1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 #ifdef CONFIG_BTRFS_DEBUG 29 static LIST_HEAD(buffers); 30 static LIST_HEAD(states); 31 32 static DEFINE_SPINLOCK(leak_lock); 33 34 static inline 35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 36 { 37 unsigned long flags; 38 39 spin_lock_irqsave(&leak_lock, flags); 40 list_add(new, head); 41 spin_unlock_irqrestore(&leak_lock, flags); 42 } 43 44 static inline 45 void btrfs_leak_debug_del(struct list_head *entry) 46 { 47 unsigned long flags; 48 49 spin_lock_irqsave(&leak_lock, flags); 50 list_del(entry); 51 spin_unlock_irqrestore(&leak_lock, flags); 52 } 53 54 static inline 55 void btrfs_leak_debug_check(void) 56 { 57 struct extent_state *state; 58 struct extent_buffer *eb; 59 60 while (!list_empty(&states)) { 61 state = list_entry(states.next, struct extent_state, leak_list); 62 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 63 "state %lu in tree %p refs %d\n", 64 state->start, state->end, state->state, state->tree, 65 atomic_read(&state->refs)); 66 list_del(&state->leak_list); 67 kmem_cache_free(extent_state_cache, state); 68 } 69 70 while (!list_empty(&buffers)) { 71 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 73 "refs %d\n", 74 eb->start, eb->len, atomic_read(&eb->refs)); 75 list_del(&eb->leak_list); 76 kmem_cache_free(extent_buffer_cache, eb); 77 } 78 } 79 80 #define btrfs_debug_check_extent_io_range(inode, start, end) \ 81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end)) 82 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 83 struct inode *inode, u64 start, u64 end) 84 { 85 u64 isize = i_size_read(inode); 86 87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 88 printk_ratelimited(KERN_DEBUG 89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 90 caller, btrfs_ino(inode), isize, start, end); 91 } 92 } 93 #else 94 #define btrfs_leak_debug_add(new, head) do {} while (0) 95 #define btrfs_leak_debug_del(entry) do {} while (0) 96 #define btrfs_leak_debug_check() do {} while (0) 97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 98 #endif 99 100 #define BUFFER_LRU_MAX 64 101 102 struct tree_entry { 103 u64 start; 104 u64 end; 105 struct rb_node rb_node; 106 }; 107 108 struct extent_page_data { 109 struct bio *bio; 110 struct extent_io_tree *tree; 111 get_extent_t *get_extent; 112 unsigned long bio_flags; 113 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use a WRITE_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static noinline void flush_write_bio(void *data); 124 static inline struct btrfs_fs_info * 125 tree_fs_info(struct extent_io_tree *tree) 126 { 127 return btrfs_sb(tree->mapping->host->i_sb); 128 } 129 130 int __init extent_io_init(void) 131 { 132 extent_state_cache = kmem_cache_create("btrfs_extent_state", 133 sizeof(struct extent_state), 0, 134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 135 if (!extent_state_cache) 136 return -ENOMEM; 137 138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 139 sizeof(struct extent_buffer), 0, 140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 141 if (!extent_buffer_cache) 142 goto free_state_cache; 143 144 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 145 offsetof(struct btrfs_io_bio, bio)); 146 if (!btrfs_bioset) 147 goto free_buffer_cache; 148 149 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 150 goto free_bioset; 151 152 return 0; 153 154 free_bioset: 155 bioset_free(btrfs_bioset); 156 btrfs_bioset = NULL; 157 158 free_buffer_cache: 159 kmem_cache_destroy(extent_buffer_cache); 160 extent_buffer_cache = NULL; 161 162 free_state_cache: 163 kmem_cache_destroy(extent_state_cache); 164 extent_state_cache = NULL; 165 return -ENOMEM; 166 } 167 168 void extent_io_exit(void) 169 { 170 btrfs_leak_debug_check(); 171 172 /* 173 * Make sure all delayed rcu free are flushed before we 174 * destroy caches. 175 */ 176 rcu_barrier(); 177 if (extent_state_cache) 178 kmem_cache_destroy(extent_state_cache); 179 if (extent_buffer_cache) 180 kmem_cache_destroy(extent_buffer_cache); 181 if (btrfs_bioset) 182 bioset_free(btrfs_bioset); 183 } 184 185 void extent_io_tree_init(struct extent_io_tree *tree, 186 struct address_space *mapping) 187 { 188 tree->state = RB_ROOT; 189 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 190 tree->ops = NULL; 191 tree->dirty_bytes = 0; 192 spin_lock_init(&tree->lock); 193 spin_lock_init(&tree->buffer_lock); 194 tree->mapping = mapping; 195 } 196 197 static struct extent_state *alloc_extent_state(gfp_t mask) 198 { 199 struct extent_state *state; 200 201 state = kmem_cache_alloc(extent_state_cache, mask); 202 if (!state) 203 return state; 204 state->state = 0; 205 state->private = 0; 206 state->tree = NULL; 207 btrfs_leak_debug_add(&state->leak_list, &states); 208 atomic_set(&state->refs, 1); 209 init_waitqueue_head(&state->wq); 210 trace_alloc_extent_state(state, mask, _RET_IP_); 211 return state; 212 } 213 214 void free_extent_state(struct extent_state *state) 215 { 216 if (!state) 217 return; 218 if (atomic_dec_and_test(&state->refs)) { 219 WARN_ON(state->tree); 220 btrfs_leak_debug_del(&state->leak_list); 221 trace_free_extent_state(state, _RET_IP_); 222 kmem_cache_free(extent_state_cache, state); 223 } 224 } 225 226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 227 struct rb_node *node) 228 { 229 struct rb_node **p = &root->rb_node; 230 struct rb_node *parent = NULL; 231 struct tree_entry *entry; 232 233 while (*p) { 234 parent = *p; 235 entry = rb_entry(parent, struct tree_entry, rb_node); 236 237 if (offset < entry->start) 238 p = &(*p)->rb_left; 239 else if (offset > entry->end) 240 p = &(*p)->rb_right; 241 else 242 return parent; 243 } 244 245 rb_link_node(node, parent, p); 246 rb_insert_color(node, root); 247 return NULL; 248 } 249 250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 251 struct rb_node **prev_ret, 252 struct rb_node **next_ret) 253 { 254 struct rb_root *root = &tree->state; 255 struct rb_node *n = root->rb_node; 256 struct rb_node *prev = NULL; 257 struct rb_node *orig_prev = NULL; 258 struct tree_entry *entry; 259 struct tree_entry *prev_entry = NULL; 260 261 while (n) { 262 entry = rb_entry(n, struct tree_entry, rb_node); 263 prev = n; 264 prev_entry = entry; 265 266 if (offset < entry->start) 267 n = n->rb_left; 268 else if (offset > entry->end) 269 n = n->rb_right; 270 else 271 return n; 272 } 273 274 if (prev_ret) { 275 orig_prev = prev; 276 while (prev && offset > prev_entry->end) { 277 prev = rb_next(prev); 278 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 279 } 280 *prev_ret = prev; 281 prev = orig_prev; 282 } 283 284 if (next_ret) { 285 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 286 while (prev && offset < prev_entry->start) { 287 prev = rb_prev(prev); 288 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 289 } 290 *next_ret = prev; 291 } 292 return NULL; 293 } 294 295 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 296 u64 offset) 297 { 298 struct rb_node *prev = NULL; 299 struct rb_node *ret; 300 301 ret = __etree_search(tree, offset, &prev, NULL); 302 if (!ret) 303 return prev; 304 return ret; 305 } 306 307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 308 struct extent_state *other) 309 { 310 if (tree->ops && tree->ops->merge_extent_hook) 311 tree->ops->merge_extent_hook(tree->mapping->host, new, 312 other); 313 } 314 315 /* 316 * utility function to look for merge candidates inside a given range. 317 * Any extents with matching state are merged together into a single 318 * extent in the tree. Extents with EXTENT_IO in their state field 319 * are not merged because the end_io handlers need to be able to do 320 * operations on them without sleeping (or doing allocations/splits). 321 * 322 * This should be called with the tree lock held. 323 */ 324 static void merge_state(struct extent_io_tree *tree, 325 struct extent_state *state) 326 { 327 struct extent_state *other; 328 struct rb_node *other_node; 329 330 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 331 return; 332 333 other_node = rb_prev(&state->rb_node); 334 if (other_node) { 335 other = rb_entry(other_node, struct extent_state, rb_node); 336 if (other->end == state->start - 1 && 337 other->state == state->state) { 338 merge_cb(tree, state, other); 339 state->start = other->start; 340 other->tree = NULL; 341 rb_erase(&other->rb_node, &tree->state); 342 free_extent_state(other); 343 } 344 } 345 other_node = rb_next(&state->rb_node); 346 if (other_node) { 347 other = rb_entry(other_node, struct extent_state, rb_node); 348 if (other->start == state->end + 1 && 349 other->state == state->state) { 350 merge_cb(tree, state, other); 351 state->end = other->end; 352 other->tree = NULL; 353 rb_erase(&other->rb_node, &tree->state); 354 free_extent_state(other); 355 } 356 } 357 } 358 359 static void set_state_cb(struct extent_io_tree *tree, 360 struct extent_state *state, unsigned long *bits) 361 { 362 if (tree->ops && tree->ops->set_bit_hook) 363 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 364 } 365 366 static void clear_state_cb(struct extent_io_tree *tree, 367 struct extent_state *state, unsigned long *bits) 368 { 369 if (tree->ops && tree->ops->clear_bit_hook) 370 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 371 } 372 373 static void set_state_bits(struct extent_io_tree *tree, 374 struct extent_state *state, unsigned long *bits); 375 376 /* 377 * insert an extent_state struct into the tree. 'bits' are set on the 378 * struct before it is inserted. 379 * 380 * This may return -EEXIST if the extent is already there, in which case the 381 * state struct is freed. 382 * 383 * The tree lock is not taken internally. This is a utility function and 384 * probably isn't what you want to call (see set/clear_extent_bit). 385 */ 386 static int insert_state(struct extent_io_tree *tree, 387 struct extent_state *state, u64 start, u64 end, 388 unsigned long *bits) 389 { 390 struct rb_node *node; 391 392 if (end < start) 393 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n", 394 end, start); 395 state->start = start; 396 state->end = end; 397 398 set_state_bits(tree, state, bits); 399 400 node = tree_insert(&tree->state, end, &state->rb_node); 401 if (node) { 402 struct extent_state *found; 403 found = rb_entry(node, struct extent_state, rb_node); 404 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 405 "%llu %llu\n", 406 found->start, found->end, start, end); 407 return -EEXIST; 408 } 409 state->tree = tree; 410 merge_state(tree, state); 411 return 0; 412 } 413 414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 415 u64 split) 416 { 417 if (tree->ops && tree->ops->split_extent_hook) 418 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 419 } 420 421 /* 422 * split a given extent state struct in two, inserting the preallocated 423 * struct 'prealloc' as the newly created second half. 'split' indicates an 424 * offset inside 'orig' where it should be split. 425 * 426 * Before calling, 427 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 428 * are two extent state structs in the tree: 429 * prealloc: [orig->start, split - 1] 430 * orig: [ split, orig->end ] 431 * 432 * The tree locks are not taken by this function. They need to be held 433 * by the caller. 434 */ 435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 436 struct extent_state *prealloc, u64 split) 437 { 438 struct rb_node *node; 439 440 split_cb(tree, orig, split); 441 442 prealloc->start = orig->start; 443 prealloc->end = split - 1; 444 prealloc->state = orig->state; 445 orig->start = split; 446 447 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 448 if (node) { 449 free_extent_state(prealloc); 450 return -EEXIST; 451 } 452 prealloc->tree = tree; 453 return 0; 454 } 455 456 static struct extent_state *next_state(struct extent_state *state) 457 { 458 struct rb_node *next = rb_next(&state->rb_node); 459 if (next) 460 return rb_entry(next, struct extent_state, rb_node); 461 else 462 return NULL; 463 } 464 465 /* 466 * utility function to clear some bits in an extent state struct. 467 * it will optionally wake up any one waiting on this state (wake == 1). 468 * 469 * If no bits are set on the state struct after clearing things, the 470 * struct is freed and removed from the tree 471 */ 472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 473 struct extent_state *state, 474 unsigned long *bits, int wake) 475 { 476 struct extent_state *next; 477 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 478 479 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 480 u64 range = state->end - state->start + 1; 481 WARN_ON(range > tree->dirty_bytes); 482 tree->dirty_bytes -= range; 483 } 484 clear_state_cb(tree, state, bits); 485 state->state &= ~bits_to_clear; 486 if (wake) 487 wake_up(&state->wq); 488 if (state->state == 0) { 489 next = next_state(state); 490 if (state->tree) { 491 rb_erase(&state->rb_node, &tree->state); 492 state->tree = NULL; 493 free_extent_state(state); 494 } else { 495 WARN_ON(1); 496 } 497 } else { 498 merge_state(tree, state); 499 next = next_state(state); 500 } 501 return next; 502 } 503 504 static struct extent_state * 505 alloc_extent_state_atomic(struct extent_state *prealloc) 506 { 507 if (!prealloc) 508 prealloc = alloc_extent_state(GFP_ATOMIC); 509 510 return prealloc; 511 } 512 513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 514 { 515 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 516 "Extent tree was modified by another " 517 "thread while locked."); 518 } 519 520 /* 521 * clear some bits on a range in the tree. This may require splitting 522 * or inserting elements in the tree, so the gfp mask is used to 523 * indicate which allocations or sleeping are allowed. 524 * 525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 526 * the given range from the tree regardless of state (ie for truncate). 527 * 528 * the range [start, end] is inclusive. 529 * 530 * This takes the tree lock, and returns 0 on success and < 0 on error. 531 */ 532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 533 unsigned long bits, int wake, int delete, 534 struct extent_state **cached_state, 535 gfp_t mask) 536 { 537 struct extent_state *state; 538 struct extent_state *cached; 539 struct extent_state *prealloc = NULL; 540 struct rb_node *node; 541 u64 last_end; 542 int err; 543 int clear = 0; 544 545 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 546 547 if (bits & EXTENT_DELALLOC) 548 bits |= EXTENT_NORESERVE; 549 550 if (delete) 551 bits |= ~EXTENT_CTLBITS; 552 bits |= EXTENT_FIRST_DELALLOC; 553 554 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 555 clear = 1; 556 again: 557 if (!prealloc && (mask & __GFP_WAIT)) { 558 prealloc = alloc_extent_state(mask); 559 if (!prealloc) 560 return -ENOMEM; 561 } 562 563 spin_lock(&tree->lock); 564 if (cached_state) { 565 cached = *cached_state; 566 567 if (clear) { 568 *cached_state = NULL; 569 cached_state = NULL; 570 } 571 572 if (cached && cached->tree && cached->start <= start && 573 cached->end > start) { 574 if (clear) 575 atomic_dec(&cached->refs); 576 state = cached; 577 goto hit_next; 578 } 579 if (clear) 580 free_extent_state(cached); 581 } 582 /* 583 * this search will find the extents that end after 584 * our range starts 585 */ 586 node = tree_search(tree, start); 587 if (!node) 588 goto out; 589 state = rb_entry(node, struct extent_state, rb_node); 590 hit_next: 591 if (state->start > end) 592 goto out; 593 WARN_ON(state->end < start); 594 last_end = state->end; 595 596 /* the state doesn't have the wanted bits, go ahead */ 597 if (!(state->state & bits)) { 598 state = next_state(state); 599 goto next; 600 } 601 602 /* 603 * | ---- desired range ---- | 604 * | state | or 605 * | ------------- state -------------- | 606 * 607 * We need to split the extent we found, and may flip 608 * bits on second half. 609 * 610 * If the extent we found extends past our range, we 611 * just split and search again. It'll get split again 612 * the next time though. 613 * 614 * If the extent we found is inside our range, we clear 615 * the desired bit on it. 616 */ 617 618 if (state->start < start) { 619 prealloc = alloc_extent_state_atomic(prealloc); 620 BUG_ON(!prealloc); 621 err = split_state(tree, state, prealloc, start); 622 if (err) 623 extent_io_tree_panic(tree, err); 624 625 prealloc = NULL; 626 if (err) 627 goto out; 628 if (state->end <= end) { 629 state = clear_state_bit(tree, state, &bits, wake); 630 goto next; 631 } 632 goto search_again; 633 } 634 /* 635 * | ---- desired range ---- | 636 * | state | 637 * We need to split the extent, and clear the bit 638 * on the first half 639 */ 640 if (state->start <= end && state->end > end) { 641 prealloc = alloc_extent_state_atomic(prealloc); 642 BUG_ON(!prealloc); 643 err = split_state(tree, state, prealloc, end + 1); 644 if (err) 645 extent_io_tree_panic(tree, err); 646 647 if (wake) 648 wake_up(&state->wq); 649 650 clear_state_bit(tree, prealloc, &bits, wake); 651 652 prealloc = NULL; 653 goto out; 654 } 655 656 state = clear_state_bit(tree, state, &bits, wake); 657 next: 658 if (last_end == (u64)-1) 659 goto out; 660 start = last_end + 1; 661 if (start <= end && state && !need_resched()) 662 goto hit_next; 663 goto search_again; 664 665 out: 666 spin_unlock(&tree->lock); 667 if (prealloc) 668 free_extent_state(prealloc); 669 670 return 0; 671 672 search_again: 673 if (start > end) 674 goto out; 675 spin_unlock(&tree->lock); 676 if (mask & __GFP_WAIT) 677 cond_resched(); 678 goto again; 679 } 680 681 static void wait_on_state(struct extent_io_tree *tree, 682 struct extent_state *state) 683 __releases(tree->lock) 684 __acquires(tree->lock) 685 { 686 DEFINE_WAIT(wait); 687 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 688 spin_unlock(&tree->lock); 689 schedule(); 690 spin_lock(&tree->lock); 691 finish_wait(&state->wq, &wait); 692 } 693 694 /* 695 * waits for one or more bits to clear on a range in the state tree. 696 * The range [start, end] is inclusive. 697 * The tree lock is taken by this function 698 */ 699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 700 unsigned long bits) 701 { 702 struct extent_state *state; 703 struct rb_node *node; 704 705 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 706 707 spin_lock(&tree->lock); 708 again: 709 while (1) { 710 /* 711 * this search will find all the extents that end after 712 * our range starts 713 */ 714 node = tree_search(tree, start); 715 if (!node) 716 break; 717 718 state = rb_entry(node, struct extent_state, rb_node); 719 720 if (state->start > end) 721 goto out; 722 723 if (state->state & bits) { 724 start = state->start; 725 atomic_inc(&state->refs); 726 wait_on_state(tree, state); 727 free_extent_state(state); 728 goto again; 729 } 730 start = state->end + 1; 731 732 if (start > end) 733 break; 734 735 cond_resched_lock(&tree->lock); 736 } 737 out: 738 spin_unlock(&tree->lock); 739 } 740 741 static void set_state_bits(struct extent_io_tree *tree, 742 struct extent_state *state, 743 unsigned long *bits) 744 { 745 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 746 747 set_state_cb(tree, state, bits); 748 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 749 u64 range = state->end - state->start + 1; 750 tree->dirty_bytes += range; 751 } 752 state->state |= bits_to_set; 753 } 754 755 static void cache_state(struct extent_state *state, 756 struct extent_state **cached_ptr) 757 { 758 if (cached_ptr && !(*cached_ptr)) { 759 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 760 *cached_ptr = state; 761 atomic_inc(&state->refs); 762 } 763 } 764 } 765 766 /* 767 * set some bits on a range in the tree. This may require allocations or 768 * sleeping, so the gfp mask is used to indicate what is allowed. 769 * 770 * If any of the exclusive bits are set, this will fail with -EEXIST if some 771 * part of the range already has the desired bits set. The start of the 772 * existing range is returned in failed_start in this case. 773 * 774 * [start, end] is inclusive This takes the tree lock. 775 */ 776 777 static int __must_check 778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 779 unsigned long bits, unsigned long exclusive_bits, 780 u64 *failed_start, struct extent_state **cached_state, 781 gfp_t mask) 782 { 783 struct extent_state *state; 784 struct extent_state *prealloc = NULL; 785 struct rb_node *node; 786 int err = 0; 787 u64 last_start; 788 u64 last_end; 789 790 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 791 792 bits |= EXTENT_FIRST_DELALLOC; 793 again: 794 if (!prealloc && (mask & __GFP_WAIT)) { 795 prealloc = alloc_extent_state(mask); 796 BUG_ON(!prealloc); 797 } 798 799 spin_lock(&tree->lock); 800 if (cached_state && *cached_state) { 801 state = *cached_state; 802 if (state->start <= start && state->end > start && 803 state->tree) { 804 node = &state->rb_node; 805 goto hit_next; 806 } 807 } 808 /* 809 * this search will find all the extents that end after 810 * our range starts. 811 */ 812 node = tree_search(tree, start); 813 if (!node) { 814 prealloc = alloc_extent_state_atomic(prealloc); 815 BUG_ON(!prealloc); 816 err = insert_state(tree, prealloc, start, end, &bits); 817 if (err) 818 extent_io_tree_panic(tree, err); 819 820 prealloc = NULL; 821 goto out; 822 } 823 state = rb_entry(node, struct extent_state, rb_node); 824 hit_next: 825 last_start = state->start; 826 last_end = state->end; 827 828 /* 829 * | ---- desired range ---- | 830 * | state | 831 * 832 * Just lock what we found and keep going 833 */ 834 if (state->start == start && state->end <= end) { 835 if (state->state & exclusive_bits) { 836 *failed_start = state->start; 837 err = -EEXIST; 838 goto out; 839 } 840 841 set_state_bits(tree, state, &bits); 842 cache_state(state, cached_state); 843 merge_state(tree, state); 844 if (last_end == (u64)-1) 845 goto out; 846 start = last_end + 1; 847 state = next_state(state); 848 if (start < end && state && state->start == start && 849 !need_resched()) 850 goto hit_next; 851 goto search_again; 852 } 853 854 /* 855 * | ---- desired range ---- | 856 * | state | 857 * or 858 * | ------------- state -------------- | 859 * 860 * We need to split the extent we found, and may flip bits on 861 * second half. 862 * 863 * If the extent we found extends past our 864 * range, we just split and search again. It'll get split 865 * again the next time though. 866 * 867 * If the extent we found is inside our range, we set the 868 * desired bit on it. 869 */ 870 if (state->start < start) { 871 if (state->state & exclusive_bits) { 872 *failed_start = start; 873 err = -EEXIST; 874 goto out; 875 } 876 877 prealloc = alloc_extent_state_atomic(prealloc); 878 BUG_ON(!prealloc); 879 err = split_state(tree, state, prealloc, start); 880 if (err) 881 extent_io_tree_panic(tree, err); 882 883 prealloc = NULL; 884 if (err) 885 goto out; 886 if (state->end <= end) { 887 set_state_bits(tree, state, &bits); 888 cache_state(state, cached_state); 889 merge_state(tree, state); 890 if (last_end == (u64)-1) 891 goto out; 892 start = last_end + 1; 893 state = next_state(state); 894 if (start < end && state && state->start == start && 895 !need_resched()) 896 goto hit_next; 897 } 898 goto search_again; 899 } 900 /* 901 * | ---- desired range ---- | 902 * | state | or | state | 903 * 904 * There's a hole, we need to insert something in it and 905 * ignore the extent we found. 906 */ 907 if (state->start > start) { 908 u64 this_end; 909 if (end < last_start) 910 this_end = end; 911 else 912 this_end = last_start - 1; 913 914 prealloc = alloc_extent_state_atomic(prealloc); 915 BUG_ON(!prealloc); 916 917 /* 918 * Avoid to free 'prealloc' if it can be merged with 919 * the later extent. 920 */ 921 err = insert_state(tree, prealloc, start, this_end, 922 &bits); 923 if (err) 924 extent_io_tree_panic(tree, err); 925 926 cache_state(prealloc, cached_state); 927 prealloc = NULL; 928 start = this_end + 1; 929 goto search_again; 930 } 931 /* 932 * | ---- desired range ---- | 933 * | state | 934 * We need to split the extent, and set the bit 935 * on the first half 936 */ 937 if (state->start <= end && state->end > end) { 938 if (state->state & exclusive_bits) { 939 *failed_start = start; 940 err = -EEXIST; 941 goto out; 942 } 943 944 prealloc = alloc_extent_state_atomic(prealloc); 945 BUG_ON(!prealloc); 946 err = split_state(tree, state, prealloc, end + 1); 947 if (err) 948 extent_io_tree_panic(tree, err); 949 950 set_state_bits(tree, prealloc, &bits); 951 cache_state(prealloc, cached_state); 952 merge_state(tree, prealloc); 953 prealloc = NULL; 954 goto out; 955 } 956 957 goto search_again; 958 959 out: 960 spin_unlock(&tree->lock); 961 if (prealloc) 962 free_extent_state(prealloc); 963 964 return err; 965 966 search_again: 967 if (start > end) 968 goto out; 969 spin_unlock(&tree->lock); 970 if (mask & __GFP_WAIT) 971 cond_resched(); 972 goto again; 973 } 974 975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 976 unsigned long bits, u64 * failed_start, 977 struct extent_state **cached_state, gfp_t mask) 978 { 979 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 980 cached_state, mask); 981 } 982 983 984 /** 985 * convert_extent_bit - convert all bits in a given range from one bit to 986 * another 987 * @tree: the io tree to search 988 * @start: the start offset in bytes 989 * @end: the end offset in bytes (inclusive) 990 * @bits: the bits to set in this range 991 * @clear_bits: the bits to clear in this range 992 * @cached_state: state that we're going to cache 993 * @mask: the allocation mask 994 * 995 * This will go through and set bits for the given range. If any states exist 996 * already in this range they are set with the given bit and cleared of the 997 * clear_bits. This is only meant to be used by things that are mergeable, ie 998 * converting from say DELALLOC to DIRTY. This is not meant to be used with 999 * boundary bits like LOCK. 1000 */ 1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1002 unsigned long bits, unsigned long clear_bits, 1003 struct extent_state **cached_state, gfp_t mask) 1004 { 1005 struct extent_state *state; 1006 struct extent_state *prealloc = NULL; 1007 struct rb_node *node; 1008 int err = 0; 1009 u64 last_start; 1010 u64 last_end; 1011 1012 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 1013 1014 again: 1015 if (!prealloc && (mask & __GFP_WAIT)) { 1016 prealloc = alloc_extent_state(mask); 1017 if (!prealloc) 1018 return -ENOMEM; 1019 } 1020 1021 spin_lock(&tree->lock); 1022 if (cached_state && *cached_state) { 1023 state = *cached_state; 1024 if (state->start <= start && state->end > start && 1025 state->tree) { 1026 node = &state->rb_node; 1027 goto hit_next; 1028 } 1029 } 1030 1031 /* 1032 * this search will find all the extents that end after 1033 * our range starts. 1034 */ 1035 node = tree_search(tree, start); 1036 if (!node) { 1037 prealloc = alloc_extent_state_atomic(prealloc); 1038 if (!prealloc) { 1039 err = -ENOMEM; 1040 goto out; 1041 } 1042 err = insert_state(tree, prealloc, start, end, &bits); 1043 prealloc = NULL; 1044 if (err) 1045 extent_io_tree_panic(tree, err); 1046 goto out; 1047 } 1048 state = rb_entry(node, struct extent_state, rb_node); 1049 hit_next: 1050 last_start = state->start; 1051 last_end = state->end; 1052 1053 /* 1054 * | ---- desired range ---- | 1055 * | state | 1056 * 1057 * Just lock what we found and keep going 1058 */ 1059 if (state->start == start && state->end <= end) { 1060 set_state_bits(tree, state, &bits); 1061 cache_state(state, cached_state); 1062 state = clear_state_bit(tree, state, &clear_bits, 0); 1063 if (last_end == (u64)-1) 1064 goto out; 1065 start = last_end + 1; 1066 if (start < end && state && state->start == start && 1067 !need_resched()) 1068 goto hit_next; 1069 goto search_again; 1070 } 1071 1072 /* 1073 * | ---- desired range ---- | 1074 * | state | 1075 * or 1076 * | ------------- state -------------- | 1077 * 1078 * We need to split the extent we found, and may flip bits on 1079 * second half. 1080 * 1081 * If the extent we found extends past our 1082 * range, we just split and search again. It'll get split 1083 * again the next time though. 1084 * 1085 * If the extent we found is inside our range, we set the 1086 * desired bit on it. 1087 */ 1088 if (state->start < start) { 1089 prealloc = alloc_extent_state_atomic(prealloc); 1090 if (!prealloc) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 err = split_state(tree, state, prealloc, start); 1095 if (err) 1096 extent_io_tree_panic(tree, err); 1097 prealloc = NULL; 1098 if (err) 1099 goto out; 1100 if (state->end <= end) { 1101 set_state_bits(tree, state, &bits); 1102 cache_state(state, cached_state); 1103 state = clear_state_bit(tree, state, &clear_bits, 0); 1104 if (last_end == (u64)-1) 1105 goto out; 1106 start = last_end + 1; 1107 if (start < end && state && state->start == start && 1108 !need_resched()) 1109 goto hit_next; 1110 } 1111 goto search_again; 1112 } 1113 /* 1114 * | ---- desired range ---- | 1115 * | state | or | state | 1116 * 1117 * There's a hole, we need to insert something in it and 1118 * ignore the extent we found. 1119 */ 1120 if (state->start > start) { 1121 u64 this_end; 1122 if (end < last_start) 1123 this_end = end; 1124 else 1125 this_end = last_start - 1; 1126 1127 prealloc = alloc_extent_state_atomic(prealloc); 1128 if (!prealloc) { 1129 err = -ENOMEM; 1130 goto out; 1131 } 1132 1133 /* 1134 * Avoid to free 'prealloc' if it can be merged with 1135 * the later extent. 1136 */ 1137 err = insert_state(tree, prealloc, start, this_end, 1138 &bits); 1139 if (err) 1140 extent_io_tree_panic(tree, err); 1141 cache_state(prealloc, cached_state); 1142 prealloc = NULL; 1143 start = this_end + 1; 1144 goto search_again; 1145 } 1146 /* 1147 * | ---- desired range ---- | 1148 * | state | 1149 * We need to split the extent, and set the bit 1150 * on the first half 1151 */ 1152 if (state->start <= end && state->end > end) { 1153 prealloc = alloc_extent_state_atomic(prealloc); 1154 if (!prealloc) { 1155 err = -ENOMEM; 1156 goto out; 1157 } 1158 1159 err = split_state(tree, state, prealloc, end + 1); 1160 if (err) 1161 extent_io_tree_panic(tree, err); 1162 1163 set_state_bits(tree, prealloc, &bits); 1164 cache_state(prealloc, cached_state); 1165 clear_state_bit(tree, prealloc, &clear_bits, 0); 1166 prealloc = NULL; 1167 goto out; 1168 } 1169 1170 goto search_again; 1171 1172 out: 1173 spin_unlock(&tree->lock); 1174 if (prealloc) 1175 free_extent_state(prealloc); 1176 1177 return err; 1178 1179 search_again: 1180 if (start > end) 1181 goto out; 1182 spin_unlock(&tree->lock); 1183 if (mask & __GFP_WAIT) 1184 cond_resched(); 1185 goto again; 1186 } 1187 1188 /* wrappers around set/clear extent bit */ 1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1190 gfp_t mask) 1191 { 1192 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1193 NULL, mask); 1194 } 1195 1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1197 unsigned long bits, gfp_t mask) 1198 { 1199 return set_extent_bit(tree, start, end, bits, NULL, 1200 NULL, mask); 1201 } 1202 1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1204 unsigned long bits, gfp_t mask) 1205 { 1206 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1207 } 1208 1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1210 struct extent_state **cached_state, gfp_t mask) 1211 { 1212 return set_extent_bit(tree, start, end, 1213 EXTENT_DELALLOC | EXTENT_UPTODATE, 1214 NULL, cached_state, mask); 1215 } 1216 1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1218 struct extent_state **cached_state, gfp_t mask) 1219 { 1220 return set_extent_bit(tree, start, end, 1221 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1222 NULL, cached_state, mask); 1223 } 1224 1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1226 gfp_t mask) 1227 { 1228 return clear_extent_bit(tree, start, end, 1229 EXTENT_DIRTY | EXTENT_DELALLOC | 1230 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1231 } 1232 1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1234 gfp_t mask) 1235 { 1236 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1237 NULL, mask); 1238 } 1239 1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1241 struct extent_state **cached_state, gfp_t mask) 1242 { 1243 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1244 cached_state, mask); 1245 } 1246 1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1248 struct extent_state **cached_state, gfp_t mask) 1249 { 1250 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1251 cached_state, mask); 1252 } 1253 1254 /* 1255 * either insert or lock state struct between start and end use mask to tell 1256 * us if waiting is desired. 1257 */ 1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1259 unsigned long bits, struct extent_state **cached_state) 1260 { 1261 int err; 1262 u64 failed_start; 1263 while (1) { 1264 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1265 EXTENT_LOCKED, &failed_start, 1266 cached_state, GFP_NOFS); 1267 if (err == -EEXIST) { 1268 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1269 start = failed_start; 1270 } else 1271 break; 1272 WARN_ON(start > end); 1273 } 1274 return err; 1275 } 1276 1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1278 { 1279 return lock_extent_bits(tree, start, end, 0, NULL); 1280 } 1281 1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1283 { 1284 int err; 1285 u64 failed_start; 1286 1287 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1288 &failed_start, NULL, GFP_NOFS); 1289 if (err == -EEXIST) { 1290 if (failed_start > start) 1291 clear_extent_bit(tree, start, failed_start - 1, 1292 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1293 return 0; 1294 } 1295 return 1; 1296 } 1297 1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1299 struct extent_state **cached, gfp_t mask) 1300 { 1301 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1302 mask); 1303 } 1304 1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1306 { 1307 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1308 GFP_NOFS); 1309 } 1310 1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1312 { 1313 unsigned long index = start >> PAGE_CACHE_SHIFT; 1314 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1315 struct page *page; 1316 1317 while (index <= end_index) { 1318 page = find_get_page(inode->i_mapping, index); 1319 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1320 clear_page_dirty_for_io(page); 1321 page_cache_release(page); 1322 index++; 1323 } 1324 return 0; 1325 } 1326 1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1328 { 1329 unsigned long index = start >> PAGE_CACHE_SHIFT; 1330 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1331 struct page *page; 1332 1333 while (index <= end_index) { 1334 page = find_get_page(inode->i_mapping, index); 1335 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1336 account_page_redirty(page); 1337 __set_page_dirty_nobuffers(page); 1338 page_cache_release(page); 1339 index++; 1340 } 1341 return 0; 1342 } 1343 1344 /* 1345 * helper function to set both pages and extents in the tree writeback 1346 */ 1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1348 { 1349 unsigned long index = start >> PAGE_CACHE_SHIFT; 1350 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1351 struct page *page; 1352 1353 while (index <= end_index) { 1354 page = find_get_page(tree->mapping, index); 1355 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1356 set_page_writeback(page); 1357 page_cache_release(page); 1358 index++; 1359 } 1360 return 0; 1361 } 1362 1363 /* find the first state struct with 'bits' set after 'start', and 1364 * return it. tree->lock must be held. NULL will returned if 1365 * nothing was found after 'start' 1366 */ 1367 static struct extent_state * 1368 find_first_extent_bit_state(struct extent_io_tree *tree, 1369 u64 start, unsigned long bits) 1370 { 1371 struct rb_node *node; 1372 struct extent_state *state; 1373 1374 /* 1375 * this search will find all the extents that end after 1376 * our range starts. 1377 */ 1378 node = tree_search(tree, start); 1379 if (!node) 1380 goto out; 1381 1382 while (1) { 1383 state = rb_entry(node, struct extent_state, rb_node); 1384 if (state->end >= start && (state->state & bits)) 1385 return state; 1386 1387 node = rb_next(node); 1388 if (!node) 1389 break; 1390 } 1391 out: 1392 return NULL; 1393 } 1394 1395 /* 1396 * find the first offset in the io tree with 'bits' set. zero is 1397 * returned if we find something, and *start_ret and *end_ret are 1398 * set to reflect the state struct that was found. 1399 * 1400 * If nothing was found, 1 is returned. If found something, return 0. 1401 */ 1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1403 u64 *start_ret, u64 *end_ret, unsigned long bits, 1404 struct extent_state **cached_state) 1405 { 1406 struct extent_state *state; 1407 struct rb_node *n; 1408 int ret = 1; 1409 1410 spin_lock(&tree->lock); 1411 if (cached_state && *cached_state) { 1412 state = *cached_state; 1413 if (state->end == start - 1 && state->tree) { 1414 n = rb_next(&state->rb_node); 1415 while (n) { 1416 state = rb_entry(n, struct extent_state, 1417 rb_node); 1418 if (state->state & bits) 1419 goto got_it; 1420 n = rb_next(n); 1421 } 1422 free_extent_state(*cached_state); 1423 *cached_state = NULL; 1424 goto out; 1425 } 1426 free_extent_state(*cached_state); 1427 *cached_state = NULL; 1428 } 1429 1430 state = find_first_extent_bit_state(tree, start, bits); 1431 got_it: 1432 if (state) { 1433 cache_state(state, cached_state); 1434 *start_ret = state->start; 1435 *end_ret = state->end; 1436 ret = 0; 1437 } 1438 out: 1439 spin_unlock(&tree->lock); 1440 return ret; 1441 } 1442 1443 /* 1444 * find a contiguous range of bytes in the file marked as delalloc, not 1445 * more than 'max_bytes'. start and end are used to return the range, 1446 * 1447 * 1 is returned if we find something, 0 if nothing was in the tree 1448 */ 1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1450 u64 *start, u64 *end, u64 max_bytes, 1451 struct extent_state **cached_state) 1452 { 1453 struct rb_node *node; 1454 struct extent_state *state; 1455 u64 cur_start = *start; 1456 u64 found = 0; 1457 u64 total_bytes = 0; 1458 1459 spin_lock(&tree->lock); 1460 1461 /* 1462 * this search will find all the extents that end after 1463 * our range starts. 1464 */ 1465 node = tree_search(tree, cur_start); 1466 if (!node) { 1467 if (!found) 1468 *end = (u64)-1; 1469 goto out; 1470 } 1471 1472 while (1) { 1473 state = rb_entry(node, struct extent_state, rb_node); 1474 if (found && (state->start != cur_start || 1475 (state->state & EXTENT_BOUNDARY))) { 1476 goto out; 1477 } 1478 if (!(state->state & EXTENT_DELALLOC)) { 1479 if (!found) 1480 *end = state->end; 1481 goto out; 1482 } 1483 if (!found) { 1484 *start = state->start; 1485 *cached_state = state; 1486 atomic_inc(&state->refs); 1487 } 1488 found++; 1489 *end = state->end; 1490 cur_start = state->end + 1; 1491 node = rb_next(node); 1492 total_bytes += state->end - state->start + 1; 1493 if (total_bytes >= max_bytes) 1494 break; 1495 if (!node) 1496 break; 1497 } 1498 out: 1499 spin_unlock(&tree->lock); 1500 return found; 1501 } 1502 1503 static noinline void __unlock_for_delalloc(struct inode *inode, 1504 struct page *locked_page, 1505 u64 start, u64 end) 1506 { 1507 int ret; 1508 struct page *pages[16]; 1509 unsigned long index = start >> PAGE_CACHE_SHIFT; 1510 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1511 unsigned long nr_pages = end_index - index + 1; 1512 int i; 1513 1514 if (index == locked_page->index && end_index == index) 1515 return; 1516 1517 while (nr_pages > 0) { 1518 ret = find_get_pages_contig(inode->i_mapping, index, 1519 min_t(unsigned long, nr_pages, 1520 ARRAY_SIZE(pages)), pages); 1521 for (i = 0; i < ret; i++) { 1522 if (pages[i] != locked_page) 1523 unlock_page(pages[i]); 1524 page_cache_release(pages[i]); 1525 } 1526 nr_pages -= ret; 1527 index += ret; 1528 cond_resched(); 1529 } 1530 } 1531 1532 static noinline int lock_delalloc_pages(struct inode *inode, 1533 struct page *locked_page, 1534 u64 delalloc_start, 1535 u64 delalloc_end) 1536 { 1537 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1538 unsigned long start_index = index; 1539 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1540 unsigned long pages_locked = 0; 1541 struct page *pages[16]; 1542 unsigned long nrpages; 1543 int ret; 1544 int i; 1545 1546 /* the caller is responsible for locking the start index */ 1547 if (index == locked_page->index && index == end_index) 1548 return 0; 1549 1550 /* skip the page at the start index */ 1551 nrpages = end_index - index + 1; 1552 while (nrpages > 0) { 1553 ret = find_get_pages_contig(inode->i_mapping, index, 1554 min_t(unsigned long, 1555 nrpages, ARRAY_SIZE(pages)), pages); 1556 if (ret == 0) { 1557 ret = -EAGAIN; 1558 goto done; 1559 } 1560 /* now we have an array of pages, lock them all */ 1561 for (i = 0; i < ret; i++) { 1562 /* 1563 * the caller is taking responsibility for 1564 * locked_page 1565 */ 1566 if (pages[i] != locked_page) { 1567 lock_page(pages[i]); 1568 if (!PageDirty(pages[i]) || 1569 pages[i]->mapping != inode->i_mapping) { 1570 ret = -EAGAIN; 1571 unlock_page(pages[i]); 1572 page_cache_release(pages[i]); 1573 goto done; 1574 } 1575 } 1576 page_cache_release(pages[i]); 1577 pages_locked++; 1578 } 1579 nrpages -= ret; 1580 index += ret; 1581 cond_resched(); 1582 } 1583 ret = 0; 1584 done: 1585 if (ret && pages_locked) { 1586 __unlock_for_delalloc(inode, locked_page, 1587 delalloc_start, 1588 ((u64)(start_index + pages_locked - 1)) << 1589 PAGE_CACHE_SHIFT); 1590 } 1591 return ret; 1592 } 1593 1594 /* 1595 * find a contiguous range of bytes in the file marked as delalloc, not 1596 * more than 'max_bytes'. start and end are used to return the range, 1597 * 1598 * 1 is returned if we find something, 0 if nothing was in the tree 1599 */ 1600 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1601 struct extent_io_tree *tree, 1602 struct page *locked_page, u64 *start, 1603 u64 *end, u64 max_bytes) 1604 { 1605 u64 delalloc_start; 1606 u64 delalloc_end; 1607 u64 found; 1608 struct extent_state *cached_state = NULL; 1609 int ret; 1610 int loops = 0; 1611 1612 again: 1613 /* step one, find a bunch of delalloc bytes starting at start */ 1614 delalloc_start = *start; 1615 delalloc_end = 0; 1616 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1617 max_bytes, &cached_state); 1618 if (!found || delalloc_end <= *start) { 1619 *start = delalloc_start; 1620 *end = delalloc_end; 1621 free_extent_state(cached_state); 1622 return 0; 1623 } 1624 1625 /* 1626 * start comes from the offset of locked_page. We have to lock 1627 * pages in order, so we can't process delalloc bytes before 1628 * locked_page 1629 */ 1630 if (delalloc_start < *start) 1631 delalloc_start = *start; 1632 1633 /* 1634 * make sure to limit the number of pages we try to lock down 1635 */ 1636 if (delalloc_end + 1 - delalloc_start > max_bytes) 1637 delalloc_end = delalloc_start + max_bytes - 1; 1638 1639 /* step two, lock all the pages after the page that has start */ 1640 ret = lock_delalloc_pages(inode, locked_page, 1641 delalloc_start, delalloc_end); 1642 if (ret == -EAGAIN) { 1643 /* some of the pages are gone, lets avoid looping by 1644 * shortening the size of the delalloc range we're searching 1645 */ 1646 free_extent_state(cached_state); 1647 if (!loops) { 1648 max_bytes = PAGE_CACHE_SIZE; 1649 loops = 1; 1650 goto again; 1651 } else { 1652 found = 0; 1653 goto out_failed; 1654 } 1655 } 1656 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1657 1658 /* step three, lock the state bits for the whole range */ 1659 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1660 1661 /* then test to make sure it is all still delalloc */ 1662 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1663 EXTENT_DELALLOC, 1, cached_state); 1664 if (!ret) { 1665 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1666 &cached_state, GFP_NOFS); 1667 __unlock_for_delalloc(inode, locked_page, 1668 delalloc_start, delalloc_end); 1669 cond_resched(); 1670 goto again; 1671 } 1672 free_extent_state(cached_state); 1673 *start = delalloc_start; 1674 *end = delalloc_end; 1675 out_failed: 1676 return found; 1677 } 1678 1679 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1680 struct page *locked_page, 1681 unsigned long clear_bits, 1682 unsigned long page_ops) 1683 { 1684 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1685 int ret; 1686 struct page *pages[16]; 1687 unsigned long index = start >> PAGE_CACHE_SHIFT; 1688 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1689 unsigned long nr_pages = end_index - index + 1; 1690 int i; 1691 1692 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1693 if (page_ops == 0) 1694 return 0; 1695 1696 while (nr_pages > 0) { 1697 ret = find_get_pages_contig(inode->i_mapping, index, 1698 min_t(unsigned long, 1699 nr_pages, ARRAY_SIZE(pages)), pages); 1700 for (i = 0; i < ret; i++) { 1701 1702 if (page_ops & PAGE_SET_PRIVATE2) 1703 SetPagePrivate2(pages[i]); 1704 1705 if (pages[i] == locked_page) { 1706 page_cache_release(pages[i]); 1707 continue; 1708 } 1709 if (page_ops & PAGE_CLEAR_DIRTY) 1710 clear_page_dirty_for_io(pages[i]); 1711 if (page_ops & PAGE_SET_WRITEBACK) 1712 set_page_writeback(pages[i]); 1713 if (page_ops & PAGE_END_WRITEBACK) 1714 end_page_writeback(pages[i]); 1715 if (page_ops & PAGE_UNLOCK) 1716 unlock_page(pages[i]); 1717 page_cache_release(pages[i]); 1718 } 1719 nr_pages -= ret; 1720 index += ret; 1721 cond_resched(); 1722 } 1723 return 0; 1724 } 1725 1726 /* 1727 * count the number of bytes in the tree that have a given bit(s) 1728 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1729 * cached. The total number found is returned. 1730 */ 1731 u64 count_range_bits(struct extent_io_tree *tree, 1732 u64 *start, u64 search_end, u64 max_bytes, 1733 unsigned long bits, int contig) 1734 { 1735 struct rb_node *node; 1736 struct extent_state *state; 1737 u64 cur_start = *start; 1738 u64 total_bytes = 0; 1739 u64 last = 0; 1740 int found = 0; 1741 1742 if (WARN_ON(search_end <= cur_start)) 1743 return 0; 1744 1745 spin_lock(&tree->lock); 1746 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1747 total_bytes = tree->dirty_bytes; 1748 goto out; 1749 } 1750 /* 1751 * this search will find all the extents that end after 1752 * our range starts. 1753 */ 1754 node = tree_search(tree, cur_start); 1755 if (!node) 1756 goto out; 1757 1758 while (1) { 1759 state = rb_entry(node, struct extent_state, rb_node); 1760 if (state->start > search_end) 1761 break; 1762 if (contig && found && state->start > last + 1) 1763 break; 1764 if (state->end >= cur_start && (state->state & bits) == bits) { 1765 total_bytes += min(search_end, state->end) + 1 - 1766 max(cur_start, state->start); 1767 if (total_bytes >= max_bytes) 1768 break; 1769 if (!found) { 1770 *start = max(cur_start, state->start); 1771 found = 1; 1772 } 1773 last = state->end; 1774 } else if (contig && found) { 1775 break; 1776 } 1777 node = rb_next(node); 1778 if (!node) 1779 break; 1780 } 1781 out: 1782 spin_unlock(&tree->lock); 1783 return total_bytes; 1784 } 1785 1786 /* 1787 * set the private field for a given byte offset in the tree. If there isn't 1788 * an extent_state there already, this does nothing. 1789 */ 1790 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1791 { 1792 struct rb_node *node; 1793 struct extent_state *state; 1794 int ret = 0; 1795 1796 spin_lock(&tree->lock); 1797 /* 1798 * this search will find all the extents that end after 1799 * our range starts. 1800 */ 1801 node = tree_search(tree, start); 1802 if (!node) { 1803 ret = -ENOENT; 1804 goto out; 1805 } 1806 state = rb_entry(node, struct extent_state, rb_node); 1807 if (state->start != start) { 1808 ret = -ENOENT; 1809 goto out; 1810 } 1811 state->private = private; 1812 out: 1813 spin_unlock(&tree->lock); 1814 return ret; 1815 } 1816 1817 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1818 { 1819 struct rb_node *node; 1820 struct extent_state *state; 1821 int ret = 0; 1822 1823 spin_lock(&tree->lock); 1824 /* 1825 * this search will find all the extents that end after 1826 * our range starts. 1827 */ 1828 node = tree_search(tree, start); 1829 if (!node) { 1830 ret = -ENOENT; 1831 goto out; 1832 } 1833 state = rb_entry(node, struct extent_state, rb_node); 1834 if (state->start != start) { 1835 ret = -ENOENT; 1836 goto out; 1837 } 1838 *private = state->private; 1839 out: 1840 spin_unlock(&tree->lock); 1841 return ret; 1842 } 1843 1844 /* 1845 * searches a range in the state tree for a given mask. 1846 * If 'filled' == 1, this returns 1 only if every extent in the tree 1847 * has the bits set. Otherwise, 1 is returned if any bit in the 1848 * range is found set. 1849 */ 1850 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1851 unsigned long bits, int filled, struct extent_state *cached) 1852 { 1853 struct extent_state *state = NULL; 1854 struct rb_node *node; 1855 int bitset = 0; 1856 1857 spin_lock(&tree->lock); 1858 if (cached && cached->tree && cached->start <= start && 1859 cached->end > start) 1860 node = &cached->rb_node; 1861 else 1862 node = tree_search(tree, start); 1863 while (node && start <= end) { 1864 state = rb_entry(node, struct extent_state, rb_node); 1865 1866 if (filled && state->start > start) { 1867 bitset = 0; 1868 break; 1869 } 1870 1871 if (state->start > end) 1872 break; 1873 1874 if (state->state & bits) { 1875 bitset = 1; 1876 if (!filled) 1877 break; 1878 } else if (filled) { 1879 bitset = 0; 1880 break; 1881 } 1882 1883 if (state->end == (u64)-1) 1884 break; 1885 1886 start = state->end + 1; 1887 if (start > end) 1888 break; 1889 node = rb_next(node); 1890 if (!node) { 1891 if (filled) 1892 bitset = 0; 1893 break; 1894 } 1895 } 1896 spin_unlock(&tree->lock); 1897 return bitset; 1898 } 1899 1900 /* 1901 * helper function to set a given page up to date if all the 1902 * extents in the tree for that page are up to date 1903 */ 1904 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1905 { 1906 u64 start = page_offset(page); 1907 u64 end = start + PAGE_CACHE_SIZE - 1; 1908 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1909 SetPageUptodate(page); 1910 } 1911 1912 /* 1913 * When IO fails, either with EIO or csum verification fails, we 1914 * try other mirrors that might have a good copy of the data. This 1915 * io_failure_record is used to record state as we go through all the 1916 * mirrors. If another mirror has good data, the page is set up to date 1917 * and things continue. If a good mirror can't be found, the original 1918 * bio end_io callback is called to indicate things have failed. 1919 */ 1920 struct io_failure_record { 1921 struct page *page; 1922 u64 start; 1923 u64 len; 1924 u64 logical; 1925 unsigned long bio_flags; 1926 int this_mirror; 1927 int failed_mirror; 1928 int in_validation; 1929 }; 1930 1931 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1932 int did_repair) 1933 { 1934 int ret; 1935 int err = 0; 1936 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1937 1938 set_state_private(failure_tree, rec->start, 0); 1939 ret = clear_extent_bits(failure_tree, rec->start, 1940 rec->start + rec->len - 1, 1941 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1942 if (ret) 1943 err = ret; 1944 1945 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1946 rec->start + rec->len - 1, 1947 EXTENT_DAMAGED, GFP_NOFS); 1948 if (ret && !err) 1949 err = ret; 1950 1951 kfree(rec); 1952 return err; 1953 } 1954 1955 /* 1956 * this bypasses the standard btrfs submit functions deliberately, as 1957 * the standard behavior is to write all copies in a raid setup. here we only 1958 * want to write the one bad copy. so we do the mapping for ourselves and issue 1959 * submit_bio directly. 1960 * to avoid any synchronization issues, wait for the data after writing, which 1961 * actually prevents the read that triggered the error from finishing. 1962 * currently, there can be no more than two copies of every data bit. thus, 1963 * exactly one rewrite is required. 1964 */ 1965 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 1966 u64 length, u64 logical, struct page *page, 1967 int mirror_num) 1968 { 1969 struct bio *bio; 1970 struct btrfs_device *dev; 1971 u64 map_length = 0; 1972 u64 sector; 1973 struct btrfs_bio *bbio = NULL; 1974 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 1975 int ret; 1976 1977 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 1978 BUG_ON(!mirror_num); 1979 1980 /* we can't repair anything in raid56 yet */ 1981 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 1982 return 0; 1983 1984 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1985 if (!bio) 1986 return -EIO; 1987 bio->bi_size = 0; 1988 map_length = length; 1989 1990 ret = btrfs_map_block(fs_info, WRITE, logical, 1991 &map_length, &bbio, mirror_num); 1992 if (ret) { 1993 bio_put(bio); 1994 return -EIO; 1995 } 1996 BUG_ON(mirror_num != bbio->mirror_num); 1997 sector = bbio->stripes[mirror_num-1].physical >> 9; 1998 bio->bi_sector = sector; 1999 dev = bbio->stripes[mirror_num-1].dev; 2000 kfree(bbio); 2001 if (!dev || !dev->bdev || !dev->writeable) { 2002 bio_put(bio); 2003 return -EIO; 2004 } 2005 bio->bi_bdev = dev->bdev; 2006 bio_add_page(bio, page, length, start - page_offset(page)); 2007 2008 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2009 /* try to remap that extent elsewhere? */ 2010 bio_put(bio); 2011 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2012 return -EIO; 2013 } 2014 2015 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 2016 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2017 start, rcu_str_deref(dev->name), sector); 2018 2019 bio_put(bio); 2020 return 0; 2021 } 2022 2023 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2024 int mirror_num) 2025 { 2026 u64 start = eb->start; 2027 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2028 int ret = 0; 2029 2030 if (root->fs_info->sb->s_flags & MS_RDONLY) 2031 return -EROFS; 2032 2033 for (i = 0; i < num_pages; i++) { 2034 struct page *p = extent_buffer_page(eb, i); 2035 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2036 start, p, mirror_num); 2037 if (ret) 2038 break; 2039 start += PAGE_CACHE_SIZE; 2040 } 2041 2042 return ret; 2043 } 2044 2045 /* 2046 * each time an IO finishes, we do a fast check in the IO failure tree 2047 * to see if we need to process or clean up an io_failure_record 2048 */ 2049 static int clean_io_failure(u64 start, struct page *page) 2050 { 2051 u64 private; 2052 u64 private_failure; 2053 struct io_failure_record *failrec; 2054 struct inode *inode = page->mapping->host; 2055 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2056 struct extent_state *state; 2057 int num_copies; 2058 int did_repair = 0; 2059 int ret; 2060 2061 private = 0; 2062 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2063 (u64)-1, 1, EXTENT_DIRTY, 0); 2064 if (!ret) 2065 return 0; 2066 2067 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2068 &private_failure); 2069 if (ret) 2070 return 0; 2071 2072 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2073 BUG_ON(!failrec->this_mirror); 2074 2075 if (failrec->in_validation) { 2076 /* there was no real error, just free the record */ 2077 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2078 failrec->start); 2079 did_repair = 1; 2080 goto out; 2081 } 2082 if (fs_info->sb->s_flags & MS_RDONLY) 2083 goto out; 2084 2085 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2086 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2087 failrec->start, 2088 EXTENT_LOCKED); 2089 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2090 2091 if (state && state->start <= failrec->start && 2092 state->end >= failrec->start + failrec->len - 1) { 2093 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2094 failrec->len); 2095 if (num_copies > 1) { 2096 ret = repair_io_failure(fs_info, start, failrec->len, 2097 failrec->logical, page, 2098 failrec->failed_mirror); 2099 did_repair = !ret; 2100 } 2101 ret = 0; 2102 } 2103 2104 out: 2105 if (!ret) 2106 ret = free_io_failure(inode, failrec, did_repair); 2107 2108 return ret; 2109 } 2110 2111 /* 2112 * this is a generic handler for readpage errors (default 2113 * readpage_io_failed_hook). if other copies exist, read those and write back 2114 * good data to the failed position. does not investigate in remapping the 2115 * failed extent elsewhere, hoping the device will be smart enough to do this as 2116 * needed 2117 */ 2118 2119 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2120 struct page *page, u64 start, u64 end, 2121 int failed_mirror) 2122 { 2123 struct io_failure_record *failrec = NULL; 2124 u64 private; 2125 struct extent_map *em; 2126 struct inode *inode = page->mapping->host; 2127 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2128 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2129 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2130 struct bio *bio; 2131 struct btrfs_io_bio *btrfs_failed_bio; 2132 struct btrfs_io_bio *btrfs_bio; 2133 int num_copies; 2134 int ret; 2135 int read_mode; 2136 u64 logical; 2137 2138 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2139 2140 ret = get_state_private(failure_tree, start, &private); 2141 if (ret) { 2142 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2143 if (!failrec) 2144 return -ENOMEM; 2145 failrec->start = start; 2146 failrec->len = end - start + 1; 2147 failrec->this_mirror = 0; 2148 failrec->bio_flags = 0; 2149 failrec->in_validation = 0; 2150 2151 read_lock(&em_tree->lock); 2152 em = lookup_extent_mapping(em_tree, start, failrec->len); 2153 if (!em) { 2154 read_unlock(&em_tree->lock); 2155 kfree(failrec); 2156 return -EIO; 2157 } 2158 2159 if (em->start > start || em->start + em->len < start) { 2160 free_extent_map(em); 2161 em = NULL; 2162 } 2163 read_unlock(&em_tree->lock); 2164 2165 if (!em) { 2166 kfree(failrec); 2167 return -EIO; 2168 } 2169 logical = start - em->start; 2170 logical = em->block_start + logical; 2171 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2172 logical = em->block_start; 2173 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2174 extent_set_compress_type(&failrec->bio_flags, 2175 em->compress_type); 2176 } 2177 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2178 "len=%llu\n", logical, start, failrec->len); 2179 failrec->logical = logical; 2180 free_extent_map(em); 2181 2182 /* set the bits in the private failure tree */ 2183 ret = set_extent_bits(failure_tree, start, end, 2184 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2185 if (ret >= 0) 2186 ret = set_state_private(failure_tree, start, 2187 (u64)(unsigned long)failrec); 2188 /* set the bits in the inode's tree */ 2189 if (ret >= 0) 2190 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2191 GFP_NOFS); 2192 if (ret < 0) { 2193 kfree(failrec); 2194 return ret; 2195 } 2196 } else { 2197 failrec = (struct io_failure_record *)(unsigned long)private; 2198 pr_debug("bio_readpage_error: (found) logical=%llu, " 2199 "start=%llu, len=%llu, validation=%d\n", 2200 failrec->logical, failrec->start, failrec->len, 2201 failrec->in_validation); 2202 /* 2203 * when data can be on disk more than twice, add to failrec here 2204 * (e.g. with a list for failed_mirror) to make 2205 * clean_io_failure() clean all those errors at once. 2206 */ 2207 } 2208 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2209 failrec->logical, failrec->len); 2210 if (num_copies == 1) { 2211 /* 2212 * we only have a single copy of the data, so don't bother with 2213 * all the retry and error correction code that follows. no 2214 * matter what the error is, it is very likely to persist. 2215 */ 2216 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2217 num_copies, failrec->this_mirror, failed_mirror); 2218 free_io_failure(inode, failrec, 0); 2219 return -EIO; 2220 } 2221 2222 /* 2223 * there are two premises: 2224 * a) deliver good data to the caller 2225 * b) correct the bad sectors on disk 2226 */ 2227 if (failed_bio->bi_vcnt > 1) { 2228 /* 2229 * to fulfill b), we need to know the exact failing sectors, as 2230 * we don't want to rewrite any more than the failed ones. thus, 2231 * we need separate read requests for the failed bio 2232 * 2233 * if the following BUG_ON triggers, our validation request got 2234 * merged. we need separate requests for our algorithm to work. 2235 */ 2236 BUG_ON(failrec->in_validation); 2237 failrec->in_validation = 1; 2238 failrec->this_mirror = failed_mirror; 2239 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2240 } else { 2241 /* 2242 * we're ready to fulfill a) and b) alongside. get a good copy 2243 * of the failed sector and if we succeed, we have setup 2244 * everything for repair_io_failure to do the rest for us. 2245 */ 2246 if (failrec->in_validation) { 2247 BUG_ON(failrec->this_mirror != failed_mirror); 2248 failrec->in_validation = 0; 2249 failrec->this_mirror = 0; 2250 } 2251 failrec->failed_mirror = failed_mirror; 2252 failrec->this_mirror++; 2253 if (failrec->this_mirror == failed_mirror) 2254 failrec->this_mirror++; 2255 read_mode = READ_SYNC; 2256 } 2257 2258 if (failrec->this_mirror > num_copies) { 2259 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2260 num_copies, failrec->this_mirror, failed_mirror); 2261 free_io_failure(inode, failrec, 0); 2262 return -EIO; 2263 } 2264 2265 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2266 if (!bio) { 2267 free_io_failure(inode, failrec, 0); 2268 return -EIO; 2269 } 2270 bio->bi_end_io = failed_bio->bi_end_io; 2271 bio->bi_sector = failrec->logical >> 9; 2272 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2273 bio->bi_size = 0; 2274 2275 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2276 if (btrfs_failed_bio->csum) { 2277 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2278 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2279 2280 btrfs_bio = btrfs_io_bio(bio); 2281 btrfs_bio->csum = btrfs_bio->csum_inline; 2282 phy_offset >>= inode->i_sb->s_blocksize_bits; 2283 phy_offset *= csum_size; 2284 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset, 2285 csum_size); 2286 } 2287 2288 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2289 2290 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2291 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2292 failrec->this_mirror, num_copies, failrec->in_validation); 2293 2294 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2295 failrec->this_mirror, 2296 failrec->bio_flags, 0); 2297 return ret; 2298 } 2299 2300 /* lots and lots of room for performance fixes in the end_bio funcs */ 2301 2302 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2303 { 2304 int uptodate = (err == 0); 2305 struct extent_io_tree *tree; 2306 int ret; 2307 2308 tree = &BTRFS_I(page->mapping->host)->io_tree; 2309 2310 if (tree->ops && tree->ops->writepage_end_io_hook) { 2311 ret = tree->ops->writepage_end_io_hook(page, start, 2312 end, NULL, uptodate); 2313 if (ret) 2314 uptodate = 0; 2315 } 2316 2317 if (!uptodate) { 2318 ClearPageUptodate(page); 2319 SetPageError(page); 2320 } 2321 return 0; 2322 } 2323 2324 /* 2325 * after a writepage IO is done, we need to: 2326 * clear the uptodate bits on error 2327 * clear the writeback bits in the extent tree for this IO 2328 * end_page_writeback if the page has no more pending IO 2329 * 2330 * Scheduling is not allowed, so the extent state tree is expected 2331 * to have one and only one object corresponding to this IO. 2332 */ 2333 static void end_bio_extent_writepage(struct bio *bio, int err) 2334 { 2335 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2336 struct extent_io_tree *tree; 2337 u64 start; 2338 u64 end; 2339 2340 do { 2341 struct page *page = bvec->bv_page; 2342 tree = &BTRFS_I(page->mapping->host)->io_tree; 2343 2344 /* We always issue full-page reads, but if some block 2345 * in a page fails to read, blk_update_request() will 2346 * advance bv_offset and adjust bv_len to compensate. 2347 * Print a warning for nonzero offsets, and an error 2348 * if they don't add up to a full page. */ 2349 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2350 printk("%s page write in btrfs with offset %u and length %u\n", 2351 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2352 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2353 bvec->bv_offset, bvec->bv_len); 2354 2355 start = page_offset(page); 2356 end = start + bvec->bv_offset + bvec->bv_len - 1; 2357 2358 if (--bvec >= bio->bi_io_vec) 2359 prefetchw(&bvec->bv_page->flags); 2360 2361 if (end_extent_writepage(page, err, start, end)) 2362 continue; 2363 2364 end_page_writeback(page); 2365 } while (bvec >= bio->bi_io_vec); 2366 2367 bio_put(bio); 2368 } 2369 2370 static void 2371 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2372 int uptodate) 2373 { 2374 struct extent_state *cached = NULL; 2375 u64 end = start + len - 1; 2376 2377 if (uptodate && tree->track_uptodate) 2378 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2379 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2380 } 2381 2382 /* 2383 * after a readpage IO is done, we need to: 2384 * clear the uptodate bits on error 2385 * set the uptodate bits if things worked 2386 * set the page up to date if all extents in the tree are uptodate 2387 * clear the lock bit in the extent tree 2388 * unlock the page if there are no other extents locked for it 2389 * 2390 * Scheduling is not allowed, so the extent state tree is expected 2391 * to have one and only one object corresponding to this IO. 2392 */ 2393 static void end_bio_extent_readpage(struct bio *bio, int err) 2394 { 2395 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2396 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2397 struct bio_vec *bvec = bio->bi_io_vec; 2398 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2399 struct extent_io_tree *tree; 2400 u64 offset = 0; 2401 u64 start; 2402 u64 end; 2403 u64 len; 2404 u64 extent_start = 0; 2405 u64 extent_len = 0; 2406 int mirror; 2407 int ret; 2408 2409 if (err) 2410 uptodate = 0; 2411 2412 do { 2413 struct page *page = bvec->bv_page; 2414 struct inode *inode = page->mapping->host; 2415 2416 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2417 "mirror=%lu\n", (u64)bio->bi_sector, err, 2418 io_bio->mirror_num); 2419 tree = &BTRFS_I(inode)->io_tree; 2420 2421 /* We always issue full-page reads, but if some block 2422 * in a page fails to read, blk_update_request() will 2423 * advance bv_offset and adjust bv_len to compensate. 2424 * Print a warning for nonzero offsets, and an error 2425 * if they don't add up to a full page. */ 2426 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2427 printk("%s page read in btrfs with offset %u and length %u\n", 2428 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2429 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2430 bvec->bv_offset, bvec->bv_len); 2431 2432 start = page_offset(page); 2433 end = start + bvec->bv_offset + bvec->bv_len - 1; 2434 len = bvec->bv_len; 2435 2436 if (++bvec <= bvec_end) 2437 prefetchw(&bvec->bv_page->flags); 2438 2439 mirror = io_bio->mirror_num; 2440 if (likely(uptodate && tree->ops && 2441 tree->ops->readpage_end_io_hook)) { 2442 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2443 page, start, end, 2444 mirror); 2445 if (ret) 2446 uptodate = 0; 2447 else 2448 clean_io_failure(start, page); 2449 } 2450 2451 if (likely(uptodate)) 2452 goto readpage_ok; 2453 2454 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2455 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2456 if (!ret && !err && 2457 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2458 uptodate = 1; 2459 } else { 2460 /* 2461 * The generic bio_readpage_error handles errors the 2462 * following way: If possible, new read requests are 2463 * created and submitted and will end up in 2464 * end_bio_extent_readpage as well (if we're lucky, not 2465 * in the !uptodate case). In that case it returns 0 and 2466 * we just go on with the next page in our bio. If it 2467 * can't handle the error it will return -EIO and we 2468 * remain responsible for that page. 2469 */ 2470 ret = bio_readpage_error(bio, offset, page, start, end, 2471 mirror); 2472 if (ret == 0) { 2473 uptodate = 2474 test_bit(BIO_UPTODATE, &bio->bi_flags); 2475 if (err) 2476 uptodate = 0; 2477 continue; 2478 } 2479 } 2480 readpage_ok: 2481 if (likely(uptodate)) { 2482 loff_t i_size = i_size_read(inode); 2483 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2484 unsigned offset; 2485 2486 /* Zero out the end if this page straddles i_size */ 2487 offset = i_size & (PAGE_CACHE_SIZE-1); 2488 if (page->index == end_index && offset) 2489 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2490 SetPageUptodate(page); 2491 } else { 2492 ClearPageUptodate(page); 2493 SetPageError(page); 2494 } 2495 unlock_page(page); 2496 offset += len; 2497 2498 if (unlikely(!uptodate)) { 2499 if (extent_len) { 2500 endio_readpage_release_extent(tree, 2501 extent_start, 2502 extent_len, 1); 2503 extent_start = 0; 2504 extent_len = 0; 2505 } 2506 endio_readpage_release_extent(tree, start, 2507 end - start + 1, 0); 2508 } else if (!extent_len) { 2509 extent_start = start; 2510 extent_len = end + 1 - start; 2511 } else if (extent_start + extent_len == start) { 2512 extent_len += end + 1 - start; 2513 } else { 2514 endio_readpage_release_extent(tree, extent_start, 2515 extent_len, uptodate); 2516 extent_start = start; 2517 extent_len = end + 1 - start; 2518 } 2519 } while (bvec <= bvec_end); 2520 2521 if (extent_len) 2522 endio_readpage_release_extent(tree, extent_start, extent_len, 2523 uptodate); 2524 if (io_bio->end_io) 2525 io_bio->end_io(io_bio, err); 2526 bio_put(bio); 2527 } 2528 2529 /* 2530 * this allocates from the btrfs_bioset. We're returning a bio right now 2531 * but you can call btrfs_io_bio for the appropriate container_of magic 2532 */ 2533 struct bio * 2534 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2535 gfp_t gfp_flags) 2536 { 2537 struct btrfs_io_bio *btrfs_bio; 2538 struct bio *bio; 2539 2540 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2541 2542 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2543 while (!bio && (nr_vecs /= 2)) { 2544 bio = bio_alloc_bioset(gfp_flags, 2545 nr_vecs, btrfs_bioset); 2546 } 2547 } 2548 2549 if (bio) { 2550 bio->bi_size = 0; 2551 bio->bi_bdev = bdev; 2552 bio->bi_sector = first_sector; 2553 btrfs_bio = btrfs_io_bio(bio); 2554 btrfs_bio->csum = NULL; 2555 btrfs_bio->csum_allocated = NULL; 2556 btrfs_bio->end_io = NULL; 2557 } 2558 return bio; 2559 } 2560 2561 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2562 { 2563 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2564 } 2565 2566 2567 /* this also allocates from the btrfs_bioset */ 2568 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2569 { 2570 struct btrfs_io_bio *btrfs_bio; 2571 struct bio *bio; 2572 2573 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2574 if (bio) { 2575 btrfs_bio = btrfs_io_bio(bio); 2576 btrfs_bio->csum = NULL; 2577 btrfs_bio->csum_allocated = NULL; 2578 btrfs_bio->end_io = NULL; 2579 } 2580 return bio; 2581 } 2582 2583 2584 static int __must_check submit_one_bio(int rw, struct bio *bio, 2585 int mirror_num, unsigned long bio_flags) 2586 { 2587 int ret = 0; 2588 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2589 struct page *page = bvec->bv_page; 2590 struct extent_io_tree *tree = bio->bi_private; 2591 u64 start; 2592 2593 start = page_offset(page) + bvec->bv_offset; 2594 2595 bio->bi_private = NULL; 2596 2597 bio_get(bio); 2598 2599 if (tree->ops && tree->ops->submit_bio_hook) 2600 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2601 mirror_num, bio_flags, start); 2602 else 2603 btrfsic_submit_bio(rw, bio); 2604 2605 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2606 ret = -EOPNOTSUPP; 2607 bio_put(bio); 2608 return ret; 2609 } 2610 2611 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2612 unsigned long offset, size_t size, struct bio *bio, 2613 unsigned long bio_flags) 2614 { 2615 int ret = 0; 2616 if (tree->ops && tree->ops->merge_bio_hook) 2617 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2618 bio_flags); 2619 BUG_ON(ret < 0); 2620 return ret; 2621 2622 } 2623 2624 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2625 struct page *page, sector_t sector, 2626 size_t size, unsigned long offset, 2627 struct block_device *bdev, 2628 struct bio **bio_ret, 2629 unsigned long max_pages, 2630 bio_end_io_t end_io_func, 2631 int mirror_num, 2632 unsigned long prev_bio_flags, 2633 unsigned long bio_flags) 2634 { 2635 int ret = 0; 2636 struct bio *bio; 2637 int nr; 2638 int contig = 0; 2639 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2640 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2641 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2642 2643 if (bio_ret && *bio_ret) { 2644 bio = *bio_ret; 2645 if (old_compressed) 2646 contig = bio->bi_sector == sector; 2647 else 2648 contig = bio_end_sector(bio) == sector; 2649 2650 if (prev_bio_flags != bio_flags || !contig || 2651 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2652 bio_add_page(bio, page, page_size, offset) < page_size) { 2653 ret = submit_one_bio(rw, bio, mirror_num, 2654 prev_bio_flags); 2655 if (ret < 0) 2656 return ret; 2657 bio = NULL; 2658 } else { 2659 return 0; 2660 } 2661 } 2662 if (this_compressed) 2663 nr = BIO_MAX_PAGES; 2664 else 2665 nr = bio_get_nr_vecs(bdev); 2666 2667 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2668 if (!bio) 2669 return -ENOMEM; 2670 2671 bio_add_page(bio, page, page_size, offset); 2672 bio->bi_end_io = end_io_func; 2673 bio->bi_private = tree; 2674 2675 if (bio_ret) 2676 *bio_ret = bio; 2677 else 2678 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2679 2680 return ret; 2681 } 2682 2683 static void attach_extent_buffer_page(struct extent_buffer *eb, 2684 struct page *page) 2685 { 2686 if (!PagePrivate(page)) { 2687 SetPagePrivate(page); 2688 page_cache_get(page); 2689 set_page_private(page, (unsigned long)eb); 2690 } else { 2691 WARN_ON(page->private != (unsigned long)eb); 2692 } 2693 } 2694 2695 void set_page_extent_mapped(struct page *page) 2696 { 2697 if (!PagePrivate(page)) { 2698 SetPagePrivate(page); 2699 page_cache_get(page); 2700 set_page_private(page, EXTENT_PAGE_PRIVATE); 2701 } 2702 } 2703 2704 static struct extent_map * 2705 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2706 u64 start, u64 len, get_extent_t *get_extent, 2707 struct extent_map **em_cached) 2708 { 2709 struct extent_map *em; 2710 2711 if (em_cached && *em_cached) { 2712 em = *em_cached; 2713 if (em->in_tree && start >= em->start && 2714 start < extent_map_end(em)) { 2715 atomic_inc(&em->refs); 2716 return em; 2717 } 2718 2719 free_extent_map(em); 2720 *em_cached = NULL; 2721 } 2722 2723 em = get_extent(inode, page, pg_offset, start, len, 0); 2724 if (em_cached && !IS_ERR_OR_NULL(em)) { 2725 BUG_ON(*em_cached); 2726 atomic_inc(&em->refs); 2727 *em_cached = em; 2728 } 2729 return em; 2730 } 2731 /* 2732 * basic readpage implementation. Locked extent state structs are inserted 2733 * into the tree that are removed when the IO is done (by the end_io 2734 * handlers) 2735 * XXX JDM: This needs looking at to ensure proper page locking 2736 */ 2737 static int __do_readpage(struct extent_io_tree *tree, 2738 struct page *page, 2739 get_extent_t *get_extent, 2740 struct extent_map **em_cached, 2741 struct bio **bio, int mirror_num, 2742 unsigned long *bio_flags, int rw) 2743 { 2744 struct inode *inode = page->mapping->host; 2745 u64 start = page_offset(page); 2746 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2747 u64 end; 2748 u64 cur = start; 2749 u64 extent_offset; 2750 u64 last_byte = i_size_read(inode); 2751 u64 block_start; 2752 u64 cur_end; 2753 sector_t sector; 2754 struct extent_map *em; 2755 struct block_device *bdev; 2756 int ret; 2757 int nr = 0; 2758 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2759 size_t pg_offset = 0; 2760 size_t iosize; 2761 size_t disk_io_size; 2762 size_t blocksize = inode->i_sb->s_blocksize; 2763 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2764 2765 set_page_extent_mapped(page); 2766 2767 end = page_end; 2768 if (!PageUptodate(page)) { 2769 if (cleancache_get_page(page) == 0) { 2770 BUG_ON(blocksize != PAGE_SIZE); 2771 unlock_extent(tree, start, end); 2772 goto out; 2773 } 2774 } 2775 2776 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2777 char *userpage; 2778 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2779 2780 if (zero_offset) { 2781 iosize = PAGE_CACHE_SIZE - zero_offset; 2782 userpage = kmap_atomic(page); 2783 memset(userpage + zero_offset, 0, iosize); 2784 flush_dcache_page(page); 2785 kunmap_atomic(userpage); 2786 } 2787 } 2788 while (cur <= end) { 2789 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2790 2791 if (cur >= last_byte) { 2792 char *userpage; 2793 struct extent_state *cached = NULL; 2794 2795 iosize = PAGE_CACHE_SIZE - pg_offset; 2796 userpage = kmap_atomic(page); 2797 memset(userpage + pg_offset, 0, iosize); 2798 flush_dcache_page(page); 2799 kunmap_atomic(userpage); 2800 set_extent_uptodate(tree, cur, cur + iosize - 1, 2801 &cached, GFP_NOFS); 2802 if (!parent_locked) 2803 unlock_extent_cached(tree, cur, 2804 cur + iosize - 1, 2805 &cached, GFP_NOFS); 2806 break; 2807 } 2808 em = __get_extent_map(inode, page, pg_offset, cur, 2809 end - cur + 1, get_extent, em_cached); 2810 if (IS_ERR_OR_NULL(em)) { 2811 SetPageError(page); 2812 if (!parent_locked) 2813 unlock_extent(tree, cur, end); 2814 break; 2815 } 2816 extent_offset = cur - em->start; 2817 BUG_ON(extent_map_end(em) <= cur); 2818 BUG_ON(end < cur); 2819 2820 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2821 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2822 extent_set_compress_type(&this_bio_flag, 2823 em->compress_type); 2824 } 2825 2826 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2827 cur_end = min(extent_map_end(em) - 1, end); 2828 iosize = ALIGN(iosize, blocksize); 2829 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2830 disk_io_size = em->block_len; 2831 sector = em->block_start >> 9; 2832 } else { 2833 sector = (em->block_start + extent_offset) >> 9; 2834 disk_io_size = iosize; 2835 } 2836 bdev = em->bdev; 2837 block_start = em->block_start; 2838 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2839 block_start = EXTENT_MAP_HOLE; 2840 free_extent_map(em); 2841 em = NULL; 2842 2843 /* we've found a hole, just zero and go on */ 2844 if (block_start == EXTENT_MAP_HOLE) { 2845 char *userpage; 2846 struct extent_state *cached = NULL; 2847 2848 userpage = kmap_atomic(page); 2849 memset(userpage + pg_offset, 0, iosize); 2850 flush_dcache_page(page); 2851 kunmap_atomic(userpage); 2852 2853 set_extent_uptodate(tree, cur, cur + iosize - 1, 2854 &cached, GFP_NOFS); 2855 unlock_extent_cached(tree, cur, cur + iosize - 1, 2856 &cached, GFP_NOFS); 2857 cur = cur + iosize; 2858 pg_offset += iosize; 2859 continue; 2860 } 2861 /* the get_extent function already copied into the page */ 2862 if (test_range_bit(tree, cur, cur_end, 2863 EXTENT_UPTODATE, 1, NULL)) { 2864 check_page_uptodate(tree, page); 2865 if (!parent_locked) 2866 unlock_extent(tree, cur, cur + iosize - 1); 2867 cur = cur + iosize; 2868 pg_offset += iosize; 2869 continue; 2870 } 2871 /* we have an inline extent but it didn't get marked up 2872 * to date. Error out 2873 */ 2874 if (block_start == EXTENT_MAP_INLINE) { 2875 SetPageError(page); 2876 if (!parent_locked) 2877 unlock_extent(tree, cur, cur + iosize - 1); 2878 cur = cur + iosize; 2879 pg_offset += iosize; 2880 continue; 2881 } 2882 2883 pnr -= page->index; 2884 ret = submit_extent_page(rw, tree, page, 2885 sector, disk_io_size, pg_offset, 2886 bdev, bio, pnr, 2887 end_bio_extent_readpage, mirror_num, 2888 *bio_flags, 2889 this_bio_flag); 2890 if (!ret) { 2891 nr++; 2892 *bio_flags = this_bio_flag; 2893 } else { 2894 SetPageError(page); 2895 if (!parent_locked) 2896 unlock_extent(tree, cur, cur + iosize - 1); 2897 } 2898 cur = cur + iosize; 2899 pg_offset += iosize; 2900 } 2901 out: 2902 if (!nr) { 2903 if (!PageError(page)) 2904 SetPageUptodate(page); 2905 unlock_page(page); 2906 } 2907 return 0; 2908 } 2909 2910 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 2911 struct page *pages[], int nr_pages, 2912 u64 start, u64 end, 2913 get_extent_t *get_extent, 2914 struct extent_map **em_cached, 2915 struct bio **bio, int mirror_num, 2916 unsigned long *bio_flags, int rw) 2917 { 2918 struct inode *inode; 2919 struct btrfs_ordered_extent *ordered; 2920 int index; 2921 2922 inode = pages[0]->mapping->host; 2923 while (1) { 2924 lock_extent(tree, start, end); 2925 ordered = btrfs_lookup_ordered_range(inode, start, 2926 end - start + 1); 2927 if (!ordered) 2928 break; 2929 unlock_extent(tree, start, end); 2930 btrfs_start_ordered_extent(inode, ordered, 1); 2931 btrfs_put_ordered_extent(ordered); 2932 } 2933 2934 for (index = 0; index < nr_pages; index++) { 2935 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 2936 mirror_num, bio_flags, rw); 2937 page_cache_release(pages[index]); 2938 } 2939 } 2940 2941 static void __extent_readpages(struct extent_io_tree *tree, 2942 struct page *pages[], 2943 int nr_pages, get_extent_t *get_extent, 2944 struct extent_map **em_cached, 2945 struct bio **bio, int mirror_num, 2946 unsigned long *bio_flags, int rw) 2947 { 2948 u64 start = 0; 2949 u64 end = 0; 2950 u64 page_start; 2951 int index; 2952 int first_index = 0; 2953 2954 for (index = 0; index < nr_pages; index++) { 2955 page_start = page_offset(pages[index]); 2956 if (!end) { 2957 start = page_start; 2958 end = start + PAGE_CACHE_SIZE - 1; 2959 first_index = index; 2960 } else if (end + 1 == page_start) { 2961 end += PAGE_CACHE_SIZE; 2962 } else { 2963 __do_contiguous_readpages(tree, &pages[first_index], 2964 index - first_index, start, 2965 end, get_extent, em_cached, 2966 bio, mirror_num, bio_flags, 2967 rw); 2968 start = page_start; 2969 end = start + PAGE_CACHE_SIZE - 1; 2970 first_index = index; 2971 } 2972 } 2973 2974 if (end) 2975 __do_contiguous_readpages(tree, &pages[first_index], 2976 index - first_index, start, 2977 end, get_extent, em_cached, bio, 2978 mirror_num, bio_flags, rw); 2979 } 2980 2981 static int __extent_read_full_page(struct extent_io_tree *tree, 2982 struct page *page, 2983 get_extent_t *get_extent, 2984 struct bio **bio, int mirror_num, 2985 unsigned long *bio_flags, int rw) 2986 { 2987 struct inode *inode = page->mapping->host; 2988 struct btrfs_ordered_extent *ordered; 2989 u64 start = page_offset(page); 2990 u64 end = start + PAGE_CACHE_SIZE - 1; 2991 int ret; 2992 2993 while (1) { 2994 lock_extent(tree, start, end); 2995 ordered = btrfs_lookup_ordered_extent(inode, start); 2996 if (!ordered) 2997 break; 2998 unlock_extent(tree, start, end); 2999 btrfs_start_ordered_extent(inode, ordered, 1); 3000 btrfs_put_ordered_extent(ordered); 3001 } 3002 3003 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3004 bio_flags, rw); 3005 return ret; 3006 } 3007 3008 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3009 get_extent_t *get_extent, int mirror_num) 3010 { 3011 struct bio *bio = NULL; 3012 unsigned long bio_flags = 0; 3013 int ret; 3014 3015 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3016 &bio_flags, READ); 3017 if (bio) 3018 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3019 return ret; 3020 } 3021 3022 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3023 get_extent_t *get_extent, int mirror_num) 3024 { 3025 struct bio *bio = NULL; 3026 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3027 int ret; 3028 3029 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3030 &bio_flags, READ); 3031 if (bio) 3032 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3033 return ret; 3034 } 3035 3036 static noinline void update_nr_written(struct page *page, 3037 struct writeback_control *wbc, 3038 unsigned long nr_written) 3039 { 3040 wbc->nr_to_write -= nr_written; 3041 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3042 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3043 page->mapping->writeback_index = page->index + nr_written; 3044 } 3045 3046 /* 3047 * the writepage semantics are similar to regular writepage. extent 3048 * records are inserted to lock ranges in the tree, and as dirty areas 3049 * are found, they are marked writeback. Then the lock bits are removed 3050 * and the end_io handler clears the writeback ranges 3051 */ 3052 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3053 void *data) 3054 { 3055 struct inode *inode = page->mapping->host; 3056 struct extent_page_data *epd = data; 3057 struct extent_io_tree *tree = epd->tree; 3058 u64 start = page_offset(page); 3059 u64 delalloc_start; 3060 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3061 u64 end; 3062 u64 cur = start; 3063 u64 extent_offset; 3064 u64 last_byte = i_size_read(inode); 3065 u64 block_start; 3066 u64 iosize; 3067 sector_t sector; 3068 struct extent_state *cached_state = NULL; 3069 struct extent_map *em; 3070 struct block_device *bdev; 3071 int ret; 3072 int nr = 0; 3073 size_t pg_offset = 0; 3074 size_t blocksize; 3075 loff_t i_size = i_size_read(inode); 3076 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3077 u64 nr_delalloc; 3078 u64 delalloc_end; 3079 int page_started; 3080 int compressed; 3081 int write_flags; 3082 unsigned long nr_written = 0; 3083 bool fill_delalloc = true; 3084 3085 if (wbc->sync_mode == WB_SYNC_ALL) 3086 write_flags = WRITE_SYNC; 3087 else 3088 write_flags = WRITE; 3089 3090 trace___extent_writepage(page, inode, wbc); 3091 3092 WARN_ON(!PageLocked(page)); 3093 3094 ClearPageError(page); 3095 3096 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3097 if (page->index > end_index || 3098 (page->index == end_index && !pg_offset)) { 3099 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3100 unlock_page(page); 3101 return 0; 3102 } 3103 3104 if (page->index == end_index) { 3105 char *userpage; 3106 3107 userpage = kmap_atomic(page); 3108 memset(userpage + pg_offset, 0, 3109 PAGE_CACHE_SIZE - pg_offset); 3110 kunmap_atomic(userpage); 3111 flush_dcache_page(page); 3112 } 3113 pg_offset = 0; 3114 3115 set_page_extent_mapped(page); 3116 3117 if (!tree->ops || !tree->ops->fill_delalloc) 3118 fill_delalloc = false; 3119 3120 delalloc_start = start; 3121 delalloc_end = 0; 3122 page_started = 0; 3123 if (!epd->extent_locked && fill_delalloc) { 3124 u64 delalloc_to_write = 0; 3125 /* 3126 * make sure the wbc mapping index is at least updated 3127 * to this page. 3128 */ 3129 update_nr_written(page, wbc, 0); 3130 3131 while (delalloc_end < page_end) { 3132 nr_delalloc = find_lock_delalloc_range(inode, tree, 3133 page, 3134 &delalloc_start, 3135 &delalloc_end, 3136 128 * 1024 * 1024); 3137 if (nr_delalloc == 0) { 3138 delalloc_start = delalloc_end + 1; 3139 continue; 3140 } 3141 ret = tree->ops->fill_delalloc(inode, page, 3142 delalloc_start, 3143 delalloc_end, 3144 &page_started, 3145 &nr_written); 3146 /* File system has been set read-only */ 3147 if (ret) { 3148 SetPageError(page); 3149 goto done; 3150 } 3151 /* 3152 * delalloc_end is already one less than the total 3153 * length, so we don't subtract one from 3154 * PAGE_CACHE_SIZE 3155 */ 3156 delalloc_to_write += (delalloc_end - delalloc_start + 3157 PAGE_CACHE_SIZE) >> 3158 PAGE_CACHE_SHIFT; 3159 delalloc_start = delalloc_end + 1; 3160 } 3161 if (wbc->nr_to_write < delalloc_to_write) { 3162 int thresh = 8192; 3163 3164 if (delalloc_to_write < thresh * 2) 3165 thresh = delalloc_to_write; 3166 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3167 thresh); 3168 } 3169 3170 /* did the fill delalloc function already unlock and start 3171 * the IO? 3172 */ 3173 if (page_started) { 3174 ret = 0; 3175 /* 3176 * we've unlocked the page, so we can't update 3177 * the mapping's writeback index, just update 3178 * nr_to_write. 3179 */ 3180 wbc->nr_to_write -= nr_written; 3181 goto done_unlocked; 3182 } 3183 } 3184 if (tree->ops && tree->ops->writepage_start_hook) { 3185 ret = tree->ops->writepage_start_hook(page, start, 3186 page_end); 3187 if (ret) { 3188 /* Fixup worker will requeue */ 3189 if (ret == -EBUSY) 3190 wbc->pages_skipped++; 3191 else 3192 redirty_page_for_writepage(wbc, page); 3193 update_nr_written(page, wbc, nr_written); 3194 unlock_page(page); 3195 ret = 0; 3196 goto done_unlocked; 3197 } 3198 } 3199 3200 /* 3201 * we don't want to touch the inode after unlocking the page, 3202 * so we update the mapping writeback index now 3203 */ 3204 update_nr_written(page, wbc, nr_written + 1); 3205 3206 end = page_end; 3207 if (last_byte <= start) { 3208 if (tree->ops && tree->ops->writepage_end_io_hook) 3209 tree->ops->writepage_end_io_hook(page, start, 3210 page_end, NULL, 1); 3211 goto done; 3212 } 3213 3214 blocksize = inode->i_sb->s_blocksize; 3215 3216 while (cur <= end) { 3217 if (cur >= last_byte) { 3218 if (tree->ops && tree->ops->writepage_end_io_hook) 3219 tree->ops->writepage_end_io_hook(page, cur, 3220 page_end, NULL, 1); 3221 break; 3222 } 3223 em = epd->get_extent(inode, page, pg_offset, cur, 3224 end - cur + 1, 1); 3225 if (IS_ERR_OR_NULL(em)) { 3226 SetPageError(page); 3227 break; 3228 } 3229 3230 extent_offset = cur - em->start; 3231 BUG_ON(extent_map_end(em) <= cur); 3232 BUG_ON(end < cur); 3233 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3234 iosize = ALIGN(iosize, blocksize); 3235 sector = (em->block_start + extent_offset) >> 9; 3236 bdev = em->bdev; 3237 block_start = em->block_start; 3238 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3239 free_extent_map(em); 3240 em = NULL; 3241 3242 /* 3243 * compressed and inline extents are written through other 3244 * paths in the FS 3245 */ 3246 if (compressed || block_start == EXTENT_MAP_HOLE || 3247 block_start == EXTENT_MAP_INLINE) { 3248 /* 3249 * end_io notification does not happen here for 3250 * compressed extents 3251 */ 3252 if (!compressed && tree->ops && 3253 tree->ops->writepage_end_io_hook) 3254 tree->ops->writepage_end_io_hook(page, cur, 3255 cur + iosize - 1, 3256 NULL, 1); 3257 else if (compressed) { 3258 /* we don't want to end_page_writeback on 3259 * a compressed extent. this happens 3260 * elsewhere 3261 */ 3262 nr++; 3263 } 3264 3265 cur += iosize; 3266 pg_offset += iosize; 3267 continue; 3268 } 3269 /* leave this out until we have a page_mkwrite call */ 3270 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3271 EXTENT_DIRTY, 0, NULL)) { 3272 cur = cur + iosize; 3273 pg_offset += iosize; 3274 continue; 3275 } 3276 3277 if (tree->ops && tree->ops->writepage_io_hook) { 3278 ret = tree->ops->writepage_io_hook(page, cur, 3279 cur + iosize - 1); 3280 } else { 3281 ret = 0; 3282 } 3283 if (ret) { 3284 SetPageError(page); 3285 } else { 3286 unsigned long max_nr = end_index + 1; 3287 3288 set_range_writeback(tree, cur, cur + iosize - 1); 3289 if (!PageWriteback(page)) { 3290 printk(KERN_ERR "btrfs warning page %lu not " 3291 "writeback, cur %llu end %llu\n", 3292 page->index, cur, end); 3293 } 3294 3295 ret = submit_extent_page(write_flags, tree, page, 3296 sector, iosize, pg_offset, 3297 bdev, &epd->bio, max_nr, 3298 end_bio_extent_writepage, 3299 0, 0, 0); 3300 if (ret) 3301 SetPageError(page); 3302 } 3303 cur = cur + iosize; 3304 pg_offset += iosize; 3305 nr++; 3306 } 3307 done: 3308 if (nr == 0) { 3309 /* make sure the mapping tag for page dirty gets cleared */ 3310 set_page_writeback(page); 3311 end_page_writeback(page); 3312 } 3313 unlock_page(page); 3314 3315 done_unlocked: 3316 3317 /* drop our reference on any cached states */ 3318 free_extent_state(cached_state); 3319 return 0; 3320 } 3321 3322 static int eb_wait(void *word) 3323 { 3324 io_schedule(); 3325 return 0; 3326 } 3327 3328 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3329 { 3330 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3331 TASK_UNINTERRUPTIBLE); 3332 } 3333 3334 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3335 struct btrfs_fs_info *fs_info, 3336 struct extent_page_data *epd) 3337 { 3338 unsigned long i, num_pages; 3339 int flush = 0; 3340 int ret = 0; 3341 3342 if (!btrfs_try_tree_write_lock(eb)) { 3343 flush = 1; 3344 flush_write_bio(epd); 3345 btrfs_tree_lock(eb); 3346 } 3347 3348 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3349 btrfs_tree_unlock(eb); 3350 if (!epd->sync_io) 3351 return 0; 3352 if (!flush) { 3353 flush_write_bio(epd); 3354 flush = 1; 3355 } 3356 while (1) { 3357 wait_on_extent_buffer_writeback(eb); 3358 btrfs_tree_lock(eb); 3359 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3360 break; 3361 btrfs_tree_unlock(eb); 3362 } 3363 } 3364 3365 /* 3366 * We need to do this to prevent races in people who check if the eb is 3367 * under IO since we can end up having no IO bits set for a short period 3368 * of time. 3369 */ 3370 spin_lock(&eb->refs_lock); 3371 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3372 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3373 spin_unlock(&eb->refs_lock); 3374 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3375 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3376 -eb->len, 3377 fs_info->dirty_metadata_batch); 3378 ret = 1; 3379 } else { 3380 spin_unlock(&eb->refs_lock); 3381 } 3382 3383 btrfs_tree_unlock(eb); 3384 3385 if (!ret) 3386 return ret; 3387 3388 num_pages = num_extent_pages(eb->start, eb->len); 3389 for (i = 0; i < num_pages; i++) { 3390 struct page *p = extent_buffer_page(eb, i); 3391 3392 if (!trylock_page(p)) { 3393 if (!flush) { 3394 flush_write_bio(epd); 3395 flush = 1; 3396 } 3397 lock_page(p); 3398 } 3399 } 3400 3401 return ret; 3402 } 3403 3404 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3405 { 3406 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3407 smp_mb__after_clear_bit(); 3408 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3409 } 3410 3411 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3412 { 3413 int uptodate = err == 0; 3414 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3415 struct extent_buffer *eb; 3416 int done; 3417 3418 do { 3419 struct page *page = bvec->bv_page; 3420 3421 bvec--; 3422 eb = (struct extent_buffer *)page->private; 3423 BUG_ON(!eb); 3424 done = atomic_dec_and_test(&eb->io_pages); 3425 3426 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3427 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3428 ClearPageUptodate(page); 3429 SetPageError(page); 3430 } 3431 3432 end_page_writeback(page); 3433 3434 if (!done) 3435 continue; 3436 3437 end_extent_buffer_writeback(eb); 3438 } while (bvec >= bio->bi_io_vec); 3439 3440 bio_put(bio); 3441 3442 } 3443 3444 static int write_one_eb(struct extent_buffer *eb, 3445 struct btrfs_fs_info *fs_info, 3446 struct writeback_control *wbc, 3447 struct extent_page_data *epd) 3448 { 3449 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3450 u64 offset = eb->start; 3451 unsigned long i, num_pages; 3452 unsigned long bio_flags = 0; 3453 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3454 int ret = 0; 3455 3456 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3457 num_pages = num_extent_pages(eb->start, eb->len); 3458 atomic_set(&eb->io_pages, num_pages); 3459 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3460 bio_flags = EXTENT_BIO_TREE_LOG; 3461 3462 for (i = 0; i < num_pages; i++) { 3463 struct page *p = extent_buffer_page(eb, i); 3464 3465 clear_page_dirty_for_io(p); 3466 set_page_writeback(p); 3467 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3468 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3469 -1, end_bio_extent_buffer_writepage, 3470 0, epd->bio_flags, bio_flags); 3471 epd->bio_flags = bio_flags; 3472 if (ret) { 3473 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3474 SetPageError(p); 3475 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3476 end_extent_buffer_writeback(eb); 3477 ret = -EIO; 3478 break; 3479 } 3480 offset += PAGE_CACHE_SIZE; 3481 update_nr_written(p, wbc, 1); 3482 unlock_page(p); 3483 } 3484 3485 if (unlikely(ret)) { 3486 for (; i < num_pages; i++) { 3487 struct page *p = extent_buffer_page(eb, i); 3488 unlock_page(p); 3489 } 3490 } 3491 3492 return ret; 3493 } 3494 3495 int btree_write_cache_pages(struct address_space *mapping, 3496 struct writeback_control *wbc) 3497 { 3498 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3499 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3500 struct extent_buffer *eb, *prev_eb = NULL; 3501 struct extent_page_data epd = { 3502 .bio = NULL, 3503 .tree = tree, 3504 .extent_locked = 0, 3505 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3506 .bio_flags = 0, 3507 }; 3508 int ret = 0; 3509 int done = 0; 3510 int nr_to_write_done = 0; 3511 struct pagevec pvec; 3512 int nr_pages; 3513 pgoff_t index; 3514 pgoff_t end; /* Inclusive */ 3515 int scanned = 0; 3516 int tag; 3517 3518 pagevec_init(&pvec, 0); 3519 if (wbc->range_cyclic) { 3520 index = mapping->writeback_index; /* Start from prev offset */ 3521 end = -1; 3522 } else { 3523 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3524 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3525 scanned = 1; 3526 } 3527 if (wbc->sync_mode == WB_SYNC_ALL) 3528 tag = PAGECACHE_TAG_TOWRITE; 3529 else 3530 tag = PAGECACHE_TAG_DIRTY; 3531 retry: 3532 if (wbc->sync_mode == WB_SYNC_ALL) 3533 tag_pages_for_writeback(mapping, index, end); 3534 while (!done && !nr_to_write_done && (index <= end) && 3535 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3536 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3537 unsigned i; 3538 3539 scanned = 1; 3540 for (i = 0; i < nr_pages; i++) { 3541 struct page *page = pvec.pages[i]; 3542 3543 if (!PagePrivate(page)) 3544 continue; 3545 3546 if (!wbc->range_cyclic && page->index > end) { 3547 done = 1; 3548 break; 3549 } 3550 3551 spin_lock(&mapping->private_lock); 3552 if (!PagePrivate(page)) { 3553 spin_unlock(&mapping->private_lock); 3554 continue; 3555 } 3556 3557 eb = (struct extent_buffer *)page->private; 3558 3559 /* 3560 * Shouldn't happen and normally this would be a BUG_ON 3561 * but no sense in crashing the users box for something 3562 * we can survive anyway. 3563 */ 3564 if (WARN_ON(!eb)) { 3565 spin_unlock(&mapping->private_lock); 3566 continue; 3567 } 3568 3569 if (eb == prev_eb) { 3570 spin_unlock(&mapping->private_lock); 3571 continue; 3572 } 3573 3574 ret = atomic_inc_not_zero(&eb->refs); 3575 spin_unlock(&mapping->private_lock); 3576 if (!ret) 3577 continue; 3578 3579 prev_eb = eb; 3580 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3581 if (!ret) { 3582 free_extent_buffer(eb); 3583 continue; 3584 } 3585 3586 ret = write_one_eb(eb, fs_info, wbc, &epd); 3587 if (ret) { 3588 done = 1; 3589 free_extent_buffer(eb); 3590 break; 3591 } 3592 free_extent_buffer(eb); 3593 3594 /* 3595 * the filesystem may choose to bump up nr_to_write. 3596 * We have to make sure to honor the new nr_to_write 3597 * at any time 3598 */ 3599 nr_to_write_done = wbc->nr_to_write <= 0; 3600 } 3601 pagevec_release(&pvec); 3602 cond_resched(); 3603 } 3604 if (!scanned && !done) { 3605 /* 3606 * We hit the last page and there is more work to be done: wrap 3607 * back to the start of the file 3608 */ 3609 scanned = 1; 3610 index = 0; 3611 goto retry; 3612 } 3613 flush_write_bio(&epd); 3614 return ret; 3615 } 3616 3617 /** 3618 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3619 * @mapping: address space structure to write 3620 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3621 * @writepage: function called for each page 3622 * @data: data passed to writepage function 3623 * 3624 * If a page is already under I/O, write_cache_pages() skips it, even 3625 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3626 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3627 * and msync() need to guarantee that all the data which was dirty at the time 3628 * the call was made get new I/O started against them. If wbc->sync_mode is 3629 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3630 * existing IO to complete. 3631 */ 3632 static int extent_write_cache_pages(struct extent_io_tree *tree, 3633 struct address_space *mapping, 3634 struct writeback_control *wbc, 3635 writepage_t writepage, void *data, 3636 void (*flush_fn)(void *)) 3637 { 3638 struct inode *inode = mapping->host; 3639 int ret = 0; 3640 int done = 0; 3641 int nr_to_write_done = 0; 3642 struct pagevec pvec; 3643 int nr_pages; 3644 pgoff_t index; 3645 pgoff_t end; /* Inclusive */ 3646 int scanned = 0; 3647 int tag; 3648 3649 /* 3650 * We have to hold onto the inode so that ordered extents can do their 3651 * work when the IO finishes. The alternative to this is failing to add 3652 * an ordered extent if the igrab() fails there and that is a huge pain 3653 * to deal with, so instead just hold onto the inode throughout the 3654 * writepages operation. If it fails here we are freeing up the inode 3655 * anyway and we'd rather not waste our time writing out stuff that is 3656 * going to be truncated anyway. 3657 */ 3658 if (!igrab(inode)) 3659 return 0; 3660 3661 pagevec_init(&pvec, 0); 3662 if (wbc->range_cyclic) { 3663 index = mapping->writeback_index; /* Start from prev offset */ 3664 end = -1; 3665 } else { 3666 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3667 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3668 scanned = 1; 3669 } 3670 if (wbc->sync_mode == WB_SYNC_ALL) 3671 tag = PAGECACHE_TAG_TOWRITE; 3672 else 3673 tag = PAGECACHE_TAG_DIRTY; 3674 retry: 3675 if (wbc->sync_mode == WB_SYNC_ALL) 3676 tag_pages_for_writeback(mapping, index, end); 3677 while (!done && !nr_to_write_done && (index <= end) && 3678 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3679 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3680 unsigned i; 3681 3682 scanned = 1; 3683 for (i = 0; i < nr_pages; i++) { 3684 struct page *page = pvec.pages[i]; 3685 3686 /* 3687 * At this point we hold neither mapping->tree_lock nor 3688 * lock on the page itself: the page may be truncated or 3689 * invalidated (changing page->mapping to NULL), or even 3690 * swizzled back from swapper_space to tmpfs file 3691 * mapping 3692 */ 3693 if (!trylock_page(page)) { 3694 flush_fn(data); 3695 lock_page(page); 3696 } 3697 3698 if (unlikely(page->mapping != mapping)) { 3699 unlock_page(page); 3700 continue; 3701 } 3702 3703 if (!wbc->range_cyclic && page->index > end) { 3704 done = 1; 3705 unlock_page(page); 3706 continue; 3707 } 3708 3709 if (wbc->sync_mode != WB_SYNC_NONE) { 3710 if (PageWriteback(page)) 3711 flush_fn(data); 3712 wait_on_page_writeback(page); 3713 } 3714 3715 if (PageWriteback(page) || 3716 !clear_page_dirty_for_io(page)) { 3717 unlock_page(page); 3718 continue; 3719 } 3720 3721 ret = (*writepage)(page, wbc, data); 3722 3723 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3724 unlock_page(page); 3725 ret = 0; 3726 } 3727 if (ret) 3728 done = 1; 3729 3730 /* 3731 * the filesystem may choose to bump up nr_to_write. 3732 * We have to make sure to honor the new nr_to_write 3733 * at any time 3734 */ 3735 nr_to_write_done = wbc->nr_to_write <= 0; 3736 } 3737 pagevec_release(&pvec); 3738 cond_resched(); 3739 } 3740 if (!scanned && !done) { 3741 /* 3742 * We hit the last page and there is more work to be done: wrap 3743 * back to the start of the file 3744 */ 3745 scanned = 1; 3746 index = 0; 3747 goto retry; 3748 } 3749 btrfs_add_delayed_iput(inode); 3750 return ret; 3751 } 3752 3753 static void flush_epd_write_bio(struct extent_page_data *epd) 3754 { 3755 if (epd->bio) { 3756 int rw = WRITE; 3757 int ret; 3758 3759 if (epd->sync_io) 3760 rw = WRITE_SYNC; 3761 3762 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3763 BUG_ON(ret < 0); /* -ENOMEM */ 3764 epd->bio = NULL; 3765 } 3766 } 3767 3768 static noinline void flush_write_bio(void *data) 3769 { 3770 struct extent_page_data *epd = data; 3771 flush_epd_write_bio(epd); 3772 } 3773 3774 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3775 get_extent_t *get_extent, 3776 struct writeback_control *wbc) 3777 { 3778 int ret; 3779 struct extent_page_data epd = { 3780 .bio = NULL, 3781 .tree = tree, 3782 .get_extent = get_extent, 3783 .extent_locked = 0, 3784 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3785 .bio_flags = 0, 3786 }; 3787 3788 ret = __extent_writepage(page, wbc, &epd); 3789 3790 flush_epd_write_bio(&epd); 3791 return ret; 3792 } 3793 3794 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3795 u64 start, u64 end, get_extent_t *get_extent, 3796 int mode) 3797 { 3798 int ret = 0; 3799 struct address_space *mapping = inode->i_mapping; 3800 struct page *page; 3801 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3802 PAGE_CACHE_SHIFT; 3803 3804 struct extent_page_data epd = { 3805 .bio = NULL, 3806 .tree = tree, 3807 .get_extent = get_extent, 3808 .extent_locked = 1, 3809 .sync_io = mode == WB_SYNC_ALL, 3810 .bio_flags = 0, 3811 }; 3812 struct writeback_control wbc_writepages = { 3813 .sync_mode = mode, 3814 .nr_to_write = nr_pages * 2, 3815 .range_start = start, 3816 .range_end = end + 1, 3817 }; 3818 3819 while (start <= end) { 3820 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3821 if (clear_page_dirty_for_io(page)) 3822 ret = __extent_writepage(page, &wbc_writepages, &epd); 3823 else { 3824 if (tree->ops && tree->ops->writepage_end_io_hook) 3825 tree->ops->writepage_end_io_hook(page, start, 3826 start + PAGE_CACHE_SIZE - 1, 3827 NULL, 1); 3828 unlock_page(page); 3829 } 3830 page_cache_release(page); 3831 start += PAGE_CACHE_SIZE; 3832 } 3833 3834 flush_epd_write_bio(&epd); 3835 return ret; 3836 } 3837 3838 int extent_writepages(struct extent_io_tree *tree, 3839 struct address_space *mapping, 3840 get_extent_t *get_extent, 3841 struct writeback_control *wbc) 3842 { 3843 int ret = 0; 3844 struct extent_page_data epd = { 3845 .bio = NULL, 3846 .tree = tree, 3847 .get_extent = get_extent, 3848 .extent_locked = 0, 3849 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3850 .bio_flags = 0, 3851 }; 3852 3853 ret = extent_write_cache_pages(tree, mapping, wbc, 3854 __extent_writepage, &epd, 3855 flush_write_bio); 3856 flush_epd_write_bio(&epd); 3857 return ret; 3858 } 3859 3860 int extent_readpages(struct extent_io_tree *tree, 3861 struct address_space *mapping, 3862 struct list_head *pages, unsigned nr_pages, 3863 get_extent_t get_extent) 3864 { 3865 struct bio *bio = NULL; 3866 unsigned page_idx; 3867 unsigned long bio_flags = 0; 3868 struct page *pagepool[16]; 3869 struct page *page; 3870 struct extent_map *em_cached = NULL; 3871 int nr = 0; 3872 3873 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3874 page = list_entry(pages->prev, struct page, lru); 3875 3876 prefetchw(&page->flags); 3877 list_del(&page->lru); 3878 if (add_to_page_cache_lru(page, mapping, 3879 page->index, GFP_NOFS)) { 3880 page_cache_release(page); 3881 continue; 3882 } 3883 3884 pagepool[nr++] = page; 3885 if (nr < ARRAY_SIZE(pagepool)) 3886 continue; 3887 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3888 &bio, 0, &bio_flags, READ); 3889 nr = 0; 3890 } 3891 if (nr) 3892 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3893 &bio, 0, &bio_flags, READ); 3894 3895 if (em_cached) 3896 free_extent_map(em_cached); 3897 3898 BUG_ON(!list_empty(pages)); 3899 if (bio) 3900 return submit_one_bio(READ, bio, 0, bio_flags); 3901 return 0; 3902 } 3903 3904 /* 3905 * basic invalidatepage code, this waits on any locked or writeback 3906 * ranges corresponding to the page, and then deletes any extent state 3907 * records from the tree 3908 */ 3909 int extent_invalidatepage(struct extent_io_tree *tree, 3910 struct page *page, unsigned long offset) 3911 { 3912 struct extent_state *cached_state = NULL; 3913 u64 start = page_offset(page); 3914 u64 end = start + PAGE_CACHE_SIZE - 1; 3915 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3916 3917 start += ALIGN(offset, blocksize); 3918 if (start > end) 3919 return 0; 3920 3921 lock_extent_bits(tree, start, end, 0, &cached_state); 3922 wait_on_page_writeback(page); 3923 clear_extent_bit(tree, start, end, 3924 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3925 EXTENT_DO_ACCOUNTING, 3926 1, 1, &cached_state, GFP_NOFS); 3927 return 0; 3928 } 3929 3930 /* 3931 * a helper for releasepage, this tests for areas of the page that 3932 * are locked or under IO and drops the related state bits if it is safe 3933 * to drop the page. 3934 */ 3935 static int try_release_extent_state(struct extent_map_tree *map, 3936 struct extent_io_tree *tree, 3937 struct page *page, gfp_t mask) 3938 { 3939 u64 start = page_offset(page); 3940 u64 end = start + PAGE_CACHE_SIZE - 1; 3941 int ret = 1; 3942 3943 if (test_range_bit(tree, start, end, 3944 EXTENT_IOBITS, 0, NULL)) 3945 ret = 0; 3946 else { 3947 if ((mask & GFP_NOFS) == GFP_NOFS) 3948 mask = GFP_NOFS; 3949 /* 3950 * at this point we can safely clear everything except the 3951 * locked bit and the nodatasum bit 3952 */ 3953 ret = clear_extent_bit(tree, start, end, 3954 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3955 0, 0, NULL, mask); 3956 3957 /* if clear_extent_bit failed for enomem reasons, 3958 * we can't allow the release to continue. 3959 */ 3960 if (ret < 0) 3961 ret = 0; 3962 else 3963 ret = 1; 3964 } 3965 return ret; 3966 } 3967 3968 /* 3969 * a helper for releasepage. As long as there are no locked extents 3970 * in the range corresponding to the page, both state records and extent 3971 * map records are removed 3972 */ 3973 int try_release_extent_mapping(struct extent_map_tree *map, 3974 struct extent_io_tree *tree, struct page *page, 3975 gfp_t mask) 3976 { 3977 struct extent_map *em; 3978 u64 start = page_offset(page); 3979 u64 end = start + PAGE_CACHE_SIZE - 1; 3980 3981 if ((mask & __GFP_WAIT) && 3982 page->mapping->host->i_size > 16 * 1024 * 1024) { 3983 u64 len; 3984 while (start <= end) { 3985 len = end - start + 1; 3986 write_lock(&map->lock); 3987 em = lookup_extent_mapping(map, start, len); 3988 if (!em) { 3989 write_unlock(&map->lock); 3990 break; 3991 } 3992 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3993 em->start != start) { 3994 write_unlock(&map->lock); 3995 free_extent_map(em); 3996 break; 3997 } 3998 if (!test_range_bit(tree, em->start, 3999 extent_map_end(em) - 1, 4000 EXTENT_LOCKED | EXTENT_WRITEBACK, 4001 0, NULL)) { 4002 remove_extent_mapping(map, em); 4003 /* once for the rb tree */ 4004 free_extent_map(em); 4005 } 4006 start = extent_map_end(em); 4007 write_unlock(&map->lock); 4008 4009 /* once for us */ 4010 free_extent_map(em); 4011 } 4012 } 4013 return try_release_extent_state(map, tree, page, mask); 4014 } 4015 4016 /* 4017 * helper function for fiemap, which doesn't want to see any holes. 4018 * This maps until we find something past 'last' 4019 */ 4020 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4021 u64 offset, 4022 u64 last, 4023 get_extent_t *get_extent) 4024 { 4025 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4026 struct extent_map *em; 4027 u64 len; 4028 4029 if (offset >= last) 4030 return NULL; 4031 4032 while (1) { 4033 len = last - offset; 4034 if (len == 0) 4035 break; 4036 len = ALIGN(len, sectorsize); 4037 em = get_extent(inode, NULL, 0, offset, len, 0); 4038 if (IS_ERR_OR_NULL(em)) 4039 return em; 4040 4041 /* if this isn't a hole return it */ 4042 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4043 em->block_start != EXTENT_MAP_HOLE) { 4044 return em; 4045 } 4046 4047 /* this is a hole, advance to the next extent */ 4048 offset = extent_map_end(em); 4049 free_extent_map(em); 4050 if (offset >= last) 4051 break; 4052 } 4053 return NULL; 4054 } 4055 4056 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx) 4057 { 4058 unsigned long cnt = *((unsigned long *)ctx); 4059 4060 cnt++; 4061 *((unsigned long *)ctx) = cnt; 4062 4063 /* Now we're sure that the extent is shared. */ 4064 if (cnt > 1) 4065 return 1; 4066 return 0; 4067 } 4068 4069 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4070 __u64 start, __u64 len, get_extent_t *get_extent) 4071 { 4072 int ret = 0; 4073 u64 off = start; 4074 u64 max = start + len; 4075 u32 flags = 0; 4076 u32 found_type; 4077 u64 last; 4078 u64 last_for_get_extent = 0; 4079 u64 disko = 0; 4080 u64 isize = i_size_read(inode); 4081 struct btrfs_key found_key; 4082 struct extent_map *em = NULL; 4083 struct extent_state *cached_state = NULL; 4084 struct btrfs_path *path; 4085 struct btrfs_file_extent_item *item; 4086 int end = 0; 4087 u64 em_start = 0; 4088 u64 em_len = 0; 4089 u64 em_end = 0; 4090 unsigned long emflags; 4091 4092 if (len == 0) 4093 return -EINVAL; 4094 4095 path = btrfs_alloc_path(); 4096 if (!path) 4097 return -ENOMEM; 4098 path->leave_spinning = 1; 4099 4100 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 4101 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 4102 4103 /* 4104 * lookup the last file extent. We're not using i_size here 4105 * because there might be preallocation past i_size 4106 */ 4107 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 4108 path, btrfs_ino(inode), -1, 0); 4109 if (ret < 0) { 4110 btrfs_free_path(path); 4111 return ret; 4112 } 4113 WARN_ON(!ret); 4114 path->slots[0]--; 4115 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4116 struct btrfs_file_extent_item); 4117 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4118 found_type = btrfs_key_type(&found_key); 4119 4120 /* No extents, but there might be delalloc bits */ 4121 if (found_key.objectid != btrfs_ino(inode) || 4122 found_type != BTRFS_EXTENT_DATA_KEY) { 4123 /* have to trust i_size as the end */ 4124 last = (u64)-1; 4125 last_for_get_extent = isize; 4126 } else { 4127 /* 4128 * remember the start of the last extent. There are a 4129 * bunch of different factors that go into the length of the 4130 * extent, so its much less complex to remember where it started 4131 */ 4132 last = found_key.offset; 4133 last_for_get_extent = last + 1; 4134 } 4135 btrfs_release_path(path); 4136 4137 /* 4138 * we might have some extents allocated but more delalloc past those 4139 * extents. so, we trust isize unless the start of the last extent is 4140 * beyond isize 4141 */ 4142 if (last < isize) { 4143 last = (u64)-1; 4144 last_for_get_extent = isize; 4145 } 4146 4147 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4148 &cached_state); 4149 4150 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4151 get_extent); 4152 if (!em) 4153 goto out; 4154 if (IS_ERR(em)) { 4155 ret = PTR_ERR(em); 4156 goto out; 4157 } 4158 4159 while (!end) { 4160 u64 offset_in_extent = 0; 4161 4162 /* break if the extent we found is outside the range */ 4163 if (em->start >= max || extent_map_end(em) < off) 4164 break; 4165 4166 /* 4167 * get_extent may return an extent that starts before our 4168 * requested range. We have to make sure the ranges 4169 * we return to fiemap always move forward and don't 4170 * overlap, so adjust the offsets here 4171 */ 4172 em_start = max(em->start, off); 4173 4174 /* 4175 * record the offset from the start of the extent 4176 * for adjusting the disk offset below. Only do this if the 4177 * extent isn't compressed since our in ram offset may be past 4178 * what we have actually allocated on disk. 4179 */ 4180 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4181 offset_in_extent = em_start - em->start; 4182 em_end = extent_map_end(em); 4183 em_len = em_end - em_start; 4184 emflags = em->flags; 4185 disko = 0; 4186 flags = 0; 4187 4188 /* 4189 * bump off for our next call to get_extent 4190 */ 4191 off = extent_map_end(em); 4192 if (off >= max) 4193 end = 1; 4194 4195 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4196 end = 1; 4197 flags |= FIEMAP_EXTENT_LAST; 4198 } else if (em->block_start == EXTENT_MAP_INLINE) { 4199 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4200 FIEMAP_EXTENT_NOT_ALIGNED); 4201 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4202 flags |= (FIEMAP_EXTENT_DELALLOC | 4203 FIEMAP_EXTENT_UNKNOWN); 4204 } else { 4205 unsigned long ref_cnt = 0; 4206 4207 disko = em->block_start + offset_in_extent; 4208 4209 /* 4210 * As btrfs supports shared space, this information 4211 * can be exported to userspace tools via 4212 * flag FIEMAP_EXTENT_SHARED. 4213 */ 4214 ret = iterate_inodes_from_logical( 4215 em->block_start, 4216 BTRFS_I(inode)->root->fs_info, 4217 path, count_ext_ref, &ref_cnt); 4218 if (ret < 0 && ret != -ENOENT) 4219 goto out_free; 4220 4221 if (ref_cnt > 1) 4222 flags |= FIEMAP_EXTENT_SHARED; 4223 } 4224 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4225 flags |= FIEMAP_EXTENT_ENCODED; 4226 4227 free_extent_map(em); 4228 em = NULL; 4229 if ((em_start >= last) || em_len == (u64)-1 || 4230 (last == (u64)-1 && isize <= em_end)) { 4231 flags |= FIEMAP_EXTENT_LAST; 4232 end = 1; 4233 } 4234 4235 /* now scan forward to see if this is really the last extent. */ 4236 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4237 get_extent); 4238 if (IS_ERR(em)) { 4239 ret = PTR_ERR(em); 4240 goto out; 4241 } 4242 if (!em) { 4243 flags |= FIEMAP_EXTENT_LAST; 4244 end = 1; 4245 } 4246 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4247 em_len, flags); 4248 if (ret) 4249 goto out_free; 4250 } 4251 out_free: 4252 free_extent_map(em); 4253 out: 4254 btrfs_free_path(path); 4255 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4256 &cached_state, GFP_NOFS); 4257 return ret; 4258 } 4259 4260 static void __free_extent_buffer(struct extent_buffer *eb) 4261 { 4262 btrfs_leak_debug_del(&eb->leak_list); 4263 kmem_cache_free(extent_buffer_cache, eb); 4264 } 4265 4266 static int extent_buffer_under_io(struct extent_buffer *eb) 4267 { 4268 return (atomic_read(&eb->io_pages) || 4269 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4270 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4271 } 4272 4273 /* 4274 * Helper for releasing extent buffer page. 4275 */ 4276 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4277 unsigned long start_idx) 4278 { 4279 unsigned long index; 4280 unsigned long num_pages; 4281 struct page *page; 4282 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4283 4284 BUG_ON(extent_buffer_under_io(eb)); 4285 4286 num_pages = num_extent_pages(eb->start, eb->len); 4287 index = start_idx + num_pages; 4288 if (start_idx >= index) 4289 return; 4290 4291 do { 4292 index--; 4293 page = extent_buffer_page(eb, index); 4294 if (page && mapped) { 4295 spin_lock(&page->mapping->private_lock); 4296 /* 4297 * We do this since we'll remove the pages after we've 4298 * removed the eb from the radix tree, so we could race 4299 * and have this page now attached to the new eb. So 4300 * only clear page_private if it's still connected to 4301 * this eb. 4302 */ 4303 if (PagePrivate(page) && 4304 page->private == (unsigned long)eb) { 4305 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4306 BUG_ON(PageDirty(page)); 4307 BUG_ON(PageWriteback(page)); 4308 /* 4309 * We need to make sure we haven't be attached 4310 * to a new eb. 4311 */ 4312 ClearPagePrivate(page); 4313 set_page_private(page, 0); 4314 /* One for the page private */ 4315 page_cache_release(page); 4316 } 4317 spin_unlock(&page->mapping->private_lock); 4318 4319 } 4320 if (page) { 4321 /* One for when we alloced the page */ 4322 page_cache_release(page); 4323 } 4324 } while (index != start_idx); 4325 } 4326 4327 /* 4328 * Helper for releasing the extent buffer. 4329 */ 4330 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4331 { 4332 btrfs_release_extent_buffer_page(eb, 0); 4333 __free_extent_buffer(eb); 4334 } 4335 4336 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 4337 u64 start, 4338 unsigned long len, 4339 gfp_t mask) 4340 { 4341 struct extent_buffer *eb = NULL; 4342 4343 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4344 if (eb == NULL) 4345 return NULL; 4346 eb->start = start; 4347 eb->len = len; 4348 eb->tree = tree; 4349 eb->bflags = 0; 4350 rwlock_init(&eb->lock); 4351 atomic_set(&eb->write_locks, 0); 4352 atomic_set(&eb->read_locks, 0); 4353 atomic_set(&eb->blocking_readers, 0); 4354 atomic_set(&eb->blocking_writers, 0); 4355 atomic_set(&eb->spinning_readers, 0); 4356 atomic_set(&eb->spinning_writers, 0); 4357 eb->lock_nested = 0; 4358 init_waitqueue_head(&eb->write_lock_wq); 4359 init_waitqueue_head(&eb->read_lock_wq); 4360 4361 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4362 4363 spin_lock_init(&eb->refs_lock); 4364 atomic_set(&eb->refs, 1); 4365 atomic_set(&eb->io_pages, 0); 4366 4367 /* 4368 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4369 */ 4370 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4371 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4372 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4373 4374 return eb; 4375 } 4376 4377 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4378 { 4379 unsigned long i; 4380 struct page *p; 4381 struct extent_buffer *new; 4382 unsigned long num_pages = num_extent_pages(src->start, src->len); 4383 4384 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4385 if (new == NULL) 4386 return NULL; 4387 4388 for (i = 0; i < num_pages; i++) { 4389 p = alloc_page(GFP_NOFS); 4390 if (!p) { 4391 btrfs_release_extent_buffer(new); 4392 return NULL; 4393 } 4394 attach_extent_buffer_page(new, p); 4395 WARN_ON(PageDirty(p)); 4396 SetPageUptodate(p); 4397 new->pages[i] = p; 4398 } 4399 4400 copy_extent_buffer(new, src, 0, 0, src->len); 4401 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4402 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4403 4404 return new; 4405 } 4406 4407 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4408 { 4409 struct extent_buffer *eb; 4410 unsigned long num_pages = num_extent_pages(0, len); 4411 unsigned long i; 4412 4413 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4414 if (!eb) 4415 return NULL; 4416 4417 for (i = 0; i < num_pages; i++) { 4418 eb->pages[i] = alloc_page(GFP_NOFS); 4419 if (!eb->pages[i]) 4420 goto err; 4421 } 4422 set_extent_buffer_uptodate(eb); 4423 btrfs_set_header_nritems(eb, 0); 4424 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4425 4426 return eb; 4427 err: 4428 for (; i > 0; i--) 4429 __free_page(eb->pages[i - 1]); 4430 __free_extent_buffer(eb); 4431 return NULL; 4432 } 4433 4434 static void check_buffer_tree_ref(struct extent_buffer *eb) 4435 { 4436 int refs; 4437 /* the ref bit is tricky. We have to make sure it is set 4438 * if we have the buffer dirty. Otherwise the 4439 * code to free a buffer can end up dropping a dirty 4440 * page 4441 * 4442 * Once the ref bit is set, it won't go away while the 4443 * buffer is dirty or in writeback, and it also won't 4444 * go away while we have the reference count on the 4445 * eb bumped. 4446 * 4447 * We can't just set the ref bit without bumping the 4448 * ref on the eb because free_extent_buffer might 4449 * see the ref bit and try to clear it. If this happens 4450 * free_extent_buffer might end up dropping our original 4451 * ref by mistake and freeing the page before we are able 4452 * to add one more ref. 4453 * 4454 * So bump the ref count first, then set the bit. If someone 4455 * beat us to it, drop the ref we added. 4456 */ 4457 refs = atomic_read(&eb->refs); 4458 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4459 return; 4460 4461 spin_lock(&eb->refs_lock); 4462 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4463 atomic_inc(&eb->refs); 4464 spin_unlock(&eb->refs_lock); 4465 } 4466 4467 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4468 { 4469 unsigned long num_pages, i; 4470 4471 check_buffer_tree_ref(eb); 4472 4473 num_pages = num_extent_pages(eb->start, eb->len); 4474 for (i = 0; i < num_pages; i++) { 4475 struct page *p = extent_buffer_page(eb, i); 4476 mark_page_accessed(p); 4477 } 4478 } 4479 4480 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4481 u64 start) 4482 { 4483 struct extent_buffer *eb; 4484 4485 rcu_read_lock(); 4486 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4487 if (eb && atomic_inc_not_zero(&eb->refs)) { 4488 rcu_read_unlock(); 4489 mark_extent_buffer_accessed(eb); 4490 return eb; 4491 } 4492 rcu_read_unlock(); 4493 4494 return NULL; 4495 } 4496 4497 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4498 u64 start, unsigned long len) 4499 { 4500 unsigned long num_pages = num_extent_pages(start, len); 4501 unsigned long i; 4502 unsigned long index = start >> PAGE_CACHE_SHIFT; 4503 struct extent_buffer *eb; 4504 struct extent_buffer *exists = NULL; 4505 struct page *p; 4506 struct address_space *mapping = tree->mapping; 4507 int uptodate = 1; 4508 int ret; 4509 4510 4511 eb = find_extent_buffer(tree, start); 4512 if (eb) 4513 return eb; 4514 4515 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4516 if (!eb) 4517 return NULL; 4518 4519 for (i = 0; i < num_pages; i++, index++) { 4520 p = find_or_create_page(mapping, index, GFP_NOFS); 4521 if (!p) 4522 goto free_eb; 4523 4524 spin_lock(&mapping->private_lock); 4525 if (PagePrivate(p)) { 4526 /* 4527 * We could have already allocated an eb for this page 4528 * and attached one so lets see if we can get a ref on 4529 * the existing eb, and if we can we know it's good and 4530 * we can just return that one, else we know we can just 4531 * overwrite page->private. 4532 */ 4533 exists = (struct extent_buffer *)p->private; 4534 if (atomic_inc_not_zero(&exists->refs)) { 4535 spin_unlock(&mapping->private_lock); 4536 unlock_page(p); 4537 page_cache_release(p); 4538 mark_extent_buffer_accessed(exists); 4539 goto free_eb; 4540 } 4541 4542 /* 4543 * Do this so attach doesn't complain and we need to 4544 * drop the ref the old guy had. 4545 */ 4546 ClearPagePrivate(p); 4547 WARN_ON(PageDirty(p)); 4548 page_cache_release(p); 4549 } 4550 attach_extent_buffer_page(eb, p); 4551 spin_unlock(&mapping->private_lock); 4552 WARN_ON(PageDirty(p)); 4553 mark_page_accessed(p); 4554 eb->pages[i] = p; 4555 if (!PageUptodate(p)) 4556 uptodate = 0; 4557 4558 /* 4559 * see below about how we avoid a nasty race with release page 4560 * and why we unlock later 4561 */ 4562 } 4563 if (uptodate) 4564 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4565 again: 4566 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4567 if (ret) 4568 goto free_eb; 4569 4570 spin_lock(&tree->buffer_lock); 4571 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4572 spin_unlock(&tree->buffer_lock); 4573 radix_tree_preload_end(); 4574 if (ret == -EEXIST) { 4575 exists = find_extent_buffer(tree, start); 4576 if (exists) 4577 goto free_eb; 4578 else 4579 goto again; 4580 } 4581 /* add one reference for the tree */ 4582 check_buffer_tree_ref(eb); 4583 4584 /* 4585 * there is a race where release page may have 4586 * tried to find this extent buffer in the radix 4587 * but failed. It will tell the VM it is safe to 4588 * reclaim the, and it will clear the page private bit. 4589 * We must make sure to set the page private bit properly 4590 * after the extent buffer is in the radix tree so 4591 * it doesn't get lost 4592 */ 4593 SetPageChecked(eb->pages[0]); 4594 for (i = 1; i < num_pages; i++) { 4595 p = extent_buffer_page(eb, i); 4596 ClearPageChecked(p); 4597 unlock_page(p); 4598 } 4599 unlock_page(eb->pages[0]); 4600 return eb; 4601 4602 free_eb: 4603 for (i = 0; i < num_pages; i++) { 4604 if (eb->pages[i]) 4605 unlock_page(eb->pages[i]); 4606 } 4607 4608 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4609 btrfs_release_extent_buffer(eb); 4610 return exists; 4611 } 4612 4613 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4614 { 4615 struct extent_buffer *eb = 4616 container_of(head, struct extent_buffer, rcu_head); 4617 4618 __free_extent_buffer(eb); 4619 } 4620 4621 /* Expects to have eb->eb_lock already held */ 4622 static int release_extent_buffer(struct extent_buffer *eb) 4623 { 4624 WARN_ON(atomic_read(&eb->refs) == 0); 4625 if (atomic_dec_and_test(&eb->refs)) { 4626 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4627 spin_unlock(&eb->refs_lock); 4628 } else { 4629 struct extent_io_tree *tree = eb->tree; 4630 4631 spin_unlock(&eb->refs_lock); 4632 4633 spin_lock(&tree->buffer_lock); 4634 radix_tree_delete(&tree->buffer, 4635 eb->start >> PAGE_CACHE_SHIFT); 4636 spin_unlock(&tree->buffer_lock); 4637 } 4638 4639 /* Should be safe to release our pages at this point */ 4640 btrfs_release_extent_buffer_page(eb, 0); 4641 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4642 return 1; 4643 } 4644 spin_unlock(&eb->refs_lock); 4645 4646 return 0; 4647 } 4648 4649 void free_extent_buffer(struct extent_buffer *eb) 4650 { 4651 int refs; 4652 int old; 4653 if (!eb) 4654 return; 4655 4656 while (1) { 4657 refs = atomic_read(&eb->refs); 4658 if (refs <= 3) 4659 break; 4660 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4661 if (old == refs) 4662 return; 4663 } 4664 4665 spin_lock(&eb->refs_lock); 4666 if (atomic_read(&eb->refs) == 2 && 4667 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4668 atomic_dec(&eb->refs); 4669 4670 if (atomic_read(&eb->refs) == 2 && 4671 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4672 !extent_buffer_under_io(eb) && 4673 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4674 atomic_dec(&eb->refs); 4675 4676 /* 4677 * I know this is terrible, but it's temporary until we stop tracking 4678 * the uptodate bits and such for the extent buffers. 4679 */ 4680 release_extent_buffer(eb); 4681 } 4682 4683 void free_extent_buffer_stale(struct extent_buffer *eb) 4684 { 4685 if (!eb) 4686 return; 4687 4688 spin_lock(&eb->refs_lock); 4689 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4690 4691 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4692 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4693 atomic_dec(&eb->refs); 4694 release_extent_buffer(eb); 4695 } 4696 4697 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4698 { 4699 unsigned long i; 4700 unsigned long num_pages; 4701 struct page *page; 4702 4703 num_pages = num_extent_pages(eb->start, eb->len); 4704 4705 for (i = 0; i < num_pages; i++) { 4706 page = extent_buffer_page(eb, i); 4707 if (!PageDirty(page)) 4708 continue; 4709 4710 lock_page(page); 4711 WARN_ON(!PagePrivate(page)); 4712 4713 clear_page_dirty_for_io(page); 4714 spin_lock_irq(&page->mapping->tree_lock); 4715 if (!PageDirty(page)) { 4716 radix_tree_tag_clear(&page->mapping->page_tree, 4717 page_index(page), 4718 PAGECACHE_TAG_DIRTY); 4719 } 4720 spin_unlock_irq(&page->mapping->tree_lock); 4721 ClearPageError(page); 4722 unlock_page(page); 4723 } 4724 WARN_ON(atomic_read(&eb->refs) == 0); 4725 } 4726 4727 int set_extent_buffer_dirty(struct extent_buffer *eb) 4728 { 4729 unsigned long i; 4730 unsigned long num_pages; 4731 int was_dirty = 0; 4732 4733 check_buffer_tree_ref(eb); 4734 4735 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4736 4737 num_pages = num_extent_pages(eb->start, eb->len); 4738 WARN_ON(atomic_read(&eb->refs) == 0); 4739 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4740 4741 for (i = 0; i < num_pages; i++) 4742 set_page_dirty(extent_buffer_page(eb, i)); 4743 return was_dirty; 4744 } 4745 4746 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4747 { 4748 unsigned long i; 4749 struct page *page; 4750 unsigned long num_pages; 4751 4752 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4753 num_pages = num_extent_pages(eb->start, eb->len); 4754 for (i = 0; i < num_pages; i++) { 4755 page = extent_buffer_page(eb, i); 4756 if (page) 4757 ClearPageUptodate(page); 4758 } 4759 return 0; 4760 } 4761 4762 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4763 { 4764 unsigned long i; 4765 struct page *page; 4766 unsigned long num_pages; 4767 4768 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4769 num_pages = num_extent_pages(eb->start, eb->len); 4770 for (i = 0; i < num_pages; i++) { 4771 page = extent_buffer_page(eb, i); 4772 SetPageUptodate(page); 4773 } 4774 return 0; 4775 } 4776 4777 int extent_buffer_uptodate(struct extent_buffer *eb) 4778 { 4779 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4780 } 4781 4782 int read_extent_buffer_pages(struct extent_io_tree *tree, 4783 struct extent_buffer *eb, u64 start, int wait, 4784 get_extent_t *get_extent, int mirror_num) 4785 { 4786 unsigned long i; 4787 unsigned long start_i; 4788 struct page *page; 4789 int err; 4790 int ret = 0; 4791 int locked_pages = 0; 4792 int all_uptodate = 1; 4793 unsigned long num_pages; 4794 unsigned long num_reads = 0; 4795 struct bio *bio = NULL; 4796 unsigned long bio_flags = 0; 4797 4798 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4799 return 0; 4800 4801 if (start) { 4802 WARN_ON(start < eb->start); 4803 start_i = (start >> PAGE_CACHE_SHIFT) - 4804 (eb->start >> PAGE_CACHE_SHIFT); 4805 } else { 4806 start_i = 0; 4807 } 4808 4809 num_pages = num_extent_pages(eb->start, eb->len); 4810 for (i = start_i; i < num_pages; i++) { 4811 page = extent_buffer_page(eb, i); 4812 if (wait == WAIT_NONE) { 4813 if (!trylock_page(page)) 4814 goto unlock_exit; 4815 } else { 4816 lock_page(page); 4817 } 4818 locked_pages++; 4819 if (!PageUptodate(page)) { 4820 num_reads++; 4821 all_uptodate = 0; 4822 } 4823 } 4824 if (all_uptodate) { 4825 if (start_i == 0) 4826 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4827 goto unlock_exit; 4828 } 4829 4830 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4831 eb->read_mirror = 0; 4832 atomic_set(&eb->io_pages, num_reads); 4833 for (i = start_i; i < num_pages; i++) { 4834 page = extent_buffer_page(eb, i); 4835 if (!PageUptodate(page)) { 4836 ClearPageError(page); 4837 err = __extent_read_full_page(tree, page, 4838 get_extent, &bio, 4839 mirror_num, &bio_flags, 4840 READ | REQ_META); 4841 if (err) 4842 ret = err; 4843 } else { 4844 unlock_page(page); 4845 } 4846 } 4847 4848 if (bio) { 4849 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 4850 bio_flags); 4851 if (err) 4852 return err; 4853 } 4854 4855 if (ret || wait != WAIT_COMPLETE) 4856 return ret; 4857 4858 for (i = start_i; i < num_pages; i++) { 4859 page = extent_buffer_page(eb, i); 4860 wait_on_page_locked(page); 4861 if (!PageUptodate(page)) 4862 ret = -EIO; 4863 } 4864 4865 return ret; 4866 4867 unlock_exit: 4868 i = start_i; 4869 while (locked_pages > 0) { 4870 page = extent_buffer_page(eb, i); 4871 i++; 4872 unlock_page(page); 4873 locked_pages--; 4874 } 4875 return ret; 4876 } 4877 4878 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4879 unsigned long start, 4880 unsigned long len) 4881 { 4882 size_t cur; 4883 size_t offset; 4884 struct page *page; 4885 char *kaddr; 4886 char *dst = (char *)dstv; 4887 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4888 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4889 4890 WARN_ON(start > eb->len); 4891 WARN_ON(start + len > eb->start + eb->len); 4892 4893 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4894 4895 while (len > 0) { 4896 page = extent_buffer_page(eb, i); 4897 4898 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4899 kaddr = page_address(page); 4900 memcpy(dst, kaddr + offset, cur); 4901 4902 dst += cur; 4903 len -= cur; 4904 offset = 0; 4905 i++; 4906 } 4907 } 4908 4909 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4910 unsigned long min_len, char **map, 4911 unsigned long *map_start, 4912 unsigned long *map_len) 4913 { 4914 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4915 char *kaddr; 4916 struct page *p; 4917 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4918 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4919 unsigned long end_i = (start_offset + start + min_len - 1) >> 4920 PAGE_CACHE_SHIFT; 4921 4922 if (i != end_i) 4923 return -EINVAL; 4924 4925 if (i == 0) { 4926 offset = start_offset; 4927 *map_start = 0; 4928 } else { 4929 offset = 0; 4930 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4931 } 4932 4933 if (start + min_len > eb->len) { 4934 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4935 "wanted %lu %lu\n", 4936 eb->start, eb->len, start, min_len); 4937 return -EINVAL; 4938 } 4939 4940 p = extent_buffer_page(eb, i); 4941 kaddr = page_address(p); 4942 *map = kaddr + offset; 4943 *map_len = PAGE_CACHE_SIZE - offset; 4944 return 0; 4945 } 4946 4947 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4948 unsigned long start, 4949 unsigned long len) 4950 { 4951 size_t cur; 4952 size_t offset; 4953 struct page *page; 4954 char *kaddr; 4955 char *ptr = (char *)ptrv; 4956 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4957 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4958 int ret = 0; 4959 4960 WARN_ON(start > eb->len); 4961 WARN_ON(start + len > eb->start + eb->len); 4962 4963 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4964 4965 while (len > 0) { 4966 page = extent_buffer_page(eb, i); 4967 4968 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4969 4970 kaddr = page_address(page); 4971 ret = memcmp(ptr, kaddr + offset, cur); 4972 if (ret) 4973 break; 4974 4975 ptr += cur; 4976 len -= cur; 4977 offset = 0; 4978 i++; 4979 } 4980 return ret; 4981 } 4982 4983 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4984 unsigned long start, unsigned long len) 4985 { 4986 size_t cur; 4987 size_t offset; 4988 struct page *page; 4989 char *kaddr; 4990 char *src = (char *)srcv; 4991 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4992 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4993 4994 WARN_ON(start > eb->len); 4995 WARN_ON(start + len > eb->start + eb->len); 4996 4997 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4998 4999 while (len > 0) { 5000 page = extent_buffer_page(eb, i); 5001 WARN_ON(!PageUptodate(page)); 5002 5003 cur = min(len, PAGE_CACHE_SIZE - offset); 5004 kaddr = page_address(page); 5005 memcpy(kaddr + offset, src, cur); 5006 5007 src += cur; 5008 len -= cur; 5009 offset = 0; 5010 i++; 5011 } 5012 } 5013 5014 void memset_extent_buffer(struct extent_buffer *eb, char c, 5015 unsigned long start, unsigned long len) 5016 { 5017 size_t cur; 5018 size_t offset; 5019 struct page *page; 5020 char *kaddr; 5021 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5022 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5023 5024 WARN_ON(start > eb->len); 5025 WARN_ON(start + len > eb->start + eb->len); 5026 5027 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5028 5029 while (len > 0) { 5030 page = extent_buffer_page(eb, i); 5031 WARN_ON(!PageUptodate(page)); 5032 5033 cur = min(len, PAGE_CACHE_SIZE - offset); 5034 kaddr = page_address(page); 5035 memset(kaddr + offset, c, cur); 5036 5037 len -= cur; 5038 offset = 0; 5039 i++; 5040 } 5041 } 5042 5043 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5044 unsigned long dst_offset, unsigned long src_offset, 5045 unsigned long len) 5046 { 5047 u64 dst_len = dst->len; 5048 size_t cur; 5049 size_t offset; 5050 struct page *page; 5051 char *kaddr; 5052 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5053 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5054 5055 WARN_ON(src->len != dst_len); 5056 5057 offset = (start_offset + dst_offset) & 5058 (PAGE_CACHE_SIZE - 1); 5059 5060 while (len > 0) { 5061 page = extent_buffer_page(dst, i); 5062 WARN_ON(!PageUptodate(page)); 5063 5064 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5065 5066 kaddr = page_address(page); 5067 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5068 5069 src_offset += cur; 5070 len -= cur; 5071 offset = 0; 5072 i++; 5073 } 5074 } 5075 5076 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5077 { 5078 unsigned long distance = (src > dst) ? src - dst : dst - src; 5079 return distance < len; 5080 } 5081 5082 static void copy_pages(struct page *dst_page, struct page *src_page, 5083 unsigned long dst_off, unsigned long src_off, 5084 unsigned long len) 5085 { 5086 char *dst_kaddr = page_address(dst_page); 5087 char *src_kaddr; 5088 int must_memmove = 0; 5089 5090 if (dst_page != src_page) { 5091 src_kaddr = page_address(src_page); 5092 } else { 5093 src_kaddr = dst_kaddr; 5094 if (areas_overlap(src_off, dst_off, len)) 5095 must_memmove = 1; 5096 } 5097 5098 if (must_memmove) 5099 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5100 else 5101 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5102 } 5103 5104 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5105 unsigned long src_offset, unsigned long len) 5106 { 5107 size_t cur; 5108 size_t dst_off_in_page; 5109 size_t src_off_in_page; 5110 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5111 unsigned long dst_i; 5112 unsigned long src_i; 5113 5114 if (src_offset + len > dst->len) { 5115 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5116 "len %lu dst len %lu\n", src_offset, len, dst->len); 5117 BUG_ON(1); 5118 } 5119 if (dst_offset + len > dst->len) { 5120 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5121 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5122 BUG_ON(1); 5123 } 5124 5125 while (len > 0) { 5126 dst_off_in_page = (start_offset + dst_offset) & 5127 (PAGE_CACHE_SIZE - 1); 5128 src_off_in_page = (start_offset + src_offset) & 5129 (PAGE_CACHE_SIZE - 1); 5130 5131 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5132 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5133 5134 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5135 src_off_in_page)); 5136 cur = min_t(unsigned long, cur, 5137 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5138 5139 copy_pages(extent_buffer_page(dst, dst_i), 5140 extent_buffer_page(dst, src_i), 5141 dst_off_in_page, src_off_in_page, cur); 5142 5143 src_offset += cur; 5144 dst_offset += cur; 5145 len -= cur; 5146 } 5147 } 5148 5149 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5150 unsigned long src_offset, unsigned long len) 5151 { 5152 size_t cur; 5153 size_t dst_off_in_page; 5154 size_t src_off_in_page; 5155 unsigned long dst_end = dst_offset + len - 1; 5156 unsigned long src_end = src_offset + len - 1; 5157 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5158 unsigned long dst_i; 5159 unsigned long src_i; 5160 5161 if (src_offset + len > dst->len) { 5162 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5163 "len %lu len %lu\n", src_offset, len, dst->len); 5164 BUG_ON(1); 5165 } 5166 if (dst_offset + len > dst->len) { 5167 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5168 "len %lu len %lu\n", dst_offset, len, dst->len); 5169 BUG_ON(1); 5170 } 5171 if (dst_offset < src_offset) { 5172 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5173 return; 5174 } 5175 while (len > 0) { 5176 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5177 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5178 5179 dst_off_in_page = (start_offset + dst_end) & 5180 (PAGE_CACHE_SIZE - 1); 5181 src_off_in_page = (start_offset + src_end) & 5182 (PAGE_CACHE_SIZE - 1); 5183 5184 cur = min_t(unsigned long, len, src_off_in_page + 1); 5185 cur = min(cur, dst_off_in_page + 1); 5186 copy_pages(extent_buffer_page(dst, dst_i), 5187 extent_buffer_page(dst, src_i), 5188 dst_off_in_page - cur + 1, 5189 src_off_in_page - cur + 1, cur); 5190 5191 dst_end -= cur; 5192 src_end -= cur; 5193 len -= cur; 5194 } 5195 } 5196 5197 int try_release_extent_buffer(struct page *page) 5198 { 5199 struct extent_buffer *eb; 5200 5201 /* 5202 * We need to make sure noboody is attaching this page to an eb right 5203 * now. 5204 */ 5205 spin_lock(&page->mapping->private_lock); 5206 if (!PagePrivate(page)) { 5207 spin_unlock(&page->mapping->private_lock); 5208 return 1; 5209 } 5210 5211 eb = (struct extent_buffer *)page->private; 5212 BUG_ON(!eb); 5213 5214 /* 5215 * This is a little awful but should be ok, we need to make sure that 5216 * the eb doesn't disappear out from under us while we're looking at 5217 * this page. 5218 */ 5219 spin_lock(&eb->refs_lock); 5220 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5221 spin_unlock(&eb->refs_lock); 5222 spin_unlock(&page->mapping->private_lock); 5223 return 0; 5224 } 5225 spin_unlock(&page->mapping->private_lock); 5226 5227 /* 5228 * If tree ref isn't set then we know the ref on this eb is a real ref, 5229 * so just return, this page will likely be freed soon anyway. 5230 */ 5231 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5232 spin_unlock(&eb->refs_lock); 5233 return 0; 5234 } 5235 5236 return release_extent_buffer(eb); 5237 } 5238