xref: /openbmc/linux/fs/btrfs/extent_io.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40 
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 					struct list_head *new,
43 					struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(lock, flags);
50 }
51 
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 					struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(lock, flags);
60 }
61 
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 	struct extent_buffer *eb;
65 	unsigned long flags;
66 
67 	/*
68 	 * If we didn't get into open_ctree our allocated_ebs will not be
69 	 * initialized, so just skip this.
70 	 */
71 	if (!fs_info->allocated_ebs.next)
72 		return;
73 
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87 
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 	struct extent_state *state;
91 
92 	while (!list_empty(&states)) {
93 		state = list_entry(states.next, struct extent_state, leak_list);
94 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 		       state->start, state->end, state->state,
96 		       extent_state_in_tree(state),
97 		       refcount_read(&state->refs));
98 		list_del(&state->leak_list);
99 		kmem_cache_free(extent_state_cache, state);
100 	}
101 }
102 
103 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
104 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 		struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 	struct inode *inode = tree->private_data;
109 	u64 isize;
110 
111 	if (!inode || !is_data_inode(inode))
112 		return;
113 
114 	isize = i_size_read(inode);
115 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 	}
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
126 #endif
127 
128 struct tree_entry {
129 	u64 start;
130 	u64 end;
131 	struct rb_node rb_node;
132 };
133 
134 struct extent_page_data {
135 	struct bio *bio;
136 	/* tells writepage not to lock the state bits for this range
137 	 * it still does the unlocking
138 	 */
139 	unsigned int extent_locked:1;
140 
141 	/* tells the submit_bio code to use REQ_SYNC */
142 	unsigned int sync_io:1;
143 };
144 
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 				 struct extent_changeset *changeset,
147 				 int set)
148 {
149 	int ret;
150 
151 	if (!changeset)
152 		return 0;
153 	if (set && (state->state & bits) == bits)
154 		return 0;
155 	if (!set && (state->state & bits) == 0)
156 		return 0;
157 	changeset->bytes_changed += state->end - state->start + 1;
158 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 			GFP_ATOMIC);
160 	return ret;
161 }
162 
163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 				unsigned long bio_flags)
165 {
166 	blk_status_t ret = 0;
167 	struct extent_io_tree *tree = bio->bi_private;
168 
169 	bio->bi_private = NULL;
170 
171 	if (is_data_inode(tree->private_data))
172 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173 					    bio_flags);
174 	else
175 		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176 						mirror_num, bio_flags);
177 
178 	return blk_status_to_errno(ret);
179 }
180 
181 /* Cleanup unsubmitted bios */
182 static void end_write_bio(struct extent_page_data *epd, int ret)
183 {
184 	if (epd->bio) {
185 		epd->bio->bi_status = errno_to_blk_status(ret);
186 		bio_endio(epd->bio);
187 		epd->bio = NULL;
188 	}
189 }
190 
191 /*
192  * Submit bio from extent page data via submit_one_bio
193  *
194  * Return 0 if everything is OK.
195  * Return <0 for error.
196  */
197 static int __must_check flush_write_bio(struct extent_page_data *epd)
198 {
199 	int ret = 0;
200 
201 	if (epd->bio) {
202 		ret = submit_one_bio(epd->bio, 0, 0);
203 		/*
204 		 * Clean up of epd->bio is handled by its endio function.
205 		 * And endio is either triggered by successful bio execution
206 		 * or the error handler of submit bio hook.
207 		 * So at this point, no matter what happened, we don't need
208 		 * to clean up epd->bio.
209 		 */
210 		epd->bio = NULL;
211 	}
212 	return ret;
213 }
214 
215 int __init extent_state_cache_init(void)
216 {
217 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
218 			sizeof(struct extent_state), 0,
219 			SLAB_MEM_SPREAD, NULL);
220 	if (!extent_state_cache)
221 		return -ENOMEM;
222 	return 0;
223 }
224 
225 int __init extent_io_init(void)
226 {
227 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228 			sizeof(struct extent_buffer), 0,
229 			SLAB_MEM_SPREAD, NULL);
230 	if (!extent_buffer_cache)
231 		return -ENOMEM;
232 
233 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234 			offsetof(struct btrfs_io_bio, bio),
235 			BIOSET_NEED_BVECS))
236 		goto free_buffer_cache;
237 
238 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239 		goto free_bioset;
240 
241 	return 0;
242 
243 free_bioset:
244 	bioset_exit(&btrfs_bioset);
245 
246 free_buffer_cache:
247 	kmem_cache_destroy(extent_buffer_cache);
248 	extent_buffer_cache = NULL;
249 	return -ENOMEM;
250 }
251 
252 void __cold extent_state_cache_exit(void)
253 {
254 	btrfs_extent_state_leak_debug_check();
255 	kmem_cache_destroy(extent_state_cache);
256 }
257 
258 void __cold extent_io_exit(void)
259 {
260 	/*
261 	 * Make sure all delayed rcu free are flushed before we
262 	 * destroy caches.
263 	 */
264 	rcu_barrier();
265 	kmem_cache_destroy(extent_buffer_cache);
266 	bioset_exit(&btrfs_bioset);
267 }
268 
269 /*
270  * For the file_extent_tree, we want to hold the inode lock when we lookup and
271  * update the disk_i_size, but lockdep will complain because our io_tree we hold
272  * the tree lock and get the inode lock when setting delalloc.  These two things
273  * are unrelated, so make a class for the file_extent_tree so we don't get the
274  * two locking patterns mixed up.
275  */
276 static struct lock_class_key file_extent_tree_class;
277 
278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279 			 struct extent_io_tree *tree, unsigned int owner,
280 			 void *private_data)
281 {
282 	tree->fs_info = fs_info;
283 	tree->state = RB_ROOT;
284 	tree->dirty_bytes = 0;
285 	spin_lock_init(&tree->lock);
286 	tree->private_data = private_data;
287 	tree->owner = owner;
288 	if (owner == IO_TREE_INODE_FILE_EXTENT)
289 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291 
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 	spin_lock(&tree->lock);
295 	/*
296 	 * Do a single barrier for the waitqueue_active check here, the state
297 	 * of the waitqueue should not change once extent_io_tree_release is
298 	 * called.
299 	 */
300 	smp_mb();
301 	while (!RB_EMPTY_ROOT(&tree->state)) {
302 		struct rb_node *node;
303 		struct extent_state *state;
304 
305 		node = rb_first(&tree->state);
306 		state = rb_entry(node, struct extent_state, rb_node);
307 		rb_erase(&state->rb_node, &tree->state);
308 		RB_CLEAR_NODE(&state->rb_node);
309 		/*
310 		 * btree io trees aren't supposed to have tasks waiting for
311 		 * changes in the flags of extent states ever.
312 		 */
313 		ASSERT(!waitqueue_active(&state->wq));
314 		free_extent_state(state);
315 
316 		cond_resched_lock(&tree->lock);
317 	}
318 	spin_unlock(&tree->lock);
319 }
320 
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 	struct extent_state *state;
324 
325 	/*
326 	 * The given mask might be not appropriate for the slab allocator,
327 	 * drop the unsupported bits
328 	 */
329 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 	state = kmem_cache_alloc(extent_state_cache, mask);
331 	if (!state)
332 		return state;
333 	state->state = 0;
334 	state->failrec = NULL;
335 	RB_CLEAR_NODE(&state->rb_node);
336 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 	refcount_set(&state->refs, 1);
338 	init_waitqueue_head(&state->wq);
339 	trace_alloc_extent_state(state, mask, _RET_IP_);
340 	return state;
341 }
342 
343 void free_extent_state(struct extent_state *state)
344 {
345 	if (!state)
346 		return;
347 	if (refcount_dec_and_test(&state->refs)) {
348 		WARN_ON(extent_state_in_tree(state));
349 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 		trace_free_extent_state(state, _RET_IP_);
351 		kmem_cache_free(extent_state_cache, state);
352 	}
353 }
354 
355 static struct rb_node *tree_insert(struct rb_root *root,
356 				   struct rb_node *search_start,
357 				   u64 offset,
358 				   struct rb_node *node,
359 				   struct rb_node ***p_in,
360 				   struct rb_node **parent_in)
361 {
362 	struct rb_node **p;
363 	struct rb_node *parent = NULL;
364 	struct tree_entry *entry;
365 
366 	if (p_in && parent_in) {
367 		p = *p_in;
368 		parent = *parent_in;
369 		goto do_insert;
370 	}
371 
372 	p = search_start ? &search_start : &root->rb_node;
373 	while (*p) {
374 		parent = *p;
375 		entry = rb_entry(parent, struct tree_entry, rb_node);
376 
377 		if (offset < entry->start)
378 			p = &(*p)->rb_left;
379 		else if (offset > entry->end)
380 			p = &(*p)->rb_right;
381 		else
382 			return parent;
383 	}
384 
385 do_insert:
386 	rb_link_node(node, parent, p);
387 	rb_insert_color(node, root);
388 	return NULL;
389 }
390 
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *	    entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 				      struct rb_node **next_ret,
411 				      struct rb_node **prev_ret,
412 				      struct rb_node ***p_ret,
413 				      struct rb_node **parent_ret)
414 {
415 	struct rb_root *root = &tree->state;
416 	struct rb_node **n = &root->rb_node;
417 	struct rb_node *prev = NULL;
418 	struct rb_node *orig_prev = NULL;
419 	struct tree_entry *entry;
420 	struct tree_entry *prev_entry = NULL;
421 
422 	while (*n) {
423 		prev = *n;
424 		entry = rb_entry(prev, struct tree_entry, rb_node);
425 		prev_entry = entry;
426 
427 		if (offset < entry->start)
428 			n = &(*n)->rb_left;
429 		else if (offset > entry->end)
430 			n = &(*n)->rb_right;
431 		else
432 			return *n;
433 	}
434 
435 	if (p_ret)
436 		*p_ret = n;
437 	if (parent_ret)
438 		*parent_ret = prev;
439 
440 	if (next_ret) {
441 		orig_prev = prev;
442 		while (prev && offset > prev_entry->end) {
443 			prev = rb_next(prev);
444 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 		}
446 		*next_ret = prev;
447 		prev = orig_prev;
448 	}
449 
450 	if (prev_ret) {
451 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 		while (prev && offset < prev_entry->start) {
453 			prev = rb_prev(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*prev_ret = prev;
457 	}
458 	return NULL;
459 }
460 
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463 		       u64 offset,
464 		       struct rb_node ***p_ret,
465 		       struct rb_node **parent_ret)
466 {
467 	struct rb_node *next= NULL;
468 	struct rb_node *ret;
469 
470 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 	if (!ret)
472 		return next;
473 	return ret;
474 }
475 
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 					  u64 offset)
478 {
479 	return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481 
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492 		        struct extent_state *state)
493 {
494 	struct extent_state *other;
495 	struct rb_node *other_node;
496 
497 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 		return;
499 
500 	other_node = rb_prev(&state->rb_node);
501 	if (other_node) {
502 		other = rb_entry(other_node, struct extent_state, rb_node);
503 		if (other->end == state->start - 1 &&
504 		    other->state == state->state) {
505 			if (tree->private_data &&
506 			    is_data_inode(tree->private_data))
507 				btrfs_merge_delalloc_extent(tree->private_data,
508 							    state, other);
509 			state->start = other->start;
510 			rb_erase(&other->rb_node, &tree->state);
511 			RB_CLEAR_NODE(&other->rb_node);
512 			free_extent_state(other);
513 		}
514 	}
515 	other_node = rb_next(&state->rb_node);
516 	if (other_node) {
517 		other = rb_entry(other_node, struct extent_state, rb_node);
518 		if (other->start == state->end + 1 &&
519 		    other->state == state->state) {
520 			if (tree->private_data &&
521 			    is_data_inode(tree->private_data))
522 				btrfs_merge_delalloc_extent(tree->private_data,
523 							    state, other);
524 			state->end = other->end;
525 			rb_erase(&other->rb_node, &tree->state);
526 			RB_CLEAR_NODE(&other->rb_node);
527 			free_extent_state(other);
528 		}
529 	}
530 }
531 
532 static void set_state_bits(struct extent_io_tree *tree,
533 			   struct extent_state *state, unsigned *bits,
534 			   struct extent_changeset *changeset);
535 
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547 			struct extent_state *state, u64 start, u64 end,
548 			struct rb_node ***p,
549 			struct rb_node **parent,
550 			unsigned *bits, struct extent_changeset *changeset)
551 {
552 	struct rb_node *node;
553 
554 	if (end < start) {
555 		btrfs_err(tree->fs_info,
556 			"insert state: end < start %llu %llu", end, start);
557 		WARN_ON(1);
558 	}
559 	state->start = start;
560 	state->end = end;
561 
562 	set_state_bits(tree, state, bits, changeset);
563 
564 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 	if (node) {
566 		struct extent_state *found;
567 		found = rb_entry(node, struct extent_state, rb_node);
568 		btrfs_err(tree->fs_info,
569 		       "found node %llu %llu on insert of %llu %llu",
570 		       found->start, found->end, start, end);
571 		return -EEXIST;
572 	}
573 	merge_state(tree, state);
574 	return 0;
575 }
576 
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 		       struct extent_state *prealloc, u64 split)
593 {
594 	struct rb_node *node;
595 
596 	if (tree->private_data && is_data_inode(tree->private_data))
597 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
598 
599 	prealloc->start = orig->start;
600 	prealloc->end = split - 1;
601 	prealloc->state = orig->state;
602 	orig->start = split;
603 
604 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 			   &prealloc->rb_node, NULL, NULL);
606 	if (node) {
607 		free_extent_state(prealloc);
608 		return -EEXIST;
609 	}
610 	return 0;
611 }
612 
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 	struct rb_node *next = rb_next(&state->rb_node);
616 	if (next)
617 		return rb_entry(next, struct extent_state, rb_node);
618 	else
619 		return NULL;
620 }
621 
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 					    struct extent_state *state,
631 					    unsigned *bits, int wake,
632 					    struct extent_changeset *changeset)
633 {
634 	struct extent_state *next;
635 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 	int ret;
637 
638 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 		u64 range = state->end - state->start + 1;
640 		WARN_ON(range > tree->dirty_bytes);
641 		tree->dirty_bytes -= range;
642 	}
643 
644 	if (tree->private_data && is_data_inode(tree->private_data))
645 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646 
647 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 	BUG_ON(ret < 0);
649 	state->state &= ~bits_to_clear;
650 	if (wake)
651 		wake_up(&state->wq);
652 	if (state->state == 0) {
653 		next = next_state(state);
654 		if (extent_state_in_tree(state)) {
655 			rb_erase(&state->rb_node, &tree->state);
656 			RB_CLEAR_NODE(&state->rb_node);
657 			free_extent_state(state);
658 		} else {
659 			WARN_ON(1);
660 		}
661 	} else {
662 		merge_state(tree, state);
663 		next = next_state(state);
664 	}
665 	return next;
666 }
667 
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 	if (!prealloc)
672 		prealloc = alloc_extent_state(GFP_ATOMIC);
673 
674 	return prealloc;
675 }
676 
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 	struct inode *inode = tree->private_data;
680 
681 	btrfs_panic(btrfs_sb(inode->i_sb), err,
682 	"locking error: extent tree was modified by another thread while locked");
683 }
684 
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 			      unsigned bits, int wake, int delete,
699 			      struct extent_state **cached_state,
700 			      gfp_t mask, struct extent_changeset *changeset)
701 {
702 	struct extent_state *state;
703 	struct extent_state *cached;
704 	struct extent_state *prealloc = NULL;
705 	struct rb_node *node;
706 	u64 last_end;
707 	int err;
708 	int clear = 0;
709 
710 	btrfs_debug_check_extent_io_range(tree, start, end);
711 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712 
713 	if (bits & EXTENT_DELALLOC)
714 		bits |= EXTENT_NORESERVE;
715 
716 	if (delete)
717 		bits |= ~EXTENT_CTLBITS;
718 
719 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 		clear = 1;
721 again:
722 	if (!prealloc && gfpflags_allow_blocking(mask)) {
723 		/*
724 		 * Don't care for allocation failure here because we might end
725 		 * up not needing the pre-allocated extent state at all, which
726 		 * is the case if we only have in the tree extent states that
727 		 * cover our input range and don't cover too any other range.
728 		 * If we end up needing a new extent state we allocate it later.
729 		 */
730 		prealloc = alloc_extent_state(mask);
731 	}
732 
733 	spin_lock(&tree->lock);
734 	if (cached_state) {
735 		cached = *cached_state;
736 
737 		if (clear) {
738 			*cached_state = NULL;
739 			cached_state = NULL;
740 		}
741 
742 		if (cached && extent_state_in_tree(cached) &&
743 		    cached->start <= start && cached->end > start) {
744 			if (clear)
745 				refcount_dec(&cached->refs);
746 			state = cached;
747 			goto hit_next;
748 		}
749 		if (clear)
750 			free_extent_state(cached);
751 	}
752 	/*
753 	 * this search will find the extents that end after
754 	 * our range starts
755 	 */
756 	node = tree_search(tree, start);
757 	if (!node)
758 		goto out;
759 	state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761 	if (state->start > end)
762 		goto out;
763 	WARN_ON(state->end < start);
764 	last_end = state->end;
765 
766 	/* the state doesn't have the wanted bits, go ahead */
767 	if (!(state->state & bits)) {
768 		state = next_state(state);
769 		goto next;
770 	}
771 
772 	/*
773 	 *     | ---- desired range ---- |
774 	 *  | state | or
775 	 *  | ------------- state -------------- |
776 	 *
777 	 * We need to split the extent we found, and may flip
778 	 * bits on second half.
779 	 *
780 	 * If the extent we found extends past our range, we
781 	 * just split and search again.  It'll get split again
782 	 * the next time though.
783 	 *
784 	 * If the extent we found is inside our range, we clear
785 	 * the desired bit on it.
786 	 */
787 
788 	if (state->start < start) {
789 		prealloc = alloc_extent_state_atomic(prealloc);
790 		BUG_ON(!prealloc);
791 		err = split_state(tree, state, prealloc, start);
792 		if (err)
793 			extent_io_tree_panic(tree, err);
794 
795 		prealloc = NULL;
796 		if (err)
797 			goto out;
798 		if (state->end <= end) {
799 			state = clear_state_bit(tree, state, &bits, wake,
800 						changeset);
801 			goto next;
802 		}
803 		goto search_again;
804 	}
805 	/*
806 	 * | ---- desired range ---- |
807 	 *                        | state |
808 	 * We need to split the extent, and clear the bit
809 	 * on the first half
810 	 */
811 	if (state->start <= end && state->end > end) {
812 		prealloc = alloc_extent_state_atomic(prealloc);
813 		BUG_ON(!prealloc);
814 		err = split_state(tree, state, prealloc, end + 1);
815 		if (err)
816 			extent_io_tree_panic(tree, err);
817 
818 		if (wake)
819 			wake_up(&state->wq);
820 
821 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
822 
823 		prealloc = NULL;
824 		goto out;
825 	}
826 
827 	state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829 	if (last_end == (u64)-1)
830 		goto out;
831 	start = last_end + 1;
832 	if (start <= end && state && !need_resched())
833 		goto hit_next;
834 
835 search_again:
836 	if (start > end)
837 		goto out;
838 	spin_unlock(&tree->lock);
839 	if (gfpflags_allow_blocking(mask))
840 		cond_resched();
841 	goto again;
842 
843 out:
844 	spin_unlock(&tree->lock);
845 	if (prealloc)
846 		free_extent_state(prealloc);
847 
848 	return 0;
849 
850 }
851 
852 static void wait_on_state(struct extent_io_tree *tree,
853 			  struct extent_state *state)
854 		__releases(tree->lock)
855 		__acquires(tree->lock)
856 {
857 	DEFINE_WAIT(wait);
858 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 	spin_unlock(&tree->lock);
860 	schedule();
861 	spin_lock(&tree->lock);
862 	finish_wait(&state->wq, &wait);
863 }
864 
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 			    unsigned long bits)
872 {
873 	struct extent_state *state;
874 	struct rb_node *node;
875 
876 	btrfs_debug_check_extent_io_range(tree, start, end);
877 
878 	spin_lock(&tree->lock);
879 again:
880 	while (1) {
881 		/*
882 		 * this search will find all the extents that end after
883 		 * our range starts
884 		 */
885 		node = tree_search(tree, start);
886 process_node:
887 		if (!node)
888 			break;
889 
890 		state = rb_entry(node, struct extent_state, rb_node);
891 
892 		if (state->start > end)
893 			goto out;
894 
895 		if (state->state & bits) {
896 			start = state->start;
897 			refcount_inc(&state->refs);
898 			wait_on_state(tree, state);
899 			free_extent_state(state);
900 			goto again;
901 		}
902 		start = state->end + 1;
903 
904 		if (start > end)
905 			break;
906 
907 		if (!cond_resched_lock(&tree->lock)) {
908 			node = rb_next(node);
909 			goto process_node;
910 		}
911 	}
912 out:
913 	spin_unlock(&tree->lock);
914 }
915 
916 static void set_state_bits(struct extent_io_tree *tree,
917 			   struct extent_state *state,
918 			   unsigned *bits, struct extent_changeset *changeset)
919 {
920 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 	int ret;
922 
923 	if (tree->private_data && is_data_inode(tree->private_data))
924 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
925 
926 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 		u64 range = state->end - state->start + 1;
928 		tree->dirty_bytes += range;
929 	}
930 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 	BUG_ON(ret < 0);
932 	state->state |= bits_to_set;
933 }
934 
935 static void cache_state_if_flags(struct extent_state *state,
936 				 struct extent_state **cached_ptr,
937 				 unsigned flags)
938 {
939 	if (cached_ptr && !(*cached_ptr)) {
940 		if (!flags || (state->state & flags)) {
941 			*cached_ptr = state;
942 			refcount_inc(&state->refs);
943 		}
944 	}
945 }
946 
947 static void cache_state(struct extent_state *state,
948 			struct extent_state **cached_ptr)
949 {
950 	return cache_state_if_flags(state, cached_ptr,
951 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953 
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964 
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 		 unsigned bits, unsigned exclusive_bits,
968 		 u64 *failed_start, struct extent_state **cached_state,
969 		 gfp_t mask, struct extent_changeset *changeset)
970 {
971 	struct extent_state *state;
972 	struct extent_state *prealloc = NULL;
973 	struct rb_node *node;
974 	struct rb_node **p;
975 	struct rb_node *parent;
976 	int err = 0;
977 	u64 last_start;
978 	u64 last_end;
979 
980 	btrfs_debug_check_extent_io_range(tree, start, end);
981 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982 
983 again:
984 	if (!prealloc && gfpflags_allow_blocking(mask)) {
985 		/*
986 		 * Don't care for allocation failure here because we might end
987 		 * up not needing the pre-allocated extent state at all, which
988 		 * is the case if we only have in the tree extent states that
989 		 * cover our input range and don't cover too any other range.
990 		 * If we end up needing a new extent state we allocate it later.
991 		 */
992 		prealloc = alloc_extent_state(mask);
993 	}
994 
995 	spin_lock(&tree->lock);
996 	if (cached_state && *cached_state) {
997 		state = *cached_state;
998 		if (state->start <= start && state->end > start &&
999 		    extent_state_in_tree(state)) {
1000 			node = &state->rb_node;
1001 			goto hit_next;
1002 		}
1003 	}
1004 	/*
1005 	 * this search will find all the extents that end after
1006 	 * our range starts.
1007 	 */
1008 	node = tree_search_for_insert(tree, start, &p, &parent);
1009 	if (!node) {
1010 		prealloc = alloc_extent_state_atomic(prealloc);
1011 		BUG_ON(!prealloc);
1012 		err = insert_state(tree, prealloc, start, end,
1013 				   &p, &parent, &bits, changeset);
1014 		if (err)
1015 			extent_io_tree_panic(tree, err);
1016 
1017 		cache_state(prealloc, cached_state);
1018 		prealloc = NULL;
1019 		goto out;
1020 	}
1021 	state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023 	last_start = state->start;
1024 	last_end = state->end;
1025 
1026 	/*
1027 	 * | ---- desired range ---- |
1028 	 * | state |
1029 	 *
1030 	 * Just lock what we found and keep going
1031 	 */
1032 	if (state->start == start && state->end <= end) {
1033 		if (state->state & exclusive_bits) {
1034 			*failed_start = state->start;
1035 			err = -EEXIST;
1036 			goto out;
1037 		}
1038 
1039 		set_state_bits(tree, state, &bits, changeset);
1040 		cache_state(state, cached_state);
1041 		merge_state(tree, state);
1042 		if (last_end == (u64)-1)
1043 			goto out;
1044 		start = last_end + 1;
1045 		state = next_state(state);
1046 		if (start < end && state && state->start == start &&
1047 		    !need_resched())
1048 			goto hit_next;
1049 		goto search_again;
1050 	}
1051 
1052 	/*
1053 	 *     | ---- desired range ---- |
1054 	 * | state |
1055 	 *   or
1056 	 * | ------------- state -------------- |
1057 	 *
1058 	 * We need to split the extent we found, and may flip bits on
1059 	 * second half.
1060 	 *
1061 	 * If the extent we found extends past our
1062 	 * range, we just split and search again.  It'll get split
1063 	 * again the next time though.
1064 	 *
1065 	 * If the extent we found is inside our range, we set the
1066 	 * desired bit on it.
1067 	 */
1068 	if (state->start < start) {
1069 		if (state->state & exclusive_bits) {
1070 			*failed_start = start;
1071 			err = -EEXIST;
1072 			goto out;
1073 		}
1074 
1075 		/*
1076 		 * If this extent already has all the bits we want set, then
1077 		 * skip it, not necessary to split it or do anything with it.
1078 		 */
1079 		if ((state->state & bits) == bits) {
1080 			start = state->end + 1;
1081 			cache_state(state, cached_state);
1082 			goto search_again;
1083 		}
1084 
1085 		prealloc = alloc_extent_state_atomic(prealloc);
1086 		BUG_ON(!prealloc);
1087 		err = split_state(tree, state, prealloc, start);
1088 		if (err)
1089 			extent_io_tree_panic(tree, err);
1090 
1091 		prealloc = NULL;
1092 		if (err)
1093 			goto out;
1094 		if (state->end <= end) {
1095 			set_state_bits(tree, state, &bits, changeset);
1096 			cache_state(state, cached_state);
1097 			merge_state(tree, state);
1098 			if (last_end == (u64)-1)
1099 				goto out;
1100 			start = last_end + 1;
1101 			state = next_state(state);
1102 			if (start < end && state && state->start == start &&
1103 			    !need_resched())
1104 				goto hit_next;
1105 		}
1106 		goto search_again;
1107 	}
1108 	/*
1109 	 * | ---- desired range ---- |
1110 	 *     | state | or               | state |
1111 	 *
1112 	 * There's a hole, we need to insert something in it and
1113 	 * ignore the extent we found.
1114 	 */
1115 	if (state->start > start) {
1116 		u64 this_end;
1117 		if (end < last_start)
1118 			this_end = end;
1119 		else
1120 			this_end = last_start - 1;
1121 
1122 		prealloc = alloc_extent_state_atomic(prealloc);
1123 		BUG_ON(!prealloc);
1124 
1125 		/*
1126 		 * Avoid to free 'prealloc' if it can be merged with
1127 		 * the later extent.
1128 		 */
1129 		err = insert_state(tree, prealloc, start, this_end,
1130 				   NULL, NULL, &bits, changeset);
1131 		if (err)
1132 			extent_io_tree_panic(tree, err);
1133 
1134 		cache_state(prealloc, cached_state);
1135 		prealloc = NULL;
1136 		start = this_end + 1;
1137 		goto search_again;
1138 	}
1139 	/*
1140 	 * | ---- desired range ---- |
1141 	 *                        | state |
1142 	 * We need to split the extent, and set the bit
1143 	 * on the first half
1144 	 */
1145 	if (state->start <= end && state->end > end) {
1146 		if (state->state & exclusive_bits) {
1147 			*failed_start = start;
1148 			err = -EEXIST;
1149 			goto out;
1150 		}
1151 
1152 		prealloc = alloc_extent_state_atomic(prealloc);
1153 		BUG_ON(!prealloc);
1154 		err = split_state(tree, state, prealloc, end + 1);
1155 		if (err)
1156 			extent_io_tree_panic(tree, err);
1157 
1158 		set_state_bits(tree, prealloc, &bits, changeset);
1159 		cache_state(prealloc, cached_state);
1160 		merge_state(tree, prealloc);
1161 		prealloc = NULL;
1162 		goto out;
1163 	}
1164 
1165 search_again:
1166 	if (start > end)
1167 		goto out;
1168 	spin_unlock(&tree->lock);
1169 	if (gfpflags_allow_blocking(mask))
1170 		cond_resched();
1171 	goto again;
1172 
1173 out:
1174 	spin_unlock(&tree->lock);
1175 	if (prealloc)
1176 		free_extent_state(prealloc);
1177 
1178 	return err;
1179 
1180 }
1181 
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 		   unsigned bits, u64 * failed_start,
1184 		   struct extent_state **cached_state, gfp_t mask)
1185 {
1186 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 				cached_state, mask, NULL);
1188 }
1189 
1190 
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  * 			another
1194  * @tree:	the io tree to search
1195  * @start:	the start offset in bytes
1196  * @end:	the end offset in bytes (inclusive)
1197  * @bits:	the bits to set in this range
1198  * @clear_bits:	the bits to clear in this range
1199  * @cached_state:	state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 		       unsigned bits, unsigned clear_bits,
1211 		       struct extent_state **cached_state)
1212 {
1213 	struct extent_state *state;
1214 	struct extent_state *prealloc = NULL;
1215 	struct rb_node *node;
1216 	struct rb_node **p;
1217 	struct rb_node *parent;
1218 	int err = 0;
1219 	u64 last_start;
1220 	u64 last_end;
1221 	bool first_iteration = true;
1222 
1223 	btrfs_debug_check_extent_io_range(tree, start, end);
1224 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 				       clear_bits);
1226 
1227 again:
1228 	if (!prealloc) {
1229 		/*
1230 		 * Best effort, don't worry if extent state allocation fails
1231 		 * here for the first iteration. We might have a cached state
1232 		 * that matches exactly the target range, in which case no
1233 		 * extent state allocations are needed. We'll only know this
1234 		 * after locking the tree.
1235 		 */
1236 		prealloc = alloc_extent_state(GFP_NOFS);
1237 		if (!prealloc && !first_iteration)
1238 			return -ENOMEM;
1239 	}
1240 
1241 	spin_lock(&tree->lock);
1242 	if (cached_state && *cached_state) {
1243 		state = *cached_state;
1244 		if (state->start <= start && state->end > start &&
1245 		    extent_state_in_tree(state)) {
1246 			node = &state->rb_node;
1247 			goto hit_next;
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * this search will find all the extents that end after
1253 	 * our range starts.
1254 	 */
1255 	node = tree_search_for_insert(tree, start, &p, &parent);
1256 	if (!node) {
1257 		prealloc = alloc_extent_state_atomic(prealloc);
1258 		if (!prealloc) {
1259 			err = -ENOMEM;
1260 			goto out;
1261 		}
1262 		err = insert_state(tree, prealloc, start, end,
1263 				   &p, &parent, &bits, NULL);
1264 		if (err)
1265 			extent_io_tree_panic(tree, err);
1266 		cache_state(prealloc, cached_state);
1267 		prealloc = NULL;
1268 		goto out;
1269 	}
1270 	state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272 	last_start = state->start;
1273 	last_end = state->end;
1274 
1275 	/*
1276 	 * | ---- desired range ---- |
1277 	 * | state |
1278 	 *
1279 	 * Just lock what we found and keep going
1280 	 */
1281 	if (state->start == start && state->end <= end) {
1282 		set_state_bits(tree, state, &bits, NULL);
1283 		cache_state(state, cached_state);
1284 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 		if (last_end == (u64)-1)
1286 			goto out;
1287 		start = last_end + 1;
1288 		if (start < end && state && state->start == start &&
1289 		    !need_resched())
1290 			goto hit_next;
1291 		goto search_again;
1292 	}
1293 
1294 	/*
1295 	 *     | ---- desired range ---- |
1296 	 * | state |
1297 	 *   or
1298 	 * | ------------- state -------------- |
1299 	 *
1300 	 * We need to split the extent we found, and may flip bits on
1301 	 * second half.
1302 	 *
1303 	 * If the extent we found extends past our
1304 	 * range, we just split and search again.  It'll get split
1305 	 * again the next time though.
1306 	 *
1307 	 * If the extent we found is inside our range, we set the
1308 	 * desired bit on it.
1309 	 */
1310 	if (state->start < start) {
1311 		prealloc = alloc_extent_state_atomic(prealloc);
1312 		if (!prealloc) {
1313 			err = -ENOMEM;
1314 			goto out;
1315 		}
1316 		err = split_state(tree, state, prealloc, start);
1317 		if (err)
1318 			extent_io_tree_panic(tree, err);
1319 		prealloc = NULL;
1320 		if (err)
1321 			goto out;
1322 		if (state->end <= end) {
1323 			set_state_bits(tree, state, &bits, NULL);
1324 			cache_state(state, cached_state);
1325 			state = clear_state_bit(tree, state, &clear_bits, 0,
1326 						NULL);
1327 			if (last_end == (u64)-1)
1328 				goto out;
1329 			start = last_end + 1;
1330 			if (start < end && state && state->start == start &&
1331 			    !need_resched())
1332 				goto hit_next;
1333 		}
1334 		goto search_again;
1335 	}
1336 	/*
1337 	 * | ---- desired range ---- |
1338 	 *     | state | or               | state |
1339 	 *
1340 	 * There's a hole, we need to insert something in it and
1341 	 * ignore the extent we found.
1342 	 */
1343 	if (state->start > start) {
1344 		u64 this_end;
1345 		if (end < last_start)
1346 			this_end = end;
1347 		else
1348 			this_end = last_start - 1;
1349 
1350 		prealloc = alloc_extent_state_atomic(prealloc);
1351 		if (!prealloc) {
1352 			err = -ENOMEM;
1353 			goto out;
1354 		}
1355 
1356 		/*
1357 		 * Avoid to free 'prealloc' if it can be merged with
1358 		 * the later extent.
1359 		 */
1360 		err = insert_state(tree, prealloc, start, this_end,
1361 				   NULL, NULL, &bits, NULL);
1362 		if (err)
1363 			extent_io_tree_panic(tree, err);
1364 		cache_state(prealloc, cached_state);
1365 		prealloc = NULL;
1366 		start = this_end + 1;
1367 		goto search_again;
1368 	}
1369 	/*
1370 	 * | ---- desired range ---- |
1371 	 *                        | state |
1372 	 * We need to split the extent, and set the bit
1373 	 * on the first half
1374 	 */
1375 	if (state->start <= end && state->end > end) {
1376 		prealloc = alloc_extent_state_atomic(prealloc);
1377 		if (!prealloc) {
1378 			err = -ENOMEM;
1379 			goto out;
1380 		}
1381 
1382 		err = split_state(tree, state, prealloc, end + 1);
1383 		if (err)
1384 			extent_io_tree_panic(tree, err);
1385 
1386 		set_state_bits(tree, prealloc, &bits, NULL);
1387 		cache_state(prealloc, cached_state);
1388 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 		prealloc = NULL;
1390 		goto out;
1391 	}
1392 
1393 search_again:
1394 	if (start > end)
1395 		goto out;
1396 	spin_unlock(&tree->lock);
1397 	cond_resched();
1398 	first_iteration = false;
1399 	goto again;
1400 
1401 out:
1402 	spin_unlock(&tree->lock);
1403 	if (prealloc)
1404 		free_extent_state(prealloc);
1405 
1406 	return err;
1407 }
1408 
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 			   unsigned bits, struct extent_changeset *changeset)
1412 {
1413 	/*
1414 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 	 * either fail with -EEXIST or changeset will record the whole
1417 	 * range.
1418 	 */
1419 	BUG_ON(bits & EXTENT_LOCKED);
1420 
1421 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 				changeset);
1423 }
1424 
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 			   unsigned bits)
1427 {
1428 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 				GFP_NOWAIT, NULL);
1430 }
1431 
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 		     unsigned bits, int wake, int delete,
1434 		     struct extent_state **cached)
1435 {
1436 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 				  cached, GFP_NOFS, NULL);
1438 }
1439 
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 		unsigned bits, struct extent_changeset *changeset)
1442 {
1443 	/*
1444 	 * Don't support EXTENT_LOCKED case, same reason as
1445 	 * set_record_extent_bits().
1446 	 */
1447 	BUG_ON(bits & EXTENT_LOCKED);
1448 
1449 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 				  changeset);
1451 }
1452 
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 		     struct extent_state **cached_state)
1459 {
1460 	int err;
1461 	u64 failed_start;
1462 
1463 	while (1) {
1464 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 				       EXTENT_LOCKED, &failed_start,
1466 				       cached_state, GFP_NOFS, NULL);
1467 		if (err == -EEXIST) {
1468 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 			start = failed_start;
1470 		} else
1471 			break;
1472 		WARN_ON(start > end);
1473 	}
1474 	return err;
1475 }
1476 
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479 	int err;
1480 	u64 failed_start;
1481 
1482 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 			       &failed_start, NULL, GFP_NOFS, NULL);
1484 	if (err == -EEXIST) {
1485 		if (failed_start > start)
1486 			clear_extent_bit(tree, start, failed_start - 1,
1487 					 EXTENT_LOCKED, 1, 0, NULL);
1488 		return 0;
1489 	}
1490 	return 1;
1491 }
1492 
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495 	unsigned long index = start >> PAGE_SHIFT;
1496 	unsigned long end_index = end >> PAGE_SHIFT;
1497 	struct page *page;
1498 
1499 	while (index <= end_index) {
1500 		page = find_get_page(inode->i_mapping, index);
1501 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 		clear_page_dirty_for_io(page);
1503 		put_page(page);
1504 		index++;
1505 	}
1506 }
1507 
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510 	unsigned long index = start >> PAGE_SHIFT;
1511 	unsigned long end_index = end >> PAGE_SHIFT;
1512 	struct page *page;
1513 
1514 	while (index <= end_index) {
1515 		page = find_get_page(inode->i_mapping, index);
1516 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 		__set_page_dirty_nobuffers(page);
1518 		account_page_redirty(page);
1519 		put_page(page);
1520 		index++;
1521 	}
1522 }
1523 
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530 			    u64 start, unsigned bits)
1531 {
1532 	struct rb_node *node;
1533 	struct extent_state *state;
1534 
1535 	/*
1536 	 * this search will find all the extents that end after
1537 	 * our range starts.
1538 	 */
1539 	node = tree_search(tree, start);
1540 	if (!node)
1541 		goto out;
1542 
1543 	while (1) {
1544 		state = rb_entry(node, struct extent_state, rb_node);
1545 		if (state->end >= start && (state->state & bits))
1546 			return state;
1547 
1548 		node = rb_next(node);
1549 		if (!node)
1550 			break;
1551 	}
1552 out:
1553 	return NULL;
1554 }
1555 
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1565 			  struct extent_state **cached_state)
1566 {
1567 	struct extent_state *state;
1568 	int ret = 1;
1569 
1570 	spin_lock(&tree->lock);
1571 	if (cached_state && *cached_state) {
1572 		state = *cached_state;
1573 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 			while ((state = next_state(state)) != NULL) {
1575 				if (state->state & bits)
1576 					goto got_it;
1577 			}
1578 			free_extent_state(*cached_state);
1579 			*cached_state = NULL;
1580 			goto out;
1581 		}
1582 		free_extent_state(*cached_state);
1583 		*cached_state = NULL;
1584 	}
1585 
1586 	state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588 	if (state) {
1589 		cache_state_if_flags(state, cached_state, 0);
1590 		*start_ret = state->start;
1591 		*end_ret = state->end;
1592 		ret = 0;
1593 	}
1594 out:
1595 	spin_unlock(&tree->lock);
1596 	return ret;
1597 }
1598 
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 			       u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617 	struct extent_state *state;
1618 	int ret = 1;
1619 
1620 	spin_lock(&tree->lock);
1621 	state = find_first_extent_bit_state(tree, start, bits);
1622 	if (state) {
1623 		*start_ret = state->start;
1624 		*end_ret = state->end;
1625 		while ((state = next_state(state)) != NULL) {
1626 			if (state->start > (*end_ret + 1))
1627 				break;
1628 			*end_ret = state->end;
1629 		}
1630 		ret = 0;
1631 	}
1632 	spin_unlock(&tree->lock);
1633 	return ret;
1634 }
1635 
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654 	struct extent_state *state;
1655 	struct rb_node *node, *prev = NULL, *next;
1656 
1657 	spin_lock(&tree->lock);
1658 
1659 	/* Find first extent with bits cleared */
1660 	while (1) {
1661 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 		if (!node && !next && !prev) {
1663 			/*
1664 			 * Tree is completely empty, send full range and let
1665 			 * caller deal with it
1666 			 */
1667 			*start_ret = 0;
1668 			*end_ret = -1;
1669 			goto out;
1670 		} else if (!node && !next) {
1671 			/*
1672 			 * We are past the last allocated chunk, set start at
1673 			 * the end of the last extent.
1674 			 */
1675 			state = rb_entry(prev, struct extent_state, rb_node);
1676 			*start_ret = state->end + 1;
1677 			*end_ret = -1;
1678 			goto out;
1679 		} else if (!node) {
1680 			node = next;
1681 		}
1682 		/*
1683 		 * At this point 'node' either contains 'start' or start is
1684 		 * before 'node'
1685 		 */
1686 		state = rb_entry(node, struct extent_state, rb_node);
1687 
1688 		if (in_range(start, state->start, state->end - state->start + 1)) {
1689 			if (state->state & bits) {
1690 				/*
1691 				 * |--range with bits sets--|
1692 				 *    |
1693 				 *    start
1694 				 */
1695 				start = state->end + 1;
1696 			} else {
1697 				/*
1698 				 * 'start' falls within a range that doesn't
1699 				 * have the bits set, so take its start as
1700 				 * the beginning of the desired range
1701 				 *
1702 				 * |--range with bits cleared----|
1703 				 *      |
1704 				 *      start
1705 				 */
1706 				*start_ret = state->start;
1707 				break;
1708 			}
1709 		} else {
1710 			/*
1711 			 * |---prev range---|---hole/unset---|---node range---|
1712 			 *                          |
1713 			 *                        start
1714 			 *
1715 			 *                        or
1716 			 *
1717 			 * |---hole/unset--||--first node--|
1718 			 * 0   |
1719 			 *    start
1720 			 */
1721 			if (prev) {
1722 				state = rb_entry(prev, struct extent_state,
1723 						 rb_node);
1724 				*start_ret = state->end + 1;
1725 			} else {
1726 				*start_ret = 0;
1727 			}
1728 			break;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * Find the longest stretch from start until an entry which has the
1734 	 * bits set
1735 	 */
1736 	while (1) {
1737 		state = rb_entry(node, struct extent_state, rb_node);
1738 		if (state->end >= start && !(state->state & bits)) {
1739 			*end_ret = state->end;
1740 		} else {
1741 			*end_ret = state->start - 1;
1742 			break;
1743 		}
1744 
1745 		node = rb_next(node);
1746 		if (!node)
1747 			break;
1748 	}
1749 out:
1750 	spin_unlock(&tree->lock);
1751 }
1752 
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 			       u64 *end, u64 max_bytes,
1761 			       struct extent_state **cached_state)
1762 {
1763 	struct rb_node *node;
1764 	struct extent_state *state;
1765 	u64 cur_start = *start;
1766 	bool found = false;
1767 	u64 total_bytes = 0;
1768 
1769 	spin_lock(&tree->lock);
1770 
1771 	/*
1772 	 * this search will find all the extents that end after
1773 	 * our range starts.
1774 	 */
1775 	node = tree_search(tree, cur_start);
1776 	if (!node) {
1777 		*end = (u64)-1;
1778 		goto out;
1779 	}
1780 
1781 	while (1) {
1782 		state = rb_entry(node, struct extent_state, rb_node);
1783 		if (found && (state->start != cur_start ||
1784 			      (state->state & EXTENT_BOUNDARY))) {
1785 			goto out;
1786 		}
1787 		if (!(state->state & EXTENT_DELALLOC)) {
1788 			if (!found)
1789 				*end = state->end;
1790 			goto out;
1791 		}
1792 		if (!found) {
1793 			*start = state->start;
1794 			*cached_state = state;
1795 			refcount_inc(&state->refs);
1796 		}
1797 		found = true;
1798 		*end = state->end;
1799 		cur_start = state->end + 1;
1800 		node = rb_next(node);
1801 		total_bytes += state->end - state->start + 1;
1802 		if (total_bytes >= max_bytes)
1803 			break;
1804 		if (!node)
1805 			break;
1806 	}
1807 out:
1808 	spin_unlock(&tree->lock);
1809 	return found;
1810 }
1811 
1812 static int __process_pages_contig(struct address_space *mapping,
1813 				  struct page *locked_page,
1814 				  pgoff_t start_index, pgoff_t end_index,
1815 				  unsigned long page_ops, pgoff_t *index_ret);
1816 
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818 					   struct page *locked_page,
1819 					   u64 start, u64 end)
1820 {
1821 	unsigned long index = start >> PAGE_SHIFT;
1822 	unsigned long end_index = end >> PAGE_SHIFT;
1823 
1824 	ASSERT(locked_page);
1825 	if (index == locked_page->index && end_index == index)
1826 		return;
1827 
1828 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 			       PAGE_UNLOCK, NULL);
1830 }
1831 
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833 					struct page *locked_page,
1834 					u64 delalloc_start,
1835 					u64 delalloc_end)
1836 {
1837 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 	unsigned long index_ret = index;
1839 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 	int ret;
1841 
1842 	ASSERT(locked_page);
1843 	if (index == locked_page->index && index == end_index)
1844 		return 0;
1845 
1846 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 				     end_index, PAGE_LOCK, &index_ret);
1848 	if (ret == -EAGAIN)
1849 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 				      (u64)index_ret << PAGE_SHIFT);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 				    struct page *locked_page, u64 *start,
1864 				    u64 *end)
1865 {
1866 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 	u64 delalloc_start;
1869 	u64 delalloc_end;
1870 	bool found;
1871 	struct extent_state *cached_state = NULL;
1872 	int ret;
1873 	int loops = 0;
1874 
1875 again:
1876 	/* step one, find a bunch of delalloc bytes starting at start */
1877 	delalloc_start = *start;
1878 	delalloc_end = 0;
1879 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 					  max_bytes, &cached_state);
1881 	if (!found || delalloc_end <= *start) {
1882 		*start = delalloc_start;
1883 		*end = delalloc_end;
1884 		free_extent_state(cached_state);
1885 		return false;
1886 	}
1887 
1888 	/*
1889 	 * start comes from the offset of locked_page.  We have to lock
1890 	 * pages in order, so we can't process delalloc bytes before
1891 	 * locked_page
1892 	 */
1893 	if (delalloc_start < *start)
1894 		delalloc_start = *start;
1895 
1896 	/*
1897 	 * make sure to limit the number of pages we try to lock down
1898 	 */
1899 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 		delalloc_end = delalloc_start + max_bytes - 1;
1901 
1902 	/* step two, lock all the pages after the page that has start */
1903 	ret = lock_delalloc_pages(inode, locked_page,
1904 				  delalloc_start, delalloc_end);
1905 	ASSERT(!ret || ret == -EAGAIN);
1906 	if (ret == -EAGAIN) {
1907 		/* some of the pages are gone, lets avoid looping by
1908 		 * shortening the size of the delalloc range we're searching
1909 		 */
1910 		free_extent_state(cached_state);
1911 		cached_state = NULL;
1912 		if (!loops) {
1913 			max_bytes = PAGE_SIZE;
1914 			loops = 1;
1915 			goto again;
1916 		} else {
1917 			found = false;
1918 			goto out_failed;
1919 		}
1920 	}
1921 
1922 	/* step three, lock the state bits for the whole range */
1923 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924 
1925 	/* then test to make sure it is all still delalloc */
1926 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 			     EXTENT_DELALLOC, 1, cached_state);
1928 	if (!ret) {
1929 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 				     &cached_state);
1931 		__unlock_for_delalloc(inode, locked_page,
1932 			      delalloc_start, delalloc_end);
1933 		cond_resched();
1934 		goto again;
1935 	}
1936 	free_extent_state(cached_state);
1937 	*start = delalloc_start;
1938 	*end = delalloc_end;
1939 out_failed:
1940 	return found;
1941 }
1942 
1943 static int __process_pages_contig(struct address_space *mapping,
1944 				  struct page *locked_page,
1945 				  pgoff_t start_index, pgoff_t end_index,
1946 				  unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948 	unsigned long nr_pages = end_index - start_index + 1;
1949 	unsigned long pages_locked = 0;
1950 	pgoff_t index = start_index;
1951 	struct page *pages[16];
1952 	unsigned ret;
1953 	int err = 0;
1954 	int i;
1955 
1956 	if (page_ops & PAGE_LOCK) {
1957 		ASSERT(page_ops == PAGE_LOCK);
1958 		ASSERT(index_ret && *index_ret == start_index);
1959 	}
1960 
1961 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 		mapping_set_error(mapping, -EIO);
1963 
1964 	while (nr_pages > 0) {
1965 		ret = find_get_pages_contig(mapping, index,
1966 				     min_t(unsigned long,
1967 				     nr_pages, ARRAY_SIZE(pages)), pages);
1968 		if (ret == 0) {
1969 			/*
1970 			 * Only if we're going to lock these pages,
1971 			 * can we find nothing at @index.
1972 			 */
1973 			ASSERT(page_ops & PAGE_LOCK);
1974 			err = -EAGAIN;
1975 			goto out;
1976 		}
1977 
1978 		for (i = 0; i < ret; i++) {
1979 			if (page_ops & PAGE_SET_PRIVATE2)
1980 				SetPagePrivate2(pages[i]);
1981 
1982 			if (locked_page && pages[i] == locked_page) {
1983 				put_page(pages[i]);
1984 				pages_locked++;
1985 				continue;
1986 			}
1987 			if (page_ops & PAGE_CLEAR_DIRTY)
1988 				clear_page_dirty_for_io(pages[i]);
1989 			if (page_ops & PAGE_SET_WRITEBACK)
1990 				set_page_writeback(pages[i]);
1991 			if (page_ops & PAGE_SET_ERROR)
1992 				SetPageError(pages[i]);
1993 			if (page_ops & PAGE_END_WRITEBACK)
1994 				end_page_writeback(pages[i]);
1995 			if (page_ops & PAGE_UNLOCK)
1996 				unlock_page(pages[i]);
1997 			if (page_ops & PAGE_LOCK) {
1998 				lock_page(pages[i]);
1999 				if (!PageDirty(pages[i]) ||
2000 				    pages[i]->mapping != mapping) {
2001 					unlock_page(pages[i]);
2002 					for (; i < ret; i++)
2003 						put_page(pages[i]);
2004 					err = -EAGAIN;
2005 					goto out;
2006 				}
2007 			}
2008 			put_page(pages[i]);
2009 			pages_locked++;
2010 		}
2011 		nr_pages -= ret;
2012 		index += ret;
2013 		cond_resched();
2014 	}
2015 out:
2016 	if (err && index_ret)
2017 		*index_ret = start_index + pages_locked - 1;
2018 	return err;
2019 }
2020 
2021 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2022 				  struct page *locked_page,
2023 				  unsigned clear_bits,
2024 				  unsigned long page_ops)
2025 {
2026 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2027 
2028 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2029 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030 			       page_ops, NULL);
2031 }
2032 
2033 /*
2034  * count the number of bytes in the tree that have a given bit(s)
2035  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036  * cached.  The total number found is returned.
2037  */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039 		     u64 *start, u64 search_end, u64 max_bytes,
2040 		     unsigned bits, int contig)
2041 {
2042 	struct rb_node *node;
2043 	struct extent_state *state;
2044 	u64 cur_start = *start;
2045 	u64 total_bytes = 0;
2046 	u64 last = 0;
2047 	int found = 0;
2048 
2049 	if (WARN_ON(search_end <= cur_start))
2050 		return 0;
2051 
2052 	spin_lock(&tree->lock);
2053 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 		total_bytes = tree->dirty_bytes;
2055 		goto out;
2056 	}
2057 	/*
2058 	 * this search will find all the extents that end after
2059 	 * our range starts.
2060 	 */
2061 	node = tree_search(tree, cur_start);
2062 	if (!node)
2063 		goto out;
2064 
2065 	while (1) {
2066 		state = rb_entry(node, struct extent_state, rb_node);
2067 		if (state->start > search_end)
2068 			break;
2069 		if (contig && found && state->start > last + 1)
2070 			break;
2071 		if (state->end >= cur_start && (state->state & bits) == bits) {
2072 			total_bytes += min(search_end, state->end) + 1 -
2073 				       max(cur_start, state->start);
2074 			if (total_bytes >= max_bytes)
2075 				break;
2076 			if (!found) {
2077 				*start = max(cur_start, state->start);
2078 				found = 1;
2079 			}
2080 			last = state->end;
2081 		} else if (contig && found) {
2082 			break;
2083 		}
2084 		node = rb_next(node);
2085 		if (!node)
2086 			break;
2087 	}
2088 out:
2089 	spin_unlock(&tree->lock);
2090 	return total_bytes;
2091 }
2092 
2093 /*
2094  * set the private field for a given byte offset in the tree.  If there isn't
2095  * an extent_state there already, this does nothing.
2096  */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 		      struct io_failure_record *failrec)
2099 {
2100 	struct rb_node *node;
2101 	struct extent_state *state;
2102 	int ret = 0;
2103 
2104 	spin_lock(&tree->lock);
2105 	/*
2106 	 * this search will find all the extents that end after
2107 	 * our range starts.
2108 	 */
2109 	node = tree_search(tree, start);
2110 	if (!node) {
2111 		ret = -ENOENT;
2112 		goto out;
2113 	}
2114 	state = rb_entry(node, struct extent_state, rb_node);
2115 	if (state->start != start) {
2116 		ret = -ENOENT;
2117 		goto out;
2118 	}
2119 	state->failrec = failrec;
2120 out:
2121 	spin_unlock(&tree->lock);
2122 	return ret;
2123 }
2124 
2125 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2126 {
2127 	struct rb_node *node;
2128 	struct extent_state *state;
2129 	struct io_failure_record *failrec;
2130 
2131 	spin_lock(&tree->lock);
2132 	/*
2133 	 * this search will find all the extents that end after
2134 	 * our range starts.
2135 	 */
2136 	node = tree_search(tree, start);
2137 	if (!node) {
2138 		failrec = ERR_PTR(-ENOENT);
2139 		goto out;
2140 	}
2141 	state = rb_entry(node, struct extent_state, rb_node);
2142 	if (state->start != start) {
2143 		failrec = ERR_PTR(-ENOENT);
2144 		goto out;
2145 	}
2146 
2147 	failrec = state->failrec;
2148 out:
2149 	spin_unlock(&tree->lock);
2150 	return failrec;
2151 }
2152 
2153 /*
2154  * searches a range in the state tree for a given mask.
2155  * If 'filled' == 1, this returns 1 only if every extent in the tree
2156  * has the bits set.  Otherwise, 1 is returned if any bit in the
2157  * range is found set.
2158  */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160 		   unsigned bits, int filled, struct extent_state *cached)
2161 {
2162 	struct extent_state *state = NULL;
2163 	struct rb_node *node;
2164 	int bitset = 0;
2165 
2166 	spin_lock(&tree->lock);
2167 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168 	    cached->end > start)
2169 		node = &cached->rb_node;
2170 	else
2171 		node = tree_search(tree, start);
2172 	while (node && start <= end) {
2173 		state = rb_entry(node, struct extent_state, rb_node);
2174 
2175 		if (filled && state->start > start) {
2176 			bitset = 0;
2177 			break;
2178 		}
2179 
2180 		if (state->start > end)
2181 			break;
2182 
2183 		if (state->state & bits) {
2184 			bitset = 1;
2185 			if (!filled)
2186 				break;
2187 		} else if (filled) {
2188 			bitset = 0;
2189 			break;
2190 		}
2191 
2192 		if (state->end == (u64)-1)
2193 			break;
2194 
2195 		start = state->end + 1;
2196 		if (start > end)
2197 			break;
2198 		node = rb_next(node);
2199 		if (!node) {
2200 			if (filled)
2201 				bitset = 0;
2202 			break;
2203 		}
2204 	}
2205 	spin_unlock(&tree->lock);
2206 	return bitset;
2207 }
2208 
2209 /*
2210  * helper function to set a given page up to date if all the
2211  * extents in the tree for that page are up to date
2212  */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215 	u64 start = page_offset(page);
2216 	u64 end = start + PAGE_SIZE - 1;
2217 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218 		SetPageUptodate(page);
2219 }
2220 
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222 		    struct extent_io_tree *io_tree,
2223 		    struct io_failure_record *rec)
2224 {
2225 	int ret;
2226 	int err = 0;
2227 
2228 	set_state_failrec(failure_tree, rec->start, NULL);
2229 	ret = clear_extent_bits(failure_tree, rec->start,
2230 				rec->start + rec->len - 1,
2231 				EXTENT_LOCKED | EXTENT_DIRTY);
2232 	if (ret)
2233 		err = ret;
2234 
2235 	ret = clear_extent_bits(io_tree, rec->start,
2236 				rec->start + rec->len - 1,
2237 				EXTENT_DAMAGED);
2238 	if (ret && !err)
2239 		err = ret;
2240 
2241 	kfree(rec);
2242 	return err;
2243 }
2244 
2245 /*
2246  * this bypasses the standard btrfs submit functions deliberately, as
2247  * the standard behavior is to write all copies in a raid setup. here we only
2248  * want to write the one bad copy. so we do the mapping for ourselves and issue
2249  * submit_bio directly.
2250  * to avoid any synchronization issues, wait for the data after writing, which
2251  * actually prevents the read that triggered the error from finishing.
2252  * currently, there can be no more than two copies of every data bit. thus,
2253  * exactly one rewrite is required.
2254  */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 		      u64 length, u64 logical, struct page *page,
2257 		      unsigned int pg_offset, int mirror_num)
2258 {
2259 	struct bio *bio;
2260 	struct btrfs_device *dev;
2261 	u64 map_length = 0;
2262 	u64 sector;
2263 	struct btrfs_bio *bbio = NULL;
2264 	int ret;
2265 
2266 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267 	BUG_ON(!mirror_num);
2268 
2269 	bio = btrfs_io_bio_alloc(1);
2270 	bio->bi_iter.bi_size = 0;
2271 	map_length = length;
2272 
2273 	/*
2274 	 * Avoid races with device replace and make sure our bbio has devices
2275 	 * associated to its stripes that don't go away while we are doing the
2276 	 * read repair operation.
2277 	 */
2278 	btrfs_bio_counter_inc_blocked(fs_info);
2279 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280 		/*
2281 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 		 * to update all raid stripes, but here we just want to correct
2283 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 		 * stripe's dev and sector.
2285 		 */
2286 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 				      &map_length, &bbio, 0);
2288 		if (ret) {
2289 			btrfs_bio_counter_dec(fs_info);
2290 			bio_put(bio);
2291 			return -EIO;
2292 		}
2293 		ASSERT(bbio->mirror_num == 1);
2294 	} else {
2295 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 				      &map_length, &bbio, mirror_num);
2297 		if (ret) {
2298 			btrfs_bio_counter_dec(fs_info);
2299 			bio_put(bio);
2300 			return -EIO;
2301 		}
2302 		BUG_ON(mirror_num != bbio->mirror_num);
2303 	}
2304 
2305 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306 	bio->bi_iter.bi_sector = sector;
2307 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308 	btrfs_put_bbio(bbio);
2309 	if (!dev || !dev->bdev ||
2310 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311 		btrfs_bio_counter_dec(fs_info);
2312 		bio_put(bio);
2313 		return -EIO;
2314 	}
2315 	bio_set_dev(bio, dev->bdev);
2316 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317 	bio_add_page(bio, page, length, pg_offset);
2318 
2319 	if (btrfsic_submit_bio_wait(bio)) {
2320 		/* try to remap that extent elsewhere? */
2321 		btrfs_bio_counter_dec(fs_info);
2322 		bio_put(bio);
2323 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324 		return -EIO;
2325 	}
2326 
2327 	btrfs_info_rl_in_rcu(fs_info,
2328 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329 				  ino, start,
2330 				  rcu_str_deref(dev->name), sector);
2331 	btrfs_bio_counter_dec(fs_info);
2332 	bio_put(bio);
2333 	return 0;
2334 }
2335 
2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337 {
2338 	struct btrfs_fs_info *fs_info = eb->fs_info;
2339 	u64 start = eb->start;
2340 	int i, num_pages = num_extent_pages(eb);
2341 	int ret = 0;
2342 
2343 	if (sb_rdonly(fs_info->sb))
2344 		return -EROFS;
2345 
2346 	for (i = 0; i < num_pages; i++) {
2347 		struct page *p = eb->pages[i];
2348 
2349 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350 					start - page_offset(p), mirror_num);
2351 		if (ret)
2352 			break;
2353 		start += PAGE_SIZE;
2354 	}
2355 
2356 	return ret;
2357 }
2358 
2359 /*
2360  * each time an IO finishes, we do a fast check in the IO failure tree
2361  * to see if we need to process or clean up an io_failure_record
2362  */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 		     struct extent_io_tree *failure_tree,
2365 		     struct extent_io_tree *io_tree, u64 start,
2366 		     struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368 	u64 private;
2369 	struct io_failure_record *failrec;
2370 	struct extent_state *state;
2371 	int num_copies;
2372 	int ret;
2373 
2374 	private = 0;
2375 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 			       EXTENT_DIRTY, 0);
2377 	if (!ret)
2378 		return 0;
2379 
2380 	failrec = get_state_failrec(failure_tree, start);
2381 	if (IS_ERR(failrec))
2382 		return 0;
2383 
2384 	BUG_ON(!failrec->this_mirror);
2385 
2386 	if (failrec->in_validation) {
2387 		/* there was no real error, just free the record */
2388 		btrfs_debug(fs_info,
2389 			"clean_io_failure: freeing dummy error at %llu",
2390 			failrec->start);
2391 		goto out;
2392 	}
2393 	if (sb_rdonly(fs_info->sb))
2394 		goto out;
2395 
2396 	spin_lock(&io_tree->lock);
2397 	state = find_first_extent_bit_state(io_tree,
2398 					    failrec->start,
2399 					    EXTENT_LOCKED);
2400 	spin_unlock(&io_tree->lock);
2401 
2402 	if (state && state->start <= failrec->start &&
2403 	    state->end >= failrec->start + failrec->len - 1) {
2404 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 					      failrec->len);
2406 		if (num_copies > 1)  {
2407 			repair_io_failure(fs_info, ino, start, failrec->len,
2408 					  failrec->logical, page, pg_offset,
2409 					  failrec->failed_mirror);
2410 		}
2411 	}
2412 
2413 out:
2414 	free_io_failure(failure_tree, io_tree, failrec);
2415 
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Can be called when
2421  * - hold extent lock
2422  * - under ordered extent
2423  * - the inode is freeing
2424  */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428 	struct io_failure_record *failrec;
2429 	struct extent_state *state, *next;
2430 
2431 	if (RB_EMPTY_ROOT(&failure_tree->state))
2432 		return;
2433 
2434 	spin_lock(&failure_tree->lock);
2435 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 	while (state) {
2437 		if (state->start > end)
2438 			break;
2439 
2440 		ASSERT(state->end <= end);
2441 
2442 		next = next_state(state);
2443 
2444 		failrec = state->failrec;
2445 		free_extent_state(state);
2446 		kfree(failrec);
2447 
2448 		state = next;
2449 	}
2450 	spin_unlock(&failure_tree->lock);
2451 }
2452 
2453 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454 							     u64 start, u64 end)
2455 {
2456 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457 	struct io_failure_record *failrec;
2458 	struct extent_map *em;
2459 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462 	int ret;
2463 	u64 logical;
2464 
2465 	failrec = get_state_failrec(failure_tree, start);
2466 	if (!IS_ERR(failrec)) {
2467 		btrfs_debug(fs_info,
2468 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469 			failrec->logical, failrec->start, failrec->len,
2470 			failrec->in_validation);
2471 		/*
2472 		 * when data can be on disk more than twice, add to failrec here
2473 		 * (e.g. with a list for failed_mirror) to make
2474 		 * clean_io_failure() clean all those errors at once.
2475 		 */
2476 
2477 		return failrec;
2478 	}
2479 
2480 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481 	if (!failrec)
2482 		return ERR_PTR(-ENOMEM);
2483 
2484 	failrec->start = start;
2485 	failrec->len = end - start + 1;
2486 	failrec->this_mirror = 0;
2487 	failrec->bio_flags = 0;
2488 	failrec->in_validation = 0;
2489 
2490 	read_lock(&em_tree->lock);
2491 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2492 	if (!em) {
2493 		read_unlock(&em_tree->lock);
2494 		kfree(failrec);
2495 		return ERR_PTR(-EIO);
2496 	}
2497 
2498 	if (em->start > start || em->start + em->len <= start) {
2499 		free_extent_map(em);
2500 		em = NULL;
2501 	}
2502 	read_unlock(&em_tree->lock);
2503 	if (!em) {
2504 		kfree(failrec);
2505 		return ERR_PTR(-EIO);
2506 	}
2507 
2508 	logical = start - em->start;
2509 	logical = em->block_start + logical;
2510 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511 		logical = em->block_start;
2512 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514 	}
2515 
2516 	btrfs_debug(fs_info,
2517 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518 		    logical, start, failrec->len);
2519 
2520 	failrec->logical = logical;
2521 	free_extent_map(em);
2522 
2523 	/* Set the bits in the private failure tree */
2524 	ret = set_extent_bits(failure_tree, start, end,
2525 			      EXTENT_LOCKED | EXTENT_DIRTY);
2526 	if (ret >= 0) {
2527 		ret = set_state_failrec(failure_tree, start, failrec);
2528 		/* Set the bits in the inode's tree */
2529 		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530 	} else if (ret < 0) {
2531 		kfree(failrec);
2532 		return ERR_PTR(ret);
2533 	}
2534 
2535 	return failrec;
2536 }
2537 
2538 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539 				   struct io_failure_record *failrec,
2540 				   int failed_mirror)
2541 {
2542 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543 	int num_copies;
2544 
2545 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2546 	if (num_copies == 1) {
2547 		/*
2548 		 * we only have a single copy of the data, so don't bother with
2549 		 * all the retry and error correction code that follows. no
2550 		 * matter what the error is, it is very likely to persist.
2551 		 */
2552 		btrfs_debug(fs_info,
2553 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554 			num_copies, failrec->this_mirror, failed_mirror);
2555 		return false;
2556 	}
2557 
2558 	/*
2559 	 * there are two premises:
2560 	 *	a) deliver good data to the caller
2561 	 *	b) correct the bad sectors on disk
2562 	 */
2563 	if (needs_validation) {
2564 		/*
2565 		 * to fulfill b), we need to know the exact failing sectors, as
2566 		 * we don't want to rewrite any more than the failed ones. thus,
2567 		 * we need separate read requests for the failed bio
2568 		 *
2569 		 * if the following BUG_ON triggers, our validation request got
2570 		 * merged. we need separate requests for our algorithm to work.
2571 		 */
2572 		BUG_ON(failrec->in_validation);
2573 		failrec->in_validation = 1;
2574 		failrec->this_mirror = failed_mirror;
2575 	} else {
2576 		/*
2577 		 * we're ready to fulfill a) and b) alongside. get a good copy
2578 		 * of the failed sector and if we succeed, we have setup
2579 		 * everything for repair_io_failure to do the rest for us.
2580 		 */
2581 		if (failrec->in_validation) {
2582 			BUG_ON(failrec->this_mirror != failed_mirror);
2583 			failrec->in_validation = 0;
2584 			failrec->this_mirror = 0;
2585 		}
2586 		failrec->failed_mirror = failed_mirror;
2587 		failrec->this_mirror++;
2588 		if (failrec->this_mirror == failed_mirror)
2589 			failrec->this_mirror++;
2590 	}
2591 
2592 	if (failrec->this_mirror > num_copies) {
2593 		btrfs_debug(fs_info,
2594 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595 			num_copies, failrec->this_mirror, failed_mirror);
2596 		return false;
2597 	}
2598 
2599 	return true;
2600 }
2601 
2602 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2603 {
2604 	u64 len = 0;
2605 	const u32 blocksize = inode->i_sb->s_blocksize;
2606 
2607 	/*
2608 	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609 	 * I/O error. In this case, we already know exactly which sector was
2610 	 * bad, so we don't need to validate.
2611 	 */
2612 	if (bio->bi_status == BLK_STS_OK)
2613 		return false;
2614 
2615 	/*
2616 	 * We need to validate each sector individually if the failed I/O was
2617 	 * for multiple sectors.
2618 	 *
2619 	 * There are a few possible bios that can end up here:
2620 	 * 1. A buffered read bio, which is not cloned.
2621 	 * 2. A direct I/O read bio, which is cloned.
2622 	 * 3. A (buffered or direct) repair bio, which is not cloned.
2623 	 *
2624 	 * For cloned bios (case 2), we can get the size from
2625 	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626 	 * it from the bvecs.
2627 	 */
2628 	if (bio_flagged(bio, BIO_CLONED)) {
2629 		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2630 			return true;
2631 	} else {
2632 		struct bio_vec *bvec;
2633 		int i;
2634 
2635 		bio_for_each_bvec_all(bvec, bio, i) {
2636 			len += bvec->bv_len;
2637 			if (len > blocksize)
2638 				return true;
2639 		}
2640 	}
2641 	return false;
2642 }
2643 
2644 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645 				      struct bio *failed_bio, u64 phy_offset,
2646 				      struct page *page, unsigned int pgoff,
2647 				      u64 start, u64 end, int failed_mirror,
2648 				      submit_bio_hook_t *submit_bio_hook)
2649 {
2650 	struct io_failure_record *failrec;
2651 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2653 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2654 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655 	const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2656 	bool need_validation;
2657 	struct bio *repair_bio;
2658 	struct btrfs_io_bio *repair_io_bio;
2659 	blk_status_t status;
2660 
2661 	btrfs_debug(fs_info,
2662 		   "repair read error: read error at %llu", start);
2663 
2664 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2665 
2666 	failrec = btrfs_get_io_failure_record(inode, start, end);
2667 	if (IS_ERR(failrec))
2668 		return errno_to_blk_status(PTR_ERR(failrec));
2669 
2670 	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2671 
2672 	if (!btrfs_check_repairable(inode, need_validation, failrec,
2673 				    failed_mirror)) {
2674 		free_io_failure(failure_tree, tree, failrec);
2675 		return BLK_STS_IOERR;
2676 	}
2677 
2678 	repair_bio = btrfs_io_bio_alloc(1);
2679 	repair_io_bio = btrfs_io_bio(repair_bio);
2680 	repair_bio->bi_opf = REQ_OP_READ;
2681 	if (need_validation)
2682 		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2684 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685 	repair_bio->bi_private = failed_bio->bi_private;
2686 
2687 	if (failed_io_bio->csum) {
2688 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689 
2690 		repair_io_bio->csum = repair_io_bio->csum_inline;
2691 		memcpy(repair_io_bio->csum,
2692 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2693 	}
2694 
2695 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2696 	repair_io_bio->logical = failrec->start;
2697 	repair_io_bio->iter = repair_bio->bi_iter;
2698 
2699 	btrfs_debug(btrfs_sb(inode->i_sb),
2700 "repair read error: submitting new read to mirror %d, in_validation=%d",
2701 		    failrec->this_mirror, failrec->in_validation);
2702 
2703 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704 				 failrec->bio_flags);
2705 	if (status) {
2706 		free_io_failure(failure_tree, tree, failrec);
2707 		bio_put(repair_bio);
2708 	}
2709 	return status;
2710 }
2711 
2712 /* lots and lots of room for performance fixes in the end_bio funcs */
2713 
2714 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2715 {
2716 	int uptodate = (err == 0);
2717 	int ret = 0;
2718 
2719 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2720 
2721 	if (!uptodate) {
2722 		ClearPageUptodate(page);
2723 		SetPageError(page);
2724 		ret = err < 0 ? err : -EIO;
2725 		mapping_set_error(page->mapping, ret);
2726 	}
2727 }
2728 
2729 /*
2730  * after a writepage IO is done, we need to:
2731  * clear the uptodate bits on error
2732  * clear the writeback bits in the extent tree for this IO
2733  * end_page_writeback if the page has no more pending IO
2734  *
2735  * Scheduling is not allowed, so the extent state tree is expected
2736  * to have one and only one object corresponding to this IO.
2737  */
2738 static void end_bio_extent_writepage(struct bio *bio)
2739 {
2740 	int error = blk_status_to_errno(bio->bi_status);
2741 	struct bio_vec *bvec;
2742 	u64 start;
2743 	u64 end;
2744 	struct bvec_iter_all iter_all;
2745 
2746 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2747 	bio_for_each_segment_all(bvec, bio, iter_all) {
2748 		struct page *page = bvec->bv_page;
2749 		struct inode *inode = page->mapping->host;
2750 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751 
2752 		/* We always issue full-page reads, but if some block
2753 		 * in a page fails to read, blk_update_request() will
2754 		 * advance bv_offset and adjust bv_len to compensate.
2755 		 * Print a warning for nonzero offsets, and an error
2756 		 * if they don't add up to a full page.  */
2757 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2759 				btrfs_err(fs_info,
2760 				   "partial page write in btrfs with offset %u and length %u",
2761 					bvec->bv_offset, bvec->bv_len);
2762 			else
2763 				btrfs_info(fs_info,
2764 				   "incomplete page write in btrfs with offset %u and length %u",
2765 					bvec->bv_offset, bvec->bv_len);
2766 		}
2767 
2768 		start = page_offset(page);
2769 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2770 
2771 		end_extent_writepage(page, error, start, end);
2772 		end_page_writeback(page);
2773 	}
2774 
2775 	bio_put(bio);
2776 }
2777 
2778 static void
2779 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780 			      int uptodate)
2781 {
2782 	struct extent_state *cached = NULL;
2783 	u64 end = start + len - 1;
2784 
2785 	if (uptodate && tree->track_uptodate)
2786 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2787 	unlock_extent_cached_atomic(tree, start, end, &cached);
2788 }
2789 
2790 /*
2791  * after a readpage IO is done, we need to:
2792  * clear the uptodate bits on error
2793  * set the uptodate bits if things worked
2794  * set the page up to date if all extents in the tree are uptodate
2795  * clear the lock bit in the extent tree
2796  * unlock the page if there are no other extents locked for it
2797  *
2798  * Scheduling is not allowed, so the extent state tree is expected
2799  * to have one and only one object corresponding to this IO.
2800  */
2801 static void end_bio_extent_readpage(struct bio *bio)
2802 {
2803 	struct bio_vec *bvec;
2804 	int uptodate = !bio->bi_status;
2805 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2806 	struct extent_io_tree *tree, *failure_tree;
2807 	u64 offset = 0;
2808 	u64 start;
2809 	u64 end;
2810 	u64 len;
2811 	u64 extent_start = 0;
2812 	u64 extent_len = 0;
2813 	int mirror;
2814 	int ret;
2815 	struct bvec_iter_all iter_all;
2816 
2817 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2818 	bio_for_each_segment_all(bvec, bio, iter_all) {
2819 		struct page *page = bvec->bv_page;
2820 		struct inode *inode = page->mapping->host;
2821 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2822 
2823 		btrfs_debug(fs_info,
2824 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2825 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2826 			io_bio->mirror_num);
2827 		tree = &BTRFS_I(inode)->io_tree;
2828 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2829 
2830 		/* We always issue full-page reads, but if some block
2831 		 * in a page fails to read, blk_update_request() will
2832 		 * advance bv_offset and adjust bv_len to compensate.
2833 		 * Print a warning for nonzero offsets, and an error
2834 		 * if they don't add up to a full page.  */
2835 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2836 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2837 				btrfs_err(fs_info,
2838 					"partial page read in btrfs with offset %u and length %u",
2839 					bvec->bv_offset, bvec->bv_len);
2840 			else
2841 				btrfs_info(fs_info,
2842 					"incomplete page read in btrfs with offset %u and length %u",
2843 					bvec->bv_offset, bvec->bv_len);
2844 		}
2845 
2846 		start = page_offset(page);
2847 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2848 		len = bvec->bv_len;
2849 
2850 		mirror = io_bio->mirror_num;
2851 		if (likely(uptodate)) {
2852 			if (is_data_inode(inode))
2853 				ret = btrfs_verify_data_csum(io_bio, offset, page,
2854 							     start, end, mirror);
2855 			else
2856 				ret = btrfs_validate_metadata_buffer(io_bio,
2857 					offset, page, start, end, mirror);
2858 			if (ret)
2859 				uptodate = 0;
2860 			else
2861 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2862 						 failure_tree, tree, start,
2863 						 page,
2864 						 btrfs_ino(BTRFS_I(inode)), 0);
2865 		}
2866 
2867 		if (likely(uptodate))
2868 			goto readpage_ok;
2869 
2870 		if (is_data_inode(inode)) {
2871 
2872 			/*
2873 			 * The generic bio_readpage_error handles errors the
2874 			 * following way: If possible, new read requests are
2875 			 * created and submitted and will end up in
2876 			 * end_bio_extent_readpage as well (if we're lucky,
2877 			 * not in the !uptodate case). In that case it returns
2878 			 * 0 and we just go on with the next page in our bio.
2879 			 * If it can't handle the error it will return -EIO and
2880 			 * we remain responsible for that page.
2881 			 */
2882 			if (!btrfs_submit_read_repair(inode, bio, offset, page,
2883 						start - page_offset(page),
2884 						start, end, mirror,
2885 						btrfs_submit_data_bio)) {
2886 				uptodate = !bio->bi_status;
2887 				offset += len;
2888 				continue;
2889 			}
2890 		} else {
2891 			struct extent_buffer *eb;
2892 
2893 			eb = (struct extent_buffer *)page->private;
2894 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2895 			eb->read_mirror = mirror;
2896 			atomic_dec(&eb->io_pages);
2897 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2898 					       &eb->bflags))
2899 				btree_readahead_hook(eb, -EIO);
2900 		}
2901 readpage_ok:
2902 		if (likely(uptodate)) {
2903 			loff_t i_size = i_size_read(inode);
2904 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2905 			unsigned off;
2906 
2907 			/* Zero out the end if this page straddles i_size */
2908 			off = offset_in_page(i_size);
2909 			if (page->index == end_index && off)
2910 				zero_user_segment(page, off, PAGE_SIZE);
2911 			SetPageUptodate(page);
2912 		} else {
2913 			ClearPageUptodate(page);
2914 			SetPageError(page);
2915 		}
2916 		unlock_page(page);
2917 		offset += len;
2918 
2919 		if (unlikely(!uptodate)) {
2920 			if (extent_len) {
2921 				endio_readpage_release_extent(tree,
2922 							      extent_start,
2923 							      extent_len, 1);
2924 				extent_start = 0;
2925 				extent_len = 0;
2926 			}
2927 			endio_readpage_release_extent(tree, start,
2928 						      end - start + 1, 0);
2929 		} else if (!extent_len) {
2930 			extent_start = start;
2931 			extent_len = end + 1 - start;
2932 		} else if (extent_start + extent_len == start) {
2933 			extent_len += end + 1 - start;
2934 		} else {
2935 			endio_readpage_release_extent(tree, extent_start,
2936 						      extent_len, uptodate);
2937 			extent_start = start;
2938 			extent_len = end + 1 - start;
2939 		}
2940 	}
2941 
2942 	if (extent_len)
2943 		endio_readpage_release_extent(tree, extent_start, extent_len,
2944 					      uptodate);
2945 	btrfs_io_bio_free_csum(io_bio);
2946 	bio_put(bio);
2947 }
2948 
2949 /*
2950  * Initialize the members up to but not including 'bio'. Use after allocating a
2951  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2952  * 'bio' because use of __GFP_ZERO is not supported.
2953  */
2954 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2955 {
2956 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2957 }
2958 
2959 /*
2960  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2961  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2962  * for the appropriate container_of magic
2963  */
2964 struct bio *btrfs_bio_alloc(u64 first_byte)
2965 {
2966 	struct bio *bio;
2967 
2968 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2969 	bio->bi_iter.bi_sector = first_byte >> 9;
2970 	btrfs_io_bio_init(btrfs_io_bio(bio));
2971 	return bio;
2972 }
2973 
2974 struct bio *btrfs_bio_clone(struct bio *bio)
2975 {
2976 	struct btrfs_io_bio *btrfs_bio;
2977 	struct bio *new;
2978 
2979 	/* Bio allocation backed by a bioset does not fail */
2980 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2981 	btrfs_bio = btrfs_io_bio(new);
2982 	btrfs_io_bio_init(btrfs_bio);
2983 	btrfs_bio->iter = bio->bi_iter;
2984 	return new;
2985 }
2986 
2987 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2988 {
2989 	struct bio *bio;
2990 
2991 	/* Bio allocation backed by a bioset does not fail */
2992 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2993 	btrfs_io_bio_init(btrfs_io_bio(bio));
2994 	return bio;
2995 }
2996 
2997 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2998 {
2999 	struct bio *bio;
3000 	struct btrfs_io_bio *btrfs_bio;
3001 
3002 	/* this will never fail when it's backed by a bioset */
3003 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3004 	ASSERT(bio);
3005 
3006 	btrfs_bio = btrfs_io_bio(bio);
3007 	btrfs_io_bio_init(btrfs_bio);
3008 
3009 	bio_trim(bio, offset >> 9, size >> 9);
3010 	btrfs_bio->iter = bio->bi_iter;
3011 	return bio;
3012 }
3013 
3014 /*
3015  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3016  * @wbc:	optional writeback control for io accounting
3017  * @page:	page to add to the bio
3018  * @pg_offset:	offset of the new bio or to check whether we are adding
3019  *              a contiguous page to the previous one
3020  * @size:	portion of page that we want to write
3021  * @offset:	starting offset in the page
3022  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3023  * @end_io_func:     end_io callback for new bio
3024  * @mirror_num:	     desired mirror to read/write
3025  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3026  * @bio_flags:	flags of the current bio to see if we can merge them
3027  */
3028 static int submit_extent_page(unsigned int opf,
3029 			      struct writeback_control *wbc,
3030 			      struct page *page, u64 offset,
3031 			      size_t size, unsigned long pg_offset,
3032 			      struct bio **bio_ret,
3033 			      bio_end_io_t end_io_func,
3034 			      int mirror_num,
3035 			      unsigned long prev_bio_flags,
3036 			      unsigned long bio_flags,
3037 			      bool force_bio_submit)
3038 {
3039 	int ret = 0;
3040 	struct bio *bio;
3041 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
3042 	sector_t sector = offset >> 9;
3043 	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3044 
3045 	ASSERT(bio_ret);
3046 
3047 	if (*bio_ret) {
3048 		bool contig;
3049 		bool can_merge = true;
3050 
3051 		bio = *bio_ret;
3052 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3053 			contig = bio->bi_iter.bi_sector == sector;
3054 		else
3055 			contig = bio_end_sector(bio) == sector;
3056 
3057 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3058 			can_merge = false;
3059 
3060 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3061 		    force_bio_submit ||
3062 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3063 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3064 			if (ret < 0) {
3065 				*bio_ret = NULL;
3066 				return ret;
3067 			}
3068 			bio = NULL;
3069 		} else {
3070 			if (wbc)
3071 				wbc_account_cgroup_owner(wbc, page, page_size);
3072 			return 0;
3073 		}
3074 	}
3075 
3076 	bio = btrfs_bio_alloc(offset);
3077 	bio_add_page(bio, page, page_size, pg_offset);
3078 	bio->bi_end_io = end_io_func;
3079 	bio->bi_private = tree;
3080 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3081 	bio->bi_opf = opf;
3082 	if (wbc) {
3083 		struct block_device *bdev;
3084 
3085 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086 		bio_set_dev(bio, bdev);
3087 		wbc_init_bio(wbc, bio);
3088 		wbc_account_cgroup_owner(wbc, page, page_size);
3089 	}
3090 
3091 	*bio_ret = bio;
3092 
3093 	return ret;
3094 }
3095 
3096 static void attach_extent_buffer_page(struct extent_buffer *eb,
3097 				      struct page *page)
3098 {
3099 	if (!PagePrivate(page))
3100 		attach_page_private(page, eb);
3101 	else
3102 		WARN_ON(page->private != (unsigned long)eb);
3103 }
3104 
3105 void set_page_extent_mapped(struct page *page)
3106 {
3107 	if (!PagePrivate(page))
3108 		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3109 }
3110 
3111 static struct extent_map *
3112 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113 		 u64 start, u64 len, struct extent_map **em_cached)
3114 {
3115 	struct extent_map *em;
3116 
3117 	if (em_cached && *em_cached) {
3118 		em = *em_cached;
3119 		if (extent_map_in_tree(em) && start >= em->start &&
3120 		    start < extent_map_end(em)) {
3121 			refcount_inc(&em->refs);
3122 			return em;
3123 		}
3124 
3125 		free_extent_map(em);
3126 		*em_cached = NULL;
3127 	}
3128 
3129 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3130 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3131 		BUG_ON(*em_cached);
3132 		refcount_inc(&em->refs);
3133 		*em_cached = em;
3134 	}
3135 	return em;
3136 }
3137 /*
3138  * basic readpage implementation.  Locked extent state structs are inserted
3139  * into the tree that are removed when the IO is done (by the end_io
3140  * handlers)
3141  * XXX JDM: This needs looking at to ensure proper page locking
3142  * return 0 on success, otherwise return error
3143  */
3144 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3145 		      struct bio **bio, unsigned long *bio_flags,
3146 		      unsigned int read_flags, u64 *prev_em_start)
3147 {
3148 	struct inode *inode = page->mapping->host;
3149 	u64 start = page_offset(page);
3150 	const u64 end = start + PAGE_SIZE - 1;
3151 	u64 cur = start;
3152 	u64 extent_offset;
3153 	u64 last_byte = i_size_read(inode);
3154 	u64 block_start;
3155 	u64 cur_end;
3156 	struct extent_map *em;
3157 	int ret = 0;
3158 	int nr = 0;
3159 	size_t pg_offset = 0;
3160 	size_t iosize;
3161 	size_t disk_io_size;
3162 	size_t blocksize = inode->i_sb->s_blocksize;
3163 	unsigned long this_bio_flag = 0;
3164 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3165 
3166 	set_page_extent_mapped(page);
3167 
3168 	if (!PageUptodate(page)) {
3169 		if (cleancache_get_page(page) == 0) {
3170 			BUG_ON(blocksize != PAGE_SIZE);
3171 			unlock_extent(tree, start, end);
3172 			goto out;
3173 		}
3174 	}
3175 
3176 	if (page->index == last_byte >> PAGE_SHIFT) {
3177 		char *userpage;
3178 		size_t zero_offset = offset_in_page(last_byte);
3179 
3180 		if (zero_offset) {
3181 			iosize = PAGE_SIZE - zero_offset;
3182 			userpage = kmap_atomic(page);
3183 			memset(userpage + zero_offset, 0, iosize);
3184 			flush_dcache_page(page);
3185 			kunmap_atomic(userpage);
3186 		}
3187 	}
3188 	while (cur <= end) {
3189 		bool force_bio_submit = false;
3190 		u64 offset;
3191 
3192 		if (cur >= last_byte) {
3193 			char *userpage;
3194 			struct extent_state *cached = NULL;
3195 
3196 			iosize = PAGE_SIZE - pg_offset;
3197 			userpage = kmap_atomic(page);
3198 			memset(userpage + pg_offset, 0, iosize);
3199 			flush_dcache_page(page);
3200 			kunmap_atomic(userpage);
3201 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3202 					    &cached, GFP_NOFS);
3203 			unlock_extent_cached(tree, cur,
3204 					     cur + iosize - 1, &cached);
3205 			break;
3206 		}
3207 		em = __get_extent_map(inode, page, pg_offset, cur,
3208 				      end - cur + 1, em_cached);
3209 		if (IS_ERR_OR_NULL(em)) {
3210 			SetPageError(page);
3211 			unlock_extent(tree, cur, end);
3212 			break;
3213 		}
3214 		extent_offset = cur - em->start;
3215 		BUG_ON(extent_map_end(em) <= cur);
3216 		BUG_ON(end < cur);
3217 
3218 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3219 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3220 			extent_set_compress_type(&this_bio_flag,
3221 						 em->compress_type);
3222 		}
3223 
3224 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3225 		cur_end = min(extent_map_end(em) - 1, end);
3226 		iosize = ALIGN(iosize, blocksize);
3227 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3228 			disk_io_size = em->block_len;
3229 			offset = em->block_start;
3230 		} else {
3231 			offset = em->block_start + extent_offset;
3232 			disk_io_size = iosize;
3233 		}
3234 		block_start = em->block_start;
3235 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3236 			block_start = EXTENT_MAP_HOLE;
3237 
3238 		/*
3239 		 * If we have a file range that points to a compressed extent
3240 		 * and it's followed by a consecutive file range that points
3241 		 * to the same compressed extent (possibly with a different
3242 		 * offset and/or length, so it either points to the whole extent
3243 		 * or only part of it), we must make sure we do not submit a
3244 		 * single bio to populate the pages for the 2 ranges because
3245 		 * this makes the compressed extent read zero out the pages
3246 		 * belonging to the 2nd range. Imagine the following scenario:
3247 		 *
3248 		 *  File layout
3249 		 *  [0 - 8K]                     [8K - 24K]
3250 		 *    |                               |
3251 		 *    |                               |
3252 		 * points to extent X,         points to extent X,
3253 		 * offset 4K, length of 8K     offset 0, length 16K
3254 		 *
3255 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3256 		 *
3257 		 * If the bio to read the compressed extent covers both ranges,
3258 		 * it will decompress extent X into the pages belonging to the
3259 		 * first range and then it will stop, zeroing out the remaining
3260 		 * pages that belong to the other range that points to extent X.
3261 		 * So here we make sure we submit 2 bios, one for the first
3262 		 * range and another one for the third range. Both will target
3263 		 * the same physical extent from disk, but we can't currently
3264 		 * make the compressed bio endio callback populate the pages
3265 		 * for both ranges because each compressed bio is tightly
3266 		 * coupled with a single extent map, and each range can have
3267 		 * an extent map with a different offset value relative to the
3268 		 * uncompressed data of our extent and different lengths. This
3269 		 * is a corner case so we prioritize correctness over
3270 		 * non-optimal behavior (submitting 2 bios for the same extent).
3271 		 */
3272 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3273 		    prev_em_start && *prev_em_start != (u64)-1 &&
3274 		    *prev_em_start != em->start)
3275 			force_bio_submit = true;
3276 
3277 		if (prev_em_start)
3278 			*prev_em_start = em->start;
3279 
3280 		free_extent_map(em);
3281 		em = NULL;
3282 
3283 		/* we've found a hole, just zero and go on */
3284 		if (block_start == EXTENT_MAP_HOLE) {
3285 			char *userpage;
3286 			struct extent_state *cached = NULL;
3287 
3288 			userpage = kmap_atomic(page);
3289 			memset(userpage + pg_offset, 0, iosize);
3290 			flush_dcache_page(page);
3291 			kunmap_atomic(userpage);
3292 
3293 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3294 					    &cached, GFP_NOFS);
3295 			unlock_extent_cached(tree, cur,
3296 					     cur + iosize - 1, &cached);
3297 			cur = cur + iosize;
3298 			pg_offset += iosize;
3299 			continue;
3300 		}
3301 		/* the get_extent function already copied into the page */
3302 		if (test_range_bit(tree, cur, cur_end,
3303 				   EXTENT_UPTODATE, 1, NULL)) {
3304 			check_page_uptodate(tree, page);
3305 			unlock_extent(tree, cur, cur + iosize - 1);
3306 			cur = cur + iosize;
3307 			pg_offset += iosize;
3308 			continue;
3309 		}
3310 		/* we have an inline extent but it didn't get marked up
3311 		 * to date.  Error out
3312 		 */
3313 		if (block_start == EXTENT_MAP_INLINE) {
3314 			SetPageError(page);
3315 			unlock_extent(tree, cur, cur + iosize - 1);
3316 			cur = cur + iosize;
3317 			pg_offset += iosize;
3318 			continue;
3319 		}
3320 
3321 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3322 					 page, offset, disk_io_size,
3323 					 pg_offset, bio,
3324 					 end_bio_extent_readpage, 0,
3325 					 *bio_flags,
3326 					 this_bio_flag,
3327 					 force_bio_submit);
3328 		if (!ret) {
3329 			nr++;
3330 			*bio_flags = this_bio_flag;
3331 		} else {
3332 			SetPageError(page);
3333 			unlock_extent(tree, cur, cur + iosize - 1);
3334 			goto out;
3335 		}
3336 		cur = cur + iosize;
3337 		pg_offset += iosize;
3338 	}
3339 out:
3340 	if (!nr) {
3341 		if (!PageError(page))
3342 			SetPageUptodate(page);
3343 		unlock_page(page);
3344 	}
3345 	return ret;
3346 }
3347 
3348 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3349 					     u64 start, u64 end,
3350 					     struct extent_map **em_cached,
3351 					     struct bio **bio,
3352 					     unsigned long *bio_flags,
3353 					     u64 *prev_em_start)
3354 {
3355 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3356 	int index;
3357 
3358 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3359 
3360 	for (index = 0; index < nr_pages; index++) {
3361 		btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3362 				  REQ_RAHEAD, prev_em_start);
3363 		put_page(pages[index]);
3364 	}
3365 }
3366 
3367 static void update_nr_written(struct writeback_control *wbc,
3368 			      unsigned long nr_written)
3369 {
3370 	wbc->nr_to_write -= nr_written;
3371 }
3372 
3373 /*
3374  * helper for __extent_writepage, doing all of the delayed allocation setup.
3375  *
3376  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3377  * to write the page (copy into inline extent).  In this case the IO has
3378  * been started and the page is already unlocked.
3379  *
3380  * This returns 0 if all went well (page still locked)
3381  * This returns < 0 if there were errors (page still locked)
3382  */
3383 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3384 		struct page *page, struct writeback_control *wbc,
3385 		u64 delalloc_start, unsigned long *nr_written)
3386 {
3387 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3388 	bool found;
3389 	u64 delalloc_to_write = 0;
3390 	u64 delalloc_end = 0;
3391 	int ret;
3392 	int page_started = 0;
3393 
3394 
3395 	while (delalloc_end < page_end) {
3396 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3397 					       &delalloc_start,
3398 					       &delalloc_end);
3399 		if (!found) {
3400 			delalloc_start = delalloc_end + 1;
3401 			continue;
3402 		}
3403 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3404 				delalloc_end, &page_started, nr_written, wbc);
3405 		if (ret) {
3406 			SetPageError(page);
3407 			/*
3408 			 * btrfs_run_delalloc_range should return < 0 for error
3409 			 * but just in case, we use > 0 here meaning the IO is
3410 			 * started, so we don't want to return > 0 unless
3411 			 * things are going well.
3412 			 */
3413 			return ret < 0 ? ret : -EIO;
3414 		}
3415 		/*
3416 		 * delalloc_end is already one less than the total length, so
3417 		 * we don't subtract one from PAGE_SIZE
3418 		 */
3419 		delalloc_to_write += (delalloc_end - delalloc_start +
3420 				      PAGE_SIZE) >> PAGE_SHIFT;
3421 		delalloc_start = delalloc_end + 1;
3422 	}
3423 	if (wbc->nr_to_write < delalloc_to_write) {
3424 		int thresh = 8192;
3425 
3426 		if (delalloc_to_write < thresh * 2)
3427 			thresh = delalloc_to_write;
3428 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3429 					 thresh);
3430 	}
3431 
3432 	/* did the fill delalloc function already unlock and start
3433 	 * the IO?
3434 	 */
3435 	if (page_started) {
3436 		/*
3437 		 * we've unlocked the page, so we can't update
3438 		 * the mapping's writeback index, just update
3439 		 * nr_to_write.
3440 		 */
3441 		wbc->nr_to_write -= *nr_written;
3442 		return 1;
3443 	}
3444 
3445 	return 0;
3446 }
3447 
3448 /*
3449  * helper for __extent_writepage.  This calls the writepage start hooks,
3450  * and does the loop to map the page into extents and bios.
3451  *
3452  * We return 1 if the IO is started and the page is unlocked,
3453  * 0 if all went well (page still locked)
3454  * < 0 if there were errors (page still locked)
3455  */
3456 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3457 				 struct page *page,
3458 				 struct writeback_control *wbc,
3459 				 struct extent_page_data *epd,
3460 				 loff_t i_size,
3461 				 unsigned long nr_written,
3462 				 int *nr_ret)
3463 {
3464 	struct extent_io_tree *tree = &inode->io_tree;
3465 	u64 start = page_offset(page);
3466 	u64 page_end = start + PAGE_SIZE - 1;
3467 	u64 end;
3468 	u64 cur = start;
3469 	u64 extent_offset;
3470 	u64 block_start;
3471 	u64 iosize;
3472 	struct extent_map *em;
3473 	size_t pg_offset = 0;
3474 	size_t blocksize;
3475 	int ret = 0;
3476 	int nr = 0;
3477 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3478 	bool compressed;
3479 
3480 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3481 	if (ret) {
3482 		/* Fixup worker will requeue */
3483 		redirty_page_for_writepage(wbc, page);
3484 		update_nr_written(wbc, nr_written);
3485 		unlock_page(page);
3486 		return 1;
3487 	}
3488 
3489 	/*
3490 	 * we don't want to touch the inode after unlocking the page,
3491 	 * so we update the mapping writeback index now
3492 	 */
3493 	update_nr_written(wbc, nr_written + 1);
3494 
3495 	end = page_end;
3496 	blocksize = inode->vfs_inode.i_sb->s_blocksize;
3497 
3498 	while (cur <= end) {
3499 		u64 em_end;
3500 		u64 offset;
3501 
3502 		if (cur >= i_size) {
3503 			btrfs_writepage_endio_finish_ordered(page, cur,
3504 							     page_end, 1);
3505 			break;
3506 		}
3507 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3508 		if (IS_ERR_OR_NULL(em)) {
3509 			SetPageError(page);
3510 			ret = PTR_ERR_OR_ZERO(em);
3511 			break;
3512 		}
3513 
3514 		extent_offset = cur - em->start;
3515 		em_end = extent_map_end(em);
3516 		BUG_ON(em_end <= cur);
3517 		BUG_ON(end < cur);
3518 		iosize = min(em_end - cur, end - cur + 1);
3519 		iosize = ALIGN(iosize, blocksize);
3520 		offset = em->block_start + extent_offset;
3521 		block_start = em->block_start;
3522 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3523 		free_extent_map(em);
3524 		em = NULL;
3525 
3526 		/*
3527 		 * compressed and inline extents are written through other
3528 		 * paths in the FS
3529 		 */
3530 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3531 		    block_start == EXTENT_MAP_INLINE) {
3532 			if (compressed)
3533 				nr++;
3534 			else
3535 				btrfs_writepage_endio_finish_ordered(page, cur,
3536 							cur + iosize - 1, 1);
3537 			cur += iosize;
3538 			pg_offset += iosize;
3539 			continue;
3540 		}
3541 
3542 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3543 		if (!PageWriteback(page)) {
3544 			btrfs_err(inode->root->fs_info,
3545 				   "page %lu not writeback, cur %llu end %llu",
3546 			       page->index, cur, end);
3547 		}
3548 
3549 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3550 					 page, offset, iosize, pg_offset,
3551 					 &epd->bio,
3552 					 end_bio_extent_writepage,
3553 					 0, 0, 0, false);
3554 		if (ret) {
3555 			SetPageError(page);
3556 			if (PageWriteback(page))
3557 				end_page_writeback(page);
3558 		}
3559 
3560 		cur = cur + iosize;
3561 		pg_offset += iosize;
3562 		nr++;
3563 	}
3564 	*nr_ret = nr;
3565 	return ret;
3566 }
3567 
3568 /*
3569  * the writepage semantics are similar to regular writepage.  extent
3570  * records are inserted to lock ranges in the tree, and as dirty areas
3571  * are found, they are marked writeback.  Then the lock bits are removed
3572  * and the end_io handler clears the writeback ranges
3573  *
3574  * Return 0 if everything goes well.
3575  * Return <0 for error.
3576  */
3577 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3578 			      struct extent_page_data *epd)
3579 {
3580 	struct inode *inode = page->mapping->host;
3581 	u64 start = page_offset(page);
3582 	u64 page_end = start + PAGE_SIZE - 1;
3583 	int ret;
3584 	int nr = 0;
3585 	size_t pg_offset;
3586 	loff_t i_size = i_size_read(inode);
3587 	unsigned long end_index = i_size >> PAGE_SHIFT;
3588 	unsigned long nr_written = 0;
3589 
3590 	trace___extent_writepage(page, inode, wbc);
3591 
3592 	WARN_ON(!PageLocked(page));
3593 
3594 	ClearPageError(page);
3595 
3596 	pg_offset = offset_in_page(i_size);
3597 	if (page->index > end_index ||
3598 	   (page->index == end_index && !pg_offset)) {
3599 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3600 		unlock_page(page);
3601 		return 0;
3602 	}
3603 
3604 	if (page->index == end_index) {
3605 		char *userpage;
3606 
3607 		userpage = kmap_atomic(page);
3608 		memset(userpage + pg_offset, 0,
3609 		       PAGE_SIZE - pg_offset);
3610 		kunmap_atomic(userpage);
3611 		flush_dcache_page(page);
3612 	}
3613 
3614 	set_page_extent_mapped(page);
3615 
3616 	if (!epd->extent_locked) {
3617 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3618 					 &nr_written);
3619 		if (ret == 1)
3620 			return 0;
3621 		if (ret)
3622 			goto done;
3623 	}
3624 
3625 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3626 				    nr_written, &nr);
3627 	if (ret == 1)
3628 		return 0;
3629 
3630 done:
3631 	if (nr == 0) {
3632 		/* make sure the mapping tag for page dirty gets cleared */
3633 		set_page_writeback(page);
3634 		end_page_writeback(page);
3635 	}
3636 	if (PageError(page)) {
3637 		ret = ret < 0 ? ret : -EIO;
3638 		end_extent_writepage(page, ret, start, page_end);
3639 	}
3640 	unlock_page(page);
3641 	ASSERT(ret <= 0);
3642 	return ret;
3643 }
3644 
3645 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3646 {
3647 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3648 		       TASK_UNINTERRUPTIBLE);
3649 }
3650 
3651 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3652 {
3653 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3654 	smp_mb__after_atomic();
3655 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3656 }
3657 
3658 /*
3659  * Lock eb pages and flush the bio if we can't the locks
3660  *
3661  * Return  0 if nothing went wrong
3662  * Return >0 is same as 0, except bio is not submitted
3663  * Return <0 if something went wrong, no page is locked
3664  */
3665 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3666 			  struct extent_page_data *epd)
3667 {
3668 	struct btrfs_fs_info *fs_info = eb->fs_info;
3669 	int i, num_pages, failed_page_nr;
3670 	int flush = 0;
3671 	int ret = 0;
3672 
3673 	if (!btrfs_try_tree_write_lock(eb)) {
3674 		ret = flush_write_bio(epd);
3675 		if (ret < 0)
3676 			return ret;
3677 		flush = 1;
3678 		btrfs_tree_lock(eb);
3679 	}
3680 
3681 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3682 		btrfs_tree_unlock(eb);
3683 		if (!epd->sync_io)
3684 			return 0;
3685 		if (!flush) {
3686 			ret = flush_write_bio(epd);
3687 			if (ret < 0)
3688 				return ret;
3689 			flush = 1;
3690 		}
3691 		while (1) {
3692 			wait_on_extent_buffer_writeback(eb);
3693 			btrfs_tree_lock(eb);
3694 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3695 				break;
3696 			btrfs_tree_unlock(eb);
3697 		}
3698 	}
3699 
3700 	/*
3701 	 * We need to do this to prevent races in people who check if the eb is
3702 	 * under IO since we can end up having no IO bits set for a short period
3703 	 * of time.
3704 	 */
3705 	spin_lock(&eb->refs_lock);
3706 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3707 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3708 		spin_unlock(&eb->refs_lock);
3709 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3710 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3711 					 -eb->len,
3712 					 fs_info->dirty_metadata_batch);
3713 		ret = 1;
3714 	} else {
3715 		spin_unlock(&eb->refs_lock);
3716 	}
3717 
3718 	btrfs_tree_unlock(eb);
3719 
3720 	if (!ret)
3721 		return ret;
3722 
3723 	num_pages = num_extent_pages(eb);
3724 	for (i = 0; i < num_pages; i++) {
3725 		struct page *p = eb->pages[i];
3726 
3727 		if (!trylock_page(p)) {
3728 			if (!flush) {
3729 				int err;
3730 
3731 				err = flush_write_bio(epd);
3732 				if (err < 0) {
3733 					ret = err;
3734 					failed_page_nr = i;
3735 					goto err_unlock;
3736 				}
3737 				flush = 1;
3738 			}
3739 			lock_page(p);
3740 		}
3741 	}
3742 
3743 	return ret;
3744 err_unlock:
3745 	/* Unlock already locked pages */
3746 	for (i = 0; i < failed_page_nr; i++)
3747 		unlock_page(eb->pages[i]);
3748 	/*
3749 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3750 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3751 	 * be made and undo everything done before.
3752 	 */
3753 	btrfs_tree_lock(eb);
3754 	spin_lock(&eb->refs_lock);
3755 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3756 	end_extent_buffer_writeback(eb);
3757 	spin_unlock(&eb->refs_lock);
3758 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3759 				 fs_info->dirty_metadata_batch);
3760 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3761 	btrfs_tree_unlock(eb);
3762 	return ret;
3763 }
3764 
3765 static void set_btree_ioerr(struct page *page)
3766 {
3767 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3768 	struct btrfs_fs_info *fs_info;
3769 
3770 	SetPageError(page);
3771 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3772 		return;
3773 
3774 	/*
3775 	 * If we error out, we should add back the dirty_metadata_bytes
3776 	 * to make it consistent.
3777 	 */
3778 	fs_info = eb->fs_info;
3779 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3780 				 eb->len, fs_info->dirty_metadata_batch);
3781 
3782 	/*
3783 	 * If writeback for a btree extent that doesn't belong to a log tree
3784 	 * failed, increment the counter transaction->eb_write_errors.
3785 	 * We do this because while the transaction is running and before it's
3786 	 * committing (when we call filemap_fdata[write|wait]_range against
3787 	 * the btree inode), we might have
3788 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3789 	 * returns an error or an error happens during writeback, when we're
3790 	 * committing the transaction we wouldn't know about it, since the pages
3791 	 * can be no longer dirty nor marked anymore for writeback (if a
3792 	 * subsequent modification to the extent buffer didn't happen before the
3793 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3794 	 * able to find the pages tagged with SetPageError at transaction
3795 	 * commit time. So if this happens we must abort the transaction,
3796 	 * otherwise we commit a super block with btree roots that point to
3797 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3798 	 * or the content of some node/leaf from a past generation that got
3799 	 * cowed or deleted and is no longer valid.
3800 	 *
3801 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3802 	 * not be enough - we need to distinguish between log tree extents vs
3803 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3804 	 * will catch and clear such errors in the mapping - and that call might
3805 	 * be from a log sync and not from a transaction commit. Also, checking
3806 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3807 	 * not done and would not be reliable - the eb might have been released
3808 	 * from memory and reading it back again means that flag would not be
3809 	 * set (since it's a runtime flag, not persisted on disk).
3810 	 *
3811 	 * Using the flags below in the btree inode also makes us achieve the
3812 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3813 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3814 	 * is called, the writeback for all dirty pages had already finished
3815 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3816 	 * filemap_fdatawait_range() would return success, as it could not know
3817 	 * that writeback errors happened (the pages were no longer tagged for
3818 	 * writeback).
3819 	 */
3820 	switch (eb->log_index) {
3821 	case -1:
3822 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3823 		break;
3824 	case 0:
3825 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3826 		break;
3827 	case 1:
3828 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3829 		break;
3830 	default:
3831 		BUG(); /* unexpected, logic error */
3832 	}
3833 }
3834 
3835 static void end_bio_extent_buffer_writepage(struct bio *bio)
3836 {
3837 	struct bio_vec *bvec;
3838 	struct extent_buffer *eb;
3839 	int done;
3840 	struct bvec_iter_all iter_all;
3841 
3842 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3843 	bio_for_each_segment_all(bvec, bio, iter_all) {
3844 		struct page *page = bvec->bv_page;
3845 
3846 		eb = (struct extent_buffer *)page->private;
3847 		BUG_ON(!eb);
3848 		done = atomic_dec_and_test(&eb->io_pages);
3849 
3850 		if (bio->bi_status ||
3851 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3852 			ClearPageUptodate(page);
3853 			set_btree_ioerr(page);
3854 		}
3855 
3856 		end_page_writeback(page);
3857 
3858 		if (!done)
3859 			continue;
3860 
3861 		end_extent_buffer_writeback(eb);
3862 	}
3863 
3864 	bio_put(bio);
3865 }
3866 
3867 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3868 			struct writeback_control *wbc,
3869 			struct extent_page_data *epd)
3870 {
3871 	u64 offset = eb->start;
3872 	u32 nritems;
3873 	int i, num_pages;
3874 	unsigned long start, end;
3875 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3876 	int ret = 0;
3877 
3878 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3879 	num_pages = num_extent_pages(eb);
3880 	atomic_set(&eb->io_pages, num_pages);
3881 
3882 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3883 	nritems = btrfs_header_nritems(eb);
3884 	if (btrfs_header_level(eb) > 0) {
3885 		end = btrfs_node_key_ptr_offset(nritems);
3886 
3887 		memzero_extent_buffer(eb, end, eb->len - end);
3888 	} else {
3889 		/*
3890 		 * leaf:
3891 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3892 		 */
3893 		start = btrfs_item_nr_offset(nritems);
3894 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3895 		memzero_extent_buffer(eb, start, end - start);
3896 	}
3897 
3898 	for (i = 0; i < num_pages; i++) {
3899 		struct page *p = eb->pages[i];
3900 
3901 		clear_page_dirty_for_io(p);
3902 		set_page_writeback(p);
3903 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3904 					 p, offset, PAGE_SIZE, 0,
3905 					 &epd->bio,
3906 					 end_bio_extent_buffer_writepage,
3907 					 0, 0, 0, false);
3908 		if (ret) {
3909 			set_btree_ioerr(p);
3910 			if (PageWriteback(p))
3911 				end_page_writeback(p);
3912 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3913 				end_extent_buffer_writeback(eb);
3914 			ret = -EIO;
3915 			break;
3916 		}
3917 		offset += PAGE_SIZE;
3918 		update_nr_written(wbc, 1);
3919 		unlock_page(p);
3920 	}
3921 
3922 	if (unlikely(ret)) {
3923 		for (; i < num_pages; i++) {
3924 			struct page *p = eb->pages[i];
3925 			clear_page_dirty_for_io(p);
3926 			unlock_page(p);
3927 		}
3928 	}
3929 
3930 	return ret;
3931 }
3932 
3933 int btree_write_cache_pages(struct address_space *mapping,
3934 				   struct writeback_control *wbc)
3935 {
3936 	struct extent_buffer *eb, *prev_eb = NULL;
3937 	struct extent_page_data epd = {
3938 		.bio = NULL,
3939 		.extent_locked = 0,
3940 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3941 	};
3942 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3943 	int ret = 0;
3944 	int done = 0;
3945 	int nr_to_write_done = 0;
3946 	struct pagevec pvec;
3947 	int nr_pages;
3948 	pgoff_t index;
3949 	pgoff_t end;		/* Inclusive */
3950 	int scanned = 0;
3951 	xa_mark_t tag;
3952 
3953 	pagevec_init(&pvec);
3954 	if (wbc->range_cyclic) {
3955 		index = mapping->writeback_index; /* Start from prev offset */
3956 		end = -1;
3957 		/*
3958 		 * Start from the beginning does not need to cycle over the
3959 		 * range, mark it as scanned.
3960 		 */
3961 		scanned = (index == 0);
3962 	} else {
3963 		index = wbc->range_start >> PAGE_SHIFT;
3964 		end = wbc->range_end >> PAGE_SHIFT;
3965 		scanned = 1;
3966 	}
3967 	if (wbc->sync_mode == WB_SYNC_ALL)
3968 		tag = PAGECACHE_TAG_TOWRITE;
3969 	else
3970 		tag = PAGECACHE_TAG_DIRTY;
3971 retry:
3972 	if (wbc->sync_mode == WB_SYNC_ALL)
3973 		tag_pages_for_writeback(mapping, index, end);
3974 	while (!done && !nr_to_write_done && (index <= end) &&
3975 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3976 			tag))) {
3977 		unsigned i;
3978 
3979 		for (i = 0; i < nr_pages; i++) {
3980 			struct page *page = pvec.pages[i];
3981 
3982 			if (!PagePrivate(page))
3983 				continue;
3984 
3985 			spin_lock(&mapping->private_lock);
3986 			if (!PagePrivate(page)) {
3987 				spin_unlock(&mapping->private_lock);
3988 				continue;
3989 			}
3990 
3991 			eb = (struct extent_buffer *)page->private;
3992 
3993 			/*
3994 			 * Shouldn't happen and normally this would be a BUG_ON
3995 			 * but no sense in crashing the users box for something
3996 			 * we can survive anyway.
3997 			 */
3998 			if (WARN_ON(!eb)) {
3999 				spin_unlock(&mapping->private_lock);
4000 				continue;
4001 			}
4002 
4003 			if (eb == prev_eb) {
4004 				spin_unlock(&mapping->private_lock);
4005 				continue;
4006 			}
4007 
4008 			ret = atomic_inc_not_zero(&eb->refs);
4009 			spin_unlock(&mapping->private_lock);
4010 			if (!ret)
4011 				continue;
4012 
4013 			prev_eb = eb;
4014 			ret = lock_extent_buffer_for_io(eb, &epd);
4015 			if (!ret) {
4016 				free_extent_buffer(eb);
4017 				continue;
4018 			} else if (ret < 0) {
4019 				done = 1;
4020 				free_extent_buffer(eb);
4021 				break;
4022 			}
4023 
4024 			ret = write_one_eb(eb, wbc, &epd);
4025 			if (ret) {
4026 				done = 1;
4027 				free_extent_buffer(eb);
4028 				break;
4029 			}
4030 			free_extent_buffer(eb);
4031 
4032 			/*
4033 			 * the filesystem may choose to bump up nr_to_write.
4034 			 * We have to make sure to honor the new nr_to_write
4035 			 * at any time
4036 			 */
4037 			nr_to_write_done = wbc->nr_to_write <= 0;
4038 		}
4039 		pagevec_release(&pvec);
4040 		cond_resched();
4041 	}
4042 	if (!scanned && !done) {
4043 		/*
4044 		 * We hit the last page and there is more work to be done: wrap
4045 		 * back to the start of the file
4046 		 */
4047 		scanned = 1;
4048 		index = 0;
4049 		goto retry;
4050 	}
4051 	ASSERT(ret <= 0);
4052 	if (ret < 0) {
4053 		end_write_bio(&epd, ret);
4054 		return ret;
4055 	}
4056 	/*
4057 	 * If something went wrong, don't allow any metadata write bio to be
4058 	 * submitted.
4059 	 *
4060 	 * This would prevent use-after-free if we had dirty pages not
4061 	 * cleaned up, which can still happen by fuzzed images.
4062 	 *
4063 	 * - Bad extent tree
4064 	 *   Allowing existing tree block to be allocated for other trees.
4065 	 *
4066 	 * - Log tree operations
4067 	 *   Exiting tree blocks get allocated to log tree, bumps its
4068 	 *   generation, then get cleaned in tree re-balance.
4069 	 *   Such tree block will not be written back, since it's clean,
4070 	 *   thus no WRITTEN flag set.
4071 	 *   And after log writes back, this tree block is not traced by
4072 	 *   any dirty extent_io_tree.
4073 	 *
4074 	 * - Offending tree block gets re-dirtied from its original owner
4075 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4076 	 *   reused without COWing. This tree block will not be traced
4077 	 *   by btrfs_transaction::dirty_pages.
4078 	 *
4079 	 *   Now such dirty tree block will not be cleaned by any dirty
4080 	 *   extent io tree. Thus we don't want to submit such wild eb
4081 	 *   if the fs already has error.
4082 	 */
4083 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4084 		ret = flush_write_bio(&epd);
4085 	} else {
4086 		ret = -EROFS;
4087 		end_write_bio(&epd, ret);
4088 	}
4089 	return ret;
4090 }
4091 
4092 /**
4093  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4094  * @mapping: address space structure to write
4095  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4096  * @data: data passed to __extent_writepage function
4097  *
4098  * If a page is already under I/O, write_cache_pages() skips it, even
4099  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4100  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4101  * and msync() need to guarantee that all the data which was dirty at the time
4102  * the call was made get new I/O started against them.  If wbc->sync_mode is
4103  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4104  * existing IO to complete.
4105  */
4106 static int extent_write_cache_pages(struct address_space *mapping,
4107 			     struct writeback_control *wbc,
4108 			     struct extent_page_data *epd)
4109 {
4110 	struct inode *inode = mapping->host;
4111 	int ret = 0;
4112 	int done = 0;
4113 	int nr_to_write_done = 0;
4114 	struct pagevec pvec;
4115 	int nr_pages;
4116 	pgoff_t index;
4117 	pgoff_t end;		/* Inclusive */
4118 	pgoff_t done_index;
4119 	int range_whole = 0;
4120 	int scanned = 0;
4121 	xa_mark_t tag;
4122 
4123 	/*
4124 	 * We have to hold onto the inode so that ordered extents can do their
4125 	 * work when the IO finishes.  The alternative to this is failing to add
4126 	 * an ordered extent if the igrab() fails there and that is a huge pain
4127 	 * to deal with, so instead just hold onto the inode throughout the
4128 	 * writepages operation.  If it fails here we are freeing up the inode
4129 	 * anyway and we'd rather not waste our time writing out stuff that is
4130 	 * going to be truncated anyway.
4131 	 */
4132 	if (!igrab(inode))
4133 		return 0;
4134 
4135 	pagevec_init(&pvec);
4136 	if (wbc->range_cyclic) {
4137 		index = mapping->writeback_index; /* Start from prev offset */
4138 		end = -1;
4139 		/*
4140 		 * Start from the beginning does not need to cycle over the
4141 		 * range, mark it as scanned.
4142 		 */
4143 		scanned = (index == 0);
4144 	} else {
4145 		index = wbc->range_start >> PAGE_SHIFT;
4146 		end = wbc->range_end >> PAGE_SHIFT;
4147 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4148 			range_whole = 1;
4149 		scanned = 1;
4150 	}
4151 
4152 	/*
4153 	 * We do the tagged writepage as long as the snapshot flush bit is set
4154 	 * and we are the first one who do the filemap_flush() on this inode.
4155 	 *
4156 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4157 	 * not race in and drop the bit.
4158 	 */
4159 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4160 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4161 			       &BTRFS_I(inode)->runtime_flags))
4162 		wbc->tagged_writepages = 1;
4163 
4164 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4165 		tag = PAGECACHE_TAG_TOWRITE;
4166 	else
4167 		tag = PAGECACHE_TAG_DIRTY;
4168 retry:
4169 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4170 		tag_pages_for_writeback(mapping, index, end);
4171 	done_index = index;
4172 	while (!done && !nr_to_write_done && (index <= end) &&
4173 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4174 						&index, end, tag))) {
4175 		unsigned i;
4176 
4177 		for (i = 0; i < nr_pages; i++) {
4178 			struct page *page = pvec.pages[i];
4179 
4180 			done_index = page->index + 1;
4181 			/*
4182 			 * At this point we hold neither the i_pages lock nor
4183 			 * the page lock: the page may be truncated or
4184 			 * invalidated (changing page->mapping to NULL),
4185 			 * or even swizzled back from swapper_space to
4186 			 * tmpfs file mapping
4187 			 */
4188 			if (!trylock_page(page)) {
4189 				ret = flush_write_bio(epd);
4190 				BUG_ON(ret < 0);
4191 				lock_page(page);
4192 			}
4193 
4194 			if (unlikely(page->mapping != mapping)) {
4195 				unlock_page(page);
4196 				continue;
4197 			}
4198 
4199 			if (wbc->sync_mode != WB_SYNC_NONE) {
4200 				if (PageWriteback(page)) {
4201 					ret = flush_write_bio(epd);
4202 					BUG_ON(ret < 0);
4203 				}
4204 				wait_on_page_writeback(page);
4205 			}
4206 
4207 			if (PageWriteback(page) ||
4208 			    !clear_page_dirty_for_io(page)) {
4209 				unlock_page(page);
4210 				continue;
4211 			}
4212 
4213 			ret = __extent_writepage(page, wbc, epd);
4214 			if (ret < 0) {
4215 				done = 1;
4216 				break;
4217 			}
4218 
4219 			/*
4220 			 * the filesystem may choose to bump up nr_to_write.
4221 			 * We have to make sure to honor the new nr_to_write
4222 			 * at any time
4223 			 */
4224 			nr_to_write_done = wbc->nr_to_write <= 0;
4225 		}
4226 		pagevec_release(&pvec);
4227 		cond_resched();
4228 	}
4229 	if (!scanned && !done) {
4230 		/*
4231 		 * We hit the last page and there is more work to be done: wrap
4232 		 * back to the start of the file
4233 		 */
4234 		scanned = 1;
4235 		index = 0;
4236 
4237 		/*
4238 		 * If we're looping we could run into a page that is locked by a
4239 		 * writer and that writer could be waiting on writeback for a
4240 		 * page in our current bio, and thus deadlock, so flush the
4241 		 * write bio here.
4242 		 */
4243 		ret = flush_write_bio(epd);
4244 		if (!ret)
4245 			goto retry;
4246 	}
4247 
4248 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4249 		mapping->writeback_index = done_index;
4250 
4251 	btrfs_add_delayed_iput(inode);
4252 	return ret;
4253 }
4254 
4255 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4256 {
4257 	int ret;
4258 	struct extent_page_data epd = {
4259 		.bio = NULL,
4260 		.extent_locked = 0,
4261 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4262 	};
4263 
4264 	ret = __extent_writepage(page, wbc, &epd);
4265 	ASSERT(ret <= 0);
4266 	if (ret < 0) {
4267 		end_write_bio(&epd, ret);
4268 		return ret;
4269 	}
4270 
4271 	ret = flush_write_bio(&epd);
4272 	ASSERT(ret <= 0);
4273 	return ret;
4274 }
4275 
4276 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4277 			      int mode)
4278 {
4279 	int ret = 0;
4280 	struct address_space *mapping = inode->i_mapping;
4281 	struct page *page;
4282 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4283 		PAGE_SHIFT;
4284 
4285 	struct extent_page_data epd = {
4286 		.bio = NULL,
4287 		.extent_locked = 1,
4288 		.sync_io = mode == WB_SYNC_ALL,
4289 	};
4290 	struct writeback_control wbc_writepages = {
4291 		.sync_mode	= mode,
4292 		.nr_to_write	= nr_pages * 2,
4293 		.range_start	= start,
4294 		.range_end	= end + 1,
4295 		/* We're called from an async helper function */
4296 		.punt_to_cgroup	= 1,
4297 		.no_cgroup_owner = 1,
4298 	};
4299 
4300 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4301 	while (start <= end) {
4302 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4303 		if (clear_page_dirty_for_io(page))
4304 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4305 		else {
4306 			btrfs_writepage_endio_finish_ordered(page, start,
4307 						    start + PAGE_SIZE - 1, 1);
4308 			unlock_page(page);
4309 		}
4310 		put_page(page);
4311 		start += PAGE_SIZE;
4312 	}
4313 
4314 	ASSERT(ret <= 0);
4315 	if (ret == 0)
4316 		ret = flush_write_bio(&epd);
4317 	else
4318 		end_write_bio(&epd, ret);
4319 
4320 	wbc_detach_inode(&wbc_writepages);
4321 	return ret;
4322 }
4323 
4324 int extent_writepages(struct address_space *mapping,
4325 		      struct writeback_control *wbc)
4326 {
4327 	int ret = 0;
4328 	struct extent_page_data epd = {
4329 		.bio = NULL,
4330 		.extent_locked = 0,
4331 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4332 	};
4333 
4334 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4335 	ASSERT(ret <= 0);
4336 	if (ret < 0) {
4337 		end_write_bio(&epd, ret);
4338 		return ret;
4339 	}
4340 	ret = flush_write_bio(&epd);
4341 	return ret;
4342 }
4343 
4344 void extent_readahead(struct readahead_control *rac)
4345 {
4346 	struct bio *bio = NULL;
4347 	unsigned long bio_flags = 0;
4348 	struct page *pagepool[16];
4349 	struct extent_map *em_cached = NULL;
4350 	u64 prev_em_start = (u64)-1;
4351 	int nr;
4352 
4353 	while ((nr = readahead_page_batch(rac, pagepool))) {
4354 		u64 contig_start = page_offset(pagepool[0]);
4355 		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4356 
4357 		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4358 
4359 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4360 				&em_cached, &bio, &bio_flags, &prev_em_start);
4361 	}
4362 
4363 	if (em_cached)
4364 		free_extent_map(em_cached);
4365 
4366 	if (bio) {
4367 		if (submit_one_bio(bio, 0, bio_flags))
4368 			return;
4369 	}
4370 }
4371 
4372 /*
4373  * basic invalidatepage code, this waits on any locked or writeback
4374  * ranges corresponding to the page, and then deletes any extent state
4375  * records from the tree
4376  */
4377 int extent_invalidatepage(struct extent_io_tree *tree,
4378 			  struct page *page, unsigned long offset)
4379 {
4380 	struct extent_state *cached_state = NULL;
4381 	u64 start = page_offset(page);
4382 	u64 end = start + PAGE_SIZE - 1;
4383 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4384 
4385 	start += ALIGN(offset, blocksize);
4386 	if (start > end)
4387 		return 0;
4388 
4389 	lock_extent_bits(tree, start, end, &cached_state);
4390 	wait_on_page_writeback(page);
4391 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4392 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4393 	return 0;
4394 }
4395 
4396 /*
4397  * a helper for releasepage, this tests for areas of the page that
4398  * are locked or under IO and drops the related state bits if it is safe
4399  * to drop the page.
4400  */
4401 static int try_release_extent_state(struct extent_io_tree *tree,
4402 				    struct page *page, gfp_t mask)
4403 {
4404 	u64 start = page_offset(page);
4405 	u64 end = start + PAGE_SIZE - 1;
4406 	int ret = 1;
4407 
4408 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4409 		ret = 0;
4410 	} else {
4411 		/*
4412 		 * at this point we can safely clear everything except the
4413 		 * locked bit and the nodatasum bit
4414 		 */
4415 		ret = __clear_extent_bit(tree, start, end,
4416 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4417 				 0, 0, NULL, mask, NULL);
4418 
4419 		/* if clear_extent_bit failed for enomem reasons,
4420 		 * we can't allow the release to continue.
4421 		 */
4422 		if (ret < 0)
4423 			ret = 0;
4424 		else
4425 			ret = 1;
4426 	}
4427 	return ret;
4428 }
4429 
4430 /*
4431  * a helper for releasepage.  As long as there are no locked extents
4432  * in the range corresponding to the page, both state records and extent
4433  * map records are removed
4434  */
4435 int try_release_extent_mapping(struct page *page, gfp_t mask)
4436 {
4437 	struct extent_map *em;
4438 	u64 start = page_offset(page);
4439 	u64 end = start + PAGE_SIZE - 1;
4440 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4441 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4442 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4443 
4444 	if (gfpflags_allow_blocking(mask) &&
4445 	    page->mapping->host->i_size > SZ_16M) {
4446 		u64 len;
4447 		while (start <= end) {
4448 			struct btrfs_fs_info *fs_info;
4449 			u64 cur_gen;
4450 
4451 			len = end - start + 1;
4452 			write_lock(&map->lock);
4453 			em = lookup_extent_mapping(map, start, len);
4454 			if (!em) {
4455 				write_unlock(&map->lock);
4456 				break;
4457 			}
4458 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4459 			    em->start != start) {
4460 				write_unlock(&map->lock);
4461 				free_extent_map(em);
4462 				break;
4463 			}
4464 			if (test_range_bit(tree, em->start,
4465 					   extent_map_end(em) - 1,
4466 					   EXTENT_LOCKED, 0, NULL))
4467 				goto next;
4468 			/*
4469 			 * If it's not in the list of modified extents, used
4470 			 * by a fast fsync, we can remove it. If it's being
4471 			 * logged we can safely remove it since fsync took an
4472 			 * extra reference on the em.
4473 			 */
4474 			if (list_empty(&em->list) ||
4475 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4476 				goto remove_em;
4477 			/*
4478 			 * If it's in the list of modified extents, remove it
4479 			 * only if its generation is older then the current one,
4480 			 * in which case we don't need it for a fast fsync.
4481 			 * Otherwise don't remove it, we could be racing with an
4482 			 * ongoing fast fsync that could miss the new extent.
4483 			 */
4484 			fs_info = btrfs_inode->root->fs_info;
4485 			spin_lock(&fs_info->trans_lock);
4486 			cur_gen = fs_info->generation;
4487 			spin_unlock(&fs_info->trans_lock);
4488 			if (em->generation >= cur_gen)
4489 				goto next;
4490 remove_em:
4491 			/*
4492 			 * We only remove extent maps that are not in the list of
4493 			 * modified extents or that are in the list but with a
4494 			 * generation lower then the current generation, so there
4495 			 * is no need to set the full fsync flag on the inode (it
4496 			 * hurts the fsync performance for workloads with a data
4497 			 * size that exceeds or is close to the system's memory).
4498 			 */
4499 			remove_extent_mapping(map, em);
4500 			/* once for the rb tree */
4501 			free_extent_map(em);
4502 next:
4503 			start = extent_map_end(em);
4504 			write_unlock(&map->lock);
4505 
4506 			/* once for us */
4507 			free_extent_map(em);
4508 
4509 			cond_resched(); /* Allow large-extent preemption. */
4510 		}
4511 	}
4512 	return try_release_extent_state(tree, page, mask);
4513 }
4514 
4515 /*
4516  * helper function for fiemap, which doesn't want to see any holes.
4517  * This maps until we find something past 'last'
4518  */
4519 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4520 						u64 offset, u64 last)
4521 {
4522 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4523 	struct extent_map *em;
4524 	u64 len;
4525 
4526 	if (offset >= last)
4527 		return NULL;
4528 
4529 	while (1) {
4530 		len = last - offset;
4531 		if (len == 0)
4532 			break;
4533 		len = ALIGN(len, sectorsize);
4534 		em = btrfs_get_extent_fiemap(inode, offset, len);
4535 		if (IS_ERR_OR_NULL(em))
4536 			return em;
4537 
4538 		/* if this isn't a hole return it */
4539 		if (em->block_start != EXTENT_MAP_HOLE)
4540 			return em;
4541 
4542 		/* this is a hole, advance to the next extent */
4543 		offset = extent_map_end(em);
4544 		free_extent_map(em);
4545 		if (offset >= last)
4546 			break;
4547 	}
4548 	return NULL;
4549 }
4550 
4551 /*
4552  * To cache previous fiemap extent
4553  *
4554  * Will be used for merging fiemap extent
4555  */
4556 struct fiemap_cache {
4557 	u64 offset;
4558 	u64 phys;
4559 	u64 len;
4560 	u32 flags;
4561 	bool cached;
4562 };
4563 
4564 /*
4565  * Helper to submit fiemap extent.
4566  *
4567  * Will try to merge current fiemap extent specified by @offset, @phys,
4568  * @len and @flags with cached one.
4569  * And only when we fails to merge, cached one will be submitted as
4570  * fiemap extent.
4571  *
4572  * Return value is the same as fiemap_fill_next_extent().
4573  */
4574 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4575 				struct fiemap_cache *cache,
4576 				u64 offset, u64 phys, u64 len, u32 flags)
4577 {
4578 	int ret = 0;
4579 
4580 	if (!cache->cached)
4581 		goto assign;
4582 
4583 	/*
4584 	 * Sanity check, extent_fiemap() should have ensured that new
4585 	 * fiemap extent won't overlap with cached one.
4586 	 * Not recoverable.
4587 	 *
4588 	 * NOTE: Physical address can overlap, due to compression
4589 	 */
4590 	if (cache->offset + cache->len > offset) {
4591 		WARN_ON(1);
4592 		return -EINVAL;
4593 	}
4594 
4595 	/*
4596 	 * Only merges fiemap extents if
4597 	 * 1) Their logical addresses are continuous
4598 	 *
4599 	 * 2) Their physical addresses are continuous
4600 	 *    So truly compressed (physical size smaller than logical size)
4601 	 *    extents won't get merged with each other
4602 	 *
4603 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4604 	 *    So regular extent won't get merged with prealloc extent
4605 	 */
4606 	if (cache->offset + cache->len  == offset &&
4607 	    cache->phys + cache->len == phys  &&
4608 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4609 			(flags & ~FIEMAP_EXTENT_LAST)) {
4610 		cache->len += len;
4611 		cache->flags |= flags;
4612 		goto try_submit_last;
4613 	}
4614 
4615 	/* Not mergeable, need to submit cached one */
4616 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4617 				      cache->len, cache->flags);
4618 	cache->cached = false;
4619 	if (ret)
4620 		return ret;
4621 assign:
4622 	cache->cached = true;
4623 	cache->offset = offset;
4624 	cache->phys = phys;
4625 	cache->len = len;
4626 	cache->flags = flags;
4627 try_submit_last:
4628 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4629 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4630 				cache->phys, cache->len, cache->flags);
4631 		cache->cached = false;
4632 	}
4633 	return ret;
4634 }
4635 
4636 /*
4637  * Emit last fiemap cache
4638  *
4639  * The last fiemap cache may still be cached in the following case:
4640  * 0		      4k		    8k
4641  * |<- Fiemap range ->|
4642  * |<------------  First extent ----------->|
4643  *
4644  * In this case, the first extent range will be cached but not emitted.
4645  * So we must emit it before ending extent_fiemap().
4646  */
4647 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4648 				  struct fiemap_cache *cache)
4649 {
4650 	int ret;
4651 
4652 	if (!cache->cached)
4653 		return 0;
4654 
4655 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4656 				      cache->len, cache->flags);
4657 	cache->cached = false;
4658 	if (ret > 0)
4659 		ret = 0;
4660 	return ret;
4661 }
4662 
4663 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4664 		  u64 start, u64 len)
4665 {
4666 	int ret = 0;
4667 	u64 off = start;
4668 	u64 max = start + len;
4669 	u32 flags = 0;
4670 	u32 found_type;
4671 	u64 last;
4672 	u64 last_for_get_extent = 0;
4673 	u64 disko = 0;
4674 	u64 isize = i_size_read(&inode->vfs_inode);
4675 	struct btrfs_key found_key;
4676 	struct extent_map *em = NULL;
4677 	struct extent_state *cached_state = NULL;
4678 	struct btrfs_path *path;
4679 	struct btrfs_root *root = inode->root;
4680 	struct fiemap_cache cache = { 0 };
4681 	struct ulist *roots;
4682 	struct ulist *tmp_ulist;
4683 	int end = 0;
4684 	u64 em_start = 0;
4685 	u64 em_len = 0;
4686 	u64 em_end = 0;
4687 
4688 	if (len == 0)
4689 		return -EINVAL;
4690 
4691 	path = btrfs_alloc_path();
4692 	if (!path)
4693 		return -ENOMEM;
4694 	path->leave_spinning = 1;
4695 
4696 	roots = ulist_alloc(GFP_KERNEL);
4697 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4698 	if (!roots || !tmp_ulist) {
4699 		ret = -ENOMEM;
4700 		goto out_free_ulist;
4701 	}
4702 
4703 	start = round_down(start, btrfs_inode_sectorsize(inode));
4704 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4705 
4706 	/*
4707 	 * lookup the last file extent.  We're not using i_size here
4708 	 * because there might be preallocation past i_size
4709 	 */
4710 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4711 				       0);
4712 	if (ret < 0) {
4713 		goto out_free_ulist;
4714 	} else {
4715 		WARN_ON(!ret);
4716 		if (ret == 1)
4717 			ret = 0;
4718 	}
4719 
4720 	path->slots[0]--;
4721 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4722 	found_type = found_key.type;
4723 
4724 	/* No extents, but there might be delalloc bits */
4725 	if (found_key.objectid != btrfs_ino(inode) ||
4726 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4727 		/* have to trust i_size as the end */
4728 		last = (u64)-1;
4729 		last_for_get_extent = isize;
4730 	} else {
4731 		/*
4732 		 * remember the start of the last extent.  There are a
4733 		 * bunch of different factors that go into the length of the
4734 		 * extent, so its much less complex to remember where it started
4735 		 */
4736 		last = found_key.offset;
4737 		last_for_get_extent = last + 1;
4738 	}
4739 	btrfs_release_path(path);
4740 
4741 	/*
4742 	 * we might have some extents allocated but more delalloc past those
4743 	 * extents.  so, we trust isize unless the start of the last extent is
4744 	 * beyond isize
4745 	 */
4746 	if (last < isize) {
4747 		last = (u64)-1;
4748 		last_for_get_extent = isize;
4749 	}
4750 
4751 	lock_extent_bits(&inode->io_tree, start, start + len - 1,
4752 			 &cached_state);
4753 
4754 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4755 	if (!em)
4756 		goto out;
4757 	if (IS_ERR(em)) {
4758 		ret = PTR_ERR(em);
4759 		goto out;
4760 	}
4761 
4762 	while (!end) {
4763 		u64 offset_in_extent = 0;
4764 
4765 		/* break if the extent we found is outside the range */
4766 		if (em->start >= max || extent_map_end(em) < off)
4767 			break;
4768 
4769 		/*
4770 		 * get_extent may return an extent that starts before our
4771 		 * requested range.  We have to make sure the ranges
4772 		 * we return to fiemap always move forward and don't
4773 		 * overlap, so adjust the offsets here
4774 		 */
4775 		em_start = max(em->start, off);
4776 
4777 		/*
4778 		 * record the offset from the start of the extent
4779 		 * for adjusting the disk offset below.  Only do this if the
4780 		 * extent isn't compressed since our in ram offset may be past
4781 		 * what we have actually allocated on disk.
4782 		 */
4783 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4784 			offset_in_extent = em_start - em->start;
4785 		em_end = extent_map_end(em);
4786 		em_len = em_end - em_start;
4787 		flags = 0;
4788 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4789 			disko = em->block_start + offset_in_extent;
4790 		else
4791 			disko = 0;
4792 
4793 		/*
4794 		 * bump off for our next call to get_extent
4795 		 */
4796 		off = extent_map_end(em);
4797 		if (off >= max)
4798 			end = 1;
4799 
4800 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4801 			end = 1;
4802 			flags |= FIEMAP_EXTENT_LAST;
4803 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4804 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4805 				  FIEMAP_EXTENT_NOT_ALIGNED);
4806 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4807 			flags |= (FIEMAP_EXTENT_DELALLOC |
4808 				  FIEMAP_EXTENT_UNKNOWN);
4809 		} else if (fieinfo->fi_extents_max) {
4810 			u64 bytenr = em->block_start -
4811 				(em->start - em->orig_start);
4812 
4813 			/*
4814 			 * As btrfs supports shared space, this information
4815 			 * can be exported to userspace tools via
4816 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4817 			 * then we're just getting a count and we can skip the
4818 			 * lookup stuff.
4819 			 */
4820 			ret = btrfs_check_shared(root, btrfs_ino(inode),
4821 						 bytenr, roots, tmp_ulist);
4822 			if (ret < 0)
4823 				goto out_free;
4824 			if (ret)
4825 				flags |= FIEMAP_EXTENT_SHARED;
4826 			ret = 0;
4827 		}
4828 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4829 			flags |= FIEMAP_EXTENT_ENCODED;
4830 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4831 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4832 
4833 		free_extent_map(em);
4834 		em = NULL;
4835 		if ((em_start >= last) || em_len == (u64)-1 ||
4836 		   (last == (u64)-1 && isize <= em_end)) {
4837 			flags |= FIEMAP_EXTENT_LAST;
4838 			end = 1;
4839 		}
4840 
4841 		/* now scan forward to see if this is really the last extent. */
4842 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4843 		if (IS_ERR(em)) {
4844 			ret = PTR_ERR(em);
4845 			goto out;
4846 		}
4847 		if (!em) {
4848 			flags |= FIEMAP_EXTENT_LAST;
4849 			end = 1;
4850 		}
4851 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4852 					   em_len, flags);
4853 		if (ret) {
4854 			if (ret == 1)
4855 				ret = 0;
4856 			goto out_free;
4857 		}
4858 	}
4859 out_free:
4860 	if (!ret)
4861 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4862 	free_extent_map(em);
4863 out:
4864 	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4865 			     &cached_state);
4866 
4867 out_free_ulist:
4868 	btrfs_free_path(path);
4869 	ulist_free(roots);
4870 	ulist_free(tmp_ulist);
4871 	return ret;
4872 }
4873 
4874 static void __free_extent_buffer(struct extent_buffer *eb)
4875 {
4876 	kmem_cache_free(extent_buffer_cache, eb);
4877 }
4878 
4879 int extent_buffer_under_io(const struct extent_buffer *eb)
4880 {
4881 	return (atomic_read(&eb->io_pages) ||
4882 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4883 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4884 }
4885 
4886 /*
4887  * Release all pages attached to the extent buffer.
4888  */
4889 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4890 {
4891 	int i;
4892 	int num_pages;
4893 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4894 
4895 	BUG_ON(extent_buffer_under_io(eb));
4896 
4897 	num_pages = num_extent_pages(eb);
4898 	for (i = 0; i < num_pages; i++) {
4899 		struct page *page = eb->pages[i];
4900 
4901 		if (!page)
4902 			continue;
4903 		if (mapped)
4904 			spin_lock(&page->mapping->private_lock);
4905 		/*
4906 		 * We do this since we'll remove the pages after we've
4907 		 * removed the eb from the radix tree, so we could race
4908 		 * and have this page now attached to the new eb.  So
4909 		 * only clear page_private if it's still connected to
4910 		 * this eb.
4911 		 */
4912 		if (PagePrivate(page) &&
4913 		    page->private == (unsigned long)eb) {
4914 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4915 			BUG_ON(PageDirty(page));
4916 			BUG_ON(PageWriteback(page));
4917 			/*
4918 			 * We need to make sure we haven't be attached
4919 			 * to a new eb.
4920 			 */
4921 			detach_page_private(page);
4922 		}
4923 
4924 		if (mapped)
4925 			spin_unlock(&page->mapping->private_lock);
4926 
4927 		/* One for when we allocated the page */
4928 		put_page(page);
4929 	}
4930 }
4931 
4932 /*
4933  * Helper for releasing the extent buffer.
4934  */
4935 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4936 {
4937 	btrfs_release_extent_buffer_pages(eb);
4938 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4939 	__free_extent_buffer(eb);
4940 }
4941 
4942 static struct extent_buffer *
4943 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4944 		      unsigned long len)
4945 {
4946 	struct extent_buffer *eb = NULL;
4947 
4948 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4949 	eb->start = start;
4950 	eb->len = len;
4951 	eb->fs_info = fs_info;
4952 	eb->bflags = 0;
4953 	rwlock_init(&eb->lock);
4954 	atomic_set(&eb->blocking_readers, 0);
4955 	eb->blocking_writers = 0;
4956 	eb->lock_recursed = false;
4957 	init_waitqueue_head(&eb->write_lock_wq);
4958 	init_waitqueue_head(&eb->read_lock_wq);
4959 
4960 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4961 			     &fs_info->allocated_ebs);
4962 
4963 	spin_lock_init(&eb->refs_lock);
4964 	atomic_set(&eb->refs, 1);
4965 	atomic_set(&eb->io_pages, 0);
4966 
4967 	/*
4968 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4969 	 */
4970 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4971 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4972 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4973 
4974 #ifdef CONFIG_BTRFS_DEBUG
4975 	eb->spinning_writers = 0;
4976 	atomic_set(&eb->spinning_readers, 0);
4977 	atomic_set(&eb->read_locks, 0);
4978 	eb->write_locks = 0;
4979 #endif
4980 
4981 	return eb;
4982 }
4983 
4984 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4985 {
4986 	int i;
4987 	struct page *p;
4988 	struct extent_buffer *new;
4989 	int num_pages = num_extent_pages(src);
4990 
4991 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4992 	if (new == NULL)
4993 		return NULL;
4994 
4995 	for (i = 0; i < num_pages; i++) {
4996 		p = alloc_page(GFP_NOFS);
4997 		if (!p) {
4998 			btrfs_release_extent_buffer(new);
4999 			return NULL;
5000 		}
5001 		attach_extent_buffer_page(new, p);
5002 		WARN_ON(PageDirty(p));
5003 		SetPageUptodate(p);
5004 		new->pages[i] = p;
5005 		copy_page(page_address(p), page_address(src->pages[i]));
5006 	}
5007 
5008 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5009 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5010 
5011 	return new;
5012 }
5013 
5014 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5015 						  u64 start, unsigned long len)
5016 {
5017 	struct extent_buffer *eb;
5018 	int num_pages;
5019 	int i;
5020 
5021 	eb = __alloc_extent_buffer(fs_info, start, len);
5022 	if (!eb)
5023 		return NULL;
5024 
5025 	num_pages = num_extent_pages(eb);
5026 	for (i = 0; i < num_pages; i++) {
5027 		eb->pages[i] = alloc_page(GFP_NOFS);
5028 		if (!eb->pages[i])
5029 			goto err;
5030 	}
5031 	set_extent_buffer_uptodate(eb);
5032 	btrfs_set_header_nritems(eb, 0);
5033 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5034 
5035 	return eb;
5036 err:
5037 	for (; i > 0; i--)
5038 		__free_page(eb->pages[i - 1]);
5039 	__free_extent_buffer(eb);
5040 	return NULL;
5041 }
5042 
5043 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5044 						u64 start)
5045 {
5046 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5047 }
5048 
5049 static void check_buffer_tree_ref(struct extent_buffer *eb)
5050 {
5051 	int refs;
5052 	/*
5053 	 * The TREE_REF bit is first set when the extent_buffer is added
5054 	 * to the radix tree. It is also reset, if unset, when a new reference
5055 	 * is created by find_extent_buffer.
5056 	 *
5057 	 * It is only cleared in two cases: freeing the last non-tree
5058 	 * reference to the extent_buffer when its STALE bit is set or
5059 	 * calling releasepage when the tree reference is the only reference.
5060 	 *
5061 	 * In both cases, care is taken to ensure that the extent_buffer's
5062 	 * pages are not under io. However, releasepage can be concurrently
5063 	 * called with creating new references, which is prone to race
5064 	 * conditions between the calls to check_buffer_tree_ref in those
5065 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5066 	 *
5067 	 * The actual lifetime of the extent_buffer in the radix tree is
5068 	 * adequately protected by the refcount, but the TREE_REF bit and
5069 	 * its corresponding reference are not. To protect against this
5070 	 * class of races, we call check_buffer_tree_ref from the codepaths
5071 	 * which trigger io after they set eb->io_pages. Note that once io is
5072 	 * initiated, TREE_REF can no longer be cleared, so that is the
5073 	 * moment at which any such race is best fixed.
5074 	 */
5075 	refs = atomic_read(&eb->refs);
5076 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5077 		return;
5078 
5079 	spin_lock(&eb->refs_lock);
5080 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5081 		atomic_inc(&eb->refs);
5082 	spin_unlock(&eb->refs_lock);
5083 }
5084 
5085 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5086 		struct page *accessed)
5087 {
5088 	int num_pages, i;
5089 
5090 	check_buffer_tree_ref(eb);
5091 
5092 	num_pages = num_extent_pages(eb);
5093 	for (i = 0; i < num_pages; i++) {
5094 		struct page *p = eb->pages[i];
5095 
5096 		if (p != accessed)
5097 			mark_page_accessed(p);
5098 	}
5099 }
5100 
5101 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5102 					 u64 start)
5103 {
5104 	struct extent_buffer *eb;
5105 
5106 	rcu_read_lock();
5107 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5108 			       start >> PAGE_SHIFT);
5109 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5110 		rcu_read_unlock();
5111 		/*
5112 		 * Lock our eb's refs_lock to avoid races with
5113 		 * free_extent_buffer. When we get our eb it might be flagged
5114 		 * with EXTENT_BUFFER_STALE and another task running
5115 		 * free_extent_buffer might have seen that flag set,
5116 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5117 		 * writeback flags not set) and it's still in the tree (flag
5118 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5119 		 * of decrementing the extent buffer's reference count twice.
5120 		 * So here we could race and increment the eb's reference count,
5121 		 * clear its stale flag, mark it as dirty and drop our reference
5122 		 * before the other task finishes executing free_extent_buffer,
5123 		 * which would later result in an attempt to free an extent
5124 		 * buffer that is dirty.
5125 		 */
5126 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5127 			spin_lock(&eb->refs_lock);
5128 			spin_unlock(&eb->refs_lock);
5129 		}
5130 		mark_extent_buffer_accessed(eb, NULL);
5131 		return eb;
5132 	}
5133 	rcu_read_unlock();
5134 
5135 	return NULL;
5136 }
5137 
5138 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5139 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5140 					u64 start)
5141 {
5142 	struct extent_buffer *eb, *exists = NULL;
5143 	int ret;
5144 
5145 	eb = find_extent_buffer(fs_info, start);
5146 	if (eb)
5147 		return eb;
5148 	eb = alloc_dummy_extent_buffer(fs_info, start);
5149 	if (!eb)
5150 		return ERR_PTR(-ENOMEM);
5151 	eb->fs_info = fs_info;
5152 again:
5153 	ret = radix_tree_preload(GFP_NOFS);
5154 	if (ret) {
5155 		exists = ERR_PTR(ret);
5156 		goto free_eb;
5157 	}
5158 	spin_lock(&fs_info->buffer_lock);
5159 	ret = radix_tree_insert(&fs_info->buffer_radix,
5160 				start >> PAGE_SHIFT, eb);
5161 	spin_unlock(&fs_info->buffer_lock);
5162 	radix_tree_preload_end();
5163 	if (ret == -EEXIST) {
5164 		exists = find_extent_buffer(fs_info, start);
5165 		if (exists)
5166 			goto free_eb;
5167 		else
5168 			goto again;
5169 	}
5170 	check_buffer_tree_ref(eb);
5171 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5172 
5173 	return eb;
5174 free_eb:
5175 	btrfs_release_extent_buffer(eb);
5176 	return exists;
5177 }
5178 #endif
5179 
5180 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5181 					  u64 start)
5182 {
5183 	unsigned long len = fs_info->nodesize;
5184 	int num_pages;
5185 	int i;
5186 	unsigned long index = start >> PAGE_SHIFT;
5187 	struct extent_buffer *eb;
5188 	struct extent_buffer *exists = NULL;
5189 	struct page *p;
5190 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5191 	int uptodate = 1;
5192 	int ret;
5193 
5194 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5195 		btrfs_err(fs_info, "bad tree block start %llu", start);
5196 		return ERR_PTR(-EINVAL);
5197 	}
5198 
5199 	eb = find_extent_buffer(fs_info, start);
5200 	if (eb)
5201 		return eb;
5202 
5203 	eb = __alloc_extent_buffer(fs_info, start, len);
5204 	if (!eb)
5205 		return ERR_PTR(-ENOMEM);
5206 
5207 	num_pages = num_extent_pages(eb);
5208 	for (i = 0; i < num_pages; i++, index++) {
5209 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5210 		if (!p) {
5211 			exists = ERR_PTR(-ENOMEM);
5212 			goto free_eb;
5213 		}
5214 
5215 		spin_lock(&mapping->private_lock);
5216 		if (PagePrivate(p)) {
5217 			/*
5218 			 * We could have already allocated an eb for this page
5219 			 * and attached one so lets see if we can get a ref on
5220 			 * the existing eb, and if we can we know it's good and
5221 			 * we can just return that one, else we know we can just
5222 			 * overwrite page->private.
5223 			 */
5224 			exists = (struct extent_buffer *)p->private;
5225 			if (atomic_inc_not_zero(&exists->refs)) {
5226 				spin_unlock(&mapping->private_lock);
5227 				unlock_page(p);
5228 				put_page(p);
5229 				mark_extent_buffer_accessed(exists, p);
5230 				goto free_eb;
5231 			}
5232 			exists = NULL;
5233 
5234 			/*
5235 			 * Do this so attach doesn't complain and we need to
5236 			 * drop the ref the old guy had.
5237 			 */
5238 			ClearPagePrivate(p);
5239 			WARN_ON(PageDirty(p));
5240 			put_page(p);
5241 		}
5242 		attach_extent_buffer_page(eb, p);
5243 		spin_unlock(&mapping->private_lock);
5244 		WARN_ON(PageDirty(p));
5245 		eb->pages[i] = p;
5246 		if (!PageUptodate(p))
5247 			uptodate = 0;
5248 
5249 		/*
5250 		 * We can't unlock the pages just yet since the extent buffer
5251 		 * hasn't been properly inserted in the radix tree, this
5252 		 * opens a race with btree_releasepage which can free a page
5253 		 * while we are still filling in all pages for the buffer and
5254 		 * we could crash.
5255 		 */
5256 	}
5257 	if (uptodate)
5258 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5259 again:
5260 	ret = radix_tree_preload(GFP_NOFS);
5261 	if (ret) {
5262 		exists = ERR_PTR(ret);
5263 		goto free_eb;
5264 	}
5265 
5266 	spin_lock(&fs_info->buffer_lock);
5267 	ret = radix_tree_insert(&fs_info->buffer_radix,
5268 				start >> PAGE_SHIFT, eb);
5269 	spin_unlock(&fs_info->buffer_lock);
5270 	radix_tree_preload_end();
5271 	if (ret == -EEXIST) {
5272 		exists = find_extent_buffer(fs_info, start);
5273 		if (exists)
5274 			goto free_eb;
5275 		else
5276 			goto again;
5277 	}
5278 	/* add one reference for the tree */
5279 	check_buffer_tree_ref(eb);
5280 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5281 
5282 	/*
5283 	 * Now it's safe to unlock the pages because any calls to
5284 	 * btree_releasepage will correctly detect that a page belongs to a
5285 	 * live buffer and won't free them prematurely.
5286 	 */
5287 	for (i = 0; i < num_pages; i++)
5288 		unlock_page(eb->pages[i]);
5289 	return eb;
5290 
5291 free_eb:
5292 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5293 	for (i = 0; i < num_pages; i++) {
5294 		if (eb->pages[i])
5295 			unlock_page(eb->pages[i]);
5296 	}
5297 
5298 	btrfs_release_extent_buffer(eb);
5299 	return exists;
5300 }
5301 
5302 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5303 {
5304 	struct extent_buffer *eb =
5305 			container_of(head, struct extent_buffer, rcu_head);
5306 
5307 	__free_extent_buffer(eb);
5308 }
5309 
5310 static int release_extent_buffer(struct extent_buffer *eb)
5311 	__releases(&eb->refs_lock)
5312 {
5313 	lockdep_assert_held(&eb->refs_lock);
5314 
5315 	WARN_ON(atomic_read(&eb->refs) == 0);
5316 	if (atomic_dec_and_test(&eb->refs)) {
5317 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5318 			struct btrfs_fs_info *fs_info = eb->fs_info;
5319 
5320 			spin_unlock(&eb->refs_lock);
5321 
5322 			spin_lock(&fs_info->buffer_lock);
5323 			radix_tree_delete(&fs_info->buffer_radix,
5324 					  eb->start >> PAGE_SHIFT);
5325 			spin_unlock(&fs_info->buffer_lock);
5326 		} else {
5327 			spin_unlock(&eb->refs_lock);
5328 		}
5329 
5330 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5331 		/* Should be safe to release our pages at this point */
5332 		btrfs_release_extent_buffer_pages(eb);
5333 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5334 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5335 			__free_extent_buffer(eb);
5336 			return 1;
5337 		}
5338 #endif
5339 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5340 		return 1;
5341 	}
5342 	spin_unlock(&eb->refs_lock);
5343 
5344 	return 0;
5345 }
5346 
5347 void free_extent_buffer(struct extent_buffer *eb)
5348 {
5349 	int refs;
5350 	int old;
5351 	if (!eb)
5352 		return;
5353 
5354 	while (1) {
5355 		refs = atomic_read(&eb->refs);
5356 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5357 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5358 			refs == 1))
5359 			break;
5360 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5361 		if (old == refs)
5362 			return;
5363 	}
5364 
5365 	spin_lock(&eb->refs_lock);
5366 	if (atomic_read(&eb->refs) == 2 &&
5367 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5368 	    !extent_buffer_under_io(eb) &&
5369 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5370 		atomic_dec(&eb->refs);
5371 
5372 	/*
5373 	 * I know this is terrible, but it's temporary until we stop tracking
5374 	 * the uptodate bits and such for the extent buffers.
5375 	 */
5376 	release_extent_buffer(eb);
5377 }
5378 
5379 void free_extent_buffer_stale(struct extent_buffer *eb)
5380 {
5381 	if (!eb)
5382 		return;
5383 
5384 	spin_lock(&eb->refs_lock);
5385 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5386 
5387 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5388 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5389 		atomic_dec(&eb->refs);
5390 	release_extent_buffer(eb);
5391 }
5392 
5393 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5394 {
5395 	int i;
5396 	int num_pages;
5397 	struct page *page;
5398 
5399 	num_pages = num_extent_pages(eb);
5400 
5401 	for (i = 0; i < num_pages; i++) {
5402 		page = eb->pages[i];
5403 		if (!PageDirty(page))
5404 			continue;
5405 
5406 		lock_page(page);
5407 		WARN_ON(!PagePrivate(page));
5408 
5409 		clear_page_dirty_for_io(page);
5410 		xa_lock_irq(&page->mapping->i_pages);
5411 		if (!PageDirty(page))
5412 			__xa_clear_mark(&page->mapping->i_pages,
5413 					page_index(page), PAGECACHE_TAG_DIRTY);
5414 		xa_unlock_irq(&page->mapping->i_pages);
5415 		ClearPageError(page);
5416 		unlock_page(page);
5417 	}
5418 	WARN_ON(atomic_read(&eb->refs) == 0);
5419 }
5420 
5421 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5422 {
5423 	int i;
5424 	int num_pages;
5425 	bool was_dirty;
5426 
5427 	check_buffer_tree_ref(eb);
5428 
5429 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5430 
5431 	num_pages = num_extent_pages(eb);
5432 	WARN_ON(atomic_read(&eb->refs) == 0);
5433 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5434 
5435 	if (!was_dirty)
5436 		for (i = 0; i < num_pages; i++)
5437 			set_page_dirty(eb->pages[i]);
5438 
5439 #ifdef CONFIG_BTRFS_DEBUG
5440 	for (i = 0; i < num_pages; i++)
5441 		ASSERT(PageDirty(eb->pages[i]));
5442 #endif
5443 
5444 	return was_dirty;
5445 }
5446 
5447 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5448 {
5449 	int i;
5450 	struct page *page;
5451 	int num_pages;
5452 
5453 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5454 	num_pages = num_extent_pages(eb);
5455 	for (i = 0; i < num_pages; i++) {
5456 		page = eb->pages[i];
5457 		if (page)
5458 			ClearPageUptodate(page);
5459 	}
5460 }
5461 
5462 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5463 {
5464 	int i;
5465 	struct page *page;
5466 	int num_pages;
5467 
5468 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5469 	num_pages = num_extent_pages(eb);
5470 	for (i = 0; i < num_pages; i++) {
5471 		page = eb->pages[i];
5472 		SetPageUptodate(page);
5473 	}
5474 }
5475 
5476 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5477 {
5478 	int i;
5479 	struct page *page;
5480 	int err;
5481 	int ret = 0;
5482 	int locked_pages = 0;
5483 	int all_uptodate = 1;
5484 	int num_pages;
5485 	unsigned long num_reads = 0;
5486 	struct bio *bio = NULL;
5487 	unsigned long bio_flags = 0;
5488 
5489 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5490 		return 0;
5491 
5492 	num_pages = num_extent_pages(eb);
5493 	for (i = 0; i < num_pages; i++) {
5494 		page = eb->pages[i];
5495 		if (wait == WAIT_NONE) {
5496 			if (!trylock_page(page))
5497 				goto unlock_exit;
5498 		} else {
5499 			lock_page(page);
5500 		}
5501 		locked_pages++;
5502 	}
5503 	/*
5504 	 * We need to firstly lock all pages to make sure that
5505 	 * the uptodate bit of our pages won't be affected by
5506 	 * clear_extent_buffer_uptodate().
5507 	 */
5508 	for (i = 0; i < num_pages; i++) {
5509 		page = eb->pages[i];
5510 		if (!PageUptodate(page)) {
5511 			num_reads++;
5512 			all_uptodate = 0;
5513 		}
5514 	}
5515 
5516 	if (all_uptodate) {
5517 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5518 		goto unlock_exit;
5519 	}
5520 
5521 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5522 	eb->read_mirror = 0;
5523 	atomic_set(&eb->io_pages, num_reads);
5524 	/*
5525 	 * It is possible for releasepage to clear the TREE_REF bit before we
5526 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5527 	 */
5528 	check_buffer_tree_ref(eb);
5529 	for (i = 0; i < num_pages; i++) {
5530 		page = eb->pages[i];
5531 
5532 		if (!PageUptodate(page)) {
5533 			if (ret) {
5534 				atomic_dec(&eb->io_pages);
5535 				unlock_page(page);
5536 				continue;
5537 			}
5538 
5539 			ClearPageError(page);
5540 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5541 					 page, page_offset(page), PAGE_SIZE, 0,
5542 					 &bio, end_bio_extent_readpage,
5543 					 mirror_num, 0, 0, false);
5544 			if (err) {
5545 				/*
5546 				 * We failed to submit the bio so it's the
5547 				 * caller's responsibility to perform cleanup
5548 				 * i.e unlock page/set error bit.
5549 				 */
5550 				ret = err;
5551 				SetPageError(page);
5552 				unlock_page(page);
5553 				atomic_dec(&eb->io_pages);
5554 			}
5555 		} else {
5556 			unlock_page(page);
5557 		}
5558 	}
5559 
5560 	if (bio) {
5561 		err = submit_one_bio(bio, mirror_num, bio_flags);
5562 		if (err)
5563 			return err;
5564 	}
5565 
5566 	if (ret || wait != WAIT_COMPLETE)
5567 		return ret;
5568 
5569 	for (i = 0; i < num_pages; i++) {
5570 		page = eb->pages[i];
5571 		wait_on_page_locked(page);
5572 		if (!PageUptodate(page))
5573 			ret = -EIO;
5574 	}
5575 
5576 	return ret;
5577 
5578 unlock_exit:
5579 	while (locked_pages > 0) {
5580 		locked_pages--;
5581 		page = eb->pages[locked_pages];
5582 		unlock_page(page);
5583 	}
5584 	return ret;
5585 }
5586 
5587 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5588 			    unsigned long len)
5589 {
5590 	btrfs_warn(eb->fs_info,
5591 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
5592 		eb->start, eb->len, start, len);
5593 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5594 
5595 	return true;
5596 }
5597 
5598 /*
5599  * Check if the [start, start + len) range is valid before reading/writing
5600  * the eb.
5601  * NOTE: @start and @len are offset inside the eb, not logical address.
5602  *
5603  * Caller should not touch the dst/src memory if this function returns error.
5604  */
5605 static inline int check_eb_range(const struct extent_buffer *eb,
5606 				 unsigned long start, unsigned long len)
5607 {
5608 	unsigned long offset;
5609 
5610 	/* start, start + len should not go beyond eb->len nor overflow */
5611 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5612 		return report_eb_range(eb, start, len);
5613 
5614 	return false;
5615 }
5616 
5617 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5618 			unsigned long start, unsigned long len)
5619 {
5620 	size_t cur;
5621 	size_t offset;
5622 	struct page *page;
5623 	char *kaddr;
5624 	char *dst = (char *)dstv;
5625 	unsigned long i = start >> PAGE_SHIFT;
5626 
5627 	if (check_eb_range(eb, start, len))
5628 		return;
5629 
5630 	offset = offset_in_page(start);
5631 
5632 	while (len > 0) {
5633 		page = eb->pages[i];
5634 
5635 		cur = min(len, (PAGE_SIZE - offset));
5636 		kaddr = page_address(page);
5637 		memcpy(dst, kaddr + offset, cur);
5638 
5639 		dst += cur;
5640 		len -= cur;
5641 		offset = 0;
5642 		i++;
5643 	}
5644 }
5645 
5646 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5647 				       void __user *dstv,
5648 				       unsigned long start, unsigned long len)
5649 {
5650 	size_t cur;
5651 	size_t offset;
5652 	struct page *page;
5653 	char *kaddr;
5654 	char __user *dst = (char __user *)dstv;
5655 	unsigned long i = start >> PAGE_SHIFT;
5656 	int ret = 0;
5657 
5658 	WARN_ON(start > eb->len);
5659 	WARN_ON(start + len > eb->start + eb->len);
5660 
5661 	offset = offset_in_page(start);
5662 
5663 	while (len > 0) {
5664 		page = eb->pages[i];
5665 
5666 		cur = min(len, (PAGE_SIZE - offset));
5667 		kaddr = page_address(page);
5668 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5669 			ret = -EFAULT;
5670 			break;
5671 		}
5672 
5673 		dst += cur;
5674 		len -= cur;
5675 		offset = 0;
5676 		i++;
5677 	}
5678 
5679 	return ret;
5680 }
5681 
5682 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5683 			 unsigned long start, unsigned long len)
5684 {
5685 	size_t cur;
5686 	size_t offset;
5687 	struct page *page;
5688 	char *kaddr;
5689 	char *ptr = (char *)ptrv;
5690 	unsigned long i = start >> PAGE_SHIFT;
5691 	int ret = 0;
5692 
5693 	if (check_eb_range(eb, start, len))
5694 		return -EINVAL;
5695 
5696 	offset = offset_in_page(start);
5697 
5698 	while (len > 0) {
5699 		page = eb->pages[i];
5700 
5701 		cur = min(len, (PAGE_SIZE - offset));
5702 
5703 		kaddr = page_address(page);
5704 		ret = memcmp(ptr, kaddr + offset, cur);
5705 		if (ret)
5706 			break;
5707 
5708 		ptr += cur;
5709 		len -= cur;
5710 		offset = 0;
5711 		i++;
5712 	}
5713 	return ret;
5714 }
5715 
5716 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5717 		const void *srcv)
5718 {
5719 	char *kaddr;
5720 
5721 	WARN_ON(!PageUptodate(eb->pages[0]));
5722 	kaddr = page_address(eb->pages[0]);
5723 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5724 			BTRFS_FSID_SIZE);
5725 }
5726 
5727 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5728 {
5729 	char *kaddr;
5730 
5731 	WARN_ON(!PageUptodate(eb->pages[0]));
5732 	kaddr = page_address(eb->pages[0]);
5733 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5734 			BTRFS_FSID_SIZE);
5735 }
5736 
5737 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5738 			 unsigned long start, unsigned long len)
5739 {
5740 	size_t cur;
5741 	size_t offset;
5742 	struct page *page;
5743 	char *kaddr;
5744 	char *src = (char *)srcv;
5745 	unsigned long i = start >> PAGE_SHIFT;
5746 
5747 	if (check_eb_range(eb, start, len))
5748 		return;
5749 
5750 	offset = offset_in_page(start);
5751 
5752 	while (len > 0) {
5753 		page = eb->pages[i];
5754 		WARN_ON(!PageUptodate(page));
5755 
5756 		cur = min(len, PAGE_SIZE - offset);
5757 		kaddr = page_address(page);
5758 		memcpy(kaddr + offset, src, cur);
5759 
5760 		src += cur;
5761 		len -= cur;
5762 		offset = 0;
5763 		i++;
5764 	}
5765 }
5766 
5767 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5768 		unsigned long len)
5769 {
5770 	size_t cur;
5771 	size_t offset;
5772 	struct page *page;
5773 	char *kaddr;
5774 	unsigned long i = start >> PAGE_SHIFT;
5775 
5776 	if (check_eb_range(eb, start, len))
5777 		return;
5778 
5779 	offset = offset_in_page(start);
5780 
5781 	while (len > 0) {
5782 		page = eb->pages[i];
5783 		WARN_ON(!PageUptodate(page));
5784 
5785 		cur = min(len, PAGE_SIZE - offset);
5786 		kaddr = page_address(page);
5787 		memset(kaddr + offset, 0, cur);
5788 
5789 		len -= cur;
5790 		offset = 0;
5791 		i++;
5792 	}
5793 }
5794 
5795 void copy_extent_buffer_full(const struct extent_buffer *dst,
5796 			     const struct extent_buffer *src)
5797 {
5798 	int i;
5799 	int num_pages;
5800 
5801 	ASSERT(dst->len == src->len);
5802 
5803 	num_pages = num_extent_pages(dst);
5804 	for (i = 0; i < num_pages; i++)
5805 		copy_page(page_address(dst->pages[i]),
5806 				page_address(src->pages[i]));
5807 }
5808 
5809 void copy_extent_buffer(const struct extent_buffer *dst,
5810 			const struct extent_buffer *src,
5811 			unsigned long dst_offset, unsigned long src_offset,
5812 			unsigned long len)
5813 {
5814 	u64 dst_len = dst->len;
5815 	size_t cur;
5816 	size_t offset;
5817 	struct page *page;
5818 	char *kaddr;
5819 	unsigned long i = dst_offset >> PAGE_SHIFT;
5820 
5821 	if (check_eb_range(dst, dst_offset, len) ||
5822 	    check_eb_range(src, src_offset, len))
5823 		return;
5824 
5825 	WARN_ON(src->len != dst_len);
5826 
5827 	offset = offset_in_page(dst_offset);
5828 
5829 	while (len > 0) {
5830 		page = dst->pages[i];
5831 		WARN_ON(!PageUptodate(page));
5832 
5833 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5834 
5835 		kaddr = page_address(page);
5836 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5837 
5838 		src_offset += cur;
5839 		len -= cur;
5840 		offset = 0;
5841 		i++;
5842 	}
5843 }
5844 
5845 /*
5846  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5847  * given bit number
5848  * @eb: the extent buffer
5849  * @start: offset of the bitmap item in the extent buffer
5850  * @nr: bit number
5851  * @page_index: return index of the page in the extent buffer that contains the
5852  * given bit number
5853  * @page_offset: return offset into the page given by page_index
5854  *
5855  * This helper hides the ugliness of finding the byte in an extent buffer which
5856  * contains a given bit.
5857  */
5858 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5859 				    unsigned long start, unsigned long nr,
5860 				    unsigned long *page_index,
5861 				    size_t *page_offset)
5862 {
5863 	size_t byte_offset = BIT_BYTE(nr);
5864 	size_t offset;
5865 
5866 	/*
5867 	 * The byte we want is the offset of the extent buffer + the offset of
5868 	 * the bitmap item in the extent buffer + the offset of the byte in the
5869 	 * bitmap item.
5870 	 */
5871 	offset = start + byte_offset;
5872 
5873 	*page_index = offset >> PAGE_SHIFT;
5874 	*page_offset = offset_in_page(offset);
5875 }
5876 
5877 /**
5878  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5879  * @eb: the extent buffer
5880  * @start: offset of the bitmap item in the extent buffer
5881  * @nr: bit number to test
5882  */
5883 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5884 			   unsigned long nr)
5885 {
5886 	u8 *kaddr;
5887 	struct page *page;
5888 	unsigned long i;
5889 	size_t offset;
5890 
5891 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5892 	page = eb->pages[i];
5893 	WARN_ON(!PageUptodate(page));
5894 	kaddr = page_address(page);
5895 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5896 }
5897 
5898 /**
5899  * extent_buffer_bitmap_set - set an area of a bitmap
5900  * @eb: the extent buffer
5901  * @start: offset of the bitmap item in the extent buffer
5902  * @pos: bit number of the first bit
5903  * @len: number of bits to set
5904  */
5905 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5906 			      unsigned long pos, unsigned long len)
5907 {
5908 	u8 *kaddr;
5909 	struct page *page;
5910 	unsigned long i;
5911 	size_t offset;
5912 	const unsigned int size = pos + len;
5913 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5914 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5915 
5916 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5917 	page = eb->pages[i];
5918 	WARN_ON(!PageUptodate(page));
5919 	kaddr = page_address(page);
5920 
5921 	while (len >= bits_to_set) {
5922 		kaddr[offset] |= mask_to_set;
5923 		len -= bits_to_set;
5924 		bits_to_set = BITS_PER_BYTE;
5925 		mask_to_set = ~0;
5926 		if (++offset >= PAGE_SIZE && len > 0) {
5927 			offset = 0;
5928 			page = eb->pages[++i];
5929 			WARN_ON(!PageUptodate(page));
5930 			kaddr = page_address(page);
5931 		}
5932 	}
5933 	if (len) {
5934 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5935 		kaddr[offset] |= mask_to_set;
5936 	}
5937 }
5938 
5939 
5940 /**
5941  * extent_buffer_bitmap_clear - clear an area of a bitmap
5942  * @eb: the extent buffer
5943  * @start: offset of the bitmap item in the extent buffer
5944  * @pos: bit number of the first bit
5945  * @len: number of bits to clear
5946  */
5947 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5948 				unsigned long start, unsigned long pos,
5949 				unsigned long len)
5950 {
5951 	u8 *kaddr;
5952 	struct page *page;
5953 	unsigned long i;
5954 	size_t offset;
5955 	const unsigned int size = pos + len;
5956 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5957 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5958 
5959 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5960 	page = eb->pages[i];
5961 	WARN_ON(!PageUptodate(page));
5962 	kaddr = page_address(page);
5963 
5964 	while (len >= bits_to_clear) {
5965 		kaddr[offset] &= ~mask_to_clear;
5966 		len -= bits_to_clear;
5967 		bits_to_clear = BITS_PER_BYTE;
5968 		mask_to_clear = ~0;
5969 		if (++offset >= PAGE_SIZE && len > 0) {
5970 			offset = 0;
5971 			page = eb->pages[++i];
5972 			WARN_ON(!PageUptodate(page));
5973 			kaddr = page_address(page);
5974 		}
5975 	}
5976 	if (len) {
5977 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5978 		kaddr[offset] &= ~mask_to_clear;
5979 	}
5980 }
5981 
5982 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5983 {
5984 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5985 	return distance < len;
5986 }
5987 
5988 static void copy_pages(struct page *dst_page, struct page *src_page,
5989 		       unsigned long dst_off, unsigned long src_off,
5990 		       unsigned long len)
5991 {
5992 	char *dst_kaddr = page_address(dst_page);
5993 	char *src_kaddr;
5994 	int must_memmove = 0;
5995 
5996 	if (dst_page != src_page) {
5997 		src_kaddr = page_address(src_page);
5998 	} else {
5999 		src_kaddr = dst_kaddr;
6000 		if (areas_overlap(src_off, dst_off, len))
6001 			must_memmove = 1;
6002 	}
6003 
6004 	if (must_memmove)
6005 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6006 	else
6007 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6008 }
6009 
6010 void memcpy_extent_buffer(const struct extent_buffer *dst,
6011 			  unsigned long dst_offset, unsigned long src_offset,
6012 			  unsigned long len)
6013 {
6014 	size_t cur;
6015 	size_t dst_off_in_page;
6016 	size_t src_off_in_page;
6017 	unsigned long dst_i;
6018 	unsigned long src_i;
6019 
6020 	if (check_eb_range(dst, dst_offset, len) ||
6021 	    check_eb_range(dst, src_offset, len))
6022 		return;
6023 
6024 	while (len > 0) {
6025 		dst_off_in_page = offset_in_page(dst_offset);
6026 		src_off_in_page = offset_in_page(src_offset);
6027 
6028 		dst_i = dst_offset >> PAGE_SHIFT;
6029 		src_i = src_offset >> PAGE_SHIFT;
6030 
6031 		cur = min(len, (unsigned long)(PAGE_SIZE -
6032 					       src_off_in_page));
6033 		cur = min_t(unsigned long, cur,
6034 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6035 
6036 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6037 			   dst_off_in_page, src_off_in_page, cur);
6038 
6039 		src_offset += cur;
6040 		dst_offset += cur;
6041 		len -= cur;
6042 	}
6043 }
6044 
6045 void memmove_extent_buffer(const struct extent_buffer *dst,
6046 			   unsigned long dst_offset, unsigned long src_offset,
6047 			   unsigned long len)
6048 {
6049 	size_t cur;
6050 	size_t dst_off_in_page;
6051 	size_t src_off_in_page;
6052 	unsigned long dst_end = dst_offset + len - 1;
6053 	unsigned long src_end = src_offset + len - 1;
6054 	unsigned long dst_i;
6055 	unsigned long src_i;
6056 
6057 	if (check_eb_range(dst, dst_offset, len) ||
6058 	    check_eb_range(dst, src_offset, len))
6059 		return;
6060 	if (dst_offset < src_offset) {
6061 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6062 		return;
6063 	}
6064 	while (len > 0) {
6065 		dst_i = dst_end >> PAGE_SHIFT;
6066 		src_i = src_end >> PAGE_SHIFT;
6067 
6068 		dst_off_in_page = offset_in_page(dst_end);
6069 		src_off_in_page = offset_in_page(src_end);
6070 
6071 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6072 		cur = min(cur, dst_off_in_page + 1);
6073 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6074 			   dst_off_in_page - cur + 1,
6075 			   src_off_in_page - cur + 1, cur);
6076 
6077 		dst_end -= cur;
6078 		src_end -= cur;
6079 		len -= cur;
6080 	}
6081 }
6082 
6083 int try_release_extent_buffer(struct page *page)
6084 {
6085 	struct extent_buffer *eb;
6086 
6087 	/*
6088 	 * We need to make sure nobody is attaching this page to an eb right
6089 	 * now.
6090 	 */
6091 	spin_lock(&page->mapping->private_lock);
6092 	if (!PagePrivate(page)) {
6093 		spin_unlock(&page->mapping->private_lock);
6094 		return 1;
6095 	}
6096 
6097 	eb = (struct extent_buffer *)page->private;
6098 	BUG_ON(!eb);
6099 
6100 	/*
6101 	 * This is a little awful but should be ok, we need to make sure that
6102 	 * the eb doesn't disappear out from under us while we're looking at
6103 	 * this page.
6104 	 */
6105 	spin_lock(&eb->refs_lock);
6106 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6107 		spin_unlock(&eb->refs_lock);
6108 		spin_unlock(&page->mapping->private_lock);
6109 		return 0;
6110 	}
6111 	spin_unlock(&page->mapping->private_lock);
6112 
6113 	/*
6114 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6115 	 * so just return, this page will likely be freed soon anyway.
6116 	 */
6117 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6118 		spin_unlock(&eb->refs_lock);
6119 		return 0;
6120 	}
6121 
6122 	return release_extent_buffer(eb);
6123 }
6124