1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 struct inode *inode = tree->private_data; 93 u64 isize; 94 95 if (!inode || !is_data_inode(inode)) 96 return; 97 98 isize = i_size_read(inode); 99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 101 "%s: ino %llu isize %llu odd range [%llu,%llu]", 102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 103 } 104 } 105 #else 106 #define btrfs_leak_debug_add(new, head) do {} while (0) 107 #define btrfs_leak_debug_del(entry) do {} while (0) 108 #define btrfs_leak_debug_check() do {} while (0) 109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 110 #endif 111 112 struct tree_entry { 113 u64 start; 114 u64 end; 115 struct rb_node rb_node; 116 }; 117 118 struct extent_page_data { 119 struct bio *bio; 120 struct extent_io_tree *tree; 121 /* tells writepage not to lock the state bits for this range 122 * it still does the unlocking 123 */ 124 unsigned int extent_locked:1; 125 126 /* tells the submit_bio code to use REQ_SYNC */ 127 unsigned int sync_io:1; 128 }; 129 130 static int add_extent_changeset(struct extent_state *state, unsigned bits, 131 struct extent_changeset *changeset, 132 int set) 133 { 134 int ret; 135 136 if (!changeset) 137 return 0; 138 if (set && (state->state & bits) == bits) 139 return 0; 140 if (!set && (state->state & bits) == 0) 141 return 0; 142 changeset->bytes_changed += state->end - state->start + 1; 143 ret = ulist_add(&changeset->range_changed, state->start, state->end, 144 GFP_ATOMIC); 145 return ret; 146 } 147 148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 149 unsigned long bio_flags) 150 { 151 blk_status_t ret = 0; 152 struct extent_io_tree *tree = bio->bi_private; 153 154 bio->bi_private = NULL; 155 156 if (tree->ops) 157 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 158 mirror_num, bio_flags); 159 else 160 btrfsic_submit_bio(bio); 161 162 return blk_status_to_errno(ret); 163 } 164 165 /* Cleanup unsubmitted bios */ 166 static void end_write_bio(struct extent_page_data *epd, int ret) 167 { 168 if (epd->bio) { 169 epd->bio->bi_status = errno_to_blk_status(ret); 170 bio_endio(epd->bio); 171 epd->bio = NULL; 172 } 173 } 174 175 /* 176 * Submit bio from extent page data via submit_one_bio 177 * 178 * Return 0 if everything is OK. 179 * Return <0 for error. 180 */ 181 static int __must_check flush_write_bio(struct extent_page_data *epd) 182 { 183 int ret = 0; 184 185 if (epd->bio) { 186 ret = submit_one_bio(epd->bio, 0, 0); 187 /* 188 * Clean up of epd->bio is handled by its endio function. 189 * And endio is either triggered by successful bio execution 190 * or the error handler of submit bio hook. 191 * So at this point, no matter what happened, we don't need 192 * to clean up epd->bio. 193 */ 194 epd->bio = NULL; 195 } 196 return ret; 197 } 198 199 int __init extent_io_init(void) 200 { 201 extent_state_cache = kmem_cache_create("btrfs_extent_state", 202 sizeof(struct extent_state), 0, 203 SLAB_MEM_SPREAD, NULL); 204 if (!extent_state_cache) 205 return -ENOMEM; 206 207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 208 sizeof(struct extent_buffer), 0, 209 SLAB_MEM_SPREAD, NULL); 210 if (!extent_buffer_cache) 211 goto free_state_cache; 212 213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 214 offsetof(struct btrfs_io_bio, bio), 215 BIOSET_NEED_BVECS)) 216 goto free_buffer_cache; 217 218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 219 goto free_bioset; 220 221 return 0; 222 223 free_bioset: 224 bioset_exit(&btrfs_bioset); 225 226 free_buffer_cache: 227 kmem_cache_destroy(extent_buffer_cache); 228 extent_buffer_cache = NULL; 229 230 free_state_cache: 231 kmem_cache_destroy(extent_state_cache); 232 extent_state_cache = NULL; 233 return -ENOMEM; 234 } 235 236 void __cold extent_io_exit(void) 237 { 238 btrfs_leak_debug_check(); 239 240 /* 241 * Make sure all delayed rcu free are flushed before we 242 * destroy caches. 243 */ 244 rcu_barrier(); 245 kmem_cache_destroy(extent_state_cache); 246 kmem_cache_destroy(extent_buffer_cache); 247 bioset_exit(&btrfs_bioset); 248 } 249 250 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 251 struct extent_io_tree *tree, unsigned int owner, 252 void *private_data) 253 { 254 tree->fs_info = fs_info; 255 tree->state = RB_ROOT; 256 tree->ops = NULL; 257 tree->dirty_bytes = 0; 258 spin_lock_init(&tree->lock); 259 tree->private_data = private_data; 260 tree->owner = owner; 261 } 262 263 void extent_io_tree_release(struct extent_io_tree *tree) 264 { 265 spin_lock(&tree->lock); 266 /* 267 * Do a single barrier for the waitqueue_active check here, the state 268 * of the waitqueue should not change once extent_io_tree_release is 269 * called. 270 */ 271 smp_mb(); 272 while (!RB_EMPTY_ROOT(&tree->state)) { 273 struct rb_node *node; 274 struct extent_state *state; 275 276 node = rb_first(&tree->state); 277 state = rb_entry(node, struct extent_state, rb_node); 278 rb_erase(&state->rb_node, &tree->state); 279 RB_CLEAR_NODE(&state->rb_node); 280 /* 281 * btree io trees aren't supposed to have tasks waiting for 282 * changes in the flags of extent states ever. 283 */ 284 ASSERT(!waitqueue_active(&state->wq)); 285 free_extent_state(state); 286 287 cond_resched_lock(&tree->lock); 288 } 289 spin_unlock(&tree->lock); 290 } 291 292 static struct extent_state *alloc_extent_state(gfp_t mask) 293 { 294 struct extent_state *state; 295 296 /* 297 * The given mask might be not appropriate for the slab allocator, 298 * drop the unsupported bits 299 */ 300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 301 state = kmem_cache_alloc(extent_state_cache, mask); 302 if (!state) 303 return state; 304 state->state = 0; 305 state->failrec = NULL; 306 RB_CLEAR_NODE(&state->rb_node); 307 btrfs_leak_debug_add(&state->leak_list, &states); 308 refcount_set(&state->refs, 1); 309 init_waitqueue_head(&state->wq); 310 trace_alloc_extent_state(state, mask, _RET_IP_); 311 return state; 312 } 313 314 void free_extent_state(struct extent_state *state) 315 { 316 if (!state) 317 return; 318 if (refcount_dec_and_test(&state->refs)) { 319 WARN_ON(extent_state_in_tree(state)); 320 btrfs_leak_debug_del(&state->leak_list); 321 trace_free_extent_state(state, _RET_IP_); 322 kmem_cache_free(extent_state_cache, state); 323 } 324 } 325 326 static struct rb_node *tree_insert(struct rb_root *root, 327 struct rb_node *search_start, 328 u64 offset, 329 struct rb_node *node, 330 struct rb_node ***p_in, 331 struct rb_node **parent_in) 332 { 333 struct rb_node **p; 334 struct rb_node *parent = NULL; 335 struct tree_entry *entry; 336 337 if (p_in && parent_in) { 338 p = *p_in; 339 parent = *parent_in; 340 goto do_insert; 341 } 342 343 p = search_start ? &search_start : &root->rb_node; 344 while (*p) { 345 parent = *p; 346 entry = rb_entry(parent, struct tree_entry, rb_node); 347 348 if (offset < entry->start) 349 p = &(*p)->rb_left; 350 else if (offset > entry->end) 351 p = &(*p)->rb_right; 352 else 353 return parent; 354 } 355 356 do_insert: 357 rb_link_node(node, parent, p); 358 rb_insert_color(node, root); 359 return NULL; 360 } 361 362 /** 363 * __etree_search - searche @tree for an entry that contains @offset. Such 364 * entry would have entry->start <= offset && entry->end >= offset. 365 * 366 * @tree - the tree to search 367 * @offset - offset that should fall within an entry in @tree 368 * @next_ret - pointer to the first entry whose range ends after @offset 369 * @prev - pointer to the first entry whose range begins before @offset 370 * @p_ret - pointer where new node should be anchored (used when inserting an 371 * entry in the tree) 372 * @parent_ret - points to entry which would have been the parent of the entry, 373 * containing @offset 374 * 375 * This function returns a pointer to the entry that contains @offset byte 376 * address. If no such entry exists, then NULL is returned and the other 377 * pointer arguments to the function are filled, otherwise the found entry is 378 * returned and other pointers are left untouched. 379 */ 380 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 381 struct rb_node **next_ret, 382 struct rb_node **prev_ret, 383 struct rb_node ***p_ret, 384 struct rb_node **parent_ret) 385 { 386 struct rb_root *root = &tree->state; 387 struct rb_node **n = &root->rb_node; 388 struct rb_node *prev = NULL; 389 struct rb_node *orig_prev = NULL; 390 struct tree_entry *entry; 391 struct tree_entry *prev_entry = NULL; 392 393 while (*n) { 394 prev = *n; 395 entry = rb_entry(prev, struct tree_entry, rb_node); 396 prev_entry = entry; 397 398 if (offset < entry->start) 399 n = &(*n)->rb_left; 400 else if (offset > entry->end) 401 n = &(*n)->rb_right; 402 else 403 return *n; 404 } 405 406 if (p_ret) 407 *p_ret = n; 408 if (parent_ret) 409 *parent_ret = prev; 410 411 if (next_ret) { 412 orig_prev = prev; 413 while (prev && offset > prev_entry->end) { 414 prev = rb_next(prev); 415 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 416 } 417 *next_ret = prev; 418 prev = orig_prev; 419 } 420 421 if (prev_ret) { 422 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 423 while (prev && offset < prev_entry->start) { 424 prev = rb_prev(prev); 425 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 426 } 427 *prev_ret = prev; 428 } 429 return NULL; 430 } 431 432 static inline struct rb_node * 433 tree_search_for_insert(struct extent_io_tree *tree, 434 u64 offset, 435 struct rb_node ***p_ret, 436 struct rb_node **parent_ret) 437 { 438 struct rb_node *next= NULL; 439 struct rb_node *ret; 440 441 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 442 if (!ret) 443 return next; 444 return ret; 445 } 446 447 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 448 u64 offset) 449 { 450 return tree_search_for_insert(tree, offset, NULL, NULL); 451 } 452 453 /* 454 * utility function to look for merge candidates inside a given range. 455 * Any extents with matching state are merged together into a single 456 * extent in the tree. Extents with EXTENT_IO in their state field 457 * are not merged because the end_io handlers need to be able to do 458 * operations on them without sleeping (or doing allocations/splits). 459 * 460 * This should be called with the tree lock held. 461 */ 462 static void merge_state(struct extent_io_tree *tree, 463 struct extent_state *state) 464 { 465 struct extent_state *other; 466 struct rb_node *other_node; 467 468 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 469 return; 470 471 other_node = rb_prev(&state->rb_node); 472 if (other_node) { 473 other = rb_entry(other_node, struct extent_state, rb_node); 474 if (other->end == state->start - 1 && 475 other->state == state->state) { 476 if (tree->private_data && 477 is_data_inode(tree->private_data)) 478 btrfs_merge_delalloc_extent(tree->private_data, 479 state, other); 480 state->start = other->start; 481 rb_erase(&other->rb_node, &tree->state); 482 RB_CLEAR_NODE(&other->rb_node); 483 free_extent_state(other); 484 } 485 } 486 other_node = rb_next(&state->rb_node); 487 if (other_node) { 488 other = rb_entry(other_node, struct extent_state, rb_node); 489 if (other->start == state->end + 1 && 490 other->state == state->state) { 491 if (tree->private_data && 492 is_data_inode(tree->private_data)) 493 btrfs_merge_delalloc_extent(tree->private_data, 494 state, other); 495 state->end = other->end; 496 rb_erase(&other->rb_node, &tree->state); 497 RB_CLEAR_NODE(&other->rb_node); 498 free_extent_state(other); 499 } 500 } 501 } 502 503 static void set_state_bits(struct extent_io_tree *tree, 504 struct extent_state *state, unsigned *bits, 505 struct extent_changeset *changeset); 506 507 /* 508 * insert an extent_state struct into the tree. 'bits' are set on the 509 * struct before it is inserted. 510 * 511 * This may return -EEXIST if the extent is already there, in which case the 512 * state struct is freed. 513 * 514 * The tree lock is not taken internally. This is a utility function and 515 * probably isn't what you want to call (see set/clear_extent_bit). 516 */ 517 static int insert_state(struct extent_io_tree *tree, 518 struct extent_state *state, u64 start, u64 end, 519 struct rb_node ***p, 520 struct rb_node **parent, 521 unsigned *bits, struct extent_changeset *changeset) 522 { 523 struct rb_node *node; 524 525 if (end < start) { 526 btrfs_err(tree->fs_info, 527 "insert state: end < start %llu %llu", end, start); 528 WARN_ON(1); 529 } 530 state->start = start; 531 state->end = end; 532 533 set_state_bits(tree, state, bits, changeset); 534 535 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 536 if (node) { 537 struct extent_state *found; 538 found = rb_entry(node, struct extent_state, rb_node); 539 btrfs_err(tree->fs_info, 540 "found node %llu %llu on insert of %llu %llu", 541 found->start, found->end, start, end); 542 return -EEXIST; 543 } 544 merge_state(tree, state); 545 return 0; 546 } 547 548 /* 549 * split a given extent state struct in two, inserting the preallocated 550 * struct 'prealloc' as the newly created second half. 'split' indicates an 551 * offset inside 'orig' where it should be split. 552 * 553 * Before calling, 554 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 555 * are two extent state structs in the tree: 556 * prealloc: [orig->start, split - 1] 557 * orig: [ split, orig->end ] 558 * 559 * The tree locks are not taken by this function. They need to be held 560 * by the caller. 561 */ 562 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 563 struct extent_state *prealloc, u64 split) 564 { 565 struct rb_node *node; 566 567 if (tree->private_data && is_data_inode(tree->private_data)) 568 btrfs_split_delalloc_extent(tree->private_data, orig, split); 569 570 prealloc->start = orig->start; 571 prealloc->end = split - 1; 572 prealloc->state = orig->state; 573 orig->start = split; 574 575 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 576 &prealloc->rb_node, NULL, NULL); 577 if (node) { 578 free_extent_state(prealloc); 579 return -EEXIST; 580 } 581 return 0; 582 } 583 584 static struct extent_state *next_state(struct extent_state *state) 585 { 586 struct rb_node *next = rb_next(&state->rb_node); 587 if (next) 588 return rb_entry(next, struct extent_state, rb_node); 589 else 590 return NULL; 591 } 592 593 /* 594 * utility function to clear some bits in an extent state struct. 595 * it will optionally wake up anyone waiting on this state (wake == 1). 596 * 597 * If no bits are set on the state struct after clearing things, the 598 * struct is freed and removed from the tree 599 */ 600 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 601 struct extent_state *state, 602 unsigned *bits, int wake, 603 struct extent_changeset *changeset) 604 { 605 struct extent_state *next; 606 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 607 int ret; 608 609 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 610 u64 range = state->end - state->start + 1; 611 WARN_ON(range > tree->dirty_bytes); 612 tree->dirty_bytes -= range; 613 } 614 615 if (tree->private_data && is_data_inode(tree->private_data)) 616 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 617 618 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 619 BUG_ON(ret < 0); 620 state->state &= ~bits_to_clear; 621 if (wake) 622 wake_up(&state->wq); 623 if (state->state == 0) { 624 next = next_state(state); 625 if (extent_state_in_tree(state)) { 626 rb_erase(&state->rb_node, &tree->state); 627 RB_CLEAR_NODE(&state->rb_node); 628 free_extent_state(state); 629 } else { 630 WARN_ON(1); 631 } 632 } else { 633 merge_state(tree, state); 634 next = next_state(state); 635 } 636 return next; 637 } 638 639 static struct extent_state * 640 alloc_extent_state_atomic(struct extent_state *prealloc) 641 { 642 if (!prealloc) 643 prealloc = alloc_extent_state(GFP_ATOMIC); 644 645 return prealloc; 646 } 647 648 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 649 { 650 struct inode *inode = tree->private_data; 651 652 btrfs_panic(btrfs_sb(inode->i_sb), err, 653 "locking error: extent tree was modified by another thread while locked"); 654 } 655 656 /* 657 * clear some bits on a range in the tree. This may require splitting 658 * or inserting elements in the tree, so the gfp mask is used to 659 * indicate which allocations or sleeping are allowed. 660 * 661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 662 * the given range from the tree regardless of state (ie for truncate). 663 * 664 * the range [start, end] is inclusive. 665 * 666 * This takes the tree lock, and returns 0 on success and < 0 on error. 667 */ 668 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 669 unsigned bits, int wake, int delete, 670 struct extent_state **cached_state, 671 gfp_t mask, struct extent_changeset *changeset) 672 { 673 struct extent_state *state; 674 struct extent_state *cached; 675 struct extent_state *prealloc = NULL; 676 struct rb_node *node; 677 u64 last_end; 678 int err; 679 int clear = 0; 680 681 btrfs_debug_check_extent_io_range(tree, start, end); 682 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 683 684 if (bits & EXTENT_DELALLOC) 685 bits |= EXTENT_NORESERVE; 686 687 if (delete) 688 bits |= ~EXTENT_CTLBITS; 689 690 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 691 clear = 1; 692 again: 693 if (!prealloc && gfpflags_allow_blocking(mask)) { 694 /* 695 * Don't care for allocation failure here because we might end 696 * up not needing the pre-allocated extent state at all, which 697 * is the case if we only have in the tree extent states that 698 * cover our input range and don't cover too any other range. 699 * If we end up needing a new extent state we allocate it later. 700 */ 701 prealloc = alloc_extent_state(mask); 702 } 703 704 spin_lock(&tree->lock); 705 if (cached_state) { 706 cached = *cached_state; 707 708 if (clear) { 709 *cached_state = NULL; 710 cached_state = NULL; 711 } 712 713 if (cached && extent_state_in_tree(cached) && 714 cached->start <= start && cached->end > start) { 715 if (clear) 716 refcount_dec(&cached->refs); 717 state = cached; 718 goto hit_next; 719 } 720 if (clear) 721 free_extent_state(cached); 722 } 723 /* 724 * this search will find the extents that end after 725 * our range starts 726 */ 727 node = tree_search(tree, start); 728 if (!node) 729 goto out; 730 state = rb_entry(node, struct extent_state, rb_node); 731 hit_next: 732 if (state->start > end) 733 goto out; 734 WARN_ON(state->end < start); 735 last_end = state->end; 736 737 /* the state doesn't have the wanted bits, go ahead */ 738 if (!(state->state & bits)) { 739 state = next_state(state); 740 goto next; 741 } 742 743 /* 744 * | ---- desired range ---- | 745 * | state | or 746 * | ------------- state -------------- | 747 * 748 * We need to split the extent we found, and may flip 749 * bits on second half. 750 * 751 * If the extent we found extends past our range, we 752 * just split and search again. It'll get split again 753 * the next time though. 754 * 755 * If the extent we found is inside our range, we clear 756 * the desired bit on it. 757 */ 758 759 if (state->start < start) { 760 prealloc = alloc_extent_state_atomic(prealloc); 761 BUG_ON(!prealloc); 762 err = split_state(tree, state, prealloc, start); 763 if (err) 764 extent_io_tree_panic(tree, err); 765 766 prealloc = NULL; 767 if (err) 768 goto out; 769 if (state->end <= end) { 770 state = clear_state_bit(tree, state, &bits, wake, 771 changeset); 772 goto next; 773 } 774 goto search_again; 775 } 776 /* 777 * | ---- desired range ---- | 778 * | state | 779 * We need to split the extent, and clear the bit 780 * on the first half 781 */ 782 if (state->start <= end && state->end > end) { 783 prealloc = alloc_extent_state_atomic(prealloc); 784 BUG_ON(!prealloc); 785 err = split_state(tree, state, prealloc, end + 1); 786 if (err) 787 extent_io_tree_panic(tree, err); 788 789 if (wake) 790 wake_up(&state->wq); 791 792 clear_state_bit(tree, prealloc, &bits, wake, changeset); 793 794 prealloc = NULL; 795 goto out; 796 } 797 798 state = clear_state_bit(tree, state, &bits, wake, changeset); 799 next: 800 if (last_end == (u64)-1) 801 goto out; 802 start = last_end + 1; 803 if (start <= end && state && !need_resched()) 804 goto hit_next; 805 806 search_again: 807 if (start > end) 808 goto out; 809 spin_unlock(&tree->lock); 810 if (gfpflags_allow_blocking(mask)) 811 cond_resched(); 812 goto again; 813 814 out: 815 spin_unlock(&tree->lock); 816 if (prealloc) 817 free_extent_state(prealloc); 818 819 return 0; 820 821 } 822 823 static void wait_on_state(struct extent_io_tree *tree, 824 struct extent_state *state) 825 __releases(tree->lock) 826 __acquires(tree->lock) 827 { 828 DEFINE_WAIT(wait); 829 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 830 spin_unlock(&tree->lock); 831 schedule(); 832 spin_lock(&tree->lock); 833 finish_wait(&state->wq, &wait); 834 } 835 836 /* 837 * waits for one or more bits to clear on a range in the state tree. 838 * The range [start, end] is inclusive. 839 * The tree lock is taken by this function 840 */ 841 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 842 unsigned long bits) 843 { 844 struct extent_state *state; 845 struct rb_node *node; 846 847 btrfs_debug_check_extent_io_range(tree, start, end); 848 849 spin_lock(&tree->lock); 850 again: 851 while (1) { 852 /* 853 * this search will find all the extents that end after 854 * our range starts 855 */ 856 node = tree_search(tree, start); 857 process_node: 858 if (!node) 859 break; 860 861 state = rb_entry(node, struct extent_state, rb_node); 862 863 if (state->start > end) 864 goto out; 865 866 if (state->state & bits) { 867 start = state->start; 868 refcount_inc(&state->refs); 869 wait_on_state(tree, state); 870 free_extent_state(state); 871 goto again; 872 } 873 start = state->end + 1; 874 875 if (start > end) 876 break; 877 878 if (!cond_resched_lock(&tree->lock)) { 879 node = rb_next(node); 880 goto process_node; 881 } 882 } 883 out: 884 spin_unlock(&tree->lock); 885 } 886 887 static void set_state_bits(struct extent_io_tree *tree, 888 struct extent_state *state, 889 unsigned *bits, struct extent_changeset *changeset) 890 { 891 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 892 int ret; 893 894 if (tree->private_data && is_data_inode(tree->private_data)) 895 btrfs_set_delalloc_extent(tree->private_data, state, bits); 896 897 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 898 u64 range = state->end - state->start + 1; 899 tree->dirty_bytes += range; 900 } 901 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 902 BUG_ON(ret < 0); 903 state->state |= bits_to_set; 904 } 905 906 static void cache_state_if_flags(struct extent_state *state, 907 struct extent_state **cached_ptr, 908 unsigned flags) 909 { 910 if (cached_ptr && !(*cached_ptr)) { 911 if (!flags || (state->state & flags)) { 912 *cached_ptr = state; 913 refcount_inc(&state->refs); 914 } 915 } 916 } 917 918 static void cache_state(struct extent_state *state, 919 struct extent_state **cached_ptr) 920 { 921 return cache_state_if_flags(state, cached_ptr, 922 EXTENT_LOCKED | EXTENT_BOUNDARY); 923 } 924 925 /* 926 * set some bits on a range in the tree. This may require allocations or 927 * sleeping, so the gfp mask is used to indicate what is allowed. 928 * 929 * If any of the exclusive bits are set, this will fail with -EEXIST if some 930 * part of the range already has the desired bits set. The start of the 931 * existing range is returned in failed_start in this case. 932 * 933 * [start, end] is inclusive This takes the tree lock. 934 */ 935 936 static int __must_check 937 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 938 unsigned bits, unsigned exclusive_bits, 939 u64 *failed_start, struct extent_state **cached_state, 940 gfp_t mask, struct extent_changeset *changeset) 941 { 942 struct extent_state *state; 943 struct extent_state *prealloc = NULL; 944 struct rb_node *node; 945 struct rb_node **p; 946 struct rb_node *parent; 947 int err = 0; 948 u64 last_start; 949 u64 last_end; 950 951 btrfs_debug_check_extent_io_range(tree, start, end); 952 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 953 954 again: 955 if (!prealloc && gfpflags_allow_blocking(mask)) { 956 /* 957 * Don't care for allocation failure here because we might end 958 * up not needing the pre-allocated extent state at all, which 959 * is the case if we only have in the tree extent states that 960 * cover our input range and don't cover too any other range. 961 * If we end up needing a new extent state we allocate it later. 962 */ 963 prealloc = alloc_extent_state(mask); 964 } 965 966 spin_lock(&tree->lock); 967 if (cached_state && *cached_state) { 968 state = *cached_state; 969 if (state->start <= start && state->end > start && 970 extent_state_in_tree(state)) { 971 node = &state->rb_node; 972 goto hit_next; 973 } 974 } 975 /* 976 * this search will find all the extents that end after 977 * our range starts. 978 */ 979 node = tree_search_for_insert(tree, start, &p, &parent); 980 if (!node) { 981 prealloc = alloc_extent_state_atomic(prealloc); 982 BUG_ON(!prealloc); 983 err = insert_state(tree, prealloc, start, end, 984 &p, &parent, &bits, changeset); 985 if (err) 986 extent_io_tree_panic(tree, err); 987 988 cache_state(prealloc, cached_state); 989 prealloc = NULL; 990 goto out; 991 } 992 state = rb_entry(node, struct extent_state, rb_node); 993 hit_next: 994 last_start = state->start; 995 last_end = state->end; 996 997 /* 998 * | ---- desired range ---- | 999 * | state | 1000 * 1001 * Just lock what we found and keep going 1002 */ 1003 if (state->start == start && state->end <= end) { 1004 if (state->state & exclusive_bits) { 1005 *failed_start = state->start; 1006 err = -EEXIST; 1007 goto out; 1008 } 1009 1010 set_state_bits(tree, state, &bits, changeset); 1011 cache_state(state, cached_state); 1012 merge_state(tree, state); 1013 if (last_end == (u64)-1) 1014 goto out; 1015 start = last_end + 1; 1016 state = next_state(state); 1017 if (start < end && state && state->start == start && 1018 !need_resched()) 1019 goto hit_next; 1020 goto search_again; 1021 } 1022 1023 /* 1024 * | ---- desired range ---- | 1025 * | state | 1026 * or 1027 * | ------------- state -------------- | 1028 * 1029 * We need to split the extent we found, and may flip bits on 1030 * second half. 1031 * 1032 * If the extent we found extends past our 1033 * range, we just split and search again. It'll get split 1034 * again the next time though. 1035 * 1036 * If the extent we found is inside our range, we set the 1037 * desired bit on it. 1038 */ 1039 if (state->start < start) { 1040 if (state->state & exclusive_bits) { 1041 *failed_start = start; 1042 err = -EEXIST; 1043 goto out; 1044 } 1045 1046 prealloc = alloc_extent_state_atomic(prealloc); 1047 BUG_ON(!prealloc); 1048 err = split_state(tree, state, prealloc, start); 1049 if (err) 1050 extent_io_tree_panic(tree, err); 1051 1052 prealloc = NULL; 1053 if (err) 1054 goto out; 1055 if (state->end <= end) { 1056 set_state_bits(tree, state, &bits, changeset); 1057 cache_state(state, cached_state); 1058 merge_state(tree, state); 1059 if (last_end == (u64)-1) 1060 goto out; 1061 start = last_end + 1; 1062 state = next_state(state); 1063 if (start < end && state && state->start == start && 1064 !need_resched()) 1065 goto hit_next; 1066 } 1067 goto search_again; 1068 } 1069 /* 1070 * | ---- desired range ---- | 1071 * | state | or | state | 1072 * 1073 * There's a hole, we need to insert something in it and 1074 * ignore the extent we found. 1075 */ 1076 if (state->start > start) { 1077 u64 this_end; 1078 if (end < last_start) 1079 this_end = end; 1080 else 1081 this_end = last_start - 1; 1082 1083 prealloc = alloc_extent_state_atomic(prealloc); 1084 BUG_ON(!prealloc); 1085 1086 /* 1087 * Avoid to free 'prealloc' if it can be merged with 1088 * the later extent. 1089 */ 1090 err = insert_state(tree, prealloc, start, this_end, 1091 NULL, NULL, &bits, changeset); 1092 if (err) 1093 extent_io_tree_panic(tree, err); 1094 1095 cache_state(prealloc, cached_state); 1096 prealloc = NULL; 1097 start = this_end + 1; 1098 goto search_again; 1099 } 1100 /* 1101 * | ---- desired range ---- | 1102 * | state | 1103 * We need to split the extent, and set the bit 1104 * on the first half 1105 */ 1106 if (state->start <= end && state->end > end) { 1107 if (state->state & exclusive_bits) { 1108 *failed_start = start; 1109 err = -EEXIST; 1110 goto out; 1111 } 1112 1113 prealloc = alloc_extent_state_atomic(prealloc); 1114 BUG_ON(!prealloc); 1115 err = split_state(tree, state, prealloc, end + 1); 1116 if (err) 1117 extent_io_tree_panic(tree, err); 1118 1119 set_state_bits(tree, prealloc, &bits, changeset); 1120 cache_state(prealloc, cached_state); 1121 merge_state(tree, prealloc); 1122 prealloc = NULL; 1123 goto out; 1124 } 1125 1126 search_again: 1127 if (start > end) 1128 goto out; 1129 spin_unlock(&tree->lock); 1130 if (gfpflags_allow_blocking(mask)) 1131 cond_resched(); 1132 goto again; 1133 1134 out: 1135 spin_unlock(&tree->lock); 1136 if (prealloc) 1137 free_extent_state(prealloc); 1138 1139 return err; 1140 1141 } 1142 1143 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1144 unsigned bits, u64 * failed_start, 1145 struct extent_state **cached_state, gfp_t mask) 1146 { 1147 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1148 cached_state, mask, NULL); 1149 } 1150 1151 1152 /** 1153 * convert_extent_bit - convert all bits in a given range from one bit to 1154 * another 1155 * @tree: the io tree to search 1156 * @start: the start offset in bytes 1157 * @end: the end offset in bytes (inclusive) 1158 * @bits: the bits to set in this range 1159 * @clear_bits: the bits to clear in this range 1160 * @cached_state: state that we're going to cache 1161 * 1162 * This will go through and set bits for the given range. If any states exist 1163 * already in this range they are set with the given bit and cleared of the 1164 * clear_bits. This is only meant to be used by things that are mergeable, ie 1165 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1166 * boundary bits like LOCK. 1167 * 1168 * All allocations are done with GFP_NOFS. 1169 */ 1170 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1171 unsigned bits, unsigned clear_bits, 1172 struct extent_state **cached_state) 1173 { 1174 struct extent_state *state; 1175 struct extent_state *prealloc = NULL; 1176 struct rb_node *node; 1177 struct rb_node **p; 1178 struct rb_node *parent; 1179 int err = 0; 1180 u64 last_start; 1181 u64 last_end; 1182 bool first_iteration = true; 1183 1184 btrfs_debug_check_extent_io_range(tree, start, end); 1185 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1186 clear_bits); 1187 1188 again: 1189 if (!prealloc) { 1190 /* 1191 * Best effort, don't worry if extent state allocation fails 1192 * here for the first iteration. We might have a cached state 1193 * that matches exactly the target range, in which case no 1194 * extent state allocations are needed. We'll only know this 1195 * after locking the tree. 1196 */ 1197 prealloc = alloc_extent_state(GFP_NOFS); 1198 if (!prealloc && !first_iteration) 1199 return -ENOMEM; 1200 } 1201 1202 spin_lock(&tree->lock); 1203 if (cached_state && *cached_state) { 1204 state = *cached_state; 1205 if (state->start <= start && state->end > start && 1206 extent_state_in_tree(state)) { 1207 node = &state->rb_node; 1208 goto hit_next; 1209 } 1210 } 1211 1212 /* 1213 * this search will find all the extents that end after 1214 * our range starts. 1215 */ 1216 node = tree_search_for_insert(tree, start, &p, &parent); 1217 if (!node) { 1218 prealloc = alloc_extent_state_atomic(prealloc); 1219 if (!prealloc) { 1220 err = -ENOMEM; 1221 goto out; 1222 } 1223 err = insert_state(tree, prealloc, start, end, 1224 &p, &parent, &bits, NULL); 1225 if (err) 1226 extent_io_tree_panic(tree, err); 1227 cache_state(prealloc, cached_state); 1228 prealloc = NULL; 1229 goto out; 1230 } 1231 state = rb_entry(node, struct extent_state, rb_node); 1232 hit_next: 1233 last_start = state->start; 1234 last_end = state->end; 1235 1236 /* 1237 * | ---- desired range ---- | 1238 * | state | 1239 * 1240 * Just lock what we found and keep going 1241 */ 1242 if (state->start == start && state->end <= end) { 1243 set_state_bits(tree, state, &bits, NULL); 1244 cache_state(state, cached_state); 1245 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1246 if (last_end == (u64)-1) 1247 goto out; 1248 start = last_end + 1; 1249 if (start < end && state && state->start == start && 1250 !need_resched()) 1251 goto hit_next; 1252 goto search_again; 1253 } 1254 1255 /* 1256 * | ---- desired range ---- | 1257 * | state | 1258 * or 1259 * | ------------- state -------------- | 1260 * 1261 * We need to split the extent we found, and may flip bits on 1262 * second half. 1263 * 1264 * If the extent we found extends past our 1265 * range, we just split and search again. It'll get split 1266 * again the next time though. 1267 * 1268 * If the extent we found is inside our range, we set the 1269 * desired bit on it. 1270 */ 1271 if (state->start < start) { 1272 prealloc = alloc_extent_state_atomic(prealloc); 1273 if (!prealloc) { 1274 err = -ENOMEM; 1275 goto out; 1276 } 1277 err = split_state(tree, state, prealloc, start); 1278 if (err) 1279 extent_io_tree_panic(tree, err); 1280 prealloc = NULL; 1281 if (err) 1282 goto out; 1283 if (state->end <= end) { 1284 set_state_bits(tree, state, &bits, NULL); 1285 cache_state(state, cached_state); 1286 state = clear_state_bit(tree, state, &clear_bits, 0, 1287 NULL); 1288 if (last_end == (u64)-1) 1289 goto out; 1290 start = last_end + 1; 1291 if (start < end && state && state->start == start && 1292 !need_resched()) 1293 goto hit_next; 1294 } 1295 goto search_again; 1296 } 1297 /* 1298 * | ---- desired range ---- | 1299 * | state | or | state | 1300 * 1301 * There's a hole, we need to insert something in it and 1302 * ignore the extent we found. 1303 */ 1304 if (state->start > start) { 1305 u64 this_end; 1306 if (end < last_start) 1307 this_end = end; 1308 else 1309 this_end = last_start - 1; 1310 1311 prealloc = alloc_extent_state_atomic(prealloc); 1312 if (!prealloc) { 1313 err = -ENOMEM; 1314 goto out; 1315 } 1316 1317 /* 1318 * Avoid to free 'prealloc' if it can be merged with 1319 * the later extent. 1320 */ 1321 err = insert_state(tree, prealloc, start, this_end, 1322 NULL, NULL, &bits, NULL); 1323 if (err) 1324 extent_io_tree_panic(tree, err); 1325 cache_state(prealloc, cached_state); 1326 prealloc = NULL; 1327 start = this_end + 1; 1328 goto search_again; 1329 } 1330 /* 1331 * | ---- desired range ---- | 1332 * | state | 1333 * We need to split the extent, and set the bit 1334 * on the first half 1335 */ 1336 if (state->start <= end && state->end > end) { 1337 prealloc = alloc_extent_state_atomic(prealloc); 1338 if (!prealloc) { 1339 err = -ENOMEM; 1340 goto out; 1341 } 1342 1343 err = split_state(tree, state, prealloc, end + 1); 1344 if (err) 1345 extent_io_tree_panic(tree, err); 1346 1347 set_state_bits(tree, prealloc, &bits, NULL); 1348 cache_state(prealloc, cached_state); 1349 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1350 prealloc = NULL; 1351 goto out; 1352 } 1353 1354 search_again: 1355 if (start > end) 1356 goto out; 1357 spin_unlock(&tree->lock); 1358 cond_resched(); 1359 first_iteration = false; 1360 goto again; 1361 1362 out: 1363 spin_unlock(&tree->lock); 1364 if (prealloc) 1365 free_extent_state(prealloc); 1366 1367 return err; 1368 } 1369 1370 /* wrappers around set/clear extent bit */ 1371 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1372 unsigned bits, struct extent_changeset *changeset) 1373 { 1374 /* 1375 * We don't support EXTENT_LOCKED yet, as current changeset will 1376 * record any bits changed, so for EXTENT_LOCKED case, it will 1377 * either fail with -EEXIST or changeset will record the whole 1378 * range. 1379 */ 1380 BUG_ON(bits & EXTENT_LOCKED); 1381 1382 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1383 changeset); 1384 } 1385 1386 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1387 unsigned bits) 1388 { 1389 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1390 GFP_NOWAIT, NULL); 1391 } 1392 1393 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1394 unsigned bits, int wake, int delete, 1395 struct extent_state **cached) 1396 { 1397 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1398 cached, GFP_NOFS, NULL); 1399 } 1400 1401 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1402 unsigned bits, struct extent_changeset *changeset) 1403 { 1404 /* 1405 * Don't support EXTENT_LOCKED case, same reason as 1406 * set_record_extent_bits(). 1407 */ 1408 BUG_ON(bits & EXTENT_LOCKED); 1409 1410 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1411 changeset); 1412 } 1413 1414 /* 1415 * either insert or lock state struct between start and end use mask to tell 1416 * us if waiting is desired. 1417 */ 1418 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1419 struct extent_state **cached_state) 1420 { 1421 int err; 1422 u64 failed_start; 1423 1424 while (1) { 1425 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1426 EXTENT_LOCKED, &failed_start, 1427 cached_state, GFP_NOFS, NULL); 1428 if (err == -EEXIST) { 1429 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1430 start = failed_start; 1431 } else 1432 break; 1433 WARN_ON(start > end); 1434 } 1435 return err; 1436 } 1437 1438 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1439 { 1440 int err; 1441 u64 failed_start; 1442 1443 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1444 &failed_start, NULL, GFP_NOFS, NULL); 1445 if (err == -EEXIST) { 1446 if (failed_start > start) 1447 clear_extent_bit(tree, start, failed_start - 1, 1448 EXTENT_LOCKED, 1, 0, NULL); 1449 return 0; 1450 } 1451 return 1; 1452 } 1453 1454 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1455 { 1456 unsigned long index = start >> PAGE_SHIFT; 1457 unsigned long end_index = end >> PAGE_SHIFT; 1458 struct page *page; 1459 1460 while (index <= end_index) { 1461 page = find_get_page(inode->i_mapping, index); 1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1463 clear_page_dirty_for_io(page); 1464 put_page(page); 1465 index++; 1466 } 1467 } 1468 1469 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1470 { 1471 unsigned long index = start >> PAGE_SHIFT; 1472 unsigned long end_index = end >> PAGE_SHIFT; 1473 struct page *page; 1474 1475 while (index <= end_index) { 1476 page = find_get_page(inode->i_mapping, index); 1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1478 __set_page_dirty_nobuffers(page); 1479 account_page_redirty(page); 1480 put_page(page); 1481 index++; 1482 } 1483 } 1484 1485 /* find the first state struct with 'bits' set after 'start', and 1486 * return it. tree->lock must be held. NULL will returned if 1487 * nothing was found after 'start' 1488 */ 1489 static struct extent_state * 1490 find_first_extent_bit_state(struct extent_io_tree *tree, 1491 u64 start, unsigned bits) 1492 { 1493 struct rb_node *node; 1494 struct extent_state *state; 1495 1496 /* 1497 * this search will find all the extents that end after 1498 * our range starts. 1499 */ 1500 node = tree_search(tree, start); 1501 if (!node) 1502 goto out; 1503 1504 while (1) { 1505 state = rb_entry(node, struct extent_state, rb_node); 1506 if (state->end >= start && (state->state & bits)) 1507 return state; 1508 1509 node = rb_next(node); 1510 if (!node) 1511 break; 1512 } 1513 out: 1514 return NULL; 1515 } 1516 1517 /* 1518 * find the first offset in the io tree with 'bits' set. zero is 1519 * returned if we find something, and *start_ret and *end_ret are 1520 * set to reflect the state struct that was found. 1521 * 1522 * If nothing was found, 1 is returned. If found something, return 0. 1523 */ 1524 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1525 u64 *start_ret, u64 *end_ret, unsigned bits, 1526 struct extent_state **cached_state) 1527 { 1528 struct extent_state *state; 1529 int ret = 1; 1530 1531 spin_lock(&tree->lock); 1532 if (cached_state && *cached_state) { 1533 state = *cached_state; 1534 if (state->end == start - 1 && extent_state_in_tree(state)) { 1535 while ((state = next_state(state)) != NULL) { 1536 if (state->state & bits) 1537 goto got_it; 1538 } 1539 free_extent_state(*cached_state); 1540 *cached_state = NULL; 1541 goto out; 1542 } 1543 free_extent_state(*cached_state); 1544 *cached_state = NULL; 1545 } 1546 1547 state = find_first_extent_bit_state(tree, start, bits); 1548 got_it: 1549 if (state) { 1550 cache_state_if_flags(state, cached_state, 0); 1551 *start_ret = state->start; 1552 *end_ret = state->end; 1553 ret = 0; 1554 } 1555 out: 1556 spin_unlock(&tree->lock); 1557 return ret; 1558 } 1559 1560 /** 1561 * find_first_clear_extent_bit - find the first range that has @bits not set. 1562 * This range could start before @start. 1563 * 1564 * @tree - the tree to search 1565 * @start - the offset at/after which the found extent should start 1566 * @start_ret - records the beginning of the range 1567 * @end_ret - records the end of the range (inclusive) 1568 * @bits - the set of bits which must be unset 1569 * 1570 * Since unallocated range is also considered one which doesn't have the bits 1571 * set it's possible that @end_ret contains -1, this happens in case the range 1572 * spans (last_range_end, end of device]. In this case it's up to the caller to 1573 * trim @end_ret to the appropriate size. 1574 */ 1575 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1576 u64 *start_ret, u64 *end_ret, unsigned bits) 1577 { 1578 struct extent_state *state; 1579 struct rb_node *node, *prev = NULL, *next; 1580 1581 spin_lock(&tree->lock); 1582 1583 /* Find first extent with bits cleared */ 1584 while (1) { 1585 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1586 if (!node) { 1587 node = next; 1588 if (!node) { 1589 /* 1590 * We are past the last allocated chunk, 1591 * set start at the end of the last extent. The 1592 * device alloc tree should never be empty so 1593 * prev is always set. 1594 */ 1595 ASSERT(prev); 1596 state = rb_entry(prev, struct extent_state, rb_node); 1597 *start_ret = state->end + 1; 1598 *end_ret = -1; 1599 goto out; 1600 } 1601 } 1602 /* 1603 * At this point 'node' either contains 'start' or start is 1604 * before 'node' 1605 */ 1606 state = rb_entry(node, struct extent_state, rb_node); 1607 1608 if (in_range(start, state->start, state->end - state->start + 1)) { 1609 if (state->state & bits) { 1610 /* 1611 * |--range with bits sets--| 1612 * | 1613 * start 1614 */ 1615 start = state->end + 1; 1616 } else { 1617 /* 1618 * 'start' falls within a range that doesn't 1619 * have the bits set, so take its start as 1620 * the beginning of the desired range 1621 * 1622 * |--range with bits cleared----| 1623 * | 1624 * start 1625 */ 1626 *start_ret = state->start; 1627 break; 1628 } 1629 } else { 1630 /* 1631 * |---prev range---|---hole/unset---|---node range---| 1632 * | 1633 * start 1634 * 1635 * or 1636 * 1637 * |---hole/unset--||--first node--| 1638 * 0 | 1639 * start 1640 */ 1641 if (prev) { 1642 state = rb_entry(prev, struct extent_state, 1643 rb_node); 1644 *start_ret = state->end + 1; 1645 } else { 1646 *start_ret = 0; 1647 } 1648 break; 1649 } 1650 } 1651 1652 /* 1653 * Find the longest stretch from start until an entry which has the 1654 * bits set 1655 */ 1656 while (1) { 1657 state = rb_entry(node, struct extent_state, rb_node); 1658 if (state->end >= start && !(state->state & bits)) { 1659 *end_ret = state->end; 1660 } else { 1661 *end_ret = state->start - 1; 1662 break; 1663 } 1664 1665 node = rb_next(node); 1666 if (!node) 1667 break; 1668 } 1669 out: 1670 spin_unlock(&tree->lock); 1671 } 1672 1673 /* 1674 * find a contiguous range of bytes in the file marked as delalloc, not 1675 * more than 'max_bytes'. start and end are used to return the range, 1676 * 1677 * true is returned if we find something, false if nothing was in the tree 1678 */ 1679 static noinline bool find_delalloc_range(struct extent_io_tree *tree, 1680 u64 *start, u64 *end, u64 max_bytes, 1681 struct extent_state **cached_state) 1682 { 1683 struct rb_node *node; 1684 struct extent_state *state; 1685 u64 cur_start = *start; 1686 bool found = false; 1687 u64 total_bytes = 0; 1688 1689 spin_lock(&tree->lock); 1690 1691 /* 1692 * this search will find all the extents that end after 1693 * our range starts. 1694 */ 1695 node = tree_search(tree, cur_start); 1696 if (!node) { 1697 *end = (u64)-1; 1698 goto out; 1699 } 1700 1701 while (1) { 1702 state = rb_entry(node, struct extent_state, rb_node); 1703 if (found && (state->start != cur_start || 1704 (state->state & EXTENT_BOUNDARY))) { 1705 goto out; 1706 } 1707 if (!(state->state & EXTENT_DELALLOC)) { 1708 if (!found) 1709 *end = state->end; 1710 goto out; 1711 } 1712 if (!found) { 1713 *start = state->start; 1714 *cached_state = state; 1715 refcount_inc(&state->refs); 1716 } 1717 found = true; 1718 *end = state->end; 1719 cur_start = state->end + 1; 1720 node = rb_next(node); 1721 total_bytes += state->end - state->start + 1; 1722 if (total_bytes >= max_bytes) 1723 break; 1724 if (!node) 1725 break; 1726 } 1727 out: 1728 spin_unlock(&tree->lock); 1729 return found; 1730 } 1731 1732 static int __process_pages_contig(struct address_space *mapping, 1733 struct page *locked_page, 1734 pgoff_t start_index, pgoff_t end_index, 1735 unsigned long page_ops, pgoff_t *index_ret); 1736 1737 static noinline void __unlock_for_delalloc(struct inode *inode, 1738 struct page *locked_page, 1739 u64 start, u64 end) 1740 { 1741 unsigned long index = start >> PAGE_SHIFT; 1742 unsigned long end_index = end >> PAGE_SHIFT; 1743 1744 ASSERT(locked_page); 1745 if (index == locked_page->index && end_index == index) 1746 return; 1747 1748 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1749 PAGE_UNLOCK, NULL); 1750 } 1751 1752 static noinline int lock_delalloc_pages(struct inode *inode, 1753 struct page *locked_page, 1754 u64 delalloc_start, 1755 u64 delalloc_end) 1756 { 1757 unsigned long index = delalloc_start >> PAGE_SHIFT; 1758 unsigned long index_ret = index; 1759 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1760 int ret; 1761 1762 ASSERT(locked_page); 1763 if (index == locked_page->index && index == end_index) 1764 return 0; 1765 1766 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1767 end_index, PAGE_LOCK, &index_ret); 1768 if (ret == -EAGAIN) 1769 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1770 (u64)index_ret << PAGE_SHIFT); 1771 return ret; 1772 } 1773 1774 /* 1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1776 * more than @max_bytes. @Start and @end are used to return the range, 1777 * 1778 * Return: true if we find something 1779 * false if nothing was in the tree 1780 */ 1781 EXPORT_FOR_TESTS 1782 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1783 struct page *locked_page, u64 *start, 1784 u64 *end) 1785 { 1786 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1787 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1788 u64 delalloc_start; 1789 u64 delalloc_end; 1790 bool found; 1791 struct extent_state *cached_state = NULL; 1792 int ret; 1793 int loops = 0; 1794 1795 again: 1796 /* step one, find a bunch of delalloc bytes starting at start */ 1797 delalloc_start = *start; 1798 delalloc_end = 0; 1799 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1800 max_bytes, &cached_state); 1801 if (!found || delalloc_end <= *start) { 1802 *start = delalloc_start; 1803 *end = delalloc_end; 1804 free_extent_state(cached_state); 1805 return false; 1806 } 1807 1808 /* 1809 * start comes from the offset of locked_page. We have to lock 1810 * pages in order, so we can't process delalloc bytes before 1811 * locked_page 1812 */ 1813 if (delalloc_start < *start) 1814 delalloc_start = *start; 1815 1816 /* 1817 * make sure to limit the number of pages we try to lock down 1818 */ 1819 if (delalloc_end + 1 - delalloc_start > max_bytes) 1820 delalloc_end = delalloc_start + max_bytes - 1; 1821 1822 /* step two, lock all the pages after the page that has start */ 1823 ret = lock_delalloc_pages(inode, locked_page, 1824 delalloc_start, delalloc_end); 1825 ASSERT(!ret || ret == -EAGAIN); 1826 if (ret == -EAGAIN) { 1827 /* some of the pages are gone, lets avoid looping by 1828 * shortening the size of the delalloc range we're searching 1829 */ 1830 free_extent_state(cached_state); 1831 cached_state = NULL; 1832 if (!loops) { 1833 max_bytes = PAGE_SIZE; 1834 loops = 1; 1835 goto again; 1836 } else { 1837 found = false; 1838 goto out_failed; 1839 } 1840 } 1841 1842 /* step three, lock the state bits for the whole range */ 1843 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1844 1845 /* then test to make sure it is all still delalloc */ 1846 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1847 EXTENT_DELALLOC, 1, cached_state); 1848 if (!ret) { 1849 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1850 &cached_state); 1851 __unlock_for_delalloc(inode, locked_page, 1852 delalloc_start, delalloc_end); 1853 cond_resched(); 1854 goto again; 1855 } 1856 free_extent_state(cached_state); 1857 *start = delalloc_start; 1858 *end = delalloc_end; 1859 out_failed: 1860 return found; 1861 } 1862 1863 static int __process_pages_contig(struct address_space *mapping, 1864 struct page *locked_page, 1865 pgoff_t start_index, pgoff_t end_index, 1866 unsigned long page_ops, pgoff_t *index_ret) 1867 { 1868 unsigned long nr_pages = end_index - start_index + 1; 1869 unsigned long pages_locked = 0; 1870 pgoff_t index = start_index; 1871 struct page *pages[16]; 1872 unsigned ret; 1873 int err = 0; 1874 int i; 1875 1876 if (page_ops & PAGE_LOCK) { 1877 ASSERT(page_ops == PAGE_LOCK); 1878 ASSERT(index_ret && *index_ret == start_index); 1879 } 1880 1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1882 mapping_set_error(mapping, -EIO); 1883 1884 while (nr_pages > 0) { 1885 ret = find_get_pages_contig(mapping, index, 1886 min_t(unsigned long, 1887 nr_pages, ARRAY_SIZE(pages)), pages); 1888 if (ret == 0) { 1889 /* 1890 * Only if we're going to lock these pages, 1891 * can we find nothing at @index. 1892 */ 1893 ASSERT(page_ops & PAGE_LOCK); 1894 err = -EAGAIN; 1895 goto out; 1896 } 1897 1898 for (i = 0; i < ret; i++) { 1899 if (page_ops & PAGE_SET_PRIVATE2) 1900 SetPagePrivate2(pages[i]); 1901 1902 if (pages[i] == locked_page) { 1903 put_page(pages[i]); 1904 pages_locked++; 1905 continue; 1906 } 1907 if (page_ops & PAGE_CLEAR_DIRTY) 1908 clear_page_dirty_for_io(pages[i]); 1909 if (page_ops & PAGE_SET_WRITEBACK) 1910 set_page_writeback(pages[i]); 1911 if (page_ops & PAGE_SET_ERROR) 1912 SetPageError(pages[i]); 1913 if (page_ops & PAGE_END_WRITEBACK) 1914 end_page_writeback(pages[i]); 1915 if (page_ops & PAGE_UNLOCK) 1916 unlock_page(pages[i]); 1917 if (page_ops & PAGE_LOCK) { 1918 lock_page(pages[i]); 1919 if (!PageDirty(pages[i]) || 1920 pages[i]->mapping != mapping) { 1921 unlock_page(pages[i]); 1922 put_page(pages[i]); 1923 err = -EAGAIN; 1924 goto out; 1925 } 1926 } 1927 put_page(pages[i]); 1928 pages_locked++; 1929 } 1930 nr_pages -= ret; 1931 index += ret; 1932 cond_resched(); 1933 } 1934 out: 1935 if (err && index_ret) 1936 *index_ret = start_index + pages_locked - 1; 1937 return err; 1938 } 1939 1940 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1941 struct page *locked_page, 1942 unsigned clear_bits, 1943 unsigned long page_ops) 1944 { 1945 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1946 NULL); 1947 1948 __process_pages_contig(inode->i_mapping, locked_page, 1949 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1950 page_ops, NULL); 1951 } 1952 1953 /* 1954 * count the number of bytes in the tree that have a given bit(s) 1955 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1956 * cached. The total number found is returned. 1957 */ 1958 u64 count_range_bits(struct extent_io_tree *tree, 1959 u64 *start, u64 search_end, u64 max_bytes, 1960 unsigned bits, int contig) 1961 { 1962 struct rb_node *node; 1963 struct extent_state *state; 1964 u64 cur_start = *start; 1965 u64 total_bytes = 0; 1966 u64 last = 0; 1967 int found = 0; 1968 1969 if (WARN_ON(search_end <= cur_start)) 1970 return 0; 1971 1972 spin_lock(&tree->lock); 1973 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1974 total_bytes = tree->dirty_bytes; 1975 goto out; 1976 } 1977 /* 1978 * this search will find all the extents that end after 1979 * our range starts. 1980 */ 1981 node = tree_search(tree, cur_start); 1982 if (!node) 1983 goto out; 1984 1985 while (1) { 1986 state = rb_entry(node, struct extent_state, rb_node); 1987 if (state->start > search_end) 1988 break; 1989 if (contig && found && state->start > last + 1) 1990 break; 1991 if (state->end >= cur_start && (state->state & bits) == bits) { 1992 total_bytes += min(search_end, state->end) + 1 - 1993 max(cur_start, state->start); 1994 if (total_bytes >= max_bytes) 1995 break; 1996 if (!found) { 1997 *start = max(cur_start, state->start); 1998 found = 1; 1999 } 2000 last = state->end; 2001 } else if (contig && found) { 2002 break; 2003 } 2004 node = rb_next(node); 2005 if (!node) 2006 break; 2007 } 2008 out: 2009 spin_unlock(&tree->lock); 2010 return total_bytes; 2011 } 2012 2013 /* 2014 * set the private field for a given byte offset in the tree. If there isn't 2015 * an extent_state there already, this does nothing. 2016 */ 2017 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 2018 struct io_failure_record *failrec) 2019 { 2020 struct rb_node *node; 2021 struct extent_state *state; 2022 int ret = 0; 2023 2024 spin_lock(&tree->lock); 2025 /* 2026 * this search will find all the extents that end after 2027 * our range starts. 2028 */ 2029 node = tree_search(tree, start); 2030 if (!node) { 2031 ret = -ENOENT; 2032 goto out; 2033 } 2034 state = rb_entry(node, struct extent_state, rb_node); 2035 if (state->start != start) { 2036 ret = -ENOENT; 2037 goto out; 2038 } 2039 state->failrec = failrec; 2040 out: 2041 spin_unlock(&tree->lock); 2042 return ret; 2043 } 2044 2045 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 2046 struct io_failure_record **failrec) 2047 { 2048 struct rb_node *node; 2049 struct extent_state *state; 2050 int ret = 0; 2051 2052 spin_lock(&tree->lock); 2053 /* 2054 * this search will find all the extents that end after 2055 * our range starts. 2056 */ 2057 node = tree_search(tree, start); 2058 if (!node) { 2059 ret = -ENOENT; 2060 goto out; 2061 } 2062 state = rb_entry(node, struct extent_state, rb_node); 2063 if (state->start != start) { 2064 ret = -ENOENT; 2065 goto out; 2066 } 2067 *failrec = state->failrec; 2068 out: 2069 spin_unlock(&tree->lock); 2070 return ret; 2071 } 2072 2073 /* 2074 * searches a range in the state tree for a given mask. 2075 * If 'filled' == 1, this returns 1 only if every extent in the tree 2076 * has the bits set. Otherwise, 1 is returned if any bit in the 2077 * range is found set. 2078 */ 2079 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2080 unsigned bits, int filled, struct extent_state *cached) 2081 { 2082 struct extent_state *state = NULL; 2083 struct rb_node *node; 2084 int bitset = 0; 2085 2086 spin_lock(&tree->lock); 2087 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2088 cached->end > start) 2089 node = &cached->rb_node; 2090 else 2091 node = tree_search(tree, start); 2092 while (node && start <= end) { 2093 state = rb_entry(node, struct extent_state, rb_node); 2094 2095 if (filled && state->start > start) { 2096 bitset = 0; 2097 break; 2098 } 2099 2100 if (state->start > end) 2101 break; 2102 2103 if (state->state & bits) { 2104 bitset = 1; 2105 if (!filled) 2106 break; 2107 } else if (filled) { 2108 bitset = 0; 2109 break; 2110 } 2111 2112 if (state->end == (u64)-1) 2113 break; 2114 2115 start = state->end + 1; 2116 if (start > end) 2117 break; 2118 node = rb_next(node); 2119 if (!node) { 2120 if (filled) 2121 bitset = 0; 2122 break; 2123 } 2124 } 2125 spin_unlock(&tree->lock); 2126 return bitset; 2127 } 2128 2129 /* 2130 * helper function to set a given page up to date if all the 2131 * extents in the tree for that page are up to date 2132 */ 2133 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2134 { 2135 u64 start = page_offset(page); 2136 u64 end = start + PAGE_SIZE - 1; 2137 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2138 SetPageUptodate(page); 2139 } 2140 2141 int free_io_failure(struct extent_io_tree *failure_tree, 2142 struct extent_io_tree *io_tree, 2143 struct io_failure_record *rec) 2144 { 2145 int ret; 2146 int err = 0; 2147 2148 set_state_failrec(failure_tree, rec->start, NULL); 2149 ret = clear_extent_bits(failure_tree, rec->start, 2150 rec->start + rec->len - 1, 2151 EXTENT_LOCKED | EXTENT_DIRTY); 2152 if (ret) 2153 err = ret; 2154 2155 ret = clear_extent_bits(io_tree, rec->start, 2156 rec->start + rec->len - 1, 2157 EXTENT_DAMAGED); 2158 if (ret && !err) 2159 err = ret; 2160 2161 kfree(rec); 2162 return err; 2163 } 2164 2165 /* 2166 * this bypasses the standard btrfs submit functions deliberately, as 2167 * the standard behavior is to write all copies in a raid setup. here we only 2168 * want to write the one bad copy. so we do the mapping for ourselves and issue 2169 * submit_bio directly. 2170 * to avoid any synchronization issues, wait for the data after writing, which 2171 * actually prevents the read that triggered the error from finishing. 2172 * currently, there can be no more than two copies of every data bit. thus, 2173 * exactly one rewrite is required. 2174 */ 2175 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2176 u64 length, u64 logical, struct page *page, 2177 unsigned int pg_offset, int mirror_num) 2178 { 2179 struct bio *bio; 2180 struct btrfs_device *dev; 2181 u64 map_length = 0; 2182 u64 sector; 2183 struct btrfs_bio *bbio = NULL; 2184 int ret; 2185 2186 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2187 BUG_ON(!mirror_num); 2188 2189 bio = btrfs_io_bio_alloc(1); 2190 bio->bi_iter.bi_size = 0; 2191 map_length = length; 2192 2193 /* 2194 * Avoid races with device replace and make sure our bbio has devices 2195 * associated to its stripes that don't go away while we are doing the 2196 * read repair operation. 2197 */ 2198 btrfs_bio_counter_inc_blocked(fs_info); 2199 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2200 /* 2201 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2202 * to update all raid stripes, but here we just want to correct 2203 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2204 * stripe's dev and sector. 2205 */ 2206 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2207 &map_length, &bbio, 0); 2208 if (ret) { 2209 btrfs_bio_counter_dec(fs_info); 2210 bio_put(bio); 2211 return -EIO; 2212 } 2213 ASSERT(bbio->mirror_num == 1); 2214 } else { 2215 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2216 &map_length, &bbio, mirror_num); 2217 if (ret) { 2218 btrfs_bio_counter_dec(fs_info); 2219 bio_put(bio); 2220 return -EIO; 2221 } 2222 BUG_ON(mirror_num != bbio->mirror_num); 2223 } 2224 2225 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2226 bio->bi_iter.bi_sector = sector; 2227 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2228 btrfs_put_bbio(bbio); 2229 if (!dev || !dev->bdev || 2230 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2231 btrfs_bio_counter_dec(fs_info); 2232 bio_put(bio); 2233 return -EIO; 2234 } 2235 bio_set_dev(bio, dev->bdev); 2236 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2237 bio_add_page(bio, page, length, pg_offset); 2238 2239 if (btrfsic_submit_bio_wait(bio)) { 2240 /* try to remap that extent elsewhere? */ 2241 btrfs_bio_counter_dec(fs_info); 2242 bio_put(bio); 2243 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2244 return -EIO; 2245 } 2246 2247 btrfs_info_rl_in_rcu(fs_info, 2248 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2249 ino, start, 2250 rcu_str_deref(dev->name), sector); 2251 btrfs_bio_counter_dec(fs_info); 2252 bio_put(bio); 2253 return 0; 2254 } 2255 2256 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num) 2257 { 2258 struct btrfs_fs_info *fs_info = eb->fs_info; 2259 u64 start = eb->start; 2260 int i, num_pages = num_extent_pages(eb); 2261 int ret = 0; 2262 2263 if (sb_rdonly(fs_info->sb)) 2264 return -EROFS; 2265 2266 for (i = 0; i < num_pages; i++) { 2267 struct page *p = eb->pages[i]; 2268 2269 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2270 start - page_offset(p), mirror_num); 2271 if (ret) 2272 break; 2273 start += PAGE_SIZE; 2274 } 2275 2276 return ret; 2277 } 2278 2279 /* 2280 * each time an IO finishes, we do a fast check in the IO failure tree 2281 * to see if we need to process or clean up an io_failure_record 2282 */ 2283 int clean_io_failure(struct btrfs_fs_info *fs_info, 2284 struct extent_io_tree *failure_tree, 2285 struct extent_io_tree *io_tree, u64 start, 2286 struct page *page, u64 ino, unsigned int pg_offset) 2287 { 2288 u64 private; 2289 struct io_failure_record *failrec; 2290 struct extent_state *state; 2291 int num_copies; 2292 int ret; 2293 2294 private = 0; 2295 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2296 EXTENT_DIRTY, 0); 2297 if (!ret) 2298 return 0; 2299 2300 ret = get_state_failrec(failure_tree, start, &failrec); 2301 if (ret) 2302 return 0; 2303 2304 BUG_ON(!failrec->this_mirror); 2305 2306 if (failrec->in_validation) { 2307 /* there was no real error, just free the record */ 2308 btrfs_debug(fs_info, 2309 "clean_io_failure: freeing dummy error at %llu", 2310 failrec->start); 2311 goto out; 2312 } 2313 if (sb_rdonly(fs_info->sb)) 2314 goto out; 2315 2316 spin_lock(&io_tree->lock); 2317 state = find_first_extent_bit_state(io_tree, 2318 failrec->start, 2319 EXTENT_LOCKED); 2320 spin_unlock(&io_tree->lock); 2321 2322 if (state && state->start <= failrec->start && 2323 state->end >= failrec->start + failrec->len - 1) { 2324 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2325 failrec->len); 2326 if (num_copies > 1) { 2327 repair_io_failure(fs_info, ino, start, failrec->len, 2328 failrec->logical, page, pg_offset, 2329 failrec->failed_mirror); 2330 } 2331 } 2332 2333 out: 2334 free_io_failure(failure_tree, io_tree, failrec); 2335 2336 return 0; 2337 } 2338 2339 /* 2340 * Can be called when 2341 * - hold extent lock 2342 * - under ordered extent 2343 * - the inode is freeing 2344 */ 2345 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2346 { 2347 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2348 struct io_failure_record *failrec; 2349 struct extent_state *state, *next; 2350 2351 if (RB_EMPTY_ROOT(&failure_tree->state)) 2352 return; 2353 2354 spin_lock(&failure_tree->lock); 2355 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2356 while (state) { 2357 if (state->start > end) 2358 break; 2359 2360 ASSERT(state->end <= end); 2361 2362 next = next_state(state); 2363 2364 failrec = state->failrec; 2365 free_extent_state(state); 2366 kfree(failrec); 2367 2368 state = next; 2369 } 2370 spin_unlock(&failure_tree->lock); 2371 } 2372 2373 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2374 struct io_failure_record **failrec_ret) 2375 { 2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2377 struct io_failure_record *failrec; 2378 struct extent_map *em; 2379 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2380 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2382 int ret; 2383 u64 logical; 2384 2385 ret = get_state_failrec(failure_tree, start, &failrec); 2386 if (ret) { 2387 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2388 if (!failrec) 2389 return -ENOMEM; 2390 2391 failrec->start = start; 2392 failrec->len = end - start + 1; 2393 failrec->this_mirror = 0; 2394 failrec->bio_flags = 0; 2395 failrec->in_validation = 0; 2396 2397 read_lock(&em_tree->lock); 2398 em = lookup_extent_mapping(em_tree, start, failrec->len); 2399 if (!em) { 2400 read_unlock(&em_tree->lock); 2401 kfree(failrec); 2402 return -EIO; 2403 } 2404 2405 if (em->start > start || em->start + em->len <= start) { 2406 free_extent_map(em); 2407 em = NULL; 2408 } 2409 read_unlock(&em_tree->lock); 2410 if (!em) { 2411 kfree(failrec); 2412 return -EIO; 2413 } 2414 2415 logical = start - em->start; 2416 logical = em->block_start + logical; 2417 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2418 logical = em->block_start; 2419 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2420 extent_set_compress_type(&failrec->bio_flags, 2421 em->compress_type); 2422 } 2423 2424 btrfs_debug(fs_info, 2425 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2426 logical, start, failrec->len); 2427 2428 failrec->logical = logical; 2429 free_extent_map(em); 2430 2431 /* set the bits in the private failure tree */ 2432 ret = set_extent_bits(failure_tree, start, end, 2433 EXTENT_LOCKED | EXTENT_DIRTY); 2434 if (ret >= 0) 2435 ret = set_state_failrec(failure_tree, start, failrec); 2436 /* set the bits in the inode's tree */ 2437 if (ret >= 0) 2438 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2439 if (ret < 0) { 2440 kfree(failrec); 2441 return ret; 2442 } 2443 } else { 2444 btrfs_debug(fs_info, 2445 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2446 failrec->logical, failrec->start, failrec->len, 2447 failrec->in_validation); 2448 /* 2449 * when data can be on disk more than twice, add to failrec here 2450 * (e.g. with a list for failed_mirror) to make 2451 * clean_io_failure() clean all those errors at once. 2452 */ 2453 } 2454 2455 *failrec_ret = failrec; 2456 2457 return 0; 2458 } 2459 2460 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2461 struct io_failure_record *failrec, int failed_mirror) 2462 { 2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2464 int num_copies; 2465 2466 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2467 if (num_copies == 1) { 2468 /* 2469 * we only have a single copy of the data, so don't bother with 2470 * all the retry and error correction code that follows. no 2471 * matter what the error is, it is very likely to persist. 2472 */ 2473 btrfs_debug(fs_info, 2474 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2475 num_copies, failrec->this_mirror, failed_mirror); 2476 return false; 2477 } 2478 2479 /* 2480 * there are two premises: 2481 * a) deliver good data to the caller 2482 * b) correct the bad sectors on disk 2483 */ 2484 if (failed_bio_pages > 1) { 2485 /* 2486 * to fulfill b), we need to know the exact failing sectors, as 2487 * we don't want to rewrite any more than the failed ones. thus, 2488 * we need separate read requests for the failed bio 2489 * 2490 * if the following BUG_ON triggers, our validation request got 2491 * merged. we need separate requests for our algorithm to work. 2492 */ 2493 BUG_ON(failrec->in_validation); 2494 failrec->in_validation = 1; 2495 failrec->this_mirror = failed_mirror; 2496 } else { 2497 /* 2498 * we're ready to fulfill a) and b) alongside. get a good copy 2499 * of the failed sector and if we succeed, we have setup 2500 * everything for repair_io_failure to do the rest for us. 2501 */ 2502 if (failrec->in_validation) { 2503 BUG_ON(failrec->this_mirror != failed_mirror); 2504 failrec->in_validation = 0; 2505 failrec->this_mirror = 0; 2506 } 2507 failrec->failed_mirror = failed_mirror; 2508 failrec->this_mirror++; 2509 if (failrec->this_mirror == failed_mirror) 2510 failrec->this_mirror++; 2511 } 2512 2513 if (failrec->this_mirror > num_copies) { 2514 btrfs_debug(fs_info, 2515 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2516 num_copies, failrec->this_mirror, failed_mirror); 2517 return false; 2518 } 2519 2520 return true; 2521 } 2522 2523 2524 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2525 struct io_failure_record *failrec, 2526 struct page *page, int pg_offset, int icsum, 2527 bio_end_io_t *endio_func, void *data) 2528 { 2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2530 struct bio *bio; 2531 struct btrfs_io_bio *btrfs_failed_bio; 2532 struct btrfs_io_bio *btrfs_bio; 2533 2534 bio = btrfs_io_bio_alloc(1); 2535 bio->bi_end_io = endio_func; 2536 bio->bi_iter.bi_sector = failrec->logical >> 9; 2537 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2538 bio->bi_iter.bi_size = 0; 2539 bio->bi_private = data; 2540 2541 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2542 if (btrfs_failed_bio->csum) { 2543 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2544 2545 btrfs_bio = btrfs_io_bio(bio); 2546 btrfs_bio->csum = btrfs_bio->csum_inline; 2547 icsum *= csum_size; 2548 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2549 csum_size); 2550 } 2551 2552 bio_add_page(bio, page, failrec->len, pg_offset); 2553 2554 return bio; 2555 } 2556 2557 /* 2558 * This is a generic handler for readpage errors. If other copies exist, read 2559 * those and write back good data to the failed position. Does not investigate 2560 * in remapping the failed extent elsewhere, hoping the device will be smart 2561 * enough to do this as needed 2562 */ 2563 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2564 struct page *page, u64 start, u64 end, 2565 int failed_mirror) 2566 { 2567 struct io_failure_record *failrec; 2568 struct inode *inode = page->mapping->host; 2569 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2570 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2571 struct bio *bio; 2572 int read_mode = 0; 2573 blk_status_t status; 2574 int ret; 2575 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT; 2576 2577 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2578 2579 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2580 if (ret) 2581 return ret; 2582 2583 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2584 failed_mirror)) { 2585 free_io_failure(failure_tree, tree, failrec); 2586 return -EIO; 2587 } 2588 2589 if (failed_bio_pages > 1) 2590 read_mode |= REQ_FAILFAST_DEV; 2591 2592 phy_offset >>= inode->i_sb->s_blocksize_bits; 2593 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2594 start - page_offset(page), 2595 (int)phy_offset, failed_bio->bi_end_io, 2596 NULL); 2597 bio->bi_opf = REQ_OP_READ | read_mode; 2598 2599 btrfs_debug(btrfs_sb(inode->i_sb), 2600 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2601 read_mode, failrec->this_mirror, failrec->in_validation); 2602 2603 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2604 failrec->bio_flags); 2605 if (status) { 2606 free_io_failure(failure_tree, tree, failrec); 2607 bio_put(bio); 2608 ret = blk_status_to_errno(status); 2609 } 2610 2611 return ret; 2612 } 2613 2614 /* lots and lots of room for performance fixes in the end_bio funcs */ 2615 2616 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2617 { 2618 int uptodate = (err == 0); 2619 int ret = 0; 2620 2621 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2622 2623 if (!uptodate) { 2624 ClearPageUptodate(page); 2625 SetPageError(page); 2626 ret = err < 0 ? err : -EIO; 2627 mapping_set_error(page->mapping, ret); 2628 } 2629 } 2630 2631 /* 2632 * after a writepage IO is done, we need to: 2633 * clear the uptodate bits on error 2634 * clear the writeback bits in the extent tree for this IO 2635 * end_page_writeback if the page has no more pending IO 2636 * 2637 * Scheduling is not allowed, so the extent state tree is expected 2638 * to have one and only one object corresponding to this IO. 2639 */ 2640 static void end_bio_extent_writepage(struct bio *bio) 2641 { 2642 int error = blk_status_to_errno(bio->bi_status); 2643 struct bio_vec *bvec; 2644 u64 start; 2645 u64 end; 2646 struct bvec_iter_all iter_all; 2647 2648 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2649 bio_for_each_segment_all(bvec, bio, iter_all) { 2650 struct page *page = bvec->bv_page; 2651 struct inode *inode = page->mapping->host; 2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2653 2654 /* We always issue full-page reads, but if some block 2655 * in a page fails to read, blk_update_request() will 2656 * advance bv_offset and adjust bv_len to compensate. 2657 * Print a warning for nonzero offsets, and an error 2658 * if they don't add up to a full page. */ 2659 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2660 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2661 btrfs_err(fs_info, 2662 "partial page write in btrfs with offset %u and length %u", 2663 bvec->bv_offset, bvec->bv_len); 2664 else 2665 btrfs_info(fs_info, 2666 "incomplete page write in btrfs with offset %u and length %u", 2667 bvec->bv_offset, bvec->bv_len); 2668 } 2669 2670 start = page_offset(page); 2671 end = start + bvec->bv_offset + bvec->bv_len - 1; 2672 2673 end_extent_writepage(page, error, start, end); 2674 end_page_writeback(page); 2675 } 2676 2677 bio_put(bio); 2678 } 2679 2680 static void 2681 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2682 int uptodate) 2683 { 2684 struct extent_state *cached = NULL; 2685 u64 end = start + len - 1; 2686 2687 if (uptodate && tree->track_uptodate) 2688 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2689 unlock_extent_cached_atomic(tree, start, end, &cached); 2690 } 2691 2692 /* 2693 * after a readpage IO is done, we need to: 2694 * clear the uptodate bits on error 2695 * set the uptodate bits if things worked 2696 * set the page up to date if all extents in the tree are uptodate 2697 * clear the lock bit in the extent tree 2698 * unlock the page if there are no other extents locked for it 2699 * 2700 * Scheduling is not allowed, so the extent state tree is expected 2701 * to have one and only one object corresponding to this IO. 2702 */ 2703 static void end_bio_extent_readpage(struct bio *bio) 2704 { 2705 struct bio_vec *bvec; 2706 int uptodate = !bio->bi_status; 2707 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2708 struct extent_io_tree *tree, *failure_tree; 2709 u64 offset = 0; 2710 u64 start; 2711 u64 end; 2712 u64 len; 2713 u64 extent_start = 0; 2714 u64 extent_len = 0; 2715 int mirror; 2716 int ret; 2717 struct bvec_iter_all iter_all; 2718 2719 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2720 bio_for_each_segment_all(bvec, bio, iter_all) { 2721 struct page *page = bvec->bv_page; 2722 struct inode *inode = page->mapping->host; 2723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2724 bool data_inode = btrfs_ino(BTRFS_I(inode)) 2725 != BTRFS_BTREE_INODE_OBJECTID; 2726 2727 btrfs_debug(fs_info, 2728 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2729 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2730 io_bio->mirror_num); 2731 tree = &BTRFS_I(inode)->io_tree; 2732 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2733 2734 /* We always issue full-page reads, but if some block 2735 * in a page fails to read, blk_update_request() will 2736 * advance bv_offset and adjust bv_len to compensate. 2737 * Print a warning for nonzero offsets, and an error 2738 * if they don't add up to a full page. */ 2739 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2740 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2741 btrfs_err(fs_info, 2742 "partial page read in btrfs with offset %u and length %u", 2743 bvec->bv_offset, bvec->bv_len); 2744 else 2745 btrfs_info(fs_info, 2746 "incomplete page read in btrfs with offset %u and length %u", 2747 bvec->bv_offset, bvec->bv_len); 2748 } 2749 2750 start = page_offset(page); 2751 end = start + bvec->bv_offset + bvec->bv_len - 1; 2752 len = bvec->bv_len; 2753 2754 mirror = io_bio->mirror_num; 2755 if (likely(uptodate)) { 2756 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2757 page, start, end, 2758 mirror); 2759 if (ret) 2760 uptodate = 0; 2761 else 2762 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2763 failure_tree, tree, start, 2764 page, 2765 btrfs_ino(BTRFS_I(inode)), 0); 2766 } 2767 2768 if (likely(uptodate)) 2769 goto readpage_ok; 2770 2771 if (data_inode) { 2772 2773 /* 2774 * The generic bio_readpage_error handles errors the 2775 * following way: If possible, new read requests are 2776 * created and submitted and will end up in 2777 * end_bio_extent_readpage as well (if we're lucky, 2778 * not in the !uptodate case). In that case it returns 2779 * 0 and we just go on with the next page in our bio. 2780 * If it can't handle the error it will return -EIO and 2781 * we remain responsible for that page. 2782 */ 2783 ret = bio_readpage_error(bio, offset, page, start, end, 2784 mirror); 2785 if (ret == 0) { 2786 uptodate = !bio->bi_status; 2787 offset += len; 2788 continue; 2789 } 2790 } else { 2791 struct extent_buffer *eb; 2792 2793 eb = (struct extent_buffer *)page->private; 2794 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2795 eb->read_mirror = mirror; 2796 atomic_dec(&eb->io_pages); 2797 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2798 &eb->bflags)) 2799 btree_readahead_hook(eb, -EIO); 2800 } 2801 readpage_ok: 2802 if (likely(uptodate)) { 2803 loff_t i_size = i_size_read(inode); 2804 pgoff_t end_index = i_size >> PAGE_SHIFT; 2805 unsigned off; 2806 2807 /* Zero out the end if this page straddles i_size */ 2808 off = offset_in_page(i_size); 2809 if (page->index == end_index && off) 2810 zero_user_segment(page, off, PAGE_SIZE); 2811 SetPageUptodate(page); 2812 } else { 2813 ClearPageUptodate(page); 2814 SetPageError(page); 2815 } 2816 unlock_page(page); 2817 offset += len; 2818 2819 if (unlikely(!uptodate)) { 2820 if (extent_len) { 2821 endio_readpage_release_extent(tree, 2822 extent_start, 2823 extent_len, 1); 2824 extent_start = 0; 2825 extent_len = 0; 2826 } 2827 endio_readpage_release_extent(tree, start, 2828 end - start + 1, 0); 2829 } else if (!extent_len) { 2830 extent_start = start; 2831 extent_len = end + 1 - start; 2832 } else if (extent_start + extent_len == start) { 2833 extent_len += end + 1 - start; 2834 } else { 2835 endio_readpage_release_extent(tree, extent_start, 2836 extent_len, uptodate); 2837 extent_start = start; 2838 extent_len = end + 1 - start; 2839 } 2840 } 2841 2842 if (extent_len) 2843 endio_readpage_release_extent(tree, extent_start, extent_len, 2844 uptodate); 2845 btrfs_io_bio_free_csum(io_bio); 2846 bio_put(bio); 2847 } 2848 2849 /* 2850 * Initialize the members up to but not including 'bio'. Use after allocating a 2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2852 * 'bio' because use of __GFP_ZERO is not supported. 2853 */ 2854 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2855 { 2856 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2857 } 2858 2859 /* 2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2861 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2862 * for the appropriate container_of magic 2863 */ 2864 struct bio *btrfs_bio_alloc(u64 first_byte) 2865 { 2866 struct bio *bio; 2867 2868 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2869 bio->bi_iter.bi_sector = first_byte >> 9; 2870 btrfs_io_bio_init(btrfs_io_bio(bio)); 2871 return bio; 2872 } 2873 2874 struct bio *btrfs_bio_clone(struct bio *bio) 2875 { 2876 struct btrfs_io_bio *btrfs_bio; 2877 struct bio *new; 2878 2879 /* Bio allocation backed by a bioset does not fail */ 2880 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2881 btrfs_bio = btrfs_io_bio(new); 2882 btrfs_io_bio_init(btrfs_bio); 2883 btrfs_bio->iter = bio->bi_iter; 2884 return new; 2885 } 2886 2887 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2888 { 2889 struct bio *bio; 2890 2891 /* Bio allocation backed by a bioset does not fail */ 2892 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2893 btrfs_io_bio_init(btrfs_io_bio(bio)); 2894 return bio; 2895 } 2896 2897 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2898 { 2899 struct bio *bio; 2900 struct btrfs_io_bio *btrfs_bio; 2901 2902 /* this will never fail when it's backed by a bioset */ 2903 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2904 ASSERT(bio); 2905 2906 btrfs_bio = btrfs_io_bio(bio); 2907 btrfs_io_bio_init(btrfs_bio); 2908 2909 bio_trim(bio, offset >> 9, size >> 9); 2910 btrfs_bio->iter = bio->bi_iter; 2911 return bio; 2912 } 2913 2914 /* 2915 * @opf: bio REQ_OP_* and REQ_* flags as one value 2916 * @tree: tree so we can call our merge_bio hook 2917 * @wbc: optional writeback control for io accounting 2918 * @page: page to add to the bio 2919 * @pg_offset: offset of the new bio or to check whether we are adding 2920 * a contiguous page to the previous one 2921 * @size: portion of page that we want to write 2922 * @offset: starting offset in the page 2923 * @bdev: attach newly created bios to this bdev 2924 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2925 * @end_io_func: end_io callback for new bio 2926 * @mirror_num: desired mirror to read/write 2927 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2928 * @bio_flags: flags of the current bio to see if we can merge them 2929 */ 2930 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2931 struct writeback_control *wbc, 2932 struct page *page, u64 offset, 2933 size_t size, unsigned long pg_offset, 2934 struct block_device *bdev, 2935 struct bio **bio_ret, 2936 bio_end_io_t end_io_func, 2937 int mirror_num, 2938 unsigned long prev_bio_flags, 2939 unsigned long bio_flags, 2940 bool force_bio_submit) 2941 { 2942 int ret = 0; 2943 struct bio *bio; 2944 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2945 sector_t sector = offset >> 9; 2946 2947 ASSERT(bio_ret); 2948 2949 if (*bio_ret) { 2950 bool contig; 2951 bool can_merge = true; 2952 2953 bio = *bio_ret; 2954 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2955 contig = bio->bi_iter.bi_sector == sector; 2956 else 2957 contig = bio_end_sector(bio) == sector; 2958 2959 ASSERT(tree->ops); 2960 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 2961 can_merge = false; 2962 2963 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2964 force_bio_submit || 2965 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2966 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2967 if (ret < 0) { 2968 *bio_ret = NULL; 2969 return ret; 2970 } 2971 bio = NULL; 2972 } else { 2973 if (wbc) 2974 wbc_account_cgroup_owner(wbc, page, page_size); 2975 return 0; 2976 } 2977 } 2978 2979 bio = btrfs_bio_alloc(offset); 2980 bio_set_dev(bio, bdev); 2981 bio_add_page(bio, page, page_size, pg_offset); 2982 bio->bi_end_io = end_io_func; 2983 bio->bi_private = tree; 2984 bio->bi_write_hint = page->mapping->host->i_write_hint; 2985 bio->bi_opf = opf; 2986 if (wbc) { 2987 wbc_init_bio(wbc, bio); 2988 wbc_account_cgroup_owner(wbc, page, page_size); 2989 } 2990 2991 *bio_ret = bio; 2992 2993 return ret; 2994 } 2995 2996 static void attach_extent_buffer_page(struct extent_buffer *eb, 2997 struct page *page) 2998 { 2999 if (!PagePrivate(page)) { 3000 SetPagePrivate(page); 3001 get_page(page); 3002 set_page_private(page, (unsigned long)eb); 3003 } else { 3004 WARN_ON(page->private != (unsigned long)eb); 3005 } 3006 } 3007 3008 void set_page_extent_mapped(struct page *page) 3009 { 3010 if (!PagePrivate(page)) { 3011 SetPagePrivate(page); 3012 get_page(page); 3013 set_page_private(page, EXTENT_PAGE_PRIVATE); 3014 } 3015 } 3016 3017 static struct extent_map * 3018 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3019 u64 start, u64 len, get_extent_t *get_extent, 3020 struct extent_map **em_cached) 3021 { 3022 struct extent_map *em; 3023 3024 if (em_cached && *em_cached) { 3025 em = *em_cached; 3026 if (extent_map_in_tree(em) && start >= em->start && 3027 start < extent_map_end(em)) { 3028 refcount_inc(&em->refs); 3029 return em; 3030 } 3031 3032 free_extent_map(em); 3033 *em_cached = NULL; 3034 } 3035 3036 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 3037 if (em_cached && !IS_ERR_OR_NULL(em)) { 3038 BUG_ON(*em_cached); 3039 refcount_inc(&em->refs); 3040 *em_cached = em; 3041 } 3042 return em; 3043 } 3044 /* 3045 * basic readpage implementation. Locked extent state structs are inserted 3046 * into the tree that are removed when the IO is done (by the end_io 3047 * handlers) 3048 * XXX JDM: This needs looking at to ensure proper page locking 3049 * return 0 on success, otherwise return error 3050 */ 3051 static int __do_readpage(struct extent_io_tree *tree, 3052 struct page *page, 3053 get_extent_t *get_extent, 3054 struct extent_map **em_cached, 3055 struct bio **bio, int mirror_num, 3056 unsigned long *bio_flags, unsigned int read_flags, 3057 u64 *prev_em_start) 3058 { 3059 struct inode *inode = page->mapping->host; 3060 u64 start = page_offset(page); 3061 const u64 end = start + PAGE_SIZE - 1; 3062 u64 cur = start; 3063 u64 extent_offset; 3064 u64 last_byte = i_size_read(inode); 3065 u64 block_start; 3066 u64 cur_end; 3067 struct extent_map *em; 3068 struct block_device *bdev; 3069 int ret = 0; 3070 int nr = 0; 3071 size_t pg_offset = 0; 3072 size_t iosize; 3073 size_t disk_io_size; 3074 size_t blocksize = inode->i_sb->s_blocksize; 3075 unsigned long this_bio_flag = 0; 3076 3077 set_page_extent_mapped(page); 3078 3079 if (!PageUptodate(page)) { 3080 if (cleancache_get_page(page) == 0) { 3081 BUG_ON(blocksize != PAGE_SIZE); 3082 unlock_extent(tree, start, end); 3083 goto out; 3084 } 3085 } 3086 3087 if (page->index == last_byte >> PAGE_SHIFT) { 3088 char *userpage; 3089 size_t zero_offset = offset_in_page(last_byte); 3090 3091 if (zero_offset) { 3092 iosize = PAGE_SIZE - zero_offset; 3093 userpage = kmap_atomic(page); 3094 memset(userpage + zero_offset, 0, iosize); 3095 flush_dcache_page(page); 3096 kunmap_atomic(userpage); 3097 } 3098 } 3099 while (cur <= end) { 3100 bool force_bio_submit = false; 3101 u64 offset; 3102 3103 if (cur >= last_byte) { 3104 char *userpage; 3105 struct extent_state *cached = NULL; 3106 3107 iosize = PAGE_SIZE - pg_offset; 3108 userpage = kmap_atomic(page); 3109 memset(userpage + pg_offset, 0, iosize); 3110 flush_dcache_page(page); 3111 kunmap_atomic(userpage); 3112 set_extent_uptodate(tree, cur, cur + iosize - 1, 3113 &cached, GFP_NOFS); 3114 unlock_extent_cached(tree, cur, 3115 cur + iosize - 1, &cached); 3116 break; 3117 } 3118 em = __get_extent_map(inode, page, pg_offset, cur, 3119 end - cur + 1, get_extent, em_cached); 3120 if (IS_ERR_OR_NULL(em)) { 3121 SetPageError(page); 3122 unlock_extent(tree, cur, end); 3123 break; 3124 } 3125 extent_offset = cur - em->start; 3126 BUG_ON(extent_map_end(em) <= cur); 3127 BUG_ON(end < cur); 3128 3129 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3130 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3131 extent_set_compress_type(&this_bio_flag, 3132 em->compress_type); 3133 } 3134 3135 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3136 cur_end = min(extent_map_end(em) - 1, end); 3137 iosize = ALIGN(iosize, blocksize); 3138 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3139 disk_io_size = em->block_len; 3140 offset = em->block_start; 3141 } else { 3142 offset = em->block_start + extent_offset; 3143 disk_io_size = iosize; 3144 } 3145 bdev = em->bdev; 3146 block_start = em->block_start; 3147 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3148 block_start = EXTENT_MAP_HOLE; 3149 3150 /* 3151 * If we have a file range that points to a compressed extent 3152 * and it's followed by a consecutive file range that points to 3153 * to the same compressed extent (possibly with a different 3154 * offset and/or length, so it either points to the whole extent 3155 * or only part of it), we must make sure we do not submit a 3156 * single bio to populate the pages for the 2 ranges because 3157 * this makes the compressed extent read zero out the pages 3158 * belonging to the 2nd range. Imagine the following scenario: 3159 * 3160 * File layout 3161 * [0 - 8K] [8K - 24K] 3162 * | | 3163 * | | 3164 * points to extent X, points to extent X, 3165 * offset 4K, length of 8K offset 0, length 16K 3166 * 3167 * [extent X, compressed length = 4K uncompressed length = 16K] 3168 * 3169 * If the bio to read the compressed extent covers both ranges, 3170 * it will decompress extent X into the pages belonging to the 3171 * first range and then it will stop, zeroing out the remaining 3172 * pages that belong to the other range that points to extent X. 3173 * So here we make sure we submit 2 bios, one for the first 3174 * range and another one for the third range. Both will target 3175 * the same physical extent from disk, but we can't currently 3176 * make the compressed bio endio callback populate the pages 3177 * for both ranges because each compressed bio is tightly 3178 * coupled with a single extent map, and each range can have 3179 * an extent map with a different offset value relative to the 3180 * uncompressed data of our extent and different lengths. This 3181 * is a corner case so we prioritize correctness over 3182 * non-optimal behavior (submitting 2 bios for the same extent). 3183 */ 3184 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3185 prev_em_start && *prev_em_start != (u64)-1 && 3186 *prev_em_start != em->start) 3187 force_bio_submit = true; 3188 3189 if (prev_em_start) 3190 *prev_em_start = em->start; 3191 3192 free_extent_map(em); 3193 em = NULL; 3194 3195 /* we've found a hole, just zero and go on */ 3196 if (block_start == EXTENT_MAP_HOLE) { 3197 char *userpage; 3198 struct extent_state *cached = NULL; 3199 3200 userpage = kmap_atomic(page); 3201 memset(userpage + pg_offset, 0, iosize); 3202 flush_dcache_page(page); 3203 kunmap_atomic(userpage); 3204 3205 set_extent_uptodate(tree, cur, cur + iosize - 1, 3206 &cached, GFP_NOFS); 3207 unlock_extent_cached(tree, cur, 3208 cur + iosize - 1, &cached); 3209 cur = cur + iosize; 3210 pg_offset += iosize; 3211 continue; 3212 } 3213 /* the get_extent function already copied into the page */ 3214 if (test_range_bit(tree, cur, cur_end, 3215 EXTENT_UPTODATE, 1, NULL)) { 3216 check_page_uptodate(tree, page); 3217 unlock_extent(tree, cur, cur + iosize - 1); 3218 cur = cur + iosize; 3219 pg_offset += iosize; 3220 continue; 3221 } 3222 /* we have an inline extent but it didn't get marked up 3223 * to date. Error out 3224 */ 3225 if (block_start == EXTENT_MAP_INLINE) { 3226 SetPageError(page); 3227 unlock_extent(tree, cur, cur + iosize - 1); 3228 cur = cur + iosize; 3229 pg_offset += iosize; 3230 continue; 3231 } 3232 3233 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3234 page, offset, disk_io_size, 3235 pg_offset, bdev, bio, 3236 end_bio_extent_readpage, mirror_num, 3237 *bio_flags, 3238 this_bio_flag, 3239 force_bio_submit); 3240 if (!ret) { 3241 nr++; 3242 *bio_flags = this_bio_flag; 3243 } else { 3244 SetPageError(page); 3245 unlock_extent(tree, cur, cur + iosize - 1); 3246 goto out; 3247 } 3248 cur = cur + iosize; 3249 pg_offset += iosize; 3250 } 3251 out: 3252 if (!nr) { 3253 if (!PageError(page)) 3254 SetPageUptodate(page); 3255 unlock_page(page); 3256 } 3257 return ret; 3258 } 3259 3260 static inline void contiguous_readpages(struct extent_io_tree *tree, 3261 struct page *pages[], int nr_pages, 3262 u64 start, u64 end, 3263 struct extent_map **em_cached, 3264 struct bio **bio, 3265 unsigned long *bio_flags, 3266 u64 *prev_em_start) 3267 { 3268 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3269 int index; 3270 3271 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL); 3272 3273 for (index = 0; index < nr_pages; index++) { 3274 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3275 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3276 put_page(pages[index]); 3277 } 3278 } 3279 3280 static int __extent_read_full_page(struct extent_io_tree *tree, 3281 struct page *page, 3282 get_extent_t *get_extent, 3283 struct bio **bio, int mirror_num, 3284 unsigned long *bio_flags, 3285 unsigned int read_flags) 3286 { 3287 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3288 u64 start = page_offset(page); 3289 u64 end = start + PAGE_SIZE - 1; 3290 int ret; 3291 3292 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL); 3293 3294 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3295 bio_flags, read_flags, NULL); 3296 return ret; 3297 } 3298 3299 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3300 get_extent_t *get_extent, int mirror_num) 3301 { 3302 struct bio *bio = NULL; 3303 unsigned long bio_flags = 0; 3304 int ret; 3305 3306 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3307 &bio_flags, 0); 3308 if (bio) 3309 ret = submit_one_bio(bio, mirror_num, bio_flags); 3310 return ret; 3311 } 3312 3313 static void update_nr_written(struct writeback_control *wbc, 3314 unsigned long nr_written) 3315 { 3316 wbc->nr_to_write -= nr_written; 3317 } 3318 3319 /* 3320 * helper for __extent_writepage, doing all of the delayed allocation setup. 3321 * 3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3323 * to write the page (copy into inline extent). In this case the IO has 3324 * been started and the page is already unlocked. 3325 * 3326 * This returns 0 if all went well (page still locked) 3327 * This returns < 0 if there were errors (page still locked) 3328 */ 3329 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3330 struct page *page, struct writeback_control *wbc, 3331 u64 delalloc_start, unsigned long *nr_written) 3332 { 3333 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3334 bool found; 3335 u64 delalloc_to_write = 0; 3336 u64 delalloc_end = 0; 3337 int ret; 3338 int page_started = 0; 3339 3340 3341 while (delalloc_end < page_end) { 3342 found = find_lock_delalloc_range(inode, page, 3343 &delalloc_start, 3344 &delalloc_end); 3345 if (!found) { 3346 delalloc_start = delalloc_end + 1; 3347 continue; 3348 } 3349 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3350 delalloc_end, &page_started, nr_written, wbc); 3351 if (ret) { 3352 SetPageError(page); 3353 /* 3354 * btrfs_run_delalloc_range should return < 0 for error 3355 * but just in case, we use > 0 here meaning the IO is 3356 * started, so we don't want to return > 0 unless 3357 * things are going well. 3358 */ 3359 ret = ret < 0 ? ret : -EIO; 3360 goto done; 3361 } 3362 /* 3363 * delalloc_end is already one less than the total length, so 3364 * we don't subtract one from PAGE_SIZE 3365 */ 3366 delalloc_to_write += (delalloc_end - delalloc_start + 3367 PAGE_SIZE) >> PAGE_SHIFT; 3368 delalloc_start = delalloc_end + 1; 3369 } 3370 if (wbc->nr_to_write < delalloc_to_write) { 3371 int thresh = 8192; 3372 3373 if (delalloc_to_write < thresh * 2) 3374 thresh = delalloc_to_write; 3375 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3376 thresh); 3377 } 3378 3379 /* did the fill delalloc function already unlock and start 3380 * the IO? 3381 */ 3382 if (page_started) { 3383 /* 3384 * we've unlocked the page, so we can't update 3385 * the mapping's writeback index, just update 3386 * nr_to_write. 3387 */ 3388 wbc->nr_to_write -= *nr_written; 3389 return 1; 3390 } 3391 3392 ret = 0; 3393 3394 done: 3395 return ret; 3396 } 3397 3398 /* 3399 * helper for __extent_writepage. This calls the writepage start hooks, 3400 * and does the loop to map the page into extents and bios. 3401 * 3402 * We return 1 if the IO is started and the page is unlocked, 3403 * 0 if all went well (page still locked) 3404 * < 0 if there were errors (page still locked) 3405 */ 3406 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3407 struct page *page, 3408 struct writeback_control *wbc, 3409 struct extent_page_data *epd, 3410 loff_t i_size, 3411 unsigned long nr_written, 3412 unsigned int write_flags, int *nr_ret) 3413 { 3414 struct extent_io_tree *tree = epd->tree; 3415 u64 start = page_offset(page); 3416 u64 page_end = start + PAGE_SIZE - 1; 3417 u64 end; 3418 u64 cur = start; 3419 u64 extent_offset; 3420 u64 block_start; 3421 u64 iosize; 3422 struct extent_map *em; 3423 struct block_device *bdev; 3424 size_t pg_offset = 0; 3425 size_t blocksize; 3426 int ret = 0; 3427 int nr = 0; 3428 bool compressed; 3429 3430 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3431 if (ret) { 3432 /* Fixup worker will requeue */ 3433 if (ret == -EBUSY) 3434 wbc->pages_skipped++; 3435 else 3436 redirty_page_for_writepage(wbc, page); 3437 3438 update_nr_written(wbc, nr_written); 3439 unlock_page(page); 3440 return 1; 3441 } 3442 3443 /* 3444 * we don't want to touch the inode after unlocking the page, 3445 * so we update the mapping writeback index now 3446 */ 3447 update_nr_written(wbc, nr_written + 1); 3448 3449 end = page_end; 3450 if (i_size <= start) { 3451 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1); 3452 goto done; 3453 } 3454 3455 blocksize = inode->i_sb->s_blocksize; 3456 3457 while (cur <= end) { 3458 u64 em_end; 3459 u64 offset; 3460 3461 if (cur >= i_size) { 3462 btrfs_writepage_endio_finish_ordered(page, cur, 3463 page_end, 1); 3464 break; 3465 } 3466 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3467 end - cur + 1, 1); 3468 if (IS_ERR_OR_NULL(em)) { 3469 SetPageError(page); 3470 ret = PTR_ERR_OR_ZERO(em); 3471 break; 3472 } 3473 3474 extent_offset = cur - em->start; 3475 em_end = extent_map_end(em); 3476 BUG_ON(em_end <= cur); 3477 BUG_ON(end < cur); 3478 iosize = min(em_end - cur, end - cur + 1); 3479 iosize = ALIGN(iosize, blocksize); 3480 offset = em->block_start + extent_offset; 3481 bdev = em->bdev; 3482 block_start = em->block_start; 3483 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3484 free_extent_map(em); 3485 em = NULL; 3486 3487 /* 3488 * compressed and inline extents are written through other 3489 * paths in the FS 3490 */ 3491 if (compressed || block_start == EXTENT_MAP_HOLE || 3492 block_start == EXTENT_MAP_INLINE) { 3493 /* 3494 * end_io notification does not happen here for 3495 * compressed extents 3496 */ 3497 if (!compressed) 3498 btrfs_writepage_endio_finish_ordered(page, cur, 3499 cur + iosize - 1, 3500 1); 3501 else if (compressed) { 3502 /* we don't want to end_page_writeback on 3503 * a compressed extent. this happens 3504 * elsewhere 3505 */ 3506 nr++; 3507 } 3508 3509 cur += iosize; 3510 pg_offset += iosize; 3511 continue; 3512 } 3513 3514 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3515 if (!PageWriteback(page)) { 3516 btrfs_err(BTRFS_I(inode)->root->fs_info, 3517 "page %lu not writeback, cur %llu end %llu", 3518 page->index, cur, end); 3519 } 3520 3521 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3522 page, offset, iosize, pg_offset, 3523 bdev, &epd->bio, 3524 end_bio_extent_writepage, 3525 0, 0, 0, false); 3526 if (ret) { 3527 SetPageError(page); 3528 if (PageWriteback(page)) 3529 end_page_writeback(page); 3530 } 3531 3532 cur = cur + iosize; 3533 pg_offset += iosize; 3534 nr++; 3535 } 3536 done: 3537 *nr_ret = nr; 3538 return ret; 3539 } 3540 3541 /* 3542 * the writepage semantics are similar to regular writepage. extent 3543 * records are inserted to lock ranges in the tree, and as dirty areas 3544 * are found, they are marked writeback. Then the lock bits are removed 3545 * and the end_io handler clears the writeback ranges 3546 * 3547 * Return 0 if everything goes well. 3548 * Return <0 for error. 3549 */ 3550 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3551 struct extent_page_data *epd) 3552 { 3553 struct inode *inode = page->mapping->host; 3554 u64 start = page_offset(page); 3555 u64 page_end = start + PAGE_SIZE - 1; 3556 int ret; 3557 int nr = 0; 3558 size_t pg_offset = 0; 3559 loff_t i_size = i_size_read(inode); 3560 unsigned long end_index = i_size >> PAGE_SHIFT; 3561 unsigned int write_flags = 0; 3562 unsigned long nr_written = 0; 3563 3564 write_flags = wbc_to_write_flags(wbc); 3565 3566 trace___extent_writepage(page, inode, wbc); 3567 3568 WARN_ON(!PageLocked(page)); 3569 3570 ClearPageError(page); 3571 3572 pg_offset = offset_in_page(i_size); 3573 if (page->index > end_index || 3574 (page->index == end_index && !pg_offset)) { 3575 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3576 unlock_page(page); 3577 return 0; 3578 } 3579 3580 if (page->index == end_index) { 3581 char *userpage; 3582 3583 userpage = kmap_atomic(page); 3584 memset(userpage + pg_offset, 0, 3585 PAGE_SIZE - pg_offset); 3586 kunmap_atomic(userpage); 3587 flush_dcache_page(page); 3588 } 3589 3590 pg_offset = 0; 3591 3592 set_page_extent_mapped(page); 3593 3594 if (!epd->extent_locked) { 3595 ret = writepage_delalloc(inode, page, wbc, start, &nr_written); 3596 if (ret == 1) 3597 goto done_unlocked; 3598 if (ret) 3599 goto done; 3600 } 3601 3602 ret = __extent_writepage_io(inode, page, wbc, epd, 3603 i_size, nr_written, write_flags, &nr); 3604 if (ret == 1) 3605 goto done_unlocked; 3606 3607 done: 3608 if (nr == 0) { 3609 /* make sure the mapping tag for page dirty gets cleared */ 3610 set_page_writeback(page); 3611 end_page_writeback(page); 3612 } 3613 if (PageError(page)) { 3614 ret = ret < 0 ? ret : -EIO; 3615 end_extent_writepage(page, ret, start, page_end); 3616 } 3617 unlock_page(page); 3618 ASSERT(ret <= 0); 3619 return ret; 3620 3621 done_unlocked: 3622 return 0; 3623 } 3624 3625 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3626 { 3627 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3628 TASK_UNINTERRUPTIBLE); 3629 } 3630 3631 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3632 { 3633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3634 smp_mb__after_atomic(); 3635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3636 } 3637 3638 /* 3639 * Lock eb pages and flush the bio if we can't the locks 3640 * 3641 * Return 0 if nothing went wrong 3642 * Return >0 is same as 0, except bio is not submitted 3643 * Return <0 if something went wrong, no page is locked 3644 */ 3645 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3646 struct extent_page_data *epd) 3647 { 3648 struct btrfs_fs_info *fs_info = eb->fs_info; 3649 int i, num_pages, failed_page_nr; 3650 int flush = 0; 3651 int ret = 0; 3652 3653 if (!btrfs_try_tree_write_lock(eb)) { 3654 ret = flush_write_bio(epd); 3655 if (ret < 0) 3656 return ret; 3657 flush = 1; 3658 btrfs_tree_lock(eb); 3659 } 3660 3661 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3662 btrfs_tree_unlock(eb); 3663 if (!epd->sync_io) 3664 return 0; 3665 if (!flush) { 3666 ret = flush_write_bio(epd); 3667 if (ret < 0) 3668 return ret; 3669 flush = 1; 3670 } 3671 while (1) { 3672 wait_on_extent_buffer_writeback(eb); 3673 btrfs_tree_lock(eb); 3674 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3675 break; 3676 btrfs_tree_unlock(eb); 3677 } 3678 } 3679 3680 /* 3681 * We need to do this to prevent races in people who check if the eb is 3682 * under IO since we can end up having no IO bits set for a short period 3683 * of time. 3684 */ 3685 spin_lock(&eb->refs_lock); 3686 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3687 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3688 spin_unlock(&eb->refs_lock); 3689 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3690 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3691 -eb->len, 3692 fs_info->dirty_metadata_batch); 3693 ret = 1; 3694 } else { 3695 spin_unlock(&eb->refs_lock); 3696 } 3697 3698 btrfs_tree_unlock(eb); 3699 3700 if (!ret) 3701 return ret; 3702 3703 num_pages = num_extent_pages(eb); 3704 for (i = 0; i < num_pages; i++) { 3705 struct page *p = eb->pages[i]; 3706 3707 if (!trylock_page(p)) { 3708 if (!flush) { 3709 int err; 3710 3711 err = flush_write_bio(epd); 3712 if (err < 0) { 3713 ret = err; 3714 failed_page_nr = i; 3715 goto err_unlock; 3716 } 3717 flush = 1; 3718 } 3719 lock_page(p); 3720 } 3721 } 3722 3723 return ret; 3724 err_unlock: 3725 /* Unlock already locked pages */ 3726 for (i = 0; i < failed_page_nr; i++) 3727 unlock_page(eb->pages[i]); 3728 /* 3729 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3730 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3731 * be made and undo everything done before. 3732 */ 3733 btrfs_tree_lock(eb); 3734 spin_lock(&eb->refs_lock); 3735 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3736 end_extent_buffer_writeback(eb); 3737 spin_unlock(&eb->refs_lock); 3738 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3739 fs_info->dirty_metadata_batch); 3740 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3741 btrfs_tree_unlock(eb); 3742 return ret; 3743 } 3744 3745 static void set_btree_ioerr(struct page *page) 3746 { 3747 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3748 struct btrfs_fs_info *fs_info; 3749 3750 SetPageError(page); 3751 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3752 return; 3753 3754 /* 3755 * If we error out, we should add back the dirty_metadata_bytes 3756 * to make it consistent. 3757 */ 3758 fs_info = eb->fs_info; 3759 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3760 eb->len, fs_info->dirty_metadata_batch); 3761 3762 /* 3763 * If writeback for a btree extent that doesn't belong to a log tree 3764 * failed, increment the counter transaction->eb_write_errors. 3765 * We do this because while the transaction is running and before it's 3766 * committing (when we call filemap_fdata[write|wait]_range against 3767 * the btree inode), we might have 3768 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3769 * returns an error or an error happens during writeback, when we're 3770 * committing the transaction we wouldn't know about it, since the pages 3771 * can be no longer dirty nor marked anymore for writeback (if a 3772 * subsequent modification to the extent buffer didn't happen before the 3773 * transaction commit), which makes filemap_fdata[write|wait]_range not 3774 * able to find the pages tagged with SetPageError at transaction 3775 * commit time. So if this happens we must abort the transaction, 3776 * otherwise we commit a super block with btree roots that point to 3777 * btree nodes/leafs whose content on disk is invalid - either garbage 3778 * or the content of some node/leaf from a past generation that got 3779 * cowed or deleted and is no longer valid. 3780 * 3781 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3782 * not be enough - we need to distinguish between log tree extents vs 3783 * non-log tree extents, and the next filemap_fdatawait_range() call 3784 * will catch and clear such errors in the mapping - and that call might 3785 * be from a log sync and not from a transaction commit. Also, checking 3786 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3787 * not done and would not be reliable - the eb might have been released 3788 * from memory and reading it back again means that flag would not be 3789 * set (since it's a runtime flag, not persisted on disk). 3790 * 3791 * Using the flags below in the btree inode also makes us achieve the 3792 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3793 * writeback for all dirty pages and before filemap_fdatawait_range() 3794 * is called, the writeback for all dirty pages had already finished 3795 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3796 * filemap_fdatawait_range() would return success, as it could not know 3797 * that writeback errors happened (the pages were no longer tagged for 3798 * writeback). 3799 */ 3800 switch (eb->log_index) { 3801 case -1: 3802 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3803 break; 3804 case 0: 3805 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3806 break; 3807 case 1: 3808 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3809 break; 3810 default: 3811 BUG(); /* unexpected, logic error */ 3812 } 3813 } 3814 3815 static void end_bio_extent_buffer_writepage(struct bio *bio) 3816 { 3817 struct bio_vec *bvec; 3818 struct extent_buffer *eb; 3819 int done; 3820 struct bvec_iter_all iter_all; 3821 3822 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3823 bio_for_each_segment_all(bvec, bio, iter_all) { 3824 struct page *page = bvec->bv_page; 3825 3826 eb = (struct extent_buffer *)page->private; 3827 BUG_ON(!eb); 3828 done = atomic_dec_and_test(&eb->io_pages); 3829 3830 if (bio->bi_status || 3831 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3832 ClearPageUptodate(page); 3833 set_btree_ioerr(page); 3834 } 3835 3836 end_page_writeback(page); 3837 3838 if (!done) 3839 continue; 3840 3841 end_extent_buffer_writeback(eb); 3842 } 3843 3844 bio_put(bio); 3845 } 3846 3847 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3848 struct writeback_control *wbc, 3849 struct extent_page_data *epd) 3850 { 3851 struct btrfs_fs_info *fs_info = eb->fs_info; 3852 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3853 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3854 u64 offset = eb->start; 3855 u32 nritems; 3856 int i, num_pages; 3857 unsigned long start, end; 3858 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3859 int ret = 0; 3860 3861 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3862 num_pages = num_extent_pages(eb); 3863 atomic_set(&eb->io_pages, num_pages); 3864 3865 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3866 nritems = btrfs_header_nritems(eb); 3867 if (btrfs_header_level(eb) > 0) { 3868 end = btrfs_node_key_ptr_offset(nritems); 3869 3870 memzero_extent_buffer(eb, end, eb->len - end); 3871 } else { 3872 /* 3873 * leaf: 3874 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3875 */ 3876 start = btrfs_item_nr_offset(nritems); 3877 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3878 memzero_extent_buffer(eb, start, end - start); 3879 } 3880 3881 for (i = 0; i < num_pages; i++) { 3882 struct page *p = eb->pages[i]; 3883 3884 clear_page_dirty_for_io(p); 3885 set_page_writeback(p); 3886 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3887 p, offset, PAGE_SIZE, 0, bdev, 3888 &epd->bio, 3889 end_bio_extent_buffer_writepage, 3890 0, 0, 0, false); 3891 if (ret) { 3892 set_btree_ioerr(p); 3893 if (PageWriteback(p)) 3894 end_page_writeback(p); 3895 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3896 end_extent_buffer_writeback(eb); 3897 ret = -EIO; 3898 break; 3899 } 3900 offset += PAGE_SIZE; 3901 update_nr_written(wbc, 1); 3902 unlock_page(p); 3903 } 3904 3905 if (unlikely(ret)) { 3906 for (; i < num_pages; i++) { 3907 struct page *p = eb->pages[i]; 3908 clear_page_dirty_for_io(p); 3909 unlock_page(p); 3910 } 3911 } 3912 3913 return ret; 3914 } 3915 3916 int btree_write_cache_pages(struct address_space *mapping, 3917 struct writeback_control *wbc) 3918 { 3919 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3920 struct extent_buffer *eb, *prev_eb = NULL; 3921 struct extent_page_data epd = { 3922 .bio = NULL, 3923 .tree = tree, 3924 .extent_locked = 0, 3925 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3926 }; 3927 int ret = 0; 3928 int done = 0; 3929 int nr_to_write_done = 0; 3930 struct pagevec pvec; 3931 int nr_pages; 3932 pgoff_t index; 3933 pgoff_t end; /* Inclusive */ 3934 int scanned = 0; 3935 xa_mark_t tag; 3936 3937 pagevec_init(&pvec); 3938 if (wbc->range_cyclic) { 3939 index = mapping->writeback_index; /* Start from prev offset */ 3940 end = -1; 3941 } else { 3942 index = wbc->range_start >> PAGE_SHIFT; 3943 end = wbc->range_end >> PAGE_SHIFT; 3944 scanned = 1; 3945 } 3946 if (wbc->sync_mode == WB_SYNC_ALL) 3947 tag = PAGECACHE_TAG_TOWRITE; 3948 else 3949 tag = PAGECACHE_TAG_DIRTY; 3950 retry: 3951 if (wbc->sync_mode == WB_SYNC_ALL) 3952 tag_pages_for_writeback(mapping, index, end); 3953 while (!done && !nr_to_write_done && (index <= end) && 3954 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3955 tag))) { 3956 unsigned i; 3957 3958 scanned = 1; 3959 for (i = 0; i < nr_pages; i++) { 3960 struct page *page = pvec.pages[i]; 3961 3962 if (!PagePrivate(page)) 3963 continue; 3964 3965 spin_lock(&mapping->private_lock); 3966 if (!PagePrivate(page)) { 3967 spin_unlock(&mapping->private_lock); 3968 continue; 3969 } 3970 3971 eb = (struct extent_buffer *)page->private; 3972 3973 /* 3974 * Shouldn't happen and normally this would be a BUG_ON 3975 * but no sense in crashing the users box for something 3976 * we can survive anyway. 3977 */ 3978 if (WARN_ON(!eb)) { 3979 spin_unlock(&mapping->private_lock); 3980 continue; 3981 } 3982 3983 if (eb == prev_eb) { 3984 spin_unlock(&mapping->private_lock); 3985 continue; 3986 } 3987 3988 ret = atomic_inc_not_zero(&eb->refs); 3989 spin_unlock(&mapping->private_lock); 3990 if (!ret) 3991 continue; 3992 3993 prev_eb = eb; 3994 ret = lock_extent_buffer_for_io(eb, &epd); 3995 if (!ret) { 3996 free_extent_buffer(eb); 3997 continue; 3998 } else if (ret < 0) { 3999 done = 1; 4000 free_extent_buffer(eb); 4001 break; 4002 } 4003 4004 ret = write_one_eb(eb, wbc, &epd); 4005 if (ret) { 4006 done = 1; 4007 free_extent_buffer(eb); 4008 break; 4009 } 4010 free_extent_buffer(eb); 4011 4012 /* 4013 * the filesystem may choose to bump up nr_to_write. 4014 * We have to make sure to honor the new nr_to_write 4015 * at any time 4016 */ 4017 nr_to_write_done = wbc->nr_to_write <= 0; 4018 } 4019 pagevec_release(&pvec); 4020 cond_resched(); 4021 } 4022 if (!scanned && !done) { 4023 /* 4024 * We hit the last page and there is more work to be done: wrap 4025 * back to the start of the file 4026 */ 4027 scanned = 1; 4028 index = 0; 4029 goto retry; 4030 } 4031 ASSERT(ret <= 0); 4032 if (ret < 0) { 4033 end_write_bio(&epd, ret); 4034 return ret; 4035 } 4036 ret = flush_write_bio(&epd); 4037 return ret; 4038 } 4039 4040 /** 4041 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4042 * @mapping: address space structure to write 4043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4044 * @data: data passed to __extent_writepage function 4045 * 4046 * If a page is already under I/O, write_cache_pages() skips it, even 4047 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4048 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4049 * and msync() need to guarantee that all the data which was dirty at the time 4050 * the call was made get new I/O started against them. If wbc->sync_mode is 4051 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4052 * existing IO to complete. 4053 */ 4054 static int extent_write_cache_pages(struct address_space *mapping, 4055 struct writeback_control *wbc, 4056 struct extent_page_data *epd) 4057 { 4058 struct inode *inode = mapping->host; 4059 int ret = 0; 4060 int done = 0; 4061 int nr_to_write_done = 0; 4062 struct pagevec pvec; 4063 int nr_pages; 4064 pgoff_t index; 4065 pgoff_t end; /* Inclusive */ 4066 pgoff_t done_index; 4067 int range_whole = 0; 4068 int scanned = 0; 4069 xa_mark_t tag; 4070 4071 /* 4072 * We have to hold onto the inode so that ordered extents can do their 4073 * work when the IO finishes. The alternative to this is failing to add 4074 * an ordered extent if the igrab() fails there and that is a huge pain 4075 * to deal with, so instead just hold onto the inode throughout the 4076 * writepages operation. If it fails here we are freeing up the inode 4077 * anyway and we'd rather not waste our time writing out stuff that is 4078 * going to be truncated anyway. 4079 */ 4080 if (!igrab(inode)) 4081 return 0; 4082 4083 pagevec_init(&pvec); 4084 if (wbc->range_cyclic) { 4085 index = mapping->writeback_index; /* Start from prev offset */ 4086 end = -1; 4087 } else { 4088 index = wbc->range_start >> PAGE_SHIFT; 4089 end = wbc->range_end >> PAGE_SHIFT; 4090 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4091 range_whole = 1; 4092 scanned = 1; 4093 } 4094 4095 /* 4096 * We do the tagged writepage as long as the snapshot flush bit is set 4097 * and we are the first one who do the filemap_flush() on this inode. 4098 * 4099 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4100 * not race in and drop the bit. 4101 */ 4102 if (range_whole && wbc->nr_to_write == LONG_MAX && 4103 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4104 &BTRFS_I(inode)->runtime_flags)) 4105 wbc->tagged_writepages = 1; 4106 4107 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4108 tag = PAGECACHE_TAG_TOWRITE; 4109 else 4110 tag = PAGECACHE_TAG_DIRTY; 4111 retry: 4112 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4113 tag_pages_for_writeback(mapping, index, end); 4114 done_index = index; 4115 while (!done && !nr_to_write_done && (index <= end) && 4116 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4117 &index, end, tag))) { 4118 unsigned i; 4119 4120 scanned = 1; 4121 for (i = 0; i < nr_pages; i++) { 4122 struct page *page = pvec.pages[i]; 4123 4124 done_index = page->index; 4125 /* 4126 * At this point we hold neither the i_pages lock nor 4127 * the page lock: the page may be truncated or 4128 * invalidated (changing page->mapping to NULL), 4129 * or even swizzled back from swapper_space to 4130 * tmpfs file mapping 4131 */ 4132 if (!trylock_page(page)) { 4133 ret = flush_write_bio(epd); 4134 BUG_ON(ret < 0); 4135 lock_page(page); 4136 } 4137 4138 if (unlikely(page->mapping != mapping)) { 4139 unlock_page(page); 4140 continue; 4141 } 4142 4143 if (wbc->sync_mode != WB_SYNC_NONE) { 4144 if (PageWriteback(page)) { 4145 ret = flush_write_bio(epd); 4146 BUG_ON(ret < 0); 4147 } 4148 wait_on_page_writeback(page); 4149 } 4150 4151 if (PageWriteback(page) || 4152 !clear_page_dirty_for_io(page)) { 4153 unlock_page(page); 4154 continue; 4155 } 4156 4157 ret = __extent_writepage(page, wbc, epd); 4158 if (ret < 0) { 4159 /* 4160 * done_index is set past this page, 4161 * so media errors will not choke 4162 * background writeout for the entire 4163 * file. This has consequences for 4164 * range_cyclic semantics (ie. it may 4165 * not be suitable for data integrity 4166 * writeout). 4167 */ 4168 done_index = page->index + 1; 4169 done = 1; 4170 break; 4171 } 4172 4173 /* 4174 * the filesystem may choose to bump up nr_to_write. 4175 * We have to make sure to honor the new nr_to_write 4176 * at any time 4177 */ 4178 nr_to_write_done = wbc->nr_to_write <= 0; 4179 } 4180 pagevec_release(&pvec); 4181 cond_resched(); 4182 } 4183 if (!scanned && !done) { 4184 /* 4185 * We hit the last page and there is more work to be done: wrap 4186 * back to the start of the file 4187 */ 4188 scanned = 1; 4189 index = 0; 4190 goto retry; 4191 } 4192 4193 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4194 mapping->writeback_index = done_index; 4195 4196 btrfs_add_delayed_iput(inode); 4197 return ret; 4198 } 4199 4200 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4201 { 4202 int ret; 4203 struct extent_page_data epd = { 4204 .bio = NULL, 4205 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4206 .extent_locked = 0, 4207 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4208 }; 4209 4210 ret = __extent_writepage(page, wbc, &epd); 4211 ASSERT(ret <= 0); 4212 if (ret < 0) { 4213 end_write_bio(&epd, ret); 4214 return ret; 4215 } 4216 4217 ret = flush_write_bio(&epd); 4218 ASSERT(ret <= 0); 4219 return ret; 4220 } 4221 4222 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4223 int mode) 4224 { 4225 int ret = 0; 4226 struct address_space *mapping = inode->i_mapping; 4227 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4228 struct page *page; 4229 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4230 PAGE_SHIFT; 4231 4232 struct extent_page_data epd = { 4233 .bio = NULL, 4234 .tree = tree, 4235 .extent_locked = 1, 4236 .sync_io = mode == WB_SYNC_ALL, 4237 }; 4238 struct writeback_control wbc_writepages = { 4239 .sync_mode = mode, 4240 .nr_to_write = nr_pages * 2, 4241 .range_start = start, 4242 .range_end = end + 1, 4243 }; 4244 4245 while (start <= end) { 4246 page = find_get_page(mapping, start >> PAGE_SHIFT); 4247 if (clear_page_dirty_for_io(page)) 4248 ret = __extent_writepage(page, &wbc_writepages, &epd); 4249 else { 4250 btrfs_writepage_endio_finish_ordered(page, start, 4251 start + PAGE_SIZE - 1, 1); 4252 unlock_page(page); 4253 } 4254 put_page(page); 4255 start += PAGE_SIZE; 4256 } 4257 4258 ASSERT(ret <= 0); 4259 if (ret < 0) { 4260 end_write_bio(&epd, ret); 4261 return ret; 4262 } 4263 ret = flush_write_bio(&epd); 4264 return ret; 4265 } 4266 4267 int extent_writepages(struct address_space *mapping, 4268 struct writeback_control *wbc) 4269 { 4270 int ret = 0; 4271 struct extent_page_data epd = { 4272 .bio = NULL, 4273 .tree = &BTRFS_I(mapping->host)->io_tree, 4274 .extent_locked = 0, 4275 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4276 }; 4277 4278 ret = extent_write_cache_pages(mapping, wbc, &epd); 4279 ASSERT(ret <= 0); 4280 if (ret < 0) { 4281 end_write_bio(&epd, ret); 4282 return ret; 4283 } 4284 ret = flush_write_bio(&epd); 4285 return ret; 4286 } 4287 4288 int extent_readpages(struct address_space *mapping, struct list_head *pages, 4289 unsigned nr_pages) 4290 { 4291 struct bio *bio = NULL; 4292 unsigned long bio_flags = 0; 4293 struct page *pagepool[16]; 4294 struct extent_map *em_cached = NULL; 4295 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 4296 int nr = 0; 4297 u64 prev_em_start = (u64)-1; 4298 4299 while (!list_empty(pages)) { 4300 u64 contig_end = 0; 4301 4302 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) { 4303 struct page *page = lru_to_page(pages); 4304 4305 prefetchw(&page->flags); 4306 list_del(&page->lru); 4307 if (add_to_page_cache_lru(page, mapping, page->index, 4308 readahead_gfp_mask(mapping))) { 4309 put_page(page); 4310 break; 4311 } 4312 4313 pagepool[nr++] = page; 4314 contig_end = page_offset(page) + PAGE_SIZE - 1; 4315 } 4316 4317 if (nr) { 4318 u64 contig_start = page_offset(pagepool[0]); 4319 4320 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4321 4322 contiguous_readpages(tree, pagepool, nr, contig_start, 4323 contig_end, &em_cached, &bio, &bio_flags, 4324 &prev_em_start); 4325 } 4326 } 4327 4328 if (em_cached) 4329 free_extent_map(em_cached); 4330 4331 if (bio) 4332 return submit_one_bio(bio, 0, bio_flags); 4333 return 0; 4334 } 4335 4336 /* 4337 * basic invalidatepage code, this waits on any locked or writeback 4338 * ranges corresponding to the page, and then deletes any extent state 4339 * records from the tree 4340 */ 4341 int extent_invalidatepage(struct extent_io_tree *tree, 4342 struct page *page, unsigned long offset) 4343 { 4344 struct extent_state *cached_state = NULL; 4345 u64 start = page_offset(page); 4346 u64 end = start + PAGE_SIZE - 1; 4347 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4348 4349 start += ALIGN(offset, blocksize); 4350 if (start > end) 4351 return 0; 4352 4353 lock_extent_bits(tree, start, end, &cached_state); 4354 wait_on_page_writeback(page); 4355 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC | 4356 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state); 4357 return 0; 4358 } 4359 4360 /* 4361 * a helper for releasepage, this tests for areas of the page that 4362 * are locked or under IO and drops the related state bits if it is safe 4363 * to drop the page. 4364 */ 4365 static int try_release_extent_state(struct extent_io_tree *tree, 4366 struct page *page, gfp_t mask) 4367 { 4368 u64 start = page_offset(page); 4369 u64 end = start + PAGE_SIZE - 1; 4370 int ret = 1; 4371 4372 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4373 ret = 0; 4374 } else { 4375 /* 4376 * at this point we can safely clear everything except the 4377 * locked bit and the nodatasum bit 4378 */ 4379 ret = __clear_extent_bit(tree, start, end, 4380 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4381 0, 0, NULL, mask, NULL); 4382 4383 /* if clear_extent_bit failed for enomem reasons, 4384 * we can't allow the release to continue. 4385 */ 4386 if (ret < 0) 4387 ret = 0; 4388 else 4389 ret = 1; 4390 } 4391 return ret; 4392 } 4393 4394 /* 4395 * a helper for releasepage. As long as there are no locked extents 4396 * in the range corresponding to the page, both state records and extent 4397 * map records are removed 4398 */ 4399 int try_release_extent_mapping(struct page *page, gfp_t mask) 4400 { 4401 struct extent_map *em; 4402 u64 start = page_offset(page); 4403 u64 end = start + PAGE_SIZE - 1; 4404 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4405 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4406 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4407 4408 if (gfpflags_allow_blocking(mask) && 4409 page->mapping->host->i_size > SZ_16M) { 4410 u64 len; 4411 while (start <= end) { 4412 len = end - start + 1; 4413 write_lock(&map->lock); 4414 em = lookup_extent_mapping(map, start, len); 4415 if (!em) { 4416 write_unlock(&map->lock); 4417 break; 4418 } 4419 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4420 em->start != start) { 4421 write_unlock(&map->lock); 4422 free_extent_map(em); 4423 break; 4424 } 4425 if (!test_range_bit(tree, em->start, 4426 extent_map_end(em) - 1, 4427 EXTENT_LOCKED, 0, NULL)) { 4428 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4429 &btrfs_inode->runtime_flags); 4430 remove_extent_mapping(map, em); 4431 /* once for the rb tree */ 4432 free_extent_map(em); 4433 } 4434 start = extent_map_end(em); 4435 write_unlock(&map->lock); 4436 4437 /* once for us */ 4438 free_extent_map(em); 4439 } 4440 } 4441 return try_release_extent_state(tree, page, mask); 4442 } 4443 4444 /* 4445 * helper function for fiemap, which doesn't want to see any holes. 4446 * This maps until we find something past 'last' 4447 */ 4448 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4449 u64 offset, u64 last) 4450 { 4451 u64 sectorsize = btrfs_inode_sectorsize(inode); 4452 struct extent_map *em; 4453 u64 len; 4454 4455 if (offset >= last) 4456 return NULL; 4457 4458 while (1) { 4459 len = last - offset; 4460 if (len == 0) 4461 break; 4462 len = ALIGN(len, sectorsize); 4463 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len); 4464 if (IS_ERR_OR_NULL(em)) 4465 return em; 4466 4467 /* if this isn't a hole return it */ 4468 if (em->block_start != EXTENT_MAP_HOLE) 4469 return em; 4470 4471 /* this is a hole, advance to the next extent */ 4472 offset = extent_map_end(em); 4473 free_extent_map(em); 4474 if (offset >= last) 4475 break; 4476 } 4477 return NULL; 4478 } 4479 4480 /* 4481 * To cache previous fiemap extent 4482 * 4483 * Will be used for merging fiemap extent 4484 */ 4485 struct fiemap_cache { 4486 u64 offset; 4487 u64 phys; 4488 u64 len; 4489 u32 flags; 4490 bool cached; 4491 }; 4492 4493 /* 4494 * Helper to submit fiemap extent. 4495 * 4496 * Will try to merge current fiemap extent specified by @offset, @phys, 4497 * @len and @flags with cached one. 4498 * And only when we fails to merge, cached one will be submitted as 4499 * fiemap extent. 4500 * 4501 * Return value is the same as fiemap_fill_next_extent(). 4502 */ 4503 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4504 struct fiemap_cache *cache, 4505 u64 offset, u64 phys, u64 len, u32 flags) 4506 { 4507 int ret = 0; 4508 4509 if (!cache->cached) 4510 goto assign; 4511 4512 /* 4513 * Sanity check, extent_fiemap() should have ensured that new 4514 * fiemap extent won't overlap with cached one. 4515 * Not recoverable. 4516 * 4517 * NOTE: Physical address can overlap, due to compression 4518 */ 4519 if (cache->offset + cache->len > offset) { 4520 WARN_ON(1); 4521 return -EINVAL; 4522 } 4523 4524 /* 4525 * Only merges fiemap extents if 4526 * 1) Their logical addresses are continuous 4527 * 4528 * 2) Their physical addresses are continuous 4529 * So truly compressed (physical size smaller than logical size) 4530 * extents won't get merged with each other 4531 * 4532 * 3) Share same flags except FIEMAP_EXTENT_LAST 4533 * So regular extent won't get merged with prealloc extent 4534 */ 4535 if (cache->offset + cache->len == offset && 4536 cache->phys + cache->len == phys && 4537 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4538 (flags & ~FIEMAP_EXTENT_LAST)) { 4539 cache->len += len; 4540 cache->flags |= flags; 4541 goto try_submit_last; 4542 } 4543 4544 /* Not mergeable, need to submit cached one */ 4545 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4546 cache->len, cache->flags); 4547 cache->cached = false; 4548 if (ret) 4549 return ret; 4550 assign: 4551 cache->cached = true; 4552 cache->offset = offset; 4553 cache->phys = phys; 4554 cache->len = len; 4555 cache->flags = flags; 4556 try_submit_last: 4557 if (cache->flags & FIEMAP_EXTENT_LAST) { 4558 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4559 cache->phys, cache->len, cache->flags); 4560 cache->cached = false; 4561 } 4562 return ret; 4563 } 4564 4565 /* 4566 * Emit last fiemap cache 4567 * 4568 * The last fiemap cache may still be cached in the following case: 4569 * 0 4k 8k 4570 * |<- Fiemap range ->| 4571 * |<------------ First extent ----------->| 4572 * 4573 * In this case, the first extent range will be cached but not emitted. 4574 * So we must emit it before ending extent_fiemap(). 4575 */ 4576 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4577 struct fiemap_cache *cache) 4578 { 4579 int ret; 4580 4581 if (!cache->cached) 4582 return 0; 4583 4584 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4585 cache->len, cache->flags); 4586 cache->cached = false; 4587 if (ret > 0) 4588 ret = 0; 4589 return ret; 4590 } 4591 4592 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4593 __u64 start, __u64 len) 4594 { 4595 int ret = 0; 4596 u64 off = start; 4597 u64 max = start + len; 4598 u32 flags = 0; 4599 u32 found_type; 4600 u64 last; 4601 u64 last_for_get_extent = 0; 4602 u64 disko = 0; 4603 u64 isize = i_size_read(inode); 4604 struct btrfs_key found_key; 4605 struct extent_map *em = NULL; 4606 struct extent_state *cached_state = NULL; 4607 struct btrfs_path *path; 4608 struct btrfs_root *root = BTRFS_I(inode)->root; 4609 struct fiemap_cache cache = { 0 }; 4610 struct ulist *roots; 4611 struct ulist *tmp_ulist; 4612 int end = 0; 4613 u64 em_start = 0; 4614 u64 em_len = 0; 4615 u64 em_end = 0; 4616 4617 if (len == 0) 4618 return -EINVAL; 4619 4620 path = btrfs_alloc_path(); 4621 if (!path) 4622 return -ENOMEM; 4623 path->leave_spinning = 1; 4624 4625 roots = ulist_alloc(GFP_KERNEL); 4626 tmp_ulist = ulist_alloc(GFP_KERNEL); 4627 if (!roots || !tmp_ulist) { 4628 ret = -ENOMEM; 4629 goto out_free_ulist; 4630 } 4631 4632 start = round_down(start, btrfs_inode_sectorsize(inode)); 4633 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4634 4635 /* 4636 * lookup the last file extent. We're not using i_size here 4637 * because there might be preallocation past i_size 4638 */ 4639 ret = btrfs_lookup_file_extent(NULL, root, path, 4640 btrfs_ino(BTRFS_I(inode)), -1, 0); 4641 if (ret < 0) { 4642 goto out_free_ulist; 4643 } else { 4644 WARN_ON(!ret); 4645 if (ret == 1) 4646 ret = 0; 4647 } 4648 4649 path->slots[0]--; 4650 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4651 found_type = found_key.type; 4652 4653 /* No extents, but there might be delalloc bits */ 4654 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4655 found_type != BTRFS_EXTENT_DATA_KEY) { 4656 /* have to trust i_size as the end */ 4657 last = (u64)-1; 4658 last_for_get_extent = isize; 4659 } else { 4660 /* 4661 * remember the start of the last extent. There are a 4662 * bunch of different factors that go into the length of the 4663 * extent, so its much less complex to remember where it started 4664 */ 4665 last = found_key.offset; 4666 last_for_get_extent = last + 1; 4667 } 4668 btrfs_release_path(path); 4669 4670 /* 4671 * we might have some extents allocated but more delalloc past those 4672 * extents. so, we trust isize unless the start of the last extent is 4673 * beyond isize 4674 */ 4675 if (last < isize) { 4676 last = (u64)-1; 4677 last_for_get_extent = isize; 4678 } 4679 4680 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4681 &cached_state); 4682 4683 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4684 if (!em) 4685 goto out; 4686 if (IS_ERR(em)) { 4687 ret = PTR_ERR(em); 4688 goto out; 4689 } 4690 4691 while (!end) { 4692 u64 offset_in_extent = 0; 4693 4694 /* break if the extent we found is outside the range */ 4695 if (em->start >= max || extent_map_end(em) < off) 4696 break; 4697 4698 /* 4699 * get_extent may return an extent that starts before our 4700 * requested range. We have to make sure the ranges 4701 * we return to fiemap always move forward and don't 4702 * overlap, so adjust the offsets here 4703 */ 4704 em_start = max(em->start, off); 4705 4706 /* 4707 * record the offset from the start of the extent 4708 * for adjusting the disk offset below. Only do this if the 4709 * extent isn't compressed since our in ram offset may be past 4710 * what we have actually allocated on disk. 4711 */ 4712 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4713 offset_in_extent = em_start - em->start; 4714 em_end = extent_map_end(em); 4715 em_len = em_end - em_start; 4716 flags = 0; 4717 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4718 disko = em->block_start + offset_in_extent; 4719 else 4720 disko = 0; 4721 4722 /* 4723 * bump off for our next call to get_extent 4724 */ 4725 off = extent_map_end(em); 4726 if (off >= max) 4727 end = 1; 4728 4729 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4730 end = 1; 4731 flags |= FIEMAP_EXTENT_LAST; 4732 } else if (em->block_start == EXTENT_MAP_INLINE) { 4733 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4734 FIEMAP_EXTENT_NOT_ALIGNED); 4735 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4736 flags |= (FIEMAP_EXTENT_DELALLOC | 4737 FIEMAP_EXTENT_UNKNOWN); 4738 } else if (fieinfo->fi_extents_max) { 4739 u64 bytenr = em->block_start - 4740 (em->start - em->orig_start); 4741 4742 /* 4743 * As btrfs supports shared space, this information 4744 * can be exported to userspace tools via 4745 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4746 * then we're just getting a count and we can skip the 4747 * lookup stuff. 4748 */ 4749 ret = btrfs_check_shared(root, 4750 btrfs_ino(BTRFS_I(inode)), 4751 bytenr, roots, tmp_ulist); 4752 if (ret < 0) 4753 goto out_free; 4754 if (ret) 4755 flags |= FIEMAP_EXTENT_SHARED; 4756 ret = 0; 4757 } 4758 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4759 flags |= FIEMAP_EXTENT_ENCODED; 4760 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4761 flags |= FIEMAP_EXTENT_UNWRITTEN; 4762 4763 free_extent_map(em); 4764 em = NULL; 4765 if ((em_start >= last) || em_len == (u64)-1 || 4766 (last == (u64)-1 && isize <= em_end)) { 4767 flags |= FIEMAP_EXTENT_LAST; 4768 end = 1; 4769 } 4770 4771 /* now scan forward to see if this is really the last extent. */ 4772 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4773 if (IS_ERR(em)) { 4774 ret = PTR_ERR(em); 4775 goto out; 4776 } 4777 if (!em) { 4778 flags |= FIEMAP_EXTENT_LAST; 4779 end = 1; 4780 } 4781 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4782 em_len, flags); 4783 if (ret) { 4784 if (ret == 1) 4785 ret = 0; 4786 goto out_free; 4787 } 4788 } 4789 out_free: 4790 if (!ret) 4791 ret = emit_last_fiemap_cache(fieinfo, &cache); 4792 free_extent_map(em); 4793 out: 4794 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4795 &cached_state); 4796 4797 out_free_ulist: 4798 btrfs_free_path(path); 4799 ulist_free(roots); 4800 ulist_free(tmp_ulist); 4801 return ret; 4802 } 4803 4804 static void __free_extent_buffer(struct extent_buffer *eb) 4805 { 4806 btrfs_leak_debug_del(&eb->leak_list); 4807 kmem_cache_free(extent_buffer_cache, eb); 4808 } 4809 4810 int extent_buffer_under_io(struct extent_buffer *eb) 4811 { 4812 return (atomic_read(&eb->io_pages) || 4813 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4814 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4815 } 4816 4817 /* 4818 * Release all pages attached to the extent buffer. 4819 */ 4820 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4821 { 4822 int i; 4823 int num_pages; 4824 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4825 4826 BUG_ON(extent_buffer_under_io(eb)); 4827 4828 num_pages = num_extent_pages(eb); 4829 for (i = 0; i < num_pages; i++) { 4830 struct page *page = eb->pages[i]; 4831 4832 if (!page) 4833 continue; 4834 if (mapped) 4835 spin_lock(&page->mapping->private_lock); 4836 /* 4837 * We do this since we'll remove the pages after we've 4838 * removed the eb from the radix tree, so we could race 4839 * and have this page now attached to the new eb. So 4840 * only clear page_private if it's still connected to 4841 * this eb. 4842 */ 4843 if (PagePrivate(page) && 4844 page->private == (unsigned long)eb) { 4845 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4846 BUG_ON(PageDirty(page)); 4847 BUG_ON(PageWriteback(page)); 4848 /* 4849 * We need to make sure we haven't be attached 4850 * to a new eb. 4851 */ 4852 ClearPagePrivate(page); 4853 set_page_private(page, 0); 4854 /* One for the page private */ 4855 put_page(page); 4856 } 4857 4858 if (mapped) 4859 spin_unlock(&page->mapping->private_lock); 4860 4861 /* One for when we allocated the page */ 4862 put_page(page); 4863 } 4864 } 4865 4866 /* 4867 * Helper for releasing the extent buffer. 4868 */ 4869 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4870 { 4871 btrfs_release_extent_buffer_pages(eb); 4872 __free_extent_buffer(eb); 4873 } 4874 4875 static struct extent_buffer * 4876 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4877 unsigned long len) 4878 { 4879 struct extent_buffer *eb = NULL; 4880 4881 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4882 eb->start = start; 4883 eb->len = len; 4884 eb->fs_info = fs_info; 4885 eb->bflags = 0; 4886 rwlock_init(&eb->lock); 4887 atomic_set(&eb->blocking_readers, 0); 4888 eb->blocking_writers = 0; 4889 eb->lock_nested = false; 4890 init_waitqueue_head(&eb->write_lock_wq); 4891 init_waitqueue_head(&eb->read_lock_wq); 4892 4893 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4894 4895 spin_lock_init(&eb->refs_lock); 4896 atomic_set(&eb->refs, 1); 4897 atomic_set(&eb->io_pages, 0); 4898 4899 /* 4900 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4901 */ 4902 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4903 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4904 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4905 4906 #ifdef CONFIG_BTRFS_DEBUG 4907 eb->spinning_writers = 0; 4908 atomic_set(&eb->spinning_readers, 0); 4909 atomic_set(&eb->read_locks, 0); 4910 eb->write_locks = 0; 4911 #endif 4912 4913 return eb; 4914 } 4915 4916 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4917 { 4918 int i; 4919 struct page *p; 4920 struct extent_buffer *new; 4921 int num_pages = num_extent_pages(src); 4922 4923 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4924 if (new == NULL) 4925 return NULL; 4926 4927 for (i = 0; i < num_pages; i++) { 4928 p = alloc_page(GFP_NOFS); 4929 if (!p) { 4930 btrfs_release_extent_buffer(new); 4931 return NULL; 4932 } 4933 attach_extent_buffer_page(new, p); 4934 WARN_ON(PageDirty(p)); 4935 SetPageUptodate(p); 4936 new->pages[i] = p; 4937 copy_page(page_address(p), page_address(src->pages[i])); 4938 } 4939 4940 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4941 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4942 4943 return new; 4944 } 4945 4946 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4947 u64 start, unsigned long len) 4948 { 4949 struct extent_buffer *eb; 4950 int num_pages; 4951 int i; 4952 4953 eb = __alloc_extent_buffer(fs_info, start, len); 4954 if (!eb) 4955 return NULL; 4956 4957 num_pages = num_extent_pages(eb); 4958 for (i = 0; i < num_pages; i++) { 4959 eb->pages[i] = alloc_page(GFP_NOFS); 4960 if (!eb->pages[i]) 4961 goto err; 4962 } 4963 set_extent_buffer_uptodate(eb); 4964 btrfs_set_header_nritems(eb, 0); 4965 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4966 4967 return eb; 4968 err: 4969 for (; i > 0; i--) 4970 __free_page(eb->pages[i - 1]); 4971 __free_extent_buffer(eb); 4972 return NULL; 4973 } 4974 4975 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4976 u64 start) 4977 { 4978 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4979 } 4980 4981 static void check_buffer_tree_ref(struct extent_buffer *eb) 4982 { 4983 int refs; 4984 /* the ref bit is tricky. We have to make sure it is set 4985 * if we have the buffer dirty. Otherwise the 4986 * code to free a buffer can end up dropping a dirty 4987 * page 4988 * 4989 * Once the ref bit is set, it won't go away while the 4990 * buffer is dirty or in writeback, and it also won't 4991 * go away while we have the reference count on the 4992 * eb bumped. 4993 * 4994 * We can't just set the ref bit without bumping the 4995 * ref on the eb because free_extent_buffer might 4996 * see the ref bit and try to clear it. If this happens 4997 * free_extent_buffer might end up dropping our original 4998 * ref by mistake and freeing the page before we are able 4999 * to add one more ref. 5000 * 5001 * So bump the ref count first, then set the bit. If someone 5002 * beat us to it, drop the ref we added. 5003 */ 5004 refs = atomic_read(&eb->refs); 5005 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5006 return; 5007 5008 spin_lock(&eb->refs_lock); 5009 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5010 atomic_inc(&eb->refs); 5011 spin_unlock(&eb->refs_lock); 5012 } 5013 5014 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5015 struct page *accessed) 5016 { 5017 int num_pages, i; 5018 5019 check_buffer_tree_ref(eb); 5020 5021 num_pages = num_extent_pages(eb); 5022 for (i = 0; i < num_pages; i++) { 5023 struct page *p = eb->pages[i]; 5024 5025 if (p != accessed) 5026 mark_page_accessed(p); 5027 } 5028 } 5029 5030 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5031 u64 start) 5032 { 5033 struct extent_buffer *eb; 5034 5035 rcu_read_lock(); 5036 eb = radix_tree_lookup(&fs_info->buffer_radix, 5037 start >> PAGE_SHIFT); 5038 if (eb && atomic_inc_not_zero(&eb->refs)) { 5039 rcu_read_unlock(); 5040 /* 5041 * Lock our eb's refs_lock to avoid races with 5042 * free_extent_buffer. When we get our eb it might be flagged 5043 * with EXTENT_BUFFER_STALE and another task running 5044 * free_extent_buffer might have seen that flag set, 5045 * eb->refs == 2, that the buffer isn't under IO (dirty and 5046 * writeback flags not set) and it's still in the tree (flag 5047 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5048 * of decrementing the extent buffer's reference count twice. 5049 * So here we could race and increment the eb's reference count, 5050 * clear its stale flag, mark it as dirty and drop our reference 5051 * before the other task finishes executing free_extent_buffer, 5052 * which would later result in an attempt to free an extent 5053 * buffer that is dirty. 5054 */ 5055 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5056 spin_lock(&eb->refs_lock); 5057 spin_unlock(&eb->refs_lock); 5058 } 5059 mark_extent_buffer_accessed(eb, NULL); 5060 return eb; 5061 } 5062 rcu_read_unlock(); 5063 5064 return NULL; 5065 } 5066 5067 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5068 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5069 u64 start) 5070 { 5071 struct extent_buffer *eb, *exists = NULL; 5072 int ret; 5073 5074 eb = find_extent_buffer(fs_info, start); 5075 if (eb) 5076 return eb; 5077 eb = alloc_dummy_extent_buffer(fs_info, start); 5078 if (!eb) 5079 return NULL; 5080 eb->fs_info = fs_info; 5081 again: 5082 ret = radix_tree_preload(GFP_NOFS); 5083 if (ret) 5084 goto free_eb; 5085 spin_lock(&fs_info->buffer_lock); 5086 ret = radix_tree_insert(&fs_info->buffer_radix, 5087 start >> PAGE_SHIFT, eb); 5088 spin_unlock(&fs_info->buffer_lock); 5089 radix_tree_preload_end(); 5090 if (ret == -EEXIST) { 5091 exists = find_extent_buffer(fs_info, start); 5092 if (exists) 5093 goto free_eb; 5094 else 5095 goto again; 5096 } 5097 check_buffer_tree_ref(eb); 5098 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5099 5100 return eb; 5101 free_eb: 5102 btrfs_release_extent_buffer(eb); 5103 return exists; 5104 } 5105 #endif 5106 5107 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5108 u64 start) 5109 { 5110 unsigned long len = fs_info->nodesize; 5111 int num_pages; 5112 int i; 5113 unsigned long index = start >> PAGE_SHIFT; 5114 struct extent_buffer *eb; 5115 struct extent_buffer *exists = NULL; 5116 struct page *p; 5117 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5118 int uptodate = 1; 5119 int ret; 5120 5121 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5122 btrfs_err(fs_info, "bad tree block start %llu", start); 5123 return ERR_PTR(-EINVAL); 5124 } 5125 5126 eb = find_extent_buffer(fs_info, start); 5127 if (eb) 5128 return eb; 5129 5130 eb = __alloc_extent_buffer(fs_info, start, len); 5131 if (!eb) 5132 return ERR_PTR(-ENOMEM); 5133 5134 num_pages = num_extent_pages(eb); 5135 for (i = 0; i < num_pages; i++, index++) { 5136 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5137 if (!p) { 5138 exists = ERR_PTR(-ENOMEM); 5139 goto free_eb; 5140 } 5141 5142 spin_lock(&mapping->private_lock); 5143 if (PagePrivate(p)) { 5144 /* 5145 * We could have already allocated an eb for this page 5146 * and attached one so lets see if we can get a ref on 5147 * the existing eb, and if we can we know it's good and 5148 * we can just return that one, else we know we can just 5149 * overwrite page->private. 5150 */ 5151 exists = (struct extent_buffer *)p->private; 5152 if (atomic_inc_not_zero(&exists->refs)) { 5153 spin_unlock(&mapping->private_lock); 5154 unlock_page(p); 5155 put_page(p); 5156 mark_extent_buffer_accessed(exists, p); 5157 goto free_eb; 5158 } 5159 exists = NULL; 5160 5161 /* 5162 * Do this so attach doesn't complain and we need to 5163 * drop the ref the old guy had. 5164 */ 5165 ClearPagePrivate(p); 5166 WARN_ON(PageDirty(p)); 5167 put_page(p); 5168 } 5169 attach_extent_buffer_page(eb, p); 5170 spin_unlock(&mapping->private_lock); 5171 WARN_ON(PageDirty(p)); 5172 eb->pages[i] = p; 5173 if (!PageUptodate(p)) 5174 uptodate = 0; 5175 5176 /* 5177 * We can't unlock the pages just yet since the extent buffer 5178 * hasn't been properly inserted in the radix tree, this 5179 * opens a race with btree_releasepage which can free a page 5180 * while we are still filling in all pages for the buffer and 5181 * we could crash. 5182 */ 5183 } 5184 if (uptodate) 5185 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5186 again: 5187 ret = radix_tree_preload(GFP_NOFS); 5188 if (ret) { 5189 exists = ERR_PTR(ret); 5190 goto free_eb; 5191 } 5192 5193 spin_lock(&fs_info->buffer_lock); 5194 ret = radix_tree_insert(&fs_info->buffer_radix, 5195 start >> PAGE_SHIFT, eb); 5196 spin_unlock(&fs_info->buffer_lock); 5197 radix_tree_preload_end(); 5198 if (ret == -EEXIST) { 5199 exists = find_extent_buffer(fs_info, start); 5200 if (exists) 5201 goto free_eb; 5202 else 5203 goto again; 5204 } 5205 /* add one reference for the tree */ 5206 check_buffer_tree_ref(eb); 5207 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5208 5209 /* 5210 * Now it's safe to unlock the pages because any calls to 5211 * btree_releasepage will correctly detect that a page belongs to a 5212 * live buffer and won't free them prematurely. 5213 */ 5214 for (i = 0; i < num_pages; i++) 5215 unlock_page(eb->pages[i]); 5216 return eb; 5217 5218 free_eb: 5219 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5220 for (i = 0; i < num_pages; i++) { 5221 if (eb->pages[i]) 5222 unlock_page(eb->pages[i]); 5223 } 5224 5225 btrfs_release_extent_buffer(eb); 5226 return exists; 5227 } 5228 5229 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5230 { 5231 struct extent_buffer *eb = 5232 container_of(head, struct extent_buffer, rcu_head); 5233 5234 __free_extent_buffer(eb); 5235 } 5236 5237 static int release_extent_buffer(struct extent_buffer *eb) 5238 { 5239 lockdep_assert_held(&eb->refs_lock); 5240 5241 WARN_ON(atomic_read(&eb->refs) == 0); 5242 if (atomic_dec_and_test(&eb->refs)) { 5243 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5244 struct btrfs_fs_info *fs_info = eb->fs_info; 5245 5246 spin_unlock(&eb->refs_lock); 5247 5248 spin_lock(&fs_info->buffer_lock); 5249 radix_tree_delete(&fs_info->buffer_radix, 5250 eb->start >> PAGE_SHIFT); 5251 spin_unlock(&fs_info->buffer_lock); 5252 } else { 5253 spin_unlock(&eb->refs_lock); 5254 } 5255 5256 /* Should be safe to release our pages at this point */ 5257 btrfs_release_extent_buffer_pages(eb); 5258 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5259 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5260 __free_extent_buffer(eb); 5261 return 1; 5262 } 5263 #endif 5264 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5265 return 1; 5266 } 5267 spin_unlock(&eb->refs_lock); 5268 5269 return 0; 5270 } 5271 5272 void free_extent_buffer(struct extent_buffer *eb) 5273 { 5274 int refs; 5275 int old; 5276 if (!eb) 5277 return; 5278 5279 while (1) { 5280 refs = atomic_read(&eb->refs); 5281 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5282 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5283 refs == 1)) 5284 break; 5285 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5286 if (old == refs) 5287 return; 5288 } 5289 5290 spin_lock(&eb->refs_lock); 5291 if (atomic_read(&eb->refs) == 2 && 5292 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5293 !extent_buffer_under_io(eb) && 5294 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5295 atomic_dec(&eb->refs); 5296 5297 /* 5298 * I know this is terrible, but it's temporary until we stop tracking 5299 * the uptodate bits and such for the extent buffers. 5300 */ 5301 release_extent_buffer(eb); 5302 } 5303 5304 void free_extent_buffer_stale(struct extent_buffer *eb) 5305 { 5306 if (!eb) 5307 return; 5308 5309 spin_lock(&eb->refs_lock); 5310 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5311 5312 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5313 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5314 atomic_dec(&eb->refs); 5315 release_extent_buffer(eb); 5316 } 5317 5318 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5319 { 5320 int i; 5321 int num_pages; 5322 struct page *page; 5323 5324 num_pages = num_extent_pages(eb); 5325 5326 for (i = 0; i < num_pages; i++) { 5327 page = eb->pages[i]; 5328 if (!PageDirty(page)) 5329 continue; 5330 5331 lock_page(page); 5332 WARN_ON(!PagePrivate(page)); 5333 5334 clear_page_dirty_for_io(page); 5335 xa_lock_irq(&page->mapping->i_pages); 5336 if (!PageDirty(page)) 5337 __xa_clear_mark(&page->mapping->i_pages, 5338 page_index(page), PAGECACHE_TAG_DIRTY); 5339 xa_unlock_irq(&page->mapping->i_pages); 5340 ClearPageError(page); 5341 unlock_page(page); 5342 } 5343 WARN_ON(atomic_read(&eb->refs) == 0); 5344 } 5345 5346 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5347 { 5348 int i; 5349 int num_pages; 5350 bool was_dirty; 5351 5352 check_buffer_tree_ref(eb); 5353 5354 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5355 5356 num_pages = num_extent_pages(eb); 5357 WARN_ON(atomic_read(&eb->refs) == 0); 5358 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5359 5360 if (!was_dirty) 5361 for (i = 0; i < num_pages; i++) 5362 set_page_dirty(eb->pages[i]); 5363 5364 #ifdef CONFIG_BTRFS_DEBUG 5365 for (i = 0; i < num_pages; i++) 5366 ASSERT(PageDirty(eb->pages[i])); 5367 #endif 5368 5369 return was_dirty; 5370 } 5371 5372 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5373 { 5374 int i; 5375 struct page *page; 5376 int num_pages; 5377 5378 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5379 num_pages = num_extent_pages(eb); 5380 for (i = 0; i < num_pages; i++) { 5381 page = eb->pages[i]; 5382 if (page) 5383 ClearPageUptodate(page); 5384 } 5385 } 5386 5387 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5388 { 5389 int i; 5390 struct page *page; 5391 int num_pages; 5392 5393 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5394 num_pages = num_extent_pages(eb); 5395 for (i = 0; i < num_pages; i++) { 5396 page = eb->pages[i]; 5397 SetPageUptodate(page); 5398 } 5399 } 5400 5401 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5402 { 5403 int i; 5404 struct page *page; 5405 int err; 5406 int ret = 0; 5407 int locked_pages = 0; 5408 int all_uptodate = 1; 5409 int num_pages; 5410 unsigned long num_reads = 0; 5411 struct bio *bio = NULL; 5412 unsigned long bio_flags = 0; 5413 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree; 5414 5415 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5416 return 0; 5417 5418 num_pages = num_extent_pages(eb); 5419 for (i = 0; i < num_pages; i++) { 5420 page = eb->pages[i]; 5421 if (wait == WAIT_NONE) { 5422 if (!trylock_page(page)) 5423 goto unlock_exit; 5424 } else { 5425 lock_page(page); 5426 } 5427 locked_pages++; 5428 } 5429 /* 5430 * We need to firstly lock all pages to make sure that 5431 * the uptodate bit of our pages won't be affected by 5432 * clear_extent_buffer_uptodate(). 5433 */ 5434 for (i = 0; i < num_pages; i++) { 5435 page = eb->pages[i]; 5436 if (!PageUptodate(page)) { 5437 num_reads++; 5438 all_uptodate = 0; 5439 } 5440 } 5441 5442 if (all_uptodate) { 5443 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5444 goto unlock_exit; 5445 } 5446 5447 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5448 eb->read_mirror = 0; 5449 atomic_set(&eb->io_pages, num_reads); 5450 for (i = 0; i < num_pages; i++) { 5451 page = eb->pages[i]; 5452 5453 if (!PageUptodate(page)) { 5454 if (ret) { 5455 atomic_dec(&eb->io_pages); 5456 unlock_page(page); 5457 continue; 5458 } 5459 5460 ClearPageError(page); 5461 err = __extent_read_full_page(tree, page, 5462 btree_get_extent, &bio, 5463 mirror_num, &bio_flags, 5464 REQ_META); 5465 if (err) { 5466 ret = err; 5467 /* 5468 * We use &bio in above __extent_read_full_page, 5469 * so we ensure that if it returns error, the 5470 * current page fails to add itself to bio and 5471 * it's been unlocked. 5472 * 5473 * We must dec io_pages by ourselves. 5474 */ 5475 atomic_dec(&eb->io_pages); 5476 } 5477 } else { 5478 unlock_page(page); 5479 } 5480 } 5481 5482 if (bio) { 5483 err = submit_one_bio(bio, mirror_num, bio_flags); 5484 if (err) 5485 return err; 5486 } 5487 5488 if (ret || wait != WAIT_COMPLETE) 5489 return ret; 5490 5491 for (i = 0; i < num_pages; i++) { 5492 page = eb->pages[i]; 5493 wait_on_page_locked(page); 5494 if (!PageUptodate(page)) 5495 ret = -EIO; 5496 } 5497 5498 return ret; 5499 5500 unlock_exit: 5501 while (locked_pages > 0) { 5502 locked_pages--; 5503 page = eb->pages[locked_pages]; 5504 unlock_page(page); 5505 } 5506 return ret; 5507 } 5508 5509 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5510 unsigned long start, unsigned long len) 5511 { 5512 size_t cur; 5513 size_t offset; 5514 struct page *page; 5515 char *kaddr; 5516 char *dst = (char *)dstv; 5517 size_t start_offset = offset_in_page(eb->start); 5518 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5519 5520 if (start + len > eb->len) { 5521 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5522 eb->start, eb->len, start, len); 5523 memset(dst, 0, len); 5524 return; 5525 } 5526 5527 offset = offset_in_page(start_offset + start); 5528 5529 while (len > 0) { 5530 page = eb->pages[i]; 5531 5532 cur = min(len, (PAGE_SIZE - offset)); 5533 kaddr = page_address(page); 5534 memcpy(dst, kaddr + offset, cur); 5535 5536 dst += cur; 5537 len -= cur; 5538 offset = 0; 5539 i++; 5540 } 5541 } 5542 5543 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5544 void __user *dstv, 5545 unsigned long start, unsigned long len) 5546 { 5547 size_t cur; 5548 size_t offset; 5549 struct page *page; 5550 char *kaddr; 5551 char __user *dst = (char __user *)dstv; 5552 size_t start_offset = offset_in_page(eb->start); 5553 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5554 int ret = 0; 5555 5556 WARN_ON(start > eb->len); 5557 WARN_ON(start + len > eb->start + eb->len); 5558 5559 offset = offset_in_page(start_offset + start); 5560 5561 while (len > 0) { 5562 page = eb->pages[i]; 5563 5564 cur = min(len, (PAGE_SIZE - offset)); 5565 kaddr = page_address(page); 5566 if (copy_to_user(dst, kaddr + offset, cur)) { 5567 ret = -EFAULT; 5568 break; 5569 } 5570 5571 dst += cur; 5572 len -= cur; 5573 offset = 0; 5574 i++; 5575 } 5576 5577 return ret; 5578 } 5579 5580 /* 5581 * return 0 if the item is found within a page. 5582 * return 1 if the item spans two pages. 5583 * return -EINVAL otherwise. 5584 */ 5585 int map_private_extent_buffer(const struct extent_buffer *eb, 5586 unsigned long start, unsigned long min_len, 5587 char **map, unsigned long *map_start, 5588 unsigned long *map_len) 5589 { 5590 size_t offset; 5591 char *kaddr; 5592 struct page *p; 5593 size_t start_offset = offset_in_page(eb->start); 5594 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5595 unsigned long end_i = (start_offset + start + min_len - 1) >> 5596 PAGE_SHIFT; 5597 5598 if (start + min_len > eb->len) { 5599 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5600 eb->start, eb->len, start, min_len); 5601 return -EINVAL; 5602 } 5603 5604 if (i != end_i) 5605 return 1; 5606 5607 if (i == 0) { 5608 offset = start_offset; 5609 *map_start = 0; 5610 } else { 5611 offset = 0; 5612 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5613 } 5614 5615 p = eb->pages[i]; 5616 kaddr = page_address(p); 5617 *map = kaddr + offset; 5618 *map_len = PAGE_SIZE - offset; 5619 return 0; 5620 } 5621 5622 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5623 unsigned long start, unsigned long len) 5624 { 5625 size_t cur; 5626 size_t offset; 5627 struct page *page; 5628 char *kaddr; 5629 char *ptr = (char *)ptrv; 5630 size_t start_offset = offset_in_page(eb->start); 5631 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5632 int ret = 0; 5633 5634 WARN_ON(start > eb->len); 5635 WARN_ON(start + len > eb->start + eb->len); 5636 5637 offset = offset_in_page(start_offset + start); 5638 5639 while (len > 0) { 5640 page = eb->pages[i]; 5641 5642 cur = min(len, (PAGE_SIZE - offset)); 5643 5644 kaddr = page_address(page); 5645 ret = memcmp(ptr, kaddr + offset, cur); 5646 if (ret) 5647 break; 5648 5649 ptr += cur; 5650 len -= cur; 5651 offset = 0; 5652 i++; 5653 } 5654 return ret; 5655 } 5656 5657 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5658 const void *srcv) 5659 { 5660 char *kaddr; 5661 5662 WARN_ON(!PageUptodate(eb->pages[0])); 5663 kaddr = page_address(eb->pages[0]); 5664 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5665 BTRFS_FSID_SIZE); 5666 } 5667 5668 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5669 { 5670 char *kaddr; 5671 5672 WARN_ON(!PageUptodate(eb->pages[0])); 5673 kaddr = page_address(eb->pages[0]); 5674 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5675 BTRFS_FSID_SIZE); 5676 } 5677 5678 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5679 unsigned long start, unsigned long len) 5680 { 5681 size_t cur; 5682 size_t offset; 5683 struct page *page; 5684 char *kaddr; 5685 char *src = (char *)srcv; 5686 size_t start_offset = offset_in_page(eb->start); 5687 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5688 5689 WARN_ON(start > eb->len); 5690 WARN_ON(start + len > eb->start + eb->len); 5691 5692 offset = offset_in_page(start_offset + start); 5693 5694 while (len > 0) { 5695 page = eb->pages[i]; 5696 WARN_ON(!PageUptodate(page)); 5697 5698 cur = min(len, PAGE_SIZE - offset); 5699 kaddr = page_address(page); 5700 memcpy(kaddr + offset, src, cur); 5701 5702 src += cur; 5703 len -= cur; 5704 offset = 0; 5705 i++; 5706 } 5707 } 5708 5709 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5710 unsigned long len) 5711 { 5712 size_t cur; 5713 size_t offset; 5714 struct page *page; 5715 char *kaddr; 5716 size_t start_offset = offset_in_page(eb->start); 5717 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5718 5719 WARN_ON(start > eb->len); 5720 WARN_ON(start + len > eb->start + eb->len); 5721 5722 offset = offset_in_page(start_offset + start); 5723 5724 while (len > 0) { 5725 page = eb->pages[i]; 5726 WARN_ON(!PageUptodate(page)); 5727 5728 cur = min(len, PAGE_SIZE - offset); 5729 kaddr = page_address(page); 5730 memset(kaddr + offset, 0, cur); 5731 5732 len -= cur; 5733 offset = 0; 5734 i++; 5735 } 5736 } 5737 5738 void copy_extent_buffer_full(struct extent_buffer *dst, 5739 struct extent_buffer *src) 5740 { 5741 int i; 5742 int num_pages; 5743 5744 ASSERT(dst->len == src->len); 5745 5746 num_pages = num_extent_pages(dst); 5747 for (i = 0; i < num_pages; i++) 5748 copy_page(page_address(dst->pages[i]), 5749 page_address(src->pages[i])); 5750 } 5751 5752 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5753 unsigned long dst_offset, unsigned long src_offset, 5754 unsigned long len) 5755 { 5756 u64 dst_len = dst->len; 5757 size_t cur; 5758 size_t offset; 5759 struct page *page; 5760 char *kaddr; 5761 size_t start_offset = offset_in_page(dst->start); 5762 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5763 5764 WARN_ON(src->len != dst_len); 5765 5766 offset = offset_in_page(start_offset + dst_offset); 5767 5768 while (len > 0) { 5769 page = dst->pages[i]; 5770 WARN_ON(!PageUptodate(page)); 5771 5772 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5773 5774 kaddr = page_address(page); 5775 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5776 5777 src_offset += cur; 5778 len -= cur; 5779 offset = 0; 5780 i++; 5781 } 5782 } 5783 5784 /* 5785 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5786 * given bit number 5787 * @eb: the extent buffer 5788 * @start: offset of the bitmap item in the extent buffer 5789 * @nr: bit number 5790 * @page_index: return index of the page in the extent buffer that contains the 5791 * given bit number 5792 * @page_offset: return offset into the page given by page_index 5793 * 5794 * This helper hides the ugliness of finding the byte in an extent buffer which 5795 * contains a given bit. 5796 */ 5797 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5798 unsigned long start, unsigned long nr, 5799 unsigned long *page_index, 5800 size_t *page_offset) 5801 { 5802 size_t start_offset = offset_in_page(eb->start); 5803 size_t byte_offset = BIT_BYTE(nr); 5804 size_t offset; 5805 5806 /* 5807 * The byte we want is the offset of the extent buffer + the offset of 5808 * the bitmap item in the extent buffer + the offset of the byte in the 5809 * bitmap item. 5810 */ 5811 offset = start_offset + start + byte_offset; 5812 5813 *page_index = offset >> PAGE_SHIFT; 5814 *page_offset = offset_in_page(offset); 5815 } 5816 5817 /** 5818 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5819 * @eb: the extent buffer 5820 * @start: offset of the bitmap item in the extent buffer 5821 * @nr: bit number to test 5822 */ 5823 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5824 unsigned long nr) 5825 { 5826 u8 *kaddr; 5827 struct page *page; 5828 unsigned long i; 5829 size_t offset; 5830 5831 eb_bitmap_offset(eb, start, nr, &i, &offset); 5832 page = eb->pages[i]; 5833 WARN_ON(!PageUptodate(page)); 5834 kaddr = page_address(page); 5835 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5836 } 5837 5838 /** 5839 * extent_buffer_bitmap_set - set an area of a bitmap 5840 * @eb: the extent buffer 5841 * @start: offset of the bitmap item in the extent buffer 5842 * @pos: bit number of the first bit 5843 * @len: number of bits to set 5844 */ 5845 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5846 unsigned long pos, unsigned long len) 5847 { 5848 u8 *kaddr; 5849 struct page *page; 5850 unsigned long i; 5851 size_t offset; 5852 const unsigned int size = pos + len; 5853 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5854 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5855 5856 eb_bitmap_offset(eb, start, pos, &i, &offset); 5857 page = eb->pages[i]; 5858 WARN_ON(!PageUptodate(page)); 5859 kaddr = page_address(page); 5860 5861 while (len >= bits_to_set) { 5862 kaddr[offset] |= mask_to_set; 5863 len -= bits_to_set; 5864 bits_to_set = BITS_PER_BYTE; 5865 mask_to_set = ~0; 5866 if (++offset >= PAGE_SIZE && len > 0) { 5867 offset = 0; 5868 page = eb->pages[++i]; 5869 WARN_ON(!PageUptodate(page)); 5870 kaddr = page_address(page); 5871 } 5872 } 5873 if (len) { 5874 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5875 kaddr[offset] |= mask_to_set; 5876 } 5877 } 5878 5879 5880 /** 5881 * extent_buffer_bitmap_clear - clear an area of a bitmap 5882 * @eb: the extent buffer 5883 * @start: offset of the bitmap item in the extent buffer 5884 * @pos: bit number of the first bit 5885 * @len: number of bits to clear 5886 */ 5887 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5888 unsigned long pos, unsigned long len) 5889 { 5890 u8 *kaddr; 5891 struct page *page; 5892 unsigned long i; 5893 size_t offset; 5894 const unsigned int size = pos + len; 5895 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5896 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5897 5898 eb_bitmap_offset(eb, start, pos, &i, &offset); 5899 page = eb->pages[i]; 5900 WARN_ON(!PageUptodate(page)); 5901 kaddr = page_address(page); 5902 5903 while (len >= bits_to_clear) { 5904 kaddr[offset] &= ~mask_to_clear; 5905 len -= bits_to_clear; 5906 bits_to_clear = BITS_PER_BYTE; 5907 mask_to_clear = ~0; 5908 if (++offset >= PAGE_SIZE && len > 0) { 5909 offset = 0; 5910 page = eb->pages[++i]; 5911 WARN_ON(!PageUptodate(page)); 5912 kaddr = page_address(page); 5913 } 5914 } 5915 if (len) { 5916 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5917 kaddr[offset] &= ~mask_to_clear; 5918 } 5919 } 5920 5921 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5922 { 5923 unsigned long distance = (src > dst) ? src - dst : dst - src; 5924 return distance < len; 5925 } 5926 5927 static void copy_pages(struct page *dst_page, struct page *src_page, 5928 unsigned long dst_off, unsigned long src_off, 5929 unsigned long len) 5930 { 5931 char *dst_kaddr = page_address(dst_page); 5932 char *src_kaddr; 5933 int must_memmove = 0; 5934 5935 if (dst_page != src_page) { 5936 src_kaddr = page_address(src_page); 5937 } else { 5938 src_kaddr = dst_kaddr; 5939 if (areas_overlap(src_off, dst_off, len)) 5940 must_memmove = 1; 5941 } 5942 5943 if (must_memmove) 5944 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5945 else 5946 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5947 } 5948 5949 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5950 unsigned long src_offset, unsigned long len) 5951 { 5952 struct btrfs_fs_info *fs_info = dst->fs_info; 5953 size_t cur; 5954 size_t dst_off_in_page; 5955 size_t src_off_in_page; 5956 size_t start_offset = offset_in_page(dst->start); 5957 unsigned long dst_i; 5958 unsigned long src_i; 5959 5960 if (src_offset + len > dst->len) { 5961 btrfs_err(fs_info, 5962 "memmove bogus src_offset %lu move len %lu dst len %lu", 5963 src_offset, len, dst->len); 5964 BUG(); 5965 } 5966 if (dst_offset + len > dst->len) { 5967 btrfs_err(fs_info, 5968 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5969 dst_offset, len, dst->len); 5970 BUG(); 5971 } 5972 5973 while (len > 0) { 5974 dst_off_in_page = offset_in_page(start_offset + dst_offset); 5975 src_off_in_page = offset_in_page(start_offset + src_offset); 5976 5977 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5978 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5979 5980 cur = min(len, (unsigned long)(PAGE_SIZE - 5981 src_off_in_page)); 5982 cur = min_t(unsigned long, cur, 5983 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5984 5985 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5986 dst_off_in_page, src_off_in_page, cur); 5987 5988 src_offset += cur; 5989 dst_offset += cur; 5990 len -= cur; 5991 } 5992 } 5993 5994 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5995 unsigned long src_offset, unsigned long len) 5996 { 5997 struct btrfs_fs_info *fs_info = dst->fs_info; 5998 size_t cur; 5999 size_t dst_off_in_page; 6000 size_t src_off_in_page; 6001 unsigned long dst_end = dst_offset + len - 1; 6002 unsigned long src_end = src_offset + len - 1; 6003 size_t start_offset = offset_in_page(dst->start); 6004 unsigned long dst_i; 6005 unsigned long src_i; 6006 6007 if (src_offset + len > dst->len) { 6008 btrfs_err(fs_info, 6009 "memmove bogus src_offset %lu move len %lu len %lu", 6010 src_offset, len, dst->len); 6011 BUG(); 6012 } 6013 if (dst_offset + len > dst->len) { 6014 btrfs_err(fs_info, 6015 "memmove bogus dst_offset %lu move len %lu len %lu", 6016 dst_offset, len, dst->len); 6017 BUG(); 6018 } 6019 if (dst_offset < src_offset) { 6020 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6021 return; 6022 } 6023 while (len > 0) { 6024 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 6025 src_i = (start_offset + src_end) >> PAGE_SHIFT; 6026 6027 dst_off_in_page = offset_in_page(start_offset + dst_end); 6028 src_off_in_page = offset_in_page(start_offset + src_end); 6029 6030 cur = min_t(unsigned long, len, src_off_in_page + 1); 6031 cur = min(cur, dst_off_in_page + 1); 6032 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6033 dst_off_in_page - cur + 1, 6034 src_off_in_page - cur + 1, cur); 6035 6036 dst_end -= cur; 6037 src_end -= cur; 6038 len -= cur; 6039 } 6040 } 6041 6042 int try_release_extent_buffer(struct page *page) 6043 { 6044 struct extent_buffer *eb; 6045 6046 /* 6047 * We need to make sure nobody is attaching this page to an eb right 6048 * now. 6049 */ 6050 spin_lock(&page->mapping->private_lock); 6051 if (!PagePrivate(page)) { 6052 spin_unlock(&page->mapping->private_lock); 6053 return 1; 6054 } 6055 6056 eb = (struct extent_buffer *)page->private; 6057 BUG_ON(!eb); 6058 6059 /* 6060 * This is a little awful but should be ok, we need to make sure that 6061 * the eb doesn't disappear out from under us while we're looking at 6062 * this page. 6063 */ 6064 spin_lock(&eb->refs_lock); 6065 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6066 spin_unlock(&eb->refs_lock); 6067 spin_unlock(&page->mapping->private_lock); 6068 return 0; 6069 } 6070 spin_unlock(&page->mapping->private_lock); 6071 6072 /* 6073 * If tree ref isn't set then we know the ref on this eb is a real ref, 6074 * so just return, this page will likely be freed soon anyway. 6075 */ 6076 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6077 spin_unlock(&eb->refs_lock); 6078 return 0; 6079 } 6080 6081 return release_extent_buffer(eb); 6082 } 6083