1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/slab.h> 4 #include <linux/bio.h> 5 #include <linux/mm.h> 6 #include <linux/pagemap.h> 7 #include <linux/page-flags.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 #include "backref.h" 24 25 static struct kmem_cache *extent_state_cache; 26 static struct kmem_cache *extent_buffer_cache; 27 static struct bio_set *btrfs_bioset; 28 29 static inline bool extent_state_in_tree(const struct extent_state *state) 30 { 31 return !RB_EMPTY_NODE(&state->rb_node); 32 } 33 34 #ifdef CONFIG_BTRFS_DEBUG 35 static LIST_HEAD(buffers); 36 static LIST_HEAD(states); 37 38 static DEFINE_SPINLOCK(leak_lock); 39 40 static inline 41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 42 { 43 unsigned long flags; 44 45 spin_lock_irqsave(&leak_lock, flags); 46 list_add(new, head); 47 spin_unlock_irqrestore(&leak_lock, flags); 48 } 49 50 static inline 51 void btrfs_leak_debug_del(struct list_head *entry) 52 { 53 unsigned long flags; 54 55 spin_lock_irqsave(&leak_lock, flags); 56 list_del(entry); 57 spin_unlock_irqrestore(&leak_lock, flags); 58 } 59 60 static inline 61 void btrfs_leak_debug_check(void) 62 { 63 struct extent_state *state; 64 struct extent_buffer *eb; 65 66 while (!list_empty(&states)) { 67 state = list_entry(states.next, struct extent_state, leak_list); 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 69 state->start, state->end, state->state, 70 extent_state_in_tree(state), 71 refcount_read(&state->refs)); 72 list_del(&state->leak_list); 73 kmem_cache_free(extent_state_cache, state); 74 } 75 76 while (!list_empty(&buffers)) { 77 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 if (tree->ops && tree->ops->check_extent_io_range) 91 tree->ops->check_extent_io_range(tree->private_data, caller, 92 start, end); 93 } 94 #else 95 #define btrfs_leak_debug_add(new, head) do {} while (0) 96 #define btrfs_leak_debug_del(entry) do {} while (0) 97 #define btrfs_leak_debug_check() do {} while (0) 98 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 99 #endif 100 101 #define BUFFER_LRU_MAX 64 102 103 struct tree_entry { 104 u64 start; 105 u64 end; 106 struct rb_node rb_node; 107 }; 108 109 struct extent_page_data { 110 struct bio *bio; 111 struct extent_io_tree *tree; 112 get_extent_t *get_extent; 113 unsigned long bio_flags; 114 115 /* tells writepage not to lock the state bits for this range 116 * it still does the unlocking 117 */ 118 unsigned int extent_locked:1; 119 120 /* tells the submit_bio code to use REQ_SYNC */ 121 unsigned int sync_io:1; 122 }; 123 124 static void add_extent_changeset(struct extent_state *state, unsigned bits, 125 struct extent_changeset *changeset, 126 int set) 127 { 128 int ret; 129 130 if (!changeset) 131 return; 132 if (set && (state->state & bits) == bits) 133 return; 134 if (!set && (state->state & bits) == 0) 135 return; 136 changeset->bytes_changed += state->end - state->start + 1; 137 ret = ulist_add(&changeset->range_changed, state->start, state->end, 138 GFP_ATOMIC); 139 /* ENOMEM */ 140 BUG_ON(ret < 0); 141 } 142 143 static noinline void flush_write_bio(void *data); 144 static inline struct btrfs_fs_info * 145 tree_fs_info(struct extent_io_tree *tree) 146 { 147 if (tree->ops) 148 return tree->ops->tree_fs_info(tree->private_data); 149 return NULL; 150 } 151 152 int __init extent_io_init(void) 153 { 154 extent_state_cache = kmem_cache_create("btrfs_extent_state", 155 sizeof(struct extent_state), 0, 156 SLAB_MEM_SPREAD, NULL); 157 if (!extent_state_cache) 158 return -ENOMEM; 159 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 161 sizeof(struct extent_buffer), 0, 162 SLAB_MEM_SPREAD, NULL); 163 if (!extent_buffer_cache) 164 goto free_state_cache; 165 166 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 167 offsetof(struct btrfs_io_bio, bio), 168 BIOSET_NEED_BVECS); 169 if (!btrfs_bioset) 170 goto free_buffer_cache; 171 172 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 173 goto free_bioset; 174 175 return 0; 176 177 free_bioset: 178 bioset_free(btrfs_bioset); 179 btrfs_bioset = NULL; 180 181 free_buffer_cache: 182 kmem_cache_destroy(extent_buffer_cache); 183 extent_buffer_cache = NULL; 184 185 free_state_cache: 186 kmem_cache_destroy(extent_state_cache); 187 extent_state_cache = NULL; 188 return -ENOMEM; 189 } 190 191 void extent_io_exit(void) 192 { 193 btrfs_leak_debug_check(); 194 195 /* 196 * Make sure all delayed rcu free are flushed before we 197 * destroy caches. 198 */ 199 rcu_barrier(); 200 kmem_cache_destroy(extent_state_cache); 201 kmem_cache_destroy(extent_buffer_cache); 202 if (btrfs_bioset) 203 bioset_free(btrfs_bioset); 204 } 205 206 void extent_io_tree_init(struct extent_io_tree *tree, 207 void *private_data) 208 { 209 tree->state = RB_ROOT; 210 tree->ops = NULL; 211 tree->dirty_bytes = 0; 212 spin_lock_init(&tree->lock); 213 tree->private_data = private_data; 214 } 215 216 static struct extent_state *alloc_extent_state(gfp_t mask) 217 { 218 struct extent_state *state; 219 220 /* 221 * The given mask might be not appropriate for the slab allocator, 222 * drop the unsupported bits 223 */ 224 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 225 state = kmem_cache_alloc(extent_state_cache, mask); 226 if (!state) 227 return state; 228 state->state = 0; 229 state->failrec = NULL; 230 RB_CLEAR_NODE(&state->rb_node); 231 btrfs_leak_debug_add(&state->leak_list, &states); 232 refcount_set(&state->refs, 1); 233 init_waitqueue_head(&state->wq); 234 trace_alloc_extent_state(state, mask, _RET_IP_); 235 return state; 236 } 237 238 void free_extent_state(struct extent_state *state) 239 { 240 if (!state) 241 return; 242 if (refcount_dec_and_test(&state->refs)) { 243 WARN_ON(extent_state_in_tree(state)); 244 btrfs_leak_debug_del(&state->leak_list); 245 trace_free_extent_state(state, _RET_IP_); 246 kmem_cache_free(extent_state_cache, state); 247 } 248 } 249 250 static struct rb_node *tree_insert(struct rb_root *root, 251 struct rb_node *search_start, 252 u64 offset, 253 struct rb_node *node, 254 struct rb_node ***p_in, 255 struct rb_node **parent_in) 256 { 257 struct rb_node **p; 258 struct rb_node *parent = NULL; 259 struct tree_entry *entry; 260 261 if (p_in && parent_in) { 262 p = *p_in; 263 parent = *parent_in; 264 goto do_insert; 265 } 266 267 p = search_start ? &search_start : &root->rb_node; 268 while (*p) { 269 parent = *p; 270 entry = rb_entry(parent, struct tree_entry, rb_node); 271 272 if (offset < entry->start) 273 p = &(*p)->rb_left; 274 else if (offset > entry->end) 275 p = &(*p)->rb_right; 276 else 277 return parent; 278 } 279 280 do_insert: 281 rb_link_node(node, parent, p); 282 rb_insert_color(node, root); 283 return NULL; 284 } 285 286 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 287 struct rb_node **prev_ret, 288 struct rb_node **next_ret, 289 struct rb_node ***p_ret, 290 struct rb_node **parent_ret) 291 { 292 struct rb_root *root = &tree->state; 293 struct rb_node **n = &root->rb_node; 294 struct rb_node *prev = NULL; 295 struct rb_node *orig_prev = NULL; 296 struct tree_entry *entry; 297 struct tree_entry *prev_entry = NULL; 298 299 while (*n) { 300 prev = *n; 301 entry = rb_entry(prev, struct tree_entry, rb_node); 302 prev_entry = entry; 303 304 if (offset < entry->start) 305 n = &(*n)->rb_left; 306 else if (offset > entry->end) 307 n = &(*n)->rb_right; 308 else 309 return *n; 310 } 311 312 if (p_ret) 313 *p_ret = n; 314 if (parent_ret) 315 *parent_ret = prev; 316 317 if (prev_ret) { 318 orig_prev = prev; 319 while (prev && offset > prev_entry->end) { 320 prev = rb_next(prev); 321 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 322 } 323 *prev_ret = prev; 324 prev = orig_prev; 325 } 326 327 if (next_ret) { 328 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 329 while (prev && offset < prev_entry->start) { 330 prev = rb_prev(prev); 331 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 332 } 333 *next_ret = prev; 334 } 335 return NULL; 336 } 337 338 static inline struct rb_node * 339 tree_search_for_insert(struct extent_io_tree *tree, 340 u64 offset, 341 struct rb_node ***p_ret, 342 struct rb_node **parent_ret) 343 { 344 struct rb_node *prev = NULL; 345 struct rb_node *ret; 346 347 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 348 if (!ret) 349 return prev; 350 return ret; 351 } 352 353 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 354 u64 offset) 355 { 356 return tree_search_for_insert(tree, offset, NULL, NULL); 357 } 358 359 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 360 struct extent_state *other) 361 { 362 if (tree->ops && tree->ops->merge_extent_hook) 363 tree->ops->merge_extent_hook(tree->private_data, new, other); 364 } 365 366 /* 367 * utility function to look for merge candidates inside a given range. 368 * Any extents with matching state are merged together into a single 369 * extent in the tree. Extents with EXTENT_IO in their state field 370 * are not merged because the end_io handlers need to be able to do 371 * operations on them without sleeping (or doing allocations/splits). 372 * 373 * This should be called with the tree lock held. 374 */ 375 static void merge_state(struct extent_io_tree *tree, 376 struct extent_state *state) 377 { 378 struct extent_state *other; 379 struct rb_node *other_node; 380 381 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 382 return; 383 384 other_node = rb_prev(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->end == state->start - 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->start = other->start; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 other_node = rb_next(&state->rb_node); 397 if (other_node) { 398 other = rb_entry(other_node, struct extent_state, rb_node); 399 if (other->start == state->end + 1 && 400 other->state == state->state) { 401 merge_cb(tree, state, other); 402 state->end = other->end; 403 rb_erase(&other->rb_node, &tree->state); 404 RB_CLEAR_NODE(&other->rb_node); 405 free_extent_state(other); 406 } 407 } 408 } 409 410 static void set_state_cb(struct extent_io_tree *tree, 411 struct extent_state *state, unsigned *bits) 412 { 413 if (tree->ops && tree->ops->set_bit_hook) 414 tree->ops->set_bit_hook(tree->private_data, state, bits); 415 } 416 417 static void clear_state_cb(struct extent_io_tree *tree, 418 struct extent_state *state, unsigned *bits) 419 { 420 if (tree->ops && tree->ops->clear_bit_hook) 421 tree->ops->clear_bit_hook(tree->private_data, state, bits); 422 } 423 424 static void set_state_bits(struct extent_io_tree *tree, 425 struct extent_state *state, unsigned *bits, 426 struct extent_changeset *changeset); 427 428 /* 429 * insert an extent_state struct into the tree. 'bits' are set on the 430 * struct before it is inserted. 431 * 432 * This may return -EEXIST if the extent is already there, in which case the 433 * state struct is freed. 434 * 435 * The tree lock is not taken internally. This is a utility function and 436 * probably isn't what you want to call (see set/clear_extent_bit). 437 */ 438 static int insert_state(struct extent_io_tree *tree, 439 struct extent_state *state, u64 start, u64 end, 440 struct rb_node ***p, 441 struct rb_node **parent, 442 unsigned *bits, struct extent_changeset *changeset) 443 { 444 struct rb_node *node; 445 446 if (end < start) 447 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 448 end, start); 449 state->start = start; 450 state->end = end; 451 452 set_state_bits(tree, state, bits, changeset); 453 454 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 455 if (node) { 456 struct extent_state *found; 457 found = rb_entry(node, struct extent_state, rb_node); 458 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 459 found->start, found->end, start, end); 460 return -EEXIST; 461 } 462 merge_state(tree, state); 463 return 0; 464 } 465 466 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 467 u64 split) 468 { 469 if (tree->ops && tree->ops->split_extent_hook) 470 tree->ops->split_extent_hook(tree->private_data, orig, split); 471 } 472 473 /* 474 * split a given extent state struct in two, inserting the preallocated 475 * struct 'prealloc' as the newly created second half. 'split' indicates an 476 * offset inside 'orig' where it should be split. 477 * 478 * Before calling, 479 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 480 * are two extent state structs in the tree: 481 * prealloc: [orig->start, split - 1] 482 * orig: [ split, orig->end ] 483 * 484 * The tree locks are not taken by this function. They need to be held 485 * by the caller. 486 */ 487 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 488 struct extent_state *prealloc, u64 split) 489 { 490 struct rb_node *node; 491 492 split_cb(tree, orig, split); 493 494 prealloc->start = orig->start; 495 prealloc->end = split - 1; 496 prealloc->state = orig->state; 497 orig->start = split; 498 499 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 500 &prealloc->rb_node, NULL, NULL); 501 if (node) { 502 free_extent_state(prealloc); 503 return -EEXIST; 504 } 505 return 0; 506 } 507 508 static struct extent_state *next_state(struct extent_state *state) 509 { 510 struct rb_node *next = rb_next(&state->rb_node); 511 if (next) 512 return rb_entry(next, struct extent_state, rb_node); 513 else 514 return NULL; 515 } 516 517 /* 518 * utility function to clear some bits in an extent state struct. 519 * it will optionally wake up any one waiting on this state (wake == 1). 520 * 521 * If no bits are set on the state struct after clearing things, the 522 * struct is freed and removed from the tree 523 */ 524 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 525 struct extent_state *state, 526 unsigned *bits, int wake, 527 struct extent_changeset *changeset) 528 { 529 struct extent_state *next; 530 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 531 532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 533 u64 range = state->end - state->start + 1; 534 WARN_ON(range > tree->dirty_bytes); 535 tree->dirty_bytes -= range; 536 } 537 clear_state_cb(tree, state, bits); 538 add_extent_changeset(state, bits_to_clear, changeset, 0); 539 state->state &= ~bits_to_clear; 540 if (wake) 541 wake_up(&state->wq); 542 if (state->state == 0) { 543 next = next_state(state); 544 if (extent_state_in_tree(state)) { 545 rb_erase(&state->rb_node, &tree->state); 546 RB_CLEAR_NODE(&state->rb_node); 547 free_extent_state(state); 548 } else { 549 WARN_ON(1); 550 } 551 } else { 552 merge_state(tree, state); 553 next = next_state(state); 554 } 555 return next; 556 } 557 558 static struct extent_state * 559 alloc_extent_state_atomic(struct extent_state *prealloc) 560 { 561 if (!prealloc) 562 prealloc = alloc_extent_state(GFP_ATOMIC); 563 564 return prealloc; 565 } 566 567 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 568 { 569 btrfs_panic(tree_fs_info(tree), err, 570 "Locking error: Extent tree was modified by another thread while locked."); 571 } 572 573 /* 574 * clear some bits on a range in the tree. This may require splitting 575 * or inserting elements in the tree, so the gfp mask is used to 576 * indicate which allocations or sleeping are allowed. 577 * 578 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 579 * the given range from the tree regardless of state (ie for truncate). 580 * 581 * the range [start, end] is inclusive. 582 * 583 * This takes the tree lock, and returns 0 on success and < 0 on error. 584 */ 585 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 586 unsigned bits, int wake, int delete, 587 struct extent_state **cached_state, 588 gfp_t mask, struct extent_changeset *changeset) 589 { 590 struct extent_state *state; 591 struct extent_state *cached; 592 struct extent_state *prealloc = NULL; 593 struct rb_node *node; 594 u64 last_end; 595 int err; 596 int clear = 0; 597 598 btrfs_debug_check_extent_io_range(tree, start, end); 599 600 if (bits & EXTENT_DELALLOC) 601 bits |= EXTENT_NORESERVE; 602 603 if (delete) 604 bits |= ~EXTENT_CTLBITS; 605 bits |= EXTENT_FIRST_DELALLOC; 606 607 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 608 clear = 1; 609 again: 610 if (!prealloc && gfpflags_allow_blocking(mask)) { 611 /* 612 * Don't care for allocation failure here because we might end 613 * up not needing the pre-allocated extent state at all, which 614 * is the case if we only have in the tree extent states that 615 * cover our input range and don't cover too any other range. 616 * If we end up needing a new extent state we allocate it later. 617 */ 618 prealloc = alloc_extent_state(mask); 619 } 620 621 spin_lock(&tree->lock); 622 if (cached_state) { 623 cached = *cached_state; 624 625 if (clear) { 626 *cached_state = NULL; 627 cached_state = NULL; 628 } 629 630 if (cached && extent_state_in_tree(cached) && 631 cached->start <= start && cached->end > start) { 632 if (clear) 633 refcount_dec(&cached->refs); 634 state = cached; 635 goto hit_next; 636 } 637 if (clear) 638 free_extent_state(cached); 639 } 640 /* 641 * this search will find the extents that end after 642 * our range starts 643 */ 644 node = tree_search(tree, start); 645 if (!node) 646 goto out; 647 state = rb_entry(node, struct extent_state, rb_node); 648 hit_next: 649 if (state->start > end) 650 goto out; 651 WARN_ON(state->end < start); 652 last_end = state->end; 653 654 /* the state doesn't have the wanted bits, go ahead */ 655 if (!(state->state & bits)) { 656 state = next_state(state); 657 goto next; 658 } 659 660 /* 661 * | ---- desired range ---- | 662 * | state | or 663 * | ------------- state -------------- | 664 * 665 * We need to split the extent we found, and may flip 666 * bits on second half. 667 * 668 * If the extent we found extends past our range, we 669 * just split and search again. It'll get split again 670 * the next time though. 671 * 672 * If the extent we found is inside our range, we clear 673 * the desired bit on it. 674 */ 675 676 if (state->start < start) { 677 prealloc = alloc_extent_state_atomic(prealloc); 678 BUG_ON(!prealloc); 679 err = split_state(tree, state, prealloc, start); 680 if (err) 681 extent_io_tree_panic(tree, err); 682 683 prealloc = NULL; 684 if (err) 685 goto out; 686 if (state->end <= end) { 687 state = clear_state_bit(tree, state, &bits, wake, 688 changeset); 689 goto next; 690 } 691 goto search_again; 692 } 693 /* 694 * | ---- desired range ---- | 695 * | state | 696 * We need to split the extent, and clear the bit 697 * on the first half 698 */ 699 if (state->start <= end && state->end > end) { 700 prealloc = alloc_extent_state_atomic(prealloc); 701 BUG_ON(!prealloc); 702 err = split_state(tree, state, prealloc, end + 1); 703 if (err) 704 extent_io_tree_panic(tree, err); 705 706 if (wake) 707 wake_up(&state->wq); 708 709 clear_state_bit(tree, prealloc, &bits, wake, changeset); 710 711 prealloc = NULL; 712 goto out; 713 } 714 715 state = clear_state_bit(tree, state, &bits, wake, changeset); 716 next: 717 if (last_end == (u64)-1) 718 goto out; 719 start = last_end + 1; 720 if (start <= end && state && !need_resched()) 721 goto hit_next; 722 723 search_again: 724 if (start > end) 725 goto out; 726 spin_unlock(&tree->lock); 727 if (gfpflags_allow_blocking(mask)) 728 cond_resched(); 729 goto again; 730 731 out: 732 spin_unlock(&tree->lock); 733 if (prealloc) 734 free_extent_state(prealloc); 735 736 return 0; 737 738 } 739 740 static void wait_on_state(struct extent_io_tree *tree, 741 struct extent_state *state) 742 __releases(tree->lock) 743 __acquires(tree->lock) 744 { 745 DEFINE_WAIT(wait); 746 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 747 spin_unlock(&tree->lock); 748 schedule(); 749 spin_lock(&tree->lock); 750 finish_wait(&state->wq, &wait); 751 } 752 753 /* 754 * waits for one or more bits to clear on a range in the state tree. 755 * The range [start, end] is inclusive. 756 * The tree lock is taken by this function 757 */ 758 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 759 unsigned long bits) 760 { 761 struct extent_state *state; 762 struct rb_node *node; 763 764 btrfs_debug_check_extent_io_range(tree, start, end); 765 766 spin_lock(&tree->lock); 767 again: 768 while (1) { 769 /* 770 * this search will find all the extents that end after 771 * our range starts 772 */ 773 node = tree_search(tree, start); 774 process_node: 775 if (!node) 776 break; 777 778 state = rb_entry(node, struct extent_state, rb_node); 779 780 if (state->start > end) 781 goto out; 782 783 if (state->state & bits) { 784 start = state->start; 785 refcount_inc(&state->refs); 786 wait_on_state(tree, state); 787 free_extent_state(state); 788 goto again; 789 } 790 start = state->end + 1; 791 792 if (start > end) 793 break; 794 795 if (!cond_resched_lock(&tree->lock)) { 796 node = rb_next(node); 797 goto process_node; 798 } 799 } 800 out: 801 spin_unlock(&tree->lock); 802 } 803 804 static void set_state_bits(struct extent_io_tree *tree, 805 struct extent_state *state, 806 unsigned *bits, struct extent_changeset *changeset) 807 { 808 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 809 810 set_state_cb(tree, state, bits); 811 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 812 u64 range = state->end - state->start + 1; 813 tree->dirty_bytes += range; 814 } 815 add_extent_changeset(state, bits_to_set, changeset, 1); 816 state->state |= bits_to_set; 817 } 818 819 static void cache_state_if_flags(struct extent_state *state, 820 struct extent_state **cached_ptr, 821 unsigned flags) 822 { 823 if (cached_ptr && !(*cached_ptr)) { 824 if (!flags || (state->state & flags)) { 825 *cached_ptr = state; 826 refcount_inc(&state->refs); 827 } 828 } 829 } 830 831 static void cache_state(struct extent_state *state, 832 struct extent_state **cached_ptr) 833 { 834 return cache_state_if_flags(state, cached_ptr, 835 EXTENT_IOBITS | EXTENT_BOUNDARY); 836 } 837 838 /* 839 * set some bits on a range in the tree. This may require allocations or 840 * sleeping, so the gfp mask is used to indicate what is allowed. 841 * 842 * If any of the exclusive bits are set, this will fail with -EEXIST if some 843 * part of the range already has the desired bits set. The start of the 844 * existing range is returned in failed_start in this case. 845 * 846 * [start, end] is inclusive This takes the tree lock. 847 */ 848 849 static int __must_check 850 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 851 unsigned bits, unsigned exclusive_bits, 852 u64 *failed_start, struct extent_state **cached_state, 853 gfp_t mask, struct extent_changeset *changeset) 854 { 855 struct extent_state *state; 856 struct extent_state *prealloc = NULL; 857 struct rb_node *node; 858 struct rb_node **p; 859 struct rb_node *parent; 860 int err = 0; 861 u64 last_start; 862 u64 last_end; 863 864 btrfs_debug_check_extent_io_range(tree, start, end); 865 866 bits |= EXTENT_FIRST_DELALLOC; 867 again: 868 if (!prealloc && gfpflags_allow_blocking(mask)) { 869 /* 870 * Don't care for allocation failure here because we might end 871 * up not needing the pre-allocated extent state at all, which 872 * is the case if we only have in the tree extent states that 873 * cover our input range and don't cover too any other range. 874 * If we end up needing a new extent state we allocate it later. 875 */ 876 prealloc = alloc_extent_state(mask); 877 } 878 879 spin_lock(&tree->lock); 880 if (cached_state && *cached_state) { 881 state = *cached_state; 882 if (state->start <= start && state->end > start && 883 extent_state_in_tree(state)) { 884 node = &state->rb_node; 885 goto hit_next; 886 } 887 } 888 /* 889 * this search will find all the extents that end after 890 * our range starts. 891 */ 892 node = tree_search_for_insert(tree, start, &p, &parent); 893 if (!node) { 894 prealloc = alloc_extent_state_atomic(prealloc); 895 BUG_ON(!prealloc); 896 err = insert_state(tree, prealloc, start, end, 897 &p, &parent, &bits, changeset); 898 if (err) 899 extent_io_tree_panic(tree, err); 900 901 cache_state(prealloc, cached_state); 902 prealloc = NULL; 903 goto out; 904 } 905 state = rb_entry(node, struct extent_state, rb_node); 906 hit_next: 907 last_start = state->start; 908 last_end = state->end; 909 910 /* 911 * | ---- desired range ---- | 912 * | state | 913 * 914 * Just lock what we found and keep going 915 */ 916 if (state->start == start && state->end <= end) { 917 if (state->state & exclusive_bits) { 918 *failed_start = state->start; 919 err = -EEXIST; 920 goto out; 921 } 922 923 set_state_bits(tree, state, &bits, changeset); 924 cache_state(state, cached_state); 925 merge_state(tree, state); 926 if (last_end == (u64)-1) 927 goto out; 928 start = last_end + 1; 929 state = next_state(state); 930 if (start < end && state && state->start == start && 931 !need_resched()) 932 goto hit_next; 933 goto search_again; 934 } 935 936 /* 937 * | ---- desired range ---- | 938 * | state | 939 * or 940 * | ------------- state -------------- | 941 * 942 * We need to split the extent we found, and may flip bits on 943 * second half. 944 * 945 * If the extent we found extends past our 946 * range, we just split and search again. It'll get split 947 * again the next time though. 948 * 949 * If the extent we found is inside our range, we set the 950 * desired bit on it. 951 */ 952 if (state->start < start) { 953 if (state->state & exclusive_bits) { 954 *failed_start = start; 955 err = -EEXIST; 956 goto out; 957 } 958 959 prealloc = alloc_extent_state_atomic(prealloc); 960 BUG_ON(!prealloc); 961 err = split_state(tree, state, prealloc, start); 962 if (err) 963 extent_io_tree_panic(tree, err); 964 965 prealloc = NULL; 966 if (err) 967 goto out; 968 if (state->end <= end) { 969 set_state_bits(tree, state, &bits, changeset); 970 cache_state(state, cached_state); 971 merge_state(tree, state); 972 if (last_end == (u64)-1) 973 goto out; 974 start = last_end + 1; 975 state = next_state(state); 976 if (start < end && state && state->start == start && 977 !need_resched()) 978 goto hit_next; 979 } 980 goto search_again; 981 } 982 /* 983 * | ---- desired range ---- | 984 * | state | or | state | 985 * 986 * There's a hole, we need to insert something in it and 987 * ignore the extent we found. 988 */ 989 if (state->start > start) { 990 u64 this_end; 991 if (end < last_start) 992 this_end = end; 993 else 994 this_end = last_start - 1; 995 996 prealloc = alloc_extent_state_atomic(prealloc); 997 BUG_ON(!prealloc); 998 999 /* 1000 * Avoid to free 'prealloc' if it can be merged with 1001 * the later extent. 1002 */ 1003 err = insert_state(tree, prealloc, start, this_end, 1004 NULL, NULL, &bits, changeset); 1005 if (err) 1006 extent_io_tree_panic(tree, err); 1007 1008 cache_state(prealloc, cached_state); 1009 prealloc = NULL; 1010 start = this_end + 1; 1011 goto search_again; 1012 } 1013 /* 1014 * | ---- desired range ---- | 1015 * | state | 1016 * We need to split the extent, and set the bit 1017 * on the first half 1018 */ 1019 if (state->start <= end && state->end > end) { 1020 if (state->state & exclusive_bits) { 1021 *failed_start = start; 1022 err = -EEXIST; 1023 goto out; 1024 } 1025 1026 prealloc = alloc_extent_state_atomic(prealloc); 1027 BUG_ON(!prealloc); 1028 err = split_state(tree, state, prealloc, end + 1); 1029 if (err) 1030 extent_io_tree_panic(tree, err); 1031 1032 set_state_bits(tree, prealloc, &bits, changeset); 1033 cache_state(prealloc, cached_state); 1034 merge_state(tree, prealloc); 1035 prealloc = NULL; 1036 goto out; 1037 } 1038 1039 search_again: 1040 if (start > end) 1041 goto out; 1042 spin_unlock(&tree->lock); 1043 if (gfpflags_allow_blocking(mask)) 1044 cond_resched(); 1045 goto again; 1046 1047 out: 1048 spin_unlock(&tree->lock); 1049 if (prealloc) 1050 free_extent_state(prealloc); 1051 1052 return err; 1053 1054 } 1055 1056 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1057 unsigned bits, u64 * failed_start, 1058 struct extent_state **cached_state, gfp_t mask) 1059 { 1060 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1061 cached_state, mask, NULL); 1062 } 1063 1064 1065 /** 1066 * convert_extent_bit - convert all bits in a given range from one bit to 1067 * another 1068 * @tree: the io tree to search 1069 * @start: the start offset in bytes 1070 * @end: the end offset in bytes (inclusive) 1071 * @bits: the bits to set in this range 1072 * @clear_bits: the bits to clear in this range 1073 * @cached_state: state that we're going to cache 1074 * 1075 * This will go through and set bits for the given range. If any states exist 1076 * already in this range they are set with the given bit and cleared of the 1077 * clear_bits. This is only meant to be used by things that are mergeable, ie 1078 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1079 * boundary bits like LOCK. 1080 * 1081 * All allocations are done with GFP_NOFS. 1082 */ 1083 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1084 unsigned bits, unsigned clear_bits, 1085 struct extent_state **cached_state) 1086 { 1087 struct extent_state *state; 1088 struct extent_state *prealloc = NULL; 1089 struct rb_node *node; 1090 struct rb_node **p; 1091 struct rb_node *parent; 1092 int err = 0; 1093 u64 last_start; 1094 u64 last_end; 1095 bool first_iteration = true; 1096 1097 btrfs_debug_check_extent_io_range(tree, start, end); 1098 1099 again: 1100 if (!prealloc) { 1101 /* 1102 * Best effort, don't worry if extent state allocation fails 1103 * here for the first iteration. We might have a cached state 1104 * that matches exactly the target range, in which case no 1105 * extent state allocations are needed. We'll only know this 1106 * after locking the tree. 1107 */ 1108 prealloc = alloc_extent_state(GFP_NOFS); 1109 if (!prealloc && !first_iteration) 1110 return -ENOMEM; 1111 } 1112 1113 spin_lock(&tree->lock); 1114 if (cached_state && *cached_state) { 1115 state = *cached_state; 1116 if (state->start <= start && state->end > start && 1117 extent_state_in_tree(state)) { 1118 node = &state->rb_node; 1119 goto hit_next; 1120 } 1121 } 1122 1123 /* 1124 * this search will find all the extents that end after 1125 * our range starts. 1126 */ 1127 node = tree_search_for_insert(tree, start, &p, &parent); 1128 if (!node) { 1129 prealloc = alloc_extent_state_atomic(prealloc); 1130 if (!prealloc) { 1131 err = -ENOMEM; 1132 goto out; 1133 } 1134 err = insert_state(tree, prealloc, start, end, 1135 &p, &parent, &bits, NULL); 1136 if (err) 1137 extent_io_tree_panic(tree, err); 1138 cache_state(prealloc, cached_state); 1139 prealloc = NULL; 1140 goto out; 1141 } 1142 state = rb_entry(node, struct extent_state, rb_node); 1143 hit_next: 1144 last_start = state->start; 1145 last_end = state->end; 1146 1147 /* 1148 * | ---- desired range ---- | 1149 * | state | 1150 * 1151 * Just lock what we found and keep going 1152 */ 1153 if (state->start == start && state->end <= end) { 1154 set_state_bits(tree, state, &bits, NULL); 1155 cache_state(state, cached_state); 1156 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1157 if (last_end == (u64)-1) 1158 goto out; 1159 start = last_end + 1; 1160 if (start < end && state && state->start == start && 1161 !need_resched()) 1162 goto hit_next; 1163 goto search_again; 1164 } 1165 1166 /* 1167 * | ---- desired range ---- | 1168 * | state | 1169 * or 1170 * | ------------- state -------------- | 1171 * 1172 * We need to split the extent we found, and may flip bits on 1173 * second half. 1174 * 1175 * If the extent we found extends past our 1176 * range, we just split and search again. It'll get split 1177 * again the next time though. 1178 * 1179 * If the extent we found is inside our range, we set the 1180 * desired bit on it. 1181 */ 1182 if (state->start < start) { 1183 prealloc = alloc_extent_state_atomic(prealloc); 1184 if (!prealloc) { 1185 err = -ENOMEM; 1186 goto out; 1187 } 1188 err = split_state(tree, state, prealloc, start); 1189 if (err) 1190 extent_io_tree_panic(tree, err); 1191 prealloc = NULL; 1192 if (err) 1193 goto out; 1194 if (state->end <= end) { 1195 set_state_bits(tree, state, &bits, NULL); 1196 cache_state(state, cached_state); 1197 state = clear_state_bit(tree, state, &clear_bits, 0, 1198 NULL); 1199 if (last_end == (u64)-1) 1200 goto out; 1201 start = last_end + 1; 1202 if (start < end && state && state->start == start && 1203 !need_resched()) 1204 goto hit_next; 1205 } 1206 goto search_again; 1207 } 1208 /* 1209 * | ---- desired range ---- | 1210 * | state | or | state | 1211 * 1212 * There's a hole, we need to insert something in it and 1213 * ignore the extent we found. 1214 */ 1215 if (state->start > start) { 1216 u64 this_end; 1217 if (end < last_start) 1218 this_end = end; 1219 else 1220 this_end = last_start - 1; 1221 1222 prealloc = alloc_extent_state_atomic(prealloc); 1223 if (!prealloc) { 1224 err = -ENOMEM; 1225 goto out; 1226 } 1227 1228 /* 1229 * Avoid to free 'prealloc' if it can be merged with 1230 * the later extent. 1231 */ 1232 err = insert_state(tree, prealloc, start, this_end, 1233 NULL, NULL, &bits, NULL); 1234 if (err) 1235 extent_io_tree_panic(tree, err); 1236 cache_state(prealloc, cached_state); 1237 prealloc = NULL; 1238 start = this_end + 1; 1239 goto search_again; 1240 } 1241 /* 1242 * | ---- desired range ---- | 1243 * | state | 1244 * We need to split the extent, and set the bit 1245 * on the first half 1246 */ 1247 if (state->start <= end && state->end > end) { 1248 prealloc = alloc_extent_state_atomic(prealloc); 1249 if (!prealloc) { 1250 err = -ENOMEM; 1251 goto out; 1252 } 1253 1254 err = split_state(tree, state, prealloc, end + 1); 1255 if (err) 1256 extent_io_tree_panic(tree, err); 1257 1258 set_state_bits(tree, prealloc, &bits, NULL); 1259 cache_state(prealloc, cached_state); 1260 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1261 prealloc = NULL; 1262 goto out; 1263 } 1264 1265 search_again: 1266 if (start > end) 1267 goto out; 1268 spin_unlock(&tree->lock); 1269 cond_resched(); 1270 first_iteration = false; 1271 goto again; 1272 1273 out: 1274 spin_unlock(&tree->lock); 1275 if (prealloc) 1276 free_extent_state(prealloc); 1277 1278 return err; 1279 } 1280 1281 /* wrappers around set/clear extent bit */ 1282 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1283 unsigned bits, struct extent_changeset *changeset) 1284 { 1285 /* 1286 * We don't support EXTENT_LOCKED yet, as current changeset will 1287 * record any bits changed, so for EXTENT_LOCKED case, it will 1288 * either fail with -EEXIST or changeset will record the whole 1289 * range. 1290 */ 1291 BUG_ON(bits & EXTENT_LOCKED); 1292 1293 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1294 changeset); 1295 } 1296 1297 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1298 unsigned bits, int wake, int delete, 1299 struct extent_state **cached, gfp_t mask) 1300 { 1301 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1302 cached, mask, NULL); 1303 } 1304 1305 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1306 unsigned bits, struct extent_changeset *changeset) 1307 { 1308 /* 1309 * Don't support EXTENT_LOCKED case, same reason as 1310 * set_record_extent_bits(). 1311 */ 1312 BUG_ON(bits & EXTENT_LOCKED); 1313 1314 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1315 changeset); 1316 } 1317 1318 /* 1319 * either insert or lock state struct between start and end use mask to tell 1320 * us if waiting is desired. 1321 */ 1322 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1323 struct extent_state **cached_state) 1324 { 1325 int err; 1326 u64 failed_start; 1327 1328 while (1) { 1329 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1330 EXTENT_LOCKED, &failed_start, 1331 cached_state, GFP_NOFS, NULL); 1332 if (err == -EEXIST) { 1333 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1334 start = failed_start; 1335 } else 1336 break; 1337 WARN_ON(start > end); 1338 } 1339 return err; 1340 } 1341 1342 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1343 { 1344 int err; 1345 u64 failed_start; 1346 1347 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1348 &failed_start, NULL, GFP_NOFS, NULL); 1349 if (err == -EEXIST) { 1350 if (failed_start > start) 1351 clear_extent_bit(tree, start, failed_start - 1, 1352 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1353 return 0; 1354 } 1355 return 1; 1356 } 1357 1358 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1359 { 1360 unsigned long index = start >> PAGE_SHIFT; 1361 unsigned long end_index = end >> PAGE_SHIFT; 1362 struct page *page; 1363 1364 while (index <= end_index) { 1365 page = find_get_page(inode->i_mapping, index); 1366 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1367 clear_page_dirty_for_io(page); 1368 put_page(page); 1369 index++; 1370 } 1371 } 1372 1373 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1374 { 1375 unsigned long index = start >> PAGE_SHIFT; 1376 unsigned long end_index = end >> PAGE_SHIFT; 1377 struct page *page; 1378 1379 while (index <= end_index) { 1380 page = find_get_page(inode->i_mapping, index); 1381 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1382 __set_page_dirty_nobuffers(page); 1383 account_page_redirty(page); 1384 put_page(page); 1385 index++; 1386 } 1387 } 1388 1389 /* 1390 * helper function to set both pages and extents in the tree writeback 1391 */ 1392 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1393 { 1394 tree->ops->set_range_writeback(tree->private_data, start, end); 1395 } 1396 1397 /* find the first state struct with 'bits' set after 'start', and 1398 * return it. tree->lock must be held. NULL will returned if 1399 * nothing was found after 'start' 1400 */ 1401 static struct extent_state * 1402 find_first_extent_bit_state(struct extent_io_tree *tree, 1403 u64 start, unsigned bits) 1404 { 1405 struct rb_node *node; 1406 struct extent_state *state; 1407 1408 /* 1409 * this search will find all the extents that end after 1410 * our range starts. 1411 */ 1412 node = tree_search(tree, start); 1413 if (!node) 1414 goto out; 1415 1416 while (1) { 1417 state = rb_entry(node, struct extent_state, rb_node); 1418 if (state->end >= start && (state->state & bits)) 1419 return state; 1420 1421 node = rb_next(node); 1422 if (!node) 1423 break; 1424 } 1425 out: 1426 return NULL; 1427 } 1428 1429 /* 1430 * find the first offset in the io tree with 'bits' set. zero is 1431 * returned if we find something, and *start_ret and *end_ret are 1432 * set to reflect the state struct that was found. 1433 * 1434 * If nothing was found, 1 is returned. If found something, return 0. 1435 */ 1436 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1437 u64 *start_ret, u64 *end_ret, unsigned bits, 1438 struct extent_state **cached_state) 1439 { 1440 struct extent_state *state; 1441 struct rb_node *n; 1442 int ret = 1; 1443 1444 spin_lock(&tree->lock); 1445 if (cached_state && *cached_state) { 1446 state = *cached_state; 1447 if (state->end == start - 1 && extent_state_in_tree(state)) { 1448 n = rb_next(&state->rb_node); 1449 while (n) { 1450 state = rb_entry(n, struct extent_state, 1451 rb_node); 1452 if (state->state & bits) 1453 goto got_it; 1454 n = rb_next(n); 1455 } 1456 free_extent_state(*cached_state); 1457 *cached_state = NULL; 1458 goto out; 1459 } 1460 free_extent_state(*cached_state); 1461 *cached_state = NULL; 1462 } 1463 1464 state = find_first_extent_bit_state(tree, start, bits); 1465 got_it: 1466 if (state) { 1467 cache_state_if_flags(state, cached_state, 0); 1468 *start_ret = state->start; 1469 *end_ret = state->end; 1470 ret = 0; 1471 } 1472 out: 1473 spin_unlock(&tree->lock); 1474 return ret; 1475 } 1476 1477 /* 1478 * find a contiguous range of bytes in the file marked as delalloc, not 1479 * more than 'max_bytes'. start and end are used to return the range, 1480 * 1481 * 1 is returned if we find something, 0 if nothing was in the tree 1482 */ 1483 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1484 u64 *start, u64 *end, u64 max_bytes, 1485 struct extent_state **cached_state) 1486 { 1487 struct rb_node *node; 1488 struct extent_state *state; 1489 u64 cur_start = *start; 1490 u64 found = 0; 1491 u64 total_bytes = 0; 1492 1493 spin_lock(&tree->lock); 1494 1495 /* 1496 * this search will find all the extents that end after 1497 * our range starts. 1498 */ 1499 node = tree_search(tree, cur_start); 1500 if (!node) { 1501 if (!found) 1502 *end = (u64)-1; 1503 goto out; 1504 } 1505 1506 while (1) { 1507 state = rb_entry(node, struct extent_state, rb_node); 1508 if (found && (state->start != cur_start || 1509 (state->state & EXTENT_BOUNDARY))) { 1510 goto out; 1511 } 1512 if (!(state->state & EXTENT_DELALLOC)) { 1513 if (!found) 1514 *end = state->end; 1515 goto out; 1516 } 1517 if (!found) { 1518 *start = state->start; 1519 *cached_state = state; 1520 refcount_inc(&state->refs); 1521 } 1522 found++; 1523 *end = state->end; 1524 cur_start = state->end + 1; 1525 node = rb_next(node); 1526 total_bytes += state->end - state->start + 1; 1527 if (total_bytes >= max_bytes) 1528 break; 1529 if (!node) 1530 break; 1531 } 1532 out: 1533 spin_unlock(&tree->lock); 1534 return found; 1535 } 1536 1537 static int __process_pages_contig(struct address_space *mapping, 1538 struct page *locked_page, 1539 pgoff_t start_index, pgoff_t end_index, 1540 unsigned long page_ops, pgoff_t *index_ret); 1541 1542 static noinline void __unlock_for_delalloc(struct inode *inode, 1543 struct page *locked_page, 1544 u64 start, u64 end) 1545 { 1546 unsigned long index = start >> PAGE_SHIFT; 1547 unsigned long end_index = end >> PAGE_SHIFT; 1548 1549 ASSERT(locked_page); 1550 if (index == locked_page->index && end_index == index) 1551 return; 1552 1553 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1554 PAGE_UNLOCK, NULL); 1555 } 1556 1557 static noinline int lock_delalloc_pages(struct inode *inode, 1558 struct page *locked_page, 1559 u64 delalloc_start, 1560 u64 delalloc_end) 1561 { 1562 unsigned long index = delalloc_start >> PAGE_SHIFT; 1563 unsigned long index_ret = index; 1564 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1565 int ret; 1566 1567 ASSERT(locked_page); 1568 if (index == locked_page->index && index == end_index) 1569 return 0; 1570 1571 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1572 end_index, PAGE_LOCK, &index_ret); 1573 if (ret == -EAGAIN) 1574 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1575 (u64)index_ret << PAGE_SHIFT); 1576 return ret; 1577 } 1578 1579 /* 1580 * find a contiguous range of bytes in the file marked as delalloc, not 1581 * more than 'max_bytes'. start and end are used to return the range, 1582 * 1583 * 1 is returned if we find something, 0 if nothing was in the tree 1584 */ 1585 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1586 struct extent_io_tree *tree, 1587 struct page *locked_page, u64 *start, 1588 u64 *end, u64 max_bytes) 1589 { 1590 u64 delalloc_start; 1591 u64 delalloc_end; 1592 u64 found; 1593 struct extent_state *cached_state = NULL; 1594 int ret; 1595 int loops = 0; 1596 1597 again: 1598 /* step one, find a bunch of delalloc bytes starting at start */ 1599 delalloc_start = *start; 1600 delalloc_end = 0; 1601 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1602 max_bytes, &cached_state); 1603 if (!found || delalloc_end <= *start) { 1604 *start = delalloc_start; 1605 *end = delalloc_end; 1606 free_extent_state(cached_state); 1607 return 0; 1608 } 1609 1610 /* 1611 * start comes from the offset of locked_page. We have to lock 1612 * pages in order, so we can't process delalloc bytes before 1613 * locked_page 1614 */ 1615 if (delalloc_start < *start) 1616 delalloc_start = *start; 1617 1618 /* 1619 * make sure to limit the number of pages we try to lock down 1620 */ 1621 if (delalloc_end + 1 - delalloc_start > max_bytes) 1622 delalloc_end = delalloc_start + max_bytes - 1; 1623 1624 /* step two, lock all the pages after the page that has start */ 1625 ret = lock_delalloc_pages(inode, locked_page, 1626 delalloc_start, delalloc_end); 1627 if (ret == -EAGAIN) { 1628 /* some of the pages are gone, lets avoid looping by 1629 * shortening the size of the delalloc range we're searching 1630 */ 1631 free_extent_state(cached_state); 1632 cached_state = NULL; 1633 if (!loops) { 1634 max_bytes = PAGE_SIZE; 1635 loops = 1; 1636 goto again; 1637 } else { 1638 found = 0; 1639 goto out_failed; 1640 } 1641 } 1642 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1643 1644 /* step three, lock the state bits for the whole range */ 1645 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1646 1647 /* then test to make sure it is all still delalloc */ 1648 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1649 EXTENT_DELALLOC, 1, cached_state); 1650 if (!ret) { 1651 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1652 &cached_state, GFP_NOFS); 1653 __unlock_for_delalloc(inode, locked_page, 1654 delalloc_start, delalloc_end); 1655 cond_resched(); 1656 goto again; 1657 } 1658 free_extent_state(cached_state); 1659 *start = delalloc_start; 1660 *end = delalloc_end; 1661 out_failed: 1662 return found; 1663 } 1664 1665 static int __process_pages_contig(struct address_space *mapping, 1666 struct page *locked_page, 1667 pgoff_t start_index, pgoff_t end_index, 1668 unsigned long page_ops, pgoff_t *index_ret) 1669 { 1670 unsigned long nr_pages = end_index - start_index + 1; 1671 unsigned long pages_locked = 0; 1672 pgoff_t index = start_index; 1673 struct page *pages[16]; 1674 unsigned ret; 1675 int err = 0; 1676 int i; 1677 1678 if (page_ops & PAGE_LOCK) { 1679 ASSERT(page_ops == PAGE_LOCK); 1680 ASSERT(index_ret && *index_ret == start_index); 1681 } 1682 1683 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1684 mapping_set_error(mapping, -EIO); 1685 1686 while (nr_pages > 0) { 1687 ret = find_get_pages_contig(mapping, index, 1688 min_t(unsigned long, 1689 nr_pages, ARRAY_SIZE(pages)), pages); 1690 if (ret == 0) { 1691 /* 1692 * Only if we're going to lock these pages, 1693 * can we find nothing at @index. 1694 */ 1695 ASSERT(page_ops & PAGE_LOCK); 1696 err = -EAGAIN; 1697 goto out; 1698 } 1699 1700 for (i = 0; i < ret; i++) { 1701 if (page_ops & PAGE_SET_PRIVATE2) 1702 SetPagePrivate2(pages[i]); 1703 1704 if (pages[i] == locked_page) { 1705 put_page(pages[i]); 1706 pages_locked++; 1707 continue; 1708 } 1709 if (page_ops & PAGE_CLEAR_DIRTY) 1710 clear_page_dirty_for_io(pages[i]); 1711 if (page_ops & PAGE_SET_WRITEBACK) 1712 set_page_writeback(pages[i]); 1713 if (page_ops & PAGE_SET_ERROR) 1714 SetPageError(pages[i]); 1715 if (page_ops & PAGE_END_WRITEBACK) 1716 end_page_writeback(pages[i]); 1717 if (page_ops & PAGE_UNLOCK) 1718 unlock_page(pages[i]); 1719 if (page_ops & PAGE_LOCK) { 1720 lock_page(pages[i]); 1721 if (!PageDirty(pages[i]) || 1722 pages[i]->mapping != mapping) { 1723 unlock_page(pages[i]); 1724 put_page(pages[i]); 1725 err = -EAGAIN; 1726 goto out; 1727 } 1728 } 1729 put_page(pages[i]); 1730 pages_locked++; 1731 } 1732 nr_pages -= ret; 1733 index += ret; 1734 cond_resched(); 1735 } 1736 out: 1737 if (err && index_ret) 1738 *index_ret = start_index + pages_locked - 1; 1739 return err; 1740 } 1741 1742 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1743 u64 delalloc_end, struct page *locked_page, 1744 unsigned clear_bits, 1745 unsigned long page_ops) 1746 { 1747 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1748 NULL, GFP_NOFS); 1749 1750 __process_pages_contig(inode->i_mapping, locked_page, 1751 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1752 page_ops, NULL); 1753 } 1754 1755 /* 1756 * count the number of bytes in the tree that have a given bit(s) 1757 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1758 * cached. The total number found is returned. 1759 */ 1760 u64 count_range_bits(struct extent_io_tree *tree, 1761 u64 *start, u64 search_end, u64 max_bytes, 1762 unsigned bits, int contig) 1763 { 1764 struct rb_node *node; 1765 struct extent_state *state; 1766 u64 cur_start = *start; 1767 u64 total_bytes = 0; 1768 u64 last = 0; 1769 int found = 0; 1770 1771 if (WARN_ON(search_end <= cur_start)) 1772 return 0; 1773 1774 spin_lock(&tree->lock); 1775 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1776 total_bytes = tree->dirty_bytes; 1777 goto out; 1778 } 1779 /* 1780 * this search will find all the extents that end after 1781 * our range starts. 1782 */ 1783 node = tree_search(tree, cur_start); 1784 if (!node) 1785 goto out; 1786 1787 while (1) { 1788 state = rb_entry(node, struct extent_state, rb_node); 1789 if (state->start > search_end) 1790 break; 1791 if (contig && found && state->start > last + 1) 1792 break; 1793 if (state->end >= cur_start && (state->state & bits) == bits) { 1794 total_bytes += min(search_end, state->end) + 1 - 1795 max(cur_start, state->start); 1796 if (total_bytes >= max_bytes) 1797 break; 1798 if (!found) { 1799 *start = max(cur_start, state->start); 1800 found = 1; 1801 } 1802 last = state->end; 1803 } else if (contig && found) { 1804 break; 1805 } 1806 node = rb_next(node); 1807 if (!node) 1808 break; 1809 } 1810 out: 1811 spin_unlock(&tree->lock); 1812 return total_bytes; 1813 } 1814 1815 /* 1816 * set the private field for a given byte offset in the tree. If there isn't 1817 * an extent_state there already, this does nothing. 1818 */ 1819 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1820 struct io_failure_record *failrec) 1821 { 1822 struct rb_node *node; 1823 struct extent_state *state; 1824 int ret = 0; 1825 1826 spin_lock(&tree->lock); 1827 /* 1828 * this search will find all the extents that end after 1829 * our range starts. 1830 */ 1831 node = tree_search(tree, start); 1832 if (!node) { 1833 ret = -ENOENT; 1834 goto out; 1835 } 1836 state = rb_entry(node, struct extent_state, rb_node); 1837 if (state->start != start) { 1838 ret = -ENOENT; 1839 goto out; 1840 } 1841 state->failrec = failrec; 1842 out: 1843 spin_unlock(&tree->lock); 1844 return ret; 1845 } 1846 1847 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1848 struct io_failure_record **failrec) 1849 { 1850 struct rb_node *node; 1851 struct extent_state *state; 1852 int ret = 0; 1853 1854 spin_lock(&tree->lock); 1855 /* 1856 * this search will find all the extents that end after 1857 * our range starts. 1858 */ 1859 node = tree_search(tree, start); 1860 if (!node) { 1861 ret = -ENOENT; 1862 goto out; 1863 } 1864 state = rb_entry(node, struct extent_state, rb_node); 1865 if (state->start != start) { 1866 ret = -ENOENT; 1867 goto out; 1868 } 1869 *failrec = state->failrec; 1870 out: 1871 spin_unlock(&tree->lock); 1872 return ret; 1873 } 1874 1875 /* 1876 * searches a range in the state tree for a given mask. 1877 * If 'filled' == 1, this returns 1 only if every extent in the tree 1878 * has the bits set. Otherwise, 1 is returned if any bit in the 1879 * range is found set. 1880 */ 1881 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1882 unsigned bits, int filled, struct extent_state *cached) 1883 { 1884 struct extent_state *state = NULL; 1885 struct rb_node *node; 1886 int bitset = 0; 1887 1888 spin_lock(&tree->lock); 1889 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1890 cached->end > start) 1891 node = &cached->rb_node; 1892 else 1893 node = tree_search(tree, start); 1894 while (node && start <= end) { 1895 state = rb_entry(node, struct extent_state, rb_node); 1896 1897 if (filled && state->start > start) { 1898 bitset = 0; 1899 break; 1900 } 1901 1902 if (state->start > end) 1903 break; 1904 1905 if (state->state & bits) { 1906 bitset = 1; 1907 if (!filled) 1908 break; 1909 } else if (filled) { 1910 bitset = 0; 1911 break; 1912 } 1913 1914 if (state->end == (u64)-1) 1915 break; 1916 1917 start = state->end + 1; 1918 if (start > end) 1919 break; 1920 node = rb_next(node); 1921 if (!node) { 1922 if (filled) 1923 bitset = 0; 1924 break; 1925 } 1926 } 1927 spin_unlock(&tree->lock); 1928 return bitset; 1929 } 1930 1931 /* 1932 * helper function to set a given page up to date if all the 1933 * extents in the tree for that page are up to date 1934 */ 1935 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1936 { 1937 u64 start = page_offset(page); 1938 u64 end = start + PAGE_SIZE - 1; 1939 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1940 SetPageUptodate(page); 1941 } 1942 1943 int free_io_failure(struct extent_io_tree *failure_tree, 1944 struct extent_io_tree *io_tree, 1945 struct io_failure_record *rec) 1946 { 1947 int ret; 1948 int err = 0; 1949 1950 set_state_failrec(failure_tree, rec->start, NULL); 1951 ret = clear_extent_bits(failure_tree, rec->start, 1952 rec->start + rec->len - 1, 1953 EXTENT_LOCKED | EXTENT_DIRTY); 1954 if (ret) 1955 err = ret; 1956 1957 ret = clear_extent_bits(io_tree, rec->start, 1958 rec->start + rec->len - 1, 1959 EXTENT_DAMAGED); 1960 if (ret && !err) 1961 err = ret; 1962 1963 kfree(rec); 1964 return err; 1965 } 1966 1967 /* 1968 * this bypasses the standard btrfs submit functions deliberately, as 1969 * the standard behavior is to write all copies in a raid setup. here we only 1970 * want to write the one bad copy. so we do the mapping for ourselves and issue 1971 * submit_bio directly. 1972 * to avoid any synchronization issues, wait for the data after writing, which 1973 * actually prevents the read that triggered the error from finishing. 1974 * currently, there can be no more than two copies of every data bit. thus, 1975 * exactly one rewrite is required. 1976 */ 1977 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1978 u64 length, u64 logical, struct page *page, 1979 unsigned int pg_offset, int mirror_num) 1980 { 1981 struct bio *bio; 1982 struct btrfs_device *dev; 1983 u64 map_length = 0; 1984 u64 sector; 1985 struct btrfs_bio *bbio = NULL; 1986 int ret; 1987 1988 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 1989 BUG_ON(!mirror_num); 1990 1991 bio = btrfs_io_bio_alloc(1); 1992 bio->bi_iter.bi_size = 0; 1993 map_length = length; 1994 1995 /* 1996 * Avoid races with device replace and make sure our bbio has devices 1997 * associated to its stripes that don't go away while we are doing the 1998 * read repair operation. 1999 */ 2000 btrfs_bio_counter_inc_blocked(fs_info); 2001 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2002 /* 2003 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2004 * to update all raid stripes, but here we just want to correct 2005 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2006 * stripe's dev and sector. 2007 */ 2008 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2009 &map_length, &bbio, 0); 2010 if (ret) { 2011 btrfs_bio_counter_dec(fs_info); 2012 bio_put(bio); 2013 return -EIO; 2014 } 2015 ASSERT(bbio->mirror_num == 1); 2016 } else { 2017 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2018 &map_length, &bbio, mirror_num); 2019 if (ret) { 2020 btrfs_bio_counter_dec(fs_info); 2021 bio_put(bio); 2022 return -EIO; 2023 } 2024 BUG_ON(mirror_num != bbio->mirror_num); 2025 } 2026 2027 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2028 bio->bi_iter.bi_sector = sector; 2029 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2030 btrfs_put_bbio(bbio); 2031 if (!dev || !dev->bdev || !dev->writeable) { 2032 btrfs_bio_counter_dec(fs_info); 2033 bio_put(bio); 2034 return -EIO; 2035 } 2036 bio_set_dev(bio, dev->bdev); 2037 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2038 bio_add_page(bio, page, length, pg_offset); 2039 2040 if (btrfsic_submit_bio_wait(bio)) { 2041 /* try to remap that extent elsewhere? */ 2042 btrfs_bio_counter_dec(fs_info); 2043 bio_put(bio); 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2045 return -EIO; 2046 } 2047 2048 btrfs_info_rl_in_rcu(fs_info, 2049 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2050 ino, start, 2051 rcu_str_deref(dev->name), sector); 2052 btrfs_bio_counter_dec(fs_info); 2053 bio_put(bio); 2054 return 0; 2055 } 2056 2057 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2058 struct extent_buffer *eb, int mirror_num) 2059 { 2060 u64 start = eb->start; 2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2062 int ret = 0; 2063 2064 if (sb_rdonly(fs_info->sb)) 2065 return -EROFS; 2066 2067 for (i = 0; i < num_pages; i++) { 2068 struct page *p = eb->pages[i]; 2069 2070 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2071 start - page_offset(p), mirror_num); 2072 if (ret) 2073 break; 2074 start += PAGE_SIZE; 2075 } 2076 2077 return ret; 2078 } 2079 2080 /* 2081 * each time an IO finishes, we do a fast check in the IO failure tree 2082 * to see if we need to process or clean up an io_failure_record 2083 */ 2084 int clean_io_failure(struct btrfs_fs_info *fs_info, 2085 struct extent_io_tree *failure_tree, 2086 struct extent_io_tree *io_tree, u64 start, 2087 struct page *page, u64 ino, unsigned int pg_offset) 2088 { 2089 u64 private; 2090 struct io_failure_record *failrec; 2091 struct extent_state *state; 2092 int num_copies; 2093 int ret; 2094 2095 private = 0; 2096 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2097 EXTENT_DIRTY, 0); 2098 if (!ret) 2099 return 0; 2100 2101 ret = get_state_failrec(failure_tree, start, &failrec); 2102 if (ret) 2103 return 0; 2104 2105 BUG_ON(!failrec->this_mirror); 2106 2107 if (failrec->in_validation) { 2108 /* there was no real error, just free the record */ 2109 btrfs_debug(fs_info, 2110 "clean_io_failure: freeing dummy error at %llu", 2111 failrec->start); 2112 goto out; 2113 } 2114 if (sb_rdonly(fs_info->sb)) 2115 goto out; 2116 2117 spin_lock(&io_tree->lock); 2118 state = find_first_extent_bit_state(io_tree, 2119 failrec->start, 2120 EXTENT_LOCKED); 2121 spin_unlock(&io_tree->lock); 2122 2123 if (state && state->start <= failrec->start && 2124 state->end >= failrec->start + failrec->len - 1) { 2125 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2126 failrec->len); 2127 if (num_copies > 1) { 2128 repair_io_failure(fs_info, ino, start, failrec->len, 2129 failrec->logical, page, pg_offset, 2130 failrec->failed_mirror); 2131 } 2132 } 2133 2134 out: 2135 free_io_failure(failure_tree, io_tree, failrec); 2136 2137 return 0; 2138 } 2139 2140 /* 2141 * Can be called when 2142 * - hold extent lock 2143 * - under ordered extent 2144 * - the inode is freeing 2145 */ 2146 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2147 { 2148 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2149 struct io_failure_record *failrec; 2150 struct extent_state *state, *next; 2151 2152 if (RB_EMPTY_ROOT(&failure_tree->state)) 2153 return; 2154 2155 spin_lock(&failure_tree->lock); 2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2157 while (state) { 2158 if (state->start > end) 2159 break; 2160 2161 ASSERT(state->end <= end); 2162 2163 next = next_state(state); 2164 2165 failrec = state->failrec; 2166 free_extent_state(state); 2167 kfree(failrec); 2168 2169 state = next; 2170 } 2171 spin_unlock(&failure_tree->lock); 2172 } 2173 2174 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2175 struct io_failure_record **failrec_ret) 2176 { 2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2178 struct io_failure_record *failrec; 2179 struct extent_map *em; 2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2183 int ret; 2184 u64 logical; 2185 2186 ret = get_state_failrec(failure_tree, start, &failrec); 2187 if (ret) { 2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2189 if (!failrec) 2190 return -ENOMEM; 2191 2192 failrec->start = start; 2193 failrec->len = end - start + 1; 2194 failrec->this_mirror = 0; 2195 failrec->bio_flags = 0; 2196 failrec->in_validation = 0; 2197 2198 read_lock(&em_tree->lock); 2199 em = lookup_extent_mapping(em_tree, start, failrec->len); 2200 if (!em) { 2201 read_unlock(&em_tree->lock); 2202 kfree(failrec); 2203 return -EIO; 2204 } 2205 2206 if (em->start > start || em->start + em->len <= start) { 2207 free_extent_map(em); 2208 em = NULL; 2209 } 2210 read_unlock(&em_tree->lock); 2211 if (!em) { 2212 kfree(failrec); 2213 return -EIO; 2214 } 2215 2216 logical = start - em->start; 2217 logical = em->block_start + logical; 2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2219 logical = em->block_start; 2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2221 extent_set_compress_type(&failrec->bio_flags, 2222 em->compress_type); 2223 } 2224 2225 btrfs_debug(fs_info, 2226 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2227 logical, start, failrec->len); 2228 2229 failrec->logical = logical; 2230 free_extent_map(em); 2231 2232 /* set the bits in the private failure tree */ 2233 ret = set_extent_bits(failure_tree, start, end, 2234 EXTENT_LOCKED | EXTENT_DIRTY); 2235 if (ret >= 0) 2236 ret = set_state_failrec(failure_tree, start, failrec); 2237 /* set the bits in the inode's tree */ 2238 if (ret >= 0) 2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2240 if (ret < 0) { 2241 kfree(failrec); 2242 return ret; 2243 } 2244 } else { 2245 btrfs_debug(fs_info, 2246 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2247 failrec->logical, failrec->start, failrec->len, 2248 failrec->in_validation); 2249 /* 2250 * when data can be on disk more than twice, add to failrec here 2251 * (e.g. with a list for failed_mirror) to make 2252 * clean_io_failure() clean all those errors at once. 2253 */ 2254 } 2255 2256 *failrec_ret = failrec; 2257 2258 return 0; 2259 } 2260 2261 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2262 struct io_failure_record *failrec, int failed_mirror) 2263 { 2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2265 int num_copies; 2266 2267 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2268 if (num_copies == 1) { 2269 /* 2270 * we only have a single copy of the data, so don't bother with 2271 * all the retry and error correction code that follows. no 2272 * matter what the error is, it is very likely to persist. 2273 */ 2274 btrfs_debug(fs_info, 2275 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2276 num_copies, failrec->this_mirror, failed_mirror); 2277 return false; 2278 } 2279 2280 /* 2281 * there are two premises: 2282 * a) deliver good data to the caller 2283 * b) correct the bad sectors on disk 2284 */ 2285 if (failed_bio->bi_vcnt > 1) { 2286 /* 2287 * to fulfill b), we need to know the exact failing sectors, as 2288 * we don't want to rewrite any more than the failed ones. thus, 2289 * we need separate read requests for the failed bio 2290 * 2291 * if the following BUG_ON triggers, our validation request got 2292 * merged. we need separate requests for our algorithm to work. 2293 */ 2294 BUG_ON(failrec->in_validation); 2295 failrec->in_validation = 1; 2296 failrec->this_mirror = failed_mirror; 2297 } else { 2298 /* 2299 * we're ready to fulfill a) and b) alongside. get a good copy 2300 * of the failed sector and if we succeed, we have setup 2301 * everything for repair_io_failure to do the rest for us. 2302 */ 2303 if (failrec->in_validation) { 2304 BUG_ON(failrec->this_mirror != failed_mirror); 2305 failrec->in_validation = 0; 2306 failrec->this_mirror = 0; 2307 } 2308 failrec->failed_mirror = failed_mirror; 2309 failrec->this_mirror++; 2310 if (failrec->this_mirror == failed_mirror) 2311 failrec->this_mirror++; 2312 } 2313 2314 if (failrec->this_mirror > num_copies) { 2315 btrfs_debug(fs_info, 2316 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2317 num_copies, failrec->this_mirror, failed_mirror); 2318 return false; 2319 } 2320 2321 return true; 2322 } 2323 2324 2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2326 struct io_failure_record *failrec, 2327 struct page *page, int pg_offset, int icsum, 2328 bio_end_io_t *endio_func, void *data) 2329 { 2330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2331 struct bio *bio; 2332 struct btrfs_io_bio *btrfs_failed_bio; 2333 struct btrfs_io_bio *btrfs_bio; 2334 2335 bio = btrfs_io_bio_alloc(1); 2336 bio->bi_end_io = endio_func; 2337 bio->bi_iter.bi_sector = failrec->logical >> 9; 2338 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2339 bio->bi_iter.bi_size = 0; 2340 bio->bi_private = data; 2341 2342 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2343 if (btrfs_failed_bio->csum) { 2344 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2345 2346 btrfs_bio = btrfs_io_bio(bio); 2347 btrfs_bio->csum = btrfs_bio->csum_inline; 2348 icsum *= csum_size; 2349 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2350 csum_size); 2351 } 2352 2353 bio_add_page(bio, page, failrec->len, pg_offset); 2354 2355 return bio; 2356 } 2357 2358 /* 2359 * this is a generic handler for readpage errors (default 2360 * readpage_io_failed_hook). if other copies exist, read those and write back 2361 * good data to the failed position. does not investigate in remapping the 2362 * failed extent elsewhere, hoping the device will be smart enough to do this as 2363 * needed 2364 */ 2365 2366 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2367 struct page *page, u64 start, u64 end, 2368 int failed_mirror) 2369 { 2370 struct io_failure_record *failrec; 2371 struct inode *inode = page->mapping->host; 2372 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2373 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2374 struct bio *bio; 2375 int read_mode = 0; 2376 blk_status_t status; 2377 int ret; 2378 2379 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2380 2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2382 if (ret) 2383 return ret; 2384 2385 if (!btrfs_check_repairable(inode, failed_bio, failrec, 2386 failed_mirror)) { 2387 free_io_failure(failure_tree, tree, failrec); 2388 return -EIO; 2389 } 2390 2391 if (failed_bio->bi_vcnt > 1) 2392 read_mode |= REQ_FAILFAST_DEV; 2393 2394 phy_offset >>= inode->i_sb->s_blocksize_bits; 2395 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2396 start - page_offset(page), 2397 (int)phy_offset, failed_bio->bi_end_io, 2398 NULL); 2399 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2400 2401 btrfs_debug(btrfs_sb(inode->i_sb), 2402 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2403 read_mode, failrec->this_mirror, failrec->in_validation); 2404 2405 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2406 failrec->bio_flags, 0); 2407 if (status) { 2408 free_io_failure(failure_tree, tree, failrec); 2409 bio_put(bio); 2410 ret = blk_status_to_errno(status); 2411 } 2412 2413 return ret; 2414 } 2415 2416 /* lots and lots of room for performance fixes in the end_bio funcs */ 2417 2418 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2419 { 2420 int uptodate = (err == 0); 2421 struct extent_io_tree *tree; 2422 int ret = 0; 2423 2424 tree = &BTRFS_I(page->mapping->host)->io_tree; 2425 2426 if (tree->ops && tree->ops->writepage_end_io_hook) 2427 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2428 uptodate); 2429 2430 if (!uptodate) { 2431 ClearPageUptodate(page); 2432 SetPageError(page); 2433 ret = err < 0 ? err : -EIO; 2434 mapping_set_error(page->mapping, ret); 2435 } 2436 } 2437 2438 /* 2439 * after a writepage IO is done, we need to: 2440 * clear the uptodate bits on error 2441 * clear the writeback bits in the extent tree for this IO 2442 * end_page_writeback if the page has no more pending IO 2443 * 2444 * Scheduling is not allowed, so the extent state tree is expected 2445 * to have one and only one object corresponding to this IO. 2446 */ 2447 static void end_bio_extent_writepage(struct bio *bio) 2448 { 2449 int error = blk_status_to_errno(bio->bi_status); 2450 struct bio_vec *bvec; 2451 u64 start; 2452 u64 end; 2453 int i; 2454 2455 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2456 bio_for_each_segment_all(bvec, bio, i) { 2457 struct page *page = bvec->bv_page; 2458 struct inode *inode = page->mapping->host; 2459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2460 2461 /* We always issue full-page reads, but if some block 2462 * in a page fails to read, blk_update_request() will 2463 * advance bv_offset and adjust bv_len to compensate. 2464 * Print a warning for nonzero offsets, and an error 2465 * if they don't add up to a full page. */ 2466 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2467 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2468 btrfs_err(fs_info, 2469 "partial page write in btrfs with offset %u and length %u", 2470 bvec->bv_offset, bvec->bv_len); 2471 else 2472 btrfs_info(fs_info, 2473 "incomplete page write in btrfs with offset %u and length %u", 2474 bvec->bv_offset, bvec->bv_len); 2475 } 2476 2477 start = page_offset(page); 2478 end = start + bvec->bv_offset + bvec->bv_len - 1; 2479 2480 end_extent_writepage(page, error, start, end); 2481 end_page_writeback(page); 2482 } 2483 2484 bio_put(bio); 2485 } 2486 2487 static void 2488 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2489 int uptodate) 2490 { 2491 struct extent_state *cached = NULL; 2492 u64 end = start + len - 1; 2493 2494 if (uptodate && tree->track_uptodate) 2495 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2496 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2497 } 2498 2499 /* 2500 * after a readpage IO is done, we need to: 2501 * clear the uptodate bits on error 2502 * set the uptodate bits if things worked 2503 * set the page up to date if all extents in the tree are uptodate 2504 * clear the lock bit in the extent tree 2505 * unlock the page if there are no other extents locked for it 2506 * 2507 * Scheduling is not allowed, so the extent state tree is expected 2508 * to have one and only one object corresponding to this IO. 2509 */ 2510 static void end_bio_extent_readpage(struct bio *bio) 2511 { 2512 struct bio_vec *bvec; 2513 int uptodate = !bio->bi_status; 2514 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2515 struct extent_io_tree *tree, *failure_tree; 2516 u64 offset = 0; 2517 u64 start; 2518 u64 end; 2519 u64 len; 2520 u64 extent_start = 0; 2521 u64 extent_len = 0; 2522 int mirror; 2523 int ret; 2524 int i; 2525 2526 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2527 bio_for_each_segment_all(bvec, bio, i) { 2528 struct page *page = bvec->bv_page; 2529 struct inode *inode = page->mapping->host; 2530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2531 2532 btrfs_debug(fs_info, 2533 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2534 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2535 io_bio->mirror_num); 2536 tree = &BTRFS_I(inode)->io_tree; 2537 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2538 2539 /* We always issue full-page reads, but if some block 2540 * in a page fails to read, blk_update_request() will 2541 * advance bv_offset and adjust bv_len to compensate. 2542 * Print a warning for nonzero offsets, and an error 2543 * if they don't add up to a full page. */ 2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2546 btrfs_err(fs_info, 2547 "partial page read in btrfs with offset %u and length %u", 2548 bvec->bv_offset, bvec->bv_len); 2549 else 2550 btrfs_info(fs_info, 2551 "incomplete page read in btrfs with offset %u and length %u", 2552 bvec->bv_offset, bvec->bv_len); 2553 } 2554 2555 start = page_offset(page); 2556 end = start + bvec->bv_offset + bvec->bv_len - 1; 2557 len = bvec->bv_len; 2558 2559 mirror = io_bio->mirror_num; 2560 if (likely(uptodate && tree->ops)) { 2561 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2562 page, start, end, 2563 mirror); 2564 if (ret) 2565 uptodate = 0; 2566 else 2567 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2568 failure_tree, tree, start, 2569 page, 2570 btrfs_ino(BTRFS_I(inode)), 0); 2571 } 2572 2573 if (likely(uptodate)) 2574 goto readpage_ok; 2575 2576 if (tree->ops) { 2577 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2578 if (ret == -EAGAIN) { 2579 /* 2580 * Data inode's readpage_io_failed_hook() always 2581 * returns -EAGAIN. 2582 * 2583 * The generic bio_readpage_error handles errors 2584 * the following way: If possible, new read 2585 * requests are created and submitted and will 2586 * end up in end_bio_extent_readpage as well (if 2587 * we're lucky, not in the !uptodate case). In 2588 * that case it returns 0 and we just go on with 2589 * the next page in our bio. If it can't handle 2590 * the error it will return -EIO and we remain 2591 * responsible for that page. 2592 */ 2593 ret = bio_readpage_error(bio, offset, page, 2594 start, end, mirror); 2595 if (ret == 0) { 2596 uptodate = !bio->bi_status; 2597 offset += len; 2598 continue; 2599 } 2600 } 2601 2602 /* 2603 * metadata's readpage_io_failed_hook() always returns 2604 * -EIO and fixes nothing. -EIO is also returned if 2605 * data inode error could not be fixed. 2606 */ 2607 ASSERT(ret == -EIO); 2608 } 2609 readpage_ok: 2610 if (likely(uptodate)) { 2611 loff_t i_size = i_size_read(inode); 2612 pgoff_t end_index = i_size >> PAGE_SHIFT; 2613 unsigned off; 2614 2615 /* Zero out the end if this page straddles i_size */ 2616 off = i_size & (PAGE_SIZE-1); 2617 if (page->index == end_index && off) 2618 zero_user_segment(page, off, PAGE_SIZE); 2619 SetPageUptodate(page); 2620 } else { 2621 ClearPageUptodate(page); 2622 SetPageError(page); 2623 } 2624 unlock_page(page); 2625 offset += len; 2626 2627 if (unlikely(!uptodate)) { 2628 if (extent_len) { 2629 endio_readpage_release_extent(tree, 2630 extent_start, 2631 extent_len, 1); 2632 extent_start = 0; 2633 extent_len = 0; 2634 } 2635 endio_readpage_release_extent(tree, start, 2636 end - start + 1, 0); 2637 } else if (!extent_len) { 2638 extent_start = start; 2639 extent_len = end + 1 - start; 2640 } else if (extent_start + extent_len == start) { 2641 extent_len += end + 1 - start; 2642 } else { 2643 endio_readpage_release_extent(tree, extent_start, 2644 extent_len, uptodate); 2645 extent_start = start; 2646 extent_len = end + 1 - start; 2647 } 2648 } 2649 2650 if (extent_len) 2651 endio_readpage_release_extent(tree, extent_start, extent_len, 2652 uptodate); 2653 if (io_bio->end_io) 2654 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2655 bio_put(bio); 2656 } 2657 2658 /* 2659 * Initialize the members up to but not including 'bio'. Use after allocating a 2660 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2661 * 'bio' because use of __GFP_ZERO is not supported. 2662 */ 2663 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2664 { 2665 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2666 } 2667 2668 /* 2669 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2670 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2671 * for the appropriate container_of magic 2672 */ 2673 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2674 { 2675 struct bio *bio; 2676 2677 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset); 2678 bio_set_dev(bio, bdev); 2679 bio->bi_iter.bi_sector = first_byte >> 9; 2680 btrfs_io_bio_init(btrfs_io_bio(bio)); 2681 return bio; 2682 } 2683 2684 struct bio *btrfs_bio_clone(struct bio *bio) 2685 { 2686 struct btrfs_io_bio *btrfs_bio; 2687 struct bio *new; 2688 2689 /* Bio allocation backed by a bioset does not fail */ 2690 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset); 2691 btrfs_bio = btrfs_io_bio(new); 2692 btrfs_io_bio_init(btrfs_bio); 2693 btrfs_bio->iter = bio->bi_iter; 2694 return new; 2695 } 2696 2697 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2698 { 2699 struct bio *bio; 2700 2701 /* Bio allocation backed by a bioset does not fail */ 2702 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset); 2703 btrfs_io_bio_init(btrfs_io_bio(bio)); 2704 return bio; 2705 } 2706 2707 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2708 { 2709 struct bio *bio; 2710 struct btrfs_io_bio *btrfs_bio; 2711 2712 /* this will never fail when it's backed by a bioset */ 2713 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset); 2714 ASSERT(bio); 2715 2716 btrfs_bio = btrfs_io_bio(bio); 2717 btrfs_io_bio_init(btrfs_bio); 2718 2719 bio_trim(bio, offset >> 9, size >> 9); 2720 btrfs_bio->iter = bio->bi_iter; 2721 return bio; 2722 } 2723 2724 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2725 unsigned long bio_flags) 2726 { 2727 blk_status_t ret = 0; 2728 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2729 struct page *page = bvec->bv_page; 2730 struct extent_io_tree *tree = bio->bi_private; 2731 u64 start; 2732 2733 start = page_offset(page) + bvec->bv_offset; 2734 2735 bio->bi_private = NULL; 2736 bio_get(bio); 2737 2738 if (tree->ops) 2739 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2740 mirror_num, bio_flags, start); 2741 else 2742 btrfsic_submit_bio(bio); 2743 2744 bio_put(bio); 2745 return blk_status_to_errno(ret); 2746 } 2747 2748 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2749 unsigned long offset, size_t size, struct bio *bio, 2750 unsigned long bio_flags) 2751 { 2752 int ret = 0; 2753 if (tree->ops) 2754 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2755 bio_flags); 2756 return ret; 2757 2758 } 2759 2760 /* 2761 * @opf: bio REQ_OP_* and REQ_* flags as one value 2762 */ 2763 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2764 struct writeback_control *wbc, 2765 struct page *page, sector_t sector, 2766 size_t size, unsigned long offset, 2767 struct block_device *bdev, 2768 struct bio **bio_ret, 2769 bio_end_io_t end_io_func, 2770 int mirror_num, 2771 unsigned long prev_bio_flags, 2772 unsigned long bio_flags, 2773 bool force_bio_submit) 2774 { 2775 int ret = 0; 2776 struct bio *bio; 2777 int contig = 0; 2778 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2779 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2780 2781 if (bio_ret && *bio_ret) { 2782 bio = *bio_ret; 2783 if (old_compressed) 2784 contig = bio->bi_iter.bi_sector == sector; 2785 else 2786 contig = bio_end_sector(bio) == sector; 2787 2788 if (prev_bio_flags != bio_flags || !contig || 2789 force_bio_submit || 2790 merge_bio(tree, page, offset, page_size, bio, bio_flags) || 2791 bio_add_page(bio, page, page_size, offset) < page_size) { 2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2793 if (ret < 0) { 2794 *bio_ret = NULL; 2795 return ret; 2796 } 2797 bio = NULL; 2798 } else { 2799 if (wbc) 2800 wbc_account_io(wbc, page, page_size); 2801 return 0; 2802 } 2803 } 2804 2805 bio = btrfs_bio_alloc(bdev, (u64)sector << 9); 2806 bio_add_page(bio, page, page_size, offset); 2807 bio->bi_end_io = end_io_func; 2808 bio->bi_private = tree; 2809 bio->bi_write_hint = page->mapping->host->i_write_hint; 2810 bio->bi_opf = opf; 2811 if (wbc) { 2812 wbc_init_bio(wbc, bio); 2813 wbc_account_io(wbc, page, page_size); 2814 } 2815 2816 if (bio_ret) 2817 *bio_ret = bio; 2818 else 2819 ret = submit_one_bio(bio, mirror_num, bio_flags); 2820 2821 return ret; 2822 } 2823 2824 static void attach_extent_buffer_page(struct extent_buffer *eb, 2825 struct page *page) 2826 { 2827 if (!PagePrivate(page)) { 2828 SetPagePrivate(page); 2829 get_page(page); 2830 set_page_private(page, (unsigned long)eb); 2831 } else { 2832 WARN_ON(page->private != (unsigned long)eb); 2833 } 2834 } 2835 2836 void set_page_extent_mapped(struct page *page) 2837 { 2838 if (!PagePrivate(page)) { 2839 SetPagePrivate(page); 2840 get_page(page); 2841 set_page_private(page, EXTENT_PAGE_PRIVATE); 2842 } 2843 } 2844 2845 static struct extent_map * 2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2847 u64 start, u64 len, get_extent_t *get_extent, 2848 struct extent_map **em_cached) 2849 { 2850 struct extent_map *em; 2851 2852 if (em_cached && *em_cached) { 2853 em = *em_cached; 2854 if (extent_map_in_tree(em) && start >= em->start && 2855 start < extent_map_end(em)) { 2856 refcount_inc(&em->refs); 2857 return em; 2858 } 2859 2860 free_extent_map(em); 2861 *em_cached = NULL; 2862 } 2863 2864 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2865 if (em_cached && !IS_ERR_OR_NULL(em)) { 2866 BUG_ON(*em_cached); 2867 refcount_inc(&em->refs); 2868 *em_cached = em; 2869 } 2870 return em; 2871 } 2872 /* 2873 * basic readpage implementation. Locked extent state structs are inserted 2874 * into the tree that are removed when the IO is done (by the end_io 2875 * handlers) 2876 * XXX JDM: This needs looking at to ensure proper page locking 2877 * return 0 on success, otherwise return error 2878 */ 2879 static int __do_readpage(struct extent_io_tree *tree, 2880 struct page *page, 2881 get_extent_t *get_extent, 2882 struct extent_map **em_cached, 2883 struct bio **bio, int mirror_num, 2884 unsigned long *bio_flags, unsigned int read_flags, 2885 u64 *prev_em_start) 2886 { 2887 struct inode *inode = page->mapping->host; 2888 u64 start = page_offset(page); 2889 u64 page_end = start + PAGE_SIZE - 1; 2890 u64 end; 2891 u64 cur = start; 2892 u64 extent_offset; 2893 u64 last_byte = i_size_read(inode); 2894 u64 block_start; 2895 u64 cur_end; 2896 sector_t sector; 2897 struct extent_map *em; 2898 struct block_device *bdev; 2899 int ret = 0; 2900 int nr = 0; 2901 size_t pg_offset = 0; 2902 size_t iosize; 2903 size_t disk_io_size; 2904 size_t blocksize = inode->i_sb->s_blocksize; 2905 unsigned long this_bio_flag = 0; 2906 2907 set_page_extent_mapped(page); 2908 2909 end = page_end; 2910 if (!PageUptodate(page)) { 2911 if (cleancache_get_page(page) == 0) { 2912 BUG_ON(blocksize != PAGE_SIZE); 2913 unlock_extent(tree, start, end); 2914 goto out; 2915 } 2916 } 2917 2918 if (page->index == last_byte >> PAGE_SHIFT) { 2919 char *userpage; 2920 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2921 2922 if (zero_offset) { 2923 iosize = PAGE_SIZE - zero_offset; 2924 userpage = kmap_atomic(page); 2925 memset(userpage + zero_offset, 0, iosize); 2926 flush_dcache_page(page); 2927 kunmap_atomic(userpage); 2928 } 2929 } 2930 while (cur <= end) { 2931 bool force_bio_submit = false; 2932 2933 if (cur >= last_byte) { 2934 char *userpage; 2935 struct extent_state *cached = NULL; 2936 2937 iosize = PAGE_SIZE - pg_offset; 2938 userpage = kmap_atomic(page); 2939 memset(userpage + pg_offset, 0, iosize); 2940 flush_dcache_page(page); 2941 kunmap_atomic(userpage); 2942 set_extent_uptodate(tree, cur, cur + iosize - 1, 2943 &cached, GFP_NOFS); 2944 unlock_extent_cached(tree, cur, 2945 cur + iosize - 1, 2946 &cached, GFP_NOFS); 2947 break; 2948 } 2949 em = __get_extent_map(inode, page, pg_offset, cur, 2950 end - cur + 1, get_extent, em_cached); 2951 if (IS_ERR_OR_NULL(em)) { 2952 SetPageError(page); 2953 unlock_extent(tree, cur, end); 2954 break; 2955 } 2956 extent_offset = cur - em->start; 2957 BUG_ON(extent_map_end(em) <= cur); 2958 BUG_ON(end < cur); 2959 2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2961 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2962 extent_set_compress_type(&this_bio_flag, 2963 em->compress_type); 2964 } 2965 2966 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2967 cur_end = min(extent_map_end(em) - 1, end); 2968 iosize = ALIGN(iosize, blocksize); 2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2970 disk_io_size = em->block_len; 2971 sector = em->block_start >> 9; 2972 } else { 2973 sector = (em->block_start + extent_offset) >> 9; 2974 disk_io_size = iosize; 2975 } 2976 bdev = em->bdev; 2977 block_start = em->block_start; 2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2979 block_start = EXTENT_MAP_HOLE; 2980 2981 /* 2982 * If we have a file range that points to a compressed extent 2983 * and it's followed by a consecutive file range that points to 2984 * to the same compressed extent (possibly with a different 2985 * offset and/or length, so it either points to the whole extent 2986 * or only part of it), we must make sure we do not submit a 2987 * single bio to populate the pages for the 2 ranges because 2988 * this makes the compressed extent read zero out the pages 2989 * belonging to the 2nd range. Imagine the following scenario: 2990 * 2991 * File layout 2992 * [0 - 8K] [8K - 24K] 2993 * | | 2994 * | | 2995 * points to extent X, points to extent X, 2996 * offset 4K, length of 8K offset 0, length 16K 2997 * 2998 * [extent X, compressed length = 4K uncompressed length = 16K] 2999 * 3000 * If the bio to read the compressed extent covers both ranges, 3001 * it will decompress extent X into the pages belonging to the 3002 * first range and then it will stop, zeroing out the remaining 3003 * pages that belong to the other range that points to extent X. 3004 * So here we make sure we submit 2 bios, one for the first 3005 * range and another one for the third range. Both will target 3006 * the same physical extent from disk, but we can't currently 3007 * make the compressed bio endio callback populate the pages 3008 * for both ranges because each compressed bio is tightly 3009 * coupled with a single extent map, and each range can have 3010 * an extent map with a different offset value relative to the 3011 * uncompressed data of our extent and different lengths. This 3012 * is a corner case so we prioritize correctness over 3013 * non-optimal behavior (submitting 2 bios for the same extent). 3014 */ 3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3016 prev_em_start && *prev_em_start != (u64)-1 && 3017 *prev_em_start != em->orig_start) 3018 force_bio_submit = true; 3019 3020 if (prev_em_start) 3021 *prev_em_start = em->orig_start; 3022 3023 free_extent_map(em); 3024 em = NULL; 3025 3026 /* we've found a hole, just zero and go on */ 3027 if (block_start == EXTENT_MAP_HOLE) { 3028 char *userpage; 3029 struct extent_state *cached = NULL; 3030 3031 userpage = kmap_atomic(page); 3032 memset(userpage + pg_offset, 0, iosize); 3033 flush_dcache_page(page); 3034 kunmap_atomic(userpage); 3035 3036 set_extent_uptodate(tree, cur, cur + iosize - 1, 3037 &cached, GFP_NOFS); 3038 unlock_extent_cached(tree, cur, 3039 cur + iosize - 1, 3040 &cached, GFP_NOFS); 3041 cur = cur + iosize; 3042 pg_offset += iosize; 3043 continue; 3044 } 3045 /* the get_extent function already copied into the page */ 3046 if (test_range_bit(tree, cur, cur_end, 3047 EXTENT_UPTODATE, 1, NULL)) { 3048 check_page_uptodate(tree, page); 3049 unlock_extent(tree, cur, cur + iosize - 1); 3050 cur = cur + iosize; 3051 pg_offset += iosize; 3052 continue; 3053 } 3054 /* we have an inline extent but it didn't get marked up 3055 * to date. Error out 3056 */ 3057 if (block_start == EXTENT_MAP_INLINE) { 3058 SetPageError(page); 3059 unlock_extent(tree, cur, cur + iosize - 1); 3060 cur = cur + iosize; 3061 pg_offset += iosize; 3062 continue; 3063 } 3064 3065 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3066 page, sector, disk_io_size, pg_offset, 3067 bdev, bio, 3068 end_bio_extent_readpage, mirror_num, 3069 *bio_flags, 3070 this_bio_flag, 3071 force_bio_submit); 3072 if (!ret) { 3073 nr++; 3074 *bio_flags = this_bio_flag; 3075 } else { 3076 SetPageError(page); 3077 unlock_extent(tree, cur, cur + iosize - 1); 3078 goto out; 3079 } 3080 cur = cur + iosize; 3081 pg_offset += iosize; 3082 } 3083 out: 3084 if (!nr) { 3085 if (!PageError(page)) 3086 SetPageUptodate(page); 3087 unlock_page(page); 3088 } 3089 return ret; 3090 } 3091 3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3093 struct page *pages[], int nr_pages, 3094 u64 start, u64 end, 3095 get_extent_t *get_extent, 3096 struct extent_map **em_cached, 3097 struct bio **bio, int mirror_num, 3098 unsigned long *bio_flags, 3099 u64 *prev_em_start) 3100 { 3101 struct inode *inode; 3102 struct btrfs_ordered_extent *ordered; 3103 int index; 3104 3105 inode = pages[0]->mapping->host; 3106 while (1) { 3107 lock_extent(tree, start, end); 3108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3109 end - start + 1); 3110 if (!ordered) 3111 break; 3112 unlock_extent(tree, start, end); 3113 btrfs_start_ordered_extent(inode, ordered, 1); 3114 btrfs_put_ordered_extent(ordered); 3115 } 3116 3117 for (index = 0; index < nr_pages; index++) { 3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3119 mirror_num, bio_flags, 0, prev_em_start); 3120 put_page(pages[index]); 3121 } 3122 } 3123 3124 static void __extent_readpages(struct extent_io_tree *tree, 3125 struct page *pages[], 3126 int nr_pages, get_extent_t *get_extent, 3127 struct extent_map **em_cached, 3128 struct bio **bio, int mirror_num, 3129 unsigned long *bio_flags, 3130 u64 *prev_em_start) 3131 { 3132 u64 start = 0; 3133 u64 end = 0; 3134 u64 page_start; 3135 int index; 3136 int first_index = 0; 3137 3138 for (index = 0; index < nr_pages; index++) { 3139 page_start = page_offset(pages[index]); 3140 if (!end) { 3141 start = page_start; 3142 end = start + PAGE_SIZE - 1; 3143 first_index = index; 3144 } else if (end + 1 == page_start) { 3145 end += PAGE_SIZE; 3146 } else { 3147 __do_contiguous_readpages(tree, &pages[first_index], 3148 index - first_index, start, 3149 end, get_extent, em_cached, 3150 bio, mirror_num, bio_flags, 3151 prev_em_start); 3152 start = page_start; 3153 end = start + PAGE_SIZE - 1; 3154 first_index = index; 3155 } 3156 } 3157 3158 if (end) 3159 __do_contiguous_readpages(tree, &pages[first_index], 3160 index - first_index, start, 3161 end, get_extent, em_cached, bio, 3162 mirror_num, bio_flags, 3163 prev_em_start); 3164 } 3165 3166 static int __extent_read_full_page(struct extent_io_tree *tree, 3167 struct page *page, 3168 get_extent_t *get_extent, 3169 struct bio **bio, int mirror_num, 3170 unsigned long *bio_flags, 3171 unsigned int read_flags) 3172 { 3173 struct inode *inode = page->mapping->host; 3174 struct btrfs_ordered_extent *ordered; 3175 u64 start = page_offset(page); 3176 u64 end = start + PAGE_SIZE - 1; 3177 int ret; 3178 3179 while (1) { 3180 lock_extent(tree, start, end); 3181 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3182 PAGE_SIZE); 3183 if (!ordered) 3184 break; 3185 unlock_extent(tree, start, end); 3186 btrfs_start_ordered_extent(inode, ordered, 1); 3187 btrfs_put_ordered_extent(ordered); 3188 } 3189 3190 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3191 bio_flags, read_flags, NULL); 3192 return ret; 3193 } 3194 3195 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3196 get_extent_t *get_extent, int mirror_num) 3197 { 3198 struct bio *bio = NULL; 3199 unsigned long bio_flags = 0; 3200 int ret; 3201 3202 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3203 &bio_flags, 0); 3204 if (bio) 3205 ret = submit_one_bio(bio, mirror_num, bio_flags); 3206 return ret; 3207 } 3208 3209 static void update_nr_written(struct writeback_control *wbc, 3210 unsigned long nr_written) 3211 { 3212 wbc->nr_to_write -= nr_written; 3213 } 3214 3215 /* 3216 * helper for __extent_writepage, doing all of the delayed allocation setup. 3217 * 3218 * This returns 1 if our fill_delalloc function did all the work required 3219 * to write the page (copy into inline extent). In this case the IO has 3220 * been started and the page is already unlocked. 3221 * 3222 * This returns 0 if all went well (page still locked) 3223 * This returns < 0 if there were errors (page still locked) 3224 */ 3225 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3226 struct page *page, struct writeback_control *wbc, 3227 struct extent_page_data *epd, 3228 u64 delalloc_start, 3229 unsigned long *nr_written) 3230 { 3231 struct extent_io_tree *tree = epd->tree; 3232 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3233 u64 nr_delalloc; 3234 u64 delalloc_to_write = 0; 3235 u64 delalloc_end = 0; 3236 int ret; 3237 int page_started = 0; 3238 3239 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3240 return 0; 3241 3242 while (delalloc_end < page_end) { 3243 nr_delalloc = find_lock_delalloc_range(inode, tree, 3244 page, 3245 &delalloc_start, 3246 &delalloc_end, 3247 BTRFS_MAX_EXTENT_SIZE); 3248 if (nr_delalloc == 0) { 3249 delalloc_start = delalloc_end + 1; 3250 continue; 3251 } 3252 ret = tree->ops->fill_delalloc(inode, page, 3253 delalloc_start, 3254 delalloc_end, 3255 &page_started, 3256 nr_written); 3257 /* File system has been set read-only */ 3258 if (ret) { 3259 SetPageError(page); 3260 /* fill_delalloc should be return < 0 for error 3261 * but just in case, we use > 0 here meaning the 3262 * IO is started, so we don't want to return > 0 3263 * unless things are going well. 3264 */ 3265 ret = ret < 0 ? ret : -EIO; 3266 goto done; 3267 } 3268 /* 3269 * delalloc_end is already one less than the total length, so 3270 * we don't subtract one from PAGE_SIZE 3271 */ 3272 delalloc_to_write += (delalloc_end - delalloc_start + 3273 PAGE_SIZE) >> PAGE_SHIFT; 3274 delalloc_start = delalloc_end + 1; 3275 } 3276 if (wbc->nr_to_write < delalloc_to_write) { 3277 int thresh = 8192; 3278 3279 if (delalloc_to_write < thresh * 2) 3280 thresh = delalloc_to_write; 3281 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3282 thresh); 3283 } 3284 3285 /* did the fill delalloc function already unlock and start 3286 * the IO? 3287 */ 3288 if (page_started) { 3289 /* 3290 * we've unlocked the page, so we can't update 3291 * the mapping's writeback index, just update 3292 * nr_to_write. 3293 */ 3294 wbc->nr_to_write -= *nr_written; 3295 return 1; 3296 } 3297 3298 ret = 0; 3299 3300 done: 3301 return ret; 3302 } 3303 3304 /* 3305 * helper for __extent_writepage. This calls the writepage start hooks, 3306 * and does the loop to map the page into extents and bios. 3307 * 3308 * We return 1 if the IO is started and the page is unlocked, 3309 * 0 if all went well (page still locked) 3310 * < 0 if there were errors (page still locked) 3311 */ 3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3313 struct page *page, 3314 struct writeback_control *wbc, 3315 struct extent_page_data *epd, 3316 loff_t i_size, 3317 unsigned long nr_written, 3318 unsigned int write_flags, int *nr_ret) 3319 { 3320 struct extent_io_tree *tree = epd->tree; 3321 u64 start = page_offset(page); 3322 u64 page_end = start + PAGE_SIZE - 1; 3323 u64 end; 3324 u64 cur = start; 3325 u64 extent_offset; 3326 u64 block_start; 3327 u64 iosize; 3328 sector_t sector; 3329 struct extent_map *em; 3330 struct block_device *bdev; 3331 size_t pg_offset = 0; 3332 size_t blocksize; 3333 int ret = 0; 3334 int nr = 0; 3335 bool compressed; 3336 3337 if (tree->ops && tree->ops->writepage_start_hook) { 3338 ret = tree->ops->writepage_start_hook(page, start, 3339 page_end); 3340 if (ret) { 3341 /* Fixup worker will requeue */ 3342 if (ret == -EBUSY) 3343 wbc->pages_skipped++; 3344 else 3345 redirty_page_for_writepage(wbc, page); 3346 3347 update_nr_written(wbc, nr_written); 3348 unlock_page(page); 3349 return 1; 3350 } 3351 } 3352 3353 /* 3354 * we don't want to touch the inode after unlocking the page, 3355 * so we update the mapping writeback index now 3356 */ 3357 update_nr_written(wbc, nr_written + 1); 3358 3359 end = page_end; 3360 if (i_size <= start) { 3361 if (tree->ops && tree->ops->writepage_end_io_hook) 3362 tree->ops->writepage_end_io_hook(page, start, 3363 page_end, NULL, 1); 3364 goto done; 3365 } 3366 3367 blocksize = inode->i_sb->s_blocksize; 3368 3369 while (cur <= end) { 3370 u64 em_end; 3371 3372 if (cur >= i_size) { 3373 if (tree->ops && tree->ops->writepage_end_io_hook) 3374 tree->ops->writepage_end_io_hook(page, cur, 3375 page_end, NULL, 1); 3376 break; 3377 } 3378 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur, 3379 end - cur + 1, 1); 3380 if (IS_ERR_OR_NULL(em)) { 3381 SetPageError(page); 3382 ret = PTR_ERR_OR_ZERO(em); 3383 break; 3384 } 3385 3386 extent_offset = cur - em->start; 3387 em_end = extent_map_end(em); 3388 BUG_ON(em_end <= cur); 3389 BUG_ON(end < cur); 3390 iosize = min(em_end - cur, end - cur + 1); 3391 iosize = ALIGN(iosize, blocksize); 3392 sector = (em->block_start + extent_offset) >> 9; 3393 bdev = em->bdev; 3394 block_start = em->block_start; 3395 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3396 free_extent_map(em); 3397 em = NULL; 3398 3399 /* 3400 * compressed and inline extents are written through other 3401 * paths in the FS 3402 */ 3403 if (compressed || block_start == EXTENT_MAP_HOLE || 3404 block_start == EXTENT_MAP_INLINE) { 3405 /* 3406 * end_io notification does not happen here for 3407 * compressed extents 3408 */ 3409 if (!compressed && tree->ops && 3410 tree->ops->writepage_end_io_hook) 3411 tree->ops->writepage_end_io_hook(page, cur, 3412 cur + iosize - 1, 3413 NULL, 1); 3414 else if (compressed) { 3415 /* we don't want to end_page_writeback on 3416 * a compressed extent. this happens 3417 * elsewhere 3418 */ 3419 nr++; 3420 } 3421 3422 cur += iosize; 3423 pg_offset += iosize; 3424 continue; 3425 } 3426 3427 set_range_writeback(tree, cur, cur + iosize - 1); 3428 if (!PageWriteback(page)) { 3429 btrfs_err(BTRFS_I(inode)->root->fs_info, 3430 "page %lu not writeback, cur %llu end %llu", 3431 page->index, cur, end); 3432 } 3433 3434 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3435 page, sector, iosize, pg_offset, 3436 bdev, &epd->bio, 3437 end_bio_extent_writepage, 3438 0, 0, 0, false); 3439 if (ret) { 3440 SetPageError(page); 3441 if (PageWriteback(page)) 3442 end_page_writeback(page); 3443 } 3444 3445 cur = cur + iosize; 3446 pg_offset += iosize; 3447 nr++; 3448 } 3449 done: 3450 *nr_ret = nr; 3451 return ret; 3452 } 3453 3454 /* 3455 * the writepage semantics are similar to regular writepage. extent 3456 * records are inserted to lock ranges in the tree, and as dirty areas 3457 * are found, they are marked writeback. Then the lock bits are removed 3458 * and the end_io handler clears the writeback ranges 3459 */ 3460 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3461 void *data) 3462 { 3463 struct inode *inode = page->mapping->host; 3464 struct extent_page_data *epd = data; 3465 u64 start = page_offset(page); 3466 u64 page_end = start + PAGE_SIZE - 1; 3467 int ret; 3468 int nr = 0; 3469 size_t pg_offset = 0; 3470 loff_t i_size = i_size_read(inode); 3471 unsigned long end_index = i_size >> PAGE_SHIFT; 3472 unsigned int write_flags = 0; 3473 unsigned long nr_written = 0; 3474 3475 write_flags = wbc_to_write_flags(wbc); 3476 3477 trace___extent_writepage(page, inode, wbc); 3478 3479 WARN_ON(!PageLocked(page)); 3480 3481 ClearPageError(page); 3482 3483 pg_offset = i_size & (PAGE_SIZE - 1); 3484 if (page->index > end_index || 3485 (page->index == end_index && !pg_offset)) { 3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3487 unlock_page(page); 3488 return 0; 3489 } 3490 3491 if (page->index == end_index) { 3492 char *userpage; 3493 3494 userpage = kmap_atomic(page); 3495 memset(userpage + pg_offset, 0, 3496 PAGE_SIZE - pg_offset); 3497 kunmap_atomic(userpage); 3498 flush_dcache_page(page); 3499 } 3500 3501 pg_offset = 0; 3502 3503 set_page_extent_mapped(page); 3504 3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3506 if (ret == 1) 3507 goto done_unlocked; 3508 if (ret) 3509 goto done; 3510 3511 ret = __extent_writepage_io(inode, page, wbc, epd, 3512 i_size, nr_written, write_flags, &nr); 3513 if (ret == 1) 3514 goto done_unlocked; 3515 3516 done: 3517 if (nr == 0) { 3518 /* make sure the mapping tag for page dirty gets cleared */ 3519 set_page_writeback(page); 3520 end_page_writeback(page); 3521 } 3522 if (PageError(page)) { 3523 ret = ret < 0 ? ret : -EIO; 3524 end_extent_writepage(page, ret, start, page_end); 3525 } 3526 unlock_page(page); 3527 return ret; 3528 3529 done_unlocked: 3530 return 0; 3531 } 3532 3533 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3534 { 3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3536 TASK_UNINTERRUPTIBLE); 3537 } 3538 3539 static noinline_for_stack int 3540 lock_extent_buffer_for_io(struct extent_buffer *eb, 3541 struct btrfs_fs_info *fs_info, 3542 struct extent_page_data *epd) 3543 { 3544 unsigned long i, num_pages; 3545 int flush = 0; 3546 int ret = 0; 3547 3548 if (!btrfs_try_tree_write_lock(eb)) { 3549 flush = 1; 3550 flush_write_bio(epd); 3551 btrfs_tree_lock(eb); 3552 } 3553 3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3555 btrfs_tree_unlock(eb); 3556 if (!epd->sync_io) 3557 return 0; 3558 if (!flush) { 3559 flush_write_bio(epd); 3560 flush = 1; 3561 } 3562 while (1) { 3563 wait_on_extent_buffer_writeback(eb); 3564 btrfs_tree_lock(eb); 3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3566 break; 3567 btrfs_tree_unlock(eb); 3568 } 3569 } 3570 3571 /* 3572 * We need to do this to prevent races in people who check if the eb is 3573 * under IO since we can end up having no IO bits set for a short period 3574 * of time. 3575 */ 3576 spin_lock(&eb->refs_lock); 3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3579 spin_unlock(&eb->refs_lock); 3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3582 -eb->len, 3583 fs_info->dirty_metadata_batch); 3584 ret = 1; 3585 } else { 3586 spin_unlock(&eb->refs_lock); 3587 } 3588 3589 btrfs_tree_unlock(eb); 3590 3591 if (!ret) 3592 return ret; 3593 3594 num_pages = num_extent_pages(eb->start, eb->len); 3595 for (i = 0; i < num_pages; i++) { 3596 struct page *p = eb->pages[i]; 3597 3598 if (!trylock_page(p)) { 3599 if (!flush) { 3600 flush_write_bio(epd); 3601 flush = 1; 3602 } 3603 lock_page(p); 3604 } 3605 } 3606 3607 return ret; 3608 } 3609 3610 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3611 { 3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3613 smp_mb__after_atomic(); 3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3615 } 3616 3617 static void set_btree_ioerr(struct page *page) 3618 { 3619 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3620 3621 SetPageError(page); 3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3623 return; 3624 3625 /* 3626 * If writeback for a btree extent that doesn't belong to a log tree 3627 * failed, increment the counter transaction->eb_write_errors. 3628 * We do this because while the transaction is running and before it's 3629 * committing (when we call filemap_fdata[write|wait]_range against 3630 * the btree inode), we might have 3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3632 * returns an error or an error happens during writeback, when we're 3633 * committing the transaction we wouldn't know about it, since the pages 3634 * can be no longer dirty nor marked anymore for writeback (if a 3635 * subsequent modification to the extent buffer didn't happen before the 3636 * transaction commit), which makes filemap_fdata[write|wait]_range not 3637 * able to find the pages tagged with SetPageError at transaction 3638 * commit time. So if this happens we must abort the transaction, 3639 * otherwise we commit a super block with btree roots that point to 3640 * btree nodes/leafs whose content on disk is invalid - either garbage 3641 * or the content of some node/leaf from a past generation that got 3642 * cowed or deleted and is no longer valid. 3643 * 3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3645 * not be enough - we need to distinguish between log tree extents vs 3646 * non-log tree extents, and the next filemap_fdatawait_range() call 3647 * will catch and clear such errors in the mapping - and that call might 3648 * be from a log sync and not from a transaction commit. Also, checking 3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3650 * not done and would not be reliable - the eb might have been released 3651 * from memory and reading it back again means that flag would not be 3652 * set (since it's a runtime flag, not persisted on disk). 3653 * 3654 * Using the flags below in the btree inode also makes us achieve the 3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3656 * writeback for all dirty pages and before filemap_fdatawait_range() 3657 * is called, the writeback for all dirty pages had already finished 3658 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3659 * filemap_fdatawait_range() would return success, as it could not know 3660 * that writeback errors happened (the pages were no longer tagged for 3661 * writeback). 3662 */ 3663 switch (eb->log_index) { 3664 case -1: 3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3666 break; 3667 case 0: 3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3669 break; 3670 case 1: 3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3672 break; 3673 default: 3674 BUG(); /* unexpected, logic error */ 3675 } 3676 } 3677 3678 static void end_bio_extent_buffer_writepage(struct bio *bio) 3679 { 3680 struct bio_vec *bvec; 3681 struct extent_buffer *eb; 3682 int i, done; 3683 3684 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3685 bio_for_each_segment_all(bvec, bio, i) { 3686 struct page *page = bvec->bv_page; 3687 3688 eb = (struct extent_buffer *)page->private; 3689 BUG_ON(!eb); 3690 done = atomic_dec_and_test(&eb->io_pages); 3691 3692 if (bio->bi_status || 3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3694 ClearPageUptodate(page); 3695 set_btree_ioerr(page); 3696 } 3697 3698 end_page_writeback(page); 3699 3700 if (!done) 3701 continue; 3702 3703 end_extent_buffer_writeback(eb); 3704 } 3705 3706 bio_put(bio); 3707 } 3708 3709 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3710 struct btrfs_fs_info *fs_info, 3711 struct writeback_control *wbc, 3712 struct extent_page_data *epd) 3713 { 3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3716 u64 offset = eb->start; 3717 u32 nritems; 3718 unsigned long i, num_pages; 3719 unsigned long bio_flags = 0; 3720 unsigned long start, end; 3721 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3722 int ret = 0; 3723 3724 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3725 num_pages = num_extent_pages(eb->start, eb->len); 3726 atomic_set(&eb->io_pages, num_pages); 3727 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3728 bio_flags = EXTENT_BIO_TREE_LOG; 3729 3730 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3731 nritems = btrfs_header_nritems(eb); 3732 if (btrfs_header_level(eb) > 0) { 3733 end = btrfs_node_key_ptr_offset(nritems); 3734 3735 memzero_extent_buffer(eb, end, eb->len - end); 3736 } else { 3737 /* 3738 * leaf: 3739 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3740 */ 3741 start = btrfs_item_nr_offset(nritems); 3742 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3743 memzero_extent_buffer(eb, start, end - start); 3744 } 3745 3746 for (i = 0; i < num_pages; i++) { 3747 struct page *p = eb->pages[i]; 3748 3749 clear_page_dirty_for_io(p); 3750 set_page_writeback(p); 3751 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3752 p, offset >> 9, PAGE_SIZE, 0, bdev, 3753 &epd->bio, 3754 end_bio_extent_buffer_writepage, 3755 0, epd->bio_flags, bio_flags, false); 3756 epd->bio_flags = bio_flags; 3757 if (ret) { 3758 set_btree_ioerr(p); 3759 if (PageWriteback(p)) 3760 end_page_writeback(p); 3761 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3762 end_extent_buffer_writeback(eb); 3763 ret = -EIO; 3764 break; 3765 } 3766 offset += PAGE_SIZE; 3767 update_nr_written(wbc, 1); 3768 unlock_page(p); 3769 } 3770 3771 if (unlikely(ret)) { 3772 for (; i < num_pages; i++) { 3773 struct page *p = eb->pages[i]; 3774 clear_page_dirty_for_io(p); 3775 unlock_page(p); 3776 } 3777 } 3778 3779 return ret; 3780 } 3781 3782 int btree_write_cache_pages(struct address_space *mapping, 3783 struct writeback_control *wbc) 3784 { 3785 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3786 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3787 struct extent_buffer *eb, *prev_eb = NULL; 3788 struct extent_page_data epd = { 3789 .bio = NULL, 3790 .tree = tree, 3791 .extent_locked = 0, 3792 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3793 .bio_flags = 0, 3794 }; 3795 int ret = 0; 3796 int done = 0; 3797 int nr_to_write_done = 0; 3798 struct pagevec pvec; 3799 int nr_pages; 3800 pgoff_t index; 3801 pgoff_t end; /* Inclusive */ 3802 int scanned = 0; 3803 int tag; 3804 3805 pagevec_init(&pvec, 0); 3806 if (wbc->range_cyclic) { 3807 index = mapping->writeback_index; /* Start from prev offset */ 3808 end = -1; 3809 } else { 3810 index = wbc->range_start >> PAGE_SHIFT; 3811 end = wbc->range_end >> PAGE_SHIFT; 3812 scanned = 1; 3813 } 3814 if (wbc->sync_mode == WB_SYNC_ALL) 3815 tag = PAGECACHE_TAG_TOWRITE; 3816 else 3817 tag = PAGECACHE_TAG_DIRTY; 3818 retry: 3819 if (wbc->sync_mode == WB_SYNC_ALL) 3820 tag_pages_for_writeback(mapping, index, end); 3821 while (!done && !nr_to_write_done && (index <= end) && 3822 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3823 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3824 unsigned i; 3825 3826 scanned = 1; 3827 for (i = 0; i < nr_pages; i++) { 3828 struct page *page = pvec.pages[i]; 3829 3830 if (!PagePrivate(page)) 3831 continue; 3832 3833 if (!wbc->range_cyclic && page->index > end) { 3834 done = 1; 3835 break; 3836 } 3837 3838 spin_lock(&mapping->private_lock); 3839 if (!PagePrivate(page)) { 3840 spin_unlock(&mapping->private_lock); 3841 continue; 3842 } 3843 3844 eb = (struct extent_buffer *)page->private; 3845 3846 /* 3847 * Shouldn't happen and normally this would be a BUG_ON 3848 * but no sense in crashing the users box for something 3849 * we can survive anyway. 3850 */ 3851 if (WARN_ON(!eb)) { 3852 spin_unlock(&mapping->private_lock); 3853 continue; 3854 } 3855 3856 if (eb == prev_eb) { 3857 spin_unlock(&mapping->private_lock); 3858 continue; 3859 } 3860 3861 ret = atomic_inc_not_zero(&eb->refs); 3862 spin_unlock(&mapping->private_lock); 3863 if (!ret) 3864 continue; 3865 3866 prev_eb = eb; 3867 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3868 if (!ret) { 3869 free_extent_buffer(eb); 3870 continue; 3871 } 3872 3873 ret = write_one_eb(eb, fs_info, wbc, &epd); 3874 if (ret) { 3875 done = 1; 3876 free_extent_buffer(eb); 3877 break; 3878 } 3879 free_extent_buffer(eb); 3880 3881 /* 3882 * the filesystem may choose to bump up nr_to_write. 3883 * We have to make sure to honor the new nr_to_write 3884 * at any time 3885 */ 3886 nr_to_write_done = wbc->nr_to_write <= 0; 3887 } 3888 pagevec_release(&pvec); 3889 cond_resched(); 3890 } 3891 if (!scanned && !done) { 3892 /* 3893 * We hit the last page and there is more work to be done: wrap 3894 * back to the start of the file 3895 */ 3896 scanned = 1; 3897 index = 0; 3898 goto retry; 3899 } 3900 flush_write_bio(&epd); 3901 return ret; 3902 } 3903 3904 /** 3905 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3906 * @mapping: address space structure to write 3907 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3908 * @writepage: function called for each page 3909 * @data: data passed to writepage function 3910 * 3911 * If a page is already under I/O, write_cache_pages() skips it, even 3912 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3913 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3914 * and msync() need to guarantee that all the data which was dirty at the time 3915 * the call was made get new I/O started against them. If wbc->sync_mode is 3916 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3917 * existing IO to complete. 3918 */ 3919 static int extent_write_cache_pages(struct address_space *mapping, 3920 struct writeback_control *wbc, 3921 writepage_t writepage, void *data, 3922 void (*flush_fn)(void *)) 3923 { 3924 struct inode *inode = mapping->host; 3925 int ret = 0; 3926 int done = 0; 3927 int nr_to_write_done = 0; 3928 struct pagevec pvec; 3929 int nr_pages; 3930 pgoff_t index; 3931 pgoff_t end; /* Inclusive */ 3932 pgoff_t done_index; 3933 int range_whole = 0; 3934 int scanned = 0; 3935 int tag; 3936 3937 /* 3938 * We have to hold onto the inode so that ordered extents can do their 3939 * work when the IO finishes. The alternative to this is failing to add 3940 * an ordered extent if the igrab() fails there and that is a huge pain 3941 * to deal with, so instead just hold onto the inode throughout the 3942 * writepages operation. If it fails here we are freeing up the inode 3943 * anyway and we'd rather not waste our time writing out stuff that is 3944 * going to be truncated anyway. 3945 */ 3946 if (!igrab(inode)) 3947 return 0; 3948 3949 pagevec_init(&pvec, 0); 3950 if (wbc->range_cyclic) { 3951 index = mapping->writeback_index; /* Start from prev offset */ 3952 end = -1; 3953 } else { 3954 index = wbc->range_start >> PAGE_SHIFT; 3955 end = wbc->range_end >> PAGE_SHIFT; 3956 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3957 range_whole = 1; 3958 scanned = 1; 3959 } 3960 if (wbc->sync_mode == WB_SYNC_ALL) 3961 tag = PAGECACHE_TAG_TOWRITE; 3962 else 3963 tag = PAGECACHE_TAG_DIRTY; 3964 retry: 3965 if (wbc->sync_mode == WB_SYNC_ALL) 3966 tag_pages_for_writeback(mapping, index, end); 3967 done_index = index; 3968 while (!done && !nr_to_write_done && (index <= end) && 3969 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3970 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3971 unsigned i; 3972 3973 scanned = 1; 3974 for (i = 0; i < nr_pages; i++) { 3975 struct page *page = pvec.pages[i]; 3976 3977 done_index = page->index; 3978 /* 3979 * At this point we hold neither mapping->tree_lock nor 3980 * lock on the page itself: the page may be truncated or 3981 * invalidated (changing page->mapping to NULL), or even 3982 * swizzled back from swapper_space to tmpfs file 3983 * mapping 3984 */ 3985 if (!trylock_page(page)) { 3986 flush_fn(data); 3987 lock_page(page); 3988 } 3989 3990 if (unlikely(page->mapping != mapping)) { 3991 unlock_page(page); 3992 continue; 3993 } 3994 3995 if (!wbc->range_cyclic && page->index > end) { 3996 done = 1; 3997 unlock_page(page); 3998 continue; 3999 } 4000 4001 if (wbc->sync_mode != WB_SYNC_NONE) { 4002 if (PageWriteback(page)) 4003 flush_fn(data); 4004 wait_on_page_writeback(page); 4005 } 4006 4007 if (PageWriteback(page) || 4008 !clear_page_dirty_for_io(page)) { 4009 unlock_page(page); 4010 continue; 4011 } 4012 4013 ret = (*writepage)(page, wbc, data); 4014 4015 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4016 unlock_page(page); 4017 ret = 0; 4018 } 4019 if (ret < 0) { 4020 /* 4021 * done_index is set past this page, 4022 * so media errors will not choke 4023 * background writeout for the entire 4024 * file. This has consequences for 4025 * range_cyclic semantics (ie. it may 4026 * not be suitable for data integrity 4027 * writeout). 4028 */ 4029 done_index = page->index + 1; 4030 done = 1; 4031 break; 4032 } 4033 4034 /* 4035 * the filesystem may choose to bump up nr_to_write. 4036 * We have to make sure to honor the new nr_to_write 4037 * at any time 4038 */ 4039 nr_to_write_done = wbc->nr_to_write <= 0; 4040 } 4041 pagevec_release(&pvec); 4042 cond_resched(); 4043 } 4044 if (!scanned && !done) { 4045 /* 4046 * We hit the last page and there is more work to be done: wrap 4047 * back to the start of the file 4048 */ 4049 scanned = 1; 4050 index = 0; 4051 goto retry; 4052 } 4053 4054 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4055 mapping->writeback_index = done_index; 4056 4057 btrfs_add_delayed_iput(inode); 4058 return ret; 4059 } 4060 4061 static void flush_epd_write_bio(struct extent_page_data *epd) 4062 { 4063 if (epd->bio) { 4064 int ret; 4065 4066 ret = submit_one_bio(epd->bio, 0, epd->bio_flags); 4067 BUG_ON(ret < 0); /* -ENOMEM */ 4068 epd->bio = NULL; 4069 } 4070 } 4071 4072 static noinline void flush_write_bio(void *data) 4073 { 4074 struct extent_page_data *epd = data; 4075 flush_epd_write_bio(epd); 4076 } 4077 4078 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4079 get_extent_t *get_extent, 4080 struct writeback_control *wbc) 4081 { 4082 int ret; 4083 struct extent_page_data epd = { 4084 .bio = NULL, 4085 .tree = tree, 4086 .get_extent = get_extent, 4087 .extent_locked = 0, 4088 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4089 .bio_flags = 0, 4090 }; 4091 4092 ret = __extent_writepage(page, wbc, &epd); 4093 4094 flush_epd_write_bio(&epd); 4095 return ret; 4096 } 4097 4098 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4099 u64 start, u64 end, get_extent_t *get_extent, 4100 int mode) 4101 { 4102 int ret = 0; 4103 struct address_space *mapping = inode->i_mapping; 4104 struct page *page; 4105 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4106 PAGE_SHIFT; 4107 4108 struct extent_page_data epd = { 4109 .bio = NULL, 4110 .tree = tree, 4111 .get_extent = get_extent, 4112 .extent_locked = 1, 4113 .sync_io = mode == WB_SYNC_ALL, 4114 .bio_flags = 0, 4115 }; 4116 struct writeback_control wbc_writepages = { 4117 .sync_mode = mode, 4118 .nr_to_write = nr_pages * 2, 4119 .range_start = start, 4120 .range_end = end + 1, 4121 }; 4122 4123 while (start <= end) { 4124 page = find_get_page(mapping, start >> PAGE_SHIFT); 4125 if (clear_page_dirty_for_io(page)) 4126 ret = __extent_writepage(page, &wbc_writepages, &epd); 4127 else { 4128 if (tree->ops && tree->ops->writepage_end_io_hook) 4129 tree->ops->writepage_end_io_hook(page, start, 4130 start + PAGE_SIZE - 1, 4131 NULL, 1); 4132 unlock_page(page); 4133 } 4134 put_page(page); 4135 start += PAGE_SIZE; 4136 } 4137 4138 flush_epd_write_bio(&epd); 4139 return ret; 4140 } 4141 4142 int extent_writepages(struct extent_io_tree *tree, 4143 struct address_space *mapping, 4144 get_extent_t *get_extent, 4145 struct writeback_control *wbc) 4146 { 4147 int ret = 0; 4148 struct extent_page_data epd = { 4149 .bio = NULL, 4150 .tree = tree, 4151 .get_extent = get_extent, 4152 .extent_locked = 0, 4153 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4154 .bio_flags = 0, 4155 }; 4156 4157 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd, 4158 flush_write_bio); 4159 flush_epd_write_bio(&epd); 4160 return ret; 4161 } 4162 4163 int extent_readpages(struct extent_io_tree *tree, 4164 struct address_space *mapping, 4165 struct list_head *pages, unsigned nr_pages, 4166 get_extent_t get_extent) 4167 { 4168 struct bio *bio = NULL; 4169 unsigned page_idx; 4170 unsigned long bio_flags = 0; 4171 struct page *pagepool[16]; 4172 struct page *page; 4173 struct extent_map *em_cached = NULL; 4174 int nr = 0; 4175 u64 prev_em_start = (u64)-1; 4176 4177 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4178 page = list_entry(pages->prev, struct page, lru); 4179 4180 prefetchw(&page->flags); 4181 list_del(&page->lru); 4182 if (add_to_page_cache_lru(page, mapping, 4183 page->index, 4184 readahead_gfp_mask(mapping))) { 4185 put_page(page); 4186 continue; 4187 } 4188 4189 pagepool[nr++] = page; 4190 if (nr < ARRAY_SIZE(pagepool)) 4191 continue; 4192 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4193 &bio, 0, &bio_flags, &prev_em_start); 4194 nr = 0; 4195 } 4196 if (nr) 4197 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4198 &bio, 0, &bio_flags, &prev_em_start); 4199 4200 if (em_cached) 4201 free_extent_map(em_cached); 4202 4203 BUG_ON(!list_empty(pages)); 4204 if (bio) 4205 return submit_one_bio(bio, 0, bio_flags); 4206 return 0; 4207 } 4208 4209 /* 4210 * basic invalidatepage code, this waits on any locked or writeback 4211 * ranges corresponding to the page, and then deletes any extent state 4212 * records from the tree 4213 */ 4214 int extent_invalidatepage(struct extent_io_tree *tree, 4215 struct page *page, unsigned long offset) 4216 { 4217 struct extent_state *cached_state = NULL; 4218 u64 start = page_offset(page); 4219 u64 end = start + PAGE_SIZE - 1; 4220 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4221 4222 start += ALIGN(offset, blocksize); 4223 if (start > end) 4224 return 0; 4225 4226 lock_extent_bits(tree, start, end, &cached_state); 4227 wait_on_page_writeback(page); 4228 clear_extent_bit(tree, start, end, 4229 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4230 EXTENT_DO_ACCOUNTING, 4231 1, 1, &cached_state, GFP_NOFS); 4232 return 0; 4233 } 4234 4235 /* 4236 * a helper for releasepage, this tests for areas of the page that 4237 * are locked or under IO and drops the related state bits if it is safe 4238 * to drop the page. 4239 */ 4240 static int try_release_extent_state(struct extent_map_tree *map, 4241 struct extent_io_tree *tree, 4242 struct page *page, gfp_t mask) 4243 { 4244 u64 start = page_offset(page); 4245 u64 end = start + PAGE_SIZE - 1; 4246 int ret = 1; 4247 4248 if (test_range_bit(tree, start, end, 4249 EXTENT_IOBITS, 0, NULL)) 4250 ret = 0; 4251 else { 4252 /* 4253 * at this point we can safely clear everything except the 4254 * locked bit and the nodatasum bit 4255 */ 4256 ret = clear_extent_bit(tree, start, end, 4257 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4258 0, 0, NULL, mask); 4259 4260 /* if clear_extent_bit failed for enomem reasons, 4261 * we can't allow the release to continue. 4262 */ 4263 if (ret < 0) 4264 ret = 0; 4265 else 4266 ret = 1; 4267 } 4268 return ret; 4269 } 4270 4271 /* 4272 * a helper for releasepage. As long as there are no locked extents 4273 * in the range corresponding to the page, both state records and extent 4274 * map records are removed 4275 */ 4276 int try_release_extent_mapping(struct extent_map_tree *map, 4277 struct extent_io_tree *tree, struct page *page, 4278 gfp_t mask) 4279 { 4280 struct extent_map *em; 4281 u64 start = page_offset(page); 4282 u64 end = start + PAGE_SIZE - 1; 4283 4284 if (gfpflags_allow_blocking(mask) && 4285 page->mapping->host->i_size > SZ_16M) { 4286 u64 len; 4287 while (start <= end) { 4288 len = end - start + 1; 4289 write_lock(&map->lock); 4290 em = lookup_extent_mapping(map, start, len); 4291 if (!em) { 4292 write_unlock(&map->lock); 4293 break; 4294 } 4295 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4296 em->start != start) { 4297 write_unlock(&map->lock); 4298 free_extent_map(em); 4299 break; 4300 } 4301 if (!test_range_bit(tree, em->start, 4302 extent_map_end(em) - 1, 4303 EXTENT_LOCKED | EXTENT_WRITEBACK, 4304 0, NULL)) { 4305 remove_extent_mapping(map, em); 4306 /* once for the rb tree */ 4307 free_extent_map(em); 4308 } 4309 start = extent_map_end(em); 4310 write_unlock(&map->lock); 4311 4312 /* once for us */ 4313 free_extent_map(em); 4314 } 4315 } 4316 return try_release_extent_state(map, tree, page, mask); 4317 } 4318 4319 /* 4320 * helper function for fiemap, which doesn't want to see any holes. 4321 * This maps until we find something past 'last' 4322 */ 4323 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4324 u64 offset, 4325 u64 last, 4326 get_extent_t *get_extent) 4327 { 4328 u64 sectorsize = btrfs_inode_sectorsize(inode); 4329 struct extent_map *em; 4330 u64 len; 4331 4332 if (offset >= last) 4333 return NULL; 4334 4335 while (1) { 4336 len = last - offset; 4337 if (len == 0) 4338 break; 4339 len = ALIGN(len, sectorsize); 4340 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0); 4341 if (IS_ERR_OR_NULL(em)) 4342 return em; 4343 4344 /* if this isn't a hole return it */ 4345 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4346 em->block_start != EXTENT_MAP_HOLE) { 4347 return em; 4348 } 4349 4350 /* this is a hole, advance to the next extent */ 4351 offset = extent_map_end(em); 4352 free_extent_map(em); 4353 if (offset >= last) 4354 break; 4355 } 4356 return NULL; 4357 } 4358 4359 /* 4360 * To cache previous fiemap extent 4361 * 4362 * Will be used for merging fiemap extent 4363 */ 4364 struct fiemap_cache { 4365 u64 offset; 4366 u64 phys; 4367 u64 len; 4368 u32 flags; 4369 bool cached; 4370 }; 4371 4372 /* 4373 * Helper to submit fiemap extent. 4374 * 4375 * Will try to merge current fiemap extent specified by @offset, @phys, 4376 * @len and @flags with cached one. 4377 * And only when we fails to merge, cached one will be submitted as 4378 * fiemap extent. 4379 * 4380 * Return value is the same as fiemap_fill_next_extent(). 4381 */ 4382 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4383 struct fiemap_cache *cache, 4384 u64 offset, u64 phys, u64 len, u32 flags) 4385 { 4386 int ret = 0; 4387 4388 if (!cache->cached) 4389 goto assign; 4390 4391 /* 4392 * Sanity check, extent_fiemap() should have ensured that new 4393 * fiemap extent won't overlap with cahced one. 4394 * Not recoverable. 4395 * 4396 * NOTE: Physical address can overlap, due to compression 4397 */ 4398 if (cache->offset + cache->len > offset) { 4399 WARN_ON(1); 4400 return -EINVAL; 4401 } 4402 4403 /* 4404 * Only merges fiemap extents if 4405 * 1) Their logical addresses are continuous 4406 * 4407 * 2) Their physical addresses are continuous 4408 * So truly compressed (physical size smaller than logical size) 4409 * extents won't get merged with each other 4410 * 4411 * 3) Share same flags except FIEMAP_EXTENT_LAST 4412 * So regular extent won't get merged with prealloc extent 4413 */ 4414 if (cache->offset + cache->len == offset && 4415 cache->phys + cache->len == phys && 4416 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4417 (flags & ~FIEMAP_EXTENT_LAST)) { 4418 cache->len += len; 4419 cache->flags |= flags; 4420 goto try_submit_last; 4421 } 4422 4423 /* Not mergeable, need to submit cached one */ 4424 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4425 cache->len, cache->flags); 4426 cache->cached = false; 4427 if (ret) 4428 return ret; 4429 assign: 4430 cache->cached = true; 4431 cache->offset = offset; 4432 cache->phys = phys; 4433 cache->len = len; 4434 cache->flags = flags; 4435 try_submit_last: 4436 if (cache->flags & FIEMAP_EXTENT_LAST) { 4437 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4438 cache->phys, cache->len, cache->flags); 4439 cache->cached = false; 4440 } 4441 return ret; 4442 } 4443 4444 /* 4445 * Emit last fiemap cache 4446 * 4447 * The last fiemap cache may still be cached in the following case: 4448 * 0 4k 8k 4449 * |<- Fiemap range ->| 4450 * |<------------ First extent ----------->| 4451 * 4452 * In this case, the first extent range will be cached but not emitted. 4453 * So we must emit it before ending extent_fiemap(). 4454 */ 4455 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4456 struct fiemap_extent_info *fieinfo, 4457 struct fiemap_cache *cache) 4458 { 4459 int ret; 4460 4461 if (!cache->cached) 4462 return 0; 4463 4464 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4465 cache->len, cache->flags); 4466 cache->cached = false; 4467 if (ret > 0) 4468 ret = 0; 4469 return ret; 4470 } 4471 4472 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4473 __u64 start, __u64 len, get_extent_t *get_extent) 4474 { 4475 int ret = 0; 4476 u64 off = start; 4477 u64 max = start + len; 4478 u32 flags = 0; 4479 u32 found_type; 4480 u64 last; 4481 u64 last_for_get_extent = 0; 4482 u64 disko = 0; 4483 u64 isize = i_size_read(inode); 4484 struct btrfs_key found_key; 4485 struct extent_map *em = NULL; 4486 struct extent_state *cached_state = NULL; 4487 struct btrfs_path *path; 4488 struct btrfs_root *root = BTRFS_I(inode)->root; 4489 struct fiemap_cache cache = { 0 }; 4490 int end = 0; 4491 u64 em_start = 0; 4492 u64 em_len = 0; 4493 u64 em_end = 0; 4494 4495 if (len == 0) 4496 return -EINVAL; 4497 4498 path = btrfs_alloc_path(); 4499 if (!path) 4500 return -ENOMEM; 4501 path->leave_spinning = 1; 4502 4503 start = round_down(start, btrfs_inode_sectorsize(inode)); 4504 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4505 4506 /* 4507 * lookup the last file extent. We're not using i_size here 4508 * because there might be preallocation past i_size 4509 */ 4510 ret = btrfs_lookup_file_extent(NULL, root, path, 4511 btrfs_ino(BTRFS_I(inode)), -1, 0); 4512 if (ret < 0) { 4513 btrfs_free_path(path); 4514 return ret; 4515 } else { 4516 WARN_ON(!ret); 4517 if (ret == 1) 4518 ret = 0; 4519 } 4520 4521 path->slots[0]--; 4522 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4523 found_type = found_key.type; 4524 4525 /* No extents, but there might be delalloc bits */ 4526 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4527 found_type != BTRFS_EXTENT_DATA_KEY) { 4528 /* have to trust i_size as the end */ 4529 last = (u64)-1; 4530 last_for_get_extent = isize; 4531 } else { 4532 /* 4533 * remember the start of the last extent. There are a 4534 * bunch of different factors that go into the length of the 4535 * extent, so its much less complex to remember where it started 4536 */ 4537 last = found_key.offset; 4538 last_for_get_extent = last + 1; 4539 } 4540 btrfs_release_path(path); 4541 4542 /* 4543 * we might have some extents allocated but more delalloc past those 4544 * extents. so, we trust isize unless the start of the last extent is 4545 * beyond isize 4546 */ 4547 if (last < isize) { 4548 last = (u64)-1; 4549 last_for_get_extent = isize; 4550 } 4551 4552 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4553 &cached_state); 4554 4555 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4556 get_extent); 4557 if (!em) 4558 goto out; 4559 if (IS_ERR(em)) { 4560 ret = PTR_ERR(em); 4561 goto out; 4562 } 4563 4564 while (!end) { 4565 u64 offset_in_extent = 0; 4566 4567 /* break if the extent we found is outside the range */ 4568 if (em->start >= max || extent_map_end(em) < off) 4569 break; 4570 4571 /* 4572 * get_extent may return an extent that starts before our 4573 * requested range. We have to make sure the ranges 4574 * we return to fiemap always move forward and don't 4575 * overlap, so adjust the offsets here 4576 */ 4577 em_start = max(em->start, off); 4578 4579 /* 4580 * record the offset from the start of the extent 4581 * for adjusting the disk offset below. Only do this if the 4582 * extent isn't compressed since our in ram offset may be past 4583 * what we have actually allocated on disk. 4584 */ 4585 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4586 offset_in_extent = em_start - em->start; 4587 em_end = extent_map_end(em); 4588 em_len = em_end - em_start; 4589 disko = 0; 4590 flags = 0; 4591 4592 /* 4593 * bump off for our next call to get_extent 4594 */ 4595 off = extent_map_end(em); 4596 if (off >= max) 4597 end = 1; 4598 4599 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4600 end = 1; 4601 flags |= FIEMAP_EXTENT_LAST; 4602 } else if (em->block_start == EXTENT_MAP_INLINE) { 4603 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4604 FIEMAP_EXTENT_NOT_ALIGNED); 4605 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4606 flags |= (FIEMAP_EXTENT_DELALLOC | 4607 FIEMAP_EXTENT_UNKNOWN); 4608 } else if (fieinfo->fi_extents_max) { 4609 u64 bytenr = em->block_start - 4610 (em->start - em->orig_start); 4611 4612 disko = em->block_start + offset_in_extent; 4613 4614 /* 4615 * As btrfs supports shared space, this information 4616 * can be exported to userspace tools via 4617 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4618 * then we're just getting a count and we can skip the 4619 * lookup stuff. 4620 */ 4621 ret = btrfs_check_shared(root, 4622 btrfs_ino(BTRFS_I(inode)), 4623 bytenr); 4624 if (ret < 0) 4625 goto out_free; 4626 if (ret) 4627 flags |= FIEMAP_EXTENT_SHARED; 4628 ret = 0; 4629 } 4630 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4631 flags |= FIEMAP_EXTENT_ENCODED; 4632 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4633 flags |= FIEMAP_EXTENT_UNWRITTEN; 4634 4635 free_extent_map(em); 4636 em = NULL; 4637 if ((em_start >= last) || em_len == (u64)-1 || 4638 (last == (u64)-1 && isize <= em_end)) { 4639 flags |= FIEMAP_EXTENT_LAST; 4640 end = 1; 4641 } 4642 4643 /* now scan forward to see if this is really the last extent. */ 4644 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4645 get_extent); 4646 if (IS_ERR(em)) { 4647 ret = PTR_ERR(em); 4648 goto out; 4649 } 4650 if (!em) { 4651 flags |= FIEMAP_EXTENT_LAST; 4652 end = 1; 4653 } 4654 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4655 em_len, flags); 4656 if (ret) { 4657 if (ret == 1) 4658 ret = 0; 4659 goto out_free; 4660 } 4661 } 4662 out_free: 4663 if (!ret) 4664 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4665 free_extent_map(em); 4666 out: 4667 btrfs_free_path(path); 4668 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4669 &cached_state, GFP_NOFS); 4670 return ret; 4671 } 4672 4673 static void __free_extent_buffer(struct extent_buffer *eb) 4674 { 4675 btrfs_leak_debug_del(&eb->leak_list); 4676 kmem_cache_free(extent_buffer_cache, eb); 4677 } 4678 4679 int extent_buffer_under_io(struct extent_buffer *eb) 4680 { 4681 return (atomic_read(&eb->io_pages) || 4682 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4683 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4684 } 4685 4686 /* 4687 * Helper for releasing extent buffer page. 4688 */ 4689 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4690 { 4691 unsigned long index; 4692 struct page *page; 4693 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4694 4695 BUG_ON(extent_buffer_under_io(eb)); 4696 4697 index = num_extent_pages(eb->start, eb->len); 4698 if (index == 0) 4699 return; 4700 4701 do { 4702 index--; 4703 page = eb->pages[index]; 4704 if (!page) 4705 continue; 4706 if (mapped) 4707 spin_lock(&page->mapping->private_lock); 4708 /* 4709 * We do this since we'll remove the pages after we've 4710 * removed the eb from the radix tree, so we could race 4711 * and have this page now attached to the new eb. So 4712 * only clear page_private if it's still connected to 4713 * this eb. 4714 */ 4715 if (PagePrivate(page) && 4716 page->private == (unsigned long)eb) { 4717 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4718 BUG_ON(PageDirty(page)); 4719 BUG_ON(PageWriteback(page)); 4720 /* 4721 * We need to make sure we haven't be attached 4722 * to a new eb. 4723 */ 4724 ClearPagePrivate(page); 4725 set_page_private(page, 0); 4726 /* One for the page private */ 4727 put_page(page); 4728 } 4729 4730 if (mapped) 4731 spin_unlock(&page->mapping->private_lock); 4732 4733 /* One for when we allocated the page */ 4734 put_page(page); 4735 } while (index != 0); 4736 } 4737 4738 /* 4739 * Helper for releasing the extent buffer. 4740 */ 4741 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4742 { 4743 btrfs_release_extent_buffer_page(eb); 4744 __free_extent_buffer(eb); 4745 } 4746 4747 static struct extent_buffer * 4748 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4749 unsigned long len) 4750 { 4751 struct extent_buffer *eb = NULL; 4752 4753 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4754 eb->start = start; 4755 eb->len = len; 4756 eb->fs_info = fs_info; 4757 eb->bflags = 0; 4758 rwlock_init(&eb->lock); 4759 atomic_set(&eb->write_locks, 0); 4760 atomic_set(&eb->read_locks, 0); 4761 atomic_set(&eb->blocking_readers, 0); 4762 atomic_set(&eb->blocking_writers, 0); 4763 atomic_set(&eb->spinning_readers, 0); 4764 atomic_set(&eb->spinning_writers, 0); 4765 eb->lock_nested = 0; 4766 init_waitqueue_head(&eb->write_lock_wq); 4767 init_waitqueue_head(&eb->read_lock_wq); 4768 4769 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4770 4771 spin_lock_init(&eb->refs_lock); 4772 atomic_set(&eb->refs, 1); 4773 atomic_set(&eb->io_pages, 0); 4774 4775 /* 4776 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4777 */ 4778 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4779 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4780 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4781 4782 return eb; 4783 } 4784 4785 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4786 { 4787 unsigned long i; 4788 struct page *p; 4789 struct extent_buffer *new; 4790 unsigned long num_pages = num_extent_pages(src->start, src->len); 4791 4792 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4793 if (new == NULL) 4794 return NULL; 4795 4796 for (i = 0; i < num_pages; i++) { 4797 p = alloc_page(GFP_NOFS); 4798 if (!p) { 4799 btrfs_release_extent_buffer(new); 4800 return NULL; 4801 } 4802 attach_extent_buffer_page(new, p); 4803 WARN_ON(PageDirty(p)); 4804 SetPageUptodate(p); 4805 new->pages[i] = p; 4806 copy_page(page_address(p), page_address(src->pages[i])); 4807 } 4808 4809 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4810 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4811 4812 return new; 4813 } 4814 4815 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4816 u64 start, unsigned long len) 4817 { 4818 struct extent_buffer *eb; 4819 unsigned long num_pages; 4820 unsigned long i; 4821 4822 num_pages = num_extent_pages(start, len); 4823 4824 eb = __alloc_extent_buffer(fs_info, start, len); 4825 if (!eb) 4826 return NULL; 4827 4828 for (i = 0; i < num_pages; i++) { 4829 eb->pages[i] = alloc_page(GFP_NOFS); 4830 if (!eb->pages[i]) 4831 goto err; 4832 } 4833 set_extent_buffer_uptodate(eb); 4834 btrfs_set_header_nritems(eb, 0); 4835 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4836 4837 return eb; 4838 err: 4839 for (; i > 0; i--) 4840 __free_page(eb->pages[i - 1]); 4841 __free_extent_buffer(eb); 4842 return NULL; 4843 } 4844 4845 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4846 u64 start) 4847 { 4848 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4849 } 4850 4851 static void check_buffer_tree_ref(struct extent_buffer *eb) 4852 { 4853 int refs; 4854 /* the ref bit is tricky. We have to make sure it is set 4855 * if we have the buffer dirty. Otherwise the 4856 * code to free a buffer can end up dropping a dirty 4857 * page 4858 * 4859 * Once the ref bit is set, it won't go away while the 4860 * buffer is dirty or in writeback, and it also won't 4861 * go away while we have the reference count on the 4862 * eb bumped. 4863 * 4864 * We can't just set the ref bit without bumping the 4865 * ref on the eb because free_extent_buffer might 4866 * see the ref bit and try to clear it. If this happens 4867 * free_extent_buffer might end up dropping our original 4868 * ref by mistake and freeing the page before we are able 4869 * to add one more ref. 4870 * 4871 * So bump the ref count first, then set the bit. If someone 4872 * beat us to it, drop the ref we added. 4873 */ 4874 refs = atomic_read(&eb->refs); 4875 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4876 return; 4877 4878 spin_lock(&eb->refs_lock); 4879 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4880 atomic_inc(&eb->refs); 4881 spin_unlock(&eb->refs_lock); 4882 } 4883 4884 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4885 struct page *accessed) 4886 { 4887 unsigned long num_pages, i; 4888 4889 check_buffer_tree_ref(eb); 4890 4891 num_pages = num_extent_pages(eb->start, eb->len); 4892 for (i = 0; i < num_pages; i++) { 4893 struct page *p = eb->pages[i]; 4894 4895 if (p != accessed) 4896 mark_page_accessed(p); 4897 } 4898 } 4899 4900 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4901 u64 start) 4902 { 4903 struct extent_buffer *eb; 4904 4905 rcu_read_lock(); 4906 eb = radix_tree_lookup(&fs_info->buffer_radix, 4907 start >> PAGE_SHIFT); 4908 if (eb && atomic_inc_not_zero(&eb->refs)) { 4909 rcu_read_unlock(); 4910 /* 4911 * Lock our eb's refs_lock to avoid races with 4912 * free_extent_buffer. When we get our eb it might be flagged 4913 * with EXTENT_BUFFER_STALE and another task running 4914 * free_extent_buffer might have seen that flag set, 4915 * eb->refs == 2, that the buffer isn't under IO (dirty and 4916 * writeback flags not set) and it's still in the tree (flag 4917 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4918 * of decrementing the extent buffer's reference count twice. 4919 * So here we could race and increment the eb's reference count, 4920 * clear its stale flag, mark it as dirty and drop our reference 4921 * before the other task finishes executing free_extent_buffer, 4922 * which would later result in an attempt to free an extent 4923 * buffer that is dirty. 4924 */ 4925 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4926 spin_lock(&eb->refs_lock); 4927 spin_unlock(&eb->refs_lock); 4928 } 4929 mark_extent_buffer_accessed(eb, NULL); 4930 return eb; 4931 } 4932 rcu_read_unlock(); 4933 4934 return NULL; 4935 } 4936 4937 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4938 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4939 u64 start) 4940 { 4941 struct extent_buffer *eb, *exists = NULL; 4942 int ret; 4943 4944 eb = find_extent_buffer(fs_info, start); 4945 if (eb) 4946 return eb; 4947 eb = alloc_dummy_extent_buffer(fs_info, start); 4948 if (!eb) 4949 return NULL; 4950 eb->fs_info = fs_info; 4951 again: 4952 ret = radix_tree_preload(GFP_NOFS); 4953 if (ret) 4954 goto free_eb; 4955 spin_lock(&fs_info->buffer_lock); 4956 ret = radix_tree_insert(&fs_info->buffer_radix, 4957 start >> PAGE_SHIFT, eb); 4958 spin_unlock(&fs_info->buffer_lock); 4959 radix_tree_preload_end(); 4960 if (ret == -EEXIST) { 4961 exists = find_extent_buffer(fs_info, start); 4962 if (exists) 4963 goto free_eb; 4964 else 4965 goto again; 4966 } 4967 check_buffer_tree_ref(eb); 4968 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4969 4970 /* 4971 * We will free dummy extent buffer's if they come into 4972 * free_extent_buffer with a ref count of 2, but if we are using this we 4973 * want the buffers to stay in memory until we're done with them, so 4974 * bump the ref count again. 4975 */ 4976 atomic_inc(&eb->refs); 4977 return eb; 4978 free_eb: 4979 btrfs_release_extent_buffer(eb); 4980 return exists; 4981 } 4982 #endif 4983 4984 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4985 u64 start) 4986 { 4987 unsigned long len = fs_info->nodesize; 4988 unsigned long num_pages = num_extent_pages(start, len); 4989 unsigned long i; 4990 unsigned long index = start >> PAGE_SHIFT; 4991 struct extent_buffer *eb; 4992 struct extent_buffer *exists = NULL; 4993 struct page *p; 4994 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4995 int uptodate = 1; 4996 int ret; 4997 4998 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4999 btrfs_err(fs_info, "bad tree block start %llu", start); 5000 return ERR_PTR(-EINVAL); 5001 } 5002 5003 eb = find_extent_buffer(fs_info, start); 5004 if (eb) 5005 return eb; 5006 5007 eb = __alloc_extent_buffer(fs_info, start, len); 5008 if (!eb) 5009 return ERR_PTR(-ENOMEM); 5010 5011 for (i = 0; i < num_pages; i++, index++) { 5012 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5013 if (!p) { 5014 exists = ERR_PTR(-ENOMEM); 5015 goto free_eb; 5016 } 5017 5018 spin_lock(&mapping->private_lock); 5019 if (PagePrivate(p)) { 5020 /* 5021 * We could have already allocated an eb for this page 5022 * and attached one so lets see if we can get a ref on 5023 * the existing eb, and if we can we know it's good and 5024 * we can just return that one, else we know we can just 5025 * overwrite page->private. 5026 */ 5027 exists = (struct extent_buffer *)p->private; 5028 if (atomic_inc_not_zero(&exists->refs)) { 5029 spin_unlock(&mapping->private_lock); 5030 unlock_page(p); 5031 put_page(p); 5032 mark_extent_buffer_accessed(exists, p); 5033 goto free_eb; 5034 } 5035 exists = NULL; 5036 5037 /* 5038 * Do this so attach doesn't complain and we need to 5039 * drop the ref the old guy had. 5040 */ 5041 ClearPagePrivate(p); 5042 WARN_ON(PageDirty(p)); 5043 put_page(p); 5044 } 5045 attach_extent_buffer_page(eb, p); 5046 spin_unlock(&mapping->private_lock); 5047 WARN_ON(PageDirty(p)); 5048 eb->pages[i] = p; 5049 if (!PageUptodate(p)) 5050 uptodate = 0; 5051 5052 /* 5053 * see below about how we avoid a nasty race with release page 5054 * and why we unlock later 5055 */ 5056 } 5057 if (uptodate) 5058 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5059 again: 5060 ret = radix_tree_preload(GFP_NOFS); 5061 if (ret) { 5062 exists = ERR_PTR(ret); 5063 goto free_eb; 5064 } 5065 5066 spin_lock(&fs_info->buffer_lock); 5067 ret = radix_tree_insert(&fs_info->buffer_radix, 5068 start >> PAGE_SHIFT, eb); 5069 spin_unlock(&fs_info->buffer_lock); 5070 radix_tree_preload_end(); 5071 if (ret == -EEXIST) { 5072 exists = find_extent_buffer(fs_info, start); 5073 if (exists) 5074 goto free_eb; 5075 else 5076 goto again; 5077 } 5078 /* add one reference for the tree */ 5079 check_buffer_tree_ref(eb); 5080 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5081 5082 /* 5083 * there is a race where release page may have 5084 * tried to find this extent buffer in the radix 5085 * but failed. It will tell the VM it is safe to 5086 * reclaim the, and it will clear the page private bit. 5087 * We must make sure to set the page private bit properly 5088 * after the extent buffer is in the radix tree so 5089 * it doesn't get lost 5090 */ 5091 SetPageChecked(eb->pages[0]); 5092 for (i = 1; i < num_pages; i++) { 5093 p = eb->pages[i]; 5094 ClearPageChecked(p); 5095 unlock_page(p); 5096 } 5097 unlock_page(eb->pages[0]); 5098 return eb; 5099 5100 free_eb: 5101 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5102 for (i = 0; i < num_pages; i++) { 5103 if (eb->pages[i]) 5104 unlock_page(eb->pages[i]); 5105 } 5106 5107 btrfs_release_extent_buffer(eb); 5108 return exists; 5109 } 5110 5111 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5112 { 5113 struct extent_buffer *eb = 5114 container_of(head, struct extent_buffer, rcu_head); 5115 5116 __free_extent_buffer(eb); 5117 } 5118 5119 /* Expects to have eb->eb_lock already held */ 5120 static int release_extent_buffer(struct extent_buffer *eb) 5121 { 5122 WARN_ON(atomic_read(&eb->refs) == 0); 5123 if (atomic_dec_and_test(&eb->refs)) { 5124 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5125 struct btrfs_fs_info *fs_info = eb->fs_info; 5126 5127 spin_unlock(&eb->refs_lock); 5128 5129 spin_lock(&fs_info->buffer_lock); 5130 radix_tree_delete(&fs_info->buffer_radix, 5131 eb->start >> PAGE_SHIFT); 5132 spin_unlock(&fs_info->buffer_lock); 5133 } else { 5134 spin_unlock(&eb->refs_lock); 5135 } 5136 5137 /* Should be safe to release our pages at this point */ 5138 btrfs_release_extent_buffer_page(eb); 5139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5140 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5141 __free_extent_buffer(eb); 5142 return 1; 5143 } 5144 #endif 5145 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5146 return 1; 5147 } 5148 spin_unlock(&eb->refs_lock); 5149 5150 return 0; 5151 } 5152 5153 void free_extent_buffer(struct extent_buffer *eb) 5154 { 5155 int refs; 5156 int old; 5157 if (!eb) 5158 return; 5159 5160 while (1) { 5161 refs = atomic_read(&eb->refs); 5162 if (refs <= 3) 5163 break; 5164 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5165 if (old == refs) 5166 return; 5167 } 5168 5169 spin_lock(&eb->refs_lock); 5170 if (atomic_read(&eb->refs) == 2 && 5171 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5172 atomic_dec(&eb->refs); 5173 5174 if (atomic_read(&eb->refs) == 2 && 5175 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5176 !extent_buffer_under_io(eb) && 5177 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5178 atomic_dec(&eb->refs); 5179 5180 /* 5181 * I know this is terrible, but it's temporary until we stop tracking 5182 * the uptodate bits and such for the extent buffers. 5183 */ 5184 release_extent_buffer(eb); 5185 } 5186 5187 void free_extent_buffer_stale(struct extent_buffer *eb) 5188 { 5189 if (!eb) 5190 return; 5191 5192 spin_lock(&eb->refs_lock); 5193 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5194 5195 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5196 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5197 atomic_dec(&eb->refs); 5198 release_extent_buffer(eb); 5199 } 5200 5201 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5202 { 5203 unsigned long i; 5204 unsigned long num_pages; 5205 struct page *page; 5206 5207 num_pages = num_extent_pages(eb->start, eb->len); 5208 5209 for (i = 0; i < num_pages; i++) { 5210 page = eb->pages[i]; 5211 if (!PageDirty(page)) 5212 continue; 5213 5214 lock_page(page); 5215 WARN_ON(!PagePrivate(page)); 5216 5217 clear_page_dirty_for_io(page); 5218 spin_lock_irq(&page->mapping->tree_lock); 5219 if (!PageDirty(page)) { 5220 radix_tree_tag_clear(&page->mapping->page_tree, 5221 page_index(page), 5222 PAGECACHE_TAG_DIRTY); 5223 } 5224 spin_unlock_irq(&page->mapping->tree_lock); 5225 ClearPageError(page); 5226 unlock_page(page); 5227 } 5228 WARN_ON(atomic_read(&eb->refs) == 0); 5229 } 5230 5231 int set_extent_buffer_dirty(struct extent_buffer *eb) 5232 { 5233 unsigned long i; 5234 unsigned long num_pages; 5235 int was_dirty = 0; 5236 5237 check_buffer_tree_ref(eb); 5238 5239 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5240 5241 num_pages = num_extent_pages(eb->start, eb->len); 5242 WARN_ON(atomic_read(&eb->refs) == 0); 5243 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5244 5245 for (i = 0; i < num_pages; i++) 5246 set_page_dirty(eb->pages[i]); 5247 return was_dirty; 5248 } 5249 5250 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5251 { 5252 unsigned long i; 5253 struct page *page; 5254 unsigned long num_pages; 5255 5256 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5257 num_pages = num_extent_pages(eb->start, eb->len); 5258 for (i = 0; i < num_pages; i++) { 5259 page = eb->pages[i]; 5260 if (page) 5261 ClearPageUptodate(page); 5262 } 5263 } 5264 5265 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5266 { 5267 unsigned long i; 5268 struct page *page; 5269 unsigned long num_pages; 5270 5271 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5272 num_pages = num_extent_pages(eb->start, eb->len); 5273 for (i = 0; i < num_pages; i++) { 5274 page = eb->pages[i]; 5275 SetPageUptodate(page); 5276 } 5277 } 5278 5279 int extent_buffer_uptodate(struct extent_buffer *eb) 5280 { 5281 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5282 } 5283 5284 int read_extent_buffer_pages(struct extent_io_tree *tree, 5285 struct extent_buffer *eb, int wait, 5286 get_extent_t *get_extent, int mirror_num) 5287 { 5288 unsigned long i; 5289 struct page *page; 5290 int err; 5291 int ret = 0; 5292 int locked_pages = 0; 5293 int all_uptodate = 1; 5294 unsigned long num_pages; 5295 unsigned long num_reads = 0; 5296 struct bio *bio = NULL; 5297 unsigned long bio_flags = 0; 5298 5299 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5300 return 0; 5301 5302 num_pages = num_extent_pages(eb->start, eb->len); 5303 for (i = 0; i < num_pages; i++) { 5304 page = eb->pages[i]; 5305 if (wait == WAIT_NONE) { 5306 if (!trylock_page(page)) 5307 goto unlock_exit; 5308 } else { 5309 lock_page(page); 5310 } 5311 locked_pages++; 5312 } 5313 /* 5314 * We need to firstly lock all pages to make sure that 5315 * the uptodate bit of our pages won't be affected by 5316 * clear_extent_buffer_uptodate(). 5317 */ 5318 for (i = 0; i < num_pages; i++) { 5319 page = eb->pages[i]; 5320 if (!PageUptodate(page)) { 5321 num_reads++; 5322 all_uptodate = 0; 5323 } 5324 } 5325 5326 if (all_uptodate) { 5327 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5328 goto unlock_exit; 5329 } 5330 5331 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5332 eb->read_mirror = 0; 5333 atomic_set(&eb->io_pages, num_reads); 5334 for (i = 0; i < num_pages; i++) { 5335 page = eb->pages[i]; 5336 5337 if (!PageUptodate(page)) { 5338 if (ret) { 5339 atomic_dec(&eb->io_pages); 5340 unlock_page(page); 5341 continue; 5342 } 5343 5344 ClearPageError(page); 5345 err = __extent_read_full_page(tree, page, 5346 get_extent, &bio, 5347 mirror_num, &bio_flags, 5348 REQ_META); 5349 if (err) { 5350 ret = err; 5351 /* 5352 * We use &bio in above __extent_read_full_page, 5353 * so we ensure that if it returns error, the 5354 * current page fails to add itself to bio and 5355 * it's been unlocked. 5356 * 5357 * We must dec io_pages by ourselves. 5358 */ 5359 atomic_dec(&eb->io_pages); 5360 } 5361 } else { 5362 unlock_page(page); 5363 } 5364 } 5365 5366 if (bio) { 5367 err = submit_one_bio(bio, mirror_num, bio_flags); 5368 if (err) 5369 return err; 5370 } 5371 5372 if (ret || wait != WAIT_COMPLETE) 5373 return ret; 5374 5375 for (i = 0; i < num_pages; i++) { 5376 page = eb->pages[i]; 5377 wait_on_page_locked(page); 5378 if (!PageUptodate(page)) 5379 ret = -EIO; 5380 } 5381 5382 return ret; 5383 5384 unlock_exit: 5385 while (locked_pages > 0) { 5386 locked_pages--; 5387 page = eb->pages[locked_pages]; 5388 unlock_page(page); 5389 } 5390 return ret; 5391 } 5392 5393 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5394 unsigned long start, unsigned long len) 5395 { 5396 size_t cur; 5397 size_t offset; 5398 struct page *page; 5399 char *kaddr; 5400 char *dst = (char *)dstv; 5401 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5402 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5403 5404 if (start + len > eb->len) { 5405 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5406 eb->start, eb->len, start, len); 5407 memset(dst, 0, len); 5408 return; 5409 } 5410 5411 offset = (start_offset + start) & (PAGE_SIZE - 1); 5412 5413 while (len > 0) { 5414 page = eb->pages[i]; 5415 5416 cur = min(len, (PAGE_SIZE - offset)); 5417 kaddr = page_address(page); 5418 memcpy(dst, kaddr + offset, cur); 5419 5420 dst += cur; 5421 len -= cur; 5422 offset = 0; 5423 i++; 5424 } 5425 } 5426 5427 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5428 void __user *dstv, 5429 unsigned long start, unsigned long len) 5430 { 5431 size_t cur; 5432 size_t offset; 5433 struct page *page; 5434 char *kaddr; 5435 char __user *dst = (char __user *)dstv; 5436 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5437 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5438 int ret = 0; 5439 5440 WARN_ON(start > eb->len); 5441 WARN_ON(start + len > eb->start + eb->len); 5442 5443 offset = (start_offset + start) & (PAGE_SIZE - 1); 5444 5445 while (len > 0) { 5446 page = eb->pages[i]; 5447 5448 cur = min(len, (PAGE_SIZE - offset)); 5449 kaddr = page_address(page); 5450 if (copy_to_user(dst, kaddr + offset, cur)) { 5451 ret = -EFAULT; 5452 break; 5453 } 5454 5455 dst += cur; 5456 len -= cur; 5457 offset = 0; 5458 i++; 5459 } 5460 5461 return ret; 5462 } 5463 5464 /* 5465 * return 0 if the item is found within a page. 5466 * return 1 if the item spans two pages. 5467 * return -EINVAL otherwise. 5468 */ 5469 int map_private_extent_buffer(const struct extent_buffer *eb, 5470 unsigned long start, unsigned long min_len, 5471 char **map, unsigned long *map_start, 5472 unsigned long *map_len) 5473 { 5474 size_t offset = start & (PAGE_SIZE - 1); 5475 char *kaddr; 5476 struct page *p; 5477 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5478 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5479 unsigned long end_i = (start_offset + start + min_len - 1) >> 5480 PAGE_SHIFT; 5481 5482 if (start + min_len > eb->len) { 5483 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5484 eb->start, eb->len, start, min_len); 5485 return -EINVAL; 5486 } 5487 5488 if (i != end_i) 5489 return 1; 5490 5491 if (i == 0) { 5492 offset = start_offset; 5493 *map_start = 0; 5494 } else { 5495 offset = 0; 5496 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5497 } 5498 5499 p = eb->pages[i]; 5500 kaddr = page_address(p); 5501 *map = kaddr + offset; 5502 *map_len = PAGE_SIZE - offset; 5503 return 0; 5504 } 5505 5506 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5507 unsigned long start, unsigned long len) 5508 { 5509 size_t cur; 5510 size_t offset; 5511 struct page *page; 5512 char *kaddr; 5513 char *ptr = (char *)ptrv; 5514 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5515 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5516 int ret = 0; 5517 5518 WARN_ON(start > eb->len); 5519 WARN_ON(start + len > eb->start + eb->len); 5520 5521 offset = (start_offset + start) & (PAGE_SIZE - 1); 5522 5523 while (len > 0) { 5524 page = eb->pages[i]; 5525 5526 cur = min(len, (PAGE_SIZE - offset)); 5527 5528 kaddr = page_address(page); 5529 ret = memcmp(ptr, kaddr + offset, cur); 5530 if (ret) 5531 break; 5532 5533 ptr += cur; 5534 len -= cur; 5535 offset = 0; 5536 i++; 5537 } 5538 return ret; 5539 } 5540 5541 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5542 const void *srcv) 5543 { 5544 char *kaddr; 5545 5546 WARN_ON(!PageUptodate(eb->pages[0])); 5547 kaddr = page_address(eb->pages[0]); 5548 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5549 BTRFS_FSID_SIZE); 5550 } 5551 5552 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5553 { 5554 char *kaddr; 5555 5556 WARN_ON(!PageUptodate(eb->pages[0])); 5557 kaddr = page_address(eb->pages[0]); 5558 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5559 BTRFS_FSID_SIZE); 5560 } 5561 5562 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5563 unsigned long start, unsigned long len) 5564 { 5565 size_t cur; 5566 size_t offset; 5567 struct page *page; 5568 char *kaddr; 5569 char *src = (char *)srcv; 5570 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5571 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5572 5573 WARN_ON(start > eb->len); 5574 WARN_ON(start + len > eb->start + eb->len); 5575 5576 offset = (start_offset + start) & (PAGE_SIZE - 1); 5577 5578 while (len > 0) { 5579 page = eb->pages[i]; 5580 WARN_ON(!PageUptodate(page)); 5581 5582 cur = min(len, PAGE_SIZE - offset); 5583 kaddr = page_address(page); 5584 memcpy(kaddr + offset, src, cur); 5585 5586 src += cur; 5587 len -= cur; 5588 offset = 0; 5589 i++; 5590 } 5591 } 5592 5593 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5594 unsigned long len) 5595 { 5596 size_t cur; 5597 size_t offset; 5598 struct page *page; 5599 char *kaddr; 5600 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5601 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5602 5603 WARN_ON(start > eb->len); 5604 WARN_ON(start + len > eb->start + eb->len); 5605 5606 offset = (start_offset + start) & (PAGE_SIZE - 1); 5607 5608 while (len > 0) { 5609 page = eb->pages[i]; 5610 WARN_ON(!PageUptodate(page)); 5611 5612 cur = min(len, PAGE_SIZE - offset); 5613 kaddr = page_address(page); 5614 memset(kaddr + offset, 0, cur); 5615 5616 len -= cur; 5617 offset = 0; 5618 i++; 5619 } 5620 } 5621 5622 void copy_extent_buffer_full(struct extent_buffer *dst, 5623 struct extent_buffer *src) 5624 { 5625 int i; 5626 unsigned num_pages; 5627 5628 ASSERT(dst->len == src->len); 5629 5630 num_pages = num_extent_pages(dst->start, dst->len); 5631 for (i = 0; i < num_pages; i++) 5632 copy_page(page_address(dst->pages[i]), 5633 page_address(src->pages[i])); 5634 } 5635 5636 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5637 unsigned long dst_offset, unsigned long src_offset, 5638 unsigned long len) 5639 { 5640 u64 dst_len = dst->len; 5641 size_t cur; 5642 size_t offset; 5643 struct page *page; 5644 char *kaddr; 5645 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5646 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5647 5648 WARN_ON(src->len != dst_len); 5649 5650 offset = (start_offset + dst_offset) & 5651 (PAGE_SIZE - 1); 5652 5653 while (len > 0) { 5654 page = dst->pages[i]; 5655 WARN_ON(!PageUptodate(page)); 5656 5657 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5658 5659 kaddr = page_address(page); 5660 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5661 5662 src_offset += cur; 5663 len -= cur; 5664 offset = 0; 5665 i++; 5666 } 5667 } 5668 5669 void le_bitmap_set(u8 *map, unsigned int start, int len) 5670 { 5671 u8 *p = map + BIT_BYTE(start); 5672 const unsigned int size = start + len; 5673 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5674 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 5675 5676 while (len - bits_to_set >= 0) { 5677 *p |= mask_to_set; 5678 len -= bits_to_set; 5679 bits_to_set = BITS_PER_BYTE; 5680 mask_to_set = ~0; 5681 p++; 5682 } 5683 if (len) { 5684 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5685 *p |= mask_to_set; 5686 } 5687 } 5688 5689 void le_bitmap_clear(u8 *map, unsigned int start, int len) 5690 { 5691 u8 *p = map + BIT_BYTE(start); 5692 const unsigned int size = start + len; 5693 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5694 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start); 5695 5696 while (len - bits_to_clear >= 0) { 5697 *p &= ~mask_to_clear; 5698 len -= bits_to_clear; 5699 bits_to_clear = BITS_PER_BYTE; 5700 mask_to_clear = ~0; 5701 p++; 5702 } 5703 if (len) { 5704 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5705 *p &= ~mask_to_clear; 5706 } 5707 } 5708 5709 /* 5710 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5711 * given bit number 5712 * @eb: the extent buffer 5713 * @start: offset of the bitmap item in the extent buffer 5714 * @nr: bit number 5715 * @page_index: return index of the page in the extent buffer that contains the 5716 * given bit number 5717 * @page_offset: return offset into the page given by page_index 5718 * 5719 * This helper hides the ugliness of finding the byte in an extent buffer which 5720 * contains a given bit. 5721 */ 5722 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5723 unsigned long start, unsigned long nr, 5724 unsigned long *page_index, 5725 size_t *page_offset) 5726 { 5727 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5728 size_t byte_offset = BIT_BYTE(nr); 5729 size_t offset; 5730 5731 /* 5732 * The byte we want is the offset of the extent buffer + the offset of 5733 * the bitmap item in the extent buffer + the offset of the byte in the 5734 * bitmap item. 5735 */ 5736 offset = start_offset + start + byte_offset; 5737 5738 *page_index = offset >> PAGE_SHIFT; 5739 *page_offset = offset & (PAGE_SIZE - 1); 5740 } 5741 5742 /** 5743 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5744 * @eb: the extent buffer 5745 * @start: offset of the bitmap item in the extent buffer 5746 * @nr: bit number to test 5747 */ 5748 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5749 unsigned long nr) 5750 { 5751 u8 *kaddr; 5752 struct page *page; 5753 unsigned long i; 5754 size_t offset; 5755 5756 eb_bitmap_offset(eb, start, nr, &i, &offset); 5757 page = eb->pages[i]; 5758 WARN_ON(!PageUptodate(page)); 5759 kaddr = page_address(page); 5760 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5761 } 5762 5763 /** 5764 * extent_buffer_bitmap_set - set an area of a bitmap 5765 * @eb: the extent buffer 5766 * @start: offset of the bitmap item in the extent buffer 5767 * @pos: bit number of the first bit 5768 * @len: number of bits to set 5769 */ 5770 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5771 unsigned long pos, unsigned long len) 5772 { 5773 u8 *kaddr; 5774 struct page *page; 5775 unsigned long i; 5776 size_t offset; 5777 const unsigned int size = pos + len; 5778 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5779 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5780 5781 eb_bitmap_offset(eb, start, pos, &i, &offset); 5782 page = eb->pages[i]; 5783 WARN_ON(!PageUptodate(page)); 5784 kaddr = page_address(page); 5785 5786 while (len >= bits_to_set) { 5787 kaddr[offset] |= mask_to_set; 5788 len -= bits_to_set; 5789 bits_to_set = BITS_PER_BYTE; 5790 mask_to_set = ~0; 5791 if (++offset >= PAGE_SIZE && len > 0) { 5792 offset = 0; 5793 page = eb->pages[++i]; 5794 WARN_ON(!PageUptodate(page)); 5795 kaddr = page_address(page); 5796 } 5797 } 5798 if (len) { 5799 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5800 kaddr[offset] |= mask_to_set; 5801 } 5802 } 5803 5804 5805 /** 5806 * extent_buffer_bitmap_clear - clear an area of a bitmap 5807 * @eb: the extent buffer 5808 * @start: offset of the bitmap item in the extent buffer 5809 * @pos: bit number of the first bit 5810 * @len: number of bits to clear 5811 */ 5812 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5813 unsigned long pos, unsigned long len) 5814 { 5815 u8 *kaddr; 5816 struct page *page; 5817 unsigned long i; 5818 size_t offset; 5819 const unsigned int size = pos + len; 5820 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5821 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5822 5823 eb_bitmap_offset(eb, start, pos, &i, &offset); 5824 page = eb->pages[i]; 5825 WARN_ON(!PageUptodate(page)); 5826 kaddr = page_address(page); 5827 5828 while (len >= bits_to_clear) { 5829 kaddr[offset] &= ~mask_to_clear; 5830 len -= bits_to_clear; 5831 bits_to_clear = BITS_PER_BYTE; 5832 mask_to_clear = ~0; 5833 if (++offset >= PAGE_SIZE && len > 0) { 5834 offset = 0; 5835 page = eb->pages[++i]; 5836 WARN_ON(!PageUptodate(page)); 5837 kaddr = page_address(page); 5838 } 5839 } 5840 if (len) { 5841 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5842 kaddr[offset] &= ~mask_to_clear; 5843 } 5844 } 5845 5846 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5847 { 5848 unsigned long distance = (src > dst) ? src - dst : dst - src; 5849 return distance < len; 5850 } 5851 5852 static void copy_pages(struct page *dst_page, struct page *src_page, 5853 unsigned long dst_off, unsigned long src_off, 5854 unsigned long len) 5855 { 5856 char *dst_kaddr = page_address(dst_page); 5857 char *src_kaddr; 5858 int must_memmove = 0; 5859 5860 if (dst_page != src_page) { 5861 src_kaddr = page_address(src_page); 5862 } else { 5863 src_kaddr = dst_kaddr; 5864 if (areas_overlap(src_off, dst_off, len)) 5865 must_memmove = 1; 5866 } 5867 5868 if (must_memmove) 5869 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5870 else 5871 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5872 } 5873 5874 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5875 unsigned long src_offset, unsigned long len) 5876 { 5877 struct btrfs_fs_info *fs_info = dst->fs_info; 5878 size_t cur; 5879 size_t dst_off_in_page; 5880 size_t src_off_in_page; 5881 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5882 unsigned long dst_i; 5883 unsigned long src_i; 5884 5885 if (src_offset + len > dst->len) { 5886 btrfs_err(fs_info, 5887 "memmove bogus src_offset %lu move len %lu dst len %lu", 5888 src_offset, len, dst->len); 5889 BUG_ON(1); 5890 } 5891 if (dst_offset + len > dst->len) { 5892 btrfs_err(fs_info, 5893 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5894 dst_offset, len, dst->len); 5895 BUG_ON(1); 5896 } 5897 5898 while (len > 0) { 5899 dst_off_in_page = (start_offset + dst_offset) & 5900 (PAGE_SIZE - 1); 5901 src_off_in_page = (start_offset + src_offset) & 5902 (PAGE_SIZE - 1); 5903 5904 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5905 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5906 5907 cur = min(len, (unsigned long)(PAGE_SIZE - 5908 src_off_in_page)); 5909 cur = min_t(unsigned long, cur, 5910 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5911 5912 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5913 dst_off_in_page, src_off_in_page, cur); 5914 5915 src_offset += cur; 5916 dst_offset += cur; 5917 len -= cur; 5918 } 5919 } 5920 5921 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5922 unsigned long src_offset, unsigned long len) 5923 { 5924 struct btrfs_fs_info *fs_info = dst->fs_info; 5925 size_t cur; 5926 size_t dst_off_in_page; 5927 size_t src_off_in_page; 5928 unsigned long dst_end = dst_offset + len - 1; 5929 unsigned long src_end = src_offset + len - 1; 5930 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5931 unsigned long dst_i; 5932 unsigned long src_i; 5933 5934 if (src_offset + len > dst->len) { 5935 btrfs_err(fs_info, 5936 "memmove bogus src_offset %lu move len %lu len %lu", 5937 src_offset, len, dst->len); 5938 BUG_ON(1); 5939 } 5940 if (dst_offset + len > dst->len) { 5941 btrfs_err(fs_info, 5942 "memmove bogus dst_offset %lu move len %lu len %lu", 5943 dst_offset, len, dst->len); 5944 BUG_ON(1); 5945 } 5946 if (dst_offset < src_offset) { 5947 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5948 return; 5949 } 5950 while (len > 0) { 5951 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5952 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5953 5954 dst_off_in_page = (start_offset + dst_end) & 5955 (PAGE_SIZE - 1); 5956 src_off_in_page = (start_offset + src_end) & 5957 (PAGE_SIZE - 1); 5958 5959 cur = min_t(unsigned long, len, src_off_in_page + 1); 5960 cur = min(cur, dst_off_in_page + 1); 5961 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5962 dst_off_in_page - cur + 1, 5963 src_off_in_page - cur + 1, cur); 5964 5965 dst_end -= cur; 5966 src_end -= cur; 5967 len -= cur; 5968 } 5969 } 5970 5971 int try_release_extent_buffer(struct page *page) 5972 { 5973 struct extent_buffer *eb; 5974 5975 /* 5976 * We need to make sure nobody is attaching this page to an eb right 5977 * now. 5978 */ 5979 spin_lock(&page->mapping->private_lock); 5980 if (!PagePrivate(page)) { 5981 spin_unlock(&page->mapping->private_lock); 5982 return 1; 5983 } 5984 5985 eb = (struct extent_buffer *)page->private; 5986 BUG_ON(!eb); 5987 5988 /* 5989 * This is a little awful but should be ok, we need to make sure that 5990 * the eb doesn't disappear out from under us while we're looking at 5991 * this page. 5992 */ 5993 spin_lock(&eb->refs_lock); 5994 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5995 spin_unlock(&eb->refs_lock); 5996 spin_unlock(&page->mapping->private_lock); 5997 return 0; 5998 } 5999 spin_unlock(&page->mapping->private_lock); 6000 6001 /* 6002 * If tree ref isn't set then we know the ref on this eb is a real ref, 6003 * so just return, this page will likely be freed soon anyway. 6004 */ 6005 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6006 spin_unlock(&eb->refs_lock); 6007 return 0; 6008 } 6009 6010 return release_extent_buffer(eb); 6011 } 6012