1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 }; 107 108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 109 { 110 struct btrfs_bio *bbio = bio_ctrl->bbio; 111 112 if (!bbio) 113 return; 114 115 /* Caller should ensure the bio has at least some range added */ 116 ASSERT(bbio->bio.bi_iter.bi_size); 117 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 120 btrfs_submit_compressed_read(bbio); 121 else 122 btrfs_submit_bio(bbio, 0); 123 124 /* The bbio is owned by the end_io handler now */ 125 bio_ctrl->bbio = NULL; 126 } 127 128 /* 129 * Submit or fail the current bio in the bio_ctrl structure. 130 */ 131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 132 { 133 struct btrfs_bio *bbio = bio_ctrl->bbio; 134 135 if (!bbio) 136 return; 137 138 if (ret) { 139 ASSERT(ret < 0); 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 141 /* The bio is owned by the end_io handler now */ 142 bio_ctrl->bbio = NULL; 143 } else { 144 submit_one_bio(bio_ctrl); 145 } 146 } 147 148 int __init extent_buffer_init_cachep(void) 149 { 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 151 sizeof(struct extent_buffer), 0, 152 SLAB_MEM_SPREAD, NULL); 153 if (!extent_buffer_cache) 154 return -ENOMEM; 155 156 return 0; 157 } 158 159 void __cold extent_buffer_free_cachep(void) 160 { 161 /* 162 * Make sure all delayed rcu free are flushed before we 163 * destroy caches. 164 */ 165 rcu_barrier(); 166 kmem_cache_destroy(extent_buffer_cache); 167 } 168 169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 170 { 171 unsigned long index = start >> PAGE_SHIFT; 172 unsigned long end_index = end >> PAGE_SHIFT; 173 struct page *page; 174 175 while (index <= end_index) { 176 page = find_get_page(inode->i_mapping, index); 177 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 178 clear_page_dirty_for_io(page); 179 put_page(page); 180 index++; 181 } 182 } 183 184 static void process_one_page(struct btrfs_fs_info *fs_info, 185 struct page *page, struct page *locked_page, 186 unsigned long page_ops, u64 start, u64 end) 187 { 188 u32 len; 189 190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 191 len = end + 1 - start; 192 193 if (page_ops & PAGE_SET_ORDERED) 194 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 195 if (page_ops & PAGE_START_WRITEBACK) { 196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 197 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 198 } 199 if (page_ops & PAGE_END_WRITEBACK) 200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 201 202 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 203 btrfs_page_end_writer_lock(fs_info, page, start, len); 204 } 205 206 static void __process_pages_contig(struct address_space *mapping, 207 struct page *locked_page, u64 start, u64 end, 208 unsigned long page_ops) 209 { 210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 211 pgoff_t start_index = start >> PAGE_SHIFT; 212 pgoff_t end_index = end >> PAGE_SHIFT; 213 pgoff_t index = start_index; 214 struct folio_batch fbatch; 215 int i; 216 217 folio_batch_init(&fbatch); 218 while (index <= end_index) { 219 int found_folios; 220 221 found_folios = filemap_get_folios_contig(mapping, &index, 222 end_index, &fbatch); 223 for (i = 0; i < found_folios; i++) { 224 struct folio *folio = fbatch.folios[i]; 225 226 process_one_page(fs_info, &folio->page, locked_page, 227 page_ops, start, end); 228 } 229 folio_batch_release(&fbatch); 230 cond_resched(); 231 } 232 } 233 234 static noinline void __unlock_for_delalloc(struct inode *inode, 235 struct page *locked_page, 236 u64 start, u64 end) 237 { 238 unsigned long index = start >> PAGE_SHIFT; 239 unsigned long end_index = end >> PAGE_SHIFT; 240 241 ASSERT(locked_page); 242 if (index == locked_page->index && end_index == index) 243 return; 244 245 __process_pages_contig(inode->i_mapping, locked_page, start, end, 246 PAGE_UNLOCK); 247 } 248 249 static noinline int lock_delalloc_pages(struct inode *inode, 250 struct page *locked_page, 251 u64 start, 252 u64 end) 253 { 254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 255 struct address_space *mapping = inode->i_mapping; 256 pgoff_t start_index = start >> PAGE_SHIFT; 257 pgoff_t end_index = end >> PAGE_SHIFT; 258 pgoff_t index = start_index; 259 u64 processed_end = start; 260 struct folio_batch fbatch; 261 262 if (index == locked_page->index && index == end_index) 263 return 0; 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 unsigned int found_folios, i; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 if (found_folios == 0) 272 goto out; 273 274 for (i = 0; i < found_folios; i++) { 275 struct page *page = &fbatch.folios[i]->page; 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_page_start_writer_lock(fs_info, page, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_page_end_writer_lock(fs_info, page, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, 1, cached_state); 399 if (!ret) { 400 unlock_extent(tree, delalloc_start, delalloc_end, 401 &cached_state); 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 free_extent_state(cached_state); 408 *start = delalloc_start; 409 *end = delalloc_end; 410 out_failed: 411 return found; 412 } 413 414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 415 struct page *locked_page, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 436 437 ASSERT(page_offset(page) <= start && 438 start + len <= page_offset(page) + PAGE_SIZE); 439 440 if (uptodate && btrfs_verify_page(page, start)) 441 btrfs_page_set_uptodate(fs_info, page, start, len); 442 else 443 btrfs_page_clear_uptodate(fs_info, page, start, len); 444 445 if (!btrfs_is_subpage(fs_info, page)) 446 unlock_page(page); 447 else 448 btrfs_subpage_end_reader(fs_info, page, start, len); 449 } 450 451 /* 452 * after a writepage IO is done, we need to: 453 * clear the uptodate bits on error 454 * clear the writeback bits in the extent tree for this IO 455 * end_page_writeback if the page has no more pending IO 456 * 457 * Scheduling is not allowed, so the extent state tree is expected 458 * to have one and only one object corresponding to this IO. 459 */ 460 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 461 { 462 struct bio *bio = &bbio->bio; 463 int error = blk_status_to_errno(bio->bi_status); 464 struct bio_vec *bvec; 465 struct bvec_iter_all iter_all; 466 467 ASSERT(!bio_flagged(bio, BIO_CLONED)); 468 bio_for_each_segment_all(bvec, bio, iter_all) { 469 struct page *page = bvec->bv_page; 470 struct inode *inode = page->mapping->host; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 const u32 sectorsize = fs_info->sectorsize; 473 u64 start = page_offset(page) + bvec->bv_offset; 474 u32 len = bvec->bv_len; 475 476 /* Our read/write should always be sector aligned. */ 477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 478 btrfs_err(fs_info, 479 "partial page write in btrfs with offset %u and length %u", 480 bvec->bv_offset, bvec->bv_len); 481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 482 btrfs_info(fs_info, 483 "incomplete page write with offset %u and length %u", 484 bvec->bv_offset, bvec->bv_len); 485 486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 487 if (error) 488 mapping_set_error(page->mapping, error); 489 btrfs_page_clear_writeback(fs_info, page, start, len); 490 } 491 492 bio_put(bio); 493 } 494 495 /* 496 * Record previously processed extent range 497 * 498 * For endio_readpage_release_extent() to handle a full extent range, reducing 499 * the extent io operations. 500 */ 501 struct processed_extent { 502 struct btrfs_inode *inode; 503 /* Start of the range in @inode */ 504 u64 start; 505 /* End of the range in @inode */ 506 u64 end; 507 bool uptodate; 508 }; 509 510 /* 511 * Try to release processed extent range 512 * 513 * May not release the extent range right now if the current range is 514 * contiguous to processed extent. 515 * 516 * Will release processed extent when any of @inode, @uptodate, the range is 517 * no longer contiguous to the processed range. 518 * 519 * Passing @inode == NULL will force processed extent to be released. 520 */ 521 static void endio_readpage_release_extent(struct processed_extent *processed, 522 struct btrfs_inode *inode, u64 start, u64 end, 523 bool uptodate) 524 { 525 struct extent_state *cached = NULL; 526 struct extent_io_tree *tree; 527 528 /* The first extent, initialize @processed */ 529 if (!processed->inode) 530 goto update; 531 532 /* 533 * Contiguous to processed extent, just uptodate the end. 534 * 535 * Several things to notice: 536 * 537 * - bio can be merged as long as on-disk bytenr is contiguous 538 * This means we can have page belonging to other inodes, thus need to 539 * check if the inode still matches. 540 * - bvec can contain range beyond current page for multi-page bvec 541 * Thus we need to do processed->end + 1 >= start check 542 */ 543 if (processed->inode == inode && processed->uptodate == uptodate && 544 processed->end + 1 >= start && end >= processed->end) { 545 processed->end = end; 546 return; 547 } 548 549 tree = &processed->inode->io_tree; 550 /* 551 * Now we don't have range contiguous to the processed range, release 552 * the processed range now. 553 */ 554 unlock_extent(tree, processed->start, processed->end, &cached); 555 556 update: 557 /* Update processed to current range */ 558 processed->inode = inode; 559 processed->start = start; 560 processed->end = end; 561 processed->uptodate = uptodate; 562 } 563 564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 565 { 566 ASSERT(PageLocked(page)); 567 if (!btrfs_is_subpage(fs_info, page)) 568 return; 569 570 ASSERT(PagePrivate(page)); 571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 572 } 573 574 /* 575 * after a readpage IO is done, we need to: 576 * clear the uptodate bits on error 577 * set the uptodate bits if things worked 578 * set the page up to date if all extents in the tree are uptodate 579 * clear the lock bit in the extent tree 580 * unlock the page if there are no other extents locked for it 581 * 582 * Scheduling is not allowed, so the extent state tree is expected 583 * to have one and only one object corresponding to this IO. 584 */ 585 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 586 { 587 struct bio *bio = &bbio->bio; 588 struct bio_vec *bvec; 589 struct processed_extent processed = { 0 }; 590 /* 591 * The offset to the beginning of a bio, since one bio can never be 592 * larger than UINT_MAX, u32 here is enough. 593 */ 594 u32 bio_offset = 0; 595 struct bvec_iter_all iter_all; 596 597 ASSERT(!bio_flagged(bio, BIO_CLONED)); 598 bio_for_each_segment_all(bvec, bio, iter_all) { 599 bool uptodate = !bio->bi_status; 600 struct page *page = bvec->bv_page; 601 struct inode *inode = page->mapping->host; 602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 603 const u32 sectorsize = fs_info->sectorsize; 604 u64 start; 605 u64 end; 606 u32 len; 607 608 btrfs_debug(fs_info, 609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 610 bio->bi_iter.bi_sector, bio->bi_status, 611 bbio->mirror_num); 612 613 /* 614 * We always issue full-sector reads, but if some block in a 615 * page fails to read, blk_update_request() will advance 616 * bv_offset and adjust bv_len to compensate. Print a warning 617 * for unaligned offsets, and an error if they don't add up to 618 * a full sector. 619 */ 620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 621 btrfs_err(fs_info, 622 "partial page read in btrfs with offset %u and length %u", 623 bvec->bv_offset, bvec->bv_len); 624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 625 sectorsize)) 626 btrfs_info(fs_info, 627 "incomplete page read with offset %u and length %u", 628 bvec->bv_offset, bvec->bv_len); 629 630 start = page_offset(page) + bvec->bv_offset; 631 end = start + bvec->bv_len - 1; 632 len = bvec->bv_len; 633 634 if (likely(uptodate)) { 635 loff_t i_size = i_size_read(inode); 636 pgoff_t end_index = i_size >> PAGE_SHIFT; 637 638 /* 639 * Zero out the remaining part if this range straddles 640 * i_size. 641 * 642 * Here we should only zero the range inside the bvec, 643 * not touch anything else. 644 * 645 * NOTE: i_size is exclusive while end is inclusive. 646 */ 647 if (page->index == end_index && i_size <= end) { 648 u32 zero_start = max(offset_in_page(i_size), 649 offset_in_page(start)); 650 651 zero_user_segment(page, zero_start, 652 offset_in_page(end) + 1); 653 } 654 } 655 656 /* Update page status and unlock. */ 657 end_page_read(page, uptodate, start, len); 658 endio_readpage_release_extent(&processed, BTRFS_I(inode), 659 start, end, uptodate); 660 661 ASSERT(bio_offset + len > bio_offset); 662 bio_offset += len; 663 664 } 665 /* Release the last extent */ 666 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 667 bio_put(bio); 668 } 669 670 /* 671 * Populate every free slot in a provided array with pages. 672 * 673 * @nr_pages: number of pages to allocate 674 * @page_array: the array to fill with pages; any existing non-null entries in 675 * the array will be skipped 676 * 677 * Return: 0 if all pages were able to be allocated; 678 * -ENOMEM otherwise, the partially allocated pages would be freed and 679 * the array slots zeroed 680 */ 681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 682 { 683 unsigned int allocated; 684 685 for (allocated = 0; allocated < nr_pages;) { 686 unsigned int last = allocated; 687 688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 689 690 if (allocated == nr_pages) 691 return 0; 692 693 /* 694 * During this iteration, no page could be allocated, even 695 * though alloc_pages_bulk_array() falls back to alloc_page() 696 * if it could not bulk-allocate. So we must be out of memory. 697 */ 698 if (allocated == last) { 699 for (int i = 0; i < allocated; i++) { 700 __free_page(page_array[i]); 701 page_array[i] = NULL; 702 } 703 return -ENOMEM; 704 } 705 706 memalloc_retry_wait(GFP_NOFS); 707 } 708 return 0; 709 } 710 711 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 712 struct page *page, u64 disk_bytenr, 713 unsigned int pg_offset) 714 { 715 struct bio *bio = &bio_ctrl->bbio->bio; 716 struct bio_vec *bvec = bio_last_bvec_all(bio); 717 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 718 719 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 720 /* 721 * For compression, all IO should have its logical bytenr set 722 * to the starting bytenr of the compressed extent. 723 */ 724 return bio->bi_iter.bi_sector == sector; 725 } 726 727 /* 728 * The contig check requires the following conditions to be met: 729 * 730 * 1) The pages are belonging to the same inode 731 * This is implied by the call chain. 732 * 733 * 2) The range has adjacent logical bytenr 734 * 735 * 3) The range has adjacent file offset 736 * This is required for the usage of btrfs_bio->file_offset. 737 */ 738 return bio_end_sector(bio) == sector && 739 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 740 page_offset(page) + pg_offset; 741 } 742 743 static void alloc_new_bio(struct btrfs_inode *inode, 744 struct btrfs_bio_ctrl *bio_ctrl, 745 u64 disk_bytenr, u64 file_offset) 746 { 747 struct btrfs_fs_info *fs_info = inode->root->fs_info; 748 struct btrfs_bio *bbio; 749 750 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 751 bio_ctrl->end_io_func, NULL); 752 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 753 bbio->inode = inode; 754 bbio->file_offset = file_offset; 755 bio_ctrl->bbio = bbio; 756 bio_ctrl->len_to_oe_boundary = U32_MAX; 757 758 /* Limit data write bios to the ordered boundary. */ 759 if (bio_ctrl->wbc) { 760 struct btrfs_ordered_extent *ordered; 761 762 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 763 if (ordered) { 764 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 765 ordered->file_offset + 766 ordered->disk_num_bytes - file_offset); 767 bbio->ordered = ordered; 768 } 769 770 /* 771 * Pick the last added device to support cgroup writeback. For 772 * multi-device file systems this means blk-cgroup policies have 773 * to always be set on the last added/replaced device. 774 * This is a bit odd but has been like that for a long time. 775 */ 776 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 777 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 778 } 779 } 780 781 /* 782 * @disk_bytenr: logical bytenr where the write will be 783 * @page: page to add to the bio 784 * @size: portion of page that we want to write to 785 * @pg_offset: offset of the new bio or to check whether we are adding 786 * a contiguous page to the previous one 787 * 788 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 789 * new one in @bio_ctrl->bbio. 790 * The mirror number for this IO should already be initizlied in 791 * @bio_ctrl->mirror_num. 792 */ 793 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 794 u64 disk_bytenr, struct page *page, 795 size_t size, unsigned long pg_offset) 796 { 797 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 798 799 ASSERT(pg_offset + size <= PAGE_SIZE); 800 ASSERT(bio_ctrl->end_io_func); 801 802 if (bio_ctrl->bbio && 803 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 804 submit_one_bio(bio_ctrl); 805 806 do { 807 u32 len = size; 808 809 /* Allocate new bio if needed */ 810 if (!bio_ctrl->bbio) { 811 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 812 page_offset(page) + pg_offset); 813 } 814 815 /* Cap to the current ordered extent boundary if there is one. */ 816 if (len > bio_ctrl->len_to_oe_boundary) { 817 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 818 ASSERT(is_data_inode(&inode->vfs_inode)); 819 len = bio_ctrl->len_to_oe_boundary; 820 } 821 822 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 823 /* bio full: move on to a new one */ 824 submit_one_bio(bio_ctrl); 825 continue; 826 } 827 828 if (bio_ctrl->wbc) 829 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 830 831 size -= len; 832 pg_offset += len; 833 disk_bytenr += len; 834 835 /* 836 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 837 * sector aligned. alloc_new_bio() then sets it to the end of 838 * our ordered extent for writes into zoned devices. 839 * 840 * When len_to_oe_boundary is tracking an ordered extent, we 841 * trust the ordered extent code to align things properly, and 842 * the check above to cap our write to the ordered extent 843 * boundary is correct. 844 * 845 * When len_to_oe_boundary is U32_MAX, the cap above would 846 * result in a 4095 byte IO for the last page right before 847 * we hit the bio limit of UINT_MAX. bio_add_page() has all 848 * the checks required to make sure we don't overflow the bio, 849 * and we should just ignore len_to_oe_boundary completely 850 * unless we're using it to track an ordered extent. 851 * 852 * It's pretty hard to make a bio sized U32_MAX, but it can 853 * happen when the page cache is able to feed us contiguous 854 * pages for large extents. 855 */ 856 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 857 bio_ctrl->len_to_oe_boundary -= len; 858 859 /* Ordered extent boundary: move on to a new bio. */ 860 if (bio_ctrl->len_to_oe_boundary == 0) 861 submit_one_bio(bio_ctrl); 862 } while (size); 863 } 864 865 static int attach_extent_buffer_page(struct extent_buffer *eb, 866 struct page *page, 867 struct btrfs_subpage *prealloc) 868 { 869 struct btrfs_fs_info *fs_info = eb->fs_info; 870 int ret = 0; 871 872 /* 873 * If the page is mapped to btree inode, we should hold the private 874 * lock to prevent race. 875 * For cloned or dummy extent buffers, their pages are not mapped and 876 * will not race with any other ebs. 877 */ 878 if (page->mapping) 879 lockdep_assert_held(&page->mapping->private_lock); 880 881 if (fs_info->nodesize >= PAGE_SIZE) { 882 if (!PagePrivate(page)) 883 attach_page_private(page, eb); 884 else 885 WARN_ON(page->private != (unsigned long)eb); 886 return 0; 887 } 888 889 /* Already mapped, just free prealloc */ 890 if (PagePrivate(page)) { 891 btrfs_free_subpage(prealloc); 892 return 0; 893 } 894 895 if (prealloc) 896 /* Has preallocated memory for subpage */ 897 attach_page_private(page, prealloc); 898 else 899 /* Do new allocation to attach subpage */ 900 ret = btrfs_attach_subpage(fs_info, page, 901 BTRFS_SUBPAGE_METADATA); 902 return ret; 903 } 904 905 int set_page_extent_mapped(struct page *page) 906 { 907 struct btrfs_fs_info *fs_info; 908 909 ASSERT(page->mapping); 910 911 if (PagePrivate(page)) 912 return 0; 913 914 fs_info = btrfs_sb(page->mapping->host->i_sb); 915 916 if (btrfs_is_subpage(fs_info, page)) 917 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 918 919 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 920 return 0; 921 } 922 923 void clear_page_extent_mapped(struct page *page) 924 { 925 struct btrfs_fs_info *fs_info; 926 927 ASSERT(page->mapping); 928 929 if (!PagePrivate(page)) 930 return; 931 932 fs_info = btrfs_sb(page->mapping->host->i_sb); 933 if (btrfs_is_subpage(fs_info, page)) 934 return btrfs_detach_subpage(fs_info, page); 935 936 detach_page_private(page); 937 } 938 939 static struct extent_map * 940 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 941 u64 start, u64 len, struct extent_map **em_cached) 942 { 943 struct extent_map *em; 944 945 if (em_cached && *em_cached) { 946 em = *em_cached; 947 if (extent_map_in_tree(em) && start >= em->start && 948 start < extent_map_end(em)) { 949 refcount_inc(&em->refs); 950 return em; 951 } 952 953 free_extent_map(em); 954 *em_cached = NULL; 955 } 956 957 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 958 if (em_cached && !IS_ERR(em)) { 959 BUG_ON(*em_cached); 960 refcount_inc(&em->refs); 961 *em_cached = em; 962 } 963 return em; 964 } 965 /* 966 * basic readpage implementation. Locked extent state structs are inserted 967 * into the tree that are removed when the IO is done (by the end_io 968 * handlers) 969 * XXX JDM: This needs looking at to ensure proper page locking 970 * return 0 on success, otherwise return error 971 */ 972 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 973 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 974 { 975 struct inode *inode = page->mapping->host; 976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 977 u64 start = page_offset(page); 978 const u64 end = start + PAGE_SIZE - 1; 979 u64 cur = start; 980 u64 extent_offset; 981 u64 last_byte = i_size_read(inode); 982 u64 block_start; 983 struct extent_map *em; 984 int ret = 0; 985 size_t pg_offset = 0; 986 size_t iosize; 987 size_t blocksize = inode->i_sb->s_blocksize; 988 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 989 990 ret = set_page_extent_mapped(page); 991 if (ret < 0) { 992 unlock_extent(tree, start, end, NULL); 993 unlock_page(page); 994 return ret; 995 } 996 997 if (page->index == last_byte >> PAGE_SHIFT) { 998 size_t zero_offset = offset_in_page(last_byte); 999 1000 if (zero_offset) { 1001 iosize = PAGE_SIZE - zero_offset; 1002 memzero_page(page, zero_offset, iosize); 1003 } 1004 } 1005 bio_ctrl->end_io_func = end_bio_extent_readpage; 1006 begin_page_read(fs_info, page); 1007 while (cur <= end) { 1008 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1009 bool force_bio_submit = false; 1010 u64 disk_bytenr; 1011 1012 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1013 if (cur >= last_byte) { 1014 iosize = PAGE_SIZE - pg_offset; 1015 memzero_page(page, pg_offset, iosize); 1016 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1017 end_page_read(page, true, cur, iosize); 1018 break; 1019 } 1020 em = __get_extent_map(inode, page, pg_offset, cur, 1021 end - cur + 1, em_cached); 1022 if (IS_ERR(em)) { 1023 unlock_extent(tree, cur, end, NULL); 1024 end_page_read(page, false, cur, end + 1 - cur); 1025 return PTR_ERR(em); 1026 } 1027 extent_offset = cur - em->start; 1028 BUG_ON(extent_map_end(em) <= cur); 1029 BUG_ON(end < cur); 1030 1031 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1032 compress_type = em->compress_type; 1033 1034 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1035 iosize = ALIGN(iosize, blocksize); 1036 if (compress_type != BTRFS_COMPRESS_NONE) 1037 disk_bytenr = em->block_start; 1038 else 1039 disk_bytenr = em->block_start + extent_offset; 1040 block_start = em->block_start; 1041 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1042 block_start = EXTENT_MAP_HOLE; 1043 1044 /* 1045 * If we have a file range that points to a compressed extent 1046 * and it's followed by a consecutive file range that points 1047 * to the same compressed extent (possibly with a different 1048 * offset and/or length, so it either points to the whole extent 1049 * or only part of it), we must make sure we do not submit a 1050 * single bio to populate the pages for the 2 ranges because 1051 * this makes the compressed extent read zero out the pages 1052 * belonging to the 2nd range. Imagine the following scenario: 1053 * 1054 * File layout 1055 * [0 - 8K] [8K - 24K] 1056 * | | 1057 * | | 1058 * points to extent X, points to extent X, 1059 * offset 4K, length of 8K offset 0, length 16K 1060 * 1061 * [extent X, compressed length = 4K uncompressed length = 16K] 1062 * 1063 * If the bio to read the compressed extent covers both ranges, 1064 * it will decompress extent X into the pages belonging to the 1065 * first range and then it will stop, zeroing out the remaining 1066 * pages that belong to the other range that points to extent X. 1067 * So here we make sure we submit 2 bios, one for the first 1068 * range and another one for the third range. Both will target 1069 * the same physical extent from disk, but we can't currently 1070 * make the compressed bio endio callback populate the pages 1071 * for both ranges because each compressed bio is tightly 1072 * coupled with a single extent map, and each range can have 1073 * an extent map with a different offset value relative to the 1074 * uncompressed data of our extent and different lengths. This 1075 * is a corner case so we prioritize correctness over 1076 * non-optimal behavior (submitting 2 bios for the same extent). 1077 */ 1078 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1079 prev_em_start && *prev_em_start != (u64)-1 && 1080 *prev_em_start != em->start) 1081 force_bio_submit = true; 1082 1083 if (prev_em_start) 1084 *prev_em_start = em->start; 1085 1086 free_extent_map(em); 1087 em = NULL; 1088 1089 /* we've found a hole, just zero and go on */ 1090 if (block_start == EXTENT_MAP_HOLE) { 1091 memzero_page(page, pg_offset, iosize); 1092 1093 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1094 end_page_read(page, true, cur, iosize); 1095 cur = cur + iosize; 1096 pg_offset += iosize; 1097 continue; 1098 } 1099 /* the get_extent function already copied into the page */ 1100 if (block_start == EXTENT_MAP_INLINE) { 1101 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1102 end_page_read(page, true, cur, iosize); 1103 cur = cur + iosize; 1104 pg_offset += iosize; 1105 continue; 1106 } 1107 1108 if (bio_ctrl->compress_type != compress_type) { 1109 submit_one_bio(bio_ctrl); 1110 bio_ctrl->compress_type = compress_type; 1111 } 1112 1113 if (force_bio_submit) 1114 submit_one_bio(bio_ctrl); 1115 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1116 pg_offset); 1117 cur = cur + iosize; 1118 pg_offset += iosize; 1119 } 1120 1121 return 0; 1122 } 1123 1124 int btrfs_read_folio(struct file *file, struct folio *folio) 1125 { 1126 struct page *page = &folio->page; 1127 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1128 u64 start = page_offset(page); 1129 u64 end = start + PAGE_SIZE - 1; 1130 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1131 int ret; 1132 1133 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1134 1135 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1136 /* 1137 * If btrfs_do_readpage() failed we will want to submit the assembled 1138 * bio to do the cleanup. 1139 */ 1140 submit_one_bio(&bio_ctrl); 1141 return ret; 1142 } 1143 1144 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1145 u64 start, u64 end, 1146 struct extent_map **em_cached, 1147 struct btrfs_bio_ctrl *bio_ctrl, 1148 u64 *prev_em_start) 1149 { 1150 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1151 int index; 1152 1153 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1154 1155 for (index = 0; index < nr_pages; index++) { 1156 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1157 prev_em_start); 1158 put_page(pages[index]); 1159 } 1160 } 1161 1162 /* 1163 * helper for __extent_writepage, doing all of the delayed allocation setup. 1164 * 1165 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1166 * to write the page (copy into inline extent). In this case the IO has 1167 * been started and the page is already unlocked. 1168 * 1169 * This returns 0 if all went well (page still locked) 1170 * This returns < 0 if there were errors (page still locked) 1171 */ 1172 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1173 struct page *page, struct writeback_control *wbc) 1174 { 1175 const u64 page_start = page_offset(page); 1176 const u64 page_end = page_start + PAGE_SIZE - 1; 1177 u64 delalloc_start = page_start; 1178 u64 delalloc_end = page_end; 1179 u64 delalloc_to_write = 0; 1180 int ret = 0; 1181 1182 while (delalloc_start < page_end) { 1183 delalloc_end = page_end; 1184 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1185 &delalloc_start, &delalloc_end)) { 1186 delalloc_start = delalloc_end + 1; 1187 continue; 1188 } 1189 1190 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1191 delalloc_end, wbc); 1192 if (ret < 0) 1193 return ret; 1194 1195 delalloc_start = delalloc_end + 1; 1196 } 1197 1198 /* 1199 * delalloc_end is already one less than the total length, so 1200 * we don't subtract one from PAGE_SIZE 1201 */ 1202 delalloc_to_write += 1203 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1204 1205 /* 1206 * If btrfs_run_dealloc_range() already started I/O and unlocked 1207 * the pages, we just need to account for them here. 1208 */ 1209 if (ret == 1) { 1210 wbc->nr_to_write -= delalloc_to_write; 1211 return 1; 1212 } 1213 1214 if (wbc->nr_to_write < delalloc_to_write) { 1215 int thresh = 8192; 1216 1217 if (delalloc_to_write < thresh * 2) 1218 thresh = delalloc_to_write; 1219 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1220 thresh); 1221 } 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * Find the first byte we need to write. 1228 * 1229 * For subpage, one page can contain several sectors, and 1230 * __extent_writepage_io() will just grab all extent maps in the page 1231 * range and try to submit all non-inline/non-compressed extents. 1232 * 1233 * This is a big problem for subpage, we shouldn't re-submit already written 1234 * data at all. 1235 * This function will lookup subpage dirty bit to find which range we really 1236 * need to submit. 1237 * 1238 * Return the next dirty range in [@start, @end). 1239 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1240 */ 1241 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1242 struct page *page, u64 *start, u64 *end) 1243 { 1244 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1245 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1246 u64 orig_start = *start; 1247 /* Declare as unsigned long so we can use bitmap ops */ 1248 unsigned long flags; 1249 int range_start_bit; 1250 int range_end_bit; 1251 1252 /* 1253 * For regular sector size == page size case, since one page only 1254 * contains one sector, we return the page offset directly. 1255 */ 1256 if (!btrfs_is_subpage(fs_info, page)) { 1257 *start = page_offset(page); 1258 *end = page_offset(page) + PAGE_SIZE; 1259 return; 1260 } 1261 1262 range_start_bit = spi->dirty_offset + 1263 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1264 1265 /* We should have the page locked, but just in case */ 1266 spin_lock_irqsave(&subpage->lock, flags); 1267 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1268 spi->dirty_offset + spi->bitmap_nr_bits); 1269 spin_unlock_irqrestore(&subpage->lock, flags); 1270 1271 range_start_bit -= spi->dirty_offset; 1272 range_end_bit -= spi->dirty_offset; 1273 1274 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1275 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1276 } 1277 1278 /* 1279 * helper for __extent_writepage. This calls the writepage start hooks, 1280 * and does the loop to map the page into extents and bios. 1281 * 1282 * We return 1 if the IO is started and the page is unlocked, 1283 * 0 if all went well (page still locked) 1284 * < 0 if there were errors (page still locked) 1285 */ 1286 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1287 struct page *page, 1288 struct btrfs_bio_ctrl *bio_ctrl, 1289 loff_t i_size, 1290 int *nr_ret) 1291 { 1292 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1293 u64 cur = page_offset(page); 1294 u64 end = cur + PAGE_SIZE - 1; 1295 u64 extent_offset; 1296 u64 block_start; 1297 struct extent_map *em; 1298 int ret = 0; 1299 int nr = 0; 1300 1301 ret = btrfs_writepage_cow_fixup(page); 1302 if (ret) { 1303 /* Fixup worker will requeue */ 1304 redirty_page_for_writepage(bio_ctrl->wbc, page); 1305 unlock_page(page); 1306 return 1; 1307 } 1308 1309 bio_ctrl->end_io_func = end_bio_extent_writepage; 1310 while (cur <= end) { 1311 u32 len = end - cur + 1; 1312 u64 disk_bytenr; 1313 u64 em_end; 1314 u64 dirty_range_start = cur; 1315 u64 dirty_range_end; 1316 u32 iosize; 1317 1318 if (cur >= i_size) { 1319 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1320 true); 1321 /* 1322 * This range is beyond i_size, thus we don't need to 1323 * bother writing back. 1324 * But we still need to clear the dirty subpage bit, or 1325 * the next time the page gets dirtied, we will try to 1326 * writeback the sectors with subpage dirty bits, 1327 * causing writeback without ordered extent. 1328 */ 1329 btrfs_page_clear_dirty(fs_info, page, cur, len); 1330 break; 1331 } 1332 1333 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1334 &dirty_range_end); 1335 if (cur < dirty_range_start) { 1336 cur = dirty_range_start; 1337 continue; 1338 } 1339 1340 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1341 if (IS_ERR(em)) { 1342 ret = PTR_ERR_OR_ZERO(em); 1343 goto out_error; 1344 } 1345 1346 extent_offset = cur - em->start; 1347 em_end = extent_map_end(em); 1348 ASSERT(cur <= em_end); 1349 ASSERT(cur < end); 1350 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1351 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1352 1353 block_start = em->block_start; 1354 disk_bytenr = em->block_start + extent_offset; 1355 1356 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1357 ASSERT(block_start != EXTENT_MAP_HOLE); 1358 ASSERT(block_start != EXTENT_MAP_INLINE); 1359 1360 /* 1361 * Note that em_end from extent_map_end() and dirty_range_end from 1362 * find_next_dirty_byte() are all exclusive 1363 */ 1364 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1365 free_extent_map(em); 1366 em = NULL; 1367 1368 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1369 if (!PageWriteback(page)) { 1370 btrfs_err(inode->root->fs_info, 1371 "page %lu not writeback, cur %llu end %llu", 1372 page->index, cur, end); 1373 } 1374 1375 /* 1376 * Although the PageDirty bit is cleared before entering this 1377 * function, subpage dirty bit is not cleared. 1378 * So clear subpage dirty bit here so next time we won't submit 1379 * page for range already written to disk. 1380 */ 1381 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1382 1383 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1384 cur - page_offset(page)); 1385 cur += iosize; 1386 nr++; 1387 } 1388 1389 btrfs_page_assert_not_dirty(fs_info, page); 1390 *nr_ret = nr; 1391 return 0; 1392 1393 out_error: 1394 /* 1395 * If we finish without problem, we should not only clear page dirty, 1396 * but also empty subpage dirty bits 1397 */ 1398 *nr_ret = nr; 1399 return ret; 1400 } 1401 1402 /* 1403 * the writepage semantics are similar to regular writepage. extent 1404 * records are inserted to lock ranges in the tree, and as dirty areas 1405 * are found, they are marked writeback. Then the lock bits are removed 1406 * and the end_io handler clears the writeback ranges 1407 * 1408 * Return 0 if everything goes well. 1409 * Return <0 for error. 1410 */ 1411 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1412 { 1413 struct folio *folio = page_folio(page); 1414 struct inode *inode = page->mapping->host; 1415 const u64 page_start = page_offset(page); 1416 int ret; 1417 int nr = 0; 1418 size_t pg_offset; 1419 loff_t i_size = i_size_read(inode); 1420 unsigned long end_index = i_size >> PAGE_SHIFT; 1421 1422 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1423 1424 WARN_ON(!PageLocked(page)); 1425 1426 pg_offset = offset_in_page(i_size); 1427 if (page->index > end_index || 1428 (page->index == end_index && !pg_offset)) { 1429 folio_invalidate(folio, 0, folio_size(folio)); 1430 folio_unlock(folio); 1431 return 0; 1432 } 1433 1434 if (page->index == end_index) 1435 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1436 1437 ret = set_page_extent_mapped(page); 1438 if (ret < 0) 1439 goto done; 1440 1441 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1442 if (ret == 1) 1443 return 0; 1444 if (ret) 1445 goto done; 1446 1447 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1448 if (ret == 1) 1449 return 0; 1450 1451 bio_ctrl->wbc->nr_to_write--; 1452 1453 done: 1454 if (nr == 0) { 1455 /* make sure the mapping tag for page dirty gets cleared */ 1456 set_page_writeback(page); 1457 end_page_writeback(page); 1458 } 1459 if (ret) { 1460 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1461 PAGE_SIZE, !ret); 1462 mapping_set_error(page->mapping, ret); 1463 } 1464 unlock_page(page); 1465 ASSERT(ret <= 0); 1466 return ret; 1467 } 1468 1469 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1470 { 1471 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1472 TASK_UNINTERRUPTIBLE); 1473 } 1474 1475 /* 1476 * Lock extent buffer status and pages for writeback. 1477 * 1478 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1479 * extent buffer is not dirty) 1480 * Return %true is the extent buffer is submitted to bio. 1481 */ 1482 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1483 struct writeback_control *wbc) 1484 { 1485 struct btrfs_fs_info *fs_info = eb->fs_info; 1486 bool ret = false; 1487 1488 btrfs_tree_lock(eb); 1489 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1490 btrfs_tree_unlock(eb); 1491 if (wbc->sync_mode != WB_SYNC_ALL) 1492 return false; 1493 wait_on_extent_buffer_writeback(eb); 1494 btrfs_tree_lock(eb); 1495 } 1496 1497 /* 1498 * We need to do this to prevent races in people who check if the eb is 1499 * under IO since we can end up having no IO bits set for a short period 1500 * of time. 1501 */ 1502 spin_lock(&eb->refs_lock); 1503 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1504 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1505 spin_unlock(&eb->refs_lock); 1506 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1507 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1508 -eb->len, 1509 fs_info->dirty_metadata_batch); 1510 ret = true; 1511 } else { 1512 spin_unlock(&eb->refs_lock); 1513 } 1514 btrfs_tree_unlock(eb); 1515 return ret; 1516 } 1517 1518 static void set_btree_ioerr(struct extent_buffer *eb) 1519 { 1520 struct btrfs_fs_info *fs_info = eb->fs_info; 1521 1522 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1523 1524 /* 1525 * A read may stumble upon this buffer later, make sure that it gets an 1526 * error and knows there was an error. 1527 */ 1528 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1529 1530 /* 1531 * We need to set the mapping with the io error as well because a write 1532 * error will flip the file system readonly, and then syncfs() will 1533 * return a 0 because we are readonly if we don't modify the err seq for 1534 * the superblock. 1535 */ 1536 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1537 1538 /* 1539 * If writeback for a btree extent that doesn't belong to a log tree 1540 * failed, increment the counter transaction->eb_write_errors. 1541 * We do this because while the transaction is running and before it's 1542 * committing (when we call filemap_fdata[write|wait]_range against 1543 * the btree inode), we might have 1544 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1545 * returns an error or an error happens during writeback, when we're 1546 * committing the transaction we wouldn't know about it, since the pages 1547 * can be no longer dirty nor marked anymore for writeback (if a 1548 * subsequent modification to the extent buffer didn't happen before the 1549 * transaction commit), which makes filemap_fdata[write|wait]_range not 1550 * able to find the pages tagged with SetPageError at transaction 1551 * commit time. So if this happens we must abort the transaction, 1552 * otherwise we commit a super block with btree roots that point to 1553 * btree nodes/leafs whose content on disk is invalid - either garbage 1554 * or the content of some node/leaf from a past generation that got 1555 * cowed or deleted and is no longer valid. 1556 * 1557 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1558 * not be enough - we need to distinguish between log tree extents vs 1559 * non-log tree extents, and the next filemap_fdatawait_range() call 1560 * will catch and clear such errors in the mapping - and that call might 1561 * be from a log sync and not from a transaction commit. Also, checking 1562 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1563 * not done and would not be reliable - the eb might have been released 1564 * from memory and reading it back again means that flag would not be 1565 * set (since it's a runtime flag, not persisted on disk). 1566 * 1567 * Using the flags below in the btree inode also makes us achieve the 1568 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1569 * writeback for all dirty pages and before filemap_fdatawait_range() 1570 * is called, the writeback for all dirty pages had already finished 1571 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1572 * filemap_fdatawait_range() would return success, as it could not know 1573 * that writeback errors happened (the pages were no longer tagged for 1574 * writeback). 1575 */ 1576 switch (eb->log_index) { 1577 case -1: 1578 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1579 break; 1580 case 0: 1581 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1582 break; 1583 case 1: 1584 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1585 break; 1586 default: 1587 BUG(); /* unexpected, logic error */ 1588 } 1589 } 1590 1591 /* 1592 * The endio specific version which won't touch any unsafe spinlock in endio 1593 * context. 1594 */ 1595 static struct extent_buffer *find_extent_buffer_nolock( 1596 struct btrfs_fs_info *fs_info, u64 start) 1597 { 1598 struct extent_buffer *eb; 1599 1600 rcu_read_lock(); 1601 eb = radix_tree_lookup(&fs_info->buffer_radix, 1602 start >> fs_info->sectorsize_bits); 1603 if (eb && atomic_inc_not_zero(&eb->refs)) { 1604 rcu_read_unlock(); 1605 return eb; 1606 } 1607 rcu_read_unlock(); 1608 return NULL; 1609 } 1610 1611 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1612 { 1613 struct extent_buffer *eb = bbio->private; 1614 struct btrfs_fs_info *fs_info = eb->fs_info; 1615 bool uptodate = !bbio->bio.bi_status; 1616 struct bvec_iter_all iter_all; 1617 struct bio_vec *bvec; 1618 u32 bio_offset = 0; 1619 1620 if (!uptodate) 1621 set_btree_ioerr(eb); 1622 1623 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1624 u64 start = eb->start + bio_offset; 1625 struct page *page = bvec->bv_page; 1626 u32 len = bvec->bv_len; 1627 1628 btrfs_page_clear_writeback(fs_info, page, start, len); 1629 bio_offset += len; 1630 } 1631 1632 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1633 smp_mb__after_atomic(); 1634 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1635 1636 bio_put(&bbio->bio); 1637 } 1638 1639 static void prepare_eb_write(struct extent_buffer *eb) 1640 { 1641 u32 nritems; 1642 unsigned long start; 1643 unsigned long end; 1644 1645 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1646 1647 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1648 nritems = btrfs_header_nritems(eb); 1649 if (btrfs_header_level(eb) > 0) { 1650 end = btrfs_node_key_ptr_offset(eb, nritems); 1651 memzero_extent_buffer(eb, end, eb->len - end); 1652 } else { 1653 /* 1654 * Leaf: 1655 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1656 */ 1657 start = btrfs_item_nr_offset(eb, nritems); 1658 end = btrfs_item_nr_offset(eb, 0); 1659 if (nritems == 0) 1660 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1661 else 1662 end += btrfs_item_offset(eb, nritems - 1); 1663 memzero_extent_buffer(eb, start, end - start); 1664 } 1665 } 1666 1667 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1668 struct writeback_control *wbc) 1669 { 1670 struct btrfs_fs_info *fs_info = eb->fs_info; 1671 struct btrfs_bio *bbio; 1672 1673 prepare_eb_write(eb); 1674 1675 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1676 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1677 eb->fs_info, extent_buffer_write_end_io, eb); 1678 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1679 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1680 wbc_init_bio(wbc, &bbio->bio); 1681 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1682 bbio->file_offset = eb->start; 1683 if (fs_info->nodesize < PAGE_SIZE) { 1684 struct page *p = eb->pages[0]; 1685 1686 lock_page(p); 1687 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1688 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1689 eb->len)) { 1690 clear_page_dirty_for_io(p); 1691 wbc->nr_to_write--; 1692 } 1693 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1694 wbc_account_cgroup_owner(wbc, p, eb->len); 1695 unlock_page(p); 1696 } else { 1697 for (int i = 0; i < num_extent_pages(eb); i++) { 1698 struct page *p = eb->pages[i]; 1699 1700 lock_page(p); 1701 clear_page_dirty_for_io(p); 1702 set_page_writeback(p); 1703 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1704 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1705 wbc->nr_to_write--; 1706 unlock_page(p); 1707 } 1708 } 1709 btrfs_submit_bio(bbio, 0); 1710 } 1711 1712 /* 1713 * Submit one subpage btree page. 1714 * 1715 * The main difference to submit_eb_page() is: 1716 * - Page locking 1717 * For subpage, we don't rely on page locking at all. 1718 * 1719 * - Flush write bio 1720 * We only flush bio if we may be unable to fit current extent buffers into 1721 * current bio. 1722 * 1723 * Return >=0 for the number of submitted extent buffers. 1724 * Return <0 for fatal error. 1725 */ 1726 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1727 { 1728 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1729 int submitted = 0; 1730 u64 page_start = page_offset(page); 1731 int bit_start = 0; 1732 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1733 1734 /* Lock and write each dirty extent buffers in the range */ 1735 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1736 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1737 struct extent_buffer *eb; 1738 unsigned long flags; 1739 u64 start; 1740 1741 /* 1742 * Take private lock to ensure the subpage won't be detached 1743 * in the meantime. 1744 */ 1745 spin_lock(&page->mapping->private_lock); 1746 if (!PagePrivate(page)) { 1747 spin_unlock(&page->mapping->private_lock); 1748 break; 1749 } 1750 spin_lock_irqsave(&subpage->lock, flags); 1751 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1752 subpage->bitmaps)) { 1753 spin_unlock_irqrestore(&subpage->lock, flags); 1754 spin_unlock(&page->mapping->private_lock); 1755 bit_start++; 1756 continue; 1757 } 1758 1759 start = page_start + bit_start * fs_info->sectorsize; 1760 bit_start += sectors_per_node; 1761 1762 /* 1763 * Here we just want to grab the eb without touching extra 1764 * spin locks, so call find_extent_buffer_nolock(). 1765 */ 1766 eb = find_extent_buffer_nolock(fs_info, start); 1767 spin_unlock_irqrestore(&subpage->lock, flags); 1768 spin_unlock(&page->mapping->private_lock); 1769 1770 /* 1771 * The eb has already reached 0 refs thus find_extent_buffer() 1772 * doesn't return it. We don't need to write back such eb 1773 * anyway. 1774 */ 1775 if (!eb) 1776 continue; 1777 1778 if (lock_extent_buffer_for_io(eb, wbc)) { 1779 write_one_eb(eb, wbc); 1780 submitted++; 1781 } 1782 free_extent_buffer(eb); 1783 } 1784 return submitted; 1785 } 1786 1787 /* 1788 * Submit all page(s) of one extent buffer. 1789 * 1790 * @page: the page of one extent buffer 1791 * @eb_context: to determine if we need to submit this page, if current page 1792 * belongs to this eb, we don't need to submit 1793 * 1794 * The caller should pass each page in their bytenr order, and here we use 1795 * @eb_context to determine if we have submitted pages of one extent buffer. 1796 * 1797 * If we have, we just skip until we hit a new page that doesn't belong to 1798 * current @eb_context. 1799 * 1800 * If not, we submit all the page(s) of the extent buffer. 1801 * 1802 * Return >0 if we have submitted the extent buffer successfully. 1803 * Return 0 if we don't need to submit the page, as it's already submitted by 1804 * previous call. 1805 * Return <0 for fatal error. 1806 */ 1807 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1808 { 1809 struct writeback_control *wbc = ctx->wbc; 1810 struct address_space *mapping = page->mapping; 1811 struct extent_buffer *eb; 1812 int ret; 1813 1814 if (!PagePrivate(page)) 1815 return 0; 1816 1817 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1818 return submit_eb_subpage(page, wbc); 1819 1820 spin_lock(&mapping->private_lock); 1821 if (!PagePrivate(page)) { 1822 spin_unlock(&mapping->private_lock); 1823 return 0; 1824 } 1825 1826 eb = (struct extent_buffer *)page->private; 1827 1828 /* 1829 * Shouldn't happen and normally this would be a BUG_ON but no point 1830 * crashing the machine for something we can survive anyway. 1831 */ 1832 if (WARN_ON(!eb)) { 1833 spin_unlock(&mapping->private_lock); 1834 return 0; 1835 } 1836 1837 if (eb == ctx->eb) { 1838 spin_unlock(&mapping->private_lock); 1839 return 0; 1840 } 1841 ret = atomic_inc_not_zero(&eb->refs); 1842 spin_unlock(&mapping->private_lock); 1843 if (!ret) 1844 return 0; 1845 1846 ctx->eb = eb; 1847 1848 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1849 if (ret) { 1850 if (ret == -EBUSY) 1851 ret = 0; 1852 free_extent_buffer(eb); 1853 return ret; 1854 } 1855 1856 if (!lock_extent_buffer_for_io(eb, wbc)) { 1857 free_extent_buffer(eb); 1858 return 0; 1859 } 1860 /* Implies write in zoned mode. */ 1861 if (ctx->zoned_bg) { 1862 /* Mark the last eb in the block group. */ 1863 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1864 ctx->zoned_bg->meta_write_pointer += eb->len; 1865 } 1866 write_one_eb(eb, wbc); 1867 free_extent_buffer(eb); 1868 return 1; 1869 } 1870 1871 int btree_write_cache_pages(struct address_space *mapping, 1872 struct writeback_control *wbc) 1873 { 1874 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1875 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1876 int ret = 0; 1877 int done = 0; 1878 int nr_to_write_done = 0; 1879 struct folio_batch fbatch; 1880 unsigned int nr_folios; 1881 pgoff_t index; 1882 pgoff_t end; /* Inclusive */ 1883 int scanned = 0; 1884 xa_mark_t tag; 1885 1886 folio_batch_init(&fbatch); 1887 if (wbc->range_cyclic) { 1888 index = mapping->writeback_index; /* Start from prev offset */ 1889 end = -1; 1890 /* 1891 * Start from the beginning does not need to cycle over the 1892 * range, mark it as scanned. 1893 */ 1894 scanned = (index == 0); 1895 } else { 1896 index = wbc->range_start >> PAGE_SHIFT; 1897 end = wbc->range_end >> PAGE_SHIFT; 1898 scanned = 1; 1899 } 1900 if (wbc->sync_mode == WB_SYNC_ALL) 1901 tag = PAGECACHE_TAG_TOWRITE; 1902 else 1903 tag = PAGECACHE_TAG_DIRTY; 1904 btrfs_zoned_meta_io_lock(fs_info); 1905 retry: 1906 if (wbc->sync_mode == WB_SYNC_ALL) 1907 tag_pages_for_writeback(mapping, index, end); 1908 while (!done && !nr_to_write_done && (index <= end) && 1909 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1910 tag, &fbatch))) { 1911 unsigned i; 1912 1913 for (i = 0; i < nr_folios; i++) { 1914 struct folio *folio = fbatch.folios[i]; 1915 1916 ret = submit_eb_page(&folio->page, &ctx); 1917 if (ret == 0) 1918 continue; 1919 if (ret < 0) { 1920 done = 1; 1921 break; 1922 } 1923 1924 /* 1925 * the filesystem may choose to bump up nr_to_write. 1926 * We have to make sure to honor the new nr_to_write 1927 * at any time 1928 */ 1929 nr_to_write_done = wbc->nr_to_write <= 0; 1930 } 1931 folio_batch_release(&fbatch); 1932 cond_resched(); 1933 } 1934 if (!scanned && !done) { 1935 /* 1936 * We hit the last page and there is more work to be done: wrap 1937 * back to the start of the file 1938 */ 1939 scanned = 1; 1940 index = 0; 1941 goto retry; 1942 } 1943 /* 1944 * If something went wrong, don't allow any metadata write bio to be 1945 * submitted. 1946 * 1947 * This would prevent use-after-free if we had dirty pages not 1948 * cleaned up, which can still happen by fuzzed images. 1949 * 1950 * - Bad extent tree 1951 * Allowing existing tree block to be allocated for other trees. 1952 * 1953 * - Log tree operations 1954 * Exiting tree blocks get allocated to log tree, bumps its 1955 * generation, then get cleaned in tree re-balance. 1956 * Such tree block will not be written back, since it's clean, 1957 * thus no WRITTEN flag set. 1958 * And after log writes back, this tree block is not traced by 1959 * any dirty extent_io_tree. 1960 * 1961 * - Offending tree block gets re-dirtied from its original owner 1962 * Since it has bumped generation, no WRITTEN flag, it can be 1963 * reused without COWing. This tree block will not be traced 1964 * by btrfs_transaction::dirty_pages. 1965 * 1966 * Now such dirty tree block will not be cleaned by any dirty 1967 * extent io tree. Thus we don't want to submit such wild eb 1968 * if the fs already has error. 1969 * 1970 * We can get ret > 0 from submit_extent_page() indicating how many ebs 1971 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1972 */ 1973 if (ret > 0) 1974 ret = 0; 1975 if (!ret && BTRFS_FS_ERROR(fs_info)) 1976 ret = -EROFS; 1977 1978 if (ctx.zoned_bg) 1979 btrfs_put_block_group(ctx.zoned_bg); 1980 btrfs_zoned_meta_io_unlock(fs_info); 1981 return ret; 1982 } 1983 1984 /* 1985 * Walk the list of dirty pages of the given address space and write all of them. 1986 * 1987 * @mapping: address space structure to write 1988 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1989 * @bio_ctrl: holds context for the write, namely the bio 1990 * 1991 * If a page is already under I/O, write_cache_pages() skips it, even 1992 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1993 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1994 * and msync() need to guarantee that all the data which was dirty at the time 1995 * the call was made get new I/O started against them. If wbc->sync_mode is 1996 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1997 * existing IO to complete. 1998 */ 1999 static int extent_write_cache_pages(struct address_space *mapping, 2000 struct btrfs_bio_ctrl *bio_ctrl) 2001 { 2002 struct writeback_control *wbc = bio_ctrl->wbc; 2003 struct inode *inode = mapping->host; 2004 int ret = 0; 2005 int done = 0; 2006 int nr_to_write_done = 0; 2007 struct folio_batch fbatch; 2008 unsigned int nr_folios; 2009 pgoff_t index; 2010 pgoff_t end; /* Inclusive */ 2011 pgoff_t done_index; 2012 int range_whole = 0; 2013 int scanned = 0; 2014 xa_mark_t tag; 2015 2016 /* 2017 * We have to hold onto the inode so that ordered extents can do their 2018 * work when the IO finishes. The alternative to this is failing to add 2019 * an ordered extent if the igrab() fails there and that is a huge pain 2020 * to deal with, so instead just hold onto the inode throughout the 2021 * writepages operation. If it fails here we are freeing up the inode 2022 * anyway and we'd rather not waste our time writing out stuff that is 2023 * going to be truncated anyway. 2024 */ 2025 if (!igrab(inode)) 2026 return 0; 2027 2028 folio_batch_init(&fbatch); 2029 if (wbc->range_cyclic) { 2030 index = mapping->writeback_index; /* Start from prev offset */ 2031 end = -1; 2032 /* 2033 * Start from the beginning does not need to cycle over the 2034 * range, mark it as scanned. 2035 */ 2036 scanned = (index == 0); 2037 } else { 2038 index = wbc->range_start >> PAGE_SHIFT; 2039 end = wbc->range_end >> PAGE_SHIFT; 2040 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2041 range_whole = 1; 2042 scanned = 1; 2043 } 2044 2045 /* 2046 * We do the tagged writepage as long as the snapshot flush bit is set 2047 * and we are the first one who do the filemap_flush() on this inode. 2048 * 2049 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2050 * not race in and drop the bit. 2051 */ 2052 if (range_whole && wbc->nr_to_write == LONG_MAX && 2053 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2054 &BTRFS_I(inode)->runtime_flags)) 2055 wbc->tagged_writepages = 1; 2056 2057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2058 tag = PAGECACHE_TAG_TOWRITE; 2059 else 2060 tag = PAGECACHE_TAG_DIRTY; 2061 retry: 2062 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2063 tag_pages_for_writeback(mapping, index, end); 2064 done_index = index; 2065 while (!done && !nr_to_write_done && (index <= end) && 2066 (nr_folios = filemap_get_folios_tag(mapping, &index, 2067 end, tag, &fbatch))) { 2068 unsigned i; 2069 2070 for (i = 0; i < nr_folios; i++) { 2071 struct folio *folio = fbatch.folios[i]; 2072 2073 done_index = folio_next_index(folio); 2074 /* 2075 * At this point we hold neither the i_pages lock nor 2076 * the page lock: the page may be truncated or 2077 * invalidated (changing page->mapping to NULL), 2078 * or even swizzled back from swapper_space to 2079 * tmpfs file mapping 2080 */ 2081 if (!folio_trylock(folio)) { 2082 submit_write_bio(bio_ctrl, 0); 2083 folio_lock(folio); 2084 } 2085 2086 if (unlikely(folio->mapping != mapping)) { 2087 folio_unlock(folio); 2088 continue; 2089 } 2090 2091 if (!folio_test_dirty(folio)) { 2092 /* Someone wrote it for us. */ 2093 folio_unlock(folio); 2094 continue; 2095 } 2096 2097 if (wbc->sync_mode != WB_SYNC_NONE) { 2098 if (folio_test_writeback(folio)) 2099 submit_write_bio(bio_ctrl, 0); 2100 folio_wait_writeback(folio); 2101 } 2102 2103 if (folio_test_writeback(folio) || 2104 !folio_clear_dirty_for_io(folio)) { 2105 folio_unlock(folio); 2106 continue; 2107 } 2108 2109 ret = __extent_writepage(&folio->page, bio_ctrl); 2110 if (ret < 0) { 2111 done = 1; 2112 break; 2113 } 2114 2115 /* 2116 * The filesystem may choose to bump up nr_to_write. 2117 * We have to make sure to honor the new nr_to_write 2118 * at any time. 2119 */ 2120 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2121 wbc->nr_to_write <= 0); 2122 } 2123 folio_batch_release(&fbatch); 2124 cond_resched(); 2125 } 2126 if (!scanned && !done) { 2127 /* 2128 * We hit the last page and there is more work to be done: wrap 2129 * back to the start of the file 2130 */ 2131 scanned = 1; 2132 index = 0; 2133 2134 /* 2135 * If we're looping we could run into a page that is locked by a 2136 * writer and that writer could be waiting on writeback for a 2137 * page in our current bio, and thus deadlock, so flush the 2138 * write bio here. 2139 */ 2140 submit_write_bio(bio_ctrl, 0); 2141 goto retry; 2142 } 2143 2144 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2145 mapping->writeback_index = done_index; 2146 2147 btrfs_add_delayed_iput(BTRFS_I(inode)); 2148 return ret; 2149 } 2150 2151 /* 2152 * Submit the pages in the range to bio for call sites which delalloc range has 2153 * already been ran (aka, ordered extent inserted) and all pages are still 2154 * locked. 2155 */ 2156 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2157 u64 start, u64 end, struct writeback_control *wbc, 2158 bool pages_dirty) 2159 { 2160 bool found_error = false; 2161 int ret = 0; 2162 struct address_space *mapping = inode->i_mapping; 2163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2164 const u32 sectorsize = fs_info->sectorsize; 2165 loff_t i_size = i_size_read(inode); 2166 u64 cur = start; 2167 struct btrfs_bio_ctrl bio_ctrl = { 2168 .wbc = wbc, 2169 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2170 }; 2171 2172 if (wbc->no_cgroup_owner) 2173 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2174 2175 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2176 2177 while (cur <= end) { 2178 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2179 u32 cur_len = cur_end + 1 - cur; 2180 struct page *page; 2181 int nr = 0; 2182 2183 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2184 ASSERT(PageLocked(page)); 2185 if (pages_dirty && page != locked_page) { 2186 ASSERT(PageDirty(page)); 2187 clear_page_dirty_for_io(page); 2188 } 2189 2190 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2191 i_size, &nr); 2192 if (ret == 1) 2193 goto next_page; 2194 2195 /* Make sure the mapping tag for page dirty gets cleared. */ 2196 if (nr == 0) { 2197 set_page_writeback(page); 2198 end_page_writeback(page); 2199 } 2200 if (ret) { 2201 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2202 cur, cur_len, !ret); 2203 mapping_set_error(page->mapping, ret); 2204 } 2205 btrfs_page_unlock_writer(fs_info, page, cur, cur_len); 2206 if (ret < 0) 2207 found_error = true; 2208 next_page: 2209 put_page(page); 2210 cur = cur_end + 1; 2211 } 2212 2213 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2214 } 2215 2216 int extent_writepages(struct address_space *mapping, 2217 struct writeback_control *wbc) 2218 { 2219 struct inode *inode = mapping->host; 2220 int ret = 0; 2221 struct btrfs_bio_ctrl bio_ctrl = { 2222 .wbc = wbc, 2223 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2224 }; 2225 2226 /* 2227 * Allow only a single thread to do the reloc work in zoned mode to 2228 * protect the write pointer updates. 2229 */ 2230 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2231 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2232 submit_write_bio(&bio_ctrl, ret); 2233 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2234 return ret; 2235 } 2236 2237 void extent_readahead(struct readahead_control *rac) 2238 { 2239 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2240 struct page *pagepool[16]; 2241 struct extent_map *em_cached = NULL; 2242 u64 prev_em_start = (u64)-1; 2243 int nr; 2244 2245 while ((nr = readahead_page_batch(rac, pagepool))) { 2246 u64 contig_start = readahead_pos(rac); 2247 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2248 2249 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2250 &em_cached, &bio_ctrl, &prev_em_start); 2251 } 2252 2253 if (em_cached) 2254 free_extent_map(em_cached); 2255 submit_one_bio(&bio_ctrl); 2256 } 2257 2258 /* 2259 * basic invalidate_folio code, this waits on any locked or writeback 2260 * ranges corresponding to the folio, and then deletes any extent state 2261 * records from the tree 2262 */ 2263 int extent_invalidate_folio(struct extent_io_tree *tree, 2264 struct folio *folio, size_t offset) 2265 { 2266 struct extent_state *cached_state = NULL; 2267 u64 start = folio_pos(folio); 2268 u64 end = start + folio_size(folio) - 1; 2269 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2270 2271 /* This function is only called for the btree inode */ 2272 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2273 2274 start += ALIGN(offset, blocksize); 2275 if (start > end) 2276 return 0; 2277 2278 lock_extent(tree, start, end, &cached_state); 2279 folio_wait_writeback(folio); 2280 2281 /* 2282 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2283 * so here we only need to unlock the extent range to free any 2284 * existing extent state. 2285 */ 2286 unlock_extent(tree, start, end, &cached_state); 2287 return 0; 2288 } 2289 2290 /* 2291 * a helper for release_folio, this tests for areas of the page that 2292 * are locked or under IO and drops the related state bits if it is safe 2293 * to drop the page. 2294 */ 2295 static int try_release_extent_state(struct extent_io_tree *tree, 2296 struct page *page, gfp_t mask) 2297 { 2298 u64 start = page_offset(page); 2299 u64 end = start + PAGE_SIZE - 1; 2300 int ret = 1; 2301 2302 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2303 ret = 0; 2304 } else { 2305 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2306 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2307 EXTENT_QGROUP_RESERVED); 2308 2309 /* 2310 * At this point we can safely clear everything except the 2311 * locked bit, the nodatasum bit and the delalloc new bit. 2312 * The delalloc new bit will be cleared by ordered extent 2313 * completion. 2314 */ 2315 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2316 2317 /* if clear_extent_bit failed for enomem reasons, 2318 * we can't allow the release to continue. 2319 */ 2320 if (ret < 0) 2321 ret = 0; 2322 else 2323 ret = 1; 2324 } 2325 return ret; 2326 } 2327 2328 /* 2329 * a helper for release_folio. As long as there are no locked extents 2330 * in the range corresponding to the page, both state records and extent 2331 * map records are removed 2332 */ 2333 int try_release_extent_mapping(struct page *page, gfp_t mask) 2334 { 2335 struct extent_map *em; 2336 u64 start = page_offset(page); 2337 u64 end = start + PAGE_SIZE - 1; 2338 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2339 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2340 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2341 2342 if (gfpflags_allow_blocking(mask) && 2343 page->mapping->host->i_size > SZ_16M) { 2344 u64 len; 2345 while (start <= end) { 2346 struct btrfs_fs_info *fs_info; 2347 u64 cur_gen; 2348 2349 len = end - start + 1; 2350 write_lock(&map->lock); 2351 em = lookup_extent_mapping(map, start, len); 2352 if (!em) { 2353 write_unlock(&map->lock); 2354 break; 2355 } 2356 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2357 em->start != start) { 2358 write_unlock(&map->lock); 2359 free_extent_map(em); 2360 break; 2361 } 2362 if (test_range_bit(tree, em->start, 2363 extent_map_end(em) - 1, 2364 EXTENT_LOCKED, 0, NULL)) 2365 goto next; 2366 /* 2367 * If it's not in the list of modified extents, used 2368 * by a fast fsync, we can remove it. If it's being 2369 * logged we can safely remove it since fsync took an 2370 * extra reference on the em. 2371 */ 2372 if (list_empty(&em->list) || 2373 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2374 goto remove_em; 2375 /* 2376 * If it's in the list of modified extents, remove it 2377 * only if its generation is older then the current one, 2378 * in which case we don't need it for a fast fsync. 2379 * Otherwise don't remove it, we could be racing with an 2380 * ongoing fast fsync that could miss the new extent. 2381 */ 2382 fs_info = btrfs_inode->root->fs_info; 2383 spin_lock(&fs_info->trans_lock); 2384 cur_gen = fs_info->generation; 2385 spin_unlock(&fs_info->trans_lock); 2386 if (em->generation >= cur_gen) 2387 goto next; 2388 remove_em: 2389 /* 2390 * We only remove extent maps that are not in the list of 2391 * modified extents or that are in the list but with a 2392 * generation lower then the current generation, so there 2393 * is no need to set the full fsync flag on the inode (it 2394 * hurts the fsync performance for workloads with a data 2395 * size that exceeds or is close to the system's memory). 2396 */ 2397 remove_extent_mapping(map, em); 2398 /* once for the rb tree */ 2399 free_extent_map(em); 2400 next: 2401 start = extent_map_end(em); 2402 write_unlock(&map->lock); 2403 2404 /* once for us */ 2405 free_extent_map(em); 2406 2407 cond_resched(); /* Allow large-extent preemption. */ 2408 } 2409 } 2410 return try_release_extent_state(tree, page, mask); 2411 } 2412 2413 /* 2414 * To cache previous fiemap extent 2415 * 2416 * Will be used for merging fiemap extent 2417 */ 2418 struct fiemap_cache { 2419 u64 offset; 2420 u64 phys; 2421 u64 len; 2422 u32 flags; 2423 bool cached; 2424 }; 2425 2426 /* 2427 * Helper to submit fiemap extent. 2428 * 2429 * Will try to merge current fiemap extent specified by @offset, @phys, 2430 * @len and @flags with cached one. 2431 * And only when we fails to merge, cached one will be submitted as 2432 * fiemap extent. 2433 * 2434 * Return value is the same as fiemap_fill_next_extent(). 2435 */ 2436 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2437 struct fiemap_cache *cache, 2438 u64 offset, u64 phys, u64 len, u32 flags) 2439 { 2440 int ret = 0; 2441 2442 /* Set at the end of extent_fiemap(). */ 2443 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2444 2445 if (!cache->cached) 2446 goto assign; 2447 2448 /* 2449 * Sanity check, extent_fiemap() should have ensured that new 2450 * fiemap extent won't overlap with cached one. 2451 * Not recoverable. 2452 * 2453 * NOTE: Physical address can overlap, due to compression 2454 */ 2455 if (cache->offset + cache->len > offset) { 2456 WARN_ON(1); 2457 return -EINVAL; 2458 } 2459 2460 /* 2461 * Only merges fiemap extents if 2462 * 1) Their logical addresses are continuous 2463 * 2464 * 2) Their physical addresses are continuous 2465 * So truly compressed (physical size smaller than logical size) 2466 * extents won't get merged with each other 2467 * 2468 * 3) Share same flags 2469 */ 2470 if (cache->offset + cache->len == offset && 2471 cache->phys + cache->len == phys && 2472 cache->flags == flags) { 2473 cache->len += len; 2474 return 0; 2475 } 2476 2477 /* Not mergeable, need to submit cached one */ 2478 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2479 cache->len, cache->flags); 2480 cache->cached = false; 2481 if (ret) 2482 return ret; 2483 assign: 2484 cache->cached = true; 2485 cache->offset = offset; 2486 cache->phys = phys; 2487 cache->len = len; 2488 cache->flags = flags; 2489 2490 return 0; 2491 } 2492 2493 /* 2494 * Emit last fiemap cache 2495 * 2496 * The last fiemap cache may still be cached in the following case: 2497 * 0 4k 8k 2498 * |<- Fiemap range ->| 2499 * |<------------ First extent ----------->| 2500 * 2501 * In this case, the first extent range will be cached but not emitted. 2502 * So we must emit it before ending extent_fiemap(). 2503 */ 2504 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2505 struct fiemap_cache *cache) 2506 { 2507 int ret; 2508 2509 if (!cache->cached) 2510 return 0; 2511 2512 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2513 cache->len, cache->flags); 2514 cache->cached = false; 2515 if (ret > 0) 2516 ret = 0; 2517 return ret; 2518 } 2519 2520 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2521 { 2522 struct extent_buffer *clone; 2523 struct btrfs_key key; 2524 int slot; 2525 int ret; 2526 2527 path->slots[0]++; 2528 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2529 return 0; 2530 2531 ret = btrfs_next_leaf(inode->root, path); 2532 if (ret != 0) 2533 return ret; 2534 2535 /* 2536 * Don't bother with cloning if there are no more file extent items for 2537 * our inode. 2538 */ 2539 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2540 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2541 return 1; 2542 2543 /* See the comment at fiemap_search_slot() about why we clone. */ 2544 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2545 if (!clone) 2546 return -ENOMEM; 2547 2548 slot = path->slots[0]; 2549 btrfs_release_path(path); 2550 path->nodes[0] = clone; 2551 path->slots[0] = slot; 2552 2553 return 0; 2554 } 2555 2556 /* 2557 * Search for the first file extent item that starts at a given file offset or 2558 * the one that starts immediately before that offset. 2559 * Returns: 0 on success, < 0 on error, 1 if not found. 2560 */ 2561 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2562 u64 file_offset) 2563 { 2564 const u64 ino = btrfs_ino(inode); 2565 struct btrfs_root *root = inode->root; 2566 struct extent_buffer *clone; 2567 struct btrfs_key key; 2568 int slot; 2569 int ret; 2570 2571 key.objectid = ino; 2572 key.type = BTRFS_EXTENT_DATA_KEY; 2573 key.offset = file_offset; 2574 2575 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2576 if (ret < 0) 2577 return ret; 2578 2579 if (ret > 0 && path->slots[0] > 0) { 2580 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2581 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2582 path->slots[0]--; 2583 } 2584 2585 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2586 ret = btrfs_next_leaf(root, path); 2587 if (ret != 0) 2588 return ret; 2589 2590 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2591 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2592 return 1; 2593 } 2594 2595 /* 2596 * We clone the leaf and use it during fiemap. This is because while 2597 * using the leaf we do expensive things like checking if an extent is 2598 * shared, which can take a long time. In order to prevent blocking 2599 * other tasks for too long, we use a clone of the leaf. We have locked 2600 * the file range in the inode's io tree, so we know none of our file 2601 * extent items can change. This way we avoid blocking other tasks that 2602 * want to insert items for other inodes in the same leaf or b+tree 2603 * rebalance operations (triggered for example when someone is trying 2604 * to push items into this leaf when trying to insert an item in a 2605 * neighbour leaf). 2606 * We also need the private clone because holding a read lock on an 2607 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2608 * when we call fiemap_fill_next_extent(), because that may cause a page 2609 * fault when filling the user space buffer with fiemap data. 2610 */ 2611 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2612 if (!clone) 2613 return -ENOMEM; 2614 2615 slot = path->slots[0]; 2616 btrfs_release_path(path); 2617 path->nodes[0] = clone; 2618 path->slots[0] = slot; 2619 2620 return 0; 2621 } 2622 2623 /* 2624 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2625 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2626 * extent. The end offset (@end) is inclusive. 2627 */ 2628 static int fiemap_process_hole(struct btrfs_inode *inode, 2629 struct fiemap_extent_info *fieinfo, 2630 struct fiemap_cache *cache, 2631 struct extent_state **delalloc_cached_state, 2632 struct btrfs_backref_share_check_ctx *backref_ctx, 2633 u64 disk_bytenr, u64 extent_offset, 2634 u64 extent_gen, 2635 u64 start, u64 end) 2636 { 2637 const u64 i_size = i_size_read(&inode->vfs_inode); 2638 u64 cur_offset = start; 2639 u64 last_delalloc_end = 0; 2640 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2641 bool checked_extent_shared = false; 2642 int ret; 2643 2644 /* 2645 * There can be no delalloc past i_size, so don't waste time looking for 2646 * it beyond i_size. 2647 */ 2648 while (cur_offset < end && cur_offset < i_size) { 2649 u64 delalloc_start; 2650 u64 delalloc_end; 2651 u64 prealloc_start; 2652 u64 prealloc_len = 0; 2653 bool delalloc; 2654 2655 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2656 delalloc_cached_state, 2657 &delalloc_start, 2658 &delalloc_end); 2659 if (!delalloc) 2660 break; 2661 2662 /* 2663 * If this is a prealloc extent we have to report every section 2664 * of it that has no delalloc. 2665 */ 2666 if (disk_bytenr != 0) { 2667 if (last_delalloc_end == 0) { 2668 prealloc_start = start; 2669 prealloc_len = delalloc_start - start; 2670 } else { 2671 prealloc_start = last_delalloc_end + 1; 2672 prealloc_len = delalloc_start - prealloc_start; 2673 } 2674 } 2675 2676 if (prealloc_len > 0) { 2677 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2678 ret = btrfs_is_data_extent_shared(inode, 2679 disk_bytenr, 2680 extent_gen, 2681 backref_ctx); 2682 if (ret < 0) 2683 return ret; 2684 else if (ret > 0) 2685 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2686 2687 checked_extent_shared = true; 2688 } 2689 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2690 disk_bytenr + extent_offset, 2691 prealloc_len, prealloc_flags); 2692 if (ret) 2693 return ret; 2694 extent_offset += prealloc_len; 2695 } 2696 2697 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2698 delalloc_end + 1 - delalloc_start, 2699 FIEMAP_EXTENT_DELALLOC | 2700 FIEMAP_EXTENT_UNKNOWN); 2701 if (ret) 2702 return ret; 2703 2704 last_delalloc_end = delalloc_end; 2705 cur_offset = delalloc_end + 1; 2706 extent_offset += cur_offset - delalloc_start; 2707 cond_resched(); 2708 } 2709 2710 /* 2711 * Either we found no delalloc for the whole prealloc extent or we have 2712 * a prealloc extent that spans i_size or starts at or after i_size. 2713 */ 2714 if (disk_bytenr != 0 && last_delalloc_end < end) { 2715 u64 prealloc_start; 2716 u64 prealloc_len; 2717 2718 if (last_delalloc_end == 0) { 2719 prealloc_start = start; 2720 prealloc_len = end + 1 - start; 2721 } else { 2722 prealloc_start = last_delalloc_end + 1; 2723 prealloc_len = end + 1 - prealloc_start; 2724 } 2725 2726 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2727 ret = btrfs_is_data_extent_shared(inode, 2728 disk_bytenr, 2729 extent_gen, 2730 backref_ctx); 2731 if (ret < 0) 2732 return ret; 2733 else if (ret > 0) 2734 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2735 } 2736 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2737 disk_bytenr + extent_offset, 2738 prealloc_len, prealloc_flags); 2739 if (ret) 2740 return ret; 2741 } 2742 2743 return 0; 2744 } 2745 2746 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2747 struct btrfs_path *path, 2748 u64 *last_extent_end_ret) 2749 { 2750 const u64 ino = btrfs_ino(inode); 2751 struct btrfs_root *root = inode->root; 2752 struct extent_buffer *leaf; 2753 struct btrfs_file_extent_item *ei; 2754 struct btrfs_key key; 2755 u64 disk_bytenr; 2756 int ret; 2757 2758 /* 2759 * Lookup the last file extent. We're not using i_size here because 2760 * there might be preallocation past i_size. 2761 */ 2762 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2763 /* There can't be a file extent item at offset (u64)-1 */ 2764 ASSERT(ret != 0); 2765 if (ret < 0) 2766 return ret; 2767 2768 /* 2769 * For a non-existing key, btrfs_search_slot() always leaves us at a 2770 * slot > 0, except if the btree is empty, which is impossible because 2771 * at least it has the inode item for this inode and all the items for 2772 * the root inode 256. 2773 */ 2774 ASSERT(path->slots[0] > 0); 2775 path->slots[0]--; 2776 leaf = path->nodes[0]; 2777 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2778 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2779 /* No file extent items in the subvolume tree. */ 2780 *last_extent_end_ret = 0; 2781 return 0; 2782 } 2783 2784 /* 2785 * For an inline extent, the disk_bytenr is where inline data starts at, 2786 * so first check if we have an inline extent item before checking if we 2787 * have an implicit hole (disk_bytenr == 0). 2788 */ 2789 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2790 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2791 *last_extent_end_ret = btrfs_file_extent_end(path); 2792 return 0; 2793 } 2794 2795 /* 2796 * Find the last file extent item that is not a hole (when NO_HOLES is 2797 * not enabled). This should take at most 2 iterations in the worst 2798 * case: we have one hole file extent item at slot 0 of a leaf and 2799 * another hole file extent item as the last item in the previous leaf. 2800 * This is because we merge file extent items that represent holes. 2801 */ 2802 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2803 while (disk_bytenr == 0) { 2804 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2805 if (ret < 0) { 2806 return ret; 2807 } else if (ret > 0) { 2808 /* No file extent items that are not holes. */ 2809 *last_extent_end_ret = 0; 2810 return 0; 2811 } 2812 leaf = path->nodes[0]; 2813 ei = btrfs_item_ptr(leaf, path->slots[0], 2814 struct btrfs_file_extent_item); 2815 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2816 } 2817 2818 *last_extent_end_ret = btrfs_file_extent_end(path); 2819 return 0; 2820 } 2821 2822 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2823 u64 start, u64 len) 2824 { 2825 const u64 ino = btrfs_ino(inode); 2826 struct extent_state *cached_state = NULL; 2827 struct extent_state *delalloc_cached_state = NULL; 2828 struct btrfs_path *path; 2829 struct fiemap_cache cache = { 0 }; 2830 struct btrfs_backref_share_check_ctx *backref_ctx; 2831 u64 last_extent_end; 2832 u64 prev_extent_end; 2833 u64 lockstart; 2834 u64 lockend; 2835 bool stopped = false; 2836 int ret; 2837 2838 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2839 path = btrfs_alloc_path(); 2840 if (!backref_ctx || !path) { 2841 ret = -ENOMEM; 2842 goto out; 2843 } 2844 2845 lockstart = round_down(start, inode->root->fs_info->sectorsize); 2846 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 2847 prev_extent_end = lockstart; 2848 2849 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 2850 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2851 2852 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 2853 if (ret < 0) 2854 goto out_unlock; 2855 btrfs_release_path(path); 2856 2857 path->reada = READA_FORWARD; 2858 ret = fiemap_search_slot(inode, path, lockstart); 2859 if (ret < 0) { 2860 goto out_unlock; 2861 } else if (ret > 0) { 2862 /* 2863 * No file extent item found, but we may have delalloc between 2864 * the current offset and i_size. So check for that. 2865 */ 2866 ret = 0; 2867 goto check_eof_delalloc; 2868 } 2869 2870 while (prev_extent_end < lockend) { 2871 struct extent_buffer *leaf = path->nodes[0]; 2872 struct btrfs_file_extent_item *ei; 2873 struct btrfs_key key; 2874 u64 extent_end; 2875 u64 extent_len; 2876 u64 extent_offset = 0; 2877 u64 extent_gen; 2878 u64 disk_bytenr = 0; 2879 u64 flags = 0; 2880 int extent_type; 2881 u8 compression; 2882 2883 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2884 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2885 break; 2886 2887 extent_end = btrfs_file_extent_end(path); 2888 2889 /* 2890 * The first iteration can leave us at an extent item that ends 2891 * before our range's start. Move to the next item. 2892 */ 2893 if (extent_end <= lockstart) 2894 goto next_item; 2895 2896 backref_ctx->curr_leaf_bytenr = leaf->start; 2897 2898 /* We have in implicit hole (NO_HOLES feature enabled). */ 2899 if (prev_extent_end < key.offset) { 2900 const u64 range_end = min(key.offset, lockend) - 1; 2901 2902 ret = fiemap_process_hole(inode, fieinfo, &cache, 2903 &delalloc_cached_state, 2904 backref_ctx, 0, 0, 0, 2905 prev_extent_end, range_end); 2906 if (ret < 0) { 2907 goto out_unlock; 2908 } else if (ret > 0) { 2909 /* fiemap_fill_next_extent() told us to stop. */ 2910 stopped = true; 2911 break; 2912 } 2913 2914 /* We've reached the end of the fiemap range, stop. */ 2915 if (key.offset >= lockend) { 2916 stopped = true; 2917 break; 2918 } 2919 } 2920 2921 extent_len = extent_end - key.offset; 2922 ei = btrfs_item_ptr(leaf, path->slots[0], 2923 struct btrfs_file_extent_item); 2924 compression = btrfs_file_extent_compression(leaf, ei); 2925 extent_type = btrfs_file_extent_type(leaf, ei); 2926 extent_gen = btrfs_file_extent_generation(leaf, ei); 2927 2928 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2929 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2930 if (compression == BTRFS_COMPRESS_NONE) 2931 extent_offset = btrfs_file_extent_offset(leaf, ei); 2932 } 2933 2934 if (compression != BTRFS_COMPRESS_NONE) 2935 flags |= FIEMAP_EXTENT_ENCODED; 2936 2937 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2938 flags |= FIEMAP_EXTENT_DATA_INLINE; 2939 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 2940 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 2941 extent_len, flags); 2942 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2943 ret = fiemap_process_hole(inode, fieinfo, &cache, 2944 &delalloc_cached_state, 2945 backref_ctx, 2946 disk_bytenr, extent_offset, 2947 extent_gen, key.offset, 2948 extent_end - 1); 2949 } else if (disk_bytenr == 0) { 2950 /* We have an explicit hole. */ 2951 ret = fiemap_process_hole(inode, fieinfo, &cache, 2952 &delalloc_cached_state, 2953 backref_ctx, 0, 0, 0, 2954 key.offset, extent_end - 1); 2955 } else { 2956 /* We have a regular extent. */ 2957 if (fieinfo->fi_extents_max) { 2958 ret = btrfs_is_data_extent_shared(inode, 2959 disk_bytenr, 2960 extent_gen, 2961 backref_ctx); 2962 if (ret < 0) 2963 goto out_unlock; 2964 else if (ret > 0) 2965 flags |= FIEMAP_EXTENT_SHARED; 2966 } 2967 2968 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 2969 disk_bytenr + extent_offset, 2970 extent_len, flags); 2971 } 2972 2973 if (ret < 0) { 2974 goto out_unlock; 2975 } else if (ret > 0) { 2976 /* fiemap_fill_next_extent() told us to stop. */ 2977 stopped = true; 2978 break; 2979 } 2980 2981 prev_extent_end = extent_end; 2982 next_item: 2983 if (fatal_signal_pending(current)) { 2984 ret = -EINTR; 2985 goto out_unlock; 2986 } 2987 2988 ret = fiemap_next_leaf_item(inode, path); 2989 if (ret < 0) { 2990 goto out_unlock; 2991 } else if (ret > 0) { 2992 /* No more file extent items for this inode. */ 2993 break; 2994 } 2995 cond_resched(); 2996 } 2997 2998 check_eof_delalloc: 2999 /* 3000 * Release (and free) the path before emitting any final entries to 3001 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3002 * once we find no more file extent items exist, we may have a 3003 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3004 * faults when copying data to the user space buffer. 3005 */ 3006 btrfs_free_path(path); 3007 path = NULL; 3008 3009 if (!stopped && prev_extent_end < lockend) { 3010 ret = fiemap_process_hole(inode, fieinfo, &cache, 3011 &delalloc_cached_state, backref_ctx, 3012 0, 0, 0, prev_extent_end, lockend - 1); 3013 if (ret < 0) 3014 goto out_unlock; 3015 prev_extent_end = lockend; 3016 } 3017 3018 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3019 const u64 i_size = i_size_read(&inode->vfs_inode); 3020 3021 if (prev_extent_end < i_size) { 3022 u64 delalloc_start; 3023 u64 delalloc_end; 3024 bool delalloc; 3025 3026 delalloc = btrfs_find_delalloc_in_range(inode, 3027 prev_extent_end, 3028 i_size - 1, 3029 &delalloc_cached_state, 3030 &delalloc_start, 3031 &delalloc_end); 3032 if (!delalloc) 3033 cache.flags |= FIEMAP_EXTENT_LAST; 3034 } else { 3035 cache.flags |= FIEMAP_EXTENT_LAST; 3036 } 3037 } 3038 3039 ret = emit_last_fiemap_cache(fieinfo, &cache); 3040 3041 out_unlock: 3042 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3043 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3044 out: 3045 free_extent_state(delalloc_cached_state); 3046 btrfs_free_backref_share_ctx(backref_ctx); 3047 btrfs_free_path(path); 3048 return ret; 3049 } 3050 3051 static void __free_extent_buffer(struct extent_buffer *eb) 3052 { 3053 kmem_cache_free(extent_buffer_cache, eb); 3054 } 3055 3056 static int extent_buffer_under_io(const struct extent_buffer *eb) 3057 { 3058 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3059 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3060 } 3061 3062 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3063 { 3064 struct btrfs_subpage *subpage; 3065 3066 lockdep_assert_held(&page->mapping->private_lock); 3067 3068 if (PagePrivate(page)) { 3069 subpage = (struct btrfs_subpage *)page->private; 3070 if (atomic_read(&subpage->eb_refs)) 3071 return true; 3072 /* 3073 * Even there is no eb refs here, we may still have 3074 * end_page_read() call relying on page::private. 3075 */ 3076 if (atomic_read(&subpage->readers)) 3077 return true; 3078 } 3079 return false; 3080 } 3081 3082 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3083 { 3084 struct btrfs_fs_info *fs_info = eb->fs_info; 3085 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3086 3087 /* 3088 * For mapped eb, we're going to change the page private, which should 3089 * be done under the private_lock. 3090 */ 3091 if (mapped) 3092 spin_lock(&page->mapping->private_lock); 3093 3094 if (!PagePrivate(page)) { 3095 if (mapped) 3096 spin_unlock(&page->mapping->private_lock); 3097 return; 3098 } 3099 3100 if (fs_info->nodesize >= PAGE_SIZE) { 3101 /* 3102 * We do this since we'll remove the pages after we've 3103 * removed the eb from the radix tree, so we could race 3104 * and have this page now attached to the new eb. So 3105 * only clear page_private if it's still connected to 3106 * this eb. 3107 */ 3108 if (PagePrivate(page) && 3109 page->private == (unsigned long)eb) { 3110 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3111 BUG_ON(PageDirty(page)); 3112 BUG_ON(PageWriteback(page)); 3113 /* 3114 * We need to make sure we haven't be attached 3115 * to a new eb. 3116 */ 3117 detach_page_private(page); 3118 } 3119 if (mapped) 3120 spin_unlock(&page->mapping->private_lock); 3121 return; 3122 } 3123 3124 /* 3125 * For subpage, we can have dummy eb with page private. In this case, 3126 * we can directly detach the private as such page is only attached to 3127 * one dummy eb, no sharing. 3128 */ 3129 if (!mapped) { 3130 btrfs_detach_subpage(fs_info, page); 3131 return; 3132 } 3133 3134 btrfs_page_dec_eb_refs(fs_info, page); 3135 3136 /* 3137 * We can only detach the page private if there are no other ebs in the 3138 * page range and no unfinished IO. 3139 */ 3140 if (!page_range_has_eb(fs_info, page)) 3141 btrfs_detach_subpage(fs_info, page); 3142 3143 spin_unlock(&page->mapping->private_lock); 3144 } 3145 3146 /* Release all pages attached to the extent buffer */ 3147 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3148 { 3149 int i; 3150 int num_pages; 3151 3152 ASSERT(!extent_buffer_under_io(eb)); 3153 3154 num_pages = num_extent_pages(eb); 3155 for (i = 0; i < num_pages; i++) { 3156 struct page *page = eb->pages[i]; 3157 3158 if (!page) 3159 continue; 3160 3161 detach_extent_buffer_page(eb, page); 3162 3163 /* One for when we allocated the page */ 3164 put_page(page); 3165 } 3166 } 3167 3168 /* 3169 * Helper for releasing the extent buffer. 3170 */ 3171 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3172 { 3173 btrfs_release_extent_buffer_pages(eb); 3174 btrfs_leak_debug_del_eb(eb); 3175 __free_extent_buffer(eb); 3176 } 3177 3178 static struct extent_buffer * 3179 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3180 unsigned long len) 3181 { 3182 struct extent_buffer *eb = NULL; 3183 3184 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3185 eb->start = start; 3186 eb->len = len; 3187 eb->fs_info = fs_info; 3188 init_rwsem(&eb->lock); 3189 3190 btrfs_leak_debug_add_eb(eb); 3191 3192 spin_lock_init(&eb->refs_lock); 3193 atomic_set(&eb->refs, 1); 3194 3195 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3196 3197 return eb; 3198 } 3199 3200 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3201 { 3202 int i; 3203 struct extent_buffer *new; 3204 int num_pages = num_extent_pages(src); 3205 int ret; 3206 3207 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3208 if (new == NULL) 3209 return NULL; 3210 3211 /* 3212 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3213 * btrfs_release_extent_buffer() have different behavior for 3214 * UNMAPPED subpage extent buffer. 3215 */ 3216 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3217 3218 ret = btrfs_alloc_page_array(num_pages, new->pages); 3219 if (ret) { 3220 btrfs_release_extent_buffer(new); 3221 return NULL; 3222 } 3223 3224 for (i = 0; i < num_pages; i++) { 3225 int ret; 3226 struct page *p = new->pages[i]; 3227 3228 ret = attach_extent_buffer_page(new, p, NULL); 3229 if (ret < 0) { 3230 btrfs_release_extent_buffer(new); 3231 return NULL; 3232 } 3233 WARN_ON(PageDirty(p)); 3234 } 3235 copy_extent_buffer_full(new, src); 3236 set_extent_buffer_uptodate(new); 3237 3238 return new; 3239 } 3240 3241 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3242 u64 start, unsigned long len) 3243 { 3244 struct extent_buffer *eb; 3245 int num_pages; 3246 int i; 3247 int ret; 3248 3249 eb = __alloc_extent_buffer(fs_info, start, len); 3250 if (!eb) 3251 return NULL; 3252 3253 num_pages = num_extent_pages(eb); 3254 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3255 if (ret) 3256 goto err; 3257 3258 for (i = 0; i < num_pages; i++) { 3259 struct page *p = eb->pages[i]; 3260 3261 ret = attach_extent_buffer_page(eb, p, NULL); 3262 if (ret < 0) 3263 goto err; 3264 } 3265 3266 set_extent_buffer_uptodate(eb); 3267 btrfs_set_header_nritems(eb, 0); 3268 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3269 3270 return eb; 3271 err: 3272 for (i = 0; i < num_pages; i++) { 3273 if (eb->pages[i]) { 3274 detach_extent_buffer_page(eb, eb->pages[i]); 3275 __free_page(eb->pages[i]); 3276 } 3277 } 3278 __free_extent_buffer(eb); 3279 return NULL; 3280 } 3281 3282 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3283 u64 start) 3284 { 3285 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3286 } 3287 3288 static void check_buffer_tree_ref(struct extent_buffer *eb) 3289 { 3290 int refs; 3291 /* 3292 * The TREE_REF bit is first set when the extent_buffer is added 3293 * to the radix tree. It is also reset, if unset, when a new reference 3294 * is created by find_extent_buffer. 3295 * 3296 * It is only cleared in two cases: freeing the last non-tree 3297 * reference to the extent_buffer when its STALE bit is set or 3298 * calling release_folio when the tree reference is the only reference. 3299 * 3300 * In both cases, care is taken to ensure that the extent_buffer's 3301 * pages are not under io. However, release_folio can be concurrently 3302 * called with creating new references, which is prone to race 3303 * conditions between the calls to check_buffer_tree_ref in those 3304 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3305 * 3306 * The actual lifetime of the extent_buffer in the radix tree is 3307 * adequately protected by the refcount, but the TREE_REF bit and 3308 * its corresponding reference are not. To protect against this 3309 * class of races, we call check_buffer_tree_ref from the codepaths 3310 * which trigger io. Note that once io is initiated, TREE_REF can no 3311 * longer be cleared, so that is the moment at which any such race is 3312 * best fixed. 3313 */ 3314 refs = atomic_read(&eb->refs); 3315 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3316 return; 3317 3318 spin_lock(&eb->refs_lock); 3319 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3320 atomic_inc(&eb->refs); 3321 spin_unlock(&eb->refs_lock); 3322 } 3323 3324 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3325 struct page *accessed) 3326 { 3327 int num_pages, i; 3328 3329 check_buffer_tree_ref(eb); 3330 3331 num_pages = num_extent_pages(eb); 3332 for (i = 0; i < num_pages; i++) { 3333 struct page *p = eb->pages[i]; 3334 3335 if (p != accessed) 3336 mark_page_accessed(p); 3337 } 3338 } 3339 3340 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3341 u64 start) 3342 { 3343 struct extent_buffer *eb; 3344 3345 eb = find_extent_buffer_nolock(fs_info, start); 3346 if (!eb) 3347 return NULL; 3348 /* 3349 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3350 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3351 * another task running free_extent_buffer() might have seen that flag 3352 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3353 * writeback flags not set) and it's still in the tree (flag 3354 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3355 * decrementing the extent buffer's reference count twice. So here we 3356 * could race and increment the eb's reference count, clear its stale 3357 * flag, mark it as dirty and drop our reference before the other task 3358 * finishes executing free_extent_buffer, which would later result in 3359 * an attempt to free an extent buffer that is dirty. 3360 */ 3361 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3362 spin_lock(&eb->refs_lock); 3363 spin_unlock(&eb->refs_lock); 3364 } 3365 mark_extent_buffer_accessed(eb, NULL); 3366 return eb; 3367 } 3368 3369 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3370 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3371 u64 start) 3372 { 3373 struct extent_buffer *eb, *exists = NULL; 3374 int ret; 3375 3376 eb = find_extent_buffer(fs_info, start); 3377 if (eb) 3378 return eb; 3379 eb = alloc_dummy_extent_buffer(fs_info, start); 3380 if (!eb) 3381 return ERR_PTR(-ENOMEM); 3382 eb->fs_info = fs_info; 3383 again: 3384 ret = radix_tree_preload(GFP_NOFS); 3385 if (ret) { 3386 exists = ERR_PTR(ret); 3387 goto free_eb; 3388 } 3389 spin_lock(&fs_info->buffer_lock); 3390 ret = radix_tree_insert(&fs_info->buffer_radix, 3391 start >> fs_info->sectorsize_bits, eb); 3392 spin_unlock(&fs_info->buffer_lock); 3393 radix_tree_preload_end(); 3394 if (ret == -EEXIST) { 3395 exists = find_extent_buffer(fs_info, start); 3396 if (exists) 3397 goto free_eb; 3398 else 3399 goto again; 3400 } 3401 check_buffer_tree_ref(eb); 3402 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3403 3404 return eb; 3405 free_eb: 3406 btrfs_release_extent_buffer(eb); 3407 return exists; 3408 } 3409 #endif 3410 3411 static struct extent_buffer *grab_extent_buffer( 3412 struct btrfs_fs_info *fs_info, struct page *page) 3413 { 3414 struct extent_buffer *exists; 3415 3416 /* 3417 * For subpage case, we completely rely on radix tree to ensure we 3418 * don't try to insert two ebs for the same bytenr. So here we always 3419 * return NULL and just continue. 3420 */ 3421 if (fs_info->nodesize < PAGE_SIZE) 3422 return NULL; 3423 3424 /* Page not yet attached to an extent buffer */ 3425 if (!PagePrivate(page)) 3426 return NULL; 3427 3428 /* 3429 * We could have already allocated an eb for this page and attached one 3430 * so lets see if we can get a ref on the existing eb, and if we can we 3431 * know it's good and we can just return that one, else we know we can 3432 * just overwrite page->private. 3433 */ 3434 exists = (struct extent_buffer *)page->private; 3435 if (atomic_inc_not_zero(&exists->refs)) 3436 return exists; 3437 3438 WARN_ON(PageDirty(page)); 3439 detach_page_private(page); 3440 return NULL; 3441 } 3442 3443 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3444 { 3445 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3446 btrfs_err(fs_info, "bad tree block start %llu", start); 3447 return -EINVAL; 3448 } 3449 3450 if (fs_info->nodesize < PAGE_SIZE && 3451 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3452 btrfs_err(fs_info, 3453 "tree block crosses page boundary, start %llu nodesize %u", 3454 start, fs_info->nodesize); 3455 return -EINVAL; 3456 } 3457 if (fs_info->nodesize >= PAGE_SIZE && 3458 !PAGE_ALIGNED(start)) { 3459 btrfs_err(fs_info, 3460 "tree block is not page aligned, start %llu nodesize %u", 3461 start, fs_info->nodesize); 3462 return -EINVAL; 3463 } 3464 return 0; 3465 } 3466 3467 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3468 u64 start, u64 owner_root, int level) 3469 { 3470 unsigned long len = fs_info->nodesize; 3471 int num_pages; 3472 int i; 3473 unsigned long index = start >> PAGE_SHIFT; 3474 struct extent_buffer *eb; 3475 struct extent_buffer *exists = NULL; 3476 struct page *p; 3477 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3478 struct btrfs_subpage *prealloc = NULL; 3479 u64 lockdep_owner = owner_root; 3480 int uptodate = 1; 3481 int ret; 3482 3483 if (check_eb_alignment(fs_info, start)) 3484 return ERR_PTR(-EINVAL); 3485 3486 #if BITS_PER_LONG == 32 3487 if (start >= MAX_LFS_FILESIZE) { 3488 btrfs_err_rl(fs_info, 3489 "extent buffer %llu is beyond 32bit page cache limit", start); 3490 btrfs_err_32bit_limit(fs_info); 3491 return ERR_PTR(-EOVERFLOW); 3492 } 3493 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3494 btrfs_warn_32bit_limit(fs_info); 3495 #endif 3496 3497 eb = find_extent_buffer(fs_info, start); 3498 if (eb) 3499 return eb; 3500 3501 eb = __alloc_extent_buffer(fs_info, start, len); 3502 if (!eb) 3503 return ERR_PTR(-ENOMEM); 3504 3505 /* 3506 * The reloc trees are just snapshots, so we need them to appear to be 3507 * just like any other fs tree WRT lockdep. 3508 */ 3509 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3510 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3511 3512 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3513 3514 num_pages = num_extent_pages(eb); 3515 3516 /* 3517 * Preallocate page->private for subpage case, so that we won't 3518 * allocate memory with private_lock nor page lock hold. 3519 * 3520 * The memory will be freed by attach_extent_buffer_page() or freed 3521 * manually if we exit earlier. 3522 */ 3523 if (fs_info->nodesize < PAGE_SIZE) { 3524 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3525 if (IS_ERR(prealloc)) { 3526 exists = ERR_CAST(prealloc); 3527 goto free_eb; 3528 } 3529 } 3530 3531 for (i = 0; i < num_pages; i++, index++) { 3532 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3533 if (!p) { 3534 exists = ERR_PTR(-ENOMEM); 3535 btrfs_free_subpage(prealloc); 3536 goto free_eb; 3537 } 3538 3539 spin_lock(&mapping->private_lock); 3540 exists = grab_extent_buffer(fs_info, p); 3541 if (exists) { 3542 spin_unlock(&mapping->private_lock); 3543 unlock_page(p); 3544 put_page(p); 3545 mark_extent_buffer_accessed(exists, p); 3546 btrfs_free_subpage(prealloc); 3547 goto free_eb; 3548 } 3549 /* Should not fail, as we have preallocated the memory */ 3550 ret = attach_extent_buffer_page(eb, p, prealloc); 3551 ASSERT(!ret); 3552 /* 3553 * To inform we have extra eb under allocation, so that 3554 * detach_extent_buffer_page() won't release the page private 3555 * when the eb hasn't yet been inserted into radix tree. 3556 * 3557 * The ref will be decreased when the eb released the page, in 3558 * detach_extent_buffer_page(). 3559 * Thus needs no special handling in error path. 3560 */ 3561 btrfs_page_inc_eb_refs(fs_info, p); 3562 spin_unlock(&mapping->private_lock); 3563 3564 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3565 eb->pages[i] = p; 3566 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3567 uptodate = 0; 3568 3569 /* 3570 * We can't unlock the pages just yet since the extent buffer 3571 * hasn't been properly inserted in the radix tree, this 3572 * opens a race with btree_release_folio which can free a page 3573 * while we are still filling in all pages for the buffer and 3574 * we could crash. 3575 */ 3576 } 3577 if (uptodate) 3578 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3579 again: 3580 ret = radix_tree_preload(GFP_NOFS); 3581 if (ret) { 3582 exists = ERR_PTR(ret); 3583 goto free_eb; 3584 } 3585 3586 spin_lock(&fs_info->buffer_lock); 3587 ret = radix_tree_insert(&fs_info->buffer_radix, 3588 start >> fs_info->sectorsize_bits, eb); 3589 spin_unlock(&fs_info->buffer_lock); 3590 radix_tree_preload_end(); 3591 if (ret == -EEXIST) { 3592 exists = find_extent_buffer(fs_info, start); 3593 if (exists) 3594 goto free_eb; 3595 else 3596 goto again; 3597 } 3598 /* add one reference for the tree */ 3599 check_buffer_tree_ref(eb); 3600 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3601 3602 /* 3603 * Now it's safe to unlock the pages because any calls to 3604 * btree_release_folio will correctly detect that a page belongs to a 3605 * live buffer and won't free them prematurely. 3606 */ 3607 for (i = 0; i < num_pages; i++) 3608 unlock_page(eb->pages[i]); 3609 return eb; 3610 3611 free_eb: 3612 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3613 for (i = 0; i < num_pages; i++) { 3614 if (eb->pages[i]) 3615 unlock_page(eb->pages[i]); 3616 } 3617 3618 btrfs_release_extent_buffer(eb); 3619 return exists; 3620 } 3621 3622 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3623 { 3624 struct extent_buffer *eb = 3625 container_of(head, struct extent_buffer, rcu_head); 3626 3627 __free_extent_buffer(eb); 3628 } 3629 3630 static int release_extent_buffer(struct extent_buffer *eb) 3631 __releases(&eb->refs_lock) 3632 { 3633 lockdep_assert_held(&eb->refs_lock); 3634 3635 WARN_ON(atomic_read(&eb->refs) == 0); 3636 if (atomic_dec_and_test(&eb->refs)) { 3637 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3638 struct btrfs_fs_info *fs_info = eb->fs_info; 3639 3640 spin_unlock(&eb->refs_lock); 3641 3642 spin_lock(&fs_info->buffer_lock); 3643 radix_tree_delete(&fs_info->buffer_radix, 3644 eb->start >> fs_info->sectorsize_bits); 3645 spin_unlock(&fs_info->buffer_lock); 3646 } else { 3647 spin_unlock(&eb->refs_lock); 3648 } 3649 3650 btrfs_leak_debug_del_eb(eb); 3651 /* Should be safe to release our pages at this point */ 3652 btrfs_release_extent_buffer_pages(eb); 3653 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3654 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3655 __free_extent_buffer(eb); 3656 return 1; 3657 } 3658 #endif 3659 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3660 return 1; 3661 } 3662 spin_unlock(&eb->refs_lock); 3663 3664 return 0; 3665 } 3666 3667 void free_extent_buffer(struct extent_buffer *eb) 3668 { 3669 int refs; 3670 if (!eb) 3671 return; 3672 3673 refs = atomic_read(&eb->refs); 3674 while (1) { 3675 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3676 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3677 refs == 1)) 3678 break; 3679 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3680 return; 3681 } 3682 3683 spin_lock(&eb->refs_lock); 3684 if (atomic_read(&eb->refs) == 2 && 3685 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3686 !extent_buffer_under_io(eb) && 3687 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3688 atomic_dec(&eb->refs); 3689 3690 /* 3691 * I know this is terrible, but it's temporary until we stop tracking 3692 * the uptodate bits and such for the extent buffers. 3693 */ 3694 release_extent_buffer(eb); 3695 } 3696 3697 void free_extent_buffer_stale(struct extent_buffer *eb) 3698 { 3699 if (!eb) 3700 return; 3701 3702 spin_lock(&eb->refs_lock); 3703 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3704 3705 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3706 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3707 atomic_dec(&eb->refs); 3708 release_extent_buffer(eb); 3709 } 3710 3711 static void btree_clear_page_dirty(struct page *page) 3712 { 3713 ASSERT(PageDirty(page)); 3714 ASSERT(PageLocked(page)); 3715 clear_page_dirty_for_io(page); 3716 xa_lock_irq(&page->mapping->i_pages); 3717 if (!PageDirty(page)) 3718 __xa_clear_mark(&page->mapping->i_pages, 3719 page_index(page), PAGECACHE_TAG_DIRTY); 3720 xa_unlock_irq(&page->mapping->i_pages); 3721 } 3722 3723 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3724 { 3725 struct btrfs_fs_info *fs_info = eb->fs_info; 3726 struct page *page = eb->pages[0]; 3727 bool last; 3728 3729 /* btree_clear_page_dirty() needs page locked */ 3730 lock_page(page); 3731 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3732 eb->len); 3733 if (last) 3734 btree_clear_page_dirty(page); 3735 unlock_page(page); 3736 WARN_ON(atomic_read(&eb->refs) == 0); 3737 } 3738 3739 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3740 struct extent_buffer *eb) 3741 { 3742 struct btrfs_fs_info *fs_info = eb->fs_info; 3743 int i; 3744 int num_pages; 3745 struct page *page; 3746 3747 btrfs_assert_tree_write_locked(eb); 3748 3749 if (trans && btrfs_header_generation(eb) != trans->transid) 3750 return; 3751 3752 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3753 return; 3754 3755 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3756 fs_info->dirty_metadata_batch); 3757 3758 if (eb->fs_info->nodesize < PAGE_SIZE) 3759 return clear_subpage_extent_buffer_dirty(eb); 3760 3761 num_pages = num_extent_pages(eb); 3762 3763 for (i = 0; i < num_pages; i++) { 3764 page = eb->pages[i]; 3765 if (!PageDirty(page)) 3766 continue; 3767 lock_page(page); 3768 btree_clear_page_dirty(page); 3769 unlock_page(page); 3770 } 3771 WARN_ON(atomic_read(&eb->refs) == 0); 3772 } 3773 3774 void set_extent_buffer_dirty(struct extent_buffer *eb) 3775 { 3776 int i; 3777 int num_pages; 3778 bool was_dirty; 3779 3780 check_buffer_tree_ref(eb); 3781 3782 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3783 3784 num_pages = num_extent_pages(eb); 3785 WARN_ON(atomic_read(&eb->refs) == 0); 3786 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3787 3788 if (!was_dirty) { 3789 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3790 3791 /* 3792 * For subpage case, we can have other extent buffers in the 3793 * same page, and in clear_subpage_extent_buffer_dirty() we 3794 * have to clear page dirty without subpage lock held. 3795 * This can cause race where our page gets dirty cleared after 3796 * we just set it. 3797 * 3798 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3799 * its page for other reasons, we can use page lock to prevent 3800 * the above race. 3801 */ 3802 if (subpage) 3803 lock_page(eb->pages[0]); 3804 for (i = 0; i < num_pages; i++) 3805 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 3806 eb->start, eb->len); 3807 if (subpage) 3808 unlock_page(eb->pages[0]); 3809 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3810 eb->len, 3811 eb->fs_info->dirty_metadata_batch); 3812 } 3813 #ifdef CONFIG_BTRFS_DEBUG 3814 for (i = 0; i < num_pages; i++) 3815 ASSERT(PageDirty(eb->pages[i])); 3816 #endif 3817 } 3818 3819 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3820 { 3821 struct btrfs_fs_info *fs_info = eb->fs_info; 3822 struct page *page; 3823 int num_pages; 3824 int i; 3825 3826 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3827 num_pages = num_extent_pages(eb); 3828 for (i = 0; i < num_pages; i++) { 3829 page = eb->pages[i]; 3830 if (!page) 3831 continue; 3832 3833 /* 3834 * This is special handling for metadata subpage, as regular 3835 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3836 */ 3837 if (fs_info->nodesize >= PAGE_SIZE) 3838 ClearPageUptodate(page); 3839 else 3840 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 3841 eb->len); 3842 } 3843 } 3844 3845 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3846 { 3847 struct btrfs_fs_info *fs_info = eb->fs_info; 3848 struct page *page; 3849 int num_pages; 3850 int i; 3851 3852 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3853 num_pages = num_extent_pages(eb); 3854 for (i = 0; i < num_pages; i++) { 3855 page = eb->pages[i]; 3856 3857 /* 3858 * This is special handling for metadata subpage, as regular 3859 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3860 */ 3861 if (fs_info->nodesize >= PAGE_SIZE) 3862 SetPageUptodate(page); 3863 else 3864 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 3865 eb->len); 3866 } 3867 } 3868 3869 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 3870 { 3871 struct extent_buffer *eb = bbio->private; 3872 struct btrfs_fs_info *fs_info = eb->fs_info; 3873 bool uptodate = !bbio->bio.bi_status; 3874 struct bvec_iter_all iter_all; 3875 struct bio_vec *bvec; 3876 u32 bio_offset = 0; 3877 3878 eb->read_mirror = bbio->mirror_num; 3879 3880 if (uptodate && 3881 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3882 uptodate = false; 3883 3884 if (uptodate) { 3885 set_extent_buffer_uptodate(eb); 3886 } else { 3887 clear_extent_buffer_uptodate(eb); 3888 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3889 } 3890 3891 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 3892 u64 start = eb->start + bio_offset; 3893 struct page *page = bvec->bv_page; 3894 u32 len = bvec->bv_len; 3895 3896 if (uptodate) 3897 btrfs_page_set_uptodate(fs_info, page, start, len); 3898 else 3899 btrfs_page_clear_uptodate(fs_info, page, start, len); 3900 3901 bio_offset += len; 3902 } 3903 3904 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3905 smp_mb__after_atomic(); 3906 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3907 free_extent_buffer(eb); 3908 3909 bio_put(&bbio->bio); 3910 } 3911 3912 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3913 struct btrfs_tree_parent_check *check) 3914 { 3915 int num_pages = num_extent_pages(eb), i; 3916 struct btrfs_bio *bbio; 3917 3918 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3919 return 0; 3920 3921 /* 3922 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3923 * operation, which could potentially still be in flight. In this case 3924 * we simply want to return an error. 3925 */ 3926 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3927 return -EIO; 3928 3929 /* Someone else is already reading the buffer, just wait for it. */ 3930 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3931 goto done; 3932 3933 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3934 eb->read_mirror = 0; 3935 check_buffer_tree_ref(eb); 3936 atomic_inc(&eb->refs); 3937 3938 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3939 REQ_OP_READ | REQ_META, eb->fs_info, 3940 extent_buffer_read_end_io, eb); 3941 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3942 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3943 bbio->file_offset = eb->start; 3944 memcpy(&bbio->parent_check, check, sizeof(*check)); 3945 if (eb->fs_info->nodesize < PAGE_SIZE) { 3946 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 3947 eb->start - page_offset(eb->pages[0])); 3948 } else { 3949 for (i = 0; i < num_pages; i++) 3950 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 3951 } 3952 btrfs_submit_bio(bbio, mirror_num); 3953 3954 done: 3955 if (wait == WAIT_COMPLETE) { 3956 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3957 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3958 return -EIO; 3959 } 3960 3961 return 0; 3962 } 3963 3964 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3965 unsigned long len) 3966 { 3967 btrfs_warn(eb->fs_info, 3968 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 3969 eb->start, eb->len, start, len); 3970 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3971 3972 return true; 3973 } 3974 3975 /* 3976 * Check if the [start, start + len) range is valid before reading/writing 3977 * the eb. 3978 * NOTE: @start and @len are offset inside the eb, not logical address. 3979 * 3980 * Caller should not touch the dst/src memory if this function returns error. 3981 */ 3982 static inline int check_eb_range(const struct extent_buffer *eb, 3983 unsigned long start, unsigned long len) 3984 { 3985 unsigned long offset; 3986 3987 /* start, start + len should not go beyond eb->len nor overflow */ 3988 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3989 return report_eb_range(eb, start, len); 3990 3991 return false; 3992 } 3993 3994 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3995 unsigned long start, unsigned long len) 3996 { 3997 size_t cur; 3998 size_t offset; 3999 struct page *page; 4000 char *kaddr; 4001 char *dst = (char *)dstv; 4002 unsigned long i = get_eb_page_index(start); 4003 4004 if (check_eb_range(eb, start, len)) { 4005 /* 4006 * Invalid range hit, reset the memory, so callers won't get 4007 * some random garbage for their uninitialzed memory. 4008 */ 4009 memset(dstv, 0, len); 4010 return; 4011 } 4012 4013 offset = get_eb_offset_in_page(eb, start); 4014 4015 while (len > 0) { 4016 page = eb->pages[i]; 4017 4018 cur = min(len, (PAGE_SIZE - offset)); 4019 kaddr = page_address(page); 4020 memcpy(dst, kaddr + offset, cur); 4021 4022 dst += cur; 4023 len -= cur; 4024 offset = 0; 4025 i++; 4026 } 4027 } 4028 4029 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4030 void __user *dstv, 4031 unsigned long start, unsigned long len) 4032 { 4033 size_t cur; 4034 size_t offset; 4035 struct page *page; 4036 char *kaddr; 4037 char __user *dst = (char __user *)dstv; 4038 unsigned long i = get_eb_page_index(start); 4039 int ret = 0; 4040 4041 WARN_ON(start > eb->len); 4042 WARN_ON(start + len > eb->start + eb->len); 4043 4044 offset = get_eb_offset_in_page(eb, start); 4045 4046 while (len > 0) { 4047 page = eb->pages[i]; 4048 4049 cur = min(len, (PAGE_SIZE - offset)); 4050 kaddr = page_address(page); 4051 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4052 ret = -EFAULT; 4053 break; 4054 } 4055 4056 dst += cur; 4057 len -= cur; 4058 offset = 0; 4059 i++; 4060 } 4061 4062 return ret; 4063 } 4064 4065 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4066 unsigned long start, unsigned long len) 4067 { 4068 size_t cur; 4069 size_t offset; 4070 struct page *page; 4071 char *kaddr; 4072 char *ptr = (char *)ptrv; 4073 unsigned long i = get_eb_page_index(start); 4074 int ret = 0; 4075 4076 if (check_eb_range(eb, start, len)) 4077 return -EINVAL; 4078 4079 offset = get_eb_offset_in_page(eb, start); 4080 4081 while (len > 0) { 4082 page = eb->pages[i]; 4083 4084 cur = min(len, (PAGE_SIZE - offset)); 4085 4086 kaddr = page_address(page); 4087 ret = memcmp(ptr, kaddr + offset, cur); 4088 if (ret) 4089 break; 4090 4091 ptr += cur; 4092 len -= cur; 4093 offset = 0; 4094 i++; 4095 } 4096 return ret; 4097 } 4098 4099 /* 4100 * Check that the extent buffer is uptodate. 4101 * 4102 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4103 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4104 */ 4105 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4106 struct page *page) 4107 { 4108 struct btrfs_fs_info *fs_info = eb->fs_info; 4109 4110 /* 4111 * If we are using the commit root we could potentially clear a page 4112 * Uptodate while we're using the extent buffer that we've previously 4113 * looked up. We don't want to complain in this case, as the page was 4114 * valid before, we just didn't write it out. Instead we want to catch 4115 * the case where we didn't actually read the block properly, which 4116 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4117 */ 4118 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4119 return; 4120 4121 if (fs_info->nodesize < PAGE_SIZE) { 4122 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4123 eb->start, eb->len))) 4124 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4125 } else { 4126 WARN_ON(!PageUptodate(page)); 4127 } 4128 } 4129 4130 static void __write_extent_buffer(const struct extent_buffer *eb, 4131 const void *srcv, unsigned long start, 4132 unsigned long len, bool use_memmove) 4133 { 4134 size_t cur; 4135 size_t offset; 4136 struct page *page; 4137 char *kaddr; 4138 char *src = (char *)srcv; 4139 unsigned long i = get_eb_page_index(start); 4140 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4141 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4142 4143 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4144 4145 if (check_eb_range(eb, start, len)) 4146 return; 4147 4148 offset = get_eb_offset_in_page(eb, start); 4149 4150 while (len > 0) { 4151 page = eb->pages[i]; 4152 if (check_uptodate) 4153 assert_eb_page_uptodate(eb, page); 4154 4155 cur = min(len, PAGE_SIZE - offset); 4156 kaddr = page_address(page); 4157 if (use_memmove) 4158 memmove(kaddr + offset, src, cur); 4159 else 4160 memcpy(kaddr + offset, src, cur); 4161 4162 src += cur; 4163 len -= cur; 4164 offset = 0; 4165 i++; 4166 } 4167 } 4168 4169 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4170 unsigned long start, unsigned long len) 4171 { 4172 return __write_extent_buffer(eb, srcv, start, len, false); 4173 } 4174 4175 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4176 unsigned long start, unsigned long len) 4177 { 4178 unsigned long cur = start; 4179 4180 while (cur < start + len) { 4181 unsigned long index = get_eb_page_index(cur); 4182 unsigned int offset = get_eb_offset_in_page(eb, cur); 4183 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset); 4184 struct page *page = eb->pages[index]; 4185 4186 assert_eb_page_uptodate(eb, page); 4187 memset(page_address(page) + offset, c, cur_len); 4188 4189 cur += cur_len; 4190 } 4191 } 4192 4193 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4194 unsigned long len) 4195 { 4196 if (check_eb_range(eb, start, len)) 4197 return; 4198 return memset_extent_buffer(eb, 0, start, len); 4199 } 4200 4201 void copy_extent_buffer_full(const struct extent_buffer *dst, 4202 const struct extent_buffer *src) 4203 { 4204 unsigned long cur = 0; 4205 4206 ASSERT(dst->len == src->len); 4207 4208 while (cur < src->len) { 4209 unsigned long index = get_eb_page_index(cur); 4210 unsigned long offset = get_eb_offset_in_page(src, cur); 4211 unsigned long cur_len = min(src->len, PAGE_SIZE - offset); 4212 void *addr = page_address(src->pages[index]) + offset; 4213 4214 write_extent_buffer(dst, addr, cur, cur_len); 4215 4216 cur += cur_len; 4217 } 4218 } 4219 4220 void copy_extent_buffer(const struct extent_buffer *dst, 4221 const struct extent_buffer *src, 4222 unsigned long dst_offset, unsigned long src_offset, 4223 unsigned long len) 4224 { 4225 u64 dst_len = dst->len; 4226 size_t cur; 4227 size_t offset; 4228 struct page *page; 4229 char *kaddr; 4230 unsigned long i = get_eb_page_index(dst_offset); 4231 4232 if (check_eb_range(dst, dst_offset, len) || 4233 check_eb_range(src, src_offset, len)) 4234 return; 4235 4236 WARN_ON(src->len != dst_len); 4237 4238 offset = get_eb_offset_in_page(dst, dst_offset); 4239 4240 while (len > 0) { 4241 page = dst->pages[i]; 4242 assert_eb_page_uptodate(dst, page); 4243 4244 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4245 4246 kaddr = page_address(page); 4247 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4248 4249 src_offset += cur; 4250 len -= cur; 4251 offset = 0; 4252 i++; 4253 } 4254 } 4255 4256 /* 4257 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4258 * given bit number 4259 * @eb: the extent buffer 4260 * @start: offset of the bitmap item in the extent buffer 4261 * @nr: bit number 4262 * @page_index: return index of the page in the extent buffer that contains the 4263 * given bit number 4264 * @page_offset: return offset into the page given by page_index 4265 * 4266 * This helper hides the ugliness of finding the byte in an extent buffer which 4267 * contains a given bit. 4268 */ 4269 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4270 unsigned long start, unsigned long nr, 4271 unsigned long *page_index, 4272 size_t *page_offset) 4273 { 4274 size_t byte_offset = BIT_BYTE(nr); 4275 size_t offset; 4276 4277 /* 4278 * The byte we want is the offset of the extent buffer + the offset of 4279 * the bitmap item in the extent buffer + the offset of the byte in the 4280 * bitmap item. 4281 */ 4282 offset = start + offset_in_page(eb->start) + byte_offset; 4283 4284 *page_index = offset >> PAGE_SHIFT; 4285 *page_offset = offset_in_page(offset); 4286 } 4287 4288 /* 4289 * Determine whether a bit in a bitmap item is set. 4290 * 4291 * @eb: the extent buffer 4292 * @start: offset of the bitmap item in the extent buffer 4293 * @nr: bit number to test 4294 */ 4295 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4296 unsigned long nr) 4297 { 4298 u8 *kaddr; 4299 struct page *page; 4300 unsigned long i; 4301 size_t offset; 4302 4303 eb_bitmap_offset(eb, start, nr, &i, &offset); 4304 page = eb->pages[i]; 4305 assert_eb_page_uptodate(eb, page); 4306 kaddr = page_address(page); 4307 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4308 } 4309 4310 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4311 { 4312 unsigned long index = get_eb_page_index(bytenr); 4313 4314 if (check_eb_range(eb, bytenr, 1)) 4315 return NULL; 4316 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr); 4317 } 4318 4319 /* 4320 * Set an area of a bitmap to 1. 4321 * 4322 * @eb: the extent buffer 4323 * @start: offset of the bitmap item in the extent buffer 4324 * @pos: bit number of the first bit 4325 * @len: number of bits to set 4326 */ 4327 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4328 unsigned long pos, unsigned long len) 4329 { 4330 unsigned int first_byte = start + BIT_BYTE(pos); 4331 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4332 const bool same_byte = (first_byte == last_byte); 4333 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4334 u8 *kaddr; 4335 4336 if (same_byte) 4337 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4338 4339 /* Handle the first byte. */ 4340 kaddr = extent_buffer_get_byte(eb, first_byte); 4341 *kaddr |= mask; 4342 if (same_byte) 4343 return; 4344 4345 /* Handle the byte aligned part. */ 4346 ASSERT(first_byte + 1 <= last_byte); 4347 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4348 4349 /* Handle the last byte. */ 4350 kaddr = extent_buffer_get_byte(eb, last_byte); 4351 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4352 } 4353 4354 4355 /* 4356 * Clear an area of a bitmap. 4357 * 4358 * @eb: the extent buffer 4359 * @start: offset of the bitmap item in the extent buffer 4360 * @pos: bit number of the first bit 4361 * @len: number of bits to clear 4362 */ 4363 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4364 unsigned long start, unsigned long pos, 4365 unsigned long len) 4366 { 4367 unsigned int first_byte = start + BIT_BYTE(pos); 4368 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4369 const bool same_byte = (first_byte == last_byte); 4370 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4371 u8 *kaddr; 4372 4373 if (same_byte) 4374 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4375 4376 /* Handle the first byte. */ 4377 kaddr = extent_buffer_get_byte(eb, first_byte); 4378 *kaddr &= ~mask; 4379 if (same_byte) 4380 return; 4381 4382 /* Handle the byte aligned part. */ 4383 ASSERT(first_byte + 1 <= last_byte); 4384 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4385 4386 /* Handle the last byte. */ 4387 kaddr = extent_buffer_get_byte(eb, last_byte); 4388 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4389 } 4390 4391 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4392 { 4393 unsigned long distance = (src > dst) ? src - dst : dst - src; 4394 return distance < len; 4395 } 4396 4397 void memcpy_extent_buffer(const struct extent_buffer *dst, 4398 unsigned long dst_offset, unsigned long src_offset, 4399 unsigned long len) 4400 { 4401 unsigned long cur_off = 0; 4402 4403 if (check_eb_range(dst, dst_offset, len) || 4404 check_eb_range(dst, src_offset, len)) 4405 return; 4406 4407 while (cur_off < len) { 4408 unsigned long cur_src = cur_off + src_offset; 4409 unsigned long pg_index = get_eb_page_index(cur_src); 4410 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src); 4411 unsigned long cur_len = min(src_offset + len - cur_src, 4412 PAGE_SIZE - pg_off); 4413 void *src_addr = page_address(dst->pages[pg_index]) + pg_off; 4414 const bool use_memmove = areas_overlap(src_offset + cur_off, 4415 dst_offset + cur_off, cur_len); 4416 4417 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4418 use_memmove); 4419 cur_off += cur_len; 4420 } 4421 } 4422 4423 void memmove_extent_buffer(const struct extent_buffer *dst, 4424 unsigned long dst_offset, unsigned long src_offset, 4425 unsigned long len) 4426 { 4427 unsigned long dst_end = dst_offset + len - 1; 4428 unsigned long src_end = src_offset + len - 1; 4429 4430 if (check_eb_range(dst, dst_offset, len) || 4431 check_eb_range(dst, src_offset, len)) 4432 return; 4433 4434 if (dst_offset < src_offset) { 4435 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4436 return; 4437 } 4438 4439 while (len > 0) { 4440 unsigned long src_i; 4441 size_t cur; 4442 size_t dst_off_in_page; 4443 size_t src_off_in_page; 4444 void *src_addr; 4445 bool use_memmove; 4446 4447 src_i = get_eb_page_index(src_end); 4448 4449 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4450 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4451 4452 cur = min_t(unsigned long, len, src_off_in_page + 1); 4453 cur = min(cur, dst_off_in_page + 1); 4454 4455 src_addr = page_address(dst->pages[src_i]) + src_off_in_page - 4456 cur + 1; 4457 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4458 cur); 4459 4460 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4461 use_memmove); 4462 4463 dst_end -= cur; 4464 src_end -= cur; 4465 len -= cur; 4466 } 4467 } 4468 4469 #define GANG_LOOKUP_SIZE 16 4470 static struct extent_buffer *get_next_extent_buffer( 4471 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4472 { 4473 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4474 struct extent_buffer *found = NULL; 4475 u64 page_start = page_offset(page); 4476 u64 cur = page_start; 4477 4478 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4479 lockdep_assert_held(&fs_info->buffer_lock); 4480 4481 while (cur < page_start + PAGE_SIZE) { 4482 int ret; 4483 int i; 4484 4485 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4486 (void **)gang, cur >> fs_info->sectorsize_bits, 4487 min_t(unsigned int, GANG_LOOKUP_SIZE, 4488 PAGE_SIZE / fs_info->nodesize)); 4489 if (ret == 0) 4490 goto out; 4491 for (i = 0; i < ret; i++) { 4492 /* Already beyond page end */ 4493 if (gang[i]->start >= page_start + PAGE_SIZE) 4494 goto out; 4495 /* Found one */ 4496 if (gang[i]->start >= bytenr) { 4497 found = gang[i]; 4498 goto out; 4499 } 4500 } 4501 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4502 } 4503 out: 4504 return found; 4505 } 4506 4507 static int try_release_subpage_extent_buffer(struct page *page) 4508 { 4509 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4510 u64 cur = page_offset(page); 4511 const u64 end = page_offset(page) + PAGE_SIZE; 4512 int ret; 4513 4514 while (cur < end) { 4515 struct extent_buffer *eb = NULL; 4516 4517 /* 4518 * Unlike try_release_extent_buffer() which uses page->private 4519 * to grab buffer, for subpage case we rely on radix tree, thus 4520 * we need to ensure radix tree consistency. 4521 * 4522 * We also want an atomic snapshot of the radix tree, thus go 4523 * with spinlock rather than RCU. 4524 */ 4525 spin_lock(&fs_info->buffer_lock); 4526 eb = get_next_extent_buffer(fs_info, page, cur); 4527 if (!eb) { 4528 /* No more eb in the page range after or at cur */ 4529 spin_unlock(&fs_info->buffer_lock); 4530 break; 4531 } 4532 cur = eb->start + eb->len; 4533 4534 /* 4535 * The same as try_release_extent_buffer(), to ensure the eb 4536 * won't disappear out from under us. 4537 */ 4538 spin_lock(&eb->refs_lock); 4539 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4540 spin_unlock(&eb->refs_lock); 4541 spin_unlock(&fs_info->buffer_lock); 4542 break; 4543 } 4544 spin_unlock(&fs_info->buffer_lock); 4545 4546 /* 4547 * If tree ref isn't set then we know the ref on this eb is a 4548 * real ref, so just return, this eb will likely be freed soon 4549 * anyway. 4550 */ 4551 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4552 spin_unlock(&eb->refs_lock); 4553 break; 4554 } 4555 4556 /* 4557 * Here we don't care about the return value, we will always 4558 * check the page private at the end. And 4559 * release_extent_buffer() will release the refs_lock. 4560 */ 4561 release_extent_buffer(eb); 4562 } 4563 /* 4564 * Finally to check if we have cleared page private, as if we have 4565 * released all ebs in the page, the page private should be cleared now. 4566 */ 4567 spin_lock(&page->mapping->private_lock); 4568 if (!PagePrivate(page)) 4569 ret = 1; 4570 else 4571 ret = 0; 4572 spin_unlock(&page->mapping->private_lock); 4573 return ret; 4574 4575 } 4576 4577 int try_release_extent_buffer(struct page *page) 4578 { 4579 struct extent_buffer *eb; 4580 4581 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4582 return try_release_subpage_extent_buffer(page); 4583 4584 /* 4585 * We need to make sure nobody is changing page->private, as we rely on 4586 * page->private as the pointer to extent buffer. 4587 */ 4588 spin_lock(&page->mapping->private_lock); 4589 if (!PagePrivate(page)) { 4590 spin_unlock(&page->mapping->private_lock); 4591 return 1; 4592 } 4593 4594 eb = (struct extent_buffer *)page->private; 4595 BUG_ON(!eb); 4596 4597 /* 4598 * This is a little awful but should be ok, we need to make sure that 4599 * the eb doesn't disappear out from under us while we're looking at 4600 * this page. 4601 */ 4602 spin_lock(&eb->refs_lock); 4603 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4604 spin_unlock(&eb->refs_lock); 4605 spin_unlock(&page->mapping->private_lock); 4606 return 0; 4607 } 4608 spin_unlock(&page->mapping->private_lock); 4609 4610 /* 4611 * If tree ref isn't set then we know the ref on this eb is a real ref, 4612 * so just return, this page will likely be freed soon anyway. 4613 */ 4614 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4615 spin_unlock(&eb->refs_lock); 4616 return 0; 4617 } 4618 4619 return release_extent_buffer(eb); 4620 } 4621 4622 /* 4623 * btrfs_readahead_tree_block - attempt to readahead a child block 4624 * @fs_info: the fs_info 4625 * @bytenr: bytenr to read 4626 * @owner_root: objectid of the root that owns this eb 4627 * @gen: generation for the uptodate check, can be 0 4628 * @level: level for the eb 4629 * 4630 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4631 * normal uptodate check of the eb, without checking the generation. If we have 4632 * to read the block we will not block on anything. 4633 */ 4634 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4635 u64 bytenr, u64 owner_root, u64 gen, int level) 4636 { 4637 struct btrfs_tree_parent_check check = { 4638 .has_first_key = 0, 4639 .level = level, 4640 .transid = gen 4641 }; 4642 struct extent_buffer *eb; 4643 int ret; 4644 4645 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4646 if (IS_ERR(eb)) 4647 return; 4648 4649 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4650 free_extent_buffer(eb); 4651 return; 4652 } 4653 4654 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4655 if (ret < 0) 4656 free_extent_buffer_stale(eb); 4657 else 4658 free_extent_buffer(eb); 4659 } 4660 4661 /* 4662 * btrfs_readahead_node_child - readahead a node's child block 4663 * @node: parent node we're reading from 4664 * @slot: slot in the parent node for the child we want to read 4665 * 4666 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4667 * the slot in the node provided. 4668 */ 4669 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4670 { 4671 btrfs_readahead_tree_block(node->fs_info, 4672 btrfs_node_blockptr(node, slot), 4673 btrfs_header_owner(node), 4674 btrfs_node_ptr_generation(node, slot), 4675 btrfs_header_level(node) - 1); 4676 } 4677