xref: /openbmc/linux/fs/btrfs/extent_io.c (revision b6dcefde)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22 
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
25 
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
30 
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	struct rb_node rb_node;
37 };
38 
39 struct extent_page_data {
40 	struct bio *bio;
41 	struct extent_io_tree *tree;
42 	get_extent_t *get_extent;
43 
44 	/* tells writepage not to lock the state bits for this range
45 	 * it still does the unlocking
46 	 */
47 	unsigned int extent_locked:1;
48 
49 	/* tells the submit_bio code to use a WRITE_SYNC */
50 	unsigned int sync_io:1;
51 };
52 
53 int __init extent_io_init(void)
54 {
55 	extent_state_cache = kmem_cache_create("extent_state",
56 			sizeof(struct extent_state), 0,
57 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 	if (!extent_state_cache)
59 		return -ENOMEM;
60 
61 	extent_buffer_cache = kmem_cache_create("extent_buffers",
62 			sizeof(struct extent_buffer), 0,
63 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 	if (!extent_buffer_cache)
65 		goto free_state_cache;
66 	return 0;
67 
68 free_state_cache:
69 	kmem_cache_destroy(extent_state_cache);
70 	return -ENOMEM;
71 }
72 
73 void extent_io_exit(void)
74 {
75 	struct extent_state *state;
76 	struct extent_buffer *eb;
77 
78 	while (!list_empty(&states)) {
79 		state = list_entry(states.next, struct extent_state, leak_list);
80 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 		       "state %lu in tree %p refs %d\n",
82 		       (unsigned long long)state->start,
83 		       (unsigned long long)state->end,
84 		       state->state, state->tree, atomic_read(&state->refs));
85 		list_del(&state->leak_list);
86 		kmem_cache_free(extent_state_cache, state);
87 
88 	}
89 
90 	while (!list_empty(&buffers)) {
91 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 		       "refs %d\n", (unsigned long long)eb->start,
94 		       eb->len, atomic_read(&eb->refs));
95 		list_del(&eb->leak_list);
96 		kmem_cache_free(extent_buffer_cache, eb);
97 	}
98 	if (extent_state_cache)
99 		kmem_cache_destroy(extent_state_cache);
100 	if (extent_buffer_cache)
101 		kmem_cache_destroy(extent_buffer_cache);
102 }
103 
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 			  struct address_space *mapping, gfp_t mask)
106 {
107 	tree->state.rb_node = NULL;
108 	tree->buffer.rb_node = NULL;
109 	tree->ops = NULL;
110 	tree->dirty_bytes = 0;
111 	spin_lock_init(&tree->lock);
112 	spin_lock_init(&tree->buffer_lock);
113 	tree->mapping = mapping;
114 }
115 
116 static struct extent_state *alloc_extent_state(gfp_t mask)
117 {
118 	struct extent_state *state;
119 #if LEAK_DEBUG
120 	unsigned long flags;
121 #endif
122 
123 	state = kmem_cache_alloc(extent_state_cache, mask);
124 	if (!state)
125 		return state;
126 	state->state = 0;
127 	state->private = 0;
128 	state->tree = NULL;
129 #if LEAK_DEBUG
130 	spin_lock_irqsave(&leak_lock, flags);
131 	list_add(&state->leak_list, &states);
132 	spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 	atomic_set(&state->refs, 1);
135 	init_waitqueue_head(&state->wq);
136 	return state;
137 }
138 
139 static void free_extent_state(struct extent_state *state)
140 {
141 	if (!state)
142 		return;
143 	if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 		unsigned long flags;
146 #endif
147 		WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 		spin_lock_irqsave(&leak_lock, flags);
150 		list_del(&state->leak_list);
151 		spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 		kmem_cache_free(extent_state_cache, state);
154 	}
155 }
156 
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 				   struct rb_node *node)
159 {
160 	struct rb_node **p = &root->rb_node;
161 	struct rb_node *parent = NULL;
162 	struct tree_entry *entry;
163 
164 	while (*p) {
165 		parent = *p;
166 		entry = rb_entry(parent, struct tree_entry, rb_node);
167 
168 		if (offset < entry->start)
169 			p = &(*p)->rb_left;
170 		else if (offset > entry->end)
171 			p = &(*p)->rb_right;
172 		else
173 			return parent;
174 	}
175 
176 	entry = rb_entry(node, struct tree_entry, rb_node);
177 	rb_link_node(node, parent, p);
178 	rb_insert_color(node, root);
179 	return NULL;
180 }
181 
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 				     struct rb_node **prev_ret,
184 				     struct rb_node **next_ret)
185 {
186 	struct rb_root *root = &tree->state;
187 	struct rb_node *n = root->rb_node;
188 	struct rb_node *prev = NULL;
189 	struct rb_node *orig_prev = NULL;
190 	struct tree_entry *entry;
191 	struct tree_entry *prev_entry = NULL;
192 
193 	while (n) {
194 		entry = rb_entry(n, struct tree_entry, rb_node);
195 		prev = n;
196 		prev_entry = entry;
197 
198 		if (offset < entry->start)
199 			n = n->rb_left;
200 		else if (offset > entry->end)
201 			n = n->rb_right;
202 		else
203 			return n;
204 	}
205 
206 	if (prev_ret) {
207 		orig_prev = prev;
208 		while (prev && offset > prev_entry->end) {
209 			prev = rb_next(prev);
210 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 		}
212 		*prev_ret = prev;
213 		prev = orig_prev;
214 	}
215 
216 	if (next_ret) {
217 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 		while (prev && offset < prev_entry->start) {
219 			prev = rb_prev(prev);
220 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 		}
222 		*next_ret = prev;
223 	}
224 	return NULL;
225 }
226 
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 					  u64 offset)
229 {
230 	struct rb_node *prev = NULL;
231 	struct rb_node *ret;
232 
233 	ret = __etree_search(tree, offset, &prev, NULL);
234 	if (!ret)
235 		return prev;
236 	return ret;
237 }
238 
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240 					  u64 offset, struct rb_node *node)
241 {
242 	struct rb_root *root = &tree->buffer;
243 	struct rb_node **p = &root->rb_node;
244 	struct rb_node *parent = NULL;
245 	struct extent_buffer *eb;
246 
247 	while (*p) {
248 		parent = *p;
249 		eb = rb_entry(parent, struct extent_buffer, rb_node);
250 
251 		if (offset < eb->start)
252 			p = &(*p)->rb_left;
253 		else if (offset > eb->start)
254 			p = &(*p)->rb_right;
255 		else
256 			return eb;
257 	}
258 
259 	rb_link_node(node, parent, p);
260 	rb_insert_color(node, root);
261 	return NULL;
262 }
263 
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265 					   u64 offset)
266 {
267 	struct rb_root *root = &tree->buffer;
268 	struct rb_node *n = root->rb_node;
269 	struct extent_buffer *eb;
270 
271 	while (n) {
272 		eb = rb_entry(n, struct extent_buffer, rb_node);
273 		if (offset < eb->start)
274 			n = n->rb_left;
275 		else if (offset > eb->start)
276 			n = n->rb_right;
277 		else
278 			return eb;
279 	}
280 	return NULL;
281 }
282 
283 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
284 		     struct extent_state *other)
285 {
286 	if (tree->ops && tree->ops->merge_extent_hook)
287 		tree->ops->merge_extent_hook(tree->mapping->host, new,
288 					     other);
289 }
290 
291 /*
292  * utility function to look for merge candidates inside a given range.
293  * Any extents with matching state are merged together into a single
294  * extent in the tree.  Extents with EXTENT_IO in their state field
295  * are not merged because the end_io handlers need to be able to do
296  * operations on them without sleeping (or doing allocations/splits).
297  *
298  * This should be called with the tree lock held.
299  */
300 static int merge_state(struct extent_io_tree *tree,
301 		       struct extent_state *state)
302 {
303 	struct extent_state *other;
304 	struct rb_node *other_node;
305 
306 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
307 		return 0;
308 
309 	other_node = rb_prev(&state->rb_node);
310 	if (other_node) {
311 		other = rb_entry(other_node, struct extent_state, rb_node);
312 		if (other->end == state->start - 1 &&
313 		    other->state == state->state) {
314 			merge_cb(tree, state, other);
315 			state->start = other->start;
316 			other->tree = NULL;
317 			rb_erase(&other->rb_node, &tree->state);
318 			free_extent_state(other);
319 		}
320 	}
321 	other_node = rb_next(&state->rb_node);
322 	if (other_node) {
323 		other = rb_entry(other_node, struct extent_state, rb_node);
324 		if (other->start == state->end + 1 &&
325 		    other->state == state->state) {
326 			merge_cb(tree, state, other);
327 			other->start = state->start;
328 			state->tree = NULL;
329 			rb_erase(&state->rb_node, &tree->state);
330 			free_extent_state(state);
331 			state = NULL;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
338 static int set_state_cb(struct extent_io_tree *tree,
339 			 struct extent_state *state,
340 			 unsigned long bits)
341 {
342 	if (tree->ops && tree->ops->set_bit_hook) {
343 		return tree->ops->set_bit_hook(tree->mapping->host,
344 					       state->start, state->end,
345 					       state->state, bits);
346 	}
347 
348 	return 0;
349 }
350 
351 static void clear_state_cb(struct extent_io_tree *tree,
352 			   struct extent_state *state,
353 			   unsigned long bits)
354 {
355 	if (tree->ops && tree->ops->clear_bit_hook)
356 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
357 }
358 
359 /*
360  * insert an extent_state struct into the tree.  'bits' are set on the
361  * struct before it is inserted.
362  *
363  * This may return -EEXIST if the extent is already there, in which case the
364  * state struct is freed.
365  *
366  * The tree lock is not taken internally.  This is a utility function and
367  * probably isn't what you want to call (see set/clear_extent_bit).
368  */
369 static int insert_state(struct extent_io_tree *tree,
370 			struct extent_state *state, u64 start, u64 end,
371 			int bits)
372 {
373 	struct rb_node *node;
374 	int ret;
375 
376 	if (end < start) {
377 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
378 		       (unsigned long long)end,
379 		       (unsigned long long)start);
380 		WARN_ON(1);
381 	}
382 	state->start = start;
383 	state->end = end;
384 	ret = set_state_cb(tree, state, bits);
385 	if (ret)
386 		return ret;
387 
388 	if (bits & EXTENT_DIRTY)
389 		tree->dirty_bytes += end - start + 1;
390 	state->state |= bits;
391 	node = tree_insert(&tree->state, end, &state->rb_node);
392 	if (node) {
393 		struct extent_state *found;
394 		found = rb_entry(node, struct extent_state, rb_node);
395 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
396 		       "%llu %llu\n", (unsigned long long)found->start,
397 		       (unsigned long long)found->end,
398 		       (unsigned long long)start, (unsigned long long)end);
399 		free_extent_state(state);
400 		return -EEXIST;
401 	}
402 	state->tree = tree;
403 	merge_state(tree, state);
404 	return 0;
405 }
406 
407 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
408 		     u64 split)
409 {
410 	if (tree->ops && tree->ops->split_extent_hook)
411 		return tree->ops->split_extent_hook(tree->mapping->host,
412 						    orig, split);
413 	return 0;
414 }
415 
416 /*
417  * split a given extent state struct in two, inserting the preallocated
418  * struct 'prealloc' as the newly created second half.  'split' indicates an
419  * offset inside 'orig' where it should be split.
420  *
421  * Before calling,
422  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
423  * are two extent state structs in the tree:
424  * prealloc: [orig->start, split - 1]
425  * orig: [ split, orig->end ]
426  *
427  * The tree locks are not taken by this function. They need to be held
428  * by the caller.
429  */
430 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
431 		       struct extent_state *prealloc, u64 split)
432 {
433 	struct rb_node *node;
434 
435 	split_cb(tree, orig, split);
436 
437 	prealloc->start = orig->start;
438 	prealloc->end = split - 1;
439 	prealloc->state = orig->state;
440 	orig->start = split;
441 
442 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
443 	if (node) {
444 		free_extent_state(prealloc);
445 		return -EEXIST;
446 	}
447 	prealloc->tree = tree;
448 	return 0;
449 }
450 
451 /*
452  * utility function to clear some bits in an extent state struct.
453  * it will optionally wake up any one waiting on this state (wake == 1), or
454  * forcibly remove the state from the tree (delete == 1).
455  *
456  * If no bits are set on the state struct after clearing things, the
457  * struct is freed and removed from the tree
458  */
459 static int clear_state_bit(struct extent_io_tree *tree,
460 			    struct extent_state *state, int bits, int wake,
461 			    int delete)
462 {
463 	int bits_to_clear = bits & ~EXTENT_DO_ACCOUNTING;
464 	int ret = state->state & bits_to_clear;
465 
466 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
467 		u64 range = state->end - state->start + 1;
468 		WARN_ON(range > tree->dirty_bytes);
469 		tree->dirty_bytes -= range;
470 	}
471 	clear_state_cb(tree, state, bits);
472 	state->state &= ~bits_to_clear;
473 	if (wake)
474 		wake_up(&state->wq);
475 	if (delete || state->state == 0) {
476 		if (state->tree) {
477 			clear_state_cb(tree, state, state->state);
478 			rb_erase(&state->rb_node, &tree->state);
479 			state->tree = NULL;
480 			free_extent_state(state);
481 		} else {
482 			WARN_ON(1);
483 		}
484 	} else {
485 		merge_state(tree, state);
486 	}
487 	return ret;
488 }
489 
490 /*
491  * clear some bits on a range in the tree.  This may require splitting
492  * or inserting elements in the tree, so the gfp mask is used to
493  * indicate which allocations or sleeping are allowed.
494  *
495  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
496  * the given range from the tree regardless of state (ie for truncate).
497  *
498  * the range [start, end] is inclusive.
499  *
500  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
501  * bits were already set, or zero if none of the bits were already set.
502  */
503 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
504 		     int bits, int wake, int delete,
505 		     struct extent_state **cached_state,
506 		     gfp_t mask)
507 {
508 	struct extent_state *state;
509 	struct extent_state *cached;
510 	struct extent_state *prealloc = NULL;
511 	struct rb_node *next_node;
512 	struct rb_node *node;
513 	u64 last_end;
514 	int err;
515 	int set = 0;
516 
517 again:
518 	if (!prealloc && (mask & __GFP_WAIT)) {
519 		prealloc = alloc_extent_state(mask);
520 		if (!prealloc)
521 			return -ENOMEM;
522 	}
523 
524 	spin_lock(&tree->lock);
525 	if (cached_state) {
526 		cached = *cached_state;
527 		*cached_state = NULL;
528 		cached_state = NULL;
529 		if (cached && cached->tree && cached->start == start) {
530 			atomic_dec(&cached->refs);
531 			state = cached;
532 			goto hit_next;
533 		}
534 		free_extent_state(cached);
535 	}
536 	/*
537 	 * this search will find the extents that end after
538 	 * our range starts
539 	 */
540 	node = tree_search(tree, start);
541 	if (!node)
542 		goto out;
543 	state = rb_entry(node, struct extent_state, rb_node);
544 hit_next:
545 	if (state->start > end)
546 		goto out;
547 	WARN_ON(state->end < start);
548 	last_end = state->end;
549 
550 	/*
551 	 *     | ---- desired range ---- |
552 	 *  | state | or
553 	 *  | ------------- state -------------- |
554 	 *
555 	 * We need to split the extent we found, and may flip
556 	 * bits on second half.
557 	 *
558 	 * If the extent we found extends past our range, we
559 	 * just split and search again.  It'll get split again
560 	 * the next time though.
561 	 *
562 	 * If the extent we found is inside our range, we clear
563 	 * the desired bit on it.
564 	 */
565 
566 	if (state->start < start) {
567 		if (!prealloc)
568 			prealloc = alloc_extent_state(GFP_ATOMIC);
569 		err = split_state(tree, state, prealloc, start);
570 		BUG_ON(err == -EEXIST);
571 		prealloc = NULL;
572 		if (err)
573 			goto out;
574 		if (state->end <= end) {
575 			set |= clear_state_bit(tree, state, bits, wake,
576 					       delete);
577 			if (last_end == (u64)-1)
578 				goto out;
579 			start = last_end + 1;
580 		}
581 		goto search_again;
582 	}
583 	/*
584 	 * | ---- desired range ---- |
585 	 *                        | state |
586 	 * We need to split the extent, and clear the bit
587 	 * on the first half
588 	 */
589 	if (state->start <= end && state->end > end) {
590 		if (!prealloc)
591 			prealloc = alloc_extent_state(GFP_ATOMIC);
592 		err = split_state(tree, state, prealloc, end + 1);
593 		BUG_ON(err == -EEXIST);
594 		if (wake)
595 			wake_up(&state->wq);
596 
597 		set |= clear_state_bit(tree, prealloc, bits, wake, delete);
598 
599 		prealloc = NULL;
600 		goto out;
601 	}
602 
603 	if (state->end < end && prealloc && !need_resched())
604 		next_node = rb_next(&state->rb_node);
605 	else
606 		next_node = NULL;
607 
608 	set |= clear_state_bit(tree, state, bits, wake, delete);
609 	if (last_end == (u64)-1)
610 		goto out;
611 	start = last_end + 1;
612 	if (start <= end && next_node) {
613 		state = rb_entry(next_node, struct extent_state,
614 				 rb_node);
615 		if (state->start == start)
616 			goto hit_next;
617 	}
618 	goto search_again;
619 
620 out:
621 	spin_unlock(&tree->lock);
622 	if (prealloc)
623 		free_extent_state(prealloc);
624 
625 	return set;
626 
627 search_again:
628 	if (start > end)
629 		goto out;
630 	spin_unlock(&tree->lock);
631 	if (mask & __GFP_WAIT)
632 		cond_resched();
633 	goto again;
634 }
635 
636 static int wait_on_state(struct extent_io_tree *tree,
637 			 struct extent_state *state)
638 		__releases(tree->lock)
639 		__acquires(tree->lock)
640 {
641 	DEFINE_WAIT(wait);
642 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
643 	spin_unlock(&tree->lock);
644 	schedule();
645 	spin_lock(&tree->lock);
646 	finish_wait(&state->wq, &wait);
647 	return 0;
648 }
649 
650 /*
651  * waits for one or more bits to clear on a range in the state tree.
652  * The range [start, end] is inclusive.
653  * The tree lock is taken by this function
654  */
655 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
656 {
657 	struct extent_state *state;
658 	struct rb_node *node;
659 
660 	spin_lock(&tree->lock);
661 again:
662 	while (1) {
663 		/*
664 		 * this search will find all the extents that end after
665 		 * our range starts
666 		 */
667 		node = tree_search(tree, start);
668 		if (!node)
669 			break;
670 
671 		state = rb_entry(node, struct extent_state, rb_node);
672 
673 		if (state->start > end)
674 			goto out;
675 
676 		if (state->state & bits) {
677 			start = state->start;
678 			atomic_inc(&state->refs);
679 			wait_on_state(tree, state);
680 			free_extent_state(state);
681 			goto again;
682 		}
683 		start = state->end + 1;
684 
685 		if (start > end)
686 			break;
687 
688 		if (need_resched()) {
689 			spin_unlock(&tree->lock);
690 			cond_resched();
691 			spin_lock(&tree->lock);
692 		}
693 	}
694 out:
695 	spin_unlock(&tree->lock);
696 	return 0;
697 }
698 
699 static int set_state_bits(struct extent_io_tree *tree,
700 			   struct extent_state *state,
701 			   int bits)
702 {
703 	int ret;
704 
705 	ret = set_state_cb(tree, state, bits);
706 	if (ret)
707 		return ret;
708 
709 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
710 		u64 range = state->end - state->start + 1;
711 		tree->dirty_bytes += range;
712 	}
713 	state->state |= bits;
714 
715 	return 0;
716 }
717 
718 static void cache_state(struct extent_state *state,
719 			struct extent_state **cached_ptr)
720 {
721 	if (cached_ptr && !(*cached_ptr)) {
722 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
723 			*cached_ptr = state;
724 			atomic_inc(&state->refs);
725 		}
726 	}
727 }
728 
729 /*
730  * set some bits on a range in the tree.  This may require allocations or
731  * sleeping, so the gfp mask is used to indicate what is allowed.
732  *
733  * If any of the exclusive bits are set, this will fail with -EEXIST if some
734  * part of the range already has the desired bits set.  The start of the
735  * existing range is returned in failed_start in this case.
736  *
737  * [start, end] is inclusive This takes the tree lock.
738  */
739 
740 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
741 			  int bits, int exclusive_bits, u64 *failed_start,
742 			  struct extent_state **cached_state,
743 			  gfp_t mask)
744 {
745 	struct extent_state *state;
746 	struct extent_state *prealloc = NULL;
747 	struct rb_node *node;
748 	int err = 0;
749 	u64 last_start;
750 	u64 last_end;
751 
752 again:
753 	if (!prealloc && (mask & __GFP_WAIT)) {
754 		prealloc = alloc_extent_state(mask);
755 		if (!prealloc)
756 			return -ENOMEM;
757 	}
758 
759 	spin_lock(&tree->lock);
760 	if (cached_state && *cached_state) {
761 		state = *cached_state;
762 		if (state->start == start && state->tree) {
763 			node = &state->rb_node;
764 			goto hit_next;
765 		}
766 	}
767 	/*
768 	 * this search will find all the extents that end after
769 	 * our range starts.
770 	 */
771 	node = tree_search(tree, start);
772 	if (!node) {
773 		err = insert_state(tree, prealloc, start, end, bits);
774 		prealloc = NULL;
775 		BUG_ON(err == -EEXIST);
776 		goto out;
777 	}
778 	state = rb_entry(node, struct extent_state, rb_node);
779 hit_next:
780 	last_start = state->start;
781 	last_end = state->end;
782 
783 	/*
784 	 * | ---- desired range ---- |
785 	 * | state |
786 	 *
787 	 * Just lock what we found and keep going
788 	 */
789 	if (state->start == start && state->end <= end) {
790 		struct rb_node *next_node;
791 		if (state->state & exclusive_bits) {
792 			*failed_start = state->start;
793 			err = -EEXIST;
794 			goto out;
795 		}
796 
797 		err = set_state_bits(tree, state, bits);
798 		if (err)
799 			goto out;
800 
801 		cache_state(state, cached_state);
802 		merge_state(tree, state);
803 		if (last_end == (u64)-1)
804 			goto out;
805 
806 		start = last_end + 1;
807 		if (start < end && prealloc && !need_resched()) {
808 			next_node = rb_next(node);
809 			if (next_node) {
810 				state = rb_entry(next_node, struct extent_state,
811 						 rb_node);
812 				if (state->start == start)
813 					goto hit_next;
814 			}
815 		}
816 		goto search_again;
817 	}
818 
819 	/*
820 	 *     | ---- desired range ---- |
821 	 * | state |
822 	 *   or
823 	 * | ------------- state -------------- |
824 	 *
825 	 * We need to split the extent we found, and may flip bits on
826 	 * second half.
827 	 *
828 	 * If the extent we found extends past our
829 	 * range, we just split and search again.  It'll get split
830 	 * again the next time though.
831 	 *
832 	 * If the extent we found is inside our range, we set the
833 	 * desired bit on it.
834 	 */
835 	if (state->start < start) {
836 		if (state->state & exclusive_bits) {
837 			*failed_start = start;
838 			err = -EEXIST;
839 			goto out;
840 		}
841 		err = split_state(tree, state, prealloc, start);
842 		BUG_ON(err == -EEXIST);
843 		prealloc = NULL;
844 		if (err)
845 			goto out;
846 		if (state->end <= end) {
847 			err = set_state_bits(tree, state, bits);
848 			if (err)
849 				goto out;
850 			cache_state(state, cached_state);
851 			merge_state(tree, state);
852 			if (last_end == (u64)-1)
853 				goto out;
854 			start = last_end + 1;
855 		}
856 		goto search_again;
857 	}
858 	/*
859 	 * | ---- desired range ---- |
860 	 *     | state | or               | state |
861 	 *
862 	 * There's a hole, we need to insert something in it and
863 	 * ignore the extent we found.
864 	 */
865 	if (state->start > start) {
866 		u64 this_end;
867 		if (end < last_start)
868 			this_end = end;
869 		else
870 			this_end = last_start - 1;
871 		err = insert_state(tree, prealloc, start, this_end,
872 				   bits);
873 		BUG_ON(err == -EEXIST);
874 		if (err) {
875 			prealloc = NULL;
876 			goto out;
877 		}
878 		cache_state(prealloc, cached_state);
879 		prealloc = NULL;
880 		start = this_end + 1;
881 		goto search_again;
882 	}
883 	/*
884 	 * | ---- desired range ---- |
885 	 *                        | state |
886 	 * We need to split the extent, and set the bit
887 	 * on the first half
888 	 */
889 	if (state->start <= end && state->end > end) {
890 		if (state->state & exclusive_bits) {
891 			*failed_start = start;
892 			err = -EEXIST;
893 			goto out;
894 		}
895 		err = split_state(tree, state, prealloc, end + 1);
896 		BUG_ON(err == -EEXIST);
897 
898 		err = set_state_bits(tree, prealloc, bits);
899 		if (err) {
900 			prealloc = NULL;
901 			goto out;
902 		}
903 		cache_state(prealloc, cached_state);
904 		merge_state(tree, prealloc);
905 		prealloc = NULL;
906 		goto out;
907 	}
908 
909 	goto search_again;
910 
911 out:
912 	spin_unlock(&tree->lock);
913 	if (prealloc)
914 		free_extent_state(prealloc);
915 
916 	return err;
917 
918 search_again:
919 	if (start > end)
920 		goto out;
921 	spin_unlock(&tree->lock);
922 	if (mask & __GFP_WAIT)
923 		cond_resched();
924 	goto again;
925 }
926 
927 /* wrappers around set/clear extent bit */
928 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
929 		     gfp_t mask)
930 {
931 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
932 			      NULL, mask);
933 }
934 
935 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
936 		    int bits, gfp_t mask)
937 {
938 	return set_extent_bit(tree, start, end, bits, 0, NULL,
939 			      NULL, mask);
940 }
941 
942 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
943 		      int bits, gfp_t mask)
944 {
945 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
946 }
947 
948 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
949 		     gfp_t mask)
950 {
951 	return set_extent_bit(tree, start, end,
952 			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
953 			      0, NULL, NULL, mask);
954 }
955 
956 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
957 		       gfp_t mask)
958 {
959 	return clear_extent_bit(tree, start, end,
960 				EXTENT_DIRTY | EXTENT_DELALLOC |
961 				EXTENT_DO_ACCOUNTING, 0, 0,
962 				NULL, mask);
963 }
964 
965 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
966 		     gfp_t mask)
967 {
968 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
969 			      NULL, mask);
970 }
971 
972 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
973 		       gfp_t mask)
974 {
975 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
976 				NULL, mask);
977 }
978 
979 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
980 			gfp_t mask)
981 {
982 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
983 			      NULL, mask);
984 }
985 
986 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
987 				 u64 end, gfp_t mask)
988 {
989 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
990 				NULL, mask);
991 }
992 
993 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
994 {
995 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
996 }
997 
998 /*
999  * either insert or lock state struct between start and end use mask to tell
1000  * us if waiting is desired.
1001  */
1002 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1003 		     int bits, struct extent_state **cached_state, gfp_t mask)
1004 {
1005 	int err;
1006 	u64 failed_start;
1007 	while (1) {
1008 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1009 				     EXTENT_LOCKED, &failed_start,
1010 				     cached_state, mask);
1011 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
1012 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1013 			start = failed_start;
1014 		} else {
1015 			break;
1016 		}
1017 		WARN_ON(start > end);
1018 	}
1019 	return err;
1020 }
1021 
1022 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1023 {
1024 	return lock_extent_bits(tree, start, end, 0, NULL, mask);
1025 }
1026 
1027 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1028 		    gfp_t mask)
1029 {
1030 	int err;
1031 	u64 failed_start;
1032 
1033 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1034 			     &failed_start, NULL, mask);
1035 	if (err == -EEXIST) {
1036 		if (failed_start > start)
1037 			clear_extent_bit(tree, start, failed_start - 1,
1038 					 EXTENT_LOCKED, 1, 0, NULL, mask);
1039 		return 0;
1040 	}
1041 	return 1;
1042 }
1043 
1044 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1045 			 struct extent_state **cached, gfp_t mask)
1046 {
1047 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1048 				mask);
1049 }
1050 
1051 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1052 		  gfp_t mask)
1053 {
1054 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1055 				mask);
1056 }
1057 
1058 /*
1059  * helper function to set pages and extents in the tree dirty
1060  */
1061 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1062 {
1063 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1064 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1065 	struct page *page;
1066 
1067 	while (index <= end_index) {
1068 		page = find_get_page(tree->mapping, index);
1069 		BUG_ON(!page);
1070 		__set_page_dirty_nobuffers(page);
1071 		page_cache_release(page);
1072 		index++;
1073 	}
1074 	return 0;
1075 }
1076 
1077 /*
1078  * helper function to set both pages and extents in the tree writeback
1079  */
1080 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1081 {
1082 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1083 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1084 	struct page *page;
1085 
1086 	while (index <= end_index) {
1087 		page = find_get_page(tree->mapping, index);
1088 		BUG_ON(!page);
1089 		set_page_writeback(page);
1090 		page_cache_release(page);
1091 		index++;
1092 	}
1093 	return 0;
1094 }
1095 
1096 /*
1097  * find the first offset in the io tree with 'bits' set. zero is
1098  * returned if we find something, and *start_ret and *end_ret are
1099  * set to reflect the state struct that was found.
1100  *
1101  * If nothing was found, 1 is returned, < 0 on error
1102  */
1103 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1104 			  u64 *start_ret, u64 *end_ret, int bits)
1105 {
1106 	struct rb_node *node;
1107 	struct extent_state *state;
1108 	int ret = 1;
1109 
1110 	spin_lock(&tree->lock);
1111 	/*
1112 	 * this search will find all the extents that end after
1113 	 * our range starts.
1114 	 */
1115 	node = tree_search(tree, start);
1116 	if (!node)
1117 		goto out;
1118 
1119 	while (1) {
1120 		state = rb_entry(node, struct extent_state, rb_node);
1121 		if (state->end >= start && (state->state & bits)) {
1122 			*start_ret = state->start;
1123 			*end_ret = state->end;
1124 			ret = 0;
1125 			break;
1126 		}
1127 		node = rb_next(node);
1128 		if (!node)
1129 			break;
1130 	}
1131 out:
1132 	spin_unlock(&tree->lock);
1133 	return ret;
1134 }
1135 
1136 /* find the first state struct with 'bits' set after 'start', and
1137  * return it.  tree->lock must be held.  NULL will returned if
1138  * nothing was found after 'start'
1139  */
1140 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1141 						 u64 start, int bits)
1142 {
1143 	struct rb_node *node;
1144 	struct extent_state *state;
1145 
1146 	/*
1147 	 * this search will find all the extents that end after
1148 	 * our range starts.
1149 	 */
1150 	node = tree_search(tree, start);
1151 	if (!node)
1152 		goto out;
1153 
1154 	while (1) {
1155 		state = rb_entry(node, struct extent_state, rb_node);
1156 		if (state->end >= start && (state->state & bits))
1157 			return state;
1158 
1159 		node = rb_next(node);
1160 		if (!node)
1161 			break;
1162 	}
1163 out:
1164 	return NULL;
1165 }
1166 
1167 /*
1168  * find a contiguous range of bytes in the file marked as delalloc, not
1169  * more than 'max_bytes'.  start and end are used to return the range,
1170  *
1171  * 1 is returned if we find something, 0 if nothing was in the tree
1172  */
1173 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1174 					u64 *start, u64 *end, u64 max_bytes)
1175 {
1176 	struct rb_node *node;
1177 	struct extent_state *state;
1178 	u64 cur_start = *start;
1179 	u64 found = 0;
1180 	u64 total_bytes = 0;
1181 
1182 	spin_lock(&tree->lock);
1183 
1184 	/*
1185 	 * this search will find all the extents that end after
1186 	 * our range starts.
1187 	 */
1188 	node = tree_search(tree, cur_start);
1189 	if (!node) {
1190 		if (!found)
1191 			*end = (u64)-1;
1192 		goto out;
1193 	}
1194 
1195 	while (1) {
1196 		state = rb_entry(node, struct extent_state, rb_node);
1197 		if (found && (state->start != cur_start ||
1198 			      (state->state & EXTENT_BOUNDARY))) {
1199 			goto out;
1200 		}
1201 		if (!(state->state & EXTENT_DELALLOC)) {
1202 			if (!found)
1203 				*end = state->end;
1204 			goto out;
1205 		}
1206 		if (!found)
1207 			*start = state->start;
1208 		found++;
1209 		*end = state->end;
1210 		cur_start = state->end + 1;
1211 		node = rb_next(node);
1212 		if (!node)
1213 			break;
1214 		total_bytes += state->end - state->start + 1;
1215 		if (total_bytes >= max_bytes)
1216 			break;
1217 	}
1218 out:
1219 	spin_unlock(&tree->lock);
1220 	return found;
1221 }
1222 
1223 static noinline int __unlock_for_delalloc(struct inode *inode,
1224 					  struct page *locked_page,
1225 					  u64 start, u64 end)
1226 {
1227 	int ret;
1228 	struct page *pages[16];
1229 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1230 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1231 	unsigned long nr_pages = end_index - index + 1;
1232 	int i;
1233 
1234 	if (index == locked_page->index && end_index == index)
1235 		return 0;
1236 
1237 	while (nr_pages > 0) {
1238 		ret = find_get_pages_contig(inode->i_mapping, index,
1239 				     min_t(unsigned long, nr_pages,
1240 				     ARRAY_SIZE(pages)), pages);
1241 		for (i = 0; i < ret; i++) {
1242 			if (pages[i] != locked_page)
1243 				unlock_page(pages[i]);
1244 			page_cache_release(pages[i]);
1245 		}
1246 		nr_pages -= ret;
1247 		index += ret;
1248 		cond_resched();
1249 	}
1250 	return 0;
1251 }
1252 
1253 static noinline int lock_delalloc_pages(struct inode *inode,
1254 					struct page *locked_page,
1255 					u64 delalloc_start,
1256 					u64 delalloc_end)
1257 {
1258 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1259 	unsigned long start_index = index;
1260 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1261 	unsigned long pages_locked = 0;
1262 	struct page *pages[16];
1263 	unsigned long nrpages;
1264 	int ret;
1265 	int i;
1266 
1267 	/* the caller is responsible for locking the start index */
1268 	if (index == locked_page->index && index == end_index)
1269 		return 0;
1270 
1271 	/* skip the page at the start index */
1272 	nrpages = end_index - index + 1;
1273 	while (nrpages > 0) {
1274 		ret = find_get_pages_contig(inode->i_mapping, index,
1275 				     min_t(unsigned long,
1276 				     nrpages, ARRAY_SIZE(pages)), pages);
1277 		if (ret == 0) {
1278 			ret = -EAGAIN;
1279 			goto done;
1280 		}
1281 		/* now we have an array of pages, lock them all */
1282 		for (i = 0; i < ret; i++) {
1283 			/*
1284 			 * the caller is taking responsibility for
1285 			 * locked_page
1286 			 */
1287 			if (pages[i] != locked_page) {
1288 				lock_page(pages[i]);
1289 				if (!PageDirty(pages[i]) ||
1290 				    pages[i]->mapping != inode->i_mapping) {
1291 					ret = -EAGAIN;
1292 					unlock_page(pages[i]);
1293 					page_cache_release(pages[i]);
1294 					goto done;
1295 				}
1296 			}
1297 			page_cache_release(pages[i]);
1298 			pages_locked++;
1299 		}
1300 		nrpages -= ret;
1301 		index += ret;
1302 		cond_resched();
1303 	}
1304 	ret = 0;
1305 done:
1306 	if (ret && pages_locked) {
1307 		__unlock_for_delalloc(inode, locked_page,
1308 			      delalloc_start,
1309 			      ((u64)(start_index + pages_locked - 1)) <<
1310 			      PAGE_CACHE_SHIFT);
1311 	}
1312 	return ret;
1313 }
1314 
1315 /*
1316  * find a contiguous range of bytes in the file marked as delalloc, not
1317  * more than 'max_bytes'.  start and end are used to return the range,
1318  *
1319  * 1 is returned if we find something, 0 if nothing was in the tree
1320  */
1321 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1322 					     struct extent_io_tree *tree,
1323 					     struct page *locked_page,
1324 					     u64 *start, u64 *end,
1325 					     u64 max_bytes)
1326 {
1327 	u64 delalloc_start;
1328 	u64 delalloc_end;
1329 	u64 found;
1330 	struct extent_state *cached_state = NULL;
1331 	int ret;
1332 	int loops = 0;
1333 
1334 again:
1335 	/* step one, find a bunch of delalloc bytes starting at start */
1336 	delalloc_start = *start;
1337 	delalloc_end = 0;
1338 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1339 				    max_bytes);
1340 	if (!found || delalloc_end <= *start) {
1341 		*start = delalloc_start;
1342 		*end = delalloc_end;
1343 		return found;
1344 	}
1345 
1346 	/*
1347 	 * start comes from the offset of locked_page.  We have to lock
1348 	 * pages in order, so we can't process delalloc bytes before
1349 	 * locked_page
1350 	 */
1351 	if (delalloc_start < *start)
1352 		delalloc_start = *start;
1353 
1354 	/*
1355 	 * make sure to limit the number of pages we try to lock down
1356 	 * if we're looping.
1357 	 */
1358 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1359 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1360 
1361 	/* step two, lock all the pages after the page that has start */
1362 	ret = lock_delalloc_pages(inode, locked_page,
1363 				  delalloc_start, delalloc_end);
1364 	if (ret == -EAGAIN) {
1365 		/* some of the pages are gone, lets avoid looping by
1366 		 * shortening the size of the delalloc range we're searching
1367 		 */
1368 		free_extent_state(cached_state);
1369 		if (!loops) {
1370 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1371 			max_bytes = PAGE_CACHE_SIZE - offset;
1372 			loops = 1;
1373 			goto again;
1374 		} else {
1375 			found = 0;
1376 			goto out_failed;
1377 		}
1378 	}
1379 	BUG_ON(ret);
1380 
1381 	/* step three, lock the state bits for the whole range */
1382 	lock_extent_bits(tree, delalloc_start, delalloc_end,
1383 			 0, &cached_state, GFP_NOFS);
1384 
1385 	/* then test to make sure it is all still delalloc */
1386 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1387 			     EXTENT_DELALLOC, 1, cached_state);
1388 	if (!ret) {
1389 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1390 				     &cached_state, GFP_NOFS);
1391 		__unlock_for_delalloc(inode, locked_page,
1392 			      delalloc_start, delalloc_end);
1393 		cond_resched();
1394 		goto again;
1395 	}
1396 	free_extent_state(cached_state);
1397 	*start = delalloc_start;
1398 	*end = delalloc_end;
1399 out_failed:
1400 	return found;
1401 }
1402 
1403 int extent_clear_unlock_delalloc(struct inode *inode,
1404 				struct extent_io_tree *tree,
1405 				u64 start, u64 end, struct page *locked_page,
1406 				unsigned long op)
1407 {
1408 	int ret;
1409 	struct page *pages[16];
1410 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1411 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1412 	unsigned long nr_pages = end_index - index + 1;
1413 	int i;
1414 	int clear_bits = 0;
1415 
1416 	if (op & EXTENT_CLEAR_UNLOCK)
1417 		clear_bits |= EXTENT_LOCKED;
1418 	if (op & EXTENT_CLEAR_DIRTY)
1419 		clear_bits |= EXTENT_DIRTY;
1420 
1421 	if (op & EXTENT_CLEAR_DELALLOC)
1422 		clear_bits |= EXTENT_DELALLOC;
1423 
1424 	if (op & EXTENT_CLEAR_ACCOUNTING)
1425 		clear_bits |= EXTENT_DO_ACCOUNTING;
1426 
1427 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1428 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1429 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1430 		    EXTENT_SET_PRIVATE2)))
1431 		return 0;
1432 
1433 	while (nr_pages > 0) {
1434 		ret = find_get_pages_contig(inode->i_mapping, index,
1435 				     min_t(unsigned long,
1436 				     nr_pages, ARRAY_SIZE(pages)), pages);
1437 		for (i = 0; i < ret; i++) {
1438 
1439 			if (op & EXTENT_SET_PRIVATE2)
1440 				SetPagePrivate2(pages[i]);
1441 
1442 			if (pages[i] == locked_page) {
1443 				page_cache_release(pages[i]);
1444 				continue;
1445 			}
1446 			if (op & EXTENT_CLEAR_DIRTY)
1447 				clear_page_dirty_for_io(pages[i]);
1448 			if (op & EXTENT_SET_WRITEBACK)
1449 				set_page_writeback(pages[i]);
1450 			if (op & EXTENT_END_WRITEBACK)
1451 				end_page_writeback(pages[i]);
1452 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1453 				unlock_page(pages[i]);
1454 			page_cache_release(pages[i]);
1455 		}
1456 		nr_pages -= ret;
1457 		index += ret;
1458 		cond_resched();
1459 	}
1460 	return 0;
1461 }
1462 
1463 /*
1464  * count the number of bytes in the tree that have a given bit(s)
1465  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1466  * cached.  The total number found is returned.
1467  */
1468 u64 count_range_bits(struct extent_io_tree *tree,
1469 		     u64 *start, u64 search_end, u64 max_bytes,
1470 		     unsigned long bits)
1471 {
1472 	struct rb_node *node;
1473 	struct extent_state *state;
1474 	u64 cur_start = *start;
1475 	u64 total_bytes = 0;
1476 	int found = 0;
1477 
1478 	if (search_end <= cur_start) {
1479 		WARN_ON(1);
1480 		return 0;
1481 	}
1482 
1483 	spin_lock(&tree->lock);
1484 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1485 		total_bytes = tree->dirty_bytes;
1486 		goto out;
1487 	}
1488 	/*
1489 	 * this search will find all the extents that end after
1490 	 * our range starts.
1491 	 */
1492 	node = tree_search(tree, cur_start);
1493 	if (!node)
1494 		goto out;
1495 
1496 	while (1) {
1497 		state = rb_entry(node, struct extent_state, rb_node);
1498 		if (state->start > search_end)
1499 			break;
1500 		if (state->end >= cur_start && (state->state & bits)) {
1501 			total_bytes += min(search_end, state->end) + 1 -
1502 				       max(cur_start, state->start);
1503 			if (total_bytes >= max_bytes)
1504 				break;
1505 			if (!found) {
1506 				*start = state->start;
1507 				found = 1;
1508 			}
1509 		}
1510 		node = rb_next(node);
1511 		if (!node)
1512 			break;
1513 	}
1514 out:
1515 	spin_unlock(&tree->lock);
1516 	return total_bytes;
1517 }
1518 
1519 /*
1520  * set the private field for a given byte offset in the tree.  If there isn't
1521  * an extent_state there already, this does nothing.
1522  */
1523 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1524 {
1525 	struct rb_node *node;
1526 	struct extent_state *state;
1527 	int ret = 0;
1528 
1529 	spin_lock(&tree->lock);
1530 	/*
1531 	 * this search will find all the extents that end after
1532 	 * our range starts.
1533 	 */
1534 	node = tree_search(tree, start);
1535 	if (!node) {
1536 		ret = -ENOENT;
1537 		goto out;
1538 	}
1539 	state = rb_entry(node, struct extent_state, rb_node);
1540 	if (state->start != start) {
1541 		ret = -ENOENT;
1542 		goto out;
1543 	}
1544 	state->private = private;
1545 out:
1546 	spin_unlock(&tree->lock);
1547 	return ret;
1548 }
1549 
1550 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1551 {
1552 	struct rb_node *node;
1553 	struct extent_state *state;
1554 	int ret = 0;
1555 
1556 	spin_lock(&tree->lock);
1557 	/*
1558 	 * this search will find all the extents that end after
1559 	 * our range starts.
1560 	 */
1561 	node = tree_search(tree, start);
1562 	if (!node) {
1563 		ret = -ENOENT;
1564 		goto out;
1565 	}
1566 	state = rb_entry(node, struct extent_state, rb_node);
1567 	if (state->start != start) {
1568 		ret = -ENOENT;
1569 		goto out;
1570 	}
1571 	*private = state->private;
1572 out:
1573 	spin_unlock(&tree->lock);
1574 	return ret;
1575 }
1576 
1577 /*
1578  * searches a range in the state tree for a given mask.
1579  * If 'filled' == 1, this returns 1 only if every extent in the tree
1580  * has the bits set.  Otherwise, 1 is returned if any bit in the
1581  * range is found set.
1582  */
1583 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1584 		   int bits, int filled, struct extent_state *cached)
1585 {
1586 	struct extent_state *state = NULL;
1587 	struct rb_node *node;
1588 	int bitset = 0;
1589 
1590 	spin_lock(&tree->lock);
1591 	if (cached && cached->tree && cached->start == start)
1592 		node = &cached->rb_node;
1593 	else
1594 		node = tree_search(tree, start);
1595 	while (node && start <= end) {
1596 		state = rb_entry(node, struct extent_state, rb_node);
1597 
1598 		if (filled && state->start > start) {
1599 			bitset = 0;
1600 			break;
1601 		}
1602 
1603 		if (state->start > end)
1604 			break;
1605 
1606 		if (state->state & bits) {
1607 			bitset = 1;
1608 			if (!filled)
1609 				break;
1610 		} else if (filled) {
1611 			bitset = 0;
1612 			break;
1613 		}
1614 
1615 		if (state->end == (u64)-1)
1616 			break;
1617 
1618 		start = state->end + 1;
1619 		if (start > end)
1620 			break;
1621 		node = rb_next(node);
1622 		if (!node) {
1623 			if (filled)
1624 				bitset = 0;
1625 			break;
1626 		}
1627 	}
1628 	spin_unlock(&tree->lock);
1629 	return bitset;
1630 }
1631 
1632 /*
1633  * helper function to set a given page up to date if all the
1634  * extents in the tree for that page are up to date
1635  */
1636 static int check_page_uptodate(struct extent_io_tree *tree,
1637 			       struct page *page)
1638 {
1639 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1640 	u64 end = start + PAGE_CACHE_SIZE - 1;
1641 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1642 		SetPageUptodate(page);
1643 	return 0;
1644 }
1645 
1646 /*
1647  * helper function to unlock a page if all the extents in the tree
1648  * for that page are unlocked
1649  */
1650 static int check_page_locked(struct extent_io_tree *tree,
1651 			     struct page *page)
1652 {
1653 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1654 	u64 end = start + PAGE_CACHE_SIZE - 1;
1655 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1656 		unlock_page(page);
1657 	return 0;
1658 }
1659 
1660 /*
1661  * helper function to end page writeback if all the extents
1662  * in the tree for that page are done with writeback
1663  */
1664 static int check_page_writeback(struct extent_io_tree *tree,
1665 			     struct page *page)
1666 {
1667 	end_page_writeback(page);
1668 	return 0;
1669 }
1670 
1671 /* lots and lots of room for performance fixes in the end_bio funcs */
1672 
1673 /*
1674  * after a writepage IO is done, we need to:
1675  * clear the uptodate bits on error
1676  * clear the writeback bits in the extent tree for this IO
1677  * end_page_writeback if the page has no more pending IO
1678  *
1679  * Scheduling is not allowed, so the extent state tree is expected
1680  * to have one and only one object corresponding to this IO.
1681  */
1682 static void end_bio_extent_writepage(struct bio *bio, int err)
1683 {
1684 	int uptodate = err == 0;
1685 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1686 	struct extent_io_tree *tree;
1687 	u64 start;
1688 	u64 end;
1689 	int whole_page;
1690 	int ret;
1691 
1692 	do {
1693 		struct page *page = bvec->bv_page;
1694 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1695 
1696 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1697 			 bvec->bv_offset;
1698 		end = start + bvec->bv_len - 1;
1699 
1700 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1701 			whole_page = 1;
1702 		else
1703 			whole_page = 0;
1704 
1705 		if (--bvec >= bio->bi_io_vec)
1706 			prefetchw(&bvec->bv_page->flags);
1707 		if (tree->ops && tree->ops->writepage_end_io_hook) {
1708 			ret = tree->ops->writepage_end_io_hook(page, start,
1709 						       end, NULL, uptodate);
1710 			if (ret)
1711 				uptodate = 0;
1712 		}
1713 
1714 		if (!uptodate && tree->ops &&
1715 		    tree->ops->writepage_io_failed_hook) {
1716 			ret = tree->ops->writepage_io_failed_hook(bio, page,
1717 							 start, end, NULL);
1718 			if (ret == 0) {
1719 				uptodate = (err == 0);
1720 				continue;
1721 			}
1722 		}
1723 
1724 		if (!uptodate) {
1725 			clear_extent_uptodate(tree, start, end, GFP_NOFS);
1726 			ClearPageUptodate(page);
1727 			SetPageError(page);
1728 		}
1729 
1730 		if (whole_page)
1731 			end_page_writeback(page);
1732 		else
1733 			check_page_writeback(tree, page);
1734 	} while (bvec >= bio->bi_io_vec);
1735 
1736 	bio_put(bio);
1737 }
1738 
1739 /*
1740  * after a readpage IO is done, we need to:
1741  * clear the uptodate bits on error
1742  * set the uptodate bits if things worked
1743  * set the page up to date if all extents in the tree are uptodate
1744  * clear the lock bit in the extent tree
1745  * unlock the page if there are no other extents locked for it
1746  *
1747  * Scheduling is not allowed, so the extent state tree is expected
1748  * to have one and only one object corresponding to this IO.
1749  */
1750 static void end_bio_extent_readpage(struct bio *bio, int err)
1751 {
1752 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1753 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1754 	struct extent_io_tree *tree;
1755 	u64 start;
1756 	u64 end;
1757 	int whole_page;
1758 	int ret;
1759 
1760 	if (err)
1761 		uptodate = 0;
1762 
1763 	do {
1764 		struct page *page = bvec->bv_page;
1765 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1766 
1767 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1768 			bvec->bv_offset;
1769 		end = start + bvec->bv_len - 1;
1770 
1771 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1772 			whole_page = 1;
1773 		else
1774 			whole_page = 0;
1775 
1776 		if (--bvec >= bio->bi_io_vec)
1777 			prefetchw(&bvec->bv_page->flags);
1778 
1779 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1780 			ret = tree->ops->readpage_end_io_hook(page, start, end,
1781 							      NULL);
1782 			if (ret)
1783 				uptodate = 0;
1784 		}
1785 		if (!uptodate && tree->ops &&
1786 		    tree->ops->readpage_io_failed_hook) {
1787 			ret = tree->ops->readpage_io_failed_hook(bio, page,
1788 							 start, end, NULL);
1789 			if (ret == 0) {
1790 				uptodate =
1791 					test_bit(BIO_UPTODATE, &bio->bi_flags);
1792 				if (err)
1793 					uptodate = 0;
1794 				continue;
1795 			}
1796 		}
1797 
1798 		if (uptodate) {
1799 			set_extent_uptodate(tree, start, end,
1800 					    GFP_ATOMIC);
1801 		}
1802 		unlock_extent(tree, start, end, GFP_ATOMIC);
1803 
1804 		if (whole_page) {
1805 			if (uptodate) {
1806 				SetPageUptodate(page);
1807 			} else {
1808 				ClearPageUptodate(page);
1809 				SetPageError(page);
1810 			}
1811 			unlock_page(page);
1812 		} else {
1813 			if (uptodate) {
1814 				check_page_uptodate(tree, page);
1815 			} else {
1816 				ClearPageUptodate(page);
1817 				SetPageError(page);
1818 			}
1819 			check_page_locked(tree, page);
1820 		}
1821 	} while (bvec >= bio->bi_io_vec);
1822 
1823 	bio_put(bio);
1824 }
1825 
1826 /*
1827  * IO done from prepare_write is pretty simple, we just unlock
1828  * the structs in the extent tree when done, and set the uptodate bits
1829  * as appropriate.
1830  */
1831 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1832 {
1833 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1834 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1835 	struct extent_io_tree *tree;
1836 	u64 start;
1837 	u64 end;
1838 
1839 	do {
1840 		struct page *page = bvec->bv_page;
1841 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1842 
1843 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1844 			bvec->bv_offset;
1845 		end = start + bvec->bv_len - 1;
1846 
1847 		if (--bvec >= bio->bi_io_vec)
1848 			prefetchw(&bvec->bv_page->flags);
1849 
1850 		if (uptodate) {
1851 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1852 		} else {
1853 			ClearPageUptodate(page);
1854 			SetPageError(page);
1855 		}
1856 
1857 		unlock_extent(tree, start, end, GFP_ATOMIC);
1858 
1859 	} while (bvec >= bio->bi_io_vec);
1860 
1861 	bio_put(bio);
1862 }
1863 
1864 static struct bio *
1865 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1866 		 gfp_t gfp_flags)
1867 {
1868 	struct bio *bio;
1869 
1870 	bio = bio_alloc(gfp_flags, nr_vecs);
1871 
1872 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1873 		while (!bio && (nr_vecs /= 2))
1874 			bio = bio_alloc(gfp_flags, nr_vecs);
1875 	}
1876 
1877 	if (bio) {
1878 		bio->bi_size = 0;
1879 		bio->bi_bdev = bdev;
1880 		bio->bi_sector = first_sector;
1881 	}
1882 	return bio;
1883 }
1884 
1885 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1886 			  unsigned long bio_flags)
1887 {
1888 	int ret = 0;
1889 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1890 	struct page *page = bvec->bv_page;
1891 	struct extent_io_tree *tree = bio->bi_private;
1892 	u64 start;
1893 	u64 end;
1894 
1895 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1896 	end = start + bvec->bv_len - 1;
1897 
1898 	bio->bi_private = NULL;
1899 
1900 	bio_get(bio);
1901 
1902 	if (tree->ops && tree->ops->submit_bio_hook)
1903 		tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1904 					   mirror_num, bio_flags);
1905 	else
1906 		submit_bio(rw, bio);
1907 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1908 		ret = -EOPNOTSUPP;
1909 	bio_put(bio);
1910 	return ret;
1911 }
1912 
1913 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1914 			      struct page *page, sector_t sector,
1915 			      size_t size, unsigned long offset,
1916 			      struct block_device *bdev,
1917 			      struct bio **bio_ret,
1918 			      unsigned long max_pages,
1919 			      bio_end_io_t end_io_func,
1920 			      int mirror_num,
1921 			      unsigned long prev_bio_flags,
1922 			      unsigned long bio_flags)
1923 {
1924 	int ret = 0;
1925 	struct bio *bio;
1926 	int nr;
1927 	int contig = 0;
1928 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1929 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1930 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1931 
1932 	if (bio_ret && *bio_ret) {
1933 		bio = *bio_ret;
1934 		if (old_compressed)
1935 			contig = bio->bi_sector == sector;
1936 		else
1937 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
1938 				sector;
1939 
1940 		if (prev_bio_flags != bio_flags || !contig ||
1941 		    (tree->ops && tree->ops->merge_bio_hook &&
1942 		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1943 					       bio_flags)) ||
1944 		    bio_add_page(bio, page, page_size, offset) < page_size) {
1945 			ret = submit_one_bio(rw, bio, mirror_num,
1946 					     prev_bio_flags);
1947 			bio = NULL;
1948 		} else {
1949 			return 0;
1950 		}
1951 	}
1952 	if (this_compressed)
1953 		nr = BIO_MAX_PAGES;
1954 	else
1955 		nr = bio_get_nr_vecs(bdev);
1956 
1957 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1958 
1959 	bio_add_page(bio, page, page_size, offset);
1960 	bio->bi_end_io = end_io_func;
1961 	bio->bi_private = tree;
1962 
1963 	if (bio_ret)
1964 		*bio_ret = bio;
1965 	else
1966 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1967 
1968 	return ret;
1969 }
1970 
1971 void set_page_extent_mapped(struct page *page)
1972 {
1973 	if (!PagePrivate(page)) {
1974 		SetPagePrivate(page);
1975 		page_cache_get(page);
1976 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1977 	}
1978 }
1979 
1980 static void set_page_extent_head(struct page *page, unsigned long len)
1981 {
1982 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1983 }
1984 
1985 /*
1986  * basic readpage implementation.  Locked extent state structs are inserted
1987  * into the tree that are removed when the IO is done (by the end_io
1988  * handlers)
1989  */
1990 static int __extent_read_full_page(struct extent_io_tree *tree,
1991 				   struct page *page,
1992 				   get_extent_t *get_extent,
1993 				   struct bio **bio, int mirror_num,
1994 				   unsigned long *bio_flags)
1995 {
1996 	struct inode *inode = page->mapping->host;
1997 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1998 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1999 	u64 end;
2000 	u64 cur = start;
2001 	u64 extent_offset;
2002 	u64 last_byte = i_size_read(inode);
2003 	u64 block_start;
2004 	u64 cur_end;
2005 	sector_t sector;
2006 	struct extent_map *em;
2007 	struct block_device *bdev;
2008 	int ret;
2009 	int nr = 0;
2010 	size_t page_offset = 0;
2011 	size_t iosize;
2012 	size_t disk_io_size;
2013 	size_t blocksize = inode->i_sb->s_blocksize;
2014 	unsigned long this_bio_flag = 0;
2015 
2016 	set_page_extent_mapped(page);
2017 
2018 	end = page_end;
2019 	lock_extent(tree, start, end, GFP_NOFS);
2020 
2021 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2022 		char *userpage;
2023 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2024 
2025 		if (zero_offset) {
2026 			iosize = PAGE_CACHE_SIZE - zero_offset;
2027 			userpage = kmap_atomic(page, KM_USER0);
2028 			memset(userpage + zero_offset, 0, iosize);
2029 			flush_dcache_page(page);
2030 			kunmap_atomic(userpage, KM_USER0);
2031 		}
2032 	}
2033 	while (cur <= end) {
2034 		if (cur >= last_byte) {
2035 			char *userpage;
2036 			iosize = PAGE_CACHE_SIZE - page_offset;
2037 			userpage = kmap_atomic(page, KM_USER0);
2038 			memset(userpage + page_offset, 0, iosize);
2039 			flush_dcache_page(page);
2040 			kunmap_atomic(userpage, KM_USER0);
2041 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2042 					    GFP_NOFS);
2043 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2044 			break;
2045 		}
2046 		em = get_extent(inode, page, page_offset, cur,
2047 				end - cur + 1, 0);
2048 		if (IS_ERR(em) || !em) {
2049 			SetPageError(page);
2050 			unlock_extent(tree, cur, end, GFP_NOFS);
2051 			break;
2052 		}
2053 		extent_offset = cur - em->start;
2054 		BUG_ON(extent_map_end(em) <= cur);
2055 		BUG_ON(end < cur);
2056 
2057 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2058 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2059 
2060 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2061 		cur_end = min(extent_map_end(em) - 1, end);
2062 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2063 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2064 			disk_io_size = em->block_len;
2065 			sector = em->block_start >> 9;
2066 		} else {
2067 			sector = (em->block_start + extent_offset) >> 9;
2068 			disk_io_size = iosize;
2069 		}
2070 		bdev = em->bdev;
2071 		block_start = em->block_start;
2072 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2073 			block_start = EXTENT_MAP_HOLE;
2074 		free_extent_map(em);
2075 		em = NULL;
2076 
2077 		/* we've found a hole, just zero and go on */
2078 		if (block_start == EXTENT_MAP_HOLE) {
2079 			char *userpage;
2080 			userpage = kmap_atomic(page, KM_USER0);
2081 			memset(userpage + page_offset, 0, iosize);
2082 			flush_dcache_page(page);
2083 			kunmap_atomic(userpage, KM_USER0);
2084 
2085 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2086 					    GFP_NOFS);
2087 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2088 			cur = cur + iosize;
2089 			page_offset += iosize;
2090 			continue;
2091 		}
2092 		/* the get_extent function already copied into the page */
2093 		if (test_range_bit(tree, cur, cur_end,
2094 				   EXTENT_UPTODATE, 1, NULL)) {
2095 			check_page_uptodate(tree, page);
2096 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2097 			cur = cur + iosize;
2098 			page_offset += iosize;
2099 			continue;
2100 		}
2101 		/* we have an inline extent but it didn't get marked up
2102 		 * to date.  Error out
2103 		 */
2104 		if (block_start == EXTENT_MAP_INLINE) {
2105 			SetPageError(page);
2106 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2107 			cur = cur + iosize;
2108 			page_offset += iosize;
2109 			continue;
2110 		}
2111 
2112 		ret = 0;
2113 		if (tree->ops && tree->ops->readpage_io_hook) {
2114 			ret = tree->ops->readpage_io_hook(page, cur,
2115 							  cur + iosize - 1);
2116 		}
2117 		if (!ret) {
2118 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2119 			pnr -= page->index;
2120 			ret = submit_extent_page(READ, tree, page,
2121 					 sector, disk_io_size, page_offset,
2122 					 bdev, bio, pnr,
2123 					 end_bio_extent_readpage, mirror_num,
2124 					 *bio_flags,
2125 					 this_bio_flag);
2126 			nr++;
2127 			*bio_flags = this_bio_flag;
2128 		}
2129 		if (ret)
2130 			SetPageError(page);
2131 		cur = cur + iosize;
2132 		page_offset += iosize;
2133 	}
2134 	if (!nr) {
2135 		if (!PageError(page))
2136 			SetPageUptodate(page);
2137 		unlock_page(page);
2138 	}
2139 	return 0;
2140 }
2141 
2142 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2143 			    get_extent_t *get_extent)
2144 {
2145 	struct bio *bio = NULL;
2146 	unsigned long bio_flags = 0;
2147 	int ret;
2148 
2149 	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2150 				      &bio_flags);
2151 	if (bio)
2152 		submit_one_bio(READ, bio, 0, bio_flags);
2153 	return ret;
2154 }
2155 
2156 static noinline void update_nr_written(struct page *page,
2157 				      struct writeback_control *wbc,
2158 				      unsigned long nr_written)
2159 {
2160 	wbc->nr_to_write -= nr_written;
2161 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2162 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2163 		page->mapping->writeback_index = page->index + nr_written;
2164 }
2165 
2166 /*
2167  * the writepage semantics are similar to regular writepage.  extent
2168  * records are inserted to lock ranges in the tree, and as dirty areas
2169  * are found, they are marked writeback.  Then the lock bits are removed
2170  * and the end_io handler clears the writeback ranges
2171  */
2172 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2173 			      void *data)
2174 {
2175 	struct inode *inode = page->mapping->host;
2176 	struct extent_page_data *epd = data;
2177 	struct extent_io_tree *tree = epd->tree;
2178 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2179 	u64 delalloc_start;
2180 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2181 	u64 end;
2182 	u64 cur = start;
2183 	u64 extent_offset;
2184 	u64 last_byte = i_size_read(inode);
2185 	u64 block_start;
2186 	u64 iosize;
2187 	u64 unlock_start;
2188 	sector_t sector;
2189 	struct extent_state *cached_state = NULL;
2190 	struct extent_map *em;
2191 	struct block_device *bdev;
2192 	int ret;
2193 	int nr = 0;
2194 	size_t pg_offset = 0;
2195 	size_t blocksize;
2196 	loff_t i_size = i_size_read(inode);
2197 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2198 	u64 nr_delalloc;
2199 	u64 delalloc_end;
2200 	int page_started;
2201 	int compressed;
2202 	int write_flags;
2203 	unsigned long nr_written = 0;
2204 
2205 	if (wbc->sync_mode == WB_SYNC_ALL)
2206 		write_flags = WRITE_SYNC_PLUG;
2207 	else
2208 		write_flags = WRITE;
2209 
2210 	WARN_ON(!PageLocked(page));
2211 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2212 	if (page->index > end_index ||
2213 	   (page->index == end_index && !pg_offset)) {
2214 		page->mapping->a_ops->invalidatepage(page, 0);
2215 		unlock_page(page);
2216 		return 0;
2217 	}
2218 
2219 	if (page->index == end_index) {
2220 		char *userpage;
2221 
2222 		userpage = kmap_atomic(page, KM_USER0);
2223 		memset(userpage + pg_offset, 0,
2224 		       PAGE_CACHE_SIZE - pg_offset);
2225 		kunmap_atomic(userpage, KM_USER0);
2226 		flush_dcache_page(page);
2227 	}
2228 	pg_offset = 0;
2229 
2230 	set_page_extent_mapped(page);
2231 
2232 	delalloc_start = start;
2233 	delalloc_end = 0;
2234 	page_started = 0;
2235 	if (!epd->extent_locked) {
2236 		u64 delalloc_to_write = 0;
2237 		/*
2238 		 * make sure the wbc mapping index is at least updated
2239 		 * to this page.
2240 		 */
2241 		update_nr_written(page, wbc, 0);
2242 
2243 		while (delalloc_end < page_end) {
2244 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2245 						       page,
2246 						       &delalloc_start,
2247 						       &delalloc_end,
2248 						       128 * 1024 * 1024);
2249 			if (nr_delalloc == 0) {
2250 				delalloc_start = delalloc_end + 1;
2251 				continue;
2252 			}
2253 			tree->ops->fill_delalloc(inode, page, delalloc_start,
2254 						 delalloc_end, &page_started,
2255 						 &nr_written);
2256 			/*
2257 			 * delalloc_end is already one less than the total
2258 			 * length, so we don't subtract one from
2259 			 * PAGE_CACHE_SIZE
2260 			 */
2261 			delalloc_to_write += (delalloc_end - delalloc_start +
2262 					      PAGE_CACHE_SIZE) >>
2263 					      PAGE_CACHE_SHIFT;
2264 			delalloc_start = delalloc_end + 1;
2265 		}
2266 		if (wbc->nr_to_write < delalloc_to_write) {
2267 			int thresh = 8192;
2268 
2269 			if (delalloc_to_write < thresh * 2)
2270 				thresh = delalloc_to_write;
2271 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2272 						 thresh);
2273 		}
2274 
2275 		/* did the fill delalloc function already unlock and start
2276 		 * the IO?
2277 		 */
2278 		if (page_started) {
2279 			ret = 0;
2280 			/*
2281 			 * we've unlocked the page, so we can't update
2282 			 * the mapping's writeback index, just update
2283 			 * nr_to_write.
2284 			 */
2285 			wbc->nr_to_write -= nr_written;
2286 			goto done_unlocked;
2287 		}
2288 	}
2289 	if (tree->ops && tree->ops->writepage_start_hook) {
2290 		ret = tree->ops->writepage_start_hook(page, start,
2291 						      page_end);
2292 		if (ret == -EAGAIN) {
2293 			redirty_page_for_writepage(wbc, page);
2294 			update_nr_written(page, wbc, nr_written);
2295 			unlock_page(page);
2296 			ret = 0;
2297 			goto done_unlocked;
2298 		}
2299 	}
2300 
2301 	/*
2302 	 * we don't want to touch the inode after unlocking the page,
2303 	 * so we update the mapping writeback index now
2304 	 */
2305 	update_nr_written(page, wbc, nr_written + 1);
2306 
2307 	end = page_end;
2308 	if (last_byte <= start) {
2309 		if (tree->ops && tree->ops->writepage_end_io_hook)
2310 			tree->ops->writepage_end_io_hook(page, start,
2311 							 page_end, NULL, 1);
2312 		unlock_start = page_end + 1;
2313 		goto done;
2314 	}
2315 
2316 	blocksize = inode->i_sb->s_blocksize;
2317 
2318 	while (cur <= end) {
2319 		if (cur >= last_byte) {
2320 			if (tree->ops && tree->ops->writepage_end_io_hook)
2321 				tree->ops->writepage_end_io_hook(page, cur,
2322 							 page_end, NULL, 1);
2323 			unlock_start = page_end + 1;
2324 			break;
2325 		}
2326 		em = epd->get_extent(inode, page, pg_offset, cur,
2327 				     end - cur + 1, 1);
2328 		if (IS_ERR(em) || !em) {
2329 			SetPageError(page);
2330 			break;
2331 		}
2332 
2333 		extent_offset = cur - em->start;
2334 		BUG_ON(extent_map_end(em) <= cur);
2335 		BUG_ON(end < cur);
2336 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2337 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2338 		sector = (em->block_start + extent_offset) >> 9;
2339 		bdev = em->bdev;
2340 		block_start = em->block_start;
2341 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2342 		free_extent_map(em);
2343 		em = NULL;
2344 
2345 		/*
2346 		 * compressed and inline extents are written through other
2347 		 * paths in the FS
2348 		 */
2349 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2350 		    block_start == EXTENT_MAP_INLINE) {
2351 			/*
2352 			 * end_io notification does not happen here for
2353 			 * compressed extents
2354 			 */
2355 			if (!compressed && tree->ops &&
2356 			    tree->ops->writepage_end_io_hook)
2357 				tree->ops->writepage_end_io_hook(page, cur,
2358 							 cur + iosize - 1,
2359 							 NULL, 1);
2360 			else if (compressed) {
2361 				/* we don't want to end_page_writeback on
2362 				 * a compressed extent.  this happens
2363 				 * elsewhere
2364 				 */
2365 				nr++;
2366 			}
2367 
2368 			cur += iosize;
2369 			pg_offset += iosize;
2370 			unlock_start = cur;
2371 			continue;
2372 		}
2373 		/* leave this out until we have a page_mkwrite call */
2374 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2375 				   EXTENT_DIRTY, 0, NULL)) {
2376 			cur = cur + iosize;
2377 			pg_offset += iosize;
2378 			continue;
2379 		}
2380 
2381 		if (tree->ops && tree->ops->writepage_io_hook) {
2382 			ret = tree->ops->writepage_io_hook(page, cur,
2383 						cur + iosize - 1);
2384 		} else {
2385 			ret = 0;
2386 		}
2387 		if (ret) {
2388 			SetPageError(page);
2389 		} else {
2390 			unsigned long max_nr = end_index + 1;
2391 
2392 			set_range_writeback(tree, cur, cur + iosize - 1);
2393 			if (!PageWriteback(page)) {
2394 				printk(KERN_ERR "btrfs warning page %lu not "
2395 				       "writeback, cur %llu end %llu\n",
2396 				       page->index, (unsigned long long)cur,
2397 				       (unsigned long long)end);
2398 			}
2399 
2400 			ret = submit_extent_page(write_flags, tree, page,
2401 						 sector, iosize, pg_offset,
2402 						 bdev, &epd->bio, max_nr,
2403 						 end_bio_extent_writepage,
2404 						 0, 0, 0);
2405 			if (ret)
2406 				SetPageError(page);
2407 		}
2408 		cur = cur + iosize;
2409 		pg_offset += iosize;
2410 		nr++;
2411 	}
2412 done:
2413 	if (nr == 0) {
2414 		/* make sure the mapping tag for page dirty gets cleared */
2415 		set_page_writeback(page);
2416 		end_page_writeback(page);
2417 	}
2418 	unlock_page(page);
2419 
2420 done_unlocked:
2421 
2422 	/* drop our reference on any cached states */
2423 	free_extent_state(cached_state);
2424 	return 0;
2425 }
2426 
2427 /**
2428  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2429  * @mapping: address space structure to write
2430  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2431  * @writepage: function called for each page
2432  * @data: data passed to writepage function
2433  *
2434  * If a page is already under I/O, write_cache_pages() skips it, even
2435  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2436  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2437  * and msync() need to guarantee that all the data which was dirty at the time
2438  * the call was made get new I/O started against them.  If wbc->sync_mode is
2439  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2440  * existing IO to complete.
2441  */
2442 static int extent_write_cache_pages(struct extent_io_tree *tree,
2443 			     struct address_space *mapping,
2444 			     struct writeback_control *wbc,
2445 			     writepage_t writepage, void *data,
2446 			     void (*flush_fn)(void *))
2447 {
2448 	int ret = 0;
2449 	int done = 0;
2450 	int nr_to_write_done = 0;
2451 	struct pagevec pvec;
2452 	int nr_pages;
2453 	pgoff_t index;
2454 	pgoff_t end;		/* Inclusive */
2455 	int scanned = 0;
2456 	int range_whole = 0;
2457 
2458 	pagevec_init(&pvec, 0);
2459 	if (wbc->range_cyclic) {
2460 		index = mapping->writeback_index; /* Start from prev offset */
2461 		end = -1;
2462 	} else {
2463 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2464 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2465 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2466 			range_whole = 1;
2467 		scanned = 1;
2468 	}
2469 retry:
2470 	while (!done && !nr_to_write_done && (index <= end) &&
2471 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2472 			      PAGECACHE_TAG_DIRTY, min(end - index,
2473 				  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2474 		unsigned i;
2475 
2476 		scanned = 1;
2477 		for (i = 0; i < nr_pages; i++) {
2478 			struct page *page = pvec.pages[i];
2479 
2480 			/*
2481 			 * At this point we hold neither mapping->tree_lock nor
2482 			 * lock on the page itself: the page may be truncated or
2483 			 * invalidated (changing page->mapping to NULL), or even
2484 			 * swizzled back from swapper_space to tmpfs file
2485 			 * mapping
2486 			 */
2487 			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2488 				tree->ops->write_cache_pages_lock_hook(page);
2489 			else
2490 				lock_page(page);
2491 
2492 			if (unlikely(page->mapping != mapping)) {
2493 				unlock_page(page);
2494 				continue;
2495 			}
2496 
2497 			if (!wbc->range_cyclic && page->index > end) {
2498 				done = 1;
2499 				unlock_page(page);
2500 				continue;
2501 			}
2502 
2503 			if (wbc->sync_mode != WB_SYNC_NONE) {
2504 				if (PageWriteback(page))
2505 					flush_fn(data);
2506 				wait_on_page_writeback(page);
2507 			}
2508 
2509 			if (PageWriteback(page) ||
2510 			    !clear_page_dirty_for_io(page)) {
2511 				unlock_page(page);
2512 				continue;
2513 			}
2514 
2515 			ret = (*writepage)(page, wbc, data);
2516 
2517 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2518 				unlock_page(page);
2519 				ret = 0;
2520 			}
2521 			if (ret)
2522 				done = 1;
2523 
2524 			/*
2525 			 * the filesystem may choose to bump up nr_to_write.
2526 			 * We have to make sure to honor the new nr_to_write
2527 			 * at any time
2528 			 */
2529 			nr_to_write_done = wbc->nr_to_write <= 0;
2530 		}
2531 		pagevec_release(&pvec);
2532 		cond_resched();
2533 	}
2534 	if (!scanned && !done) {
2535 		/*
2536 		 * We hit the last page and there is more work to be done: wrap
2537 		 * back to the start of the file
2538 		 */
2539 		scanned = 1;
2540 		index = 0;
2541 		goto retry;
2542 	}
2543 	return ret;
2544 }
2545 
2546 static void flush_epd_write_bio(struct extent_page_data *epd)
2547 {
2548 	if (epd->bio) {
2549 		if (epd->sync_io)
2550 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2551 		else
2552 			submit_one_bio(WRITE, epd->bio, 0, 0);
2553 		epd->bio = NULL;
2554 	}
2555 }
2556 
2557 static noinline void flush_write_bio(void *data)
2558 {
2559 	struct extent_page_data *epd = data;
2560 	flush_epd_write_bio(epd);
2561 }
2562 
2563 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2564 			  get_extent_t *get_extent,
2565 			  struct writeback_control *wbc)
2566 {
2567 	int ret;
2568 	struct address_space *mapping = page->mapping;
2569 	struct extent_page_data epd = {
2570 		.bio = NULL,
2571 		.tree = tree,
2572 		.get_extent = get_extent,
2573 		.extent_locked = 0,
2574 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2575 	};
2576 	struct writeback_control wbc_writepages = {
2577 		.bdi		= wbc->bdi,
2578 		.sync_mode	= wbc->sync_mode,
2579 		.older_than_this = NULL,
2580 		.nr_to_write	= 64,
2581 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2582 		.range_end	= (loff_t)-1,
2583 	};
2584 
2585 	ret = __extent_writepage(page, wbc, &epd);
2586 
2587 	extent_write_cache_pages(tree, mapping, &wbc_writepages,
2588 				 __extent_writepage, &epd, flush_write_bio);
2589 	flush_epd_write_bio(&epd);
2590 	return ret;
2591 }
2592 
2593 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2594 			      u64 start, u64 end, get_extent_t *get_extent,
2595 			      int mode)
2596 {
2597 	int ret = 0;
2598 	struct address_space *mapping = inode->i_mapping;
2599 	struct page *page;
2600 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2601 		PAGE_CACHE_SHIFT;
2602 
2603 	struct extent_page_data epd = {
2604 		.bio = NULL,
2605 		.tree = tree,
2606 		.get_extent = get_extent,
2607 		.extent_locked = 1,
2608 		.sync_io = mode == WB_SYNC_ALL,
2609 	};
2610 	struct writeback_control wbc_writepages = {
2611 		.bdi		= inode->i_mapping->backing_dev_info,
2612 		.sync_mode	= mode,
2613 		.older_than_this = NULL,
2614 		.nr_to_write	= nr_pages * 2,
2615 		.range_start	= start,
2616 		.range_end	= end + 1,
2617 	};
2618 
2619 	while (start <= end) {
2620 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2621 		if (clear_page_dirty_for_io(page))
2622 			ret = __extent_writepage(page, &wbc_writepages, &epd);
2623 		else {
2624 			if (tree->ops && tree->ops->writepage_end_io_hook)
2625 				tree->ops->writepage_end_io_hook(page, start,
2626 						 start + PAGE_CACHE_SIZE - 1,
2627 						 NULL, 1);
2628 			unlock_page(page);
2629 		}
2630 		page_cache_release(page);
2631 		start += PAGE_CACHE_SIZE;
2632 	}
2633 
2634 	flush_epd_write_bio(&epd);
2635 	return ret;
2636 }
2637 
2638 int extent_writepages(struct extent_io_tree *tree,
2639 		      struct address_space *mapping,
2640 		      get_extent_t *get_extent,
2641 		      struct writeback_control *wbc)
2642 {
2643 	int ret = 0;
2644 	struct extent_page_data epd = {
2645 		.bio = NULL,
2646 		.tree = tree,
2647 		.get_extent = get_extent,
2648 		.extent_locked = 0,
2649 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2650 	};
2651 
2652 	ret = extent_write_cache_pages(tree, mapping, wbc,
2653 				       __extent_writepage, &epd,
2654 				       flush_write_bio);
2655 	flush_epd_write_bio(&epd);
2656 	return ret;
2657 }
2658 
2659 int extent_readpages(struct extent_io_tree *tree,
2660 		     struct address_space *mapping,
2661 		     struct list_head *pages, unsigned nr_pages,
2662 		     get_extent_t get_extent)
2663 {
2664 	struct bio *bio = NULL;
2665 	unsigned page_idx;
2666 	struct pagevec pvec;
2667 	unsigned long bio_flags = 0;
2668 
2669 	pagevec_init(&pvec, 0);
2670 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2671 		struct page *page = list_entry(pages->prev, struct page, lru);
2672 
2673 		prefetchw(&page->flags);
2674 		list_del(&page->lru);
2675 		/*
2676 		 * what we want to do here is call add_to_page_cache_lru,
2677 		 * but that isn't exported, so we reproduce it here
2678 		 */
2679 		if (!add_to_page_cache(page, mapping,
2680 					page->index, GFP_KERNEL)) {
2681 
2682 			/* open coding of lru_cache_add, also not exported */
2683 			page_cache_get(page);
2684 			if (!pagevec_add(&pvec, page))
2685 				__pagevec_lru_add_file(&pvec);
2686 			__extent_read_full_page(tree, page, get_extent,
2687 						&bio, 0, &bio_flags);
2688 		}
2689 		page_cache_release(page);
2690 	}
2691 	if (pagevec_count(&pvec))
2692 		__pagevec_lru_add_file(&pvec);
2693 	BUG_ON(!list_empty(pages));
2694 	if (bio)
2695 		submit_one_bio(READ, bio, 0, bio_flags);
2696 	return 0;
2697 }
2698 
2699 /*
2700  * basic invalidatepage code, this waits on any locked or writeback
2701  * ranges corresponding to the page, and then deletes any extent state
2702  * records from the tree
2703  */
2704 int extent_invalidatepage(struct extent_io_tree *tree,
2705 			  struct page *page, unsigned long offset)
2706 {
2707 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2708 	u64 end = start + PAGE_CACHE_SIZE - 1;
2709 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2710 
2711 	start += (offset + blocksize - 1) & ~(blocksize - 1);
2712 	if (start > end)
2713 		return 0;
2714 
2715 	lock_extent(tree, start, end, GFP_NOFS);
2716 	wait_on_page_writeback(page);
2717 	clear_extent_bit(tree, start, end,
2718 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2719 			 EXTENT_DO_ACCOUNTING,
2720 			 1, 1, NULL, GFP_NOFS);
2721 	return 0;
2722 }
2723 
2724 /*
2725  * simple commit_write call, set_range_dirty is used to mark both
2726  * the pages and the extent records as dirty
2727  */
2728 int extent_commit_write(struct extent_io_tree *tree,
2729 			struct inode *inode, struct page *page,
2730 			unsigned from, unsigned to)
2731 {
2732 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2733 
2734 	set_page_extent_mapped(page);
2735 	set_page_dirty(page);
2736 
2737 	if (pos > inode->i_size) {
2738 		i_size_write(inode, pos);
2739 		mark_inode_dirty(inode);
2740 	}
2741 	return 0;
2742 }
2743 
2744 int extent_prepare_write(struct extent_io_tree *tree,
2745 			 struct inode *inode, struct page *page,
2746 			 unsigned from, unsigned to, get_extent_t *get_extent)
2747 {
2748 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2749 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2750 	u64 block_start;
2751 	u64 orig_block_start;
2752 	u64 block_end;
2753 	u64 cur_end;
2754 	struct extent_map *em;
2755 	unsigned blocksize = 1 << inode->i_blkbits;
2756 	size_t page_offset = 0;
2757 	size_t block_off_start;
2758 	size_t block_off_end;
2759 	int err = 0;
2760 	int iocount = 0;
2761 	int ret = 0;
2762 	int isnew;
2763 
2764 	set_page_extent_mapped(page);
2765 
2766 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2767 	block_end = (page_start + to - 1) | (blocksize - 1);
2768 	orig_block_start = block_start;
2769 
2770 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2771 	while (block_start <= block_end) {
2772 		em = get_extent(inode, page, page_offset, block_start,
2773 				block_end - block_start + 1, 1);
2774 		if (IS_ERR(em) || !em)
2775 			goto err;
2776 
2777 		cur_end = min(block_end, extent_map_end(em) - 1);
2778 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2779 		block_off_end = block_off_start + blocksize;
2780 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2781 
2782 		if (!PageUptodate(page) && isnew &&
2783 		    (block_off_end > to || block_off_start < from)) {
2784 			void *kaddr;
2785 
2786 			kaddr = kmap_atomic(page, KM_USER0);
2787 			if (block_off_end > to)
2788 				memset(kaddr + to, 0, block_off_end - to);
2789 			if (block_off_start < from)
2790 				memset(kaddr + block_off_start, 0,
2791 				       from - block_off_start);
2792 			flush_dcache_page(page);
2793 			kunmap_atomic(kaddr, KM_USER0);
2794 		}
2795 		if ((em->block_start != EXTENT_MAP_HOLE &&
2796 		     em->block_start != EXTENT_MAP_INLINE) &&
2797 		    !isnew && !PageUptodate(page) &&
2798 		    (block_off_end > to || block_off_start < from) &&
2799 		    !test_range_bit(tree, block_start, cur_end,
2800 				    EXTENT_UPTODATE, 1, NULL)) {
2801 			u64 sector;
2802 			u64 extent_offset = block_start - em->start;
2803 			size_t iosize;
2804 			sector = (em->block_start + extent_offset) >> 9;
2805 			iosize = (cur_end - block_start + blocksize) &
2806 				~((u64)blocksize - 1);
2807 			/*
2808 			 * we've already got the extent locked, but we
2809 			 * need to split the state such that our end_bio
2810 			 * handler can clear the lock.
2811 			 */
2812 			set_extent_bit(tree, block_start,
2813 				       block_start + iosize - 1,
2814 				       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2815 			ret = submit_extent_page(READ, tree, page,
2816 					 sector, iosize, page_offset, em->bdev,
2817 					 NULL, 1,
2818 					 end_bio_extent_preparewrite, 0,
2819 					 0, 0);
2820 			iocount++;
2821 			block_start = block_start + iosize;
2822 		} else {
2823 			set_extent_uptodate(tree, block_start, cur_end,
2824 					    GFP_NOFS);
2825 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2826 			block_start = cur_end + 1;
2827 		}
2828 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2829 		free_extent_map(em);
2830 	}
2831 	if (iocount) {
2832 		wait_extent_bit(tree, orig_block_start,
2833 				block_end, EXTENT_LOCKED);
2834 	}
2835 	check_page_uptodate(tree, page);
2836 err:
2837 	/* FIXME, zero out newly allocated blocks on error */
2838 	return err;
2839 }
2840 
2841 /*
2842  * a helper for releasepage, this tests for areas of the page that
2843  * are locked or under IO and drops the related state bits if it is safe
2844  * to drop the page.
2845  */
2846 int try_release_extent_state(struct extent_map_tree *map,
2847 			     struct extent_io_tree *tree, struct page *page,
2848 			     gfp_t mask)
2849 {
2850 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2851 	u64 end = start + PAGE_CACHE_SIZE - 1;
2852 	int ret = 1;
2853 
2854 	if (test_range_bit(tree, start, end,
2855 			   EXTENT_IOBITS, 0, NULL))
2856 		ret = 0;
2857 	else {
2858 		if ((mask & GFP_NOFS) == GFP_NOFS)
2859 			mask = GFP_NOFS;
2860 		/*
2861 		 * at this point we can safely clear everything except the
2862 		 * locked bit and the nodatasum bit
2863 		 */
2864 		clear_extent_bit(tree, start, end,
2865 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2866 				 0, 0, NULL, mask);
2867 	}
2868 	return ret;
2869 }
2870 
2871 /*
2872  * a helper for releasepage.  As long as there are no locked extents
2873  * in the range corresponding to the page, both state records and extent
2874  * map records are removed
2875  */
2876 int try_release_extent_mapping(struct extent_map_tree *map,
2877 			       struct extent_io_tree *tree, struct page *page,
2878 			       gfp_t mask)
2879 {
2880 	struct extent_map *em;
2881 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2882 	u64 end = start + PAGE_CACHE_SIZE - 1;
2883 
2884 	if ((mask & __GFP_WAIT) &&
2885 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
2886 		u64 len;
2887 		while (start <= end) {
2888 			len = end - start + 1;
2889 			write_lock(&map->lock);
2890 			em = lookup_extent_mapping(map, start, len);
2891 			if (!em || IS_ERR(em)) {
2892 				write_unlock(&map->lock);
2893 				break;
2894 			}
2895 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2896 			    em->start != start) {
2897 				write_unlock(&map->lock);
2898 				free_extent_map(em);
2899 				break;
2900 			}
2901 			if (!test_range_bit(tree, em->start,
2902 					    extent_map_end(em) - 1,
2903 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
2904 					    0, NULL)) {
2905 				remove_extent_mapping(map, em);
2906 				/* once for the rb tree */
2907 				free_extent_map(em);
2908 			}
2909 			start = extent_map_end(em);
2910 			write_unlock(&map->lock);
2911 
2912 			/* once for us */
2913 			free_extent_map(em);
2914 		}
2915 	}
2916 	return try_release_extent_state(map, tree, page, mask);
2917 }
2918 
2919 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2920 		get_extent_t *get_extent)
2921 {
2922 	struct inode *inode = mapping->host;
2923 	u64 start = iblock << inode->i_blkbits;
2924 	sector_t sector = 0;
2925 	size_t blksize = (1 << inode->i_blkbits);
2926 	struct extent_map *em;
2927 
2928 	lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2929 		    GFP_NOFS);
2930 	em = get_extent(inode, NULL, 0, start, blksize, 0);
2931 	unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2932 		      GFP_NOFS);
2933 	if (!em || IS_ERR(em))
2934 		return 0;
2935 
2936 	if (em->block_start > EXTENT_MAP_LAST_BYTE)
2937 		goto out;
2938 
2939 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2940 out:
2941 	free_extent_map(em);
2942 	return sector;
2943 }
2944 
2945 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2946 		__u64 start, __u64 len, get_extent_t *get_extent)
2947 {
2948 	int ret;
2949 	u64 off = start;
2950 	u64 max = start + len;
2951 	u32 flags = 0;
2952 	u64 disko = 0;
2953 	struct extent_map *em = NULL;
2954 	int end = 0;
2955 	u64 em_start = 0, em_len = 0;
2956 	unsigned long emflags;
2957 	ret = 0;
2958 
2959 	if (len == 0)
2960 		return -EINVAL;
2961 
2962 	lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2963 		GFP_NOFS);
2964 	em = get_extent(inode, NULL, 0, off, max - off, 0);
2965 	if (!em)
2966 		goto out;
2967 	if (IS_ERR(em)) {
2968 		ret = PTR_ERR(em);
2969 		goto out;
2970 	}
2971 	while (!end) {
2972 		off = em->start + em->len;
2973 		if (off >= max)
2974 			end = 1;
2975 
2976 		em_start = em->start;
2977 		em_len = em->len;
2978 
2979 		disko = 0;
2980 		flags = 0;
2981 
2982 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2983 			end = 1;
2984 			flags |= FIEMAP_EXTENT_LAST;
2985 		} else if (em->block_start == EXTENT_MAP_HOLE) {
2986 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2987 		} else if (em->block_start == EXTENT_MAP_INLINE) {
2988 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
2989 				  FIEMAP_EXTENT_NOT_ALIGNED);
2990 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
2991 			flags |= (FIEMAP_EXTENT_DELALLOC |
2992 				  FIEMAP_EXTENT_UNKNOWN);
2993 		} else {
2994 			disko = em->block_start;
2995 		}
2996 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2997 			flags |= FIEMAP_EXTENT_ENCODED;
2998 
2999 		emflags = em->flags;
3000 		free_extent_map(em);
3001 		em = NULL;
3002 
3003 		if (!end) {
3004 			em = get_extent(inode, NULL, 0, off, max - off, 0);
3005 			if (!em)
3006 				goto out;
3007 			if (IS_ERR(em)) {
3008 				ret = PTR_ERR(em);
3009 				goto out;
3010 			}
3011 			emflags = em->flags;
3012 		}
3013 		if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3014 			flags |= FIEMAP_EXTENT_LAST;
3015 			end = 1;
3016 		}
3017 
3018 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3019 					em_len, flags);
3020 		if (ret)
3021 			goto out_free;
3022 	}
3023 out_free:
3024 	free_extent_map(em);
3025 out:
3026 	unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
3027 			GFP_NOFS);
3028 	return ret;
3029 }
3030 
3031 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3032 					      unsigned long i)
3033 {
3034 	struct page *p;
3035 	struct address_space *mapping;
3036 
3037 	if (i == 0)
3038 		return eb->first_page;
3039 	i += eb->start >> PAGE_CACHE_SHIFT;
3040 	mapping = eb->first_page->mapping;
3041 	if (!mapping)
3042 		return NULL;
3043 
3044 	/*
3045 	 * extent_buffer_page is only called after pinning the page
3046 	 * by increasing the reference count.  So we know the page must
3047 	 * be in the radix tree.
3048 	 */
3049 	rcu_read_lock();
3050 	p = radix_tree_lookup(&mapping->page_tree, i);
3051 	rcu_read_unlock();
3052 
3053 	return p;
3054 }
3055 
3056 static inline unsigned long num_extent_pages(u64 start, u64 len)
3057 {
3058 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3059 		(start >> PAGE_CACHE_SHIFT);
3060 }
3061 
3062 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3063 						   u64 start,
3064 						   unsigned long len,
3065 						   gfp_t mask)
3066 {
3067 	struct extent_buffer *eb = NULL;
3068 #if LEAK_DEBUG
3069 	unsigned long flags;
3070 #endif
3071 
3072 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3073 	eb->start = start;
3074 	eb->len = len;
3075 	spin_lock_init(&eb->lock);
3076 	init_waitqueue_head(&eb->lock_wq);
3077 
3078 #if LEAK_DEBUG
3079 	spin_lock_irqsave(&leak_lock, flags);
3080 	list_add(&eb->leak_list, &buffers);
3081 	spin_unlock_irqrestore(&leak_lock, flags);
3082 #endif
3083 	atomic_set(&eb->refs, 1);
3084 
3085 	return eb;
3086 }
3087 
3088 static void __free_extent_buffer(struct extent_buffer *eb)
3089 {
3090 #if LEAK_DEBUG
3091 	unsigned long flags;
3092 	spin_lock_irqsave(&leak_lock, flags);
3093 	list_del(&eb->leak_list);
3094 	spin_unlock_irqrestore(&leak_lock, flags);
3095 #endif
3096 	kmem_cache_free(extent_buffer_cache, eb);
3097 }
3098 
3099 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3100 					  u64 start, unsigned long len,
3101 					  struct page *page0,
3102 					  gfp_t mask)
3103 {
3104 	unsigned long num_pages = num_extent_pages(start, len);
3105 	unsigned long i;
3106 	unsigned long index = start >> PAGE_CACHE_SHIFT;
3107 	struct extent_buffer *eb;
3108 	struct extent_buffer *exists = NULL;
3109 	struct page *p;
3110 	struct address_space *mapping = tree->mapping;
3111 	int uptodate = 1;
3112 
3113 	spin_lock(&tree->buffer_lock);
3114 	eb = buffer_search(tree, start);
3115 	if (eb) {
3116 		atomic_inc(&eb->refs);
3117 		spin_unlock(&tree->buffer_lock);
3118 		mark_page_accessed(eb->first_page);
3119 		return eb;
3120 	}
3121 	spin_unlock(&tree->buffer_lock);
3122 
3123 	eb = __alloc_extent_buffer(tree, start, len, mask);
3124 	if (!eb)
3125 		return NULL;
3126 
3127 	if (page0) {
3128 		eb->first_page = page0;
3129 		i = 1;
3130 		index++;
3131 		page_cache_get(page0);
3132 		mark_page_accessed(page0);
3133 		set_page_extent_mapped(page0);
3134 		set_page_extent_head(page0, len);
3135 		uptodate = PageUptodate(page0);
3136 	} else {
3137 		i = 0;
3138 	}
3139 	for (; i < num_pages; i++, index++) {
3140 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3141 		if (!p) {
3142 			WARN_ON(1);
3143 			goto free_eb;
3144 		}
3145 		set_page_extent_mapped(p);
3146 		mark_page_accessed(p);
3147 		if (i == 0) {
3148 			eb->first_page = p;
3149 			set_page_extent_head(p, len);
3150 		} else {
3151 			set_page_private(p, EXTENT_PAGE_PRIVATE);
3152 		}
3153 		if (!PageUptodate(p))
3154 			uptodate = 0;
3155 		unlock_page(p);
3156 	}
3157 	if (uptodate)
3158 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3159 
3160 	spin_lock(&tree->buffer_lock);
3161 	exists = buffer_tree_insert(tree, start, &eb->rb_node);
3162 	if (exists) {
3163 		/* add one reference for the caller */
3164 		atomic_inc(&exists->refs);
3165 		spin_unlock(&tree->buffer_lock);
3166 		goto free_eb;
3167 	}
3168 	/* add one reference for the tree */
3169 	atomic_inc(&eb->refs);
3170 	spin_unlock(&tree->buffer_lock);
3171 	return eb;
3172 
3173 free_eb:
3174 	if (!atomic_dec_and_test(&eb->refs))
3175 		return exists;
3176 	for (index = 1; index < i; index++)
3177 		page_cache_release(extent_buffer_page(eb, index));
3178 	page_cache_release(extent_buffer_page(eb, 0));
3179 	__free_extent_buffer(eb);
3180 	return exists;
3181 }
3182 
3183 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3184 					 u64 start, unsigned long len,
3185 					  gfp_t mask)
3186 {
3187 	struct extent_buffer *eb;
3188 
3189 	spin_lock(&tree->buffer_lock);
3190 	eb = buffer_search(tree, start);
3191 	if (eb)
3192 		atomic_inc(&eb->refs);
3193 	spin_unlock(&tree->buffer_lock);
3194 
3195 	if (eb)
3196 		mark_page_accessed(eb->first_page);
3197 
3198 	return eb;
3199 }
3200 
3201 void free_extent_buffer(struct extent_buffer *eb)
3202 {
3203 	if (!eb)
3204 		return;
3205 
3206 	if (!atomic_dec_and_test(&eb->refs))
3207 		return;
3208 
3209 	WARN_ON(1);
3210 }
3211 
3212 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3213 			      struct extent_buffer *eb)
3214 {
3215 	unsigned long i;
3216 	unsigned long num_pages;
3217 	struct page *page;
3218 
3219 	num_pages = num_extent_pages(eb->start, eb->len);
3220 
3221 	for (i = 0; i < num_pages; i++) {
3222 		page = extent_buffer_page(eb, i);
3223 		if (!PageDirty(page))
3224 			continue;
3225 
3226 		lock_page(page);
3227 		if (i == 0)
3228 			set_page_extent_head(page, eb->len);
3229 		else
3230 			set_page_private(page, EXTENT_PAGE_PRIVATE);
3231 
3232 		clear_page_dirty_for_io(page);
3233 		spin_lock_irq(&page->mapping->tree_lock);
3234 		if (!PageDirty(page)) {
3235 			radix_tree_tag_clear(&page->mapping->page_tree,
3236 						page_index(page),
3237 						PAGECACHE_TAG_DIRTY);
3238 		}
3239 		spin_unlock_irq(&page->mapping->tree_lock);
3240 		unlock_page(page);
3241 	}
3242 	return 0;
3243 }
3244 
3245 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3246 				    struct extent_buffer *eb)
3247 {
3248 	return wait_on_extent_writeback(tree, eb->start,
3249 					eb->start + eb->len - 1);
3250 }
3251 
3252 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3253 			     struct extent_buffer *eb)
3254 {
3255 	unsigned long i;
3256 	unsigned long num_pages;
3257 	int was_dirty = 0;
3258 
3259 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3260 	num_pages = num_extent_pages(eb->start, eb->len);
3261 	for (i = 0; i < num_pages; i++)
3262 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3263 	return was_dirty;
3264 }
3265 
3266 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3267 				struct extent_buffer *eb)
3268 {
3269 	unsigned long i;
3270 	struct page *page;
3271 	unsigned long num_pages;
3272 
3273 	num_pages = num_extent_pages(eb->start, eb->len);
3274 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3275 
3276 	clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3277 			      GFP_NOFS);
3278 	for (i = 0; i < num_pages; i++) {
3279 		page = extent_buffer_page(eb, i);
3280 		if (page)
3281 			ClearPageUptodate(page);
3282 	}
3283 	return 0;
3284 }
3285 
3286 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3287 				struct extent_buffer *eb)
3288 {
3289 	unsigned long i;
3290 	struct page *page;
3291 	unsigned long num_pages;
3292 
3293 	num_pages = num_extent_pages(eb->start, eb->len);
3294 
3295 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3296 			    GFP_NOFS);
3297 	for (i = 0; i < num_pages; i++) {
3298 		page = extent_buffer_page(eb, i);
3299 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3300 		    ((i == num_pages - 1) &&
3301 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3302 			check_page_uptodate(tree, page);
3303 			continue;
3304 		}
3305 		SetPageUptodate(page);
3306 	}
3307 	return 0;
3308 }
3309 
3310 int extent_range_uptodate(struct extent_io_tree *tree,
3311 			  u64 start, u64 end)
3312 {
3313 	struct page *page;
3314 	int ret;
3315 	int pg_uptodate = 1;
3316 	int uptodate;
3317 	unsigned long index;
3318 
3319 	ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3320 	if (ret)
3321 		return 1;
3322 	while (start <= end) {
3323 		index = start >> PAGE_CACHE_SHIFT;
3324 		page = find_get_page(tree->mapping, index);
3325 		uptodate = PageUptodate(page);
3326 		page_cache_release(page);
3327 		if (!uptodate) {
3328 			pg_uptodate = 0;
3329 			break;
3330 		}
3331 		start += PAGE_CACHE_SIZE;
3332 	}
3333 	return pg_uptodate;
3334 }
3335 
3336 int extent_buffer_uptodate(struct extent_io_tree *tree,
3337 			   struct extent_buffer *eb)
3338 {
3339 	int ret = 0;
3340 	unsigned long num_pages;
3341 	unsigned long i;
3342 	struct page *page;
3343 	int pg_uptodate = 1;
3344 
3345 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3346 		return 1;
3347 
3348 	ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3349 			   EXTENT_UPTODATE, 1, NULL);
3350 	if (ret)
3351 		return ret;
3352 
3353 	num_pages = num_extent_pages(eb->start, eb->len);
3354 	for (i = 0; i < num_pages; i++) {
3355 		page = extent_buffer_page(eb, i);
3356 		if (!PageUptodate(page)) {
3357 			pg_uptodate = 0;
3358 			break;
3359 		}
3360 	}
3361 	return pg_uptodate;
3362 }
3363 
3364 int read_extent_buffer_pages(struct extent_io_tree *tree,
3365 			     struct extent_buffer *eb,
3366 			     u64 start, int wait,
3367 			     get_extent_t *get_extent, int mirror_num)
3368 {
3369 	unsigned long i;
3370 	unsigned long start_i;
3371 	struct page *page;
3372 	int err;
3373 	int ret = 0;
3374 	int locked_pages = 0;
3375 	int all_uptodate = 1;
3376 	int inc_all_pages = 0;
3377 	unsigned long num_pages;
3378 	struct bio *bio = NULL;
3379 	unsigned long bio_flags = 0;
3380 
3381 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3382 		return 0;
3383 
3384 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3385 			   EXTENT_UPTODATE, 1, NULL)) {
3386 		return 0;
3387 	}
3388 
3389 	if (start) {
3390 		WARN_ON(start < eb->start);
3391 		start_i = (start >> PAGE_CACHE_SHIFT) -
3392 			(eb->start >> PAGE_CACHE_SHIFT);
3393 	} else {
3394 		start_i = 0;
3395 	}
3396 
3397 	num_pages = num_extent_pages(eb->start, eb->len);
3398 	for (i = start_i; i < num_pages; i++) {
3399 		page = extent_buffer_page(eb, i);
3400 		if (!wait) {
3401 			if (!trylock_page(page))
3402 				goto unlock_exit;
3403 		} else {
3404 			lock_page(page);
3405 		}
3406 		locked_pages++;
3407 		if (!PageUptodate(page))
3408 			all_uptodate = 0;
3409 	}
3410 	if (all_uptodate) {
3411 		if (start_i == 0)
3412 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3413 		goto unlock_exit;
3414 	}
3415 
3416 	for (i = start_i; i < num_pages; i++) {
3417 		page = extent_buffer_page(eb, i);
3418 		if (inc_all_pages)
3419 			page_cache_get(page);
3420 		if (!PageUptodate(page)) {
3421 			if (start_i == 0)
3422 				inc_all_pages = 1;
3423 			ClearPageError(page);
3424 			err = __extent_read_full_page(tree, page,
3425 						      get_extent, &bio,
3426 						      mirror_num, &bio_flags);
3427 			if (err)
3428 				ret = err;
3429 		} else {
3430 			unlock_page(page);
3431 		}
3432 	}
3433 
3434 	if (bio)
3435 		submit_one_bio(READ, bio, mirror_num, bio_flags);
3436 
3437 	if (ret || !wait)
3438 		return ret;
3439 
3440 	for (i = start_i; i < num_pages; i++) {
3441 		page = extent_buffer_page(eb, i);
3442 		wait_on_page_locked(page);
3443 		if (!PageUptodate(page))
3444 			ret = -EIO;
3445 	}
3446 
3447 	if (!ret)
3448 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3449 	return ret;
3450 
3451 unlock_exit:
3452 	i = start_i;
3453 	while (locked_pages > 0) {
3454 		page = extent_buffer_page(eb, i);
3455 		i++;
3456 		unlock_page(page);
3457 		locked_pages--;
3458 	}
3459 	return ret;
3460 }
3461 
3462 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3463 			unsigned long start,
3464 			unsigned long len)
3465 {
3466 	size_t cur;
3467 	size_t offset;
3468 	struct page *page;
3469 	char *kaddr;
3470 	char *dst = (char *)dstv;
3471 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3472 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3473 
3474 	WARN_ON(start > eb->len);
3475 	WARN_ON(start + len > eb->start + eb->len);
3476 
3477 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3478 
3479 	while (len > 0) {
3480 		page = extent_buffer_page(eb, i);
3481 
3482 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3483 		kaddr = kmap_atomic(page, KM_USER1);
3484 		memcpy(dst, kaddr + offset, cur);
3485 		kunmap_atomic(kaddr, KM_USER1);
3486 
3487 		dst += cur;
3488 		len -= cur;
3489 		offset = 0;
3490 		i++;
3491 	}
3492 }
3493 
3494 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3495 			       unsigned long min_len, char **token, char **map,
3496 			       unsigned long *map_start,
3497 			       unsigned long *map_len, int km)
3498 {
3499 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
3500 	char *kaddr;
3501 	struct page *p;
3502 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3503 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3504 	unsigned long end_i = (start_offset + start + min_len - 1) >>
3505 		PAGE_CACHE_SHIFT;
3506 
3507 	if (i != end_i)
3508 		return -EINVAL;
3509 
3510 	if (i == 0) {
3511 		offset = start_offset;
3512 		*map_start = 0;
3513 	} else {
3514 		offset = 0;
3515 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3516 	}
3517 
3518 	if (start + min_len > eb->len) {
3519 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3520 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
3521 		       eb->len, start, min_len);
3522 		WARN_ON(1);
3523 	}
3524 
3525 	p = extent_buffer_page(eb, i);
3526 	kaddr = kmap_atomic(p, km);
3527 	*token = kaddr;
3528 	*map = kaddr + offset;
3529 	*map_len = PAGE_CACHE_SIZE - offset;
3530 	return 0;
3531 }
3532 
3533 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3534 		      unsigned long min_len,
3535 		      char **token, char **map,
3536 		      unsigned long *map_start,
3537 		      unsigned long *map_len, int km)
3538 {
3539 	int err;
3540 	int save = 0;
3541 	if (eb->map_token) {
3542 		unmap_extent_buffer(eb, eb->map_token, km);
3543 		eb->map_token = NULL;
3544 		save = 1;
3545 	}
3546 	err = map_private_extent_buffer(eb, start, min_len, token, map,
3547 				       map_start, map_len, km);
3548 	if (!err && save) {
3549 		eb->map_token = *token;
3550 		eb->kaddr = *map;
3551 		eb->map_start = *map_start;
3552 		eb->map_len = *map_len;
3553 	}
3554 	return err;
3555 }
3556 
3557 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3558 {
3559 	kunmap_atomic(token, km);
3560 }
3561 
3562 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3563 			  unsigned long start,
3564 			  unsigned long len)
3565 {
3566 	size_t cur;
3567 	size_t offset;
3568 	struct page *page;
3569 	char *kaddr;
3570 	char *ptr = (char *)ptrv;
3571 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3572 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3573 	int ret = 0;
3574 
3575 	WARN_ON(start > eb->len);
3576 	WARN_ON(start + len > eb->start + eb->len);
3577 
3578 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3579 
3580 	while (len > 0) {
3581 		page = extent_buffer_page(eb, i);
3582 
3583 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3584 
3585 		kaddr = kmap_atomic(page, KM_USER0);
3586 		ret = memcmp(ptr, kaddr + offset, cur);
3587 		kunmap_atomic(kaddr, KM_USER0);
3588 		if (ret)
3589 			break;
3590 
3591 		ptr += cur;
3592 		len -= cur;
3593 		offset = 0;
3594 		i++;
3595 	}
3596 	return ret;
3597 }
3598 
3599 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3600 			 unsigned long start, unsigned long len)
3601 {
3602 	size_t cur;
3603 	size_t offset;
3604 	struct page *page;
3605 	char *kaddr;
3606 	char *src = (char *)srcv;
3607 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3608 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3609 
3610 	WARN_ON(start > eb->len);
3611 	WARN_ON(start + len > eb->start + eb->len);
3612 
3613 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3614 
3615 	while (len > 0) {
3616 		page = extent_buffer_page(eb, i);
3617 		WARN_ON(!PageUptodate(page));
3618 
3619 		cur = min(len, PAGE_CACHE_SIZE - offset);
3620 		kaddr = kmap_atomic(page, KM_USER1);
3621 		memcpy(kaddr + offset, src, cur);
3622 		kunmap_atomic(kaddr, KM_USER1);
3623 
3624 		src += cur;
3625 		len -= cur;
3626 		offset = 0;
3627 		i++;
3628 	}
3629 }
3630 
3631 void memset_extent_buffer(struct extent_buffer *eb, char c,
3632 			  unsigned long start, unsigned long len)
3633 {
3634 	size_t cur;
3635 	size_t offset;
3636 	struct page *page;
3637 	char *kaddr;
3638 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3639 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3640 
3641 	WARN_ON(start > eb->len);
3642 	WARN_ON(start + len > eb->start + eb->len);
3643 
3644 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3645 
3646 	while (len > 0) {
3647 		page = extent_buffer_page(eb, i);
3648 		WARN_ON(!PageUptodate(page));
3649 
3650 		cur = min(len, PAGE_CACHE_SIZE - offset);
3651 		kaddr = kmap_atomic(page, KM_USER0);
3652 		memset(kaddr + offset, c, cur);
3653 		kunmap_atomic(kaddr, KM_USER0);
3654 
3655 		len -= cur;
3656 		offset = 0;
3657 		i++;
3658 	}
3659 }
3660 
3661 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3662 			unsigned long dst_offset, unsigned long src_offset,
3663 			unsigned long len)
3664 {
3665 	u64 dst_len = dst->len;
3666 	size_t cur;
3667 	size_t offset;
3668 	struct page *page;
3669 	char *kaddr;
3670 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3671 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3672 
3673 	WARN_ON(src->len != dst_len);
3674 
3675 	offset = (start_offset + dst_offset) &
3676 		((unsigned long)PAGE_CACHE_SIZE - 1);
3677 
3678 	while (len > 0) {
3679 		page = extent_buffer_page(dst, i);
3680 		WARN_ON(!PageUptodate(page));
3681 
3682 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3683 
3684 		kaddr = kmap_atomic(page, KM_USER0);
3685 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3686 		kunmap_atomic(kaddr, KM_USER0);
3687 
3688 		src_offset += cur;
3689 		len -= cur;
3690 		offset = 0;
3691 		i++;
3692 	}
3693 }
3694 
3695 static void move_pages(struct page *dst_page, struct page *src_page,
3696 		       unsigned long dst_off, unsigned long src_off,
3697 		       unsigned long len)
3698 {
3699 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3700 	if (dst_page == src_page) {
3701 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3702 	} else {
3703 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3704 		char *p = dst_kaddr + dst_off + len;
3705 		char *s = src_kaddr + src_off + len;
3706 
3707 		while (len--)
3708 			*--p = *--s;
3709 
3710 		kunmap_atomic(src_kaddr, KM_USER1);
3711 	}
3712 	kunmap_atomic(dst_kaddr, KM_USER0);
3713 }
3714 
3715 static void copy_pages(struct page *dst_page, struct page *src_page,
3716 		       unsigned long dst_off, unsigned long src_off,
3717 		       unsigned long len)
3718 {
3719 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3720 	char *src_kaddr;
3721 
3722 	if (dst_page != src_page)
3723 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3724 	else
3725 		src_kaddr = dst_kaddr;
3726 
3727 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3728 	kunmap_atomic(dst_kaddr, KM_USER0);
3729 	if (dst_page != src_page)
3730 		kunmap_atomic(src_kaddr, KM_USER1);
3731 }
3732 
3733 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3734 			   unsigned long src_offset, unsigned long len)
3735 {
3736 	size_t cur;
3737 	size_t dst_off_in_page;
3738 	size_t src_off_in_page;
3739 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3740 	unsigned long dst_i;
3741 	unsigned long src_i;
3742 
3743 	if (src_offset + len > dst->len) {
3744 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3745 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
3746 		BUG_ON(1);
3747 	}
3748 	if (dst_offset + len > dst->len) {
3749 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3750 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3751 		BUG_ON(1);
3752 	}
3753 
3754 	while (len > 0) {
3755 		dst_off_in_page = (start_offset + dst_offset) &
3756 			((unsigned long)PAGE_CACHE_SIZE - 1);
3757 		src_off_in_page = (start_offset + src_offset) &
3758 			((unsigned long)PAGE_CACHE_SIZE - 1);
3759 
3760 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3761 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3762 
3763 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3764 					       src_off_in_page));
3765 		cur = min_t(unsigned long, cur,
3766 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3767 
3768 		copy_pages(extent_buffer_page(dst, dst_i),
3769 			   extent_buffer_page(dst, src_i),
3770 			   dst_off_in_page, src_off_in_page, cur);
3771 
3772 		src_offset += cur;
3773 		dst_offset += cur;
3774 		len -= cur;
3775 	}
3776 }
3777 
3778 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3779 			   unsigned long src_offset, unsigned long len)
3780 {
3781 	size_t cur;
3782 	size_t dst_off_in_page;
3783 	size_t src_off_in_page;
3784 	unsigned long dst_end = dst_offset + len - 1;
3785 	unsigned long src_end = src_offset + len - 1;
3786 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3787 	unsigned long dst_i;
3788 	unsigned long src_i;
3789 
3790 	if (src_offset + len > dst->len) {
3791 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3792 		       "len %lu len %lu\n", src_offset, len, dst->len);
3793 		BUG_ON(1);
3794 	}
3795 	if (dst_offset + len > dst->len) {
3796 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3797 		       "len %lu len %lu\n", dst_offset, len, dst->len);
3798 		BUG_ON(1);
3799 	}
3800 	if (dst_offset < src_offset) {
3801 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3802 		return;
3803 	}
3804 	while (len > 0) {
3805 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3806 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3807 
3808 		dst_off_in_page = (start_offset + dst_end) &
3809 			((unsigned long)PAGE_CACHE_SIZE - 1);
3810 		src_off_in_page = (start_offset + src_end) &
3811 			((unsigned long)PAGE_CACHE_SIZE - 1);
3812 
3813 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3814 		cur = min(cur, dst_off_in_page + 1);
3815 		move_pages(extent_buffer_page(dst, dst_i),
3816 			   extent_buffer_page(dst, src_i),
3817 			   dst_off_in_page - cur + 1,
3818 			   src_off_in_page - cur + 1, cur);
3819 
3820 		dst_end -= cur;
3821 		src_end -= cur;
3822 		len -= cur;
3823 	}
3824 }
3825 
3826 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3827 {
3828 	u64 start = page_offset(page);
3829 	struct extent_buffer *eb;
3830 	int ret = 1;
3831 	unsigned long i;
3832 	unsigned long num_pages;
3833 
3834 	spin_lock(&tree->buffer_lock);
3835 	eb = buffer_search(tree, start);
3836 	if (!eb)
3837 		goto out;
3838 
3839 	if (atomic_read(&eb->refs) > 1) {
3840 		ret = 0;
3841 		goto out;
3842 	}
3843 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3844 		ret = 0;
3845 		goto out;
3846 	}
3847 	/* at this point we can safely release the extent buffer */
3848 	num_pages = num_extent_pages(eb->start, eb->len);
3849 	for (i = 0; i < num_pages; i++)
3850 		page_cache_release(extent_buffer_page(eb, i));
3851 	rb_erase(&eb->rb_node, &tree->buffer);
3852 	__free_extent_buffer(eb);
3853 out:
3854 	spin_unlock(&tree->buffer_lock);
3855 	return ret;
3856 }
3857