1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned long *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned long *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned long *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned long *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned long *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned long bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 /* 599 * Don't care for allocation failure here because we might end 600 * up not needing the pre-allocated extent state at all, which 601 * is the case if we only have in the tree extent states that 602 * cover our input range and don't cover too any other range. 603 * If we end up needing a new extent state we allocate it later. 604 */ 605 prealloc = alloc_extent_state(mask); 606 } 607 608 spin_lock(&tree->lock); 609 if (cached_state) { 610 cached = *cached_state; 611 612 if (clear) { 613 *cached_state = NULL; 614 cached_state = NULL; 615 } 616 617 if (cached && extent_state_in_tree(cached) && 618 cached->start <= start && cached->end > start) { 619 if (clear) 620 atomic_dec(&cached->refs); 621 state = cached; 622 goto hit_next; 623 } 624 if (clear) 625 free_extent_state(cached); 626 } 627 /* 628 * this search will find the extents that end after 629 * our range starts 630 */ 631 node = tree_search(tree, start); 632 if (!node) 633 goto out; 634 state = rb_entry(node, struct extent_state, rb_node); 635 hit_next: 636 if (state->start > end) 637 goto out; 638 WARN_ON(state->end < start); 639 last_end = state->end; 640 641 /* the state doesn't have the wanted bits, go ahead */ 642 if (!(state->state & bits)) { 643 state = next_state(state); 644 goto next; 645 } 646 647 /* 648 * | ---- desired range ---- | 649 * | state | or 650 * | ------------- state -------------- | 651 * 652 * We need to split the extent we found, and may flip 653 * bits on second half. 654 * 655 * If the extent we found extends past our range, we 656 * just split and search again. It'll get split again 657 * the next time though. 658 * 659 * If the extent we found is inside our range, we clear 660 * the desired bit on it. 661 */ 662 663 if (state->start < start) { 664 prealloc = alloc_extent_state_atomic(prealloc); 665 BUG_ON(!prealloc); 666 err = split_state(tree, state, prealloc, start); 667 if (err) 668 extent_io_tree_panic(tree, err); 669 670 prealloc = NULL; 671 if (err) 672 goto out; 673 if (state->end <= end) { 674 state = clear_state_bit(tree, state, &bits, wake); 675 goto next; 676 } 677 goto search_again; 678 } 679 /* 680 * | ---- desired range ---- | 681 * | state | 682 * We need to split the extent, and clear the bit 683 * on the first half 684 */ 685 if (state->start <= end && state->end > end) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, end + 1); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 if (wake) 693 wake_up(&state->wq); 694 695 clear_state_bit(tree, prealloc, &bits, wake); 696 697 prealloc = NULL; 698 goto out; 699 } 700 701 state = clear_state_bit(tree, state, &bits, wake); 702 next: 703 if (last_end == (u64)-1) 704 goto out; 705 start = last_end + 1; 706 if (start <= end && state && !need_resched()) 707 goto hit_next; 708 goto search_again; 709 710 out: 711 spin_unlock(&tree->lock); 712 if (prealloc) 713 free_extent_state(prealloc); 714 715 return 0; 716 717 search_again: 718 if (start > end) 719 goto out; 720 spin_unlock(&tree->lock); 721 if (mask & __GFP_WAIT) 722 cond_resched(); 723 goto again; 724 } 725 726 static void wait_on_state(struct extent_io_tree *tree, 727 struct extent_state *state) 728 __releases(tree->lock) 729 __acquires(tree->lock) 730 { 731 DEFINE_WAIT(wait); 732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 733 spin_unlock(&tree->lock); 734 schedule(); 735 spin_lock(&tree->lock); 736 finish_wait(&state->wq, &wait); 737 } 738 739 /* 740 * waits for one or more bits to clear on a range in the state tree. 741 * The range [start, end] is inclusive. 742 * The tree lock is taken by this function 743 */ 744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 745 unsigned long bits) 746 { 747 struct extent_state *state; 748 struct rb_node *node; 749 750 btrfs_debug_check_extent_io_range(tree, start, end); 751 752 spin_lock(&tree->lock); 753 again: 754 while (1) { 755 /* 756 * this search will find all the extents that end after 757 * our range starts 758 */ 759 node = tree_search(tree, start); 760 process_node: 761 if (!node) 762 break; 763 764 state = rb_entry(node, struct extent_state, rb_node); 765 766 if (state->start > end) 767 goto out; 768 769 if (state->state & bits) { 770 start = state->start; 771 atomic_inc(&state->refs); 772 wait_on_state(tree, state); 773 free_extent_state(state); 774 goto again; 775 } 776 start = state->end + 1; 777 778 if (start > end) 779 break; 780 781 if (!cond_resched_lock(&tree->lock)) { 782 node = rb_next(node); 783 goto process_node; 784 } 785 } 786 out: 787 spin_unlock(&tree->lock); 788 } 789 790 static void set_state_bits(struct extent_io_tree *tree, 791 struct extent_state *state, 792 unsigned long *bits) 793 { 794 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 795 796 set_state_cb(tree, state, bits); 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 state->state |= bits_to_set; 802 } 803 804 static void cache_state_if_flags(struct extent_state *state, 805 struct extent_state **cached_ptr, 806 const u64 flags) 807 { 808 if (cached_ptr && !(*cached_ptr)) { 809 if (!flags || (state->state & flags)) { 810 *cached_ptr = state; 811 atomic_inc(&state->refs); 812 } 813 } 814 } 815 816 static void cache_state(struct extent_state *state, 817 struct extent_state **cached_ptr) 818 { 819 return cache_state_if_flags(state, cached_ptr, 820 EXTENT_IOBITS | EXTENT_BOUNDARY); 821 } 822 823 /* 824 * set some bits on a range in the tree. This may require allocations or 825 * sleeping, so the gfp mask is used to indicate what is allowed. 826 * 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some 828 * part of the range already has the desired bits set. The start of the 829 * existing range is returned in failed_start in this case. 830 * 831 * [start, end] is inclusive This takes the tree lock. 832 */ 833 834 static int __must_check 835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 836 unsigned long bits, unsigned long exclusive_bits, 837 u64 *failed_start, struct extent_state **cached_state, 838 gfp_t mask) 839 { 840 struct extent_state *state; 841 struct extent_state *prealloc = NULL; 842 struct rb_node *node; 843 struct rb_node **p; 844 struct rb_node *parent; 845 int err = 0; 846 u64 last_start; 847 u64 last_end; 848 849 btrfs_debug_check_extent_io_range(tree, start, end); 850 851 bits |= EXTENT_FIRST_DELALLOC; 852 again: 853 if (!prealloc && (mask & __GFP_WAIT)) { 854 prealloc = alloc_extent_state(mask); 855 BUG_ON(!prealloc); 856 } 857 858 spin_lock(&tree->lock); 859 if (cached_state && *cached_state) { 860 state = *cached_state; 861 if (state->start <= start && state->end > start && 862 extent_state_in_tree(state)) { 863 node = &state->rb_node; 864 goto hit_next; 865 } 866 } 867 /* 868 * this search will find all the extents that end after 869 * our range starts. 870 */ 871 node = tree_search_for_insert(tree, start, &p, &parent); 872 if (!node) { 873 prealloc = alloc_extent_state_atomic(prealloc); 874 BUG_ON(!prealloc); 875 err = insert_state(tree, prealloc, start, end, 876 &p, &parent, &bits); 877 if (err) 878 extent_io_tree_panic(tree, err); 879 880 cache_state(prealloc, cached_state); 881 prealloc = NULL; 882 goto out; 883 } 884 state = rb_entry(node, struct extent_state, rb_node); 885 hit_next: 886 last_start = state->start; 887 last_end = state->end; 888 889 /* 890 * | ---- desired range ---- | 891 * | state | 892 * 893 * Just lock what we found and keep going 894 */ 895 if (state->start == start && state->end <= end) { 896 if (state->state & exclusive_bits) { 897 *failed_start = state->start; 898 err = -EEXIST; 899 goto out; 900 } 901 902 set_state_bits(tree, state, &bits); 903 cache_state(state, cached_state); 904 merge_state(tree, state); 905 if (last_end == (u64)-1) 906 goto out; 907 start = last_end + 1; 908 state = next_state(state); 909 if (start < end && state && state->start == start && 910 !need_resched()) 911 goto hit_next; 912 goto search_again; 913 } 914 915 /* 916 * | ---- desired range ---- | 917 * | state | 918 * or 919 * | ------------- state -------------- | 920 * 921 * We need to split the extent we found, and may flip bits on 922 * second half. 923 * 924 * If the extent we found extends past our 925 * range, we just split and search again. It'll get split 926 * again the next time though. 927 * 928 * If the extent we found is inside our range, we set the 929 * desired bit on it. 930 */ 931 if (state->start < start) { 932 if (state->state & exclusive_bits) { 933 *failed_start = start; 934 err = -EEXIST; 935 goto out; 936 } 937 938 prealloc = alloc_extent_state_atomic(prealloc); 939 BUG_ON(!prealloc); 940 err = split_state(tree, state, prealloc, start); 941 if (err) 942 extent_io_tree_panic(tree, err); 943 944 prealloc = NULL; 945 if (err) 946 goto out; 947 if (state->end <= end) { 948 set_state_bits(tree, state, &bits); 949 cache_state(state, cached_state); 950 merge_state(tree, state); 951 if (last_end == (u64)-1) 952 goto out; 953 start = last_end + 1; 954 state = next_state(state); 955 if (start < end && state && state->start == start && 956 !need_resched()) 957 goto hit_next; 958 } 959 goto search_again; 960 } 961 /* 962 * | ---- desired range ---- | 963 * | state | or | state | 964 * 965 * There's a hole, we need to insert something in it and 966 * ignore the extent we found. 967 */ 968 if (state->start > start) { 969 u64 this_end; 970 if (end < last_start) 971 this_end = end; 972 else 973 this_end = last_start - 1; 974 975 prealloc = alloc_extent_state_atomic(prealloc); 976 BUG_ON(!prealloc); 977 978 /* 979 * Avoid to free 'prealloc' if it can be merged with 980 * the later extent. 981 */ 982 err = insert_state(tree, prealloc, start, this_end, 983 NULL, NULL, &bits); 984 if (err) 985 extent_io_tree_panic(tree, err); 986 987 cache_state(prealloc, cached_state); 988 prealloc = NULL; 989 start = this_end + 1; 990 goto search_again; 991 } 992 /* 993 * | ---- desired range ---- | 994 * | state | 995 * We need to split the extent, and set the bit 996 * on the first half 997 */ 998 if (state->start <= end && state->end > end) { 999 if (state->state & exclusive_bits) { 1000 *failed_start = start; 1001 err = -EEXIST; 1002 goto out; 1003 } 1004 1005 prealloc = alloc_extent_state_atomic(prealloc); 1006 BUG_ON(!prealloc); 1007 err = split_state(tree, state, prealloc, end + 1); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 set_state_bits(tree, prealloc, &bits); 1012 cache_state(prealloc, cached_state); 1013 merge_state(tree, prealloc); 1014 prealloc = NULL; 1015 goto out; 1016 } 1017 1018 goto search_again; 1019 1020 out: 1021 spin_unlock(&tree->lock); 1022 if (prealloc) 1023 free_extent_state(prealloc); 1024 1025 return err; 1026 1027 search_again: 1028 if (start > end) 1029 goto out; 1030 spin_unlock(&tree->lock); 1031 if (mask & __GFP_WAIT) 1032 cond_resched(); 1033 goto again; 1034 } 1035 1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1037 unsigned long bits, u64 * failed_start, 1038 struct extent_state **cached_state, gfp_t mask) 1039 { 1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1041 cached_state, mask); 1042 } 1043 1044 1045 /** 1046 * convert_extent_bit - convert all bits in a given range from one bit to 1047 * another 1048 * @tree: the io tree to search 1049 * @start: the start offset in bytes 1050 * @end: the end offset in bytes (inclusive) 1051 * @bits: the bits to set in this range 1052 * @clear_bits: the bits to clear in this range 1053 * @cached_state: state that we're going to cache 1054 * @mask: the allocation mask 1055 * 1056 * This will go through and set bits for the given range. If any states exist 1057 * already in this range they are set with the given bit and cleared of the 1058 * clear_bits. This is only meant to be used by things that are mergeable, ie 1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1060 * boundary bits like LOCK. 1061 */ 1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1063 unsigned long bits, unsigned long clear_bits, 1064 struct extent_state **cached_state, gfp_t mask) 1065 { 1066 struct extent_state *state; 1067 struct extent_state *prealloc = NULL; 1068 struct rb_node *node; 1069 struct rb_node **p; 1070 struct rb_node *parent; 1071 int err = 0; 1072 u64 last_start; 1073 u64 last_end; 1074 bool first_iteration = true; 1075 1076 btrfs_debug_check_extent_io_range(tree, start, end); 1077 1078 again: 1079 if (!prealloc && (mask & __GFP_WAIT)) { 1080 /* 1081 * Best effort, don't worry if extent state allocation fails 1082 * here for the first iteration. We might have a cached state 1083 * that matches exactly the target range, in which case no 1084 * extent state allocations are needed. We'll only know this 1085 * after locking the tree. 1086 */ 1087 prealloc = alloc_extent_state(mask); 1088 if (!prealloc && !first_iteration) 1089 return -ENOMEM; 1090 } 1091 1092 spin_lock(&tree->lock); 1093 if (cached_state && *cached_state) { 1094 state = *cached_state; 1095 if (state->start <= start && state->end > start && 1096 extent_state_in_tree(state)) { 1097 node = &state->rb_node; 1098 goto hit_next; 1099 } 1100 } 1101 1102 /* 1103 * this search will find all the extents that end after 1104 * our range starts. 1105 */ 1106 node = tree_search_for_insert(tree, start, &p, &parent); 1107 if (!node) { 1108 prealloc = alloc_extent_state_atomic(prealloc); 1109 if (!prealloc) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 err = insert_state(tree, prealloc, start, end, 1114 &p, &parent, &bits); 1115 if (err) 1116 extent_io_tree_panic(tree, err); 1117 cache_state(prealloc, cached_state); 1118 prealloc = NULL; 1119 goto out; 1120 } 1121 state = rb_entry(node, struct extent_state, rb_node); 1122 hit_next: 1123 last_start = state->start; 1124 last_end = state->end; 1125 1126 /* 1127 * | ---- desired range ---- | 1128 * | state | 1129 * 1130 * Just lock what we found and keep going 1131 */ 1132 if (state->start == start && state->end <= end) { 1133 set_state_bits(tree, state, &bits); 1134 cache_state(state, cached_state); 1135 state = clear_state_bit(tree, state, &clear_bits, 0); 1136 if (last_end == (u64)-1) 1137 goto out; 1138 start = last_end + 1; 1139 if (start < end && state && state->start == start && 1140 !need_resched()) 1141 goto hit_next; 1142 goto search_again; 1143 } 1144 1145 /* 1146 * | ---- desired range ---- | 1147 * | state | 1148 * or 1149 * | ------------- state -------------- | 1150 * 1151 * We need to split the extent we found, and may flip bits on 1152 * second half. 1153 * 1154 * If the extent we found extends past our 1155 * range, we just split and search again. It'll get split 1156 * again the next time though. 1157 * 1158 * If the extent we found is inside our range, we set the 1159 * desired bit on it. 1160 */ 1161 if (state->start < start) { 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 if (!prealloc) { 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 err = split_state(tree, state, prealloc, start); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 prealloc = NULL; 1171 if (err) 1172 goto out; 1173 if (state->end <= end) { 1174 set_state_bits(tree, state, &bits); 1175 cache_state(state, cached_state); 1176 state = clear_state_bit(tree, state, &clear_bits, 0); 1177 if (last_end == (u64)-1) 1178 goto out; 1179 start = last_end + 1; 1180 if (start < end && state && state->start == start && 1181 !need_resched()) 1182 goto hit_next; 1183 } 1184 goto search_again; 1185 } 1186 /* 1187 * | ---- desired range ---- | 1188 * | state | or | state | 1189 * 1190 * There's a hole, we need to insert something in it and 1191 * ignore the extent we found. 1192 */ 1193 if (state->start > start) { 1194 u64 this_end; 1195 if (end < last_start) 1196 this_end = end; 1197 else 1198 this_end = last_start - 1; 1199 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 1206 /* 1207 * Avoid to free 'prealloc' if it can be merged with 1208 * the later extent. 1209 */ 1210 err = insert_state(tree, prealloc, start, this_end, 1211 NULL, NULL, &bits); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 cache_state(prealloc, cached_state); 1215 prealloc = NULL; 1216 start = this_end + 1; 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | 1222 * We need to split the extent, and set the bit 1223 * on the first half 1224 */ 1225 if (state->start <= end && state->end > end) { 1226 prealloc = alloc_extent_state_atomic(prealloc); 1227 if (!prealloc) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 err = split_state(tree, state, prealloc, end + 1); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 1236 set_state_bits(tree, prealloc, &bits); 1237 cache_state(prealloc, cached_state); 1238 clear_state_bit(tree, prealloc, &clear_bits, 0); 1239 prealloc = NULL; 1240 goto out; 1241 } 1242 1243 goto search_again; 1244 1245 out: 1246 spin_unlock(&tree->lock); 1247 if (prealloc) 1248 free_extent_state(prealloc); 1249 1250 return err; 1251 1252 search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 if (mask & __GFP_WAIT) 1257 cond_resched(); 1258 first_iteration = false; 1259 goto again; 1260 } 1261 1262 /* wrappers around set/clear extent bit */ 1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1264 gfp_t mask) 1265 { 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1267 NULL, mask); 1268 } 1269 1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1271 unsigned long bits, gfp_t mask) 1272 { 1273 return set_extent_bit(tree, start, end, bits, NULL, 1274 NULL, mask); 1275 } 1276 1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1278 unsigned long bits, gfp_t mask) 1279 { 1280 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1281 } 1282 1283 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1284 struct extent_state **cached_state, gfp_t mask) 1285 { 1286 return set_extent_bit(tree, start, end, 1287 EXTENT_DELALLOC | EXTENT_UPTODATE, 1288 NULL, cached_state, mask); 1289 } 1290 1291 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1292 struct extent_state **cached_state, gfp_t mask) 1293 { 1294 return set_extent_bit(tree, start, end, 1295 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1296 NULL, cached_state, mask); 1297 } 1298 1299 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1300 gfp_t mask) 1301 { 1302 return clear_extent_bit(tree, start, end, 1303 EXTENT_DIRTY | EXTENT_DELALLOC | 1304 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1305 } 1306 1307 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1308 gfp_t mask) 1309 { 1310 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1311 NULL, mask); 1312 } 1313 1314 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1315 struct extent_state **cached_state, gfp_t mask) 1316 { 1317 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1318 cached_state, mask); 1319 } 1320 1321 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1322 struct extent_state **cached_state, gfp_t mask) 1323 { 1324 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1325 cached_state, mask); 1326 } 1327 1328 /* 1329 * either insert or lock state struct between start and end use mask to tell 1330 * us if waiting is desired. 1331 */ 1332 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1333 unsigned long bits, struct extent_state **cached_state) 1334 { 1335 int err; 1336 u64 failed_start; 1337 while (1) { 1338 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1339 EXTENT_LOCKED, &failed_start, 1340 cached_state, GFP_NOFS); 1341 if (err == -EEXIST) { 1342 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1343 start = failed_start; 1344 } else 1345 break; 1346 WARN_ON(start > end); 1347 } 1348 return err; 1349 } 1350 1351 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1352 { 1353 return lock_extent_bits(tree, start, end, 0, NULL); 1354 } 1355 1356 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1357 { 1358 int err; 1359 u64 failed_start; 1360 1361 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1362 &failed_start, NULL, GFP_NOFS); 1363 if (err == -EEXIST) { 1364 if (failed_start > start) 1365 clear_extent_bit(tree, start, failed_start - 1, 1366 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1367 return 0; 1368 } 1369 return 1; 1370 } 1371 1372 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1373 struct extent_state **cached, gfp_t mask) 1374 { 1375 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1376 mask); 1377 } 1378 1379 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1380 { 1381 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1382 GFP_NOFS); 1383 } 1384 1385 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1386 { 1387 unsigned long index = start >> PAGE_CACHE_SHIFT; 1388 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1389 struct page *page; 1390 1391 while (index <= end_index) { 1392 page = find_get_page(inode->i_mapping, index); 1393 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1394 clear_page_dirty_for_io(page); 1395 page_cache_release(page); 1396 index++; 1397 } 1398 return 0; 1399 } 1400 1401 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1402 { 1403 unsigned long index = start >> PAGE_CACHE_SHIFT; 1404 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1405 struct page *page; 1406 1407 while (index <= end_index) { 1408 page = find_get_page(inode->i_mapping, index); 1409 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1410 account_page_redirty(page); 1411 __set_page_dirty_nobuffers(page); 1412 page_cache_release(page); 1413 index++; 1414 } 1415 return 0; 1416 } 1417 1418 /* 1419 * helper function to set both pages and extents in the tree writeback 1420 */ 1421 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1422 { 1423 unsigned long index = start >> PAGE_CACHE_SHIFT; 1424 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1425 struct page *page; 1426 1427 while (index <= end_index) { 1428 page = find_get_page(tree->mapping, index); 1429 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1430 set_page_writeback(page); 1431 page_cache_release(page); 1432 index++; 1433 } 1434 return 0; 1435 } 1436 1437 /* find the first state struct with 'bits' set after 'start', and 1438 * return it. tree->lock must be held. NULL will returned if 1439 * nothing was found after 'start' 1440 */ 1441 static struct extent_state * 1442 find_first_extent_bit_state(struct extent_io_tree *tree, 1443 u64 start, unsigned long bits) 1444 { 1445 struct rb_node *node; 1446 struct extent_state *state; 1447 1448 /* 1449 * this search will find all the extents that end after 1450 * our range starts. 1451 */ 1452 node = tree_search(tree, start); 1453 if (!node) 1454 goto out; 1455 1456 while (1) { 1457 state = rb_entry(node, struct extent_state, rb_node); 1458 if (state->end >= start && (state->state & bits)) 1459 return state; 1460 1461 node = rb_next(node); 1462 if (!node) 1463 break; 1464 } 1465 out: 1466 return NULL; 1467 } 1468 1469 /* 1470 * find the first offset in the io tree with 'bits' set. zero is 1471 * returned if we find something, and *start_ret and *end_ret are 1472 * set to reflect the state struct that was found. 1473 * 1474 * If nothing was found, 1 is returned. If found something, return 0. 1475 */ 1476 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1477 u64 *start_ret, u64 *end_ret, unsigned long bits, 1478 struct extent_state **cached_state) 1479 { 1480 struct extent_state *state; 1481 struct rb_node *n; 1482 int ret = 1; 1483 1484 spin_lock(&tree->lock); 1485 if (cached_state && *cached_state) { 1486 state = *cached_state; 1487 if (state->end == start - 1 && extent_state_in_tree(state)) { 1488 n = rb_next(&state->rb_node); 1489 while (n) { 1490 state = rb_entry(n, struct extent_state, 1491 rb_node); 1492 if (state->state & bits) 1493 goto got_it; 1494 n = rb_next(n); 1495 } 1496 free_extent_state(*cached_state); 1497 *cached_state = NULL; 1498 goto out; 1499 } 1500 free_extent_state(*cached_state); 1501 *cached_state = NULL; 1502 } 1503 1504 state = find_first_extent_bit_state(tree, start, bits); 1505 got_it: 1506 if (state) { 1507 cache_state_if_flags(state, cached_state, 0); 1508 *start_ret = state->start; 1509 *end_ret = state->end; 1510 ret = 0; 1511 } 1512 out: 1513 spin_unlock(&tree->lock); 1514 return ret; 1515 } 1516 1517 /* 1518 * find a contiguous range of bytes in the file marked as delalloc, not 1519 * more than 'max_bytes'. start and end are used to return the range, 1520 * 1521 * 1 is returned if we find something, 0 if nothing was in the tree 1522 */ 1523 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1524 u64 *start, u64 *end, u64 max_bytes, 1525 struct extent_state **cached_state) 1526 { 1527 struct rb_node *node; 1528 struct extent_state *state; 1529 u64 cur_start = *start; 1530 u64 found = 0; 1531 u64 total_bytes = 0; 1532 1533 spin_lock(&tree->lock); 1534 1535 /* 1536 * this search will find all the extents that end after 1537 * our range starts. 1538 */ 1539 node = tree_search(tree, cur_start); 1540 if (!node) { 1541 if (!found) 1542 *end = (u64)-1; 1543 goto out; 1544 } 1545 1546 while (1) { 1547 state = rb_entry(node, struct extent_state, rb_node); 1548 if (found && (state->start != cur_start || 1549 (state->state & EXTENT_BOUNDARY))) { 1550 goto out; 1551 } 1552 if (!(state->state & EXTENT_DELALLOC)) { 1553 if (!found) 1554 *end = state->end; 1555 goto out; 1556 } 1557 if (!found) { 1558 *start = state->start; 1559 *cached_state = state; 1560 atomic_inc(&state->refs); 1561 } 1562 found++; 1563 *end = state->end; 1564 cur_start = state->end + 1; 1565 node = rb_next(node); 1566 total_bytes += state->end - state->start + 1; 1567 if (total_bytes >= max_bytes) 1568 break; 1569 if (!node) 1570 break; 1571 } 1572 out: 1573 spin_unlock(&tree->lock); 1574 return found; 1575 } 1576 1577 static noinline void __unlock_for_delalloc(struct inode *inode, 1578 struct page *locked_page, 1579 u64 start, u64 end) 1580 { 1581 int ret; 1582 struct page *pages[16]; 1583 unsigned long index = start >> PAGE_CACHE_SHIFT; 1584 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1585 unsigned long nr_pages = end_index - index + 1; 1586 int i; 1587 1588 if (index == locked_page->index && end_index == index) 1589 return; 1590 1591 while (nr_pages > 0) { 1592 ret = find_get_pages_contig(inode->i_mapping, index, 1593 min_t(unsigned long, nr_pages, 1594 ARRAY_SIZE(pages)), pages); 1595 for (i = 0; i < ret; i++) { 1596 if (pages[i] != locked_page) 1597 unlock_page(pages[i]); 1598 page_cache_release(pages[i]); 1599 } 1600 nr_pages -= ret; 1601 index += ret; 1602 cond_resched(); 1603 } 1604 } 1605 1606 static noinline int lock_delalloc_pages(struct inode *inode, 1607 struct page *locked_page, 1608 u64 delalloc_start, 1609 u64 delalloc_end) 1610 { 1611 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1612 unsigned long start_index = index; 1613 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1614 unsigned long pages_locked = 0; 1615 struct page *pages[16]; 1616 unsigned long nrpages; 1617 int ret; 1618 int i; 1619 1620 /* the caller is responsible for locking the start index */ 1621 if (index == locked_page->index && index == end_index) 1622 return 0; 1623 1624 /* skip the page at the start index */ 1625 nrpages = end_index - index + 1; 1626 while (nrpages > 0) { 1627 ret = find_get_pages_contig(inode->i_mapping, index, 1628 min_t(unsigned long, 1629 nrpages, ARRAY_SIZE(pages)), pages); 1630 if (ret == 0) { 1631 ret = -EAGAIN; 1632 goto done; 1633 } 1634 /* now we have an array of pages, lock them all */ 1635 for (i = 0; i < ret; i++) { 1636 /* 1637 * the caller is taking responsibility for 1638 * locked_page 1639 */ 1640 if (pages[i] != locked_page) { 1641 lock_page(pages[i]); 1642 if (!PageDirty(pages[i]) || 1643 pages[i]->mapping != inode->i_mapping) { 1644 ret = -EAGAIN; 1645 unlock_page(pages[i]); 1646 page_cache_release(pages[i]); 1647 goto done; 1648 } 1649 } 1650 page_cache_release(pages[i]); 1651 pages_locked++; 1652 } 1653 nrpages -= ret; 1654 index += ret; 1655 cond_resched(); 1656 } 1657 ret = 0; 1658 done: 1659 if (ret && pages_locked) { 1660 __unlock_for_delalloc(inode, locked_page, 1661 delalloc_start, 1662 ((u64)(start_index + pages_locked - 1)) << 1663 PAGE_CACHE_SHIFT); 1664 } 1665 return ret; 1666 } 1667 1668 /* 1669 * find a contiguous range of bytes in the file marked as delalloc, not 1670 * more than 'max_bytes'. start and end are used to return the range, 1671 * 1672 * 1 is returned if we find something, 0 if nothing was in the tree 1673 */ 1674 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1675 struct extent_io_tree *tree, 1676 struct page *locked_page, u64 *start, 1677 u64 *end, u64 max_bytes) 1678 { 1679 u64 delalloc_start; 1680 u64 delalloc_end; 1681 u64 found; 1682 struct extent_state *cached_state = NULL; 1683 int ret; 1684 int loops = 0; 1685 1686 again: 1687 /* step one, find a bunch of delalloc bytes starting at start */ 1688 delalloc_start = *start; 1689 delalloc_end = 0; 1690 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1691 max_bytes, &cached_state); 1692 if (!found || delalloc_end <= *start) { 1693 *start = delalloc_start; 1694 *end = delalloc_end; 1695 free_extent_state(cached_state); 1696 return 0; 1697 } 1698 1699 /* 1700 * start comes from the offset of locked_page. We have to lock 1701 * pages in order, so we can't process delalloc bytes before 1702 * locked_page 1703 */ 1704 if (delalloc_start < *start) 1705 delalloc_start = *start; 1706 1707 /* 1708 * make sure to limit the number of pages we try to lock down 1709 */ 1710 if (delalloc_end + 1 - delalloc_start > max_bytes) 1711 delalloc_end = delalloc_start + max_bytes - 1; 1712 1713 /* step two, lock all the pages after the page that has start */ 1714 ret = lock_delalloc_pages(inode, locked_page, 1715 delalloc_start, delalloc_end); 1716 if (ret == -EAGAIN) { 1717 /* some of the pages are gone, lets avoid looping by 1718 * shortening the size of the delalloc range we're searching 1719 */ 1720 free_extent_state(cached_state); 1721 cached_state = NULL; 1722 if (!loops) { 1723 max_bytes = PAGE_CACHE_SIZE; 1724 loops = 1; 1725 goto again; 1726 } else { 1727 found = 0; 1728 goto out_failed; 1729 } 1730 } 1731 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1732 1733 /* step three, lock the state bits for the whole range */ 1734 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1735 1736 /* then test to make sure it is all still delalloc */ 1737 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1738 EXTENT_DELALLOC, 1, cached_state); 1739 if (!ret) { 1740 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1741 &cached_state, GFP_NOFS); 1742 __unlock_for_delalloc(inode, locked_page, 1743 delalloc_start, delalloc_end); 1744 cond_resched(); 1745 goto again; 1746 } 1747 free_extent_state(cached_state); 1748 *start = delalloc_start; 1749 *end = delalloc_end; 1750 out_failed: 1751 return found; 1752 } 1753 1754 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1755 struct page *locked_page, 1756 unsigned long clear_bits, 1757 unsigned long page_ops) 1758 { 1759 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1760 int ret; 1761 struct page *pages[16]; 1762 unsigned long index = start >> PAGE_CACHE_SHIFT; 1763 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1764 unsigned long nr_pages = end_index - index + 1; 1765 int i; 1766 1767 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1768 if (page_ops == 0) 1769 return 0; 1770 1771 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1772 mapping_set_error(inode->i_mapping, -EIO); 1773 1774 while (nr_pages > 0) { 1775 ret = find_get_pages_contig(inode->i_mapping, index, 1776 min_t(unsigned long, 1777 nr_pages, ARRAY_SIZE(pages)), pages); 1778 for (i = 0; i < ret; i++) { 1779 1780 if (page_ops & PAGE_SET_PRIVATE2) 1781 SetPagePrivate2(pages[i]); 1782 1783 if (pages[i] == locked_page) { 1784 page_cache_release(pages[i]); 1785 continue; 1786 } 1787 if (page_ops & PAGE_CLEAR_DIRTY) 1788 clear_page_dirty_for_io(pages[i]); 1789 if (page_ops & PAGE_SET_WRITEBACK) 1790 set_page_writeback(pages[i]); 1791 if (page_ops & PAGE_SET_ERROR) 1792 SetPageError(pages[i]); 1793 if (page_ops & PAGE_END_WRITEBACK) 1794 end_page_writeback(pages[i]); 1795 if (page_ops & PAGE_UNLOCK) 1796 unlock_page(pages[i]); 1797 page_cache_release(pages[i]); 1798 } 1799 nr_pages -= ret; 1800 index += ret; 1801 cond_resched(); 1802 } 1803 return 0; 1804 } 1805 1806 /* 1807 * count the number of bytes in the tree that have a given bit(s) 1808 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1809 * cached. The total number found is returned. 1810 */ 1811 u64 count_range_bits(struct extent_io_tree *tree, 1812 u64 *start, u64 search_end, u64 max_bytes, 1813 unsigned long bits, int contig) 1814 { 1815 struct rb_node *node; 1816 struct extent_state *state; 1817 u64 cur_start = *start; 1818 u64 total_bytes = 0; 1819 u64 last = 0; 1820 int found = 0; 1821 1822 if (WARN_ON(search_end <= cur_start)) 1823 return 0; 1824 1825 spin_lock(&tree->lock); 1826 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1827 total_bytes = tree->dirty_bytes; 1828 goto out; 1829 } 1830 /* 1831 * this search will find all the extents that end after 1832 * our range starts. 1833 */ 1834 node = tree_search(tree, cur_start); 1835 if (!node) 1836 goto out; 1837 1838 while (1) { 1839 state = rb_entry(node, struct extent_state, rb_node); 1840 if (state->start > search_end) 1841 break; 1842 if (contig && found && state->start > last + 1) 1843 break; 1844 if (state->end >= cur_start && (state->state & bits) == bits) { 1845 total_bytes += min(search_end, state->end) + 1 - 1846 max(cur_start, state->start); 1847 if (total_bytes >= max_bytes) 1848 break; 1849 if (!found) { 1850 *start = max(cur_start, state->start); 1851 found = 1; 1852 } 1853 last = state->end; 1854 } else if (contig && found) { 1855 break; 1856 } 1857 node = rb_next(node); 1858 if (!node) 1859 break; 1860 } 1861 out: 1862 spin_unlock(&tree->lock); 1863 return total_bytes; 1864 } 1865 1866 /* 1867 * set the private field for a given byte offset in the tree. If there isn't 1868 * an extent_state there already, this does nothing. 1869 */ 1870 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1871 { 1872 struct rb_node *node; 1873 struct extent_state *state; 1874 int ret = 0; 1875 1876 spin_lock(&tree->lock); 1877 /* 1878 * this search will find all the extents that end after 1879 * our range starts. 1880 */ 1881 node = tree_search(tree, start); 1882 if (!node) { 1883 ret = -ENOENT; 1884 goto out; 1885 } 1886 state = rb_entry(node, struct extent_state, rb_node); 1887 if (state->start != start) { 1888 ret = -ENOENT; 1889 goto out; 1890 } 1891 state->private = private; 1892 out: 1893 spin_unlock(&tree->lock); 1894 return ret; 1895 } 1896 1897 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1898 { 1899 struct rb_node *node; 1900 struct extent_state *state; 1901 int ret = 0; 1902 1903 spin_lock(&tree->lock); 1904 /* 1905 * this search will find all the extents that end after 1906 * our range starts. 1907 */ 1908 node = tree_search(tree, start); 1909 if (!node) { 1910 ret = -ENOENT; 1911 goto out; 1912 } 1913 state = rb_entry(node, struct extent_state, rb_node); 1914 if (state->start != start) { 1915 ret = -ENOENT; 1916 goto out; 1917 } 1918 *private = state->private; 1919 out: 1920 spin_unlock(&tree->lock); 1921 return ret; 1922 } 1923 1924 /* 1925 * searches a range in the state tree for a given mask. 1926 * If 'filled' == 1, this returns 1 only if every extent in the tree 1927 * has the bits set. Otherwise, 1 is returned if any bit in the 1928 * range is found set. 1929 */ 1930 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1931 unsigned long bits, int filled, struct extent_state *cached) 1932 { 1933 struct extent_state *state = NULL; 1934 struct rb_node *node; 1935 int bitset = 0; 1936 1937 spin_lock(&tree->lock); 1938 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1939 cached->end > start) 1940 node = &cached->rb_node; 1941 else 1942 node = tree_search(tree, start); 1943 while (node && start <= end) { 1944 state = rb_entry(node, struct extent_state, rb_node); 1945 1946 if (filled && state->start > start) { 1947 bitset = 0; 1948 break; 1949 } 1950 1951 if (state->start > end) 1952 break; 1953 1954 if (state->state & bits) { 1955 bitset = 1; 1956 if (!filled) 1957 break; 1958 } else if (filled) { 1959 bitset = 0; 1960 break; 1961 } 1962 1963 if (state->end == (u64)-1) 1964 break; 1965 1966 start = state->end + 1; 1967 if (start > end) 1968 break; 1969 node = rb_next(node); 1970 if (!node) { 1971 if (filled) 1972 bitset = 0; 1973 break; 1974 } 1975 } 1976 spin_unlock(&tree->lock); 1977 return bitset; 1978 } 1979 1980 /* 1981 * helper function to set a given page up to date if all the 1982 * extents in the tree for that page are up to date 1983 */ 1984 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1985 { 1986 u64 start = page_offset(page); 1987 u64 end = start + PAGE_CACHE_SIZE - 1; 1988 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1989 SetPageUptodate(page); 1990 } 1991 1992 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1993 { 1994 int ret; 1995 int err = 0; 1996 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1997 1998 set_state_private(failure_tree, rec->start, 0); 1999 ret = clear_extent_bits(failure_tree, rec->start, 2000 rec->start + rec->len - 1, 2001 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2002 if (ret) 2003 err = ret; 2004 2005 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2006 rec->start + rec->len - 1, 2007 EXTENT_DAMAGED, GFP_NOFS); 2008 if (ret && !err) 2009 err = ret; 2010 2011 kfree(rec); 2012 return err; 2013 } 2014 2015 /* 2016 * this bypasses the standard btrfs submit functions deliberately, as 2017 * the standard behavior is to write all copies in a raid setup. here we only 2018 * want to write the one bad copy. so we do the mapping for ourselves and issue 2019 * submit_bio directly. 2020 * to avoid any synchronization issues, wait for the data after writing, which 2021 * actually prevents the read that triggered the error from finishing. 2022 * currently, there can be no more than two copies of every data bit. thus, 2023 * exactly one rewrite is required. 2024 */ 2025 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2026 struct page *page, unsigned int pg_offset, int mirror_num) 2027 { 2028 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2029 struct bio *bio; 2030 struct btrfs_device *dev; 2031 u64 map_length = 0; 2032 u64 sector; 2033 struct btrfs_bio *bbio = NULL; 2034 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2035 int ret; 2036 2037 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2038 BUG_ON(!mirror_num); 2039 2040 /* we can't repair anything in raid56 yet */ 2041 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2042 return 0; 2043 2044 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2045 if (!bio) 2046 return -EIO; 2047 bio->bi_iter.bi_size = 0; 2048 map_length = length; 2049 2050 ret = btrfs_map_block(fs_info, WRITE, logical, 2051 &map_length, &bbio, mirror_num); 2052 if (ret) { 2053 bio_put(bio); 2054 return -EIO; 2055 } 2056 BUG_ON(mirror_num != bbio->mirror_num); 2057 sector = bbio->stripes[mirror_num-1].physical >> 9; 2058 bio->bi_iter.bi_sector = sector; 2059 dev = bbio->stripes[mirror_num-1].dev; 2060 kfree(bbio); 2061 if (!dev || !dev->bdev || !dev->writeable) { 2062 bio_put(bio); 2063 return -EIO; 2064 } 2065 bio->bi_bdev = dev->bdev; 2066 bio_add_page(bio, page, length, pg_offset); 2067 2068 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2069 /* try to remap that extent elsewhere? */ 2070 bio_put(bio); 2071 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2072 return -EIO; 2073 } 2074 2075 printk_ratelimited_in_rcu(KERN_INFO 2076 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2077 btrfs_ino(inode), start, 2078 rcu_str_deref(dev->name), sector); 2079 bio_put(bio); 2080 return 0; 2081 } 2082 2083 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2084 int mirror_num) 2085 { 2086 u64 start = eb->start; 2087 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2088 int ret = 0; 2089 2090 if (root->fs_info->sb->s_flags & MS_RDONLY) 2091 return -EROFS; 2092 2093 for (i = 0; i < num_pages; i++) { 2094 struct page *p = eb->pages[i]; 2095 2096 ret = repair_io_failure(root->fs_info->btree_inode, start, 2097 PAGE_CACHE_SIZE, start, p, 2098 start - page_offset(p), mirror_num); 2099 if (ret) 2100 break; 2101 start += PAGE_CACHE_SIZE; 2102 } 2103 2104 return ret; 2105 } 2106 2107 /* 2108 * each time an IO finishes, we do a fast check in the IO failure tree 2109 * to see if we need to process or clean up an io_failure_record 2110 */ 2111 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2112 unsigned int pg_offset) 2113 { 2114 u64 private; 2115 u64 private_failure; 2116 struct io_failure_record *failrec; 2117 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2118 struct extent_state *state; 2119 int num_copies; 2120 int ret; 2121 2122 private = 0; 2123 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2124 (u64)-1, 1, EXTENT_DIRTY, 0); 2125 if (!ret) 2126 return 0; 2127 2128 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2129 &private_failure); 2130 if (ret) 2131 return 0; 2132 2133 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2134 BUG_ON(!failrec->this_mirror); 2135 2136 if (failrec->in_validation) { 2137 /* there was no real error, just free the record */ 2138 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2139 failrec->start); 2140 goto out; 2141 } 2142 if (fs_info->sb->s_flags & MS_RDONLY) 2143 goto out; 2144 2145 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2146 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2147 failrec->start, 2148 EXTENT_LOCKED); 2149 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2150 2151 if (state && state->start <= failrec->start && 2152 state->end >= failrec->start + failrec->len - 1) { 2153 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2154 failrec->len); 2155 if (num_copies > 1) { 2156 repair_io_failure(inode, start, failrec->len, 2157 failrec->logical, page, 2158 pg_offset, failrec->failed_mirror); 2159 } 2160 } 2161 2162 out: 2163 free_io_failure(inode, failrec); 2164 2165 return 0; 2166 } 2167 2168 /* 2169 * Can be called when 2170 * - hold extent lock 2171 * - under ordered extent 2172 * - the inode is freeing 2173 */ 2174 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2175 { 2176 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2177 struct io_failure_record *failrec; 2178 struct extent_state *state, *next; 2179 2180 if (RB_EMPTY_ROOT(&failure_tree->state)) 2181 return; 2182 2183 spin_lock(&failure_tree->lock); 2184 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2185 while (state) { 2186 if (state->start > end) 2187 break; 2188 2189 ASSERT(state->end <= end); 2190 2191 next = next_state(state); 2192 2193 failrec = (struct io_failure_record *)(unsigned long)state->private; 2194 free_extent_state(state); 2195 kfree(failrec); 2196 2197 state = next; 2198 } 2199 spin_unlock(&failure_tree->lock); 2200 } 2201 2202 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2203 struct io_failure_record **failrec_ret) 2204 { 2205 struct io_failure_record *failrec; 2206 u64 private; 2207 struct extent_map *em; 2208 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2209 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2210 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2211 int ret; 2212 u64 logical; 2213 2214 ret = get_state_private(failure_tree, start, &private); 2215 if (ret) { 2216 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2217 if (!failrec) 2218 return -ENOMEM; 2219 2220 failrec->start = start; 2221 failrec->len = end - start + 1; 2222 failrec->this_mirror = 0; 2223 failrec->bio_flags = 0; 2224 failrec->in_validation = 0; 2225 2226 read_lock(&em_tree->lock); 2227 em = lookup_extent_mapping(em_tree, start, failrec->len); 2228 if (!em) { 2229 read_unlock(&em_tree->lock); 2230 kfree(failrec); 2231 return -EIO; 2232 } 2233 2234 if (em->start > start || em->start + em->len <= start) { 2235 free_extent_map(em); 2236 em = NULL; 2237 } 2238 read_unlock(&em_tree->lock); 2239 if (!em) { 2240 kfree(failrec); 2241 return -EIO; 2242 } 2243 2244 logical = start - em->start; 2245 logical = em->block_start + logical; 2246 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2247 logical = em->block_start; 2248 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2249 extent_set_compress_type(&failrec->bio_flags, 2250 em->compress_type); 2251 } 2252 2253 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2254 logical, start, failrec->len); 2255 2256 failrec->logical = logical; 2257 free_extent_map(em); 2258 2259 /* set the bits in the private failure tree */ 2260 ret = set_extent_bits(failure_tree, start, end, 2261 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2262 if (ret >= 0) 2263 ret = set_state_private(failure_tree, start, 2264 (u64)(unsigned long)failrec); 2265 /* set the bits in the inode's tree */ 2266 if (ret >= 0) 2267 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2268 GFP_NOFS); 2269 if (ret < 0) { 2270 kfree(failrec); 2271 return ret; 2272 } 2273 } else { 2274 failrec = (struct io_failure_record *)(unsigned long)private; 2275 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2276 failrec->logical, failrec->start, failrec->len, 2277 failrec->in_validation); 2278 /* 2279 * when data can be on disk more than twice, add to failrec here 2280 * (e.g. with a list for failed_mirror) to make 2281 * clean_io_failure() clean all those errors at once. 2282 */ 2283 } 2284 2285 *failrec_ret = failrec; 2286 2287 return 0; 2288 } 2289 2290 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2291 struct io_failure_record *failrec, int failed_mirror) 2292 { 2293 int num_copies; 2294 2295 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2296 failrec->logical, failrec->len); 2297 if (num_copies == 1) { 2298 /* 2299 * we only have a single copy of the data, so don't bother with 2300 * all the retry and error correction code that follows. no 2301 * matter what the error is, it is very likely to persist. 2302 */ 2303 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2304 num_copies, failrec->this_mirror, failed_mirror); 2305 return 0; 2306 } 2307 2308 /* 2309 * there are two premises: 2310 * a) deliver good data to the caller 2311 * b) correct the bad sectors on disk 2312 */ 2313 if (failed_bio->bi_vcnt > 1) { 2314 /* 2315 * to fulfill b), we need to know the exact failing sectors, as 2316 * we don't want to rewrite any more than the failed ones. thus, 2317 * we need separate read requests for the failed bio 2318 * 2319 * if the following BUG_ON triggers, our validation request got 2320 * merged. we need separate requests for our algorithm to work. 2321 */ 2322 BUG_ON(failrec->in_validation); 2323 failrec->in_validation = 1; 2324 failrec->this_mirror = failed_mirror; 2325 } else { 2326 /* 2327 * we're ready to fulfill a) and b) alongside. get a good copy 2328 * of the failed sector and if we succeed, we have setup 2329 * everything for repair_io_failure to do the rest for us. 2330 */ 2331 if (failrec->in_validation) { 2332 BUG_ON(failrec->this_mirror != failed_mirror); 2333 failrec->in_validation = 0; 2334 failrec->this_mirror = 0; 2335 } 2336 failrec->failed_mirror = failed_mirror; 2337 failrec->this_mirror++; 2338 if (failrec->this_mirror == failed_mirror) 2339 failrec->this_mirror++; 2340 } 2341 2342 if (failrec->this_mirror > num_copies) { 2343 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2344 num_copies, failrec->this_mirror, failed_mirror); 2345 return 0; 2346 } 2347 2348 return 1; 2349 } 2350 2351 2352 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2353 struct io_failure_record *failrec, 2354 struct page *page, int pg_offset, int icsum, 2355 bio_end_io_t *endio_func, void *data) 2356 { 2357 struct bio *bio; 2358 struct btrfs_io_bio *btrfs_failed_bio; 2359 struct btrfs_io_bio *btrfs_bio; 2360 2361 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2362 if (!bio) 2363 return NULL; 2364 2365 bio->bi_end_io = endio_func; 2366 bio->bi_iter.bi_sector = failrec->logical >> 9; 2367 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2368 bio->bi_iter.bi_size = 0; 2369 bio->bi_private = data; 2370 2371 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2372 if (btrfs_failed_bio->csum) { 2373 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2374 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2375 2376 btrfs_bio = btrfs_io_bio(bio); 2377 btrfs_bio->csum = btrfs_bio->csum_inline; 2378 icsum *= csum_size; 2379 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2380 csum_size); 2381 } 2382 2383 bio_add_page(bio, page, failrec->len, pg_offset); 2384 2385 return bio; 2386 } 2387 2388 /* 2389 * this is a generic handler for readpage errors (default 2390 * readpage_io_failed_hook). if other copies exist, read those and write back 2391 * good data to the failed position. does not investigate in remapping the 2392 * failed extent elsewhere, hoping the device will be smart enough to do this as 2393 * needed 2394 */ 2395 2396 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2397 struct page *page, u64 start, u64 end, 2398 int failed_mirror) 2399 { 2400 struct io_failure_record *failrec; 2401 struct inode *inode = page->mapping->host; 2402 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2403 struct bio *bio; 2404 int read_mode; 2405 int ret; 2406 2407 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2408 2409 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2410 if (ret) 2411 return ret; 2412 2413 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2414 if (!ret) { 2415 free_io_failure(inode, failrec); 2416 return -EIO; 2417 } 2418 2419 if (failed_bio->bi_vcnt > 1) 2420 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2421 else 2422 read_mode = READ_SYNC; 2423 2424 phy_offset >>= inode->i_sb->s_blocksize_bits; 2425 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2426 start - page_offset(page), 2427 (int)phy_offset, failed_bio->bi_end_io, 2428 NULL); 2429 if (!bio) { 2430 free_io_failure(inode, failrec); 2431 return -EIO; 2432 } 2433 2434 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2435 read_mode, failrec->this_mirror, failrec->in_validation); 2436 2437 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2438 failrec->this_mirror, 2439 failrec->bio_flags, 0); 2440 if (ret) { 2441 free_io_failure(inode, failrec); 2442 bio_put(bio); 2443 } 2444 2445 return ret; 2446 } 2447 2448 /* lots and lots of room for performance fixes in the end_bio funcs */ 2449 2450 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2451 { 2452 int uptodate = (err == 0); 2453 struct extent_io_tree *tree; 2454 int ret = 0; 2455 2456 tree = &BTRFS_I(page->mapping->host)->io_tree; 2457 2458 if (tree->ops && tree->ops->writepage_end_io_hook) { 2459 ret = tree->ops->writepage_end_io_hook(page, start, 2460 end, NULL, uptodate); 2461 if (ret) 2462 uptodate = 0; 2463 } 2464 2465 if (!uptodate) { 2466 ClearPageUptodate(page); 2467 SetPageError(page); 2468 ret = ret < 0 ? ret : -EIO; 2469 mapping_set_error(page->mapping, ret); 2470 } 2471 return 0; 2472 } 2473 2474 /* 2475 * after a writepage IO is done, we need to: 2476 * clear the uptodate bits on error 2477 * clear the writeback bits in the extent tree for this IO 2478 * end_page_writeback if the page has no more pending IO 2479 * 2480 * Scheduling is not allowed, so the extent state tree is expected 2481 * to have one and only one object corresponding to this IO. 2482 */ 2483 static void end_bio_extent_writepage(struct bio *bio, int err) 2484 { 2485 struct bio_vec *bvec; 2486 u64 start; 2487 u64 end; 2488 int i; 2489 2490 bio_for_each_segment_all(bvec, bio, i) { 2491 struct page *page = bvec->bv_page; 2492 2493 /* We always issue full-page reads, but if some block 2494 * in a page fails to read, blk_update_request() will 2495 * advance bv_offset and adjust bv_len to compensate. 2496 * Print a warning for nonzero offsets, and an error 2497 * if they don't add up to a full page. */ 2498 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2499 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2500 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2501 "partial page write in btrfs with offset %u and length %u", 2502 bvec->bv_offset, bvec->bv_len); 2503 else 2504 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2505 "incomplete page write in btrfs with offset %u and " 2506 "length %u", 2507 bvec->bv_offset, bvec->bv_len); 2508 } 2509 2510 start = page_offset(page); 2511 end = start + bvec->bv_offset + bvec->bv_len - 1; 2512 2513 if (end_extent_writepage(page, err, start, end)) 2514 continue; 2515 2516 end_page_writeback(page); 2517 } 2518 2519 bio_put(bio); 2520 } 2521 2522 static void 2523 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2524 int uptodate) 2525 { 2526 struct extent_state *cached = NULL; 2527 u64 end = start + len - 1; 2528 2529 if (uptodate && tree->track_uptodate) 2530 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2531 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2532 } 2533 2534 /* 2535 * after a readpage IO is done, we need to: 2536 * clear the uptodate bits on error 2537 * set the uptodate bits if things worked 2538 * set the page up to date if all extents in the tree are uptodate 2539 * clear the lock bit in the extent tree 2540 * unlock the page if there are no other extents locked for it 2541 * 2542 * Scheduling is not allowed, so the extent state tree is expected 2543 * to have one and only one object corresponding to this IO. 2544 */ 2545 static void end_bio_extent_readpage(struct bio *bio, int err) 2546 { 2547 struct bio_vec *bvec; 2548 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2549 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2550 struct extent_io_tree *tree; 2551 u64 offset = 0; 2552 u64 start; 2553 u64 end; 2554 u64 len; 2555 u64 extent_start = 0; 2556 u64 extent_len = 0; 2557 int mirror; 2558 int ret; 2559 int i; 2560 2561 if (err) 2562 uptodate = 0; 2563 2564 bio_for_each_segment_all(bvec, bio, i) { 2565 struct page *page = bvec->bv_page; 2566 struct inode *inode = page->mapping->host; 2567 2568 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2569 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err, 2570 io_bio->mirror_num); 2571 tree = &BTRFS_I(inode)->io_tree; 2572 2573 /* We always issue full-page reads, but if some block 2574 * in a page fails to read, blk_update_request() will 2575 * advance bv_offset and adjust bv_len to compensate. 2576 * Print a warning for nonzero offsets, and an error 2577 * if they don't add up to a full page. */ 2578 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2579 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2580 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2581 "partial page read in btrfs with offset %u and length %u", 2582 bvec->bv_offset, bvec->bv_len); 2583 else 2584 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2585 "incomplete page read in btrfs with offset %u and " 2586 "length %u", 2587 bvec->bv_offset, bvec->bv_len); 2588 } 2589 2590 start = page_offset(page); 2591 end = start + bvec->bv_offset + bvec->bv_len - 1; 2592 len = bvec->bv_len; 2593 2594 mirror = io_bio->mirror_num; 2595 if (likely(uptodate && tree->ops && 2596 tree->ops->readpage_end_io_hook)) { 2597 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2598 page, start, end, 2599 mirror); 2600 if (ret) 2601 uptodate = 0; 2602 else 2603 clean_io_failure(inode, start, page, 0); 2604 } 2605 2606 if (likely(uptodate)) 2607 goto readpage_ok; 2608 2609 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2610 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2611 if (!ret && !err && 2612 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2613 uptodate = 1; 2614 } else { 2615 /* 2616 * The generic bio_readpage_error handles errors the 2617 * following way: If possible, new read requests are 2618 * created and submitted and will end up in 2619 * end_bio_extent_readpage as well (if we're lucky, not 2620 * in the !uptodate case). In that case it returns 0 and 2621 * we just go on with the next page in our bio. If it 2622 * can't handle the error it will return -EIO and we 2623 * remain responsible for that page. 2624 */ 2625 ret = bio_readpage_error(bio, offset, page, start, end, 2626 mirror); 2627 if (ret == 0) { 2628 uptodate = 2629 test_bit(BIO_UPTODATE, &bio->bi_flags); 2630 if (err) 2631 uptodate = 0; 2632 offset += len; 2633 continue; 2634 } 2635 } 2636 readpage_ok: 2637 if (likely(uptodate)) { 2638 loff_t i_size = i_size_read(inode); 2639 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2640 unsigned off; 2641 2642 /* Zero out the end if this page straddles i_size */ 2643 off = i_size & (PAGE_CACHE_SIZE-1); 2644 if (page->index == end_index && off) 2645 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2646 SetPageUptodate(page); 2647 } else { 2648 ClearPageUptodate(page); 2649 SetPageError(page); 2650 } 2651 unlock_page(page); 2652 offset += len; 2653 2654 if (unlikely(!uptodate)) { 2655 if (extent_len) { 2656 endio_readpage_release_extent(tree, 2657 extent_start, 2658 extent_len, 1); 2659 extent_start = 0; 2660 extent_len = 0; 2661 } 2662 endio_readpage_release_extent(tree, start, 2663 end - start + 1, 0); 2664 } else if (!extent_len) { 2665 extent_start = start; 2666 extent_len = end + 1 - start; 2667 } else if (extent_start + extent_len == start) { 2668 extent_len += end + 1 - start; 2669 } else { 2670 endio_readpage_release_extent(tree, extent_start, 2671 extent_len, uptodate); 2672 extent_start = start; 2673 extent_len = end + 1 - start; 2674 } 2675 } 2676 2677 if (extent_len) 2678 endio_readpage_release_extent(tree, extent_start, extent_len, 2679 uptodate); 2680 if (io_bio->end_io) 2681 io_bio->end_io(io_bio, err); 2682 bio_put(bio); 2683 } 2684 2685 /* 2686 * this allocates from the btrfs_bioset. We're returning a bio right now 2687 * but you can call btrfs_io_bio for the appropriate container_of magic 2688 */ 2689 struct bio * 2690 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2691 gfp_t gfp_flags) 2692 { 2693 struct btrfs_io_bio *btrfs_bio; 2694 struct bio *bio; 2695 2696 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2697 2698 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2699 while (!bio && (nr_vecs /= 2)) { 2700 bio = bio_alloc_bioset(gfp_flags, 2701 nr_vecs, btrfs_bioset); 2702 } 2703 } 2704 2705 if (bio) { 2706 bio->bi_bdev = bdev; 2707 bio->bi_iter.bi_sector = first_sector; 2708 btrfs_bio = btrfs_io_bio(bio); 2709 btrfs_bio->csum = NULL; 2710 btrfs_bio->csum_allocated = NULL; 2711 btrfs_bio->end_io = NULL; 2712 } 2713 return bio; 2714 } 2715 2716 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2717 { 2718 struct btrfs_io_bio *btrfs_bio; 2719 struct bio *new; 2720 2721 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2722 if (new) { 2723 btrfs_bio = btrfs_io_bio(new); 2724 btrfs_bio->csum = NULL; 2725 btrfs_bio->csum_allocated = NULL; 2726 btrfs_bio->end_io = NULL; 2727 } 2728 return new; 2729 } 2730 2731 /* this also allocates from the btrfs_bioset */ 2732 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2733 { 2734 struct btrfs_io_bio *btrfs_bio; 2735 struct bio *bio; 2736 2737 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2738 if (bio) { 2739 btrfs_bio = btrfs_io_bio(bio); 2740 btrfs_bio->csum = NULL; 2741 btrfs_bio->csum_allocated = NULL; 2742 btrfs_bio->end_io = NULL; 2743 } 2744 return bio; 2745 } 2746 2747 2748 static int __must_check submit_one_bio(int rw, struct bio *bio, 2749 int mirror_num, unsigned long bio_flags) 2750 { 2751 int ret = 0; 2752 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2753 struct page *page = bvec->bv_page; 2754 struct extent_io_tree *tree = bio->bi_private; 2755 u64 start; 2756 2757 start = page_offset(page) + bvec->bv_offset; 2758 2759 bio->bi_private = NULL; 2760 2761 bio_get(bio); 2762 2763 if (tree->ops && tree->ops->submit_bio_hook) 2764 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2765 mirror_num, bio_flags, start); 2766 else 2767 btrfsic_submit_bio(rw, bio); 2768 2769 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2770 ret = -EOPNOTSUPP; 2771 bio_put(bio); 2772 return ret; 2773 } 2774 2775 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2776 unsigned long offset, size_t size, struct bio *bio, 2777 unsigned long bio_flags) 2778 { 2779 int ret = 0; 2780 if (tree->ops && tree->ops->merge_bio_hook) 2781 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2782 bio_flags); 2783 BUG_ON(ret < 0); 2784 return ret; 2785 2786 } 2787 2788 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2789 struct page *page, sector_t sector, 2790 size_t size, unsigned long offset, 2791 struct block_device *bdev, 2792 struct bio **bio_ret, 2793 unsigned long max_pages, 2794 bio_end_io_t end_io_func, 2795 int mirror_num, 2796 unsigned long prev_bio_flags, 2797 unsigned long bio_flags) 2798 { 2799 int ret = 0; 2800 struct bio *bio; 2801 int nr; 2802 int contig = 0; 2803 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2804 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2805 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2806 2807 if (bio_ret && *bio_ret) { 2808 bio = *bio_ret; 2809 if (old_compressed) 2810 contig = bio->bi_iter.bi_sector == sector; 2811 else 2812 contig = bio_end_sector(bio) == sector; 2813 2814 if (prev_bio_flags != bio_flags || !contig || 2815 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2816 bio_add_page(bio, page, page_size, offset) < page_size) { 2817 ret = submit_one_bio(rw, bio, mirror_num, 2818 prev_bio_flags); 2819 if (ret < 0) 2820 return ret; 2821 bio = NULL; 2822 } else { 2823 return 0; 2824 } 2825 } 2826 if (this_compressed) 2827 nr = BIO_MAX_PAGES; 2828 else 2829 nr = bio_get_nr_vecs(bdev); 2830 2831 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2832 if (!bio) 2833 return -ENOMEM; 2834 2835 bio_add_page(bio, page, page_size, offset); 2836 bio->bi_end_io = end_io_func; 2837 bio->bi_private = tree; 2838 2839 if (bio_ret) 2840 *bio_ret = bio; 2841 else 2842 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2843 2844 return ret; 2845 } 2846 2847 static void attach_extent_buffer_page(struct extent_buffer *eb, 2848 struct page *page) 2849 { 2850 if (!PagePrivate(page)) { 2851 SetPagePrivate(page); 2852 page_cache_get(page); 2853 set_page_private(page, (unsigned long)eb); 2854 } else { 2855 WARN_ON(page->private != (unsigned long)eb); 2856 } 2857 } 2858 2859 void set_page_extent_mapped(struct page *page) 2860 { 2861 if (!PagePrivate(page)) { 2862 SetPagePrivate(page); 2863 page_cache_get(page); 2864 set_page_private(page, EXTENT_PAGE_PRIVATE); 2865 } 2866 } 2867 2868 static struct extent_map * 2869 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2870 u64 start, u64 len, get_extent_t *get_extent, 2871 struct extent_map **em_cached) 2872 { 2873 struct extent_map *em; 2874 2875 if (em_cached && *em_cached) { 2876 em = *em_cached; 2877 if (extent_map_in_tree(em) && start >= em->start && 2878 start < extent_map_end(em)) { 2879 atomic_inc(&em->refs); 2880 return em; 2881 } 2882 2883 free_extent_map(em); 2884 *em_cached = NULL; 2885 } 2886 2887 em = get_extent(inode, page, pg_offset, start, len, 0); 2888 if (em_cached && !IS_ERR_OR_NULL(em)) { 2889 BUG_ON(*em_cached); 2890 atomic_inc(&em->refs); 2891 *em_cached = em; 2892 } 2893 return em; 2894 } 2895 /* 2896 * basic readpage implementation. Locked extent state structs are inserted 2897 * into the tree that are removed when the IO is done (by the end_io 2898 * handlers) 2899 * XXX JDM: This needs looking at to ensure proper page locking 2900 */ 2901 static int __do_readpage(struct extent_io_tree *tree, 2902 struct page *page, 2903 get_extent_t *get_extent, 2904 struct extent_map **em_cached, 2905 struct bio **bio, int mirror_num, 2906 unsigned long *bio_flags, int rw) 2907 { 2908 struct inode *inode = page->mapping->host; 2909 u64 start = page_offset(page); 2910 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2911 u64 end; 2912 u64 cur = start; 2913 u64 extent_offset; 2914 u64 last_byte = i_size_read(inode); 2915 u64 block_start; 2916 u64 cur_end; 2917 sector_t sector; 2918 struct extent_map *em; 2919 struct block_device *bdev; 2920 int ret; 2921 int nr = 0; 2922 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2923 size_t pg_offset = 0; 2924 size_t iosize; 2925 size_t disk_io_size; 2926 size_t blocksize = inode->i_sb->s_blocksize; 2927 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2928 2929 set_page_extent_mapped(page); 2930 2931 end = page_end; 2932 if (!PageUptodate(page)) { 2933 if (cleancache_get_page(page) == 0) { 2934 BUG_ON(blocksize != PAGE_SIZE); 2935 unlock_extent(tree, start, end); 2936 goto out; 2937 } 2938 } 2939 2940 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2941 char *userpage; 2942 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2943 2944 if (zero_offset) { 2945 iosize = PAGE_CACHE_SIZE - zero_offset; 2946 userpage = kmap_atomic(page); 2947 memset(userpage + zero_offset, 0, iosize); 2948 flush_dcache_page(page); 2949 kunmap_atomic(userpage); 2950 } 2951 } 2952 while (cur <= end) { 2953 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2954 2955 if (cur >= last_byte) { 2956 char *userpage; 2957 struct extent_state *cached = NULL; 2958 2959 iosize = PAGE_CACHE_SIZE - pg_offset; 2960 userpage = kmap_atomic(page); 2961 memset(userpage + pg_offset, 0, iosize); 2962 flush_dcache_page(page); 2963 kunmap_atomic(userpage); 2964 set_extent_uptodate(tree, cur, cur + iosize - 1, 2965 &cached, GFP_NOFS); 2966 if (!parent_locked) 2967 unlock_extent_cached(tree, cur, 2968 cur + iosize - 1, 2969 &cached, GFP_NOFS); 2970 break; 2971 } 2972 em = __get_extent_map(inode, page, pg_offset, cur, 2973 end - cur + 1, get_extent, em_cached); 2974 if (IS_ERR_OR_NULL(em)) { 2975 SetPageError(page); 2976 if (!parent_locked) 2977 unlock_extent(tree, cur, end); 2978 break; 2979 } 2980 extent_offset = cur - em->start; 2981 BUG_ON(extent_map_end(em) <= cur); 2982 BUG_ON(end < cur); 2983 2984 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2985 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2986 extent_set_compress_type(&this_bio_flag, 2987 em->compress_type); 2988 } 2989 2990 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2991 cur_end = min(extent_map_end(em) - 1, end); 2992 iosize = ALIGN(iosize, blocksize); 2993 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2994 disk_io_size = em->block_len; 2995 sector = em->block_start >> 9; 2996 } else { 2997 sector = (em->block_start + extent_offset) >> 9; 2998 disk_io_size = iosize; 2999 } 3000 bdev = em->bdev; 3001 block_start = em->block_start; 3002 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3003 block_start = EXTENT_MAP_HOLE; 3004 free_extent_map(em); 3005 em = NULL; 3006 3007 /* we've found a hole, just zero and go on */ 3008 if (block_start == EXTENT_MAP_HOLE) { 3009 char *userpage; 3010 struct extent_state *cached = NULL; 3011 3012 userpage = kmap_atomic(page); 3013 memset(userpage + pg_offset, 0, iosize); 3014 flush_dcache_page(page); 3015 kunmap_atomic(userpage); 3016 3017 set_extent_uptodate(tree, cur, cur + iosize - 1, 3018 &cached, GFP_NOFS); 3019 unlock_extent_cached(tree, cur, cur + iosize - 1, 3020 &cached, GFP_NOFS); 3021 cur = cur + iosize; 3022 pg_offset += iosize; 3023 continue; 3024 } 3025 /* the get_extent function already copied into the page */ 3026 if (test_range_bit(tree, cur, cur_end, 3027 EXTENT_UPTODATE, 1, NULL)) { 3028 check_page_uptodate(tree, page); 3029 if (!parent_locked) 3030 unlock_extent(tree, cur, cur + iosize - 1); 3031 cur = cur + iosize; 3032 pg_offset += iosize; 3033 continue; 3034 } 3035 /* we have an inline extent but it didn't get marked up 3036 * to date. Error out 3037 */ 3038 if (block_start == EXTENT_MAP_INLINE) { 3039 SetPageError(page); 3040 if (!parent_locked) 3041 unlock_extent(tree, cur, cur + iosize - 1); 3042 cur = cur + iosize; 3043 pg_offset += iosize; 3044 continue; 3045 } 3046 3047 pnr -= page->index; 3048 ret = submit_extent_page(rw, tree, page, 3049 sector, disk_io_size, pg_offset, 3050 bdev, bio, pnr, 3051 end_bio_extent_readpage, mirror_num, 3052 *bio_flags, 3053 this_bio_flag); 3054 if (!ret) { 3055 nr++; 3056 *bio_flags = this_bio_flag; 3057 } else { 3058 SetPageError(page); 3059 if (!parent_locked) 3060 unlock_extent(tree, cur, cur + iosize - 1); 3061 } 3062 cur = cur + iosize; 3063 pg_offset += iosize; 3064 } 3065 out: 3066 if (!nr) { 3067 if (!PageError(page)) 3068 SetPageUptodate(page); 3069 unlock_page(page); 3070 } 3071 return 0; 3072 } 3073 3074 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3075 struct page *pages[], int nr_pages, 3076 u64 start, u64 end, 3077 get_extent_t *get_extent, 3078 struct extent_map **em_cached, 3079 struct bio **bio, int mirror_num, 3080 unsigned long *bio_flags, int rw) 3081 { 3082 struct inode *inode; 3083 struct btrfs_ordered_extent *ordered; 3084 int index; 3085 3086 inode = pages[0]->mapping->host; 3087 while (1) { 3088 lock_extent(tree, start, end); 3089 ordered = btrfs_lookup_ordered_range(inode, start, 3090 end - start + 1); 3091 if (!ordered) 3092 break; 3093 unlock_extent(tree, start, end); 3094 btrfs_start_ordered_extent(inode, ordered, 1); 3095 btrfs_put_ordered_extent(ordered); 3096 } 3097 3098 for (index = 0; index < nr_pages; index++) { 3099 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3100 mirror_num, bio_flags, rw); 3101 page_cache_release(pages[index]); 3102 } 3103 } 3104 3105 static void __extent_readpages(struct extent_io_tree *tree, 3106 struct page *pages[], 3107 int nr_pages, get_extent_t *get_extent, 3108 struct extent_map **em_cached, 3109 struct bio **bio, int mirror_num, 3110 unsigned long *bio_flags, int rw) 3111 { 3112 u64 start = 0; 3113 u64 end = 0; 3114 u64 page_start; 3115 int index; 3116 int first_index = 0; 3117 3118 for (index = 0; index < nr_pages; index++) { 3119 page_start = page_offset(pages[index]); 3120 if (!end) { 3121 start = page_start; 3122 end = start + PAGE_CACHE_SIZE - 1; 3123 first_index = index; 3124 } else if (end + 1 == page_start) { 3125 end += PAGE_CACHE_SIZE; 3126 } else { 3127 __do_contiguous_readpages(tree, &pages[first_index], 3128 index - first_index, start, 3129 end, get_extent, em_cached, 3130 bio, mirror_num, bio_flags, 3131 rw); 3132 start = page_start; 3133 end = start + PAGE_CACHE_SIZE - 1; 3134 first_index = index; 3135 } 3136 } 3137 3138 if (end) 3139 __do_contiguous_readpages(tree, &pages[first_index], 3140 index - first_index, start, 3141 end, get_extent, em_cached, bio, 3142 mirror_num, bio_flags, rw); 3143 } 3144 3145 static int __extent_read_full_page(struct extent_io_tree *tree, 3146 struct page *page, 3147 get_extent_t *get_extent, 3148 struct bio **bio, int mirror_num, 3149 unsigned long *bio_flags, int rw) 3150 { 3151 struct inode *inode = page->mapping->host; 3152 struct btrfs_ordered_extent *ordered; 3153 u64 start = page_offset(page); 3154 u64 end = start + PAGE_CACHE_SIZE - 1; 3155 int ret; 3156 3157 while (1) { 3158 lock_extent(tree, start, end); 3159 ordered = btrfs_lookup_ordered_extent(inode, start); 3160 if (!ordered) 3161 break; 3162 unlock_extent(tree, start, end); 3163 btrfs_start_ordered_extent(inode, ordered, 1); 3164 btrfs_put_ordered_extent(ordered); 3165 } 3166 3167 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3168 bio_flags, rw); 3169 return ret; 3170 } 3171 3172 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3173 get_extent_t *get_extent, int mirror_num) 3174 { 3175 struct bio *bio = NULL; 3176 unsigned long bio_flags = 0; 3177 int ret; 3178 3179 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3180 &bio_flags, READ); 3181 if (bio) 3182 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3183 return ret; 3184 } 3185 3186 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3187 get_extent_t *get_extent, int mirror_num) 3188 { 3189 struct bio *bio = NULL; 3190 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3191 int ret; 3192 3193 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3194 &bio_flags, READ); 3195 if (bio) 3196 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3197 return ret; 3198 } 3199 3200 static noinline void update_nr_written(struct page *page, 3201 struct writeback_control *wbc, 3202 unsigned long nr_written) 3203 { 3204 wbc->nr_to_write -= nr_written; 3205 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3206 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3207 page->mapping->writeback_index = page->index + nr_written; 3208 } 3209 3210 /* 3211 * helper for __extent_writepage, doing all of the delayed allocation setup. 3212 * 3213 * This returns 1 if our fill_delalloc function did all the work required 3214 * to write the page (copy into inline extent). In this case the IO has 3215 * been started and the page is already unlocked. 3216 * 3217 * This returns 0 if all went well (page still locked) 3218 * This returns < 0 if there were errors (page still locked) 3219 */ 3220 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3221 struct page *page, struct writeback_control *wbc, 3222 struct extent_page_data *epd, 3223 u64 delalloc_start, 3224 unsigned long *nr_written) 3225 { 3226 struct extent_io_tree *tree = epd->tree; 3227 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3228 u64 nr_delalloc; 3229 u64 delalloc_to_write = 0; 3230 u64 delalloc_end = 0; 3231 int ret; 3232 int page_started = 0; 3233 3234 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3235 return 0; 3236 3237 while (delalloc_end < page_end) { 3238 nr_delalloc = find_lock_delalloc_range(inode, tree, 3239 page, 3240 &delalloc_start, 3241 &delalloc_end, 3242 128 * 1024 * 1024); 3243 if (nr_delalloc == 0) { 3244 delalloc_start = delalloc_end + 1; 3245 continue; 3246 } 3247 ret = tree->ops->fill_delalloc(inode, page, 3248 delalloc_start, 3249 delalloc_end, 3250 &page_started, 3251 nr_written); 3252 /* File system has been set read-only */ 3253 if (ret) { 3254 SetPageError(page); 3255 /* fill_delalloc should be return < 0 for error 3256 * but just in case, we use > 0 here meaning the 3257 * IO is started, so we don't want to return > 0 3258 * unless things are going well. 3259 */ 3260 ret = ret < 0 ? ret : -EIO; 3261 goto done; 3262 } 3263 /* 3264 * delalloc_end is already one less than the total 3265 * length, so we don't subtract one from 3266 * PAGE_CACHE_SIZE 3267 */ 3268 delalloc_to_write += (delalloc_end - delalloc_start + 3269 PAGE_CACHE_SIZE) >> 3270 PAGE_CACHE_SHIFT; 3271 delalloc_start = delalloc_end + 1; 3272 } 3273 if (wbc->nr_to_write < delalloc_to_write) { 3274 int thresh = 8192; 3275 3276 if (delalloc_to_write < thresh * 2) 3277 thresh = delalloc_to_write; 3278 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3279 thresh); 3280 } 3281 3282 /* did the fill delalloc function already unlock and start 3283 * the IO? 3284 */ 3285 if (page_started) { 3286 /* 3287 * we've unlocked the page, so we can't update 3288 * the mapping's writeback index, just update 3289 * nr_to_write. 3290 */ 3291 wbc->nr_to_write -= *nr_written; 3292 return 1; 3293 } 3294 3295 ret = 0; 3296 3297 done: 3298 return ret; 3299 } 3300 3301 /* 3302 * helper for __extent_writepage. This calls the writepage start hooks, 3303 * and does the loop to map the page into extents and bios. 3304 * 3305 * We return 1 if the IO is started and the page is unlocked, 3306 * 0 if all went well (page still locked) 3307 * < 0 if there were errors (page still locked) 3308 */ 3309 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3310 struct page *page, 3311 struct writeback_control *wbc, 3312 struct extent_page_data *epd, 3313 loff_t i_size, 3314 unsigned long nr_written, 3315 int write_flags, int *nr_ret) 3316 { 3317 struct extent_io_tree *tree = epd->tree; 3318 u64 start = page_offset(page); 3319 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3320 u64 end; 3321 u64 cur = start; 3322 u64 extent_offset; 3323 u64 block_start; 3324 u64 iosize; 3325 sector_t sector; 3326 struct extent_state *cached_state = NULL; 3327 struct extent_map *em; 3328 struct block_device *bdev; 3329 size_t pg_offset = 0; 3330 size_t blocksize; 3331 int ret = 0; 3332 int nr = 0; 3333 bool compressed; 3334 3335 if (tree->ops && tree->ops->writepage_start_hook) { 3336 ret = tree->ops->writepage_start_hook(page, start, 3337 page_end); 3338 if (ret) { 3339 /* Fixup worker will requeue */ 3340 if (ret == -EBUSY) 3341 wbc->pages_skipped++; 3342 else 3343 redirty_page_for_writepage(wbc, page); 3344 3345 update_nr_written(page, wbc, nr_written); 3346 unlock_page(page); 3347 ret = 1; 3348 goto done_unlocked; 3349 } 3350 } 3351 3352 /* 3353 * we don't want to touch the inode after unlocking the page, 3354 * so we update the mapping writeback index now 3355 */ 3356 update_nr_written(page, wbc, nr_written + 1); 3357 3358 end = page_end; 3359 if (i_size <= start) { 3360 if (tree->ops && tree->ops->writepage_end_io_hook) 3361 tree->ops->writepage_end_io_hook(page, start, 3362 page_end, NULL, 1); 3363 goto done; 3364 } 3365 3366 blocksize = inode->i_sb->s_blocksize; 3367 3368 while (cur <= end) { 3369 u64 em_end; 3370 if (cur >= i_size) { 3371 if (tree->ops && tree->ops->writepage_end_io_hook) 3372 tree->ops->writepage_end_io_hook(page, cur, 3373 page_end, NULL, 1); 3374 break; 3375 } 3376 em = epd->get_extent(inode, page, pg_offset, cur, 3377 end - cur + 1, 1); 3378 if (IS_ERR_OR_NULL(em)) { 3379 SetPageError(page); 3380 ret = PTR_ERR_OR_ZERO(em); 3381 break; 3382 } 3383 3384 extent_offset = cur - em->start; 3385 em_end = extent_map_end(em); 3386 BUG_ON(em_end <= cur); 3387 BUG_ON(end < cur); 3388 iosize = min(em_end - cur, end - cur + 1); 3389 iosize = ALIGN(iosize, blocksize); 3390 sector = (em->block_start + extent_offset) >> 9; 3391 bdev = em->bdev; 3392 block_start = em->block_start; 3393 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3394 free_extent_map(em); 3395 em = NULL; 3396 3397 /* 3398 * compressed and inline extents are written through other 3399 * paths in the FS 3400 */ 3401 if (compressed || block_start == EXTENT_MAP_HOLE || 3402 block_start == EXTENT_MAP_INLINE) { 3403 /* 3404 * end_io notification does not happen here for 3405 * compressed extents 3406 */ 3407 if (!compressed && tree->ops && 3408 tree->ops->writepage_end_io_hook) 3409 tree->ops->writepage_end_io_hook(page, cur, 3410 cur + iosize - 1, 3411 NULL, 1); 3412 else if (compressed) { 3413 /* we don't want to end_page_writeback on 3414 * a compressed extent. this happens 3415 * elsewhere 3416 */ 3417 nr++; 3418 } 3419 3420 cur += iosize; 3421 pg_offset += iosize; 3422 continue; 3423 } 3424 3425 if (tree->ops && tree->ops->writepage_io_hook) { 3426 ret = tree->ops->writepage_io_hook(page, cur, 3427 cur + iosize - 1); 3428 } else { 3429 ret = 0; 3430 } 3431 if (ret) { 3432 SetPageError(page); 3433 } else { 3434 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3435 3436 set_range_writeback(tree, cur, cur + iosize - 1); 3437 if (!PageWriteback(page)) { 3438 btrfs_err(BTRFS_I(inode)->root->fs_info, 3439 "page %lu not writeback, cur %llu end %llu", 3440 page->index, cur, end); 3441 } 3442 3443 ret = submit_extent_page(write_flags, tree, page, 3444 sector, iosize, pg_offset, 3445 bdev, &epd->bio, max_nr, 3446 end_bio_extent_writepage, 3447 0, 0, 0); 3448 if (ret) 3449 SetPageError(page); 3450 } 3451 cur = cur + iosize; 3452 pg_offset += iosize; 3453 nr++; 3454 } 3455 done: 3456 *nr_ret = nr; 3457 3458 done_unlocked: 3459 3460 /* drop our reference on any cached states */ 3461 free_extent_state(cached_state); 3462 return ret; 3463 } 3464 3465 /* 3466 * the writepage semantics are similar to regular writepage. extent 3467 * records are inserted to lock ranges in the tree, and as dirty areas 3468 * are found, they are marked writeback. Then the lock bits are removed 3469 * and the end_io handler clears the writeback ranges 3470 */ 3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3472 void *data) 3473 { 3474 struct inode *inode = page->mapping->host; 3475 struct extent_page_data *epd = data; 3476 u64 start = page_offset(page); 3477 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3478 int ret; 3479 int nr = 0; 3480 size_t pg_offset = 0; 3481 loff_t i_size = i_size_read(inode); 3482 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3483 int write_flags; 3484 unsigned long nr_written = 0; 3485 3486 if (wbc->sync_mode == WB_SYNC_ALL) 3487 write_flags = WRITE_SYNC; 3488 else 3489 write_flags = WRITE; 3490 3491 trace___extent_writepage(page, inode, wbc); 3492 3493 WARN_ON(!PageLocked(page)); 3494 3495 ClearPageError(page); 3496 3497 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3498 if (page->index > end_index || 3499 (page->index == end_index && !pg_offset)) { 3500 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3501 unlock_page(page); 3502 return 0; 3503 } 3504 3505 if (page->index == end_index) { 3506 char *userpage; 3507 3508 userpage = kmap_atomic(page); 3509 memset(userpage + pg_offset, 0, 3510 PAGE_CACHE_SIZE - pg_offset); 3511 kunmap_atomic(userpage); 3512 flush_dcache_page(page); 3513 } 3514 3515 pg_offset = 0; 3516 3517 set_page_extent_mapped(page); 3518 3519 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3520 if (ret == 1) 3521 goto done_unlocked; 3522 if (ret) 3523 goto done; 3524 3525 ret = __extent_writepage_io(inode, page, wbc, epd, 3526 i_size, nr_written, write_flags, &nr); 3527 if (ret == 1) 3528 goto done_unlocked; 3529 3530 done: 3531 if (nr == 0) { 3532 /* make sure the mapping tag for page dirty gets cleared */ 3533 set_page_writeback(page); 3534 end_page_writeback(page); 3535 } 3536 if (PageError(page)) { 3537 ret = ret < 0 ? ret : -EIO; 3538 end_extent_writepage(page, ret, start, page_end); 3539 } 3540 unlock_page(page); 3541 return ret; 3542 3543 done_unlocked: 3544 return 0; 3545 } 3546 3547 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3548 { 3549 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3550 TASK_UNINTERRUPTIBLE); 3551 } 3552 3553 static noinline_for_stack int 3554 lock_extent_buffer_for_io(struct extent_buffer *eb, 3555 struct btrfs_fs_info *fs_info, 3556 struct extent_page_data *epd) 3557 { 3558 unsigned long i, num_pages; 3559 int flush = 0; 3560 int ret = 0; 3561 3562 if (!btrfs_try_tree_write_lock(eb)) { 3563 flush = 1; 3564 flush_write_bio(epd); 3565 btrfs_tree_lock(eb); 3566 } 3567 3568 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3569 btrfs_tree_unlock(eb); 3570 if (!epd->sync_io) 3571 return 0; 3572 if (!flush) { 3573 flush_write_bio(epd); 3574 flush = 1; 3575 } 3576 while (1) { 3577 wait_on_extent_buffer_writeback(eb); 3578 btrfs_tree_lock(eb); 3579 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3580 break; 3581 btrfs_tree_unlock(eb); 3582 } 3583 } 3584 3585 /* 3586 * We need to do this to prevent races in people who check if the eb is 3587 * under IO since we can end up having no IO bits set for a short period 3588 * of time. 3589 */ 3590 spin_lock(&eb->refs_lock); 3591 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3592 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3593 spin_unlock(&eb->refs_lock); 3594 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3595 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3596 -eb->len, 3597 fs_info->dirty_metadata_batch); 3598 ret = 1; 3599 } else { 3600 spin_unlock(&eb->refs_lock); 3601 } 3602 3603 btrfs_tree_unlock(eb); 3604 3605 if (!ret) 3606 return ret; 3607 3608 num_pages = num_extent_pages(eb->start, eb->len); 3609 for (i = 0; i < num_pages; i++) { 3610 struct page *p = eb->pages[i]; 3611 3612 if (!trylock_page(p)) { 3613 if (!flush) { 3614 flush_write_bio(epd); 3615 flush = 1; 3616 } 3617 lock_page(p); 3618 } 3619 } 3620 3621 return ret; 3622 } 3623 3624 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3625 { 3626 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3627 smp_mb__after_atomic(); 3628 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3629 } 3630 3631 static void set_btree_ioerr(struct page *page) 3632 { 3633 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3634 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3635 3636 SetPageError(page); 3637 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3638 return; 3639 3640 /* 3641 * If writeback for a btree extent that doesn't belong to a log tree 3642 * failed, increment the counter transaction->eb_write_errors. 3643 * We do this because while the transaction is running and before it's 3644 * committing (when we call filemap_fdata[write|wait]_range against 3645 * the btree inode), we might have 3646 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3647 * returns an error or an error happens during writeback, when we're 3648 * committing the transaction we wouldn't know about it, since the pages 3649 * can be no longer dirty nor marked anymore for writeback (if a 3650 * subsequent modification to the extent buffer didn't happen before the 3651 * transaction commit), which makes filemap_fdata[write|wait]_range not 3652 * able to find the pages tagged with SetPageError at transaction 3653 * commit time. So if this happens we must abort the transaction, 3654 * otherwise we commit a super block with btree roots that point to 3655 * btree nodes/leafs whose content on disk is invalid - either garbage 3656 * or the content of some node/leaf from a past generation that got 3657 * cowed or deleted and is no longer valid. 3658 * 3659 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3660 * not be enough - we need to distinguish between log tree extents vs 3661 * non-log tree extents, and the next filemap_fdatawait_range() call 3662 * will catch and clear such errors in the mapping - and that call might 3663 * be from a log sync and not from a transaction commit. Also, checking 3664 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3665 * not done and would not be reliable - the eb might have been released 3666 * from memory and reading it back again means that flag would not be 3667 * set (since it's a runtime flag, not persisted on disk). 3668 * 3669 * Using the flags below in the btree inode also makes us achieve the 3670 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3671 * writeback for all dirty pages and before filemap_fdatawait_range() 3672 * is called, the writeback for all dirty pages had already finished 3673 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3674 * filemap_fdatawait_range() would return success, as it could not know 3675 * that writeback errors happened (the pages were no longer tagged for 3676 * writeback). 3677 */ 3678 switch (eb->log_index) { 3679 case -1: 3680 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3681 break; 3682 case 0: 3683 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3684 break; 3685 case 1: 3686 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3687 break; 3688 default: 3689 BUG(); /* unexpected, logic error */ 3690 } 3691 } 3692 3693 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3694 { 3695 struct bio_vec *bvec; 3696 struct extent_buffer *eb; 3697 int i, done; 3698 3699 bio_for_each_segment_all(bvec, bio, i) { 3700 struct page *page = bvec->bv_page; 3701 3702 eb = (struct extent_buffer *)page->private; 3703 BUG_ON(!eb); 3704 done = atomic_dec_and_test(&eb->io_pages); 3705 3706 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3707 ClearPageUptodate(page); 3708 set_btree_ioerr(page); 3709 } 3710 3711 end_page_writeback(page); 3712 3713 if (!done) 3714 continue; 3715 3716 end_extent_buffer_writeback(eb); 3717 } 3718 3719 bio_put(bio); 3720 } 3721 3722 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3723 struct btrfs_fs_info *fs_info, 3724 struct writeback_control *wbc, 3725 struct extent_page_data *epd) 3726 { 3727 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3728 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3729 u64 offset = eb->start; 3730 unsigned long i, num_pages; 3731 unsigned long bio_flags = 0; 3732 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3733 int ret = 0; 3734 3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3736 num_pages = num_extent_pages(eb->start, eb->len); 3737 atomic_set(&eb->io_pages, num_pages); 3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3739 bio_flags = EXTENT_BIO_TREE_LOG; 3740 3741 for (i = 0; i < num_pages; i++) { 3742 struct page *p = eb->pages[i]; 3743 3744 clear_page_dirty_for_io(p); 3745 set_page_writeback(p); 3746 ret = submit_extent_page(rw, tree, p, offset >> 9, 3747 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3748 -1, end_bio_extent_buffer_writepage, 3749 0, epd->bio_flags, bio_flags); 3750 epd->bio_flags = bio_flags; 3751 if (ret) { 3752 set_btree_ioerr(p); 3753 end_page_writeback(p); 3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3755 end_extent_buffer_writeback(eb); 3756 ret = -EIO; 3757 break; 3758 } 3759 offset += PAGE_CACHE_SIZE; 3760 update_nr_written(p, wbc, 1); 3761 unlock_page(p); 3762 } 3763 3764 if (unlikely(ret)) { 3765 for (; i < num_pages; i++) { 3766 struct page *p = eb->pages[i]; 3767 clear_page_dirty_for_io(p); 3768 unlock_page(p); 3769 } 3770 } 3771 3772 return ret; 3773 } 3774 3775 int btree_write_cache_pages(struct address_space *mapping, 3776 struct writeback_control *wbc) 3777 { 3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3780 struct extent_buffer *eb, *prev_eb = NULL; 3781 struct extent_page_data epd = { 3782 .bio = NULL, 3783 .tree = tree, 3784 .extent_locked = 0, 3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3786 .bio_flags = 0, 3787 }; 3788 int ret = 0; 3789 int done = 0; 3790 int nr_to_write_done = 0; 3791 struct pagevec pvec; 3792 int nr_pages; 3793 pgoff_t index; 3794 pgoff_t end; /* Inclusive */ 3795 int scanned = 0; 3796 int tag; 3797 3798 pagevec_init(&pvec, 0); 3799 if (wbc->range_cyclic) { 3800 index = mapping->writeback_index; /* Start from prev offset */ 3801 end = -1; 3802 } else { 3803 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3804 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3805 scanned = 1; 3806 } 3807 if (wbc->sync_mode == WB_SYNC_ALL) 3808 tag = PAGECACHE_TAG_TOWRITE; 3809 else 3810 tag = PAGECACHE_TAG_DIRTY; 3811 retry: 3812 if (wbc->sync_mode == WB_SYNC_ALL) 3813 tag_pages_for_writeback(mapping, index, end); 3814 while (!done && !nr_to_write_done && (index <= end) && 3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3817 unsigned i; 3818 3819 scanned = 1; 3820 for (i = 0; i < nr_pages; i++) { 3821 struct page *page = pvec.pages[i]; 3822 3823 if (!PagePrivate(page)) 3824 continue; 3825 3826 if (!wbc->range_cyclic && page->index > end) { 3827 done = 1; 3828 break; 3829 } 3830 3831 spin_lock(&mapping->private_lock); 3832 if (!PagePrivate(page)) { 3833 spin_unlock(&mapping->private_lock); 3834 continue; 3835 } 3836 3837 eb = (struct extent_buffer *)page->private; 3838 3839 /* 3840 * Shouldn't happen and normally this would be a BUG_ON 3841 * but no sense in crashing the users box for something 3842 * we can survive anyway. 3843 */ 3844 if (WARN_ON(!eb)) { 3845 spin_unlock(&mapping->private_lock); 3846 continue; 3847 } 3848 3849 if (eb == prev_eb) { 3850 spin_unlock(&mapping->private_lock); 3851 continue; 3852 } 3853 3854 ret = atomic_inc_not_zero(&eb->refs); 3855 spin_unlock(&mapping->private_lock); 3856 if (!ret) 3857 continue; 3858 3859 prev_eb = eb; 3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3861 if (!ret) { 3862 free_extent_buffer(eb); 3863 continue; 3864 } 3865 3866 ret = write_one_eb(eb, fs_info, wbc, &epd); 3867 if (ret) { 3868 done = 1; 3869 free_extent_buffer(eb); 3870 break; 3871 } 3872 free_extent_buffer(eb); 3873 3874 /* 3875 * the filesystem may choose to bump up nr_to_write. 3876 * We have to make sure to honor the new nr_to_write 3877 * at any time 3878 */ 3879 nr_to_write_done = wbc->nr_to_write <= 0; 3880 } 3881 pagevec_release(&pvec); 3882 cond_resched(); 3883 } 3884 if (!scanned && !done) { 3885 /* 3886 * We hit the last page and there is more work to be done: wrap 3887 * back to the start of the file 3888 */ 3889 scanned = 1; 3890 index = 0; 3891 goto retry; 3892 } 3893 flush_write_bio(&epd); 3894 return ret; 3895 } 3896 3897 /** 3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3899 * @mapping: address space structure to write 3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3901 * @writepage: function called for each page 3902 * @data: data passed to writepage function 3903 * 3904 * If a page is already under I/O, write_cache_pages() skips it, even 3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3907 * and msync() need to guarantee that all the data which was dirty at the time 3908 * the call was made get new I/O started against them. If wbc->sync_mode is 3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3910 * existing IO to complete. 3911 */ 3912 static int extent_write_cache_pages(struct extent_io_tree *tree, 3913 struct address_space *mapping, 3914 struct writeback_control *wbc, 3915 writepage_t writepage, void *data, 3916 void (*flush_fn)(void *)) 3917 { 3918 struct inode *inode = mapping->host; 3919 int ret = 0; 3920 int done = 0; 3921 int err = 0; 3922 int nr_to_write_done = 0; 3923 struct pagevec pvec; 3924 int nr_pages; 3925 pgoff_t index; 3926 pgoff_t end; /* Inclusive */ 3927 int scanned = 0; 3928 int tag; 3929 3930 /* 3931 * We have to hold onto the inode so that ordered extents can do their 3932 * work when the IO finishes. The alternative to this is failing to add 3933 * an ordered extent if the igrab() fails there and that is a huge pain 3934 * to deal with, so instead just hold onto the inode throughout the 3935 * writepages operation. If it fails here we are freeing up the inode 3936 * anyway and we'd rather not waste our time writing out stuff that is 3937 * going to be truncated anyway. 3938 */ 3939 if (!igrab(inode)) 3940 return 0; 3941 3942 pagevec_init(&pvec, 0); 3943 if (wbc->range_cyclic) { 3944 index = mapping->writeback_index; /* Start from prev offset */ 3945 end = -1; 3946 } else { 3947 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3948 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3949 scanned = 1; 3950 } 3951 if (wbc->sync_mode == WB_SYNC_ALL) 3952 tag = PAGECACHE_TAG_TOWRITE; 3953 else 3954 tag = PAGECACHE_TAG_DIRTY; 3955 retry: 3956 if (wbc->sync_mode == WB_SYNC_ALL) 3957 tag_pages_for_writeback(mapping, index, end); 3958 while (!done && !nr_to_write_done && (index <= end) && 3959 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3960 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3961 unsigned i; 3962 3963 scanned = 1; 3964 for (i = 0; i < nr_pages; i++) { 3965 struct page *page = pvec.pages[i]; 3966 3967 /* 3968 * At this point we hold neither mapping->tree_lock nor 3969 * lock on the page itself: the page may be truncated or 3970 * invalidated (changing page->mapping to NULL), or even 3971 * swizzled back from swapper_space to tmpfs file 3972 * mapping 3973 */ 3974 if (!trylock_page(page)) { 3975 flush_fn(data); 3976 lock_page(page); 3977 } 3978 3979 if (unlikely(page->mapping != mapping)) { 3980 unlock_page(page); 3981 continue; 3982 } 3983 3984 if (!wbc->range_cyclic && page->index > end) { 3985 done = 1; 3986 unlock_page(page); 3987 continue; 3988 } 3989 3990 if (wbc->sync_mode != WB_SYNC_NONE) { 3991 if (PageWriteback(page)) 3992 flush_fn(data); 3993 wait_on_page_writeback(page); 3994 } 3995 3996 if (PageWriteback(page) || 3997 !clear_page_dirty_for_io(page)) { 3998 unlock_page(page); 3999 continue; 4000 } 4001 4002 ret = (*writepage)(page, wbc, data); 4003 4004 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4005 unlock_page(page); 4006 ret = 0; 4007 } 4008 if (!err && ret < 0) 4009 err = ret; 4010 4011 /* 4012 * the filesystem may choose to bump up nr_to_write. 4013 * We have to make sure to honor the new nr_to_write 4014 * at any time 4015 */ 4016 nr_to_write_done = wbc->nr_to_write <= 0; 4017 } 4018 pagevec_release(&pvec); 4019 cond_resched(); 4020 } 4021 if (!scanned && !done && !err) { 4022 /* 4023 * We hit the last page and there is more work to be done: wrap 4024 * back to the start of the file 4025 */ 4026 scanned = 1; 4027 index = 0; 4028 goto retry; 4029 } 4030 btrfs_add_delayed_iput(inode); 4031 return err; 4032 } 4033 4034 static void flush_epd_write_bio(struct extent_page_data *epd) 4035 { 4036 if (epd->bio) { 4037 int rw = WRITE; 4038 int ret; 4039 4040 if (epd->sync_io) 4041 rw = WRITE_SYNC; 4042 4043 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4044 BUG_ON(ret < 0); /* -ENOMEM */ 4045 epd->bio = NULL; 4046 } 4047 } 4048 4049 static noinline void flush_write_bio(void *data) 4050 { 4051 struct extent_page_data *epd = data; 4052 flush_epd_write_bio(epd); 4053 } 4054 4055 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4056 get_extent_t *get_extent, 4057 struct writeback_control *wbc) 4058 { 4059 int ret; 4060 struct extent_page_data epd = { 4061 .bio = NULL, 4062 .tree = tree, 4063 .get_extent = get_extent, 4064 .extent_locked = 0, 4065 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4066 .bio_flags = 0, 4067 }; 4068 4069 ret = __extent_writepage(page, wbc, &epd); 4070 4071 flush_epd_write_bio(&epd); 4072 return ret; 4073 } 4074 4075 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4076 u64 start, u64 end, get_extent_t *get_extent, 4077 int mode) 4078 { 4079 int ret = 0; 4080 struct address_space *mapping = inode->i_mapping; 4081 struct page *page; 4082 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4083 PAGE_CACHE_SHIFT; 4084 4085 struct extent_page_data epd = { 4086 .bio = NULL, 4087 .tree = tree, 4088 .get_extent = get_extent, 4089 .extent_locked = 1, 4090 .sync_io = mode == WB_SYNC_ALL, 4091 .bio_flags = 0, 4092 }; 4093 struct writeback_control wbc_writepages = { 4094 .sync_mode = mode, 4095 .nr_to_write = nr_pages * 2, 4096 .range_start = start, 4097 .range_end = end + 1, 4098 }; 4099 4100 while (start <= end) { 4101 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4102 if (clear_page_dirty_for_io(page)) 4103 ret = __extent_writepage(page, &wbc_writepages, &epd); 4104 else { 4105 if (tree->ops && tree->ops->writepage_end_io_hook) 4106 tree->ops->writepage_end_io_hook(page, start, 4107 start + PAGE_CACHE_SIZE - 1, 4108 NULL, 1); 4109 unlock_page(page); 4110 } 4111 page_cache_release(page); 4112 start += PAGE_CACHE_SIZE; 4113 } 4114 4115 flush_epd_write_bio(&epd); 4116 return ret; 4117 } 4118 4119 int extent_writepages(struct extent_io_tree *tree, 4120 struct address_space *mapping, 4121 get_extent_t *get_extent, 4122 struct writeback_control *wbc) 4123 { 4124 int ret = 0; 4125 struct extent_page_data epd = { 4126 .bio = NULL, 4127 .tree = tree, 4128 .get_extent = get_extent, 4129 .extent_locked = 0, 4130 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4131 .bio_flags = 0, 4132 }; 4133 4134 ret = extent_write_cache_pages(tree, mapping, wbc, 4135 __extent_writepage, &epd, 4136 flush_write_bio); 4137 flush_epd_write_bio(&epd); 4138 return ret; 4139 } 4140 4141 int extent_readpages(struct extent_io_tree *tree, 4142 struct address_space *mapping, 4143 struct list_head *pages, unsigned nr_pages, 4144 get_extent_t get_extent) 4145 { 4146 struct bio *bio = NULL; 4147 unsigned page_idx; 4148 unsigned long bio_flags = 0; 4149 struct page *pagepool[16]; 4150 struct page *page; 4151 struct extent_map *em_cached = NULL; 4152 int nr = 0; 4153 4154 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4155 page = list_entry(pages->prev, struct page, lru); 4156 4157 prefetchw(&page->flags); 4158 list_del(&page->lru); 4159 if (add_to_page_cache_lru(page, mapping, 4160 page->index, GFP_NOFS)) { 4161 page_cache_release(page); 4162 continue; 4163 } 4164 4165 pagepool[nr++] = page; 4166 if (nr < ARRAY_SIZE(pagepool)) 4167 continue; 4168 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4169 &bio, 0, &bio_flags, READ); 4170 nr = 0; 4171 } 4172 if (nr) 4173 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4174 &bio, 0, &bio_flags, READ); 4175 4176 if (em_cached) 4177 free_extent_map(em_cached); 4178 4179 BUG_ON(!list_empty(pages)); 4180 if (bio) 4181 return submit_one_bio(READ, bio, 0, bio_flags); 4182 return 0; 4183 } 4184 4185 /* 4186 * basic invalidatepage code, this waits on any locked or writeback 4187 * ranges corresponding to the page, and then deletes any extent state 4188 * records from the tree 4189 */ 4190 int extent_invalidatepage(struct extent_io_tree *tree, 4191 struct page *page, unsigned long offset) 4192 { 4193 struct extent_state *cached_state = NULL; 4194 u64 start = page_offset(page); 4195 u64 end = start + PAGE_CACHE_SIZE - 1; 4196 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4197 4198 start += ALIGN(offset, blocksize); 4199 if (start > end) 4200 return 0; 4201 4202 lock_extent_bits(tree, start, end, 0, &cached_state); 4203 wait_on_page_writeback(page); 4204 clear_extent_bit(tree, start, end, 4205 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4206 EXTENT_DO_ACCOUNTING, 4207 1, 1, &cached_state, GFP_NOFS); 4208 return 0; 4209 } 4210 4211 /* 4212 * a helper for releasepage, this tests for areas of the page that 4213 * are locked or under IO and drops the related state bits if it is safe 4214 * to drop the page. 4215 */ 4216 static int try_release_extent_state(struct extent_map_tree *map, 4217 struct extent_io_tree *tree, 4218 struct page *page, gfp_t mask) 4219 { 4220 u64 start = page_offset(page); 4221 u64 end = start + PAGE_CACHE_SIZE - 1; 4222 int ret = 1; 4223 4224 if (test_range_bit(tree, start, end, 4225 EXTENT_IOBITS, 0, NULL)) 4226 ret = 0; 4227 else { 4228 if ((mask & GFP_NOFS) == GFP_NOFS) 4229 mask = GFP_NOFS; 4230 /* 4231 * at this point we can safely clear everything except the 4232 * locked bit and the nodatasum bit 4233 */ 4234 ret = clear_extent_bit(tree, start, end, 4235 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4236 0, 0, NULL, mask); 4237 4238 /* if clear_extent_bit failed for enomem reasons, 4239 * we can't allow the release to continue. 4240 */ 4241 if (ret < 0) 4242 ret = 0; 4243 else 4244 ret = 1; 4245 } 4246 return ret; 4247 } 4248 4249 /* 4250 * a helper for releasepage. As long as there are no locked extents 4251 * in the range corresponding to the page, both state records and extent 4252 * map records are removed 4253 */ 4254 int try_release_extent_mapping(struct extent_map_tree *map, 4255 struct extent_io_tree *tree, struct page *page, 4256 gfp_t mask) 4257 { 4258 struct extent_map *em; 4259 u64 start = page_offset(page); 4260 u64 end = start + PAGE_CACHE_SIZE - 1; 4261 4262 if ((mask & __GFP_WAIT) && 4263 page->mapping->host->i_size > 16 * 1024 * 1024) { 4264 u64 len; 4265 while (start <= end) { 4266 len = end - start + 1; 4267 write_lock(&map->lock); 4268 em = lookup_extent_mapping(map, start, len); 4269 if (!em) { 4270 write_unlock(&map->lock); 4271 break; 4272 } 4273 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4274 em->start != start) { 4275 write_unlock(&map->lock); 4276 free_extent_map(em); 4277 break; 4278 } 4279 if (!test_range_bit(tree, em->start, 4280 extent_map_end(em) - 1, 4281 EXTENT_LOCKED | EXTENT_WRITEBACK, 4282 0, NULL)) { 4283 remove_extent_mapping(map, em); 4284 /* once for the rb tree */ 4285 free_extent_map(em); 4286 } 4287 start = extent_map_end(em); 4288 write_unlock(&map->lock); 4289 4290 /* once for us */ 4291 free_extent_map(em); 4292 } 4293 } 4294 return try_release_extent_state(map, tree, page, mask); 4295 } 4296 4297 /* 4298 * helper function for fiemap, which doesn't want to see any holes. 4299 * This maps until we find something past 'last' 4300 */ 4301 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4302 u64 offset, 4303 u64 last, 4304 get_extent_t *get_extent) 4305 { 4306 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4307 struct extent_map *em; 4308 u64 len; 4309 4310 if (offset >= last) 4311 return NULL; 4312 4313 while (1) { 4314 len = last - offset; 4315 if (len == 0) 4316 break; 4317 len = ALIGN(len, sectorsize); 4318 em = get_extent(inode, NULL, 0, offset, len, 0); 4319 if (IS_ERR_OR_NULL(em)) 4320 return em; 4321 4322 /* if this isn't a hole return it */ 4323 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4324 em->block_start != EXTENT_MAP_HOLE) { 4325 return em; 4326 } 4327 4328 /* this is a hole, advance to the next extent */ 4329 offset = extent_map_end(em); 4330 free_extent_map(em); 4331 if (offset >= last) 4332 break; 4333 } 4334 return NULL; 4335 } 4336 4337 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4338 __u64 start, __u64 len, get_extent_t *get_extent) 4339 { 4340 int ret = 0; 4341 u64 off = start; 4342 u64 max = start + len; 4343 u32 flags = 0; 4344 u32 found_type; 4345 u64 last; 4346 u64 last_for_get_extent = 0; 4347 u64 disko = 0; 4348 u64 isize = i_size_read(inode); 4349 struct btrfs_key found_key; 4350 struct extent_map *em = NULL; 4351 struct extent_state *cached_state = NULL; 4352 struct btrfs_path *path; 4353 struct btrfs_root *root = BTRFS_I(inode)->root; 4354 int end = 0; 4355 u64 em_start = 0; 4356 u64 em_len = 0; 4357 u64 em_end = 0; 4358 4359 if (len == 0) 4360 return -EINVAL; 4361 4362 path = btrfs_alloc_path(); 4363 if (!path) 4364 return -ENOMEM; 4365 path->leave_spinning = 1; 4366 4367 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4368 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4369 4370 /* 4371 * lookup the last file extent. We're not using i_size here 4372 * because there might be preallocation past i_size 4373 */ 4374 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4375 0); 4376 if (ret < 0) { 4377 btrfs_free_path(path); 4378 return ret; 4379 } 4380 WARN_ON(!ret); 4381 path->slots[0]--; 4382 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4383 found_type = found_key.type; 4384 4385 /* No extents, but there might be delalloc bits */ 4386 if (found_key.objectid != btrfs_ino(inode) || 4387 found_type != BTRFS_EXTENT_DATA_KEY) { 4388 /* have to trust i_size as the end */ 4389 last = (u64)-1; 4390 last_for_get_extent = isize; 4391 } else { 4392 /* 4393 * remember the start of the last extent. There are a 4394 * bunch of different factors that go into the length of the 4395 * extent, so its much less complex to remember where it started 4396 */ 4397 last = found_key.offset; 4398 last_for_get_extent = last + 1; 4399 } 4400 btrfs_release_path(path); 4401 4402 /* 4403 * we might have some extents allocated but more delalloc past those 4404 * extents. so, we trust isize unless the start of the last extent is 4405 * beyond isize 4406 */ 4407 if (last < isize) { 4408 last = (u64)-1; 4409 last_for_get_extent = isize; 4410 } 4411 4412 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4413 &cached_state); 4414 4415 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4416 get_extent); 4417 if (!em) 4418 goto out; 4419 if (IS_ERR(em)) { 4420 ret = PTR_ERR(em); 4421 goto out; 4422 } 4423 4424 while (!end) { 4425 u64 offset_in_extent = 0; 4426 4427 /* break if the extent we found is outside the range */ 4428 if (em->start >= max || extent_map_end(em) < off) 4429 break; 4430 4431 /* 4432 * get_extent may return an extent that starts before our 4433 * requested range. We have to make sure the ranges 4434 * we return to fiemap always move forward and don't 4435 * overlap, so adjust the offsets here 4436 */ 4437 em_start = max(em->start, off); 4438 4439 /* 4440 * record the offset from the start of the extent 4441 * for adjusting the disk offset below. Only do this if the 4442 * extent isn't compressed since our in ram offset may be past 4443 * what we have actually allocated on disk. 4444 */ 4445 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4446 offset_in_extent = em_start - em->start; 4447 em_end = extent_map_end(em); 4448 em_len = em_end - em_start; 4449 disko = 0; 4450 flags = 0; 4451 4452 /* 4453 * bump off for our next call to get_extent 4454 */ 4455 off = extent_map_end(em); 4456 if (off >= max) 4457 end = 1; 4458 4459 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4460 end = 1; 4461 flags |= FIEMAP_EXTENT_LAST; 4462 } else if (em->block_start == EXTENT_MAP_INLINE) { 4463 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4464 FIEMAP_EXTENT_NOT_ALIGNED); 4465 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4466 flags |= (FIEMAP_EXTENT_DELALLOC | 4467 FIEMAP_EXTENT_UNKNOWN); 4468 } else if (fieinfo->fi_extents_max) { 4469 u64 bytenr = em->block_start - 4470 (em->start - em->orig_start); 4471 4472 disko = em->block_start + offset_in_extent; 4473 4474 /* 4475 * As btrfs supports shared space, this information 4476 * can be exported to userspace tools via 4477 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4478 * then we're just getting a count and we can skip the 4479 * lookup stuff. 4480 */ 4481 ret = btrfs_check_shared(NULL, root->fs_info, 4482 root->objectid, 4483 btrfs_ino(inode), bytenr); 4484 if (ret < 0) 4485 goto out_free; 4486 if (ret) 4487 flags |= FIEMAP_EXTENT_SHARED; 4488 ret = 0; 4489 } 4490 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4491 flags |= FIEMAP_EXTENT_ENCODED; 4492 4493 free_extent_map(em); 4494 em = NULL; 4495 if ((em_start >= last) || em_len == (u64)-1 || 4496 (last == (u64)-1 && isize <= em_end)) { 4497 flags |= FIEMAP_EXTENT_LAST; 4498 end = 1; 4499 } 4500 4501 /* now scan forward to see if this is really the last extent. */ 4502 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4503 get_extent); 4504 if (IS_ERR(em)) { 4505 ret = PTR_ERR(em); 4506 goto out; 4507 } 4508 if (!em) { 4509 flags |= FIEMAP_EXTENT_LAST; 4510 end = 1; 4511 } 4512 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4513 em_len, flags); 4514 if (ret) 4515 goto out_free; 4516 } 4517 out_free: 4518 free_extent_map(em); 4519 out: 4520 btrfs_free_path(path); 4521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4522 &cached_state, GFP_NOFS); 4523 return ret; 4524 } 4525 4526 static void __free_extent_buffer(struct extent_buffer *eb) 4527 { 4528 btrfs_leak_debug_del(&eb->leak_list); 4529 kmem_cache_free(extent_buffer_cache, eb); 4530 } 4531 4532 int extent_buffer_under_io(struct extent_buffer *eb) 4533 { 4534 return (atomic_read(&eb->io_pages) || 4535 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4536 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4537 } 4538 4539 /* 4540 * Helper for releasing extent buffer page. 4541 */ 4542 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4543 { 4544 unsigned long index; 4545 struct page *page; 4546 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4547 4548 BUG_ON(extent_buffer_under_io(eb)); 4549 4550 index = num_extent_pages(eb->start, eb->len); 4551 if (index == 0) 4552 return; 4553 4554 do { 4555 index--; 4556 page = eb->pages[index]; 4557 if (page && mapped) { 4558 spin_lock(&page->mapping->private_lock); 4559 /* 4560 * We do this since we'll remove the pages after we've 4561 * removed the eb from the radix tree, so we could race 4562 * and have this page now attached to the new eb. So 4563 * only clear page_private if it's still connected to 4564 * this eb. 4565 */ 4566 if (PagePrivate(page) && 4567 page->private == (unsigned long)eb) { 4568 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4569 BUG_ON(PageDirty(page)); 4570 BUG_ON(PageWriteback(page)); 4571 /* 4572 * We need to make sure we haven't be attached 4573 * to a new eb. 4574 */ 4575 ClearPagePrivate(page); 4576 set_page_private(page, 0); 4577 /* One for the page private */ 4578 page_cache_release(page); 4579 } 4580 spin_unlock(&page->mapping->private_lock); 4581 4582 } 4583 if (page) { 4584 /* One for when we alloced the page */ 4585 page_cache_release(page); 4586 } 4587 } while (index != 0); 4588 } 4589 4590 /* 4591 * Helper for releasing the extent buffer. 4592 */ 4593 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4594 { 4595 btrfs_release_extent_buffer_page(eb); 4596 __free_extent_buffer(eb); 4597 } 4598 4599 static struct extent_buffer * 4600 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4601 unsigned long len, gfp_t mask) 4602 { 4603 struct extent_buffer *eb = NULL; 4604 4605 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4606 if (eb == NULL) 4607 return NULL; 4608 eb->start = start; 4609 eb->len = len; 4610 eb->fs_info = fs_info; 4611 eb->bflags = 0; 4612 rwlock_init(&eb->lock); 4613 atomic_set(&eb->write_locks, 0); 4614 atomic_set(&eb->read_locks, 0); 4615 atomic_set(&eb->blocking_readers, 0); 4616 atomic_set(&eb->blocking_writers, 0); 4617 atomic_set(&eb->spinning_readers, 0); 4618 atomic_set(&eb->spinning_writers, 0); 4619 eb->lock_nested = 0; 4620 init_waitqueue_head(&eb->write_lock_wq); 4621 init_waitqueue_head(&eb->read_lock_wq); 4622 4623 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4624 4625 spin_lock_init(&eb->refs_lock); 4626 atomic_set(&eb->refs, 1); 4627 atomic_set(&eb->io_pages, 0); 4628 4629 /* 4630 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4631 */ 4632 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4633 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4634 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4635 4636 return eb; 4637 } 4638 4639 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4640 { 4641 unsigned long i; 4642 struct page *p; 4643 struct extent_buffer *new; 4644 unsigned long num_pages = num_extent_pages(src->start, src->len); 4645 4646 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4647 if (new == NULL) 4648 return NULL; 4649 4650 for (i = 0; i < num_pages; i++) { 4651 p = alloc_page(GFP_NOFS); 4652 if (!p) { 4653 btrfs_release_extent_buffer(new); 4654 return NULL; 4655 } 4656 attach_extent_buffer_page(new, p); 4657 WARN_ON(PageDirty(p)); 4658 SetPageUptodate(p); 4659 new->pages[i] = p; 4660 } 4661 4662 copy_extent_buffer(new, src, 0, 0, src->len); 4663 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4664 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4665 4666 return new; 4667 } 4668 4669 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4670 { 4671 struct extent_buffer *eb; 4672 unsigned long num_pages = num_extent_pages(0, len); 4673 unsigned long i; 4674 4675 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4676 if (!eb) 4677 return NULL; 4678 4679 for (i = 0; i < num_pages; i++) { 4680 eb->pages[i] = alloc_page(GFP_NOFS); 4681 if (!eb->pages[i]) 4682 goto err; 4683 } 4684 set_extent_buffer_uptodate(eb); 4685 btrfs_set_header_nritems(eb, 0); 4686 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4687 4688 return eb; 4689 err: 4690 for (; i > 0; i--) 4691 __free_page(eb->pages[i - 1]); 4692 __free_extent_buffer(eb); 4693 return NULL; 4694 } 4695 4696 static void check_buffer_tree_ref(struct extent_buffer *eb) 4697 { 4698 int refs; 4699 /* the ref bit is tricky. We have to make sure it is set 4700 * if we have the buffer dirty. Otherwise the 4701 * code to free a buffer can end up dropping a dirty 4702 * page 4703 * 4704 * Once the ref bit is set, it won't go away while the 4705 * buffer is dirty or in writeback, and it also won't 4706 * go away while we have the reference count on the 4707 * eb bumped. 4708 * 4709 * We can't just set the ref bit without bumping the 4710 * ref on the eb because free_extent_buffer might 4711 * see the ref bit and try to clear it. If this happens 4712 * free_extent_buffer might end up dropping our original 4713 * ref by mistake and freeing the page before we are able 4714 * to add one more ref. 4715 * 4716 * So bump the ref count first, then set the bit. If someone 4717 * beat us to it, drop the ref we added. 4718 */ 4719 refs = atomic_read(&eb->refs); 4720 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4721 return; 4722 4723 spin_lock(&eb->refs_lock); 4724 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4725 atomic_inc(&eb->refs); 4726 spin_unlock(&eb->refs_lock); 4727 } 4728 4729 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4730 struct page *accessed) 4731 { 4732 unsigned long num_pages, i; 4733 4734 check_buffer_tree_ref(eb); 4735 4736 num_pages = num_extent_pages(eb->start, eb->len); 4737 for (i = 0; i < num_pages; i++) { 4738 struct page *p = eb->pages[i]; 4739 4740 if (p != accessed) 4741 mark_page_accessed(p); 4742 } 4743 } 4744 4745 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4746 u64 start) 4747 { 4748 struct extent_buffer *eb; 4749 4750 rcu_read_lock(); 4751 eb = radix_tree_lookup(&fs_info->buffer_radix, 4752 start >> PAGE_CACHE_SHIFT); 4753 if (eb && atomic_inc_not_zero(&eb->refs)) { 4754 rcu_read_unlock(); 4755 mark_extent_buffer_accessed(eb, NULL); 4756 return eb; 4757 } 4758 rcu_read_unlock(); 4759 4760 return NULL; 4761 } 4762 4763 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4764 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4765 u64 start, unsigned long len) 4766 { 4767 struct extent_buffer *eb, *exists = NULL; 4768 int ret; 4769 4770 eb = find_extent_buffer(fs_info, start); 4771 if (eb) 4772 return eb; 4773 eb = alloc_dummy_extent_buffer(start, len); 4774 if (!eb) 4775 return NULL; 4776 eb->fs_info = fs_info; 4777 again: 4778 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4779 if (ret) 4780 goto free_eb; 4781 spin_lock(&fs_info->buffer_lock); 4782 ret = radix_tree_insert(&fs_info->buffer_radix, 4783 start >> PAGE_CACHE_SHIFT, eb); 4784 spin_unlock(&fs_info->buffer_lock); 4785 radix_tree_preload_end(); 4786 if (ret == -EEXIST) { 4787 exists = find_extent_buffer(fs_info, start); 4788 if (exists) 4789 goto free_eb; 4790 else 4791 goto again; 4792 } 4793 check_buffer_tree_ref(eb); 4794 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4795 4796 /* 4797 * We will free dummy extent buffer's if they come into 4798 * free_extent_buffer with a ref count of 2, but if we are using this we 4799 * want the buffers to stay in memory until we're done with them, so 4800 * bump the ref count again. 4801 */ 4802 atomic_inc(&eb->refs); 4803 return eb; 4804 free_eb: 4805 btrfs_release_extent_buffer(eb); 4806 return exists; 4807 } 4808 #endif 4809 4810 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4811 u64 start, unsigned long len) 4812 { 4813 unsigned long num_pages = num_extent_pages(start, len); 4814 unsigned long i; 4815 unsigned long index = start >> PAGE_CACHE_SHIFT; 4816 struct extent_buffer *eb; 4817 struct extent_buffer *exists = NULL; 4818 struct page *p; 4819 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4820 int uptodate = 1; 4821 int ret; 4822 4823 eb = find_extent_buffer(fs_info, start); 4824 if (eb) 4825 return eb; 4826 4827 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS); 4828 if (!eb) 4829 return NULL; 4830 4831 for (i = 0; i < num_pages; i++, index++) { 4832 p = find_or_create_page(mapping, index, GFP_NOFS); 4833 if (!p) 4834 goto free_eb; 4835 4836 spin_lock(&mapping->private_lock); 4837 if (PagePrivate(p)) { 4838 /* 4839 * We could have already allocated an eb for this page 4840 * and attached one so lets see if we can get a ref on 4841 * the existing eb, and if we can we know it's good and 4842 * we can just return that one, else we know we can just 4843 * overwrite page->private. 4844 */ 4845 exists = (struct extent_buffer *)p->private; 4846 if (atomic_inc_not_zero(&exists->refs)) { 4847 spin_unlock(&mapping->private_lock); 4848 unlock_page(p); 4849 page_cache_release(p); 4850 mark_extent_buffer_accessed(exists, p); 4851 goto free_eb; 4852 } 4853 4854 /* 4855 * Do this so attach doesn't complain and we need to 4856 * drop the ref the old guy had. 4857 */ 4858 ClearPagePrivate(p); 4859 WARN_ON(PageDirty(p)); 4860 page_cache_release(p); 4861 } 4862 attach_extent_buffer_page(eb, p); 4863 spin_unlock(&mapping->private_lock); 4864 WARN_ON(PageDirty(p)); 4865 eb->pages[i] = p; 4866 if (!PageUptodate(p)) 4867 uptodate = 0; 4868 4869 /* 4870 * see below about how we avoid a nasty race with release page 4871 * and why we unlock later 4872 */ 4873 } 4874 if (uptodate) 4875 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4876 again: 4877 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4878 if (ret) 4879 goto free_eb; 4880 4881 spin_lock(&fs_info->buffer_lock); 4882 ret = radix_tree_insert(&fs_info->buffer_radix, 4883 start >> PAGE_CACHE_SHIFT, eb); 4884 spin_unlock(&fs_info->buffer_lock); 4885 radix_tree_preload_end(); 4886 if (ret == -EEXIST) { 4887 exists = find_extent_buffer(fs_info, start); 4888 if (exists) 4889 goto free_eb; 4890 else 4891 goto again; 4892 } 4893 /* add one reference for the tree */ 4894 check_buffer_tree_ref(eb); 4895 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4896 4897 /* 4898 * there is a race where release page may have 4899 * tried to find this extent buffer in the radix 4900 * but failed. It will tell the VM it is safe to 4901 * reclaim the, and it will clear the page private bit. 4902 * We must make sure to set the page private bit properly 4903 * after the extent buffer is in the radix tree so 4904 * it doesn't get lost 4905 */ 4906 SetPageChecked(eb->pages[0]); 4907 for (i = 1; i < num_pages; i++) { 4908 p = eb->pages[i]; 4909 ClearPageChecked(p); 4910 unlock_page(p); 4911 } 4912 unlock_page(eb->pages[0]); 4913 return eb; 4914 4915 free_eb: 4916 for (i = 0; i < num_pages; i++) { 4917 if (eb->pages[i]) 4918 unlock_page(eb->pages[i]); 4919 } 4920 4921 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4922 btrfs_release_extent_buffer(eb); 4923 return exists; 4924 } 4925 4926 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4927 { 4928 struct extent_buffer *eb = 4929 container_of(head, struct extent_buffer, rcu_head); 4930 4931 __free_extent_buffer(eb); 4932 } 4933 4934 /* Expects to have eb->eb_lock already held */ 4935 static int release_extent_buffer(struct extent_buffer *eb) 4936 { 4937 WARN_ON(atomic_read(&eb->refs) == 0); 4938 if (atomic_dec_and_test(&eb->refs)) { 4939 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4940 struct btrfs_fs_info *fs_info = eb->fs_info; 4941 4942 spin_unlock(&eb->refs_lock); 4943 4944 spin_lock(&fs_info->buffer_lock); 4945 radix_tree_delete(&fs_info->buffer_radix, 4946 eb->start >> PAGE_CACHE_SHIFT); 4947 spin_unlock(&fs_info->buffer_lock); 4948 } else { 4949 spin_unlock(&eb->refs_lock); 4950 } 4951 4952 /* Should be safe to release our pages at this point */ 4953 btrfs_release_extent_buffer_page(eb); 4954 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4955 return 1; 4956 } 4957 spin_unlock(&eb->refs_lock); 4958 4959 return 0; 4960 } 4961 4962 void free_extent_buffer(struct extent_buffer *eb) 4963 { 4964 int refs; 4965 int old; 4966 if (!eb) 4967 return; 4968 4969 while (1) { 4970 refs = atomic_read(&eb->refs); 4971 if (refs <= 3) 4972 break; 4973 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4974 if (old == refs) 4975 return; 4976 } 4977 4978 spin_lock(&eb->refs_lock); 4979 if (atomic_read(&eb->refs) == 2 && 4980 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4981 atomic_dec(&eb->refs); 4982 4983 if (atomic_read(&eb->refs) == 2 && 4984 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4985 !extent_buffer_under_io(eb) && 4986 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4987 atomic_dec(&eb->refs); 4988 4989 /* 4990 * I know this is terrible, but it's temporary until we stop tracking 4991 * the uptodate bits and such for the extent buffers. 4992 */ 4993 release_extent_buffer(eb); 4994 } 4995 4996 void free_extent_buffer_stale(struct extent_buffer *eb) 4997 { 4998 if (!eb) 4999 return; 5000 5001 spin_lock(&eb->refs_lock); 5002 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5003 5004 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5005 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5006 atomic_dec(&eb->refs); 5007 release_extent_buffer(eb); 5008 } 5009 5010 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5011 { 5012 unsigned long i; 5013 unsigned long num_pages; 5014 struct page *page; 5015 5016 num_pages = num_extent_pages(eb->start, eb->len); 5017 5018 for (i = 0; i < num_pages; i++) { 5019 page = eb->pages[i]; 5020 if (!PageDirty(page)) 5021 continue; 5022 5023 lock_page(page); 5024 WARN_ON(!PagePrivate(page)); 5025 5026 clear_page_dirty_for_io(page); 5027 spin_lock_irq(&page->mapping->tree_lock); 5028 if (!PageDirty(page)) { 5029 radix_tree_tag_clear(&page->mapping->page_tree, 5030 page_index(page), 5031 PAGECACHE_TAG_DIRTY); 5032 } 5033 spin_unlock_irq(&page->mapping->tree_lock); 5034 ClearPageError(page); 5035 unlock_page(page); 5036 } 5037 WARN_ON(atomic_read(&eb->refs) == 0); 5038 } 5039 5040 int set_extent_buffer_dirty(struct extent_buffer *eb) 5041 { 5042 unsigned long i; 5043 unsigned long num_pages; 5044 int was_dirty = 0; 5045 5046 check_buffer_tree_ref(eb); 5047 5048 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5049 5050 num_pages = num_extent_pages(eb->start, eb->len); 5051 WARN_ON(atomic_read(&eb->refs) == 0); 5052 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5053 5054 for (i = 0; i < num_pages; i++) 5055 set_page_dirty(eb->pages[i]); 5056 return was_dirty; 5057 } 5058 5059 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5060 { 5061 unsigned long i; 5062 struct page *page; 5063 unsigned long num_pages; 5064 5065 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5066 num_pages = num_extent_pages(eb->start, eb->len); 5067 for (i = 0; i < num_pages; i++) { 5068 page = eb->pages[i]; 5069 if (page) 5070 ClearPageUptodate(page); 5071 } 5072 return 0; 5073 } 5074 5075 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5076 { 5077 unsigned long i; 5078 struct page *page; 5079 unsigned long num_pages; 5080 5081 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5082 num_pages = num_extent_pages(eb->start, eb->len); 5083 for (i = 0; i < num_pages; i++) { 5084 page = eb->pages[i]; 5085 SetPageUptodate(page); 5086 } 5087 return 0; 5088 } 5089 5090 int extent_buffer_uptodate(struct extent_buffer *eb) 5091 { 5092 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5093 } 5094 5095 int read_extent_buffer_pages(struct extent_io_tree *tree, 5096 struct extent_buffer *eb, u64 start, int wait, 5097 get_extent_t *get_extent, int mirror_num) 5098 { 5099 unsigned long i; 5100 unsigned long start_i; 5101 struct page *page; 5102 int err; 5103 int ret = 0; 5104 int locked_pages = 0; 5105 int all_uptodate = 1; 5106 unsigned long num_pages; 5107 unsigned long num_reads = 0; 5108 struct bio *bio = NULL; 5109 unsigned long bio_flags = 0; 5110 5111 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5112 return 0; 5113 5114 if (start) { 5115 WARN_ON(start < eb->start); 5116 start_i = (start >> PAGE_CACHE_SHIFT) - 5117 (eb->start >> PAGE_CACHE_SHIFT); 5118 } else { 5119 start_i = 0; 5120 } 5121 5122 num_pages = num_extent_pages(eb->start, eb->len); 5123 for (i = start_i; i < num_pages; i++) { 5124 page = eb->pages[i]; 5125 if (wait == WAIT_NONE) { 5126 if (!trylock_page(page)) 5127 goto unlock_exit; 5128 } else { 5129 lock_page(page); 5130 } 5131 locked_pages++; 5132 if (!PageUptodate(page)) { 5133 num_reads++; 5134 all_uptodate = 0; 5135 } 5136 } 5137 if (all_uptodate) { 5138 if (start_i == 0) 5139 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5140 goto unlock_exit; 5141 } 5142 5143 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5144 eb->read_mirror = 0; 5145 atomic_set(&eb->io_pages, num_reads); 5146 for (i = start_i; i < num_pages; i++) { 5147 page = eb->pages[i]; 5148 if (!PageUptodate(page)) { 5149 ClearPageError(page); 5150 err = __extent_read_full_page(tree, page, 5151 get_extent, &bio, 5152 mirror_num, &bio_flags, 5153 READ | REQ_META); 5154 if (err) 5155 ret = err; 5156 } else { 5157 unlock_page(page); 5158 } 5159 } 5160 5161 if (bio) { 5162 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5163 bio_flags); 5164 if (err) 5165 return err; 5166 } 5167 5168 if (ret || wait != WAIT_COMPLETE) 5169 return ret; 5170 5171 for (i = start_i; i < num_pages; i++) { 5172 page = eb->pages[i]; 5173 wait_on_page_locked(page); 5174 if (!PageUptodate(page)) 5175 ret = -EIO; 5176 } 5177 5178 return ret; 5179 5180 unlock_exit: 5181 i = start_i; 5182 while (locked_pages > 0) { 5183 page = eb->pages[i]; 5184 i++; 5185 unlock_page(page); 5186 locked_pages--; 5187 } 5188 return ret; 5189 } 5190 5191 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5192 unsigned long start, 5193 unsigned long len) 5194 { 5195 size_t cur; 5196 size_t offset; 5197 struct page *page; 5198 char *kaddr; 5199 char *dst = (char *)dstv; 5200 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5201 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5202 5203 WARN_ON(start > eb->len); 5204 WARN_ON(start + len > eb->start + eb->len); 5205 5206 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5207 5208 while (len > 0) { 5209 page = eb->pages[i]; 5210 5211 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5212 kaddr = page_address(page); 5213 memcpy(dst, kaddr + offset, cur); 5214 5215 dst += cur; 5216 len -= cur; 5217 offset = 0; 5218 i++; 5219 } 5220 } 5221 5222 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5223 unsigned long start, 5224 unsigned long len) 5225 { 5226 size_t cur; 5227 size_t offset; 5228 struct page *page; 5229 char *kaddr; 5230 char __user *dst = (char __user *)dstv; 5231 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5232 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5233 int ret = 0; 5234 5235 WARN_ON(start > eb->len); 5236 WARN_ON(start + len > eb->start + eb->len); 5237 5238 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5239 5240 while (len > 0) { 5241 page = eb->pages[i]; 5242 5243 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5244 kaddr = page_address(page); 5245 if (copy_to_user(dst, kaddr + offset, cur)) { 5246 ret = -EFAULT; 5247 break; 5248 } 5249 5250 dst += cur; 5251 len -= cur; 5252 offset = 0; 5253 i++; 5254 } 5255 5256 return ret; 5257 } 5258 5259 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5260 unsigned long min_len, char **map, 5261 unsigned long *map_start, 5262 unsigned long *map_len) 5263 { 5264 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5265 char *kaddr; 5266 struct page *p; 5267 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5268 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5269 unsigned long end_i = (start_offset + start + min_len - 1) >> 5270 PAGE_CACHE_SHIFT; 5271 5272 if (i != end_i) 5273 return -EINVAL; 5274 5275 if (i == 0) { 5276 offset = start_offset; 5277 *map_start = 0; 5278 } else { 5279 offset = 0; 5280 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5281 } 5282 5283 if (start + min_len > eb->len) { 5284 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5285 "wanted %lu %lu\n", 5286 eb->start, eb->len, start, min_len); 5287 return -EINVAL; 5288 } 5289 5290 p = eb->pages[i]; 5291 kaddr = page_address(p); 5292 *map = kaddr + offset; 5293 *map_len = PAGE_CACHE_SIZE - offset; 5294 return 0; 5295 } 5296 5297 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5298 unsigned long start, 5299 unsigned long len) 5300 { 5301 size_t cur; 5302 size_t offset; 5303 struct page *page; 5304 char *kaddr; 5305 char *ptr = (char *)ptrv; 5306 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5307 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5308 int ret = 0; 5309 5310 WARN_ON(start > eb->len); 5311 WARN_ON(start + len > eb->start + eb->len); 5312 5313 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5314 5315 while (len > 0) { 5316 page = eb->pages[i]; 5317 5318 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5319 5320 kaddr = page_address(page); 5321 ret = memcmp(ptr, kaddr + offset, cur); 5322 if (ret) 5323 break; 5324 5325 ptr += cur; 5326 len -= cur; 5327 offset = 0; 5328 i++; 5329 } 5330 return ret; 5331 } 5332 5333 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5334 unsigned long start, unsigned long len) 5335 { 5336 size_t cur; 5337 size_t offset; 5338 struct page *page; 5339 char *kaddr; 5340 char *src = (char *)srcv; 5341 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5342 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5343 5344 WARN_ON(start > eb->len); 5345 WARN_ON(start + len > eb->start + eb->len); 5346 5347 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5348 5349 while (len > 0) { 5350 page = eb->pages[i]; 5351 WARN_ON(!PageUptodate(page)); 5352 5353 cur = min(len, PAGE_CACHE_SIZE - offset); 5354 kaddr = page_address(page); 5355 memcpy(kaddr + offset, src, cur); 5356 5357 src += cur; 5358 len -= cur; 5359 offset = 0; 5360 i++; 5361 } 5362 } 5363 5364 void memset_extent_buffer(struct extent_buffer *eb, char c, 5365 unsigned long start, unsigned long len) 5366 { 5367 size_t cur; 5368 size_t offset; 5369 struct page *page; 5370 char *kaddr; 5371 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5372 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5373 5374 WARN_ON(start > eb->len); 5375 WARN_ON(start + len > eb->start + eb->len); 5376 5377 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5378 5379 while (len > 0) { 5380 page = eb->pages[i]; 5381 WARN_ON(!PageUptodate(page)); 5382 5383 cur = min(len, PAGE_CACHE_SIZE - offset); 5384 kaddr = page_address(page); 5385 memset(kaddr + offset, c, cur); 5386 5387 len -= cur; 5388 offset = 0; 5389 i++; 5390 } 5391 } 5392 5393 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5394 unsigned long dst_offset, unsigned long src_offset, 5395 unsigned long len) 5396 { 5397 u64 dst_len = dst->len; 5398 size_t cur; 5399 size_t offset; 5400 struct page *page; 5401 char *kaddr; 5402 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5403 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5404 5405 WARN_ON(src->len != dst_len); 5406 5407 offset = (start_offset + dst_offset) & 5408 (PAGE_CACHE_SIZE - 1); 5409 5410 while (len > 0) { 5411 page = dst->pages[i]; 5412 WARN_ON(!PageUptodate(page)); 5413 5414 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5415 5416 kaddr = page_address(page); 5417 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5418 5419 src_offset += cur; 5420 len -= cur; 5421 offset = 0; 5422 i++; 5423 } 5424 } 5425 5426 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5427 { 5428 unsigned long distance = (src > dst) ? src - dst : dst - src; 5429 return distance < len; 5430 } 5431 5432 static void copy_pages(struct page *dst_page, struct page *src_page, 5433 unsigned long dst_off, unsigned long src_off, 5434 unsigned long len) 5435 { 5436 char *dst_kaddr = page_address(dst_page); 5437 char *src_kaddr; 5438 int must_memmove = 0; 5439 5440 if (dst_page != src_page) { 5441 src_kaddr = page_address(src_page); 5442 } else { 5443 src_kaddr = dst_kaddr; 5444 if (areas_overlap(src_off, dst_off, len)) 5445 must_memmove = 1; 5446 } 5447 5448 if (must_memmove) 5449 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5450 else 5451 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5452 } 5453 5454 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5455 unsigned long src_offset, unsigned long len) 5456 { 5457 size_t cur; 5458 size_t dst_off_in_page; 5459 size_t src_off_in_page; 5460 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5461 unsigned long dst_i; 5462 unsigned long src_i; 5463 5464 if (src_offset + len > dst->len) { 5465 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5466 "len %lu dst len %lu\n", src_offset, len, dst->len); 5467 BUG_ON(1); 5468 } 5469 if (dst_offset + len > dst->len) { 5470 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5471 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5472 BUG_ON(1); 5473 } 5474 5475 while (len > 0) { 5476 dst_off_in_page = (start_offset + dst_offset) & 5477 (PAGE_CACHE_SIZE - 1); 5478 src_off_in_page = (start_offset + src_offset) & 5479 (PAGE_CACHE_SIZE - 1); 5480 5481 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5482 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5483 5484 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5485 src_off_in_page)); 5486 cur = min_t(unsigned long, cur, 5487 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5488 5489 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5490 dst_off_in_page, src_off_in_page, cur); 5491 5492 src_offset += cur; 5493 dst_offset += cur; 5494 len -= cur; 5495 } 5496 } 5497 5498 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5499 unsigned long src_offset, unsigned long len) 5500 { 5501 size_t cur; 5502 size_t dst_off_in_page; 5503 size_t src_off_in_page; 5504 unsigned long dst_end = dst_offset + len - 1; 5505 unsigned long src_end = src_offset + len - 1; 5506 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5507 unsigned long dst_i; 5508 unsigned long src_i; 5509 5510 if (src_offset + len > dst->len) { 5511 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5512 "len %lu len %lu\n", src_offset, len, dst->len); 5513 BUG_ON(1); 5514 } 5515 if (dst_offset + len > dst->len) { 5516 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5517 "len %lu len %lu\n", dst_offset, len, dst->len); 5518 BUG_ON(1); 5519 } 5520 if (dst_offset < src_offset) { 5521 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5522 return; 5523 } 5524 while (len > 0) { 5525 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5526 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5527 5528 dst_off_in_page = (start_offset + dst_end) & 5529 (PAGE_CACHE_SIZE - 1); 5530 src_off_in_page = (start_offset + src_end) & 5531 (PAGE_CACHE_SIZE - 1); 5532 5533 cur = min_t(unsigned long, len, src_off_in_page + 1); 5534 cur = min(cur, dst_off_in_page + 1); 5535 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5536 dst_off_in_page - cur + 1, 5537 src_off_in_page - cur + 1, cur); 5538 5539 dst_end -= cur; 5540 src_end -= cur; 5541 len -= cur; 5542 } 5543 } 5544 5545 int try_release_extent_buffer(struct page *page) 5546 { 5547 struct extent_buffer *eb; 5548 5549 /* 5550 * We need to make sure noboody is attaching this page to an eb right 5551 * now. 5552 */ 5553 spin_lock(&page->mapping->private_lock); 5554 if (!PagePrivate(page)) { 5555 spin_unlock(&page->mapping->private_lock); 5556 return 1; 5557 } 5558 5559 eb = (struct extent_buffer *)page->private; 5560 BUG_ON(!eb); 5561 5562 /* 5563 * This is a little awful but should be ok, we need to make sure that 5564 * the eb doesn't disappear out from under us while we're looking at 5565 * this page. 5566 */ 5567 spin_lock(&eb->refs_lock); 5568 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5569 spin_unlock(&eb->refs_lock); 5570 spin_unlock(&page->mapping->private_lock); 5571 return 0; 5572 } 5573 spin_unlock(&page->mapping->private_lock); 5574 5575 /* 5576 * If tree ref isn't set then we know the ref on this eb is a real ref, 5577 * so just return, this page will likely be freed soon anyway. 5578 */ 5579 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5580 spin_unlock(&eb->refs_lock); 5581 return 0; 5582 } 5583 5584 return release_extent_buffer(eb); 5585 } 5586