizeof(struct extent_buffer), 0, 238 SLAB_MEM_SPREAD, NULL); 239 if (!extent_buffer_cache) 240 return -ENOMEM; 241 242 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 243 offsetof(struct btrfs_bio, bio), 244 BIOSET_NEED_BVECS)) 245 goto free_buffer_cache; 246 247 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 248 goto free_bioset; 249 250 return 0; 251 252 free_bioset: 253 bioset_exit(&btrfs_bioset); 254 255 free_buffer_cache: 256 kmem_cache_destroy(extent_buffer_cache); 257 extent_buffer_cache = NULL; 258 return -ENOMEM; 259 } 260 261 void __cold extent_state_cache_exit(void) 262 { 263 btrfs_extent_state_leak_debug_check(); 264 kmem_cache_destroy(extent_state_cache); 265 } 266 267 void __cold extent_io_exit(void) 268 { 269 /* 270 * Make sure all delayed rcu free are flushed before we 271 * destroy caches. 272 */ 273 rcu_barrier(); 274 kmem_cache_destroy(extent_buffer_cache); 275 bioset_exit(&btrfs_bioset); 276 } 277 278 /* 279 * For the file_extent_tree, we want to hold the inode lock when we lookup and 280 * update the disk_i_size, but lockdep will complain because our io_tree we hold 281 * the tree lock and get the inode lock when setting delalloc. These two things 282 * are unrelated, so make a class for the file_extent_tree so we don't get the 283 * two locking patterns mixed up. 284 */ 285 static struct lock_class_key file_extent_tree_class; 286 287 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 288 struct extent_io_tree *tree, unsigned int owner, 289 void *private_data) 290 { 291 tree->fs_info = fs_info; 292 tree->state = RB_ROOT; 293 tree->dirty_bytes = 0; 294 spin_lock_init(&tree->lock); 295 tree->private_data = private_data; 296 tree->owner = owner; 297 if (owner == IO_TREE_INODE_FILE_EXTENT) 298 lockdep_set_class(&tree->lock, &file_extent_tree_class); 299 } 300 301 void extent_io_tree_release(struct extent_io_tree *tree) 302 { 303 spin_lock(&tree->lock); 304 /* 305 * Do a single barrier for the waitqueue_active check here, the state 306 * of the waitqueue should not change once extent_io_tree_release is 307 * called. 308 */ 309 smp_mb(); 310 while (!RB_EMPTY_ROOT(&tree->state)) { 311 struct rb_node *node; 312 struct extent_state *state; 313 314 node = rb_first(&tree->state); 315 state = rb_entry(node, struct extent_state, rb_node); 316 rb_erase(&state->rb_node, &tree->state); 317 RB_CLEAR_NODE(&state->rb_node); 318 /* 319 * btree io trees aren't supposed to have tasks waiting for 320 * changes in the flags of extent states ever. 321 */ 322 ASSERT(!waitqueue_active(&state->wq)); 323 free_extent_state(state); 324 325 cond_resched_lock(&tree->lock); 326 } 327 spin_unlock(&tree->lock); 328 } 329 330 static struct extent_state *alloc_extent_state(gfp_t mask) 331 { 332 struct extent_state *state; 333 334 /* 335 * The given mask might be not appropriate for the slab allocator, 336 * drop the unsupported bits 337 */ 338 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 339 state = kmem_cache_alloc(extent_state_cache, mask); 340 if (!state) 341 return state; 342 state->state = 0; 343 state->failrec = NULL; 344 RB_CLEAR_NODE(&state->rb_node); 345 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 346 refcount_set(&state->refs, 1); 347 init_waitqueue_head(&state->wq); 348 trace_alloc_extent_state(state, mask, _RET_IP_); 349 return state; 350 } 351 352 void free_extent_state(struct extent_state *state) 353 { 354 if (!state) 355 return; 356 if (refcount_dec_and_test(&state->refs)) { 357 WARN_ON(extent_state_in_tree(state)); 358 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 359 trace_free_extent_state(state, _RET_IP_); 360 kmem_cache_free(extent_state_cache, state); 361 } 362 } 363 364 static struct rb_node *tree_insert(struct rb_root *root, 365 struct rb_node *search_start, 366 u64 offset, 367 struct rb_node *node, 368 struct rb_node ***p_in, 369 struct rb_node **parent_in) 370 { 371 struct rb_node **p; 372 struct rb_node *parent = NULL; 373 struct tree_entry *entry; 374 375 if (p_in && parent_in) { 376 p = *p_in; 377 parent = *parent_in; 378 goto do_insert; 379 } 380 381 p = search_start ? &search_start : &root->rb_node; 382 while (*p) { 383 parent = *p; 384 entry = rb_entry(parent, struct tree_entry, rb_node); 385 386 if (offset < entry->start) 387 p = &(*p)->rb_left; 388 else if (offset > entry->end) 389 p = &(*p)->rb_right; 390 else 391 return parent; 392 } 393 394 do_insert: 395 rb_link_node(node, parent, p); 396 rb_insert_color(node, root); 397 return NULL; 398 } 399 400 /** 401 * Search @tree for an entry that contains @offset. Such entry would have 402 * entry->start <= offset && entry->end >= offset. 403 * 404 * @tree: the tree to search 405 * @offset: offset that should fall within an entry in @tree 406 * @next_ret: pointer to the first entry whose range ends after @offset 407 * @prev_ret: pointer to the first entry whose range begins before @offset 408 * @p_ret: pointer where new node should be anchored (used when inserting an 409 * entry in the tree) 410 * @parent_ret: points to entry which would have been the parent of the entry, 411 * containing @offset 412 * 413 * This function returns a pointer to the entry that contains @offset byte 414 * address. If no such entry exists, then NULL is returned and the other 415 * pointer arguments to the function are filled, otherwise the found entry is 416 * returned and other pointers are left untouched. 417 */ 418 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 419 struct rb_node **next_ret, 420 struct rb_node **prev_ret, 421 struct rb_node ***p_ret, 422 struct rb_node **parent_ret) 423 { 424 struct rb_root *root = &tree->state; 425 struct rb_node **n = &root->rb_node; 426 struct rb_node *prev = NULL; 427 struct rb_node *orig_prev = NULL; 428 struct tree_entry *entry; 429 struct tree_entry *prev_entry = NULL; 430 431 while (*n) { 432 prev = *n; 433 entry = rb_entry(prev, struct tree_entry, rb_node); 434 prev_entry = entry; 435 436 if (offset < entry->start) 437 n = &(*n)->rb_left; 438 else if (offset > entry->end) 439 n = &(*n)->rb_right; 440 else 441 return *n; 442 } 443 444 if (p_ret) 445 *p_ret = n; 446 if (parent_ret) 447 *parent_ret = prev; 448 449 if (next_ret) { 450 orig_prev = prev; 451 while (prev && offset > prev_entry->end) { 452 prev = rb_next(prev); 453 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 454 } 455 *next_ret = prev; 456 prev = orig_prev; 457 } 458 459 if (prev_ret) { 460 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 461 while (prev && offset < prev_entry->start) { 462 prev = rb_prev(prev); 463 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 464 } 465 *prev_ret = prev; 466 } 467 return NULL; 468 } 469 470 static inline struct rb_node * 471 tree_search_for_insert(struct extent_io_tree *tree, 472 u64 offset, 473 struct rb_node ***p_ret, 474 struct rb_node **parent_ret) 475 { 476 struct rb_node *next= NULL; 477 struct rb_node *ret; 478 479 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 480 if (!ret) 481 return next; 482 return ret; 483 } 484 485 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 486 u64 offset) 487 { 488 return tree_search_for_insert(tree, offset, NULL, NULL); 489 } 490 491 /* 492 * utility function to look for merge candidates inside a given range. 493 * Any extents with matching state are merged together into a single 494 * extent in the tree. Extents with EXTENT_IO in their state field 495 * are not merged because the end_io handlers need to be able to do 496 * operations on them without sleeping (or doing allocations/splits). 497 * 498 * This should be called with the tree lock held. 499 */ 500 static void merge_state(struct extent_io_tree *tree, 501 struct extent_state *state) 502 { 503 struct extent_state *other; 504 struct rb_node *other_node; 505 506 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 507 return; 508 509 other_node = rb_prev(&state->rb_node); 510 if (other_node) { 511 other = rb_entry(other_node, struct extent_state, rb_node); 512 if (other->end == state->start - 1 && 513 other->state == state->state) { 514 if (tree->private_data && 515 is_data_inode(tree->private_data)) 516 btrfs_merge_delalloc_extent(tree->private_data, 517 state, other); 518 state->start = other->start; 519 rb_erase(&other->rb_node, &tree->state); 520 RB_CLEAR_NODE(&other->rb_node); 521 free_extent_state(other); 522 } 523 } 524 other_node = rb_next(&state->rb_node); 525 if (other_node) { 526 other = rb_entry(other_node, struct extent_state, rb_node); 527 if (other->start == state->end + 1 && 528 other->state == state->state) { 529 if (tree->private_data && 530 is_data_inode(tree->private_data)) 531 btrfs_merge_delalloc_extent(tree->private_data, 532 state, other); 533 state->end = other->end; 534 rb_erase(&other->rb_node, &tree->state); 535 RB_CLEAR_NODE(&other->rb_node); 536 free_extent_state(other); 537 } 538 } 539 } 540 541 static void set_state_bits(struct extent_io_tree *tree, 542 struct extent_state *state, u32 *bits, 543 struct extent_changeset *changeset); 544 545 /* 546 * insert an extent_state struct into the tree. 'bits' are set on the 547 * struct before it is inserted. 548 * 549 * This may return -EEXIST if the extent is already there, in which case the 550 * state struct is freed. 551 * 552 * The tree lock is not taken internally. This is a utility function and 553 * probably isn't what you want to call (see set/clear_extent_bit). 554 */ 555 static int insert_state(struct extent_io_tree *tree, 556 struct extent_state *state, u64 start, u64 end, 557 struct rb_node ***p, 558 struct rb_node **parent, 559 u32 *bits, struct extent_changeset *changeset) 560 { 561 struct rb_node *node; 562 563 if (end < start) { 564 btrfs_err(tree->fs_info, 565 "insert state: end < start %llu %llu", end, start); 566 WARN_ON(1); 567 } 568 state->start = start; 569 state->end = end; 570 571 set_state_bits(tree, state, bits, changeset); 572 573 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 574 if (node) { 575 struct extent_state *found; 576 found = rb_entry(node, struct extent_state, rb_node); 577 btrfs_err(tree->fs_info, 578 "found node %llu %llu on insert of %llu %llu", 579 found->start, found->end, start, end); 580 return -EEXIST; 581 } 582 merge_state(tree, state); 583 return 0; 584 } 585 586 /* 587 * split a given extent state struct in two, inserting the preallocated 588 * struct 'prealloc' as the newly created second half. 'split' indicates an 589 * offset inside 'orig' where it should be split. 590 * 591 * Before calling, 592 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 593 * are two extent state structs in the tree: 594 * prealloc: [orig->start, split - 1] 595 * orig: [ split, orig->end ] 596 * 597 * The tree locks are not taken by this function. They need to be held 598 * by the caller. 599 */ 600 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 601 struct extent_state *prealloc, u64 split) 602 { 603 struct rb_node *node; 604 605 if (tree->private_data && is_data_inode(tree->private_data)) 606 btrfs_split_delalloc_extent(tree->private_data, orig, split); 607 608 prealloc->start = orig->start; 609 prealloc->end = split - 1; 610 prealloc->state = orig->state; 611 orig->start = split; 612 613 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 614 &prealloc->rb_node, NULL, NULL); 615 if (node) { 616 free_extent_state(prealloc); 617 return -EEXIST; 618 } 619 return 0; 620 } 621 622 static struct extent_state *next_state(struct extent_state *state) 623 { 624 struct rb_node *next = rb_next(&state->rb_node); 625 if (next) 626 return rb_entry(next, struct extent_state, rb_node); 627 else 628 return NULL; 629 } 630 631 /* 632 * utility function to clear some bits in an extent state struct. 633 * it will optionally wake up anyone waiting on this state (wake == 1). 634 * 635 * If no bits are set on the state struct after clearing things, the 636 * struct is freed and removed from the tree 637 */ 638 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 639 struct extent_state *state, 640 u32 *bits, int wake, 641 struct extent_changeset *changeset) 642 { 643 struct extent_state *next; 644 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 645 int ret; 646 647 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 648 u64 range = state->end - state->start + 1; 649 WARN_ON(range > tree->dirty_bytes); 650 tree->dirty_bytes -= range; 651 } 652 653 if (tree->private_data && is_data_inode(tree->private_data)) 654 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 655 656 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 657 BUG_ON(ret < 0); 658 state->state &= ~bits_to_clear; 659 if (wake) 660 wake_up(&state->wq); 661 if (state->state == 0) { 662 next = next_state(state); 663 if (extent_state_in_tree(state)) { 664 rb_erase(&state->rb_node, &tree->state); 665 RB_CLEAR_NODE(&state->rb_node); 666 free_extent_state(state); 667 } else { 668 WARN_ON(1); 669 } 670 } else { 671 merge_state(tree, state); 672 next = next_state(state); 673 } 674 return next; 675 } 676 677 static struct extent_state * 678 alloc_extent_state_atomic(struct extent_state *prealloc) 679 { 680 if (!prealloc) 681 prealloc = alloc_extent_state(GFP_ATOMIC); 682 683 return prealloc; 684 } 685 686 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 687 { 688 btrfs_panic(tree->fs_info, err, 689 "locking error: extent tree was modified by another thread while locked"); 690 } 691 692 /* 693 * clear some bits on a range in the tree. This may require splitting 694 * or inserting elements in the tree, so the gfp mask is used to 695 * indicate which allocations or sleeping are allowed. 696 * 697 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 698 * the given range from the tree regardless of state (ie for truncate). 699 * 700 * the range [start, end] is inclusive. 701 * 702 * This takes the tree lock, and returns 0 on success and < 0 on error. 703 */ 704 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 705 u32 bits, int wake, int delete, 706 struct extent_state **cached_state, 707 gfp_t mask, struct extent_changeset *changeset) 708 { 709 struct extent_state *state; 710 struct extent_state *cached; 711 struct extent_state *prealloc = NULL; 712 struct rb_node *node; 713 u64 last_end; 714 int err; 715 int clear = 0; 716 717 btrfs_debug_check_extent_io_range(tree, start, end); 718 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 719 720 if (bits & EXTENT_DELALLOC) 721 bits |= EXTENT_NORESERVE; 722 723 if (delete) 724 bits |= ~EXTENT_CTLBITS; 725 726 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 727 clear = 1; 728 again: 729 if (!prealloc && gfpflags_allow_blocking(mask)) { 730 /* 731 * Don't care for allocation failure here because we might end 732 * up not needing the pre-allocated extent state at all, which 733 * is the case if we only have in the tree extent states that 734 * cover our input range and don't cover too any other range. 735 * If we end up needing a new extent state we allocate it later. 736 */ 737 prealloc = alloc_extent_state(mask); 738 } 739 740 spin_lock(&tree->lock); 741 if (cached_state) { 742 cached = *cached_state; 743 744 if (clear) { 745 *cached_state = NULL; 746 cached_state = NULL; 747 } 748 749 if (cached && extent_state_in_tree(cached) && 750 cached->start <= start && cached->end > start) { 751 if (clear) 752 refcount_dec(&cached->refs); 753 state = cached; 754 goto hit_next; 755 } 756 if (clear) 757 free_extent_state(cached); 758 } 759 /* 760 * this search will find the extents that end after 761 * our range starts 762 */ 763 node = tree_search(tree, start); 764 if (!node) 765 goto out; 766 state = rb_entry(node, struct extent_state, rb_node); 767 hit_next: 768 if (state->start > end) 769 goto out; 770 WARN_ON(state->end < start); 771 last_end = state->end; 772 773 /* the state doesn't have the wanted bits, go ahead */ 774 if (!(state->state & bits)) { 775 state = next_state(state); 776 goto next; 777 } 778 779 /* 780 * | ---- desired range ---- | 781 * | state | or 782 * | ------------- state -------------- | 783 * 784 * We need to split the extent we found, and may flip 785 * bits on second half. 786 * 787 * If the extent we found extends past our range, we 788 * just split and search again. It'll get split again 789 * the next time though. 790 * 791 * If the extent we found is inside our range, we clear 792 * the desired bit on it. 793 */ 794 795 if (state->start < start) { 796 prealloc = alloc_extent_state_atomic(prealloc); 797 BUG_ON(!prealloc); 798 err = split_state(tree, state, prealloc, start); 799 if (err) 800 extent_io_tree_panic(tree, err); 801 802 prealloc = NULL; 803 if (err) 804 goto out; 805 if (state->end <= end) { 806 state = clear_state_bit(tree, state, &bits, wake, 807 changeset); 808 goto next; 809 } 810 goto search_again; 811 } 812 /* 813 * | ---- desired range ---- | 814 * | state | 815 * We need to split the extent, and clear the bit 816 * on the first half 817 */ 818 if (state->start <= end && state->end > end) { 819 prealloc = alloc_extent_state_atomic(prealloc); 820 BUG_ON(!prealloc); 821 err = split_state(tree, state, prealloc, end + 1); 822 if (err) 823 extent_io_tree_panic(tree, err); 824 825 if (wake) 826 wake_up(&state->wq); 827 828 clear_state_bit(tree, prealloc, &bits, wake, changeset); 829 830 prealloc = NULL; 831 goto out; 832 } 833 834 state = clear_state_bit(tree, state, &bits, wake, changeset); 835 next: 836 if (last_end == (u64)-1) 837 goto out; 838 start = last_end + 1; 839 if (start <= end && state && !need_resched()) 840 goto hit_next; 841 842 search_again: 843 if (start > end) 844 goto out; 845 spin_unlock(&tree->lock); 846 if (gfpflags_allow_blocking(mask)) 847 cond_resched(); 848 goto again; 849 850 out: 851 spin_unlock(&tree->lock); 852 if (prealloc) 853 free_extent_state(prealloc); 854 855 return 0; 856 857 } 858 859 static void wait_on_state(struct extent_io_tree *tree, 860 struct extent_state *state) 861 __releases(tree->lock) 862 __acquires(tree->lock) 863 { 864 DEFINE_WAIT(wait); 865 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 866 spin_unlock(&tree->lock); 867 schedule(); 868 spin_lock(&tree->lock); 869 finish_wait(&state->wq, &wait); 870 } 871 872 /* 873 * waits for one or more bits to clear on a range in the state tree. 874 * The range [start, end] is inclusive. 875 * The tree lock is taken by this function 876 */ 877 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 878 u32 bits) 879 { 880 struct extent_state *state; 881 struct rb_node *node; 882 883 btrfs_debug_check_extent_io_range(tree, start, end); 884 885 spin_lock(&tree->lock); 886 again: 887 while (1) { 888 /* 889 * this search will find all the extents that end after 890 * our range starts 891 */ 892 node = tree_search(tree, start); 893 process_node: 894 if (!node) 895 break; 896 897 state = rb_entry(node, struct extent_state, rb_node); 898 899 if (state->start > end) 900 goto out; 901 902 if (state->state & bits) { 903 start = state->start; 904 refcount_inc(&state->refs); 905 wait_on_state(tree, state); 906 free_extent_state(state); 907 goto again; 908 } 909 start = state->end + 1; 910 911 if (start > end) 912 break; 913 914 if (!cond_resched_lock(&tree->lock)) { 915 node = rb_next(node); 916 goto process_node; 917 } 918 } 919 out: 920 spin_unlock(&tree->lock); 921 } 922 923 static void set_state_bits(struct extent_io_tree *tree, 924 struct extent_state *state, 925 u32 *bits, struct extent_changeset *changeset) 926 { 927 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 928 int ret; 929 930 if (tree->private_data && is_data_inode(tree->private_data)) 931 btrfs_set_delalloc_extent(tree->private_data, state, bits); 932 933 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 934 u64 range = state->end - state->start + 1; 935 tree->dirty_bytes += range; 936 } 937 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 938 BUG_ON(ret < 0); 939 state->state |= bits_to_set; 940 } 941 942 static void cache_state_if_flags(struct extent_state *state, 943 struct extent_state **cached_ptr, 944 unsigned flags) 945 { 946 if (cached_ptr && !(*cached_ptr)) { 947 if (!flags || (state->state & flags)) { 948 *cached_ptr = state; 949 refcount_inc(&state->refs); 950 } 951 } 952 } 953 954 static void cache_state(struct extent_state *state, 955 struct extent_state **cached_ptr) 956 { 957 return cache_state_if_flags(state, cached_ptr, 958 EXTENT_LOCKED | EXTENT_BOUNDARY); 959 } 960 961 /* 962 * set some bits on a range in the tree. This may require allocations or 963 * sleeping, so the gfp mask is used to indicate what is allowed. 964 * 965 * If any of the exclusive bits are set, this will fail with -EEXIST if some 966 * part of the range already has the desired bits set. The start of the 967 * existing range is returned in failed_start in this case. 968 * 969 * [start, end] is inclusive This takes the tree lock. 970 */ 971 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 972 u32 exclusive_bits, u64 *failed_start, 973 struct extent_state **cached_state, gfp_t mask, 974 struct extent_changeset *changeset) 975 { 976 struct extent_state *state; 977 struct extent_state *prealloc = NULL; 978 struct rb_node *node; 979 struct rb_node **p; 980 struct rb_node *parent; 981 int err = 0; 982 u64 last_start; 983 u64 last_end; 984 985 btrfs_debug_check_extent_io_range(tree, start, end); 986 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 987 988 if (exclusive_bits) 989 ASSERT(failed_start); 990 else 991 ASSERT(failed_start == NULL); 992 again: 993 if (!prealloc && gfpflags_allow_blocking(mask)) { 994 /* 995 * Don't care for allocation failure here because we might end 996 * up not needing the pre-allocated extent state at all, which 997 * is the case if we only have in the tree extent states that 998 * cover our input range and don't cover too any other range. 999 * If we end up needing a new extent state we allocate it later. 1000 */ 1001 prealloc = alloc_extent_state(mask); 1002 } 1003 1004 spin_lock(&tree->lock); 1005 if (cached_state && *cached_state) { 1006 state = *cached_state; 1007 if (state->start <= start && state->end > start && 1008 extent_state_in_tree(state)) { 1009 node = &state->rb_node; 1010 goto hit_next; 1011 } 1012 } 1013 /* 1014 * this search will find all the extents that end after 1015 * our range starts. 1016 */ 1017 node = tree_search_for_insert(tree, start, &p, &parent); 1018 if (!node) { 1019 prealloc = alloc_extent_state_atomic(prealloc); 1020 BUG_ON(!prealloc); 1021 err = insert_state(tree, prealloc, start, end, 1022 &p, &parent, &bits, changeset); 1023 if (err) 1024 extent_io_tree_panic(tree, err); 1025 1026 cache_state(prealloc, cached_state); 1027 prealloc = NULL; 1028 goto out; 1029 } 1030 state = rb_entry(node, struct extent_state, rb_node); 1031 hit_next: 1032 last_start = state->start; 1033 last_end = state->end; 1034 1035 /* 1036 * | ---- desired range ---- | 1037 * | state | 1038 * 1039 * Just lock what we found and keep going 1040 */ 1041 if (state->start == start && state->end <= end) { 1042 if (state->state & exclusive_bits) { 1043 *failed_start = state->start; 1044 err = -EEXIST; 1045 goto out; 1046 } 1047 1048 set_state_bits(tree, state, &bits, changeset); 1049 cache_state(state, cached_state); 1050 merge_state(tree, state); 1051 if (last_end == (u64)-1) 1052 goto out; 1053 start = last_end + 1; 1054 state = next_state(state); 1055 if (start < end && state && state->start == start && 1056 !need_resched()) 1057 goto hit_next; 1058 goto search_again; 1059 } 1060 1061 /* 1062 * | ---- desired range ---- | 1063 * | state | 1064 * or 1065 * | ------------- state -------------- | 1066 * 1067 * We need to split the extent we found, and may flip bits on 1068 * second half. 1069 * 1070 * If the extent we found extends past our 1071 * range, we just split and search again. It'll get split 1072 * again the next time though. 1073 * 1074 * If the extent we found is inside our range, we set the 1075 * desired bit on it. 1076 */ 1077 if (state->start < start) { 1078 if (state->state & exclusive_bits) { 1079 *failed_start = start; 1080 err = -EEXIST; 1081 goto out; 1082 } 1083 1084 /* 1085 * If this extent already has all the bits we want set, then 1086 * skip it, not necessary to split it or do anything with it. 1087 */ 1088 if ((state->state & bits) == bits) { 1089 start = state->end + 1; 1090 cache_state(state, cached_state); 1091 goto search_again; 1092 } 1093 1094 prealloc = alloc_extent_state_atomic(prealloc); 1095 BUG_ON(!prealloc); 1096 err = split_state(tree, state, prealloc, start); 1097 if (err) 1098 extent_io_tree_panic(tree, err); 1099 1100 prealloc = NULL; 1101 if (err) 1102 goto out; 1103 if (state->end <= end) { 1104 set_state_bits(tree, state, &bits, changeset); 1105 cache_state(state, cached_state); 1106 merge_state(tree, state); 1107 if (last_end == (u64)-1) 1108 goto out; 1109 start = last_end + 1; 1110 state = next_state(state); 1111 if (start < end && state && state->start == start && 1112 !need_resched()) 1113 goto hit_next; 1114 } 1115 goto search_again; 1116 } 1117 /* 1118 * | ---- desired range ---- | 1119 * | state | or | state | 1120 * 1121 * There's a hole, we need to insert something in it and 1122 * ignore the extent we found. 1123 */ 1124 if (state->start > start) { 1125 u64 this_end; 1126 if (end < last_start) 1127 this_end = end; 1128 else 1129 this_end = last_start - 1; 1130 1131 prealloc = alloc_extent_state_atomic(prealloc); 1132 BUG_ON(!prealloc); 1133 1134 /* 1135 * Avoid to free 'prealloc' if it can be merged with 1136 * the later extent. 1137 */ 1138 err = insert_state(tree, prealloc, start, this_end, 1139 NULL, NULL, &bits, changeset); 1140 if (err) 1141 extent_io_tree_panic(tree, err); 1142 1143 cache_state(prealloc, cached_state); 1144 prealloc = NULL; 1145 start = this_end + 1; 1146 goto search_again; 1147 } 1148 /* 1149 * | ---- desired range ---- | 1150 * | state | 1151 * We need to split the extent, and set the bit 1152 * on the first half 1153 */ 1154 if (state->start <= end && state->end > end) { 1155 if (state->state & exclusive_bits) { 1156 *failed_start = start; 1157 err = -EEXIST; 1158 goto out; 1159 } 1160 1161 prealloc = alloc_extent_state_atomic(prealloc); 1162 BUG_ON(!prealloc); 1163 err = split_state(tree, state, prealloc, end + 1); 1164 if (err) 1165 extent_io_tree_panic(tree, err); 1166 1167 set_state_bits(tree, prealloc, &bits, changeset); 1168 cache_state(prealloc, cached_state); 1169 merge_state(tree, prealloc); 1170 prealloc = NULL; 1171 goto out; 1172 } 1173 1174 search_again: 1175 if (start > end) 1176 goto out; 1177 spin_unlock(&tree->lock); 1178 if (gfpflags_allow_blocking(mask)) 1179 cond_resched(); 1180 goto again; 1181 1182 out: 1183 spin_unlock(&tree->lock); 1184 if (prealloc) 1185 free_extent_state(prealloc); 1186 1187 return err; 1188 1189 } 1190 1191 /** 1192 * convert_extent_bit - convert all bits in a given range from one bit to 1193 * another 1194 * @tree: the io tree to search 1195 * @start: the start offset in bytes 1196 * @end: the end offset in bytes (inclusive) 1197 * @bits: the bits to set in this range 1198 * @clear_bits: the bits to clear in this range 1199 * @cached_state: state that we're going to cache 1200 * 1201 * This will go through and set bits for the given range. If any states exist 1202 * already in this range they are set with the given bit and cleared of the 1203 * clear_bits. This is only meant to be used by things that are mergeable, ie 1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1205 * boundary bits like LOCK. 1206 * 1207 * All allocations are done with GFP_NOFS. 1208 */ 1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1210 u32 bits, u32 clear_bits, 1211 struct extent_state **cached_state) 1212 { 1213 struct extent_state *state; 1214 struct extent_state *prealloc = NULL; 1215 struct rb_node *node; 1216 struct rb_node **p; 1217 struct rb_node *parent; 1218 int err = 0; 1219 u64 last_start; 1220 u64 last_end; 1221 bool first_iteration = true; 1222 1223 btrfs_debug_check_extent_io_range(tree, start, end); 1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1225 clear_bits); 1226 1227 again: 1228 if (!prealloc) { 1229 /* 1230 * Best effort, don't worry if extent state allocation fails 1231 * here for the first iteration. We might have a cached state 1232 * that matches exactly the target range, in which case no 1233 * extent state allocations are needed. We'll only know this 1234 * after locking the tree. 1235 */ 1236 prealloc = alloc_extent_state(GFP_NOFS); 1237 if (!prealloc && !first_iteration) 1238 return -ENOMEM; 1239 } 1240 1241 spin_lock(&tree->lock); 1242 if (cached_state && *cached_state) { 1243 state = *cached_state; 1244 if (state->start <= start && state->end > start && 1245 extent_state_in_tree(state)) { 1246 node = &state->rb_node; 1247 goto hit_next; 1248 } 1249 } 1250 1251 /* 1252 * this search will find all the extents that end after 1253 * our range starts. 1254 */ 1255 node = tree_search_for_insert(tree, start, &p, &parent); 1256 if (!node) { 1257 prealloc = alloc_extent_state_atomic(prealloc); 1258 if (!prealloc) { 1259 err = -ENOMEM; 1260 goto out; 1261 } 1262 err = insert_state(tree, prealloc, start, end, 1263 &p, &parent, &bits, NULL); 1264 if (err) 1265 extent_io_tree_panic(tree, err); 1266 cache_state(prealloc, cached_state); 1267 prealloc = NULL; 1268 goto out; 1269 } 1270 state = rb_entry(node, struct extent_state, rb_node); 1271 hit_next: 1272 last_start = state->start; 1273 last_end = state->end; 1274 1275 /* 1276 * | ---- desired range ---- | 1277 * | state | 1278 * 1279 * Just lock what we found and keep going 1280 */ 1281 if (state->start == start && state->end <= end) { 1282 set_state_bits(tree, state, &bits, NULL); 1283 cache_state(state, cached_state); 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1285 if (last_end == (u64)-1) 1286 goto out; 1287 start = last_end + 1; 1288 if (start < end && state && state->start == start && 1289 !need_resched()) 1290 goto hit_next; 1291 goto search_again; 1292 } 1293 1294 /* 1295 * | ---- desired range ---- | 1296 * | state | 1297 * or 1298 * | ------------- state -------------- | 1299 * 1300 * We need to split the extent we found, and may flip bits on 1301 * second half. 1302 * 1303 * If the extent we found extends past our 1304 * range, we just split and search again. It'll get split 1305 * again the next time though. 1306 * 1307 * If the extent we found is inside our range, we set the 1308 * desired bit on it. 1309 */ 1310 if (state->start < start) { 1311 prealloc = alloc_extent_state_atomic(prealloc); 1312 if (!prealloc) { 1313 err = -ENOMEM; 1314 goto out; 1315 } 1316 err = split_state(tree, state, prealloc, start); 1317 if (err) 1318 extent_io_tree_panic(tree, err); 1319 prealloc = NULL; 1320 if (err) 1321 goto out; 1322 if (state->end <= end) { 1323 set_state_bits(tree, state, &bits, NULL); 1324 cache_state(state, cached_state); 1325 state = clear_state_bit(tree, state, &clear_bits, 0, 1326 NULL); 1327 if (last_end == (u64)-1) 1328 goto out; 1329 start = last_end + 1; 1330 if (start < end && state && state->start == start && 1331 !need_resched()) 1332 goto hit_next; 1333 } 1334 goto search_again; 1335 } 1336 /* 1337 * | ---- desired range ---- | 1338 * | state | or | state | 1339 * 1340 * There's a hole, we need to insert something in it and 1341 * ignore the extent we found. 1342 */ 1343 if (state->start > start) { 1344 u64 this_end; 1345 if (end < last_start) 1346 this_end = end; 1347 else 1348 this_end = last_start - 1; 1349 1350 prealloc = alloc_extent_state_atomic(prealloc); 1351 if (!prealloc) { 1352 err = -ENOMEM; 1353 goto out; 1354 } 1355 1356 /* 1357 * Avoid to free 'prealloc' if it can be merged with 1358 * the later extent. 1359 */ 1360 err = insert_state(tree, prealloc, start, this_end, 1361 NULL, NULL, &bits, NULL); 1362 if (err) 1363 extent_io_tree_panic(tree, err); 1364 cache_state(prealloc, cached_state); 1365 prealloc = NULL; 1366 start = this_end + 1; 1367 goto search_again; 1368 } 1369 /* 1370 * | ---- desired range ---- | 1371 * | state | 1372 * We need to split the extent, and set the bit 1373 * on the first half 1374 */ 1375 if (state->start <= end && state->end > end) { 1376 prealloc = alloc_extent_state_atomic(prealloc); 1377 if (!prealloc) { 1378 err = -ENOMEM; 1379 goto out; 1380 } 1381 1382 err = split_state(tree, state, prealloc, end + 1); 1383 if (err) 1384 extent_io_tree_panic(tree, err); 1385 1386 set_state_bits(tree, prealloc, &bits, NULL); 1387 cache_state(prealloc, cached_state); 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1389 prealloc = NULL; 1390 goto out; 1391 } 1392 1393 search_again: 1394 if (start > end) 1395 goto out; 1396 spin_unlock(&tree->lock); 1397 cond_resched(); 1398 first_iteration = false; 1399 goto again; 1400 1401 out: 1402 spin_unlock(&tree->lock); 1403 if (prealloc) 1404 free_extent_state(prealloc); 1405 1406 return err; 1407 } 1408 1409 /* wrappers around set/clear extent bit */ 1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1411 u32 bits, struct extent_changeset *changeset) 1412 { 1413 /* 1414 * We don't support EXTENT_LOCKED yet, as current changeset will 1415 * record any bits changed, so for EXTENT_LOCKED case, it will 1416 * either fail with -EEXIST or changeset will record the whole 1417 * range. 1418 */ 1419 BUG_ON(bits & EXTENT_LOCKED); 1420 1421 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1422 changeset); 1423 } 1424 1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1426 u32 bits) 1427 { 1428 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1429 GFP_NOWAIT, NULL); 1430 } 1431 1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1433 u32 bits, int wake, int delete, 1434 struct extent_state **cached) 1435 { 1436 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1437 cached, GFP_NOFS, NULL); 1438 } 1439 1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1441 u32 bits, struct extent_changeset *changeset) 1442 { 1443 /* 1444 * Don't support EXTENT_LOCKED case, same reason as 1445 * set_record_extent_bits(). 1446 */ 1447 BUG_ON(bits & EXTENT_LOCKED); 1448 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1450 changeset); 1451 } 1452 1453 /* 1454 * either insert or lock state struct between start and end use mask to tell 1455 * us if waiting is desired. 1456 */ 1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1458 struct extent_state **cached_state) 1459 { 1460 int err; 1461 u64 failed_start; 1462 1463 while (1) { 1464 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1465 EXTENT_LOCKED, &failed_start, 1466 cached_state, GFP_NOFS, NULL); 1467 if (err == -EEXIST) { 1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1469 start = failed_start; 1470 } else 1471 break; 1472 WARN_ON(start > end); 1473 } 1474 return err; 1475 } 1476 1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1478 { 1479 int err; 1480 u64 failed_start; 1481 1482 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1483 &failed_start, NULL, GFP_NOFS, NULL); 1484 if (err == -EEXIST) { 1485 if (failed_start > start) 1486 clear_extent_bit(tree, start, failed_start - 1, 1487 EXTENT_LOCKED, 1, 0, NULL); 1488 return 0; 1489 } 1490 return 1; 1491 } 1492 1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1494 { 1495 unsigned long index = start >> PAGE_SHIFT; 1496 unsigned long end_index = end >> PAGE_SHIFT; 1497 struct page *page; 1498 1499 while (index <= end_index) { 1500 page = find_get_page(inode->i_mapping, index); 1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1502 clear_page_dirty_for_io(page); 1503 put_page(page); 1504 index++; 1505 } 1506 } 1507 1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1509 { 1510 struct address_space *mapping = inode->i_mapping; 1511 unsigned long index = start >> PAGE_SHIFT; 1512 unsigned long end_index = end >> PAGE_SHIFT; 1513 struct folio *folio; 1514 1515 while (index <= end_index) { 1516 folio = filemap_get_folio(mapping, index); 1517 filemap_dirty_folio(mapping, folio); 1518 folio_account_redirty(folio); 1519 index += folio_nr_pages(folio); 1520 folio_put(folio); 1521 } 1522 } 1523 1524 /* find the first state struct with 'bits' set after 'start', and 1525 * return it. tree->lock must be held. NULL will returned if 1526 * nothing was found after 'start' 1527 */ 1528 static struct extent_state * 1529 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1530 { 1531 struct rb_node *node; 1532 struct extent_state *state; 1533 1534 /* 1535 * this search will find all the extents that end after 1536 * our range starts. 1537 */ 1538 node = tree_search(tree, start); 1539 if (!node) 1540 goto out; 1541 1542 while (1) { 1543 state = rb_entry(node, struct extent_state, rb_node); 1544 if (state->end >= start && (state->state & bits)) 1545 return state; 1546 1547 node = rb_next(node); 1548 if (!node) 1549 break; 1550 } 1551 out: 1552 return NULL; 1553 } 1554 1555 /* 1556 * Find the first offset in the io tree with one or more @bits set. 1557 * 1558 * Note: If there are multiple bits set in @bits, any of them will match. 1559 * 1560 * Return 0 if we find something, and update @start_ret and @end_ret. 1561 * Return 1 if we found nothing. 1562 */ 1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1564 u64 *start_ret, u64 *end_ret, u32 bits, 1565 struct extent_state **cached_state) 1566 { 1567 struct extent_state *state; 1568 int ret = 1; 1569 1570 spin_lock(&tree->lock); 1571 if (cached_state && *cached_state) { 1572 state = *cached_state; 1573 if (state->end == start - 1 && extent_state_in_tree(state)) { 1574 while ((state = next_state(state)) != NULL) { 1575 if (state->state & bits) 1576 goto got_it; 1577 } 1578 free_extent_state(*cached_state); 1579 *cached_state = NULL; 1580 goto out; 1581 } 1582 free_extent_state(*cached_state); 1583 *cached_state = NULL; 1584 } 1585 1586 state = find_first_extent_bit_state(tree, start, bits); 1587 got_it: 1588 if (state) { 1589 cache_state_if_flags(state, cached_state, 0); 1590 *start_ret = state->start; 1591 *end_ret = state->end; 1592 ret = 0; 1593 } 1594 out: 1595 spin_unlock(&tree->lock); 1596 return ret; 1597 } 1598 1599 /** 1600 * Find a contiguous area of bits 1601 * 1602 * @tree: io tree to check 1603 * @start: offset to start the search from 1604 * @start_ret: the first offset we found with the bits set 1605 * @end_ret: the final contiguous range of the bits that were set 1606 * @bits: bits to look for 1607 * 1608 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1609 * to set bits appropriately, and then merge them again. During this time it 1610 * will drop the tree->lock, so use this helper if you want to find the actual 1611 * contiguous area for given bits. We will search to the first bit we find, and 1612 * then walk down the tree until we find a non-contiguous area. The area 1613 * returned will be the full contiguous area with the bits set. 1614 */ 1615 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1616 u64 *start_ret, u64 *end_ret, u32 bits) 1617 { 1618 struct extent_state *state; 1619 int ret = 1; 1620 1621 spin_lock(&tree->lock); 1622 state = find_first_extent_bit_state(tree, start, bits); 1623 if (state) { 1624 *start_ret = state->start; 1625 *end_ret = state->end; 1626 while ((state = next_state(state)) != NULL) { 1627 if (state->start > (*end_ret + 1)) 1628 break; 1629 *end_ret = state->end; 1630 } 1631 ret = 0; 1632 } 1633 spin_unlock(&tree->lock); 1634 return ret; 1635 } 1636 1637 /** 1638 * Find the first range that has @bits not set. This range could start before 1639 * @start. 1640 * 1641 * @tree: the tree to search 1642 * @start: offset at/after which the found extent should start 1643 * @start_ret: records the beginning of the range 1644 * @end_ret: records the end of the range (inclusive) 1645 * @bits: the set of bits which must be unset 1646 * 1647 * Since unallocated range is also considered one which doesn't have the bits 1648 * set it's possible that @end_ret contains -1, this happens in case the range 1649 * spans (last_range_end, end of device]. In this case it's up to the caller to 1650 * trim @end_ret to the appropriate size. 1651 */ 1652 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1653 u64 *start_ret, u64 *end_ret, u32 bits) 1654 { 1655 struct extent_state *state; 1656 struct rb_node *node, *prev = NULL, *next; 1657 1658 spin_lock(&tree->lock); 1659 1660 /* Find first extent with bits cleared */ 1661 while (1) { 1662 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1663 if (!node && !next && !prev) { 1664 /* 1665 * Tree is completely empty, send full range and let 1666 * caller deal with it 1667 */ 1668 *start_ret = 0; 1669 *end_ret = -1; 1670 goto out; 1671 } else if (!node && !next) { 1672 /* 1673 * We are past the last allocated chunk, set start at 1674 * the end of the last extent. 1675 */ 1676 state = rb_entry(prev, struct extent_state, rb_node); 1677 *start_ret = state->end + 1; 1678 *end_ret = -1; 1679 goto out; 1680 } else if (!node) { 1681 node = next; 1682 } 1683 /* 1684 * At this point 'node' either contains 'start' or start is 1685 * before 'node' 1686 */ 1687 state = rb_entry(node, struct extent_state, rb_node); 1688 1689 if (in_range(start, state->start, state->end - state->start + 1)) { 1690 if (state->state & bits) { 1691 /* 1692 * |--range with bits sets--| 1693 * | 1694 * start 1695 */ 1696 start = state->end + 1; 1697 } else { 1698 /* 1699 * 'start' falls within a range that doesn't 1700 * have the bits set, so take its start as 1701 * the beginning of the desired range 1702 * 1703 * |--range with bits cleared----| 1704 * | 1705 * start 1706 */ 1707 *start_ret = state->start; 1708 break; 1709 } 1710 } else { 1711 /* 1712 * |---prev range---|---hole/unset---|---node range---| 1713 * | 1714 * start 1715 * 1716 * or 1717 * 1718 * |---hole/unset--||--first node--| 1719 * 0 | 1720 * start 1721 */ 1722 if (prev) { 1723 state = rb_entry(prev, struct extent_state, 1724 rb_node); 1725 *start_ret = state->end + 1; 1726 } else { 1727 *start_ret = 0; 1728 } 1729 break; 1730 } 1731 } 1732 1733 /* 1734 * Find the longest stretch from start until an entry which has the 1735 * bits set 1736 */ 1737 while (1) { 1738 state = rb_entry(node, struct extent_state, rb_node); 1739 if (state->end >= start && !(state->state & bits)) { 1740 *end_ret = state->end; 1741 } else { 1742 *end_ret = state->start - 1; 1743 break; 1744 } 1745 1746 node = rb_next(node); 1747 if (!node) 1748 break; 1749 } 1750 out: 1751 spin_unlock(&tree->lock); 1752 } 1753 1754 /* 1755 * find a contiguous range of bytes in the file marked as delalloc, not 1756 * more than 'max_bytes'. start and end are used to return the range, 1757 * 1758 * true is returned if we find something, false if nothing was in the tree 1759 */ 1760 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1761 u64 *end, u64 max_bytes, 1762 struct extent_state **cached_state) 1763 { 1764 struct rb_node *node; 1765 struct extent_state *state; 1766 u64 cur_start = *start; 1767 bool found = false; 1768 u64 total_bytes = 0; 1769 1770 spin_lock(&tree->lock); 1771 1772 /* 1773 * this search will find all the extents that end after 1774 * our range starts. 1775 */ 1776 node = tree_search(tree, cur_start); 1777 if (!node) { 1778 *end = (u64)-1; 1779 goto out; 1780 } 1781 1782 while (1) { 1783 state = rb_entry(node, struct extent_state, rb_node); 1784 if (found && (state->start != cur_start || 1785 (state->state & EXTENT_BOUNDARY))) { 1786 goto out; 1787 } 1788 if (!(state->state & EXTENT_DELALLOC)) { 1789 if (!found) 1790 *end = state->end; 1791 goto out; 1792 } 1793 if (!found) { 1794 *start = state->start; 1795 *cached_state = state; 1796 refcount_inc(&state->refs); 1797 } 1798 found = true; 1799 *end = state->end; 1800 cur_start = state->end + 1; 1801 node = rb_next(node); 1802 total_bytes += state->end - state->start + 1; 1803 if (total_bytes >= max_bytes) 1804 break; 1805 if (!node) 1806 break; 1807 } 1808 out: 1809 spin_unlock(&tree->lock); 1810 return found; 1811 } 1812 1813 /* 1814 * Process one page for __process_pages_contig(). 1815 * 1816 * Return >0 if we hit @page == @locked_page. 1817 * Return 0 if we updated the page status. 1818 * Return -EGAIN if the we need to try again. 1819 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1820 */ 1821 static int process_one_page(struct btrfs_fs_info *fs_info, 1822 struct address_space *mapping, 1823 struct page *page, struct page *locked_page, 1824 unsigned long page_ops, u64 start, u64 end) 1825 { 1826 u32 len; 1827 1828 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1829 len = end + 1 - start; 1830 1831 if (page_ops & PAGE_SET_ORDERED) 1832 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1833 if (page_ops & PAGE_SET_ERROR) 1834 btrfs_page_clamp_set_error(fs_info, page, start, len); 1835 if (page_ops & PAGE_START_WRITEBACK) { 1836 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1837 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1838 } 1839 if (page_ops & PAGE_END_WRITEBACK) 1840 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1841 1842 if (page == locked_page) 1843 return 1; 1844 1845 if (page_ops & PAGE_LOCK) { 1846 int ret; 1847 1848 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1849 if (ret) 1850 return ret; 1851 if (!PageDirty(page) || page->mapping != mapping) { 1852 btrfs_page_end_writer_lock(fs_info, page, start, len); 1853 return -EAGAIN; 1854 } 1855 } 1856 if (page_ops & PAGE_UNLOCK) 1857 btrfs_page_end_writer_lock(fs_info, page, start, len); 1858 return 0; 1859 } 1860 1861 static int __process_pages_contig(struct address_space *mapping, 1862 struct page *locked_page, 1863 u64 start, u64 end, unsigned long page_ops, 1864 u64 *processed_end) 1865 { 1866 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1867 pgoff_t start_index = start >> PAGE_SHIFT; 1868 pgoff_t end_index = end >> PAGE_SHIFT; 1869 pgoff_t index = start_index; 1870 unsigned long nr_pages = end_index - start_index + 1; 1871 unsigned long pages_processed = 0; 1872 struct page *pages[16]; 1873 int err = 0; 1874 int i; 1875 1876 if (page_ops & PAGE_LOCK) { 1877 ASSERT(page_ops == PAGE_LOCK); 1878 ASSERT(processed_end && *processed_end == start); 1879 } 1880 1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1882 mapping_set_error(mapping, -EIO); 1883 1884 while (nr_pages > 0) { 1885 int found_pages; 1886 1887 found_pages = find_get_pages_contig(mapping, index, 1888 min_t(unsigned long, 1889 nr_pages, ARRAY_SIZE(pages)), pages); 1890 if (found_pages == 0) { 1891 /* 1892 * Only if we're going to lock these pages, we can find 1893 * nothing at @index. 1894 */ 1895 ASSERT(page_ops & PAGE_LOCK); 1896 err = -EAGAIN; 1897 goto out; 1898 } 1899 1900 for (i = 0; i < found_pages; i++) { 1901 int process_ret; 1902 1903 process_ret = process_one_page(fs_info, mapping, 1904 pages[i], locked_page, page_ops, 1905 start, end); 1906 if (process_ret < 0) { 1907 for (; i < found_pages; i++) 1908 put_page(pages[i]); 1909 err = -EAGAIN; 1910 goto out; 1911 } 1912 put_page(pages[i]); 1913 pages_processed++; 1914 } 1915 nr_pages -= found_pages; 1916 index += found_pages; 1917 cond_resched(); 1918 } 1919 out: 1920 if (err && processed_end) { 1921 /* 1922 * Update @processed_end. I know this is awful since it has 1923 * two different return value patterns (inclusive vs exclusive). 1924 * 1925 * But the exclusive pattern is necessary if @start is 0, or we 1926 * underflow and check against processed_end won't work as 1927 * expected. 1928 */ 1929 if (pages_processed) 1930 *processed_end = min(end, 1931 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1932 else 1933 *processed_end = start; 1934 } 1935 return err; 1936 } 1937 1938 static noinline void __unlock_for_delalloc(struct inode *inode, 1939 struct page *locked_page, 1940 u64 start, u64 end) 1941 { 1942 unsigned long index = start >> PAGE_SHIFT; 1943 unsigned long end_index = end >> PAGE_SHIFT; 1944 1945 ASSERT(locked_page); 1946 if (index == locked_page->index && end_index == index) 1947 return; 1948 1949 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1950 PAGE_UNLOCK, NULL); 1951 } 1952 1953 static noinline int lock_delalloc_pages(struct inode *inode, 1954 struct page *locked_page, 1955 u64 delalloc_start, 1956 u64 delalloc_end) 1957 { 1958 unsigned long index = delalloc_start >> PAGE_SHIFT; 1959 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1960 u64 processed_end = delalloc_start; 1961 int ret; 1962 1963 ASSERT(locked_page); 1964 if (index == locked_page->index && index == end_index) 1965 return 0; 1966 1967 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 1968 delalloc_end, PAGE_LOCK, &processed_end); 1969 if (ret == -EAGAIN && processed_end > delalloc_start) 1970 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1971 processed_end); 1972 return ret; 1973 } 1974 1975 /* 1976 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1977 * more than @max_bytes. 1978 * 1979 * @start: The original start bytenr to search. 1980 * Will store the extent range start bytenr. 1981 * @end: The original end bytenr of the search range 1982 * Will store the extent range end bytenr. 1983 * 1984 * Return true if we find a delalloc range which starts inside the original 1985 * range, and @start/@end will store the delalloc range start/end. 1986 * 1987 * Return false if we can't find any delalloc range which starts inside the 1988 * original range, and @start/@end will be the non-delalloc range start/end. 1989 */ 1990 EXPORT_FOR_TESTS 1991 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1992 struct page *locked_page, u64 *start, 1993 u64 *end) 1994 { 1995 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1996 const u64 orig_start = *start; 1997 const u64 orig_end = *end; 1998 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1999 u64 delalloc_start; 2000 u64 delalloc_end; 2001 bool found; 2002 struct extent_state *cached_state = NULL; 2003 int ret; 2004 int loops = 0; 2005 2006 /* Caller should pass a valid @end to indicate the search range end */ 2007 ASSERT(orig_end > orig_start); 2008 2009 /* The range should at least cover part of the page */ 2010 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 2011 orig_end <= page_offset(locked_page))); 2012 again: 2013 /* step one, find a bunch of delalloc bytes starting at start */ 2014 delalloc_start = *start; 2015 delalloc_end = 0; 2016 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2017 max_bytes, &cached_state); 2018 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 2019 *start = delalloc_start; 2020 2021 /* @delalloc_end can be -1, never go beyond @orig_end */ 2022 *end = min(delalloc_end, orig_end); 2023 free_extent_state(cached_state); 2024 return false; 2025 } 2026 2027 /* 2028 * start comes from the offset of locked_page. We have to lock 2029 * pages in order, so we can't process delalloc bytes before 2030 * locked_page 2031 */ 2032 if (delalloc_start < *start) 2033 delalloc_start = *start; 2034 2035 /* 2036 * make sure to limit the number of pages we try to lock down 2037 */ 2038 if (delalloc_end + 1 - delalloc_start > max_bytes) 2039 delalloc_end = delalloc_start + max_bytes - 1; 2040 2041 /* step two, lock all the pages after the page that has start */ 2042 ret = lock_delalloc_pages(inode, locked_page, 2043 delalloc_start, delalloc_end); 2044 ASSERT(!ret || ret == -EAGAIN); 2045 if (ret == -EAGAIN) { 2046 /* some of the pages are gone, lets avoid looping by 2047 * shortening the size of the delalloc range we're searching 2048 */ 2049 free_extent_state(cached_state); 2050 cached_state = NULL; 2051 if (!loops) { 2052 max_bytes = PAGE_SIZE; 2053 loops = 1; 2054 goto again; 2055 } else { 2056 found = false; 2057 goto out_failed; 2058 } 2059 } 2060 2061 /* step three, lock the state bits for the whole range */ 2062 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2063 2064 /* then test to make sure it is all still delalloc */ 2065 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2066 EXTENT_DELALLOC, 1, cached_state); 2067 if (!ret) { 2068 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2069 &cached_state); 2070 __unlock_for_delalloc(inode, locked_page, 2071 delalloc_start, delalloc_end); 2072 cond_resched(); 2073 goto again; 2074 } 2075 free_extent_state(cached_state); 2076 *start = delalloc_start; 2077 *end = delalloc_end; 2078 out_failed: 2079 return found; 2080 } 2081 2082 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2083 struct page *locked_page, 2084 u32 clear_bits, unsigned long page_ops) 2085 { 2086 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2087 2088 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2089 start, end, page_ops, NULL); 2090 } 2091 2092 /* 2093 * count the number of bytes in the tree that have a given bit(s) 2094 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2095 * cached. The total number found is returned. 2096 */ 2097 u64 count_range_bits(struct extent_io_tree *tree, 2098 u64 *start, u64 search_end, u64 max_bytes, 2099 u32 bits, int contig) 2100 { 2101 struct rb_node *node; 2102 struct extent_state *state; 2103 u64 cur_start = *start; 2104 u64 total_bytes = 0; 2105 u64 last = 0; 2106 int found = 0; 2107 2108 if (WARN_ON(search_end <= cur_start)) 2109 return 0; 2110 2111 spin_lock(&tree->lock); 2112 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2113 total_bytes = tree->dirty_bytes; 2114 goto out; 2115 } 2116 /* 2117 * this search will find all the extents that end after 2118 * our range starts. 2119 */ 2120 node = tree_search(tree, cur_start); 2121 if (!node) 2122 goto out; 2123 2124 while (1) { 2125 state = rb_entry(node, struct extent_state, rb_node); 2126 if (state->start > search_end) 2127 break; 2128 if (contig && found && state->start > last + 1) 2129 break; 2130 if (state->end >= cur_start && (state->state & bits) == bits) { 2131 total_bytes += min(search_end, state->end) + 1 - 2132 max(cur_start, state->start); 2133 if (total_bytes >= max_bytes) 2134 break; 2135 if (!found) { 2136 *start = max(cur_start, state->start); 2137 found = 1; 2138 } 2139 last = state->end; 2140 } else if (contig && found) { 2141 break; 2142 } 2143 node = rb_next(node); 2144 if (!node) 2145 break; 2146 } 2147 out: 2148 spin_unlock(&tree->lock); 2149 return total_bytes; 2150 } 2151 2152 /* 2153 * set the private field for a given byte offset in the tree. If there isn't 2154 * an extent_state there already, this does nothing. 2155 */ 2156 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2157 struct io_failure_record *failrec) 2158 { 2159 struct rb_node *node; 2160 struct extent_state *state; 2161 int ret = 0; 2162 2163 spin_lock(&tree->lock); 2164 /* 2165 * this search will find all the extents that end after 2166 * our range starts. 2167 */ 2168 node = tree_search(tree, start); 2169 if (!node) { 2170 ret = -ENOENT; 2171 goto out; 2172 } 2173 state = rb_entry(node, struct extent_state, rb_node); 2174 if (state->start != start) { 2175 ret = -ENOENT; 2176 goto out; 2177 } 2178 state->failrec = failrec; 2179 out: 2180 spin_unlock(&tree->lock); 2181 return ret; 2182 } 2183 2184 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2185 { 2186 struct rb_node *node; 2187 struct extent_state *state; 2188 struct io_failure_record *failrec; 2189 2190 spin_lock(&tree->lock); 2191 /* 2192 * this search will find all the extents that end after 2193 * our range starts. 2194 */ 2195 node = tree_search(tree, start); 2196 if (!node) { 2197 failrec = ERR_PTR(-ENOENT); 2198 goto out; 2199 } 2200 state = rb_entry(node, struct extent_state, rb_node); 2201 if (state->start != start) { 2202 failrec = ERR_PTR(-ENOENT); 2203 goto out; 2204 } 2205 2206 failrec = state->failrec; 2207 out: 2208 spin_unlock(&tree->lock); 2209 return failrec; 2210 } 2211 2212 /* 2213 * searches a range in the state tree for a given mask. 2214 * If 'filled' == 1, this returns 1 only if every extent in the tree 2215 * has the bits set. Otherwise, 1 is returned if any bit in the 2216 * range is found set. 2217 */ 2218 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2219 u32 bits, int filled, struct extent_state *cached) 2220 { 2221 struct extent_state *state = NULL; 2222 struct rb_node *node; 2223 int bitset = 0; 2224 2225 spin_lock(&tree->lock); 2226 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2227 cached->end > start) 2228 node = &cached->rb_node; 2229 else 2230 node = tree_search(tree, start); 2231 while (node && start <= end) { 2232 state = rb_entry(node, struct extent_state, rb_node); 2233 2234 if (filled && state->start > start) { 2235 bitset = 0; 2236 break; 2237 } 2238 2239 if (state->start > end) 2240 break; 2241 2242 if (state->state & bits) { 2243 bitset = 1; 2244 if (!filled) 2245 break; 2246 } else if (filled) { 2247 bitset = 0; 2248 break; 2249 } 2250 2251 if (state->end == (u64)-1) 2252 break; 2253 2254 start = state->end + 1; 2255 if (start > end) 2256 break; 2257 node = rb_next(node); 2258 if (!node) { 2259 if (filled) 2260 bitset = 0; 2261 break; 2262 } 2263 } 2264 spin_unlock(&tree->lock); 2265 return bitset; 2266 } 2267 2268 int free_io_failure(struct extent_io_tree *failure_tree, 2269 struct extent_io_tree *io_tree, 2270 struct io_failure_record *rec) 2271 { 2272 int ret; 2273 int err = 0; 2274 2275 set_state_failrec(failure_tree, rec->start, NULL); 2276 ret = clear_extent_bits(failure_tree, rec->start, 2277 rec->start + rec->len - 1, 2278 EXTENT_LOCKED | EXTENT_DIRTY); 2279 if (ret) 2280 err = ret; 2281 2282 ret = clear_extent_bits(io_tree, rec->start, 2283 rec->start + rec->len - 1, 2284 EXTENT_DAMAGED); 2285 if (ret && !err) 2286 err = ret; 2287 2288 kfree(rec); 2289 return err; 2290 } 2291 2292 /* 2293 * this bypasses the standard btrfs submit functions deliberately, as 2294 * the standard behavior is to write all copies in a raid setup. here we only 2295 * want to write the one bad copy. so we do the mapping for ourselves and issue 2296 * submit_bio directly. 2297 * to avoid any synchronization issues, wait for the data after writing, which 2298 * actually prevents the read that triggered the error from finishing. 2299 * currently, there can be no more than two copies of every data bit. thus, 2300 * exactly one rewrite is required. 2301 */ 2302 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2303 u64 length, u64 logical, struct page *page, 2304 unsigned int pg_offset, int mirror_num) 2305 { 2306 struct bio *bio; 2307 struct btrfs_device *dev; 2308 u64 map_length = 0; 2309 u64 sector; 2310 struct btrfs_io_context *bioc = NULL; 2311 int ret; 2312 2313 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2314 BUG_ON(!mirror_num); 2315 2316 if (btrfs_repair_one_zone(fs_info, logical)) 2317 return 0; 2318 2319 bio = btrfs_bio_alloc(1); 2320 bio->bi_iter.bi_size = 0; 2321 map_length = length; 2322 2323 /* 2324 * Avoid races with device replace and make sure our bioc has devices 2325 * associated to its stripes that don't go away while we are doing the 2326 * read repair operation. 2327 */ 2328 btrfs_bio_counter_inc_blocked(fs_info); 2329 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2330 /* 2331 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2332 * to update all raid stripes, but here we just want to correct 2333 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2334 * stripe's dev and sector. 2335 */ 2336 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2337 &map_length, &bioc, 0); 2338 if (ret) { 2339 btrfs_bio_counter_dec(fs_info); 2340 bio_put(bio); 2341 return -EIO; 2342 } 2343 ASSERT(bioc->mirror_num == 1); 2344 } else { 2345 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2346 &map_length, &bioc, mirror_num); 2347 if (ret) { 2348 btrfs_bio_counter_dec(fs_info); 2349 bio_put(bio); 2350 return -EIO; 2351 } 2352 BUG_ON(mirror_num != bioc->mirror_num); 2353 } 2354 2355 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 2356 bio->bi_iter.bi_sector = sector; 2357 dev = bioc->stripes[bioc->mirror_num - 1].dev; 2358 btrfs_put_bioc(bioc); 2359 if (!dev || !dev->bdev || 2360 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2361 btrfs_bio_counter_dec(fs_info); 2362 bio_put(bio); 2363 return -EIO; 2364 } 2365 bio_set_dev(bio, dev->bdev); 2366 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2367 bio_add_page(bio, page, length, pg_offset); 2368 2369 if (btrfsic_submit_bio_wait(bio)) { 2370 /* try to remap that extent elsewhere? */ 2371 btrfs_bio_counter_dec(fs_info); 2372 bio_put(bio); 2373 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2374 return -EIO; 2375 } 2376 2377 btrfs_info_rl_in_rcu(fs_info, 2378 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2379 ino, start, 2380 rcu_str_deref(dev->name), sector); 2381 btrfs_bio_counter_dec(fs_info); 2382 bio_put(bio); 2383 return 0; 2384 } 2385 2386 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2387 { 2388 struct btrfs_fs_info *fs_info = eb->fs_info; 2389 u64 start = eb->start; 2390 int i, num_pages = num_extent_pages(eb); 2391 int ret = 0; 2392 2393 if (sb_rdonly(fs_info->sb)) 2394 return -EROFS; 2395 2396 for (i = 0; i < num_pages; i++) { 2397 struct page *p = eb->pages[i]; 2398 2399 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2400 start - page_offset(p), mirror_num); 2401 if (ret) 2402 break; 2403 start += PAGE_SIZE; 2404 } 2405 2406 return ret; 2407 } 2408 2409 /* 2410 * each time an IO finishes, we do a fast check in the IO failure tree 2411 * to see if we need to process or clean up an io_failure_record 2412 */ 2413 int clean_io_failure(struct btrfs_fs_info *fs_info, 2414 struct extent_io_tree *failure_tree, 2415 struct extent_io_tree *io_tree, u64 start, 2416 struct page *page, u64 ino, unsigned int pg_offset) 2417 { 2418 u64 private; 2419 struct io_failure_record *failrec; 2420 struct extent_state *state; 2421 int num_copies; 2422 int ret; 2423 2424 private = 0; 2425 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2426 EXTENT_DIRTY, 0); 2427 if (!ret) 2428 return 0; 2429 2430 failrec = get_state_failrec(failure_tree, start); 2431 if (IS_ERR(failrec)) 2432 return 0; 2433 2434 BUG_ON(!failrec->this_mirror); 2435 2436 if (sb_rdonly(fs_info->sb)) 2437 goto out; 2438 2439 spin_lock(&io_tree->lock); 2440 state = find_first_extent_bit_state(io_tree, 2441 failrec->start, 2442 EXTENT_LOCKED); 2443 spin_unlock(&io_tree->lock); 2444 2445 if (state && state->start <= failrec->start && 2446 state->end >= failrec->start + failrec->len - 1) { 2447 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2448 failrec->len); 2449 if (num_copies > 1) { 2450 repair_io_failure(fs_info, ino, start, failrec->len, 2451 failrec->logical, page, pg_offset, 2452 failrec->failed_mirror); 2453 } 2454 } 2455 2456 out: 2457 free_io_failure(failure_tree, io_tree, failrec); 2458 2459 return 0; 2460 } 2461 2462 /* 2463 * Can be called when 2464 * - hold extent lock 2465 * - under ordered extent 2466 * - the inode is freeing 2467 */ 2468 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2469 { 2470 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2471 struct io_failure_record *failrec; 2472 struct extent_state *state, *next; 2473 2474 if (RB_EMPTY_ROOT(&failure_tree->state)) 2475 return; 2476 2477 spin_lock(&failure_tree->lock); 2478 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2479 while (state) { 2480 if (state->start > end) 2481 break; 2482 2483 ASSERT(state->end <= end); 2484 2485 next = next_state(state); 2486 2487 failrec = state->failrec; 2488 free_extent_state(state); 2489 kfree(failrec); 2490 2491 state = next; 2492 } 2493 spin_unlock(&failure_tree->lock); 2494 } 2495 2496 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2497 u64 start) 2498 { 2499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2500 struct io_failure_record *failrec; 2501 struct extent_map *em; 2502 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2503 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2504 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2505 const u32 sectorsize = fs_info->sectorsize; 2506 int ret; 2507 u64 logical; 2508 2509 failrec = get_state_failrec(failure_tree, start); 2510 if (!IS_ERR(failrec)) { 2511 btrfs_debug(fs_info, 2512 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2513 failrec->logical, failrec->start, failrec->len); 2514 /* 2515 * when data can be on disk more than twice, add to failrec here 2516 * (e.g. with a list for failed_mirror) to make 2517 * clean_io_failure() clean all those errors at once. 2518 */ 2519 2520 return failrec; 2521 } 2522 2523 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2524 if (!failrec) 2525 return ERR_PTR(-ENOMEM); 2526 2527 failrec->start = start; 2528 failrec->len = sectorsize; 2529 failrec->this_mirror = 0; 2530 failrec->bio_flags = 0; 2531 2532 read_lock(&em_tree->lock); 2533 em = lookup_extent_mapping(em_tree, start, failrec->len); 2534 if (!em) { 2535 read_unlock(&em_tree->lock); 2536 kfree(failrec); 2537 return ERR_PTR(-EIO); 2538 } 2539 2540 if (em->start > start || em->start + em->len <= start) { 2541 free_extent_map(em); 2542 em = NULL; 2543 } 2544 read_unlock(&em_tree->lock); 2545 if (!em) { 2546 kfree(failrec); 2547 return ERR_PTR(-EIO); 2548 } 2549 2550 logical = start - em->start; 2551 logical = em->block_start + logical; 2552 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2553 logical = em->block_start; 2554 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2555 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2556 } 2557 2558 btrfs_debug(fs_info, 2559 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2560 logical, start, failrec->len); 2561 2562 failrec->logical = logical; 2563 free_extent_map(em); 2564 2565 /* Set the bits in the private failure tree */ 2566 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2567 EXTENT_LOCKED | EXTENT_DIRTY); 2568 if (ret >= 0) { 2569 ret = set_state_failrec(failure_tree, start, failrec); 2570 /* Set the bits in the inode's tree */ 2571 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2572 EXTENT_DAMAGED); 2573 } else if (ret < 0) { 2574 kfree(failrec); 2575 return ERR_PTR(ret); 2576 } 2577 2578 return failrec; 2579 } 2580 2581 static bool btrfs_check_repairable(struct inode *inode, 2582 struct io_failure_record *failrec, 2583 int failed_mirror) 2584 { 2585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2586 int num_copies; 2587 2588 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2589 if (num_copies == 1) { 2590 /* 2591 * we only have a single copy of the data, so don't bother with 2592 * all the retry and error correction code that follows. no 2593 * matter what the error is, it is very likely to persist. 2594 */ 2595 btrfs_debug(fs_info, 2596 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2597 num_copies, failrec->this_mirror, failed_mirror); 2598 return false; 2599 } 2600 2601 /* The failure record should only contain one sector */ 2602 ASSERT(failrec->len == fs_info->sectorsize); 2603 2604 /* 2605 * There are two premises: 2606 * a) deliver good data to the caller 2607 * b) correct the bad sectors on disk 2608 * 2609 * Since we're only doing repair for one sector, we only need to get 2610 * a good copy of the failed sector and if we succeed, we have setup 2611 * everything for repair_io_failure to do the rest for us. 2612 */ 2613 ASSERT(failed_mirror); 2614 failrec->failed_mirror = failed_mirror; 2615 failrec->this_mirror++; 2616 if (failrec->this_mirror == failed_mirror) 2617 failrec->this_mirror++; 2618 2619 if (failrec->this_mirror > num_copies) { 2620 btrfs_debug(fs_info, 2621 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2622 num_copies, failrec->this_mirror, failed_mirror); 2623 return false; 2624 } 2625 2626 return true; 2627 } 2628 2629 int btrfs_repair_one_sector(struct inode *inode, 2630 struct bio *failed_bio, u32 bio_offset, 2631 struct page *page, unsigned int pgoff, 2632 u64 start, int failed_mirror, 2633 submit_bio_hook_t *submit_bio_hook) 2634 { 2635 struct io_failure_record *failrec; 2636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2637 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2638 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2639 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio); 2640 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2641 struct bio *repair_bio; 2642 struct btrfs_bio *repair_bbio; 2643 2644 btrfs_debug(fs_info, 2645 "repair read error: read error at %llu", start); 2646 2647 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2648 2649 failrec = btrfs_get_io_failure_record(inode, start); 2650 if (IS_ERR(failrec)) 2651 return PTR_ERR(failrec); 2652 2653 2654 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { 2655 free_io_failure(failure_tree, tree, failrec); 2656 return -EIO; 2657 } 2658 2659 repair_bio = btrfs_bio_alloc(1); 2660 repair_bbio = btrfs_bio(repair_bio); 2661 repair_bbio->file_offset = start; 2662 repair_bio->bi_opf = REQ_OP_READ; 2663 repair_bio->bi_end_io = failed_bio->bi_end_io; 2664 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2665 repair_bio->bi_private = failed_bio->bi_private; 2666 2667 if (failed_bbio->csum) { 2668 const u32 csum_size = fs_info->csum_size; 2669 2670 repair_bbio->csum = repair_bbio->csum_inline; 2671 memcpy(repair_bbio->csum, 2672 failed_bbio->csum + csum_size * icsum, csum_size); 2673 } 2674 2675 bio_add_page(repair_bio, page, failrec->len, pgoff); 2676 repair_bbio->iter = repair_bio->bi_iter; 2677 2678 btrfs_debug(btrfs_sb(inode->i_sb), 2679 "repair read error: submitting new read to mirror %d", 2680 failrec->this_mirror); 2681 2682 /* 2683 * At this point we have a bio, so any errors from submit_bio_hook() 2684 * will be handled by the endio on the repair_bio, so we can't return an 2685 * error here. 2686 */ 2687 submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->bio_flags); 2688 return BLK_STS_OK; 2689 } 2690 2691 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2692 { 2693 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2694 2695 ASSERT(page_offset(page) <= start && 2696 start + len <= page_offset(page) + PAGE_SIZE); 2697 2698 if (uptodate) { 2699 if (fsverity_active(page->mapping->host) && 2700 !PageError(page) && 2701 !PageUptodate(page) && 2702 start < i_size_read(page->mapping->host) && 2703 !fsverity_verify_page(page)) { 2704 btrfs_page_set_error(fs_info, page, start, len); 2705 } else { 2706 btrfs_page_set_uptodate(fs_info, page, start, len); 2707 } 2708 } else { 2709 btrfs_page_clear_uptodate(fs_info, page, start, len); 2710 btrfs_page_set_error(fs_info, page, start, len); 2711 } 2712 2713 if (fs_info->sectorsize == PAGE_SIZE) 2714 unlock_page(page); 2715 else 2716 btrfs_subpage_end_reader(fs_info, page, start, len); 2717 } 2718 2719 static blk_status_t submit_read_repair(struct inode *inode, 2720 struct bio *failed_bio, u32 bio_offset, 2721 struct page *page, unsigned int pgoff, 2722 u64 start, u64 end, int failed_mirror, 2723 unsigned int error_bitmap, 2724 submit_bio_hook_t *submit_bio_hook) 2725 { 2726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2727 const u32 sectorsize = fs_info->sectorsize; 2728 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2729 int error = 0; 2730 int i; 2731 2732 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2733 2734 /* We're here because we had some read errors or csum mismatch */ 2735 ASSERT(error_bitmap); 2736 2737 /* 2738 * We only get called on buffered IO, thus page must be mapped and bio 2739 * must not be cloned. 2740 */ 2741 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); 2742 2743 /* Iterate through all the sectors in the range */ 2744 for (i = 0; i < nr_bits; i++) { 2745 const unsigned int offset = i * sectorsize; 2746 struct extent_state *cached = NULL; 2747 bool uptodate = false; 2748 int ret; 2749 2750 if (!(error_bitmap & (1U << i))) { 2751 /* 2752 * This sector has no error, just end the page read 2753 * and unlock the range. 2754 */ 2755 uptodate = true; 2756 goto next; 2757 } 2758 2759 ret = btrfs_repair_one_sector(inode, failed_bio, 2760 bio_offset + offset, 2761 page, pgoff + offset, start + offset, 2762 failed_mirror, submit_bio_hook); 2763 if (!ret) { 2764 /* 2765 * We have submitted the read repair, the page release 2766 * will be handled by the endio function of the 2767 * submitted repair bio. 2768 * Thus we don't need to do any thing here. 2769 */ 2770 continue; 2771 } 2772 /* 2773 * Repair failed, just record the error but still continue. 2774 * Or the remaining sectors will not be properly unlocked. 2775 */ 2776 if (!error) 2777 error = ret; 2778 next: 2779 end_page_read(page, uptodate, start + offset, sectorsize); 2780 if (uptodate) 2781 set_extent_uptodate(&BTRFS_I(inode)->io_tree, 2782 start + offset, 2783 start + offset + sectorsize - 1, 2784 &cached, GFP_ATOMIC); 2785 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, 2786 start + offset, 2787 start + offset + sectorsize - 1, 2788 &cached); 2789 } 2790 return errno_to_blk_status(error); 2791 } 2792 2793 /* lots and lots of room for performance fixes in the end_bio funcs */ 2794 2795 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2796 { 2797 struct btrfs_inode *inode; 2798 const bool uptodate = (err == 0); 2799 int ret = 0; 2800 2801 ASSERT(page && page->mapping); 2802 inode = BTRFS_I(page->mapping->host); 2803 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2804 2805 if (!uptodate) { 2806 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2807 u32 len; 2808 2809 ASSERT(end + 1 - start <= U32_MAX); 2810 len = end + 1 - start; 2811 2812 btrfs_page_clear_uptodate(fs_info, page, start, len); 2813 btrfs_page_set_error(fs_info, page, start, len); 2814 ret = err < 0 ? err : -EIO; 2815 mapping_set_error(page->mapping, ret); 2816 } 2817 } 2818 2819 /* 2820 * after a writepage IO is done, we need to: 2821 * clear the uptodate bits on error 2822 * clear the writeback bits in the extent tree for this IO 2823 * end_page_writeback if the page has no more pending IO 2824 * 2825 * Scheduling is not allowed, so the extent state tree is expected 2826 * to have one and only one object corresponding to this IO. 2827 */ 2828 static void end_bio_extent_writepage(struct bio *bio) 2829 { 2830 int error = blk_status_to_errno(bio->bi_status); 2831 struct bio_vec *bvec; 2832 u64 start; 2833 u64 end; 2834 struct bvec_iter_all iter_all; 2835 bool first_bvec = true; 2836 2837 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2838 bio_for_each_segment_all(bvec, bio, iter_all) { 2839 struct page *page = bvec->bv_page; 2840 struct inode *inode = page->mapping->host; 2841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2842 const u32 sectorsize = fs_info->sectorsize; 2843 2844 /* Our read/write should always be sector aligned. */ 2845 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2846 btrfs_err(fs_info, 2847 "partial page write in btrfs with offset %u and length %u", 2848 bvec->bv_offset, bvec->bv_len); 2849 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2850 btrfs_info(fs_info, 2851 "incomplete page write with offset %u and length %u", 2852 bvec->bv_offset, bvec->bv_len); 2853 2854 start = page_offset(page) + bvec->bv_offset; 2855 end = start + bvec->bv_len - 1; 2856 2857 if (first_bvec) { 2858 btrfs_record_physical_zoned(inode, start, bio); 2859 first_bvec = false; 2860 } 2861 2862 end_extent_writepage(page, error, start, end); 2863 2864 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2865 } 2866 2867 bio_put(bio); 2868 } 2869 2870 /* 2871 * Record previously processed extent range 2872 * 2873 * For endio_readpage_release_extent() to handle a full extent range, reducing 2874 * the extent io operations. 2875 */ 2876 struct processed_extent { 2877 struct btrfs_inode *inode; 2878 /* Start of the range in @inode */ 2879 u64 start; 2880 /* End of the range in @inode */ 2881 u64 end; 2882 bool uptodate; 2883 }; 2884 2885 /* 2886 * Try to release processed extent range 2887 * 2888 * May not release the extent range right now if the current range is 2889 * contiguous to processed extent. 2890 * 2891 * Will release processed extent when any of @inode, @uptodate, the range is 2892 * no longer contiguous to the processed range. 2893 * 2894 * Passing @inode == NULL will force processed extent to be released. 2895 */ 2896 static void endio_readpage_release_extent(struct processed_extent *processed, 2897 struct btrfs_inode *inode, u64 start, u64 end, 2898 bool uptodate) 2899 { 2900 struct extent_state *cached = NULL; 2901 struct extent_io_tree *tree; 2902 2903 /* The first extent, initialize @processed */ 2904 if (!processed->inode) 2905 goto update; 2906 2907 /* 2908 * Contiguous to processed extent, just uptodate the end. 2909 * 2910 * Several things to notice: 2911 * 2912 * - bio can be merged as long as on-disk bytenr is contiguous 2913 * This means we can have page belonging to other inodes, thus need to 2914 * check if the inode still matches. 2915 * - bvec can contain range beyond current page for multi-page bvec 2916 * Thus we need to do processed->end + 1 >= start check 2917 */ 2918 if (processed->inode == inode && processed->uptodate == uptodate && 2919 processed->end + 1 >= start && end >= processed->end) { 2920 processed->end = end; 2921 return; 2922 } 2923 2924 tree = &processed->inode->io_tree; 2925 /* 2926 * Now we don't have range contiguous to the processed range, release 2927 * the processed range now. 2928 */ 2929 if (processed->uptodate && tree->track_uptodate) 2930 set_extent_uptodate(tree, processed->start, processed->end, 2931 &cached, GFP_ATOMIC); 2932 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2933 &cached); 2934 2935 update: 2936 /* Update processed to current range */ 2937 processed->inode = inode; 2938 processed->start = start; 2939 processed->end = end; 2940 processed->uptodate = uptodate; 2941 } 2942 2943 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2944 { 2945 ASSERT(PageLocked(page)); 2946 if (fs_info->sectorsize == PAGE_SIZE) 2947 return; 2948 2949 ASSERT(PagePrivate(page)); 2950 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2951 } 2952 2953 /* 2954 * Find extent buffer for a givne bytenr. 2955 * 2956 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2957 * in endio context. 2958 */ 2959 static struct extent_buffer *find_extent_buffer_readpage( 2960 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2961 { 2962 struct extent_buffer *eb; 2963 2964 /* 2965 * For regular sectorsize, we can use page->private to grab extent 2966 * buffer 2967 */ 2968 if (fs_info->sectorsize == PAGE_SIZE) { 2969 ASSERT(PagePrivate(page) && page->private); 2970 return (struct extent_buffer *)page->private; 2971 } 2972 2973 /* For subpage case, we need to lookup buffer radix tree */ 2974 rcu_read_lock(); 2975 eb = radix_tree_lookup(&fs_info->buffer_radix, 2976 bytenr >> fs_info->sectorsize_bits); 2977 rcu_read_unlock(); 2978 ASSERT(eb); 2979 return eb; 2980 } 2981 2982 /* 2983 * after a readpage IO is done, we need to: 2984 * clear the uptodate bits on error 2985 * set the uptodate bits if things worked 2986 * set the page up to date if all extents in the tree are uptodate 2987 * clear the lock bit in the extent tree 2988 * unlock the page if there are no other extents locked for it 2989 * 2990 * Scheduling is not allowed, so the extent state tree is expected 2991 * to have one and only one object corresponding to this IO. 2992 */ 2993 static void end_bio_extent_readpage(struct bio *bio) 2994 { 2995 struct bio_vec *bvec; 2996 struct btrfs_bio *bbio = btrfs_bio(bio); 2997 struct extent_io_tree *tree, *failure_tree; 2998 struct processed_extent processed = { 0 }; 2999 /* 3000 * The offset to the beginning of a bio, since one bio can never be 3001 * larger than UINT_MAX, u32 here is enough. 3002 */ 3003 u32 bio_offset = 0; 3004 int mirror; 3005 int ret; 3006 struct bvec_iter_all iter_all; 3007 3008 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3009 bio_for_each_segment_all(bvec, bio, iter_all) { 3010 bool uptodate = !bio->bi_status; 3011 struct page *page = bvec->bv_page; 3012 struct inode *inode = page->mapping->host; 3013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3014 const u32 sectorsize = fs_info->sectorsize; 3015 unsigned int error_bitmap = (unsigned int)-1; 3016 u64 start; 3017 u64 end; 3018 u32 len; 3019 3020 btrfs_debug(fs_info, 3021 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3022 bio->bi_iter.bi_sector, bio->bi_status, 3023 bbio->mirror_num); 3024 tree = &BTRFS_I(inode)->io_tree; 3025 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3026 3027 /* 3028 * We always issue full-sector reads, but if some block in a 3029 * page fails to read, blk_update_request() will advance 3030 * bv_offset and adjust bv_len to compensate. Print a warning 3031 * for unaligned offsets, and an error if they don't add up to 3032 * a full sector. 3033 */ 3034 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3035 btrfs_err(fs_info, 3036 "partial page read in btrfs with offset %u and length %u", 3037 bvec->bv_offset, bvec->bv_len); 3038 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3039 sectorsize)) 3040 btrfs_info(fs_info, 3041 "incomplete page read with offset %u and length %u", 3042 bvec->bv_offset, bvec->bv_len); 3043 3044 start = page_offset(page) + bvec->bv_offset; 3045 end = start + bvec->bv_len - 1; 3046 len = bvec->bv_len; 3047 3048 mirror = bbio->mirror_num; 3049 if (likely(uptodate)) { 3050 if (is_data_inode(inode)) { 3051 error_bitmap = btrfs_verify_data_csum(bbio, 3052 bio_offset, page, start, end); 3053 ret = error_bitmap; 3054 } else { 3055 ret = btrfs_validate_metadata_buffer(bbio, 3056 page, start, end, mirror); 3057 } 3058 if (ret) 3059 uptodate = false; 3060 else 3061 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3062 failure_tree, tree, start, 3063 page, 3064 btrfs_ino(BTRFS_I(inode)), 0); 3065 } 3066 3067 if (likely(uptodate)) 3068 goto readpage_ok; 3069 3070 if (is_data_inode(inode)) { 3071 /* 3072 * If we failed to submit the IO at all we'll have a 3073 * mirror_num == 0, in which case we need to just mark 3074 * the page with an error and unlock it and carry on. 3075 */ 3076 if (mirror == 0) 3077 goto readpage_ok; 3078 3079 /* 3080 * btrfs_submit_read_repair() will handle all the good 3081 * and bad sectors, we just continue to the next bvec. 3082 */ 3083 submit_read_repair(inode, bio, bio_offset, page, 3084 start - page_offset(page), start, 3085 end, mirror, error_bitmap, 3086 btrfs_submit_data_bio); 3087 3088 ASSERT(bio_offset + len > bio_offset); 3089 bio_offset += len; 3090 continue; 3091 } else { 3092 struct extent_buffer *eb; 3093 3094 eb = find_extent_buffer_readpage(fs_info, page, start); 3095 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3096 eb->read_mirror = mirror; 3097 atomic_dec(&eb->io_pages); 3098 } 3099 readpage_ok: 3100 if (likely(uptodate)) { 3101 loff_t i_size = i_size_read(inode); 3102 pgoff_t end_index = i_size >> PAGE_SHIFT; 3103 3104 /* 3105 * Zero out the remaining part if this range straddles 3106 * i_size. 3107 * 3108 * Here we should only zero the range inside the bvec, 3109 * not touch anything else. 3110 * 3111 * NOTE: i_size is exclusive while end is inclusive. 3112 */ 3113 if (page->index == end_index && i_size <= end) { 3114 u32 zero_start = max(offset_in_page(i_size), 3115 offset_in_page(start)); 3116 3117 zero_user_segment(page, zero_start, 3118 offset_in_page(end) + 1); 3119 } 3120 } 3121 ASSERT(bio_offset + len > bio_offset); 3122 bio_offset += len; 3123 3124 /* Update page status and unlock */ 3125 end_page_read(page, uptodate, start, len); 3126 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3127 start, end, PageUptodate(page)); 3128 } 3129 /* Release the last extent */ 3130 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3131 btrfs_bio_free_csum(bbio); 3132 bio_put(bio); 3133 } 3134 3135 /* 3136 * Initialize the members up to but not including 'bio'. Use after allocating a 3137 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3138 * 'bio' because use of __GFP_ZERO is not supported. 3139 */ 3140 static inline void btrfs_bio_init(struct btrfs_bio *bbio) 3141 { 3142 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 3143 } 3144 3145 /* 3146 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. 3147 * 3148 * The bio allocation is backed by bioset and does not fail. 3149 */ 3150 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) 3151 { 3152 struct bio *bio; 3153 3154 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); 3155 bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset); 3156 btrfs_bio_init(btrfs_bio(bio)); 3157 return bio; 3158 } 3159 3160 struct bio *btrfs_bio_clone(struct bio *bio) 3161 { 3162 struct btrfs_bio *bbio; 3163 struct bio *new; 3164 3165 /* Bio allocation backed by a bioset does not fail */ 3166 new = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOFS, &btrfs_bioset); 3167 bbio = btrfs_bio(new); 3168 btrfs_bio_init(bbio); 3169 bbio->iter = bio->bi_iter; 3170 return new; 3171 } 3172 3173 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3174 { 3175 struct bio *bio; 3176 struct btrfs_bio *bbio; 3177 3178 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3179 3180 /* this will never fail when it's backed by a bioset */ 3181 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); 3182 ASSERT(bio); 3183 3184 bbio = btrfs_bio(bio); 3185 btrfs_bio_init(bbio); 3186 3187 bio_trim(bio, offset >> 9, size >> 9); 3188 bbio->iter = bio->bi_iter; 3189 return bio; 3190 } 3191 3192 /** 3193 * Attempt to add a page to bio 3194 * 3195 * @bio_ctrl: record both the bio, and its bio_flags 3196 * @page: page to add to the bio 3197 * @disk_bytenr: offset of the new bio or to check whether we are adding 3198 * a contiguous page to the previous one 3199 * @size: portion of page that we want to write 3200 * @pg_offset: starting offset in the page 3201 * @bio_flags: flags of the current bio to see if we can merge them 3202 * 3203 * Attempt to add a page to bio considering stripe alignment etc. 3204 * 3205 * Return >= 0 for the number of bytes added to the bio. 3206 * Can return 0 if the current bio is already at stripe/zone boundary. 3207 * Return <0 for error. 3208 */ 3209 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3210 struct page *page, 3211 u64 disk_bytenr, unsigned int size, 3212 unsigned int pg_offset, 3213 unsigned long bio_flags) 3214 { 3215 struct bio *bio = bio_ctrl->bio; 3216 u32 bio_size = bio->bi_iter.bi_size; 3217 u32 real_size; 3218 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3219 bool contig; 3220 int ret; 3221 3222 ASSERT(bio); 3223 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3224 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3225 if (bio_ctrl->bio_flags != bio_flags) 3226 return 0; 3227 3228 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) 3229 contig = bio->bi_iter.bi_sector == sector; 3230 else 3231 contig = bio_end_sector(bio) == sector; 3232 if (!contig) 3233 return 0; 3234 3235 real_size = min(bio_ctrl->len_to_oe_boundary, 3236 bio_ctrl->len_to_stripe_boundary) - bio_size; 3237 real_size = min(real_size, size); 3238 3239 /* 3240 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3241 * bio will still execute its endio function on the page! 3242 */ 3243 if (real_size == 0) 3244 return 0; 3245 3246 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3247 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3248 else 3249 ret = bio_add_page(bio, page, real_size, pg_offset); 3250 3251 return ret; 3252 } 3253 3254 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3255 struct btrfs_inode *inode, u64 file_offset) 3256 { 3257 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3258 struct btrfs_io_geometry geom; 3259 struct btrfs_ordered_extent *ordered; 3260 struct extent_map *em; 3261 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3262 int ret; 3263 3264 /* 3265 * Pages for compressed extent are never submitted to disk directly, 3266 * thus it has no real boundary, just set them to U32_MAX. 3267 * 3268 * The split happens for real compressed bio, which happens in 3269 * btrfs_submit_compressed_read/write(). 3270 */ 3271 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) { 3272 bio_ctrl->len_to_oe_boundary = U32_MAX; 3273 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3274 return 0; 3275 } 3276 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3277 if (IS_ERR(em)) 3278 return PTR_ERR(em); 3279 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3280 logical, &geom); 3281 free_extent_map(em); 3282 if (ret < 0) { 3283 return ret; 3284 } 3285 if (geom.len > U32_MAX) 3286 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3287 else 3288 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3289 3290 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3291 bio_ctrl->len_to_oe_boundary = U32_MAX; 3292 return 0; 3293 } 3294 3295 /* Ordered extent not yet created, so we're good */ 3296 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3297 if (!ordered) { 3298 bio_ctrl->len_to_oe_boundary = U32_MAX; 3299 return 0; 3300 } 3301 3302 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3303 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3304 btrfs_put_ordered_extent(ordered); 3305 return 0; 3306 } 3307 3308 static int alloc_new_bio(struct btrfs_inode *inode, 3309 struct btrfs_bio_ctrl *bio_ctrl, 3310 struct writeback_control *wbc, 3311 unsigned int opf, 3312 bio_end_io_t end_io_func, 3313 u64 disk_bytenr, u32 offset, u64 file_offset, 3314 unsigned long bio_flags) 3315 { 3316 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3317 struct bio *bio; 3318 int ret; 3319 3320 bio = btrfs_bio_alloc(BIO_MAX_VECS); 3321 /* 3322 * For compressed page range, its disk_bytenr is always @disk_bytenr 3323 * passed in, no matter if we have added any range into previous bio. 3324 */ 3325 if (bio_flags & EXTENT_BIO_COMPRESSED) 3326 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 3327 else 3328 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 3329 bio_ctrl->bio = bio; 3330 bio_ctrl->bio_flags = bio_flags; 3331 bio->bi_end_io = end_io_func; 3332 bio->bi_private = &inode->io_tree; 3333 bio->bi_opf = opf; 3334 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3335 if (ret < 0) 3336 goto error; 3337 3338 if (wbc) { 3339 /* 3340 * For Zone append we need the correct block_device that we are 3341 * going to write to set in the bio to be able to respect the 3342 * hardware limitation. Look it up here: 3343 */ 3344 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3345 struct btrfs_device *dev; 3346 3347 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 3348 fs_info->sectorsize); 3349 if (IS_ERR(dev)) { 3350 ret = PTR_ERR(dev); 3351 goto error; 3352 } 3353 3354 bio_set_dev(bio, dev->bdev); 3355 } else { 3356 /* 3357 * Otherwise pick the last added device to support 3358 * cgroup writeback. For multi-device file systems this 3359 * means blk-cgroup policies have to always be set on the 3360 * last added/replaced device. This is a bit odd but has 3361 * been like that for a long time. 3362 */ 3363 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 3364 } 3365 wbc_init_bio(wbc, bio); 3366 } else { 3367 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 3368 } 3369 return 0; 3370 error: 3371 bio_ctrl->bio = NULL; 3372 bio->bi_status = errno_to_blk_status(ret); 3373 bio_endio(bio); 3374 return ret; 3375 } 3376 3377 /* 3378 * @opf: bio REQ_OP_* and REQ_* flags as one value 3379 * @wbc: optional writeback control for io accounting 3380 * @page: page to add to the bio 3381 * @disk_bytenr: logical bytenr where the write will be 3382 * @size: portion of page that we want to write to 3383 * @pg_offset: offset of the new bio or to check whether we are adding 3384 * a contiguous page to the previous one 3385 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3386 * @end_io_func: end_io callback for new bio 3387 * @mirror_num: desired mirror to read/write 3388 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3389 * @bio_flags: flags of the current bio to see if we can merge them 3390 */ 3391 static int submit_extent_page(unsigned int opf, 3392 struct writeback_control *wbc, 3393 struct btrfs_bio_ctrl *bio_ctrl, 3394 struct page *page, u64 disk_bytenr, 3395 size_t size, unsigned long pg_offset, 3396 bio_end_io_t end_io_func, 3397 int mirror_num, 3398 unsigned long bio_flags, 3399 bool force_bio_submit) 3400 { 3401 int ret = 0; 3402 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3403 unsigned int cur = pg_offset; 3404 3405 ASSERT(bio_ctrl); 3406 3407 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3408 pg_offset + size <= PAGE_SIZE); 3409 if (force_bio_submit && bio_ctrl->bio) { 3410 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags); 3411 bio_ctrl->bio = NULL; 3412 if (ret < 0) 3413 return ret; 3414 } 3415 3416 while (cur < pg_offset + size) { 3417 u32 offset = cur - pg_offset; 3418 int added; 3419 3420 /* Allocate new bio if needed */ 3421 if (!bio_ctrl->bio) { 3422 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3423 end_io_func, disk_bytenr, offset, 3424 page_offset(page) + cur, 3425 bio_flags); 3426 if (ret < 0) 3427 return ret; 3428 } 3429 /* 3430 * We must go through btrfs_bio_add_page() to ensure each 3431 * page range won't cross various boundaries. 3432 */ 3433 if (bio_flags & EXTENT_BIO_COMPRESSED) 3434 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3435 size - offset, pg_offset + offset, 3436 bio_flags); 3437 else 3438 added = btrfs_bio_add_page(bio_ctrl, page, 3439 disk_bytenr + offset, size - offset, 3440 pg_offset + offset, bio_flags); 3441 3442 /* Metadata page range should never be split */ 3443 if (!is_data_inode(&inode->vfs_inode)) 3444 ASSERT(added == 0 || added == size - offset); 3445 3446 /* At least we added some page, update the account */ 3447 if (wbc && added) 3448 wbc_account_cgroup_owner(wbc, page, added); 3449 3450 /* We have reached boundary, submit right now */ 3451 if (added < size - offset) { 3452 /* The bio should contain some page(s) */ 3453 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3454 ret = submit_one_bio(bio_ctrl->bio, mirror_num, 3455 bio_ctrl->bio_flags); 3456 bio_ctrl->bio = NULL; 3457 if (ret < 0) 3458 return ret; 3459 } 3460 cur += added; 3461 } 3462 return 0; 3463 } 3464 3465 static int attach_extent_buffer_page(struct extent_buffer *eb, 3466 struct page *page, 3467 struct btrfs_subpage *prealloc) 3468 { 3469 struct btrfs_fs_info *fs_info = eb->fs_info; 3470 int ret = 0; 3471 3472 /* 3473 * If the page is mapped to btree inode, we should hold the private 3474 * lock to prevent race. 3475 * For cloned or dummy extent buffers, their pages are not mapped and 3476 * will not race with any other ebs. 3477 */ 3478 if (page->mapping) 3479 lockdep_assert_held(&page->mapping->private_lock); 3480 3481 if (fs_info->sectorsize == PAGE_SIZE) { 3482 if (!PagePrivate(page)) 3483 attach_page_private(page, eb); 3484 else 3485 WARN_ON(page->private != (unsigned long)eb); 3486 return 0; 3487 } 3488 3489 /* Already mapped, just free prealloc */ 3490 if (PagePrivate(page)) { 3491 btrfs_free_subpage(prealloc); 3492 return 0; 3493 } 3494 3495 if (prealloc) 3496 /* Has preallocated memory for subpage */ 3497 attach_page_private(page, prealloc); 3498 else 3499 /* Do new allocation to attach subpage */ 3500 ret = btrfs_attach_subpage(fs_info, page, 3501 BTRFS_SUBPAGE_METADATA); 3502 return ret; 3503 } 3504 3505 int set_page_extent_mapped(struct page *page) 3506 { 3507 struct btrfs_fs_info *fs_info; 3508 3509 ASSERT(page->mapping); 3510 3511 if (PagePrivate(page)) 3512 return 0; 3513 3514 fs_info = btrfs_sb(page->mapping->host->i_sb); 3515 3516 if (fs_info->sectorsize < PAGE_SIZE) 3517 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3518 3519 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3520 return 0; 3521 } 3522 3523 void clear_page_extent_mapped(struct page *page) 3524 { 3525 struct btrfs_fs_info *fs_info; 3526 3527 ASSERT(page->mapping); 3528 3529 if (!PagePrivate(page)) 3530 return; 3531 3532 fs_info = btrfs_sb(page->mapping->host->i_sb); 3533 if (fs_info->sectorsize < PAGE_SIZE) 3534 return btrfs_detach_subpage(fs_info, page); 3535 3536 detach_page_private(page); 3537 } 3538 3539 static struct extent_map * 3540 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3541 u64 start, u64 len, struct extent_map **em_cached) 3542 { 3543 struct extent_map *em; 3544 3545 if (em_cached && *em_cached) { 3546 em = *em_cached; 3547 if (extent_map_in_tree(em) && start >= em->start && 3548 start < extent_map_end(em)) { 3549 refcount_inc(&em->refs); 3550 return em; 3551 } 3552 3553 free_extent_map(em); 3554 *em_cached = NULL; 3555 } 3556 3557 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3558 if (em_cached && !IS_ERR(em)) { 3559 BUG_ON(*em_cached); 3560 refcount_inc(&em->refs); 3561 *em_cached = em; 3562 } 3563 return em; 3564 } 3565 /* 3566 * basic readpage implementation. Locked extent state structs are inserted 3567 * into the tree that are removed when the IO is done (by the end_io 3568 * handlers) 3569 * XXX JDM: This needs looking at to ensure proper page locking 3570 * return 0 on success, otherwise return error 3571 */ 3572 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3573 struct btrfs_bio_ctrl *bio_ctrl, 3574 unsigned int read_flags, u64 *prev_em_start) 3575 { 3576 struct inode *inode = page->mapping->host; 3577 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3578 u64 start = page_offset(page); 3579 const u64 end = start + PAGE_SIZE - 1; 3580 u64 cur = start; 3581 u64 extent_offset; 3582 u64 last_byte = i_size_read(inode); 3583 u64 block_start; 3584 u64 cur_end; 3585 struct extent_map *em; 3586 int ret = 0; 3587 size_t pg_offset = 0; 3588 size_t iosize; 3589 size_t blocksize = inode->i_sb->s_blocksize; 3590 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3591 3592 ret = set_page_extent_mapped(page); 3593 if (ret < 0) { 3594 unlock_extent(tree, start, end); 3595 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3596 unlock_page(page); 3597 goto out; 3598 } 3599 3600 if (page->index == last_byte >> PAGE_SHIFT) { 3601 size_t zero_offset = offset_in_page(last_byte); 3602 3603 if (zero_offset) { 3604 iosize = PAGE_SIZE - zero_offset; 3605 memzero_page(page, zero_offset, iosize); 3606 flush_dcache_page(page); 3607 } 3608 } 3609 begin_page_read(fs_info, page); 3610 while (cur <= end) { 3611 unsigned long this_bio_flag = 0; 3612 bool force_bio_submit = false; 3613 u64 disk_bytenr; 3614 3615 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 3616 if (cur >= last_byte) { 3617 struct extent_state *cached = NULL; 3618 3619 iosize = PAGE_SIZE - pg_offset; 3620 memzero_page(page, pg_offset, iosize); 3621 flush_dcache_page(page); 3622 set_extent_uptodate(tree, cur, cur + iosize - 1, 3623 &cached, GFP_NOFS); 3624 unlock_extent_cached(tree, cur, 3625 cur + iosize - 1, &cached); 3626 end_page_read(page, true, cur, iosize); 3627 break; 3628 } 3629 em = __get_extent_map(inode, page, pg_offset, cur, 3630 end - cur + 1, em_cached); 3631 if (IS_ERR(em)) { 3632 unlock_extent(tree, cur, end); 3633 end_page_read(page, false, cur, end + 1 - cur); 3634 ret = PTR_ERR(em); 3635 break; 3636 } 3637 extent_offset = cur - em->start; 3638 BUG_ON(extent_map_end(em) <= cur); 3639 BUG_ON(end < cur); 3640 3641 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3642 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3643 extent_set_compress_type(&this_bio_flag, 3644 em->compress_type); 3645 } 3646 3647 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3648 cur_end = min(extent_map_end(em) - 1, end); 3649 iosize = ALIGN(iosize, blocksize); 3650 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3651 disk_bytenr = em->block_start; 3652 else 3653 disk_bytenr = em->block_start + extent_offset; 3654 block_start = em->block_start; 3655 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3656 block_start = EXTENT_MAP_HOLE; 3657 3658 /* 3659 * If we have a file range that points to a compressed extent 3660 * and it's followed by a consecutive file range that points 3661 * to the same compressed extent (possibly with a different 3662 * offset and/or length, so it either points to the whole extent 3663 * or only part of it), we must make sure we do not submit a 3664 * single bio to populate the pages for the 2 ranges because 3665 * this makes the compressed extent read zero out the pages 3666 * belonging to the 2nd range. Imagine the following scenario: 3667 * 3668 * File layout 3669 * [0 - 8K] [8K - 24K] 3670 * | | 3671 * | | 3672 * points to extent X, points to extent X, 3673 * offset 4K, length of 8K offset 0, length 16K 3674 * 3675 * [extent X, compressed length = 4K uncompressed length = 16K] 3676 * 3677 * If the bio to read the compressed extent covers both ranges, 3678 * it will decompress extent X into the pages belonging to the 3679 * first range and then it will stop, zeroing out the remaining 3680 * pages that belong to the other range that points to extent X. 3681 * So here we make sure we submit 2 bios, one for the first 3682 * range and another one for the third range. Both will target 3683 * the same physical extent from disk, but we can't currently 3684 * make the compressed bio endio callback populate the pages 3685 * for both ranges because each compressed bio is tightly 3686 * coupled with a single extent map, and each range can have 3687 * an extent map with a different offset value relative to the 3688 * uncompressed data of our extent and different lengths. This 3689 * is a corner case so we prioritize correctness over 3690 * non-optimal behavior (submitting 2 bios for the same extent). 3691 */ 3692 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3693 prev_em_start && *prev_em_start != (u64)-1 && 3694 *prev_em_start != em->start) 3695 force_bio_submit = true; 3696 3697 if (prev_em_start) 3698 *prev_em_start = em->start; 3699 3700 free_extent_map(em); 3701 em = NULL; 3702 3703 /* we've found a hole, just zero and go on */ 3704 if (block_start == EXTENT_MAP_HOLE) { 3705 struct extent_state *cached = NULL; 3706 3707 memzero_page(page, pg_offset, iosize); 3708 flush_dcache_page(page); 3709 3710 set_extent_uptodate(tree, cur, cur + iosize - 1, 3711 &cached, GFP_NOFS); 3712 unlock_extent_cached(tree, cur, 3713 cur + iosize - 1, &cached); 3714 end_page_read(page, true, cur, iosize); 3715 cur = cur + iosize; 3716 pg_offset += iosize; 3717 continue; 3718 } 3719 /* the get_extent function already copied into the page */ 3720 if (test_range_bit(tree, cur, cur_end, 3721 EXTENT_UPTODATE, 1, NULL)) { 3722 unlock_extent(tree, cur, cur + iosize - 1); 3723 end_page_read(page, true, cur, iosize); 3724 cur = cur + iosize; 3725 pg_offset += iosize; 3726 continue; 3727 } 3728 /* we have an inline extent but it didn't get marked up 3729 * to date. Error out 3730 */ 3731 if (block_start == EXTENT_MAP_INLINE) { 3732 unlock_extent(tree, cur, cur + iosize - 1); 3733 end_page_read(page, false, cur, iosize); 3734 cur = cur + iosize; 3735 pg_offset += iosize; 3736 continue; 3737 } 3738 3739 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3740 bio_ctrl, page, disk_bytenr, iosize, 3741 pg_offset, 3742 end_bio_extent_readpage, 0, 3743 this_bio_flag, 3744 force_bio_submit); 3745 if (ret) { 3746 unlock_extent(tree, cur, cur + iosize - 1); 3747 end_page_read(page, false, cur, iosize); 3748 goto out; 3749 } 3750 cur = cur + iosize; 3751 pg_offset += iosize; 3752 } 3753 out: 3754 return ret; 3755 } 3756 3757 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3758 u64 start, u64 end, 3759 struct extent_map **em_cached, 3760 struct btrfs_bio_ctrl *bio_ctrl, 3761 u64 *prev_em_start) 3762 { 3763 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3764 int index; 3765 3766 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3767 3768 for (index = 0; index < nr_pages; index++) { 3769 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3770 REQ_RAHEAD, prev_em_start); 3771 put_page(pages[index]); 3772 } 3773 } 3774 3775 static void update_nr_written(struct writeback_control *wbc, 3776 unsigned long nr_written) 3777 { 3778 wbc->nr_to_write -= nr_written; 3779 } 3780 3781 /* 3782 * helper for __extent_writepage, doing all of the delayed allocation setup. 3783 * 3784 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3785 * to write the page (copy into inline extent). In this case the IO has 3786 * been started and the page is already unlocked. 3787 * 3788 * This returns 0 if all went well (page still locked) 3789 * This returns < 0 if there were errors (page still locked) 3790 */ 3791 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3792 struct page *page, struct writeback_control *wbc) 3793 { 3794 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 3795 u64 delalloc_start = page_offset(page); 3796 u64 delalloc_to_write = 0; 3797 /* How many pages are started by btrfs_run_delalloc_range() */ 3798 unsigned long nr_written = 0; 3799 int ret; 3800 int page_started = 0; 3801 3802 while (delalloc_start < page_end) { 3803 u64 delalloc_end = page_end; 3804 bool found; 3805 3806 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3807 &delalloc_start, 3808 &delalloc_end); 3809 if (!found) { 3810 delalloc_start = delalloc_end + 1; 3811 continue; 3812 } 3813 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3814 delalloc_end, &page_started, &nr_written, wbc); 3815 if (ret) { 3816 btrfs_page_set_error(inode->root->fs_info, page, 3817 page_offset(page), PAGE_SIZE); 3818 return ret; 3819 } 3820 /* 3821 * delalloc_end is already one less than the total length, so 3822 * we don't subtract one from PAGE_SIZE 3823 */ 3824 delalloc_to_write += (delalloc_end - delalloc_start + 3825 PAGE_SIZE) >> PAGE_SHIFT; 3826 delalloc_start = delalloc_end + 1; 3827 } 3828 if (wbc->nr_to_write < delalloc_to_write) { 3829 int thresh = 8192; 3830 3831 if (delalloc_to_write < thresh * 2) 3832 thresh = delalloc_to_write; 3833 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3834 thresh); 3835 } 3836 3837 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 3838 if (page_started) { 3839 /* 3840 * We've unlocked the page, so we can't update the mapping's 3841 * writeback index, just update nr_to_write. 3842 */ 3843 wbc->nr_to_write -= nr_written; 3844 return 1; 3845 } 3846 3847 return 0; 3848 } 3849 3850 /* 3851 * Find the first byte we need to write. 3852 * 3853 * For subpage, one page can contain several sectors, and 3854 * __extent_writepage_io() will just grab all extent maps in the page 3855 * range and try to submit all non-inline/non-compressed extents. 3856 * 3857 * This is a big problem for subpage, we shouldn't re-submit already written 3858 * data at all. 3859 * This function will lookup subpage dirty bit to find which range we really 3860 * need to submit. 3861 * 3862 * Return the next dirty range in [@start, @end). 3863 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3864 */ 3865 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3866 struct page *page, u64 *start, u64 *end) 3867 { 3868 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3869 struct btrfs_subpage_info *spi = fs_info->subpage_info; 3870 u64 orig_start = *start; 3871 /* Declare as unsigned long so we can use bitmap ops */ 3872 unsigned long flags; 3873 int range_start_bit; 3874 int range_end_bit; 3875 3876 /* 3877 * For regular sector size == page size case, since one page only 3878 * contains one sector, we return the page offset directly. 3879 */ 3880 if (fs_info->sectorsize == PAGE_SIZE) { 3881 *start = page_offset(page); 3882 *end = page_offset(page) + PAGE_SIZE; 3883 return; 3884 } 3885 3886 range_start_bit = spi->dirty_offset + 3887 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 3888 3889 /* We should have the page locked, but just in case */ 3890 spin_lock_irqsave(&subpage->lock, flags); 3891 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 3892 spi->dirty_offset + spi->bitmap_nr_bits); 3893 spin_unlock_irqrestore(&subpage->lock, flags); 3894 3895 range_start_bit -= spi->dirty_offset; 3896 range_end_bit -= spi->dirty_offset; 3897 3898 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3899 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3900 } 3901 3902 /* 3903 * helper for __extent_writepage. This calls the writepage start hooks, 3904 * and does the loop to map the page into extents and bios. 3905 * 3906 * We return 1 if the IO is started and the page is unlocked, 3907 * 0 if all went well (page still locked) 3908 * < 0 if there were errors (page still locked) 3909 */ 3910 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3911 struct page *page, 3912 struct writeback_control *wbc, 3913 struct extent_page_data *epd, 3914 loff_t i_size, 3915 int *nr_ret) 3916 { 3917 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3918 u64 cur = page_offset(page); 3919 u64 end = cur + PAGE_SIZE - 1; 3920 u64 extent_offset; 3921 u64 block_start; 3922 struct extent_map *em; 3923 int ret = 0; 3924 int nr = 0; 3925 u32 opf = REQ_OP_WRITE; 3926 const unsigned int write_flags = wbc_to_write_flags(wbc); 3927 bool compressed; 3928 3929 ret = btrfs_writepage_cow_fixup(page); 3930 if (ret) { 3931 /* Fixup worker will requeue */ 3932 redirty_page_for_writepage(wbc, page); 3933 unlock_page(page); 3934 return 1; 3935 } 3936 3937 /* 3938 * we don't want to touch the inode after unlocking the page, 3939 * so we update the mapping writeback index now 3940 */ 3941 update_nr_written(wbc, 1); 3942 3943 while (cur <= end) { 3944 u64 disk_bytenr; 3945 u64 em_end; 3946 u64 dirty_range_start = cur; 3947 u64 dirty_range_end; 3948 u32 iosize; 3949 3950 if (cur >= i_size) { 3951 btrfs_writepage_endio_finish_ordered(inode, page, cur, 3952 end, true); 3953 /* 3954 * This range is beyond i_size, thus we don't need to 3955 * bother writing back. 3956 * But we still need to clear the dirty subpage bit, or 3957 * the next time the page gets dirtied, we will try to 3958 * writeback the sectors with subpage dirty bits, 3959 * causing writeback without ordered extent. 3960 */ 3961 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 3962 break; 3963 } 3964 3965 find_next_dirty_byte(fs_info, page, &dirty_range_start, 3966 &dirty_range_end); 3967 if (cur < dirty_range_start) { 3968 cur = dirty_range_start; 3969 continue; 3970 } 3971 3972 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3973 if (IS_ERR(em)) { 3974 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 3975 ret = PTR_ERR_OR_ZERO(em); 3976 break; 3977 } 3978 3979 extent_offset = cur - em->start; 3980 em_end = extent_map_end(em); 3981 ASSERT(cur <= em_end); 3982 ASSERT(cur < end); 3983 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3984 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3985 block_start = em->block_start; 3986 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3987 disk_bytenr = em->block_start + extent_offset; 3988 3989 /* 3990 * Note that em_end from extent_map_end() and dirty_range_end from 3991 * find_next_dirty_byte() are all exclusive 3992 */ 3993 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 3994 3995 if (btrfs_use_zone_append(inode, em->block_start)) 3996 opf = REQ_OP_ZONE_APPEND; 3997 3998 free_extent_map(em); 3999 em = NULL; 4000 4001 /* 4002 * compressed and inline extents are written through other 4003 * paths in the FS 4004 */ 4005 if (compressed || block_start == EXTENT_MAP_HOLE || 4006 block_start == EXTENT_MAP_INLINE) { 4007 if (compressed) 4008 nr++; 4009 else 4010 btrfs_writepage_endio_finish_ordered(inode, 4011 page, cur, cur + iosize - 1, true); 4012 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4013 cur += iosize; 4014 continue; 4015 } 4016 4017 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 4018 if (!PageWriteback(page)) { 4019 btrfs_err(inode->root->fs_info, 4020 "page %lu not writeback, cur %llu end %llu", 4021 page->index, cur, end); 4022 } 4023 4024 /* 4025 * Although the PageDirty bit is cleared before entering this 4026 * function, subpage dirty bit is not cleared. 4027 * So clear subpage dirty bit here so next time we won't submit 4028 * page for range already written to disk. 4029 */ 4030 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4031 4032 ret = submit_extent_page(opf | write_flags, wbc, 4033 &epd->bio_ctrl, page, 4034 disk_bytenr, iosize, 4035 cur - page_offset(page), 4036 end_bio_extent_writepage, 4037 0, 0, false); 4038 if (ret) { 4039 btrfs_page_set_error(fs_info, page, cur, iosize); 4040 if (PageWriteback(page)) 4041 btrfs_page_clear_writeback(fs_info, page, cur, 4042 iosize); 4043 } 4044 4045 cur += iosize; 4046 nr++; 4047 } 4048 /* 4049 * If we finish without problem, we should not only clear page dirty, 4050 * but also empty subpage dirty bits 4051 */ 4052 if (!ret) 4053 btrfs_page_assert_not_dirty(fs_info, page); 4054 *nr_ret = nr; 4055 return ret; 4056 } 4057 4058 /* 4059 * the writepage semantics are similar to regular writepage. extent 4060 * records are inserted to lock ranges in the tree, and as dirty areas 4061 * are found, they are marked writeback. Then the lock bits are removed 4062 * and the end_io handler clears the writeback ranges 4063 * 4064 * Return 0 if everything goes well. 4065 * Return <0 for error. 4066 */ 4067 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4068 struct extent_page_data *epd) 4069 { 4070 struct folio *folio = page_folio(page); 4071 struct inode *inode = page->mapping->host; 4072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4073 const u64 page_start = page_offset(page); 4074 const u64 page_end = page_start + PAGE_SIZE - 1; 4075 int ret; 4076 int nr = 0; 4077 size_t pg_offset; 4078 loff_t i_size = i_size_read(inode); 4079 unsigned long end_index = i_size >> PAGE_SHIFT; 4080 4081 trace___extent_writepage(page, inode, wbc); 4082 4083 WARN_ON(!PageLocked(page)); 4084 4085 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4086 page_offset(page), PAGE_SIZE); 4087 4088 pg_offset = offset_in_page(i_size); 4089 if (page->index > end_index || 4090 (page->index == end_index && !pg_offset)) { 4091 folio_invalidate(folio, 0, folio_size(folio)); 4092 folio_unlock(folio); 4093 return 0; 4094 } 4095 4096 if (page->index == end_index) { 4097 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4098 flush_dcache_page(page); 4099 } 4100 4101 ret = set_page_extent_mapped(page); 4102 if (ret < 0) { 4103 SetPageError(page); 4104 goto done; 4105 } 4106 4107 if (!epd->extent_locked) { 4108 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 4109 if (ret == 1) 4110 return 0; 4111 if (ret) 4112 goto done; 4113 } 4114 4115 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4116 &nr); 4117 if (ret == 1) 4118 return 0; 4119 4120 done: 4121 if (nr == 0) { 4122 /* make sure the mapping tag for page dirty gets cleared */ 4123 set_page_writeback(page); 4124 end_page_writeback(page); 4125 } 4126 /* 4127 * Here we used to have a check for PageError() and then set @ret and 4128 * call end_extent_writepage(). 4129 * 4130 * But in fact setting @ret here will cause different error paths 4131 * between subpage and regular sectorsize. 4132 * 4133 * For regular page size, we never submit current page, but only add 4134 * current page to current bio. 4135 * The bio submission can only happen in next page. 4136 * Thus if we hit the PageError() branch, @ret is already set to 4137 * non-zero value and will not get updated for regular sectorsize. 4138 * 4139 * But for subpage case, it's possible we submit part of current page, 4140 * thus can get PageError() set by submitted bio of the same page, 4141 * while our @ret is still 0. 4142 * 4143 * So here we unify the behavior and don't set @ret. 4144 * Error can still be properly passed to higher layer as page will 4145 * be set error, here we just don't handle the IO failure. 4146 * 4147 * NOTE: This is just a hotfix for subpage. 4148 * The root fix will be properly ending ordered extent when we hit 4149 * an error during writeback. 4150 * 4151 * But that needs a bigger refactoring, as we not only need to grab the 4152 * submitted OE, but also need to know exactly at which bytenr we hit 4153 * the error. 4154 * Currently the full page based __extent_writepage_io() is not 4155 * capable of that. 4156 */ 4157 if (PageError(page)) 4158 end_extent_writepage(page, ret, page_start, page_end); 4159 if (epd->extent_locked) { 4160 /* 4161 * If epd->extent_locked, it's from extent_write_locked_range(), 4162 * the page can either be locked by lock_page() or 4163 * process_one_page(). 4164 * Let btrfs_page_unlock_writer() handle both cases. 4165 */ 4166 ASSERT(wbc); 4167 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 4168 wbc->range_end + 1 - wbc->range_start); 4169 } else { 4170 unlock_page(page); 4171 } 4172 ASSERT(ret <= 0); 4173 return ret; 4174 } 4175 4176 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4177 { 4178 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4179 TASK_UNINTERRUPTIBLE); 4180 } 4181 4182 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4183 { 4184 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags)) 4185 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len); 4186 4187 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4188 smp_mb__after_atomic(); 4189 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4190 } 4191 4192 /* 4193 * Lock extent buffer status and pages for writeback. 4194 * 4195 * May try to flush write bio if we can't get the lock. 4196 * 4197 * Return 0 if the extent buffer doesn't need to be submitted. 4198 * (E.g. the extent buffer is not dirty) 4199 * Return >0 is the extent buffer is submitted to bio. 4200 * Return <0 if something went wrong, no page is locked. 4201 */ 4202 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4203 struct extent_page_data *epd) 4204 { 4205 struct btrfs_fs_info *fs_info = eb->fs_info; 4206 int i, num_pages, failed_page_nr; 4207 int flush = 0; 4208 int ret = 0; 4209 4210 if (!btrfs_try_tree_write_lock(eb)) { 4211 ret = flush_write_bio(epd); 4212 if (ret < 0) 4213 return ret; 4214 flush = 1; 4215 btrfs_tree_lock(eb); 4216 } 4217 4218 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4219 btrfs_tree_unlock(eb); 4220 if (!epd->sync_io) 4221 return 0; 4222 if (!flush) { 4223 ret = flush_write_bio(epd); 4224 if (ret < 0) 4225 return ret; 4226 flush = 1; 4227 } 4228 while (1) { 4229 wait_on_extent_buffer_writeback(eb); 4230 btrfs_tree_lock(eb); 4231 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4232 break; 4233 btrfs_tree_unlock(eb); 4234 } 4235 } 4236 4237 /* 4238 * We need to do this to prevent races in people who check if the eb is 4239 * under IO since we can end up having no IO bits set for a short period 4240 * of time. 4241 */ 4242 spin_lock(&eb->refs_lock); 4243 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4244 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4245 spin_unlock(&eb->refs_lock); 4246 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4247 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4248 -eb->len, 4249 fs_info->dirty_metadata_batch); 4250 ret = 1; 4251 } else { 4252 spin_unlock(&eb->refs_lock); 4253 } 4254 4255 btrfs_tree_unlock(eb); 4256 4257 /* 4258 * Either we don't need to submit any tree block, or we're submitting 4259 * subpage eb. 4260 * Subpage metadata doesn't use page locking at all, so we can skip 4261 * the page locking. 4262 */ 4263 if (!ret || fs_info->sectorsize < PAGE_SIZE) 4264 return ret; 4265 4266 num_pages = num_extent_pages(eb); 4267 for (i = 0; i < num_pages; i++) { 4268 struct page *p = eb->pages[i]; 4269 4270 if (!trylock_page(p)) { 4271 if (!flush) { 4272 int err; 4273 4274 err = flush_write_bio(epd); 4275 if (err < 0) { 4276 ret = err; 4277 failed_page_nr = i; 4278 goto err_unlock; 4279 } 4280 flush = 1; 4281 } 4282 lock_page(p); 4283 } 4284 } 4285 4286 return ret; 4287 err_unlock: 4288 /* Unlock already locked pages */ 4289 for (i = 0; i < failed_page_nr; i++) 4290 unlock_page(eb->pages[i]); 4291 /* 4292 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 4293 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 4294 * be made and undo everything done before. 4295 */ 4296 btrfs_tree_lock(eb); 4297 spin_lock(&eb->refs_lock); 4298 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4299 end_extent_buffer_writeback(eb); 4300 spin_unlock(&eb->refs_lock); 4301 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 4302 fs_info->dirty_metadata_batch); 4303 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4304 btrfs_tree_unlock(eb); 4305 return ret; 4306 } 4307 4308 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4309 { 4310 struct btrfs_fs_info *fs_info = eb->fs_info; 4311 4312 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4313 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4314 return; 4315 4316 /* 4317 * A read may stumble upon this buffer later, make sure that it gets an 4318 * error and knows there was an error. 4319 */ 4320 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4321 4322 /* 4323 * We need to set the mapping with the io error as well because a write 4324 * error will flip the file system readonly, and then syncfs() will 4325 * return a 0 because we are readonly if we don't modify the err seq for 4326 * the superblock. 4327 */ 4328 mapping_set_error(page->mapping, -EIO); 4329 4330 /* 4331 * If we error out, we should add back the dirty_metadata_bytes 4332 * to make it consistent. 4333 */ 4334 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4335 eb->len, fs_info->dirty_metadata_batch); 4336 4337 /* 4338 * If writeback for a btree extent that doesn't belong to a log tree 4339 * failed, increment the counter transaction->eb_write_errors. 4340 * We do this because while the transaction is running and before it's 4341 * committing (when we call filemap_fdata[write|wait]_range against 4342 * the btree inode), we might have 4343 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4344 * returns an error or an error happens during writeback, when we're 4345 * committing the transaction we wouldn't know about it, since the pages 4346 * can be no longer dirty nor marked anymore for writeback (if a 4347 * subsequent modification to the extent buffer didn't happen before the 4348 * transaction commit), which makes filemap_fdata[write|wait]_range not 4349 * able to find the pages tagged with SetPageError at transaction 4350 * commit time. So if this happens we must abort the transaction, 4351 * otherwise we commit a super block with btree roots that point to 4352 * btree nodes/leafs whose content on disk is invalid - either garbage 4353 * or the content of some node/leaf from a past generation that got 4354 * cowed or deleted and is no longer valid. 4355 * 4356 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4357 * not be enough - we need to distinguish between log tree extents vs 4358 * non-log tree extents, and the next filemap_fdatawait_range() call 4359 * will catch and clear such errors in the mapping - and that call might 4360 * be from a log sync and not from a transaction commit. Also, checking 4361 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4362 * not done and would not be reliable - the eb might have been released 4363 * from memory and reading it back again means that flag would not be 4364 * set (since it's a runtime flag, not persisted on disk). 4365 * 4366 * Using the flags below in the btree inode also makes us achieve the 4367 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4368 * writeback for all dirty pages and before filemap_fdatawait_range() 4369 * is called, the writeback for all dirty pages had already finished 4370 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4371 * filemap_fdatawait_range() would return success, as it could not know 4372 * that writeback errors happened (the pages were no longer tagged for 4373 * writeback). 4374 */ 4375 switch (eb->log_index) { 4376 case -1: 4377 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4378 break; 4379 case 0: 4380 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4381 break; 4382 case 1: 4383 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4384 break; 4385 default: 4386 BUG(); /* unexpected, logic error */ 4387 } 4388 } 4389 4390 /* 4391 * The endio specific version which won't touch any unsafe spinlock in endio 4392 * context. 4393 */ 4394 static struct extent_buffer *find_extent_buffer_nolock( 4395 struct btrfs_fs_info *fs_info, u64 start) 4396 { 4397 struct extent_buffer *eb; 4398 4399 rcu_read_lock(); 4400 eb = radix_tree_lookup(&fs_info->buffer_radix, 4401 start >> fs_info->sectorsize_bits); 4402 if (eb && atomic_inc_not_zero(&eb->refs)) { 4403 rcu_read_unlock(); 4404 return eb; 4405 } 4406 rcu_read_unlock(); 4407 return NULL; 4408 } 4409 4410 /* 4411 * The endio function for subpage extent buffer write. 4412 * 4413 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4414 * after all extent buffers in the page has finished their writeback. 4415 */ 4416 static void end_bio_subpage_eb_writepage(struct bio *bio) 4417 { 4418 struct btrfs_fs_info *fs_info; 4419 struct bio_vec *bvec; 4420 struct bvec_iter_all iter_all; 4421 4422 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4423 ASSERT(fs_info->sectorsize < PAGE_SIZE); 4424 4425 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4426 bio_for_each_segment_all(bvec, bio, iter_all) { 4427 struct page *page = bvec->bv_page; 4428 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4429 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4430 u64 cur_bytenr = bvec_start; 4431 4432 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4433 4434 /* Iterate through all extent buffers in the range */ 4435 while (cur_bytenr <= bvec_end) { 4436 struct extent_buffer *eb; 4437 int done; 4438 4439 /* 4440 * Here we can't use find_extent_buffer(), as it may 4441 * try to lock eb->refs_lock, which is not safe in endio 4442 * context. 4443 */ 4444 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4445 ASSERT(eb); 4446 4447 cur_bytenr = eb->start + eb->len; 4448 4449 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4450 done = atomic_dec_and_test(&eb->io_pages); 4451 ASSERT(done); 4452 4453 if (bio->bi_status || 4454 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4455 ClearPageUptodate(page); 4456 set_btree_ioerr(page, eb); 4457 } 4458 4459 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4460 eb->len); 4461 end_extent_buffer_writeback(eb); 4462 /* 4463 * free_extent_buffer() will grab spinlock which is not 4464 * safe in endio context. Thus here we manually dec 4465 * the ref. 4466 */ 4467 atomic_dec(&eb->refs); 4468 } 4469 } 4470 bio_put(bio); 4471 } 4472 4473 static void end_bio_extent_buffer_writepage(struct bio *bio) 4474 { 4475 struct bio_vec *bvec; 4476 struct extent_buffer *eb; 4477 int done; 4478 struct bvec_iter_all iter_all; 4479 4480 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4481 bio_for_each_segment_all(bvec, bio, iter_all) { 4482 struct page *page = bvec->bv_page; 4483 4484 eb = (struct extent_buffer *)page->private; 4485 BUG_ON(!eb); 4486 done = atomic_dec_and_test(&eb->io_pages); 4487 4488 if (bio->bi_status || 4489 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4490 ClearPageUptodate(page); 4491 set_btree_ioerr(page, eb); 4492 } 4493 4494 end_page_writeback(page); 4495 4496 if (!done) 4497 continue; 4498 4499 end_extent_buffer_writeback(eb); 4500 } 4501 4502 bio_put(bio); 4503 } 4504 4505 static void prepare_eb_write(struct extent_buffer *eb) 4506 { 4507 u32 nritems; 4508 unsigned long start; 4509 unsigned long end; 4510 4511 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4512 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4513 4514 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4515 nritems = btrfs_header_nritems(eb); 4516 if (btrfs_header_level(eb) > 0) { 4517 end = btrfs_node_key_ptr_offset(nritems); 4518 memzero_extent_buffer(eb, end, eb->len - end); 4519 } else { 4520 /* 4521 * Leaf: 4522 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4523 */ 4524 start = btrfs_item_nr_offset(nritems); 4525 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4526 memzero_extent_buffer(eb, start, end - start); 4527 } 4528 } 4529 4530 /* 4531 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4532 * Page locking is only utilized at minimum to keep the VMM code happy. 4533 */ 4534 static int write_one_subpage_eb(struct extent_buffer *eb, 4535 struct writeback_control *wbc, 4536 struct extent_page_data *epd) 4537 { 4538 struct btrfs_fs_info *fs_info = eb->fs_info; 4539 struct page *page = eb->pages[0]; 4540 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4541 bool no_dirty_ebs = false; 4542 int ret; 4543 4544 prepare_eb_write(eb); 4545 4546 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4547 lock_page(page); 4548 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4549 4550 /* Check if this is the last dirty bit to update nr_written */ 4551 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4552 eb->start, eb->len); 4553 if (no_dirty_ebs) 4554 clear_page_dirty_for_io(page); 4555 4556 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4557 &epd->bio_ctrl, page, eb->start, eb->len, 4558 eb->start - page_offset(page), 4559 end_bio_subpage_eb_writepage, 0, 0, false); 4560 if (ret) { 4561 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4562 set_btree_ioerr(page, eb); 4563 unlock_page(page); 4564 4565 if (atomic_dec_and_test(&eb->io_pages)) 4566 end_extent_buffer_writeback(eb); 4567 return -EIO; 4568 } 4569 unlock_page(page); 4570 /* 4571 * Submission finished without problem, if no range of the page is 4572 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4573 */ 4574 if (no_dirty_ebs) 4575 update_nr_written(wbc, 1); 4576 return ret; 4577 } 4578 4579 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4580 struct writeback_control *wbc, 4581 struct extent_page_data *epd) 4582 { 4583 u64 disk_bytenr = eb->start; 4584 int i, num_pages; 4585 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4586 int ret = 0; 4587 4588 prepare_eb_write(eb); 4589 4590 num_pages = num_extent_pages(eb); 4591 for (i = 0; i < num_pages; i++) { 4592 struct page *p = eb->pages[i]; 4593 4594 clear_page_dirty_for_io(p); 4595 set_page_writeback(p); 4596 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4597 &epd->bio_ctrl, p, disk_bytenr, 4598 PAGE_SIZE, 0, 4599 end_bio_extent_buffer_writepage, 4600 0, 0, false); 4601 if (ret) { 4602 set_btree_ioerr(p, eb); 4603 if (PageWriteback(p)) 4604 end_page_writeback(p); 4605 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4606 end_extent_buffer_writeback(eb); 4607 ret = -EIO; 4608 break; 4609 } 4610 disk_bytenr += PAGE_SIZE; 4611 update_nr_written(wbc, 1); 4612 unlock_page(p); 4613 } 4614 4615 if (unlikely(ret)) { 4616 for (; i < num_pages; i++) { 4617 struct page *p = eb->pages[i]; 4618 clear_page_dirty_for_io(p); 4619 unlock_page(p); 4620 } 4621 } 4622 4623 return ret; 4624 } 4625 4626 /* 4627 * Submit one subpage btree page. 4628 * 4629 * The main difference to submit_eb_page() is: 4630 * - Page locking 4631 * For subpage, we don't rely on page locking at all. 4632 * 4633 * - Flush write bio 4634 * We only flush bio if we may be unable to fit current extent buffers into 4635 * current bio. 4636 * 4637 * Return >=0 for the number of submitted extent buffers. 4638 * Return <0 for fatal error. 4639 */ 4640 static int submit_eb_subpage(struct page *page, 4641 struct writeback_control *wbc, 4642 struct extent_page_data *epd) 4643 { 4644 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4645 int submitted = 0; 4646 u64 page_start = page_offset(page); 4647 int bit_start = 0; 4648 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4649 int ret; 4650 4651 /* Lock and write each dirty extent buffers in the range */ 4652 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 4653 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4654 struct extent_buffer *eb; 4655 unsigned long flags; 4656 u64 start; 4657 4658 /* 4659 * Take private lock to ensure the subpage won't be detached 4660 * in the meantime. 4661 */ 4662 spin_lock(&page->mapping->private_lock); 4663 if (!PagePrivate(page)) { 4664 spin_unlock(&page->mapping->private_lock); 4665 break; 4666 } 4667 spin_lock_irqsave(&subpage->lock, flags); 4668 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 4669 subpage->bitmaps)) { 4670 spin_unlock_irqrestore(&subpage->lock, flags); 4671 spin_unlock(&page->mapping->private_lock); 4672 bit_start++; 4673 continue; 4674 } 4675 4676 start = page_start + bit_start * fs_info->sectorsize; 4677 bit_start += sectors_per_node; 4678 4679 /* 4680 * Here we just want to grab the eb without touching extra 4681 * spin locks, so call find_extent_buffer_nolock(). 4682 */ 4683 eb = find_extent_buffer_nolock(fs_info, start); 4684 spin_unlock_irqrestore(&subpage->lock, flags); 4685 spin_unlock(&page->mapping->private_lock); 4686 4687 /* 4688 * The eb has already reached 0 refs thus find_extent_buffer() 4689 * doesn't return it. We don't need to write back such eb 4690 * anyway. 4691 */ 4692 if (!eb) 4693 continue; 4694 4695 ret = lock_extent_buffer_for_io(eb, epd); 4696 if (ret == 0) { 4697 free_extent_buffer(eb); 4698 continue; 4699 } 4700 if (ret < 0) { 4701 free_extent_buffer(eb); 4702 goto cleanup; 4703 } 4704 ret = write_one_subpage_eb(eb, wbc, epd); 4705 free_extent_buffer(eb); 4706 if (ret < 0) 4707 goto cleanup; 4708 submitted++; 4709 } 4710 return submitted; 4711 4712 cleanup: 4713 /* We hit error, end bio for the submitted extent buffers */ 4714 end_write_bio(epd, ret); 4715 return ret; 4716 } 4717 4718 /* 4719 * Submit all page(s) of one extent buffer. 4720 * 4721 * @page: the page of one extent buffer 4722 * @eb_context: to determine if we need to submit this page, if current page 4723 * belongs to this eb, we don't need to submit 4724 * 4725 * The caller should pass each page in their bytenr order, and here we use 4726 * @eb_context to determine if we have submitted pages of one extent buffer. 4727 * 4728 * If we have, we just skip until we hit a new page that doesn't belong to 4729 * current @eb_context. 4730 * 4731 * If not, we submit all the page(s) of the extent buffer. 4732 * 4733 * Return >0 if we have submitted the extent buffer successfully. 4734 * Return 0 if we don't need to submit the page, as it's already submitted by 4735 * previous call. 4736 * Return <0 for fatal error. 4737 */ 4738 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4739 struct extent_page_data *epd, 4740 struct extent_buffer **eb_context) 4741 { 4742 struct address_space *mapping = page->mapping; 4743 struct btrfs_block_group *cache = NULL; 4744 struct extent_buffer *eb; 4745 int ret; 4746 4747 if (!PagePrivate(page)) 4748 return 0; 4749 4750 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 4751 return submit_eb_subpage(page, wbc, epd); 4752 4753 spin_lock(&mapping->private_lock); 4754 if (!PagePrivate(page)) { 4755 spin_unlock(&mapping->private_lock); 4756 return 0; 4757 } 4758 4759 eb = (struct extent_buffer *)page->private; 4760 4761 /* 4762 * Shouldn't happen and normally this would be a BUG_ON but no point 4763 * crashing the machine for something we can survive anyway. 4764 */ 4765 if (WARN_ON(!eb)) { 4766 spin_unlock(&mapping->private_lock); 4767 return 0; 4768 } 4769 4770 if (eb == *eb_context) { 4771 spin_unlock(&mapping->private_lock); 4772 return 0; 4773 } 4774 ret = atomic_inc_not_zero(&eb->refs); 4775 spin_unlock(&mapping->private_lock); 4776 if (!ret) 4777 return 0; 4778 4779 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4780 /* 4781 * If for_sync, this hole will be filled with 4782 * trasnsaction commit. 4783 */ 4784 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4785 ret = -EAGAIN; 4786 else 4787 ret = 0; 4788 free_extent_buffer(eb); 4789 return ret; 4790 } 4791 4792 *eb_context = eb; 4793 4794 ret = lock_extent_buffer_for_io(eb, epd); 4795 if (ret <= 0) { 4796 btrfs_revert_meta_write_pointer(cache, eb); 4797 if (cache) 4798 btrfs_put_block_group(cache); 4799 free_extent_buffer(eb); 4800 return ret; 4801 } 4802 if (cache) { 4803 /* 4804 * Implies write in zoned mode. Mark the last eb in a block group. 4805 */ 4806 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity) 4807 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags); 4808 btrfs_put_block_group(cache); 4809 } 4810 ret = write_one_eb(eb, wbc, epd); 4811 free_extent_buffer(eb); 4812 if (ret < 0) 4813 return ret; 4814 return 1; 4815 } 4816 4817 int btree_write_cache_pages(struct address_space *mapping, 4818 struct writeback_control *wbc) 4819 { 4820 struct extent_buffer *eb_context = NULL; 4821 struct extent_page_data epd = { 4822 .bio_ctrl = { 0 }, 4823 .extent_locked = 0, 4824 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4825 }; 4826 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4827 int ret = 0; 4828 int done = 0; 4829 int nr_to_write_done = 0; 4830 struct pagevec pvec; 4831 int nr_pages; 4832 pgoff_t index; 4833 pgoff_t end; /* Inclusive */ 4834 int scanned = 0; 4835 xa_mark_t tag; 4836 4837 pagevec_init(&pvec); 4838 if (wbc->range_cyclic) { 4839 index = mapping->writeback_index; /* Start from prev offset */ 4840 end = -1; 4841 /* 4842 * Start from the beginning does not need to cycle over the 4843 * range, mark it as scanned. 4844 */ 4845 scanned = (index == 0); 4846 } else { 4847 index = wbc->range_start >> PAGE_SHIFT; 4848 end = wbc->range_end >> PAGE_SHIFT; 4849 scanned = 1; 4850 } 4851 if (wbc->sync_mode == WB_SYNC_ALL) 4852 tag = PAGECACHE_TAG_TOWRITE; 4853 else 4854 tag = PAGECACHE_TAG_DIRTY; 4855 btrfs_zoned_meta_io_lock(fs_info); 4856 retry: 4857 if (wbc->sync_mode == WB_SYNC_ALL) 4858 tag_pages_for_writeback(mapping, index, end); 4859 while (!done && !nr_to_write_done && (index <= end) && 4860 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4861 tag))) { 4862 unsigned i; 4863 4864 for (i = 0; i < nr_pages; i++) { 4865 struct page *page = pvec.pages[i]; 4866 4867 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4868 if (ret == 0) 4869 continue; 4870 if (ret < 0) { 4871 done = 1; 4872 break; 4873 } 4874 4875 /* 4876 * the filesystem may choose to bump up nr_to_write. 4877 * We have to make sure to honor the new nr_to_write 4878 * at any time 4879 */ 4880 nr_to_write_done = wbc->nr_to_write <= 0; 4881 } 4882 pagevec_release(&pvec); 4883 cond_resched(); 4884 } 4885 if (!scanned && !done) { 4886 /* 4887 * We hit the last page and there is more work to be done: wrap 4888 * back to the start of the file 4889 */ 4890 scanned = 1; 4891 index = 0; 4892 goto retry; 4893 } 4894 if (ret < 0) { 4895 end_write_bio(&epd, ret); 4896 goto out; 4897 } 4898 /* 4899 * If something went wrong, don't allow any metadata write bio to be 4900 * submitted. 4901 * 4902 * This would prevent use-after-free if we had dirty pages not 4903 * cleaned up, which can still happen by fuzzed images. 4904 * 4905 * - Bad extent tree 4906 * Allowing existing tree block to be allocated for other trees. 4907 * 4908 * - Log tree operations 4909 * Exiting tree blocks get allocated to log tree, bumps its 4910 * generation, then get cleaned in tree re-balance. 4911 * Such tree block will not be written back, since it's clean, 4912 * thus no WRITTEN flag set. 4913 * And after log writes back, this tree block is not traced by 4914 * any dirty extent_io_tree. 4915 * 4916 * - Offending tree block gets re-dirtied from its original owner 4917 * Since it has bumped generation, no WRITTEN flag, it can be 4918 * reused without COWing. This tree block will not be traced 4919 * by btrfs_transaction::dirty_pages. 4920 * 4921 * Now such dirty tree block will not be cleaned by any dirty 4922 * extent io tree. Thus we don't want to submit such wild eb 4923 * if the fs already has error. 4924 */ 4925 if (!BTRFS_FS_ERROR(fs_info)) { 4926 ret = flush_write_bio(&epd); 4927 } else { 4928 ret = -EROFS; 4929 end_write_bio(&epd, ret); 4930 } 4931 out: 4932 btrfs_zoned_meta_io_unlock(fs_info); 4933 return ret; 4934 } 4935 4936 /** 4937 * Walk the list of dirty pages of the given address space and write all of them. 4938 * 4939 * @mapping: address space structure to write 4940 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4941 * @epd: holds context for the write, namely the bio 4942 * 4943 * If a page is already under I/O, write_cache_pages() skips it, even 4944 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4945 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4946 * and msync() need to guarantee that all the data which was dirty at the time 4947 * the call was made get new I/O started against them. If wbc->sync_mode is 4948 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4949 * existing IO to complete. 4950 */ 4951 static int extent_write_cache_pages(struct address_space *mapping, 4952 struct writeback_control *wbc, 4953 struct extent_page_data *epd) 4954 { 4955 struct inode *inode = mapping->host; 4956 int ret = 0; 4957 int done = 0; 4958 int nr_to_write_done = 0; 4959 struct pagevec pvec; 4960 int nr_pages; 4961 pgoff_t index; 4962 pgoff_t end; /* Inclusive */ 4963 pgoff_t done_index; 4964 int range_whole = 0; 4965 int scanned = 0; 4966 xa_mark_t tag; 4967 4968 /* 4969 * We have to hold onto the inode so that ordered extents can do their 4970 * work when the IO finishes. The alternative to this is failing to add 4971 * an ordered extent if the igrab() fails there and that is a huge pain 4972 * to deal with, so instead just hold onto the inode throughout the 4973 * writepages operation. If it fails here we are freeing up the inode 4974 * anyway and we'd rather not waste our time writing out stuff that is 4975 * going to be truncated anyway. 4976 */ 4977 if (!igrab(inode)) 4978 return 0; 4979 4980 pagevec_init(&pvec); 4981 if (wbc->range_cyclic) { 4982 index = mapping->writeback_index; /* Start from prev offset */ 4983 end = -1; 4984 /* 4985 * Start from the beginning does not need to cycle over the 4986 * range, mark it as scanned. 4987 */ 4988 scanned = (index == 0); 4989 } else { 4990 index = wbc->range_start >> PAGE_SHIFT; 4991 end = wbc->range_end >> PAGE_SHIFT; 4992 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4993 range_whole = 1; 4994 scanned = 1; 4995 } 4996 4997 /* 4998 * We do the tagged writepage as long as the snapshot flush bit is set 4999 * and we are the first one who do the filemap_flush() on this inode. 5000 * 5001 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 5002 * not race in and drop the bit. 5003 */ 5004 if (range_whole && wbc->nr_to_write == LONG_MAX && 5005 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 5006 &BTRFS_I(inode)->runtime_flags)) 5007 wbc->tagged_writepages = 1; 5008 5009 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5010 tag = PAGECACHE_TAG_TOWRITE; 5011 else 5012 tag = PAGECACHE_TAG_DIRTY; 5013 retry: 5014 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5015 tag_pages_for_writeback(mapping, index, end); 5016 done_index = index; 5017 while (!done && !nr_to_write_done && (index <= end) && 5018 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 5019 &index, end, tag))) { 5020 unsigned i; 5021 5022 for (i = 0; i < nr_pages; i++) { 5023 struct page *page = pvec.pages[i]; 5024 5025 done_index = page->index + 1; 5026 /* 5027 * At this point we hold neither the i_pages lock nor 5028 * the page lock: the page may be truncated or 5029 * invalidated (changing page->mapping to NULL), 5030 * or even swizzled back from swapper_space to 5031 * tmpfs file mapping 5032 */ 5033 if (!trylock_page(page)) { 5034 ret = flush_write_bio(epd); 5035 BUG_ON(ret < 0); 5036 lock_page(page); 5037 } 5038 5039 if (unlikely(page->mapping != mapping)) { 5040 unlock_page(page); 5041 continue; 5042 } 5043 5044 if (wbc->sync_mode != WB_SYNC_NONE) { 5045 if (PageWriteback(page)) { 5046 ret = flush_write_bio(epd); 5047 BUG_ON(ret < 0); 5048 } 5049 wait_on_page_writeback(page); 5050 } 5051 5052 if (PageWriteback(page) || 5053 !clear_page_dirty_for_io(page)) { 5054 unlock_page(page); 5055 continue; 5056 } 5057 5058 ret = __extent_writepage(page, wbc, epd); 5059 if (ret < 0) { 5060 done = 1; 5061 break; 5062 } 5063 5064 /* 5065 * the filesystem may choose to bump up nr_to_write. 5066 * We have to make sure to honor the new nr_to_write 5067 * at any time 5068 */ 5069 nr_to_write_done = wbc->nr_to_write <= 0; 5070 } 5071 pagevec_release(&pvec); 5072 cond_resched(); 5073 } 5074 if (!scanned && !done) { 5075 /* 5076 * We hit the last page and there is more work to be done: wrap 5077 * back to the start of the file 5078 */ 5079 scanned = 1; 5080 index = 0; 5081 5082 /* 5083 * If we're looping we could run into a page that is locked by a 5084 * writer and that writer could be waiting on writeback for a 5085 * page in our current bio, and thus deadlock, so flush the 5086 * write bio here. 5087 */ 5088 ret = flush_write_bio(epd); 5089 if (!ret) 5090 goto retry; 5091 } 5092 5093 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5094 mapping->writeback_index = done_index; 5095 5096 btrfs_add_delayed_iput(inode); 5097 return ret; 5098 } 5099 5100 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 5101 { 5102 int ret; 5103 struct extent_page_data epd = { 5104 .bio_ctrl = { 0 }, 5105 .extent_locked = 0, 5106 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5107 }; 5108 5109 ret = __extent_writepage(page, wbc, &epd); 5110 ASSERT(ret <= 0); 5111 if (ret < 0) { 5112 end_write_bio(&epd, ret); 5113 return ret; 5114 } 5115 5116 ret = flush_write_bio(&epd); 5117 ASSERT(ret <= 0); 5118 return ret; 5119 } 5120 5121 /* 5122 * Submit the pages in the range to bio for call sites which delalloc range has 5123 * already been ran (aka, ordered extent inserted) and all pages are still 5124 * locked. 5125 */ 5126 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 5127 { 5128 bool found_error = false; 5129 int first_error = 0; 5130 int ret = 0; 5131 struct address_space *mapping = inode->i_mapping; 5132 struct page *page; 5133 u64 cur = start; 5134 unsigned long nr_pages; 5135 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 5136 struct extent_page_data epd = { 5137 .bio_ctrl = { 0 }, 5138 .extent_locked = 1, 5139 .sync_io = 1, 5140 }; 5141 struct writeback_control wbc_writepages = { 5142 .sync_mode = WB_SYNC_ALL, 5143 .range_start = start, 5144 .range_end = end + 1, 5145 /* We're called from an async helper function */ 5146 .punt_to_cgroup = 1, 5147 .no_cgroup_owner = 1, 5148 }; 5149 5150 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 5151 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 5152 PAGE_SHIFT; 5153 wbc_writepages.nr_to_write = nr_pages * 2; 5154 5155 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5156 while (cur <= end) { 5157 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 5158 5159 page = find_get_page(mapping, cur >> PAGE_SHIFT); 5160 /* 5161 * All pages in the range are locked since 5162 * btrfs_run_delalloc_range(), thus there is no way to clear 5163 * the page dirty flag. 5164 */ 5165 ASSERT(PageLocked(page)); 5166 ASSERT(PageDirty(page)); 5167 clear_page_dirty_for_io(page); 5168 ret = __extent_writepage(page, &wbc_writepages, &epd); 5169 ASSERT(ret <= 0); 5170 if (ret < 0) { 5171 found_error = true; 5172 first_error = ret; 5173 } 5174 put_page(page); 5175 cur = cur_end + 1; 5176 } 5177 5178 if (!found_error) 5179 ret = flush_write_bio(&epd); 5180 else 5181 end_write_bio(&epd, ret); 5182 5183 wbc_detach_inode(&wbc_writepages); 5184 if (found_error) 5185 return first_error; 5186 return ret; 5187 } 5188 5189 int extent_writepages(struct address_space *mapping, 5190 struct writeback_control *wbc) 5191 { 5192 struct inode *inode = mapping->host; 5193 int ret = 0; 5194 struct extent_page_data epd = { 5195 .bio_ctrl = { 0 }, 5196 .extent_locked = 0, 5197 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5198 }; 5199 5200 /* 5201 * Allow only a single thread to do the reloc work in zoned mode to 5202 * protect the write pointer updates. 5203 */ 5204 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 5205 ret = extent_write_cache_pages(mapping, wbc, &epd); 5206 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 5207 ASSERT(ret <= 0); 5208 if (ret < 0) { 5209 end_write_bio(&epd, ret); 5210 return ret; 5211 } 5212 ret = flush_write_bio(&epd); 5213 return ret; 5214 } 5215 5216 void extent_readahead(struct readahead_control *rac) 5217 { 5218 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5219 struct page *pagepool[16]; 5220 struct extent_map *em_cached = NULL; 5221 u64 prev_em_start = (u64)-1; 5222 int nr; 5223 5224 while ((nr = readahead_page_batch(rac, pagepool))) { 5225 u64 contig_start = readahead_pos(rac); 5226 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5227 5228 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5229 &em_cached, &bio_ctrl, &prev_em_start); 5230 } 5231 5232 if (em_cached) 5233 free_extent_map(em_cached); 5234 5235 if (bio_ctrl.bio) { 5236 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags)) 5237 return; 5238 } 5239 } 5240 5241 /* 5242 * basic invalidate_folio code, this waits on any locked or writeback 5243 * ranges corresponding to the folio, and then deletes any extent state 5244 * records from the tree 5245 */ 5246 int extent_invalidate_folio(struct extent_io_tree *tree, 5247 struct folio *folio, size_t offset) 5248 { 5249 struct extent_state *cached_state = NULL; 5250 u64 start = folio_pos(folio); 5251 u64 end = start + folio_size(folio) - 1; 5252 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 5253 5254 /* This function is only called for the btree inode */ 5255 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5256 5257 start += ALIGN(offset, blocksize); 5258 if (start > end) 5259 return 0; 5260 5261 lock_extent_bits(tree, start, end, &cached_state); 5262 folio_wait_writeback(folio); 5263 5264 /* 5265 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5266 * so here we only need to unlock the extent range to free any 5267 * existing extent state. 5268 */ 5269 unlock_extent_cached(tree, start, end, &cached_state); 5270 return 0; 5271 } 5272 5273 /* 5274 * a helper for releasepage, this tests for areas of the page that 5275 * are locked or under IO and drops the related state bits if it is safe 5276 * to drop the page. 5277 */ 5278 static int try_release_extent_state(struct extent_io_tree *tree, 5279 struct page *page, gfp_t mask) 5280 { 5281 u64 start = page_offset(page); 5282 u64 end = start + PAGE_SIZE - 1; 5283 int ret = 1; 5284 5285 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5286 ret = 0; 5287 } else { 5288 /* 5289 * At this point we can safely clear everything except the 5290 * locked bit, the nodatasum bit and the delalloc new bit. 5291 * The delalloc new bit will be cleared by ordered extent 5292 * completion. 5293 */ 5294 ret = __clear_extent_bit(tree, start, end, 5295 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5296 0, 0, NULL, mask, NULL); 5297 5298 /* if clear_extent_bit failed for enomem reasons, 5299 * we can't allow the release to continue. 5300 */ 5301 if (ret < 0) 5302 ret = 0; 5303 else 5304 ret = 1; 5305 } 5306 return ret; 5307 } 5308 5309 /* 5310 * a helper for releasepage. As long as there are no locked extents 5311 * in the range corresponding to the page, both state records and extent 5312 * map records are removed 5313 */ 5314 int try_release_extent_mapping(struct page *page, gfp_t mask) 5315 { 5316 struct extent_map *em; 5317 u64 start = page_offset(page); 5318 u64 end = start + PAGE_SIZE - 1; 5319 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5320 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5321 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5322 5323 if (gfpflags_allow_blocking(mask) && 5324 page->mapping->host->i_size > SZ_16M) { 5325 u64 len; 5326 while (start <= end) { 5327 struct btrfs_fs_info *fs_info; 5328 u64 cur_gen; 5329 5330 len = end - start + 1; 5331 write_lock(&map->lock); 5332 em = lookup_extent_mapping(map, start, len); 5333 if (!em) { 5334 write_unlock(&map->lock); 5335 break; 5336 } 5337 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5338 em->start != start) { 5339 write_unlock(&map->lock); 5340 free_extent_map(em); 5341 break; 5342 } 5343 if (test_range_bit(tree, em->start, 5344 extent_map_end(em) - 1, 5345 EXTENT_LOCKED, 0, NULL)) 5346 goto next; 5347 /* 5348 * If it's not in the list of modified extents, used 5349 * by a fast fsync, we can remove it. If it's being 5350 * logged we can safely remove it since fsync took an 5351 * extra reference on the em. 5352 */ 5353 if (list_empty(&em->list) || 5354 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5355 goto remove_em; 5356 /* 5357 * If it's in the list of modified extents, remove it 5358 * only if its generation is older then the current one, 5359 * in which case we don't need it for a fast fsync. 5360 * Otherwise don't remove it, we could be racing with an 5361 * ongoing fast fsync that could miss the new extent. 5362 */ 5363 fs_info = btrfs_inode->root->fs_info; 5364 spin_lock(&fs_info->trans_lock); 5365 cur_gen = fs_info->generation; 5366 spin_unlock(&fs_info->trans_lock); 5367 if (em->generation >= cur_gen) 5368 goto next; 5369 remove_em: 5370 /* 5371 * We only remove extent maps that are not in the list of 5372 * modified extents or that are in the list but with a 5373 * generation lower then the current generation, so there 5374 * is no need to set the full fsync flag on the inode (it 5375 * hurts the fsync performance for workloads with a data 5376 * size that exceeds or is close to the system's memory). 5377 */ 5378 remove_extent_mapping(map, em); 5379 /* once for the rb tree */ 5380 free_extent_map(em); 5381 next: 5382 start = extent_map_end(em); 5383 write_unlock(&map->lock); 5384 5385 /* once for us */ 5386 free_extent_map(em); 5387 5388 cond_resched(); /* Allow large-extent preemption. */ 5389 } 5390 } 5391 return try_release_extent_state(tree, page, mask); 5392 } 5393 5394 /* 5395 * helper function for fiemap, which doesn't want to see any holes. 5396 * This maps until we find something past 'last' 5397 */ 5398 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5399 u64 offset, u64 last) 5400 { 5401 u64 sectorsize = btrfs_inode_sectorsize(inode); 5402 struct extent_map *em; 5403 u64 len; 5404 5405 if (offset >= last) 5406 return NULL; 5407 5408 while (1) { 5409 len = last - offset; 5410 if (len == 0) 5411 break; 5412 len = ALIGN(len, sectorsize); 5413 em = btrfs_get_extent_fiemap(inode, offset, len); 5414 if (IS_ERR(em)) 5415 return em; 5416 5417 /* if this isn't a hole return it */ 5418 if (em->block_start != EXTENT_MAP_HOLE) 5419 return em; 5420 5421 /* this is a hole, advance to the next extent */ 5422 offset = extent_map_end(em); 5423 free_extent_map(em); 5424 if (offset >= last) 5425 break; 5426 } 5427 return NULL; 5428 } 5429 5430 /* 5431 * To cache previous fiemap extent 5432 * 5433 * Will be used for merging fiemap extent 5434 */ 5435 struct fiemap_cache { 5436 u64 offset; 5437 u64 phys; 5438 u64 len; 5439 u32 flags; 5440 bool cached; 5441 }; 5442 5443 /* 5444 * Helper to submit fiemap extent. 5445 * 5446 * Will try to merge current fiemap extent specified by @offset, @phys, 5447 * @len and @flags with cached one. 5448 * And only when we fails to merge, cached one will be submitted as 5449 * fiemap extent. 5450 * 5451 * Return value is the same as fiemap_fill_next_extent(). 5452 */ 5453 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5454 struct fiemap_cache *cache, 5455 u64 offset, u64 phys, u64 len, u32 flags) 5456 { 5457 int ret = 0; 5458 5459 if (!cache->cached) 5460 goto assign; 5461 5462 /* 5463 * Sanity check, extent_fiemap() should have ensured that new 5464 * fiemap extent won't overlap with cached one. 5465 * Not recoverable. 5466 * 5467 * NOTE: Physical address can overlap, due to compression 5468 */ 5469 if (cache->offset + cache->len > offset) { 5470 WARN_ON(1); 5471 return -EINVAL; 5472 } 5473 5474 /* 5475 * Only merges fiemap extents if 5476 * 1) Their logical addresses are continuous 5477 * 5478 * 2) Their physical addresses are continuous 5479 * So truly compressed (physical size smaller than logical size) 5480 * extents won't get merged with each other 5481 * 5482 * 3) Share same flags except FIEMAP_EXTENT_LAST 5483 * So regular extent won't get merged with prealloc extent 5484 */ 5485 if (cache->offset + cache->len == offset && 5486 cache->phys + cache->len == phys && 5487 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5488 (flags & ~FIEMAP_EXTENT_LAST)) { 5489 cache->len += len; 5490 cache->flags |= flags; 5491 goto try_submit_last; 5492 } 5493 5494 /* Not mergeable, need to submit cached one */ 5495 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5496 cache->len, cache->flags); 5497 cache->cached = false; 5498 if (ret) 5499 return ret; 5500 assign: 5501 cache->cached = true; 5502 cache->offset = offset; 5503 cache->phys = phys; 5504 cache->len = len; 5505 cache->flags = flags; 5506 try_submit_last: 5507 if (cache->flags & FIEMAP_EXTENT_LAST) { 5508 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5509 cache->phys, cache->len, cache->flags); 5510 cache->cached = false; 5511 } 5512 return ret; 5513 } 5514 5515 /* 5516 * Emit last fiemap cache 5517 * 5518 * The last fiemap cache may still be cached in the following case: 5519 * 0 4k 8k 5520 * |<- Fiemap range ->| 5521 * |<------------ First extent ----------->| 5522 * 5523 * In this case, the first extent range will be cached but not emitted. 5524 * So we must emit it before ending extent_fiemap(). 5525 */ 5526 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5527 struct fiemap_cache *cache) 5528 { 5529 int ret; 5530 5531 if (!cache->cached) 5532 return 0; 5533 5534 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5535 cache->len, cache->flags); 5536 cache->cached = false; 5537 if (ret > 0) 5538 ret = 0; 5539 return ret; 5540 } 5541 5542 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5543 u64 start, u64 len) 5544 { 5545 int ret = 0; 5546 u64 off; 5547 u64 max = start + len; 5548 u32 flags = 0; 5549 u32 found_type; 5550 u64 last; 5551 u64 last_for_get_extent = 0; 5552 u64 disko = 0; 5553 u64 isize = i_size_read(&inode->vfs_inode); 5554 struct btrfs_key found_key; 5555 struct extent_map *em = NULL; 5556 struct extent_state *cached_state = NULL; 5557 struct btrfs_path *path; 5558 struct btrfs_root *root = inode->root; 5559 struct fiemap_cache cache = { 0 }; 5560 struct ulist *roots; 5561 struct ulist *tmp_ulist; 5562 int end = 0; 5563 u64 em_start = 0; 5564 u64 em_len = 0; 5565 u64 em_end = 0; 5566 5567 if (len == 0) 5568 return -EINVAL; 5569 5570 path = btrfs_alloc_path(); 5571 if (!path) 5572 return -ENOMEM; 5573 5574 roots = ulist_alloc(GFP_KERNEL); 5575 tmp_ulist = ulist_alloc(GFP_KERNEL); 5576 if (!roots || !tmp_ulist) { 5577 ret = -ENOMEM; 5578 goto out_free_ulist; 5579 } 5580 5581 /* 5582 * We can't initialize that to 'start' as this could miss extents due 5583 * to extent item merging 5584 */ 5585 off = 0; 5586 start = round_down(start, btrfs_inode_sectorsize(inode)); 5587 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5588 5589 /* 5590 * lookup the last file extent. We're not using i_size here 5591 * because there might be preallocation past i_size 5592 */ 5593 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5594 0); 5595 if (ret < 0) { 5596 goto out_free_ulist; 5597 } else { 5598 WARN_ON(!ret); 5599 if (ret == 1) 5600 ret = 0; 5601 } 5602 5603 path->slots[0]--; 5604 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5605 found_type = found_key.type; 5606 5607 /* No extents, but there might be delalloc bits */ 5608 if (found_key.objectid != btrfs_ino(inode) || 5609 found_type != BTRFS_EXTENT_DATA_KEY) { 5610 /* have to trust i_size as the end */ 5611 last = (u64)-1; 5612 last_for_get_extent = isize; 5613 } else { 5614 /* 5615 * remember the start of the last extent. There are a 5616 * bunch of different factors that go into the length of the 5617 * extent, so its much less complex to remember where it started 5618 */ 5619 last = found_key.offset; 5620 last_for_get_extent = last + 1; 5621 } 5622 btrfs_release_path(path); 5623 5624 /* 5625 * we might have some extents allocated but more delalloc past those 5626 * extents. so, we trust isize unless the start of the last extent is 5627 * beyond isize 5628 */ 5629 if (last < isize) { 5630 last = (u64)-1; 5631 last_for_get_extent = isize; 5632 } 5633 5634 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5635 &cached_state); 5636 5637 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5638 if (!em) 5639 goto out; 5640 if (IS_ERR(em)) { 5641 ret = PTR_ERR(em); 5642 goto out; 5643 } 5644 5645 while (!end) { 5646 u64 offset_in_extent = 0; 5647 5648 /* break if the extent we found is outside the range */ 5649 if (em->start >= max || extent_map_end(em) < off) 5650 break; 5651 5652 /* 5653 * get_extent may return an extent that starts before our 5654 * requested range. We have to make sure the ranges 5655 * we return to fiemap always move forward and don't 5656 * overlap, so adjust the offsets here 5657 */ 5658 em_start = max(em->start, off); 5659 5660 /* 5661 * record the offset from the start of the extent 5662 * for adjusting the disk offset below. Only do this if the 5663 * extent isn't compressed since our in ram offset may be past 5664 * what we have actually allocated on disk. 5665 */ 5666 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5667 offset_in_extent = em_start - em->start; 5668 em_end = extent_map_end(em); 5669 em_len = em_end - em_start; 5670 flags = 0; 5671 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5672 disko = em->block_start + offset_in_extent; 5673 else 5674 disko = 0; 5675 5676 /* 5677 * bump off for our next call to get_extent 5678 */ 5679 off = extent_map_end(em); 5680 if (off >= max) 5681 end = 1; 5682 5683 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5684 end = 1; 5685 flags |= FIEMAP_EXTENT_LAST; 5686 } else if (em->block_start == EXTENT_MAP_INLINE) { 5687 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5688 FIEMAP_EXTENT_NOT_ALIGNED); 5689 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5690 flags |= (FIEMAP_EXTENT_DELALLOC | 5691 FIEMAP_EXTENT_UNKNOWN); 5692 } else if (fieinfo->fi_extents_max) { 5693 u64 bytenr = em->block_start - 5694 (em->start - em->orig_start); 5695 5696 /* 5697 * As btrfs supports shared space, this information 5698 * can be exported to userspace tools via 5699 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5700 * then we're just getting a count and we can skip the 5701 * lookup stuff. 5702 */ 5703 ret = btrfs_check_shared(root, btrfs_ino(inode), 5704 bytenr, roots, tmp_ulist); 5705 if (ret < 0) 5706 goto out_free; 5707 if (ret) 5708 flags |= FIEMAP_EXTENT_SHARED; 5709 ret = 0; 5710 } 5711 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5712 flags |= FIEMAP_EXTENT_ENCODED; 5713 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5714 flags |= FIEMAP_EXTENT_UNWRITTEN; 5715 5716 free_extent_map(em); 5717 em = NULL; 5718 if ((em_start >= last) || em_len == (u64)-1 || 5719 (last == (u64)-1 && isize <= em_end)) { 5720 flags |= FIEMAP_EXTENT_LAST; 5721 end = 1; 5722 } 5723 5724 /* now scan forward to see if this is really the last extent. */ 5725 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5726 if (IS_ERR(em)) { 5727 ret = PTR_ERR(em); 5728 goto out; 5729 } 5730 if (!em) { 5731 flags |= FIEMAP_EXTENT_LAST; 5732 end = 1; 5733 } 5734 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5735 em_len, flags); 5736 if (ret) { 5737 if (ret == 1) 5738 ret = 0; 5739 goto out_free; 5740 } 5741 } 5742 out_free: 5743 if (!ret) 5744 ret = emit_last_fiemap_cache(fieinfo, &cache); 5745 free_extent_map(em); 5746 out: 5747 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5748 &cached_state); 5749 5750 out_free_ulist: 5751 btrfs_free_path(path); 5752 ulist_free(roots); 5753 ulist_free(tmp_ulist); 5754 return ret; 5755 } 5756 5757 static void __free_extent_buffer(struct extent_buffer *eb) 5758 { 5759 kmem_cache_free(extent_buffer_cache, eb); 5760 } 5761 5762 int extent_buffer_under_io(const struct extent_buffer *eb) 5763 { 5764 return (atomic_read(&eb->io_pages) || 5765 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5766 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5767 } 5768 5769 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5770 { 5771 struct btrfs_subpage *subpage; 5772 5773 lockdep_assert_held(&page->mapping->private_lock); 5774 5775 if (PagePrivate(page)) { 5776 subpage = (struct btrfs_subpage *)page->private; 5777 if (atomic_read(&subpage->eb_refs)) 5778 return true; 5779 /* 5780 * Even there is no eb refs here, we may still have 5781 * end_page_read() call relying on page::private. 5782 */ 5783 if (atomic_read(&subpage->readers)) 5784 return true; 5785 } 5786 return false; 5787 } 5788 5789 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5790 { 5791 struct btrfs_fs_info *fs_info = eb->fs_info; 5792 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5793 5794 /* 5795 * For mapped eb, we're going to change the page private, which should 5796 * be done under the private_lock. 5797 */ 5798 if (mapped) 5799 spin_lock(&page->mapping->private_lock); 5800 5801 if (!PagePrivate(page)) { 5802 if (mapped) 5803 spin_unlock(&page->mapping->private_lock); 5804 return; 5805 } 5806 5807 if (fs_info->sectorsize == PAGE_SIZE) { 5808 /* 5809 * We do this since we'll remove the pages after we've 5810 * removed the eb from the radix tree, so we could race 5811 * and have this page now attached to the new eb. So 5812 * only clear page_private if it's still connected to 5813 * this eb. 5814 */ 5815 if (PagePrivate(page) && 5816 page->private == (unsigned long)eb) { 5817 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5818 BUG_ON(PageDirty(page)); 5819 BUG_ON(PageWriteback(page)); 5820 /* 5821 * We need to make sure we haven't be attached 5822 * to a new eb. 5823 */ 5824 detach_page_private(page); 5825 } 5826 if (mapped) 5827 spin_unlock(&page->mapping->private_lock); 5828 return; 5829 } 5830 5831 /* 5832 * For subpage, we can have dummy eb with page private. In this case, 5833 * we can directly detach the private as such page is only attached to 5834 * one dummy eb, no sharing. 5835 */ 5836 if (!mapped) { 5837 btrfs_detach_subpage(fs_info, page); 5838 return; 5839 } 5840 5841 btrfs_page_dec_eb_refs(fs_info, page); 5842 5843 /* 5844 * We can only detach the page private if there are no other ebs in the 5845 * page range and no unfinished IO. 5846 */ 5847 if (!page_range_has_eb(fs_info, page)) 5848 btrfs_detach_subpage(fs_info, page); 5849 5850 spin_unlock(&page->mapping->private_lock); 5851 } 5852 5853 /* Release all pages attached to the extent buffer */ 5854 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5855 { 5856 int i; 5857 int num_pages; 5858 5859 ASSERT(!extent_buffer_under_io(eb)); 5860 5861 num_pages = num_extent_pages(eb); 5862 for (i = 0; i < num_pages; i++) { 5863 struct page *page = eb->pages[i]; 5864 5865 if (!page) 5866 continue; 5867 5868 detach_extent_buffer_page(eb, page); 5869 5870 /* One for when we allocated the page */ 5871 put_page(page); 5872 } 5873 } 5874 5875 /* 5876 * Helper for releasing the extent buffer. 5877 */ 5878 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5879 { 5880 btrfs_release_extent_buffer_pages(eb); 5881 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5882 __free_extent_buffer(eb); 5883 } 5884 5885 static struct extent_buffer * 5886 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5887 unsigned long len) 5888 { 5889 struct extent_buffer *eb = NULL; 5890 5891 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5892 eb->start = start; 5893 eb->len = len; 5894 eb->fs_info = fs_info; 5895 eb->bflags = 0; 5896 init_rwsem(&eb->lock); 5897 5898 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5899 &fs_info->allocated_ebs); 5900 INIT_LIST_HEAD(&eb->release_list); 5901 5902 spin_lock_init(&eb->refs_lock); 5903 atomic_set(&eb->refs, 1); 5904 atomic_set(&eb->io_pages, 0); 5905 5906 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5907 5908 return eb; 5909 } 5910 5911 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5912 { 5913 int i; 5914 struct page *p; 5915 struct extent_buffer *new; 5916 int num_pages = num_extent_pages(src); 5917 5918 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5919 if (new == NULL) 5920 return NULL; 5921 5922 /* 5923 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5924 * btrfs_release_extent_buffer() have different behavior for 5925 * UNMAPPED subpage extent buffer. 5926 */ 5927 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5928 5929 for (i = 0; i < num_pages; i++) { 5930 int ret; 5931 5932 p = alloc_page(GFP_NOFS); 5933 if (!p) { 5934 btrfs_release_extent_buffer(new); 5935 return NULL; 5936 } 5937 ret = attach_extent_buffer_page(new, p, NULL); 5938 if (ret < 0) { 5939 put_page(p); 5940 btrfs_release_extent_buffer(new); 5941 return NULL; 5942 } 5943 WARN_ON(PageDirty(p)); 5944 new->pages[i] = p; 5945 copy_page(page_address(p), page_address(src->pages[i])); 5946 } 5947 set_extent_buffer_uptodate(new); 5948 5949 return new; 5950 } 5951 5952 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5953 u64 start, unsigned long len) 5954 { 5955 struct extent_buffer *eb; 5956 int num_pages; 5957 int i; 5958 5959 eb = __alloc_extent_buffer(fs_info, start, len); 5960 if (!eb) 5961 return NULL; 5962 5963 num_pages = num_extent_pages(eb); 5964 for (i = 0; i < num_pages; i++) { 5965 int ret; 5966 5967 eb->pages[i] = alloc_page(GFP_NOFS); 5968 if (!eb->pages[i]) 5969 goto err; 5970 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5971 if (ret < 0) 5972 goto err; 5973 } 5974 set_extent_buffer_uptodate(eb); 5975 btrfs_set_header_nritems(eb, 0); 5976 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5977 5978 return eb; 5979 err: 5980 for (; i > 0; i--) { 5981 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5982 __free_page(eb->pages[i - 1]); 5983 } 5984 __free_extent_buffer(eb); 5985 return NULL; 5986 } 5987 5988 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5989 u64 start) 5990 { 5991 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5992 } 5993 5994 static void check_buffer_tree_ref(struct extent_buffer *eb) 5995 { 5996 int refs; 5997 /* 5998 * The TREE_REF bit is first set when the extent_buffer is added 5999 * to the radix tree. It is also reset, if unset, when a new reference 6000 * is created by find_extent_buffer. 6001 * 6002 * It is only cleared in two cases: freeing the last non-tree 6003 * reference to the extent_buffer when its STALE bit is set or 6004 * calling releasepage when the tree reference is the only reference. 6005 * 6006 * In both cases, care is taken to ensure that the extent_buffer's 6007 * pages are not under io. However, releasepage can be concurrently 6008 * called with creating new references, which is prone to race 6009 * conditions between the calls to check_buffer_tree_ref in those 6010 * codepaths and clearing TREE_REF in try_release_extent_buffer. 6011 * 6012 * The actual lifetime of the extent_buffer in the radix tree is 6013 * adequately protected by the refcount, but the TREE_REF bit and 6014 * its corresponding reference are not. To protect against this 6015 * class of races, we call check_buffer_tree_ref from the codepaths 6016 * which trigger io after they set eb->io_pages. Note that once io is 6017 * initiated, TREE_REF can no longer be cleared, so that is the 6018 * moment at which any such race is best fixed. 6019 */ 6020 refs = atomic_read(&eb->refs); 6021 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6022 return; 6023 6024 spin_lock(&eb->refs_lock); 6025 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6026 atomic_inc(&eb->refs); 6027 spin_unlock(&eb->refs_lock); 6028 } 6029 6030 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 6031 struct page *accessed) 6032 { 6033 int num_pages, i; 6034 6035 check_buffer_tree_ref(eb); 6036 6037 num_pages = num_extent_pages(eb); 6038 for (i = 0; i < num_pages; i++) { 6039 struct page *p = eb->pages[i]; 6040 6041 if (p != accessed) 6042 mark_page_accessed(p); 6043 } 6044 } 6045 6046 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 6047 u64 start) 6048 { 6049 struct extent_buffer *eb; 6050 6051 eb = find_extent_buffer_nolock(fs_info, start); 6052 if (!eb) 6053 return NULL; 6054 /* 6055 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 6056 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 6057 * another task running free_extent_buffer() might have seen that flag 6058 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 6059 * writeback flags not set) and it's still in the tree (flag 6060 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 6061 * decrementing the extent buffer's reference count twice. So here we 6062 * could race and increment the eb's reference count, clear its stale 6063 * flag, mark it as dirty and drop our reference before the other task 6064 * finishes executing free_extent_buffer, which would later result in 6065 * an attempt to free an extent buffer that is dirty. 6066 */ 6067 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 6068 spin_lock(&eb->refs_lock); 6069 spin_unlock(&eb->refs_lock); 6070 } 6071 mark_extent_buffer_accessed(eb, NULL); 6072 return eb; 6073 } 6074 6075 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6076 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6077 u64 start) 6078 { 6079 struct extent_buffer *eb, *exists = NULL; 6080 int ret; 6081 6082 eb = find_extent_buffer(fs_info, start); 6083 if (eb) 6084 return eb; 6085 eb = alloc_dummy_extent_buffer(fs_info, start); 6086 if (!eb) 6087 return ERR_PTR(-ENOMEM); 6088 eb->fs_info = fs_info; 6089 again: 6090 ret = radix_tree_preload(GFP_NOFS); 6091 if (ret) { 6092 exists = ERR_PTR(ret); 6093 goto free_eb; 6094 } 6095 spin_lock(&fs_info->buffer_lock); 6096 ret = radix_tree_insert(&fs_info->buffer_radix, 6097 start >> fs_info->sectorsize_bits, eb); 6098 spin_unlock(&fs_info->buffer_lock); 6099 radix_tree_preload_end(); 6100 if (ret == -EEXIST) { 6101 exists = find_extent_buffer(fs_info, start); 6102 if (exists) 6103 goto free_eb; 6104 else 6105 goto again; 6106 } 6107 check_buffer_tree_ref(eb); 6108 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6109 6110 return eb; 6111 free_eb: 6112 btrfs_release_extent_buffer(eb); 6113 return exists; 6114 } 6115 #endif 6116 6117 static struct extent_buffer *grab_extent_buffer( 6118 struct btrfs_fs_info *fs_info, struct page *page) 6119 { 6120 struct extent_buffer *exists; 6121 6122 /* 6123 * For subpage case, we completely rely on radix tree to ensure we 6124 * don't try to insert two ebs for the same bytenr. So here we always 6125 * return NULL and just continue. 6126 */ 6127 if (fs_info->sectorsize < PAGE_SIZE) 6128 return NULL; 6129 6130 /* Page not yet attached to an extent buffer */ 6131 if (!PagePrivate(page)) 6132 return NULL; 6133 6134 /* 6135 * We could have already allocated an eb for this page and attached one 6136 * so lets see if we can get a ref on the existing eb, and if we can we 6137 * know it's good and we can just return that one, else we know we can 6138 * just overwrite page->private. 6139 */ 6140 exists = (struct extent_buffer *)page->private; 6141 if (atomic_inc_not_zero(&exists->refs)) 6142 return exists; 6143 6144 WARN_ON(PageDirty(page)); 6145 detach_page_private(page); 6146 return NULL; 6147 } 6148 6149 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6150 u64 start, u64 owner_root, int level) 6151 { 6152 unsigned long len = fs_info->nodesize; 6153 int num_pages; 6154 int i; 6155 unsigned long index = start >> PAGE_SHIFT; 6156 struct extent_buffer *eb; 6157 struct extent_buffer *exists = NULL; 6158 struct page *p; 6159 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6160 int uptodate = 1; 6161 int ret; 6162 6163 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6164 btrfs_err(fs_info, "bad tree block start %llu", start); 6165 return ERR_PTR(-EINVAL); 6166 } 6167 6168 #if BITS_PER_LONG == 32 6169 if (start >= MAX_LFS_FILESIZE) { 6170 btrfs_err_rl(fs_info, 6171 "extent buffer %llu is beyond 32bit page cache limit", start); 6172 btrfs_err_32bit_limit(fs_info); 6173 return ERR_PTR(-EOVERFLOW); 6174 } 6175 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6176 btrfs_warn_32bit_limit(fs_info); 6177 #endif 6178 6179 if (fs_info->sectorsize < PAGE_SIZE && 6180 offset_in_page(start) + len > PAGE_SIZE) { 6181 btrfs_err(fs_info, 6182 "tree block crosses page boundary, start %llu nodesize %lu", 6183 start, len); 6184 return ERR_PTR(-EINVAL); 6185 } 6186 6187 eb = find_extent_buffer(fs_info, start); 6188 if (eb) 6189 return eb; 6190 6191 eb = __alloc_extent_buffer(fs_info, start, len); 6192 if (!eb) 6193 return ERR_PTR(-ENOMEM); 6194 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 6195 6196 num_pages = num_extent_pages(eb); 6197 for (i = 0; i < num_pages; i++, index++) { 6198 struct btrfs_subpage *prealloc = NULL; 6199 6200 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6201 if (!p) { 6202 exists = ERR_PTR(-ENOMEM); 6203 goto free_eb; 6204 } 6205 6206 /* 6207 * Preallocate page->private for subpage case, so that we won't 6208 * allocate memory with private_lock hold. The memory will be 6209 * freed by attach_extent_buffer_page() or freed manually if 6210 * we exit earlier. 6211 * 6212 * Although we have ensured one subpage eb can only have one 6213 * page, but it may change in the future for 16K page size 6214 * support, so we still preallocate the memory in the loop. 6215 */ 6216 if (fs_info->sectorsize < PAGE_SIZE) { 6217 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 6218 if (IS_ERR(prealloc)) { 6219 ret = PTR_ERR(prealloc); 6220 unlock_page(p); 6221 put_page(p); 6222 exists = ERR_PTR(ret); 6223 goto free_eb; 6224 } 6225 } 6226 6227 spin_lock(&mapping->private_lock); 6228 exists = grab_extent_buffer(fs_info, p); 6229 if (exists) { 6230 spin_unlock(&mapping->private_lock); 6231 unlock_page(p); 6232 put_page(p); 6233 mark_extent_buffer_accessed(exists, p); 6234 btrfs_free_subpage(prealloc); 6235 goto free_eb; 6236 } 6237 /* Should not fail, as we have preallocated the memory */ 6238 ret = attach_extent_buffer_page(eb, p, prealloc); 6239 ASSERT(!ret); 6240 /* 6241 * To inform we have extra eb under allocation, so that 6242 * detach_extent_buffer_page() won't release the page private 6243 * when the eb hasn't yet been inserted into radix tree. 6244 * 6245 * The ref will be decreased when the eb released the page, in 6246 * detach_extent_buffer_page(). 6247 * Thus needs no special handling in error path. 6248 */ 6249 btrfs_page_inc_eb_refs(fs_info, p); 6250 spin_unlock(&mapping->private_lock); 6251 6252 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6253 eb->pages[i] = p; 6254 if (!PageUptodate(p)) 6255 uptodate = 0; 6256 6257 /* 6258 * We can't unlock the pages just yet since the extent buffer 6259 * hasn't been properly inserted in the radix tree, this 6260 * opens a race with btree_releasepage which can free a page 6261 * while we are still filling in all pages for the buffer and 6262 * we could crash. 6263 */ 6264 } 6265 if (uptodate) 6266 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6267 again: 6268 ret = radix_tree_preload(GFP_NOFS); 6269 if (ret) { 6270 exists = ERR_PTR(ret); 6271 goto free_eb; 6272 } 6273 6274 spin_lock(&fs_info->buffer_lock); 6275 ret = radix_tree_insert(&fs_info->buffer_radix, 6276 start >> fs_info->sectorsize_bits, eb); 6277 spin_unlock(&fs_info->buffer_lock); 6278 radix_tree_preload_end(); 6279 if (ret == -EEXIST) { 6280 exists = find_extent_buffer(fs_info, start); 6281 if (exists) 6282 goto free_eb; 6283 else 6284 goto again; 6285 } 6286 /* add one reference for the tree */ 6287 check_buffer_tree_ref(eb); 6288 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6289 6290 /* 6291 * Now it's safe to unlock the pages because any calls to 6292 * btree_releasepage will correctly detect that a page belongs to a 6293 * live buffer and won't free them prematurely. 6294 */ 6295 for (i = 0; i < num_pages; i++) 6296 unlock_page(eb->pages[i]); 6297 return eb; 6298 6299 free_eb: 6300 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6301 for (i = 0; i < num_pages; i++) { 6302 if (eb->pages[i]) 6303 unlock_page(eb->pages[i]); 6304 } 6305 6306 btrfs_release_extent_buffer(eb); 6307 return exists; 6308 } 6309 6310 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6311 { 6312 struct extent_buffer *eb = 6313 container_of(head, struct extent_buffer, rcu_head); 6314 6315 __free_extent_buffer(eb); 6316 } 6317 6318 static int release_extent_buffer(struct extent_buffer *eb) 6319 __releases(&eb->refs_lock) 6320 { 6321 lockdep_assert_held(&eb->refs_lock); 6322 6323 WARN_ON(atomic_read(&eb->refs) == 0); 6324 if (atomic_dec_and_test(&eb->refs)) { 6325 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6326 struct btrfs_fs_info *fs_info = eb->fs_info; 6327 6328 spin_unlock(&eb->refs_lock); 6329 6330 spin_lock(&fs_info->buffer_lock); 6331 radix_tree_delete(&fs_info->buffer_radix, 6332 eb->start >> fs_info->sectorsize_bits); 6333 spin_unlock(&fs_info->buffer_lock); 6334 } else { 6335 spin_unlock(&eb->refs_lock); 6336 } 6337 6338 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6339 /* Should be safe to release our pages at this point */ 6340 btrfs_release_extent_buffer_pages(eb); 6341 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6342 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6343 __free_extent_buffer(eb); 6344 return 1; 6345 } 6346 #endif 6347 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6348 return 1; 6349 } 6350 spin_unlock(&eb->refs_lock); 6351 6352 return 0; 6353 } 6354 6355 void free_extent_buffer(struct extent_buffer *eb) 6356 { 6357 int refs; 6358 int old; 6359 if (!eb) 6360 return; 6361 6362 while (1) { 6363 refs = atomic_read(&eb->refs); 6364 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6365 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6366 refs == 1)) 6367 break; 6368 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6369 if (old == refs) 6370 return; 6371 } 6372 6373 spin_lock(&eb->refs_lock); 6374 if (atomic_read(&eb->refs) == 2 && 6375 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6376 !extent_buffer_under_io(eb) && 6377 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6378 atomic_dec(&eb->refs); 6379 6380 /* 6381 * I know this is terrible, but it's temporary until we stop tracking 6382 * the uptodate bits and such for the extent buffers. 6383 */ 6384 release_extent_buffer(eb); 6385 } 6386 6387 void free_extent_buffer_stale(struct extent_buffer *eb) 6388 { 6389 if (!eb) 6390 return; 6391 6392 spin_lock(&eb->refs_lock); 6393 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6394 6395 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6396 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6397 atomic_dec(&eb->refs); 6398 release_extent_buffer(eb); 6399 } 6400 6401 static void btree_clear_page_dirty(struct page *page) 6402 { 6403 ASSERT(PageDirty(page)); 6404 ASSERT(PageLocked(page)); 6405 clear_page_dirty_for_io(page); 6406 xa_lock_irq(&page->mapping->i_pages); 6407 if (!PageDirty(page)) 6408 __xa_clear_mark(&page->mapping->i_pages, 6409 page_index(page), PAGECACHE_TAG_DIRTY); 6410 xa_unlock_irq(&page->mapping->i_pages); 6411 } 6412 6413 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6414 { 6415 struct btrfs_fs_info *fs_info = eb->fs_info; 6416 struct page *page = eb->pages[0]; 6417 bool last; 6418 6419 /* btree_clear_page_dirty() needs page locked */ 6420 lock_page(page); 6421 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6422 eb->len); 6423 if (last) 6424 btree_clear_page_dirty(page); 6425 unlock_page(page); 6426 WARN_ON(atomic_read(&eb->refs) == 0); 6427 } 6428 6429 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6430 { 6431 int i; 6432 int num_pages; 6433 struct page *page; 6434 6435 if (eb->fs_info->sectorsize < PAGE_SIZE) 6436 return clear_subpage_extent_buffer_dirty(eb); 6437 6438 num_pages = num_extent_pages(eb); 6439 6440 for (i = 0; i < num_pages; i++) { 6441 page = eb->pages[i]; 6442 if (!PageDirty(page)) 6443 continue; 6444 lock_page(page); 6445 btree_clear_page_dirty(page); 6446 ClearPageError(page); 6447 unlock_page(page); 6448 } 6449 WARN_ON(atomic_read(&eb->refs) == 0); 6450 } 6451 6452 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6453 { 6454 int i; 6455 int num_pages; 6456 bool was_dirty; 6457 6458 check_buffer_tree_ref(eb); 6459 6460 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6461 6462 num_pages = num_extent_pages(eb); 6463 WARN_ON(atomic_read(&eb->refs) == 0); 6464 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6465 6466 if (!was_dirty) { 6467 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE; 6468 6469 /* 6470 * For subpage case, we can have other extent buffers in the 6471 * same page, and in clear_subpage_extent_buffer_dirty() we 6472 * have to clear page dirty without subpage lock held. 6473 * This can cause race where our page gets dirty cleared after 6474 * we just set it. 6475 * 6476 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6477 * its page for other reasons, we can use page lock to prevent 6478 * the above race. 6479 */ 6480 if (subpage) 6481 lock_page(eb->pages[0]); 6482 for (i = 0; i < num_pages; i++) 6483 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6484 eb->start, eb->len); 6485 if (subpage) 6486 unlock_page(eb->pages[0]); 6487 } 6488 #ifdef CONFIG_BTRFS_DEBUG 6489 for (i = 0; i < num_pages; i++) 6490 ASSERT(PageDirty(eb->pages[i])); 6491 #endif 6492 6493 return was_dirty; 6494 } 6495 6496 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6497 { 6498 struct btrfs_fs_info *fs_info = eb->fs_info; 6499 struct page *page; 6500 int num_pages; 6501 int i; 6502 6503 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6504 num_pages = num_extent_pages(eb); 6505 for (i = 0; i < num_pages; i++) { 6506 page = eb->pages[i]; 6507 if (page) 6508 btrfs_page_clear_uptodate(fs_info, page, 6509 eb->start, eb->len); 6510 } 6511 } 6512 6513 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6514 { 6515 struct btrfs_fs_info *fs_info = eb->fs_info; 6516 struct page *page; 6517 int num_pages; 6518 int i; 6519 6520 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6521 num_pages = num_extent_pages(eb); 6522 for (i = 0; i < num_pages; i++) { 6523 page = eb->pages[i]; 6524 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 6525 } 6526 } 6527 6528 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6529 int mirror_num) 6530 { 6531 struct btrfs_fs_info *fs_info = eb->fs_info; 6532 struct extent_io_tree *io_tree; 6533 struct page *page = eb->pages[0]; 6534 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6535 int ret = 0; 6536 6537 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6538 ASSERT(PagePrivate(page)); 6539 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6540 6541 if (wait == WAIT_NONE) { 6542 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6543 return -EAGAIN; 6544 } else { 6545 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6546 if (ret < 0) 6547 return ret; 6548 } 6549 6550 ret = 0; 6551 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6552 PageUptodate(page) || 6553 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6554 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6555 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6556 return ret; 6557 } 6558 6559 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6560 eb->read_mirror = 0; 6561 atomic_set(&eb->io_pages, 1); 6562 check_buffer_tree_ref(eb); 6563 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6564 6565 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6566 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, 6567 page, eb->start, eb->len, 6568 eb->start - page_offset(page), 6569 end_bio_extent_readpage, mirror_num, 0, 6570 true); 6571 if (ret) { 6572 /* 6573 * In the endio function, if we hit something wrong we will 6574 * increase the io_pages, so here we need to decrease it for 6575 * error path. 6576 */ 6577 atomic_dec(&eb->io_pages); 6578 } 6579 if (bio_ctrl.bio) { 6580 int tmp; 6581 6582 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0); 6583 bio_ctrl.bio = NULL; 6584 if (tmp < 0) 6585 return tmp; 6586 } 6587 if (ret || wait != WAIT_COMPLETE) 6588 return ret; 6589 6590 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6591 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6592 ret = -EIO; 6593 return ret; 6594 } 6595 6596 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6597 { 6598 int i; 6599 struct page *page; 6600 int err; 6601 int ret = 0; 6602 int locked_pages = 0; 6603 int all_uptodate = 1; 6604 int num_pages; 6605 unsigned long num_reads = 0; 6606 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6607 6608 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6609 return 0; 6610 6611 /* 6612 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 6613 * operation, which could potentially still be in flight. In this case 6614 * we simply want to return an error. 6615 */ 6616 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 6617 return -EIO; 6618 6619 if (eb->fs_info->sectorsize < PAGE_SIZE) 6620 return read_extent_buffer_subpage(eb, wait, mirror_num); 6621 6622 num_pages = num_extent_pages(eb); 6623 for (i = 0; i < num_pages; i++) { 6624 page = eb->pages[i]; 6625 if (wait == WAIT_NONE) { 6626 /* 6627 * WAIT_NONE is only utilized by readahead. If we can't 6628 * acquire the lock atomically it means either the eb 6629 * is being read out or under modification. 6630 * Either way the eb will be or has been cached, 6631 * readahead can exit safely. 6632 */ 6633 if (!trylock_page(page)) 6634 goto unlock_exit; 6635 } else { 6636 lock_page(page); 6637 } 6638 locked_pages++; 6639 } 6640 /* 6641 * We need to firstly lock all pages to make sure that 6642 * the uptodate bit of our pages won't be affected by 6643 * clear_extent_buffer_uptodate(). 6644 */ 6645 for (i = 0; i < num_pages; i++) { 6646 page = eb->pages[i]; 6647 if (!PageUptodate(page)) { 6648 num_reads++; 6649 all_uptodate = 0; 6650 } 6651 } 6652 6653 if (all_uptodate) { 6654 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6655 goto unlock_exit; 6656 } 6657 6658 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6659 eb->read_mirror = 0; 6660 atomic_set(&eb->io_pages, num_reads); 6661 /* 6662 * It is possible for releasepage to clear the TREE_REF bit before we 6663 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6664 */ 6665 check_buffer_tree_ref(eb); 6666 for (i = 0; i < num_pages; i++) { 6667 page = eb->pages[i]; 6668 6669 if (!PageUptodate(page)) { 6670 if (ret) { 6671 atomic_dec(&eb->io_pages); 6672 unlock_page(page); 6673 continue; 6674 } 6675 6676 ClearPageError(page); 6677 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6678 &bio_ctrl, page, page_offset(page), 6679 PAGE_SIZE, 0, end_bio_extent_readpage, 6680 mirror_num, 0, false); 6681 if (err) { 6682 /* 6683 * We failed to submit the bio so it's the 6684 * caller's responsibility to perform cleanup 6685 * i.e unlock page/set error bit. 6686 */ 6687 ret = err; 6688 SetPageError(page); 6689 unlock_page(page); 6690 atomic_dec(&eb->io_pages); 6691 } 6692 } else { 6693 unlock_page(page); 6694 } 6695 } 6696 6697 if (bio_ctrl.bio) { 6698 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags); 6699 bio_ctrl.bio = NULL; 6700 if (err) 6701 return err; 6702 } 6703 6704 if (ret || wait != WAIT_COMPLETE) 6705 return ret; 6706 6707 for (i = 0; i < num_pages; i++) { 6708 page = eb->pages[i]; 6709 wait_on_page_locked(page); 6710 if (!PageUptodate(page)) 6711 ret = -EIO; 6712 } 6713 6714 return ret; 6715 6716 unlock_exit: 6717 while (locked_pages > 0) { 6718 locked_pages--; 6719 page = eb->pages[locked_pages]; 6720 unlock_page(page); 6721 } 6722 return ret; 6723 } 6724 6725 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6726 unsigned long len) 6727 { 6728 btrfs_warn(eb->fs_info, 6729 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6730 eb->start, eb->len, start, len); 6731 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6732 6733 return true; 6734 } 6735 6736 /* 6737 * Check if the [start, start + len) range is valid before reading/writing 6738 * the eb. 6739 * NOTE: @start and @len are offset inside the eb, not logical address. 6740 * 6741 * Caller should not touch the dst/src memory if this function returns error. 6742 */ 6743 static inline int check_eb_range(const struct extent_buffer *eb, 6744 unsigned long start, unsigned long len) 6745 { 6746 unsigned long offset; 6747 6748 /* start, start + len should not go beyond eb->len nor overflow */ 6749 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6750 return report_eb_range(eb, start, len); 6751 6752 return false; 6753 } 6754 6755 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6756 unsigned long start, unsigned long len) 6757 { 6758 size_t cur; 6759 size_t offset; 6760 struct page *page; 6761 char *kaddr; 6762 char *dst = (char *)dstv; 6763 unsigned long i = get_eb_page_index(start); 6764 6765 if (check_eb_range(eb, start, len)) 6766 return; 6767 6768 offset = get_eb_offset_in_page(eb, start); 6769 6770 while (len > 0) { 6771 page = eb->pages[i]; 6772 6773 cur = min(len, (PAGE_SIZE - offset)); 6774 kaddr = page_address(page); 6775 memcpy(dst, kaddr + offset, cur); 6776 6777 dst += cur; 6778 len -= cur; 6779 offset = 0; 6780 i++; 6781 } 6782 } 6783 6784 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6785 void __user *dstv, 6786 unsigned long start, unsigned long len) 6787 { 6788 size_t cur; 6789 size_t offset; 6790 struct page *page; 6791 char *kaddr; 6792 char __user *dst = (char __user *)dstv; 6793 unsigned long i = get_eb_page_index(start); 6794 int ret = 0; 6795 6796 WARN_ON(start > eb->len); 6797 WARN_ON(start + len > eb->start + eb->len); 6798 6799 offset = get_eb_offset_in_page(eb, start); 6800 6801 while (len > 0) { 6802 page = eb->pages[i]; 6803 6804 cur = min(len, (PAGE_SIZE - offset)); 6805 kaddr = page_address(page); 6806 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6807 ret = -EFAULT; 6808 break; 6809 } 6810 6811 dst += cur; 6812 len -= cur; 6813 offset = 0; 6814 i++; 6815 } 6816 6817 return ret; 6818 } 6819 6820 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6821 unsigned long start, unsigned long len) 6822 { 6823 size_t cur; 6824 size_t offset; 6825 struct page *page; 6826 char *kaddr; 6827 char *ptr = (char *)ptrv; 6828 unsigned long i = get_eb_page_index(start); 6829 int ret = 0; 6830 6831 if (check_eb_range(eb, start, len)) 6832 return -EINVAL; 6833 6834 offset = get_eb_offset_in_page(eb, start); 6835 6836 while (len > 0) { 6837 page = eb->pages[i]; 6838 6839 cur = min(len, (PAGE_SIZE - offset)); 6840 6841 kaddr = page_address(page); 6842 ret = memcmp(ptr, kaddr + offset, cur); 6843 if (ret) 6844 break; 6845 6846 ptr += cur; 6847 len -= cur; 6848 offset = 0; 6849 i++; 6850 } 6851 return ret; 6852 } 6853 6854 /* 6855 * Check that the extent buffer is uptodate. 6856 * 6857 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6858 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6859 */ 6860 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6861 struct page *page) 6862 { 6863 struct btrfs_fs_info *fs_info = eb->fs_info; 6864 6865 /* 6866 * If we are using the commit root we could potentially clear a page 6867 * Uptodate while we're using the extent buffer that we've previously 6868 * looked up. We don't want to complain in this case, as the page was 6869 * valid before, we just didn't write it out. Instead we want to catch 6870 * the case where we didn't actually read the block properly, which 6871 * would have !PageUptodate && !PageError, as we clear PageError before 6872 * reading. 6873 */ 6874 if (fs_info->sectorsize < PAGE_SIZE) { 6875 bool uptodate, error; 6876 6877 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6878 eb->start, eb->len); 6879 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 6880 WARN_ON(!uptodate && !error); 6881 } else { 6882 WARN_ON(!PageUptodate(page) && !PageError(page)); 6883 } 6884 } 6885 6886 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6887 const void *srcv) 6888 { 6889 char *kaddr; 6890 6891 assert_eb_page_uptodate(eb, eb->pages[0]); 6892 kaddr = page_address(eb->pages[0]) + 6893 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6894 chunk_tree_uuid)); 6895 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6896 } 6897 6898 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6899 { 6900 char *kaddr; 6901 6902 assert_eb_page_uptodate(eb, eb->pages[0]); 6903 kaddr = page_address(eb->pages[0]) + 6904 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6905 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6906 } 6907 6908 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6909 unsigned long start, unsigned long len) 6910 { 6911 size_t cur; 6912 size_t offset; 6913 struct page *page; 6914 char *kaddr; 6915 char *src = (char *)srcv; 6916 unsigned long i = get_eb_page_index(start); 6917 6918 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6919 6920 if (check_eb_range(eb, start, len)) 6921 return; 6922 6923 offset = get_eb_offset_in_page(eb, start); 6924 6925 while (len > 0) { 6926 page = eb->pages[i]; 6927 assert_eb_page_uptodate(eb, page); 6928 6929 cur = min(len, PAGE_SIZE - offset); 6930 kaddr = page_address(page); 6931 memcpy(kaddr + offset, src, cur); 6932 6933 src += cur; 6934 len -= cur; 6935 offset = 0; 6936 i++; 6937 } 6938 } 6939 6940 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6941 unsigned long len) 6942 { 6943 size_t cur; 6944 size_t offset; 6945 struct page *page; 6946 char *kaddr; 6947 unsigned long i = get_eb_page_index(start); 6948 6949 if (check_eb_range(eb, start, len)) 6950 return; 6951 6952 offset = get_eb_offset_in_page(eb, start); 6953 6954 while (len > 0) { 6955 page = eb->pages[i]; 6956 assert_eb_page_uptodate(eb, page); 6957 6958 cur = min(len, PAGE_SIZE - offset); 6959 kaddr = page_address(page); 6960 memset(kaddr + offset, 0, cur); 6961 6962 len -= cur; 6963 offset = 0; 6964 i++; 6965 } 6966 } 6967 6968 void copy_extent_buffer_full(const struct extent_buffer *dst, 6969 const struct extent_buffer *src) 6970 { 6971 int i; 6972 int num_pages; 6973 6974 ASSERT(dst->len == src->len); 6975 6976 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6977 num_pages = num_extent_pages(dst); 6978 for (i = 0; i < num_pages; i++) 6979 copy_page(page_address(dst->pages[i]), 6980 page_address(src->pages[i])); 6981 } else { 6982 size_t src_offset = get_eb_offset_in_page(src, 0); 6983 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6984 6985 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6986 memcpy(page_address(dst->pages[0]) + dst_offset, 6987 page_address(src->pages[0]) + src_offset, 6988 src->len); 6989 } 6990 } 6991 6992 void copy_extent_buffer(const struct extent_buffer *dst, 6993 const struct extent_buffer *src, 6994 unsigned long dst_offset, unsigned long src_offset, 6995 unsigned long len) 6996 { 6997 u64 dst_len = dst->len; 6998 size_t cur; 6999 size_t offset; 7000 struct page *page; 7001 char *kaddr; 7002 unsigned long i = get_eb_page_index(dst_offset); 7003 7004 if (check_eb_range(dst, dst_offset, len) || 7005 check_eb_range(src, src_offset, len)) 7006 return; 7007 7008 WARN_ON(src->len != dst_len); 7009 7010 offset = get_eb_offset_in_page(dst, dst_offset); 7011 7012 while (len > 0) { 7013 page = dst->pages[i]; 7014 assert_eb_page_uptodate(dst, page); 7015 7016 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 7017 7018 kaddr = page_address(page); 7019 read_extent_buffer(src, kaddr + offset, src_offset, cur); 7020 7021 src_offset += cur; 7022 len -= cur; 7023 offset = 0; 7024 i++; 7025 } 7026 } 7027 7028 /* 7029 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 7030 * given bit number 7031 * @eb: the extent buffer 7032 * @start: offset of the bitmap item in the extent buffer 7033 * @nr: bit number 7034 * @page_index: return index of the page in the extent buffer that contains the 7035 * given bit number 7036 * @page_offset: return offset into the page given by page_index 7037 * 7038 * This helper hides the ugliness of finding the byte in an extent buffer which 7039 * contains a given bit. 7040 */ 7041 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 7042 unsigned long start, unsigned long nr, 7043 unsigned long *page_index, 7044 size_t *page_offset) 7045 { 7046 size_t byte_offset = BIT_BYTE(nr); 7047 size_t offset; 7048 7049 /* 7050 * The byte we want is the offset of the extent buffer + the offset of 7051 * the bitmap item in the extent buffer + the offset of the byte in the 7052 * bitmap item. 7053 */ 7054 offset = start + offset_in_page(eb->start) + byte_offset; 7055 7056 *page_index = offset >> PAGE_SHIFT; 7057 *page_offset = offset_in_page(offset); 7058 } 7059 7060 /** 7061 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 7062 * @eb: the extent buffer 7063 * @start: offset of the bitmap item in the extent buffer 7064 * @nr: bit number to test 7065 */ 7066 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 7067 unsigned long nr) 7068 { 7069 u8 *kaddr; 7070 struct page *page; 7071 unsigned long i; 7072 size_t offset; 7073 7074 eb_bitmap_offset(eb, start, nr, &i, &offset); 7075 page = eb->pages[i]; 7076 assert_eb_page_uptodate(eb, page); 7077 kaddr = page_address(page); 7078 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 7079 } 7080 7081 /** 7082 * extent_buffer_bitmap_set - set an area of a bitmap 7083 * @eb: the extent buffer 7084 * @start: offset of the bitmap item in the extent buffer 7085 * @pos: bit number of the first bit 7086 * @len: number of bits to set 7087 */ 7088 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 7089 unsigned long pos, unsigned long len) 7090 { 7091 u8 *kaddr; 7092 struct page *page; 7093 unsigned long i; 7094 size_t offset; 7095 const unsigned int size = pos + len; 7096 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7097 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7098 7099 eb_bitmap_offset(eb, start, pos, &i, &offset); 7100 page = eb->pages[i]; 7101 assert_eb_page_uptodate(eb, page); 7102 kaddr = page_address(page); 7103 7104 while (len >= bits_to_set) { 7105 kaddr[offset] |= mask_to_set; 7106 len -= bits_to_set; 7107 bits_to_set = BITS_PER_BYTE; 7108 mask_to_set = ~0; 7109 if (++offset >= PAGE_SIZE && len > 0) { 7110 offset = 0; 7111 page = eb->pages[++i]; 7112 assert_eb_page_uptodate(eb, page); 7113 kaddr = page_address(page); 7114 } 7115 } 7116 if (len) { 7117 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7118 kaddr[offset] |= mask_to_set; 7119 } 7120 } 7121 7122 7123 /** 7124 * extent_buffer_bitmap_clear - clear an area of a bitmap 7125 * @eb: the extent buffer 7126 * @start: offset of the bitmap item in the extent buffer 7127 * @pos: bit number of the first bit 7128 * @len: number of bits to clear 7129 */ 7130 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7131 unsigned long start, unsigned long pos, 7132 unsigned long len) 7133 { 7134 u8 *kaddr; 7135 struct page *page; 7136 unsigned long i; 7137 size_t offset; 7138 const unsigned int size = pos + len; 7139 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7140 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7141 7142 eb_bitmap_offset(eb, start, pos, &i, &offset); 7143 page = eb->pages[i]; 7144 assert_eb_page_uptodate(eb, page); 7145 kaddr = page_address(page); 7146 7147 while (len >= bits_to_clear) { 7148 kaddr[offset] &= ~mask_to_clear; 7149 len -= bits_to_clear; 7150 bits_to_clear = BITS_PER_BYTE; 7151 mask_to_clear = ~0; 7152 if (++offset >= PAGE_SIZE && len > 0) { 7153 offset = 0; 7154 page = eb->pages[++i]; 7155 assert_eb_page_uptodate(eb, page); 7156 kaddr = page_address(page); 7157 } 7158 } 7159 if (len) { 7160 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7161 kaddr[offset] &= ~mask_to_clear; 7162 } 7163 } 7164 7165 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7166 { 7167 unsigned long distance = (src > dst) ? src - dst : dst - src; 7168 return distance < len; 7169 } 7170 7171 static void copy_pages(struct page *dst_page, struct page *src_page, 7172 unsigned long dst_off, unsigned long src_off, 7173 unsigned long len) 7174 { 7175 char *dst_kaddr = page_address(dst_page); 7176 char *src_kaddr; 7177 int must_memmove = 0; 7178 7179 if (dst_page != src_page) { 7180 src_kaddr = page_address(src_page); 7181 } else { 7182 src_kaddr = dst_kaddr; 7183 if (areas_overlap(src_off, dst_off, len)) 7184 must_memmove = 1; 7185 } 7186 7187 if (must_memmove) 7188 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7189 else 7190 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7191 } 7192 7193 void memcpy_extent_buffer(const struct extent_buffer *dst, 7194 unsigned long dst_offset, unsigned long src_offset, 7195 unsigned long len) 7196 { 7197 size_t cur; 7198 size_t dst_off_in_page; 7199 size_t src_off_in_page; 7200 unsigned long dst_i; 7201 unsigned long src_i; 7202 7203 if (check_eb_range(dst, dst_offset, len) || 7204 check_eb_range(dst, src_offset, len)) 7205 return; 7206 7207 while (len > 0) { 7208 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7209 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7210 7211 dst_i = get_eb_page_index(dst_offset); 7212 src_i = get_eb_page_index(src_offset); 7213 7214 cur = min(len, (unsigned long)(PAGE_SIZE - 7215 src_off_in_page)); 7216 cur = min_t(unsigned long, cur, 7217 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7218 7219 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7220 dst_off_in_page, src_off_in_page, cur); 7221 7222 src_offset += cur; 7223 dst_offset += cur; 7224 len -= cur; 7225 } 7226 } 7227 7228 void memmove_extent_buffer(const struct extent_buffer *dst, 7229 unsigned long dst_offset, unsigned long src_offset, 7230 unsigned long len) 7231 { 7232 size_t cur; 7233 size_t dst_off_in_page; 7234 size_t src_off_in_page; 7235 unsigned long dst_end = dst_offset + len - 1; 7236 unsigned long src_end = src_offset + len - 1; 7237 unsigned long dst_i; 7238 unsigned long src_i; 7239 7240 if (check_eb_range(dst, dst_offset, len) || 7241 check_eb_range(dst, src_offset, len)) 7242 return; 7243 if (dst_offset < src_offset) { 7244 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7245 return; 7246 } 7247 while (len > 0) { 7248 dst_i = get_eb_page_index(dst_end); 7249 src_i = get_eb_page_index(src_end); 7250 7251 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7252 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7253 7254 cur = min_t(unsigned long, len, src_off_in_page + 1); 7255 cur = min(cur, dst_off_in_page + 1); 7256 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7257 dst_off_in_page - cur + 1, 7258 src_off_in_page - cur + 1, cur); 7259 7260 dst_end -= cur; 7261 src_end -= cur; 7262 len -= cur; 7263 } 7264 } 7265 7266 #define GANG_LOOKUP_SIZE 16 7267 static struct extent_buffer *get_next_extent_buffer( 7268 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7269 { 7270 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 7271 struct extent_buffer *found = NULL; 7272 u64 page_start = page_offset(page); 7273 u64 cur = page_start; 7274 7275 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7276 lockdep_assert_held(&fs_info->buffer_lock); 7277 7278 while (cur < page_start + PAGE_SIZE) { 7279 int ret; 7280 int i; 7281 7282 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 7283 (void **)gang, cur >> fs_info->sectorsize_bits, 7284 min_t(unsigned int, GANG_LOOKUP_SIZE, 7285 PAGE_SIZE / fs_info->nodesize)); 7286 if (ret == 0) 7287 goto out; 7288 for (i = 0; i < ret; i++) { 7289 /* Already beyond page end */ 7290 if (gang[i]->start >= page_start + PAGE_SIZE) 7291 goto out; 7292 /* Found one */ 7293 if (gang[i]->start >= bytenr) { 7294 found = gang[i]; 7295 goto out; 7296 } 7297 } 7298 cur = gang[ret - 1]->start + gang[ret - 1]->len; 7299 } 7300 out: 7301 return found; 7302 } 7303 7304 static int try_release_subpage_extent_buffer(struct page *page) 7305 { 7306 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7307 u64 cur = page_offset(page); 7308 const u64 end = page_offset(page) + PAGE_SIZE; 7309 int ret; 7310 7311 while (cur < end) { 7312 struct extent_buffer *eb = NULL; 7313 7314 /* 7315 * Unlike try_release_extent_buffer() which uses page->private 7316 * to grab buffer, for subpage case we rely on radix tree, thus 7317 * we need to ensure radix tree consistency. 7318 * 7319 * We also want an atomic snapshot of the radix tree, thus go 7320 * with spinlock rather than RCU. 7321 */ 7322 spin_lock(&fs_info->buffer_lock); 7323 eb = get_next_extent_buffer(fs_info, page, cur); 7324 if (!eb) { 7325 /* No more eb in the page range after or at cur */ 7326 spin_unlock(&fs_info->buffer_lock); 7327 break; 7328 } 7329 cur = eb->start + eb->len; 7330 7331 /* 7332 * The same as try_release_extent_buffer(), to ensure the eb 7333 * won't disappear out from under us. 7334 */ 7335 spin_lock(&eb->refs_lock); 7336 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7337 spin_unlock(&eb->refs_lock); 7338 spin_unlock(&fs_info->buffer_lock); 7339 break; 7340 } 7341 spin_unlock(&fs_info->buffer_lock); 7342 7343 /* 7344 * If tree ref isn't set then we know the ref on this eb is a 7345 * real ref, so just return, this eb will likely be freed soon 7346 * anyway. 7347 */ 7348 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7349 spin_unlock(&eb->refs_lock); 7350 break; 7351 } 7352 7353 /* 7354 * Here we don't care about the return value, we will always 7355 * check the page private at the end. And 7356 * release_extent_buffer() will release the refs_lock. 7357 */ 7358 release_extent_buffer(eb); 7359 } 7360 /* 7361 * Finally to check if we have cleared page private, as if we have 7362 * released all ebs in the page, the page private should be cleared now. 7363 */ 7364 spin_lock(&page->mapping->private_lock); 7365 if (!PagePrivate(page)) 7366 ret = 1; 7367 else 7368 ret = 0; 7369 spin_unlock(&page->mapping->private_lock); 7370 return ret; 7371 7372 } 7373 7374 int try_release_extent_buffer(struct page *page) 7375 { 7376 struct extent_buffer *eb; 7377 7378 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 7379 return try_release_subpage_extent_buffer(page); 7380 7381 /* 7382 * We need to make sure nobody is changing page->private, as we rely on 7383 * page->private as the pointer to extent buffer. 7384 */ 7385 spin_lock(&page->mapping->private_lock); 7386 if (!PagePrivate(page)) { 7387 spin_unlock(&page->mapping->private_lock); 7388 return 1; 7389 } 7390 7391 eb = (struct extent_buffer *)page->private; 7392 BUG_ON(!eb); 7393 7394 /* 7395 * This is a little awful but should be ok, we need to make sure that 7396 * the eb doesn't disappear out from under us while we're looking at 7397 * this page. 7398 */ 7399 spin_lock(&eb->refs_lock); 7400 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7401 spin_unlock(&eb->refs_lock); 7402 spin_unlock(&page->mapping->private_lock); 7403 return 0; 7404 } 7405 spin_unlock(&page->mapping->private_lock); 7406 7407 /* 7408 * If tree ref isn't set then we know the ref on this eb is a real ref, 7409 * so just return, this page will likely be freed soon anyway. 7410 */ 7411 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7412 spin_unlock(&eb->refs_lock); 7413 return 0; 7414 } 7415 7416 return release_extent_buffer(eb); 7417 } 7418 7419 /* 7420 * btrfs_readahead_tree_block - attempt to readahead a child block 7421 * @fs_info: the fs_info 7422 * @bytenr: bytenr to read 7423 * @owner_root: objectid of the root that owns this eb 7424 * @gen: generation for the uptodate check, can be 0 7425 * @level: level for the eb 7426 * 7427 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7428 * normal uptodate check of the eb, without checking the generation. If we have 7429 * to read the block we will not block on anything. 7430 */ 7431 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7432 u64 bytenr, u64 owner_root, u64 gen, int level) 7433 { 7434 struct extent_buffer *eb; 7435 int ret; 7436 7437 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7438 if (IS_ERR(eb)) 7439 return; 7440 7441 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7442 free_extent_buffer(eb); 7443 return; 7444 } 7445 7446 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7447 if (ret < 0) 7448 free_extent_buffer_stale(eb); 7449 else 7450 free_extent_buffer(eb); 7451 } 7452 7453 /* 7454 * btrfs_readahead_node_child - readahead a node's child block 7455 * @node: parent node we're reading from 7456 * @slot: slot in the parent node for the child we want to read 7457 * 7458 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7459 * the slot in the node provided. 7460 */ 7461 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7462 { 7463 btrfs_readahead_tree_block(node->fs_info, 7464 btrfs_node_blockptr(node, slot), 7465 btrfs_header_owner(node), 7466 btrfs_node_ptr_generation(node, slot), 7467 btrfs_header_level(node) - 1); 7468 } 7469