xref: /openbmc/linux/fs/btrfs/extent_io.c (revision bc000245)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       state->start, state->end, state->state, state->tree,
65 		       atomic_read(&state->refs));
66 		list_del(&state->leak_list);
67 		kmem_cache_free(extent_state_cache, state);
68 	}
69 
70 	while (!list_empty(&buffers)) {
71 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 		       "refs %d\n",
74 		       eb->start, eb->len, atomic_read(&eb->refs));
75 		list_del(&eb->leak_list);
76 		kmem_cache_free(extent_buffer_cache, eb);
77 	}
78 }
79 
80 #define btrfs_debug_check_extent_io_range(inode, start, end)		\
81 	__btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 		struct inode *inode, u64 start, u64 end)
84 {
85 	u64 isize = i_size_read(inode);
86 
87 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 		printk_ratelimited(KERN_DEBUG
89 		    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
90 				caller, btrfs_ino(inode), isize, start, end);
91 	}
92 }
93 #else
94 #define btrfs_leak_debug_add(new, head)	do {} while (0)
95 #define btrfs_leak_debug_del(entry)	do {} while (0)
96 #define btrfs_leak_debug_check()	do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
98 #endif
99 
100 #define BUFFER_LRU_MAX 64
101 
102 struct tree_entry {
103 	u64 start;
104 	u64 end;
105 	struct rb_node rb_node;
106 };
107 
108 struct extent_page_data {
109 	struct bio *bio;
110 	struct extent_io_tree *tree;
111 	get_extent_t *get_extent;
112 	unsigned long bio_flags;
113 
114 	/* tells writepage not to lock the state bits for this range
115 	 * it still does the unlocking
116 	 */
117 	unsigned int extent_locked:1;
118 
119 	/* tells the submit_bio code to use a WRITE_SYNC */
120 	unsigned int sync_io:1;
121 };
122 
123 static noinline void flush_write_bio(void *data);
124 static inline struct btrfs_fs_info *
125 tree_fs_info(struct extent_io_tree *tree)
126 {
127 	return btrfs_sb(tree->mapping->host->i_sb);
128 }
129 
130 int __init extent_io_init(void)
131 {
132 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
133 			sizeof(struct extent_state), 0,
134 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
135 	if (!extent_state_cache)
136 		return -ENOMEM;
137 
138 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
139 			sizeof(struct extent_buffer), 0,
140 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
141 	if (!extent_buffer_cache)
142 		goto free_state_cache;
143 
144 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 				     offsetof(struct btrfs_io_bio, bio));
146 	if (!btrfs_bioset)
147 		goto free_buffer_cache;
148 
149 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
150 		goto free_bioset;
151 
152 	return 0;
153 
154 free_bioset:
155 	bioset_free(btrfs_bioset);
156 	btrfs_bioset = NULL;
157 
158 free_buffer_cache:
159 	kmem_cache_destroy(extent_buffer_cache);
160 	extent_buffer_cache = NULL;
161 
162 free_state_cache:
163 	kmem_cache_destroy(extent_state_cache);
164 	extent_state_cache = NULL;
165 	return -ENOMEM;
166 }
167 
168 void extent_io_exit(void)
169 {
170 	btrfs_leak_debug_check();
171 
172 	/*
173 	 * Make sure all delayed rcu free are flushed before we
174 	 * destroy caches.
175 	 */
176 	rcu_barrier();
177 	if (extent_state_cache)
178 		kmem_cache_destroy(extent_state_cache);
179 	if (extent_buffer_cache)
180 		kmem_cache_destroy(extent_buffer_cache);
181 	if (btrfs_bioset)
182 		bioset_free(btrfs_bioset);
183 }
184 
185 void extent_io_tree_init(struct extent_io_tree *tree,
186 			 struct address_space *mapping)
187 {
188 	tree->state = RB_ROOT;
189 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
190 	tree->ops = NULL;
191 	tree->dirty_bytes = 0;
192 	spin_lock_init(&tree->lock);
193 	spin_lock_init(&tree->buffer_lock);
194 	tree->mapping = mapping;
195 }
196 
197 static struct extent_state *alloc_extent_state(gfp_t mask)
198 {
199 	struct extent_state *state;
200 
201 	state = kmem_cache_alloc(extent_state_cache, mask);
202 	if (!state)
203 		return state;
204 	state->state = 0;
205 	state->private = 0;
206 	state->tree = NULL;
207 	btrfs_leak_debug_add(&state->leak_list, &states);
208 	atomic_set(&state->refs, 1);
209 	init_waitqueue_head(&state->wq);
210 	trace_alloc_extent_state(state, mask, _RET_IP_);
211 	return state;
212 }
213 
214 void free_extent_state(struct extent_state *state)
215 {
216 	if (!state)
217 		return;
218 	if (atomic_dec_and_test(&state->refs)) {
219 		WARN_ON(state->tree);
220 		btrfs_leak_debug_del(&state->leak_list);
221 		trace_free_extent_state(state, _RET_IP_);
222 		kmem_cache_free(extent_state_cache, state);
223 	}
224 }
225 
226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
227 				   struct rb_node *node)
228 {
229 	struct rb_node **p = &root->rb_node;
230 	struct rb_node *parent = NULL;
231 	struct tree_entry *entry;
232 
233 	while (*p) {
234 		parent = *p;
235 		entry = rb_entry(parent, struct tree_entry, rb_node);
236 
237 		if (offset < entry->start)
238 			p = &(*p)->rb_left;
239 		else if (offset > entry->end)
240 			p = &(*p)->rb_right;
241 		else
242 			return parent;
243 	}
244 
245 	rb_link_node(node, parent, p);
246 	rb_insert_color(node, root);
247 	return NULL;
248 }
249 
250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
251 				     struct rb_node **prev_ret,
252 				     struct rb_node **next_ret)
253 {
254 	struct rb_root *root = &tree->state;
255 	struct rb_node *n = root->rb_node;
256 	struct rb_node *prev = NULL;
257 	struct rb_node *orig_prev = NULL;
258 	struct tree_entry *entry;
259 	struct tree_entry *prev_entry = NULL;
260 
261 	while (n) {
262 		entry = rb_entry(n, struct tree_entry, rb_node);
263 		prev = n;
264 		prev_entry = entry;
265 
266 		if (offset < entry->start)
267 			n = n->rb_left;
268 		else if (offset > entry->end)
269 			n = n->rb_right;
270 		else
271 			return n;
272 	}
273 
274 	if (prev_ret) {
275 		orig_prev = prev;
276 		while (prev && offset > prev_entry->end) {
277 			prev = rb_next(prev);
278 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
279 		}
280 		*prev_ret = prev;
281 		prev = orig_prev;
282 	}
283 
284 	if (next_ret) {
285 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 		while (prev && offset < prev_entry->start) {
287 			prev = rb_prev(prev);
288 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
289 		}
290 		*next_ret = prev;
291 	}
292 	return NULL;
293 }
294 
295 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
296 					  u64 offset)
297 {
298 	struct rb_node *prev = NULL;
299 	struct rb_node *ret;
300 
301 	ret = __etree_search(tree, offset, &prev, NULL);
302 	if (!ret)
303 		return prev;
304 	return ret;
305 }
306 
307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
308 		     struct extent_state *other)
309 {
310 	if (tree->ops && tree->ops->merge_extent_hook)
311 		tree->ops->merge_extent_hook(tree->mapping->host, new,
312 					     other);
313 }
314 
315 /*
316  * utility function to look for merge candidates inside a given range.
317  * Any extents with matching state are merged together into a single
318  * extent in the tree.  Extents with EXTENT_IO in their state field
319  * are not merged because the end_io handlers need to be able to do
320  * operations on them without sleeping (or doing allocations/splits).
321  *
322  * This should be called with the tree lock held.
323  */
324 static void merge_state(struct extent_io_tree *tree,
325 		        struct extent_state *state)
326 {
327 	struct extent_state *other;
328 	struct rb_node *other_node;
329 
330 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
331 		return;
332 
333 	other_node = rb_prev(&state->rb_node);
334 	if (other_node) {
335 		other = rb_entry(other_node, struct extent_state, rb_node);
336 		if (other->end == state->start - 1 &&
337 		    other->state == state->state) {
338 			merge_cb(tree, state, other);
339 			state->start = other->start;
340 			other->tree = NULL;
341 			rb_erase(&other->rb_node, &tree->state);
342 			free_extent_state(other);
343 		}
344 	}
345 	other_node = rb_next(&state->rb_node);
346 	if (other_node) {
347 		other = rb_entry(other_node, struct extent_state, rb_node);
348 		if (other->start == state->end + 1 &&
349 		    other->state == state->state) {
350 			merge_cb(tree, state, other);
351 			state->end = other->end;
352 			other->tree = NULL;
353 			rb_erase(&other->rb_node, &tree->state);
354 			free_extent_state(other);
355 		}
356 	}
357 }
358 
359 static void set_state_cb(struct extent_io_tree *tree,
360 			 struct extent_state *state, unsigned long *bits)
361 {
362 	if (tree->ops && tree->ops->set_bit_hook)
363 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
364 }
365 
366 static void clear_state_cb(struct extent_io_tree *tree,
367 			   struct extent_state *state, unsigned long *bits)
368 {
369 	if (tree->ops && tree->ops->clear_bit_hook)
370 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
371 }
372 
373 static void set_state_bits(struct extent_io_tree *tree,
374 			   struct extent_state *state, unsigned long *bits);
375 
376 /*
377  * insert an extent_state struct into the tree.  'bits' are set on the
378  * struct before it is inserted.
379  *
380  * This may return -EEXIST if the extent is already there, in which case the
381  * state struct is freed.
382  *
383  * The tree lock is not taken internally.  This is a utility function and
384  * probably isn't what you want to call (see set/clear_extent_bit).
385  */
386 static int insert_state(struct extent_io_tree *tree,
387 			struct extent_state *state, u64 start, u64 end,
388 			unsigned long *bits)
389 {
390 	struct rb_node *node;
391 
392 	if (end < start)
393 		WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
394 		       end, start);
395 	state->start = start;
396 	state->end = end;
397 
398 	set_state_bits(tree, state, bits);
399 
400 	node = tree_insert(&tree->state, end, &state->rb_node);
401 	if (node) {
402 		struct extent_state *found;
403 		found = rb_entry(node, struct extent_state, rb_node);
404 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
405 		       "%llu %llu\n",
406 		       found->start, found->end, start, end);
407 		return -EEXIST;
408 	}
409 	state->tree = tree;
410 	merge_state(tree, state);
411 	return 0;
412 }
413 
414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
415 		     u64 split)
416 {
417 	if (tree->ops && tree->ops->split_extent_hook)
418 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
419 }
420 
421 /*
422  * split a given extent state struct in two, inserting the preallocated
423  * struct 'prealloc' as the newly created second half.  'split' indicates an
424  * offset inside 'orig' where it should be split.
425  *
426  * Before calling,
427  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
428  * are two extent state structs in the tree:
429  * prealloc: [orig->start, split - 1]
430  * orig: [ split, orig->end ]
431  *
432  * The tree locks are not taken by this function. They need to be held
433  * by the caller.
434  */
435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
436 		       struct extent_state *prealloc, u64 split)
437 {
438 	struct rb_node *node;
439 
440 	split_cb(tree, orig, split);
441 
442 	prealloc->start = orig->start;
443 	prealloc->end = split - 1;
444 	prealloc->state = orig->state;
445 	orig->start = split;
446 
447 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
448 	if (node) {
449 		free_extent_state(prealloc);
450 		return -EEXIST;
451 	}
452 	prealloc->tree = tree;
453 	return 0;
454 }
455 
456 static struct extent_state *next_state(struct extent_state *state)
457 {
458 	struct rb_node *next = rb_next(&state->rb_node);
459 	if (next)
460 		return rb_entry(next, struct extent_state, rb_node);
461 	else
462 		return NULL;
463 }
464 
465 /*
466  * utility function to clear some bits in an extent state struct.
467  * it will optionally wake up any one waiting on this state (wake == 1).
468  *
469  * If no bits are set on the state struct after clearing things, the
470  * struct is freed and removed from the tree
471  */
472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
473 					    struct extent_state *state,
474 					    unsigned long *bits, int wake)
475 {
476 	struct extent_state *next;
477 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
478 
479 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
480 		u64 range = state->end - state->start + 1;
481 		WARN_ON(range > tree->dirty_bytes);
482 		tree->dirty_bytes -= range;
483 	}
484 	clear_state_cb(tree, state, bits);
485 	state->state &= ~bits_to_clear;
486 	if (wake)
487 		wake_up(&state->wq);
488 	if (state->state == 0) {
489 		next = next_state(state);
490 		if (state->tree) {
491 			rb_erase(&state->rb_node, &tree->state);
492 			state->tree = NULL;
493 			free_extent_state(state);
494 		} else {
495 			WARN_ON(1);
496 		}
497 	} else {
498 		merge_state(tree, state);
499 		next = next_state(state);
500 	}
501 	return next;
502 }
503 
504 static struct extent_state *
505 alloc_extent_state_atomic(struct extent_state *prealloc)
506 {
507 	if (!prealloc)
508 		prealloc = alloc_extent_state(GFP_ATOMIC);
509 
510 	return prealloc;
511 }
512 
513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
514 {
515 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
516 		    "Extent tree was modified by another "
517 		    "thread while locked.");
518 }
519 
520 /*
521  * clear some bits on a range in the tree.  This may require splitting
522  * or inserting elements in the tree, so the gfp mask is used to
523  * indicate which allocations or sleeping are allowed.
524  *
525  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
526  * the given range from the tree regardless of state (ie for truncate).
527  *
528  * the range [start, end] is inclusive.
529  *
530  * This takes the tree lock, and returns 0 on success and < 0 on error.
531  */
532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
533 		     unsigned long bits, int wake, int delete,
534 		     struct extent_state **cached_state,
535 		     gfp_t mask)
536 {
537 	struct extent_state *state;
538 	struct extent_state *cached;
539 	struct extent_state *prealloc = NULL;
540 	struct rb_node *node;
541 	u64 last_end;
542 	int err;
543 	int clear = 0;
544 
545 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
546 
547 	if (bits & EXTENT_DELALLOC)
548 		bits |= EXTENT_NORESERVE;
549 
550 	if (delete)
551 		bits |= ~EXTENT_CTLBITS;
552 	bits |= EXTENT_FIRST_DELALLOC;
553 
554 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
555 		clear = 1;
556 again:
557 	if (!prealloc && (mask & __GFP_WAIT)) {
558 		prealloc = alloc_extent_state(mask);
559 		if (!prealloc)
560 			return -ENOMEM;
561 	}
562 
563 	spin_lock(&tree->lock);
564 	if (cached_state) {
565 		cached = *cached_state;
566 
567 		if (clear) {
568 			*cached_state = NULL;
569 			cached_state = NULL;
570 		}
571 
572 		if (cached && cached->tree && cached->start <= start &&
573 		    cached->end > start) {
574 			if (clear)
575 				atomic_dec(&cached->refs);
576 			state = cached;
577 			goto hit_next;
578 		}
579 		if (clear)
580 			free_extent_state(cached);
581 	}
582 	/*
583 	 * this search will find the extents that end after
584 	 * our range starts
585 	 */
586 	node = tree_search(tree, start);
587 	if (!node)
588 		goto out;
589 	state = rb_entry(node, struct extent_state, rb_node);
590 hit_next:
591 	if (state->start > end)
592 		goto out;
593 	WARN_ON(state->end < start);
594 	last_end = state->end;
595 
596 	/* the state doesn't have the wanted bits, go ahead */
597 	if (!(state->state & bits)) {
598 		state = next_state(state);
599 		goto next;
600 	}
601 
602 	/*
603 	 *     | ---- desired range ---- |
604 	 *  | state | or
605 	 *  | ------------- state -------------- |
606 	 *
607 	 * We need to split the extent we found, and may flip
608 	 * bits on second half.
609 	 *
610 	 * If the extent we found extends past our range, we
611 	 * just split and search again.  It'll get split again
612 	 * the next time though.
613 	 *
614 	 * If the extent we found is inside our range, we clear
615 	 * the desired bit on it.
616 	 */
617 
618 	if (state->start < start) {
619 		prealloc = alloc_extent_state_atomic(prealloc);
620 		BUG_ON(!prealloc);
621 		err = split_state(tree, state, prealloc, start);
622 		if (err)
623 			extent_io_tree_panic(tree, err);
624 
625 		prealloc = NULL;
626 		if (err)
627 			goto out;
628 		if (state->end <= end) {
629 			state = clear_state_bit(tree, state, &bits, wake);
630 			goto next;
631 		}
632 		goto search_again;
633 	}
634 	/*
635 	 * | ---- desired range ---- |
636 	 *                        | state |
637 	 * We need to split the extent, and clear the bit
638 	 * on the first half
639 	 */
640 	if (state->start <= end && state->end > end) {
641 		prealloc = alloc_extent_state_atomic(prealloc);
642 		BUG_ON(!prealloc);
643 		err = split_state(tree, state, prealloc, end + 1);
644 		if (err)
645 			extent_io_tree_panic(tree, err);
646 
647 		if (wake)
648 			wake_up(&state->wq);
649 
650 		clear_state_bit(tree, prealloc, &bits, wake);
651 
652 		prealloc = NULL;
653 		goto out;
654 	}
655 
656 	state = clear_state_bit(tree, state, &bits, wake);
657 next:
658 	if (last_end == (u64)-1)
659 		goto out;
660 	start = last_end + 1;
661 	if (start <= end && state && !need_resched())
662 		goto hit_next;
663 	goto search_again;
664 
665 out:
666 	spin_unlock(&tree->lock);
667 	if (prealloc)
668 		free_extent_state(prealloc);
669 
670 	return 0;
671 
672 search_again:
673 	if (start > end)
674 		goto out;
675 	spin_unlock(&tree->lock);
676 	if (mask & __GFP_WAIT)
677 		cond_resched();
678 	goto again;
679 }
680 
681 static void wait_on_state(struct extent_io_tree *tree,
682 			  struct extent_state *state)
683 		__releases(tree->lock)
684 		__acquires(tree->lock)
685 {
686 	DEFINE_WAIT(wait);
687 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
688 	spin_unlock(&tree->lock);
689 	schedule();
690 	spin_lock(&tree->lock);
691 	finish_wait(&state->wq, &wait);
692 }
693 
694 /*
695  * waits for one or more bits to clear on a range in the state tree.
696  * The range [start, end] is inclusive.
697  * The tree lock is taken by this function
698  */
699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700 			    unsigned long bits)
701 {
702 	struct extent_state *state;
703 	struct rb_node *node;
704 
705 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
706 
707 	spin_lock(&tree->lock);
708 again:
709 	while (1) {
710 		/*
711 		 * this search will find all the extents that end after
712 		 * our range starts
713 		 */
714 		node = tree_search(tree, start);
715 		if (!node)
716 			break;
717 
718 		state = rb_entry(node, struct extent_state, rb_node);
719 
720 		if (state->start > end)
721 			goto out;
722 
723 		if (state->state & bits) {
724 			start = state->start;
725 			atomic_inc(&state->refs);
726 			wait_on_state(tree, state);
727 			free_extent_state(state);
728 			goto again;
729 		}
730 		start = state->end + 1;
731 
732 		if (start > end)
733 			break;
734 
735 		cond_resched_lock(&tree->lock);
736 	}
737 out:
738 	spin_unlock(&tree->lock);
739 }
740 
741 static void set_state_bits(struct extent_io_tree *tree,
742 			   struct extent_state *state,
743 			   unsigned long *bits)
744 {
745 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
746 
747 	set_state_cb(tree, state, bits);
748 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
749 		u64 range = state->end - state->start + 1;
750 		tree->dirty_bytes += range;
751 	}
752 	state->state |= bits_to_set;
753 }
754 
755 static void cache_state(struct extent_state *state,
756 			struct extent_state **cached_ptr)
757 {
758 	if (cached_ptr && !(*cached_ptr)) {
759 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
760 			*cached_ptr = state;
761 			atomic_inc(&state->refs);
762 		}
763 	}
764 }
765 
766 /*
767  * set some bits on a range in the tree.  This may require allocations or
768  * sleeping, so the gfp mask is used to indicate what is allowed.
769  *
770  * If any of the exclusive bits are set, this will fail with -EEXIST if some
771  * part of the range already has the desired bits set.  The start of the
772  * existing range is returned in failed_start in this case.
773  *
774  * [start, end] is inclusive This takes the tree lock.
775  */
776 
777 static int __must_check
778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
779 		 unsigned long bits, unsigned long exclusive_bits,
780 		 u64 *failed_start, struct extent_state **cached_state,
781 		 gfp_t mask)
782 {
783 	struct extent_state *state;
784 	struct extent_state *prealloc = NULL;
785 	struct rb_node *node;
786 	int err = 0;
787 	u64 last_start;
788 	u64 last_end;
789 
790 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
791 
792 	bits |= EXTENT_FIRST_DELALLOC;
793 again:
794 	if (!prealloc && (mask & __GFP_WAIT)) {
795 		prealloc = alloc_extent_state(mask);
796 		BUG_ON(!prealloc);
797 	}
798 
799 	spin_lock(&tree->lock);
800 	if (cached_state && *cached_state) {
801 		state = *cached_state;
802 		if (state->start <= start && state->end > start &&
803 		    state->tree) {
804 			node = &state->rb_node;
805 			goto hit_next;
806 		}
807 	}
808 	/*
809 	 * this search will find all the extents that end after
810 	 * our range starts.
811 	 */
812 	node = tree_search(tree, start);
813 	if (!node) {
814 		prealloc = alloc_extent_state_atomic(prealloc);
815 		BUG_ON(!prealloc);
816 		err = insert_state(tree, prealloc, start, end, &bits);
817 		if (err)
818 			extent_io_tree_panic(tree, err);
819 
820 		prealloc = NULL;
821 		goto out;
822 	}
823 	state = rb_entry(node, struct extent_state, rb_node);
824 hit_next:
825 	last_start = state->start;
826 	last_end = state->end;
827 
828 	/*
829 	 * | ---- desired range ---- |
830 	 * | state |
831 	 *
832 	 * Just lock what we found and keep going
833 	 */
834 	if (state->start == start && state->end <= end) {
835 		if (state->state & exclusive_bits) {
836 			*failed_start = state->start;
837 			err = -EEXIST;
838 			goto out;
839 		}
840 
841 		set_state_bits(tree, state, &bits);
842 		cache_state(state, cached_state);
843 		merge_state(tree, state);
844 		if (last_end == (u64)-1)
845 			goto out;
846 		start = last_end + 1;
847 		state = next_state(state);
848 		if (start < end && state && state->start == start &&
849 		    !need_resched())
850 			goto hit_next;
851 		goto search_again;
852 	}
853 
854 	/*
855 	 *     | ---- desired range ---- |
856 	 * | state |
857 	 *   or
858 	 * | ------------- state -------------- |
859 	 *
860 	 * We need to split the extent we found, and may flip bits on
861 	 * second half.
862 	 *
863 	 * If the extent we found extends past our
864 	 * range, we just split and search again.  It'll get split
865 	 * again the next time though.
866 	 *
867 	 * If the extent we found is inside our range, we set the
868 	 * desired bit on it.
869 	 */
870 	if (state->start < start) {
871 		if (state->state & exclusive_bits) {
872 			*failed_start = start;
873 			err = -EEXIST;
874 			goto out;
875 		}
876 
877 		prealloc = alloc_extent_state_atomic(prealloc);
878 		BUG_ON(!prealloc);
879 		err = split_state(tree, state, prealloc, start);
880 		if (err)
881 			extent_io_tree_panic(tree, err);
882 
883 		prealloc = NULL;
884 		if (err)
885 			goto out;
886 		if (state->end <= end) {
887 			set_state_bits(tree, state, &bits);
888 			cache_state(state, cached_state);
889 			merge_state(tree, state);
890 			if (last_end == (u64)-1)
891 				goto out;
892 			start = last_end + 1;
893 			state = next_state(state);
894 			if (start < end && state && state->start == start &&
895 			    !need_resched())
896 				goto hit_next;
897 		}
898 		goto search_again;
899 	}
900 	/*
901 	 * | ---- desired range ---- |
902 	 *     | state | or               | state |
903 	 *
904 	 * There's a hole, we need to insert something in it and
905 	 * ignore the extent we found.
906 	 */
907 	if (state->start > start) {
908 		u64 this_end;
909 		if (end < last_start)
910 			this_end = end;
911 		else
912 			this_end = last_start - 1;
913 
914 		prealloc = alloc_extent_state_atomic(prealloc);
915 		BUG_ON(!prealloc);
916 
917 		/*
918 		 * Avoid to free 'prealloc' if it can be merged with
919 		 * the later extent.
920 		 */
921 		err = insert_state(tree, prealloc, start, this_end,
922 				   &bits);
923 		if (err)
924 			extent_io_tree_panic(tree, err);
925 
926 		cache_state(prealloc, cached_state);
927 		prealloc = NULL;
928 		start = this_end + 1;
929 		goto search_again;
930 	}
931 	/*
932 	 * | ---- desired range ---- |
933 	 *                        | state |
934 	 * We need to split the extent, and set the bit
935 	 * on the first half
936 	 */
937 	if (state->start <= end && state->end > end) {
938 		if (state->state & exclusive_bits) {
939 			*failed_start = start;
940 			err = -EEXIST;
941 			goto out;
942 		}
943 
944 		prealloc = alloc_extent_state_atomic(prealloc);
945 		BUG_ON(!prealloc);
946 		err = split_state(tree, state, prealloc, end + 1);
947 		if (err)
948 			extent_io_tree_panic(tree, err);
949 
950 		set_state_bits(tree, prealloc, &bits);
951 		cache_state(prealloc, cached_state);
952 		merge_state(tree, prealloc);
953 		prealloc = NULL;
954 		goto out;
955 	}
956 
957 	goto search_again;
958 
959 out:
960 	spin_unlock(&tree->lock);
961 	if (prealloc)
962 		free_extent_state(prealloc);
963 
964 	return err;
965 
966 search_again:
967 	if (start > end)
968 		goto out;
969 	spin_unlock(&tree->lock);
970 	if (mask & __GFP_WAIT)
971 		cond_resched();
972 	goto again;
973 }
974 
975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
976 		   unsigned long bits, u64 * failed_start,
977 		   struct extent_state **cached_state, gfp_t mask)
978 {
979 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
980 				cached_state, mask);
981 }
982 
983 
984 /**
985  * convert_extent_bit - convert all bits in a given range from one bit to
986  * 			another
987  * @tree:	the io tree to search
988  * @start:	the start offset in bytes
989  * @end:	the end offset in bytes (inclusive)
990  * @bits:	the bits to set in this range
991  * @clear_bits:	the bits to clear in this range
992  * @cached_state:	state that we're going to cache
993  * @mask:	the allocation mask
994  *
995  * This will go through and set bits for the given range.  If any states exist
996  * already in this range they are set with the given bit and cleared of the
997  * clear_bits.  This is only meant to be used by things that are mergeable, ie
998  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
999  * boundary bits like LOCK.
1000  */
1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1002 		       unsigned long bits, unsigned long clear_bits,
1003 		       struct extent_state **cached_state, gfp_t mask)
1004 {
1005 	struct extent_state *state;
1006 	struct extent_state *prealloc = NULL;
1007 	struct rb_node *node;
1008 	int err = 0;
1009 	u64 last_start;
1010 	u64 last_end;
1011 
1012 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1013 
1014 again:
1015 	if (!prealloc && (mask & __GFP_WAIT)) {
1016 		prealloc = alloc_extent_state(mask);
1017 		if (!prealloc)
1018 			return -ENOMEM;
1019 	}
1020 
1021 	spin_lock(&tree->lock);
1022 	if (cached_state && *cached_state) {
1023 		state = *cached_state;
1024 		if (state->start <= start && state->end > start &&
1025 		    state->tree) {
1026 			node = &state->rb_node;
1027 			goto hit_next;
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * this search will find all the extents that end after
1033 	 * our range starts.
1034 	 */
1035 	node = tree_search(tree, start);
1036 	if (!node) {
1037 		prealloc = alloc_extent_state_atomic(prealloc);
1038 		if (!prealloc) {
1039 			err = -ENOMEM;
1040 			goto out;
1041 		}
1042 		err = insert_state(tree, prealloc, start, end, &bits);
1043 		prealloc = NULL;
1044 		if (err)
1045 			extent_io_tree_panic(tree, err);
1046 		goto out;
1047 	}
1048 	state = rb_entry(node, struct extent_state, rb_node);
1049 hit_next:
1050 	last_start = state->start;
1051 	last_end = state->end;
1052 
1053 	/*
1054 	 * | ---- desired range ---- |
1055 	 * | state |
1056 	 *
1057 	 * Just lock what we found and keep going
1058 	 */
1059 	if (state->start == start && state->end <= end) {
1060 		set_state_bits(tree, state, &bits);
1061 		cache_state(state, cached_state);
1062 		state = clear_state_bit(tree, state, &clear_bits, 0);
1063 		if (last_end == (u64)-1)
1064 			goto out;
1065 		start = last_end + 1;
1066 		if (start < end && state && state->start == start &&
1067 		    !need_resched())
1068 			goto hit_next;
1069 		goto search_again;
1070 	}
1071 
1072 	/*
1073 	 *     | ---- desired range ---- |
1074 	 * | state |
1075 	 *   or
1076 	 * | ------------- state -------------- |
1077 	 *
1078 	 * We need to split the extent we found, and may flip bits on
1079 	 * second half.
1080 	 *
1081 	 * If the extent we found extends past our
1082 	 * range, we just split and search again.  It'll get split
1083 	 * again the next time though.
1084 	 *
1085 	 * If the extent we found is inside our range, we set the
1086 	 * desired bit on it.
1087 	 */
1088 	if (state->start < start) {
1089 		prealloc = alloc_extent_state_atomic(prealloc);
1090 		if (!prealloc) {
1091 			err = -ENOMEM;
1092 			goto out;
1093 		}
1094 		err = split_state(tree, state, prealloc, start);
1095 		if (err)
1096 			extent_io_tree_panic(tree, err);
1097 		prealloc = NULL;
1098 		if (err)
1099 			goto out;
1100 		if (state->end <= end) {
1101 			set_state_bits(tree, state, &bits);
1102 			cache_state(state, cached_state);
1103 			state = clear_state_bit(tree, state, &clear_bits, 0);
1104 			if (last_end == (u64)-1)
1105 				goto out;
1106 			start = last_end + 1;
1107 			if (start < end && state && state->start == start &&
1108 			    !need_resched())
1109 				goto hit_next;
1110 		}
1111 		goto search_again;
1112 	}
1113 	/*
1114 	 * | ---- desired range ---- |
1115 	 *     | state | or               | state |
1116 	 *
1117 	 * There's a hole, we need to insert something in it and
1118 	 * ignore the extent we found.
1119 	 */
1120 	if (state->start > start) {
1121 		u64 this_end;
1122 		if (end < last_start)
1123 			this_end = end;
1124 		else
1125 			this_end = last_start - 1;
1126 
1127 		prealloc = alloc_extent_state_atomic(prealloc);
1128 		if (!prealloc) {
1129 			err = -ENOMEM;
1130 			goto out;
1131 		}
1132 
1133 		/*
1134 		 * Avoid to free 'prealloc' if it can be merged with
1135 		 * the later extent.
1136 		 */
1137 		err = insert_state(tree, prealloc, start, this_end,
1138 				   &bits);
1139 		if (err)
1140 			extent_io_tree_panic(tree, err);
1141 		cache_state(prealloc, cached_state);
1142 		prealloc = NULL;
1143 		start = this_end + 1;
1144 		goto search_again;
1145 	}
1146 	/*
1147 	 * | ---- desired range ---- |
1148 	 *                        | state |
1149 	 * We need to split the extent, and set the bit
1150 	 * on the first half
1151 	 */
1152 	if (state->start <= end && state->end > end) {
1153 		prealloc = alloc_extent_state_atomic(prealloc);
1154 		if (!prealloc) {
1155 			err = -ENOMEM;
1156 			goto out;
1157 		}
1158 
1159 		err = split_state(tree, state, prealloc, end + 1);
1160 		if (err)
1161 			extent_io_tree_panic(tree, err);
1162 
1163 		set_state_bits(tree, prealloc, &bits);
1164 		cache_state(prealloc, cached_state);
1165 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1166 		prealloc = NULL;
1167 		goto out;
1168 	}
1169 
1170 	goto search_again;
1171 
1172 out:
1173 	spin_unlock(&tree->lock);
1174 	if (prealloc)
1175 		free_extent_state(prealloc);
1176 
1177 	return err;
1178 
1179 search_again:
1180 	if (start > end)
1181 		goto out;
1182 	spin_unlock(&tree->lock);
1183 	if (mask & __GFP_WAIT)
1184 		cond_resched();
1185 	goto again;
1186 }
1187 
1188 /* wrappers around set/clear extent bit */
1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190 		     gfp_t mask)
1191 {
1192 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1193 			      NULL, mask);
1194 }
1195 
1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1197 		    unsigned long bits, gfp_t mask)
1198 {
1199 	return set_extent_bit(tree, start, end, bits, NULL,
1200 			      NULL, mask);
1201 }
1202 
1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1204 		      unsigned long bits, gfp_t mask)
1205 {
1206 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1207 }
1208 
1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1210 			struct extent_state **cached_state, gfp_t mask)
1211 {
1212 	return set_extent_bit(tree, start, end,
1213 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1214 			      NULL, cached_state, mask);
1215 }
1216 
1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1218 		      struct extent_state **cached_state, gfp_t mask)
1219 {
1220 	return set_extent_bit(tree, start, end,
1221 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1222 			      NULL, cached_state, mask);
1223 }
1224 
1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1226 		       gfp_t mask)
1227 {
1228 	return clear_extent_bit(tree, start, end,
1229 				EXTENT_DIRTY | EXTENT_DELALLOC |
1230 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1231 }
1232 
1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1234 		     gfp_t mask)
1235 {
1236 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1237 			      NULL, mask);
1238 }
1239 
1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1241 			struct extent_state **cached_state, gfp_t mask)
1242 {
1243 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1244 			      cached_state, mask);
1245 }
1246 
1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1248 			  struct extent_state **cached_state, gfp_t mask)
1249 {
1250 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1251 				cached_state, mask);
1252 }
1253 
1254 /*
1255  * either insert or lock state struct between start and end use mask to tell
1256  * us if waiting is desired.
1257  */
1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1259 		     unsigned long bits, struct extent_state **cached_state)
1260 {
1261 	int err;
1262 	u64 failed_start;
1263 	while (1) {
1264 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1265 				       EXTENT_LOCKED, &failed_start,
1266 				       cached_state, GFP_NOFS);
1267 		if (err == -EEXIST) {
1268 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1269 			start = failed_start;
1270 		} else
1271 			break;
1272 		WARN_ON(start > end);
1273 	}
1274 	return err;
1275 }
1276 
1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1278 {
1279 	return lock_extent_bits(tree, start, end, 0, NULL);
1280 }
1281 
1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1283 {
1284 	int err;
1285 	u64 failed_start;
1286 
1287 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1288 			       &failed_start, NULL, GFP_NOFS);
1289 	if (err == -EEXIST) {
1290 		if (failed_start > start)
1291 			clear_extent_bit(tree, start, failed_start - 1,
1292 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1293 		return 0;
1294 	}
1295 	return 1;
1296 }
1297 
1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1299 			 struct extent_state **cached, gfp_t mask)
1300 {
1301 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1302 				mask);
1303 }
1304 
1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1306 {
1307 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1308 				GFP_NOFS);
1309 }
1310 
1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1312 {
1313 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1314 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315 	struct page *page;
1316 
1317 	while (index <= end_index) {
1318 		page = find_get_page(inode->i_mapping, index);
1319 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320 		clear_page_dirty_for_io(page);
1321 		page_cache_release(page);
1322 		index++;
1323 	}
1324 	return 0;
1325 }
1326 
1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1328 {
1329 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1330 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331 	struct page *page;
1332 
1333 	while (index <= end_index) {
1334 		page = find_get_page(inode->i_mapping, index);
1335 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1336 		account_page_redirty(page);
1337 		__set_page_dirty_nobuffers(page);
1338 		page_cache_release(page);
1339 		index++;
1340 	}
1341 	return 0;
1342 }
1343 
1344 /*
1345  * helper function to set both pages and extents in the tree writeback
1346  */
1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1350 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1351 	struct page *page;
1352 
1353 	while (index <= end_index) {
1354 		page = find_get_page(tree->mapping, index);
1355 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1356 		set_page_writeback(page);
1357 		page_cache_release(page);
1358 		index++;
1359 	}
1360 	return 0;
1361 }
1362 
1363 /* find the first state struct with 'bits' set after 'start', and
1364  * return it.  tree->lock must be held.  NULL will returned if
1365  * nothing was found after 'start'
1366  */
1367 static struct extent_state *
1368 find_first_extent_bit_state(struct extent_io_tree *tree,
1369 			    u64 start, unsigned long bits)
1370 {
1371 	struct rb_node *node;
1372 	struct extent_state *state;
1373 
1374 	/*
1375 	 * this search will find all the extents that end after
1376 	 * our range starts.
1377 	 */
1378 	node = tree_search(tree, start);
1379 	if (!node)
1380 		goto out;
1381 
1382 	while (1) {
1383 		state = rb_entry(node, struct extent_state, rb_node);
1384 		if (state->end >= start && (state->state & bits))
1385 			return state;
1386 
1387 		node = rb_next(node);
1388 		if (!node)
1389 			break;
1390 	}
1391 out:
1392 	return NULL;
1393 }
1394 
1395 /*
1396  * find the first offset in the io tree with 'bits' set. zero is
1397  * returned if we find something, and *start_ret and *end_ret are
1398  * set to reflect the state struct that was found.
1399  *
1400  * If nothing was found, 1 is returned. If found something, return 0.
1401  */
1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1403 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1404 			  struct extent_state **cached_state)
1405 {
1406 	struct extent_state *state;
1407 	struct rb_node *n;
1408 	int ret = 1;
1409 
1410 	spin_lock(&tree->lock);
1411 	if (cached_state && *cached_state) {
1412 		state = *cached_state;
1413 		if (state->end == start - 1 && state->tree) {
1414 			n = rb_next(&state->rb_node);
1415 			while (n) {
1416 				state = rb_entry(n, struct extent_state,
1417 						 rb_node);
1418 				if (state->state & bits)
1419 					goto got_it;
1420 				n = rb_next(n);
1421 			}
1422 			free_extent_state(*cached_state);
1423 			*cached_state = NULL;
1424 			goto out;
1425 		}
1426 		free_extent_state(*cached_state);
1427 		*cached_state = NULL;
1428 	}
1429 
1430 	state = find_first_extent_bit_state(tree, start, bits);
1431 got_it:
1432 	if (state) {
1433 		cache_state(state, cached_state);
1434 		*start_ret = state->start;
1435 		*end_ret = state->end;
1436 		ret = 0;
1437 	}
1438 out:
1439 	spin_unlock(&tree->lock);
1440 	return ret;
1441 }
1442 
1443 /*
1444  * find a contiguous range of bytes in the file marked as delalloc, not
1445  * more than 'max_bytes'.  start and end are used to return the range,
1446  *
1447  * 1 is returned if we find something, 0 if nothing was in the tree
1448  */
1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1450 					u64 *start, u64 *end, u64 max_bytes,
1451 					struct extent_state **cached_state)
1452 {
1453 	struct rb_node *node;
1454 	struct extent_state *state;
1455 	u64 cur_start = *start;
1456 	u64 found = 0;
1457 	u64 total_bytes = 0;
1458 
1459 	spin_lock(&tree->lock);
1460 
1461 	/*
1462 	 * this search will find all the extents that end after
1463 	 * our range starts.
1464 	 */
1465 	node = tree_search(tree, cur_start);
1466 	if (!node) {
1467 		if (!found)
1468 			*end = (u64)-1;
1469 		goto out;
1470 	}
1471 
1472 	while (1) {
1473 		state = rb_entry(node, struct extent_state, rb_node);
1474 		if (found && (state->start != cur_start ||
1475 			      (state->state & EXTENT_BOUNDARY))) {
1476 			goto out;
1477 		}
1478 		if (!(state->state & EXTENT_DELALLOC)) {
1479 			if (!found)
1480 				*end = state->end;
1481 			goto out;
1482 		}
1483 		if (!found) {
1484 			*start = state->start;
1485 			*cached_state = state;
1486 			atomic_inc(&state->refs);
1487 		}
1488 		found++;
1489 		*end = state->end;
1490 		cur_start = state->end + 1;
1491 		node = rb_next(node);
1492 		total_bytes += state->end - state->start + 1;
1493 		if (total_bytes >= max_bytes)
1494 			break;
1495 		if (!node)
1496 			break;
1497 	}
1498 out:
1499 	spin_unlock(&tree->lock);
1500 	return found;
1501 }
1502 
1503 static noinline void __unlock_for_delalloc(struct inode *inode,
1504 					   struct page *locked_page,
1505 					   u64 start, u64 end)
1506 {
1507 	int ret;
1508 	struct page *pages[16];
1509 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1510 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1511 	unsigned long nr_pages = end_index - index + 1;
1512 	int i;
1513 
1514 	if (index == locked_page->index && end_index == index)
1515 		return;
1516 
1517 	while (nr_pages > 0) {
1518 		ret = find_get_pages_contig(inode->i_mapping, index,
1519 				     min_t(unsigned long, nr_pages,
1520 				     ARRAY_SIZE(pages)), pages);
1521 		for (i = 0; i < ret; i++) {
1522 			if (pages[i] != locked_page)
1523 				unlock_page(pages[i]);
1524 			page_cache_release(pages[i]);
1525 		}
1526 		nr_pages -= ret;
1527 		index += ret;
1528 		cond_resched();
1529 	}
1530 }
1531 
1532 static noinline int lock_delalloc_pages(struct inode *inode,
1533 					struct page *locked_page,
1534 					u64 delalloc_start,
1535 					u64 delalloc_end)
1536 {
1537 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1538 	unsigned long start_index = index;
1539 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1540 	unsigned long pages_locked = 0;
1541 	struct page *pages[16];
1542 	unsigned long nrpages;
1543 	int ret;
1544 	int i;
1545 
1546 	/* the caller is responsible for locking the start index */
1547 	if (index == locked_page->index && index == end_index)
1548 		return 0;
1549 
1550 	/* skip the page at the start index */
1551 	nrpages = end_index - index + 1;
1552 	while (nrpages > 0) {
1553 		ret = find_get_pages_contig(inode->i_mapping, index,
1554 				     min_t(unsigned long,
1555 				     nrpages, ARRAY_SIZE(pages)), pages);
1556 		if (ret == 0) {
1557 			ret = -EAGAIN;
1558 			goto done;
1559 		}
1560 		/* now we have an array of pages, lock them all */
1561 		for (i = 0; i < ret; i++) {
1562 			/*
1563 			 * the caller is taking responsibility for
1564 			 * locked_page
1565 			 */
1566 			if (pages[i] != locked_page) {
1567 				lock_page(pages[i]);
1568 				if (!PageDirty(pages[i]) ||
1569 				    pages[i]->mapping != inode->i_mapping) {
1570 					ret = -EAGAIN;
1571 					unlock_page(pages[i]);
1572 					page_cache_release(pages[i]);
1573 					goto done;
1574 				}
1575 			}
1576 			page_cache_release(pages[i]);
1577 			pages_locked++;
1578 		}
1579 		nrpages -= ret;
1580 		index += ret;
1581 		cond_resched();
1582 	}
1583 	ret = 0;
1584 done:
1585 	if (ret && pages_locked) {
1586 		__unlock_for_delalloc(inode, locked_page,
1587 			      delalloc_start,
1588 			      ((u64)(start_index + pages_locked - 1)) <<
1589 			      PAGE_CACHE_SHIFT);
1590 	}
1591 	return ret;
1592 }
1593 
1594 /*
1595  * find a contiguous range of bytes in the file marked as delalloc, not
1596  * more than 'max_bytes'.  start and end are used to return the range,
1597  *
1598  * 1 is returned if we find something, 0 if nothing was in the tree
1599  */
1600 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1601 				    struct extent_io_tree *tree,
1602 				    struct page *locked_page, u64 *start,
1603 				    u64 *end, u64 max_bytes)
1604 {
1605 	u64 delalloc_start;
1606 	u64 delalloc_end;
1607 	u64 found;
1608 	struct extent_state *cached_state = NULL;
1609 	int ret;
1610 	int loops = 0;
1611 
1612 again:
1613 	/* step one, find a bunch of delalloc bytes starting at start */
1614 	delalloc_start = *start;
1615 	delalloc_end = 0;
1616 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1617 				    max_bytes, &cached_state);
1618 	if (!found || delalloc_end <= *start) {
1619 		*start = delalloc_start;
1620 		*end = delalloc_end;
1621 		free_extent_state(cached_state);
1622 		return 0;
1623 	}
1624 
1625 	/*
1626 	 * start comes from the offset of locked_page.  We have to lock
1627 	 * pages in order, so we can't process delalloc bytes before
1628 	 * locked_page
1629 	 */
1630 	if (delalloc_start < *start)
1631 		delalloc_start = *start;
1632 
1633 	/*
1634 	 * make sure to limit the number of pages we try to lock down
1635 	 */
1636 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1637 		delalloc_end = delalloc_start + max_bytes - 1;
1638 
1639 	/* step two, lock all the pages after the page that has start */
1640 	ret = lock_delalloc_pages(inode, locked_page,
1641 				  delalloc_start, delalloc_end);
1642 	if (ret == -EAGAIN) {
1643 		/* some of the pages are gone, lets avoid looping by
1644 		 * shortening the size of the delalloc range we're searching
1645 		 */
1646 		free_extent_state(cached_state);
1647 		if (!loops) {
1648 			max_bytes = PAGE_CACHE_SIZE;
1649 			loops = 1;
1650 			goto again;
1651 		} else {
1652 			found = 0;
1653 			goto out_failed;
1654 		}
1655 	}
1656 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1657 
1658 	/* step three, lock the state bits for the whole range */
1659 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1660 
1661 	/* then test to make sure it is all still delalloc */
1662 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1663 			     EXTENT_DELALLOC, 1, cached_state);
1664 	if (!ret) {
1665 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1666 				     &cached_state, GFP_NOFS);
1667 		__unlock_for_delalloc(inode, locked_page,
1668 			      delalloc_start, delalloc_end);
1669 		cond_resched();
1670 		goto again;
1671 	}
1672 	free_extent_state(cached_state);
1673 	*start = delalloc_start;
1674 	*end = delalloc_end;
1675 out_failed:
1676 	return found;
1677 }
1678 
1679 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1680 				 struct page *locked_page,
1681 				 unsigned long clear_bits,
1682 				 unsigned long page_ops)
1683 {
1684 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1685 	int ret;
1686 	struct page *pages[16];
1687 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1688 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1689 	unsigned long nr_pages = end_index - index + 1;
1690 	int i;
1691 
1692 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1693 	if (page_ops == 0)
1694 		return 0;
1695 
1696 	while (nr_pages > 0) {
1697 		ret = find_get_pages_contig(inode->i_mapping, index,
1698 				     min_t(unsigned long,
1699 				     nr_pages, ARRAY_SIZE(pages)), pages);
1700 		for (i = 0; i < ret; i++) {
1701 
1702 			if (page_ops & PAGE_SET_PRIVATE2)
1703 				SetPagePrivate2(pages[i]);
1704 
1705 			if (pages[i] == locked_page) {
1706 				page_cache_release(pages[i]);
1707 				continue;
1708 			}
1709 			if (page_ops & PAGE_CLEAR_DIRTY)
1710 				clear_page_dirty_for_io(pages[i]);
1711 			if (page_ops & PAGE_SET_WRITEBACK)
1712 				set_page_writeback(pages[i]);
1713 			if (page_ops & PAGE_END_WRITEBACK)
1714 				end_page_writeback(pages[i]);
1715 			if (page_ops & PAGE_UNLOCK)
1716 				unlock_page(pages[i]);
1717 			page_cache_release(pages[i]);
1718 		}
1719 		nr_pages -= ret;
1720 		index += ret;
1721 		cond_resched();
1722 	}
1723 	return 0;
1724 }
1725 
1726 /*
1727  * count the number of bytes in the tree that have a given bit(s)
1728  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1729  * cached.  The total number found is returned.
1730  */
1731 u64 count_range_bits(struct extent_io_tree *tree,
1732 		     u64 *start, u64 search_end, u64 max_bytes,
1733 		     unsigned long bits, int contig)
1734 {
1735 	struct rb_node *node;
1736 	struct extent_state *state;
1737 	u64 cur_start = *start;
1738 	u64 total_bytes = 0;
1739 	u64 last = 0;
1740 	int found = 0;
1741 
1742 	if (WARN_ON(search_end <= cur_start))
1743 		return 0;
1744 
1745 	spin_lock(&tree->lock);
1746 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1747 		total_bytes = tree->dirty_bytes;
1748 		goto out;
1749 	}
1750 	/*
1751 	 * this search will find all the extents that end after
1752 	 * our range starts.
1753 	 */
1754 	node = tree_search(tree, cur_start);
1755 	if (!node)
1756 		goto out;
1757 
1758 	while (1) {
1759 		state = rb_entry(node, struct extent_state, rb_node);
1760 		if (state->start > search_end)
1761 			break;
1762 		if (contig && found && state->start > last + 1)
1763 			break;
1764 		if (state->end >= cur_start && (state->state & bits) == bits) {
1765 			total_bytes += min(search_end, state->end) + 1 -
1766 				       max(cur_start, state->start);
1767 			if (total_bytes >= max_bytes)
1768 				break;
1769 			if (!found) {
1770 				*start = max(cur_start, state->start);
1771 				found = 1;
1772 			}
1773 			last = state->end;
1774 		} else if (contig && found) {
1775 			break;
1776 		}
1777 		node = rb_next(node);
1778 		if (!node)
1779 			break;
1780 	}
1781 out:
1782 	spin_unlock(&tree->lock);
1783 	return total_bytes;
1784 }
1785 
1786 /*
1787  * set the private field for a given byte offset in the tree.  If there isn't
1788  * an extent_state there already, this does nothing.
1789  */
1790 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1791 {
1792 	struct rb_node *node;
1793 	struct extent_state *state;
1794 	int ret = 0;
1795 
1796 	spin_lock(&tree->lock);
1797 	/*
1798 	 * this search will find all the extents that end after
1799 	 * our range starts.
1800 	 */
1801 	node = tree_search(tree, start);
1802 	if (!node) {
1803 		ret = -ENOENT;
1804 		goto out;
1805 	}
1806 	state = rb_entry(node, struct extent_state, rb_node);
1807 	if (state->start != start) {
1808 		ret = -ENOENT;
1809 		goto out;
1810 	}
1811 	state->private = private;
1812 out:
1813 	spin_unlock(&tree->lock);
1814 	return ret;
1815 }
1816 
1817 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1818 {
1819 	struct rb_node *node;
1820 	struct extent_state *state;
1821 	int ret = 0;
1822 
1823 	spin_lock(&tree->lock);
1824 	/*
1825 	 * this search will find all the extents that end after
1826 	 * our range starts.
1827 	 */
1828 	node = tree_search(tree, start);
1829 	if (!node) {
1830 		ret = -ENOENT;
1831 		goto out;
1832 	}
1833 	state = rb_entry(node, struct extent_state, rb_node);
1834 	if (state->start != start) {
1835 		ret = -ENOENT;
1836 		goto out;
1837 	}
1838 	*private = state->private;
1839 out:
1840 	spin_unlock(&tree->lock);
1841 	return ret;
1842 }
1843 
1844 /*
1845  * searches a range in the state tree for a given mask.
1846  * If 'filled' == 1, this returns 1 only if every extent in the tree
1847  * has the bits set.  Otherwise, 1 is returned if any bit in the
1848  * range is found set.
1849  */
1850 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1851 		   unsigned long bits, int filled, struct extent_state *cached)
1852 {
1853 	struct extent_state *state = NULL;
1854 	struct rb_node *node;
1855 	int bitset = 0;
1856 
1857 	spin_lock(&tree->lock);
1858 	if (cached && cached->tree && cached->start <= start &&
1859 	    cached->end > start)
1860 		node = &cached->rb_node;
1861 	else
1862 		node = tree_search(tree, start);
1863 	while (node && start <= end) {
1864 		state = rb_entry(node, struct extent_state, rb_node);
1865 
1866 		if (filled && state->start > start) {
1867 			bitset = 0;
1868 			break;
1869 		}
1870 
1871 		if (state->start > end)
1872 			break;
1873 
1874 		if (state->state & bits) {
1875 			bitset = 1;
1876 			if (!filled)
1877 				break;
1878 		} else if (filled) {
1879 			bitset = 0;
1880 			break;
1881 		}
1882 
1883 		if (state->end == (u64)-1)
1884 			break;
1885 
1886 		start = state->end + 1;
1887 		if (start > end)
1888 			break;
1889 		node = rb_next(node);
1890 		if (!node) {
1891 			if (filled)
1892 				bitset = 0;
1893 			break;
1894 		}
1895 	}
1896 	spin_unlock(&tree->lock);
1897 	return bitset;
1898 }
1899 
1900 /*
1901  * helper function to set a given page up to date if all the
1902  * extents in the tree for that page are up to date
1903  */
1904 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1905 {
1906 	u64 start = page_offset(page);
1907 	u64 end = start + PAGE_CACHE_SIZE - 1;
1908 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1909 		SetPageUptodate(page);
1910 }
1911 
1912 /*
1913  * When IO fails, either with EIO or csum verification fails, we
1914  * try other mirrors that might have a good copy of the data.  This
1915  * io_failure_record is used to record state as we go through all the
1916  * mirrors.  If another mirror has good data, the page is set up to date
1917  * and things continue.  If a good mirror can't be found, the original
1918  * bio end_io callback is called to indicate things have failed.
1919  */
1920 struct io_failure_record {
1921 	struct page *page;
1922 	u64 start;
1923 	u64 len;
1924 	u64 logical;
1925 	unsigned long bio_flags;
1926 	int this_mirror;
1927 	int failed_mirror;
1928 	int in_validation;
1929 };
1930 
1931 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1932 				int did_repair)
1933 {
1934 	int ret;
1935 	int err = 0;
1936 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1937 
1938 	set_state_private(failure_tree, rec->start, 0);
1939 	ret = clear_extent_bits(failure_tree, rec->start,
1940 				rec->start + rec->len - 1,
1941 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1942 	if (ret)
1943 		err = ret;
1944 
1945 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1946 				rec->start + rec->len - 1,
1947 				EXTENT_DAMAGED, GFP_NOFS);
1948 	if (ret && !err)
1949 		err = ret;
1950 
1951 	kfree(rec);
1952 	return err;
1953 }
1954 
1955 /*
1956  * this bypasses the standard btrfs submit functions deliberately, as
1957  * the standard behavior is to write all copies in a raid setup. here we only
1958  * want to write the one bad copy. so we do the mapping for ourselves and issue
1959  * submit_bio directly.
1960  * to avoid any synchronization issues, wait for the data after writing, which
1961  * actually prevents the read that triggered the error from finishing.
1962  * currently, there can be no more than two copies of every data bit. thus,
1963  * exactly one rewrite is required.
1964  */
1965 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1966 			u64 length, u64 logical, struct page *page,
1967 			int mirror_num)
1968 {
1969 	struct bio *bio;
1970 	struct btrfs_device *dev;
1971 	u64 map_length = 0;
1972 	u64 sector;
1973 	struct btrfs_bio *bbio = NULL;
1974 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1975 	int ret;
1976 
1977 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1978 	BUG_ON(!mirror_num);
1979 
1980 	/* we can't repair anything in raid56 yet */
1981 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1982 		return 0;
1983 
1984 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1985 	if (!bio)
1986 		return -EIO;
1987 	bio->bi_size = 0;
1988 	map_length = length;
1989 
1990 	ret = btrfs_map_block(fs_info, WRITE, logical,
1991 			      &map_length, &bbio, mirror_num);
1992 	if (ret) {
1993 		bio_put(bio);
1994 		return -EIO;
1995 	}
1996 	BUG_ON(mirror_num != bbio->mirror_num);
1997 	sector = bbio->stripes[mirror_num-1].physical >> 9;
1998 	bio->bi_sector = sector;
1999 	dev = bbio->stripes[mirror_num-1].dev;
2000 	kfree(bbio);
2001 	if (!dev || !dev->bdev || !dev->writeable) {
2002 		bio_put(bio);
2003 		return -EIO;
2004 	}
2005 	bio->bi_bdev = dev->bdev;
2006 	bio_add_page(bio, page, length, start - page_offset(page));
2007 
2008 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2009 		/* try to remap that extent elsewhere? */
2010 		bio_put(bio);
2011 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2012 		return -EIO;
2013 	}
2014 
2015 	printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2016 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2017 		      start, rcu_str_deref(dev->name), sector);
2018 
2019 	bio_put(bio);
2020 	return 0;
2021 }
2022 
2023 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2024 			 int mirror_num)
2025 {
2026 	u64 start = eb->start;
2027 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2028 	int ret = 0;
2029 
2030 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2031 		return -EROFS;
2032 
2033 	for (i = 0; i < num_pages; i++) {
2034 		struct page *p = extent_buffer_page(eb, i);
2035 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2036 					start, p, mirror_num);
2037 		if (ret)
2038 			break;
2039 		start += PAGE_CACHE_SIZE;
2040 	}
2041 
2042 	return ret;
2043 }
2044 
2045 /*
2046  * each time an IO finishes, we do a fast check in the IO failure tree
2047  * to see if we need to process or clean up an io_failure_record
2048  */
2049 static int clean_io_failure(u64 start, struct page *page)
2050 {
2051 	u64 private;
2052 	u64 private_failure;
2053 	struct io_failure_record *failrec;
2054 	struct inode *inode = page->mapping->host;
2055 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2056 	struct extent_state *state;
2057 	int num_copies;
2058 	int did_repair = 0;
2059 	int ret;
2060 
2061 	private = 0;
2062 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2063 				(u64)-1, 1, EXTENT_DIRTY, 0);
2064 	if (!ret)
2065 		return 0;
2066 
2067 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2068 				&private_failure);
2069 	if (ret)
2070 		return 0;
2071 
2072 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2073 	BUG_ON(!failrec->this_mirror);
2074 
2075 	if (failrec->in_validation) {
2076 		/* there was no real error, just free the record */
2077 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2078 			 failrec->start);
2079 		did_repair = 1;
2080 		goto out;
2081 	}
2082 	if (fs_info->sb->s_flags & MS_RDONLY)
2083 		goto out;
2084 
2085 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2086 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2087 					    failrec->start,
2088 					    EXTENT_LOCKED);
2089 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2090 
2091 	if (state && state->start <= failrec->start &&
2092 	    state->end >= failrec->start + failrec->len - 1) {
2093 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2094 					      failrec->len);
2095 		if (num_copies > 1)  {
2096 			ret = repair_io_failure(fs_info, start, failrec->len,
2097 						failrec->logical, page,
2098 						failrec->failed_mirror);
2099 			did_repair = !ret;
2100 		}
2101 		ret = 0;
2102 	}
2103 
2104 out:
2105 	if (!ret)
2106 		ret = free_io_failure(inode, failrec, did_repair);
2107 
2108 	return ret;
2109 }
2110 
2111 /*
2112  * this is a generic handler for readpage errors (default
2113  * readpage_io_failed_hook). if other copies exist, read those and write back
2114  * good data to the failed position. does not investigate in remapping the
2115  * failed extent elsewhere, hoping the device will be smart enough to do this as
2116  * needed
2117  */
2118 
2119 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2120 			      struct page *page, u64 start, u64 end,
2121 			      int failed_mirror)
2122 {
2123 	struct io_failure_record *failrec = NULL;
2124 	u64 private;
2125 	struct extent_map *em;
2126 	struct inode *inode = page->mapping->host;
2127 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2128 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2129 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2130 	struct bio *bio;
2131 	struct btrfs_io_bio *btrfs_failed_bio;
2132 	struct btrfs_io_bio *btrfs_bio;
2133 	int num_copies;
2134 	int ret;
2135 	int read_mode;
2136 	u64 logical;
2137 
2138 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2139 
2140 	ret = get_state_private(failure_tree, start, &private);
2141 	if (ret) {
2142 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2143 		if (!failrec)
2144 			return -ENOMEM;
2145 		failrec->start = start;
2146 		failrec->len = end - start + 1;
2147 		failrec->this_mirror = 0;
2148 		failrec->bio_flags = 0;
2149 		failrec->in_validation = 0;
2150 
2151 		read_lock(&em_tree->lock);
2152 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2153 		if (!em) {
2154 			read_unlock(&em_tree->lock);
2155 			kfree(failrec);
2156 			return -EIO;
2157 		}
2158 
2159 		if (em->start > start || em->start + em->len < start) {
2160 			free_extent_map(em);
2161 			em = NULL;
2162 		}
2163 		read_unlock(&em_tree->lock);
2164 
2165 		if (!em) {
2166 			kfree(failrec);
2167 			return -EIO;
2168 		}
2169 		logical = start - em->start;
2170 		logical = em->block_start + logical;
2171 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2172 			logical = em->block_start;
2173 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2174 			extent_set_compress_type(&failrec->bio_flags,
2175 						 em->compress_type);
2176 		}
2177 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2178 			 "len=%llu\n", logical, start, failrec->len);
2179 		failrec->logical = logical;
2180 		free_extent_map(em);
2181 
2182 		/* set the bits in the private failure tree */
2183 		ret = set_extent_bits(failure_tree, start, end,
2184 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2185 		if (ret >= 0)
2186 			ret = set_state_private(failure_tree, start,
2187 						(u64)(unsigned long)failrec);
2188 		/* set the bits in the inode's tree */
2189 		if (ret >= 0)
2190 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2191 						GFP_NOFS);
2192 		if (ret < 0) {
2193 			kfree(failrec);
2194 			return ret;
2195 		}
2196 	} else {
2197 		failrec = (struct io_failure_record *)(unsigned long)private;
2198 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2199 			 "start=%llu, len=%llu, validation=%d\n",
2200 			 failrec->logical, failrec->start, failrec->len,
2201 			 failrec->in_validation);
2202 		/*
2203 		 * when data can be on disk more than twice, add to failrec here
2204 		 * (e.g. with a list for failed_mirror) to make
2205 		 * clean_io_failure() clean all those errors at once.
2206 		 */
2207 	}
2208 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2209 				      failrec->logical, failrec->len);
2210 	if (num_copies == 1) {
2211 		/*
2212 		 * we only have a single copy of the data, so don't bother with
2213 		 * all the retry and error correction code that follows. no
2214 		 * matter what the error is, it is very likely to persist.
2215 		 */
2216 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2217 			 num_copies, failrec->this_mirror, failed_mirror);
2218 		free_io_failure(inode, failrec, 0);
2219 		return -EIO;
2220 	}
2221 
2222 	/*
2223 	 * there are two premises:
2224 	 *	a) deliver good data to the caller
2225 	 *	b) correct the bad sectors on disk
2226 	 */
2227 	if (failed_bio->bi_vcnt > 1) {
2228 		/*
2229 		 * to fulfill b), we need to know the exact failing sectors, as
2230 		 * we don't want to rewrite any more than the failed ones. thus,
2231 		 * we need separate read requests for the failed bio
2232 		 *
2233 		 * if the following BUG_ON triggers, our validation request got
2234 		 * merged. we need separate requests for our algorithm to work.
2235 		 */
2236 		BUG_ON(failrec->in_validation);
2237 		failrec->in_validation = 1;
2238 		failrec->this_mirror = failed_mirror;
2239 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2240 	} else {
2241 		/*
2242 		 * we're ready to fulfill a) and b) alongside. get a good copy
2243 		 * of the failed sector and if we succeed, we have setup
2244 		 * everything for repair_io_failure to do the rest for us.
2245 		 */
2246 		if (failrec->in_validation) {
2247 			BUG_ON(failrec->this_mirror != failed_mirror);
2248 			failrec->in_validation = 0;
2249 			failrec->this_mirror = 0;
2250 		}
2251 		failrec->failed_mirror = failed_mirror;
2252 		failrec->this_mirror++;
2253 		if (failrec->this_mirror == failed_mirror)
2254 			failrec->this_mirror++;
2255 		read_mode = READ_SYNC;
2256 	}
2257 
2258 	if (failrec->this_mirror > num_copies) {
2259 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2260 			 num_copies, failrec->this_mirror, failed_mirror);
2261 		free_io_failure(inode, failrec, 0);
2262 		return -EIO;
2263 	}
2264 
2265 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2266 	if (!bio) {
2267 		free_io_failure(inode, failrec, 0);
2268 		return -EIO;
2269 	}
2270 	bio->bi_end_io = failed_bio->bi_end_io;
2271 	bio->bi_sector = failrec->logical >> 9;
2272 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2273 	bio->bi_size = 0;
2274 
2275 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2276 	if (btrfs_failed_bio->csum) {
2277 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2278 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2279 
2280 		btrfs_bio = btrfs_io_bio(bio);
2281 		btrfs_bio->csum = btrfs_bio->csum_inline;
2282 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2283 		phy_offset *= csum_size;
2284 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2285 		       csum_size);
2286 	}
2287 
2288 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2289 
2290 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2291 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2292 		 failrec->this_mirror, num_copies, failrec->in_validation);
2293 
2294 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2295 					 failrec->this_mirror,
2296 					 failrec->bio_flags, 0);
2297 	return ret;
2298 }
2299 
2300 /* lots and lots of room for performance fixes in the end_bio funcs */
2301 
2302 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2303 {
2304 	int uptodate = (err == 0);
2305 	struct extent_io_tree *tree;
2306 	int ret;
2307 
2308 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2309 
2310 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2311 		ret = tree->ops->writepage_end_io_hook(page, start,
2312 					       end, NULL, uptodate);
2313 		if (ret)
2314 			uptodate = 0;
2315 	}
2316 
2317 	if (!uptodate) {
2318 		ClearPageUptodate(page);
2319 		SetPageError(page);
2320 	}
2321 	return 0;
2322 }
2323 
2324 /*
2325  * after a writepage IO is done, we need to:
2326  * clear the uptodate bits on error
2327  * clear the writeback bits in the extent tree for this IO
2328  * end_page_writeback if the page has no more pending IO
2329  *
2330  * Scheduling is not allowed, so the extent state tree is expected
2331  * to have one and only one object corresponding to this IO.
2332  */
2333 static void end_bio_extent_writepage(struct bio *bio, int err)
2334 {
2335 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2336 	struct extent_io_tree *tree;
2337 	u64 start;
2338 	u64 end;
2339 
2340 	do {
2341 		struct page *page = bvec->bv_page;
2342 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2343 
2344 		/* We always issue full-page reads, but if some block
2345 		 * in a page fails to read, blk_update_request() will
2346 		 * advance bv_offset and adjust bv_len to compensate.
2347 		 * Print a warning for nonzero offsets, and an error
2348 		 * if they don't add up to a full page.  */
2349 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2350 			printk("%s page write in btrfs with offset %u and length %u\n",
2351 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2352 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2353 			       bvec->bv_offset, bvec->bv_len);
2354 
2355 		start = page_offset(page);
2356 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2357 
2358 		if (--bvec >= bio->bi_io_vec)
2359 			prefetchw(&bvec->bv_page->flags);
2360 
2361 		if (end_extent_writepage(page, err, start, end))
2362 			continue;
2363 
2364 		end_page_writeback(page);
2365 	} while (bvec >= bio->bi_io_vec);
2366 
2367 	bio_put(bio);
2368 }
2369 
2370 static void
2371 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2372 			      int uptodate)
2373 {
2374 	struct extent_state *cached = NULL;
2375 	u64 end = start + len - 1;
2376 
2377 	if (uptodate && tree->track_uptodate)
2378 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2379 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2380 }
2381 
2382 /*
2383  * after a readpage IO is done, we need to:
2384  * clear the uptodate bits on error
2385  * set the uptodate bits if things worked
2386  * set the page up to date if all extents in the tree are uptodate
2387  * clear the lock bit in the extent tree
2388  * unlock the page if there are no other extents locked for it
2389  *
2390  * Scheduling is not allowed, so the extent state tree is expected
2391  * to have one and only one object corresponding to this IO.
2392  */
2393 static void end_bio_extent_readpage(struct bio *bio, int err)
2394 {
2395 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2396 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2397 	struct bio_vec *bvec = bio->bi_io_vec;
2398 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2399 	struct extent_io_tree *tree;
2400 	u64 offset = 0;
2401 	u64 start;
2402 	u64 end;
2403 	u64 len;
2404 	u64 extent_start = 0;
2405 	u64 extent_len = 0;
2406 	int mirror;
2407 	int ret;
2408 
2409 	if (err)
2410 		uptodate = 0;
2411 
2412 	do {
2413 		struct page *page = bvec->bv_page;
2414 		struct inode *inode = page->mapping->host;
2415 
2416 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2417 			 "mirror=%lu\n", (u64)bio->bi_sector, err,
2418 			 io_bio->mirror_num);
2419 		tree = &BTRFS_I(inode)->io_tree;
2420 
2421 		/* We always issue full-page reads, but if some block
2422 		 * in a page fails to read, blk_update_request() will
2423 		 * advance bv_offset and adjust bv_len to compensate.
2424 		 * Print a warning for nonzero offsets, and an error
2425 		 * if they don't add up to a full page.  */
2426 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2427 			printk("%s page read in btrfs with offset %u and length %u\n",
2428 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2429 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2430 			       bvec->bv_offset, bvec->bv_len);
2431 
2432 		start = page_offset(page);
2433 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2434 		len = bvec->bv_len;
2435 
2436 		if (++bvec <= bvec_end)
2437 			prefetchw(&bvec->bv_page->flags);
2438 
2439 		mirror = io_bio->mirror_num;
2440 		if (likely(uptodate && tree->ops &&
2441 			   tree->ops->readpage_end_io_hook)) {
2442 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2443 							      page, start, end,
2444 							      mirror);
2445 			if (ret)
2446 				uptodate = 0;
2447 			else
2448 				clean_io_failure(start, page);
2449 		}
2450 
2451 		if (likely(uptodate))
2452 			goto readpage_ok;
2453 
2454 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2455 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2456 			if (!ret && !err &&
2457 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2458 				uptodate = 1;
2459 		} else {
2460 			/*
2461 			 * The generic bio_readpage_error handles errors the
2462 			 * following way: If possible, new read requests are
2463 			 * created and submitted and will end up in
2464 			 * end_bio_extent_readpage as well (if we're lucky, not
2465 			 * in the !uptodate case). In that case it returns 0 and
2466 			 * we just go on with the next page in our bio. If it
2467 			 * can't handle the error it will return -EIO and we
2468 			 * remain responsible for that page.
2469 			 */
2470 			ret = bio_readpage_error(bio, offset, page, start, end,
2471 						 mirror);
2472 			if (ret == 0) {
2473 				uptodate =
2474 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2475 				if (err)
2476 					uptodate = 0;
2477 				continue;
2478 			}
2479 		}
2480 readpage_ok:
2481 		if (likely(uptodate)) {
2482 			loff_t i_size = i_size_read(inode);
2483 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2484 			unsigned offset;
2485 
2486 			/* Zero out the end if this page straddles i_size */
2487 			offset = i_size & (PAGE_CACHE_SIZE-1);
2488 			if (page->index == end_index && offset)
2489 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2490 			SetPageUptodate(page);
2491 		} else {
2492 			ClearPageUptodate(page);
2493 			SetPageError(page);
2494 		}
2495 		unlock_page(page);
2496 		offset += len;
2497 
2498 		if (unlikely(!uptodate)) {
2499 			if (extent_len) {
2500 				endio_readpage_release_extent(tree,
2501 							      extent_start,
2502 							      extent_len, 1);
2503 				extent_start = 0;
2504 				extent_len = 0;
2505 			}
2506 			endio_readpage_release_extent(tree, start,
2507 						      end - start + 1, 0);
2508 		} else if (!extent_len) {
2509 			extent_start = start;
2510 			extent_len = end + 1 - start;
2511 		} else if (extent_start + extent_len == start) {
2512 			extent_len += end + 1 - start;
2513 		} else {
2514 			endio_readpage_release_extent(tree, extent_start,
2515 						      extent_len, uptodate);
2516 			extent_start = start;
2517 			extent_len = end + 1 - start;
2518 		}
2519 	} while (bvec <= bvec_end);
2520 
2521 	if (extent_len)
2522 		endio_readpage_release_extent(tree, extent_start, extent_len,
2523 					      uptodate);
2524 	if (io_bio->end_io)
2525 		io_bio->end_io(io_bio, err);
2526 	bio_put(bio);
2527 }
2528 
2529 /*
2530  * this allocates from the btrfs_bioset.  We're returning a bio right now
2531  * but you can call btrfs_io_bio for the appropriate container_of magic
2532  */
2533 struct bio *
2534 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2535 		gfp_t gfp_flags)
2536 {
2537 	struct btrfs_io_bio *btrfs_bio;
2538 	struct bio *bio;
2539 
2540 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2541 
2542 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2543 		while (!bio && (nr_vecs /= 2)) {
2544 			bio = bio_alloc_bioset(gfp_flags,
2545 					       nr_vecs, btrfs_bioset);
2546 		}
2547 	}
2548 
2549 	if (bio) {
2550 		bio->bi_size = 0;
2551 		bio->bi_bdev = bdev;
2552 		bio->bi_sector = first_sector;
2553 		btrfs_bio = btrfs_io_bio(bio);
2554 		btrfs_bio->csum = NULL;
2555 		btrfs_bio->csum_allocated = NULL;
2556 		btrfs_bio->end_io = NULL;
2557 	}
2558 	return bio;
2559 }
2560 
2561 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2562 {
2563 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2564 }
2565 
2566 
2567 /* this also allocates from the btrfs_bioset */
2568 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2569 {
2570 	struct btrfs_io_bio *btrfs_bio;
2571 	struct bio *bio;
2572 
2573 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2574 	if (bio) {
2575 		btrfs_bio = btrfs_io_bio(bio);
2576 		btrfs_bio->csum = NULL;
2577 		btrfs_bio->csum_allocated = NULL;
2578 		btrfs_bio->end_io = NULL;
2579 	}
2580 	return bio;
2581 }
2582 
2583 
2584 static int __must_check submit_one_bio(int rw, struct bio *bio,
2585 				       int mirror_num, unsigned long bio_flags)
2586 {
2587 	int ret = 0;
2588 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2589 	struct page *page = bvec->bv_page;
2590 	struct extent_io_tree *tree = bio->bi_private;
2591 	u64 start;
2592 
2593 	start = page_offset(page) + bvec->bv_offset;
2594 
2595 	bio->bi_private = NULL;
2596 
2597 	bio_get(bio);
2598 
2599 	if (tree->ops && tree->ops->submit_bio_hook)
2600 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2601 					   mirror_num, bio_flags, start);
2602 	else
2603 		btrfsic_submit_bio(rw, bio);
2604 
2605 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2606 		ret = -EOPNOTSUPP;
2607 	bio_put(bio);
2608 	return ret;
2609 }
2610 
2611 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2612 		     unsigned long offset, size_t size, struct bio *bio,
2613 		     unsigned long bio_flags)
2614 {
2615 	int ret = 0;
2616 	if (tree->ops && tree->ops->merge_bio_hook)
2617 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2618 						bio_flags);
2619 	BUG_ON(ret < 0);
2620 	return ret;
2621 
2622 }
2623 
2624 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2625 			      struct page *page, sector_t sector,
2626 			      size_t size, unsigned long offset,
2627 			      struct block_device *bdev,
2628 			      struct bio **bio_ret,
2629 			      unsigned long max_pages,
2630 			      bio_end_io_t end_io_func,
2631 			      int mirror_num,
2632 			      unsigned long prev_bio_flags,
2633 			      unsigned long bio_flags)
2634 {
2635 	int ret = 0;
2636 	struct bio *bio;
2637 	int nr;
2638 	int contig = 0;
2639 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2640 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2641 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2642 
2643 	if (bio_ret && *bio_ret) {
2644 		bio = *bio_ret;
2645 		if (old_compressed)
2646 			contig = bio->bi_sector == sector;
2647 		else
2648 			contig = bio_end_sector(bio) == sector;
2649 
2650 		if (prev_bio_flags != bio_flags || !contig ||
2651 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2652 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2653 			ret = submit_one_bio(rw, bio, mirror_num,
2654 					     prev_bio_flags);
2655 			if (ret < 0)
2656 				return ret;
2657 			bio = NULL;
2658 		} else {
2659 			return 0;
2660 		}
2661 	}
2662 	if (this_compressed)
2663 		nr = BIO_MAX_PAGES;
2664 	else
2665 		nr = bio_get_nr_vecs(bdev);
2666 
2667 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2668 	if (!bio)
2669 		return -ENOMEM;
2670 
2671 	bio_add_page(bio, page, page_size, offset);
2672 	bio->bi_end_io = end_io_func;
2673 	bio->bi_private = tree;
2674 
2675 	if (bio_ret)
2676 		*bio_ret = bio;
2677 	else
2678 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2679 
2680 	return ret;
2681 }
2682 
2683 static void attach_extent_buffer_page(struct extent_buffer *eb,
2684 				      struct page *page)
2685 {
2686 	if (!PagePrivate(page)) {
2687 		SetPagePrivate(page);
2688 		page_cache_get(page);
2689 		set_page_private(page, (unsigned long)eb);
2690 	} else {
2691 		WARN_ON(page->private != (unsigned long)eb);
2692 	}
2693 }
2694 
2695 void set_page_extent_mapped(struct page *page)
2696 {
2697 	if (!PagePrivate(page)) {
2698 		SetPagePrivate(page);
2699 		page_cache_get(page);
2700 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2701 	}
2702 }
2703 
2704 static struct extent_map *
2705 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2706 		 u64 start, u64 len, get_extent_t *get_extent,
2707 		 struct extent_map **em_cached)
2708 {
2709 	struct extent_map *em;
2710 
2711 	if (em_cached && *em_cached) {
2712 		em = *em_cached;
2713 		if (em->in_tree && start >= em->start &&
2714 		    start < extent_map_end(em)) {
2715 			atomic_inc(&em->refs);
2716 			return em;
2717 		}
2718 
2719 		free_extent_map(em);
2720 		*em_cached = NULL;
2721 	}
2722 
2723 	em = get_extent(inode, page, pg_offset, start, len, 0);
2724 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2725 		BUG_ON(*em_cached);
2726 		atomic_inc(&em->refs);
2727 		*em_cached = em;
2728 	}
2729 	return em;
2730 }
2731 /*
2732  * basic readpage implementation.  Locked extent state structs are inserted
2733  * into the tree that are removed when the IO is done (by the end_io
2734  * handlers)
2735  * XXX JDM: This needs looking at to ensure proper page locking
2736  */
2737 static int __do_readpage(struct extent_io_tree *tree,
2738 			 struct page *page,
2739 			 get_extent_t *get_extent,
2740 			 struct extent_map **em_cached,
2741 			 struct bio **bio, int mirror_num,
2742 			 unsigned long *bio_flags, int rw)
2743 {
2744 	struct inode *inode = page->mapping->host;
2745 	u64 start = page_offset(page);
2746 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2747 	u64 end;
2748 	u64 cur = start;
2749 	u64 extent_offset;
2750 	u64 last_byte = i_size_read(inode);
2751 	u64 block_start;
2752 	u64 cur_end;
2753 	sector_t sector;
2754 	struct extent_map *em;
2755 	struct block_device *bdev;
2756 	int ret;
2757 	int nr = 0;
2758 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2759 	size_t pg_offset = 0;
2760 	size_t iosize;
2761 	size_t disk_io_size;
2762 	size_t blocksize = inode->i_sb->s_blocksize;
2763 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2764 
2765 	set_page_extent_mapped(page);
2766 
2767 	end = page_end;
2768 	if (!PageUptodate(page)) {
2769 		if (cleancache_get_page(page) == 0) {
2770 			BUG_ON(blocksize != PAGE_SIZE);
2771 			unlock_extent(tree, start, end);
2772 			goto out;
2773 		}
2774 	}
2775 
2776 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2777 		char *userpage;
2778 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2779 
2780 		if (zero_offset) {
2781 			iosize = PAGE_CACHE_SIZE - zero_offset;
2782 			userpage = kmap_atomic(page);
2783 			memset(userpage + zero_offset, 0, iosize);
2784 			flush_dcache_page(page);
2785 			kunmap_atomic(userpage);
2786 		}
2787 	}
2788 	while (cur <= end) {
2789 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2790 
2791 		if (cur >= last_byte) {
2792 			char *userpage;
2793 			struct extent_state *cached = NULL;
2794 
2795 			iosize = PAGE_CACHE_SIZE - pg_offset;
2796 			userpage = kmap_atomic(page);
2797 			memset(userpage + pg_offset, 0, iosize);
2798 			flush_dcache_page(page);
2799 			kunmap_atomic(userpage);
2800 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2801 					    &cached, GFP_NOFS);
2802 			if (!parent_locked)
2803 				unlock_extent_cached(tree, cur,
2804 						     cur + iosize - 1,
2805 						     &cached, GFP_NOFS);
2806 			break;
2807 		}
2808 		em = __get_extent_map(inode, page, pg_offset, cur,
2809 				      end - cur + 1, get_extent, em_cached);
2810 		if (IS_ERR_OR_NULL(em)) {
2811 			SetPageError(page);
2812 			if (!parent_locked)
2813 				unlock_extent(tree, cur, end);
2814 			break;
2815 		}
2816 		extent_offset = cur - em->start;
2817 		BUG_ON(extent_map_end(em) <= cur);
2818 		BUG_ON(end < cur);
2819 
2820 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2821 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2822 			extent_set_compress_type(&this_bio_flag,
2823 						 em->compress_type);
2824 		}
2825 
2826 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2827 		cur_end = min(extent_map_end(em) - 1, end);
2828 		iosize = ALIGN(iosize, blocksize);
2829 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2830 			disk_io_size = em->block_len;
2831 			sector = em->block_start >> 9;
2832 		} else {
2833 			sector = (em->block_start + extent_offset) >> 9;
2834 			disk_io_size = iosize;
2835 		}
2836 		bdev = em->bdev;
2837 		block_start = em->block_start;
2838 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2839 			block_start = EXTENT_MAP_HOLE;
2840 		free_extent_map(em);
2841 		em = NULL;
2842 
2843 		/* we've found a hole, just zero and go on */
2844 		if (block_start == EXTENT_MAP_HOLE) {
2845 			char *userpage;
2846 			struct extent_state *cached = NULL;
2847 
2848 			userpage = kmap_atomic(page);
2849 			memset(userpage + pg_offset, 0, iosize);
2850 			flush_dcache_page(page);
2851 			kunmap_atomic(userpage);
2852 
2853 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2854 					    &cached, GFP_NOFS);
2855 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2856 			                     &cached, GFP_NOFS);
2857 			cur = cur + iosize;
2858 			pg_offset += iosize;
2859 			continue;
2860 		}
2861 		/* the get_extent function already copied into the page */
2862 		if (test_range_bit(tree, cur, cur_end,
2863 				   EXTENT_UPTODATE, 1, NULL)) {
2864 			check_page_uptodate(tree, page);
2865 			if (!parent_locked)
2866 				unlock_extent(tree, cur, cur + iosize - 1);
2867 			cur = cur + iosize;
2868 			pg_offset += iosize;
2869 			continue;
2870 		}
2871 		/* we have an inline extent but it didn't get marked up
2872 		 * to date.  Error out
2873 		 */
2874 		if (block_start == EXTENT_MAP_INLINE) {
2875 			SetPageError(page);
2876 			if (!parent_locked)
2877 				unlock_extent(tree, cur, cur + iosize - 1);
2878 			cur = cur + iosize;
2879 			pg_offset += iosize;
2880 			continue;
2881 		}
2882 
2883 		pnr -= page->index;
2884 		ret = submit_extent_page(rw, tree, page,
2885 					 sector, disk_io_size, pg_offset,
2886 					 bdev, bio, pnr,
2887 					 end_bio_extent_readpage, mirror_num,
2888 					 *bio_flags,
2889 					 this_bio_flag);
2890 		if (!ret) {
2891 			nr++;
2892 			*bio_flags = this_bio_flag;
2893 		} else {
2894 			SetPageError(page);
2895 			if (!parent_locked)
2896 				unlock_extent(tree, cur, cur + iosize - 1);
2897 		}
2898 		cur = cur + iosize;
2899 		pg_offset += iosize;
2900 	}
2901 out:
2902 	if (!nr) {
2903 		if (!PageError(page))
2904 			SetPageUptodate(page);
2905 		unlock_page(page);
2906 	}
2907 	return 0;
2908 }
2909 
2910 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2911 					     struct page *pages[], int nr_pages,
2912 					     u64 start, u64 end,
2913 					     get_extent_t *get_extent,
2914 					     struct extent_map **em_cached,
2915 					     struct bio **bio, int mirror_num,
2916 					     unsigned long *bio_flags, int rw)
2917 {
2918 	struct inode *inode;
2919 	struct btrfs_ordered_extent *ordered;
2920 	int index;
2921 
2922 	inode = pages[0]->mapping->host;
2923 	while (1) {
2924 		lock_extent(tree, start, end);
2925 		ordered = btrfs_lookup_ordered_range(inode, start,
2926 						     end - start + 1);
2927 		if (!ordered)
2928 			break;
2929 		unlock_extent(tree, start, end);
2930 		btrfs_start_ordered_extent(inode, ordered, 1);
2931 		btrfs_put_ordered_extent(ordered);
2932 	}
2933 
2934 	for (index = 0; index < nr_pages; index++) {
2935 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2936 			      mirror_num, bio_flags, rw);
2937 		page_cache_release(pages[index]);
2938 	}
2939 }
2940 
2941 static void __extent_readpages(struct extent_io_tree *tree,
2942 			       struct page *pages[],
2943 			       int nr_pages, get_extent_t *get_extent,
2944 			       struct extent_map **em_cached,
2945 			       struct bio **bio, int mirror_num,
2946 			       unsigned long *bio_flags, int rw)
2947 {
2948 	u64 start = 0;
2949 	u64 end = 0;
2950 	u64 page_start;
2951 	int index;
2952 	int first_index = 0;
2953 
2954 	for (index = 0; index < nr_pages; index++) {
2955 		page_start = page_offset(pages[index]);
2956 		if (!end) {
2957 			start = page_start;
2958 			end = start + PAGE_CACHE_SIZE - 1;
2959 			first_index = index;
2960 		} else if (end + 1 == page_start) {
2961 			end += PAGE_CACHE_SIZE;
2962 		} else {
2963 			__do_contiguous_readpages(tree, &pages[first_index],
2964 						  index - first_index, start,
2965 						  end, get_extent, em_cached,
2966 						  bio, mirror_num, bio_flags,
2967 						  rw);
2968 			start = page_start;
2969 			end = start + PAGE_CACHE_SIZE - 1;
2970 			first_index = index;
2971 		}
2972 	}
2973 
2974 	if (end)
2975 		__do_contiguous_readpages(tree, &pages[first_index],
2976 					  index - first_index, start,
2977 					  end, get_extent, em_cached, bio,
2978 					  mirror_num, bio_flags, rw);
2979 }
2980 
2981 static int __extent_read_full_page(struct extent_io_tree *tree,
2982 				   struct page *page,
2983 				   get_extent_t *get_extent,
2984 				   struct bio **bio, int mirror_num,
2985 				   unsigned long *bio_flags, int rw)
2986 {
2987 	struct inode *inode = page->mapping->host;
2988 	struct btrfs_ordered_extent *ordered;
2989 	u64 start = page_offset(page);
2990 	u64 end = start + PAGE_CACHE_SIZE - 1;
2991 	int ret;
2992 
2993 	while (1) {
2994 		lock_extent(tree, start, end);
2995 		ordered = btrfs_lookup_ordered_extent(inode, start);
2996 		if (!ordered)
2997 			break;
2998 		unlock_extent(tree, start, end);
2999 		btrfs_start_ordered_extent(inode, ordered, 1);
3000 		btrfs_put_ordered_extent(ordered);
3001 	}
3002 
3003 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3004 			    bio_flags, rw);
3005 	return ret;
3006 }
3007 
3008 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3009 			    get_extent_t *get_extent, int mirror_num)
3010 {
3011 	struct bio *bio = NULL;
3012 	unsigned long bio_flags = 0;
3013 	int ret;
3014 
3015 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3016 				      &bio_flags, READ);
3017 	if (bio)
3018 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3019 	return ret;
3020 }
3021 
3022 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3023 				 get_extent_t *get_extent, int mirror_num)
3024 {
3025 	struct bio *bio = NULL;
3026 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3027 	int ret;
3028 
3029 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3030 				      &bio_flags, READ);
3031 	if (bio)
3032 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3033 	return ret;
3034 }
3035 
3036 static noinline void update_nr_written(struct page *page,
3037 				      struct writeback_control *wbc,
3038 				      unsigned long nr_written)
3039 {
3040 	wbc->nr_to_write -= nr_written;
3041 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3042 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3043 		page->mapping->writeback_index = page->index + nr_written;
3044 }
3045 
3046 /*
3047  * the writepage semantics are similar to regular writepage.  extent
3048  * records are inserted to lock ranges in the tree, and as dirty areas
3049  * are found, they are marked writeback.  Then the lock bits are removed
3050  * and the end_io handler clears the writeback ranges
3051  */
3052 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3053 			      void *data)
3054 {
3055 	struct inode *inode = page->mapping->host;
3056 	struct extent_page_data *epd = data;
3057 	struct extent_io_tree *tree = epd->tree;
3058 	u64 start = page_offset(page);
3059 	u64 delalloc_start;
3060 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3061 	u64 end;
3062 	u64 cur = start;
3063 	u64 extent_offset;
3064 	u64 last_byte = i_size_read(inode);
3065 	u64 block_start;
3066 	u64 iosize;
3067 	sector_t sector;
3068 	struct extent_state *cached_state = NULL;
3069 	struct extent_map *em;
3070 	struct block_device *bdev;
3071 	int ret;
3072 	int nr = 0;
3073 	size_t pg_offset = 0;
3074 	size_t blocksize;
3075 	loff_t i_size = i_size_read(inode);
3076 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3077 	u64 nr_delalloc;
3078 	u64 delalloc_end;
3079 	int page_started;
3080 	int compressed;
3081 	int write_flags;
3082 	unsigned long nr_written = 0;
3083 	bool fill_delalloc = true;
3084 
3085 	if (wbc->sync_mode == WB_SYNC_ALL)
3086 		write_flags = WRITE_SYNC;
3087 	else
3088 		write_flags = WRITE;
3089 
3090 	trace___extent_writepage(page, inode, wbc);
3091 
3092 	WARN_ON(!PageLocked(page));
3093 
3094 	ClearPageError(page);
3095 
3096 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3097 	if (page->index > end_index ||
3098 	   (page->index == end_index && !pg_offset)) {
3099 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3100 		unlock_page(page);
3101 		return 0;
3102 	}
3103 
3104 	if (page->index == end_index) {
3105 		char *userpage;
3106 
3107 		userpage = kmap_atomic(page);
3108 		memset(userpage + pg_offset, 0,
3109 		       PAGE_CACHE_SIZE - pg_offset);
3110 		kunmap_atomic(userpage);
3111 		flush_dcache_page(page);
3112 	}
3113 	pg_offset = 0;
3114 
3115 	set_page_extent_mapped(page);
3116 
3117 	if (!tree->ops || !tree->ops->fill_delalloc)
3118 		fill_delalloc = false;
3119 
3120 	delalloc_start = start;
3121 	delalloc_end = 0;
3122 	page_started = 0;
3123 	if (!epd->extent_locked && fill_delalloc) {
3124 		u64 delalloc_to_write = 0;
3125 		/*
3126 		 * make sure the wbc mapping index is at least updated
3127 		 * to this page.
3128 		 */
3129 		update_nr_written(page, wbc, 0);
3130 
3131 		while (delalloc_end < page_end) {
3132 			nr_delalloc = find_lock_delalloc_range(inode, tree,
3133 						       page,
3134 						       &delalloc_start,
3135 						       &delalloc_end,
3136 						       128 * 1024 * 1024);
3137 			if (nr_delalloc == 0) {
3138 				delalloc_start = delalloc_end + 1;
3139 				continue;
3140 			}
3141 			ret = tree->ops->fill_delalloc(inode, page,
3142 						       delalloc_start,
3143 						       delalloc_end,
3144 						       &page_started,
3145 						       &nr_written);
3146 			/* File system has been set read-only */
3147 			if (ret) {
3148 				SetPageError(page);
3149 				goto done;
3150 			}
3151 			/*
3152 			 * delalloc_end is already one less than the total
3153 			 * length, so we don't subtract one from
3154 			 * PAGE_CACHE_SIZE
3155 			 */
3156 			delalloc_to_write += (delalloc_end - delalloc_start +
3157 					      PAGE_CACHE_SIZE) >>
3158 					      PAGE_CACHE_SHIFT;
3159 			delalloc_start = delalloc_end + 1;
3160 		}
3161 		if (wbc->nr_to_write < delalloc_to_write) {
3162 			int thresh = 8192;
3163 
3164 			if (delalloc_to_write < thresh * 2)
3165 				thresh = delalloc_to_write;
3166 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3167 						 thresh);
3168 		}
3169 
3170 		/* did the fill delalloc function already unlock and start
3171 		 * the IO?
3172 		 */
3173 		if (page_started) {
3174 			ret = 0;
3175 			/*
3176 			 * we've unlocked the page, so we can't update
3177 			 * the mapping's writeback index, just update
3178 			 * nr_to_write.
3179 			 */
3180 			wbc->nr_to_write -= nr_written;
3181 			goto done_unlocked;
3182 		}
3183 	}
3184 	if (tree->ops && tree->ops->writepage_start_hook) {
3185 		ret = tree->ops->writepage_start_hook(page, start,
3186 						      page_end);
3187 		if (ret) {
3188 			/* Fixup worker will requeue */
3189 			if (ret == -EBUSY)
3190 				wbc->pages_skipped++;
3191 			else
3192 				redirty_page_for_writepage(wbc, page);
3193 			update_nr_written(page, wbc, nr_written);
3194 			unlock_page(page);
3195 			ret = 0;
3196 			goto done_unlocked;
3197 		}
3198 	}
3199 
3200 	/*
3201 	 * we don't want to touch the inode after unlocking the page,
3202 	 * so we update the mapping writeback index now
3203 	 */
3204 	update_nr_written(page, wbc, nr_written + 1);
3205 
3206 	end = page_end;
3207 	if (last_byte <= start) {
3208 		if (tree->ops && tree->ops->writepage_end_io_hook)
3209 			tree->ops->writepage_end_io_hook(page, start,
3210 							 page_end, NULL, 1);
3211 		goto done;
3212 	}
3213 
3214 	blocksize = inode->i_sb->s_blocksize;
3215 
3216 	while (cur <= end) {
3217 		if (cur >= last_byte) {
3218 			if (tree->ops && tree->ops->writepage_end_io_hook)
3219 				tree->ops->writepage_end_io_hook(page, cur,
3220 							 page_end, NULL, 1);
3221 			break;
3222 		}
3223 		em = epd->get_extent(inode, page, pg_offset, cur,
3224 				     end - cur + 1, 1);
3225 		if (IS_ERR_OR_NULL(em)) {
3226 			SetPageError(page);
3227 			break;
3228 		}
3229 
3230 		extent_offset = cur - em->start;
3231 		BUG_ON(extent_map_end(em) <= cur);
3232 		BUG_ON(end < cur);
3233 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3234 		iosize = ALIGN(iosize, blocksize);
3235 		sector = (em->block_start + extent_offset) >> 9;
3236 		bdev = em->bdev;
3237 		block_start = em->block_start;
3238 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3239 		free_extent_map(em);
3240 		em = NULL;
3241 
3242 		/*
3243 		 * compressed and inline extents are written through other
3244 		 * paths in the FS
3245 		 */
3246 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3247 		    block_start == EXTENT_MAP_INLINE) {
3248 			/*
3249 			 * end_io notification does not happen here for
3250 			 * compressed extents
3251 			 */
3252 			if (!compressed && tree->ops &&
3253 			    tree->ops->writepage_end_io_hook)
3254 				tree->ops->writepage_end_io_hook(page, cur,
3255 							 cur + iosize - 1,
3256 							 NULL, 1);
3257 			else if (compressed) {
3258 				/* we don't want to end_page_writeback on
3259 				 * a compressed extent.  this happens
3260 				 * elsewhere
3261 				 */
3262 				nr++;
3263 			}
3264 
3265 			cur += iosize;
3266 			pg_offset += iosize;
3267 			continue;
3268 		}
3269 		/* leave this out until we have a page_mkwrite call */
3270 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3271 				   EXTENT_DIRTY, 0, NULL)) {
3272 			cur = cur + iosize;
3273 			pg_offset += iosize;
3274 			continue;
3275 		}
3276 
3277 		if (tree->ops && tree->ops->writepage_io_hook) {
3278 			ret = tree->ops->writepage_io_hook(page, cur,
3279 						cur + iosize - 1);
3280 		} else {
3281 			ret = 0;
3282 		}
3283 		if (ret) {
3284 			SetPageError(page);
3285 		} else {
3286 			unsigned long max_nr = end_index + 1;
3287 
3288 			set_range_writeback(tree, cur, cur + iosize - 1);
3289 			if (!PageWriteback(page)) {
3290 				printk(KERN_ERR "btrfs warning page %lu not "
3291 				       "writeback, cur %llu end %llu\n",
3292 				       page->index, cur, end);
3293 			}
3294 
3295 			ret = submit_extent_page(write_flags, tree, page,
3296 						 sector, iosize, pg_offset,
3297 						 bdev, &epd->bio, max_nr,
3298 						 end_bio_extent_writepage,
3299 						 0, 0, 0);
3300 			if (ret)
3301 				SetPageError(page);
3302 		}
3303 		cur = cur + iosize;
3304 		pg_offset += iosize;
3305 		nr++;
3306 	}
3307 done:
3308 	if (nr == 0) {
3309 		/* make sure the mapping tag for page dirty gets cleared */
3310 		set_page_writeback(page);
3311 		end_page_writeback(page);
3312 	}
3313 	unlock_page(page);
3314 
3315 done_unlocked:
3316 
3317 	/* drop our reference on any cached states */
3318 	free_extent_state(cached_state);
3319 	return 0;
3320 }
3321 
3322 static int eb_wait(void *word)
3323 {
3324 	io_schedule();
3325 	return 0;
3326 }
3327 
3328 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3329 {
3330 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3331 		    TASK_UNINTERRUPTIBLE);
3332 }
3333 
3334 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3335 				     struct btrfs_fs_info *fs_info,
3336 				     struct extent_page_data *epd)
3337 {
3338 	unsigned long i, num_pages;
3339 	int flush = 0;
3340 	int ret = 0;
3341 
3342 	if (!btrfs_try_tree_write_lock(eb)) {
3343 		flush = 1;
3344 		flush_write_bio(epd);
3345 		btrfs_tree_lock(eb);
3346 	}
3347 
3348 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3349 		btrfs_tree_unlock(eb);
3350 		if (!epd->sync_io)
3351 			return 0;
3352 		if (!flush) {
3353 			flush_write_bio(epd);
3354 			flush = 1;
3355 		}
3356 		while (1) {
3357 			wait_on_extent_buffer_writeback(eb);
3358 			btrfs_tree_lock(eb);
3359 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3360 				break;
3361 			btrfs_tree_unlock(eb);
3362 		}
3363 	}
3364 
3365 	/*
3366 	 * We need to do this to prevent races in people who check if the eb is
3367 	 * under IO since we can end up having no IO bits set for a short period
3368 	 * of time.
3369 	 */
3370 	spin_lock(&eb->refs_lock);
3371 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3372 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3373 		spin_unlock(&eb->refs_lock);
3374 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3375 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3376 				     -eb->len,
3377 				     fs_info->dirty_metadata_batch);
3378 		ret = 1;
3379 	} else {
3380 		spin_unlock(&eb->refs_lock);
3381 	}
3382 
3383 	btrfs_tree_unlock(eb);
3384 
3385 	if (!ret)
3386 		return ret;
3387 
3388 	num_pages = num_extent_pages(eb->start, eb->len);
3389 	for (i = 0; i < num_pages; i++) {
3390 		struct page *p = extent_buffer_page(eb, i);
3391 
3392 		if (!trylock_page(p)) {
3393 			if (!flush) {
3394 				flush_write_bio(epd);
3395 				flush = 1;
3396 			}
3397 			lock_page(p);
3398 		}
3399 	}
3400 
3401 	return ret;
3402 }
3403 
3404 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3405 {
3406 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3407 	smp_mb__after_clear_bit();
3408 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3409 }
3410 
3411 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3412 {
3413 	int uptodate = err == 0;
3414 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3415 	struct extent_buffer *eb;
3416 	int done;
3417 
3418 	do {
3419 		struct page *page = bvec->bv_page;
3420 
3421 		bvec--;
3422 		eb = (struct extent_buffer *)page->private;
3423 		BUG_ON(!eb);
3424 		done = atomic_dec_and_test(&eb->io_pages);
3425 
3426 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3427 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3428 			ClearPageUptodate(page);
3429 			SetPageError(page);
3430 		}
3431 
3432 		end_page_writeback(page);
3433 
3434 		if (!done)
3435 			continue;
3436 
3437 		end_extent_buffer_writeback(eb);
3438 	} while (bvec >= bio->bi_io_vec);
3439 
3440 	bio_put(bio);
3441 
3442 }
3443 
3444 static int write_one_eb(struct extent_buffer *eb,
3445 			struct btrfs_fs_info *fs_info,
3446 			struct writeback_control *wbc,
3447 			struct extent_page_data *epd)
3448 {
3449 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3450 	u64 offset = eb->start;
3451 	unsigned long i, num_pages;
3452 	unsigned long bio_flags = 0;
3453 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3454 	int ret = 0;
3455 
3456 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3457 	num_pages = num_extent_pages(eb->start, eb->len);
3458 	atomic_set(&eb->io_pages, num_pages);
3459 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3460 		bio_flags = EXTENT_BIO_TREE_LOG;
3461 
3462 	for (i = 0; i < num_pages; i++) {
3463 		struct page *p = extent_buffer_page(eb, i);
3464 
3465 		clear_page_dirty_for_io(p);
3466 		set_page_writeback(p);
3467 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3468 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3469 					 -1, end_bio_extent_buffer_writepage,
3470 					 0, epd->bio_flags, bio_flags);
3471 		epd->bio_flags = bio_flags;
3472 		if (ret) {
3473 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3474 			SetPageError(p);
3475 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3476 				end_extent_buffer_writeback(eb);
3477 			ret = -EIO;
3478 			break;
3479 		}
3480 		offset += PAGE_CACHE_SIZE;
3481 		update_nr_written(p, wbc, 1);
3482 		unlock_page(p);
3483 	}
3484 
3485 	if (unlikely(ret)) {
3486 		for (; i < num_pages; i++) {
3487 			struct page *p = extent_buffer_page(eb, i);
3488 			unlock_page(p);
3489 		}
3490 	}
3491 
3492 	return ret;
3493 }
3494 
3495 int btree_write_cache_pages(struct address_space *mapping,
3496 				   struct writeback_control *wbc)
3497 {
3498 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3499 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3500 	struct extent_buffer *eb, *prev_eb = NULL;
3501 	struct extent_page_data epd = {
3502 		.bio = NULL,
3503 		.tree = tree,
3504 		.extent_locked = 0,
3505 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3506 		.bio_flags = 0,
3507 	};
3508 	int ret = 0;
3509 	int done = 0;
3510 	int nr_to_write_done = 0;
3511 	struct pagevec pvec;
3512 	int nr_pages;
3513 	pgoff_t index;
3514 	pgoff_t end;		/* Inclusive */
3515 	int scanned = 0;
3516 	int tag;
3517 
3518 	pagevec_init(&pvec, 0);
3519 	if (wbc->range_cyclic) {
3520 		index = mapping->writeback_index; /* Start from prev offset */
3521 		end = -1;
3522 	} else {
3523 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3524 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3525 		scanned = 1;
3526 	}
3527 	if (wbc->sync_mode == WB_SYNC_ALL)
3528 		tag = PAGECACHE_TAG_TOWRITE;
3529 	else
3530 		tag = PAGECACHE_TAG_DIRTY;
3531 retry:
3532 	if (wbc->sync_mode == WB_SYNC_ALL)
3533 		tag_pages_for_writeback(mapping, index, end);
3534 	while (!done && !nr_to_write_done && (index <= end) &&
3535 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3536 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3537 		unsigned i;
3538 
3539 		scanned = 1;
3540 		for (i = 0; i < nr_pages; i++) {
3541 			struct page *page = pvec.pages[i];
3542 
3543 			if (!PagePrivate(page))
3544 				continue;
3545 
3546 			if (!wbc->range_cyclic && page->index > end) {
3547 				done = 1;
3548 				break;
3549 			}
3550 
3551 			spin_lock(&mapping->private_lock);
3552 			if (!PagePrivate(page)) {
3553 				spin_unlock(&mapping->private_lock);
3554 				continue;
3555 			}
3556 
3557 			eb = (struct extent_buffer *)page->private;
3558 
3559 			/*
3560 			 * Shouldn't happen and normally this would be a BUG_ON
3561 			 * but no sense in crashing the users box for something
3562 			 * we can survive anyway.
3563 			 */
3564 			if (WARN_ON(!eb)) {
3565 				spin_unlock(&mapping->private_lock);
3566 				continue;
3567 			}
3568 
3569 			if (eb == prev_eb) {
3570 				spin_unlock(&mapping->private_lock);
3571 				continue;
3572 			}
3573 
3574 			ret = atomic_inc_not_zero(&eb->refs);
3575 			spin_unlock(&mapping->private_lock);
3576 			if (!ret)
3577 				continue;
3578 
3579 			prev_eb = eb;
3580 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3581 			if (!ret) {
3582 				free_extent_buffer(eb);
3583 				continue;
3584 			}
3585 
3586 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3587 			if (ret) {
3588 				done = 1;
3589 				free_extent_buffer(eb);
3590 				break;
3591 			}
3592 			free_extent_buffer(eb);
3593 
3594 			/*
3595 			 * the filesystem may choose to bump up nr_to_write.
3596 			 * We have to make sure to honor the new nr_to_write
3597 			 * at any time
3598 			 */
3599 			nr_to_write_done = wbc->nr_to_write <= 0;
3600 		}
3601 		pagevec_release(&pvec);
3602 		cond_resched();
3603 	}
3604 	if (!scanned && !done) {
3605 		/*
3606 		 * We hit the last page and there is more work to be done: wrap
3607 		 * back to the start of the file
3608 		 */
3609 		scanned = 1;
3610 		index = 0;
3611 		goto retry;
3612 	}
3613 	flush_write_bio(&epd);
3614 	return ret;
3615 }
3616 
3617 /**
3618  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3619  * @mapping: address space structure to write
3620  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3621  * @writepage: function called for each page
3622  * @data: data passed to writepage function
3623  *
3624  * If a page is already under I/O, write_cache_pages() skips it, even
3625  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3626  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3627  * and msync() need to guarantee that all the data which was dirty at the time
3628  * the call was made get new I/O started against them.  If wbc->sync_mode is
3629  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3630  * existing IO to complete.
3631  */
3632 static int extent_write_cache_pages(struct extent_io_tree *tree,
3633 			     struct address_space *mapping,
3634 			     struct writeback_control *wbc,
3635 			     writepage_t writepage, void *data,
3636 			     void (*flush_fn)(void *))
3637 {
3638 	struct inode *inode = mapping->host;
3639 	int ret = 0;
3640 	int done = 0;
3641 	int nr_to_write_done = 0;
3642 	struct pagevec pvec;
3643 	int nr_pages;
3644 	pgoff_t index;
3645 	pgoff_t end;		/* Inclusive */
3646 	int scanned = 0;
3647 	int tag;
3648 
3649 	/*
3650 	 * We have to hold onto the inode so that ordered extents can do their
3651 	 * work when the IO finishes.  The alternative to this is failing to add
3652 	 * an ordered extent if the igrab() fails there and that is a huge pain
3653 	 * to deal with, so instead just hold onto the inode throughout the
3654 	 * writepages operation.  If it fails here we are freeing up the inode
3655 	 * anyway and we'd rather not waste our time writing out stuff that is
3656 	 * going to be truncated anyway.
3657 	 */
3658 	if (!igrab(inode))
3659 		return 0;
3660 
3661 	pagevec_init(&pvec, 0);
3662 	if (wbc->range_cyclic) {
3663 		index = mapping->writeback_index; /* Start from prev offset */
3664 		end = -1;
3665 	} else {
3666 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3667 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3668 		scanned = 1;
3669 	}
3670 	if (wbc->sync_mode == WB_SYNC_ALL)
3671 		tag = PAGECACHE_TAG_TOWRITE;
3672 	else
3673 		tag = PAGECACHE_TAG_DIRTY;
3674 retry:
3675 	if (wbc->sync_mode == WB_SYNC_ALL)
3676 		tag_pages_for_writeback(mapping, index, end);
3677 	while (!done && !nr_to_write_done && (index <= end) &&
3678 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3679 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3680 		unsigned i;
3681 
3682 		scanned = 1;
3683 		for (i = 0; i < nr_pages; i++) {
3684 			struct page *page = pvec.pages[i];
3685 
3686 			/*
3687 			 * At this point we hold neither mapping->tree_lock nor
3688 			 * lock on the page itself: the page may be truncated or
3689 			 * invalidated (changing page->mapping to NULL), or even
3690 			 * swizzled back from swapper_space to tmpfs file
3691 			 * mapping
3692 			 */
3693 			if (!trylock_page(page)) {
3694 				flush_fn(data);
3695 				lock_page(page);
3696 			}
3697 
3698 			if (unlikely(page->mapping != mapping)) {
3699 				unlock_page(page);
3700 				continue;
3701 			}
3702 
3703 			if (!wbc->range_cyclic && page->index > end) {
3704 				done = 1;
3705 				unlock_page(page);
3706 				continue;
3707 			}
3708 
3709 			if (wbc->sync_mode != WB_SYNC_NONE) {
3710 				if (PageWriteback(page))
3711 					flush_fn(data);
3712 				wait_on_page_writeback(page);
3713 			}
3714 
3715 			if (PageWriteback(page) ||
3716 			    !clear_page_dirty_for_io(page)) {
3717 				unlock_page(page);
3718 				continue;
3719 			}
3720 
3721 			ret = (*writepage)(page, wbc, data);
3722 
3723 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3724 				unlock_page(page);
3725 				ret = 0;
3726 			}
3727 			if (ret)
3728 				done = 1;
3729 
3730 			/*
3731 			 * the filesystem may choose to bump up nr_to_write.
3732 			 * We have to make sure to honor the new nr_to_write
3733 			 * at any time
3734 			 */
3735 			nr_to_write_done = wbc->nr_to_write <= 0;
3736 		}
3737 		pagevec_release(&pvec);
3738 		cond_resched();
3739 	}
3740 	if (!scanned && !done) {
3741 		/*
3742 		 * We hit the last page and there is more work to be done: wrap
3743 		 * back to the start of the file
3744 		 */
3745 		scanned = 1;
3746 		index = 0;
3747 		goto retry;
3748 	}
3749 	btrfs_add_delayed_iput(inode);
3750 	return ret;
3751 }
3752 
3753 static void flush_epd_write_bio(struct extent_page_data *epd)
3754 {
3755 	if (epd->bio) {
3756 		int rw = WRITE;
3757 		int ret;
3758 
3759 		if (epd->sync_io)
3760 			rw = WRITE_SYNC;
3761 
3762 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3763 		BUG_ON(ret < 0); /* -ENOMEM */
3764 		epd->bio = NULL;
3765 	}
3766 }
3767 
3768 static noinline void flush_write_bio(void *data)
3769 {
3770 	struct extent_page_data *epd = data;
3771 	flush_epd_write_bio(epd);
3772 }
3773 
3774 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3775 			  get_extent_t *get_extent,
3776 			  struct writeback_control *wbc)
3777 {
3778 	int ret;
3779 	struct extent_page_data epd = {
3780 		.bio = NULL,
3781 		.tree = tree,
3782 		.get_extent = get_extent,
3783 		.extent_locked = 0,
3784 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3785 		.bio_flags = 0,
3786 	};
3787 
3788 	ret = __extent_writepage(page, wbc, &epd);
3789 
3790 	flush_epd_write_bio(&epd);
3791 	return ret;
3792 }
3793 
3794 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3795 			      u64 start, u64 end, get_extent_t *get_extent,
3796 			      int mode)
3797 {
3798 	int ret = 0;
3799 	struct address_space *mapping = inode->i_mapping;
3800 	struct page *page;
3801 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3802 		PAGE_CACHE_SHIFT;
3803 
3804 	struct extent_page_data epd = {
3805 		.bio = NULL,
3806 		.tree = tree,
3807 		.get_extent = get_extent,
3808 		.extent_locked = 1,
3809 		.sync_io = mode == WB_SYNC_ALL,
3810 		.bio_flags = 0,
3811 	};
3812 	struct writeback_control wbc_writepages = {
3813 		.sync_mode	= mode,
3814 		.nr_to_write	= nr_pages * 2,
3815 		.range_start	= start,
3816 		.range_end	= end + 1,
3817 	};
3818 
3819 	while (start <= end) {
3820 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3821 		if (clear_page_dirty_for_io(page))
3822 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3823 		else {
3824 			if (tree->ops && tree->ops->writepage_end_io_hook)
3825 				tree->ops->writepage_end_io_hook(page, start,
3826 						 start + PAGE_CACHE_SIZE - 1,
3827 						 NULL, 1);
3828 			unlock_page(page);
3829 		}
3830 		page_cache_release(page);
3831 		start += PAGE_CACHE_SIZE;
3832 	}
3833 
3834 	flush_epd_write_bio(&epd);
3835 	return ret;
3836 }
3837 
3838 int extent_writepages(struct extent_io_tree *tree,
3839 		      struct address_space *mapping,
3840 		      get_extent_t *get_extent,
3841 		      struct writeback_control *wbc)
3842 {
3843 	int ret = 0;
3844 	struct extent_page_data epd = {
3845 		.bio = NULL,
3846 		.tree = tree,
3847 		.get_extent = get_extent,
3848 		.extent_locked = 0,
3849 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3850 		.bio_flags = 0,
3851 	};
3852 
3853 	ret = extent_write_cache_pages(tree, mapping, wbc,
3854 				       __extent_writepage, &epd,
3855 				       flush_write_bio);
3856 	flush_epd_write_bio(&epd);
3857 	return ret;
3858 }
3859 
3860 int extent_readpages(struct extent_io_tree *tree,
3861 		     struct address_space *mapping,
3862 		     struct list_head *pages, unsigned nr_pages,
3863 		     get_extent_t get_extent)
3864 {
3865 	struct bio *bio = NULL;
3866 	unsigned page_idx;
3867 	unsigned long bio_flags = 0;
3868 	struct page *pagepool[16];
3869 	struct page *page;
3870 	struct extent_map *em_cached = NULL;
3871 	int nr = 0;
3872 
3873 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3874 		page = list_entry(pages->prev, struct page, lru);
3875 
3876 		prefetchw(&page->flags);
3877 		list_del(&page->lru);
3878 		if (add_to_page_cache_lru(page, mapping,
3879 					page->index, GFP_NOFS)) {
3880 			page_cache_release(page);
3881 			continue;
3882 		}
3883 
3884 		pagepool[nr++] = page;
3885 		if (nr < ARRAY_SIZE(pagepool))
3886 			continue;
3887 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3888 				   &bio, 0, &bio_flags, READ);
3889 		nr = 0;
3890 	}
3891 	if (nr)
3892 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3893 				   &bio, 0, &bio_flags, READ);
3894 
3895 	if (em_cached)
3896 		free_extent_map(em_cached);
3897 
3898 	BUG_ON(!list_empty(pages));
3899 	if (bio)
3900 		return submit_one_bio(READ, bio, 0, bio_flags);
3901 	return 0;
3902 }
3903 
3904 /*
3905  * basic invalidatepage code, this waits on any locked or writeback
3906  * ranges corresponding to the page, and then deletes any extent state
3907  * records from the tree
3908  */
3909 int extent_invalidatepage(struct extent_io_tree *tree,
3910 			  struct page *page, unsigned long offset)
3911 {
3912 	struct extent_state *cached_state = NULL;
3913 	u64 start = page_offset(page);
3914 	u64 end = start + PAGE_CACHE_SIZE - 1;
3915 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3916 
3917 	start += ALIGN(offset, blocksize);
3918 	if (start > end)
3919 		return 0;
3920 
3921 	lock_extent_bits(tree, start, end, 0, &cached_state);
3922 	wait_on_page_writeback(page);
3923 	clear_extent_bit(tree, start, end,
3924 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3925 			 EXTENT_DO_ACCOUNTING,
3926 			 1, 1, &cached_state, GFP_NOFS);
3927 	return 0;
3928 }
3929 
3930 /*
3931  * a helper for releasepage, this tests for areas of the page that
3932  * are locked or under IO and drops the related state bits if it is safe
3933  * to drop the page.
3934  */
3935 static int try_release_extent_state(struct extent_map_tree *map,
3936 				    struct extent_io_tree *tree,
3937 				    struct page *page, gfp_t mask)
3938 {
3939 	u64 start = page_offset(page);
3940 	u64 end = start + PAGE_CACHE_SIZE - 1;
3941 	int ret = 1;
3942 
3943 	if (test_range_bit(tree, start, end,
3944 			   EXTENT_IOBITS, 0, NULL))
3945 		ret = 0;
3946 	else {
3947 		if ((mask & GFP_NOFS) == GFP_NOFS)
3948 			mask = GFP_NOFS;
3949 		/*
3950 		 * at this point we can safely clear everything except the
3951 		 * locked bit and the nodatasum bit
3952 		 */
3953 		ret = clear_extent_bit(tree, start, end,
3954 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3955 				 0, 0, NULL, mask);
3956 
3957 		/* if clear_extent_bit failed for enomem reasons,
3958 		 * we can't allow the release to continue.
3959 		 */
3960 		if (ret < 0)
3961 			ret = 0;
3962 		else
3963 			ret = 1;
3964 	}
3965 	return ret;
3966 }
3967 
3968 /*
3969  * a helper for releasepage.  As long as there are no locked extents
3970  * in the range corresponding to the page, both state records and extent
3971  * map records are removed
3972  */
3973 int try_release_extent_mapping(struct extent_map_tree *map,
3974 			       struct extent_io_tree *tree, struct page *page,
3975 			       gfp_t mask)
3976 {
3977 	struct extent_map *em;
3978 	u64 start = page_offset(page);
3979 	u64 end = start + PAGE_CACHE_SIZE - 1;
3980 
3981 	if ((mask & __GFP_WAIT) &&
3982 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3983 		u64 len;
3984 		while (start <= end) {
3985 			len = end - start + 1;
3986 			write_lock(&map->lock);
3987 			em = lookup_extent_mapping(map, start, len);
3988 			if (!em) {
3989 				write_unlock(&map->lock);
3990 				break;
3991 			}
3992 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3993 			    em->start != start) {
3994 				write_unlock(&map->lock);
3995 				free_extent_map(em);
3996 				break;
3997 			}
3998 			if (!test_range_bit(tree, em->start,
3999 					    extent_map_end(em) - 1,
4000 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4001 					    0, NULL)) {
4002 				remove_extent_mapping(map, em);
4003 				/* once for the rb tree */
4004 				free_extent_map(em);
4005 			}
4006 			start = extent_map_end(em);
4007 			write_unlock(&map->lock);
4008 
4009 			/* once for us */
4010 			free_extent_map(em);
4011 		}
4012 	}
4013 	return try_release_extent_state(map, tree, page, mask);
4014 }
4015 
4016 /*
4017  * helper function for fiemap, which doesn't want to see any holes.
4018  * This maps until we find something past 'last'
4019  */
4020 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4021 						u64 offset,
4022 						u64 last,
4023 						get_extent_t *get_extent)
4024 {
4025 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4026 	struct extent_map *em;
4027 	u64 len;
4028 
4029 	if (offset >= last)
4030 		return NULL;
4031 
4032 	while (1) {
4033 		len = last - offset;
4034 		if (len == 0)
4035 			break;
4036 		len = ALIGN(len, sectorsize);
4037 		em = get_extent(inode, NULL, 0, offset, len, 0);
4038 		if (IS_ERR_OR_NULL(em))
4039 			return em;
4040 
4041 		/* if this isn't a hole return it */
4042 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4043 		    em->block_start != EXTENT_MAP_HOLE) {
4044 			return em;
4045 		}
4046 
4047 		/* this is a hole, advance to the next extent */
4048 		offset = extent_map_end(em);
4049 		free_extent_map(em);
4050 		if (offset >= last)
4051 			break;
4052 	}
4053 	return NULL;
4054 }
4055 
4056 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4057 {
4058 	unsigned long cnt = *((unsigned long *)ctx);
4059 
4060 	cnt++;
4061 	*((unsigned long *)ctx) = cnt;
4062 
4063 	/* Now we're sure that the extent is shared. */
4064 	if (cnt > 1)
4065 		return 1;
4066 	return 0;
4067 }
4068 
4069 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4070 		__u64 start, __u64 len, get_extent_t *get_extent)
4071 {
4072 	int ret = 0;
4073 	u64 off = start;
4074 	u64 max = start + len;
4075 	u32 flags = 0;
4076 	u32 found_type;
4077 	u64 last;
4078 	u64 last_for_get_extent = 0;
4079 	u64 disko = 0;
4080 	u64 isize = i_size_read(inode);
4081 	struct btrfs_key found_key;
4082 	struct extent_map *em = NULL;
4083 	struct extent_state *cached_state = NULL;
4084 	struct btrfs_path *path;
4085 	struct btrfs_file_extent_item *item;
4086 	int end = 0;
4087 	u64 em_start = 0;
4088 	u64 em_len = 0;
4089 	u64 em_end = 0;
4090 	unsigned long emflags;
4091 
4092 	if (len == 0)
4093 		return -EINVAL;
4094 
4095 	path = btrfs_alloc_path();
4096 	if (!path)
4097 		return -ENOMEM;
4098 	path->leave_spinning = 1;
4099 
4100 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4101 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4102 
4103 	/*
4104 	 * lookup the last file extent.  We're not using i_size here
4105 	 * because there might be preallocation past i_size
4106 	 */
4107 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4108 				       path, btrfs_ino(inode), -1, 0);
4109 	if (ret < 0) {
4110 		btrfs_free_path(path);
4111 		return ret;
4112 	}
4113 	WARN_ON(!ret);
4114 	path->slots[0]--;
4115 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4116 			      struct btrfs_file_extent_item);
4117 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4118 	found_type = btrfs_key_type(&found_key);
4119 
4120 	/* No extents, but there might be delalloc bits */
4121 	if (found_key.objectid != btrfs_ino(inode) ||
4122 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4123 		/* have to trust i_size as the end */
4124 		last = (u64)-1;
4125 		last_for_get_extent = isize;
4126 	} else {
4127 		/*
4128 		 * remember the start of the last extent.  There are a
4129 		 * bunch of different factors that go into the length of the
4130 		 * extent, so its much less complex to remember where it started
4131 		 */
4132 		last = found_key.offset;
4133 		last_for_get_extent = last + 1;
4134 	}
4135 	btrfs_release_path(path);
4136 
4137 	/*
4138 	 * we might have some extents allocated but more delalloc past those
4139 	 * extents.  so, we trust isize unless the start of the last extent is
4140 	 * beyond isize
4141 	 */
4142 	if (last < isize) {
4143 		last = (u64)-1;
4144 		last_for_get_extent = isize;
4145 	}
4146 
4147 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4148 			 &cached_state);
4149 
4150 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4151 				   get_extent);
4152 	if (!em)
4153 		goto out;
4154 	if (IS_ERR(em)) {
4155 		ret = PTR_ERR(em);
4156 		goto out;
4157 	}
4158 
4159 	while (!end) {
4160 		u64 offset_in_extent = 0;
4161 
4162 		/* break if the extent we found is outside the range */
4163 		if (em->start >= max || extent_map_end(em) < off)
4164 			break;
4165 
4166 		/*
4167 		 * get_extent may return an extent that starts before our
4168 		 * requested range.  We have to make sure the ranges
4169 		 * we return to fiemap always move forward and don't
4170 		 * overlap, so adjust the offsets here
4171 		 */
4172 		em_start = max(em->start, off);
4173 
4174 		/*
4175 		 * record the offset from the start of the extent
4176 		 * for adjusting the disk offset below.  Only do this if the
4177 		 * extent isn't compressed since our in ram offset may be past
4178 		 * what we have actually allocated on disk.
4179 		 */
4180 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4181 			offset_in_extent = em_start - em->start;
4182 		em_end = extent_map_end(em);
4183 		em_len = em_end - em_start;
4184 		emflags = em->flags;
4185 		disko = 0;
4186 		flags = 0;
4187 
4188 		/*
4189 		 * bump off for our next call to get_extent
4190 		 */
4191 		off = extent_map_end(em);
4192 		if (off >= max)
4193 			end = 1;
4194 
4195 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4196 			end = 1;
4197 			flags |= FIEMAP_EXTENT_LAST;
4198 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4199 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4200 				  FIEMAP_EXTENT_NOT_ALIGNED);
4201 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4202 			flags |= (FIEMAP_EXTENT_DELALLOC |
4203 				  FIEMAP_EXTENT_UNKNOWN);
4204 		} else {
4205 			unsigned long ref_cnt = 0;
4206 
4207 			disko = em->block_start + offset_in_extent;
4208 
4209 			/*
4210 			 * As btrfs supports shared space, this information
4211 			 * can be exported to userspace tools via
4212 			 * flag FIEMAP_EXTENT_SHARED.
4213 			 */
4214 			ret = iterate_inodes_from_logical(
4215 					em->block_start,
4216 					BTRFS_I(inode)->root->fs_info,
4217 					path, count_ext_ref, &ref_cnt);
4218 			if (ret < 0 && ret != -ENOENT)
4219 				goto out_free;
4220 
4221 			if (ref_cnt > 1)
4222 				flags |= FIEMAP_EXTENT_SHARED;
4223 		}
4224 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4225 			flags |= FIEMAP_EXTENT_ENCODED;
4226 
4227 		free_extent_map(em);
4228 		em = NULL;
4229 		if ((em_start >= last) || em_len == (u64)-1 ||
4230 		   (last == (u64)-1 && isize <= em_end)) {
4231 			flags |= FIEMAP_EXTENT_LAST;
4232 			end = 1;
4233 		}
4234 
4235 		/* now scan forward to see if this is really the last extent. */
4236 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4237 					   get_extent);
4238 		if (IS_ERR(em)) {
4239 			ret = PTR_ERR(em);
4240 			goto out;
4241 		}
4242 		if (!em) {
4243 			flags |= FIEMAP_EXTENT_LAST;
4244 			end = 1;
4245 		}
4246 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4247 					      em_len, flags);
4248 		if (ret)
4249 			goto out_free;
4250 	}
4251 out_free:
4252 	free_extent_map(em);
4253 out:
4254 	btrfs_free_path(path);
4255 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4256 			     &cached_state, GFP_NOFS);
4257 	return ret;
4258 }
4259 
4260 static void __free_extent_buffer(struct extent_buffer *eb)
4261 {
4262 	btrfs_leak_debug_del(&eb->leak_list);
4263 	kmem_cache_free(extent_buffer_cache, eb);
4264 }
4265 
4266 static int extent_buffer_under_io(struct extent_buffer *eb)
4267 {
4268 	return (atomic_read(&eb->io_pages) ||
4269 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4270 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4271 }
4272 
4273 /*
4274  * Helper for releasing extent buffer page.
4275  */
4276 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4277 						unsigned long start_idx)
4278 {
4279 	unsigned long index;
4280 	unsigned long num_pages;
4281 	struct page *page;
4282 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4283 
4284 	BUG_ON(extent_buffer_under_io(eb));
4285 
4286 	num_pages = num_extent_pages(eb->start, eb->len);
4287 	index = start_idx + num_pages;
4288 	if (start_idx >= index)
4289 		return;
4290 
4291 	do {
4292 		index--;
4293 		page = extent_buffer_page(eb, index);
4294 		if (page && mapped) {
4295 			spin_lock(&page->mapping->private_lock);
4296 			/*
4297 			 * We do this since we'll remove the pages after we've
4298 			 * removed the eb from the radix tree, so we could race
4299 			 * and have this page now attached to the new eb.  So
4300 			 * only clear page_private if it's still connected to
4301 			 * this eb.
4302 			 */
4303 			if (PagePrivate(page) &&
4304 			    page->private == (unsigned long)eb) {
4305 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4306 				BUG_ON(PageDirty(page));
4307 				BUG_ON(PageWriteback(page));
4308 				/*
4309 				 * We need to make sure we haven't be attached
4310 				 * to a new eb.
4311 				 */
4312 				ClearPagePrivate(page);
4313 				set_page_private(page, 0);
4314 				/* One for the page private */
4315 				page_cache_release(page);
4316 			}
4317 			spin_unlock(&page->mapping->private_lock);
4318 
4319 		}
4320 		if (page) {
4321 			/* One for when we alloced the page */
4322 			page_cache_release(page);
4323 		}
4324 	} while (index != start_idx);
4325 }
4326 
4327 /*
4328  * Helper for releasing the extent buffer.
4329  */
4330 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4331 {
4332 	btrfs_release_extent_buffer_page(eb, 0);
4333 	__free_extent_buffer(eb);
4334 }
4335 
4336 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4337 						   u64 start,
4338 						   unsigned long len,
4339 						   gfp_t mask)
4340 {
4341 	struct extent_buffer *eb = NULL;
4342 
4343 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4344 	if (eb == NULL)
4345 		return NULL;
4346 	eb->start = start;
4347 	eb->len = len;
4348 	eb->tree = tree;
4349 	eb->bflags = 0;
4350 	rwlock_init(&eb->lock);
4351 	atomic_set(&eb->write_locks, 0);
4352 	atomic_set(&eb->read_locks, 0);
4353 	atomic_set(&eb->blocking_readers, 0);
4354 	atomic_set(&eb->blocking_writers, 0);
4355 	atomic_set(&eb->spinning_readers, 0);
4356 	atomic_set(&eb->spinning_writers, 0);
4357 	eb->lock_nested = 0;
4358 	init_waitqueue_head(&eb->write_lock_wq);
4359 	init_waitqueue_head(&eb->read_lock_wq);
4360 
4361 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4362 
4363 	spin_lock_init(&eb->refs_lock);
4364 	atomic_set(&eb->refs, 1);
4365 	atomic_set(&eb->io_pages, 0);
4366 
4367 	/*
4368 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4369 	 */
4370 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4371 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4372 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4373 
4374 	return eb;
4375 }
4376 
4377 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4378 {
4379 	unsigned long i;
4380 	struct page *p;
4381 	struct extent_buffer *new;
4382 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4383 
4384 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4385 	if (new == NULL)
4386 		return NULL;
4387 
4388 	for (i = 0; i < num_pages; i++) {
4389 		p = alloc_page(GFP_NOFS);
4390 		if (!p) {
4391 			btrfs_release_extent_buffer(new);
4392 			return NULL;
4393 		}
4394 		attach_extent_buffer_page(new, p);
4395 		WARN_ON(PageDirty(p));
4396 		SetPageUptodate(p);
4397 		new->pages[i] = p;
4398 	}
4399 
4400 	copy_extent_buffer(new, src, 0, 0, src->len);
4401 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4402 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4403 
4404 	return new;
4405 }
4406 
4407 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4408 {
4409 	struct extent_buffer *eb;
4410 	unsigned long num_pages = num_extent_pages(0, len);
4411 	unsigned long i;
4412 
4413 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4414 	if (!eb)
4415 		return NULL;
4416 
4417 	for (i = 0; i < num_pages; i++) {
4418 		eb->pages[i] = alloc_page(GFP_NOFS);
4419 		if (!eb->pages[i])
4420 			goto err;
4421 	}
4422 	set_extent_buffer_uptodate(eb);
4423 	btrfs_set_header_nritems(eb, 0);
4424 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4425 
4426 	return eb;
4427 err:
4428 	for (; i > 0; i--)
4429 		__free_page(eb->pages[i - 1]);
4430 	__free_extent_buffer(eb);
4431 	return NULL;
4432 }
4433 
4434 static void check_buffer_tree_ref(struct extent_buffer *eb)
4435 {
4436 	int refs;
4437 	/* the ref bit is tricky.  We have to make sure it is set
4438 	 * if we have the buffer dirty.   Otherwise the
4439 	 * code to free a buffer can end up dropping a dirty
4440 	 * page
4441 	 *
4442 	 * Once the ref bit is set, it won't go away while the
4443 	 * buffer is dirty or in writeback, and it also won't
4444 	 * go away while we have the reference count on the
4445 	 * eb bumped.
4446 	 *
4447 	 * We can't just set the ref bit without bumping the
4448 	 * ref on the eb because free_extent_buffer might
4449 	 * see the ref bit and try to clear it.  If this happens
4450 	 * free_extent_buffer might end up dropping our original
4451 	 * ref by mistake and freeing the page before we are able
4452 	 * to add one more ref.
4453 	 *
4454 	 * So bump the ref count first, then set the bit.  If someone
4455 	 * beat us to it, drop the ref we added.
4456 	 */
4457 	refs = atomic_read(&eb->refs);
4458 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4459 		return;
4460 
4461 	spin_lock(&eb->refs_lock);
4462 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4463 		atomic_inc(&eb->refs);
4464 	spin_unlock(&eb->refs_lock);
4465 }
4466 
4467 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4468 {
4469 	unsigned long num_pages, i;
4470 
4471 	check_buffer_tree_ref(eb);
4472 
4473 	num_pages = num_extent_pages(eb->start, eb->len);
4474 	for (i = 0; i < num_pages; i++) {
4475 		struct page *p = extent_buffer_page(eb, i);
4476 		mark_page_accessed(p);
4477 	}
4478 }
4479 
4480 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4481 					 		u64 start)
4482 {
4483 	struct extent_buffer *eb;
4484 
4485 	rcu_read_lock();
4486 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4487 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4488 		rcu_read_unlock();
4489 		mark_extent_buffer_accessed(eb);
4490 		return eb;
4491 	}
4492 	rcu_read_unlock();
4493 
4494 	return NULL;
4495 }
4496 
4497 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4498 					  u64 start, unsigned long len)
4499 {
4500 	unsigned long num_pages = num_extent_pages(start, len);
4501 	unsigned long i;
4502 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4503 	struct extent_buffer *eb;
4504 	struct extent_buffer *exists = NULL;
4505 	struct page *p;
4506 	struct address_space *mapping = tree->mapping;
4507 	int uptodate = 1;
4508 	int ret;
4509 
4510 
4511 	eb = find_extent_buffer(tree, start);
4512 	if (eb)
4513 		return eb;
4514 
4515 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4516 	if (!eb)
4517 		return NULL;
4518 
4519 	for (i = 0; i < num_pages; i++, index++) {
4520 		p = find_or_create_page(mapping, index, GFP_NOFS);
4521 		if (!p)
4522 			goto free_eb;
4523 
4524 		spin_lock(&mapping->private_lock);
4525 		if (PagePrivate(p)) {
4526 			/*
4527 			 * We could have already allocated an eb for this page
4528 			 * and attached one so lets see if we can get a ref on
4529 			 * the existing eb, and if we can we know it's good and
4530 			 * we can just return that one, else we know we can just
4531 			 * overwrite page->private.
4532 			 */
4533 			exists = (struct extent_buffer *)p->private;
4534 			if (atomic_inc_not_zero(&exists->refs)) {
4535 				spin_unlock(&mapping->private_lock);
4536 				unlock_page(p);
4537 				page_cache_release(p);
4538 				mark_extent_buffer_accessed(exists);
4539 				goto free_eb;
4540 			}
4541 
4542 			/*
4543 			 * Do this so attach doesn't complain and we need to
4544 			 * drop the ref the old guy had.
4545 			 */
4546 			ClearPagePrivate(p);
4547 			WARN_ON(PageDirty(p));
4548 			page_cache_release(p);
4549 		}
4550 		attach_extent_buffer_page(eb, p);
4551 		spin_unlock(&mapping->private_lock);
4552 		WARN_ON(PageDirty(p));
4553 		mark_page_accessed(p);
4554 		eb->pages[i] = p;
4555 		if (!PageUptodate(p))
4556 			uptodate = 0;
4557 
4558 		/*
4559 		 * see below about how we avoid a nasty race with release page
4560 		 * and why we unlock later
4561 		 */
4562 	}
4563 	if (uptodate)
4564 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4565 again:
4566 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4567 	if (ret)
4568 		goto free_eb;
4569 
4570 	spin_lock(&tree->buffer_lock);
4571 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4572 	spin_unlock(&tree->buffer_lock);
4573 	radix_tree_preload_end();
4574 	if (ret == -EEXIST) {
4575 		exists = find_extent_buffer(tree, start);
4576 		if (exists)
4577 			goto free_eb;
4578 		else
4579 			goto again;
4580 	}
4581 	/* add one reference for the tree */
4582 	check_buffer_tree_ref(eb);
4583 
4584 	/*
4585 	 * there is a race where release page may have
4586 	 * tried to find this extent buffer in the radix
4587 	 * but failed.  It will tell the VM it is safe to
4588 	 * reclaim the, and it will clear the page private bit.
4589 	 * We must make sure to set the page private bit properly
4590 	 * after the extent buffer is in the radix tree so
4591 	 * it doesn't get lost
4592 	 */
4593 	SetPageChecked(eb->pages[0]);
4594 	for (i = 1; i < num_pages; i++) {
4595 		p = extent_buffer_page(eb, i);
4596 		ClearPageChecked(p);
4597 		unlock_page(p);
4598 	}
4599 	unlock_page(eb->pages[0]);
4600 	return eb;
4601 
4602 free_eb:
4603 	for (i = 0; i < num_pages; i++) {
4604 		if (eb->pages[i])
4605 			unlock_page(eb->pages[i]);
4606 	}
4607 
4608 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4609 	btrfs_release_extent_buffer(eb);
4610 	return exists;
4611 }
4612 
4613 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4614 {
4615 	struct extent_buffer *eb =
4616 			container_of(head, struct extent_buffer, rcu_head);
4617 
4618 	__free_extent_buffer(eb);
4619 }
4620 
4621 /* Expects to have eb->eb_lock already held */
4622 static int release_extent_buffer(struct extent_buffer *eb)
4623 {
4624 	WARN_ON(atomic_read(&eb->refs) == 0);
4625 	if (atomic_dec_and_test(&eb->refs)) {
4626 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4627 			spin_unlock(&eb->refs_lock);
4628 		} else {
4629 			struct extent_io_tree *tree = eb->tree;
4630 
4631 			spin_unlock(&eb->refs_lock);
4632 
4633 			spin_lock(&tree->buffer_lock);
4634 			radix_tree_delete(&tree->buffer,
4635 					  eb->start >> PAGE_CACHE_SHIFT);
4636 			spin_unlock(&tree->buffer_lock);
4637 		}
4638 
4639 		/* Should be safe to release our pages at this point */
4640 		btrfs_release_extent_buffer_page(eb, 0);
4641 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4642 		return 1;
4643 	}
4644 	spin_unlock(&eb->refs_lock);
4645 
4646 	return 0;
4647 }
4648 
4649 void free_extent_buffer(struct extent_buffer *eb)
4650 {
4651 	int refs;
4652 	int old;
4653 	if (!eb)
4654 		return;
4655 
4656 	while (1) {
4657 		refs = atomic_read(&eb->refs);
4658 		if (refs <= 3)
4659 			break;
4660 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4661 		if (old == refs)
4662 			return;
4663 	}
4664 
4665 	spin_lock(&eb->refs_lock);
4666 	if (atomic_read(&eb->refs) == 2 &&
4667 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4668 		atomic_dec(&eb->refs);
4669 
4670 	if (atomic_read(&eb->refs) == 2 &&
4671 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4672 	    !extent_buffer_under_io(eb) &&
4673 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4674 		atomic_dec(&eb->refs);
4675 
4676 	/*
4677 	 * I know this is terrible, but it's temporary until we stop tracking
4678 	 * the uptodate bits and such for the extent buffers.
4679 	 */
4680 	release_extent_buffer(eb);
4681 }
4682 
4683 void free_extent_buffer_stale(struct extent_buffer *eb)
4684 {
4685 	if (!eb)
4686 		return;
4687 
4688 	spin_lock(&eb->refs_lock);
4689 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4690 
4691 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4692 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4693 		atomic_dec(&eb->refs);
4694 	release_extent_buffer(eb);
4695 }
4696 
4697 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4698 {
4699 	unsigned long i;
4700 	unsigned long num_pages;
4701 	struct page *page;
4702 
4703 	num_pages = num_extent_pages(eb->start, eb->len);
4704 
4705 	for (i = 0; i < num_pages; i++) {
4706 		page = extent_buffer_page(eb, i);
4707 		if (!PageDirty(page))
4708 			continue;
4709 
4710 		lock_page(page);
4711 		WARN_ON(!PagePrivate(page));
4712 
4713 		clear_page_dirty_for_io(page);
4714 		spin_lock_irq(&page->mapping->tree_lock);
4715 		if (!PageDirty(page)) {
4716 			radix_tree_tag_clear(&page->mapping->page_tree,
4717 						page_index(page),
4718 						PAGECACHE_TAG_DIRTY);
4719 		}
4720 		spin_unlock_irq(&page->mapping->tree_lock);
4721 		ClearPageError(page);
4722 		unlock_page(page);
4723 	}
4724 	WARN_ON(atomic_read(&eb->refs) == 0);
4725 }
4726 
4727 int set_extent_buffer_dirty(struct extent_buffer *eb)
4728 {
4729 	unsigned long i;
4730 	unsigned long num_pages;
4731 	int was_dirty = 0;
4732 
4733 	check_buffer_tree_ref(eb);
4734 
4735 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4736 
4737 	num_pages = num_extent_pages(eb->start, eb->len);
4738 	WARN_ON(atomic_read(&eb->refs) == 0);
4739 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4740 
4741 	for (i = 0; i < num_pages; i++)
4742 		set_page_dirty(extent_buffer_page(eb, i));
4743 	return was_dirty;
4744 }
4745 
4746 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4747 {
4748 	unsigned long i;
4749 	struct page *page;
4750 	unsigned long num_pages;
4751 
4752 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4753 	num_pages = num_extent_pages(eb->start, eb->len);
4754 	for (i = 0; i < num_pages; i++) {
4755 		page = extent_buffer_page(eb, i);
4756 		if (page)
4757 			ClearPageUptodate(page);
4758 	}
4759 	return 0;
4760 }
4761 
4762 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4763 {
4764 	unsigned long i;
4765 	struct page *page;
4766 	unsigned long num_pages;
4767 
4768 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4769 	num_pages = num_extent_pages(eb->start, eb->len);
4770 	for (i = 0; i < num_pages; i++) {
4771 		page = extent_buffer_page(eb, i);
4772 		SetPageUptodate(page);
4773 	}
4774 	return 0;
4775 }
4776 
4777 int extent_buffer_uptodate(struct extent_buffer *eb)
4778 {
4779 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4780 }
4781 
4782 int read_extent_buffer_pages(struct extent_io_tree *tree,
4783 			     struct extent_buffer *eb, u64 start, int wait,
4784 			     get_extent_t *get_extent, int mirror_num)
4785 {
4786 	unsigned long i;
4787 	unsigned long start_i;
4788 	struct page *page;
4789 	int err;
4790 	int ret = 0;
4791 	int locked_pages = 0;
4792 	int all_uptodate = 1;
4793 	unsigned long num_pages;
4794 	unsigned long num_reads = 0;
4795 	struct bio *bio = NULL;
4796 	unsigned long bio_flags = 0;
4797 
4798 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4799 		return 0;
4800 
4801 	if (start) {
4802 		WARN_ON(start < eb->start);
4803 		start_i = (start >> PAGE_CACHE_SHIFT) -
4804 			(eb->start >> PAGE_CACHE_SHIFT);
4805 	} else {
4806 		start_i = 0;
4807 	}
4808 
4809 	num_pages = num_extent_pages(eb->start, eb->len);
4810 	for (i = start_i; i < num_pages; i++) {
4811 		page = extent_buffer_page(eb, i);
4812 		if (wait == WAIT_NONE) {
4813 			if (!trylock_page(page))
4814 				goto unlock_exit;
4815 		} else {
4816 			lock_page(page);
4817 		}
4818 		locked_pages++;
4819 		if (!PageUptodate(page)) {
4820 			num_reads++;
4821 			all_uptodate = 0;
4822 		}
4823 	}
4824 	if (all_uptodate) {
4825 		if (start_i == 0)
4826 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4827 		goto unlock_exit;
4828 	}
4829 
4830 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4831 	eb->read_mirror = 0;
4832 	atomic_set(&eb->io_pages, num_reads);
4833 	for (i = start_i; i < num_pages; i++) {
4834 		page = extent_buffer_page(eb, i);
4835 		if (!PageUptodate(page)) {
4836 			ClearPageError(page);
4837 			err = __extent_read_full_page(tree, page,
4838 						      get_extent, &bio,
4839 						      mirror_num, &bio_flags,
4840 						      READ | REQ_META);
4841 			if (err)
4842 				ret = err;
4843 		} else {
4844 			unlock_page(page);
4845 		}
4846 	}
4847 
4848 	if (bio) {
4849 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4850 				     bio_flags);
4851 		if (err)
4852 			return err;
4853 	}
4854 
4855 	if (ret || wait != WAIT_COMPLETE)
4856 		return ret;
4857 
4858 	for (i = start_i; i < num_pages; i++) {
4859 		page = extent_buffer_page(eb, i);
4860 		wait_on_page_locked(page);
4861 		if (!PageUptodate(page))
4862 			ret = -EIO;
4863 	}
4864 
4865 	return ret;
4866 
4867 unlock_exit:
4868 	i = start_i;
4869 	while (locked_pages > 0) {
4870 		page = extent_buffer_page(eb, i);
4871 		i++;
4872 		unlock_page(page);
4873 		locked_pages--;
4874 	}
4875 	return ret;
4876 }
4877 
4878 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4879 			unsigned long start,
4880 			unsigned long len)
4881 {
4882 	size_t cur;
4883 	size_t offset;
4884 	struct page *page;
4885 	char *kaddr;
4886 	char *dst = (char *)dstv;
4887 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4888 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4889 
4890 	WARN_ON(start > eb->len);
4891 	WARN_ON(start + len > eb->start + eb->len);
4892 
4893 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4894 
4895 	while (len > 0) {
4896 		page = extent_buffer_page(eb, i);
4897 
4898 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4899 		kaddr = page_address(page);
4900 		memcpy(dst, kaddr + offset, cur);
4901 
4902 		dst += cur;
4903 		len -= cur;
4904 		offset = 0;
4905 		i++;
4906 	}
4907 }
4908 
4909 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4910 			       unsigned long min_len, char **map,
4911 			       unsigned long *map_start,
4912 			       unsigned long *map_len)
4913 {
4914 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4915 	char *kaddr;
4916 	struct page *p;
4917 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4918 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4919 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4920 		PAGE_CACHE_SHIFT;
4921 
4922 	if (i != end_i)
4923 		return -EINVAL;
4924 
4925 	if (i == 0) {
4926 		offset = start_offset;
4927 		*map_start = 0;
4928 	} else {
4929 		offset = 0;
4930 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4931 	}
4932 
4933 	if (start + min_len > eb->len) {
4934 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4935 		       "wanted %lu %lu\n",
4936 		       eb->start, eb->len, start, min_len);
4937 		return -EINVAL;
4938 	}
4939 
4940 	p = extent_buffer_page(eb, i);
4941 	kaddr = page_address(p);
4942 	*map = kaddr + offset;
4943 	*map_len = PAGE_CACHE_SIZE - offset;
4944 	return 0;
4945 }
4946 
4947 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4948 			  unsigned long start,
4949 			  unsigned long len)
4950 {
4951 	size_t cur;
4952 	size_t offset;
4953 	struct page *page;
4954 	char *kaddr;
4955 	char *ptr = (char *)ptrv;
4956 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4957 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4958 	int ret = 0;
4959 
4960 	WARN_ON(start > eb->len);
4961 	WARN_ON(start + len > eb->start + eb->len);
4962 
4963 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4964 
4965 	while (len > 0) {
4966 		page = extent_buffer_page(eb, i);
4967 
4968 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4969 
4970 		kaddr = page_address(page);
4971 		ret = memcmp(ptr, kaddr + offset, cur);
4972 		if (ret)
4973 			break;
4974 
4975 		ptr += cur;
4976 		len -= cur;
4977 		offset = 0;
4978 		i++;
4979 	}
4980 	return ret;
4981 }
4982 
4983 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4984 			 unsigned long start, unsigned long len)
4985 {
4986 	size_t cur;
4987 	size_t offset;
4988 	struct page *page;
4989 	char *kaddr;
4990 	char *src = (char *)srcv;
4991 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4992 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4993 
4994 	WARN_ON(start > eb->len);
4995 	WARN_ON(start + len > eb->start + eb->len);
4996 
4997 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4998 
4999 	while (len > 0) {
5000 		page = extent_buffer_page(eb, i);
5001 		WARN_ON(!PageUptodate(page));
5002 
5003 		cur = min(len, PAGE_CACHE_SIZE - offset);
5004 		kaddr = page_address(page);
5005 		memcpy(kaddr + offset, src, cur);
5006 
5007 		src += cur;
5008 		len -= cur;
5009 		offset = 0;
5010 		i++;
5011 	}
5012 }
5013 
5014 void memset_extent_buffer(struct extent_buffer *eb, char c,
5015 			  unsigned long start, unsigned long len)
5016 {
5017 	size_t cur;
5018 	size_t offset;
5019 	struct page *page;
5020 	char *kaddr;
5021 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5022 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5023 
5024 	WARN_ON(start > eb->len);
5025 	WARN_ON(start + len > eb->start + eb->len);
5026 
5027 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5028 
5029 	while (len > 0) {
5030 		page = extent_buffer_page(eb, i);
5031 		WARN_ON(!PageUptodate(page));
5032 
5033 		cur = min(len, PAGE_CACHE_SIZE - offset);
5034 		kaddr = page_address(page);
5035 		memset(kaddr + offset, c, cur);
5036 
5037 		len -= cur;
5038 		offset = 0;
5039 		i++;
5040 	}
5041 }
5042 
5043 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5044 			unsigned long dst_offset, unsigned long src_offset,
5045 			unsigned long len)
5046 {
5047 	u64 dst_len = dst->len;
5048 	size_t cur;
5049 	size_t offset;
5050 	struct page *page;
5051 	char *kaddr;
5052 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5053 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5054 
5055 	WARN_ON(src->len != dst_len);
5056 
5057 	offset = (start_offset + dst_offset) &
5058 		(PAGE_CACHE_SIZE - 1);
5059 
5060 	while (len > 0) {
5061 		page = extent_buffer_page(dst, i);
5062 		WARN_ON(!PageUptodate(page));
5063 
5064 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5065 
5066 		kaddr = page_address(page);
5067 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5068 
5069 		src_offset += cur;
5070 		len -= cur;
5071 		offset = 0;
5072 		i++;
5073 	}
5074 }
5075 
5076 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5077 {
5078 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5079 	return distance < len;
5080 }
5081 
5082 static void copy_pages(struct page *dst_page, struct page *src_page,
5083 		       unsigned long dst_off, unsigned long src_off,
5084 		       unsigned long len)
5085 {
5086 	char *dst_kaddr = page_address(dst_page);
5087 	char *src_kaddr;
5088 	int must_memmove = 0;
5089 
5090 	if (dst_page != src_page) {
5091 		src_kaddr = page_address(src_page);
5092 	} else {
5093 		src_kaddr = dst_kaddr;
5094 		if (areas_overlap(src_off, dst_off, len))
5095 			must_memmove = 1;
5096 	}
5097 
5098 	if (must_memmove)
5099 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5100 	else
5101 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5102 }
5103 
5104 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5105 			   unsigned long src_offset, unsigned long len)
5106 {
5107 	size_t cur;
5108 	size_t dst_off_in_page;
5109 	size_t src_off_in_page;
5110 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5111 	unsigned long dst_i;
5112 	unsigned long src_i;
5113 
5114 	if (src_offset + len > dst->len) {
5115 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5116 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5117 		BUG_ON(1);
5118 	}
5119 	if (dst_offset + len > dst->len) {
5120 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5121 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5122 		BUG_ON(1);
5123 	}
5124 
5125 	while (len > 0) {
5126 		dst_off_in_page = (start_offset + dst_offset) &
5127 			(PAGE_CACHE_SIZE - 1);
5128 		src_off_in_page = (start_offset + src_offset) &
5129 			(PAGE_CACHE_SIZE - 1);
5130 
5131 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5132 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5133 
5134 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5135 					       src_off_in_page));
5136 		cur = min_t(unsigned long, cur,
5137 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5138 
5139 		copy_pages(extent_buffer_page(dst, dst_i),
5140 			   extent_buffer_page(dst, src_i),
5141 			   dst_off_in_page, src_off_in_page, cur);
5142 
5143 		src_offset += cur;
5144 		dst_offset += cur;
5145 		len -= cur;
5146 	}
5147 }
5148 
5149 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5150 			   unsigned long src_offset, unsigned long len)
5151 {
5152 	size_t cur;
5153 	size_t dst_off_in_page;
5154 	size_t src_off_in_page;
5155 	unsigned long dst_end = dst_offset + len - 1;
5156 	unsigned long src_end = src_offset + len - 1;
5157 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5158 	unsigned long dst_i;
5159 	unsigned long src_i;
5160 
5161 	if (src_offset + len > dst->len) {
5162 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5163 		       "len %lu len %lu\n", src_offset, len, dst->len);
5164 		BUG_ON(1);
5165 	}
5166 	if (dst_offset + len > dst->len) {
5167 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5168 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5169 		BUG_ON(1);
5170 	}
5171 	if (dst_offset < src_offset) {
5172 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5173 		return;
5174 	}
5175 	while (len > 0) {
5176 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5177 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5178 
5179 		dst_off_in_page = (start_offset + dst_end) &
5180 			(PAGE_CACHE_SIZE - 1);
5181 		src_off_in_page = (start_offset + src_end) &
5182 			(PAGE_CACHE_SIZE - 1);
5183 
5184 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5185 		cur = min(cur, dst_off_in_page + 1);
5186 		copy_pages(extent_buffer_page(dst, dst_i),
5187 			   extent_buffer_page(dst, src_i),
5188 			   dst_off_in_page - cur + 1,
5189 			   src_off_in_page - cur + 1, cur);
5190 
5191 		dst_end -= cur;
5192 		src_end -= cur;
5193 		len -= cur;
5194 	}
5195 }
5196 
5197 int try_release_extent_buffer(struct page *page)
5198 {
5199 	struct extent_buffer *eb;
5200 
5201 	/*
5202 	 * We need to make sure noboody is attaching this page to an eb right
5203 	 * now.
5204 	 */
5205 	spin_lock(&page->mapping->private_lock);
5206 	if (!PagePrivate(page)) {
5207 		spin_unlock(&page->mapping->private_lock);
5208 		return 1;
5209 	}
5210 
5211 	eb = (struct extent_buffer *)page->private;
5212 	BUG_ON(!eb);
5213 
5214 	/*
5215 	 * This is a little awful but should be ok, we need to make sure that
5216 	 * the eb doesn't disappear out from under us while we're looking at
5217 	 * this page.
5218 	 */
5219 	spin_lock(&eb->refs_lock);
5220 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5221 		spin_unlock(&eb->refs_lock);
5222 		spin_unlock(&page->mapping->private_lock);
5223 		return 0;
5224 	}
5225 	spin_unlock(&page->mapping->private_lock);
5226 
5227 	/*
5228 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5229 	 * so just return, this page will likely be freed soon anyway.
5230 	 */
5231 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5232 		spin_unlock(&eb->refs_lock);
5233 		return 0;
5234 	}
5235 
5236 	return release_extent_buffer(eb);
5237 }
5238