xref: /openbmc/linux/fs/btrfs/extent_io.c (revision c819e2cf)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		printk_ratelimited(KERN_DEBUG
100 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138 	if (!tree->mapping)
139 		return NULL;
140 	return btrfs_sb(tree->mapping->host->i_sb);
141 }
142 
143 int __init extent_io_init(void)
144 {
145 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 			sizeof(struct extent_state), 0,
147 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 	if (!extent_state_cache)
149 		return -ENOMEM;
150 
151 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 			sizeof(struct extent_buffer), 0,
153 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 	if (!extent_buffer_cache)
155 		goto free_state_cache;
156 
157 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 				     offsetof(struct btrfs_io_bio, bio));
159 	if (!btrfs_bioset)
160 		goto free_buffer_cache;
161 
162 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 		goto free_bioset;
164 
165 	return 0;
166 
167 free_bioset:
168 	bioset_free(btrfs_bioset);
169 	btrfs_bioset = NULL;
170 
171 free_buffer_cache:
172 	kmem_cache_destroy(extent_buffer_cache);
173 	extent_buffer_cache = NULL;
174 
175 free_state_cache:
176 	kmem_cache_destroy(extent_state_cache);
177 	extent_state_cache = NULL;
178 	return -ENOMEM;
179 }
180 
181 void extent_io_exit(void)
182 {
183 	btrfs_leak_debug_check();
184 
185 	/*
186 	 * Make sure all delayed rcu free are flushed before we
187 	 * destroy caches.
188 	 */
189 	rcu_barrier();
190 	if (extent_state_cache)
191 		kmem_cache_destroy(extent_state_cache);
192 	if (extent_buffer_cache)
193 		kmem_cache_destroy(extent_buffer_cache);
194 	if (btrfs_bioset)
195 		bioset_free(btrfs_bioset);
196 }
197 
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 			 struct address_space *mapping)
200 {
201 	tree->state = RB_ROOT;
202 	tree->ops = NULL;
203 	tree->dirty_bytes = 0;
204 	spin_lock_init(&tree->lock);
205 	tree->mapping = mapping;
206 }
207 
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210 	struct extent_state *state;
211 
212 	state = kmem_cache_alloc(extent_state_cache, mask);
213 	if (!state)
214 		return state;
215 	state->state = 0;
216 	state->private = 0;
217 	RB_CLEAR_NODE(&state->rb_node);
218 	btrfs_leak_debug_add(&state->leak_list, &states);
219 	atomic_set(&state->refs, 1);
220 	init_waitqueue_head(&state->wq);
221 	trace_alloc_extent_state(state, mask, _RET_IP_);
222 	return state;
223 }
224 
225 void free_extent_state(struct extent_state *state)
226 {
227 	if (!state)
228 		return;
229 	if (atomic_dec_and_test(&state->refs)) {
230 		WARN_ON(extent_state_in_tree(state));
231 		btrfs_leak_debug_del(&state->leak_list);
232 		trace_free_extent_state(state, _RET_IP_);
233 		kmem_cache_free(extent_state_cache, state);
234 	}
235 }
236 
237 static struct rb_node *tree_insert(struct rb_root *root,
238 				   struct rb_node *search_start,
239 				   u64 offset,
240 				   struct rb_node *node,
241 				   struct rb_node ***p_in,
242 				   struct rb_node **parent_in)
243 {
244 	struct rb_node **p;
245 	struct rb_node *parent = NULL;
246 	struct tree_entry *entry;
247 
248 	if (p_in && parent_in) {
249 		p = *p_in;
250 		parent = *parent_in;
251 		goto do_insert;
252 	}
253 
254 	p = search_start ? &search_start : &root->rb_node;
255 	while (*p) {
256 		parent = *p;
257 		entry = rb_entry(parent, struct tree_entry, rb_node);
258 
259 		if (offset < entry->start)
260 			p = &(*p)->rb_left;
261 		else if (offset > entry->end)
262 			p = &(*p)->rb_right;
263 		else
264 			return parent;
265 	}
266 
267 do_insert:
268 	rb_link_node(node, parent, p);
269 	rb_insert_color(node, root);
270 	return NULL;
271 }
272 
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 				      struct rb_node **prev_ret,
275 				      struct rb_node **next_ret,
276 				      struct rb_node ***p_ret,
277 				      struct rb_node **parent_ret)
278 {
279 	struct rb_root *root = &tree->state;
280 	struct rb_node **n = &root->rb_node;
281 	struct rb_node *prev = NULL;
282 	struct rb_node *orig_prev = NULL;
283 	struct tree_entry *entry;
284 	struct tree_entry *prev_entry = NULL;
285 
286 	while (*n) {
287 		prev = *n;
288 		entry = rb_entry(prev, struct tree_entry, rb_node);
289 		prev_entry = entry;
290 
291 		if (offset < entry->start)
292 			n = &(*n)->rb_left;
293 		else if (offset > entry->end)
294 			n = &(*n)->rb_right;
295 		else
296 			return *n;
297 	}
298 
299 	if (p_ret)
300 		*p_ret = n;
301 	if (parent_ret)
302 		*parent_ret = prev;
303 
304 	if (prev_ret) {
305 		orig_prev = prev;
306 		while (prev && offset > prev_entry->end) {
307 			prev = rb_next(prev);
308 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 		}
310 		*prev_ret = prev;
311 		prev = orig_prev;
312 	}
313 
314 	if (next_ret) {
315 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 		while (prev && offset < prev_entry->start) {
317 			prev = rb_prev(prev);
318 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 		}
320 		*next_ret = prev;
321 	}
322 	return NULL;
323 }
324 
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 		       u64 offset,
328 		       struct rb_node ***p_ret,
329 		       struct rb_node **parent_ret)
330 {
331 	struct rb_node *prev = NULL;
332 	struct rb_node *ret;
333 
334 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 	if (!ret)
336 		return prev;
337 	return ret;
338 }
339 
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 					  u64 offset)
342 {
343 	return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345 
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 		     struct extent_state *other)
348 {
349 	if (tree->ops && tree->ops->merge_extent_hook)
350 		tree->ops->merge_extent_hook(tree->mapping->host, new,
351 					     other);
352 }
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364 		        struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 		return;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			merge_cb(tree, state, other);
378 			state->start = other->start;
379 			rb_erase(&other->rb_node, &tree->state);
380 			RB_CLEAR_NODE(&other->rb_node);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->end = other->end;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 }
397 
398 static void set_state_cb(struct extent_io_tree *tree,
399 			 struct extent_state *state, unsigned long *bits)
400 {
401 	if (tree->ops && tree->ops->set_bit_hook)
402 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404 
405 static void clear_state_cb(struct extent_io_tree *tree,
406 			   struct extent_state *state, unsigned long *bits)
407 {
408 	if (tree->ops && tree->ops->clear_bit_hook)
409 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411 
412 static void set_state_bits(struct extent_io_tree *tree,
413 			   struct extent_state *state, unsigned long *bits);
414 
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426 			struct extent_state *state, u64 start, u64 end,
427 			struct rb_node ***p,
428 			struct rb_node **parent,
429 			unsigned long *bits)
430 {
431 	struct rb_node *node;
432 
433 	if (end < start)
434 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 		       end, start);
436 	state->start = start;
437 	state->end = end;
438 
439 	set_state_bits(tree, state, bits);
440 
441 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 	if (node) {
443 		struct extent_state *found;
444 		found = rb_entry(node, struct extent_state, rb_node);
445 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 		       "%llu %llu\n",
447 		       found->start, found->end, start, end);
448 		return -EEXIST;
449 	}
450 	merge_state(tree, state);
451 	return 0;
452 }
453 
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 		     u64 split)
456 {
457 	if (tree->ops && tree->ops->split_extent_hook)
458 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460 
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 		       struct extent_state *prealloc, u64 split)
477 {
478 	struct rb_node *node;
479 
480 	split_cb(tree, orig, split);
481 
482 	prealloc->start = orig->start;
483 	prealloc->end = split - 1;
484 	prealloc->state = orig->state;
485 	orig->start = split;
486 
487 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 			   &prealloc->rb_node, NULL, NULL);
489 	if (node) {
490 		free_extent_state(prealloc);
491 		return -EEXIST;
492 	}
493 	return 0;
494 }
495 
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 	struct rb_node *next = rb_next(&state->rb_node);
499 	if (next)
500 		return rb_entry(next, struct extent_state, rb_node);
501 	else
502 		return NULL;
503 }
504 
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 					    struct extent_state *state,
514 					    unsigned long *bits, int wake)
515 {
516 	struct extent_state *next;
517 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
518 
519 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 		u64 range = state->end - state->start + 1;
521 		WARN_ON(range > tree->dirty_bytes);
522 		tree->dirty_bytes -= range;
523 	}
524 	clear_state_cb(tree, state, bits);
525 	state->state &= ~bits_to_clear;
526 	if (wake)
527 		wake_up(&state->wq);
528 	if (state->state == 0) {
529 		next = next_state(state);
530 		if (extent_state_in_tree(state)) {
531 			rb_erase(&state->rb_node, &tree->state);
532 			RB_CLEAR_NODE(&state->rb_node);
533 			free_extent_state(state);
534 		} else {
535 			WARN_ON(1);
536 		}
537 	} else {
538 		merge_state(tree, state);
539 		next = next_state(state);
540 	}
541 	return next;
542 }
543 
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547 	if (!prealloc)
548 		prealloc = alloc_extent_state(GFP_ATOMIC);
549 
550 	return prealloc;
551 }
552 
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 		    "Extent tree was modified by another "
557 		    "thread while locked.");
558 }
559 
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 		     unsigned long bits, int wake, int delete,
574 		     struct extent_state **cached_state,
575 		     gfp_t mask)
576 {
577 	struct extent_state *state;
578 	struct extent_state *cached;
579 	struct extent_state *prealloc = NULL;
580 	struct rb_node *node;
581 	u64 last_end;
582 	int err;
583 	int clear = 0;
584 
585 	btrfs_debug_check_extent_io_range(tree, start, end);
586 
587 	if (bits & EXTENT_DELALLOC)
588 		bits |= EXTENT_NORESERVE;
589 
590 	if (delete)
591 		bits |= ~EXTENT_CTLBITS;
592 	bits |= EXTENT_FIRST_DELALLOC;
593 
594 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 		clear = 1;
596 again:
597 	if (!prealloc && (mask & __GFP_WAIT)) {
598 		/*
599 		 * Don't care for allocation failure here because we might end
600 		 * up not needing the pre-allocated extent state at all, which
601 		 * is the case if we only have in the tree extent states that
602 		 * cover our input range and don't cover too any other range.
603 		 * If we end up needing a new extent state we allocate it later.
604 		 */
605 		prealloc = alloc_extent_state(mask);
606 	}
607 
608 	spin_lock(&tree->lock);
609 	if (cached_state) {
610 		cached = *cached_state;
611 
612 		if (clear) {
613 			*cached_state = NULL;
614 			cached_state = NULL;
615 		}
616 
617 		if (cached && extent_state_in_tree(cached) &&
618 		    cached->start <= start && cached->end > start) {
619 			if (clear)
620 				atomic_dec(&cached->refs);
621 			state = cached;
622 			goto hit_next;
623 		}
624 		if (clear)
625 			free_extent_state(cached);
626 	}
627 	/*
628 	 * this search will find the extents that end after
629 	 * our range starts
630 	 */
631 	node = tree_search(tree, start);
632 	if (!node)
633 		goto out;
634 	state = rb_entry(node, struct extent_state, rb_node);
635 hit_next:
636 	if (state->start > end)
637 		goto out;
638 	WARN_ON(state->end < start);
639 	last_end = state->end;
640 
641 	/* the state doesn't have the wanted bits, go ahead */
642 	if (!(state->state & bits)) {
643 		state = next_state(state);
644 		goto next;
645 	}
646 
647 	/*
648 	 *     | ---- desired range ---- |
649 	 *  | state | or
650 	 *  | ------------- state -------------- |
651 	 *
652 	 * We need to split the extent we found, and may flip
653 	 * bits on second half.
654 	 *
655 	 * If the extent we found extends past our range, we
656 	 * just split and search again.  It'll get split again
657 	 * the next time though.
658 	 *
659 	 * If the extent we found is inside our range, we clear
660 	 * the desired bit on it.
661 	 */
662 
663 	if (state->start < start) {
664 		prealloc = alloc_extent_state_atomic(prealloc);
665 		BUG_ON(!prealloc);
666 		err = split_state(tree, state, prealloc, start);
667 		if (err)
668 			extent_io_tree_panic(tree, err);
669 
670 		prealloc = NULL;
671 		if (err)
672 			goto out;
673 		if (state->end <= end) {
674 			state = clear_state_bit(tree, state, &bits, wake);
675 			goto next;
676 		}
677 		goto search_again;
678 	}
679 	/*
680 	 * | ---- desired range ---- |
681 	 *                        | state |
682 	 * We need to split the extent, and clear the bit
683 	 * on the first half
684 	 */
685 	if (state->start <= end && state->end > end) {
686 		prealloc = alloc_extent_state_atomic(prealloc);
687 		BUG_ON(!prealloc);
688 		err = split_state(tree, state, prealloc, end + 1);
689 		if (err)
690 			extent_io_tree_panic(tree, err);
691 
692 		if (wake)
693 			wake_up(&state->wq);
694 
695 		clear_state_bit(tree, prealloc, &bits, wake);
696 
697 		prealloc = NULL;
698 		goto out;
699 	}
700 
701 	state = clear_state_bit(tree, state, &bits, wake);
702 next:
703 	if (last_end == (u64)-1)
704 		goto out;
705 	start = last_end + 1;
706 	if (start <= end && state && !need_resched())
707 		goto hit_next;
708 	goto search_again;
709 
710 out:
711 	spin_unlock(&tree->lock);
712 	if (prealloc)
713 		free_extent_state(prealloc);
714 
715 	return 0;
716 
717 search_again:
718 	if (start > end)
719 		goto out;
720 	spin_unlock(&tree->lock);
721 	if (mask & __GFP_WAIT)
722 		cond_resched();
723 	goto again;
724 }
725 
726 static void wait_on_state(struct extent_io_tree *tree,
727 			  struct extent_state *state)
728 		__releases(tree->lock)
729 		__acquires(tree->lock)
730 {
731 	DEFINE_WAIT(wait);
732 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733 	spin_unlock(&tree->lock);
734 	schedule();
735 	spin_lock(&tree->lock);
736 	finish_wait(&state->wq, &wait);
737 }
738 
739 /*
740  * waits for one or more bits to clear on a range in the state tree.
741  * The range [start, end] is inclusive.
742  * The tree lock is taken by this function
743  */
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745 			    unsigned long bits)
746 {
747 	struct extent_state *state;
748 	struct rb_node *node;
749 
750 	btrfs_debug_check_extent_io_range(tree, start, end);
751 
752 	spin_lock(&tree->lock);
753 again:
754 	while (1) {
755 		/*
756 		 * this search will find all the extents that end after
757 		 * our range starts
758 		 */
759 		node = tree_search(tree, start);
760 process_node:
761 		if (!node)
762 			break;
763 
764 		state = rb_entry(node, struct extent_state, rb_node);
765 
766 		if (state->start > end)
767 			goto out;
768 
769 		if (state->state & bits) {
770 			start = state->start;
771 			atomic_inc(&state->refs);
772 			wait_on_state(tree, state);
773 			free_extent_state(state);
774 			goto again;
775 		}
776 		start = state->end + 1;
777 
778 		if (start > end)
779 			break;
780 
781 		if (!cond_resched_lock(&tree->lock)) {
782 			node = rb_next(node);
783 			goto process_node;
784 		}
785 	}
786 out:
787 	spin_unlock(&tree->lock);
788 }
789 
790 static void set_state_bits(struct extent_io_tree *tree,
791 			   struct extent_state *state,
792 			   unsigned long *bits)
793 {
794 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
795 
796 	set_state_cb(tree, state, bits);
797 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 		u64 range = state->end - state->start + 1;
799 		tree->dirty_bytes += range;
800 	}
801 	state->state |= bits_to_set;
802 }
803 
804 static void cache_state_if_flags(struct extent_state *state,
805 				 struct extent_state **cached_ptr,
806 				 const u64 flags)
807 {
808 	if (cached_ptr && !(*cached_ptr)) {
809 		if (!flags || (state->state & flags)) {
810 			*cached_ptr = state;
811 			atomic_inc(&state->refs);
812 		}
813 	}
814 }
815 
816 static void cache_state(struct extent_state *state,
817 			struct extent_state **cached_ptr)
818 {
819 	return cache_state_if_flags(state, cached_ptr,
820 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
821 }
822 
823 /*
824  * set some bits on a range in the tree.  This may require allocations or
825  * sleeping, so the gfp mask is used to indicate what is allowed.
826  *
827  * If any of the exclusive bits are set, this will fail with -EEXIST if some
828  * part of the range already has the desired bits set.  The start of the
829  * existing range is returned in failed_start in this case.
830  *
831  * [start, end] is inclusive This takes the tree lock.
832  */
833 
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836 		 unsigned long bits, unsigned long exclusive_bits,
837 		 u64 *failed_start, struct extent_state **cached_state,
838 		 gfp_t mask)
839 {
840 	struct extent_state *state;
841 	struct extent_state *prealloc = NULL;
842 	struct rb_node *node;
843 	struct rb_node **p;
844 	struct rb_node *parent;
845 	int err = 0;
846 	u64 last_start;
847 	u64 last_end;
848 
849 	btrfs_debug_check_extent_io_range(tree, start, end);
850 
851 	bits |= EXTENT_FIRST_DELALLOC;
852 again:
853 	if (!prealloc && (mask & __GFP_WAIT)) {
854 		prealloc = alloc_extent_state(mask);
855 		BUG_ON(!prealloc);
856 	}
857 
858 	spin_lock(&tree->lock);
859 	if (cached_state && *cached_state) {
860 		state = *cached_state;
861 		if (state->start <= start && state->end > start &&
862 		    extent_state_in_tree(state)) {
863 			node = &state->rb_node;
864 			goto hit_next;
865 		}
866 	}
867 	/*
868 	 * this search will find all the extents that end after
869 	 * our range starts.
870 	 */
871 	node = tree_search_for_insert(tree, start, &p, &parent);
872 	if (!node) {
873 		prealloc = alloc_extent_state_atomic(prealloc);
874 		BUG_ON(!prealloc);
875 		err = insert_state(tree, prealloc, start, end,
876 				   &p, &parent, &bits);
877 		if (err)
878 			extent_io_tree_panic(tree, err);
879 
880 		cache_state(prealloc, cached_state);
881 		prealloc = NULL;
882 		goto out;
883 	}
884 	state = rb_entry(node, struct extent_state, rb_node);
885 hit_next:
886 	last_start = state->start;
887 	last_end = state->end;
888 
889 	/*
890 	 * | ---- desired range ---- |
891 	 * | state |
892 	 *
893 	 * Just lock what we found and keep going
894 	 */
895 	if (state->start == start && state->end <= end) {
896 		if (state->state & exclusive_bits) {
897 			*failed_start = state->start;
898 			err = -EEXIST;
899 			goto out;
900 		}
901 
902 		set_state_bits(tree, state, &bits);
903 		cache_state(state, cached_state);
904 		merge_state(tree, state);
905 		if (last_end == (u64)-1)
906 			goto out;
907 		start = last_end + 1;
908 		state = next_state(state);
909 		if (start < end && state && state->start == start &&
910 		    !need_resched())
911 			goto hit_next;
912 		goto search_again;
913 	}
914 
915 	/*
916 	 *     | ---- desired range ---- |
917 	 * | state |
918 	 *   or
919 	 * | ------------- state -------------- |
920 	 *
921 	 * We need to split the extent we found, and may flip bits on
922 	 * second half.
923 	 *
924 	 * If the extent we found extends past our
925 	 * range, we just split and search again.  It'll get split
926 	 * again the next time though.
927 	 *
928 	 * If the extent we found is inside our range, we set the
929 	 * desired bit on it.
930 	 */
931 	if (state->start < start) {
932 		if (state->state & exclusive_bits) {
933 			*failed_start = start;
934 			err = -EEXIST;
935 			goto out;
936 		}
937 
938 		prealloc = alloc_extent_state_atomic(prealloc);
939 		BUG_ON(!prealloc);
940 		err = split_state(tree, state, prealloc, start);
941 		if (err)
942 			extent_io_tree_panic(tree, err);
943 
944 		prealloc = NULL;
945 		if (err)
946 			goto out;
947 		if (state->end <= end) {
948 			set_state_bits(tree, state, &bits);
949 			cache_state(state, cached_state);
950 			merge_state(tree, state);
951 			if (last_end == (u64)-1)
952 				goto out;
953 			start = last_end + 1;
954 			state = next_state(state);
955 			if (start < end && state && state->start == start &&
956 			    !need_resched())
957 				goto hit_next;
958 		}
959 		goto search_again;
960 	}
961 	/*
962 	 * | ---- desired range ---- |
963 	 *     | state | or               | state |
964 	 *
965 	 * There's a hole, we need to insert something in it and
966 	 * ignore the extent we found.
967 	 */
968 	if (state->start > start) {
969 		u64 this_end;
970 		if (end < last_start)
971 			this_end = end;
972 		else
973 			this_end = last_start - 1;
974 
975 		prealloc = alloc_extent_state_atomic(prealloc);
976 		BUG_ON(!prealloc);
977 
978 		/*
979 		 * Avoid to free 'prealloc' if it can be merged with
980 		 * the later extent.
981 		 */
982 		err = insert_state(tree, prealloc, start, this_end,
983 				   NULL, NULL, &bits);
984 		if (err)
985 			extent_io_tree_panic(tree, err);
986 
987 		cache_state(prealloc, cached_state);
988 		prealloc = NULL;
989 		start = this_end + 1;
990 		goto search_again;
991 	}
992 	/*
993 	 * | ---- desired range ---- |
994 	 *                        | state |
995 	 * We need to split the extent, and set the bit
996 	 * on the first half
997 	 */
998 	if (state->start <= end && state->end > end) {
999 		if (state->state & exclusive_bits) {
1000 			*failed_start = start;
1001 			err = -EEXIST;
1002 			goto out;
1003 		}
1004 
1005 		prealloc = alloc_extent_state_atomic(prealloc);
1006 		BUG_ON(!prealloc);
1007 		err = split_state(tree, state, prealloc, end + 1);
1008 		if (err)
1009 			extent_io_tree_panic(tree, err);
1010 
1011 		set_state_bits(tree, prealloc, &bits);
1012 		cache_state(prealloc, cached_state);
1013 		merge_state(tree, prealloc);
1014 		prealloc = NULL;
1015 		goto out;
1016 	}
1017 
1018 	goto search_again;
1019 
1020 out:
1021 	spin_unlock(&tree->lock);
1022 	if (prealloc)
1023 		free_extent_state(prealloc);
1024 
1025 	return err;
1026 
1027 search_again:
1028 	if (start > end)
1029 		goto out;
1030 	spin_unlock(&tree->lock);
1031 	if (mask & __GFP_WAIT)
1032 		cond_resched();
1033 	goto again;
1034 }
1035 
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037 		   unsigned long bits, u64 * failed_start,
1038 		   struct extent_state **cached_state, gfp_t mask)
1039 {
1040 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 				cached_state, mask);
1042 }
1043 
1044 
1045 /**
1046  * convert_extent_bit - convert all bits in a given range from one bit to
1047  * 			another
1048  * @tree:	the io tree to search
1049  * @start:	the start offset in bytes
1050  * @end:	the end offset in bytes (inclusive)
1051  * @bits:	the bits to set in this range
1052  * @clear_bits:	the bits to clear in this range
1053  * @cached_state:	state that we're going to cache
1054  * @mask:	the allocation mask
1055  *
1056  * This will go through and set bits for the given range.  If any states exist
1057  * already in this range they are set with the given bit and cleared of the
1058  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1059  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1060  * boundary bits like LOCK.
1061  */
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063 		       unsigned long bits, unsigned long clear_bits,
1064 		       struct extent_state **cached_state, gfp_t mask)
1065 {
1066 	struct extent_state *state;
1067 	struct extent_state *prealloc = NULL;
1068 	struct rb_node *node;
1069 	struct rb_node **p;
1070 	struct rb_node *parent;
1071 	int err = 0;
1072 	u64 last_start;
1073 	u64 last_end;
1074 	bool first_iteration = true;
1075 
1076 	btrfs_debug_check_extent_io_range(tree, start, end);
1077 
1078 again:
1079 	if (!prealloc && (mask & __GFP_WAIT)) {
1080 		/*
1081 		 * Best effort, don't worry if extent state allocation fails
1082 		 * here for the first iteration. We might have a cached state
1083 		 * that matches exactly the target range, in which case no
1084 		 * extent state allocations are needed. We'll only know this
1085 		 * after locking the tree.
1086 		 */
1087 		prealloc = alloc_extent_state(mask);
1088 		if (!prealloc && !first_iteration)
1089 			return -ENOMEM;
1090 	}
1091 
1092 	spin_lock(&tree->lock);
1093 	if (cached_state && *cached_state) {
1094 		state = *cached_state;
1095 		if (state->start <= start && state->end > start &&
1096 		    extent_state_in_tree(state)) {
1097 			node = &state->rb_node;
1098 			goto hit_next;
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * this search will find all the extents that end after
1104 	 * our range starts.
1105 	 */
1106 	node = tree_search_for_insert(tree, start, &p, &parent);
1107 	if (!node) {
1108 		prealloc = alloc_extent_state_atomic(prealloc);
1109 		if (!prealloc) {
1110 			err = -ENOMEM;
1111 			goto out;
1112 		}
1113 		err = insert_state(tree, prealloc, start, end,
1114 				   &p, &parent, &bits);
1115 		if (err)
1116 			extent_io_tree_panic(tree, err);
1117 		cache_state(prealloc, cached_state);
1118 		prealloc = NULL;
1119 		goto out;
1120 	}
1121 	state = rb_entry(node, struct extent_state, rb_node);
1122 hit_next:
1123 	last_start = state->start;
1124 	last_end = state->end;
1125 
1126 	/*
1127 	 * | ---- desired range ---- |
1128 	 * | state |
1129 	 *
1130 	 * Just lock what we found and keep going
1131 	 */
1132 	if (state->start == start && state->end <= end) {
1133 		set_state_bits(tree, state, &bits);
1134 		cache_state(state, cached_state);
1135 		state = clear_state_bit(tree, state, &clear_bits, 0);
1136 		if (last_end == (u64)-1)
1137 			goto out;
1138 		start = last_end + 1;
1139 		if (start < end && state && state->start == start &&
1140 		    !need_resched())
1141 			goto hit_next;
1142 		goto search_again;
1143 	}
1144 
1145 	/*
1146 	 *     | ---- desired range ---- |
1147 	 * | state |
1148 	 *   or
1149 	 * | ------------- state -------------- |
1150 	 *
1151 	 * We need to split the extent we found, and may flip bits on
1152 	 * second half.
1153 	 *
1154 	 * If the extent we found extends past our
1155 	 * range, we just split and search again.  It'll get split
1156 	 * again the next time though.
1157 	 *
1158 	 * If the extent we found is inside our range, we set the
1159 	 * desired bit on it.
1160 	 */
1161 	if (state->start < start) {
1162 		prealloc = alloc_extent_state_atomic(prealloc);
1163 		if (!prealloc) {
1164 			err = -ENOMEM;
1165 			goto out;
1166 		}
1167 		err = split_state(tree, state, prealloc, start);
1168 		if (err)
1169 			extent_io_tree_panic(tree, err);
1170 		prealloc = NULL;
1171 		if (err)
1172 			goto out;
1173 		if (state->end <= end) {
1174 			set_state_bits(tree, state, &bits);
1175 			cache_state(state, cached_state);
1176 			state = clear_state_bit(tree, state, &clear_bits, 0);
1177 			if (last_end == (u64)-1)
1178 				goto out;
1179 			start = last_end + 1;
1180 			if (start < end && state && state->start == start &&
1181 			    !need_resched())
1182 				goto hit_next;
1183 		}
1184 		goto search_again;
1185 	}
1186 	/*
1187 	 * | ---- desired range ---- |
1188 	 *     | state | or               | state |
1189 	 *
1190 	 * There's a hole, we need to insert something in it and
1191 	 * ignore the extent we found.
1192 	 */
1193 	if (state->start > start) {
1194 		u64 this_end;
1195 		if (end < last_start)
1196 			this_end = end;
1197 		else
1198 			this_end = last_start - 1;
1199 
1200 		prealloc = alloc_extent_state_atomic(prealloc);
1201 		if (!prealloc) {
1202 			err = -ENOMEM;
1203 			goto out;
1204 		}
1205 
1206 		/*
1207 		 * Avoid to free 'prealloc' if it can be merged with
1208 		 * the later extent.
1209 		 */
1210 		err = insert_state(tree, prealloc, start, this_end,
1211 				   NULL, NULL, &bits);
1212 		if (err)
1213 			extent_io_tree_panic(tree, err);
1214 		cache_state(prealloc, cached_state);
1215 		prealloc = NULL;
1216 		start = this_end + 1;
1217 		goto search_again;
1218 	}
1219 	/*
1220 	 * | ---- desired range ---- |
1221 	 *                        | state |
1222 	 * We need to split the extent, and set the bit
1223 	 * on the first half
1224 	 */
1225 	if (state->start <= end && state->end > end) {
1226 		prealloc = alloc_extent_state_atomic(prealloc);
1227 		if (!prealloc) {
1228 			err = -ENOMEM;
1229 			goto out;
1230 		}
1231 
1232 		err = split_state(tree, state, prealloc, end + 1);
1233 		if (err)
1234 			extent_io_tree_panic(tree, err);
1235 
1236 		set_state_bits(tree, prealloc, &bits);
1237 		cache_state(prealloc, cached_state);
1238 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1239 		prealloc = NULL;
1240 		goto out;
1241 	}
1242 
1243 	goto search_again;
1244 
1245 out:
1246 	spin_unlock(&tree->lock);
1247 	if (prealloc)
1248 		free_extent_state(prealloc);
1249 
1250 	return err;
1251 
1252 search_again:
1253 	if (start > end)
1254 		goto out;
1255 	spin_unlock(&tree->lock);
1256 	if (mask & __GFP_WAIT)
1257 		cond_resched();
1258 	first_iteration = false;
1259 	goto again;
1260 }
1261 
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264 		     gfp_t mask)
1265 {
1266 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267 			      NULL, mask);
1268 }
1269 
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271 		    unsigned long bits, gfp_t mask)
1272 {
1273 	return set_extent_bit(tree, start, end, bits, NULL,
1274 			      NULL, mask);
1275 }
1276 
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278 		      unsigned long bits, gfp_t mask)
1279 {
1280 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1281 }
1282 
1283 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1284 			struct extent_state **cached_state, gfp_t mask)
1285 {
1286 	return set_extent_bit(tree, start, end,
1287 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1288 			      NULL, cached_state, mask);
1289 }
1290 
1291 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1292 		      struct extent_state **cached_state, gfp_t mask)
1293 {
1294 	return set_extent_bit(tree, start, end,
1295 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1296 			      NULL, cached_state, mask);
1297 }
1298 
1299 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1300 		       gfp_t mask)
1301 {
1302 	return clear_extent_bit(tree, start, end,
1303 				EXTENT_DIRTY | EXTENT_DELALLOC |
1304 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1305 }
1306 
1307 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1308 		     gfp_t mask)
1309 {
1310 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1311 			      NULL, mask);
1312 }
1313 
1314 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1315 			struct extent_state **cached_state, gfp_t mask)
1316 {
1317 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1318 			      cached_state, mask);
1319 }
1320 
1321 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1322 			  struct extent_state **cached_state, gfp_t mask)
1323 {
1324 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1325 				cached_state, mask);
1326 }
1327 
1328 /*
1329  * either insert or lock state struct between start and end use mask to tell
1330  * us if waiting is desired.
1331  */
1332 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1333 		     unsigned long bits, struct extent_state **cached_state)
1334 {
1335 	int err;
1336 	u64 failed_start;
1337 	while (1) {
1338 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1339 				       EXTENT_LOCKED, &failed_start,
1340 				       cached_state, GFP_NOFS);
1341 		if (err == -EEXIST) {
1342 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1343 			start = failed_start;
1344 		} else
1345 			break;
1346 		WARN_ON(start > end);
1347 	}
1348 	return err;
1349 }
1350 
1351 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1352 {
1353 	return lock_extent_bits(tree, start, end, 0, NULL);
1354 }
1355 
1356 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1357 {
1358 	int err;
1359 	u64 failed_start;
1360 
1361 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1362 			       &failed_start, NULL, GFP_NOFS);
1363 	if (err == -EEXIST) {
1364 		if (failed_start > start)
1365 			clear_extent_bit(tree, start, failed_start - 1,
1366 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1367 		return 0;
1368 	}
1369 	return 1;
1370 }
1371 
1372 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1373 			 struct extent_state **cached, gfp_t mask)
1374 {
1375 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1376 				mask);
1377 }
1378 
1379 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1380 {
1381 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1382 				GFP_NOFS);
1383 }
1384 
1385 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1386 {
1387 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1388 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1389 	struct page *page;
1390 
1391 	while (index <= end_index) {
1392 		page = find_get_page(inode->i_mapping, index);
1393 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1394 		clear_page_dirty_for_io(page);
1395 		page_cache_release(page);
1396 		index++;
1397 	}
1398 	return 0;
1399 }
1400 
1401 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1402 {
1403 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1404 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1405 	struct page *page;
1406 
1407 	while (index <= end_index) {
1408 		page = find_get_page(inode->i_mapping, index);
1409 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1410 		account_page_redirty(page);
1411 		__set_page_dirty_nobuffers(page);
1412 		page_cache_release(page);
1413 		index++;
1414 	}
1415 	return 0;
1416 }
1417 
1418 /*
1419  * helper function to set both pages and extents in the tree writeback
1420  */
1421 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1422 {
1423 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1424 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1425 	struct page *page;
1426 
1427 	while (index <= end_index) {
1428 		page = find_get_page(tree->mapping, index);
1429 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1430 		set_page_writeback(page);
1431 		page_cache_release(page);
1432 		index++;
1433 	}
1434 	return 0;
1435 }
1436 
1437 /* find the first state struct with 'bits' set after 'start', and
1438  * return it.  tree->lock must be held.  NULL will returned if
1439  * nothing was found after 'start'
1440  */
1441 static struct extent_state *
1442 find_first_extent_bit_state(struct extent_io_tree *tree,
1443 			    u64 start, unsigned long bits)
1444 {
1445 	struct rb_node *node;
1446 	struct extent_state *state;
1447 
1448 	/*
1449 	 * this search will find all the extents that end after
1450 	 * our range starts.
1451 	 */
1452 	node = tree_search(tree, start);
1453 	if (!node)
1454 		goto out;
1455 
1456 	while (1) {
1457 		state = rb_entry(node, struct extent_state, rb_node);
1458 		if (state->end >= start && (state->state & bits))
1459 			return state;
1460 
1461 		node = rb_next(node);
1462 		if (!node)
1463 			break;
1464 	}
1465 out:
1466 	return NULL;
1467 }
1468 
1469 /*
1470  * find the first offset in the io tree with 'bits' set. zero is
1471  * returned if we find something, and *start_ret and *end_ret are
1472  * set to reflect the state struct that was found.
1473  *
1474  * If nothing was found, 1 is returned. If found something, return 0.
1475  */
1476 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1477 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1478 			  struct extent_state **cached_state)
1479 {
1480 	struct extent_state *state;
1481 	struct rb_node *n;
1482 	int ret = 1;
1483 
1484 	spin_lock(&tree->lock);
1485 	if (cached_state && *cached_state) {
1486 		state = *cached_state;
1487 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1488 			n = rb_next(&state->rb_node);
1489 			while (n) {
1490 				state = rb_entry(n, struct extent_state,
1491 						 rb_node);
1492 				if (state->state & bits)
1493 					goto got_it;
1494 				n = rb_next(n);
1495 			}
1496 			free_extent_state(*cached_state);
1497 			*cached_state = NULL;
1498 			goto out;
1499 		}
1500 		free_extent_state(*cached_state);
1501 		*cached_state = NULL;
1502 	}
1503 
1504 	state = find_first_extent_bit_state(tree, start, bits);
1505 got_it:
1506 	if (state) {
1507 		cache_state_if_flags(state, cached_state, 0);
1508 		*start_ret = state->start;
1509 		*end_ret = state->end;
1510 		ret = 0;
1511 	}
1512 out:
1513 	spin_unlock(&tree->lock);
1514 	return ret;
1515 }
1516 
1517 /*
1518  * find a contiguous range of bytes in the file marked as delalloc, not
1519  * more than 'max_bytes'.  start and end are used to return the range,
1520  *
1521  * 1 is returned if we find something, 0 if nothing was in the tree
1522  */
1523 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1524 					u64 *start, u64 *end, u64 max_bytes,
1525 					struct extent_state **cached_state)
1526 {
1527 	struct rb_node *node;
1528 	struct extent_state *state;
1529 	u64 cur_start = *start;
1530 	u64 found = 0;
1531 	u64 total_bytes = 0;
1532 
1533 	spin_lock(&tree->lock);
1534 
1535 	/*
1536 	 * this search will find all the extents that end after
1537 	 * our range starts.
1538 	 */
1539 	node = tree_search(tree, cur_start);
1540 	if (!node) {
1541 		if (!found)
1542 			*end = (u64)-1;
1543 		goto out;
1544 	}
1545 
1546 	while (1) {
1547 		state = rb_entry(node, struct extent_state, rb_node);
1548 		if (found && (state->start != cur_start ||
1549 			      (state->state & EXTENT_BOUNDARY))) {
1550 			goto out;
1551 		}
1552 		if (!(state->state & EXTENT_DELALLOC)) {
1553 			if (!found)
1554 				*end = state->end;
1555 			goto out;
1556 		}
1557 		if (!found) {
1558 			*start = state->start;
1559 			*cached_state = state;
1560 			atomic_inc(&state->refs);
1561 		}
1562 		found++;
1563 		*end = state->end;
1564 		cur_start = state->end + 1;
1565 		node = rb_next(node);
1566 		total_bytes += state->end - state->start + 1;
1567 		if (total_bytes >= max_bytes)
1568 			break;
1569 		if (!node)
1570 			break;
1571 	}
1572 out:
1573 	spin_unlock(&tree->lock);
1574 	return found;
1575 }
1576 
1577 static noinline void __unlock_for_delalloc(struct inode *inode,
1578 					   struct page *locked_page,
1579 					   u64 start, u64 end)
1580 {
1581 	int ret;
1582 	struct page *pages[16];
1583 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1584 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1585 	unsigned long nr_pages = end_index - index + 1;
1586 	int i;
1587 
1588 	if (index == locked_page->index && end_index == index)
1589 		return;
1590 
1591 	while (nr_pages > 0) {
1592 		ret = find_get_pages_contig(inode->i_mapping, index,
1593 				     min_t(unsigned long, nr_pages,
1594 				     ARRAY_SIZE(pages)), pages);
1595 		for (i = 0; i < ret; i++) {
1596 			if (pages[i] != locked_page)
1597 				unlock_page(pages[i]);
1598 			page_cache_release(pages[i]);
1599 		}
1600 		nr_pages -= ret;
1601 		index += ret;
1602 		cond_resched();
1603 	}
1604 }
1605 
1606 static noinline int lock_delalloc_pages(struct inode *inode,
1607 					struct page *locked_page,
1608 					u64 delalloc_start,
1609 					u64 delalloc_end)
1610 {
1611 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1612 	unsigned long start_index = index;
1613 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1614 	unsigned long pages_locked = 0;
1615 	struct page *pages[16];
1616 	unsigned long nrpages;
1617 	int ret;
1618 	int i;
1619 
1620 	/* the caller is responsible for locking the start index */
1621 	if (index == locked_page->index && index == end_index)
1622 		return 0;
1623 
1624 	/* skip the page at the start index */
1625 	nrpages = end_index - index + 1;
1626 	while (nrpages > 0) {
1627 		ret = find_get_pages_contig(inode->i_mapping, index,
1628 				     min_t(unsigned long,
1629 				     nrpages, ARRAY_SIZE(pages)), pages);
1630 		if (ret == 0) {
1631 			ret = -EAGAIN;
1632 			goto done;
1633 		}
1634 		/* now we have an array of pages, lock them all */
1635 		for (i = 0; i < ret; i++) {
1636 			/*
1637 			 * the caller is taking responsibility for
1638 			 * locked_page
1639 			 */
1640 			if (pages[i] != locked_page) {
1641 				lock_page(pages[i]);
1642 				if (!PageDirty(pages[i]) ||
1643 				    pages[i]->mapping != inode->i_mapping) {
1644 					ret = -EAGAIN;
1645 					unlock_page(pages[i]);
1646 					page_cache_release(pages[i]);
1647 					goto done;
1648 				}
1649 			}
1650 			page_cache_release(pages[i]);
1651 			pages_locked++;
1652 		}
1653 		nrpages -= ret;
1654 		index += ret;
1655 		cond_resched();
1656 	}
1657 	ret = 0;
1658 done:
1659 	if (ret && pages_locked) {
1660 		__unlock_for_delalloc(inode, locked_page,
1661 			      delalloc_start,
1662 			      ((u64)(start_index + pages_locked - 1)) <<
1663 			      PAGE_CACHE_SHIFT);
1664 	}
1665 	return ret;
1666 }
1667 
1668 /*
1669  * find a contiguous range of bytes in the file marked as delalloc, not
1670  * more than 'max_bytes'.  start and end are used to return the range,
1671  *
1672  * 1 is returned if we find something, 0 if nothing was in the tree
1673  */
1674 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1675 				    struct extent_io_tree *tree,
1676 				    struct page *locked_page, u64 *start,
1677 				    u64 *end, u64 max_bytes)
1678 {
1679 	u64 delalloc_start;
1680 	u64 delalloc_end;
1681 	u64 found;
1682 	struct extent_state *cached_state = NULL;
1683 	int ret;
1684 	int loops = 0;
1685 
1686 again:
1687 	/* step one, find a bunch of delalloc bytes starting at start */
1688 	delalloc_start = *start;
1689 	delalloc_end = 0;
1690 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1691 				    max_bytes, &cached_state);
1692 	if (!found || delalloc_end <= *start) {
1693 		*start = delalloc_start;
1694 		*end = delalloc_end;
1695 		free_extent_state(cached_state);
1696 		return 0;
1697 	}
1698 
1699 	/*
1700 	 * start comes from the offset of locked_page.  We have to lock
1701 	 * pages in order, so we can't process delalloc bytes before
1702 	 * locked_page
1703 	 */
1704 	if (delalloc_start < *start)
1705 		delalloc_start = *start;
1706 
1707 	/*
1708 	 * make sure to limit the number of pages we try to lock down
1709 	 */
1710 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1711 		delalloc_end = delalloc_start + max_bytes - 1;
1712 
1713 	/* step two, lock all the pages after the page that has start */
1714 	ret = lock_delalloc_pages(inode, locked_page,
1715 				  delalloc_start, delalloc_end);
1716 	if (ret == -EAGAIN) {
1717 		/* some of the pages are gone, lets avoid looping by
1718 		 * shortening the size of the delalloc range we're searching
1719 		 */
1720 		free_extent_state(cached_state);
1721 		cached_state = NULL;
1722 		if (!loops) {
1723 			max_bytes = PAGE_CACHE_SIZE;
1724 			loops = 1;
1725 			goto again;
1726 		} else {
1727 			found = 0;
1728 			goto out_failed;
1729 		}
1730 	}
1731 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1732 
1733 	/* step three, lock the state bits for the whole range */
1734 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1735 
1736 	/* then test to make sure it is all still delalloc */
1737 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1738 			     EXTENT_DELALLOC, 1, cached_state);
1739 	if (!ret) {
1740 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1741 				     &cached_state, GFP_NOFS);
1742 		__unlock_for_delalloc(inode, locked_page,
1743 			      delalloc_start, delalloc_end);
1744 		cond_resched();
1745 		goto again;
1746 	}
1747 	free_extent_state(cached_state);
1748 	*start = delalloc_start;
1749 	*end = delalloc_end;
1750 out_failed:
1751 	return found;
1752 }
1753 
1754 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1755 				 struct page *locked_page,
1756 				 unsigned long clear_bits,
1757 				 unsigned long page_ops)
1758 {
1759 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1760 	int ret;
1761 	struct page *pages[16];
1762 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1763 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1764 	unsigned long nr_pages = end_index - index + 1;
1765 	int i;
1766 
1767 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1768 	if (page_ops == 0)
1769 		return 0;
1770 
1771 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1772 		mapping_set_error(inode->i_mapping, -EIO);
1773 
1774 	while (nr_pages > 0) {
1775 		ret = find_get_pages_contig(inode->i_mapping, index,
1776 				     min_t(unsigned long,
1777 				     nr_pages, ARRAY_SIZE(pages)), pages);
1778 		for (i = 0; i < ret; i++) {
1779 
1780 			if (page_ops & PAGE_SET_PRIVATE2)
1781 				SetPagePrivate2(pages[i]);
1782 
1783 			if (pages[i] == locked_page) {
1784 				page_cache_release(pages[i]);
1785 				continue;
1786 			}
1787 			if (page_ops & PAGE_CLEAR_DIRTY)
1788 				clear_page_dirty_for_io(pages[i]);
1789 			if (page_ops & PAGE_SET_WRITEBACK)
1790 				set_page_writeback(pages[i]);
1791 			if (page_ops & PAGE_SET_ERROR)
1792 				SetPageError(pages[i]);
1793 			if (page_ops & PAGE_END_WRITEBACK)
1794 				end_page_writeback(pages[i]);
1795 			if (page_ops & PAGE_UNLOCK)
1796 				unlock_page(pages[i]);
1797 			page_cache_release(pages[i]);
1798 		}
1799 		nr_pages -= ret;
1800 		index += ret;
1801 		cond_resched();
1802 	}
1803 	return 0;
1804 }
1805 
1806 /*
1807  * count the number of bytes in the tree that have a given bit(s)
1808  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1809  * cached.  The total number found is returned.
1810  */
1811 u64 count_range_bits(struct extent_io_tree *tree,
1812 		     u64 *start, u64 search_end, u64 max_bytes,
1813 		     unsigned long bits, int contig)
1814 {
1815 	struct rb_node *node;
1816 	struct extent_state *state;
1817 	u64 cur_start = *start;
1818 	u64 total_bytes = 0;
1819 	u64 last = 0;
1820 	int found = 0;
1821 
1822 	if (WARN_ON(search_end <= cur_start))
1823 		return 0;
1824 
1825 	spin_lock(&tree->lock);
1826 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1827 		total_bytes = tree->dirty_bytes;
1828 		goto out;
1829 	}
1830 	/*
1831 	 * this search will find all the extents that end after
1832 	 * our range starts.
1833 	 */
1834 	node = tree_search(tree, cur_start);
1835 	if (!node)
1836 		goto out;
1837 
1838 	while (1) {
1839 		state = rb_entry(node, struct extent_state, rb_node);
1840 		if (state->start > search_end)
1841 			break;
1842 		if (contig && found && state->start > last + 1)
1843 			break;
1844 		if (state->end >= cur_start && (state->state & bits) == bits) {
1845 			total_bytes += min(search_end, state->end) + 1 -
1846 				       max(cur_start, state->start);
1847 			if (total_bytes >= max_bytes)
1848 				break;
1849 			if (!found) {
1850 				*start = max(cur_start, state->start);
1851 				found = 1;
1852 			}
1853 			last = state->end;
1854 		} else if (contig && found) {
1855 			break;
1856 		}
1857 		node = rb_next(node);
1858 		if (!node)
1859 			break;
1860 	}
1861 out:
1862 	spin_unlock(&tree->lock);
1863 	return total_bytes;
1864 }
1865 
1866 /*
1867  * set the private field for a given byte offset in the tree.  If there isn't
1868  * an extent_state there already, this does nothing.
1869  */
1870 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1871 {
1872 	struct rb_node *node;
1873 	struct extent_state *state;
1874 	int ret = 0;
1875 
1876 	spin_lock(&tree->lock);
1877 	/*
1878 	 * this search will find all the extents that end after
1879 	 * our range starts.
1880 	 */
1881 	node = tree_search(tree, start);
1882 	if (!node) {
1883 		ret = -ENOENT;
1884 		goto out;
1885 	}
1886 	state = rb_entry(node, struct extent_state, rb_node);
1887 	if (state->start != start) {
1888 		ret = -ENOENT;
1889 		goto out;
1890 	}
1891 	state->private = private;
1892 out:
1893 	spin_unlock(&tree->lock);
1894 	return ret;
1895 }
1896 
1897 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1898 {
1899 	struct rb_node *node;
1900 	struct extent_state *state;
1901 	int ret = 0;
1902 
1903 	spin_lock(&tree->lock);
1904 	/*
1905 	 * this search will find all the extents that end after
1906 	 * our range starts.
1907 	 */
1908 	node = tree_search(tree, start);
1909 	if (!node) {
1910 		ret = -ENOENT;
1911 		goto out;
1912 	}
1913 	state = rb_entry(node, struct extent_state, rb_node);
1914 	if (state->start != start) {
1915 		ret = -ENOENT;
1916 		goto out;
1917 	}
1918 	*private = state->private;
1919 out:
1920 	spin_unlock(&tree->lock);
1921 	return ret;
1922 }
1923 
1924 /*
1925  * searches a range in the state tree for a given mask.
1926  * If 'filled' == 1, this returns 1 only if every extent in the tree
1927  * has the bits set.  Otherwise, 1 is returned if any bit in the
1928  * range is found set.
1929  */
1930 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1931 		   unsigned long bits, int filled, struct extent_state *cached)
1932 {
1933 	struct extent_state *state = NULL;
1934 	struct rb_node *node;
1935 	int bitset = 0;
1936 
1937 	spin_lock(&tree->lock);
1938 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1939 	    cached->end > start)
1940 		node = &cached->rb_node;
1941 	else
1942 		node = tree_search(tree, start);
1943 	while (node && start <= end) {
1944 		state = rb_entry(node, struct extent_state, rb_node);
1945 
1946 		if (filled && state->start > start) {
1947 			bitset = 0;
1948 			break;
1949 		}
1950 
1951 		if (state->start > end)
1952 			break;
1953 
1954 		if (state->state & bits) {
1955 			bitset = 1;
1956 			if (!filled)
1957 				break;
1958 		} else if (filled) {
1959 			bitset = 0;
1960 			break;
1961 		}
1962 
1963 		if (state->end == (u64)-1)
1964 			break;
1965 
1966 		start = state->end + 1;
1967 		if (start > end)
1968 			break;
1969 		node = rb_next(node);
1970 		if (!node) {
1971 			if (filled)
1972 				bitset = 0;
1973 			break;
1974 		}
1975 	}
1976 	spin_unlock(&tree->lock);
1977 	return bitset;
1978 }
1979 
1980 /*
1981  * helper function to set a given page up to date if all the
1982  * extents in the tree for that page are up to date
1983  */
1984 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1985 {
1986 	u64 start = page_offset(page);
1987 	u64 end = start + PAGE_CACHE_SIZE - 1;
1988 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1989 		SetPageUptodate(page);
1990 }
1991 
1992 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1993 {
1994 	int ret;
1995 	int err = 0;
1996 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1997 
1998 	set_state_private(failure_tree, rec->start, 0);
1999 	ret = clear_extent_bits(failure_tree, rec->start,
2000 				rec->start + rec->len - 1,
2001 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2002 	if (ret)
2003 		err = ret;
2004 
2005 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2006 				rec->start + rec->len - 1,
2007 				EXTENT_DAMAGED, GFP_NOFS);
2008 	if (ret && !err)
2009 		err = ret;
2010 
2011 	kfree(rec);
2012 	return err;
2013 }
2014 
2015 /*
2016  * this bypasses the standard btrfs submit functions deliberately, as
2017  * the standard behavior is to write all copies in a raid setup. here we only
2018  * want to write the one bad copy. so we do the mapping for ourselves and issue
2019  * submit_bio directly.
2020  * to avoid any synchronization issues, wait for the data after writing, which
2021  * actually prevents the read that triggered the error from finishing.
2022  * currently, there can be no more than two copies of every data bit. thus,
2023  * exactly one rewrite is required.
2024  */
2025 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2026 		      struct page *page, unsigned int pg_offset, int mirror_num)
2027 {
2028 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2029 	struct bio *bio;
2030 	struct btrfs_device *dev;
2031 	u64 map_length = 0;
2032 	u64 sector;
2033 	struct btrfs_bio *bbio = NULL;
2034 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2035 	int ret;
2036 
2037 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2038 	BUG_ON(!mirror_num);
2039 
2040 	/* we can't repair anything in raid56 yet */
2041 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2042 		return 0;
2043 
2044 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2045 	if (!bio)
2046 		return -EIO;
2047 	bio->bi_iter.bi_size = 0;
2048 	map_length = length;
2049 
2050 	ret = btrfs_map_block(fs_info, WRITE, logical,
2051 			      &map_length, &bbio, mirror_num);
2052 	if (ret) {
2053 		bio_put(bio);
2054 		return -EIO;
2055 	}
2056 	BUG_ON(mirror_num != bbio->mirror_num);
2057 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2058 	bio->bi_iter.bi_sector = sector;
2059 	dev = bbio->stripes[mirror_num-1].dev;
2060 	kfree(bbio);
2061 	if (!dev || !dev->bdev || !dev->writeable) {
2062 		bio_put(bio);
2063 		return -EIO;
2064 	}
2065 	bio->bi_bdev = dev->bdev;
2066 	bio_add_page(bio, page, length, pg_offset);
2067 
2068 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2069 		/* try to remap that extent elsewhere? */
2070 		bio_put(bio);
2071 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2072 		return -EIO;
2073 	}
2074 
2075 	printk_ratelimited_in_rcu(KERN_INFO
2076 				  "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2077 				  btrfs_ino(inode), start,
2078 				  rcu_str_deref(dev->name), sector);
2079 	bio_put(bio);
2080 	return 0;
2081 }
2082 
2083 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2084 			 int mirror_num)
2085 {
2086 	u64 start = eb->start;
2087 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2088 	int ret = 0;
2089 
2090 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2091 		return -EROFS;
2092 
2093 	for (i = 0; i < num_pages; i++) {
2094 		struct page *p = eb->pages[i];
2095 
2096 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2097 					PAGE_CACHE_SIZE, start, p,
2098 					start - page_offset(p), mirror_num);
2099 		if (ret)
2100 			break;
2101 		start += PAGE_CACHE_SIZE;
2102 	}
2103 
2104 	return ret;
2105 }
2106 
2107 /*
2108  * each time an IO finishes, we do a fast check in the IO failure tree
2109  * to see if we need to process or clean up an io_failure_record
2110  */
2111 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2112 		     unsigned int pg_offset)
2113 {
2114 	u64 private;
2115 	u64 private_failure;
2116 	struct io_failure_record *failrec;
2117 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2118 	struct extent_state *state;
2119 	int num_copies;
2120 	int ret;
2121 
2122 	private = 0;
2123 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2124 				(u64)-1, 1, EXTENT_DIRTY, 0);
2125 	if (!ret)
2126 		return 0;
2127 
2128 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2129 				&private_failure);
2130 	if (ret)
2131 		return 0;
2132 
2133 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2134 	BUG_ON(!failrec->this_mirror);
2135 
2136 	if (failrec->in_validation) {
2137 		/* there was no real error, just free the record */
2138 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2139 			 failrec->start);
2140 		goto out;
2141 	}
2142 	if (fs_info->sb->s_flags & MS_RDONLY)
2143 		goto out;
2144 
2145 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2146 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2147 					    failrec->start,
2148 					    EXTENT_LOCKED);
2149 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2150 
2151 	if (state && state->start <= failrec->start &&
2152 	    state->end >= failrec->start + failrec->len - 1) {
2153 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2154 					      failrec->len);
2155 		if (num_copies > 1)  {
2156 			repair_io_failure(inode, start, failrec->len,
2157 					  failrec->logical, page,
2158 					  pg_offset, failrec->failed_mirror);
2159 		}
2160 	}
2161 
2162 out:
2163 	free_io_failure(inode, failrec);
2164 
2165 	return 0;
2166 }
2167 
2168 /*
2169  * Can be called when
2170  * - hold extent lock
2171  * - under ordered extent
2172  * - the inode is freeing
2173  */
2174 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2175 {
2176 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2177 	struct io_failure_record *failrec;
2178 	struct extent_state *state, *next;
2179 
2180 	if (RB_EMPTY_ROOT(&failure_tree->state))
2181 		return;
2182 
2183 	spin_lock(&failure_tree->lock);
2184 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2185 	while (state) {
2186 		if (state->start > end)
2187 			break;
2188 
2189 		ASSERT(state->end <= end);
2190 
2191 		next = next_state(state);
2192 
2193 		failrec = (struct io_failure_record *)(unsigned long)state->private;
2194 		free_extent_state(state);
2195 		kfree(failrec);
2196 
2197 		state = next;
2198 	}
2199 	spin_unlock(&failure_tree->lock);
2200 }
2201 
2202 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2203 				struct io_failure_record **failrec_ret)
2204 {
2205 	struct io_failure_record *failrec;
2206 	u64 private;
2207 	struct extent_map *em;
2208 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2209 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2210 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2211 	int ret;
2212 	u64 logical;
2213 
2214 	ret = get_state_private(failure_tree, start, &private);
2215 	if (ret) {
2216 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2217 		if (!failrec)
2218 			return -ENOMEM;
2219 
2220 		failrec->start = start;
2221 		failrec->len = end - start + 1;
2222 		failrec->this_mirror = 0;
2223 		failrec->bio_flags = 0;
2224 		failrec->in_validation = 0;
2225 
2226 		read_lock(&em_tree->lock);
2227 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2228 		if (!em) {
2229 			read_unlock(&em_tree->lock);
2230 			kfree(failrec);
2231 			return -EIO;
2232 		}
2233 
2234 		if (em->start > start || em->start + em->len <= start) {
2235 			free_extent_map(em);
2236 			em = NULL;
2237 		}
2238 		read_unlock(&em_tree->lock);
2239 		if (!em) {
2240 			kfree(failrec);
2241 			return -EIO;
2242 		}
2243 
2244 		logical = start - em->start;
2245 		logical = em->block_start + logical;
2246 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2247 			logical = em->block_start;
2248 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2249 			extent_set_compress_type(&failrec->bio_flags,
2250 						 em->compress_type);
2251 		}
2252 
2253 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2254 			 logical, start, failrec->len);
2255 
2256 		failrec->logical = logical;
2257 		free_extent_map(em);
2258 
2259 		/* set the bits in the private failure tree */
2260 		ret = set_extent_bits(failure_tree, start, end,
2261 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2262 		if (ret >= 0)
2263 			ret = set_state_private(failure_tree, start,
2264 						(u64)(unsigned long)failrec);
2265 		/* set the bits in the inode's tree */
2266 		if (ret >= 0)
2267 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2268 						GFP_NOFS);
2269 		if (ret < 0) {
2270 			kfree(failrec);
2271 			return ret;
2272 		}
2273 	} else {
2274 		failrec = (struct io_failure_record *)(unsigned long)private;
2275 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2276 			 failrec->logical, failrec->start, failrec->len,
2277 			 failrec->in_validation);
2278 		/*
2279 		 * when data can be on disk more than twice, add to failrec here
2280 		 * (e.g. with a list for failed_mirror) to make
2281 		 * clean_io_failure() clean all those errors at once.
2282 		 */
2283 	}
2284 
2285 	*failrec_ret = failrec;
2286 
2287 	return 0;
2288 }
2289 
2290 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2291 			   struct io_failure_record *failrec, int failed_mirror)
2292 {
2293 	int num_copies;
2294 
2295 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2296 				      failrec->logical, failrec->len);
2297 	if (num_copies == 1) {
2298 		/*
2299 		 * we only have a single copy of the data, so don't bother with
2300 		 * all the retry and error correction code that follows. no
2301 		 * matter what the error is, it is very likely to persist.
2302 		 */
2303 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2304 			 num_copies, failrec->this_mirror, failed_mirror);
2305 		return 0;
2306 	}
2307 
2308 	/*
2309 	 * there are two premises:
2310 	 *	a) deliver good data to the caller
2311 	 *	b) correct the bad sectors on disk
2312 	 */
2313 	if (failed_bio->bi_vcnt > 1) {
2314 		/*
2315 		 * to fulfill b), we need to know the exact failing sectors, as
2316 		 * we don't want to rewrite any more than the failed ones. thus,
2317 		 * we need separate read requests for the failed bio
2318 		 *
2319 		 * if the following BUG_ON triggers, our validation request got
2320 		 * merged. we need separate requests for our algorithm to work.
2321 		 */
2322 		BUG_ON(failrec->in_validation);
2323 		failrec->in_validation = 1;
2324 		failrec->this_mirror = failed_mirror;
2325 	} else {
2326 		/*
2327 		 * we're ready to fulfill a) and b) alongside. get a good copy
2328 		 * of the failed sector and if we succeed, we have setup
2329 		 * everything for repair_io_failure to do the rest for us.
2330 		 */
2331 		if (failrec->in_validation) {
2332 			BUG_ON(failrec->this_mirror != failed_mirror);
2333 			failrec->in_validation = 0;
2334 			failrec->this_mirror = 0;
2335 		}
2336 		failrec->failed_mirror = failed_mirror;
2337 		failrec->this_mirror++;
2338 		if (failrec->this_mirror == failed_mirror)
2339 			failrec->this_mirror++;
2340 	}
2341 
2342 	if (failrec->this_mirror > num_copies) {
2343 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2344 			 num_copies, failrec->this_mirror, failed_mirror);
2345 		return 0;
2346 	}
2347 
2348 	return 1;
2349 }
2350 
2351 
2352 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2353 				    struct io_failure_record *failrec,
2354 				    struct page *page, int pg_offset, int icsum,
2355 				    bio_end_io_t *endio_func, void *data)
2356 {
2357 	struct bio *bio;
2358 	struct btrfs_io_bio *btrfs_failed_bio;
2359 	struct btrfs_io_bio *btrfs_bio;
2360 
2361 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2362 	if (!bio)
2363 		return NULL;
2364 
2365 	bio->bi_end_io = endio_func;
2366 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2367 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2368 	bio->bi_iter.bi_size = 0;
2369 	bio->bi_private = data;
2370 
2371 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2372 	if (btrfs_failed_bio->csum) {
2373 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2374 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2375 
2376 		btrfs_bio = btrfs_io_bio(bio);
2377 		btrfs_bio->csum = btrfs_bio->csum_inline;
2378 		icsum *= csum_size;
2379 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2380 		       csum_size);
2381 	}
2382 
2383 	bio_add_page(bio, page, failrec->len, pg_offset);
2384 
2385 	return bio;
2386 }
2387 
2388 /*
2389  * this is a generic handler for readpage errors (default
2390  * readpage_io_failed_hook). if other copies exist, read those and write back
2391  * good data to the failed position. does not investigate in remapping the
2392  * failed extent elsewhere, hoping the device will be smart enough to do this as
2393  * needed
2394  */
2395 
2396 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2397 			      struct page *page, u64 start, u64 end,
2398 			      int failed_mirror)
2399 {
2400 	struct io_failure_record *failrec;
2401 	struct inode *inode = page->mapping->host;
2402 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2403 	struct bio *bio;
2404 	int read_mode;
2405 	int ret;
2406 
2407 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2408 
2409 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2410 	if (ret)
2411 		return ret;
2412 
2413 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2414 	if (!ret) {
2415 		free_io_failure(inode, failrec);
2416 		return -EIO;
2417 	}
2418 
2419 	if (failed_bio->bi_vcnt > 1)
2420 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2421 	else
2422 		read_mode = READ_SYNC;
2423 
2424 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2425 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2426 				      start - page_offset(page),
2427 				      (int)phy_offset, failed_bio->bi_end_io,
2428 				      NULL);
2429 	if (!bio) {
2430 		free_io_failure(inode, failrec);
2431 		return -EIO;
2432 	}
2433 
2434 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2435 		 read_mode, failrec->this_mirror, failrec->in_validation);
2436 
2437 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2438 					 failrec->this_mirror,
2439 					 failrec->bio_flags, 0);
2440 	if (ret) {
2441 		free_io_failure(inode, failrec);
2442 		bio_put(bio);
2443 	}
2444 
2445 	return ret;
2446 }
2447 
2448 /* lots and lots of room for performance fixes in the end_bio funcs */
2449 
2450 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2451 {
2452 	int uptodate = (err == 0);
2453 	struct extent_io_tree *tree;
2454 	int ret = 0;
2455 
2456 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2457 
2458 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2459 		ret = tree->ops->writepage_end_io_hook(page, start,
2460 					       end, NULL, uptodate);
2461 		if (ret)
2462 			uptodate = 0;
2463 	}
2464 
2465 	if (!uptodate) {
2466 		ClearPageUptodate(page);
2467 		SetPageError(page);
2468 		ret = ret < 0 ? ret : -EIO;
2469 		mapping_set_error(page->mapping, ret);
2470 	}
2471 	return 0;
2472 }
2473 
2474 /*
2475  * after a writepage IO is done, we need to:
2476  * clear the uptodate bits on error
2477  * clear the writeback bits in the extent tree for this IO
2478  * end_page_writeback if the page has no more pending IO
2479  *
2480  * Scheduling is not allowed, so the extent state tree is expected
2481  * to have one and only one object corresponding to this IO.
2482  */
2483 static void end_bio_extent_writepage(struct bio *bio, int err)
2484 {
2485 	struct bio_vec *bvec;
2486 	u64 start;
2487 	u64 end;
2488 	int i;
2489 
2490 	bio_for_each_segment_all(bvec, bio, i) {
2491 		struct page *page = bvec->bv_page;
2492 
2493 		/* We always issue full-page reads, but if some block
2494 		 * in a page fails to read, blk_update_request() will
2495 		 * advance bv_offset and adjust bv_len to compensate.
2496 		 * Print a warning for nonzero offsets, and an error
2497 		 * if they don't add up to a full page.  */
2498 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2499 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2500 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2501 				   "partial page write in btrfs with offset %u and length %u",
2502 					bvec->bv_offset, bvec->bv_len);
2503 			else
2504 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2505 				   "incomplete page write in btrfs with offset %u and "
2506 				   "length %u",
2507 					bvec->bv_offset, bvec->bv_len);
2508 		}
2509 
2510 		start = page_offset(page);
2511 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2512 
2513 		if (end_extent_writepage(page, err, start, end))
2514 			continue;
2515 
2516 		end_page_writeback(page);
2517 	}
2518 
2519 	bio_put(bio);
2520 }
2521 
2522 static void
2523 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2524 			      int uptodate)
2525 {
2526 	struct extent_state *cached = NULL;
2527 	u64 end = start + len - 1;
2528 
2529 	if (uptodate && tree->track_uptodate)
2530 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2531 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2532 }
2533 
2534 /*
2535  * after a readpage IO is done, we need to:
2536  * clear the uptodate bits on error
2537  * set the uptodate bits if things worked
2538  * set the page up to date if all extents in the tree are uptodate
2539  * clear the lock bit in the extent tree
2540  * unlock the page if there are no other extents locked for it
2541  *
2542  * Scheduling is not allowed, so the extent state tree is expected
2543  * to have one and only one object corresponding to this IO.
2544  */
2545 static void end_bio_extent_readpage(struct bio *bio, int err)
2546 {
2547 	struct bio_vec *bvec;
2548 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2549 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2550 	struct extent_io_tree *tree;
2551 	u64 offset = 0;
2552 	u64 start;
2553 	u64 end;
2554 	u64 len;
2555 	u64 extent_start = 0;
2556 	u64 extent_len = 0;
2557 	int mirror;
2558 	int ret;
2559 	int i;
2560 
2561 	if (err)
2562 		uptodate = 0;
2563 
2564 	bio_for_each_segment_all(bvec, bio, i) {
2565 		struct page *page = bvec->bv_page;
2566 		struct inode *inode = page->mapping->host;
2567 
2568 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2569 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
2570 			 io_bio->mirror_num);
2571 		tree = &BTRFS_I(inode)->io_tree;
2572 
2573 		/* We always issue full-page reads, but if some block
2574 		 * in a page fails to read, blk_update_request() will
2575 		 * advance bv_offset and adjust bv_len to compensate.
2576 		 * Print a warning for nonzero offsets, and an error
2577 		 * if they don't add up to a full page.  */
2578 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2579 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2580 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2581 				   "partial page read in btrfs with offset %u and length %u",
2582 					bvec->bv_offset, bvec->bv_len);
2583 			else
2584 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2585 				   "incomplete page read in btrfs with offset %u and "
2586 				   "length %u",
2587 					bvec->bv_offset, bvec->bv_len);
2588 		}
2589 
2590 		start = page_offset(page);
2591 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2592 		len = bvec->bv_len;
2593 
2594 		mirror = io_bio->mirror_num;
2595 		if (likely(uptodate && tree->ops &&
2596 			   tree->ops->readpage_end_io_hook)) {
2597 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2598 							      page, start, end,
2599 							      mirror);
2600 			if (ret)
2601 				uptodate = 0;
2602 			else
2603 				clean_io_failure(inode, start, page, 0);
2604 		}
2605 
2606 		if (likely(uptodate))
2607 			goto readpage_ok;
2608 
2609 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2610 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2611 			if (!ret && !err &&
2612 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2613 				uptodate = 1;
2614 		} else {
2615 			/*
2616 			 * The generic bio_readpage_error handles errors the
2617 			 * following way: If possible, new read requests are
2618 			 * created and submitted and will end up in
2619 			 * end_bio_extent_readpage as well (if we're lucky, not
2620 			 * in the !uptodate case). In that case it returns 0 and
2621 			 * we just go on with the next page in our bio. If it
2622 			 * can't handle the error it will return -EIO and we
2623 			 * remain responsible for that page.
2624 			 */
2625 			ret = bio_readpage_error(bio, offset, page, start, end,
2626 						 mirror);
2627 			if (ret == 0) {
2628 				uptodate =
2629 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2630 				if (err)
2631 					uptodate = 0;
2632 				offset += len;
2633 				continue;
2634 			}
2635 		}
2636 readpage_ok:
2637 		if (likely(uptodate)) {
2638 			loff_t i_size = i_size_read(inode);
2639 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2640 			unsigned off;
2641 
2642 			/* Zero out the end if this page straddles i_size */
2643 			off = i_size & (PAGE_CACHE_SIZE-1);
2644 			if (page->index == end_index && off)
2645 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
2646 			SetPageUptodate(page);
2647 		} else {
2648 			ClearPageUptodate(page);
2649 			SetPageError(page);
2650 		}
2651 		unlock_page(page);
2652 		offset += len;
2653 
2654 		if (unlikely(!uptodate)) {
2655 			if (extent_len) {
2656 				endio_readpage_release_extent(tree,
2657 							      extent_start,
2658 							      extent_len, 1);
2659 				extent_start = 0;
2660 				extent_len = 0;
2661 			}
2662 			endio_readpage_release_extent(tree, start,
2663 						      end - start + 1, 0);
2664 		} else if (!extent_len) {
2665 			extent_start = start;
2666 			extent_len = end + 1 - start;
2667 		} else if (extent_start + extent_len == start) {
2668 			extent_len += end + 1 - start;
2669 		} else {
2670 			endio_readpage_release_extent(tree, extent_start,
2671 						      extent_len, uptodate);
2672 			extent_start = start;
2673 			extent_len = end + 1 - start;
2674 		}
2675 	}
2676 
2677 	if (extent_len)
2678 		endio_readpage_release_extent(tree, extent_start, extent_len,
2679 					      uptodate);
2680 	if (io_bio->end_io)
2681 		io_bio->end_io(io_bio, err);
2682 	bio_put(bio);
2683 }
2684 
2685 /*
2686  * this allocates from the btrfs_bioset.  We're returning a bio right now
2687  * but you can call btrfs_io_bio for the appropriate container_of magic
2688  */
2689 struct bio *
2690 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2691 		gfp_t gfp_flags)
2692 {
2693 	struct btrfs_io_bio *btrfs_bio;
2694 	struct bio *bio;
2695 
2696 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2697 
2698 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2699 		while (!bio && (nr_vecs /= 2)) {
2700 			bio = bio_alloc_bioset(gfp_flags,
2701 					       nr_vecs, btrfs_bioset);
2702 		}
2703 	}
2704 
2705 	if (bio) {
2706 		bio->bi_bdev = bdev;
2707 		bio->bi_iter.bi_sector = first_sector;
2708 		btrfs_bio = btrfs_io_bio(bio);
2709 		btrfs_bio->csum = NULL;
2710 		btrfs_bio->csum_allocated = NULL;
2711 		btrfs_bio->end_io = NULL;
2712 	}
2713 	return bio;
2714 }
2715 
2716 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2717 {
2718 	struct btrfs_io_bio *btrfs_bio;
2719 	struct bio *new;
2720 
2721 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2722 	if (new) {
2723 		btrfs_bio = btrfs_io_bio(new);
2724 		btrfs_bio->csum = NULL;
2725 		btrfs_bio->csum_allocated = NULL;
2726 		btrfs_bio->end_io = NULL;
2727 	}
2728 	return new;
2729 }
2730 
2731 /* this also allocates from the btrfs_bioset */
2732 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2733 {
2734 	struct btrfs_io_bio *btrfs_bio;
2735 	struct bio *bio;
2736 
2737 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2738 	if (bio) {
2739 		btrfs_bio = btrfs_io_bio(bio);
2740 		btrfs_bio->csum = NULL;
2741 		btrfs_bio->csum_allocated = NULL;
2742 		btrfs_bio->end_io = NULL;
2743 	}
2744 	return bio;
2745 }
2746 
2747 
2748 static int __must_check submit_one_bio(int rw, struct bio *bio,
2749 				       int mirror_num, unsigned long bio_flags)
2750 {
2751 	int ret = 0;
2752 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2753 	struct page *page = bvec->bv_page;
2754 	struct extent_io_tree *tree = bio->bi_private;
2755 	u64 start;
2756 
2757 	start = page_offset(page) + bvec->bv_offset;
2758 
2759 	bio->bi_private = NULL;
2760 
2761 	bio_get(bio);
2762 
2763 	if (tree->ops && tree->ops->submit_bio_hook)
2764 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2765 					   mirror_num, bio_flags, start);
2766 	else
2767 		btrfsic_submit_bio(rw, bio);
2768 
2769 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2770 		ret = -EOPNOTSUPP;
2771 	bio_put(bio);
2772 	return ret;
2773 }
2774 
2775 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2776 		     unsigned long offset, size_t size, struct bio *bio,
2777 		     unsigned long bio_flags)
2778 {
2779 	int ret = 0;
2780 	if (tree->ops && tree->ops->merge_bio_hook)
2781 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2782 						bio_flags);
2783 	BUG_ON(ret < 0);
2784 	return ret;
2785 
2786 }
2787 
2788 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2789 			      struct page *page, sector_t sector,
2790 			      size_t size, unsigned long offset,
2791 			      struct block_device *bdev,
2792 			      struct bio **bio_ret,
2793 			      unsigned long max_pages,
2794 			      bio_end_io_t end_io_func,
2795 			      int mirror_num,
2796 			      unsigned long prev_bio_flags,
2797 			      unsigned long bio_flags)
2798 {
2799 	int ret = 0;
2800 	struct bio *bio;
2801 	int nr;
2802 	int contig = 0;
2803 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2804 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2805 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2806 
2807 	if (bio_ret && *bio_ret) {
2808 		bio = *bio_ret;
2809 		if (old_compressed)
2810 			contig = bio->bi_iter.bi_sector == sector;
2811 		else
2812 			contig = bio_end_sector(bio) == sector;
2813 
2814 		if (prev_bio_flags != bio_flags || !contig ||
2815 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2816 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2817 			ret = submit_one_bio(rw, bio, mirror_num,
2818 					     prev_bio_flags);
2819 			if (ret < 0)
2820 				return ret;
2821 			bio = NULL;
2822 		} else {
2823 			return 0;
2824 		}
2825 	}
2826 	if (this_compressed)
2827 		nr = BIO_MAX_PAGES;
2828 	else
2829 		nr = bio_get_nr_vecs(bdev);
2830 
2831 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2832 	if (!bio)
2833 		return -ENOMEM;
2834 
2835 	bio_add_page(bio, page, page_size, offset);
2836 	bio->bi_end_io = end_io_func;
2837 	bio->bi_private = tree;
2838 
2839 	if (bio_ret)
2840 		*bio_ret = bio;
2841 	else
2842 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2843 
2844 	return ret;
2845 }
2846 
2847 static void attach_extent_buffer_page(struct extent_buffer *eb,
2848 				      struct page *page)
2849 {
2850 	if (!PagePrivate(page)) {
2851 		SetPagePrivate(page);
2852 		page_cache_get(page);
2853 		set_page_private(page, (unsigned long)eb);
2854 	} else {
2855 		WARN_ON(page->private != (unsigned long)eb);
2856 	}
2857 }
2858 
2859 void set_page_extent_mapped(struct page *page)
2860 {
2861 	if (!PagePrivate(page)) {
2862 		SetPagePrivate(page);
2863 		page_cache_get(page);
2864 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2865 	}
2866 }
2867 
2868 static struct extent_map *
2869 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2870 		 u64 start, u64 len, get_extent_t *get_extent,
2871 		 struct extent_map **em_cached)
2872 {
2873 	struct extent_map *em;
2874 
2875 	if (em_cached && *em_cached) {
2876 		em = *em_cached;
2877 		if (extent_map_in_tree(em) && start >= em->start &&
2878 		    start < extent_map_end(em)) {
2879 			atomic_inc(&em->refs);
2880 			return em;
2881 		}
2882 
2883 		free_extent_map(em);
2884 		*em_cached = NULL;
2885 	}
2886 
2887 	em = get_extent(inode, page, pg_offset, start, len, 0);
2888 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2889 		BUG_ON(*em_cached);
2890 		atomic_inc(&em->refs);
2891 		*em_cached = em;
2892 	}
2893 	return em;
2894 }
2895 /*
2896  * basic readpage implementation.  Locked extent state structs are inserted
2897  * into the tree that are removed when the IO is done (by the end_io
2898  * handlers)
2899  * XXX JDM: This needs looking at to ensure proper page locking
2900  */
2901 static int __do_readpage(struct extent_io_tree *tree,
2902 			 struct page *page,
2903 			 get_extent_t *get_extent,
2904 			 struct extent_map **em_cached,
2905 			 struct bio **bio, int mirror_num,
2906 			 unsigned long *bio_flags, int rw)
2907 {
2908 	struct inode *inode = page->mapping->host;
2909 	u64 start = page_offset(page);
2910 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2911 	u64 end;
2912 	u64 cur = start;
2913 	u64 extent_offset;
2914 	u64 last_byte = i_size_read(inode);
2915 	u64 block_start;
2916 	u64 cur_end;
2917 	sector_t sector;
2918 	struct extent_map *em;
2919 	struct block_device *bdev;
2920 	int ret;
2921 	int nr = 0;
2922 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2923 	size_t pg_offset = 0;
2924 	size_t iosize;
2925 	size_t disk_io_size;
2926 	size_t blocksize = inode->i_sb->s_blocksize;
2927 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2928 
2929 	set_page_extent_mapped(page);
2930 
2931 	end = page_end;
2932 	if (!PageUptodate(page)) {
2933 		if (cleancache_get_page(page) == 0) {
2934 			BUG_ON(blocksize != PAGE_SIZE);
2935 			unlock_extent(tree, start, end);
2936 			goto out;
2937 		}
2938 	}
2939 
2940 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2941 		char *userpage;
2942 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2943 
2944 		if (zero_offset) {
2945 			iosize = PAGE_CACHE_SIZE - zero_offset;
2946 			userpage = kmap_atomic(page);
2947 			memset(userpage + zero_offset, 0, iosize);
2948 			flush_dcache_page(page);
2949 			kunmap_atomic(userpage);
2950 		}
2951 	}
2952 	while (cur <= end) {
2953 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2954 
2955 		if (cur >= last_byte) {
2956 			char *userpage;
2957 			struct extent_state *cached = NULL;
2958 
2959 			iosize = PAGE_CACHE_SIZE - pg_offset;
2960 			userpage = kmap_atomic(page);
2961 			memset(userpage + pg_offset, 0, iosize);
2962 			flush_dcache_page(page);
2963 			kunmap_atomic(userpage);
2964 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2965 					    &cached, GFP_NOFS);
2966 			if (!parent_locked)
2967 				unlock_extent_cached(tree, cur,
2968 						     cur + iosize - 1,
2969 						     &cached, GFP_NOFS);
2970 			break;
2971 		}
2972 		em = __get_extent_map(inode, page, pg_offset, cur,
2973 				      end - cur + 1, get_extent, em_cached);
2974 		if (IS_ERR_OR_NULL(em)) {
2975 			SetPageError(page);
2976 			if (!parent_locked)
2977 				unlock_extent(tree, cur, end);
2978 			break;
2979 		}
2980 		extent_offset = cur - em->start;
2981 		BUG_ON(extent_map_end(em) <= cur);
2982 		BUG_ON(end < cur);
2983 
2984 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2985 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2986 			extent_set_compress_type(&this_bio_flag,
2987 						 em->compress_type);
2988 		}
2989 
2990 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2991 		cur_end = min(extent_map_end(em) - 1, end);
2992 		iosize = ALIGN(iosize, blocksize);
2993 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2994 			disk_io_size = em->block_len;
2995 			sector = em->block_start >> 9;
2996 		} else {
2997 			sector = (em->block_start + extent_offset) >> 9;
2998 			disk_io_size = iosize;
2999 		}
3000 		bdev = em->bdev;
3001 		block_start = em->block_start;
3002 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3003 			block_start = EXTENT_MAP_HOLE;
3004 		free_extent_map(em);
3005 		em = NULL;
3006 
3007 		/* we've found a hole, just zero and go on */
3008 		if (block_start == EXTENT_MAP_HOLE) {
3009 			char *userpage;
3010 			struct extent_state *cached = NULL;
3011 
3012 			userpage = kmap_atomic(page);
3013 			memset(userpage + pg_offset, 0, iosize);
3014 			flush_dcache_page(page);
3015 			kunmap_atomic(userpage);
3016 
3017 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3018 					    &cached, GFP_NOFS);
3019 			unlock_extent_cached(tree, cur, cur + iosize - 1,
3020 			                     &cached, GFP_NOFS);
3021 			cur = cur + iosize;
3022 			pg_offset += iosize;
3023 			continue;
3024 		}
3025 		/* the get_extent function already copied into the page */
3026 		if (test_range_bit(tree, cur, cur_end,
3027 				   EXTENT_UPTODATE, 1, NULL)) {
3028 			check_page_uptodate(tree, page);
3029 			if (!parent_locked)
3030 				unlock_extent(tree, cur, cur + iosize - 1);
3031 			cur = cur + iosize;
3032 			pg_offset += iosize;
3033 			continue;
3034 		}
3035 		/* we have an inline extent but it didn't get marked up
3036 		 * to date.  Error out
3037 		 */
3038 		if (block_start == EXTENT_MAP_INLINE) {
3039 			SetPageError(page);
3040 			if (!parent_locked)
3041 				unlock_extent(tree, cur, cur + iosize - 1);
3042 			cur = cur + iosize;
3043 			pg_offset += iosize;
3044 			continue;
3045 		}
3046 
3047 		pnr -= page->index;
3048 		ret = submit_extent_page(rw, tree, page,
3049 					 sector, disk_io_size, pg_offset,
3050 					 bdev, bio, pnr,
3051 					 end_bio_extent_readpage, mirror_num,
3052 					 *bio_flags,
3053 					 this_bio_flag);
3054 		if (!ret) {
3055 			nr++;
3056 			*bio_flags = this_bio_flag;
3057 		} else {
3058 			SetPageError(page);
3059 			if (!parent_locked)
3060 				unlock_extent(tree, cur, cur + iosize - 1);
3061 		}
3062 		cur = cur + iosize;
3063 		pg_offset += iosize;
3064 	}
3065 out:
3066 	if (!nr) {
3067 		if (!PageError(page))
3068 			SetPageUptodate(page);
3069 		unlock_page(page);
3070 	}
3071 	return 0;
3072 }
3073 
3074 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3075 					     struct page *pages[], int nr_pages,
3076 					     u64 start, u64 end,
3077 					     get_extent_t *get_extent,
3078 					     struct extent_map **em_cached,
3079 					     struct bio **bio, int mirror_num,
3080 					     unsigned long *bio_flags, int rw)
3081 {
3082 	struct inode *inode;
3083 	struct btrfs_ordered_extent *ordered;
3084 	int index;
3085 
3086 	inode = pages[0]->mapping->host;
3087 	while (1) {
3088 		lock_extent(tree, start, end);
3089 		ordered = btrfs_lookup_ordered_range(inode, start,
3090 						     end - start + 1);
3091 		if (!ordered)
3092 			break;
3093 		unlock_extent(tree, start, end);
3094 		btrfs_start_ordered_extent(inode, ordered, 1);
3095 		btrfs_put_ordered_extent(ordered);
3096 	}
3097 
3098 	for (index = 0; index < nr_pages; index++) {
3099 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3100 			      mirror_num, bio_flags, rw);
3101 		page_cache_release(pages[index]);
3102 	}
3103 }
3104 
3105 static void __extent_readpages(struct extent_io_tree *tree,
3106 			       struct page *pages[],
3107 			       int nr_pages, get_extent_t *get_extent,
3108 			       struct extent_map **em_cached,
3109 			       struct bio **bio, int mirror_num,
3110 			       unsigned long *bio_flags, int rw)
3111 {
3112 	u64 start = 0;
3113 	u64 end = 0;
3114 	u64 page_start;
3115 	int index;
3116 	int first_index = 0;
3117 
3118 	for (index = 0; index < nr_pages; index++) {
3119 		page_start = page_offset(pages[index]);
3120 		if (!end) {
3121 			start = page_start;
3122 			end = start + PAGE_CACHE_SIZE - 1;
3123 			first_index = index;
3124 		} else if (end + 1 == page_start) {
3125 			end += PAGE_CACHE_SIZE;
3126 		} else {
3127 			__do_contiguous_readpages(tree, &pages[first_index],
3128 						  index - first_index, start,
3129 						  end, get_extent, em_cached,
3130 						  bio, mirror_num, bio_flags,
3131 						  rw);
3132 			start = page_start;
3133 			end = start + PAGE_CACHE_SIZE - 1;
3134 			first_index = index;
3135 		}
3136 	}
3137 
3138 	if (end)
3139 		__do_contiguous_readpages(tree, &pages[first_index],
3140 					  index - first_index, start,
3141 					  end, get_extent, em_cached, bio,
3142 					  mirror_num, bio_flags, rw);
3143 }
3144 
3145 static int __extent_read_full_page(struct extent_io_tree *tree,
3146 				   struct page *page,
3147 				   get_extent_t *get_extent,
3148 				   struct bio **bio, int mirror_num,
3149 				   unsigned long *bio_flags, int rw)
3150 {
3151 	struct inode *inode = page->mapping->host;
3152 	struct btrfs_ordered_extent *ordered;
3153 	u64 start = page_offset(page);
3154 	u64 end = start + PAGE_CACHE_SIZE - 1;
3155 	int ret;
3156 
3157 	while (1) {
3158 		lock_extent(tree, start, end);
3159 		ordered = btrfs_lookup_ordered_extent(inode, start);
3160 		if (!ordered)
3161 			break;
3162 		unlock_extent(tree, start, end);
3163 		btrfs_start_ordered_extent(inode, ordered, 1);
3164 		btrfs_put_ordered_extent(ordered);
3165 	}
3166 
3167 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3168 			    bio_flags, rw);
3169 	return ret;
3170 }
3171 
3172 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3173 			    get_extent_t *get_extent, int mirror_num)
3174 {
3175 	struct bio *bio = NULL;
3176 	unsigned long bio_flags = 0;
3177 	int ret;
3178 
3179 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3180 				      &bio_flags, READ);
3181 	if (bio)
3182 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3183 	return ret;
3184 }
3185 
3186 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3187 				 get_extent_t *get_extent, int mirror_num)
3188 {
3189 	struct bio *bio = NULL;
3190 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3191 	int ret;
3192 
3193 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3194 				      &bio_flags, READ);
3195 	if (bio)
3196 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3197 	return ret;
3198 }
3199 
3200 static noinline void update_nr_written(struct page *page,
3201 				      struct writeback_control *wbc,
3202 				      unsigned long nr_written)
3203 {
3204 	wbc->nr_to_write -= nr_written;
3205 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3206 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3207 		page->mapping->writeback_index = page->index + nr_written;
3208 }
3209 
3210 /*
3211  * helper for __extent_writepage, doing all of the delayed allocation setup.
3212  *
3213  * This returns 1 if our fill_delalloc function did all the work required
3214  * to write the page (copy into inline extent).  In this case the IO has
3215  * been started and the page is already unlocked.
3216  *
3217  * This returns 0 if all went well (page still locked)
3218  * This returns < 0 if there were errors (page still locked)
3219  */
3220 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3221 			      struct page *page, struct writeback_control *wbc,
3222 			      struct extent_page_data *epd,
3223 			      u64 delalloc_start,
3224 			      unsigned long *nr_written)
3225 {
3226 	struct extent_io_tree *tree = epd->tree;
3227 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3228 	u64 nr_delalloc;
3229 	u64 delalloc_to_write = 0;
3230 	u64 delalloc_end = 0;
3231 	int ret;
3232 	int page_started = 0;
3233 
3234 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3235 		return 0;
3236 
3237 	while (delalloc_end < page_end) {
3238 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3239 					       page,
3240 					       &delalloc_start,
3241 					       &delalloc_end,
3242 					       128 * 1024 * 1024);
3243 		if (nr_delalloc == 0) {
3244 			delalloc_start = delalloc_end + 1;
3245 			continue;
3246 		}
3247 		ret = tree->ops->fill_delalloc(inode, page,
3248 					       delalloc_start,
3249 					       delalloc_end,
3250 					       &page_started,
3251 					       nr_written);
3252 		/* File system has been set read-only */
3253 		if (ret) {
3254 			SetPageError(page);
3255 			/* fill_delalloc should be return < 0 for error
3256 			 * but just in case, we use > 0 here meaning the
3257 			 * IO is started, so we don't want to return > 0
3258 			 * unless things are going well.
3259 			 */
3260 			ret = ret < 0 ? ret : -EIO;
3261 			goto done;
3262 		}
3263 		/*
3264 		 * delalloc_end is already one less than the total
3265 		 * length, so we don't subtract one from
3266 		 * PAGE_CACHE_SIZE
3267 		 */
3268 		delalloc_to_write += (delalloc_end - delalloc_start +
3269 				      PAGE_CACHE_SIZE) >>
3270 				      PAGE_CACHE_SHIFT;
3271 		delalloc_start = delalloc_end + 1;
3272 	}
3273 	if (wbc->nr_to_write < delalloc_to_write) {
3274 		int thresh = 8192;
3275 
3276 		if (delalloc_to_write < thresh * 2)
3277 			thresh = delalloc_to_write;
3278 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3279 					 thresh);
3280 	}
3281 
3282 	/* did the fill delalloc function already unlock and start
3283 	 * the IO?
3284 	 */
3285 	if (page_started) {
3286 		/*
3287 		 * we've unlocked the page, so we can't update
3288 		 * the mapping's writeback index, just update
3289 		 * nr_to_write.
3290 		 */
3291 		wbc->nr_to_write -= *nr_written;
3292 		return 1;
3293 	}
3294 
3295 	ret = 0;
3296 
3297 done:
3298 	return ret;
3299 }
3300 
3301 /*
3302  * helper for __extent_writepage.  This calls the writepage start hooks,
3303  * and does the loop to map the page into extents and bios.
3304  *
3305  * We return 1 if the IO is started and the page is unlocked,
3306  * 0 if all went well (page still locked)
3307  * < 0 if there were errors (page still locked)
3308  */
3309 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3310 				 struct page *page,
3311 				 struct writeback_control *wbc,
3312 				 struct extent_page_data *epd,
3313 				 loff_t i_size,
3314 				 unsigned long nr_written,
3315 				 int write_flags, int *nr_ret)
3316 {
3317 	struct extent_io_tree *tree = epd->tree;
3318 	u64 start = page_offset(page);
3319 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3320 	u64 end;
3321 	u64 cur = start;
3322 	u64 extent_offset;
3323 	u64 block_start;
3324 	u64 iosize;
3325 	sector_t sector;
3326 	struct extent_state *cached_state = NULL;
3327 	struct extent_map *em;
3328 	struct block_device *bdev;
3329 	size_t pg_offset = 0;
3330 	size_t blocksize;
3331 	int ret = 0;
3332 	int nr = 0;
3333 	bool compressed;
3334 
3335 	if (tree->ops && tree->ops->writepage_start_hook) {
3336 		ret = tree->ops->writepage_start_hook(page, start,
3337 						      page_end);
3338 		if (ret) {
3339 			/* Fixup worker will requeue */
3340 			if (ret == -EBUSY)
3341 				wbc->pages_skipped++;
3342 			else
3343 				redirty_page_for_writepage(wbc, page);
3344 
3345 			update_nr_written(page, wbc, nr_written);
3346 			unlock_page(page);
3347 			ret = 1;
3348 			goto done_unlocked;
3349 		}
3350 	}
3351 
3352 	/*
3353 	 * we don't want to touch the inode after unlocking the page,
3354 	 * so we update the mapping writeback index now
3355 	 */
3356 	update_nr_written(page, wbc, nr_written + 1);
3357 
3358 	end = page_end;
3359 	if (i_size <= start) {
3360 		if (tree->ops && tree->ops->writepage_end_io_hook)
3361 			tree->ops->writepage_end_io_hook(page, start,
3362 							 page_end, NULL, 1);
3363 		goto done;
3364 	}
3365 
3366 	blocksize = inode->i_sb->s_blocksize;
3367 
3368 	while (cur <= end) {
3369 		u64 em_end;
3370 		if (cur >= i_size) {
3371 			if (tree->ops && tree->ops->writepage_end_io_hook)
3372 				tree->ops->writepage_end_io_hook(page, cur,
3373 							 page_end, NULL, 1);
3374 			break;
3375 		}
3376 		em = epd->get_extent(inode, page, pg_offset, cur,
3377 				     end - cur + 1, 1);
3378 		if (IS_ERR_OR_NULL(em)) {
3379 			SetPageError(page);
3380 			ret = PTR_ERR_OR_ZERO(em);
3381 			break;
3382 		}
3383 
3384 		extent_offset = cur - em->start;
3385 		em_end = extent_map_end(em);
3386 		BUG_ON(em_end <= cur);
3387 		BUG_ON(end < cur);
3388 		iosize = min(em_end - cur, end - cur + 1);
3389 		iosize = ALIGN(iosize, blocksize);
3390 		sector = (em->block_start + extent_offset) >> 9;
3391 		bdev = em->bdev;
3392 		block_start = em->block_start;
3393 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3394 		free_extent_map(em);
3395 		em = NULL;
3396 
3397 		/*
3398 		 * compressed and inline extents are written through other
3399 		 * paths in the FS
3400 		 */
3401 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3402 		    block_start == EXTENT_MAP_INLINE) {
3403 			/*
3404 			 * end_io notification does not happen here for
3405 			 * compressed extents
3406 			 */
3407 			if (!compressed && tree->ops &&
3408 			    tree->ops->writepage_end_io_hook)
3409 				tree->ops->writepage_end_io_hook(page, cur,
3410 							 cur + iosize - 1,
3411 							 NULL, 1);
3412 			else if (compressed) {
3413 				/* we don't want to end_page_writeback on
3414 				 * a compressed extent.  this happens
3415 				 * elsewhere
3416 				 */
3417 				nr++;
3418 			}
3419 
3420 			cur += iosize;
3421 			pg_offset += iosize;
3422 			continue;
3423 		}
3424 
3425 		if (tree->ops && tree->ops->writepage_io_hook) {
3426 			ret = tree->ops->writepage_io_hook(page, cur,
3427 						cur + iosize - 1);
3428 		} else {
3429 			ret = 0;
3430 		}
3431 		if (ret) {
3432 			SetPageError(page);
3433 		} else {
3434 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3435 
3436 			set_range_writeback(tree, cur, cur + iosize - 1);
3437 			if (!PageWriteback(page)) {
3438 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 					   "page %lu not writeback, cur %llu end %llu",
3440 				       page->index, cur, end);
3441 			}
3442 
3443 			ret = submit_extent_page(write_flags, tree, page,
3444 						 sector, iosize, pg_offset,
3445 						 bdev, &epd->bio, max_nr,
3446 						 end_bio_extent_writepage,
3447 						 0, 0, 0);
3448 			if (ret)
3449 				SetPageError(page);
3450 		}
3451 		cur = cur + iosize;
3452 		pg_offset += iosize;
3453 		nr++;
3454 	}
3455 done:
3456 	*nr_ret = nr;
3457 
3458 done_unlocked:
3459 
3460 	/* drop our reference on any cached states */
3461 	free_extent_state(cached_state);
3462 	return ret;
3463 }
3464 
3465 /*
3466  * the writepage semantics are similar to regular writepage.  extent
3467  * records are inserted to lock ranges in the tree, and as dirty areas
3468  * are found, they are marked writeback.  Then the lock bits are removed
3469  * and the end_io handler clears the writeback ranges
3470  */
3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 			      void *data)
3473 {
3474 	struct inode *inode = page->mapping->host;
3475 	struct extent_page_data *epd = data;
3476 	u64 start = page_offset(page);
3477 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3478 	int ret;
3479 	int nr = 0;
3480 	size_t pg_offset = 0;
3481 	loff_t i_size = i_size_read(inode);
3482 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3483 	int write_flags;
3484 	unsigned long nr_written = 0;
3485 
3486 	if (wbc->sync_mode == WB_SYNC_ALL)
3487 		write_flags = WRITE_SYNC;
3488 	else
3489 		write_flags = WRITE;
3490 
3491 	trace___extent_writepage(page, inode, wbc);
3492 
3493 	WARN_ON(!PageLocked(page));
3494 
3495 	ClearPageError(page);
3496 
3497 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3498 	if (page->index > end_index ||
3499 	   (page->index == end_index && !pg_offset)) {
3500 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3501 		unlock_page(page);
3502 		return 0;
3503 	}
3504 
3505 	if (page->index == end_index) {
3506 		char *userpage;
3507 
3508 		userpage = kmap_atomic(page);
3509 		memset(userpage + pg_offset, 0,
3510 		       PAGE_CACHE_SIZE - pg_offset);
3511 		kunmap_atomic(userpage);
3512 		flush_dcache_page(page);
3513 	}
3514 
3515 	pg_offset = 0;
3516 
3517 	set_page_extent_mapped(page);
3518 
3519 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3520 	if (ret == 1)
3521 		goto done_unlocked;
3522 	if (ret)
3523 		goto done;
3524 
3525 	ret = __extent_writepage_io(inode, page, wbc, epd,
3526 				    i_size, nr_written, write_flags, &nr);
3527 	if (ret == 1)
3528 		goto done_unlocked;
3529 
3530 done:
3531 	if (nr == 0) {
3532 		/* make sure the mapping tag for page dirty gets cleared */
3533 		set_page_writeback(page);
3534 		end_page_writeback(page);
3535 	}
3536 	if (PageError(page)) {
3537 		ret = ret < 0 ? ret : -EIO;
3538 		end_extent_writepage(page, ret, start, page_end);
3539 	}
3540 	unlock_page(page);
3541 	return ret;
3542 
3543 done_unlocked:
3544 	return 0;
3545 }
3546 
3547 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3548 {
3549 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3550 		       TASK_UNINTERRUPTIBLE);
3551 }
3552 
3553 static noinline_for_stack int
3554 lock_extent_buffer_for_io(struct extent_buffer *eb,
3555 			  struct btrfs_fs_info *fs_info,
3556 			  struct extent_page_data *epd)
3557 {
3558 	unsigned long i, num_pages;
3559 	int flush = 0;
3560 	int ret = 0;
3561 
3562 	if (!btrfs_try_tree_write_lock(eb)) {
3563 		flush = 1;
3564 		flush_write_bio(epd);
3565 		btrfs_tree_lock(eb);
3566 	}
3567 
3568 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3569 		btrfs_tree_unlock(eb);
3570 		if (!epd->sync_io)
3571 			return 0;
3572 		if (!flush) {
3573 			flush_write_bio(epd);
3574 			flush = 1;
3575 		}
3576 		while (1) {
3577 			wait_on_extent_buffer_writeback(eb);
3578 			btrfs_tree_lock(eb);
3579 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3580 				break;
3581 			btrfs_tree_unlock(eb);
3582 		}
3583 	}
3584 
3585 	/*
3586 	 * We need to do this to prevent races in people who check if the eb is
3587 	 * under IO since we can end up having no IO bits set for a short period
3588 	 * of time.
3589 	 */
3590 	spin_lock(&eb->refs_lock);
3591 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3592 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3593 		spin_unlock(&eb->refs_lock);
3594 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3595 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3596 				     -eb->len,
3597 				     fs_info->dirty_metadata_batch);
3598 		ret = 1;
3599 	} else {
3600 		spin_unlock(&eb->refs_lock);
3601 	}
3602 
3603 	btrfs_tree_unlock(eb);
3604 
3605 	if (!ret)
3606 		return ret;
3607 
3608 	num_pages = num_extent_pages(eb->start, eb->len);
3609 	for (i = 0; i < num_pages; i++) {
3610 		struct page *p = eb->pages[i];
3611 
3612 		if (!trylock_page(p)) {
3613 			if (!flush) {
3614 				flush_write_bio(epd);
3615 				flush = 1;
3616 			}
3617 			lock_page(p);
3618 		}
3619 	}
3620 
3621 	return ret;
3622 }
3623 
3624 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3625 {
3626 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3627 	smp_mb__after_atomic();
3628 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3629 }
3630 
3631 static void set_btree_ioerr(struct page *page)
3632 {
3633 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3634 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3635 
3636 	SetPageError(page);
3637 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3638 		return;
3639 
3640 	/*
3641 	 * If writeback for a btree extent that doesn't belong to a log tree
3642 	 * failed, increment the counter transaction->eb_write_errors.
3643 	 * We do this because while the transaction is running and before it's
3644 	 * committing (when we call filemap_fdata[write|wait]_range against
3645 	 * the btree inode), we might have
3646 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3647 	 * returns an error or an error happens during writeback, when we're
3648 	 * committing the transaction we wouldn't know about it, since the pages
3649 	 * can be no longer dirty nor marked anymore for writeback (if a
3650 	 * subsequent modification to the extent buffer didn't happen before the
3651 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3652 	 * able to find the pages tagged with SetPageError at transaction
3653 	 * commit time. So if this happens we must abort the transaction,
3654 	 * otherwise we commit a super block with btree roots that point to
3655 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3656 	 * or the content of some node/leaf from a past generation that got
3657 	 * cowed or deleted and is no longer valid.
3658 	 *
3659 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3660 	 * not be enough - we need to distinguish between log tree extents vs
3661 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3662 	 * will catch and clear such errors in the mapping - and that call might
3663 	 * be from a log sync and not from a transaction commit. Also, checking
3664 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3665 	 * not done and would not be reliable - the eb might have been released
3666 	 * from memory and reading it back again means that flag would not be
3667 	 * set (since it's a runtime flag, not persisted on disk).
3668 	 *
3669 	 * Using the flags below in the btree inode also makes us achieve the
3670 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3671 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3672 	 * is called, the writeback for all dirty pages had already finished
3673 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3674 	 * filemap_fdatawait_range() would return success, as it could not know
3675 	 * that writeback errors happened (the pages were no longer tagged for
3676 	 * writeback).
3677 	 */
3678 	switch (eb->log_index) {
3679 	case -1:
3680 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3681 		break;
3682 	case 0:
3683 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3684 		break;
3685 	case 1:
3686 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3687 		break;
3688 	default:
3689 		BUG(); /* unexpected, logic error */
3690 	}
3691 }
3692 
3693 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3694 {
3695 	struct bio_vec *bvec;
3696 	struct extent_buffer *eb;
3697 	int i, done;
3698 
3699 	bio_for_each_segment_all(bvec, bio, i) {
3700 		struct page *page = bvec->bv_page;
3701 
3702 		eb = (struct extent_buffer *)page->private;
3703 		BUG_ON(!eb);
3704 		done = atomic_dec_and_test(&eb->io_pages);
3705 
3706 		if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3707 			ClearPageUptodate(page);
3708 			set_btree_ioerr(page);
3709 		}
3710 
3711 		end_page_writeback(page);
3712 
3713 		if (!done)
3714 			continue;
3715 
3716 		end_extent_buffer_writeback(eb);
3717 	}
3718 
3719 	bio_put(bio);
3720 }
3721 
3722 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3723 			struct btrfs_fs_info *fs_info,
3724 			struct writeback_control *wbc,
3725 			struct extent_page_data *epd)
3726 {
3727 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3728 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3729 	u64 offset = eb->start;
3730 	unsigned long i, num_pages;
3731 	unsigned long bio_flags = 0;
3732 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3733 	int ret = 0;
3734 
3735 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736 	num_pages = num_extent_pages(eb->start, eb->len);
3737 	atomic_set(&eb->io_pages, num_pages);
3738 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 		bio_flags = EXTENT_BIO_TREE_LOG;
3740 
3741 	for (i = 0; i < num_pages; i++) {
3742 		struct page *p = eb->pages[i];
3743 
3744 		clear_page_dirty_for_io(p);
3745 		set_page_writeback(p);
3746 		ret = submit_extent_page(rw, tree, p, offset >> 9,
3747 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3748 					 -1, end_bio_extent_buffer_writepage,
3749 					 0, epd->bio_flags, bio_flags);
3750 		epd->bio_flags = bio_flags;
3751 		if (ret) {
3752 			set_btree_ioerr(p);
3753 			end_page_writeback(p);
3754 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 				end_extent_buffer_writeback(eb);
3756 			ret = -EIO;
3757 			break;
3758 		}
3759 		offset += PAGE_CACHE_SIZE;
3760 		update_nr_written(p, wbc, 1);
3761 		unlock_page(p);
3762 	}
3763 
3764 	if (unlikely(ret)) {
3765 		for (; i < num_pages; i++) {
3766 			struct page *p = eb->pages[i];
3767 			clear_page_dirty_for_io(p);
3768 			unlock_page(p);
3769 		}
3770 	}
3771 
3772 	return ret;
3773 }
3774 
3775 int btree_write_cache_pages(struct address_space *mapping,
3776 				   struct writeback_control *wbc)
3777 {
3778 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 	struct extent_buffer *eb, *prev_eb = NULL;
3781 	struct extent_page_data epd = {
3782 		.bio = NULL,
3783 		.tree = tree,
3784 		.extent_locked = 0,
3785 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786 		.bio_flags = 0,
3787 	};
3788 	int ret = 0;
3789 	int done = 0;
3790 	int nr_to_write_done = 0;
3791 	struct pagevec pvec;
3792 	int nr_pages;
3793 	pgoff_t index;
3794 	pgoff_t end;		/* Inclusive */
3795 	int scanned = 0;
3796 	int tag;
3797 
3798 	pagevec_init(&pvec, 0);
3799 	if (wbc->range_cyclic) {
3800 		index = mapping->writeback_index; /* Start from prev offset */
3801 		end = -1;
3802 	} else {
3803 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3804 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3805 		scanned = 1;
3806 	}
3807 	if (wbc->sync_mode == WB_SYNC_ALL)
3808 		tag = PAGECACHE_TAG_TOWRITE;
3809 	else
3810 		tag = PAGECACHE_TAG_DIRTY;
3811 retry:
3812 	if (wbc->sync_mode == WB_SYNC_ALL)
3813 		tag_pages_for_writeback(mapping, index, end);
3814 	while (!done && !nr_to_write_done && (index <= end) &&
3815 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817 		unsigned i;
3818 
3819 		scanned = 1;
3820 		for (i = 0; i < nr_pages; i++) {
3821 			struct page *page = pvec.pages[i];
3822 
3823 			if (!PagePrivate(page))
3824 				continue;
3825 
3826 			if (!wbc->range_cyclic && page->index > end) {
3827 				done = 1;
3828 				break;
3829 			}
3830 
3831 			spin_lock(&mapping->private_lock);
3832 			if (!PagePrivate(page)) {
3833 				spin_unlock(&mapping->private_lock);
3834 				continue;
3835 			}
3836 
3837 			eb = (struct extent_buffer *)page->private;
3838 
3839 			/*
3840 			 * Shouldn't happen and normally this would be a BUG_ON
3841 			 * but no sense in crashing the users box for something
3842 			 * we can survive anyway.
3843 			 */
3844 			if (WARN_ON(!eb)) {
3845 				spin_unlock(&mapping->private_lock);
3846 				continue;
3847 			}
3848 
3849 			if (eb == prev_eb) {
3850 				spin_unlock(&mapping->private_lock);
3851 				continue;
3852 			}
3853 
3854 			ret = atomic_inc_not_zero(&eb->refs);
3855 			spin_unlock(&mapping->private_lock);
3856 			if (!ret)
3857 				continue;
3858 
3859 			prev_eb = eb;
3860 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861 			if (!ret) {
3862 				free_extent_buffer(eb);
3863 				continue;
3864 			}
3865 
3866 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3867 			if (ret) {
3868 				done = 1;
3869 				free_extent_buffer(eb);
3870 				break;
3871 			}
3872 			free_extent_buffer(eb);
3873 
3874 			/*
3875 			 * the filesystem may choose to bump up nr_to_write.
3876 			 * We have to make sure to honor the new nr_to_write
3877 			 * at any time
3878 			 */
3879 			nr_to_write_done = wbc->nr_to_write <= 0;
3880 		}
3881 		pagevec_release(&pvec);
3882 		cond_resched();
3883 	}
3884 	if (!scanned && !done) {
3885 		/*
3886 		 * We hit the last page and there is more work to be done: wrap
3887 		 * back to the start of the file
3888 		 */
3889 		scanned = 1;
3890 		index = 0;
3891 		goto retry;
3892 	}
3893 	flush_write_bio(&epd);
3894 	return ret;
3895 }
3896 
3897 /**
3898  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3899  * @mapping: address space structure to write
3900  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901  * @writepage: function called for each page
3902  * @data: data passed to writepage function
3903  *
3904  * If a page is already under I/O, write_cache_pages() skips it, even
3905  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3906  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3907  * and msync() need to guarantee that all the data which was dirty at the time
3908  * the call was made get new I/O started against them.  If wbc->sync_mode is
3909  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910  * existing IO to complete.
3911  */
3912 static int extent_write_cache_pages(struct extent_io_tree *tree,
3913 			     struct address_space *mapping,
3914 			     struct writeback_control *wbc,
3915 			     writepage_t writepage, void *data,
3916 			     void (*flush_fn)(void *))
3917 {
3918 	struct inode *inode = mapping->host;
3919 	int ret = 0;
3920 	int done = 0;
3921 	int err = 0;
3922 	int nr_to_write_done = 0;
3923 	struct pagevec pvec;
3924 	int nr_pages;
3925 	pgoff_t index;
3926 	pgoff_t end;		/* Inclusive */
3927 	int scanned = 0;
3928 	int tag;
3929 
3930 	/*
3931 	 * We have to hold onto the inode so that ordered extents can do their
3932 	 * work when the IO finishes.  The alternative to this is failing to add
3933 	 * an ordered extent if the igrab() fails there and that is a huge pain
3934 	 * to deal with, so instead just hold onto the inode throughout the
3935 	 * writepages operation.  If it fails here we are freeing up the inode
3936 	 * anyway and we'd rather not waste our time writing out stuff that is
3937 	 * going to be truncated anyway.
3938 	 */
3939 	if (!igrab(inode))
3940 		return 0;
3941 
3942 	pagevec_init(&pvec, 0);
3943 	if (wbc->range_cyclic) {
3944 		index = mapping->writeback_index; /* Start from prev offset */
3945 		end = -1;
3946 	} else {
3947 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3948 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3949 		scanned = 1;
3950 	}
3951 	if (wbc->sync_mode == WB_SYNC_ALL)
3952 		tag = PAGECACHE_TAG_TOWRITE;
3953 	else
3954 		tag = PAGECACHE_TAG_DIRTY;
3955 retry:
3956 	if (wbc->sync_mode == WB_SYNC_ALL)
3957 		tag_pages_for_writeback(mapping, index, end);
3958 	while (!done && !nr_to_write_done && (index <= end) &&
3959 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3960 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3961 		unsigned i;
3962 
3963 		scanned = 1;
3964 		for (i = 0; i < nr_pages; i++) {
3965 			struct page *page = pvec.pages[i];
3966 
3967 			/*
3968 			 * At this point we hold neither mapping->tree_lock nor
3969 			 * lock on the page itself: the page may be truncated or
3970 			 * invalidated (changing page->mapping to NULL), or even
3971 			 * swizzled back from swapper_space to tmpfs file
3972 			 * mapping
3973 			 */
3974 			if (!trylock_page(page)) {
3975 				flush_fn(data);
3976 				lock_page(page);
3977 			}
3978 
3979 			if (unlikely(page->mapping != mapping)) {
3980 				unlock_page(page);
3981 				continue;
3982 			}
3983 
3984 			if (!wbc->range_cyclic && page->index > end) {
3985 				done = 1;
3986 				unlock_page(page);
3987 				continue;
3988 			}
3989 
3990 			if (wbc->sync_mode != WB_SYNC_NONE) {
3991 				if (PageWriteback(page))
3992 					flush_fn(data);
3993 				wait_on_page_writeback(page);
3994 			}
3995 
3996 			if (PageWriteback(page) ||
3997 			    !clear_page_dirty_for_io(page)) {
3998 				unlock_page(page);
3999 				continue;
4000 			}
4001 
4002 			ret = (*writepage)(page, wbc, data);
4003 
4004 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4005 				unlock_page(page);
4006 				ret = 0;
4007 			}
4008 			if (!err && ret < 0)
4009 				err = ret;
4010 
4011 			/*
4012 			 * the filesystem may choose to bump up nr_to_write.
4013 			 * We have to make sure to honor the new nr_to_write
4014 			 * at any time
4015 			 */
4016 			nr_to_write_done = wbc->nr_to_write <= 0;
4017 		}
4018 		pagevec_release(&pvec);
4019 		cond_resched();
4020 	}
4021 	if (!scanned && !done && !err) {
4022 		/*
4023 		 * We hit the last page and there is more work to be done: wrap
4024 		 * back to the start of the file
4025 		 */
4026 		scanned = 1;
4027 		index = 0;
4028 		goto retry;
4029 	}
4030 	btrfs_add_delayed_iput(inode);
4031 	return err;
4032 }
4033 
4034 static void flush_epd_write_bio(struct extent_page_data *epd)
4035 {
4036 	if (epd->bio) {
4037 		int rw = WRITE;
4038 		int ret;
4039 
4040 		if (epd->sync_io)
4041 			rw = WRITE_SYNC;
4042 
4043 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4044 		BUG_ON(ret < 0); /* -ENOMEM */
4045 		epd->bio = NULL;
4046 	}
4047 }
4048 
4049 static noinline void flush_write_bio(void *data)
4050 {
4051 	struct extent_page_data *epd = data;
4052 	flush_epd_write_bio(epd);
4053 }
4054 
4055 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4056 			  get_extent_t *get_extent,
4057 			  struct writeback_control *wbc)
4058 {
4059 	int ret;
4060 	struct extent_page_data epd = {
4061 		.bio = NULL,
4062 		.tree = tree,
4063 		.get_extent = get_extent,
4064 		.extent_locked = 0,
4065 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4066 		.bio_flags = 0,
4067 	};
4068 
4069 	ret = __extent_writepage(page, wbc, &epd);
4070 
4071 	flush_epd_write_bio(&epd);
4072 	return ret;
4073 }
4074 
4075 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4076 			      u64 start, u64 end, get_extent_t *get_extent,
4077 			      int mode)
4078 {
4079 	int ret = 0;
4080 	struct address_space *mapping = inode->i_mapping;
4081 	struct page *page;
4082 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4083 		PAGE_CACHE_SHIFT;
4084 
4085 	struct extent_page_data epd = {
4086 		.bio = NULL,
4087 		.tree = tree,
4088 		.get_extent = get_extent,
4089 		.extent_locked = 1,
4090 		.sync_io = mode == WB_SYNC_ALL,
4091 		.bio_flags = 0,
4092 	};
4093 	struct writeback_control wbc_writepages = {
4094 		.sync_mode	= mode,
4095 		.nr_to_write	= nr_pages * 2,
4096 		.range_start	= start,
4097 		.range_end	= end + 1,
4098 	};
4099 
4100 	while (start <= end) {
4101 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4102 		if (clear_page_dirty_for_io(page))
4103 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4104 		else {
4105 			if (tree->ops && tree->ops->writepage_end_io_hook)
4106 				tree->ops->writepage_end_io_hook(page, start,
4107 						 start + PAGE_CACHE_SIZE - 1,
4108 						 NULL, 1);
4109 			unlock_page(page);
4110 		}
4111 		page_cache_release(page);
4112 		start += PAGE_CACHE_SIZE;
4113 	}
4114 
4115 	flush_epd_write_bio(&epd);
4116 	return ret;
4117 }
4118 
4119 int extent_writepages(struct extent_io_tree *tree,
4120 		      struct address_space *mapping,
4121 		      get_extent_t *get_extent,
4122 		      struct writeback_control *wbc)
4123 {
4124 	int ret = 0;
4125 	struct extent_page_data epd = {
4126 		.bio = NULL,
4127 		.tree = tree,
4128 		.get_extent = get_extent,
4129 		.extent_locked = 0,
4130 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4131 		.bio_flags = 0,
4132 	};
4133 
4134 	ret = extent_write_cache_pages(tree, mapping, wbc,
4135 				       __extent_writepage, &epd,
4136 				       flush_write_bio);
4137 	flush_epd_write_bio(&epd);
4138 	return ret;
4139 }
4140 
4141 int extent_readpages(struct extent_io_tree *tree,
4142 		     struct address_space *mapping,
4143 		     struct list_head *pages, unsigned nr_pages,
4144 		     get_extent_t get_extent)
4145 {
4146 	struct bio *bio = NULL;
4147 	unsigned page_idx;
4148 	unsigned long bio_flags = 0;
4149 	struct page *pagepool[16];
4150 	struct page *page;
4151 	struct extent_map *em_cached = NULL;
4152 	int nr = 0;
4153 
4154 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4155 		page = list_entry(pages->prev, struct page, lru);
4156 
4157 		prefetchw(&page->flags);
4158 		list_del(&page->lru);
4159 		if (add_to_page_cache_lru(page, mapping,
4160 					page->index, GFP_NOFS)) {
4161 			page_cache_release(page);
4162 			continue;
4163 		}
4164 
4165 		pagepool[nr++] = page;
4166 		if (nr < ARRAY_SIZE(pagepool))
4167 			continue;
4168 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4169 				   &bio, 0, &bio_flags, READ);
4170 		nr = 0;
4171 	}
4172 	if (nr)
4173 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4174 				   &bio, 0, &bio_flags, READ);
4175 
4176 	if (em_cached)
4177 		free_extent_map(em_cached);
4178 
4179 	BUG_ON(!list_empty(pages));
4180 	if (bio)
4181 		return submit_one_bio(READ, bio, 0, bio_flags);
4182 	return 0;
4183 }
4184 
4185 /*
4186  * basic invalidatepage code, this waits on any locked or writeback
4187  * ranges corresponding to the page, and then deletes any extent state
4188  * records from the tree
4189  */
4190 int extent_invalidatepage(struct extent_io_tree *tree,
4191 			  struct page *page, unsigned long offset)
4192 {
4193 	struct extent_state *cached_state = NULL;
4194 	u64 start = page_offset(page);
4195 	u64 end = start + PAGE_CACHE_SIZE - 1;
4196 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4197 
4198 	start += ALIGN(offset, blocksize);
4199 	if (start > end)
4200 		return 0;
4201 
4202 	lock_extent_bits(tree, start, end, 0, &cached_state);
4203 	wait_on_page_writeback(page);
4204 	clear_extent_bit(tree, start, end,
4205 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4206 			 EXTENT_DO_ACCOUNTING,
4207 			 1, 1, &cached_state, GFP_NOFS);
4208 	return 0;
4209 }
4210 
4211 /*
4212  * a helper for releasepage, this tests for areas of the page that
4213  * are locked or under IO and drops the related state bits if it is safe
4214  * to drop the page.
4215  */
4216 static int try_release_extent_state(struct extent_map_tree *map,
4217 				    struct extent_io_tree *tree,
4218 				    struct page *page, gfp_t mask)
4219 {
4220 	u64 start = page_offset(page);
4221 	u64 end = start + PAGE_CACHE_SIZE - 1;
4222 	int ret = 1;
4223 
4224 	if (test_range_bit(tree, start, end,
4225 			   EXTENT_IOBITS, 0, NULL))
4226 		ret = 0;
4227 	else {
4228 		if ((mask & GFP_NOFS) == GFP_NOFS)
4229 			mask = GFP_NOFS;
4230 		/*
4231 		 * at this point we can safely clear everything except the
4232 		 * locked bit and the nodatasum bit
4233 		 */
4234 		ret = clear_extent_bit(tree, start, end,
4235 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4236 				 0, 0, NULL, mask);
4237 
4238 		/* if clear_extent_bit failed for enomem reasons,
4239 		 * we can't allow the release to continue.
4240 		 */
4241 		if (ret < 0)
4242 			ret = 0;
4243 		else
4244 			ret = 1;
4245 	}
4246 	return ret;
4247 }
4248 
4249 /*
4250  * a helper for releasepage.  As long as there are no locked extents
4251  * in the range corresponding to the page, both state records and extent
4252  * map records are removed
4253  */
4254 int try_release_extent_mapping(struct extent_map_tree *map,
4255 			       struct extent_io_tree *tree, struct page *page,
4256 			       gfp_t mask)
4257 {
4258 	struct extent_map *em;
4259 	u64 start = page_offset(page);
4260 	u64 end = start + PAGE_CACHE_SIZE - 1;
4261 
4262 	if ((mask & __GFP_WAIT) &&
4263 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4264 		u64 len;
4265 		while (start <= end) {
4266 			len = end - start + 1;
4267 			write_lock(&map->lock);
4268 			em = lookup_extent_mapping(map, start, len);
4269 			if (!em) {
4270 				write_unlock(&map->lock);
4271 				break;
4272 			}
4273 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4274 			    em->start != start) {
4275 				write_unlock(&map->lock);
4276 				free_extent_map(em);
4277 				break;
4278 			}
4279 			if (!test_range_bit(tree, em->start,
4280 					    extent_map_end(em) - 1,
4281 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4282 					    0, NULL)) {
4283 				remove_extent_mapping(map, em);
4284 				/* once for the rb tree */
4285 				free_extent_map(em);
4286 			}
4287 			start = extent_map_end(em);
4288 			write_unlock(&map->lock);
4289 
4290 			/* once for us */
4291 			free_extent_map(em);
4292 		}
4293 	}
4294 	return try_release_extent_state(map, tree, page, mask);
4295 }
4296 
4297 /*
4298  * helper function for fiemap, which doesn't want to see any holes.
4299  * This maps until we find something past 'last'
4300  */
4301 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4302 						u64 offset,
4303 						u64 last,
4304 						get_extent_t *get_extent)
4305 {
4306 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4307 	struct extent_map *em;
4308 	u64 len;
4309 
4310 	if (offset >= last)
4311 		return NULL;
4312 
4313 	while (1) {
4314 		len = last - offset;
4315 		if (len == 0)
4316 			break;
4317 		len = ALIGN(len, sectorsize);
4318 		em = get_extent(inode, NULL, 0, offset, len, 0);
4319 		if (IS_ERR_OR_NULL(em))
4320 			return em;
4321 
4322 		/* if this isn't a hole return it */
4323 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4324 		    em->block_start != EXTENT_MAP_HOLE) {
4325 			return em;
4326 		}
4327 
4328 		/* this is a hole, advance to the next extent */
4329 		offset = extent_map_end(em);
4330 		free_extent_map(em);
4331 		if (offset >= last)
4332 			break;
4333 	}
4334 	return NULL;
4335 }
4336 
4337 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4338 		__u64 start, __u64 len, get_extent_t *get_extent)
4339 {
4340 	int ret = 0;
4341 	u64 off = start;
4342 	u64 max = start + len;
4343 	u32 flags = 0;
4344 	u32 found_type;
4345 	u64 last;
4346 	u64 last_for_get_extent = 0;
4347 	u64 disko = 0;
4348 	u64 isize = i_size_read(inode);
4349 	struct btrfs_key found_key;
4350 	struct extent_map *em = NULL;
4351 	struct extent_state *cached_state = NULL;
4352 	struct btrfs_path *path;
4353 	struct btrfs_root *root = BTRFS_I(inode)->root;
4354 	int end = 0;
4355 	u64 em_start = 0;
4356 	u64 em_len = 0;
4357 	u64 em_end = 0;
4358 
4359 	if (len == 0)
4360 		return -EINVAL;
4361 
4362 	path = btrfs_alloc_path();
4363 	if (!path)
4364 		return -ENOMEM;
4365 	path->leave_spinning = 1;
4366 
4367 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4368 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4369 
4370 	/*
4371 	 * lookup the last file extent.  We're not using i_size here
4372 	 * because there might be preallocation past i_size
4373 	 */
4374 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4375 				       0);
4376 	if (ret < 0) {
4377 		btrfs_free_path(path);
4378 		return ret;
4379 	}
4380 	WARN_ON(!ret);
4381 	path->slots[0]--;
4382 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4383 	found_type = found_key.type;
4384 
4385 	/* No extents, but there might be delalloc bits */
4386 	if (found_key.objectid != btrfs_ino(inode) ||
4387 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4388 		/* have to trust i_size as the end */
4389 		last = (u64)-1;
4390 		last_for_get_extent = isize;
4391 	} else {
4392 		/*
4393 		 * remember the start of the last extent.  There are a
4394 		 * bunch of different factors that go into the length of the
4395 		 * extent, so its much less complex to remember where it started
4396 		 */
4397 		last = found_key.offset;
4398 		last_for_get_extent = last + 1;
4399 	}
4400 	btrfs_release_path(path);
4401 
4402 	/*
4403 	 * we might have some extents allocated but more delalloc past those
4404 	 * extents.  so, we trust isize unless the start of the last extent is
4405 	 * beyond isize
4406 	 */
4407 	if (last < isize) {
4408 		last = (u64)-1;
4409 		last_for_get_extent = isize;
4410 	}
4411 
4412 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4413 			 &cached_state);
4414 
4415 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4416 				   get_extent);
4417 	if (!em)
4418 		goto out;
4419 	if (IS_ERR(em)) {
4420 		ret = PTR_ERR(em);
4421 		goto out;
4422 	}
4423 
4424 	while (!end) {
4425 		u64 offset_in_extent = 0;
4426 
4427 		/* break if the extent we found is outside the range */
4428 		if (em->start >= max || extent_map_end(em) < off)
4429 			break;
4430 
4431 		/*
4432 		 * get_extent may return an extent that starts before our
4433 		 * requested range.  We have to make sure the ranges
4434 		 * we return to fiemap always move forward and don't
4435 		 * overlap, so adjust the offsets here
4436 		 */
4437 		em_start = max(em->start, off);
4438 
4439 		/*
4440 		 * record the offset from the start of the extent
4441 		 * for adjusting the disk offset below.  Only do this if the
4442 		 * extent isn't compressed since our in ram offset may be past
4443 		 * what we have actually allocated on disk.
4444 		 */
4445 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4446 			offset_in_extent = em_start - em->start;
4447 		em_end = extent_map_end(em);
4448 		em_len = em_end - em_start;
4449 		disko = 0;
4450 		flags = 0;
4451 
4452 		/*
4453 		 * bump off for our next call to get_extent
4454 		 */
4455 		off = extent_map_end(em);
4456 		if (off >= max)
4457 			end = 1;
4458 
4459 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4460 			end = 1;
4461 			flags |= FIEMAP_EXTENT_LAST;
4462 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4463 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4464 				  FIEMAP_EXTENT_NOT_ALIGNED);
4465 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4466 			flags |= (FIEMAP_EXTENT_DELALLOC |
4467 				  FIEMAP_EXTENT_UNKNOWN);
4468 		} else if (fieinfo->fi_extents_max) {
4469 			u64 bytenr = em->block_start -
4470 				(em->start - em->orig_start);
4471 
4472 			disko = em->block_start + offset_in_extent;
4473 
4474 			/*
4475 			 * As btrfs supports shared space, this information
4476 			 * can be exported to userspace tools via
4477 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4478 			 * then we're just getting a count and we can skip the
4479 			 * lookup stuff.
4480 			 */
4481 			ret = btrfs_check_shared(NULL, root->fs_info,
4482 						 root->objectid,
4483 						 btrfs_ino(inode), bytenr);
4484 			if (ret < 0)
4485 				goto out_free;
4486 			if (ret)
4487 				flags |= FIEMAP_EXTENT_SHARED;
4488 			ret = 0;
4489 		}
4490 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4491 			flags |= FIEMAP_EXTENT_ENCODED;
4492 
4493 		free_extent_map(em);
4494 		em = NULL;
4495 		if ((em_start >= last) || em_len == (u64)-1 ||
4496 		   (last == (u64)-1 && isize <= em_end)) {
4497 			flags |= FIEMAP_EXTENT_LAST;
4498 			end = 1;
4499 		}
4500 
4501 		/* now scan forward to see if this is really the last extent. */
4502 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4503 					   get_extent);
4504 		if (IS_ERR(em)) {
4505 			ret = PTR_ERR(em);
4506 			goto out;
4507 		}
4508 		if (!em) {
4509 			flags |= FIEMAP_EXTENT_LAST;
4510 			end = 1;
4511 		}
4512 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4513 					      em_len, flags);
4514 		if (ret)
4515 			goto out_free;
4516 	}
4517 out_free:
4518 	free_extent_map(em);
4519 out:
4520 	btrfs_free_path(path);
4521 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4522 			     &cached_state, GFP_NOFS);
4523 	return ret;
4524 }
4525 
4526 static void __free_extent_buffer(struct extent_buffer *eb)
4527 {
4528 	btrfs_leak_debug_del(&eb->leak_list);
4529 	kmem_cache_free(extent_buffer_cache, eb);
4530 }
4531 
4532 int extent_buffer_under_io(struct extent_buffer *eb)
4533 {
4534 	return (atomic_read(&eb->io_pages) ||
4535 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4536 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4537 }
4538 
4539 /*
4540  * Helper for releasing extent buffer page.
4541  */
4542 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4543 {
4544 	unsigned long index;
4545 	struct page *page;
4546 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4547 
4548 	BUG_ON(extent_buffer_under_io(eb));
4549 
4550 	index = num_extent_pages(eb->start, eb->len);
4551 	if (index == 0)
4552 		return;
4553 
4554 	do {
4555 		index--;
4556 		page = eb->pages[index];
4557 		if (page && mapped) {
4558 			spin_lock(&page->mapping->private_lock);
4559 			/*
4560 			 * We do this since we'll remove the pages after we've
4561 			 * removed the eb from the radix tree, so we could race
4562 			 * and have this page now attached to the new eb.  So
4563 			 * only clear page_private if it's still connected to
4564 			 * this eb.
4565 			 */
4566 			if (PagePrivate(page) &&
4567 			    page->private == (unsigned long)eb) {
4568 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4569 				BUG_ON(PageDirty(page));
4570 				BUG_ON(PageWriteback(page));
4571 				/*
4572 				 * We need to make sure we haven't be attached
4573 				 * to a new eb.
4574 				 */
4575 				ClearPagePrivate(page);
4576 				set_page_private(page, 0);
4577 				/* One for the page private */
4578 				page_cache_release(page);
4579 			}
4580 			spin_unlock(&page->mapping->private_lock);
4581 
4582 		}
4583 		if (page) {
4584 			/* One for when we alloced the page */
4585 			page_cache_release(page);
4586 		}
4587 	} while (index != 0);
4588 }
4589 
4590 /*
4591  * Helper for releasing the extent buffer.
4592  */
4593 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4594 {
4595 	btrfs_release_extent_buffer_page(eb);
4596 	__free_extent_buffer(eb);
4597 }
4598 
4599 static struct extent_buffer *
4600 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4601 		      unsigned long len, gfp_t mask)
4602 {
4603 	struct extent_buffer *eb = NULL;
4604 
4605 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4606 	if (eb == NULL)
4607 		return NULL;
4608 	eb->start = start;
4609 	eb->len = len;
4610 	eb->fs_info = fs_info;
4611 	eb->bflags = 0;
4612 	rwlock_init(&eb->lock);
4613 	atomic_set(&eb->write_locks, 0);
4614 	atomic_set(&eb->read_locks, 0);
4615 	atomic_set(&eb->blocking_readers, 0);
4616 	atomic_set(&eb->blocking_writers, 0);
4617 	atomic_set(&eb->spinning_readers, 0);
4618 	atomic_set(&eb->spinning_writers, 0);
4619 	eb->lock_nested = 0;
4620 	init_waitqueue_head(&eb->write_lock_wq);
4621 	init_waitqueue_head(&eb->read_lock_wq);
4622 
4623 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4624 
4625 	spin_lock_init(&eb->refs_lock);
4626 	atomic_set(&eb->refs, 1);
4627 	atomic_set(&eb->io_pages, 0);
4628 
4629 	/*
4630 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4631 	 */
4632 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4633 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4634 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4635 
4636 	return eb;
4637 }
4638 
4639 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4640 {
4641 	unsigned long i;
4642 	struct page *p;
4643 	struct extent_buffer *new;
4644 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4645 
4646 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4647 	if (new == NULL)
4648 		return NULL;
4649 
4650 	for (i = 0; i < num_pages; i++) {
4651 		p = alloc_page(GFP_NOFS);
4652 		if (!p) {
4653 			btrfs_release_extent_buffer(new);
4654 			return NULL;
4655 		}
4656 		attach_extent_buffer_page(new, p);
4657 		WARN_ON(PageDirty(p));
4658 		SetPageUptodate(p);
4659 		new->pages[i] = p;
4660 	}
4661 
4662 	copy_extent_buffer(new, src, 0, 0, src->len);
4663 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4664 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4665 
4666 	return new;
4667 }
4668 
4669 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4670 {
4671 	struct extent_buffer *eb;
4672 	unsigned long num_pages = num_extent_pages(0, len);
4673 	unsigned long i;
4674 
4675 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4676 	if (!eb)
4677 		return NULL;
4678 
4679 	for (i = 0; i < num_pages; i++) {
4680 		eb->pages[i] = alloc_page(GFP_NOFS);
4681 		if (!eb->pages[i])
4682 			goto err;
4683 	}
4684 	set_extent_buffer_uptodate(eb);
4685 	btrfs_set_header_nritems(eb, 0);
4686 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4687 
4688 	return eb;
4689 err:
4690 	for (; i > 0; i--)
4691 		__free_page(eb->pages[i - 1]);
4692 	__free_extent_buffer(eb);
4693 	return NULL;
4694 }
4695 
4696 static void check_buffer_tree_ref(struct extent_buffer *eb)
4697 {
4698 	int refs;
4699 	/* the ref bit is tricky.  We have to make sure it is set
4700 	 * if we have the buffer dirty.   Otherwise the
4701 	 * code to free a buffer can end up dropping a dirty
4702 	 * page
4703 	 *
4704 	 * Once the ref bit is set, it won't go away while the
4705 	 * buffer is dirty or in writeback, and it also won't
4706 	 * go away while we have the reference count on the
4707 	 * eb bumped.
4708 	 *
4709 	 * We can't just set the ref bit without bumping the
4710 	 * ref on the eb because free_extent_buffer might
4711 	 * see the ref bit and try to clear it.  If this happens
4712 	 * free_extent_buffer might end up dropping our original
4713 	 * ref by mistake and freeing the page before we are able
4714 	 * to add one more ref.
4715 	 *
4716 	 * So bump the ref count first, then set the bit.  If someone
4717 	 * beat us to it, drop the ref we added.
4718 	 */
4719 	refs = atomic_read(&eb->refs);
4720 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4721 		return;
4722 
4723 	spin_lock(&eb->refs_lock);
4724 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4725 		atomic_inc(&eb->refs);
4726 	spin_unlock(&eb->refs_lock);
4727 }
4728 
4729 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4730 		struct page *accessed)
4731 {
4732 	unsigned long num_pages, i;
4733 
4734 	check_buffer_tree_ref(eb);
4735 
4736 	num_pages = num_extent_pages(eb->start, eb->len);
4737 	for (i = 0; i < num_pages; i++) {
4738 		struct page *p = eb->pages[i];
4739 
4740 		if (p != accessed)
4741 			mark_page_accessed(p);
4742 	}
4743 }
4744 
4745 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4746 					 u64 start)
4747 {
4748 	struct extent_buffer *eb;
4749 
4750 	rcu_read_lock();
4751 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4752 			       start >> PAGE_CACHE_SHIFT);
4753 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4754 		rcu_read_unlock();
4755 		mark_extent_buffer_accessed(eb, NULL);
4756 		return eb;
4757 	}
4758 	rcu_read_unlock();
4759 
4760 	return NULL;
4761 }
4762 
4763 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4764 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4765 					       u64 start, unsigned long len)
4766 {
4767 	struct extent_buffer *eb, *exists = NULL;
4768 	int ret;
4769 
4770 	eb = find_extent_buffer(fs_info, start);
4771 	if (eb)
4772 		return eb;
4773 	eb = alloc_dummy_extent_buffer(start, len);
4774 	if (!eb)
4775 		return NULL;
4776 	eb->fs_info = fs_info;
4777 again:
4778 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4779 	if (ret)
4780 		goto free_eb;
4781 	spin_lock(&fs_info->buffer_lock);
4782 	ret = radix_tree_insert(&fs_info->buffer_radix,
4783 				start >> PAGE_CACHE_SHIFT, eb);
4784 	spin_unlock(&fs_info->buffer_lock);
4785 	radix_tree_preload_end();
4786 	if (ret == -EEXIST) {
4787 		exists = find_extent_buffer(fs_info, start);
4788 		if (exists)
4789 			goto free_eb;
4790 		else
4791 			goto again;
4792 	}
4793 	check_buffer_tree_ref(eb);
4794 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4795 
4796 	/*
4797 	 * We will free dummy extent buffer's if they come into
4798 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4799 	 * want the buffers to stay in memory until we're done with them, so
4800 	 * bump the ref count again.
4801 	 */
4802 	atomic_inc(&eb->refs);
4803 	return eb;
4804 free_eb:
4805 	btrfs_release_extent_buffer(eb);
4806 	return exists;
4807 }
4808 #endif
4809 
4810 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4811 					  u64 start, unsigned long len)
4812 {
4813 	unsigned long num_pages = num_extent_pages(start, len);
4814 	unsigned long i;
4815 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4816 	struct extent_buffer *eb;
4817 	struct extent_buffer *exists = NULL;
4818 	struct page *p;
4819 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4820 	int uptodate = 1;
4821 	int ret;
4822 
4823 	eb = find_extent_buffer(fs_info, start);
4824 	if (eb)
4825 		return eb;
4826 
4827 	eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4828 	if (!eb)
4829 		return NULL;
4830 
4831 	for (i = 0; i < num_pages; i++, index++) {
4832 		p = find_or_create_page(mapping, index, GFP_NOFS);
4833 		if (!p)
4834 			goto free_eb;
4835 
4836 		spin_lock(&mapping->private_lock);
4837 		if (PagePrivate(p)) {
4838 			/*
4839 			 * We could have already allocated an eb for this page
4840 			 * and attached one so lets see if we can get a ref on
4841 			 * the existing eb, and if we can we know it's good and
4842 			 * we can just return that one, else we know we can just
4843 			 * overwrite page->private.
4844 			 */
4845 			exists = (struct extent_buffer *)p->private;
4846 			if (atomic_inc_not_zero(&exists->refs)) {
4847 				spin_unlock(&mapping->private_lock);
4848 				unlock_page(p);
4849 				page_cache_release(p);
4850 				mark_extent_buffer_accessed(exists, p);
4851 				goto free_eb;
4852 			}
4853 
4854 			/*
4855 			 * Do this so attach doesn't complain and we need to
4856 			 * drop the ref the old guy had.
4857 			 */
4858 			ClearPagePrivate(p);
4859 			WARN_ON(PageDirty(p));
4860 			page_cache_release(p);
4861 		}
4862 		attach_extent_buffer_page(eb, p);
4863 		spin_unlock(&mapping->private_lock);
4864 		WARN_ON(PageDirty(p));
4865 		eb->pages[i] = p;
4866 		if (!PageUptodate(p))
4867 			uptodate = 0;
4868 
4869 		/*
4870 		 * see below about how we avoid a nasty race with release page
4871 		 * and why we unlock later
4872 		 */
4873 	}
4874 	if (uptodate)
4875 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4876 again:
4877 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4878 	if (ret)
4879 		goto free_eb;
4880 
4881 	spin_lock(&fs_info->buffer_lock);
4882 	ret = radix_tree_insert(&fs_info->buffer_radix,
4883 				start >> PAGE_CACHE_SHIFT, eb);
4884 	spin_unlock(&fs_info->buffer_lock);
4885 	radix_tree_preload_end();
4886 	if (ret == -EEXIST) {
4887 		exists = find_extent_buffer(fs_info, start);
4888 		if (exists)
4889 			goto free_eb;
4890 		else
4891 			goto again;
4892 	}
4893 	/* add one reference for the tree */
4894 	check_buffer_tree_ref(eb);
4895 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4896 
4897 	/*
4898 	 * there is a race where release page may have
4899 	 * tried to find this extent buffer in the radix
4900 	 * but failed.  It will tell the VM it is safe to
4901 	 * reclaim the, and it will clear the page private bit.
4902 	 * We must make sure to set the page private bit properly
4903 	 * after the extent buffer is in the radix tree so
4904 	 * it doesn't get lost
4905 	 */
4906 	SetPageChecked(eb->pages[0]);
4907 	for (i = 1; i < num_pages; i++) {
4908 		p = eb->pages[i];
4909 		ClearPageChecked(p);
4910 		unlock_page(p);
4911 	}
4912 	unlock_page(eb->pages[0]);
4913 	return eb;
4914 
4915 free_eb:
4916 	for (i = 0; i < num_pages; i++) {
4917 		if (eb->pages[i])
4918 			unlock_page(eb->pages[i]);
4919 	}
4920 
4921 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4922 	btrfs_release_extent_buffer(eb);
4923 	return exists;
4924 }
4925 
4926 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4927 {
4928 	struct extent_buffer *eb =
4929 			container_of(head, struct extent_buffer, rcu_head);
4930 
4931 	__free_extent_buffer(eb);
4932 }
4933 
4934 /* Expects to have eb->eb_lock already held */
4935 static int release_extent_buffer(struct extent_buffer *eb)
4936 {
4937 	WARN_ON(atomic_read(&eb->refs) == 0);
4938 	if (atomic_dec_and_test(&eb->refs)) {
4939 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4940 			struct btrfs_fs_info *fs_info = eb->fs_info;
4941 
4942 			spin_unlock(&eb->refs_lock);
4943 
4944 			spin_lock(&fs_info->buffer_lock);
4945 			radix_tree_delete(&fs_info->buffer_radix,
4946 					  eb->start >> PAGE_CACHE_SHIFT);
4947 			spin_unlock(&fs_info->buffer_lock);
4948 		} else {
4949 			spin_unlock(&eb->refs_lock);
4950 		}
4951 
4952 		/* Should be safe to release our pages at this point */
4953 		btrfs_release_extent_buffer_page(eb);
4954 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4955 		return 1;
4956 	}
4957 	spin_unlock(&eb->refs_lock);
4958 
4959 	return 0;
4960 }
4961 
4962 void free_extent_buffer(struct extent_buffer *eb)
4963 {
4964 	int refs;
4965 	int old;
4966 	if (!eb)
4967 		return;
4968 
4969 	while (1) {
4970 		refs = atomic_read(&eb->refs);
4971 		if (refs <= 3)
4972 			break;
4973 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4974 		if (old == refs)
4975 			return;
4976 	}
4977 
4978 	spin_lock(&eb->refs_lock);
4979 	if (atomic_read(&eb->refs) == 2 &&
4980 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4981 		atomic_dec(&eb->refs);
4982 
4983 	if (atomic_read(&eb->refs) == 2 &&
4984 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4985 	    !extent_buffer_under_io(eb) &&
4986 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4987 		atomic_dec(&eb->refs);
4988 
4989 	/*
4990 	 * I know this is terrible, but it's temporary until we stop tracking
4991 	 * the uptodate bits and such for the extent buffers.
4992 	 */
4993 	release_extent_buffer(eb);
4994 }
4995 
4996 void free_extent_buffer_stale(struct extent_buffer *eb)
4997 {
4998 	if (!eb)
4999 		return;
5000 
5001 	spin_lock(&eb->refs_lock);
5002 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5003 
5004 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5005 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5006 		atomic_dec(&eb->refs);
5007 	release_extent_buffer(eb);
5008 }
5009 
5010 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5011 {
5012 	unsigned long i;
5013 	unsigned long num_pages;
5014 	struct page *page;
5015 
5016 	num_pages = num_extent_pages(eb->start, eb->len);
5017 
5018 	for (i = 0; i < num_pages; i++) {
5019 		page = eb->pages[i];
5020 		if (!PageDirty(page))
5021 			continue;
5022 
5023 		lock_page(page);
5024 		WARN_ON(!PagePrivate(page));
5025 
5026 		clear_page_dirty_for_io(page);
5027 		spin_lock_irq(&page->mapping->tree_lock);
5028 		if (!PageDirty(page)) {
5029 			radix_tree_tag_clear(&page->mapping->page_tree,
5030 						page_index(page),
5031 						PAGECACHE_TAG_DIRTY);
5032 		}
5033 		spin_unlock_irq(&page->mapping->tree_lock);
5034 		ClearPageError(page);
5035 		unlock_page(page);
5036 	}
5037 	WARN_ON(atomic_read(&eb->refs) == 0);
5038 }
5039 
5040 int set_extent_buffer_dirty(struct extent_buffer *eb)
5041 {
5042 	unsigned long i;
5043 	unsigned long num_pages;
5044 	int was_dirty = 0;
5045 
5046 	check_buffer_tree_ref(eb);
5047 
5048 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5049 
5050 	num_pages = num_extent_pages(eb->start, eb->len);
5051 	WARN_ON(atomic_read(&eb->refs) == 0);
5052 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5053 
5054 	for (i = 0; i < num_pages; i++)
5055 		set_page_dirty(eb->pages[i]);
5056 	return was_dirty;
5057 }
5058 
5059 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5060 {
5061 	unsigned long i;
5062 	struct page *page;
5063 	unsigned long num_pages;
5064 
5065 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5066 	num_pages = num_extent_pages(eb->start, eb->len);
5067 	for (i = 0; i < num_pages; i++) {
5068 		page = eb->pages[i];
5069 		if (page)
5070 			ClearPageUptodate(page);
5071 	}
5072 	return 0;
5073 }
5074 
5075 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5076 {
5077 	unsigned long i;
5078 	struct page *page;
5079 	unsigned long num_pages;
5080 
5081 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5082 	num_pages = num_extent_pages(eb->start, eb->len);
5083 	for (i = 0; i < num_pages; i++) {
5084 		page = eb->pages[i];
5085 		SetPageUptodate(page);
5086 	}
5087 	return 0;
5088 }
5089 
5090 int extent_buffer_uptodate(struct extent_buffer *eb)
5091 {
5092 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5093 }
5094 
5095 int read_extent_buffer_pages(struct extent_io_tree *tree,
5096 			     struct extent_buffer *eb, u64 start, int wait,
5097 			     get_extent_t *get_extent, int mirror_num)
5098 {
5099 	unsigned long i;
5100 	unsigned long start_i;
5101 	struct page *page;
5102 	int err;
5103 	int ret = 0;
5104 	int locked_pages = 0;
5105 	int all_uptodate = 1;
5106 	unsigned long num_pages;
5107 	unsigned long num_reads = 0;
5108 	struct bio *bio = NULL;
5109 	unsigned long bio_flags = 0;
5110 
5111 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5112 		return 0;
5113 
5114 	if (start) {
5115 		WARN_ON(start < eb->start);
5116 		start_i = (start >> PAGE_CACHE_SHIFT) -
5117 			(eb->start >> PAGE_CACHE_SHIFT);
5118 	} else {
5119 		start_i = 0;
5120 	}
5121 
5122 	num_pages = num_extent_pages(eb->start, eb->len);
5123 	for (i = start_i; i < num_pages; i++) {
5124 		page = eb->pages[i];
5125 		if (wait == WAIT_NONE) {
5126 			if (!trylock_page(page))
5127 				goto unlock_exit;
5128 		} else {
5129 			lock_page(page);
5130 		}
5131 		locked_pages++;
5132 		if (!PageUptodate(page)) {
5133 			num_reads++;
5134 			all_uptodate = 0;
5135 		}
5136 	}
5137 	if (all_uptodate) {
5138 		if (start_i == 0)
5139 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5140 		goto unlock_exit;
5141 	}
5142 
5143 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5144 	eb->read_mirror = 0;
5145 	atomic_set(&eb->io_pages, num_reads);
5146 	for (i = start_i; i < num_pages; i++) {
5147 		page = eb->pages[i];
5148 		if (!PageUptodate(page)) {
5149 			ClearPageError(page);
5150 			err = __extent_read_full_page(tree, page,
5151 						      get_extent, &bio,
5152 						      mirror_num, &bio_flags,
5153 						      READ | REQ_META);
5154 			if (err)
5155 				ret = err;
5156 		} else {
5157 			unlock_page(page);
5158 		}
5159 	}
5160 
5161 	if (bio) {
5162 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5163 				     bio_flags);
5164 		if (err)
5165 			return err;
5166 	}
5167 
5168 	if (ret || wait != WAIT_COMPLETE)
5169 		return ret;
5170 
5171 	for (i = start_i; i < num_pages; i++) {
5172 		page = eb->pages[i];
5173 		wait_on_page_locked(page);
5174 		if (!PageUptodate(page))
5175 			ret = -EIO;
5176 	}
5177 
5178 	return ret;
5179 
5180 unlock_exit:
5181 	i = start_i;
5182 	while (locked_pages > 0) {
5183 		page = eb->pages[i];
5184 		i++;
5185 		unlock_page(page);
5186 		locked_pages--;
5187 	}
5188 	return ret;
5189 }
5190 
5191 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5192 			unsigned long start,
5193 			unsigned long len)
5194 {
5195 	size_t cur;
5196 	size_t offset;
5197 	struct page *page;
5198 	char *kaddr;
5199 	char *dst = (char *)dstv;
5200 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5201 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5202 
5203 	WARN_ON(start > eb->len);
5204 	WARN_ON(start + len > eb->start + eb->len);
5205 
5206 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5207 
5208 	while (len > 0) {
5209 		page = eb->pages[i];
5210 
5211 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5212 		kaddr = page_address(page);
5213 		memcpy(dst, kaddr + offset, cur);
5214 
5215 		dst += cur;
5216 		len -= cur;
5217 		offset = 0;
5218 		i++;
5219 	}
5220 }
5221 
5222 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5223 			unsigned long start,
5224 			unsigned long len)
5225 {
5226 	size_t cur;
5227 	size_t offset;
5228 	struct page *page;
5229 	char *kaddr;
5230 	char __user *dst = (char __user *)dstv;
5231 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5232 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5233 	int ret = 0;
5234 
5235 	WARN_ON(start > eb->len);
5236 	WARN_ON(start + len > eb->start + eb->len);
5237 
5238 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5239 
5240 	while (len > 0) {
5241 		page = eb->pages[i];
5242 
5243 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5244 		kaddr = page_address(page);
5245 		if (copy_to_user(dst, kaddr + offset, cur)) {
5246 			ret = -EFAULT;
5247 			break;
5248 		}
5249 
5250 		dst += cur;
5251 		len -= cur;
5252 		offset = 0;
5253 		i++;
5254 	}
5255 
5256 	return ret;
5257 }
5258 
5259 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5260 			       unsigned long min_len, char **map,
5261 			       unsigned long *map_start,
5262 			       unsigned long *map_len)
5263 {
5264 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5265 	char *kaddr;
5266 	struct page *p;
5267 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5268 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5269 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5270 		PAGE_CACHE_SHIFT;
5271 
5272 	if (i != end_i)
5273 		return -EINVAL;
5274 
5275 	if (i == 0) {
5276 		offset = start_offset;
5277 		*map_start = 0;
5278 	} else {
5279 		offset = 0;
5280 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5281 	}
5282 
5283 	if (start + min_len > eb->len) {
5284 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5285 		       "wanted %lu %lu\n",
5286 		       eb->start, eb->len, start, min_len);
5287 		return -EINVAL;
5288 	}
5289 
5290 	p = eb->pages[i];
5291 	kaddr = page_address(p);
5292 	*map = kaddr + offset;
5293 	*map_len = PAGE_CACHE_SIZE - offset;
5294 	return 0;
5295 }
5296 
5297 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5298 			  unsigned long start,
5299 			  unsigned long len)
5300 {
5301 	size_t cur;
5302 	size_t offset;
5303 	struct page *page;
5304 	char *kaddr;
5305 	char *ptr = (char *)ptrv;
5306 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5307 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5308 	int ret = 0;
5309 
5310 	WARN_ON(start > eb->len);
5311 	WARN_ON(start + len > eb->start + eb->len);
5312 
5313 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5314 
5315 	while (len > 0) {
5316 		page = eb->pages[i];
5317 
5318 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5319 
5320 		kaddr = page_address(page);
5321 		ret = memcmp(ptr, kaddr + offset, cur);
5322 		if (ret)
5323 			break;
5324 
5325 		ptr += cur;
5326 		len -= cur;
5327 		offset = 0;
5328 		i++;
5329 	}
5330 	return ret;
5331 }
5332 
5333 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5334 			 unsigned long start, unsigned long len)
5335 {
5336 	size_t cur;
5337 	size_t offset;
5338 	struct page *page;
5339 	char *kaddr;
5340 	char *src = (char *)srcv;
5341 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5342 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5343 
5344 	WARN_ON(start > eb->len);
5345 	WARN_ON(start + len > eb->start + eb->len);
5346 
5347 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5348 
5349 	while (len > 0) {
5350 		page = eb->pages[i];
5351 		WARN_ON(!PageUptodate(page));
5352 
5353 		cur = min(len, PAGE_CACHE_SIZE - offset);
5354 		kaddr = page_address(page);
5355 		memcpy(kaddr + offset, src, cur);
5356 
5357 		src += cur;
5358 		len -= cur;
5359 		offset = 0;
5360 		i++;
5361 	}
5362 }
5363 
5364 void memset_extent_buffer(struct extent_buffer *eb, char c,
5365 			  unsigned long start, unsigned long len)
5366 {
5367 	size_t cur;
5368 	size_t offset;
5369 	struct page *page;
5370 	char *kaddr;
5371 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5372 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5373 
5374 	WARN_ON(start > eb->len);
5375 	WARN_ON(start + len > eb->start + eb->len);
5376 
5377 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5378 
5379 	while (len > 0) {
5380 		page = eb->pages[i];
5381 		WARN_ON(!PageUptodate(page));
5382 
5383 		cur = min(len, PAGE_CACHE_SIZE - offset);
5384 		kaddr = page_address(page);
5385 		memset(kaddr + offset, c, cur);
5386 
5387 		len -= cur;
5388 		offset = 0;
5389 		i++;
5390 	}
5391 }
5392 
5393 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5394 			unsigned long dst_offset, unsigned long src_offset,
5395 			unsigned long len)
5396 {
5397 	u64 dst_len = dst->len;
5398 	size_t cur;
5399 	size_t offset;
5400 	struct page *page;
5401 	char *kaddr;
5402 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5403 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5404 
5405 	WARN_ON(src->len != dst_len);
5406 
5407 	offset = (start_offset + dst_offset) &
5408 		(PAGE_CACHE_SIZE - 1);
5409 
5410 	while (len > 0) {
5411 		page = dst->pages[i];
5412 		WARN_ON(!PageUptodate(page));
5413 
5414 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5415 
5416 		kaddr = page_address(page);
5417 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5418 
5419 		src_offset += cur;
5420 		len -= cur;
5421 		offset = 0;
5422 		i++;
5423 	}
5424 }
5425 
5426 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5427 {
5428 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5429 	return distance < len;
5430 }
5431 
5432 static void copy_pages(struct page *dst_page, struct page *src_page,
5433 		       unsigned long dst_off, unsigned long src_off,
5434 		       unsigned long len)
5435 {
5436 	char *dst_kaddr = page_address(dst_page);
5437 	char *src_kaddr;
5438 	int must_memmove = 0;
5439 
5440 	if (dst_page != src_page) {
5441 		src_kaddr = page_address(src_page);
5442 	} else {
5443 		src_kaddr = dst_kaddr;
5444 		if (areas_overlap(src_off, dst_off, len))
5445 			must_memmove = 1;
5446 	}
5447 
5448 	if (must_memmove)
5449 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5450 	else
5451 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5452 }
5453 
5454 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5455 			   unsigned long src_offset, unsigned long len)
5456 {
5457 	size_t cur;
5458 	size_t dst_off_in_page;
5459 	size_t src_off_in_page;
5460 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5461 	unsigned long dst_i;
5462 	unsigned long src_i;
5463 
5464 	if (src_offset + len > dst->len) {
5465 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5466 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5467 		BUG_ON(1);
5468 	}
5469 	if (dst_offset + len > dst->len) {
5470 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5471 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5472 		BUG_ON(1);
5473 	}
5474 
5475 	while (len > 0) {
5476 		dst_off_in_page = (start_offset + dst_offset) &
5477 			(PAGE_CACHE_SIZE - 1);
5478 		src_off_in_page = (start_offset + src_offset) &
5479 			(PAGE_CACHE_SIZE - 1);
5480 
5481 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5482 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5483 
5484 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5485 					       src_off_in_page));
5486 		cur = min_t(unsigned long, cur,
5487 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5488 
5489 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5490 			   dst_off_in_page, src_off_in_page, cur);
5491 
5492 		src_offset += cur;
5493 		dst_offset += cur;
5494 		len -= cur;
5495 	}
5496 }
5497 
5498 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5499 			   unsigned long src_offset, unsigned long len)
5500 {
5501 	size_t cur;
5502 	size_t dst_off_in_page;
5503 	size_t src_off_in_page;
5504 	unsigned long dst_end = dst_offset + len - 1;
5505 	unsigned long src_end = src_offset + len - 1;
5506 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5507 	unsigned long dst_i;
5508 	unsigned long src_i;
5509 
5510 	if (src_offset + len > dst->len) {
5511 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5512 		       "len %lu len %lu\n", src_offset, len, dst->len);
5513 		BUG_ON(1);
5514 	}
5515 	if (dst_offset + len > dst->len) {
5516 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5517 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5518 		BUG_ON(1);
5519 	}
5520 	if (dst_offset < src_offset) {
5521 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5522 		return;
5523 	}
5524 	while (len > 0) {
5525 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5526 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5527 
5528 		dst_off_in_page = (start_offset + dst_end) &
5529 			(PAGE_CACHE_SIZE - 1);
5530 		src_off_in_page = (start_offset + src_end) &
5531 			(PAGE_CACHE_SIZE - 1);
5532 
5533 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5534 		cur = min(cur, dst_off_in_page + 1);
5535 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5536 			   dst_off_in_page - cur + 1,
5537 			   src_off_in_page - cur + 1, cur);
5538 
5539 		dst_end -= cur;
5540 		src_end -= cur;
5541 		len -= cur;
5542 	}
5543 }
5544 
5545 int try_release_extent_buffer(struct page *page)
5546 {
5547 	struct extent_buffer *eb;
5548 
5549 	/*
5550 	 * We need to make sure noboody is attaching this page to an eb right
5551 	 * now.
5552 	 */
5553 	spin_lock(&page->mapping->private_lock);
5554 	if (!PagePrivate(page)) {
5555 		spin_unlock(&page->mapping->private_lock);
5556 		return 1;
5557 	}
5558 
5559 	eb = (struct extent_buffer *)page->private;
5560 	BUG_ON(!eb);
5561 
5562 	/*
5563 	 * This is a little awful but should be ok, we need to make sure that
5564 	 * the eb doesn't disappear out from under us while we're looking at
5565 	 * this page.
5566 	 */
5567 	spin_lock(&eb->refs_lock);
5568 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5569 		spin_unlock(&eb->refs_lock);
5570 		spin_unlock(&page->mapping->private_lock);
5571 		return 0;
5572 	}
5573 	spin_unlock(&page->mapping->private_lock);
5574 
5575 	/*
5576 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5577 	 * so just return, this page will likely be freed soon anyway.
5578 	 */
5579 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5580 		spin_unlock(&eb->refs_lock);
5581 		return 0;
5582 	}
5583 
5584 	return release_extent_buffer(eb);
5585 }
5586