xref: /openbmc/linux/fs/btrfs/extent_io.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
21 
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
24 
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
29 
30 #define BUFFER_LRU_MAX 64
31 
32 struct tree_entry {
33 	u64 start;
34 	u64 end;
35 	struct rb_node rb_node;
36 };
37 
38 struct extent_page_data {
39 	struct bio *bio;
40 	struct extent_io_tree *tree;
41 	get_extent_t *get_extent;
42 
43 	/* tells writepage not to lock the state bits for this range
44 	 * it still does the unlocking
45 	 */
46 	unsigned int extent_locked:1;
47 
48 	/* tells the submit_bio code to use a WRITE_SYNC */
49 	unsigned int sync_io:1;
50 };
51 
52 int __init extent_io_init(void)
53 {
54 	extent_state_cache = kmem_cache_create("extent_state",
55 			sizeof(struct extent_state), 0,
56 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 	if (!extent_state_cache)
58 		return -ENOMEM;
59 
60 	extent_buffer_cache = kmem_cache_create("extent_buffers",
61 			sizeof(struct extent_buffer), 0,
62 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 	if (!extent_buffer_cache)
64 		goto free_state_cache;
65 	return 0;
66 
67 free_state_cache:
68 	kmem_cache_destroy(extent_state_cache);
69 	return -ENOMEM;
70 }
71 
72 void extent_io_exit(void)
73 {
74 	struct extent_state *state;
75 	struct extent_buffer *eb;
76 
77 	while (!list_empty(&states)) {
78 		state = list_entry(states.next, struct extent_state, leak_list);
79 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 		       "state %lu in tree %p refs %d\n",
81 		       (unsigned long long)state->start,
82 		       (unsigned long long)state->end,
83 		       state->state, state->tree, atomic_read(&state->refs));
84 		list_del(&state->leak_list);
85 		kmem_cache_free(extent_state_cache, state);
86 
87 	}
88 
89 	while (!list_empty(&buffers)) {
90 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 		       "refs %d\n", (unsigned long long)eb->start,
93 		       eb->len, atomic_read(&eb->refs));
94 		list_del(&eb->leak_list);
95 		kmem_cache_free(extent_buffer_cache, eb);
96 	}
97 	if (extent_state_cache)
98 		kmem_cache_destroy(extent_state_cache);
99 	if (extent_buffer_cache)
100 		kmem_cache_destroy(extent_buffer_cache);
101 }
102 
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 			  struct address_space *mapping, gfp_t mask)
105 {
106 	tree->state = RB_ROOT;
107 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108 	tree->ops = NULL;
109 	tree->dirty_bytes = 0;
110 	spin_lock_init(&tree->lock);
111 	spin_lock_init(&tree->buffer_lock);
112 	tree->mapping = mapping;
113 }
114 
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 	struct extent_state *state;
118 #if LEAK_DEBUG
119 	unsigned long flags;
120 #endif
121 
122 	state = kmem_cache_alloc(extent_state_cache, mask);
123 	if (!state)
124 		return state;
125 	state->state = 0;
126 	state->private = 0;
127 	state->tree = NULL;
128 #if LEAK_DEBUG
129 	spin_lock_irqsave(&leak_lock, flags);
130 	list_add(&state->leak_list, &states);
131 	spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 	atomic_set(&state->refs, 1);
134 	init_waitqueue_head(&state->wq);
135 	return state;
136 }
137 
138 void free_extent_state(struct extent_state *state)
139 {
140 	if (!state)
141 		return;
142 	if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144 		unsigned long flags;
145 #endif
146 		WARN_ON(state->tree);
147 #if LEAK_DEBUG
148 		spin_lock_irqsave(&leak_lock, flags);
149 		list_del(&state->leak_list);
150 		spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152 		kmem_cache_free(extent_state_cache, state);
153 	}
154 }
155 
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 				   struct rb_node *node)
158 {
159 	struct rb_node **p = &root->rb_node;
160 	struct rb_node *parent = NULL;
161 	struct tree_entry *entry;
162 
163 	while (*p) {
164 		parent = *p;
165 		entry = rb_entry(parent, struct tree_entry, rb_node);
166 
167 		if (offset < entry->start)
168 			p = &(*p)->rb_left;
169 		else if (offset > entry->end)
170 			p = &(*p)->rb_right;
171 		else
172 			return parent;
173 	}
174 
175 	entry = rb_entry(node, struct tree_entry, rb_node);
176 	rb_link_node(node, parent, p);
177 	rb_insert_color(node, root);
178 	return NULL;
179 }
180 
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 				     struct rb_node **prev_ret,
183 				     struct rb_node **next_ret)
184 {
185 	struct rb_root *root = &tree->state;
186 	struct rb_node *n = root->rb_node;
187 	struct rb_node *prev = NULL;
188 	struct rb_node *orig_prev = NULL;
189 	struct tree_entry *entry;
190 	struct tree_entry *prev_entry = NULL;
191 
192 	while (n) {
193 		entry = rb_entry(n, struct tree_entry, rb_node);
194 		prev = n;
195 		prev_entry = entry;
196 
197 		if (offset < entry->start)
198 			n = n->rb_left;
199 		else if (offset > entry->end)
200 			n = n->rb_right;
201 		else
202 			return n;
203 	}
204 
205 	if (prev_ret) {
206 		orig_prev = prev;
207 		while (prev && offset > prev_entry->end) {
208 			prev = rb_next(prev);
209 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
210 		}
211 		*prev_ret = prev;
212 		prev = orig_prev;
213 	}
214 
215 	if (next_ret) {
216 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 		while (prev && offset < prev_entry->start) {
218 			prev = rb_prev(prev);
219 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 		}
221 		*next_ret = prev;
222 	}
223 	return NULL;
224 }
225 
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227 					  u64 offset)
228 {
229 	struct rb_node *prev = NULL;
230 	struct rb_node *ret;
231 
232 	ret = __etree_search(tree, offset, &prev, NULL);
233 	if (!ret)
234 		return prev;
235 	return ret;
236 }
237 
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 		     struct extent_state *other)
240 {
241 	if (tree->ops && tree->ops->merge_extent_hook)
242 		tree->ops->merge_extent_hook(tree->mapping->host, new,
243 					     other);
244 }
245 
246 /*
247  * utility function to look for merge candidates inside a given range.
248  * Any extents with matching state are merged together into a single
249  * extent in the tree.  Extents with EXTENT_IO in their state field
250  * are not merged because the end_io handlers need to be able to do
251  * operations on them without sleeping (or doing allocations/splits).
252  *
253  * This should be called with the tree lock held.
254  */
255 static int merge_state(struct extent_io_tree *tree,
256 		       struct extent_state *state)
257 {
258 	struct extent_state *other;
259 	struct rb_node *other_node;
260 
261 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262 		return 0;
263 
264 	other_node = rb_prev(&state->rb_node);
265 	if (other_node) {
266 		other = rb_entry(other_node, struct extent_state, rb_node);
267 		if (other->end == state->start - 1 &&
268 		    other->state == state->state) {
269 			merge_cb(tree, state, other);
270 			state->start = other->start;
271 			other->tree = NULL;
272 			rb_erase(&other->rb_node, &tree->state);
273 			free_extent_state(other);
274 		}
275 	}
276 	other_node = rb_next(&state->rb_node);
277 	if (other_node) {
278 		other = rb_entry(other_node, struct extent_state, rb_node);
279 		if (other->start == state->end + 1 &&
280 		    other->state == state->state) {
281 			merge_cb(tree, state, other);
282 			other->start = state->start;
283 			state->tree = NULL;
284 			rb_erase(&state->rb_node, &tree->state);
285 			free_extent_state(state);
286 			state = NULL;
287 		}
288 	}
289 
290 	return 0;
291 }
292 
293 static int set_state_cb(struct extent_io_tree *tree,
294 			 struct extent_state *state, int *bits)
295 {
296 	if (tree->ops && tree->ops->set_bit_hook) {
297 		return tree->ops->set_bit_hook(tree->mapping->host,
298 					       state, bits);
299 	}
300 
301 	return 0;
302 }
303 
304 static void clear_state_cb(struct extent_io_tree *tree,
305 			   struct extent_state *state, int *bits)
306 {
307 	if (tree->ops && tree->ops->clear_bit_hook)
308 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
309 }
310 
311 /*
312  * insert an extent_state struct into the tree.  'bits' are set on the
313  * struct before it is inserted.
314  *
315  * This may return -EEXIST if the extent is already there, in which case the
316  * state struct is freed.
317  *
318  * The tree lock is not taken internally.  This is a utility function and
319  * probably isn't what you want to call (see set/clear_extent_bit).
320  */
321 static int insert_state(struct extent_io_tree *tree,
322 			struct extent_state *state, u64 start, u64 end,
323 			int *bits)
324 {
325 	struct rb_node *node;
326 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
327 	int ret;
328 
329 	if (end < start) {
330 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
331 		       (unsigned long long)end,
332 		       (unsigned long long)start);
333 		WARN_ON(1);
334 	}
335 	state->start = start;
336 	state->end = end;
337 	ret = set_state_cb(tree, state, bits);
338 	if (ret)
339 		return ret;
340 
341 	if (bits_to_set & EXTENT_DIRTY)
342 		tree->dirty_bytes += end - start + 1;
343 	state->state |= bits_to_set;
344 	node = tree_insert(&tree->state, end, &state->rb_node);
345 	if (node) {
346 		struct extent_state *found;
347 		found = rb_entry(node, struct extent_state, rb_node);
348 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349 		       "%llu %llu\n", (unsigned long long)found->start,
350 		       (unsigned long long)found->end,
351 		       (unsigned long long)start, (unsigned long long)end);
352 		free_extent_state(state);
353 		return -EEXIST;
354 	}
355 	state->tree = tree;
356 	merge_state(tree, state);
357 	return 0;
358 }
359 
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
361 		     u64 split)
362 {
363 	if (tree->ops && tree->ops->split_extent_hook)
364 		return tree->ops->split_extent_hook(tree->mapping->host,
365 						    orig, split);
366 	return 0;
367 }
368 
369 /*
370  * split a given extent state struct in two, inserting the preallocated
371  * struct 'prealloc' as the newly created second half.  'split' indicates an
372  * offset inside 'orig' where it should be split.
373  *
374  * Before calling,
375  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
376  * are two extent state structs in the tree:
377  * prealloc: [orig->start, split - 1]
378  * orig: [ split, orig->end ]
379  *
380  * The tree locks are not taken by this function. They need to be held
381  * by the caller.
382  */
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 		       struct extent_state *prealloc, u64 split)
385 {
386 	struct rb_node *node;
387 
388 	split_cb(tree, orig, split);
389 
390 	prealloc->start = orig->start;
391 	prealloc->end = split - 1;
392 	prealloc->state = orig->state;
393 	orig->start = split;
394 
395 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 	if (node) {
397 		free_extent_state(prealloc);
398 		return -EEXIST;
399 	}
400 	prealloc->tree = tree;
401 	return 0;
402 }
403 
404 /*
405  * utility function to clear some bits in an extent state struct.
406  * it will optionally wake up any one waiting on this state (wake == 1), or
407  * forcibly remove the state from the tree (delete == 1).
408  *
409  * If no bits are set on the state struct after clearing things, the
410  * struct is freed and removed from the tree
411  */
412 static int clear_state_bit(struct extent_io_tree *tree,
413 			    struct extent_state *state,
414 			    int *bits, int wake)
415 {
416 	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417 	int ret = state->state & bits_to_clear;
418 
419 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420 		u64 range = state->end - state->start + 1;
421 		WARN_ON(range > tree->dirty_bytes);
422 		tree->dirty_bytes -= range;
423 	}
424 	clear_state_cb(tree, state, bits);
425 	state->state &= ~bits_to_clear;
426 	if (wake)
427 		wake_up(&state->wq);
428 	if (state->state == 0) {
429 		if (state->tree) {
430 			rb_erase(&state->rb_node, &tree->state);
431 			state->tree = NULL;
432 			free_extent_state(state);
433 		} else {
434 			WARN_ON(1);
435 		}
436 	} else {
437 		merge_state(tree, state);
438 	}
439 	return ret;
440 }
441 
442 /*
443  * clear some bits on a range in the tree.  This may require splitting
444  * or inserting elements in the tree, so the gfp mask is used to
445  * indicate which allocations or sleeping are allowed.
446  *
447  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448  * the given range from the tree regardless of state (ie for truncate).
449  *
450  * the range [start, end] is inclusive.
451  *
452  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453  * bits were already set, or zero if none of the bits were already set.
454  */
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 		     int bits, int wake, int delete,
457 		     struct extent_state **cached_state,
458 		     gfp_t mask)
459 {
460 	struct extent_state *state;
461 	struct extent_state *cached;
462 	struct extent_state *prealloc = NULL;
463 	struct rb_node *next_node;
464 	struct rb_node *node;
465 	u64 last_end;
466 	int err;
467 	int set = 0;
468 	int clear = 0;
469 
470 	if (delete)
471 		bits |= ~EXTENT_CTLBITS;
472 	bits |= EXTENT_FIRST_DELALLOC;
473 
474 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 		clear = 1;
476 again:
477 	if (!prealloc && (mask & __GFP_WAIT)) {
478 		prealloc = alloc_extent_state(mask);
479 		if (!prealloc)
480 			return -ENOMEM;
481 	}
482 
483 	spin_lock(&tree->lock);
484 	if (cached_state) {
485 		cached = *cached_state;
486 
487 		if (clear) {
488 			*cached_state = NULL;
489 			cached_state = NULL;
490 		}
491 
492 		if (cached && cached->tree && cached->start == start) {
493 			if (clear)
494 				atomic_dec(&cached->refs);
495 			state = cached;
496 			goto hit_next;
497 		}
498 		if (clear)
499 			free_extent_state(cached);
500 	}
501 	/*
502 	 * this search will find the extents that end after
503 	 * our range starts
504 	 */
505 	node = tree_search(tree, start);
506 	if (!node)
507 		goto out;
508 	state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 	if (state->start > end)
511 		goto out;
512 	WARN_ON(state->end < start);
513 	last_end = state->end;
514 
515 	/*
516 	 *     | ---- desired range ---- |
517 	 *  | state | or
518 	 *  | ------------- state -------------- |
519 	 *
520 	 * We need to split the extent we found, and may flip
521 	 * bits on second half.
522 	 *
523 	 * If the extent we found extends past our range, we
524 	 * just split and search again.  It'll get split again
525 	 * the next time though.
526 	 *
527 	 * If the extent we found is inside our range, we clear
528 	 * the desired bit on it.
529 	 */
530 
531 	if (state->start < start) {
532 		if (!prealloc)
533 			prealloc = alloc_extent_state(GFP_ATOMIC);
534 		err = split_state(tree, state, prealloc, start);
535 		BUG_ON(err == -EEXIST);
536 		prealloc = NULL;
537 		if (err)
538 			goto out;
539 		if (state->end <= end) {
540 			set |= clear_state_bit(tree, state, &bits, wake);
541 			if (last_end == (u64)-1)
542 				goto out;
543 			start = last_end + 1;
544 		}
545 		goto search_again;
546 	}
547 	/*
548 	 * | ---- desired range ---- |
549 	 *                        | state |
550 	 * We need to split the extent, and clear the bit
551 	 * on the first half
552 	 */
553 	if (state->start <= end && state->end > end) {
554 		if (!prealloc)
555 			prealloc = alloc_extent_state(GFP_ATOMIC);
556 		err = split_state(tree, state, prealloc, end + 1);
557 		BUG_ON(err == -EEXIST);
558 		if (wake)
559 			wake_up(&state->wq);
560 
561 		set |= clear_state_bit(tree, prealloc, &bits, wake);
562 
563 		prealloc = NULL;
564 		goto out;
565 	}
566 
567 	if (state->end < end && prealloc && !need_resched())
568 		next_node = rb_next(&state->rb_node);
569 	else
570 		next_node = NULL;
571 
572 	set |= clear_state_bit(tree, state, &bits, wake);
573 	if (last_end == (u64)-1)
574 		goto out;
575 	start = last_end + 1;
576 	if (start <= end && next_node) {
577 		state = rb_entry(next_node, struct extent_state,
578 				 rb_node);
579 		if (state->start == start)
580 			goto hit_next;
581 	}
582 	goto search_again;
583 
584 out:
585 	spin_unlock(&tree->lock);
586 	if (prealloc)
587 		free_extent_state(prealloc);
588 
589 	return set;
590 
591 search_again:
592 	if (start > end)
593 		goto out;
594 	spin_unlock(&tree->lock);
595 	if (mask & __GFP_WAIT)
596 		cond_resched();
597 	goto again;
598 }
599 
600 static int wait_on_state(struct extent_io_tree *tree,
601 			 struct extent_state *state)
602 		__releases(tree->lock)
603 		__acquires(tree->lock)
604 {
605 	DEFINE_WAIT(wait);
606 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 	spin_unlock(&tree->lock);
608 	schedule();
609 	spin_lock(&tree->lock);
610 	finish_wait(&state->wq, &wait);
611 	return 0;
612 }
613 
614 /*
615  * waits for one or more bits to clear on a range in the state tree.
616  * The range [start, end] is inclusive.
617  * The tree lock is taken by this function
618  */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621 	struct extent_state *state;
622 	struct rb_node *node;
623 
624 	spin_lock(&tree->lock);
625 again:
626 	while (1) {
627 		/*
628 		 * this search will find all the extents that end after
629 		 * our range starts
630 		 */
631 		node = tree_search(tree, start);
632 		if (!node)
633 			break;
634 
635 		state = rb_entry(node, struct extent_state, rb_node);
636 
637 		if (state->start > end)
638 			goto out;
639 
640 		if (state->state & bits) {
641 			start = state->start;
642 			atomic_inc(&state->refs);
643 			wait_on_state(tree, state);
644 			free_extent_state(state);
645 			goto again;
646 		}
647 		start = state->end + 1;
648 
649 		if (start > end)
650 			break;
651 
652 		if (need_resched()) {
653 			spin_unlock(&tree->lock);
654 			cond_resched();
655 			spin_lock(&tree->lock);
656 		}
657 	}
658 out:
659 	spin_unlock(&tree->lock);
660 	return 0;
661 }
662 
663 static int set_state_bits(struct extent_io_tree *tree,
664 			   struct extent_state *state,
665 			   int *bits)
666 {
667 	int ret;
668 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
669 
670 	ret = set_state_cb(tree, state, bits);
671 	if (ret)
672 		return ret;
673 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674 		u64 range = state->end - state->start + 1;
675 		tree->dirty_bytes += range;
676 	}
677 	state->state |= bits_to_set;
678 
679 	return 0;
680 }
681 
682 static void cache_state(struct extent_state *state,
683 			struct extent_state **cached_ptr)
684 {
685 	if (cached_ptr && !(*cached_ptr)) {
686 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687 			*cached_ptr = state;
688 			atomic_inc(&state->refs);
689 		}
690 	}
691 }
692 
693 /*
694  * set some bits on a range in the tree.  This may require allocations or
695  * sleeping, so the gfp mask is used to indicate what is allowed.
696  *
697  * If any of the exclusive bits are set, this will fail with -EEXIST if some
698  * part of the range already has the desired bits set.  The start of the
699  * existing range is returned in failed_start in this case.
700  *
701  * [start, end] is inclusive This takes the tree lock.
702  */
703 
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 		   int bits, int exclusive_bits, u64 *failed_start,
706 		   struct extent_state **cached_state, gfp_t mask)
707 {
708 	struct extent_state *state;
709 	struct extent_state *prealloc = NULL;
710 	struct rb_node *node;
711 	int err = 0;
712 	u64 last_start;
713 	u64 last_end;
714 
715 	bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 	if (!prealloc && (mask & __GFP_WAIT)) {
718 		prealloc = alloc_extent_state(mask);
719 		if (!prealloc)
720 			return -ENOMEM;
721 	}
722 
723 	spin_lock(&tree->lock);
724 	if (cached_state && *cached_state) {
725 		state = *cached_state;
726 		if (state->start == start && state->tree) {
727 			node = &state->rb_node;
728 			goto hit_next;
729 		}
730 	}
731 	/*
732 	 * this search will find all the extents that end after
733 	 * our range starts.
734 	 */
735 	node = tree_search(tree, start);
736 	if (!node) {
737 		err = insert_state(tree, prealloc, start, end, &bits);
738 		prealloc = NULL;
739 		BUG_ON(err == -EEXIST);
740 		goto out;
741 	}
742 	state = rb_entry(node, struct extent_state, rb_node);
743 hit_next:
744 	last_start = state->start;
745 	last_end = state->end;
746 
747 	/*
748 	 * | ---- desired range ---- |
749 	 * | state |
750 	 *
751 	 * Just lock what we found and keep going
752 	 */
753 	if (state->start == start && state->end <= end) {
754 		struct rb_node *next_node;
755 		if (state->state & exclusive_bits) {
756 			*failed_start = state->start;
757 			err = -EEXIST;
758 			goto out;
759 		}
760 
761 		err = set_state_bits(tree, state, &bits);
762 		if (err)
763 			goto out;
764 
765 		cache_state(state, cached_state);
766 		merge_state(tree, state);
767 		if (last_end == (u64)-1)
768 			goto out;
769 
770 		start = last_end + 1;
771 		if (start < end && prealloc && !need_resched()) {
772 			next_node = rb_next(node);
773 			if (next_node) {
774 				state = rb_entry(next_node, struct extent_state,
775 						 rb_node);
776 				if (state->start == start)
777 					goto hit_next;
778 			}
779 		}
780 		goto search_again;
781 	}
782 
783 	/*
784 	 *     | ---- desired range ---- |
785 	 * | state |
786 	 *   or
787 	 * | ------------- state -------------- |
788 	 *
789 	 * We need to split the extent we found, and may flip bits on
790 	 * second half.
791 	 *
792 	 * If the extent we found extends past our
793 	 * range, we just split and search again.  It'll get split
794 	 * again the next time though.
795 	 *
796 	 * If the extent we found is inside our range, we set the
797 	 * desired bit on it.
798 	 */
799 	if (state->start < start) {
800 		if (state->state & exclusive_bits) {
801 			*failed_start = start;
802 			err = -EEXIST;
803 			goto out;
804 		}
805 		err = split_state(tree, state, prealloc, start);
806 		BUG_ON(err == -EEXIST);
807 		prealloc = NULL;
808 		if (err)
809 			goto out;
810 		if (state->end <= end) {
811 			err = set_state_bits(tree, state, &bits);
812 			if (err)
813 				goto out;
814 			cache_state(state, cached_state);
815 			merge_state(tree, state);
816 			if (last_end == (u64)-1)
817 				goto out;
818 			start = last_end + 1;
819 		}
820 		goto search_again;
821 	}
822 	/*
823 	 * | ---- desired range ---- |
824 	 *     | state | or               | state |
825 	 *
826 	 * There's a hole, we need to insert something in it and
827 	 * ignore the extent we found.
828 	 */
829 	if (state->start > start) {
830 		u64 this_end;
831 		if (end < last_start)
832 			this_end = end;
833 		else
834 			this_end = last_start - 1;
835 		err = insert_state(tree, prealloc, start, this_end,
836 				   &bits);
837 		BUG_ON(err == -EEXIST);
838 		if (err) {
839 			prealloc = NULL;
840 			goto out;
841 		}
842 		cache_state(prealloc, cached_state);
843 		prealloc = NULL;
844 		start = this_end + 1;
845 		goto search_again;
846 	}
847 	/*
848 	 * | ---- desired range ---- |
849 	 *                        | state |
850 	 * We need to split the extent, and set the bit
851 	 * on the first half
852 	 */
853 	if (state->start <= end && state->end > end) {
854 		if (state->state & exclusive_bits) {
855 			*failed_start = start;
856 			err = -EEXIST;
857 			goto out;
858 		}
859 		err = split_state(tree, state, prealloc, end + 1);
860 		BUG_ON(err == -EEXIST);
861 
862 		err = set_state_bits(tree, prealloc, &bits);
863 		if (err) {
864 			prealloc = NULL;
865 			goto out;
866 		}
867 		cache_state(prealloc, cached_state);
868 		merge_state(tree, prealloc);
869 		prealloc = NULL;
870 		goto out;
871 	}
872 
873 	goto search_again;
874 
875 out:
876 	spin_unlock(&tree->lock);
877 	if (prealloc)
878 		free_extent_state(prealloc);
879 
880 	return err;
881 
882 search_again:
883 	if (start > end)
884 		goto out;
885 	spin_unlock(&tree->lock);
886 	if (mask & __GFP_WAIT)
887 		cond_resched();
888 	goto again;
889 }
890 
891 /* wrappers around set/clear extent bit */
892 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
893 		     gfp_t mask)
894 {
895 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
896 			      NULL, mask);
897 }
898 
899 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
900 		    int bits, gfp_t mask)
901 {
902 	return set_extent_bit(tree, start, end, bits, 0, NULL,
903 			      NULL, mask);
904 }
905 
906 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
907 		      int bits, gfp_t mask)
908 {
909 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
910 }
911 
912 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
913 			struct extent_state **cached_state, gfp_t mask)
914 {
915 	return set_extent_bit(tree, start, end,
916 			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
917 			      0, NULL, cached_state, mask);
918 }
919 
920 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
921 		       gfp_t mask)
922 {
923 	return clear_extent_bit(tree, start, end,
924 				EXTENT_DIRTY | EXTENT_DELALLOC |
925 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
926 }
927 
928 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
929 		     gfp_t mask)
930 {
931 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
932 			      NULL, mask);
933 }
934 
935 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
936 		       gfp_t mask)
937 {
938 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
939 				NULL, mask);
940 }
941 
942 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
943 			gfp_t mask)
944 {
945 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
946 			      NULL, mask);
947 }
948 
949 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
950 				 u64 end, struct extent_state **cached_state,
951 				 gfp_t mask)
952 {
953 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
954 				cached_state, mask);
955 }
956 
957 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
958 {
959 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
960 }
961 
962 /*
963  * either insert or lock state struct between start and end use mask to tell
964  * us if waiting is desired.
965  */
966 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
967 		     int bits, struct extent_state **cached_state, gfp_t mask)
968 {
969 	int err;
970 	u64 failed_start;
971 	while (1) {
972 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
973 				     EXTENT_LOCKED, &failed_start,
974 				     cached_state, mask);
975 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
976 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
977 			start = failed_start;
978 		} else {
979 			break;
980 		}
981 		WARN_ON(start > end);
982 	}
983 	return err;
984 }
985 
986 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
987 {
988 	return lock_extent_bits(tree, start, end, 0, NULL, mask);
989 }
990 
991 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
992 		    gfp_t mask)
993 {
994 	int err;
995 	u64 failed_start;
996 
997 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
998 			     &failed_start, NULL, mask);
999 	if (err == -EEXIST) {
1000 		if (failed_start > start)
1001 			clear_extent_bit(tree, start, failed_start - 1,
1002 					 EXTENT_LOCKED, 1, 0, NULL, mask);
1003 		return 0;
1004 	}
1005 	return 1;
1006 }
1007 
1008 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009 			 struct extent_state **cached, gfp_t mask)
1010 {
1011 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1012 				mask);
1013 }
1014 
1015 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1016 		  gfp_t mask)
1017 {
1018 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1019 				mask);
1020 }
1021 
1022 /*
1023  * helper function to set pages and extents in the tree dirty
1024  */
1025 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1026 {
1027 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1028 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1029 	struct page *page;
1030 
1031 	while (index <= end_index) {
1032 		page = find_get_page(tree->mapping, index);
1033 		BUG_ON(!page);
1034 		__set_page_dirty_nobuffers(page);
1035 		page_cache_release(page);
1036 		index++;
1037 	}
1038 	return 0;
1039 }
1040 
1041 /*
1042  * helper function to set both pages and extents in the tree writeback
1043  */
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1045 {
1046 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1047 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048 	struct page *page;
1049 
1050 	while (index <= end_index) {
1051 		page = find_get_page(tree->mapping, index);
1052 		BUG_ON(!page);
1053 		set_page_writeback(page);
1054 		page_cache_release(page);
1055 		index++;
1056 	}
1057 	return 0;
1058 }
1059 
1060 /*
1061  * find the first offset in the io tree with 'bits' set. zero is
1062  * returned if we find something, and *start_ret and *end_ret are
1063  * set to reflect the state struct that was found.
1064  *
1065  * If nothing was found, 1 is returned, < 0 on error
1066  */
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068 			  u64 *start_ret, u64 *end_ret, int bits)
1069 {
1070 	struct rb_node *node;
1071 	struct extent_state *state;
1072 	int ret = 1;
1073 
1074 	spin_lock(&tree->lock);
1075 	/*
1076 	 * this search will find all the extents that end after
1077 	 * our range starts.
1078 	 */
1079 	node = tree_search(tree, start);
1080 	if (!node)
1081 		goto out;
1082 
1083 	while (1) {
1084 		state = rb_entry(node, struct extent_state, rb_node);
1085 		if (state->end >= start && (state->state & bits)) {
1086 			*start_ret = state->start;
1087 			*end_ret = state->end;
1088 			ret = 0;
1089 			break;
1090 		}
1091 		node = rb_next(node);
1092 		if (!node)
1093 			break;
1094 	}
1095 out:
1096 	spin_unlock(&tree->lock);
1097 	return ret;
1098 }
1099 
1100 /* find the first state struct with 'bits' set after 'start', and
1101  * return it.  tree->lock must be held.  NULL will returned if
1102  * nothing was found after 'start'
1103  */
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105 						 u64 start, int bits)
1106 {
1107 	struct rb_node *node;
1108 	struct extent_state *state;
1109 
1110 	/*
1111 	 * this search will find all the extents that end after
1112 	 * our range starts.
1113 	 */
1114 	node = tree_search(tree, start);
1115 	if (!node)
1116 		goto out;
1117 
1118 	while (1) {
1119 		state = rb_entry(node, struct extent_state, rb_node);
1120 		if (state->end >= start && (state->state & bits))
1121 			return state;
1122 
1123 		node = rb_next(node);
1124 		if (!node)
1125 			break;
1126 	}
1127 out:
1128 	return NULL;
1129 }
1130 
1131 /*
1132  * find a contiguous range of bytes in the file marked as delalloc, not
1133  * more than 'max_bytes'.  start and end are used to return the range,
1134  *
1135  * 1 is returned if we find something, 0 if nothing was in the tree
1136  */
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138 					u64 *start, u64 *end, u64 max_bytes,
1139 					struct extent_state **cached_state)
1140 {
1141 	struct rb_node *node;
1142 	struct extent_state *state;
1143 	u64 cur_start = *start;
1144 	u64 found = 0;
1145 	u64 total_bytes = 0;
1146 
1147 	spin_lock(&tree->lock);
1148 
1149 	/*
1150 	 * this search will find all the extents that end after
1151 	 * our range starts.
1152 	 */
1153 	node = tree_search(tree, cur_start);
1154 	if (!node) {
1155 		if (!found)
1156 			*end = (u64)-1;
1157 		goto out;
1158 	}
1159 
1160 	while (1) {
1161 		state = rb_entry(node, struct extent_state, rb_node);
1162 		if (found && (state->start != cur_start ||
1163 			      (state->state & EXTENT_BOUNDARY))) {
1164 			goto out;
1165 		}
1166 		if (!(state->state & EXTENT_DELALLOC)) {
1167 			if (!found)
1168 				*end = state->end;
1169 			goto out;
1170 		}
1171 		if (!found) {
1172 			*start = state->start;
1173 			*cached_state = state;
1174 			atomic_inc(&state->refs);
1175 		}
1176 		found++;
1177 		*end = state->end;
1178 		cur_start = state->end + 1;
1179 		node = rb_next(node);
1180 		if (!node)
1181 			break;
1182 		total_bytes += state->end - state->start + 1;
1183 		if (total_bytes >= max_bytes)
1184 			break;
1185 	}
1186 out:
1187 	spin_unlock(&tree->lock);
1188 	return found;
1189 }
1190 
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192 					  struct page *locked_page,
1193 					  u64 start, u64 end)
1194 {
1195 	int ret;
1196 	struct page *pages[16];
1197 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1198 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199 	unsigned long nr_pages = end_index - index + 1;
1200 	int i;
1201 
1202 	if (index == locked_page->index && end_index == index)
1203 		return 0;
1204 
1205 	while (nr_pages > 0) {
1206 		ret = find_get_pages_contig(inode->i_mapping, index,
1207 				     min_t(unsigned long, nr_pages,
1208 				     ARRAY_SIZE(pages)), pages);
1209 		for (i = 0; i < ret; i++) {
1210 			if (pages[i] != locked_page)
1211 				unlock_page(pages[i]);
1212 			page_cache_release(pages[i]);
1213 		}
1214 		nr_pages -= ret;
1215 		index += ret;
1216 		cond_resched();
1217 	}
1218 	return 0;
1219 }
1220 
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222 					struct page *locked_page,
1223 					u64 delalloc_start,
1224 					u64 delalloc_end)
1225 {
1226 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227 	unsigned long start_index = index;
1228 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229 	unsigned long pages_locked = 0;
1230 	struct page *pages[16];
1231 	unsigned long nrpages;
1232 	int ret;
1233 	int i;
1234 
1235 	/* the caller is responsible for locking the start index */
1236 	if (index == locked_page->index && index == end_index)
1237 		return 0;
1238 
1239 	/* skip the page at the start index */
1240 	nrpages = end_index - index + 1;
1241 	while (nrpages > 0) {
1242 		ret = find_get_pages_contig(inode->i_mapping, index,
1243 				     min_t(unsigned long,
1244 				     nrpages, ARRAY_SIZE(pages)), pages);
1245 		if (ret == 0) {
1246 			ret = -EAGAIN;
1247 			goto done;
1248 		}
1249 		/* now we have an array of pages, lock them all */
1250 		for (i = 0; i < ret; i++) {
1251 			/*
1252 			 * the caller is taking responsibility for
1253 			 * locked_page
1254 			 */
1255 			if (pages[i] != locked_page) {
1256 				lock_page(pages[i]);
1257 				if (!PageDirty(pages[i]) ||
1258 				    pages[i]->mapping != inode->i_mapping) {
1259 					ret = -EAGAIN;
1260 					unlock_page(pages[i]);
1261 					page_cache_release(pages[i]);
1262 					goto done;
1263 				}
1264 			}
1265 			page_cache_release(pages[i]);
1266 			pages_locked++;
1267 		}
1268 		nrpages -= ret;
1269 		index += ret;
1270 		cond_resched();
1271 	}
1272 	ret = 0;
1273 done:
1274 	if (ret && pages_locked) {
1275 		__unlock_for_delalloc(inode, locked_page,
1276 			      delalloc_start,
1277 			      ((u64)(start_index + pages_locked - 1)) <<
1278 			      PAGE_CACHE_SHIFT);
1279 	}
1280 	return ret;
1281 }
1282 
1283 /*
1284  * find a contiguous range of bytes in the file marked as delalloc, not
1285  * more than 'max_bytes'.  start and end are used to return the range,
1286  *
1287  * 1 is returned if we find something, 0 if nothing was in the tree
1288  */
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290 					     struct extent_io_tree *tree,
1291 					     struct page *locked_page,
1292 					     u64 *start, u64 *end,
1293 					     u64 max_bytes)
1294 {
1295 	u64 delalloc_start;
1296 	u64 delalloc_end;
1297 	u64 found;
1298 	struct extent_state *cached_state = NULL;
1299 	int ret;
1300 	int loops = 0;
1301 
1302 again:
1303 	/* step one, find a bunch of delalloc bytes starting at start */
1304 	delalloc_start = *start;
1305 	delalloc_end = 0;
1306 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307 				    max_bytes, &cached_state);
1308 	if (!found || delalloc_end <= *start) {
1309 		*start = delalloc_start;
1310 		*end = delalloc_end;
1311 		free_extent_state(cached_state);
1312 		return found;
1313 	}
1314 
1315 	/*
1316 	 * start comes from the offset of locked_page.  We have to lock
1317 	 * pages in order, so we can't process delalloc bytes before
1318 	 * locked_page
1319 	 */
1320 	if (delalloc_start < *start)
1321 		delalloc_start = *start;
1322 
1323 	/*
1324 	 * make sure to limit the number of pages we try to lock down
1325 	 * if we're looping.
1326 	 */
1327 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1329 
1330 	/* step two, lock all the pages after the page that has start */
1331 	ret = lock_delalloc_pages(inode, locked_page,
1332 				  delalloc_start, delalloc_end);
1333 	if (ret == -EAGAIN) {
1334 		/* some of the pages are gone, lets avoid looping by
1335 		 * shortening the size of the delalloc range we're searching
1336 		 */
1337 		free_extent_state(cached_state);
1338 		if (!loops) {
1339 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340 			max_bytes = PAGE_CACHE_SIZE - offset;
1341 			loops = 1;
1342 			goto again;
1343 		} else {
1344 			found = 0;
1345 			goto out_failed;
1346 		}
1347 	}
1348 	BUG_ON(ret);
1349 
1350 	/* step three, lock the state bits for the whole range */
1351 	lock_extent_bits(tree, delalloc_start, delalloc_end,
1352 			 0, &cached_state, GFP_NOFS);
1353 
1354 	/* then test to make sure it is all still delalloc */
1355 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356 			     EXTENT_DELALLOC, 1, cached_state);
1357 	if (!ret) {
1358 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359 				     &cached_state, GFP_NOFS);
1360 		__unlock_for_delalloc(inode, locked_page,
1361 			      delalloc_start, delalloc_end);
1362 		cond_resched();
1363 		goto again;
1364 	}
1365 	free_extent_state(cached_state);
1366 	*start = delalloc_start;
1367 	*end = delalloc_end;
1368 out_failed:
1369 	return found;
1370 }
1371 
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373 				struct extent_io_tree *tree,
1374 				u64 start, u64 end, struct page *locked_page,
1375 				unsigned long op)
1376 {
1377 	int ret;
1378 	struct page *pages[16];
1379 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 	unsigned long nr_pages = end_index - index + 1;
1382 	int i;
1383 	int clear_bits = 0;
1384 
1385 	if (op & EXTENT_CLEAR_UNLOCK)
1386 		clear_bits |= EXTENT_LOCKED;
1387 	if (op & EXTENT_CLEAR_DIRTY)
1388 		clear_bits |= EXTENT_DIRTY;
1389 
1390 	if (op & EXTENT_CLEAR_DELALLOC)
1391 		clear_bits |= EXTENT_DELALLOC;
1392 
1393 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396 		    EXTENT_SET_PRIVATE2)))
1397 		return 0;
1398 
1399 	while (nr_pages > 0) {
1400 		ret = find_get_pages_contig(inode->i_mapping, index,
1401 				     min_t(unsigned long,
1402 				     nr_pages, ARRAY_SIZE(pages)), pages);
1403 		for (i = 0; i < ret; i++) {
1404 
1405 			if (op & EXTENT_SET_PRIVATE2)
1406 				SetPagePrivate2(pages[i]);
1407 
1408 			if (pages[i] == locked_page) {
1409 				page_cache_release(pages[i]);
1410 				continue;
1411 			}
1412 			if (op & EXTENT_CLEAR_DIRTY)
1413 				clear_page_dirty_for_io(pages[i]);
1414 			if (op & EXTENT_SET_WRITEBACK)
1415 				set_page_writeback(pages[i]);
1416 			if (op & EXTENT_END_WRITEBACK)
1417 				end_page_writeback(pages[i]);
1418 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419 				unlock_page(pages[i]);
1420 			page_cache_release(pages[i]);
1421 		}
1422 		nr_pages -= ret;
1423 		index += ret;
1424 		cond_resched();
1425 	}
1426 	return 0;
1427 }
1428 
1429 /*
1430  * count the number of bytes in the tree that have a given bit(s)
1431  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1432  * cached.  The total number found is returned.
1433  */
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435 		     u64 *start, u64 search_end, u64 max_bytes,
1436 		     unsigned long bits)
1437 {
1438 	struct rb_node *node;
1439 	struct extent_state *state;
1440 	u64 cur_start = *start;
1441 	u64 total_bytes = 0;
1442 	int found = 0;
1443 
1444 	if (search_end <= cur_start) {
1445 		WARN_ON(1);
1446 		return 0;
1447 	}
1448 
1449 	spin_lock(&tree->lock);
1450 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1451 		total_bytes = tree->dirty_bytes;
1452 		goto out;
1453 	}
1454 	/*
1455 	 * this search will find all the extents that end after
1456 	 * our range starts.
1457 	 */
1458 	node = tree_search(tree, cur_start);
1459 	if (!node)
1460 		goto out;
1461 
1462 	while (1) {
1463 		state = rb_entry(node, struct extent_state, rb_node);
1464 		if (state->start > search_end)
1465 			break;
1466 		if (state->end >= cur_start && (state->state & bits)) {
1467 			total_bytes += min(search_end, state->end) + 1 -
1468 				       max(cur_start, state->start);
1469 			if (total_bytes >= max_bytes)
1470 				break;
1471 			if (!found) {
1472 				*start = state->start;
1473 				found = 1;
1474 			}
1475 		}
1476 		node = rb_next(node);
1477 		if (!node)
1478 			break;
1479 	}
1480 out:
1481 	spin_unlock(&tree->lock);
1482 	return total_bytes;
1483 }
1484 
1485 /*
1486  * set the private field for a given byte offset in the tree.  If there isn't
1487  * an extent_state there already, this does nothing.
1488  */
1489 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1490 {
1491 	struct rb_node *node;
1492 	struct extent_state *state;
1493 	int ret = 0;
1494 
1495 	spin_lock(&tree->lock);
1496 	/*
1497 	 * this search will find all the extents that end after
1498 	 * our range starts.
1499 	 */
1500 	node = tree_search(tree, start);
1501 	if (!node) {
1502 		ret = -ENOENT;
1503 		goto out;
1504 	}
1505 	state = rb_entry(node, struct extent_state, rb_node);
1506 	if (state->start != start) {
1507 		ret = -ENOENT;
1508 		goto out;
1509 	}
1510 	state->private = private;
1511 out:
1512 	spin_unlock(&tree->lock);
1513 	return ret;
1514 }
1515 
1516 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1517 {
1518 	struct rb_node *node;
1519 	struct extent_state *state;
1520 	int ret = 0;
1521 
1522 	spin_lock(&tree->lock);
1523 	/*
1524 	 * this search will find all the extents that end after
1525 	 * our range starts.
1526 	 */
1527 	node = tree_search(tree, start);
1528 	if (!node) {
1529 		ret = -ENOENT;
1530 		goto out;
1531 	}
1532 	state = rb_entry(node, struct extent_state, rb_node);
1533 	if (state->start != start) {
1534 		ret = -ENOENT;
1535 		goto out;
1536 	}
1537 	*private = state->private;
1538 out:
1539 	spin_unlock(&tree->lock);
1540 	return ret;
1541 }
1542 
1543 /*
1544  * searches a range in the state tree for a given mask.
1545  * If 'filled' == 1, this returns 1 only if every extent in the tree
1546  * has the bits set.  Otherwise, 1 is returned if any bit in the
1547  * range is found set.
1548  */
1549 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1550 		   int bits, int filled, struct extent_state *cached)
1551 {
1552 	struct extent_state *state = NULL;
1553 	struct rb_node *node;
1554 	int bitset = 0;
1555 
1556 	spin_lock(&tree->lock);
1557 	if (cached && cached->tree && cached->start == start)
1558 		node = &cached->rb_node;
1559 	else
1560 		node = tree_search(tree, start);
1561 	while (node && start <= end) {
1562 		state = rb_entry(node, struct extent_state, rb_node);
1563 
1564 		if (filled && state->start > start) {
1565 			bitset = 0;
1566 			break;
1567 		}
1568 
1569 		if (state->start > end)
1570 			break;
1571 
1572 		if (state->state & bits) {
1573 			bitset = 1;
1574 			if (!filled)
1575 				break;
1576 		} else if (filled) {
1577 			bitset = 0;
1578 			break;
1579 		}
1580 
1581 		if (state->end == (u64)-1)
1582 			break;
1583 
1584 		start = state->end + 1;
1585 		if (start > end)
1586 			break;
1587 		node = rb_next(node);
1588 		if (!node) {
1589 			if (filled)
1590 				bitset = 0;
1591 			break;
1592 		}
1593 	}
1594 	spin_unlock(&tree->lock);
1595 	return bitset;
1596 }
1597 
1598 /*
1599  * helper function to set a given page up to date if all the
1600  * extents in the tree for that page are up to date
1601  */
1602 static int check_page_uptodate(struct extent_io_tree *tree,
1603 			       struct page *page)
1604 {
1605 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1606 	u64 end = start + PAGE_CACHE_SIZE - 1;
1607 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1608 		SetPageUptodate(page);
1609 	return 0;
1610 }
1611 
1612 /*
1613  * helper function to unlock a page if all the extents in the tree
1614  * for that page are unlocked
1615  */
1616 static int check_page_locked(struct extent_io_tree *tree,
1617 			     struct page *page)
1618 {
1619 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1620 	u64 end = start + PAGE_CACHE_SIZE - 1;
1621 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1622 		unlock_page(page);
1623 	return 0;
1624 }
1625 
1626 /*
1627  * helper function to end page writeback if all the extents
1628  * in the tree for that page are done with writeback
1629  */
1630 static int check_page_writeback(struct extent_io_tree *tree,
1631 			     struct page *page)
1632 {
1633 	end_page_writeback(page);
1634 	return 0;
1635 }
1636 
1637 /* lots and lots of room for performance fixes in the end_bio funcs */
1638 
1639 /*
1640  * after a writepage IO is done, we need to:
1641  * clear the uptodate bits on error
1642  * clear the writeback bits in the extent tree for this IO
1643  * end_page_writeback if the page has no more pending IO
1644  *
1645  * Scheduling is not allowed, so the extent state tree is expected
1646  * to have one and only one object corresponding to this IO.
1647  */
1648 static void end_bio_extent_writepage(struct bio *bio, int err)
1649 {
1650 	int uptodate = err == 0;
1651 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1652 	struct extent_io_tree *tree;
1653 	u64 start;
1654 	u64 end;
1655 	int whole_page;
1656 	int ret;
1657 
1658 	do {
1659 		struct page *page = bvec->bv_page;
1660 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1661 
1662 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1663 			 bvec->bv_offset;
1664 		end = start + bvec->bv_len - 1;
1665 
1666 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1667 			whole_page = 1;
1668 		else
1669 			whole_page = 0;
1670 
1671 		if (--bvec >= bio->bi_io_vec)
1672 			prefetchw(&bvec->bv_page->flags);
1673 		if (tree->ops && tree->ops->writepage_end_io_hook) {
1674 			ret = tree->ops->writepage_end_io_hook(page, start,
1675 						       end, NULL, uptodate);
1676 			if (ret)
1677 				uptodate = 0;
1678 		}
1679 
1680 		if (!uptodate && tree->ops &&
1681 		    tree->ops->writepage_io_failed_hook) {
1682 			ret = tree->ops->writepage_io_failed_hook(bio, page,
1683 							 start, end, NULL);
1684 			if (ret == 0) {
1685 				uptodate = (err == 0);
1686 				continue;
1687 			}
1688 		}
1689 
1690 		if (!uptodate) {
1691 			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1692 			ClearPageUptodate(page);
1693 			SetPageError(page);
1694 		}
1695 
1696 		if (whole_page)
1697 			end_page_writeback(page);
1698 		else
1699 			check_page_writeback(tree, page);
1700 	} while (bvec >= bio->bi_io_vec);
1701 
1702 	bio_put(bio);
1703 }
1704 
1705 /*
1706  * after a readpage IO is done, we need to:
1707  * clear the uptodate bits on error
1708  * set the uptodate bits if things worked
1709  * set the page up to date if all extents in the tree are uptodate
1710  * clear the lock bit in the extent tree
1711  * unlock the page if there are no other extents locked for it
1712  *
1713  * Scheduling is not allowed, so the extent state tree is expected
1714  * to have one and only one object corresponding to this IO.
1715  */
1716 static void end_bio_extent_readpage(struct bio *bio, int err)
1717 {
1718 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1719 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1720 	struct bio_vec *bvec = bio->bi_io_vec;
1721 	struct extent_io_tree *tree;
1722 	u64 start;
1723 	u64 end;
1724 	int whole_page;
1725 	int ret;
1726 
1727 	if (err)
1728 		uptodate = 0;
1729 
1730 	do {
1731 		struct page *page = bvec->bv_page;
1732 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1733 
1734 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1735 			bvec->bv_offset;
1736 		end = start + bvec->bv_len - 1;
1737 
1738 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1739 			whole_page = 1;
1740 		else
1741 			whole_page = 0;
1742 
1743 		if (++bvec <= bvec_end)
1744 			prefetchw(&bvec->bv_page->flags);
1745 
1746 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1747 			ret = tree->ops->readpage_end_io_hook(page, start, end,
1748 							      NULL);
1749 			if (ret)
1750 				uptodate = 0;
1751 		}
1752 		if (!uptodate && tree->ops &&
1753 		    tree->ops->readpage_io_failed_hook) {
1754 			ret = tree->ops->readpage_io_failed_hook(bio, page,
1755 							 start, end, NULL);
1756 			if (ret == 0) {
1757 				uptodate =
1758 					test_bit(BIO_UPTODATE, &bio->bi_flags);
1759 				if (err)
1760 					uptodate = 0;
1761 				continue;
1762 			}
1763 		}
1764 
1765 		if (uptodate) {
1766 			set_extent_uptodate(tree, start, end,
1767 					    GFP_ATOMIC);
1768 		}
1769 		unlock_extent(tree, start, end, GFP_ATOMIC);
1770 
1771 		if (whole_page) {
1772 			if (uptodate) {
1773 				SetPageUptodate(page);
1774 			} else {
1775 				ClearPageUptodate(page);
1776 				SetPageError(page);
1777 			}
1778 			unlock_page(page);
1779 		} else {
1780 			if (uptodate) {
1781 				check_page_uptodate(tree, page);
1782 			} else {
1783 				ClearPageUptodate(page);
1784 				SetPageError(page);
1785 			}
1786 			check_page_locked(tree, page);
1787 		}
1788 	} while (bvec <= bvec_end);
1789 
1790 	bio_put(bio);
1791 }
1792 
1793 /*
1794  * IO done from prepare_write is pretty simple, we just unlock
1795  * the structs in the extent tree when done, and set the uptodate bits
1796  * as appropriate.
1797  */
1798 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1799 {
1800 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1801 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1802 	struct extent_io_tree *tree;
1803 	u64 start;
1804 	u64 end;
1805 
1806 	do {
1807 		struct page *page = bvec->bv_page;
1808 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1809 
1810 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1811 			bvec->bv_offset;
1812 		end = start + bvec->bv_len - 1;
1813 
1814 		if (--bvec >= bio->bi_io_vec)
1815 			prefetchw(&bvec->bv_page->flags);
1816 
1817 		if (uptodate) {
1818 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1819 		} else {
1820 			ClearPageUptodate(page);
1821 			SetPageError(page);
1822 		}
1823 
1824 		unlock_extent(tree, start, end, GFP_ATOMIC);
1825 
1826 	} while (bvec >= bio->bi_io_vec);
1827 
1828 	bio_put(bio);
1829 }
1830 
1831 struct bio *
1832 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1833 		gfp_t gfp_flags)
1834 {
1835 	struct bio *bio;
1836 
1837 	bio = bio_alloc(gfp_flags, nr_vecs);
1838 
1839 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1840 		while (!bio && (nr_vecs /= 2))
1841 			bio = bio_alloc(gfp_flags, nr_vecs);
1842 	}
1843 
1844 	if (bio) {
1845 		bio->bi_size = 0;
1846 		bio->bi_bdev = bdev;
1847 		bio->bi_sector = first_sector;
1848 	}
1849 	return bio;
1850 }
1851 
1852 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1853 			  unsigned long bio_flags)
1854 {
1855 	int ret = 0;
1856 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1857 	struct page *page = bvec->bv_page;
1858 	struct extent_io_tree *tree = bio->bi_private;
1859 	u64 start;
1860 
1861 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1862 
1863 	bio->bi_private = NULL;
1864 
1865 	bio_get(bio);
1866 
1867 	if (tree->ops && tree->ops->submit_bio_hook)
1868 		tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1869 					   mirror_num, bio_flags, start);
1870 	else
1871 		submit_bio(rw, bio);
1872 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1873 		ret = -EOPNOTSUPP;
1874 	bio_put(bio);
1875 	return ret;
1876 }
1877 
1878 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1879 			      struct page *page, sector_t sector,
1880 			      size_t size, unsigned long offset,
1881 			      struct block_device *bdev,
1882 			      struct bio **bio_ret,
1883 			      unsigned long max_pages,
1884 			      bio_end_io_t end_io_func,
1885 			      int mirror_num,
1886 			      unsigned long prev_bio_flags,
1887 			      unsigned long bio_flags)
1888 {
1889 	int ret = 0;
1890 	struct bio *bio;
1891 	int nr;
1892 	int contig = 0;
1893 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1894 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1895 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1896 
1897 	if (bio_ret && *bio_ret) {
1898 		bio = *bio_ret;
1899 		if (old_compressed)
1900 			contig = bio->bi_sector == sector;
1901 		else
1902 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
1903 				sector;
1904 
1905 		if (prev_bio_flags != bio_flags || !contig ||
1906 		    (tree->ops && tree->ops->merge_bio_hook &&
1907 		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1908 					       bio_flags)) ||
1909 		    bio_add_page(bio, page, page_size, offset) < page_size) {
1910 			ret = submit_one_bio(rw, bio, mirror_num,
1911 					     prev_bio_flags);
1912 			bio = NULL;
1913 		} else {
1914 			return 0;
1915 		}
1916 	}
1917 	if (this_compressed)
1918 		nr = BIO_MAX_PAGES;
1919 	else
1920 		nr = bio_get_nr_vecs(bdev);
1921 
1922 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1923 
1924 	bio_add_page(bio, page, page_size, offset);
1925 	bio->bi_end_io = end_io_func;
1926 	bio->bi_private = tree;
1927 
1928 	if (bio_ret)
1929 		*bio_ret = bio;
1930 	else
1931 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1932 
1933 	return ret;
1934 }
1935 
1936 void set_page_extent_mapped(struct page *page)
1937 {
1938 	if (!PagePrivate(page)) {
1939 		SetPagePrivate(page);
1940 		page_cache_get(page);
1941 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1942 	}
1943 }
1944 
1945 static void set_page_extent_head(struct page *page, unsigned long len)
1946 {
1947 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1948 }
1949 
1950 /*
1951  * basic readpage implementation.  Locked extent state structs are inserted
1952  * into the tree that are removed when the IO is done (by the end_io
1953  * handlers)
1954  */
1955 static int __extent_read_full_page(struct extent_io_tree *tree,
1956 				   struct page *page,
1957 				   get_extent_t *get_extent,
1958 				   struct bio **bio, int mirror_num,
1959 				   unsigned long *bio_flags)
1960 {
1961 	struct inode *inode = page->mapping->host;
1962 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1963 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1964 	u64 end;
1965 	u64 cur = start;
1966 	u64 extent_offset;
1967 	u64 last_byte = i_size_read(inode);
1968 	u64 block_start;
1969 	u64 cur_end;
1970 	sector_t sector;
1971 	struct extent_map *em;
1972 	struct block_device *bdev;
1973 	struct btrfs_ordered_extent *ordered;
1974 	int ret;
1975 	int nr = 0;
1976 	size_t page_offset = 0;
1977 	size_t iosize;
1978 	size_t disk_io_size;
1979 	size_t blocksize = inode->i_sb->s_blocksize;
1980 	unsigned long this_bio_flag = 0;
1981 
1982 	set_page_extent_mapped(page);
1983 
1984 	end = page_end;
1985 	while (1) {
1986 		lock_extent(tree, start, end, GFP_NOFS);
1987 		ordered = btrfs_lookup_ordered_extent(inode, start);
1988 		if (!ordered)
1989 			break;
1990 		unlock_extent(tree, start, end, GFP_NOFS);
1991 		btrfs_start_ordered_extent(inode, ordered, 1);
1992 		btrfs_put_ordered_extent(ordered);
1993 	}
1994 
1995 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1996 		char *userpage;
1997 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1998 
1999 		if (zero_offset) {
2000 			iosize = PAGE_CACHE_SIZE - zero_offset;
2001 			userpage = kmap_atomic(page, KM_USER0);
2002 			memset(userpage + zero_offset, 0, iosize);
2003 			flush_dcache_page(page);
2004 			kunmap_atomic(userpage, KM_USER0);
2005 		}
2006 	}
2007 	while (cur <= end) {
2008 		if (cur >= last_byte) {
2009 			char *userpage;
2010 			iosize = PAGE_CACHE_SIZE - page_offset;
2011 			userpage = kmap_atomic(page, KM_USER0);
2012 			memset(userpage + page_offset, 0, iosize);
2013 			flush_dcache_page(page);
2014 			kunmap_atomic(userpage, KM_USER0);
2015 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2016 					    GFP_NOFS);
2017 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2018 			break;
2019 		}
2020 		em = get_extent(inode, page, page_offset, cur,
2021 				end - cur + 1, 0);
2022 		if (IS_ERR(em) || !em) {
2023 			SetPageError(page);
2024 			unlock_extent(tree, cur, end, GFP_NOFS);
2025 			break;
2026 		}
2027 		extent_offset = cur - em->start;
2028 		BUG_ON(extent_map_end(em) <= cur);
2029 		BUG_ON(end < cur);
2030 
2031 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2032 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2033 
2034 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2035 		cur_end = min(extent_map_end(em) - 1, end);
2036 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2037 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2038 			disk_io_size = em->block_len;
2039 			sector = em->block_start >> 9;
2040 		} else {
2041 			sector = (em->block_start + extent_offset) >> 9;
2042 			disk_io_size = iosize;
2043 		}
2044 		bdev = em->bdev;
2045 		block_start = em->block_start;
2046 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2047 			block_start = EXTENT_MAP_HOLE;
2048 		free_extent_map(em);
2049 		em = NULL;
2050 
2051 		/* we've found a hole, just zero and go on */
2052 		if (block_start == EXTENT_MAP_HOLE) {
2053 			char *userpage;
2054 			userpage = kmap_atomic(page, KM_USER0);
2055 			memset(userpage + page_offset, 0, iosize);
2056 			flush_dcache_page(page);
2057 			kunmap_atomic(userpage, KM_USER0);
2058 
2059 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2060 					    GFP_NOFS);
2061 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2062 			cur = cur + iosize;
2063 			page_offset += iosize;
2064 			continue;
2065 		}
2066 		/* the get_extent function already copied into the page */
2067 		if (test_range_bit(tree, cur, cur_end,
2068 				   EXTENT_UPTODATE, 1, NULL)) {
2069 			check_page_uptodate(tree, page);
2070 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2071 			cur = cur + iosize;
2072 			page_offset += iosize;
2073 			continue;
2074 		}
2075 		/* we have an inline extent but it didn't get marked up
2076 		 * to date.  Error out
2077 		 */
2078 		if (block_start == EXTENT_MAP_INLINE) {
2079 			SetPageError(page);
2080 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2081 			cur = cur + iosize;
2082 			page_offset += iosize;
2083 			continue;
2084 		}
2085 
2086 		ret = 0;
2087 		if (tree->ops && tree->ops->readpage_io_hook) {
2088 			ret = tree->ops->readpage_io_hook(page, cur,
2089 							  cur + iosize - 1);
2090 		}
2091 		if (!ret) {
2092 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2093 			pnr -= page->index;
2094 			ret = submit_extent_page(READ, tree, page,
2095 					 sector, disk_io_size, page_offset,
2096 					 bdev, bio, pnr,
2097 					 end_bio_extent_readpage, mirror_num,
2098 					 *bio_flags,
2099 					 this_bio_flag);
2100 			nr++;
2101 			*bio_flags = this_bio_flag;
2102 		}
2103 		if (ret)
2104 			SetPageError(page);
2105 		cur = cur + iosize;
2106 		page_offset += iosize;
2107 	}
2108 	if (!nr) {
2109 		if (!PageError(page))
2110 			SetPageUptodate(page);
2111 		unlock_page(page);
2112 	}
2113 	return 0;
2114 }
2115 
2116 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2117 			    get_extent_t *get_extent)
2118 {
2119 	struct bio *bio = NULL;
2120 	unsigned long bio_flags = 0;
2121 	int ret;
2122 
2123 	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2124 				      &bio_flags);
2125 	if (bio)
2126 		submit_one_bio(READ, bio, 0, bio_flags);
2127 	return ret;
2128 }
2129 
2130 static noinline void update_nr_written(struct page *page,
2131 				      struct writeback_control *wbc,
2132 				      unsigned long nr_written)
2133 {
2134 	wbc->nr_to_write -= nr_written;
2135 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2136 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2137 		page->mapping->writeback_index = page->index + nr_written;
2138 }
2139 
2140 /*
2141  * the writepage semantics are similar to regular writepage.  extent
2142  * records are inserted to lock ranges in the tree, and as dirty areas
2143  * are found, they are marked writeback.  Then the lock bits are removed
2144  * and the end_io handler clears the writeback ranges
2145  */
2146 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2147 			      void *data)
2148 {
2149 	struct inode *inode = page->mapping->host;
2150 	struct extent_page_data *epd = data;
2151 	struct extent_io_tree *tree = epd->tree;
2152 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2153 	u64 delalloc_start;
2154 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2155 	u64 end;
2156 	u64 cur = start;
2157 	u64 extent_offset;
2158 	u64 last_byte = i_size_read(inode);
2159 	u64 block_start;
2160 	u64 iosize;
2161 	sector_t sector;
2162 	struct extent_state *cached_state = NULL;
2163 	struct extent_map *em;
2164 	struct block_device *bdev;
2165 	int ret;
2166 	int nr = 0;
2167 	size_t pg_offset = 0;
2168 	size_t blocksize;
2169 	loff_t i_size = i_size_read(inode);
2170 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2171 	u64 nr_delalloc;
2172 	u64 delalloc_end;
2173 	int page_started;
2174 	int compressed;
2175 	int write_flags;
2176 	unsigned long nr_written = 0;
2177 
2178 	if (wbc->sync_mode == WB_SYNC_ALL)
2179 		write_flags = WRITE_SYNC_PLUG;
2180 	else
2181 		write_flags = WRITE;
2182 
2183 	WARN_ON(!PageLocked(page));
2184 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2185 	if (page->index > end_index ||
2186 	   (page->index == end_index && !pg_offset)) {
2187 		page->mapping->a_ops->invalidatepage(page, 0);
2188 		unlock_page(page);
2189 		return 0;
2190 	}
2191 
2192 	if (page->index == end_index) {
2193 		char *userpage;
2194 
2195 		userpage = kmap_atomic(page, KM_USER0);
2196 		memset(userpage + pg_offset, 0,
2197 		       PAGE_CACHE_SIZE - pg_offset);
2198 		kunmap_atomic(userpage, KM_USER0);
2199 		flush_dcache_page(page);
2200 	}
2201 	pg_offset = 0;
2202 
2203 	set_page_extent_mapped(page);
2204 
2205 	delalloc_start = start;
2206 	delalloc_end = 0;
2207 	page_started = 0;
2208 	if (!epd->extent_locked) {
2209 		u64 delalloc_to_write = 0;
2210 		/*
2211 		 * make sure the wbc mapping index is at least updated
2212 		 * to this page.
2213 		 */
2214 		update_nr_written(page, wbc, 0);
2215 
2216 		while (delalloc_end < page_end) {
2217 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2218 						       page,
2219 						       &delalloc_start,
2220 						       &delalloc_end,
2221 						       128 * 1024 * 1024);
2222 			if (nr_delalloc == 0) {
2223 				delalloc_start = delalloc_end + 1;
2224 				continue;
2225 			}
2226 			tree->ops->fill_delalloc(inode, page, delalloc_start,
2227 						 delalloc_end, &page_started,
2228 						 &nr_written);
2229 			/*
2230 			 * delalloc_end is already one less than the total
2231 			 * length, so we don't subtract one from
2232 			 * PAGE_CACHE_SIZE
2233 			 */
2234 			delalloc_to_write += (delalloc_end - delalloc_start +
2235 					      PAGE_CACHE_SIZE) >>
2236 					      PAGE_CACHE_SHIFT;
2237 			delalloc_start = delalloc_end + 1;
2238 		}
2239 		if (wbc->nr_to_write < delalloc_to_write) {
2240 			int thresh = 8192;
2241 
2242 			if (delalloc_to_write < thresh * 2)
2243 				thresh = delalloc_to_write;
2244 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2245 						 thresh);
2246 		}
2247 
2248 		/* did the fill delalloc function already unlock and start
2249 		 * the IO?
2250 		 */
2251 		if (page_started) {
2252 			ret = 0;
2253 			/*
2254 			 * we've unlocked the page, so we can't update
2255 			 * the mapping's writeback index, just update
2256 			 * nr_to_write.
2257 			 */
2258 			wbc->nr_to_write -= nr_written;
2259 			goto done_unlocked;
2260 		}
2261 	}
2262 	if (tree->ops && tree->ops->writepage_start_hook) {
2263 		ret = tree->ops->writepage_start_hook(page, start,
2264 						      page_end);
2265 		if (ret == -EAGAIN) {
2266 			redirty_page_for_writepage(wbc, page);
2267 			update_nr_written(page, wbc, nr_written);
2268 			unlock_page(page);
2269 			ret = 0;
2270 			goto done_unlocked;
2271 		}
2272 	}
2273 
2274 	/*
2275 	 * we don't want to touch the inode after unlocking the page,
2276 	 * so we update the mapping writeback index now
2277 	 */
2278 	update_nr_written(page, wbc, nr_written + 1);
2279 
2280 	end = page_end;
2281 	if (last_byte <= start) {
2282 		if (tree->ops && tree->ops->writepage_end_io_hook)
2283 			tree->ops->writepage_end_io_hook(page, start,
2284 							 page_end, NULL, 1);
2285 		goto done;
2286 	}
2287 
2288 	blocksize = inode->i_sb->s_blocksize;
2289 
2290 	while (cur <= end) {
2291 		if (cur >= last_byte) {
2292 			if (tree->ops && tree->ops->writepage_end_io_hook)
2293 				tree->ops->writepage_end_io_hook(page, cur,
2294 							 page_end, NULL, 1);
2295 			break;
2296 		}
2297 		em = epd->get_extent(inode, page, pg_offset, cur,
2298 				     end - cur + 1, 1);
2299 		if (IS_ERR(em) || !em) {
2300 			SetPageError(page);
2301 			break;
2302 		}
2303 
2304 		extent_offset = cur - em->start;
2305 		BUG_ON(extent_map_end(em) <= cur);
2306 		BUG_ON(end < cur);
2307 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2308 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2309 		sector = (em->block_start + extent_offset) >> 9;
2310 		bdev = em->bdev;
2311 		block_start = em->block_start;
2312 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2313 		free_extent_map(em);
2314 		em = NULL;
2315 
2316 		/*
2317 		 * compressed and inline extents are written through other
2318 		 * paths in the FS
2319 		 */
2320 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2321 		    block_start == EXTENT_MAP_INLINE) {
2322 			/*
2323 			 * end_io notification does not happen here for
2324 			 * compressed extents
2325 			 */
2326 			if (!compressed && tree->ops &&
2327 			    tree->ops->writepage_end_io_hook)
2328 				tree->ops->writepage_end_io_hook(page, cur,
2329 							 cur + iosize - 1,
2330 							 NULL, 1);
2331 			else if (compressed) {
2332 				/* we don't want to end_page_writeback on
2333 				 * a compressed extent.  this happens
2334 				 * elsewhere
2335 				 */
2336 				nr++;
2337 			}
2338 
2339 			cur += iosize;
2340 			pg_offset += iosize;
2341 			continue;
2342 		}
2343 		/* leave this out until we have a page_mkwrite call */
2344 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2345 				   EXTENT_DIRTY, 0, NULL)) {
2346 			cur = cur + iosize;
2347 			pg_offset += iosize;
2348 			continue;
2349 		}
2350 
2351 		if (tree->ops && tree->ops->writepage_io_hook) {
2352 			ret = tree->ops->writepage_io_hook(page, cur,
2353 						cur + iosize - 1);
2354 		} else {
2355 			ret = 0;
2356 		}
2357 		if (ret) {
2358 			SetPageError(page);
2359 		} else {
2360 			unsigned long max_nr = end_index + 1;
2361 
2362 			set_range_writeback(tree, cur, cur + iosize - 1);
2363 			if (!PageWriteback(page)) {
2364 				printk(KERN_ERR "btrfs warning page %lu not "
2365 				       "writeback, cur %llu end %llu\n",
2366 				       page->index, (unsigned long long)cur,
2367 				       (unsigned long long)end);
2368 			}
2369 
2370 			ret = submit_extent_page(write_flags, tree, page,
2371 						 sector, iosize, pg_offset,
2372 						 bdev, &epd->bio, max_nr,
2373 						 end_bio_extent_writepage,
2374 						 0, 0, 0);
2375 			if (ret)
2376 				SetPageError(page);
2377 		}
2378 		cur = cur + iosize;
2379 		pg_offset += iosize;
2380 		nr++;
2381 	}
2382 done:
2383 	if (nr == 0) {
2384 		/* make sure the mapping tag for page dirty gets cleared */
2385 		set_page_writeback(page);
2386 		end_page_writeback(page);
2387 	}
2388 	unlock_page(page);
2389 
2390 done_unlocked:
2391 
2392 	/* drop our reference on any cached states */
2393 	free_extent_state(cached_state);
2394 	return 0;
2395 }
2396 
2397 /**
2398  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2399  * @mapping: address space structure to write
2400  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2401  * @writepage: function called for each page
2402  * @data: data passed to writepage function
2403  *
2404  * If a page is already under I/O, write_cache_pages() skips it, even
2405  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2406  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2407  * and msync() need to guarantee that all the data which was dirty at the time
2408  * the call was made get new I/O started against them.  If wbc->sync_mode is
2409  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2410  * existing IO to complete.
2411  */
2412 static int extent_write_cache_pages(struct extent_io_tree *tree,
2413 			     struct address_space *mapping,
2414 			     struct writeback_control *wbc,
2415 			     writepage_t writepage, void *data,
2416 			     void (*flush_fn)(void *))
2417 {
2418 	int ret = 0;
2419 	int done = 0;
2420 	int nr_to_write_done = 0;
2421 	struct pagevec pvec;
2422 	int nr_pages;
2423 	pgoff_t index;
2424 	pgoff_t end;		/* Inclusive */
2425 	int scanned = 0;
2426 
2427 	pagevec_init(&pvec, 0);
2428 	if (wbc->range_cyclic) {
2429 		index = mapping->writeback_index; /* Start from prev offset */
2430 		end = -1;
2431 	} else {
2432 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2433 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2434 		scanned = 1;
2435 	}
2436 retry:
2437 	while (!done && !nr_to_write_done && (index <= end) &&
2438 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2439 			      PAGECACHE_TAG_DIRTY, min(end - index,
2440 				  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2441 		unsigned i;
2442 
2443 		scanned = 1;
2444 		for (i = 0; i < nr_pages; i++) {
2445 			struct page *page = pvec.pages[i];
2446 
2447 			/*
2448 			 * At this point we hold neither mapping->tree_lock nor
2449 			 * lock on the page itself: the page may be truncated or
2450 			 * invalidated (changing page->mapping to NULL), or even
2451 			 * swizzled back from swapper_space to tmpfs file
2452 			 * mapping
2453 			 */
2454 			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2455 				tree->ops->write_cache_pages_lock_hook(page);
2456 			else
2457 				lock_page(page);
2458 
2459 			if (unlikely(page->mapping != mapping)) {
2460 				unlock_page(page);
2461 				continue;
2462 			}
2463 
2464 			if (!wbc->range_cyclic && page->index > end) {
2465 				done = 1;
2466 				unlock_page(page);
2467 				continue;
2468 			}
2469 
2470 			if (wbc->sync_mode != WB_SYNC_NONE) {
2471 				if (PageWriteback(page))
2472 					flush_fn(data);
2473 				wait_on_page_writeback(page);
2474 			}
2475 
2476 			if (PageWriteback(page) ||
2477 			    !clear_page_dirty_for_io(page)) {
2478 				unlock_page(page);
2479 				continue;
2480 			}
2481 
2482 			ret = (*writepage)(page, wbc, data);
2483 
2484 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2485 				unlock_page(page);
2486 				ret = 0;
2487 			}
2488 			if (ret)
2489 				done = 1;
2490 
2491 			/*
2492 			 * the filesystem may choose to bump up nr_to_write.
2493 			 * We have to make sure to honor the new nr_to_write
2494 			 * at any time
2495 			 */
2496 			nr_to_write_done = wbc->nr_to_write <= 0;
2497 		}
2498 		pagevec_release(&pvec);
2499 		cond_resched();
2500 	}
2501 	if (!scanned && !done) {
2502 		/*
2503 		 * We hit the last page and there is more work to be done: wrap
2504 		 * back to the start of the file
2505 		 */
2506 		scanned = 1;
2507 		index = 0;
2508 		goto retry;
2509 	}
2510 	return ret;
2511 }
2512 
2513 static void flush_epd_write_bio(struct extent_page_data *epd)
2514 {
2515 	if (epd->bio) {
2516 		if (epd->sync_io)
2517 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2518 		else
2519 			submit_one_bio(WRITE, epd->bio, 0, 0);
2520 		epd->bio = NULL;
2521 	}
2522 }
2523 
2524 static noinline void flush_write_bio(void *data)
2525 {
2526 	struct extent_page_data *epd = data;
2527 	flush_epd_write_bio(epd);
2528 }
2529 
2530 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2531 			  get_extent_t *get_extent,
2532 			  struct writeback_control *wbc)
2533 {
2534 	int ret;
2535 	struct address_space *mapping = page->mapping;
2536 	struct extent_page_data epd = {
2537 		.bio = NULL,
2538 		.tree = tree,
2539 		.get_extent = get_extent,
2540 		.extent_locked = 0,
2541 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2542 	};
2543 	struct writeback_control wbc_writepages = {
2544 		.sync_mode	= wbc->sync_mode,
2545 		.older_than_this = NULL,
2546 		.nr_to_write	= 64,
2547 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2548 		.range_end	= (loff_t)-1,
2549 	};
2550 
2551 	ret = __extent_writepage(page, wbc, &epd);
2552 
2553 	extent_write_cache_pages(tree, mapping, &wbc_writepages,
2554 				 __extent_writepage, &epd, flush_write_bio);
2555 	flush_epd_write_bio(&epd);
2556 	return ret;
2557 }
2558 
2559 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2560 			      u64 start, u64 end, get_extent_t *get_extent,
2561 			      int mode)
2562 {
2563 	int ret = 0;
2564 	struct address_space *mapping = inode->i_mapping;
2565 	struct page *page;
2566 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2567 		PAGE_CACHE_SHIFT;
2568 
2569 	struct extent_page_data epd = {
2570 		.bio = NULL,
2571 		.tree = tree,
2572 		.get_extent = get_extent,
2573 		.extent_locked = 1,
2574 		.sync_io = mode == WB_SYNC_ALL,
2575 	};
2576 	struct writeback_control wbc_writepages = {
2577 		.sync_mode	= mode,
2578 		.older_than_this = NULL,
2579 		.nr_to_write	= nr_pages * 2,
2580 		.range_start	= start,
2581 		.range_end	= end + 1,
2582 	};
2583 
2584 	while (start <= end) {
2585 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2586 		if (clear_page_dirty_for_io(page))
2587 			ret = __extent_writepage(page, &wbc_writepages, &epd);
2588 		else {
2589 			if (tree->ops && tree->ops->writepage_end_io_hook)
2590 				tree->ops->writepage_end_io_hook(page, start,
2591 						 start + PAGE_CACHE_SIZE - 1,
2592 						 NULL, 1);
2593 			unlock_page(page);
2594 		}
2595 		page_cache_release(page);
2596 		start += PAGE_CACHE_SIZE;
2597 	}
2598 
2599 	flush_epd_write_bio(&epd);
2600 	return ret;
2601 }
2602 
2603 int extent_writepages(struct extent_io_tree *tree,
2604 		      struct address_space *mapping,
2605 		      get_extent_t *get_extent,
2606 		      struct writeback_control *wbc)
2607 {
2608 	int ret = 0;
2609 	struct extent_page_data epd = {
2610 		.bio = NULL,
2611 		.tree = tree,
2612 		.get_extent = get_extent,
2613 		.extent_locked = 0,
2614 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2615 	};
2616 
2617 	ret = extent_write_cache_pages(tree, mapping, wbc,
2618 				       __extent_writepage, &epd,
2619 				       flush_write_bio);
2620 	flush_epd_write_bio(&epd);
2621 	return ret;
2622 }
2623 
2624 int extent_readpages(struct extent_io_tree *tree,
2625 		     struct address_space *mapping,
2626 		     struct list_head *pages, unsigned nr_pages,
2627 		     get_extent_t get_extent)
2628 {
2629 	struct bio *bio = NULL;
2630 	unsigned page_idx;
2631 	unsigned long bio_flags = 0;
2632 
2633 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2634 		struct page *page = list_entry(pages->prev, struct page, lru);
2635 
2636 		prefetchw(&page->flags);
2637 		list_del(&page->lru);
2638 		if (!add_to_page_cache_lru(page, mapping,
2639 					page->index, GFP_KERNEL)) {
2640 			__extent_read_full_page(tree, page, get_extent,
2641 						&bio, 0, &bio_flags);
2642 		}
2643 		page_cache_release(page);
2644 	}
2645 	BUG_ON(!list_empty(pages));
2646 	if (bio)
2647 		submit_one_bio(READ, bio, 0, bio_flags);
2648 	return 0;
2649 }
2650 
2651 /*
2652  * basic invalidatepage code, this waits on any locked or writeback
2653  * ranges corresponding to the page, and then deletes any extent state
2654  * records from the tree
2655  */
2656 int extent_invalidatepage(struct extent_io_tree *tree,
2657 			  struct page *page, unsigned long offset)
2658 {
2659 	struct extent_state *cached_state = NULL;
2660 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2661 	u64 end = start + PAGE_CACHE_SIZE - 1;
2662 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2663 
2664 	start += (offset + blocksize - 1) & ~(blocksize - 1);
2665 	if (start > end)
2666 		return 0;
2667 
2668 	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2669 	wait_on_page_writeback(page);
2670 	clear_extent_bit(tree, start, end,
2671 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2672 			 EXTENT_DO_ACCOUNTING,
2673 			 1, 1, &cached_state, GFP_NOFS);
2674 	return 0;
2675 }
2676 
2677 /*
2678  * simple commit_write call, set_range_dirty is used to mark both
2679  * the pages and the extent records as dirty
2680  */
2681 int extent_commit_write(struct extent_io_tree *tree,
2682 			struct inode *inode, struct page *page,
2683 			unsigned from, unsigned to)
2684 {
2685 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2686 
2687 	set_page_extent_mapped(page);
2688 	set_page_dirty(page);
2689 
2690 	if (pos > inode->i_size) {
2691 		i_size_write(inode, pos);
2692 		mark_inode_dirty(inode);
2693 	}
2694 	return 0;
2695 }
2696 
2697 int extent_prepare_write(struct extent_io_tree *tree,
2698 			 struct inode *inode, struct page *page,
2699 			 unsigned from, unsigned to, get_extent_t *get_extent)
2700 {
2701 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2702 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2703 	u64 block_start;
2704 	u64 orig_block_start;
2705 	u64 block_end;
2706 	u64 cur_end;
2707 	struct extent_map *em;
2708 	unsigned blocksize = 1 << inode->i_blkbits;
2709 	size_t page_offset = 0;
2710 	size_t block_off_start;
2711 	size_t block_off_end;
2712 	int err = 0;
2713 	int iocount = 0;
2714 	int ret = 0;
2715 	int isnew;
2716 
2717 	set_page_extent_mapped(page);
2718 
2719 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2720 	block_end = (page_start + to - 1) | (blocksize - 1);
2721 	orig_block_start = block_start;
2722 
2723 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2724 	while (block_start <= block_end) {
2725 		em = get_extent(inode, page, page_offset, block_start,
2726 				block_end - block_start + 1, 1);
2727 		if (IS_ERR(em) || !em)
2728 			goto err;
2729 
2730 		cur_end = min(block_end, extent_map_end(em) - 1);
2731 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2732 		block_off_end = block_off_start + blocksize;
2733 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2734 
2735 		if (!PageUptodate(page) && isnew &&
2736 		    (block_off_end > to || block_off_start < from)) {
2737 			void *kaddr;
2738 
2739 			kaddr = kmap_atomic(page, KM_USER0);
2740 			if (block_off_end > to)
2741 				memset(kaddr + to, 0, block_off_end - to);
2742 			if (block_off_start < from)
2743 				memset(kaddr + block_off_start, 0,
2744 				       from - block_off_start);
2745 			flush_dcache_page(page);
2746 			kunmap_atomic(kaddr, KM_USER0);
2747 		}
2748 		if ((em->block_start != EXTENT_MAP_HOLE &&
2749 		     em->block_start != EXTENT_MAP_INLINE) &&
2750 		    !isnew && !PageUptodate(page) &&
2751 		    (block_off_end > to || block_off_start < from) &&
2752 		    !test_range_bit(tree, block_start, cur_end,
2753 				    EXTENT_UPTODATE, 1, NULL)) {
2754 			u64 sector;
2755 			u64 extent_offset = block_start - em->start;
2756 			size_t iosize;
2757 			sector = (em->block_start + extent_offset) >> 9;
2758 			iosize = (cur_end - block_start + blocksize) &
2759 				~((u64)blocksize - 1);
2760 			/*
2761 			 * we've already got the extent locked, but we
2762 			 * need to split the state such that our end_bio
2763 			 * handler can clear the lock.
2764 			 */
2765 			set_extent_bit(tree, block_start,
2766 				       block_start + iosize - 1,
2767 				       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2768 			ret = submit_extent_page(READ, tree, page,
2769 					 sector, iosize, page_offset, em->bdev,
2770 					 NULL, 1,
2771 					 end_bio_extent_preparewrite, 0,
2772 					 0, 0);
2773 			if (ret && !err)
2774 				err = ret;
2775 			iocount++;
2776 			block_start = block_start + iosize;
2777 		} else {
2778 			set_extent_uptodate(tree, block_start, cur_end,
2779 					    GFP_NOFS);
2780 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2781 			block_start = cur_end + 1;
2782 		}
2783 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2784 		free_extent_map(em);
2785 	}
2786 	if (iocount) {
2787 		wait_extent_bit(tree, orig_block_start,
2788 				block_end, EXTENT_LOCKED);
2789 	}
2790 	check_page_uptodate(tree, page);
2791 err:
2792 	/* FIXME, zero out newly allocated blocks on error */
2793 	return err;
2794 }
2795 
2796 /*
2797  * a helper for releasepage, this tests for areas of the page that
2798  * are locked or under IO and drops the related state bits if it is safe
2799  * to drop the page.
2800  */
2801 int try_release_extent_state(struct extent_map_tree *map,
2802 			     struct extent_io_tree *tree, struct page *page,
2803 			     gfp_t mask)
2804 {
2805 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2806 	u64 end = start + PAGE_CACHE_SIZE - 1;
2807 	int ret = 1;
2808 
2809 	if (test_range_bit(tree, start, end,
2810 			   EXTENT_IOBITS, 0, NULL))
2811 		ret = 0;
2812 	else {
2813 		if ((mask & GFP_NOFS) == GFP_NOFS)
2814 			mask = GFP_NOFS;
2815 		/*
2816 		 * at this point we can safely clear everything except the
2817 		 * locked bit and the nodatasum bit
2818 		 */
2819 		clear_extent_bit(tree, start, end,
2820 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2821 				 0, 0, NULL, mask);
2822 	}
2823 	return ret;
2824 }
2825 
2826 /*
2827  * a helper for releasepage.  As long as there are no locked extents
2828  * in the range corresponding to the page, both state records and extent
2829  * map records are removed
2830  */
2831 int try_release_extent_mapping(struct extent_map_tree *map,
2832 			       struct extent_io_tree *tree, struct page *page,
2833 			       gfp_t mask)
2834 {
2835 	struct extent_map *em;
2836 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2837 	u64 end = start + PAGE_CACHE_SIZE - 1;
2838 
2839 	if ((mask & __GFP_WAIT) &&
2840 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
2841 		u64 len;
2842 		while (start <= end) {
2843 			len = end - start + 1;
2844 			write_lock(&map->lock);
2845 			em = lookup_extent_mapping(map, start, len);
2846 			if (!em || IS_ERR(em)) {
2847 				write_unlock(&map->lock);
2848 				break;
2849 			}
2850 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2851 			    em->start != start) {
2852 				write_unlock(&map->lock);
2853 				free_extent_map(em);
2854 				break;
2855 			}
2856 			if (!test_range_bit(tree, em->start,
2857 					    extent_map_end(em) - 1,
2858 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
2859 					    0, NULL)) {
2860 				remove_extent_mapping(map, em);
2861 				/* once for the rb tree */
2862 				free_extent_map(em);
2863 			}
2864 			start = extent_map_end(em);
2865 			write_unlock(&map->lock);
2866 
2867 			/* once for us */
2868 			free_extent_map(em);
2869 		}
2870 	}
2871 	return try_release_extent_state(map, tree, page, mask);
2872 }
2873 
2874 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2875 		get_extent_t *get_extent)
2876 {
2877 	struct inode *inode = mapping->host;
2878 	struct extent_state *cached_state = NULL;
2879 	u64 start = iblock << inode->i_blkbits;
2880 	sector_t sector = 0;
2881 	size_t blksize = (1 << inode->i_blkbits);
2882 	struct extent_map *em;
2883 
2884 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2885 			 0, &cached_state, GFP_NOFS);
2886 	em = get_extent(inode, NULL, 0, start, blksize, 0);
2887 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2888 			     start + blksize - 1, &cached_state, GFP_NOFS);
2889 	if (!em || IS_ERR(em))
2890 		return 0;
2891 
2892 	if (em->block_start > EXTENT_MAP_LAST_BYTE)
2893 		goto out;
2894 
2895 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2896 out:
2897 	free_extent_map(em);
2898 	return sector;
2899 }
2900 
2901 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2902 		__u64 start, __u64 len, get_extent_t *get_extent)
2903 {
2904 	int ret = 0;
2905 	u64 off = start;
2906 	u64 max = start + len;
2907 	u32 flags = 0;
2908 	u32 found_type;
2909 	u64 last;
2910 	u64 disko = 0;
2911 	struct btrfs_key found_key;
2912 	struct extent_map *em = NULL;
2913 	struct extent_state *cached_state = NULL;
2914 	struct btrfs_path *path;
2915 	struct btrfs_file_extent_item *item;
2916 	int end = 0;
2917 	u64 em_start = 0, em_len = 0;
2918 	unsigned long emflags;
2919 	int hole = 0;
2920 
2921 	if (len == 0)
2922 		return -EINVAL;
2923 
2924 	path = btrfs_alloc_path();
2925 	if (!path)
2926 		return -ENOMEM;
2927 	path->leave_spinning = 1;
2928 
2929 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2930 				       path, inode->i_ino, -1, 0);
2931 	if (ret < 0) {
2932 		btrfs_free_path(path);
2933 		return ret;
2934 	}
2935 	WARN_ON(!ret);
2936 	path->slots[0]--;
2937 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2938 			      struct btrfs_file_extent_item);
2939 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2940 	found_type = btrfs_key_type(&found_key);
2941 
2942 	/* No extents, just return */
2943 	if (found_key.objectid != inode->i_ino ||
2944 	    found_type != BTRFS_EXTENT_DATA_KEY) {
2945 		btrfs_free_path(path);
2946 		return 0;
2947 	}
2948 	last = found_key.offset;
2949 	btrfs_free_path(path);
2950 
2951 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2952 			 &cached_state, GFP_NOFS);
2953 	em = get_extent(inode, NULL, 0, off, max - off, 0);
2954 	if (!em)
2955 		goto out;
2956 	if (IS_ERR(em)) {
2957 		ret = PTR_ERR(em);
2958 		goto out;
2959 	}
2960 
2961 	while (!end) {
2962 		hole = 0;
2963 		off = em->start + em->len;
2964 		if (off >= max)
2965 			end = 1;
2966 
2967 		if (em->block_start == EXTENT_MAP_HOLE) {
2968 			hole = 1;
2969 			goto next;
2970 		}
2971 
2972 		em_start = em->start;
2973 		em_len = em->len;
2974 
2975 		disko = 0;
2976 		flags = 0;
2977 
2978 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2979 			end = 1;
2980 			flags |= FIEMAP_EXTENT_LAST;
2981 		} else if (em->block_start == EXTENT_MAP_INLINE) {
2982 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
2983 				  FIEMAP_EXTENT_NOT_ALIGNED);
2984 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
2985 			flags |= (FIEMAP_EXTENT_DELALLOC |
2986 				  FIEMAP_EXTENT_UNKNOWN);
2987 		} else {
2988 			disko = em->block_start;
2989 		}
2990 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2991 			flags |= FIEMAP_EXTENT_ENCODED;
2992 
2993 next:
2994 		emflags = em->flags;
2995 		free_extent_map(em);
2996 		em = NULL;
2997 		if (!end) {
2998 			em = get_extent(inode, NULL, 0, off, max - off, 0);
2999 			if (!em)
3000 				goto out;
3001 			if (IS_ERR(em)) {
3002 				ret = PTR_ERR(em);
3003 				goto out;
3004 			}
3005 			emflags = em->flags;
3006 		}
3007 
3008 		if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3009 			flags |= FIEMAP_EXTENT_LAST;
3010 			end = 1;
3011 		}
3012 
3013 		if (em_start == last) {
3014 			flags |= FIEMAP_EXTENT_LAST;
3015 			end = 1;
3016 		}
3017 
3018 		if (!hole) {
3019 			ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3020 						em_len, flags);
3021 			if (ret)
3022 				goto out_free;
3023 		}
3024 	}
3025 out_free:
3026 	free_extent_map(em);
3027 out:
3028 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3029 			     &cached_state, GFP_NOFS);
3030 	return ret;
3031 }
3032 
3033 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3034 					      unsigned long i)
3035 {
3036 	struct page *p;
3037 	struct address_space *mapping;
3038 
3039 	if (i == 0)
3040 		return eb->first_page;
3041 	i += eb->start >> PAGE_CACHE_SHIFT;
3042 	mapping = eb->first_page->mapping;
3043 	if (!mapping)
3044 		return NULL;
3045 
3046 	/*
3047 	 * extent_buffer_page is only called after pinning the page
3048 	 * by increasing the reference count.  So we know the page must
3049 	 * be in the radix tree.
3050 	 */
3051 	rcu_read_lock();
3052 	p = radix_tree_lookup(&mapping->page_tree, i);
3053 	rcu_read_unlock();
3054 
3055 	return p;
3056 }
3057 
3058 static inline unsigned long num_extent_pages(u64 start, u64 len)
3059 {
3060 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3061 		(start >> PAGE_CACHE_SHIFT);
3062 }
3063 
3064 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3065 						   u64 start,
3066 						   unsigned long len,
3067 						   gfp_t mask)
3068 {
3069 	struct extent_buffer *eb = NULL;
3070 #if LEAK_DEBUG
3071 	unsigned long flags;
3072 #endif
3073 
3074 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3075 	eb->start = start;
3076 	eb->len = len;
3077 	spin_lock_init(&eb->lock);
3078 	init_waitqueue_head(&eb->lock_wq);
3079 
3080 #if LEAK_DEBUG
3081 	spin_lock_irqsave(&leak_lock, flags);
3082 	list_add(&eb->leak_list, &buffers);
3083 	spin_unlock_irqrestore(&leak_lock, flags);
3084 #endif
3085 	atomic_set(&eb->refs, 1);
3086 
3087 	return eb;
3088 }
3089 
3090 static void __free_extent_buffer(struct extent_buffer *eb)
3091 {
3092 #if LEAK_DEBUG
3093 	unsigned long flags;
3094 	spin_lock_irqsave(&leak_lock, flags);
3095 	list_del(&eb->leak_list);
3096 	spin_unlock_irqrestore(&leak_lock, flags);
3097 #endif
3098 	kmem_cache_free(extent_buffer_cache, eb);
3099 }
3100 
3101 /*
3102  * Helper for releasing extent buffer page.
3103  */
3104 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3105 						unsigned long start_idx)
3106 {
3107 	unsigned long index;
3108 	struct page *page;
3109 
3110 	if (!eb->first_page)
3111 		return;
3112 
3113 	index = num_extent_pages(eb->start, eb->len);
3114 	if (start_idx >= index)
3115 		return;
3116 
3117 	do {
3118 		index--;
3119 		page = extent_buffer_page(eb, index);
3120 		if (page)
3121 			page_cache_release(page);
3122 	} while (index != start_idx);
3123 }
3124 
3125 /*
3126  * Helper for releasing the extent buffer.
3127  */
3128 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3129 {
3130 	btrfs_release_extent_buffer_page(eb, 0);
3131 	__free_extent_buffer(eb);
3132 }
3133 
3134 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3135 					  u64 start, unsigned long len,
3136 					  struct page *page0,
3137 					  gfp_t mask)
3138 {
3139 	unsigned long num_pages = num_extent_pages(start, len);
3140 	unsigned long i;
3141 	unsigned long index = start >> PAGE_CACHE_SHIFT;
3142 	struct extent_buffer *eb;
3143 	struct extent_buffer *exists = NULL;
3144 	struct page *p;
3145 	struct address_space *mapping = tree->mapping;
3146 	int uptodate = 1;
3147 	int ret;
3148 
3149 	rcu_read_lock();
3150 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3151 	if (eb && atomic_inc_not_zero(&eb->refs)) {
3152 		rcu_read_unlock();
3153 		mark_page_accessed(eb->first_page);
3154 		return eb;
3155 	}
3156 	rcu_read_unlock();
3157 
3158 	eb = __alloc_extent_buffer(tree, start, len, mask);
3159 	if (!eb)
3160 		return NULL;
3161 
3162 	if (page0) {
3163 		eb->first_page = page0;
3164 		i = 1;
3165 		index++;
3166 		page_cache_get(page0);
3167 		mark_page_accessed(page0);
3168 		set_page_extent_mapped(page0);
3169 		set_page_extent_head(page0, len);
3170 		uptodate = PageUptodate(page0);
3171 	} else {
3172 		i = 0;
3173 	}
3174 	for (; i < num_pages; i++, index++) {
3175 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3176 		if (!p) {
3177 			WARN_ON(1);
3178 			goto free_eb;
3179 		}
3180 		set_page_extent_mapped(p);
3181 		mark_page_accessed(p);
3182 		if (i == 0) {
3183 			eb->first_page = p;
3184 			set_page_extent_head(p, len);
3185 		} else {
3186 			set_page_private(p, EXTENT_PAGE_PRIVATE);
3187 		}
3188 		if (!PageUptodate(p))
3189 			uptodate = 0;
3190 		unlock_page(p);
3191 	}
3192 	if (uptodate)
3193 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3194 
3195 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3196 	if (ret)
3197 		goto free_eb;
3198 
3199 	spin_lock(&tree->buffer_lock);
3200 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3201 	if (ret == -EEXIST) {
3202 		exists = radix_tree_lookup(&tree->buffer,
3203 						start >> PAGE_CACHE_SHIFT);
3204 		/* add one reference for the caller */
3205 		atomic_inc(&exists->refs);
3206 		spin_unlock(&tree->buffer_lock);
3207 		radix_tree_preload_end();
3208 		goto free_eb;
3209 	}
3210 	/* add one reference for the tree */
3211 	atomic_inc(&eb->refs);
3212 	spin_unlock(&tree->buffer_lock);
3213 	radix_tree_preload_end();
3214 	return eb;
3215 
3216 free_eb:
3217 	if (!atomic_dec_and_test(&eb->refs))
3218 		return exists;
3219 	btrfs_release_extent_buffer(eb);
3220 	return exists;
3221 }
3222 
3223 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3224 					 u64 start, unsigned long len,
3225 					  gfp_t mask)
3226 {
3227 	struct extent_buffer *eb;
3228 
3229 	rcu_read_lock();
3230 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3231 	if (eb && atomic_inc_not_zero(&eb->refs)) {
3232 		rcu_read_unlock();
3233 		mark_page_accessed(eb->first_page);
3234 		return eb;
3235 	}
3236 	rcu_read_unlock();
3237 
3238 	return NULL;
3239 }
3240 
3241 void free_extent_buffer(struct extent_buffer *eb)
3242 {
3243 	if (!eb)
3244 		return;
3245 
3246 	if (!atomic_dec_and_test(&eb->refs))
3247 		return;
3248 
3249 	WARN_ON(1);
3250 }
3251 
3252 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3253 			      struct extent_buffer *eb)
3254 {
3255 	unsigned long i;
3256 	unsigned long num_pages;
3257 	struct page *page;
3258 
3259 	num_pages = num_extent_pages(eb->start, eb->len);
3260 
3261 	for (i = 0; i < num_pages; i++) {
3262 		page = extent_buffer_page(eb, i);
3263 		if (!PageDirty(page))
3264 			continue;
3265 
3266 		lock_page(page);
3267 		if (i == 0)
3268 			set_page_extent_head(page, eb->len);
3269 		else
3270 			set_page_private(page, EXTENT_PAGE_PRIVATE);
3271 
3272 		clear_page_dirty_for_io(page);
3273 		spin_lock_irq(&page->mapping->tree_lock);
3274 		if (!PageDirty(page)) {
3275 			radix_tree_tag_clear(&page->mapping->page_tree,
3276 						page_index(page),
3277 						PAGECACHE_TAG_DIRTY);
3278 		}
3279 		spin_unlock_irq(&page->mapping->tree_lock);
3280 		unlock_page(page);
3281 	}
3282 	return 0;
3283 }
3284 
3285 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3286 				    struct extent_buffer *eb)
3287 {
3288 	return wait_on_extent_writeback(tree, eb->start,
3289 					eb->start + eb->len - 1);
3290 }
3291 
3292 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3293 			     struct extent_buffer *eb)
3294 {
3295 	unsigned long i;
3296 	unsigned long num_pages;
3297 	int was_dirty = 0;
3298 
3299 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3300 	num_pages = num_extent_pages(eb->start, eb->len);
3301 	for (i = 0; i < num_pages; i++)
3302 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3303 	return was_dirty;
3304 }
3305 
3306 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3307 				struct extent_buffer *eb,
3308 				struct extent_state **cached_state)
3309 {
3310 	unsigned long i;
3311 	struct page *page;
3312 	unsigned long num_pages;
3313 
3314 	num_pages = num_extent_pages(eb->start, eb->len);
3315 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3316 
3317 	clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3318 			      cached_state, GFP_NOFS);
3319 	for (i = 0; i < num_pages; i++) {
3320 		page = extent_buffer_page(eb, i);
3321 		if (page)
3322 			ClearPageUptodate(page);
3323 	}
3324 	return 0;
3325 }
3326 
3327 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3328 				struct extent_buffer *eb)
3329 {
3330 	unsigned long i;
3331 	struct page *page;
3332 	unsigned long num_pages;
3333 
3334 	num_pages = num_extent_pages(eb->start, eb->len);
3335 
3336 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3337 			    GFP_NOFS);
3338 	for (i = 0; i < num_pages; i++) {
3339 		page = extent_buffer_page(eb, i);
3340 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3341 		    ((i == num_pages - 1) &&
3342 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3343 			check_page_uptodate(tree, page);
3344 			continue;
3345 		}
3346 		SetPageUptodate(page);
3347 	}
3348 	return 0;
3349 }
3350 
3351 int extent_range_uptodate(struct extent_io_tree *tree,
3352 			  u64 start, u64 end)
3353 {
3354 	struct page *page;
3355 	int ret;
3356 	int pg_uptodate = 1;
3357 	int uptodate;
3358 	unsigned long index;
3359 
3360 	ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3361 	if (ret)
3362 		return 1;
3363 	while (start <= end) {
3364 		index = start >> PAGE_CACHE_SHIFT;
3365 		page = find_get_page(tree->mapping, index);
3366 		uptodate = PageUptodate(page);
3367 		page_cache_release(page);
3368 		if (!uptodate) {
3369 			pg_uptodate = 0;
3370 			break;
3371 		}
3372 		start += PAGE_CACHE_SIZE;
3373 	}
3374 	return pg_uptodate;
3375 }
3376 
3377 int extent_buffer_uptodate(struct extent_io_tree *tree,
3378 			   struct extent_buffer *eb,
3379 			   struct extent_state *cached_state)
3380 {
3381 	int ret = 0;
3382 	unsigned long num_pages;
3383 	unsigned long i;
3384 	struct page *page;
3385 	int pg_uptodate = 1;
3386 
3387 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3388 		return 1;
3389 
3390 	ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3391 			   EXTENT_UPTODATE, 1, cached_state);
3392 	if (ret)
3393 		return ret;
3394 
3395 	num_pages = num_extent_pages(eb->start, eb->len);
3396 	for (i = 0; i < num_pages; i++) {
3397 		page = extent_buffer_page(eb, i);
3398 		if (!PageUptodate(page)) {
3399 			pg_uptodate = 0;
3400 			break;
3401 		}
3402 	}
3403 	return pg_uptodate;
3404 }
3405 
3406 int read_extent_buffer_pages(struct extent_io_tree *tree,
3407 			     struct extent_buffer *eb,
3408 			     u64 start, int wait,
3409 			     get_extent_t *get_extent, int mirror_num)
3410 {
3411 	unsigned long i;
3412 	unsigned long start_i;
3413 	struct page *page;
3414 	int err;
3415 	int ret = 0;
3416 	int locked_pages = 0;
3417 	int all_uptodate = 1;
3418 	int inc_all_pages = 0;
3419 	unsigned long num_pages;
3420 	struct bio *bio = NULL;
3421 	unsigned long bio_flags = 0;
3422 
3423 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3424 		return 0;
3425 
3426 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3427 			   EXTENT_UPTODATE, 1, NULL)) {
3428 		return 0;
3429 	}
3430 
3431 	if (start) {
3432 		WARN_ON(start < eb->start);
3433 		start_i = (start >> PAGE_CACHE_SHIFT) -
3434 			(eb->start >> PAGE_CACHE_SHIFT);
3435 	} else {
3436 		start_i = 0;
3437 	}
3438 
3439 	num_pages = num_extent_pages(eb->start, eb->len);
3440 	for (i = start_i; i < num_pages; i++) {
3441 		page = extent_buffer_page(eb, i);
3442 		if (!wait) {
3443 			if (!trylock_page(page))
3444 				goto unlock_exit;
3445 		} else {
3446 			lock_page(page);
3447 		}
3448 		locked_pages++;
3449 		if (!PageUptodate(page))
3450 			all_uptodate = 0;
3451 	}
3452 	if (all_uptodate) {
3453 		if (start_i == 0)
3454 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3455 		goto unlock_exit;
3456 	}
3457 
3458 	for (i = start_i; i < num_pages; i++) {
3459 		page = extent_buffer_page(eb, i);
3460 		if (inc_all_pages)
3461 			page_cache_get(page);
3462 		if (!PageUptodate(page)) {
3463 			if (start_i == 0)
3464 				inc_all_pages = 1;
3465 			ClearPageError(page);
3466 			err = __extent_read_full_page(tree, page,
3467 						      get_extent, &bio,
3468 						      mirror_num, &bio_flags);
3469 			if (err)
3470 				ret = err;
3471 		} else {
3472 			unlock_page(page);
3473 		}
3474 	}
3475 
3476 	if (bio)
3477 		submit_one_bio(READ, bio, mirror_num, bio_flags);
3478 
3479 	if (ret || !wait)
3480 		return ret;
3481 
3482 	for (i = start_i; i < num_pages; i++) {
3483 		page = extent_buffer_page(eb, i);
3484 		wait_on_page_locked(page);
3485 		if (!PageUptodate(page))
3486 			ret = -EIO;
3487 	}
3488 
3489 	if (!ret)
3490 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3491 	return ret;
3492 
3493 unlock_exit:
3494 	i = start_i;
3495 	while (locked_pages > 0) {
3496 		page = extent_buffer_page(eb, i);
3497 		i++;
3498 		unlock_page(page);
3499 		locked_pages--;
3500 	}
3501 	return ret;
3502 }
3503 
3504 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3505 			unsigned long start,
3506 			unsigned long len)
3507 {
3508 	size_t cur;
3509 	size_t offset;
3510 	struct page *page;
3511 	char *kaddr;
3512 	char *dst = (char *)dstv;
3513 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3514 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3515 
3516 	WARN_ON(start > eb->len);
3517 	WARN_ON(start + len > eb->start + eb->len);
3518 
3519 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3520 
3521 	while (len > 0) {
3522 		page = extent_buffer_page(eb, i);
3523 
3524 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3525 		kaddr = kmap_atomic(page, KM_USER1);
3526 		memcpy(dst, kaddr + offset, cur);
3527 		kunmap_atomic(kaddr, KM_USER1);
3528 
3529 		dst += cur;
3530 		len -= cur;
3531 		offset = 0;
3532 		i++;
3533 	}
3534 }
3535 
3536 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3537 			       unsigned long min_len, char **token, char **map,
3538 			       unsigned long *map_start,
3539 			       unsigned long *map_len, int km)
3540 {
3541 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
3542 	char *kaddr;
3543 	struct page *p;
3544 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3545 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3546 	unsigned long end_i = (start_offset + start + min_len - 1) >>
3547 		PAGE_CACHE_SHIFT;
3548 
3549 	if (i != end_i)
3550 		return -EINVAL;
3551 
3552 	if (i == 0) {
3553 		offset = start_offset;
3554 		*map_start = 0;
3555 	} else {
3556 		offset = 0;
3557 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3558 	}
3559 
3560 	if (start + min_len > eb->len) {
3561 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3562 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
3563 		       eb->len, start, min_len);
3564 		WARN_ON(1);
3565 	}
3566 
3567 	p = extent_buffer_page(eb, i);
3568 	kaddr = kmap_atomic(p, km);
3569 	*token = kaddr;
3570 	*map = kaddr + offset;
3571 	*map_len = PAGE_CACHE_SIZE - offset;
3572 	return 0;
3573 }
3574 
3575 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3576 		      unsigned long min_len,
3577 		      char **token, char **map,
3578 		      unsigned long *map_start,
3579 		      unsigned long *map_len, int km)
3580 {
3581 	int err;
3582 	int save = 0;
3583 	if (eb->map_token) {
3584 		unmap_extent_buffer(eb, eb->map_token, km);
3585 		eb->map_token = NULL;
3586 		save = 1;
3587 	}
3588 	err = map_private_extent_buffer(eb, start, min_len, token, map,
3589 				       map_start, map_len, km);
3590 	if (!err && save) {
3591 		eb->map_token = *token;
3592 		eb->kaddr = *map;
3593 		eb->map_start = *map_start;
3594 		eb->map_len = *map_len;
3595 	}
3596 	return err;
3597 }
3598 
3599 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3600 {
3601 	kunmap_atomic(token, km);
3602 }
3603 
3604 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3605 			  unsigned long start,
3606 			  unsigned long len)
3607 {
3608 	size_t cur;
3609 	size_t offset;
3610 	struct page *page;
3611 	char *kaddr;
3612 	char *ptr = (char *)ptrv;
3613 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3614 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3615 	int ret = 0;
3616 
3617 	WARN_ON(start > eb->len);
3618 	WARN_ON(start + len > eb->start + eb->len);
3619 
3620 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3621 
3622 	while (len > 0) {
3623 		page = extent_buffer_page(eb, i);
3624 
3625 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3626 
3627 		kaddr = kmap_atomic(page, KM_USER0);
3628 		ret = memcmp(ptr, kaddr + offset, cur);
3629 		kunmap_atomic(kaddr, KM_USER0);
3630 		if (ret)
3631 			break;
3632 
3633 		ptr += cur;
3634 		len -= cur;
3635 		offset = 0;
3636 		i++;
3637 	}
3638 	return ret;
3639 }
3640 
3641 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3642 			 unsigned long start, unsigned long len)
3643 {
3644 	size_t cur;
3645 	size_t offset;
3646 	struct page *page;
3647 	char *kaddr;
3648 	char *src = (char *)srcv;
3649 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3650 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3651 
3652 	WARN_ON(start > eb->len);
3653 	WARN_ON(start + len > eb->start + eb->len);
3654 
3655 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3656 
3657 	while (len > 0) {
3658 		page = extent_buffer_page(eb, i);
3659 		WARN_ON(!PageUptodate(page));
3660 
3661 		cur = min(len, PAGE_CACHE_SIZE - offset);
3662 		kaddr = kmap_atomic(page, KM_USER1);
3663 		memcpy(kaddr + offset, src, cur);
3664 		kunmap_atomic(kaddr, KM_USER1);
3665 
3666 		src += cur;
3667 		len -= cur;
3668 		offset = 0;
3669 		i++;
3670 	}
3671 }
3672 
3673 void memset_extent_buffer(struct extent_buffer *eb, char c,
3674 			  unsigned long start, unsigned long len)
3675 {
3676 	size_t cur;
3677 	size_t offset;
3678 	struct page *page;
3679 	char *kaddr;
3680 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3681 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3682 
3683 	WARN_ON(start > eb->len);
3684 	WARN_ON(start + len > eb->start + eb->len);
3685 
3686 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3687 
3688 	while (len > 0) {
3689 		page = extent_buffer_page(eb, i);
3690 		WARN_ON(!PageUptodate(page));
3691 
3692 		cur = min(len, PAGE_CACHE_SIZE - offset);
3693 		kaddr = kmap_atomic(page, KM_USER0);
3694 		memset(kaddr + offset, c, cur);
3695 		kunmap_atomic(kaddr, KM_USER0);
3696 
3697 		len -= cur;
3698 		offset = 0;
3699 		i++;
3700 	}
3701 }
3702 
3703 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3704 			unsigned long dst_offset, unsigned long src_offset,
3705 			unsigned long len)
3706 {
3707 	u64 dst_len = dst->len;
3708 	size_t cur;
3709 	size_t offset;
3710 	struct page *page;
3711 	char *kaddr;
3712 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3713 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3714 
3715 	WARN_ON(src->len != dst_len);
3716 
3717 	offset = (start_offset + dst_offset) &
3718 		((unsigned long)PAGE_CACHE_SIZE - 1);
3719 
3720 	while (len > 0) {
3721 		page = extent_buffer_page(dst, i);
3722 		WARN_ON(!PageUptodate(page));
3723 
3724 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3725 
3726 		kaddr = kmap_atomic(page, KM_USER0);
3727 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3728 		kunmap_atomic(kaddr, KM_USER0);
3729 
3730 		src_offset += cur;
3731 		len -= cur;
3732 		offset = 0;
3733 		i++;
3734 	}
3735 }
3736 
3737 static void move_pages(struct page *dst_page, struct page *src_page,
3738 		       unsigned long dst_off, unsigned long src_off,
3739 		       unsigned long len)
3740 {
3741 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3742 	if (dst_page == src_page) {
3743 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3744 	} else {
3745 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3746 		char *p = dst_kaddr + dst_off + len;
3747 		char *s = src_kaddr + src_off + len;
3748 
3749 		while (len--)
3750 			*--p = *--s;
3751 
3752 		kunmap_atomic(src_kaddr, KM_USER1);
3753 	}
3754 	kunmap_atomic(dst_kaddr, KM_USER0);
3755 }
3756 
3757 static void copy_pages(struct page *dst_page, struct page *src_page,
3758 		       unsigned long dst_off, unsigned long src_off,
3759 		       unsigned long len)
3760 {
3761 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3762 	char *src_kaddr;
3763 
3764 	if (dst_page != src_page)
3765 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3766 	else
3767 		src_kaddr = dst_kaddr;
3768 
3769 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3770 	kunmap_atomic(dst_kaddr, KM_USER0);
3771 	if (dst_page != src_page)
3772 		kunmap_atomic(src_kaddr, KM_USER1);
3773 }
3774 
3775 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3776 			   unsigned long src_offset, unsigned long len)
3777 {
3778 	size_t cur;
3779 	size_t dst_off_in_page;
3780 	size_t src_off_in_page;
3781 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3782 	unsigned long dst_i;
3783 	unsigned long src_i;
3784 
3785 	if (src_offset + len > dst->len) {
3786 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3787 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
3788 		BUG_ON(1);
3789 	}
3790 	if (dst_offset + len > dst->len) {
3791 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3792 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3793 		BUG_ON(1);
3794 	}
3795 
3796 	while (len > 0) {
3797 		dst_off_in_page = (start_offset + dst_offset) &
3798 			((unsigned long)PAGE_CACHE_SIZE - 1);
3799 		src_off_in_page = (start_offset + src_offset) &
3800 			((unsigned long)PAGE_CACHE_SIZE - 1);
3801 
3802 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3803 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3804 
3805 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3806 					       src_off_in_page));
3807 		cur = min_t(unsigned long, cur,
3808 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3809 
3810 		copy_pages(extent_buffer_page(dst, dst_i),
3811 			   extent_buffer_page(dst, src_i),
3812 			   dst_off_in_page, src_off_in_page, cur);
3813 
3814 		src_offset += cur;
3815 		dst_offset += cur;
3816 		len -= cur;
3817 	}
3818 }
3819 
3820 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3821 			   unsigned long src_offset, unsigned long len)
3822 {
3823 	size_t cur;
3824 	size_t dst_off_in_page;
3825 	size_t src_off_in_page;
3826 	unsigned long dst_end = dst_offset + len - 1;
3827 	unsigned long src_end = src_offset + len - 1;
3828 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3829 	unsigned long dst_i;
3830 	unsigned long src_i;
3831 
3832 	if (src_offset + len > dst->len) {
3833 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3834 		       "len %lu len %lu\n", src_offset, len, dst->len);
3835 		BUG_ON(1);
3836 	}
3837 	if (dst_offset + len > dst->len) {
3838 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3839 		       "len %lu len %lu\n", dst_offset, len, dst->len);
3840 		BUG_ON(1);
3841 	}
3842 	if (dst_offset < src_offset) {
3843 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3844 		return;
3845 	}
3846 	while (len > 0) {
3847 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3848 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3849 
3850 		dst_off_in_page = (start_offset + dst_end) &
3851 			((unsigned long)PAGE_CACHE_SIZE - 1);
3852 		src_off_in_page = (start_offset + src_end) &
3853 			((unsigned long)PAGE_CACHE_SIZE - 1);
3854 
3855 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3856 		cur = min(cur, dst_off_in_page + 1);
3857 		move_pages(extent_buffer_page(dst, dst_i),
3858 			   extent_buffer_page(dst, src_i),
3859 			   dst_off_in_page - cur + 1,
3860 			   src_off_in_page - cur + 1, cur);
3861 
3862 		dst_end -= cur;
3863 		src_end -= cur;
3864 		len -= cur;
3865 	}
3866 }
3867 
3868 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3869 {
3870 	struct extent_buffer *eb =
3871 			container_of(head, struct extent_buffer, rcu_head);
3872 
3873 	btrfs_release_extent_buffer(eb);
3874 }
3875 
3876 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3877 {
3878 	u64 start = page_offset(page);
3879 	struct extent_buffer *eb;
3880 	int ret = 1;
3881 
3882 	spin_lock(&tree->buffer_lock);
3883 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3884 	if (!eb) {
3885 		spin_unlock(&tree->buffer_lock);
3886 		return ret;
3887 	}
3888 
3889 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3890 		ret = 0;
3891 		goto out;
3892 	}
3893 
3894 	/*
3895 	 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3896 	 * Or go back.
3897 	 */
3898 	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
3899 		ret = 0;
3900 		goto out;
3901 	}
3902 
3903 	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3904 out:
3905 	spin_unlock(&tree->buffer_lock);
3906 
3907 	/* at this point we can safely release the extent buffer */
3908 	if (atomic_read(&eb->refs) == 0)
3909 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3910 	return ret;
3911 }
3912