1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 }; 107 108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 109 { 110 struct btrfs_bio *bbio = bio_ctrl->bbio; 111 112 if (!bbio) 113 return; 114 115 /* Caller should ensure the bio has at least some range added */ 116 ASSERT(bbio->bio.bi_iter.bi_size); 117 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 120 btrfs_submit_compressed_read(bbio); 121 else 122 btrfs_submit_bio(bbio, 0); 123 124 /* The bbio is owned by the end_io handler now */ 125 bio_ctrl->bbio = NULL; 126 } 127 128 /* 129 * Submit or fail the current bio in the bio_ctrl structure. 130 */ 131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 132 { 133 struct btrfs_bio *bbio = bio_ctrl->bbio; 134 135 if (!bbio) 136 return; 137 138 if (ret) { 139 ASSERT(ret < 0); 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 141 /* The bio is owned by the end_io handler now */ 142 bio_ctrl->bbio = NULL; 143 } else { 144 submit_one_bio(bio_ctrl); 145 } 146 } 147 148 int __init extent_buffer_init_cachep(void) 149 { 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 151 sizeof(struct extent_buffer), 0, 152 SLAB_MEM_SPREAD, NULL); 153 if (!extent_buffer_cache) 154 return -ENOMEM; 155 156 return 0; 157 } 158 159 void __cold extent_buffer_free_cachep(void) 160 { 161 /* 162 * Make sure all delayed rcu free are flushed before we 163 * destroy caches. 164 */ 165 rcu_barrier(); 166 kmem_cache_destroy(extent_buffer_cache); 167 } 168 169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 170 { 171 unsigned long index = start >> PAGE_SHIFT; 172 unsigned long end_index = end >> PAGE_SHIFT; 173 struct page *page; 174 175 while (index <= end_index) { 176 page = find_get_page(inode->i_mapping, index); 177 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 178 clear_page_dirty_for_io(page); 179 put_page(page); 180 index++; 181 } 182 } 183 184 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 185 { 186 struct address_space *mapping = inode->i_mapping; 187 unsigned long index = start >> PAGE_SHIFT; 188 unsigned long end_index = end >> PAGE_SHIFT; 189 struct folio *folio; 190 191 while (index <= end_index) { 192 folio = filemap_get_folio(mapping, index); 193 filemap_dirty_folio(mapping, folio); 194 folio_account_redirty(folio); 195 index += folio_nr_pages(folio); 196 folio_put(folio); 197 } 198 } 199 200 /* 201 * Process one page for __process_pages_contig(). 202 * 203 * Return >0 if we hit @page == @locked_page. 204 * Return 0 if we updated the page status. 205 * Return -EGAIN if the we need to try again. 206 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 207 */ 208 static int process_one_page(struct btrfs_fs_info *fs_info, 209 struct address_space *mapping, 210 struct page *page, struct page *locked_page, 211 unsigned long page_ops, u64 start, u64 end) 212 { 213 u32 len; 214 215 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 216 len = end + 1 - start; 217 218 if (page_ops & PAGE_SET_ORDERED) 219 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 220 if (page_ops & PAGE_START_WRITEBACK) { 221 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 222 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 223 } 224 if (page_ops & PAGE_END_WRITEBACK) 225 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 226 227 if (page == locked_page) 228 return 1; 229 230 if (page_ops & PAGE_LOCK) { 231 int ret; 232 233 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 234 if (ret) 235 return ret; 236 if (!PageDirty(page) || page->mapping != mapping) { 237 btrfs_page_end_writer_lock(fs_info, page, start, len); 238 return -EAGAIN; 239 } 240 } 241 if (page_ops & PAGE_UNLOCK) 242 btrfs_page_end_writer_lock(fs_info, page, start, len); 243 return 0; 244 } 245 246 static int __process_pages_contig(struct address_space *mapping, 247 struct page *locked_page, 248 u64 start, u64 end, unsigned long page_ops, 249 u64 *processed_end) 250 { 251 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 252 pgoff_t start_index = start >> PAGE_SHIFT; 253 pgoff_t end_index = end >> PAGE_SHIFT; 254 pgoff_t index = start_index; 255 unsigned long pages_processed = 0; 256 struct folio_batch fbatch; 257 int err = 0; 258 int i; 259 260 if (page_ops & PAGE_LOCK) { 261 ASSERT(page_ops == PAGE_LOCK); 262 ASSERT(processed_end && *processed_end == start); 263 } 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 int found_folios; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 272 if (found_folios == 0) { 273 /* 274 * Only if we're going to lock these pages, we can find 275 * nothing at @index. 276 */ 277 ASSERT(page_ops & PAGE_LOCK); 278 err = -EAGAIN; 279 goto out; 280 } 281 282 for (i = 0; i < found_folios; i++) { 283 int process_ret; 284 struct folio *folio = fbatch.folios[i]; 285 process_ret = process_one_page(fs_info, mapping, 286 &folio->page, locked_page, page_ops, 287 start, end); 288 if (process_ret < 0) { 289 err = -EAGAIN; 290 folio_batch_release(&fbatch); 291 goto out; 292 } 293 pages_processed += folio_nr_pages(folio); 294 } 295 folio_batch_release(&fbatch); 296 cond_resched(); 297 } 298 out: 299 if (err && processed_end) { 300 /* 301 * Update @processed_end. I know this is awful since it has 302 * two different return value patterns (inclusive vs exclusive). 303 * 304 * But the exclusive pattern is necessary if @start is 0, or we 305 * underflow and check against processed_end won't work as 306 * expected. 307 */ 308 if (pages_processed) 309 *processed_end = min(end, 310 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 311 else 312 *processed_end = start; 313 } 314 return err; 315 } 316 317 static noinline void __unlock_for_delalloc(struct inode *inode, 318 struct page *locked_page, 319 u64 start, u64 end) 320 { 321 unsigned long index = start >> PAGE_SHIFT; 322 unsigned long end_index = end >> PAGE_SHIFT; 323 324 ASSERT(locked_page); 325 if (index == locked_page->index && end_index == index) 326 return; 327 328 __process_pages_contig(inode->i_mapping, locked_page, start, end, 329 PAGE_UNLOCK, NULL); 330 } 331 332 static noinline int lock_delalloc_pages(struct inode *inode, 333 struct page *locked_page, 334 u64 delalloc_start, 335 u64 delalloc_end) 336 { 337 unsigned long index = delalloc_start >> PAGE_SHIFT; 338 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 339 u64 processed_end = delalloc_start; 340 int ret; 341 342 ASSERT(locked_page); 343 if (index == locked_page->index && index == end_index) 344 return 0; 345 346 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 347 delalloc_end, PAGE_LOCK, &processed_end); 348 if (ret == -EAGAIN && processed_end > delalloc_start) 349 __unlock_for_delalloc(inode, locked_page, delalloc_start, 350 processed_end); 351 return ret; 352 } 353 354 /* 355 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 356 * more than @max_bytes. 357 * 358 * @start: The original start bytenr to search. 359 * Will store the extent range start bytenr. 360 * @end: The original end bytenr of the search range 361 * Will store the extent range end bytenr. 362 * 363 * Return true if we find a delalloc range which starts inside the original 364 * range, and @start/@end will store the delalloc range start/end. 365 * 366 * Return false if we can't find any delalloc range which starts inside the 367 * original range, and @start/@end will be the non-delalloc range start/end. 368 */ 369 EXPORT_FOR_TESTS 370 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 371 struct page *locked_page, u64 *start, 372 u64 *end) 373 { 374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 376 const u64 orig_start = *start; 377 const u64 orig_end = *end; 378 /* The sanity tests may not set a valid fs_info. */ 379 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 380 u64 delalloc_start; 381 u64 delalloc_end; 382 bool found; 383 struct extent_state *cached_state = NULL; 384 int ret; 385 int loops = 0; 386 387 /* Caller should pass a valid @end to indicate the search range end */ 388 ASSERT(orig_end > orig_start); 389 390 /* The range should at least cover part of the page */ 391 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 392 orig_end <= page_offset(locked_page))); 393 again: 394 /* step one, find a bunch of delalloc bytes starting at start */ 395 delalloc_start = *start; 396 delalloc_end = 0; 397 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 398 max_bytes, &cached_state); 399 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 400 *start = delalloc_start; 401 402 /* @delalloc_end can be -1, never go beyond @orig_end */ 403 *end = min(delalloc_end, orig_end); 404 free_extent_state(cached_state); 405 return false; 406 } 407 408 /* 409 * start comes from the offset of locked_page. We have to lock 410 * pages in order, so we can't process delalloc bytes before 411 * locked_page 412 */ 413 if (delalloc_start < *start) 414 delalloc_start = *start; 415 416 /* 417 * make sure to limit the number of pages we try to lock down 418 */ 419 if (delalloc_end + 1 - delalloc_start > max_bytes) 420 delalloc_end = delalloc_start + max_bytes - 1; 421 422 /* step two, lock all the pages after the page that has start */ 423 ret = lock_delalloc_pages(inode, locked_page, 424 delalloc_start, delalloc_end); 425 ASSERT(!ret || ret == -EAGAIN); 426 if (ret == -EAGAIN) { 427 /* some of the pages are gone, lets avoid looping by 428 * shortening the size of the delalloc range we're searching 429 */ 430 free_extent_state(cached_state); 431 cached_state = NULL; 432 if (!loops) { 433 max_bytes = PAGE_SIZE; 434 loops = 1; 435 goto again; 436 } else { 437 found = false; 438 goto out_failed; 439 } 440 } 441 442 /* step three, lock the state bits for the whole range */ 443 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 444 445 /* then test to make sure it is all still delalloc */ 446 ret = test_range_bit(tree, delalloc_start, delalloc_end, 447 EXTENT_DELALLOC, 1, cached_state); 448 if (!ret) { 449 unlock_extent(tree, delalloc_start, delalloc_end, 450 &cached_state); 451 __unlock_for_delalloc(inode, locked_page, 452 delalloc_start, delalloc_end); 453 cond_resched(); 454 goto again; 455 } 456 free_extent_state(cached_state); 457 *start = delalloc_start; 458 *end = delalloc_end; 459 out_failed: 460 return found; 461 } 462 463 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 464 struct page *locked_page, 465 u32 clear_bits, unsigned long page_ops) 466 { 467 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 468 469 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 470 start, end, page_ops, NULL); 471 } 472 473 static bool btrfs_verify_page(struct page *page, u64 start) 474 { 475 if (!fsverity_active(page->mapping->host) || 476 PageUptodate(page) || 477 start >= i_size_read(page->mapping->host)) 478 return true; 479 return fsverity_verify_page(page); 480 } 481 482 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 483 { 484 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 485 486 ASSERT(page_offset(page) <= start && 487 start + len <= page_offset(page) + PAGE_SIZE); 488 489 if (uptodate && btrfs_verify_page(page, start)) 490 btrfs_page_set_uptodate(fs_info, page, start, len); 491 else 492 btrfs_page_clear_uptodate(fs_info, page, start, len); 493 494 if (!btrfs_is_subpage(fs_info, page)) 495 unlock_page(page); 496 else 497 btrfs_subpage_end_reader(fs_info, page, start, len); 498 } 499 500 /* lots and lots of room for performance fixes in the end_bio funcs */ 501 502 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 503 { 504 struct btrfs_inode *inode; 505 const bool uptodate = (err == 0); 506 int ret = 0; 507 508 ASSERT(page && page->mapping); 509 inode = BTRFS_I(page->mapping->host); 510 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 511 512 if (!uptodate) { 513 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 514 u32 len; 515 516 ASSERT(end + 1 - start <= U32_MAX); 517 len = end + 1 - start; 518 519 btrfs_page_clear_uptodate(fs_info, page, start, len); 520 ret = err < 0 ? err : -EIO; 521 mapping_set_error(page->mapping, ret); 522 } 523 } 524 525 /* 526 * after a writepage IO is done, we need to: 527 * clear the uptodate bits on error 528 * clear the writeback bits in the extent tree for this IO 529 * end_page_writeback if the page has no more pending IO 530 * 531 * Scheduling is not allowed, so the extent state tree is expected 532 * to have one and only one object corresponding to this IO. 533 */ 534 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 535 { 536 struct bio *bio = &bbio->bio; 537 int error = blk_status_to_errno(bio->bi_status); 538 struct bio_vec *bvec; 539 struct bvec_iter_all iter_all; 540 541 ASSERT(!bio_flagged(bio, BIO_CLONED)); 542 bio_for_each_segment_all(bvec, bio, iter_all) { 543 struct page *page = bvec->bv_page; 544 struct inode *inode = page->mapping->host; 545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 546 const u32 sectorsize = fs_info->sectorsize; 547 u64 start = page_offset(page) + bvec->bv_offset; 548 u32 len = bvec->bv_len; 549 550 /* Our read/write should always be sector aligned. */ 551 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 552 btrfs_err(fs_info, 553 "partial page write in btrfs with offset %u and length %u", 554 bvec->bv_offset, bvec->bv_len); 555 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 556 btrfs_info(fs_info, 557 "incomplete page write with offset %u and length %u", 558 bvec->bv_offset, bvec->bv_len); 559 560 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 561 if (error) { 562 btrfs_page_clear_uptodate(fs_info, page, start, len); 563 mapping_set_error(page->mapping, error); 564 } 565 btrfs_page_clear_writeback(fs_info, page, start, len); 566 } 567 568 bio_put(bio); 569 } 570 571 /* 572 * Record previously processed extent range 573 * 574 * For endio_readpage_release_extent() to handle a full extent range, reducing 575 * the extent io operations. 576 */ 577 struct processed_extent { 578 struct btrfs_inode *inode; 579 /* Start of the range in @inode */ 580 u64 start; 581 /* End of the range in @inode */ 582 u64 end; 583 bool uptodate; 584 }; 585 586 /* 587 * Try to release processed extent range 588 * 589 * May not release the extent range right now if the current range is 590 * contiguous to processed extent. 591 * 592 * Will release processed extent when any of @inode, @uptodate, the range is 593 * no longer contiguous to the processed range. 594 * 595 * Passing @inode == NULL will force processed extent to be released. 596 */ 597 static void endio_readpage_release_extent(struct processed_extent *processed, 598 struct btrfs_inode *inode, u64 start, u64 end, 599 bool uptodate) 600 { 601 struct extent_state *cached = NULL; 602 struct extent_io_tree *tree; 603 604 /* The first extent, initialize @processed */ 605 if (!processed->inode) 606 goto update; 607 608 /* 609 * Contiguous to processed extent, just uptodate the end. 610 * 611 * Several things to notice: 612 * 613 * - bio can be merged as long as on-disk bytenr is contiguous 614 * This means we can have page belonging to other inodes, thus need to 615 * check if the inode still matches. 616 * - bvec can contain range beyond current page for multi-page bvec 617 * Thus we need to do processed->end + 1 >= start check 618 */ 619 if (processed->inode == inode && processed->uptodate == uptodate && 620 processed->end + 1 >= start && end >= processed->end) { 621 processed->end = end; 622 return; 623 } 624 625 tree = &processed->inode->io_tree; 626 /* 627 * Now we don't have range contiguous to the processed range, release 628 * the processed range now. 629 */ 630 unlock_extent(tree, processed->start, processed->end, &cached); 631 632 update: 633 /* Update processed to current range */ 634 processed->inode = inode; 635 processed->start = start; 636 processed->end = end; 637 processed->uptodate = uptodate; 638 } 639 640 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 641 { 642 ASSERT(PageLocked(page)); 643 if (!btrfs_is_subpage(fs_info, page)) 644 return; 645 646 ASSERT(PagePrivate(page)); 647 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 648 } 649 650 /* 651 * after a readpage IO is done, we need to: 652 * clear the uptodate bits on error 653 * set the uptodate bits if things worked 654 * set the page up to date if all extents in the tree are uptodate 655 * clear the lock bit in the extent tree 656 * unlock the page if there are no other extents locked for it 657 * 658 * Scheduling is not allowed, so the extent state tree is expected 659 * to have one and only one object corresponding to this IO. 660 */ 661 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 662 { 663 struct bio *bio = &bbio->bio; 664 struct bio_vec *bvec; 665 struct processed_extent processed = { 0 }; 666 /* 667 * The offset to the beginning of a bio, since one bio can never be 668 * larger than UINT_MAX, u32 here is enough. 669 */ 670 u32 bio_offset = 0; 671 struct bvec_iter_all iter_all; 672 673 ASSERT(!bio_flagged(bio, BIO_CLONED)); 674 bio_for_each_segment_all(bvec, bio, iter_all) { 675 bool uptodate = !bio->bi_status; 676 struct page *page = bvec->bv_page; 677 struct inode *inode = page->mapping->host; 678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 679 const u32 sectorsize = fs_info->sectorsize; 680 u64 start; 681 u64 end; 682 u32 len; 683 684 btrfs_debug(fs_info, 685 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 686 bio->bi_iter.bi_sector, bio->bi_status, 687 bbio->mirror_num); 688 689 /* 690 * We always issue full-sector reads, but if some block in a 691 * page fails to read, blk_update_request() will advance 692 * bv_offset and adjust bv_len to compensate. Print a warning 693 * for unaligned offsets, and an error if they don't add up to 694 * a full sector. 695 */ 696 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 697 btrfs_err(fs_info, 698 "partial page read in btrfs with offset %u and length %u", 699 bvec->bv_offset, bvec->bv_len); 700 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 701 sectorsize)) 702 btrfs_info(fs_info, 703 "incomplete page read with offset %u and length %u", 704 bvec->bv_offset, bvec->bv_len); 705 706 start = page_offset(page) + bvec->bv_offset; 707 end = start + bvec->bv_len - 1; 708 len = bvec->bv_len; 709 710 if (likely(uptodate)) { 711 loff_t i_size = i_size_read(inode); 712 pgoff_t end_index = i_size >> PAGE_SHIFT; 713 714 /* 715 * Zero out the remaining part if this range straddles 716 * i_size. 717 * 718 * Here we should only zero the range inside the bvec, 719 * not touch anything else. 720 * 721 * NOTE: i_size is exclusive while end is inclusive. 722 */ 723 if (page->index == end_index && i_size <= end) { 724 u32 zero_start = max(offset_in_page(i_size), 725 offset_in_page(start)); 726 727 zero_user_segment(page, zero_start, 728 offset_in_page(end) + 1); 729 } 730 } 731 732 /* Update page status and unlock. */ 733 end_page_read(page, uptodate, start, len); 734 endio_readpage_release_extent(&processed, BTRFS_I(inode), 735 start, end, uptodate); 736 737 ASSERT(bio_offset + len > bio_offset); 738 bio_offset += len; 739 740 } 741 /* Release the last extent */ 742 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 743 bio_put(bio); 744 } 745 746 /* 747 * Populate every free slot in a provided array with pages. 748 * 749 * @nr_pages: number of pages to allocate 750 * @page_array: the array to fill with pages; any existing non-null entries in 751 * the array will be skipped 752 * 753 * Return: 0 if all pages were able to be allocated; 754 * -ENOMEM otherwise, and the caller is responsible for freeing all 755 * non-null page pointers in the array. 756 */ 757 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 758 { 759 unsigned int allocated; 760 761 for (allocated = 0; allocated < nr_pages;) { 762 unsigned int last = allocated; 763 764 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 765 766 if (allocated == nr_pages) 767 return 0; 768 769 /* 770 * During this iteration, no page could be allocated, even 771 * though alloc_pages_bulk_array() falls back to alloc_page() 772 * if it could not bulk-allocate. So we must be out of memory. 773 */ 774 if (allocated == last) 775 return -ENOMEM; 776 777 memalloc_retry_wait(GFP_NOFS); 778 } 779 return 0; 780 } 781 782 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 783 struct page *page, u64 disk_bytenr, 784 unsigned int pg_offset) 785 { 786 struct bio *bio = &bio_ctrl->bbio->bio; 787 struct bio_vec *bvec = bio_last_bvec_all(bio); 788 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 789 790 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 791 /* 792 * For compression, all IO should have its logical bytenr set 793 * to the starting bytenr of the compressed extent. 794 */ 795 return bio->bi_iter.bi_sector == sector; 796 } 797 798 /* 799 * The contig check requires the following conditions to be met: 800 * 801 * 1) The pages are belonging to the same inode 802 * This is implied by the call chain. 803 * 804 * 2) The range has adjacent logical bytenr 805 * 806 * 3) The range has adjacent file offset 807 * This is required for the usage of btrfs_bio->file_offset. 808 */ 809 return bio_end_sector(bio) == sector && 810 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 811 page_offset(page) + pg_offset; 812 } 813 814 static void alloc_new_bio(struct btrfs_inode *inode, 815 struct btrfs_bio_ctrl *bio_ctrl, 816 u64 disk_bytenr, u64 file_offset) 817 { 818 struct btrfs_fs_info *fs_info = inode->root->fs_info; 819 struct btrfs_bio *bbio; 820 821 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 822 bio_ctrl->end_io_func, NULL); 823 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 824 bbio->inode = inode; 825 bbio->file_offset = file_offset; 826 bio_ctrl->bbio = bbio; 827 bio_ctrl->len_to_oe_boundary = U32_MAX; 828 829 /* Limit data write bios to the ordered boundary. */ 830 if (bio_ctrl->wbc) { 831 struct btrfs_ordered_extent *ordered; 832 833 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 834 if (ordered) { 835 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 836 ordered->file_offset + 837 ordered->disk_num_bytes - file_offset); 838 bbio->ordered = ordered; 839 } 840 841 /* 842 * Pick the last added device to support cgroup writeback. For 843 * multi-device file systems this means blk-cgroup policies have 844 * to always be set on the last added/replaced device. 845 * This is a bit odd but has been like that for a long time. 846 */ 847 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 848 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 849 } 850 } 851 852 /* 853 * @disk_bytenr: logical bytenr where the write will be 854 * @page: page to add to the bio 855 * @size: portion of page that we want to write to 856 * @pg_offset: offset of the new bio or to check whether we are adding 857 * a contiguous page to the previous one 858 * 859 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 860 * new one in @bio_ctrl->bbio. 861 * The mirror number for this IO should already be initizlied in 862 * @bio_ctrl->mirror_num. 863 */ 864 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 865 u64 disk_bytenr, struct page *page, 866 size_t size, unsigned long pg_offset) 867 { 868 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 869 870 ASSERT(pg_offset + size <= PAGE_SIZE); 871 ASSERT(bio_ctrl->end_io_func); 872 873 if (bio_ctrl->bbio && 874 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 875 submit_one_bio(bio_ctrl); 876 877 do { 878 u32 len = size; 879 880 /* Allocate new bio if needed */ 881 if (!bio_ctrl->bbio) { 882 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 883 page_offset(page) + pg_offset); 884 } 885 886 /* Cap to the current ordered extent boundary if there is one. */ 887 if (len > bio_ctrl->len_to_oe_boundary) { 888 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 889 ASSERT(is_data_inode(&inode->vfs_inode)); 890 len = bio_ctrl->len_to_oe_boundary; 891 } 892 893 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 894 /* bio full: move on to a new one */ 895 submit_one_bio(bio_ctrl); 896 continue; 897 } 898 899 if (bio_ctrl->wbc) 900 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 901 902 size -= len; 903 pg_offset += len; 904 disk_bytenr += len; 905 906 /* 907 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 908 * sector aligned. alloc_new_bio() then sets it to the end of 909 * our ordered extent for writes into zoned devices. 910 * 911 * When len_to_oe_boundary is tracking an ordered extent, we 912 * trust the ordered extent code to align things properly, and 913 * the check above to cap our write to the ordered extent 914 * boundary is correct. 915 * 916 * When len_to_oe_boundary is U32_MAX, the cap above would 917 * result in a 4095 byte IO for the last page right before 918 * we hit the bio limit of UINT_MAX. bio_add_page() has all 919 * the checks required to make sure we don't overflow the bio, 920 * and we should just ignore len_to_oe_boundary completely 921 * unless we're using it to track an ordered extent. 922 * 923 * It's pretty hard to make a bio sized U32_MAX, but it can 924 * happen when the page cache is able to feed us contiguous 925 * pages for large extents. 926 */ 927 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 928 bio_ctrl->len_to_oe_boundary -= len; 929 930 /* Ordered extent boundary: move on to a new bio. */ 931 if (bio_ctrl->len_to_oe_boundary == 0) 932 submit_one_bio(bio_ctrl); 933 } while (size); 934 } 935 936 static int attach_extent_buffer_page(struct extent_buffer *eb, 937 struct page *page, 938 struct btrfs_subpage *prealloc) 939 { 940 struct btrfs_fs_info *fs_info = eb->fs_info; 941 int ret = 0; 942 943 /* 944 * If the page is mapped to btree inode, we should hold the private 945 * lock to prevent race. 946 * For cloned or dummy extent buffers, their pages are not mapped and 947 * will not race with any other ebs. 948 */ 949 if (page->mapping) 950 lockdep_assert_held(&page->mapping->private_lock); 951 952 if (fs_info->nodesize >= PAGE_SIZE) { 953 if (!PagePrivate(page)) 954 attach_page_private(page, eb); 955 else 956 WARN_ON(page->private != (unsigned long)eb); 957 return 0; 958 } 959 960 /* Already mapped, just free prealloc */ 961 if (PagePrivate(page)) { 962 btrfs_free_subpage(prealloc); 963 return 0; 964 } 965 966 if (prealloc) 967 /* Has preallocated memory for subpage */ 968 attach_page_private(page, prealloc); 969 else 970 /* Do new allocation to attach subpage */ 971 ret = btrfs_attach_subpage(fs_info, page, 972 BTRFS_SUBPAGE_METADATA); 973 return ret; 974 } 975 976 int set_page_extent_mapped(struct page *page) 977 { 978 struct btrfs_fs_info *fs_info; 979 980 ASSERT(page->mapping); 981 982 if (PagePrivate(page)) 983 return 0; 984 985 fs_info = btrfs_sb(page->mapping->host->i_sb); 986 987 if (btrfs_is_subpage(fs_info, page)) 988 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 989 990 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 991 return 0; 992 } 993 994 void clear_page_extent_mapped(struct page *page) 995 { 996 struct btrfs_fs_info *fs_info; 997 998 ASSERT(page->mapping); 999 1000 if (!PagePrivate(page)) 1001 return; 1002 1003 fs_info = btrfs_sb(page->mapping->host->i_sb); 1004 if (btrfs_is_subpage(fs_info, page)) 1005 return btrfs_detach_subpage(fs_info, page); 1006 1007 detach_page_private(page); 1008 } 1009 1010 static struct extent_map * 1011 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1012 u64 start, u64 len, struct extent_map **em_cached) 1013 { 1014 struct extent_map *em; 1015 1016 if (em_cached && *em_cached) { 1017 em = *em_cached; 1018 if (extent_map_in_tree(em) && start >= em->start && 1019 start < extent_map_end(em)) { 1020 refcount_inc(&em->refs); 1021 return em; 1022 } 1023 1024 free_extent_map(em); 1025 *em_cached = NULL; 1026 } 1027 1028 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1029 if (em_cached && !IS_ERR(em)) { 1030 BUG_ON(*em_cached); 1031 refcount_inc(&em->refs); 1032 *em_cached = em; 1033 } 1034 return em; 1035 } 1036 /* 1037 * basic readpage implementation. Locked extent state structs are inserted 1038 * into the tree that are removed when the IO is done (by the end_io 1039 * handlers) 1040 * XXX JDM: This needs looking at to ensure proper page locking 1041 * return 0 on success, otherwise return error 1042 */ 1043 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1044 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 1045 { 1046 struct inode *inode = page->mapping->host; 1047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1048 u64 start = page_offset(page); 1049 const u64 end = start + PAGE_SIZE - 1; 1050 u64 cur = start; 1051 u64 extent_offset; 1052 u64 last_byte = i_size_read(inode); 1053 u64 block_start; 1054 struct extent_map *em; 1055 int ret = 0; 1056 size_t pg_offset = 0; 1057 size_t iosize; 1058 size_t blocksize = inode->i_sb->s_blocksize; 1059 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1060 1061 ret = set_page_extent_mapped(page); 1062 if (ret < 0) { 1063 unlock_extent(tree, start, end, NULL); 1064 unlock_page(page); 1065 return ret; 1066 } 1067 1068 if (page->index == last_byte >> PAGE_SHIFT) { 1069 size_t zero_offset = offset_in_page(last_byte); 1070 1071 if (zero_offset) { 1072 iosize = PAGE_SIZE - zero_offset; 1073 memzero_page(page, zero_offset, iosize); 1074 } 1075 } 1076 bio_ctrl->end_io_func = end_bio_extent_readpage; 1077 begin_page_read(fs_info, page); 1078 while (cur <= end) { 1079 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1080 bool force_bio_submit = false; 1081 u64 disk_bytenr; 1082 1083 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1084 if (cur >= last_byte) { 1085 iosize = PAGE_SIZE - pg_offset; 1086 memzero_page(page, pg_offset, iosize); 1087 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1088 end_page_read(page, true, cur, iosize); 1089 break; 1090 } 1091 em = __get_extent_map(inode, page, pg_offset, cur, 1092 end - cur + 1, em_cached); 1093 if (IS_ERR(em)) { 1094 unlock_extent(tree, cur, end, NULL); 1095 end_page_read(page, false, cur, end + 1 - cur); 1096 return PTR_ERR(em); 1097 } 1098 extent_offset = cur - em->start; 1099 BUG_ON(extent_map_end(em) <= cur); 1100 BUG_ON(end < cur); 1101 1102 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1103 compress_type = em->compress_type; 1104 1105 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1106 iosize = ALIGN(iosize, blocksize); 1107 if (compress_type != BTRFS_COMPRESS_NONE) 1108 disk_bytenr = em->block_start; 1109 else 1110 disk_bytenr = em->block_start + extent_offset; 1111 block_start = em->block_start; 1112 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1113 block_start = EXTENT_MAP_HOLE; 1114 1115 /* 1116 * If we have a file range that points to a compressed extent 1117 * and it's followed by a consecutive file range that points 1118 * to the same compressed extent (possibly with a different 1119 * offset and/or length, so it either points to the whole extent 1120 * or only part of it), we must make sure we do not submit a 1121 * single bio to populate the pages for the 2 ranges because 1122 * this makes the compressed extent read zero out the pages 1123 * belonging to the 2nd range. Imagine the following scenario: 1124 * 1125 * File layout 1126 * [0 - 8K] [8K - 24K] 1127 * | | 1128 * | | 1129 * points to extent X, points to extent X, 1130 * offset 4K, length of 8K offset 0, length 16K 1131 * 1132 * [extent X, compressed length = 4K uncompressed length = 16K] 1133 * 1134 * If the bio to read the compressed extent covers both ranges, 1135 * it will decompress extent X into the pages belonging to the 1136 * first range and then it will stop, zeroing out the remaining 1137 * pages that belong to the other range that points to extent X. 1138 * So here we make sure we submit 2 bios, one for the first 1139 * range and another one for the third range. Both will target 1140 * the same physical extent from disk, but we can't currently 1141 * make the compressed bio endio callback populate the pages 1142 * for both ranges because each compressed bio is tightly 1143 * coupled with a single extent map, and each range can have 1144 * an extent map with a different offset value relative to the 1145 * uncompressed data of our extent and different lengths. This 1146 * is a corner case so we prioritize correctness over 1147 * non-optimal behavior (submitting 2 bios for the same extent). 1148 */ 1149 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1150 prev_em_start && *prev_em_start != (u64)-1 && 1151 *prev_em_start != em->start) 1152 force_bio_submit = true; 1153 1154 if (prev_em_start) 1155 *prev_em_start = em->start; 1156 1157 free_extent_map(em); 1158 em = NULL; 1159 1160 /* we've found a hole, just zero and go on */ 1161 if (block_start == EXTENT_MAP_HOLE) { 1162 memzero_page(page, pg_offset, iosize); 1163 1164 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1165 end_page_read(page, true, cur, iosize); 1166 cur = cur + iosize; 1167 pg_offset += iosize; 1168 continue; 1169 } 1170 /* the get_extent function already copied into the page */ 1171 if (block_start == EXTENT_MAP_INLINE) { 1172 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1173 end_page_read(page, true, cur, iosize); 1174 cur = cur + iosize; 1175 pg_offset += iosize; 1176 continue; 1177 } 1178 1179 if (bio_ctrl->compress_type != compress_type) { 1180 submit_one_bio(bio_ctrl); 1181 bio_ctrl->compress_type = compress_type; 1182 } 1183 1184 if (force_bio_submit) 1185 submit_one_bio(bio_ctrl); 1186 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1187 pg_offset); 1188 cur = cur + iosize; 1189 pg_offset += iosize; 1190 } 1191 1192 return 0; 1193 } 1194 1195 int btrfs_read_folio(struct file *file, struct folio *folio) 1196 { 1197 struct page *page = &folio->page; 1198 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1199 u64 start = page_offset(page); 1200 u64 end = start + PAGE_SIZE - 1; 1201 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1202 int ret; 1203 1204 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1205 1206 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1207 /* 1208 * If btrfs_do_readpage() failed we will want to submit the assembled 1209 * bio to do the cleanup. 1210 */ 1211 submit_one_bio(&bio_ctrl); 1212 return ret; 1213 } 1214 1215 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1216 u64 start, u64 end, 1217 struct extent_map **em_cached, 1218 struct btrfs_bio_ctrl *bio_ctrl, 1219 u64 *prev_em_start) 1220 { 1221 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1222 int index; 1223 1224 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1225 1226 for (index = 0; index < nr_pages; index++) { 1227 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1228 prev_em_start); 1229 put_page(pages[index]); 1230 } 1231 } 1232 1233 /* 1234 * helper for __extent_writepage, doing all of the delayed allocation setup. 1235 * 1236 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1237 * to write the page (copy into inline extent). In this case the IO has 1238 * been started and the page is already unlocked. 1239 * 1240 * This returns 0 if all went well (page still locked) 1241 * This returns < 0 if there were errors (page still locked) 1242 */ 1243 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1244 struct page *page, struct writeback_control *wbc) 1245 { 1246 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1247 u64 delalloc_start = page_offset(page); 1248 u64 delalloc_to_write = 0; 1249 /* How many pages are started by btrfs_run_delalloc_range() */ 1250 unsigned long nr_written = 0; 1251 int ret; 1252 int page_started = 0; 1253 1254 while (delalloc_start < page_end) { 1255 u64 delalloc_end = page_end; 1256 bool found; 1257 1258 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1259 &delalloc_start, 1260 &delalloc_end); 1261 if (!found) { 1262 delalloc_start = delalloc_end + 1; 1263 continue; 1264 } 1265 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1266 delalloc_end, &page_started, &nr_written, wbc); 1267 if (ret) 1268 return ret; 1269 1270 /* 1271 * delalloc_end is already one less than the total length, so 1272 * we don't subtract one from PAGE_SIZE 1273 */ 1274 delalloc_to_write += (delalloc_end - delalloc_start + 1275 PAGE_SIZE) >> PAGE_SHIFT; 1276 delalloc_start = delalloc_end + 1; 1277 } 1278 if (wbc->nr_to_write < delalloc_to_write) { 1279 int thresh = 8192; 1280 1281 if (delalloc_to_write < thresh * 2) 1282 thresh = delalloc_to_write; 1283 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1284 thresh); 1285 } 1286 1287 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1288 if (page_started) { 1289 /* 1290 * We've unlocked the page, so we can't update the mapping's 1291 * writeback index, just update nr_to_write. 1292 */ 1293 wbc->nr_to_write -= nr_written; 1294 return 1; 1295 } 1296 1297 return 0; 1298 } 1299 1300 /* 1301 * Find the first byte we need to write. 1302 * 1303 * For subpage, one page can contain several sectors, and 1304 * __extent_writepage_io() will just grab all extent maps in the page 1305 * range and try to submit all non-inline/non-compressed extents. 1306 * 1307 * This is a big problem for subpage, we shouldn't re-submit already written 1308 * data at all. 1309 * This function will lookup subpage dirty bit to find which range we really 1310 * need to submit. 1311 * 1312 * Return the next dirty range in [@start, @end). 1313 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1314 */ 1315 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1316 struct page *page, u64 *start, u64 *end) 1317 { 1318 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1319 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1320 u64 orig_start = *start; 1321 /* Declare as unsigned long so we can use bitmap ops */ 1322 unsigned long flags; 1323 int range_start_bit; 1324 int range_end_bit; 1325 1326 /* 1327 * For regular sector size == page size case, since one page only 1328 * contains one sector, we return the page offset directly. 1329 */ 1330 if (!btrfs_is_subpage(fs_info, page)) { 1331 *start = page_offset(page); 1332 *end = page_offset(page) + PAGE_SIZE; 1333 return; 1334 } 1335 1336 range_start_bit = spi->dirty_offset + 1337 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1338 1339 /* We should have the page locked, but just in case */ 1340 spin_lock_irqsave(&subpage->lock, flags); 1341 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1342 spi->dirty_offset + spi->bitmap_nr_bits); 1343 spin_unlock_irqrestore(&subpage->lock, flags); 1344 1345 range_start_bit -= spi->dirty_offset; 1346 range_end_bit -= spi->dirty_offset; 1347 1348 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1349 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1350 } 1351 1352 /* 1353 * helper for __extent_writepage. This calls the writepage start hooks, 1354 * and does the loop to map the page into extents and bios. 1355 * 1356 * We return 1 if the IO is started and the page is unlocked, 1357 * 0 if all went well (page still locked) 1358 * < 0 if there were errors (page still locked) 1359 */ 1360 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1361 struct page *page, 1362 struct btrfs_bio_ctrl *bio_ctrl, 1363 loff_t i_size, 1364 int *nr_ret) 1365 { 1366 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1367 u64 cur = page_offset(page); 1368 u64 end = cur + PAGE_SIZE - 1; 1369 u64 extent_offset; 1370 u64 block_start; 1371 struct extent_map *em; 1372 int ret = 0; 1373 int nr = 0; 1374 1375 ret = btrfs_writepage_cow_fixup(page); 1376 if (ret) { 1377 /* Fixup worker will requeue */ 1378 redirty_page_for_writepage(bio_ctrl->wbc, page); 1379 unlock_page(page); 1380 return 1; 1381 } 1382 1383 bio_ctrl->end_io_func = end_bio_extent_writepage; 1384 while (cur <= end) { 1385 u64 disk_bytenr; 1386 u64 em_end; 1387 u64 dirty_range_start = cur; 1388 u64 dirty_range_end; 1389 u32 iosize; 1390 1391 if (cur >= i_size) { 1392 btrfs_writepage_endio_finish_ordered(inode, page, cur, 1393 end, true); 1394 /* 1395 * This range is beyond i_size, thus we don't need to 1396 * bother writing back. 1397 * But we still need to clear the dirty subpage bit, or 1398 * the next time the page gets dirtied, we will try to 1399 * writeback the sectors with subpage dirty bits, 1400 * causing writeback without ordered extent. 1401 */ 1402 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 1403 break; 1404 } 1405 1406 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1407 &dirty_range_end); 1408 if (cur < dirty_range_start) { 1409 cur = dirty_range_start; 1410 continue; 1411 } 1412 1413 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 1414 if (IS_ERR(em)) { 1415 ret = PTR_ERR_OR_ZERO(em); 1416 goto out_error; 1417 } 1418 1419 extent_offset = cur - em->start; 1420 em_end = extent_map_end(em); 1421 ASSERT(cur <= em_end); 1422 ASSERT(cur < end); 1423 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1424 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1425 1426 block_start = em->block_start; 1427 disk_bytenr = em->block_start + extent_offset; 1428 1429 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1430 ASSERT(block_start != EXTENT_MAP_HOLE); 1431 ASSERT(block_start != EXTENT_MAP_INLINE); 1432 1433 /* 1434 * Note that em_end from extent_map_end() and dirty_range_end from 1435 * find_next_dirty_byte() are all exclusive 1436 */ 1437 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1438 free_extent_map(em); 1439 em = NULL; 1440 1441 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1442 if (!PageWriteback(page)) { 1443 btrfs_err(inode->root->fs_info, 1444 "page %lu not writeback, cur %llu end %llu", 1445 page->index, cur, end); 1446 } 1447 1448 /* 1449 * Although the PageDirty bit is cleared before entering this 1450 * function, subpage dirty bit is not cleared. 1451 * So clear subpage dirty bit here so next time we won't submit 1452 * page for range already written to disk. 1453 */ 1454 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1455 1456 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1457 cur - page_offset(page)); 1458 cur += iosize; 1459 nr++; 1460 } 1461 1462 btrfs_page_assert_not_dirty(fs_info, page); 1463 *nr_ret = nr; 1464 return 0; 1465 1466 out_error: 1467 /* 1468 * If we finish without problem, we should not only clear page dirty, 1469 * but also empty subpage dirty bits 1470 */ 1471 *nr_ret = nr; 1472 return ret; 1473 } 1474 1475 /* 1476 * the writepage semantics are similar to regular writepage. extent 1477 * records are inserted to lock ranges in the tree, and as dirty areas 1478 * are found, they are marked writeback. Then the lock bits are removed 1479 * and the end_io handler clears the writeback ranges 1480 * 1481 * Return 0 if everything goes well. 1482 * Return <0 for error. 1483 */ 1484 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1485 { 1486 struct folio *folio = page_folio(page); 1487 struct inode *inode = page->mapping->host; 1488 const u64 page_start = page_offset(page); 1489 const u64 page_end = page_start + PAGE_SIZE - 1; 1490 int ret; 1491 int nr = 0; 1492 size_t pg_offset; 1493 loff_t i_size = i_size_read(inode); 1494 unsigned long end_index = i_size >> PAGE_SHIFT; 1495 1496 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1497 1498 WARN_ON(!PageLocked(page)); 1499 1500 pg_offset = offset_in_page(i_size); 1501 if (page->index > end_index || 1502 (page->index == end_index && !pg_offset)) { 1503 folio_invalidate(folio, 0, folio_size(folio)); 1504 folio_unlock(folio); 1505 return 0; 1506 } 1507 1508 if (page->index == end_index) 1509 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1510 1511 ret = set_page_extent_mapped(page); 1512 if (ret < 0) 1513 goto done; 1514 1515 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1516 if (ret == 1) 1517 return 0; 1518 if (ret) 1519 goto done; 1520 1521 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1522 if (ret == 1) 1523 return 0; 1524 1525 bio_ctrl->wbc->nr_to_write--; 1526 1527 done: 1528 if (nr == 0) { 1529 /* make sure the mapping tag for page dirty gets cleared */ 1530 set_page_writeback(page); 1531 end_page_writeback(page); 1532 } 1533 if (ret) 1534 end_extent_writepage(page, ret, page_start, page_end); 1535 unlock_page(page); 1536 ASSERT(ret <= 0); 1537 return ret; 1538 } 1539 1540 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1541 { 1542 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1543 TASK_UNINTERRUPTIBLE); 1544 } 1545 1546 /* 1547 * Lock extent buffer status and pages for writeback. 1548 * 1549 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1550 * extent buffer is not dirty) 1551 * Return %true is the extent buffer is submitted to bio. 1552 */ 1553 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1554 struct writeback_control *wbc) 1555 { 1556 struct btrfs_fs_info *fs_info = eb->fs_info; 1557 bool ret = false; 1558 1559 btrfs_tree_lock(eb); 1560 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1561 btrfs_tree_unlock(eb); 1562 if (wbc->sync_mode != WB_SYNC_ALL) 1563 return false; 1564 wait_on_extent_buffer_writeback(eb); 1565 btrfs_tree_lock(eb); 1566 } 1567 1568 /* 1569 * We need to do this to prevent races in people who check if the eb is 1570 * under IO since we can end up having no IO bits set for a short period 1571 * of time. 1572 */ 1573 spin_lock(&eb->refs_lock); 1574 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1575 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1576 spin_unlock(&eb->refs_lock); 1577 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1578 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1579 -eb->len, 1580 fs_info->dirty_metadata_batch); 1581 ret = true; 1582 } else { 1583 spin_unlock(&eb->refs_lock); 1584 } 1585 btrfs_tree_unlock(eb); 1586 return ret; 1587 } 1588 1589 static void set_btree_ioerr(struct extent_buffer *eb) 1590 { 1591 struct btrfs_fs_info *fs_info = eb->fs_info; 1592 1593 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1594 1595 /* 1596 * A read may stumble upon this buffer later, make sure that it gets an 1597 * error and knows there was an error. 1598 */ 1599 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1600 1601 /* 1602 * We need to set the mapping with the io error as well because a write 1603 * error will flip the file system readonly, and then syncfs() will 1604 * return a 0 because we are readonly if we don't modify the err seq for 1605 * the superblock. 1606 */ 1607 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1608 1609 /* 1610 * If writeback for a btree extent that doesn't belong to a log tree 1611 * failed, increment the counter transaction->eb_write_errors. 1612 * We do this because while the transaction is running and before it's 1613 * committing (when we call filemap_fdata[write|wait]_range against 1614 * the btree inode), we might have 1615 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1616 * returns an error or an error happens during writeback, when we're 1617 * committing the transaction we wouldn't know about it, since the pages 1618 * can be no longer dirty nor marked anymore for writeback (if a 1619 * subsequent modification to the extent buffer didn't happen before the 1620 * transaction commit), which makes filemap_fdata[write|wait]_range not 1621 * able to find the pages tagged with SetPageError at transaction 1622 * commit time. So if this happens we must abort the transaction, 1623 * otherwise we commit a super block with btree roots that point to 1624 * btree nodes/leafs whose content on disk is invalid - either garbage 1625 * or the content of some node/leaf from a past generation that got 1626 * cowed or deleted and is no longer valid. 1627 * 1628 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1629 * not be enough - we need to distinguish between log tree extents vs 1630 * non-log tree extents, and the next filemap_fdatawait_range() call 1631 * will catch and clear such errors in the mapping - and that call might 1632 * be from a log sync and not from a transaction commit. Also, checking 1633 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1634 * not done and would not be reliable - the eb might have been released 1635 * from memory and reading it back again means that flag would not be 1636 * set (since it's a runtime flag, not persisted on disk). 1637 * 1638 * Using the flags below in the btree inode also makes us achieve the 1639 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1640 * writeback for all dirty pages and before filemap_fdatawait_range() 1641 * is called, the writeback for all dirty pages had already finished 1642 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1643 * filemap_fdatawait_range() would return success, as it could not know 1644 * that writeback errors happened (the pages were no longer tagged for 1645 * writeback). 1646 */ 1647 switch (eb->log_index) { 1648 case -1: 1649 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1650 break; 1651 case 0: 1652 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1653 break; 1654 case 1: 1655 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1656 break; 1657 default: 1658 BUG(); /* unexpected, logic error */ 1659 } 1660 } 1661 1662 /* 1663 * The endio specific version which won't touch any unsafe spinlock in endio 1664 * context. 1665 */ 1666 static struct extent_buffer *find_extent_buffer_nolock( 1667 struct btrfs_fs_info *fs_info, u64 start) 1668 { 1669 struct extent_buffer *eb; 1670 1671 rcu_read_lock(); 1672 eb = radix_tree_lookup(&fs_info->buffer_radix, 1673 start >> fs_info->sectorsize_bits); 1674 if (eb && atomic_inc_not_zero(&eb->refs)) { 1675 rcu_read_unlock(); 1676 return eb; 1677 } 1678 rcu_read_unlock(); 1679 return NULL; 1680 } 1681 1682 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1683 { 1684 struct extent_buffer *eb = bbio->private; 1685 struct btrfs_fs_info *fs_info = eb->fs_info; 1686 bool uptodate = !bbio->bio.bi_status; 1687 struct bvec_iter_all iter_all; 1688 struct bio_vec *bvec; 1689 u32 bio_offset = 0; 1690 1691 if (!uptodate) 1692 set_btree_ioerr(eb); 1693 1694 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1695 u64 start = eb->start + bio_offset; 1696 struct page *page = bvec->bv_page; 1697 u32 len = bvec->bv_len; 1698 1699 if (!uptodate) 1700 btrfs_page_clear_uptodate(fs_info, page, start, len); 1701 btrfs_page_clear_writeback(fs_info, page, start, len); 1702 bio_offset += len; 1703 } 1704 1705 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1706 smp_mb__after_atomic(); 1707 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1708 1709 bio_put(&bbio->bio); 1710 } 1711 1712 static void prepare_eb_write(struct extent_buffer *eb) 1713 { 1714 u32 nritems; 1715 unsigned long start; 1716 unsigned long end; 1717 1718 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1719 1720 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1721 nritems = btrfs_header_nritems(eb); 1722 if (btrfs_header_level(eb) > 0) { 1723 end = btrfs_node_key_ptr_offset(eb, nritems); 1724 memzero_extent_buffer(eb, end, eb->len - end); 1725 } else { 1726 /* 1727 * Leaf: 1728 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1729 */ 1730 start = btrfs_item_nr_offset(eb, nritems); 1731 end = btrfs_item_nr_offset(eb, 0); 1732 if (nritems == 0) 1733 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1734 else 1735 end += btrfs_item_offset(eb, nritems - 1); 1736 memzero_extent_buffer(eb, start, end - start); 1737 } 1738 } 1739 1740 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1741 struct writeback_control *wbc) 1742 { 1743 struct btrfs_fs_info *fs_info = eb->fs_info; 1744 struct btrfs_bio *bbio; 1745 1746 prepare_eb_write(eb); 1747 1748 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1749 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1750 eb->fs_info, extent_buffer_write_end_io, eb); 1751 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1752 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1753 wbc_init_bio(wbc, &bbio->bio); 1754 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1755 bbio->file_offset = eb->start; 1756 if (fs_info->nodesize < PAGE_SIZE) { 1757 struct page *p = eb->pages[0]; 1758 1759 lock_page(p); 1760 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1761 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1762 eb->len)) { 1763 clear_page_dirty_for_io(p); 1764 wbc->nr_to_write--; 1765 } 1766 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1767 wbc_account_cgroup_owner(wbc, p, eb->len); 1768 unlock_page(p); 1769 } else { 1770 for (int i = 0; i < num_extent_pages(eb); i++) { 1771 struct page *p = eb->pages[i]; 1772 1773 lock_page(p); 1774 clear_page_dirty_for_io(p); 1775 set_page_writeback(p); 1776 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1777 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1778 wbc->nr_to_write--; 1779 unlock_page(p); 1780 } 1781 } 1782 btrfs_submit_bio(bbio, 0); 1783 } 1784 1785 /* 1786 * Submit one subpage btree page. 1787 * 1788 * The main difference to submit_eb_page() is: 1789 * - Page locking 1790 * For subpage, we don't rely on page locking at all. 1791 * 1792 * - Flush write bio 1793 * We only flush bio if we may be unable to fit current extent buffers into 1794 * current bio. 1795 * 1796 * Return >=0 for the number of submitted extent buffers. 1797 * Return <0 for fatal error. 1798 */ 1799 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1800 { 1801 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1802 int submitted = 0; 1803 u64 page_start = page_offset(page); 1804 int bit_start = 0; 1805 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1806 1807 /* Lock and write each dirty extent buffers in the range */ 1808 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1809 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1810 struct extent_buffer *eb; 1811 unsigned long flags; 1812 u64 start; 1813 1814 /* 1815 * Take private lock to ensure the subpage won't be detached 1816 * in the meantime. 1817 */ 1818 spin_lock(&page->mapping->private_lock); 1819 if (!PagePrivate(page)) { 1820 spin_unlock(&page->mapping->private_lock); 1821 break; 1822 } 1823 spin_lock_irqsave(&subpage->lock, flags); 1824 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1825 subpage->bitmaps)) { 1826 spin_unlock_irqrestore(&subpage->lock, flags); 1827 spin_unlock(&page->mapping->private_lock); 1828 bit_start++; 1829 continue; 1830 } 1831 1832 start = page_start + bit_start * fs_info->sectorsize; 1833 bit_start += sectors_per_node; 1834 1835 /* 1836 * Here we just want to grab the eb without touching extra 1837 * spin locks, so call find_extent_buffer_nolock(). 1838 */ 1839 eb = find_extent_buffer_nolock(fs_info, start); 1840 spin_unlock_irqrestore(&subpage->lock, flags); 1841 spin_unlock(&page->mapping->private_lock); 1842 1843 /* 1844 * The eb has already reached 0 refs thus find_extent_buffer() 1845 * doesn't return it. We don't need to write back such eb 1846 * anyway. 1847 */ 1848 if (!eb) 1849 continue; 1850 1851 if (lock_extent_buffer_for_io(eb, wbc)) { 1852 write_one_eb(eb, wbc); 1853 submitted++; 1854 } 1855 free_extent_buffer(eb); 1856 } 1857 return submitted; 1858 } 1859 1860 /* 1861 * Submit all page(s) of one extent buffer. 1862 * 1863 * @page: the page of one extent buffer 1864 * @eb_context: to determine if we need to submit this page, if current page 1865 * belongs to this eb, we don't need to submit 1866 * 1867 * The caller should pass each page in their bytenr order, and here we use 1868 * @eb_context to determine if we have submitted pages of one extent buffer. 1869 * 1870 * If we have, we just skip until we hit a new page that doesn't belong to 1871 * current @eb_context. 1872 * 1873 * If not, we submit all the page(s) of the extent buffer. 1874 * 1875 * Return >0 if we have submitted the extent buffer successfully. 1876 * Return 0 if we don't need to submit the page, as it's already submitted by 1877 * previous call. 1878 * Return <0 for fatal error. 1879 */ 1880 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 1881 struct extent_buffer **eb_context) 1882 { 1883 struct address_space *mapping = page->mapping; 1884 struct btrfs_block_group *cache = NULL; 1885 struct extent_buffer *eb; 1886 int ret; 1887 1888 if (!PagePrivate(page)) 1889 return 0; 1890 1891 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1892 return submit_eb_subpage(page, wbc); 1893 1894 spin_lock(&mapping->private_lock); 1895 if (!PagePrivate(page)) { 1896 spin_unlock(&mapping->private_lock); 1897 return 0; 1898 } 1899 1900 eb = (struct extent_buffer *)page->private; 1901 1902 /* 1903 * Shouldn't happen and normally this would be a BUG_ON but no point 1904 * crashing the machine for something we can survive anyway. 1905 */ 1906 if (WARN_ON(!eb)) { 1907 spin_unlock(&mapping->private_lock); 1908 return 0; 1909 } 1910 1911 if (eb == *eb_context) { 1912 spin_unlock(&mapping->private_lock); 1913 return 0; 1914 } 1915 ret = atomic_inc_not_zero(&eb->refs); 1916 spin_unlock(&mapping->private_lock); 1917 if (!ret) 1918 return 0; 1919 1920 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 1921 /* 1922 * If for_sync, this hole will be filled with 1923 * trasnsaction commit. 1924 */ 1925 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1926 ret = -EAGAIN; 1927 else 1928 ret = 0; 1929 free_extent_buffer(eb); 1930 return ret; 1931 } 1932 1933 *eb_context = eb; 1934 1935 if (!lock_extent_buffer_for_io(eb, wbc)) { 1936 btrfs_revert_meta_write_pointer(cache, eb); 1937 if (cache) 1938 btrfs_put_block_group(cache); 1939 free_extent_buffer(eb); 1940 return 0; 1941 } 1942 if (cache) { 1943 /* 1944 * Implies write in zoned mode. Mark the last eb in a block group. 1945 */ 1946 btrfs_schedule_zone_finish_bg(cache, eb); 1947 btrfs_put_block_group(cache); 1948 } 1949 write_one_eb(eb, wbc); 1950 free_extent_buffer(eb); 1951 return 1; 1952 } 1953 1954 int btree_write_cache_pages(struct address_space *mapping, 1955 struct writeback_control *wbc) 1956 { 1957 struct extent_buffer *eb_context = NULL; 1958 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1959 int ret = 0; 1960 int done = 0; 1961 int nr_to_write_done = 0; 1962 struct folio_batch fbatch; 1963 unsigned int nr_folios; 1964 pgoff_t index; 1965 pgoff_t end; /* Inclusive */ 1966 int scanned = 0; 1967 xa_mark_t tag; 1968 1969 folio_batch_init(&fbatch); 1970 if (wbc->range_cyclic) { 1971 index = mapping->writeback_index; /* Start from prev offset */ 1972 end = -1; 1973 /* 1974 * Start from the beginning does not need to cycle over the 1975 * range, mark it as scanned. 1976 */ 1977 scanned = (index == 0); 1978 } else { 1979 index = wbc->range_start >> PAGE_SHIFT; 1980 end = wbc->range_end >> PAGE_SHIFT; 1981 scanned = 1; 1982 } 1983 if (wbc->sync_mode == WB_SYNC_ALL) 1984 tag = PAGECACHE_TAG_TOWRITE; 1985 else 1986 tag = PAGECACHE_TAG_DIRTY; 1987 btrfs_zoned_meta_io_lock(fs_info); 1988 retry: 1989 if (wbc->sync_mode == WB_SYNC_ALL) 1990 tag_pages_for_writeback(mapping, index, end); 1991 while (!done && !nr_to_write_done && (index <= end) && 1992 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1993 tag, &fbatch))) { 1994 unsigned i; 1995 1996 for (i = 0; i < nr_folios; i++) { 1997 struct folio *folio = fbatch.folios[i]; 1998 1999 ret = submit_eb_page(&folio->page, wbc, &eb_context); 2000 if (ret == 0) 2001 continue; 2002 if (ret < 0) { 2003 done = 1; 2004 break; 2005 } 2006 2007 /* 2008 * the filesystem may choose to bump up nr_to_write. 2009 * We have to make sure to honor the new nr_to_write 2010 * at any time 2011 */ 2012 nr_to_write_done = wbc->nr_to_write <= 0; 2013 } 2014 folio_batch_release(&fbatch); 2015 cond_resched(); 2016 } 2017 if (!scanned && !done) { 2018 /* 2019 * We hit the last page and there is more work to be done: wrap 2020 * back to the start of the file 2021 */ 2022 scanned = 1; 2023 index = 0; 2024 goto retry; 2025 } 2026 /* 2027 * If something went wrong, don't allow any metadata write bio to be 2028 * submitted. 2029 * 2030 * This would prevent use-after-free if we had dirty pages not 2031 * cleaned up, which can still happen by fuzzed images. 2032 * 2033 * - Bad extent tree 2034 * Allowing existing tree block to be allocated for other trees. 2035 * 2036 * - Log tree operations 2037 * Exiting tree blocks get allocated to log tree, bumps its 2038 * generation, then get cleaned in tree re-balance. 2039 * Such tree block will not be written back, since it's clean, 2040 * thus no WRITTEN flag set. 2041 * And after log writes back, this tree block is not traced by 2042 * any dirty extent_io_tree. 2043 * 2044 * - Offending tree block gets re-dirtied from its original owner 2045 * Since it has bumped generation, no WRITTEN flag, it can be 2046 * reused without COWing. This tree block will not be traced 2047 * by btrfs_transaction::dirty_pages. 2048 * 2049 * Now such dirty tree block will not be cleaned by any dirty 2050 * extent io tree. Thus we don't want to submit such wild eb 2051 * if the fs already has error. 2052 * 2053 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2054 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2055 */ 2056 if (ret > 0) 2057 ret = 0; 2058 if (!ret && BTRFS_FS_ERROR(fs_info)) 2059 ret = -EROFS; 2060 btrfs_zoned_meta_io_unlock(fs_info); 2061 return ret; 2062 } 2063 2064 /* 2065 * Walk the list of dirty pages of the given address space and write all of them. 2066 * 2067 * @mapping: address space structure to write 2068 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2069 * @bio_ctrl: holds context for the write, namely the bio 2070 * 2071 * If a page is already under I/O, write_cache_pages() skips it, even 2072 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2073 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2074 * and msync() need to guarantee that all the data which was dirty at the time 2075 * the call was made get new I/O started against them. If wbc->sync_mode is 2076 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2077 * existing IO to complete. 2078 */ 2079 static int extent_write_cache_pages(struct address_space *mapping, 2080 struct btrfs_bio_ctrl *bio_ctrl) 2081 { 2082 struct writeback_control *wbc = bio_ctrl->wbc; 2083 struct inode *inode = mapping->host; 2084 int ret = 0; 2085 int done = 0; 2086 int nr_to_write_done = 0; 2087 struct folio_batch fbatch; 2088 unsigned int nr_folios; 2089 pgoff_t index; 2090 pgoff_t end; /* Inclusive */ 2091 pgoff_t done_index; 2092 int range_whole = 0; 2093 int scanned = 0; 2094 xa_mark_t tag; 2095 2096 /* 2097 * We have to hold onto the inode so that ordered extents can do their 2098 * work when the IO finishes. The alternative to this is failing to add 2099 * an ordered extent if the igrab() fails there and that is a huge pain 2100 * to deal with, so instead just hold onto the inode throughout the 2101 * writepages operation. If it fails here we are freeing up the inode 2102 * anyway and we'd rather not waste our time writing out stuff that is 2103 * going to be truncated anyway. 2104 */ 2105 if (!igrab(inode)) 2106 return 0; 2107 2108 folio_batch_init(&fbatch); 2109 if (wbc->range_cyclic) { 2110 index = mapping->writeback_index; /* Start from prev offset */ 2111 end = -1; 2112 /* 2113 * Start from the beginning does not need to cycle over the 2114 * range, mark it as scanned. 2115 */ 2116 scanned = (index == 0); 2117 } else { 2118 index = wbc->range_start >> PAGE_SHIFT; 2119 end = wbc->range_end >> PAGE_SHIFT; 2120 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2121 range_whole = 1; 2122 scanned = 1; 2123 } 2124 2125 /* 2126 * We do the tagged writepage as long as the snapshot flush bit is set 2127 * and we are the first one who do the filemap_flush() on this inode. 2128 * 2129 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2130 * not race in and drop the bit. 2131 */ 2132 if (range_whole && wbc->nr_to_write == LONG_MAX && 2133 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2134 &BTRFS_I(inode)->runtime_flags)) 2135 wbc->tagged_writepages = 1; 2136 2137 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2138 tag = PAGECACHE_TAG_TOWRITE; 2139 else 2140 tag = PAGECACHE_TAG_DIRTY; 2141 retry: 2142 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2143 tag_pages_for_writeback(mapping, index, end); 2144 done_index = index; 2145 while (!done && !nr_to_write_done && (index <= end) && 2146 (nr_folios = filemap_get_folios_tag(mapping, &index, 2147 end, tag, &fbatch))) { 2148 unsigned i; 2149 2150 for (i = 0; i < nr_folios; i++) { 2151 struct folio *folio = fbatch.folios[i]; 2152 2153 done_index = folio->index + folio_nr_pages(folio); 2154 /* 2155 * At this point we hold neither the i_pages lock nor 2156 * the page lock: the page may be truncated or 2157 * invalidated (changing page->mapping to NULL), 2158 * or even swizzled back from swapper_space to 2159 * tmpfs file mapping 2160 */ 2161 if (!folio_trylock(folio)) { 2162 submit_write_bio(bio_ctrl, 0); 2163 folio_lock(folio); 2164 } 2165 2166 if (unlikely(folio->mapping != mapping)) { 2167 folio_unlock(folio); 2168 continue; 2169 } 2170 2171 if (!folio_test_dirty(folio)) { 2172 /* Someone wrote it for us. */ 2173 folio_unlock(folio); 2174 continue; 2175 } 2176 2177 if (wbc->sync_mode != WB_SYNC_NONE) { 2178 if (folio_test_writeback(folio)) 2179 submit_write_bio(bio_ctrl, 0); 2180 folio_wait_writeback(folio); 2181 } 2182 2183 if (folio_test_writeback(folio) || 2184 !folio_clear_dirty_for_io(folio)) { 2185 folio_unlock(folio); 2186 continue; 2187 } 2188 2189 ret = __extent_writepage(&folio->page, bio_ctrl); 2190 if (ret < 0) { 2191 done = 1; 2192 break; 2193 } 2194 2195 /* 2196 * The filesystem may choose to bump up nr_to_write. 2197 * We have to make sure to honor the new nr_to_write 2198 * at any time. 2199 */ 2200 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2201 wbc->nr_to_write <= 0); 2202 } 2203 folio_batch_release(&fbatch); 2204 cond_resched(); 2205 } 2206 if (!scanned && !done) { 2207 /* 2208 * We hit the last page and there is more work to be done: wrap 2209 * back to the start of the file 2210 */ 2211 scanned = 1; 2212 index = 0; 2213 2214 /* 2215 * If we're looping we could run into a page that is locked by a 2216 * writer and that writer could be waiting on writeback for a 2217 * page in our current bio, and thus deadlock, so flush the 2218 * write bio here. 2219 */ 2220 submit_write_bio(bio_ctrl, 0); 2221 goto retry; 2222 } 2223 2224 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2225 mapping->writeback_index = done_index; 2226 2227 btrfs_add_delayed_iput(BTRFS_I(inode)); 2228 return ret; 2229 } 2230 2231 /* 2232 * Submit the pages in the range to bio for call sites which delalloc range has 2233 * already been ran (aka, ordered extent inserted) and all pages are still 2234 * locked. 2235 */ 2236 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 2237 struct writeback_control *wbc) 2238 { 2239 bool found_error = false; 2240 int first_error = 0; 2241 int ret = 0; 2242 struct address_space *mapping = inode->i_mapping; 2243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2244 const u32 sectorsize = fs_info->sectorsize; 2245 loff_t i_size = i_size_read(inode); 2246 u64 cur = start; 2247 struct btrfs_bio_ctrl bio_ctrl = { 2248 .wbc = wbc, 2249 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2250 }; 2251 2252 if (wbc->no_cgroup_owner) 2253 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2254 2255 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2256 2257 while (cur <= end) { 2258 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2259 struct page *page; 2260 int nr = 0; 2261 2262 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2263 /* 2264 * All pages in the range are locked since 2265 * btrfs_run_delalloc_range(), thus there is no way to clear 2266 * the page dirty flag. 2267 */ 2268 ASSERT(PageLocked(page)); 2269 ASSERT(PageDirty(page)); 2270 clear_page_dirty_for_io(page); 2271 2272 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2273 i_size, &nr); 2274 if (ret == 1) 2275 goto next_page; 2276 2277 /* Make sure the mapping tag for page dirty gets cleared. */ 2278 if (nr == 0) { 2279 set_page_writeback(page); 2280 end_page_writeback(page); 2281 } 2282 if (ret) 2283 end_extent_writepage(page, ret, cur, cur_end); 2284 btrfs_page_unlock_writer(fs_info, page, cur, cur_end + 1 - cur); 2285 if (ret < 0) { 2286 found_error = true; 2287 first_error = ret; 2288 } 2289 next_page: 2290 put_page(page); 2291 cur = cur_end + 1; 2292 } 2293 2294 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2295 2296 if (found_error) 2297 return first_error; 2298 return ret; 2299 } 2300 2301 int extent_writepages(struct address_space *mapping, 2302 struct writeback_control *wbc) 2303 { 2304 struct inode *inode = mapping->host; 2305 int ret = 0; 2306 struct btrfs_bio_ctrl bio_ctrl = { 2307 .wbc = wbc, 2308 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2309 }; 2310 2311 /* 2312 * Allow only a single thread to do the reloc work in zoned mode to 2313 * protect the write pointer updates. 2314 */ 2315 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2316 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2317 submit_write_bio(&bio_ctrl, ret); 2318 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2319 return ret; 2320 } 2321 2322 void extent_readahead(struct readahead_control *rac) 2323 { 2324 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2325 struct page *pagepool[16]; 2326 struct extent_map *em_cached = NULL; 2327 u64 prev_em_start = (u64)-1; 2328 int nr; 2329 2330 while ((nr = readahead_page_batch(rac, pagepool))) { 2331 u64 contig_start = readahead_pos(rac); 2332 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2333 2334 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2335 &em_cached, &bio_ctrl, &prev_em_start); 2336 } 2337 2338 if (em_cached) 2339 free_extent_map(em_cached); 2340 submit_one_bio(&bio_ctrl); 2341 } 2342 2343 /* 2344 * basic invalidate_folio code, this waits on any locked or writeback 2345 * ranges corresponding to the folio, and then deletes any extent state 2346 * records from the tree 2347 */ 2348 int extent_invalidate_folio(struct extent_io_tree *tree, 2349 struct folio *folio, size_t offset) 2350 { 2351 struct extent_state *cached_state = NULL; 2352 u64 start = folio_pos(folio); 2353 u64 end = start + folio_size(folio) - 1; 2354 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2355 2356 /* This function is only called for the btree inode */ 2357 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2358 2359 start += ALIGN(offset, blocksize); 2360 if (start > end) 2361 return 0; 2362 2363 lock_extent(tree, start, end, &cached_state); 2364 folio_wait_writeback(folio); 2365 2366 /* 2367 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2368 * so here we only need to unlock the extent range to free any 2369 * existing extent state. 2370 */ 2371 unlock_extent(tree, start, end, &cached_state); 2372 return 0; 2373 } 2374 2375 /* 2376 * a helper for release_folio, this tests for areas of the page that 2377 * are locked or under IO and drops the related state bits if it is safe 2378 * to drop the page. 2379 */ 2380 static int try_release_extent_state(struct extent_io_tree *tree, 2381 struct page *page, gfp_t mask) 2382 { 2383 u64 start = page_offset(page); 2384 u64 end = start + PAGE_SIZE - 1; 2385 int ret = 1; 2386 2387 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2388 ret = 0; 2389 } else { 2390 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2391 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2392 2393 /* 2394 * At this point we can safely clear everything except the 2395 * locked bit, the nodatasum bit and the delalloc new bit. 2396 * The delalloc new bit will be cleared by ordered extent 2397 * completion. 2398 */ 2399 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2400 2401 /* if clear_extent_bit failed for enomem reasons, 2402 * we can't allow the release to continue. 2403 */ 2404 if (ret < 0) 2405 ret = 0; 2406 else 2407 ret = 1; 2408 } 2409 return ret; 2410 } 2411 2412 /* 2413 * a helper for release_folio. As long as there are no locked extents 2414 * in the range corresponding to the page, both state records and extent 2415 * map records are removed 2416 */ 2417 int try_release_extent_mapping(struct page *page, gfp_t mask) 2418 { 2419 struct extent_map *em; 2420 u64 start = page_offset(page); 2421 u64 end = start + PAGE_SIZE - 1; 2422 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2423 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2424 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2425 2426 if (gfpflags_allow_blocking(mask) && 2427 page->mapping->host->i_size > SZ_16M) { 2428 u64 len; 2429 while (start <= end) { 2430 struct btrfs_fs_info *fs_info; 2431 u64 cur_gen; 2432 2433 len = end - start + 1; 2434 write_lock(&map->lock); 2435 em = lookup_extent_mapping(map, start, len); 2436 if (!em) { 2437 write_unlock(&map->lock); 2438 break; 2439 } 2440 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2441 em->start != start) { 2442 write_unlock(&map->lock); 2443 free_extent_map(em); 2444 break; 2445 } 2446 if (test_range_bit(tree, em->start, 2447 extent_map_end(em) - 1, 2448 EXTENT_LOCKED, 0, NULL)) 2449 goto next; 2450 /* 2451 * If it's not in the list of modified extents, used 2452 * by a fast fsync, we can remove it. If it's being 2453 * logged we can safely remove it since fsync took an 2454 * extra reference on the em. 2455 */ 2456 if (list_empty(&em->list) || 2457 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2458 goto remove_em; 2459 /* 2460 * If it's in the list of modified extents, remove it 2461 * only if its generation is older then the current one, 2462 * in which case we don't need it for a fast fsync. 2463 * Otherwise don't remove it, we could be racing with an 2464 * ongoing fast fsync that could miss the new extent. 2465 */ 2466 fs_info = btrfs_inode->root->fs_info; 2467 spin_lock(&fs_info->trans_lock); 2468 cur_gen = fs_info->generation; 2469 spin_unlock(&fs_info->trans_lock); 2470 if (em->generation >= cur_gen) 2471 goto next; 2472 remove_em: 2473 /* 2474 * We only remove extent maps that are not in the list of 2475 * modified extents or that are in the list but with a 2476 * generation lower then the current generation, so there 2477 * is no need to set the full fsync flag on the inode (it 2478 * hurts the fsync performance for workloads with a data 2479 * size that exceeds or is close to the system's memory). 2480 */ 2481 remove_extent_mapping(map, em); 2482 /* once for the rb tree */ 2483 free_extent_map(em); 2484 next: 2485 start = extent_map_end(em); 2486 write_unlock(&map->lock); 2487 2488 /* once for us */ 2489 free_extent_map(em); 2490 2491 cond_resched(); /* Allow large-extent preemption. */ 2492 } 2493 } 2494 return try_release_extent_state(tree, page, mask); 2495 } 2496 2497 /* 2498 * To cache previous fiemap extent 2499 * 2500 * Will be used for merging fiemap extent 2501 */ 2502 struct fiemap_cache { 2503 u64 offset; 2504 u64 phys; 2505 u64 len; 2506 u32 flags; 2507 bool cached; 2508 }; 2509 2510 /* 2511 * Helper to submit fiemap extent. 2512 * 2513 * Will try to merge current fiemap extent specified by @offset, @phys, 2514 * @len and @flags with cached one. 2515 * And only when we fails to merge, cached one will be submitted as 2516 * fiemap extent. 2517 * 2518 * Return value is the same as fiemap_fill_next_extent(). 2519 */ 2520 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2521 struct fiemap_cache *cache, 2522 u64 offset, u64 phys, u64 len, u32 flags) 2523 { 2524 int ret = 0; 2525 2526 /* Set at the end of extent_fiemap(). */ 2527 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2528 2529 if (!cache->cached) 2530 goto assign; 2531 2532 /* 2533 * Sanity check, extent_fiemap() should have ensured that new 2534 * fiemap extent won't overlap with cached one. 2535 * Not recoverable. 2536 * 2537 * NOTE: Physical address can overlap, due to compression 2538 */ 2539 if (cache->offset + cache->len > offset) { 2540 WARN_ON(1); 2541 return -EINVAL; 2542 } 2543 2544 /* 2545 * Only merges fiemap extents if 2546 * 1) Their logical addresses are continuous 2547 * 2548 * 2) Their physical addresses are continuous 2549 * So truly compressed (physical size smaller than logical size) 2550 * extents won't get merged with each other 2551 * 2552 * 3) Share same flags 2553 */ 2554 if (cache->offset + cache->len == offset && 2555 cache->phys + cache->len == phys && 2556 cache->flags == flags) { 2557 cache->len += len; 2558 return 0; 2559 } 2560 2561 /* Not mergeable, need to submit cached one */ 2562 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2563 cache->len, cache->flags); 2564 cache->cached = false; 2565 if (ret) 2566 return ret; 2567 assign: 2568 cache->cached = true; 2569 cache->offset = offset; 2570 cache->phys = phys; 2571 cache->len = len; 2572 cache->flags = flags; 2573 2574 return 0; 2575 } 2576 2577 /* 2578 * Emit last fiemap cache 2579 * 2580 * The last fiemap cache may still be cached in the following case: 2581 * 0 4k 8k 2582 * |<- Fiemap range ->| 2583 * |<------------ First extent ----------->| 2584 * 2585 * In this case, the first extent range will be cached but not emitted. 2586 * So we must emit it before ending extent_fiemap(). 2587 */ 2588 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2589 struct fiemap_cache *cache) 2590 { 2591 int ret; 2592 2593 if (!cache->cached) 2594 return 0; 2595 2596 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2597 cache->len, cache->flags); 2598 cache->cached = false; 2599 if (ret > 0) 2600 ret = 0; 2601 return ret; 2602 } 2603 2604 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2605 { 2606 struct extent_buffer *clone; 2607 struct btrfs_key key; 2608 int slot; 2609 int ret; 2610 2611 path->slots[0]++; 2612 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2613 return 0; 2614 2615 ret = btrfs_next_leaf(inode->root, path); 2616 if (ret != 0) 2617 return ret; 2618 2619 /* 2620 * Don't bother with cloning if there are no more file extent items for 2621 * our inode. 2622 */ 2623 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2624 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2625 return 1; 2626 2627 /* See the comment at fiemap_search_slot() about why we clone. */ 2628 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2629 if (!clone) 2630 return -ENOMEM; 2631 2632 slot = path->slots[0]; 2633 btrfs_release_path(path); 2634 path->nodes[0] = clone; 2635 path->slots[0] = slot; 2636 2637 return 0; 2638 } 2639 2640 /* 2641 * Search for the first file extent item that starts at a given file offset or 2642 * the one that starts immediately before that offset. 2643 * Returns: 0 on success, < 0 on error, 1 if not found. 2644 */ 2645 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2646 u64 file_offset) 2647 { 2648 const u64 ino = btrfs_ino(inode); 2649 struct btrfs_root *root = inode->root; 2650 struct extent_buffer *clone; 2651 struct btrfs_key key; 2652 int slot; 2653 int ret; 2654 2655 key.objectid = ino; 2656 key.type = BTRFS_EXTENT_DATA_KEY; 2657 key.offset = file_offset; 2658 2659 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2660 if (ret < 0) 2661 return ret; 2662 2663 if (ret > 0 && path->slots[0] > 0) { 2664 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2665 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2666 path->slots[0]--; 2667 } 2668 2669 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2670 ret = btrfs_next_leaf(root, path); 2671 if (ret != 0) 2672 return ret; 2673 2674 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2675 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2676 return 1; 2677 } 2678 2679 /* 2680 * We clone the leaf and use it during fiemap. This is because while 2681 * using the leaf we do expensive things like checking if an extent is 2682 * shared, which can take a long time. In order to prevent blocking 2683 * other tasks for too long, we use a clone of the leaf. We have locked 2684 * the file range in the inode's io tree, so we know none of our file 2685 * extent items can change. This way we avoid blocking other tasks that 2686 * want to insert items for other inodes in the same leaf or b+tree 2687 * rebalance operations (triggered for example when someone is trying 2688 * to push items into this leaf when trying to insert an item in a 2689 * neighbour leaf). 2690 * We also need the private clone because holding a read lock on an 2691 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2692 * when we call fiemap_fill_next_extent(), because that may cause a page 2693 * fault when filling the user space buffer with fiemap data. 2694 */ 2695 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2696 if (!clone) 2697 return -ENOMEM; 2698 2699 slot = path->slots[0]; 2700 btrfs_release_path(path); 2701 path->nodes[0] = clone; 2702 path->slots[0] = slot; 2703 2704 return 0; 2705 } 2706 2707 /* 2708 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2709 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2710 * extent. The end offset (@end) is inclusive. 2711 */ 2712 static int fiemap_process_hole(struct btrfs_inode *inode, 2713 struct fiemap_extent_info *fieinfo, 2714 struct fiemap_cache *cache, 2715 struct extent_state **delalloc_cached_state, 2716 struct btrfs_backref_share_check_ctx *backref_ctx, 2717 u64 disk_bytenr, u64 extent_offset, 2718 u64 extent_gen, 2719 u64 start, u64 end) 2720 { 2721 const u64 i_size = i_size_read(&inode->vfs_inode); 2722 u64 cur_offset = start; 2723 u64 last_delalloc_end = 0; 2724 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2725 bool checked_extent_shared = false; 2726 int ret; 2727 2728 /* 2729 * There can be no delalloc past i_size, so don't waste time looking for 2730 * it beyond i_size. 2731 */ 2732 while (cur_offset < end && cur_offset < i_size) { 2733 u64 delalloc_start; 2734 u64 delalloc_end; 2735 u64 prealloc_start; 2736 u64 prealloc_len = 0; 2737 bool delalloc; 2738 2739 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2740 delalloc_cached_state, 2741 &delalloc_start, 2742 &delalloc_end); 2743 if (!delalloc) 2744 break; 2745 2746 /* 2747 * If this is a prealloc extent we have to report every section 2748 * of it that has no delalloc. 2749 */ 2750 if (disk_bytenr != 0) { 2751 if (last_delalloc_end == 0) { 2752 prealloc_start = start; 2753 prealloc_len = delalloc_start - start; 2754 } else { 2755 prealloc_start = last_delalloc_end + 1; 2756 prealloc_len = delalloc_start - prealloc_start; 2757 } 2758 } 2759 2760 if (prealloc_len > 0) { 2761 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2762 ret = btrfs_is_data_extent_shared(inode, 2763 disk_bytenr, 2764 extent_gen, 2765 backref_ctx); 2766 if (ret < 0) 2767 return ret; 2768 else if (ret > 0) 2769 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2770 2771 checked_extent_shared = true; 2772 } 2773 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2774 disk_bytenr + extent_offset, 2775 prealloc_len, prealloc_flags); 2776 if (ret) 2777 return ret; 2778 extent_offset += prealloc_len; 2779 } 2780 2781 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2782 delalloc_end + 1 - delalloc_start, 2783 FIEMAP_EXTENT_DELALLOC | 2784 FIEMAP_EXTENT_UNKNOWN); 2785 if (ret) 2786 return ret; 2787 2788 last_delalloc_end = delalloc_end; 2789 cur_offset = delalloc_end + 1; 2790 extent_offset += cur_offset - delalloc_start; 2791 cond_resched(); 2792 } 2793 2794 /* 2795 * Either we found no delalloc for the whole prealloc extent or we have 2796 * a prealloc extent that spans i_size or starts at or after i_size. 2797 */ 2798 if (disk_bytenr != 0 && last_delalloc_end < end) { 2799 u64 prealloc_start; 2800 u64 prealloc_len; 2801 2802 if (last_delalloc_end == 0) { 2803 prealloc_start = start; 2804 prealloc_len = end + 1 - start; 2805 } else { 2806 prealloc_start = last_delalloc_end + 1; 2807 prealloc_len = end + 1 - prealloc_start; 2808 } 2809 2810 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2811 ret = btrfs_is_data_extent_shared(inode, 2812 disk_bytenr, 2813 extent_gen, 2814 backref_ctx); 2815 if (ret < 0) 2816 return ret; 2817 else if (ret > 0) 2818 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2819 } 2820 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2821 disk_bytenr + extent_offset, 2822 prealloc_len, prealloc_flags); 2823 if (ret) 2824 return ret; 2825 } 2826 2827 return 0; 2828 } 2829 2830 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2831 struct btrfs_path *path, 2832 u64 *last_extent_end_ret) 2833 { 2834 const u64 ino = btrfs_ino(inode); 2835 struct btrfs_root *root = inode->root; 2836 struct extent_buffer *leaf; 2837 struct btrfs_file_extent_item *ei; 2838 struct btrfs_key key; 2839 u64 disk_bytenr; 2840 int ret; 2841 2842 /* 2843 * Lookup the last file extent. We're not using i_size here because 2844 * there might be preallocation past i_size. 2845 */ 2846 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2847 /* There can't be a file extent item at offset (u64)-1 */ 2848 ASSERT(ret != 0); 2849 if (ret < 0) 2850 return ret; 2851 2852 /* 2853 * For a non-existing key, btrfs_search_slot() always leaves us at a 2854 * slot > 0, except if the btree is empty, which is impossible because 2855 * at least it has the inode item for this inode and all the items for 2856 * the root inode 256. 2857 */ 2858 ASSERT(path->slots[0] > 0); 2859 path->slots[0]--; 2860 leaf = path->nodes[0]; 2861 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2862 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2863 /* No file extent items in the subvolume tree. */ 2864 *last_extent_end_ret = 0; 2865 return 0; 2866 } 2867 2868 /* 2869 * For an inline extent, the disk_bytenr is where inline data starts at, 2870 * so first check if we have an inline extent item before checking if we 2871 * have an implicit hole (disk_bytenr == 0). 2872 */ 2873 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2874 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2875 *last_extent_end_ret = btrfs_file_extent_end(path); 2876 return 0; 2877 } 2878 2879 /* 2880 * Find the last file extent item that is not a hole (when NO_HOLES is 2881 * not enabled). This should take at most 2 iterations in the worst 2882 * case: we have one hole file extent item at slot 0 of a leaf and 2883 * another hole file extent item as the last item in the previous leaf. 2884 * This is because we merge file extent items that represent holes. 2885 */ 2886 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2887 while (disk_bytenr == 0) { 2888 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2889 if (ret < 0) { 2890 return ret; 2891 } else if (ret > 0) { 2892 /* No file extent items that are not holes. */ 2893 *last_extent_end_ret = 0; 2894 return 0; 2895 } 2896 leaf = path->nodes[0]; 2897 ei = btrfs_item_ptr(leaf, path->slots[0], 2898 struct btrfs_file_extent_item); 2899 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2900 } 2901 2902 *last_extent_end_ret = btrfs_file_extent_end(path); 2903 return 0; 2904 } 2905 2906 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2907 u64 start, u64 len) 2908 { 2909 const u64 ino = btrfs_ino(inode); 2910 struct extent_state *cached_state = NULL; 2911 struct extent_state *delalloc_cached_state = NULL; 2912 struct btrfs_path *path; 2913 struct fiemap_cache cache = { 0 }; 2914 struct btrfs_backref_share_check_ctx *backref_ctx; 2915 u64 last_extent_end; 2916 u64 prev_extent_end; 2917 u64 lockstart; 2918 u64 lockend; 2919 bool stopped = false; 2920 int ret; 2921 2922 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2923 path = btrfs_alloc_path(); 2924 if (!backref_ctx || !path) { 2925 ret = -ENOMEM; 2926 goto out; 2927 } 2928 2929 lockstart = round_down(start, inode->root->fs_info->sectorsize); 2930 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 2931 prev_extent_end = lockstart; 2932 2933 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 2934 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2935 2936 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 2937 if (ret < 0) 2938 goto out_unlock; 2939 btrfs_release_path(path); 2940 2941 path->reada = READA_FORWARD; 2942 ret = fiemap_search_slot(inode, path, lockstart); 2943 if (ret < 0) { 2944 goto out_unlock; 2945 } else if (ret > 0) { 2946 /* 2947 * No file extent item found, but we may have delalloc between 2948 * the current offset and i_size. So check for that. 2949 */ 2950 ret = 0; 2951 goto check_eof_delalloc; 2952 } 2953 2954 while (prev_extent_end < lockend) { 2955 struct extent_buffer *leaf = path->nodes[0]; 2956 struct btrfs_file_extent_item *ei; 2957 struct btrfs_key key; 2958 u64 extent_end; 2959 u64 extent_len; 2960 u64 extent_offset = 0; 2961 u64 extent_gen; 2962 u64 disk_bytenr = 0; 2963 u64 flags = 0; 2964 int extent_type; 2965 u8 compression; 2966 2967 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2968 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2969 break; 2970 2971 extent_end = btrfs_file_extent_end(path); 2972 2973 /* 2974 * The first iteration can leave us at an extent item that ends 2975 * before our range's start. Move to the next item. 2976 */ 2977 if (extent_end <= lockstart) 2978 goto next_item; 2979 2980 backref_ctx->curr_leaf_bytenr = leaf->start; 2981 2982 /* We have in implicit hole (NO_HOLES feature enabled). */ 2983 if (prev_extent_end < key.offset) { 2984 const u64 range_end = min(key.offset, lockend) - 1; 2985 2986 ret = fiemap_process_hole(inode, fieinfo, &cache, 2987 &delalloc_cached_state, 2988 backref_ctx, 0, 0, 0, 2989 prev_extent_end, range_end); 2990 if (ret < 0) { 2991 goto out_unlock; 2992 } else if (ret > 0) { 2993 /* fiemap_fill_next_extent() told us to stop. */ 2994 stopped = true; 2995 break; 2996 } 2997 2998 /* We've reached the end of the fiemap range, stop. */ 2999 if (key.offset >= lockend) { 3000 stopped = true; 3001 break; 3002 } 3003 } 3004 3005 extent_len = extent_end - key.offset; 3006 ei = btrfs_item_ptr(leaf, path->slots[0], 3007 struct btrfs_file_extent_item); 3008 compression = btrfs_file_extent_compression(leaf, ei); 3009 extent_type = btrfs_file_extent_type(leaf, ei); 3010 extent_gen = btrfs_file_extent_generation(leaf, ei); 3011 3012 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3013 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3014 if (compression == BTRFS_COMPRESS_NONE) 3015 extent_offset = btrfs_file_extent_offset(leaf, ei); 3016 } 3017 3018 if (compression != BTRFS_COMPRESS_NONE) 3019 flags |= FIEMAP_EXTENT_ENCODED; 3020 3021 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3022 flags |= FIEMAP_EXTENT_DATA_INLINE; 3023 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3024 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3025 extent_len, flags); 3026 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3027 ret = fiemap_process_hole(inode, fieinfo, &cache, 3028 &delalloc_cached_state, 3029 backref_ctx, 3030 disk_bytenr, extent_offset, 3031 extent_gen, key.offset, 3032 extent_end - 1); 3033 } else if (disk_bytenr == 0) { 3034 /* We have an explicit hole. */ 3035 ret = fiemap_process_hole(inode, fieinfo, &cache, 3036 &delalloc_cached_state, 3037 backref_ctx, 0, 0, 0, 3038 key.offset, extent_end - 1); 3039 } else { 3040 /* We have a regular extent. */ 3041 if (fieinfo->fi_extents_max) { 3042 ret = btrfs_is_data_extent_shared(inode, 3043 disk_bytenr, 3044 extent_gen, 3045 backref_ctx); 3046 if (ret < 0) 3047 goto out_unlock; 3048 else if (ret > 0) 3049 flags |= FIEMAP_EXTENT_SHARED; 3050 } 3051 3052 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3053 disk_bytenr + extent_offset, 3054 extent_len, flags); 3055 } 3056 3057 if (ret < 0) { 3058 goto out_unlock; 3059 } else if (ret > 0) { 3060 /* fiemap_fill_next_extent() told us to stop. */ 3061 stopped = true; 3062 break; 3063 } 3064 3065 prev_extent_end = extent_end; 3066 next_item: 3067 if (fatal_signal_pending(current)) { 3068 ret = -EINTR; 3069 goto out_unlock; 3070 } 3071 3072 ret = fiemap_next_leaf_item(inode, path); 3073 if (ret < 0) { 3074 goto out_unlock; 3075 } else if (ret > 0) { 3076 /* No more file extent items for this inode. */ 3077 break; 3078 } 3079 cond_resched(); 3080 } 3081 3082 check_eof_delalloc: 3083 /* 3084 * Release (and free) the path before emitting any final entries to 3085 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3086 * once we find no more file extent items exist, we may have a 3087 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3088 * faults when copying data to the user space buffer. 3089 */ 3090 btrfs_free_path(path); 3091 path = NULL; 3092 3093 if (!stopped && prev_extent_end < lockend) { 3094 ret = fiemap_process_hole(inode, fieinfo, &cache, 3095 &delalloc_cached_state, backref_ctx, 3096 0, 0, 0, prev_extent_end, lockend - 1); 3097 if (ret < 0) 3098 goto out_unlock; 3099 prev_extent_end = lockend; 3100 } 3101 3102 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3103 const u64 i_size = i_size_read(&inode->vfs_inode); 3104 3105 if (prev_extent_end < i_size) { 3106 u64 delalloc_start; 3107 u64 delalloc_end; 3108 bool delalloc; 3109 3110 delalloc = btrfs_find_delalloc_in_range(inode, 3111 prev_extent_end, 3112 i_size - 1, 3113 &delalloc_cached_state, 3114 &delalloc_start, 3115 &delalloc_end); 3116 if (!delalloc) 3117 cache.flags |= FIEMAP_EXTENT_LAST; 3118 } else { 3119 cache.flags |= FIEMAP_EXTENT_LAST; 3120 } 3121 } 3122 3123 ret = emit_last_fiemap_cache(fieinfo, &cache); 3124 3125 out_unlock: 3126 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3127 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3128 out: 3129 free_extent_state(delalloc_cached_state); 3130 btrfs_free_backref_share_ctx(backref_ctx); 3131 btrfs_free_path(path); 3132 return ret; 3133 } 3134 3135 static void __free_extent_buffer(struct extent_buffer *eb) 3136 { 3137 kmem_cache_free(extent_buffer_cache, eb); 3138 } 3139 3140 static int extent_buffer_under_io(const struct extent_buffer *eb) 3141 { 3142 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3143 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3144 } 3145 3146 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3147 { 3148 struct btrfs_subpage *subpage; 3149 3150 lockdep_assert_held(&page->mapping->private_lock); 3151 3152 if (PagePrivate(page)) { 3153 subpage = (struct btrfs_subpage *)page->private; 3154 if (atomic_read(&subpage->eb_refs)) 3155 return true; 3156 /* 3157 * Even there is no eb refs here, we may still have 3158 * end_page_read() call relying on page::private. 3159 */ 3160 if (atomic_read(&subpage->readers)) 3161 return true; 3162 } 3163 return false; 3164 } 3165 3166 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3167 { 3168 struct btrfs_fs_info *fs_info = eb->fs_info; 3169 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3170 3171 /* 3172 * For mapped eb, we're going to change the page private, which should 3173 * be done under the private_lock. 3174 */ 3175 if (mapped) 3176 spin_lock(&page->mapping->private_lock); 3177 3178 if (!PagePrivate(page)) { 3179 if (mapped) 3180 spin_unlock(&page->mapping->private_lock); 3181 return; 3182 } 3183 3184 if (fs_info->nodesize >= PAGE_SIZE) { 3185 /* 3186 * We do this since we'll remove the pages after we've 3187 * removed the eb from the radix tree, so we could race 3188 * and have this page now attached to the new eb. So 3189 * only clear page_private if it's still connected to 3190 * this eb. 3191 */ 3192 if (PagePrivate(page) && 3193 page->private == (unsigned long)eb) { 3194 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3195 BUG_ON(PageDirty(page)); 3196 BUG_ON(PageWriteback(page)); 3197 /* 3198 * We need to make sure we haven't be attached 3199 * to a new eb. 3200 */ 3201 detach_page_private(page); 3202 } 3203 if (mapped) 3204 spin_unlock(&page->mapping->private_lock); 3205 return; 3206 } 3207 3208 /* 3209 * For subpage, we can have dummy eb with page private. In this case, 3210 * we can directly detach the private as such page is only attached to 3211 * one dummy eb, no sharing. 3212 */ 3213 if (!mapped) { 3214 btrfs_detach_subpage(fs_info, page); 3215 return; 3216 } 3217 3218 btrfs_page_dec_eb_refs(fs_info, page); 3219 3220 /* 3221 * We can only detach the page private if there are no other ebs in the 3222 * page range and no unfinished IO. 3223 */ 3224 if (!page_range_has_eb(fs_info, page)) 3225 btrfs_detach_subpage(fs_info, page); 3226 3227 spin_unlock(&page->mapping->private_lock); 3228 } 3229 3230 /* Release all pages attached to the extent buffer */ 3231 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3232 { 3233 int i; 3234 int num_pages; 3235 3236 ASSERT(!extent_buffer_under_io(eb)); 3237 3238 num_pages = num_extent_pages(eb); 3239 for (i = 0; i < num_pages; i++) { 3240 struct page *page = eb->pages[i]; 3241 3242 if (!page) 3243 continue; 3244 3245 detach_extent_buffer_page(eb, page); 3246 3247 /* One for when we allocated the page */ 3248 put_page(page); 3249 } 3250 } 3251 3252 /* 3253 * Helper for releasing the extent buffer. 3254 */ 3255 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3256 { 3257 btrfs_release_extent_buffer_pages(eb); 3258 btrfs_leak_debug_del_eb(eb); 3259 __free_extent_buffer(eb); 3260 } 3261 3262 static struct extent_buffer * 3263 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3264 unsigned long len) 3265 { 3266 struct extent_buffer *eb = NULL; 3267 3268 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3269 eb->start = start; 3270 eb->len = len; 3271 eb->fs_info = fs_info; 3272 init_rwsem(&eb->lock); 3273 3274 btrfs_leak_debug_add_eb(eb); 3275 3276 spin_lock_init(&eb->refs_lock); 3277 atomic_set(&eb->refs, 1); 3278 3279 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3280 3281 return eb; 3282 } 3283 3284 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3285 { 3286 int i; 3287 struct extent_buffer *new; 3288 int num_pages = num_extent_pages(src); 3289 int ret; 3290 3291 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3292 if (new == NULL) 3293 return NULL; 3294 3295 /* 3296 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3297 * btrfs_release_extent_buffer() have different behavior for 3298 * UNMAPPED subpage extent buffer. 3299 */ 3300 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3301 3302 ret = btrfs_alloc_page_array(num_pages, new->pages); 3303 if (ret) { 3304 btrfs_release_extent_buffer(new); 3305 return NULL; 3306 } 3307 3308 for (i = 0; i < num_pages; i++) { 3309 int ret; 3310 struct page *p = new->pages[i]; 3311 3312 ret = attach_extent_buffer_page(new, p, NULL); 3313 if (ret < 0) { 3314 btrfs_release_extent_buffer(new); 3315 return NULL; 3316 } 3317 WARN_ON(PageDirty(p)); 3318 copy_page(page_address(p), page_address(src->pages[i])); 3319 } 3320 set_extent_buffer_uptodate(new); 3321 3322 return new; 3323 } 3324 3325 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3326 u64 start, unsigned long len) 3327 { 3328 struct extent_buffer *eb; 3329 int num_pages; 3330 int i; 3331 int ret; 3332 3333 eb = __alloc_extent_buffer(fs_info, start, len); 3334 if (!eb) 3335 return NULL; 3336 3337 num_pages = num_extent_pages(eb); 3338 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3339 if (ret) 3340 goto err; 3341 3342 for (i = 0; i < num_pages; i++) { 3343 struct page *p = eb->pages[i]; 3344 3345 ret = attach_extent_buffer_page(eb, p, NULL); 3346 if (ret < 0) 3347 goto err; 3348 } 3349 3350 set_extent_buffer_uptodate(eb); 3351 btrfs_set_header_nritems(eb, 0); 3352 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3353 3354 return eb; 3355 err: 3356 for (i = 0; i < num_pages; i++) { 3357 if (eb->pages[i]) { 3358 detach_extent_buffer_page(eb, eb->pages[i]); 3359 __free_page(eb->pages[i]); 3360 } 3361 } 3362 __free_extent_buffer(eb); 3363 return NULL; 3364 } 3365 3366 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3367 u64 start) 3368 { 3369 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3370 } 3371 3372 static void check_buffer_tree_ref(struct extent_buffer *eb) 3373 { 3374 int refs; 3375 /* 3376 * The TREE_REF bit is first set when the extent_buffer is added 3377 * to the radix tree. It is also reset, if unset, when a new reference 3378 * is created by find_extent_buffer. 3379 * 3380 * It is only cleared in two cases: freeing the last non-tree 3381 * reference to the extent_buffer when its STALE bit is set or 3382 * calling release_folio when the tree reference is the only reference. 3383 * 3384 * In both cases, care is taken to ensure that the extent_buffer's 3385 * pages are not under io. However, release_folio can be concurrently 3386 * called with creating new references, which is prone to race 3387 * conditions between the calls to check_buffer_tree_ref in those 3388 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3389 * 3390 * The actual lifetime of the extent_buffer in the radix tree is 3391 * adequately protected by the refcount, but the TREE_REF bit and 3392 * its corresponding reference are not. To protect against this 3393 * class of races, we call check_buffer_tree_ref from the codepaths 3394 * which trigger io. Note that once io is initiated, TREE_REF can no 3395 * longer be cleared, so that is the moment at which any such race is 3396 * best fixed. 3397 */ 3398 refs = atomic_read(&eb->refs); 3399 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3400 return; 3401 3402 spin_lock(&eb->refs_lock); 3403 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3404 atomic_inc(&eb->refs); 3405 spin_unlock(&eb->refs_lock); 3406 } 3407 3408 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3409 struct page *accessed) 3410 { 3411 int num_pages, i; 3412 3413 check_buffer_tree_ref(eb); 3414 3415 num_pages = num_extent_pages(eb); 3416 for (i = 0; i < num_pages; i++) { 3417 struct page *p = eb->pages[i]; 3418 3419 if (p != accessed) 3420 mark_page_accessed(p); 3421 } 3422 } 3423 3424 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3425 u64 start) 3426 { 3427 struct extent_buffer *eb; 3428 3429 eb = find_extent_buffer_nolock(fs_info, start); 3430 if (!eb) 3431 return NULL; 3432 /* 3433 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3434 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3435 * another task running free_extent_buffer() might have seen that flag 3436 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3437 * writeback flags not set) and it's still in the tree (flag 3438 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3439 * decrementing the extent buffer's reference count twice. So here we 3440 * could race and increment the eb's reference count, clear its stale 3441 * flag, mark it as dirty and drop our reference before the other task 3442 * finishes executing free_extent_buffer, which would later result in 3443 * an attempt to free an extent buffer that is dirty. 3444 */ 3445 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3446 spin_lock(&eb->refs_lock); 3447 spin_unlock(&eb->refs_lock); 3448 } 3449 mark_extent_buffer_accessed(eb, NULL); 3450 return eb; 3451 } 3452 3453 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3454 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3455 u64 start) 3456 { 3457 struct extent_buffer *eb, *exists = NULL; 3458 int ret; 3459 3460 eb = find_extent_buffer(fs_info, start); 3461 if (eb) 3462 return eb; 3463 eb = alloc_dummy_extent_buffer(fs_info, start); 3464 if (!eb) 3465 return ERR_PTR(-ENOMEM); 3466 eb->fs_info = fs_info; 3467 again: 3468 ret = radix_tree_preload(GFP_NOFS); 3469 if (ret) { 3470 exists = ERR_PTR(ret); 3471 goto free_eb; 3472 } 3473 spin_lock(&fs_info->buffer_lock); 3474 ret = radix_tree_insert(&fs_info->buffer_radix, 3475 start >> fs_info->sectorsize_bits, eb); 3476 spin_unlock(&fs_info->buffer_lock); 3477 radix_tree_preload_end(); 3478 if (ret == -EEXIST) { 3479 exists = find_extent_buffer(fs_info, start); 3480 if (exists) 3481 goto free_eb; 3482 else 3483 goto again; 3484 } 3485 check_buffer_tree_ref(eb); 3486 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3487 3488 return eb; 3489 free_eb: 3490 btrfs_release_extent_buffer(eb); 3491 return exists; 3492 } 3493 #endif 3494 3495 static struct extent_buffer *grab_extent_buffer( 3496 struct btrfs_fs_info *fs_info, struct page *page) 3497 { 3498 struct extent_buffer *exists; 3499 3500 /* 3501 * For subpage case, we completely rely on radix tree to ensure we 3502 * don't try to insert two ebs for the same bytenr. So here we always 3503 * return NULL and just continue. 3504 */ 3505 if (fs_info->nodesize < PAGE_SIZE) 3506 return NULL; 3507 3508 /* Page not yet attached to an extent buffer */ 3509 if (!PagePrivate(page)) 3510 return NULL; 3511 3512 /* 3513 * We could have already allocated an eb for this page and attached one 3514 * so lets see if we can get a ref on the existing eb, and if we can we 3515 * know it's good and we can just return that one, else we know we can 3516 * just overwrite page->private. 3517 */ 3518 exists = (struct extent_buffer *)page->private; 3519 if (atomic_inc_not_zero(&exists->refs)) 3520 return exists; 3521 3522 WARN_ON(PageDirty(page)); 3523 detach_page_private(page); 3524 return NULL; 3525 } 3526 3527 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3528 { 3529 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3530 btrfs_err(fs_info, "bad tree block start %llu", start); 3531 return -EINVAL; 3532 } 3533 3534 if (fs_info->nodesize < PAGE_SIZE && 3535 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3536 btrfs_err(fs_info, 3537 "tree block crosses page boundary, start %llu nodesize %u", 3538 start, fs_info->nodesize); 3539 return -EINVAL; 3540 } 3541 if (fs_info->nodesize >= PAGE_SIZE && 3542 !PAGE_ALIGNED(start)) { 3543 btrfs_err(fs_info, 3544 "tree block is not page aligned, start %llu nodesize %u", 3545 start, fs_info->nodesize); 3546 return -EINVAL; 3547 } 3548 return 0; 3549 } 3550 3551 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3552 u64 start, u64 owner_root, int level) 3553 { 3554 unsigned long len = fs_info->nodesize; 3555 int num_pages; 3556 int i; 3557 unsigned long index = start >> PAGE_SHIFT; 3558 struct extent_buffer *eb; 3559 struct extent_buffer *exists = NULL; 3560 struct page *p; 3561 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3562 u64 lockdep_owner = owner_root; 3563 int uptodate = 1; 3564 int ret; 3565 3566 if (check_eb_alignment(fs_info, start)) 3567 return ERR_PTR(-EINVAL); 3568 3569 #if BITS_PER_LONG == 32 3570 if (start >= MAX_LFS_FILESIZE) { 3571 btrfs_err_rl(fs_info, 3572 "extent buffer %llu is beyond 32bit page cache limit", start); 3573 btrfs_err_32bit_limit(fs_info); 3574 return ERR_PTR(-EOVERFLOW); 3575 } 3576 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3577 btrfs_warn_32bit_limit(fs_info); 3578 #endif 3579 3580 eb = find_extent_buffer(fs_info, start); 3581 if (eb) 3582 return eb; 3583 3584 eb = __alloc_extent_buffer(fs_info, start, len); 3585 if (!eb) 3586 return ERR_PTR(-ENOMEM); 3587 3588 /* 3589 * The reloc trees are just snapshots, so we need them to appear to be 3590 * just like any other fs tree WRT lockdep. 3591 */ 3592 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3593 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3594 3595 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3596 3597 num_pages = num_extent_pages(eb); 3598 for (i = 0; i < num_pages; i++, index++) { 3599 struct btrfs_subpage *prealloc = NULL; 3600 3601 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3602 if (!p) { 3603 exists = ERR_PTR(-ENOMEM); 3604 goto free_eb; 3605 } 3606 3607 /* 3608 * Preallocate page->private for subpage case, so that we won't 3609 * allocate memory with private_lock hold. The memory will be 3610 * freed by attach_extent_buffer_page() or freed manually if 3611 * we exit earlier. 3612 * 3613 * Although we have ensured one subpage eb can only have one 3614 * page, but it may change in the future for 16K page size 3615 * support, so we still preallocate the memory in the loop. 3616 */ 3617 if (fs_info->nodesize < PAGE_SIZE) { 3618 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3619 if (IS_ERR(prealloc)) { 3620 ret = PTR_ERR(prealloc); 3621 unlock_page(p); 3622 put_page(p); 3623 exists = ERR_PTR(ret); 3624 goto free_eb; 3625 } 3626 } 3627 3628 spin_lock(&mapping->private_lock); 3629 exists = grab_extent_buffer(fs_info, p); 3630 if (exists) { 3631 spin_unlock(&mapping->private_lock); 3632 unlock_page(p); 3633 put_page(p); 3634 mark_extent_buffer_accessed(exists, p); 3635 btrfs_free_subpage(prealloc); 3636 goto free_eb; 3637 } 3638 /* Should not fail, as we have preallocated the memory */ 3639 ret = attach_extent_buffer_page(eb, p, prealloc); 3640 ASSERT(!ret); 3641 /* 3642 * To inform we have extra eb under allocation, so that 3643 * detach_extent_buffer_page() won't release the page private 3644 * when the eb hasn't yet been inserted into radix tree. 3645 * 3646 * The ref will be decreased when the eb released the page, in 3647 * detach_extent_buffer_page(). 3648 * Thus needs no special handling in error path. 3649 */ 3650 btrfs_page_inc_eb_refs(fs_info, p); 3651 spin_unlock(&mapping->private_lock); 3652 3653 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3654 eb->pages[i] = p; 3655 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3656 uptodate = 0; 3657 3658 /* 3659 * We can't unlock the pages just yet since the extent buffer 3660 * hasn't been properly inserted in the radix tree, this 3661 * opens a race with btree_release_folio which can free a page 3662 * while we are still filling in all pages for the buffer and 3663 * we could crash. 3664 */ 3665 } 3666 if (uptodate) 3667 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3668 again: 3669 ret = radix_tree_preload(GFP_NOFS); 3670 if (ret) { 3671 exists = ERR_PTR(ret); 3672 goto free_eb; 3673 } 3674 3675 spin_lock(&fs_info->buffer_lock); 3676 ret = radix_tree_insert(&fs_info->buffer_radix, 3677 start >> fs_info->sectorsize_bits, eb); 3678 spin_unlock(&fs_info->buffer_lock); 3679 radix_tree_preload_end(); 3680 if (ret == -EEXIST) { 3681 exists = find_extent_buffer(fs_info, start); 3682 if (exists) 3683 goto free_eb; 3684 else 3685 goto again; 3686 } 3687 /* add one reference for the tree */ 3688 check_buffer_tree_ref(eb); 3689 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3690 3691 /* 3692 * Now it's safe to unlock the pages because any calls to 3693 * btree_release_folio will correctly detect that a page belongs to a 3694 * live buffer and won't free them prematurely. 3695 */ 3696 for (i = 0; i < num_pages; i++) 3697 unlock_page(eb->pages[i]); 3698 return eb; 3699 3700 free_eb: 3701 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3702 for (i = 0; i < num_pages; i++) { 3703 if (eb->pages[i]) 3704 unlock_page(eb->pages[i]); 3705 } 3706 3707 btrfs_release_extent_buffer(eb); 3708 return exists; 3709 } 3710 3711 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3712 { 3713 struct extent_buffer *eb = 3714 container_of(head, struct extent_buffer, rcu_head); 3715 3716 __free_extent_buffer(eb); 3717 } 3718 3719 static int release_extent_buffer(struct extent_buffer *eb) 3720 __releases(&eb->refs_lock) 3721 { 3722 lockdep_assert_held(&eb->refs_lock); 3723 3724 WARN_ON(atomic_read(&eb->refs) == 0); 3725 if (atomic_dec_and_test(&eb->refs)) { 3726 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3727 struct btrfs_fs_info *fs_info = eb->fs_info; 3728 3729 spin_unlock(&eb->refs_lock); 3730 3731 spin_lock(&fs_info->buffer_lock); 3732 radix_tree_delete(&fs_info->buffer_radix, 3733 eb->start >> fs_info->sectorsize_bits); 3734 spin_unlock(&fs_info->buffer_lock); 3735 } else { 3736 spin_unlock(&eb->refs_lock); 3737 } 3738 3739 btrfs_leak_debug_del_eb(eb); 3740 /* Should be safe to release our pages at this point */ 3741 btrfs_release_extent_buffer_pages(eb); 3742 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3743 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3744 __free_extent_buffer(eb); 3745 return 1; 3746 } 3747 #endif 3748 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3749 return 1; 3750 } 3751 spin_unlock(&eb->refs_lock); 3752 3753 return 0; 3754 } 3755 3756 void free_extent_buffer(struct extent_buffer *eb) 3757 { 3758 int refs; 3759 if (!eb) 3760 return; 3761 3762 refs = atomic_read(&eb->refs); 3763 while (1) { 3764 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3765 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3766 refs == 1)) 3767 break; 3768 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3769 return; 3770 } 3771 3772 spin_lock(&eb->refs_lock); 3773 if (atomic_read(&eb->refs) == 2 && 3774 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3775 !extent_buffer_under_io(eb) && 3776 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3777 atomic_dec(&eb->refs); 3778 3779 /* 3780 * I know this is terrible, but it's temporary until we stop tracking 3781 * the uptodate bits and such for the extent buffers. 3782 */ 3783 release_extent_buffer(eb); 3784 } 3785 3786 void free_extent_buffer_stale(struct extent_buffer *eb) 3787 { 3788 if (!eb) 3789 return; 3790 3791 spin_lock(&eb->refs_lock); 3792 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3793 3794 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3795 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3796 atomic_dec(&eb->refs); 3797 release_extent_buffer(eb); 3798 } 3799 3800 static void btree_clear_page_dirty(struct page *page) 3801 { 3802 ASSERT(PageDirty(page)); 3803 ASSERT(PageLocked(page)); 3804 clear_page_dirty_for_io(page); 3805 xa_lock_irq(&page->mapping->i_pages); 3806 if (!PageDirty(page)) 3807 __xa_clear_mark(&page->mapping->i_pages, 3808 page_index(page), PAGECACHE_TAG_DIRTY); 3809 xa_unlock_irq(&page->mapping->i_pages); 3810 } 3811 3812 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3813 { 3814 struct btrfs_fs_info *fs_info = eb->fs_info; 3815 struct page *page = eb->pages[0]; 3816 bool last; 3817 3818 /* btree_clear_page_dirty() needs page locked */ 3819 lock_page(page); 3820 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3821 eb->len); 3822 if (last) 3823 btree_clear_page_dirty(page); 3824 unlock_page(page); 3825 WARN_ON(atomic_read(&eb->refs) == 0); 3826 } 3827 3828 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3829 struct extent_buffer *eb) 3830 { 3831 struct btrfs_fs_info *fs_info = eb->fs_info; 3832 int i; 3833 int num_pages; 3834 struct page *page; 3835 3836 btrfs_assert_tree_write_locked(eb); 3837 3838 if (trans && btrfs_header_generation(eb) != trans->transid) 3839 return; 3840 3841 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3842 return; 3843 3844 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3845 fs_info->dirty_metadata_batch); 3846 3847 if (eb->fs_info->nodesize < PAGE_SIZE) 3848 return clear_subpage_extent_buffer_dirty(eb); 3849 3850 num_pages = num_extent_pages(eb); 3851 3852 for (i = 0; i < num_pages; i++) { 3853 page = eb->pages[i]; 3854 if (!PageDirty(page)) 3855 continue; 3856 lock_page(page); 3857 btree_clear_page_dirty(page); 3858 unlock_page(page); 3859 } 3860 WARN_ON(atomic_read(&eb->refs) == 0); 3861 } 3862 3863 void set_extent_buffer_dirty(struct extent_buffer *eb) 3864 { 3865 int i; 3866 int num_pages; 3867 bool was_dirty; 3868 3869 check_buffer_tree_ref(eb); 3870 3871 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3872 3873 num_pages = num_extent_pages(eb); 3874 WARN_ON(atomic_read(&eb->refs) == 0); 3875 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3876 3877 if (!was_dirty) { 3878 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3879 3880 /* 3881 * For subpage case, we can have other extent buffers in the 3882 * same page, and in clear_subpage_extent_buffer_dirty() we 3883 * have to clear page dirty without subpage lock held. 3884 * This can cause race where our page gets dirty cleared after 3885 * we just set it. 3886 * 3887 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3888 * its page for other reasons, we can use page lock to prevent 3889 * the above race. 3890 */ 3891 if (subpage) 3892 lock_page(eb->pages[0]); 3893 for (i = 0; i < num_pages; i++) 3894 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 3895 eb->start, eb->len); 3896 if (subpage) 3897 unlock_page(eb->pages[0]); 3898 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3899 eb->len, 3900 eb->fs_info->dirty_metadata_batch); 3901 } 3902 #ifdef CONFIG_BTRFS_DEBUG 3903 for (i = 0; i < num_pages; i++) 3904 ASSERT(PageDirty(eb->pages[i])); 3905 #endif 3906 } 3907 3908 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3909 { 3910 struct btrfs_fs_info *fs_info = eb->fs_info; 3911 struct page *page; 3912 int num_pages; 3913 int i; 3914 3915 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3916 num_pages = num_extent_pages(eb); 3917 for (i = 0; i < num_pages; i++) { 3918 page = eb->pages[i]; 3919 if (!page) 3920 continue; 3921 3922 /* 3923 * This is special handling for metadata subpage, as regular 3924 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3925 */ 3926 if (fs_info->nodesize >= PAGE_SIZE) 3927 ClearPageUptodate(page); 3928 else 3929 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 3930 eb->len); 3931 } 3932 } 3933 3934 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3935 { 3936 struct btrfs_fs_info *fs_info = eb->fs_info; 3937 struct page *page; 3938 int num_pages; 3939 int i; 3940 3941 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3942 num_pages = num_extent_pages(eb); 3943 for (i = 0; i < num_pages; i++) { 3944 page = eb->pages[i]; 3945 3946 /* 3947 * This is special handling for metadata subpage, as regular 3948 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3949 */ 3950 if (fs_info->nodesize >= PAGE_SIZE) 3951 SetPageUptodate(page); 3952 else 3953 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 3954 eb->len); 3955 } 3956 } 3957 3958 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 3959 { 3960 struct extent_buffer *eb = bbio->private; 3961 struct btrfs_fs_info *fs_info = eb->fs_info; 3962 bool uptodate = !bbio->bio.bi_status; 3963 struct bvec_iter_all iter_all; 3964 struct bio_vec *bvec; 3965 u32 bio_offset = 0; 3966 3967 eb->read_mirror = bbio->mirror_num; 3968 3969 if (uptodate && 3970 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3971 uptodate = false; 3972 3973 if (uptodate) { 3974 set_extent_buffer_uptodate(eb); 3975 } else { 3976 clear_extent_buffer_uptodate(eb); 3977 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3978 } 3979 3980 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 3981 u64 start = eb->start + bio_offset; 3982 struct page *page = bvec->bv_page; 3983 u32 len = bvec->bv_len; 3984 3985 if (uptodate) 3986 btrfs_page_set_uptodate(fs_info, page, start, len); 3987 else 3988 btrfs_page_clear_uptodate(fs_info, page, start, len); 3989 3990 bio_offset += len; 3991 } 3992 3993 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3994 smp_mb__after_atomic(); 3995 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3996 free_extent_buffer(eb); 3997 3998 bio_put(&bbio->bio); 3999 } 4000 4001 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4002 struct btrfs_tree_parent_check *check) 4003 { 4004 int num_pages = num_extent_pages(eb), i; 4005 struct btrfs_bio *bbio; 4006 4007 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4008 return 0; 4009 4010 /* 4011 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4012 * operation, which could potentially still be in flight. In this case 4013 * we simply want to return an error. 4014 */ 4015 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4016 return -EIO; 4017 4018 /* Someone else is already reading the buffer, just wait for it. */ 4019 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 4020 goto done; 4021 4022 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4023 eb->read_mirror = 0; 4024 check_buffer_tree_ref(eb); 4025 atomic_inc(&eb->refs); 4026 4027 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4028 REQ_OP_READ | REQ_META, eb->fs_info, 4029 extent_buffer_read_end_io, eb); 4030 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4031 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4032 bbio->file_offset = eb->start; 4033 memcpy(&bbio->parent_check, check, sizeof(*check)); 4034 if (eb->fs_info->nodesize < PAGE_SIZE) { 4035 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 4036 eb->start - page_offset(eb->pages[0])); 4037 } else { 4038 for (i = 0; i < num_pages; i++) 4039 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 4040 } 4041 btrfs_submit_bio(bbio, mirror_num); 4042 4043 done: 4044 if (wait == WAIT_COMPLETE) { 4045 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4046 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4047 return -EIO; 4048 } 4049 4050 return 0; 4051 } 4052 4053 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4054 unsigned long len) 4055 { 4056 btrfs_warn(eb->fs_info, 4057 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4058 eb->start, eb->len, start, len); 4059 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4060 4061 return true; 4062 } 4063 4064 /* 4065 * Check if the [start, start + len) range is valid before reading/writing 4066 * the eb. 4067 * NOTE: @start and @len are offset inside the eb, not logical address. 4068 * 4069 * Caller should not touch the dst/src memory if this function returns error. 4070 */ 4071 static inline int check_eb_range(const struct extent_buffer *eb, 4072 unsigned long start, unsigned long len) 4073 { 4074 unsigned long offset; 4075 4076 /* start, start + len should not go beyond eb->len nor overflow */ 4077 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4078 return report_eb_range(eb, start, len); 4079 4080 return false; 4081 } 4082 4083 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4084 unsigned long start, unsigned long len) 4085 { 4086 size_t cur; 4087 size_t offset; 4088 struct page *page; 4089 char *kaddr; 4090 char *dst = (char *)dstv; 4091 unsigned long i = get_eb_page_index(start); 4092 4093 if (check_eb_range(eb, start, len)) 4094 return; 4095 4096 offset = get_eb_offset_in_page(eb, start); 4097 4098 while (len > 0) { 4099 page = eb->pages[i]; 4100 4101 cur = min(len, (PAGE_SIZE - offset)); 4102 kaddr = page_address(page); 4103 memcpy(dst, kaddr + offset, cur); 4104 4105 dst += cur; 4106 len -= cur; 4107 offset = 0; 4108 i++; 4109 } 4110 } 4111 4112 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4113 void __user *dstv, 4114 unsigned long start, unsigned long len) 4115 { 4116 size_t cur; 4117 size_t offset; 4118 struct page *page; 4119 char *kaddr; 4120 char __user *dst = (char __user *)dstv; 4121 unsigned long i = get_eb_page_index(start); 4122 int ret = 0; 4123 4124 WARN_ON(start > eb->len); 4125 WARN_ON(start + len > eb->start + eb->len); 4126 4127 offset = get_eb_offset_in_page(eb, start); 4128 4129 while (len > 0) { 4130 page = eb->pages[i]; 4131 4132 cur = min(len, (PAGE_SIZE - offset)); 4133 kaddr = page_address(page); 4134 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4135 ret = -EFAULT; 4136 break; 4137 } 4138 4139 dst += cur; 4140 len -= cur; 4141 offset = 0; 4142 i++; 4143 } 4144 4145 return ret; 4146 } 4147 4148 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4149 unsigned long start, unsigned long len) 4150 { 4151 size_t cur; 4152 size_t offset; 4153 struct page *page; 4154 char *kaddr; 4155 char *ptr = (char *)ptrv; 4156 unsigned long i = get_eb_page_index(start); 4157 int ret = 0; 4158 4159 if (check_eb_range(eb, start, len)) 4160 return -EINVAL; 4161 4162 offset = get_eb_offset_in_page(eb, start); 4163 4164 while (len > 0) { 4165 page = eb->pages[i]; 4166 4167 cur = min(len, (PAGE_SIZE - offset)); 4168 4169 kaddr = page_address(page); 4170 ret = memcmp(ptr, kaddr + offset, cur); 4171 if (ret) 4172 break; 4173 4174 ptr += cur; 4175 len -= cur; 4176 offset = 0; 4177 i++; 4178 } 4179 return ret; 4180 } 4181 4182 /* 4183 * Check that the extent buffer is uptodate. 4184 * 4185 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4186 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4187 */ 4188 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4189 struct page *page) 4190 { 4191 struct btrfs_fs_info *fs_info = eb->fs_info; 4192 4193 /* 4194 * If we are using the commit root we could potentially clear a page 4195 * Uptodate while we're using the extent buffer that we've previously 4196 * looked up. We don't want to complain in this case, as the page was 4197 * valid before, we just didn't write it out. Instead we want to catch 4198 * the case where we didn't actually read the block properly, which 4199 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4200 */ 4201 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4202 return; 4203 4204 if (fs_info->nodesize < PAGE_SIZE) { 4205 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4206 eb->start, eb->len))) 4207 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4208 } else { 4209 WARN_ON(!PageUptodate(page)); 4210 } 4211 } 4212 4213 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 4214 const void *srcv) 4215 { 4216 char *kaddr; 4217 4218 assert_eb_page_uptodate(eb, eb->pages[0]); 4219 kaddr = page_address(eb->pages[0]) + 4220 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 4221 chunk_tree_uuid)); 4222 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4223 } 4224 4225 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 4226 { 4227 char *kaddr; 4228 4229 assert_eb_page_uptodate(eb, eb->pages[0]); 4230 kaddr = page_address(eb->pages[0]) + 4231 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 4232 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4233 } 4234 4235 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4236 unsigned long start, unsigned long len) 4237 { 4238 size_t cur; 4239 size_t offset; 4240 struct page *page; 4241 char *kaddr; 4242 char *src = (char *)srcv; 4243 unsigned long i = get_eb_page_index(start); 4244 4245 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4246 4247 if (check_eb_range(eb, start, len)) 4248 return; 4249 4250 offset = get_eb_offset_in_page(eb, start); 4251 4252 while (len > 0) { 4253 page = eb->pages[i]; 4254 assert_eb_page_uptodate(eb, page); 4255 4256 cur = min(len, PAGE_SIZE - offset); 4257 kaddr = page_address(page); 4258 memcpy(kaddr + offset, src, cur); 4259 4260 src += cur; 4261 len -= cur; 4262 offset = 0; 4263 i++; 4264 } 4265 } 4266 4267 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4268 unsigned long len) 4269 { 4270 size_t cur; 4271 size_t offset; 4272 struct page *page; 4273 char *kaddr; 4274 unsigned long i = get_eb_page_index(start); 4275 4276 if (check_eb_range(eb, start, len)) 4277 return; 4278 4279 offset = get_eb_offset_in_page(eb, start); 4280 4281 while (len > 0) { 4282 page = eb->pages[i]; 4283 assert_eb_page_uptodate(eb, page); 4284 4285 cur = min(len, PAGE_SIZE - offset); 4286 kaddr = page_address(page); 4287 memset(kaddr + offset, 0, cur); 4288 4289 len -= cur; 4290 offset = 0; 4291 i++; 4292 } 4293 } 4294 4295 void copy_extent_buffer_full(const struct extent_buffer *dst, 4296 const struct extent_buffer *src) 4297 { 4298 int i; 4299 int num_pages; 4300 4301 ASSERT(dst->len == src->len); 4302 4303 if (dst->fs_info->nodesize >= PAGE_SIZE) { 4304 num_pages = num_extent_pages(dst); 4305 for (i = 0; i < num_pages; i++) 4306 copy_page(page_address(dst->pages[i]), 4307 page_address(src->pages[i])); 4308 } else { 4309 size_t src_offset = get_eb_offset_in_page(src, 0); 4310 size_t dst_offset = get_eb_offset_in_page(dst, 0); 4311 4312 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 4313 memcpy(page_address(dst->pages[0]) + dst_offset, 4314 page_address(src->pages[0]) + src_offset, 4315 src->len); 4316 } 4317 } 4318 4319 void copy_extent_buffer(const struct extent_buffer *dst, 4320 const struct extent_buffer *src, 4321 unsigned long dst_offset, unsigned long src_offset, 4322 unsigned long len) 4323 { 4324 u64 dst_len = dst->len; 4325 size_t cur; 4326 size_t offset; 4327 struct page *page; 4328 char *kaddr; 4329 unsigned long i = get_eb_page_index(dst_offset); 4330 4331 if (check_eb_range(dst, dst_offset, len) || 4332 check_eb_range(src, src_offset, len)) 4333 return; 4334 4335 WARN_ON(src->len != dst_len); 4336 4337 offset = get_eb_offset_in_page(dst, dst_offset); 4338 4339 while (len > 0) { 4340 page = dst->pages[i]; 4341 assert_eb_page_uptodate(dst, page); 4342 4343 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4344 4345 kaddr = page_address(page); 4346 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4347 4348 src_offset += cur; 4349 len -= cur; 4350 offset = 0; 4351 i++; 4352 } 4353 } 4354 4355 /* 4356 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4357 * given bit number 4358 * @eb: the extent buffer 4359 * @start: offset of the bitmap item in the extent buffer 4360 * @nr: bit number 4361 * @page_index: return index of the page in the extent buffer that contains the 4362 * given bit number 4363 * @page_offset: return offset into the page given by page_index 4364 * 4365 * This helper hides the ugliness of finding the byte in an extent buffer which 4366 * contains a given bit. 4367 */ 4368 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4369 unsigned long start, unsigned long nr, 4370 unsigned long *page_index, 4371 size_t *page_offset) 4372 { 4373 size_t byte_offset = BIT_BYTE(nr); 4374 size_t offset; 4375 4376 /* 4377 * The byte we want is the offset of the extent buffer + the offset of 4378 * the bitmap item in the extent buffer + the offset of the byte in the 4379 * bitmap item. 4380 */ 4381 offset = start + offset_in_page(eb->start) + byte_offset; 4382 4383 *page_index = offset >> PAGE_SHIFT; 4384 *page_offset = offset_in_page(offset); 4385 } 4386 4387 /* 4388 * Determine whether a bit in a bitmap item is set. 4389 * 4390 * @eb: the extent buffer 4391 * @start: offset of the bitmap item in the extent buffer 4392 * @nr: bit number to test 4393 */ 4394 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4395 unsigned long nr) 4396 { 4397 u8 *kaddr; 4398 struct page *page; 4399 unsigned long i; 4400 size_t offset; 4401 4402 eb_bitmap_offset(eb, start, nr, &i, &offset); 4403 page = eb->pages[i]; 4404 assert_eb_page_uptodate(eb, page); 4405 kaddr = page_address(page); 4406 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4407 } 4408 4409 /* 4410 * Set an area of a bitmap to 1. 4411 * 4412 * @eb: the extent buffer 4413 * @start: offset of the bitmap item in the extent buffer 4414 * @pos: bit number of the first bit 4415 * @len: number of bits to set 4416 */ 4417 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4418 unsigned long pos, unsigned long len) 4419 { 4420 u8 *kaddr; 4421 struct page *page; 4422 unsigned long i; 4423 size_t offset; 4424 const unsigned int size = pos + len; 4425 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4426 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 4427 4428 eb_bitmap_offset(eb, start, pos, &i, &offset); 4429 page = eb->pages[i]; 4430 assert_eb_page_uptodate(eb, page); 4431 kaddr = page_address(page); 4432 4433 while (len >= bits_to_set) { 4434 kaddr[offset] |= mask_to_set; 4435 len -= bits_to_set; 4436 bits_to_set = BITS_PER_BYTE; 4437 mask_to_set = ~0; 4438 if (++offset >= PAGE_SIZE && len > 0) { 4439 offset = 0; 4440 page = eb->pages[++i]; 4441 assert_eb_page_uptodate(eb, page); 4442 kaddr = page_address(page); 4443 } 4444 } 4445 if (len) { 4446 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 4447 kaddr[offset] |= mask_to_set; 4448 } 4449 } 4450 4451 4452 /* 4453 * Clear an area of a bitmap. 4454 * 4455 * @eb: the extent buffer 4456 * @start: offset of the bitmap item in the extent buffer 4457 * @pos: bit number of the first bit 4458 * @len: number of bits to clear 4459 */ 4460 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4461 unsigned long start, unsigned long pos, 4462 unsigned long len) 4463 { 4464 u8 *kaddr; 4465 struct page *page; 4466 unsigned long i; 4467 size_t offset; 4468 const unsigned int size = pos + len; 4469 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4470 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 4471 4472 eb_bitmap_offset(eb, start, pos, &i, &offset); 4473 page = eb->pages[i]; 4474 assert_eb_page_uptodate(eb, page); 4475 kaddr = page_address(page); 4476 4477 while (len >= bits_to_clear) { 4478 kaddr[offset] &= ~mask_to_clear; 4479 len -= bits_to_clear; 4480 bits_to_clear = BITS_PER_BYTE; 4481 mask_to_clear = ~0; 4482 if (++offset >= PAGE_SIZE && len > 0) { 4483 offset = 0; 4484 page = eb->pages[++i]; 4485 assert_eb_page_uptodate(eb, page); 4486 kaddr = page_address(page); 4487 } 4488 } 4489 if (len) { 4490 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 4491 kaddr[offset] &= ~mask_to_clear; 4492 } 4493 } 4494 4495 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4496 { 4497 unsigned long distance = (src > dst) ? src - dst : dst - src; 4498 return distance < len; 4499 } 4500 4501 static void copy_pages(struct page *dst_page, struct page *src_page, 4502 unsigned long dst_off, unsigned long src_off, 4503 unsigned long len) 4504 { 4505 char *dst_kaddr = page_address(dst_page); 4506 char *src_kaddr; 4507 int must_memmove = 0; 4508 4509 if (dst_page != src_page) { 4510 src_kaddr = page_address(src_page); 4511 } else { 4512 src_kaddr = dst_kaddr; 4513 if (areas_overlap(src_off, dst_off, len)) 4514 must_memmove = 1; 4515 } 4516 4517 if (must_memmove) 4518 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4519 else 4520 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4521 } 4522 4523 void memcpy_extent_buffer(const struct extent_buffer *dst, 4524 unsigned long dst_offset, unsigned long src_offset, 4525 unsigned long len) 4526 { 4527 size_t cur; 4528 size_t dst_off_in_page; 4529 size_t src_off_in_page; 4530 unsigned long dst_i; 4531 unsigned long src_i; 4532 4533 if (check_eb_range(dst, dst_offset, len) || 4534 check_eb_range(dst, src_offset, len)) 4535 return; 4536 4537 while (len > 0) { 4538 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 4539 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 4540 4541 dst_i = get_eb_page_index(dst_offset); 4542 src_i = get_eb_page_index(src_offset); 4543 4544 cur = min(len, (unsigned long)(PAGE_SIZE - 4545 src_off_in_page)); 4546 cur = min_t(unsigned long, cur, 4547 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 4548 4549 copy_pages(dst->pages[dst_i], dst->pages[src_i], 4550 dst_off_in_page, src_off_in_page, cur); 4551 4552 src_offset += cur; 4553 dst_offset += cur; 4554 len -= cur; 4555 } 4556 } 4557 4558 void memmove_extent_buffer(const struct extent_buffer *dst, 4559 unsigned long dst_offset, unsigned long src_offset, 4560 unsigned long len) 4561 { 4562 size_t cur; 4563 size_t dst_off_in_page; 4564 size_t src_off_in_page; 4565 unsigned long dst_end = dst_offset + len - 1; 4566 unsigned long src_end = src_offset + len - 1; 4567 unsigned long dst_i; 4568 unsigned long src_i; 4569 4570 if (check_eb_range(dst, dst_offset, len) || 4571 check_eb_range(dst, src_offset, len)) 4572 return; 4573 if (dst_offset < src_offset) { 4574 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4575 return; 4576 } 4577 while (len > 0) { 4578 dst_i = get_eb_page_index(dst_end); 4579 src_i = get_eb_page_index(src_end); 4580 4581 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4582 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4583 4584 cur = min_t(unsigned long, len, src_off_in_page + 1); 4585 cur = min(cur, dst_off_in_page + 1); 4586 copy_pages(dst->pages[dst_i], dst->pages[src_i], 4587 dst_off_in_page - cur + 1, 4588 src_off_in_page - cur + 1, cur); 4589 4590 dst_end -= cur; 4591 src_end -= cur; 4592 len -= cur; 4593 } 4594 } 4595 4596 #define GANG_LOOKUP_SIZE 16 4597 static struct extent_buffer *get_next_extent_buffer( 4598 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4599 { 4600 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4601 struct extent_buffer *found = NULL; 4602 u64 page_start = page_offset(page); 4603 u64 cur = page_start; 4604 4605 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4606 lockdep_assert_held(&fs_info->buffer_lock); 4607 4608 while (cur < page_start + PAGE_SIZE) { 4609 int ret; 4610 int i; 4611 4612 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4613 (void **)gang, cur >> fs_info->sectorsize_bits, 4614 min_t(unsigned int, GANG_LOOKUP_SIZE, 4615 PAGE_SIZE / fs_info->nodesize)); 4616 if (ret == 0) 4617 goto out; 4618 for (i = 0; i < ret; i++) { 4619 /* Already beyond page end */ 4620 if (gang[i]->start >= page_start + PAGE_SIZE) 4621 goto out; 4622 /* Found one */ 4623 if (gang[i]->start >= bytenr) { 4624 found = gang[i]; 4625 goto out; 4626 } 4627 } 4628 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4629 } 4630 out: 4631 return found; 4632 } 4633 4634 static int try_release_subpage_extent_buffer(struct page *page) 4635 { 4636 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4637 u64 cur = page_offset(page); 4638 const u64 end = page_offset(page) + PAGE_SIZE; 4639 int ret; 4640 4641 while (cur < end) { 4642 struct extent_buffer *eb = NULL; 4643 4644 /* 4645 * Unlike try_release_extent_buffer() which uses page->private 4646 * to grab buffer, for subpage case we rely on radix tree, thus 4647 * we need to ensure radix tree consistency. 4648 * 4649 * We also want an atomic snapshot of the radix tree, thus go 4650 * with spinlock rather than RCU. 4651 */ 4652 spin_lock(&fs_info->buffer_lock); 4653 eb = get_next_extent_buffer(fs_info, page, cur); 4654 if (!eb) { 4655 /* No more eb in the page range after or at cur */ 4656 spin_unlock(&fs_info->buffer_lock); 4657 break; 4658 } 4659 cur = eb->start + eb->len; 4660 4661 /* 4662 * The same as try_release_extent_buffer(), to ensure the eb 4663 * won't disappear out from under us. 4664 */ 4665 spin_lock(&eb->refs_lock); 4666 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4667 spin_unlock(&eb->refs_lock); 4668 spin_unlock(&fs_info->buffer_lock); 4669 break; 4670 } 4671 spin_unlock(&fs_info->buffer_lock); 4672 4673 /* 4674 * If tree ref isn't set then we know the ref on this eb is a 4675 * real ref, so just return, this eb will likely be freed soon 4676 * anyway. 4677 */ 4678 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4679 spin_unlock(&eb->refs_lock); 4680 break; 4681 } 4682 4683 /* 4684 * Here we don't care about the return value, we will always 4685 * check the page private at the end. And 4686 * release_extent_buffer() will release the refs_lock. 4687 */ 4688 release_extent_buffer(eb); 4689 } 4690 /* 4691 * Finally to check if we have cleared page private, as if we have 4692 * released all ebs in the page, the page private should be cleared now. 4693 */ 4694 spin_lock(&page->mapping->private_lock); 4695 if (!PagePrivate(page)) 4696 ret = 1; 4697 else 4698 ret = 0; 4699 spin_unlock(&page->mapping->private_lock); 4700 return ret; 4701 4702 } 4703 4704 int try_release_extent_buffer(struct page *page) 4705 { 4706 struct extent_buffer *eb; 4707 4708 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4709 return try_release_subpage_extent_buffer(page); 4710 4711 /* 4712 * We need to make sure nobody is changing page->private, as we rely on 4713 * page->private as the pointer to extent buffer. 4714 */ 4715 spin_lock(&page->mapping->private_lock); 4716 if (!PagePrivate(page)) { 4717 spin_unlock(&page->mapping->private_lock); 4718 return 1; 4719 } 4720 4721 eb = (struct extent_buffer *)page->private; 4722 BUG_ON(!eb); 4723 4724 /* 4725 * This is a little awful but should be ok, we need to make sure that 4726 * the eb doesn't disappear out from under us while we're looking at 4727 * this page. 4728 */ 4729 spin_lock(&eb->refs_lock); 4730 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4731 spin_unlock(&eb->refs_lock); 4732 spin_unlock(&page->mapping->private_lock); 4733 return 0; 4734 } 4735 spin_unlock(&page->mapping->private_lock); 4736 4737 /* 4738 * If tree ref isn't set then we know the ref on this eb is a real ref, 4739 * so just return, this page will likely be freed soon anyway. 4740 */ 4741 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4742 spin_unlock(&eb->refs_lock); 4743 return 0; 4744 } 4745 4746 return release_extent_buffer(eb); 4747 } 4748 4749 /* 4750 * btrfs_readahead_tree_block - attempt to readahead a child block 4751 * @fs_info: the fs_info 4752 * @bytenr: bytenr to read 4753 * @owner_root: objectid of the root that owns this eb 4754 * @gen: generation for the uptodate check, can be 0 4755 * @level: level for the eb 4756 * 4757 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4758 * normal uptodate check of the eb, without checking the generation. If we have 4759 * to read the block we will not block on anything. 4760 */ 4761 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4762 u64 bytenr, u64 owner_root, u64 gen, int level) 4763 { 4764 struct btrfs_tree_parent_check check = { 4765 .has_first_key = 0, 4766 .level = level, 4767 .transid = gen 4768 }; 4769 struct extent_buffer *eb; 4770 int ret; 4771 4772 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4773 if (IS_ERR(eb)) 4774 return; 4775 4776 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4777 free_extent_buffer(eb); 4778 return; 4779 } 4780 4781 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4782 if (ret < 0) 4783 free_extent_buffer_stale(eb); 4784 else 4785 free_extent_buffer(eb); 4786 } 4787 4788 /* 4789 * btrfs_readahead_node_child - readahead a node's child block 4790 * @node: parent node we're reading from 4791 * @slot: slot in the parent node for the child we want to read 4792 * 4793 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4794 * the slot in the node provided. 4795 */ 4796 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4797 { 4798 btrfs_readahead_tree_block(node->fs_info, 4799 btrfs_node_blockptr(node, slot), 4800 btrfs_header_owner(node), 4801 btrfs_node_ptr_generation(node, slot), 4802 btrfs_header_level(node) - 1); 4803 } 4804