xref: /openbmc/linux/fs/btrfs/extent_io.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/slab.h>
4 #include <linux/bio.h>
5 #include <linux/mm.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 #include "backref.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28 
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 	return !RB_EMPTY_NODE(&state->rb_node);
32 }
33 
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37 
38 static DEFINE_SPINLOCK(leak_lock);
39 
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&leak_lock, flags);
46 	list_add(new, head);
47 	spin_unlock_irqrestore(&leak_lock, flags);
48 }
49 
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&leak_lock, flags);
56 	list_del(entry);
57 	spin_unlock_irqrestore(&leak_lock, flags);
58 }
59 
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 	struct extent_state *state;
64 	struct extent_buffer *eb;
65 
66 	while (!list_empty(&states)) {
67 		state = list_entry(states.next, struct extent_state, leak_list);
68 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 		       state->start, state->end, state->state,
70 		       extent_state_in_tree(state),
71 		       refcount_read(&state->refs));
72 		list_del(&state->leak_list);
73 		kmem_cache_free(extent_state_cache, state);
74 	}
75 
76 	while (!list_empty(&buffers)) {
77 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	if (tree->ops && tree->ops->check_extent_io_range)
91 		tree->ops->check_extent_io_range(tree->private_data, caller,
92 						 start, end);
93 }
94 #else
95 #define btrfs_leak_debug_add(new, head)	do {} while (0)
96 #define btrfs_leak_debug_del(entry)	do {} while (0)
97 #define btrfs_leak_debug_check()	do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
99 #endif
100 
101 #define BUFFER_LRU_MAX 64
102 
103 struct tree_entry {
104 	u64 start;
105 	u64 end;
106 	struct rb_node rb_node;
107 };
108 
109 struct extent_page_data {
110 	struct bio *bio;
111 	struct extent_io_tree *tree;
112 	get_extent_t *get_extent;
113 	unsigned long bio_flags;
114 
115 	/* tells writepage not to lock the state bits for this range
116 	 * it still does the unlocking
117 	 */
118 	unsigned int extent_locked:1;
119 
120 	/* tells the submit_bio code to use REQ_SYNC */
121 	unsigned int sync_io:1;
122 };
123 
124 static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 				 struct extent_changeset *changeset,
126 				 int set)
127 {
128 	int ret;
129 
130 	if (!changeset)
131 		return;
132 	if (set && (state->state & bits) == bits)
133 		return;
134 	if (!set && (state->state & bits) == 0)
135 		return;
136 	changeset->bytes_changed += state->end - state->start + 1;
137 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
138 			GFP_ATOMIC);
139 	/* ENOMEM */
140 	BUG_ON(ret < 0);
141 }
142 
143 static noinline void flush_write_bio(void *data);
144 static inline struct btrfs_fs_info *
145 tree_fs_info(struct extent_io_tree *tree)
146 {
147 	if (tree->ops)
148 		return tree->ops->tree_fs_info(tree->private_data);
149 	return NULL;
150 }
151 
152 int __init extent_io_init(void)
153 {
154 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 			sizeof(struct extent_state), 0,
156 			SLAB_MEM_SPREAD, NULL);
157 	if (!extent_state_cache)
158 		return -ENOMEM;
159 
160 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 			sizeof(struct extent_buffer), 0,
162 			SLAB_MEM_SPREAD, NULL);
163 	if (!extent_buffer_cache)
164 		goto free_state_cache;
165 
166 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 				     offsetof(struct btrfs_io_bio, bio),
168 				     BIOSET_NEED_BVECS);
169 	if (!btrfs_bioset)
170 		goto free_buffer_cache;
171 
172 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
173 		goto free_bioset;
174 
175 	return 0;
176 
177 free_bioset:
178 	bioset_free(btrfs_bioset);
179 	btrfs_bioset = NULL;
180 
181 free_buffer_cache:
182 	kmem_cache_destroy(extent_buffer_cache);
183 	extent_buffer_cache = NULL;
184 
185 free_state_cache:
186 	kmem_cache_destroy(extent_state_cache);
187 	extent_state_cache = NULL;
188 	return -ENOMEM;
189 }
190 
191 void extent_io_exit(void)
192 {
193 	btrfs_leak_debug_check();
194 
195 	/*
196 	 * Make sure all delayed rcu free are flushed before we
197 	 * destroy caches.
198 	 */
199 	rcu_barrier();
200 	kmem_cache_destroy(extent_state_cache);
201 	kmem_cache_destroy(extent_buffer_cache);
202 	if (btrfs_bioset)
203 		bioset_free(btrfs_bioset);
204 }
205 
206 void extent_io_tree_init(struct extent_io_tree *tree,
207 			 void *private_data)
208 {
209 	tree->state = RB_ROOT;
210 	tree->ops = NULL;
211 	tree->dirty_bytes = 0;
212 	spin_lock_init(&tree->lock);
213 	tree->private_data = private_data;
214 }
215 
216 static struct extent_state *alloc_extent_state(gfp_t mask)
217 {
218 	struct extent_state *state;
219 
220 	/*
221 	 * The given mask might be not appropriate for the slab allocator,
222 	 * drop the unsupported bits
223 	 */
224 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
225 	state = kmem_cache_alloc(extent_state_cache, mask);
226 	if (!state)
227 		return state;
228 	state->state = 0;
229 	state->failrec = NULL;
230 	RB_CLEAR_NODE(&state->rb_node);
231 	btrfs_leak_debug_add(&state->leak_list, &states);
232 	refcount_set(&state->refs, 1);
233 	init_waitqueue_head(&state->wq);
234 	trace_alloc_extent_state(state, mask, _RET_IP_);
235 	return state;
236 }
237 
238 void free_extent_state(struct extent_state *state)
239 {
240 	if (!state)
241 		return;
242 	if (refcount_dec_and_test(&state->refs)) {
243 		WARN_ON(extent_state_in_tree(state));
244 		btrfs_leak_debug_del(&state->leak_list);
245 		trace_free_extent_state(state, _RET_IP_);
246 		kmem_cache_free(extent_state_cache, state);
247 	}
248 }
249 
250 static struct rb_node *tree_insert(struct rb_root *root,
251 				   struct rb_node *search_start,
252 				   u64 offset,
253 				   struct rb_node *node,
254 				   struct rb_node ***p_in,
255 				   struct rb_node **parent_in)
256 {
257 	struct rb_node **p;
258 	struct rb_node *parent = NULL;
259 	struct tree_entry *entry;
260 
261 	if (p_in && parent_in) {
262 		p = *p_in;
263 		parent = *parent_in;
264 		goto do_insert;
265 	}
266 
267 	p = search_start ? &search_start : &root->rb_node;
268 	while (*p) {
269 		parent = *p;
270 		entry = rb_entry(parent, struct tree_entry, rb_node);
271 
272 		if (offset < entry->start)
273 			p = &(*p)->rb_left;
274 		else if (offset > entry->end)
275 			p = &(*p)->rb_right;
276 		else
277 			return parent;
278 	}
279 
280 do_insert:
281 	rb_link_node(node, parent, p);
282 	rb_insert_color(node, root);
283 	return NULL;
284 }
285 
286 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
287 				      struct rb_node **prev_ret,
288 				      struct rb_node **next_ret,
289 				      struct rb_node ***p_ret,
290 				      struct rb_node **parent_ret)
291 {
292 	struct rb_root *root = &tree->state;
293 	struct rb_node **n = &root->rb_node;
294 	struct rb_node *prev = NULL;
295 	struct rb_node *orig_prev = NULL;
296 	struct tree_entry *entry;
297 	struct tree_entry *prev_entry = NULL;
298 
299 	while (*n) {
300 		prev = *n;
301 		entry = rb_entry(prev, struct tree_entry, rb_node);
302 		prev_entry = entry;
303 
304 		if (offset < entry->start)
305 			n = &(*n)->rb_left;
306 		else if (offset > entry->end)
307 			n = &(*n)->rb_right;
308 		else
309 			return *n;
310 	}
311 
312 	if (p_ret)
313 		*p_ret = n;
314 	if (parent_ret)
315 		*parent_ret = prev;
316 
317 	if (prev_ret) {
318 		orig_prev = prev;
319 		while (prev && offset > prev_entry->end) {
320 			prev = rb_next(prev);
321 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
322 		}
323 		*prev_ret = prev;
324 		prev = orig_prev;
325 	}
326 
327 	if (next_ret) {
328 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 		while (prev && offset < prev_entry->start) {
330 			prev = rb_prev(prev);
331 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
332 		}
333 		*next_ret = prev;
334 	}
335 	return NULL;
336 }
337 
338 static inline struct rb_node *
339 tree_search_for_insert(struct extent_io_tree *tree,
340 		       u64 offset,
341 		       struct rb_node ***p_ret,
342 		       struct rb_node **parent_ret)
343 {
344 	struct rb_node *prev = NULL;
345 	struct rb_node *ret;
346 
347 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
348 	if (!ret)
349 		return prev;
350 	return ret;
351 }
352 
353 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
354 					  u64 offset)
355 {
356 	return tree_search_for_insert(tree, offset, NULL, NULL);
357 }
358 
359 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
360 		     struct extent_state *other)
361 {
362 	if (tree->ops && tree->ops->merge_extent_hook)
363 		tree->ops->merge_extent_hook(tree->private_data, new, other);
364 }
365 
366 /*
367  * utility function to look for merge candidates inside a given range.
368  * Any extents with matching state are merged together into a single
369  * extent in the tree.  Extents with EXTENT_IO in their state field
370  * are not merged because the end_io handlers need to be able to do
371  * operations on them without sleeping (or doing allocations/splits).
372  *
373  * This should be called with the tree lock held.
374  */
375 static void merge_state(struct extent_io_tree *tree,
376 		        struct extent_state *state)
377 {
378 	struct extent_state *other;
379 	struct rb_node *other_node;
380 
381 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
382 		return;
383 
384 	other_node = rb_prev(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->end == state->start - 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->start = other->start;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 	other_node = rb_next(&state->rb_node);
397 	if (other_node) {
398 		other = rb_entry(other_node, struct extent_state, rb_node);
399 		if (other->start == state->end + 1 &&
400 		    other->state == state->state) {
401 			merge_cb(tree, state, other);
402 			state->end = other->end;
403 			rb_erase(&other->rb_node, &tree->state);
404 			RB_CLEAR_NODE(&other->rb_node);
405 			free_extent_state(other);
406 		}
407 	}
408 }
409 
410 static void set_state_cb(struct extent_io_tree *tree,
411 			 struct extent_state *state, unsigned *bits)
412 {
413 	if (tree->ops && tree->ops->set_bit_hook)
414 		tree->ops->set_bit_hook(tree->private_data, state, bits);
415 }
416 
417 static void clear_state_cb(struct extent_io_tree *tree,
418 			   struct extent_state *state, unsigned *bits)
419 {
420 	if (tree->ops && tree->ops->clear_bit_hook)
421 		tree->ops->clear_bit_hook(tree->private_data, state, bits);
422 }
423 
424 static void set_state_bits(struct extent_io_tree *tree,
425 			   struct extent_state *state, unsigned *bits,
426 			   struct extent_changeset *changeset);
427 
428 /*
429  * insert an extent_state struct into the tree.  'bits' are set on the
430  * struct before it is inserted.
431  *
432  * This may return -EEXIST if the extent is already there, in which case the
433  * state struct is freed.
434  *
435  * The tree lock is not taken internally.  This is a utility function and
436  * probably isn't what you want to call (see set/clear_extent_bit).
437  */
438 static int insert_state(struct extent_io_tree *tree,
439 			struct extent_state *state, u64 start, u64 end,
440 			struct rb_node ***p,
441 			struct rb_node **parent,
442 			unsigned *bits, struct extent_changeset *changeset)
443 {
444 	struct rb_node *node;
445 
446 	if (end < start)
447 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
448 		       end, start);
449 	state->start = start;
450 	state->end = end;
451 
452 	set_state_bits(tree, state, bits, changeset);
453 
454 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
455 	if (node) {
456 		struct extent_state *found;
457 		found = rb_entry(node, struct extent_state, rb_node);
458 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
459 		       found->start, found->end, start, end);
460 		return -EEXIST;
461 	}
462 	merge_state(tree, state);
463 	return 0;
464 }
465 
466 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
467 		     u64 split)
468 {
469 	if (tree->ops && tree->ops->split_extent_hook)
470 		tree->ops->split_extent_hook(tree->private_data, orig, split);
471 }
472 
473 /*
474  * split a given extent state struct in two, inserting the preallocated
475  * struct 'prealloc' as the newly created second half.  'split' indicates an
476  * offset inside 'orig' where it should be split.
477  *
478  * Before calling,
479  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
480  * are two extent state structs in the tree:
481  * prealloc: [orig->start, split - 1]
482  * orig: [ split, orig->end ]
483  *
484  * The tree locks are not taken by this function. They need to be held
485  * by the caller.
486  */
487 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
488 		       struct extent_state *prealloc, u64 split)
489 {
490 	struct rb_node *node;
491 
492 	split_cb(tree, orig, split);
493 
494 	prealloc->start = orig->start;
495 	prealloc->end = split - 1;
496 	prealloc->state = orig->state;
497 	orig->start = split;
498 
499 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
500 			   &prealloc->rb_node, NULL, NULL);
501 	if (node) {
502 		free_extent_state(prealloc);
503 		return -EEXIST;
504 	}
505 	return 0;
506 }
507 
508 static struct extent_state *next_state(struct extent_state *state)
509 {
510 	struct rb_node *next = rb_next(&state->rb_node);
511 	if (next)
512 		return rb_entry(next, struct extent_state, rb_node);
513 	else
514 		return NULL;
515 }
516 
517 /*
518  * utility function to clear some bits in an extent state struct.
519  * it will optionally wake up any one waiting on this state (wake == 1).
520  *
521  * If no bits are set on the state struct after clearing things, the
522  * struct is freed and removed from the tree
523  */
524 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
525 					    struct extent_state *state,
526 					    unsigned *bits, int wake,
527 					    struct extent_changeset *changeset)
528 {
529 	struct extent_state *next;
530 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
531 
532 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 		u64 range = state->end - state->start + 1;
534 		WARN_ON(range > tree->dirty_bytes);
535 		tree->dirty_bytes -= range;
536 	}
537 	clear_state_cb(tree, state, bits);
538 	add_extent_changeset(state, bits_to_clear, changeset, 0);
539 	state->state &= ~bits_to_clear;
540 	if (wake)
541 		wake_up(&state->wq);
542 	if (state->state == 0) {
543 		next = next_state(state);
544 		if (extent_state_in_tree(state)) {
545 			rb_erase(&state->rb_node, &tree->state);
546 			RB_CLEAR_NODE(&state->rb_node);
547 			free_extent_state(state);
548 		} else {
549 			WARN_ON(1);
550 		}
551 	} else {
552 		merge_state(tree, state);
553 		next = next_state(state);
554 	}
555 	return next;
556 }
557 
558 static struct extent_state *
559 alloc_extent_state_atomic(struct extent_state *prealloc)
560 {
561 	if (!prealloc)
562 		prealloc = alloc_extent_state(GFP_ATOMIC);
563 
564 	return prealloc;
565 }
566 
567 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
568 {
569 	btrfs_panic(tree_fs_info(tree), err,
570 		    "Locking error: Extent tree was modified by another thread while locked.");
571 }
572 
573 /*
574  * clear some bits on a range in the tree.  This may require splitting
575  * or inserting elements in the tree, so the gfp mask is used to
576  * indicate which allocations or sleeping are allowed.
577  *
578  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
579  * the given range from the tree regardless of state (ie for truncate).
580  *
581  * the range [start, end] is inclusive.
582  *
583  * This takes the tree lock, and returns 0 on success and < 0 on error.
584  */
585 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
586 			      unsigned bits, int wake, int delete,
587 			      struct extent_state **cached_state,
588 			      gfp_t mask, struct extent_changeset *changeset)
589 {
590 	struct extent_state *state;
591 	struct extent_state *cached;
592 	struct extent_state *prealloc = NULL;
593 	struct rb_node *node;
594 	u64 last_end;
595 	int err;
596 	int clear = 0;
597 
598 	btrfs_debug_check_extent_io_range(tree, start, end);
599 
600 	if (bits & EXTENT_DELALLOC)
601 		bits |= EXTENT_NORESERVE;
602 
603 	if (delete)
604 		bits |= ~EXTENT_CTLBITS;
605 	bits |= EXTENT_FIRST_DELALLOC;
606 
607 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
608 		clear = 1;
609 again:
610 	if (!prealloc && gfpflags_allow_blocking(mask)) {
611 		/*
612 		 * Don't care for allocation failure here because we might end
613 		 * up not needing the pre-allocated extent state at all, which
614 		 * is the case if we only have in the tree extent states that
615 		 * cover our input range and don't cover too any other range.
616 		 * If we end up needing a new extent state we allocate it later.
617 		 */
618 		prealloc = alloc_extent_state(mask);
619 	}
620 
621 	spin_lock(&tree->lock);
622 	if (cached_state) {
623 		cached = *cached_state;
624 
625 		if (clear) {
626 			*cached_state = NULL;
627 			cached_state = NULL;
628 		}
629 
630 		if (cached && extent_state_in_tree(cached) &&
631 		    cached->start <= start && cached->end > start) {
632 			if (clear)
633 				refcount_dec(&cached->refs);
634 			state = cached;
635 			goto hit_next;
636 		}
637 		if (clear)
638 			free_extent_state(cached);
639 	}
640 	/*
641 	 * this search will find the extents that end after
642 	 * our range starts
643 	 */
644 	node = tree_search(tree, start);
645 	if (!node)
646 		goto out;
647 	state = rb_entry(node, struct extent_state, rb_node);
648 hit_next:
649 	if (state->start > end)
650 		goto out;
651 	WARN_ON(state->end < start);
652 	last_end = state->end;
653 
654 	/* the state doesn't have the wanted bits, go ahead */
655 	if (!(state->state & bits)) {
656 		state = next_state(state);
657 		goto next;
658 	}
659 
660 	/*
661 	 *     | ---- desired range ---- |
662 	 *  | state | or
663 	 *  | ------------- state -------------- |
664 	 *
665 	 * We need to split the extent we found, and may flip
666 	 * bits on second half.
667 	 *
668 	 * If the extent we found extends past our range, we
669 	 * just split and search again.  It'll get split again
670 	 * the next time though.
671 	 *
672 	 * If the extent we found is inside our range, we clear
673 	 * the desired bit on it.
674 	 */
675 
676 	if (state->start < start) {
677 		prealloc = alloc_extent_state_atomic(prealloc);
678 		BUG_ON(!prealloc);
679 		err = split_state(tree, state, prealloc, start);
680 		if (err)
681 			extent_io_tree_panic(tree, err);
682 
683 		prealloc = NULL;
684 		if (err)
685 			goto out;
686 		if (state->end <= end) {
687 			state = clear_state_bit(tree, state, &bits, wake,
688 						changeset);
689 			goto next;
690 		}
691 		goto search_again;
692 	}
693 	/*
694 	 * | ---- desired range ---- |
695 	 *                        | state |
696 	 * We need to split the extent, and clear the bit
697 	 * on the first half
698 	 */
699 	if (state->start <= end && state->end > end) {
700 		prealloc = alloc_extent_state_atomic(prealloc);
701 		BUG_ON(!prealloc);
702 		err = split_state(tree, state, prealloc, end + 1);
703 		if (err)
704 			extent_io_tree_panic(tree, err);
705 
706 		if (wake)
707 			wake_up(&state->wq);
708 
709 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
710 
711 		prealloc = NULL;
712 		goto out;
713 	}
714 
715 	state = clear_state_bit(tree, state, &bits, wake, changeset);
716 next:
717 	if (last_end == (u64)-1)
718 		goto out;
719 	start = last_end + 1;
720 	if (start <= end && state && !need_resched())
721 		goto hit_next;
722 
723 search_again:
724 	if (start > end)
725 		goto out;
726 	spin_unlock(&tree->lock);
727 	if (gfpflags_allow_blocking(mask))
728 		cond_resched();
729 	goto again;
730 
731 out:
732 	spin_unlock(&tree->lock);
733 	if (prealloc)
734 		free_extent_state(prealloc);
735 
736 	return 0;
737 
738 }
739 
740 static void wait_on_state(struct extent_io_tree *tree,
741 			  struct extent_state *state)
742 		__releases(tree->lock)
743 		__acquires(tree->lock)
744 {
745 	DEFINE_WAIT(wait);
746 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
747 	spin_unlock(&tree->lock);
748 	schedule();
749 	spin_lock(&tree->lock);
750 	finish_wait(&state->wq, &wait);
751 }
752 
753 /*
754  * waits for one or more bits to clear on a range in the state tree.
755  * The range [start, end] is inclusive.
756  * The tree lock is taken by this function
757  */
758 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
759 			    unsigned long bits)
760 {
761 	struct extent_state *state;
762 	struct rb_node *node;
763 
764 	btrfs_debug_check_extent_io_range(tree, start, end);
765 
766 	spin_lock(&tree->lock);
767 again:
768 	while (1) {
769 		/*
770 		 * this search will find all the extents that end after
771 		 * our range starts
772 		 */
773 		node = tree_search(tree, start);
774 process_node:
775 		if (!node)
776 			break;
777 
778 		state = rb_entry(node, struct extent_state, rb_node);
779 
780 		if (state->start > end)
781 			goto out;
782 
783 		if (state->state & bits) {
784 			start = state->start;
785 			refcount_inc(&state->refs);
786 			wait_on_state(tree, state);
787 			free_extent_state(state);
788 			goto again;
789 		}
790 		start = state->end + 1;
791 
792 		if (start > end)
793 			break;
794 
795 		if (!cond_resched_lock(&tree->lock)) {
796 			node = rb_next(node);
797 			goto process_node;
798 		}
799 	}
800 out:
801 	spin_unlock(&tree->lock);
802 }
803 
804 static void set_state_bits(struct extent_io_tree *tree,
805 			   struct extent_state *state,
806 			   unsigned *bits, struct extent_changeset *changeset)
807 {
808 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
809 
810 	set_state_cb(tree, state, bits);
811 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
812 		u64 range = state->end - state->start + 1;
813 		tree->dirty_bytes += range;
814 	}
815 	add_extent_changeset(state, bits_to_set, changeset, 1);
816 	state->state |= bits_to_set;
817 }
818 
819 static void cache_state_if_flags(struct extent_state *state,
820 				 struct extent_state **cached_ptr,
821 				 unsigned flags)
822 {
823 	if (cached_ptr && !(*cached_ptr)) {
824 		if (!flags || (state->state & flags)) {
825 			*cached_ptr = state;
826 			refcount_inc(&state->refs);
827 		}
828 	}
829 }
830 
831 static void cache_state(struct extent_state *state,
832 			struct extent_state **cached_ptr)
833 {
834 	return cache_state_if_flags(state, cached_ptr,
835 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
836 }
837 
838 /*
839  * set some bits on a range in the tree.  This may require allocations or
840  * sleeping, so the gfp mask is used to indicate what is allowed.
841  *
842  * If any of the exclusive bits are set, this will fail with -EEXIST if some
843  * part of the range already has the desired bits set.  The start of the
844  * existing range is returned in failed_start in this case.
845  *
846  * [start, end] is inclusive This takes the tree lock.
847  */
848 
849 static int __must_check
850 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
851 		 unsigned bits, unsigned exclusive_bits,
852 		 u64 *failed_start, struct extent_state **cached_state,
853 		 gfp_t mask, struct extent_changeset *changeset)
854 {
855 	struct extent_state *state;
856 	struct extent_state *prealloc = NULL;
857 	struct rb_node *node;
858 	struct rb_node **p;
859 	struct rb_node *parent;
860 	int err = 0;
861 	u64 last_start;
862 	u64 last_end;
863 
864 	btrfs_debug_check_extent_io_range(tree, start, end);
865 
866 	bits |= EXTENT_FIRST_DELALLOC;
867 again:
868 	if (!prealloc && gfpflags_allow_blocking(mask)) {
869 		/*
870 		 * Don't care for allocation failure here because we might end
871 		 * up not needing the pre-allocated extent state at all, which
872 		 * is the case if we only have in the tree extent states that
873 		 * cover our input range and don't cover too any other range.
874 		 * If we end up needing a new extent state we allocate it later.
875 		 */
876 		prealloc = alloc_extent_state(mask);
877 	}
878 
879 	spin_lock(&tree->lock);
880 	if (cached_state && *cached_state) {
881 		state = *cached_state;
882 		if (state->start <= start && state->end > start &&
883 		    extent_state_in_tree(state)) {
884 			node = &state->rb_node;
885 			goto hit_next;
886 		}
887 	}
888 	/*
889 	 * this search will find all the extents that end after
890 	 * our range starts.
891 	 */
892 	node = tree_search_for_insert(tree, start, &p, &parent);
893 	if (!node) {
894 		prealloc = alloc_extent_state_atomic(prealloc);
895 		BUG_ON(!prealloc);
896 		err = insert_state(tree, prealloc, start, end,
897 				   &p, &parent, &bits, changeset);
898 		if (err)
899 			extent_io_tree_panic(tree, err);
900 
901 		cache_state(prealloc, cached_state);
902 		prealloc = NULL;
903 		goto out;
904 	}
905 	state = rb_entry(node, struct extent_state, rb_node);
906 hit_next:
907 	last_start = state->start;
908 	last_end = state->end;
909 
910 	/*
911 	 * | ---- desired range ---- |
912 	 * | state |
913 	 *
914 	 * Just lock what we found and keep going
915 	 */
916 	if (state->start == start && state->end <= end) {
917 		if (state->state & exclusive_bits) {
918 			*failed_start = state->start;
919 			err = -EEXIST;
920 			goto out;
921 		}
922 
923 		set_state_bits(tree, state, &bits, changeset);
924 		cache_state(state, cached_state);
925 		merge_state(tree, state);
926 		if (last_end == (u64)-1)
927 			goto out;
928 		start = last_end + 1;
929 		state = next_state(state);
930 		if (start < end && state && state->start == start &&
931 		    !need_resched())
932 			goto hit_next;
933 		goto search_again;
934 	}
935 
936 	/*
937 	 *     | ---- desired range ---- |
938 	 * | state |
939 	 *   or
940 	 * | ------------- state -------------- |
941 	 *
942 	 * We need to split the extent we found, and may flip bits on
943 	 * second half.
944 	 *
945 	 * If the extent we found extends past our
946 	 * range, we just split and search again.  It'll get split
947 	 * again the next time though.
948 	 *
949 	 * If the extent we found is inside our range, we set the
950 	 * desired bit on it.
951 	 */
952 	if (state->start < start) {
953 		if (state->state & exclusive_bits) {
954 			*failed_start = start;
955 			err = -EEXIST;
956 			goto out;
957 		}
958 
959 		prealloc = alloc_extent_state_atomic(prealloc);
960 		BUG_ON(!prealloc);
961 		err = split_state(tree, state, prealloc, start);
962 		if (err)
963 			extent_io_tree_panic(tree, err);
964 
965 		prealloc = NULL;
966 		if (err)
967 			goto out;
968 		if (state->end <= end) {
969 			set_state_bits(tree, state, &bits, changeset);
970 			cache_state(state, cached_state);
971 			merge_state(tree, state);
972 			if (last_end == (u64)-1)
973 				goto out;
974 			start = last_end + 1;
975 			state = next_state(state);
976 			if (start < end && state && state->start == start &&
977 			    !need_resched())
978 				goto hit_next;
979 		}
980 		goto search_again;
981 	}
982 	/*
983 	 * | ---- desired range ---- |
984 	 *     | state | or               | state |
985 	 *
986 	 * There's a hole, we need to insert something in it and
987 	 * ignore the extent we found.
988 	 */
989 	if (state->start > start) {
990 		u64 this_end;
991 		if (end < last_start)
992 			this_end = end;
993 		else
994 			this_end = last_start - 1;
995 
996 		prealloc = alloc_extent_state_atomic(prealloc);
997 		BUG_ON(!prealloc);
998 
999 		/*
1000 		 * Avoid to free 'prealloc' if it can be merged with
1001 		 * the later extent.
1002 		 */
1003 		err = insert_state(tree, prealloc, start, this_end,
1004 				   NULL, NULL, &bits, changeset);
1005 		if (err)
1006 			extent_io_tree_panic(tree, err);
1007 
1008 		cache_state(prealloc, cached_state);
1009 		prealloc = NULL;
1010 		start = this_end + 1;
1011 		goto search_again;
1012 	}
1013 	/*
1014 	 * | ---- desired range ---- |
1015 	 *                        | state |
1016 	 * We need to split the extent, and set the bit
1017 	 * on the first half
1018 	 */
1019 	if (state->start <= end && state->end > end) {
1020 		if (state->state & exclusive_bits) {
1021 			*failed_start = start;
1022 			err = -EEXIST;
1023 			goto out;
1024 		}
1025 
1026 		prealloc = alloc_extent_state_atomic(prealloc);
1027 		BUG_ON(!prealloc);
1028 		err = split_state(tree, state, prealloc, end + 1);
1029 		if (err)
1030 			extent_io_tree_panic(tree, err);
1031 
1032 		set_state_bits(tree, prealloc, &bits, changeset);
1033 		cache_state(prealloc, cached_state);
1034 		merge_state(tree, prealloc);
1035 		prealloc = NULL;
1036 		goto out;
1037 	}
1038 
1039 search_again:
1040 	if (start > end)
1041 		goto out;
1042 	spin_unlock(&tree->lock);
1043 	if (gfpflags_allow_blocking(mask))
1044 		cond_resched();
1045 	goto again;
1046 
1047 out:
1048 	spin_unlock(&tree->lock);
1049 	if (prealloc)
1050 		free_extent_state(prealloc);
1051 
1052 	return err;
1053 
1054 }
1055 
1056 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1057 		   unsigned bits, u64 * failed_start,
1058 		   struct extent_state **cached_state, gfp_t mask)
1059 {
1060 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1061 				cached_state, mask, NULL);
1062 }
1063 
1064 
1065 /**
1066  * convert_extent_bit - convert all bits in a given range from one bit to
1067  * 			another
1068  * @tree:	the io tree to search
1069  * @start:	the start offset in bytes
1070  * @end:	the end offset in bytes (inclusive)
1071  * @bits:	the bits to set in this range
1072  * @clear_bits:	the bits to clear in this range
1073  * @cached_state:	state that we're going to cache
1074  *
1075  * This will go through and set bits for the given range.  If any states exist
1076  * already in this range they are set with the given bit and cleared of the
1077  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1078  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1079  * boundary bits like LOCK.
1080  *
1081  * All allocations are done with GFP_NOFS.
1082  */
1083 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1084 		       unsigned bits, unsigned clear_bits,
1085 		       struct extent_state **cached_state)
1086 {
1087 	struct extent_state *state;
1088 	struct extent_state *prealloc = NULL;
1089 	struct rb_node *node;
1090 	struct rb_node **p;
1091 	struct rb_node *parent;
1092 	int err = 0;
1093 	u64 last_start;
1094 	u64 last_end;
1095 	bool first_iteration = true;
1096 
1097 	btrfs_debug_check_extent_io_range(tree, start, end);
1098 
1099 again:
1100 	if (!prealloc) {
1101 		/*
1102 		 * Best effort, don't worry if extent state allocation fails
1103 		 * here for the first iteration. We might have a cached state
1104 		 * that matches exactly the target range, in which case no
1105 		 * extent state allocations are needed. We'll only know this
1106 		 * after locking the tree.
1107 		 */
1108 		prealloc = alloc_extent_state(GFP_NOFS);
1109 		if (!prealloc && !first_iteration)
1110 			return -ENOMEM;
1111 	}
1112 
1113 	spin_lock(&tree->lock);
1114 	if (cached_state && *cached_state) {
1115 		state = *cached_state;
1116 		if (state->start <= start && state->end > start &&
1117 		    extent_state_in_tree(state)) {
1118 			node = &state->rb_node;
1119 			goto hit_next;
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * this search will find all the extents that end after
1125 	 * our range starts.
1126 	 */
1127 	node = tree_search_for_insert(tree, start, &p, &parent);
1128 	if (!node) {
1129 		prealloc = alloc_extent_state_atomic(prealloc);
1130 		if (!prealloc) {
1131 			err = -ENOMEM;
1132 			goto out;
1133 		}
1134 		err = insert_state(tree, prealloc, start, end,
1135 				   &p, &parent, &bits, NULL);
1136 		if (err)
1137 			extent_io_tree_panic(tree, err);
1138 		cache_state(prealloc, cached_state);
1139 		prealloc = NULL;
1140 		goto out;
1141 	}
1142 	state = rb_entry(node, struct extent_state, rb_node);
1143 hit_next:
1144 	last_start = state->start;
1145 	last_end = state->end;
1146 
1147 	/*
1148 	 * | ---- desired range ---- |
1149 	 * | state |
1150 	 *
1151 	 * Just lock what we found and keep going
1152 	 */
1153 	if (state->start == start && state->end <= end) {
1154 		set_state_bits(tree, state, &bits, NULL);
1155 		cache_state(state, cached_state);
1156 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1157 		if (last_end == (u64)-1)
1158 			goto out;
1159 		start = last_end + 1;
1160 		if (start < end && state && state->start == start &&
1161 		    !need_resched())
1162 			goto hit_next;
1163 		goto search_again;
1164 	}
1165 
1166 	/*
1167 	 *     | ---- desired range ---- |
1168 	 * | state |
1169 	 *   or
1170 	 * | ------------- state -------------- |
1171 	 *
1172 	 * We need to split the extent we found, and may flip bits on
1173 	 * second half.
1174 	 *
1175 	 * If the extent we found extends past our
1176 	 * range, we just split and search again.  It'll get split
1177 	 * again the next time though.
1178 	 *
1179 	 * If the extent we found is inside our range, we set the
1180 	 * desired bit on it.
1181 	 */
1182 	if (state->start < start) {
1183 		prealloc = alloc_extent_state_atomic(prealloc);
1184 		if (!prealloc) {
1185 			err = -ENOMEM;
1186 			goto out;
1187 		}
1188 		err = split_state(tree, state, prealloc, start);
1189 		if (err)
1190 			extent_io_tree_panic(tree, err);
1191 		prealloc = NULL;
1192 		if (err)
1193 			goto out;
1194 		if (state->end <= end) {
1195 			set_state_bits(tree, state, &bits, NULL);
1196 			cache_state(state, cached_state);
1197 			state = clear_state_bit(tree, state, &clear_bits, 0,
1198 						NULL);
1199 			if (last_end == (u64)-1)
1200 				goto out;
1201 			start = last_end + 1;
1202 			if (start < end && state && state->start == start &&
1203 			    !need_resched())
1204 				goto hit_next;
1205 		}
1206 		goto search_again;
1207 	}
1208 	/*
1209 	 * | ---- desired range ---- |
1210 	 *     | state | or               | state |
1211 	 *
1212 	 * There's a hole, we need to insert something in it and
1213 	 * ignore the extent we found.
1214 	 */
1215 	if (state->start > start) {
1216 		u64 this_end;
1217 		if (end < last_start)
1218 			this_end = end;
1219 		else
1220 			this_end = last_start - 1;
1221 
1222 		prealloc = alloc_extent_state_atomic(prealloc);
1223 		if (!prealloc) {
1224 			err = -ENOMEM;
1225 			goto out;
1226 		}
1227 
1228 		/*
1229 		 * Avoid to free 'prealloc' if it can be merged with
1230 		 * the later extent.
1231 		 */
1232 		err = insert_state(tree, prealloc, start, this_end,
1233 				   NULL, NULL, &bits, NULL);
1234 		if (err)
1235 			extent_io_tree_panic(tree, err);
1236 		cache_state(prealloc, cached_state);
1237 		prealloc = NULL;
1238 		start = this_end + 1;
1239 		goto search_again;
1240 	}
1241 	/*
1242 	 * | ---- desired range ---- |
1243 	 *                        | state |
1244 	 * We need to split the extent, and set the bit
1245 	 * on the first half
1246 	 */
1247 	if (state->start <= end && state->end > end) {
1248 		prealloc = alloc_extent_state_atomic(prealloc);
1249 		if (!prealloc) {
1250 			err = -ENOMEM;
1251 			goto out;
1252 		}
1253 
1254 		err = split_state(tree, state, prealloc, end + 1);
1255 		if (err)
1256 			extent_io_tree_panic(tree, err);
1257 
1258 		set_state_bits(tree, prealloc, &bits, NULL);
1259 		cache_state(prealloc, cached_state);
1260 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1261 		prealloc = NULL;
1262 		goto out;
1263 	}
1264 
1265 search_again:
1266 	if (start > end)
1267 		goto out;
1268 	spin_unlock(&tree->lock);
1269 	cond_resched();
1270 	first_iteration = false;
1271 	goto again;
1272 
1273 out:
1274 	spin_unlock(&tree->lock);
1275 	if (prealloc)
1276 		free_extent_state(prealloc);
1277 
1278 	return err;
1279 }
1280 
1281 /* wrappers around set/clear extent bit */
1282 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1283 			   unsigned bits, struct extent_changeset *changeset)
1284 {
1285 	/*
1286 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1287 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1288 	 * either fail with -EEXIST or changeset will record the whole
1289 	 * range.
1290 	 */
1291 	BUG_ON(bits & EXTENT_LOCKED);
1292 
1293 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1294 				changeset);
1295 }
1296 
1297 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1298 		     unsigned bits, int wake, int delete,
1299 		     struct extent_state **cached, gfp_t mask)
1300 {
1301 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1302 				  cached, mask, NULL);
1303 }
1304 
1305 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1306 		unsigned bits, struct extent_changeset *changeset)
1307 {
1308 	/*
1309 	 * Don't support EXTENT_LOCKED case, same reason as
1310 	 * set_record_extent_bits().
1311 	 */
1312 	BUG_ON(bits & EXTENT_LOCKED);
1313 
1314 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1315 				  changeset);
1316 }
1317 
1318 /*
1319  * either insert or lock state struct between start and end use mask to tell
1320  * us if waiting is desired.
1321  */
1322 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 		     struct extent_state **cached_state)
1324 {
1325 	int err;
1326 	u64 failed_start;
1327 
1328 	while (1) {
1329 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1330 				       EXTENT_LOCKED, &failed_start,
1331 				       cached_state, GFP_NOFS, NULL);
1332 		if (err == -EEXIST) {
1333 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1334 			start = failed_start;
1335 		} else
1336 			break;
1337 		WARN_ON(start > end);
1338 	}
1339 	return err;
1340 }
1341 
1342 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1343 {
1344 	int err;
1345 	u64 failed_start;
1346 
1347 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348 			       &failed_start, NULL, GFP_NOFS, NULL);
1349 	if (err == -EEXIST) {
1350 		if (failed_start > start)
1351 			clear_extent_bit(tree, start, failed_start - 1,
1352 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1353 		return 0;
1354 	}
1355 	return 1;
1356 }
1357 
1358 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359 {
1360 	unsigned long index = start >> PAGE_SHIFT;
1361 	unsigned long end_index = end >> PAGE_SHIFT;
1362 	struct page *page;
1363 
1364 	while (index <= end_index) {
1365 		page = find_get_page(inode->i_mapping, index);
1366 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1367 		clear_page_dirty_for_io(page);
1368 		put_page(page);
1369 		index++;
1370 	}
1371 }
1372 
1373 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374 {
1375 	unsigned long index = start >> PAGE_SHIFT;
1376 	unsigned long end_index = end >> PAGE_SHIFT;
1377 	struct page *page;
1378 
1379 	while (index <= end_index) {
1380 		page = find_get_page(inode->i_mapping, index);
1381 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1382 		__set_page_dirty_nobuffers(page);
1383 		account_page_redirty(page);
1384 		put_page(page);
1385 		index++;
1386 	}
1387 }
1388 
1389 /*
1390  * helper function to set both pages and extents in the tree writeback
1391  */
1392 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393 {
1394 	tree->ops->set_range_writeback(tree->private_data, start, end);
1395 }
1396 
1397 /* find the first state struct with 'bits' set after 'start', and
1398  * return it.  tree->lock must be held.  NULL will returned if
1399  * nothing was found after 'start'
1400  */
1401 static struct extent_state *
1402 find_first_extent_bit_state(struct extent_io_tree *tree,
1403 			    u64 start, unsigned bits)
1404 {
1405 	struct rb_node *node;
1406 	struct extent_state *state;
1407 
1408 	/*
1409 	 * this search will find all the extents that end after
1410 	 * our range starts.
1411 	 */
1412 	node = tree_search(tree, start);
1413 	if (!node)
1414 		goto out;
1415 
1416 	while (1) {
1417 		state = rb_entry(node, struct extent_state, rb_node);
1418 		if (state->end >= start && (state->state & bits))
1419 			return state;
1420 
1421 		node = rb_next(node);
1422 		if (!node)
1423 			break;
1424 	}
1425 out:
1426 	return NULL;
1427 }
1428 
1429 /*
1430  * find the first offset in the io tree with 'bits' set. zero is
1431  * returned if we find something, and *start_ret and *end_ret are
1432  * set to reflect the state struct that was found.
1433  *
1434  * If nothing was found, 1 is returned. If found something, return 0.
1435  */
1436 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1437 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1438 			  struct extent_state **cached_state)
1439 {
1440 	struct extent_state *state;
1441 	struct rb_node *n;
1442 	int ret = 1;
1443 
1444 	spin_lock(&tree->lock);
1445 	if (cached_state && *cached_state) {
1446 		state = *cached_state;
1447 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1448 			n = rb_next(&state->rb_node);
1449 			while (n) {
1450 				state = rb_entry(n, struct extent_state,
1451 						 rb_node);
1452 				if (state->state & bits)
1453 					goto got_it;
1454 				n = rb_next(n);
1455 			}
1456 			free_extent_state(*cached_state);
1457 			*cached_state = NULL;
1458 			goto out;
1459 		}
1460 		free_extent_state(*cached_state);
1461 		*cached_state = NULL;
1462 	}
1463 
1464 	state = find_first_extent_bit_state(tree, start, bits);
1465 got_it:
1466 	if (state) {
1467 		cache_state_if_flags(state, cached_state, 0);
1468 		*start_ret = state->start;
1469 		*end_ret = state->end;
1470 		ret = 0;
1471 	}
1472 out:
1473 	spin_unlock(&tree->lock);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * find a contiguous range of bytes in the file marked as delalloc, not
1479  * more than 'max_bytes'.  start and end are used to return the range,
1480  *
1481  * 1 is returned if we find something, 0 if nothing was in the tree
1482  */
1483 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1484 					u64 *start, u64 *end, u64 max_bytes,
1485 					struct extent_state **cached_state)
1486 {
1487 	struct rb_node *node;
1488 	struct extent_state *state;
1489 	u64 cur_start = *start;
1490 	u64 found = 0;
1491 	u64 total_bytes = 0;
1492 
1493 	spin_lock(&tree->lock);
1494 
1495 	/*
1496 	 * this search will find all the extents that end after
1497 	 * our range starts.
1498 	 */
1499 	node = tree_search(tree, cur_start);
1500 	if (!node) {
1501 		if (!found)
1502 			*end = (u64)-1;
1503 		goto out;
1504 	}
1505 
1506 	while (1) {
1507 		state = rb_entry(node, struct extent_state, rb_node);
1508 		if (found && (state->start != cur_start ||
1509 			      (state->state & EXTENT_BOUNDARY))) {
1510 			goto out;
1511 		}
1512 		if (!(state->state & EXTENT_DELALLOC)) {
1513 			if (!found)
1514 				*end = state->end;
1515 			goto out;
1516 		}
1517 		if (!found) {
1518 			*start = state->start;
1519 			*cached_state = state;
1520 			refcount_inc(&state->refs);
1521 		}
1522 		found++;
1523 		*end = state->end;
1524 		cur_start = state->end + 1;
1525 		node = rb_next(node);
1526 		total_bytes += state->end - state->start + 1;
1527 		if (total_bytes >= max_bytes)
1528 			break;
1529 		if (!node)
1530 			break;
1531 	}
1532 out:
1533 	spin_unlock(&tree->lock);
1534 	return found;
1535 }
1536 
1537 static int __process_pages_contig(struct address_space *mapping,
1538 				  struct page *locked_page,
1539 				  pgoff_t start_index, pgoff_t end_index,
1540 				  unsigned long page_ops, pgoff_t *index_ret);
1541 
1542 static noinline void __unlock_for_delalloc(struct inode *inode,
1543 					   struct page *locked_page,
1544 					   u64 start, u64 end)
1545 {
1546 	unsigned long index = start >> PAGE_SHIFT;
1547 	unsigned long end_index = end >> PAGE_SHIFT;
1548 
1549 	ASSERT(locked_page);
1550 	if (index == locked_page->index && end_index == index)
1551 		return;
1552 
1553 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1554 			       PAGE_UNLOCK, NULL);
1555 }
1556 
1557 static noinline int lock_delalloc_pages(struct inode *inode,
1558 					struct page *locked_page,
1559 					u64 delalloc_start,
1560 					u64 delalloc_end)
1561 {
1562 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1563 	unsigned long index_ret = index;
1564 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1565 	int ret;
1566 
1567 	ASSERT(locked_page);
1568 	if (index == locked_page->index && index == end_index)
1569 		return 0;
1570 
1571 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1572 				     end_index, PAGE_LOCK, &index_ret);
1573 	if (ret == -EAGAIN)
1574 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1575 				      (u64)index_ret << PAGE_SHIFT);
1576 	return ret;
1577 }
1578 
1579 /*
1580  * find a contiguous range of bytes in the file marked as delalloc, not
1581  * more than 'max_bytes'.  start and end are used to return the range,
1582  *
1583  * 1 is returned if we find something, 0 if nothing was in the tree
1584  */
1585 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1586 				    struct extent_io_tree *tree,
1587 				    struct page *locked_page, u64 *start,
1588 				    u64 *end, u64 max_bytes)
1589 {
1590 	u64 delalloc_start;
1591 	u64 delalloc_end;
1592 	u64 found;
1593 	struct extent_state *cached_state = NULL;
1594 	int ret;
1595 	int loops = 0;
1596 
1597 again:
1598 	/* step one, find a bunch of delalloc bytes starting at start */
1599 	delalloc_start = *start;
1600 	delalloc_end = 0;
1601 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1602 				    max_bytes, &cached_state);
1603 	if (!found || delalloc_end <= *start) {
1604 		*start = delalloc_start;
1605 		*end = delalloc_end;
1606 		free_extent_state(cached_state);
1607 		return 0;
1608 	}
1609 
1610 	/*
1611 	 * start comes from the offset of locked_page.  We have to lock
1612 	 * pages in order, so we can't process delalloc bytes before
1613 	 * locked_page
1614 	 */
1615 	if (delalloc_start < *start)
1616 		delalloc_start = *start;
1617 
1618 	/*
1619 	 * make sure to limit the number of pages we try to lock down
1620 	 */
1621 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1622 		delalloc_end = delalloc_start + max_bytes - 1;
1623 
1624 	/* step two, lock all the pages after the page that has start */
1625 	ret = lock_delalloc_pages(inode, locked_page,
1626 				  delalloc_start, delalloc_end);
1627 	if (ret == -EAGAIN) {
1628 		/* some of the pages are gone, lets avoid looping by
1629 		 * shortening the size of the delalloc range we're searching
1630 		 */
1631 		free_extent_state(cached_state);
1632 		cached_state = NULL;
1633 		if (!loops) {
1634 			max_bytes = PAGE_SIZE;
1635 			loops = 1;
1636 			goto again;
1637 		} else {
1638 			found = 0;
1639 			goto out_failed;
1640 		}
1641 	}
1642 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643 
1644 	/* step three, lock the state bits for the whole range */
1645 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646 
1647 	/* then test to make sure it is all still delalloc */
1648 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1649 			     EXTENT_DELALLOC, 1, cached_state);
1650 	if (!ret) {
1651 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1652 				     &cached_state, GFP_NOFS);
1653 		__unlock_for_delalloc(inode, locked_page,
1654 			      delalloc_start, delalloc_end);
1655 		cond_resched();
1656 		goto again;
1657 	}
1658 	free_extent_state(cached_state);
1659 	*start = delalloc_start;
1660 	*end = delalloc_end;
1661 out_failed:
1662 	return found;
1663 }
1664 
1665 static int __process_pages_contig(struct address_space *mapping,
1666 				  struct page *locked_page,
1667 				  pgoff_t start_index, pgoff_t end_index,
1668 				  unsigned long page_ops, pgoff_t *index_ret)
1669 {
1670 	unsigned long nr_pages = end_index - start_index + 1;
1671 	unsigned long pages_locked = 0;
1672 	pgoff_t index = start_index;
1673 	struct page *pages[16];
1674 	unsigned ret;
1675 	int err = 0;
1676 	int i;
1677 
1678 	if (page_ops & PAGE_LOCK) {
1679 		ASSERT(page_ops == PAGE_LOCK);
1680 		ASSERT(index_ret && *index_ret == start_index);
1681 	}
1682 
1683 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1684 		mapping_set_error(mapping, -EIO);
1685 
1686 	while (nr_pages > 0) {
1687 		ret = find_get_pages_contig(mapping, index,
1688 				     min_t(unsigned long,
1689 				     nr_pages, ARRAY_SIZE(pages)), pages);
1690 		if (ret == 0) {
1691 			/*
1692 			 * Only if we're going to lock these pages,
1693 			 * can we find nothing at @index.
1694 			 */
1695 			ASSERT(page_ops & PAGE_LOCK);
1696 			err = -EAGAIN;
1697 			goto out;
1698 		}
1699 
1700 		for (i = 0; i < ret; i++) {
1701 			if (page_ops & PAGE_SET_PRIVATE2)
1702 				SetPagePrivate2(pages[i]);
1703 
1704 			if (pages[i] == locked_page) {
1705 				put_page(pages[i]);
1706 				pages_locked++;
1707 				continue;
1708 			}
1709 			if (page_ops & PAGE_CLEAR_DIRTY)
1710 				clear_page_dirty_for_io(pages[i]);
1711 			if (page_ops & PAGE_SET_WRITEBACK)
1712 				set_page_writeback(pages[i]);
1713 			if (page_ops & PAGE_SET_ERROR)
1714 				SetPageError(pages[i]);
1715 			if (page_ops & PAGE_END_WRITEBACK)
1716 				end_page_writeback(pages[i]);
1717 			if (page_ops & PAGE_UNLOCK)
1718 				unlock_page(pages[i]);
1719 			if (page_ops & PAGE_LOCK) {
1720 				lock_page(pages[i]);
1721 				if (!PageDirty(pages[i]) ||
1722 				    pages[i]->mapping != mapping) {
1723 					unlock_page(pages[i]);
1724 					put_page(pages[i]);
1725 					err = -EAGAIN;
1726 					goto out;
1727 				}
1728 			}
1729 			put_page(pages[i]);
1730 			pages_locked++;
1731 		}
1732 		nr_pages -= ret;
1733 		index += ret;
1734 		cond_resched();
1735 	}
1736 out:
1737 	if (err && index_ret)
1738 		*index_ret = start_index + pages_locked - 1;
1739 	return err;
1740 }
1741 
1742 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1743 				 u64 delalloc_end, struct page *locked_page,
1744 				 unsigned clear_bits,
1745 				 unsigned long page_ops)
1746 {
1747 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1748 			 NULL, GFP_NOFS);
1749 
1750 	__process_pages_contig(inode->i_mapping, locked_page,
1751 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1752 			       page_ops, NULL);
1753 }
1754 
1755 /*
1756  * count the number of bytes in the tree that have a given bit(s)
1757  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1758  * cached.  The total number found is returned.
1759  */
1760 u64 count_range_bits(struct extent_io_tree *tree,
1761 		     u64 *start, u64 search_end, u64 max_bytes,
1762 		     unsigned bits, int contig)
1763 {
1764 	struct rb_node *node;
1765 	struct extent_state *state;
1766 	u64 cur_start = *start;
1767 	u64 total_bytes = 0;
1768 	u64 last = 0;
1769 	int found = 0;
1770 
1771 	if (WARN_ON(search_end <= cur_start))
1772 		return 0;
1773 
1774 	spin_lock(&tree->lock);
1775 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1776 		total_bytes = tree->dirty_bytes;
1777 		goto out;
1778 	}
1779 	/*
1780 	 * this search will find all the extents that end after
1781 	 * our range starts.
1782 	 */
1783 	node = tree_search(tree, cur_start);
1784 	if (!node)
1785 		goto out;
1786 
1787 	while (1) {
1788 		state = rb_entry(node, struct extent_state, rb_node);
1789 		if (state->start > search_end)
1790 			break;
1791 		if (contig && found && state->start > last + 1)
1792 			break;
1793 		if (state->end >= cur_start && (state->state & bits) == bits) {
1794 			total_bytes += min(search_end, state->end) + 1 -
1795 				       max(cur_start, state->start);
1796 			if (total_bytes >= max_bytes)
1797 				break;
1798 			if (!found) {
1799 				*start = max(cur_start, state->start);
1800 				found = 1;
1801 			}
1802 			last = state->end;
1803 		} else if (contig && found) {
1804 			break;
1805 		}
1806 		node = rb_next(node);
1807 		if (!node)
1808 			break;
1809 	}
1810 out:
1811 	spin_unlock(&tree->lock);
1812 	return total_bytes;
1813 }
1814 
1815 /*
1816  * set the private field for a given byte offset in the tree.  If there isn't
1817  * an extent_state there already, this does nothing.
1818  */
1819 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1820 		struct io_failure_record *failrec)
1821 {
1822 	struct rb_node *node;
1823 	struct extent_state *state;
1824 	int ret = 0;
1825 
1826 	spin_lock(&tree->lock);
1827 	/*
1828 	 * this search will find all the extents that end after
1829 	 * our range starts.
1830 	 */
1831 	node = tree_search(tree, start);
1832 	if (!node) {
1833 		ret = -ENOENT;
1834 		goto out;
1835 	}
1836 	state = rb_entry(node, struct extent_state, rb_node);
1837 	if (state->start != start) {
1838 		ret = -ENOENT;
1839 		goto out;
1840 	}
1841 	state->failrec = failrec;
1842 out:
1843 	spin_unlock(&tree->lock);
1844 	return ret;
1845 }
1846 
1847 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1848 		struct io_failure_record **failrec)
1849 {
1850 	struct rb_node *node;
1851 	struct extent_state *state;
1852 	int ret = 0;
1853 
1854 	spin_lock(&tree->lock);
1855 	/*
1856 	 * this search will find all the extents that end after
1857 	 * our range starts.
1858 	 */
1859 	node = tree_search(tree, start);
1860 	if (!node) {
1861 		ret = -ENOENT;
1862 		goto out;
1863 	}
1864 	state = rb_entry(node, struct extent_state, rb_node);
1865 	if (state->start != start) {
1866 		ret = -ENOENT;
1867 		goto out;
1868 	}
1869 	*failrec = state->failrec;
1870 out:
1871 	spin_unlock(&tree->lock);
1872 	return ret;
1873 }
1874 
1875 /*
1876  * searches a range in the state tree for a given mask.
1877  * If 'filled' == 1, this returns 1 only if every extent in the tree
1878  * has the bits set.  Otherwise, 1 is returned if any bit in the
1879  * range is found set.
1880  */
1881 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1882 		   unsigned bits, int filled, struct extent_state *cached)
1883 {
1884 	struct extent_state *state = NULL;
1885 	struct rb_node *node;
1886 	int bitset = 0;
1887 
1888 	spin_lock(&tree->lock);
1889 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1890 	    cached->end > start)
1891 		node = &cached->rb_node;
1892 	else
1893 		node = tree_search(tree, start);
1894 	while (node && start <= end) {
1895 		state = rb_entry(node, struct extent_state, rb_node);
1896 
1897 		if (filled && state->start > start) {
1898 			bitset = 0;
1899 			break;
1900 		}
1901 
1902 		if (state->start > end)
1903 			break;
1904 
1905 		if (state->state & bits) {
1906 			bitset = 1;
1907 			if (!filled)
1908 				break;
1909 		} else if (filled) {
1910 			bitset = 0;
1911 			break;
1912 		}
1913 
1914 		if (state->end == (u64)-1)
1915 			break;
1916 
1917 		start = state->end + 1;
1918 		if (start > end)
1919 			break;
1920 		node = rb_next(node);
1921 		if (!node) {
1922 			if (filled)
1923 				bitset = 0;
1924 			break;
1925 		}
1926 	}
1927 	spin_unlock(&tree->lock);
1928 	return bitset;
1929 }
1930 
1931 /*
1932  * helper function to set a given page up to date if all the
1933  * extents in the tree for that page are up to date
1934  */
1935 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1936 {
1937 	u64 start = page_offset(page);
1938 	u64 end = start + PAGE_SIZE - 1;
1939 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1940 		SetPageUptodate(page);
1941 }
1942 
1943 int free_io_failure(struct extent_io_tree *failure_tree,
1944 		    struct extent_io_tree *io_tree,
1945 		    struct io_failure_record *rec)
1946 {
1947 	int ret;
1948 	int err = 0;
1949 
1950 	set_state_failrec(failure_tree, rec->start, NULL);
1951 	ret = clear_extent_bits(failure_tree, rec->start,
1952 				rec->start + rec->len - 1,
1953 				EXTENT_LOCKED | EXTENT_DIRTY);
1954 	if (ret)
1955 		err = ret;
1956 
1957 	ret = clear_extent_bits(io_tree, rec->start,
1958 				rec->start + rec->len - 1,
1959 				EXTENT_DAMAGED);
1960 	if (ret && !err)
1961 		err = ret;
1962 
1963 	kfree(rec);
1964 	return err;
1965 }
1966 
1967 /*
1968  * this bypasses the standard btrfs submit functions deliberately, as
1969  * the standard behavior is to write all copies in a raid setup. here we only
1970  * want to write the one bad copy. so we do the mapping for ourselves and issue
1971  * submit_bio directly.
1972  * to avoid any synchronization issues, wait for the data after writing, which
1973  * actually prevents the read that triggered the error from finishing.
1974  * currently, there can be no more than two copies of every data bit. thus,
1975  * exactly one rewrite is required.
1976  */
1977 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1978 		      u64 length, u64 logical, struct page *page,
1979 		      unsigned int pg_offset, int mirror_num)
1980 {
1981 	struct bio *bio;
1982 	struct btrfs_device *dev;
1983 	u64 map_length = 0;
1984 	u64 sector;
1985 	struct btrfs_bio *bbio = NULL;
1986 	int ret;
1987 
1988 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1989 	BUG_ON(!mirror_num);
1990 
1991 	bio = btrfs_io_bio_alloc(1);
1992 	bio->bi_iter.bi_size = 0;
1993 	map_length = length;
1994 
1995 	/*
1996 	 * Avoid races with device replace and make sure our bbio has devices
1997 	 * associated to its stripes that don't go away while we are doing the
1998 	 * read repair operation.
1999 	 */
2000 	btrfs_bio_counter_inc_blocked(fs_info);
2001 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2002 		/*
2003 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004 		 * to update all raid stripes, but here we just want to correct
2005 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006 		 * stripe's dev and sector.
2007 		 */
2008 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2009 				      &map_length, &bbio, 0);
2010 		if (ret) {
2011 			btrfs_bio_counter_dec(fs_info);
2012 			bio_put(bio);
2013 			return -EIO;
2014 		}
2015 		ASSERT(bbio->mirror_num == 1);
2016 	} else {
2017 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2018 				      &map_length, &bbio, mirror_num);
2019 		if (ret) {
2020 			btrfs_bio_counter_dec(fs_info);
2021 			bio_put(bio);
2022 			return -EIO;
2023 		}
2024 		BUG_ON(mirror_num != bbio->mirror_num);
2025 	}
2026 
2027 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2028 	bio->bi_iter.bi_sector = sector;
2029 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2030 	btrfs_put_bbio(bbio);
2031 	if (!dev || !dev->bdev || !dev->writeable) {
2032 		btrfs_bio_counter_dec(fs_info);
2033 		bio_put(bio);
2034 		return -EIO;
2035 	}
2036 	bio_set_dev(bio, dev->bdev);
2037 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2038 	bio_add_page(bio, page, length, pg_offset);
2039 
2040 	if (btrfsic_submit_bio_wait(bio)) {
2041 		/* try to remap that extent elsewhere? */
2042 		btrfs_bio_counter_dec(fs_info);
2043 		bio_put(bio);
2044 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2045 		return -EIO;
2046 	}
2047 
2048 	btrfs_info_rl_in_rcu(fs_info,
2049 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2050 				  ino, start,
2051 				  rcu_str_deref(dev->name), sector);
2052 	btrfs_bio_counter_dec(fs_info);
2053 	bio_put(bio);
2054 	return 0;
2055 }
2056 
2057 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 			 struct extent_buffer *eb, int mirror_num)
2059 {
2060 	u64 start = eb->start;
2061 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2062 	int ret = 0;
2063 
2064 	if (sb_rdonly(fs_info->sb))
2065 		return -EROFS;
2066 
2067 	for (i = 0; i < num_pages; i++) {
2068 		struct page *p = eb->pages[i];
2069 
2070 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2071 					start - page_offset(p), mirror_num);
2072 		if (ret)
2073 			break;
2074 		start += PAGE_SIZE;
2075 	}
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * each time an IO finishes, we do a fast check in the IO failure tree
2082  * to see if we need to process or clean up an io_failure_record
2083  */
2084 int clean_io_failure(struct btrfs_fs_info *fs_info,
2085 		     struct extent_io_tree *failure_tree,
2086 		     struct extent_io_tree *io_tree, u64 start,
2087 		     struct page *page, u64 ino, unsigned int pg_offset)
2088 {
2089 	u64 private;
2090 	struct io_failure_record *failrec;
2091 	struct extent_state *state;
2092 	int num_copies;
2093 	int ret;
2094 
2095 	private = 0;
2096 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2097 			       EXTENT_DIRTY, 0);
2098 	if (!ret)
2099 		return 0;
2100 
2101 	ret = get_state_failrec(failure_tree, start, &failrec);
2102 	if (ret)
2103 		return 0;
2104 
2105 	BUG_ON(!failrec->this_mirror);
2106 
2107 	if (failrec->in_validation) {
2108 		/* there was no real error, just free the record */
2109 		btrfs_debug(fs_info,
2110 			"clean_io_failure: freeing dummy error at %llu",
2111 			failrec->start);
2112 		goto out;
2113 	}
2114 	if (sb_rdonly(fs_info->sb))
2115 		goto out;
2116 
2117 	spin_lock(&io_tree->lock);
2118 	state = find_first_extent_bit_state(io_tree,
2119 					    failrec->start,
2120 					    EXTENT_LOCKED);
2121 	spin_unlock(&io_tree->lock);
2122 
2123 	if (state && state->start <= failrec->start &&
2124 	    state->end >= failrec->start + failrec->len - 1) {
2125 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 					      failrec->len);
2127 		if (num_copies > 1)  {
2128 			repair_io_failure(fs_info, ino, start, failrec->len,
2129 					  failrec->logical, page, pg_offset,
2130 					  failrec->failed_mirror);
2131 		}
2132 	}
2133 
2134 out:
2135 	free_io_failure(failure_tree, io_tree, failrec);
2136 
2137 	return 0;
2138 }
2139 
2140 /*
2141  * Can be called when
2142  * - hold extent lock
2143  * - under ordered extent
2144  * - the inode is freeing
2145  */
2146 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2147 {
2148 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2149 	struct io_failure_record *failrec;
2150 	struct extent_state *state, *next;
2151 
2152 	if (RB_EMPTY_ROOT(&failure_tree->state))
2153 		return;
2154 
2155 	spin_lock(&failure_tree->lock);
2156 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 	while (state) {
2158 		if (state->start > end)
2159 			break;
2160 
2161 		ASSERT(state->end <= end);
2162 
2163 		next = next_state(state);
2164 
2165 		failrec = state->failrec;
2166 		free_extent_state(state);
2167 		kfree(failrec);
2168 
2169 		state = next;
2170 	}
2171 	spin_unlock(&failure_tree->lock);
2172 }
2173 
2174 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2175 		struct io_failure_record **failrec_ret)
2176 {
2177 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2178 	struct io_failure_record *failrec;
2179 	struct extent_map *em;
2180 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2183 	int ret;
2184 	u64 logical;
2185 
2186 	ret = get_state_failrec(failure_tree, start, &failrec);
2187 	if (ret) {
2188 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 		if (!failrec)
2190 			return -ENOMEM;
2191 
2192 		failrec->start = start;
2193 		failrec->len = end - start + 1;
2194 		failrec->this_mirror = 0;
2195 		failrec->bio_flags = 0;
2196 		failrec->in_validation = 0;
2197 
2198 		read_lock(&em_tree->lock);
2199 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 		if (!em) {
2201 			read_unlock(&em_tree->lock);
2202 			kfree(failrec);
2203 			return -EIO;
2204 		}
2205 
2206 		if (em->start > start || em->start + em->len <= start) {
2207 			free_extent_map(em);
2208 			em = NULL;
2209 		}
2210 		read_unlock(&em_tree->lock);
2211 		if (!em) {
2212 			kfree(failrec);
2213 			return -EIO;
2214 		}
2215 
2216 		logical = start - em->start;
2217 		logical = em->block_start + logical;
2218 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 			logical = em->block_start;
2220 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 			extent_set_compress_type(&failrec->bio_flags,
2222 						 em->compress_type);
2223 		}
2224 
2225 		btrfs_debug(fs_info,
2226 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 			logical, start, failrec->len);
2228 
2229 		failrec->logical = logical;
2230 		free_extent_map(em);
2231 
2232 		/* set the bits in the private failure tree */
2233 		ret = set_extent_bits(failure_tree, start, end,
2234 					EXTENT_LOCKED | EXTENT_DIRTY);
2235 		if (ret >= 0)
2236 			ret = set_state_failrec(failure_tree, start, failrec);
2237 		/* set the bits in the inode's tree */
2238 		if (ret >= 0)
2239 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2240 		if (ret < 0) {
2241 			kfree(failrec);
2242 			return ret;
2243 		}
2244 	} else {
2245 		btrfs_debug(fs_info,
2246 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 			failrec->logical, failrec->start, failrec->len,
2248 			failrec->in_validation);
2249 		/*
2250 		 * when data can be on disk more than twice, add to failrec here
2251 		 * (e.g. with a list for failed_mirror) to make
2252 		 * clean_io_failure() clean all those errors at once.
2253 		 */
2254 	}
2255 
2256 	*failrec_ret = failrec;
2257 
2258 	return 0;
2259 }
2260 
2261 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2262 			   struct io_failure_record *failrec, int failed_mirror)
2263 {
2264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265 	int num_copies;
2266 
2267 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2268 	if (num_copies == 1) {
2269 		/*
2270 		 * we only have a single copy of the data, so don't bother with
2271 		 * all the retry and error correction code that follows. no
2272 		 * matter what the error is, it is very likely to persist.
2273 		 */
2274 		btrfs_debug(fs_info,
2275 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 			num_copies, failrec->this_mirror, failed_mirror);
2277 		return false;
2278 	}
2279 
2280 	/*
2281 	 * there are two premises:
2282 	 *	a) deliver good data to the caller
2283 	 *	b) correct the bad sectors on disk
2284 	 */
2285 	if (failed_bio->bi_vcnt > 1) {
2286 		/*
2287 		 * to fulfill b), we need to know the exact failing sectors, as
2288 		 * we don't want to rewrite any more than the failed ones. thus,
2289 		 * we need separate read requests for the failed bio
2290 		 *
2291 		 * if the following BUG_ON triggers, our validation request got
2292 		 * merged. we need separate requests for our algorithm to work.
2293 		 */
2294 		BUG_ON(failrec->in_validation);
2295 		failrec->in_validation = 1;
2296 		failrec->this_mirror = failed_mirror;
2297 	} else {
2298 		/*
2299 		 * we're ready to fulfill a) and b) alongside. get a good copy
2300 		 * of the failed sector and if we succeed, we have setup
2301 		 * everything for repair_io_failure to do the rest for us.
2302 		 */
2303 		if (failrec->in_validation) {
2304 			BUG_ON(failrec->this_mirror != failed_mirror);
2305 			failrec->in_validation = 0;
2306 			failrec->this_mirror = 0;
2307 		}
2308 		failrec->failed_mirror = failed_mirror;
2309 		failrec->this_mirror++;
2310 		if (failrec->this_mirror == failed_mirror)
2311 			failrec->this_mirror++;
2312 	}
2313 
2314 	if (failrec->this_mirror > num_copies) {
2315 		btrfs_debug(fs_info,
2316 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 			num_copies, failrec->this_mirror, failed_mirror);
2318 		return false;
2319 	}
2320 
2321 	return true;
2322 }
2323 
2324 
2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 				    struct io_failure_record *failrec,
2327 				    struct page *page, int pg_offset, int icsum,
2328 				    bio_end_io_t *endio_func, void *data)
2329 {
2330 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2331 	struct bio *bio;
2332 	struct btrfs_io_bio *btrfs_failed_bio;
2333 	struct btrfs_io_bio *btrfs_bio;
2334 
2335 	bio = btrfs_io_bio_alloc(1);
2336 	bio->bi_end_io = endio_func;
2337 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2338 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2339 	bio->bi_iter.bi_size = 0;
2340 	bio->bi_private = data;
2341 
2342 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2343 	if (btrfs_failed_bio->csum) {
2344 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345 
2346 		btrfs_bio = btrfs_io_bio(bio);
2347 		btrfs_bio->csum = btrfs_bio->csum_inline;
2348 		icsum *= csum_size;
2349 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2350 		       csum_size);
2351 	}
2352 
2353 	bio_add_page(bio, page, failrec->len, pg_offset);
2354 
2355 	return bio;
2356 }
2357 
2358 /*
2359  * this is a generic handler for readpage errors (default
2360  * readpage_io_failed_hook). if other copies exist, read those and write back
2361  * good data to the failed position. does not investigate in remapping the
2362  * failed extent elsewhere, hoping the device will be smart enough to do this as
2363  * needed
2364  */
2365 
2366 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 			      struct page *page, u64 start, u64 end,
2368 			      int failed_mirror)
2369 {
2370 	struct io_failure_record *failrec;
2371 	struct inode *inode = page->mapping->host;
2372 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2373 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2374 	struct bio *bio;
2375 	int read_mode = 0;
2376 	blk_status_t status;
2377 	int ret;
2378 
2379 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2380 
2381 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 	if (ret)
2383 		return ret;
2384 
2385 	if (!btrfs_check_repairable(inode, failed_bio, failrec,
2386 				    failed_mirror)) {
2387 		free_io_failure(failure_tree, tree, failrec);
2388 		return -EIO;
2389 	}
2390 
2391 	if (failed_bio->bi_vcnt > 1)
2392 		read_mode |= REQ_FAILFAST_DEV;
2393 
2394 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2395 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2396 				      start - page_offset(page),
2397 				      (int)phy_offset, failed_bio->bi_end_io,
2398 				      NULL);
2399 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2400 
2401 	btrfs_debug(btrfs_sb(inode->i_sb),
2402 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2403 		read_mode, failrec->this_mirror, failrec->in_validation);
2404 
2405 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2406 					 failrec->bio_flags, 0);
2407 	if (status) {
2408 		free_io_failure(failure_tree, tree, failrec);
2409 		bio_put(bio);
2410 		ret = blk_status_to_errno(status);
2411 	}
2412 
2413 	return ret;
2414 }
2415 
2416 /* lots and lots of room for performance fixes in the end_bio funcs */
2417 
2418 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2419 {
2420 	int uptodate = (err == 0);
2421 	struct extent_io_tree *tree;
2422 	int ret = 0;
2423 
2424 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2425 
2426 	if (tree->ops && tree->ops->writepage_end_io_hook)
2427 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2428 				uptodate);
2429 
2430 	if (!uptodate) {
2431 		ClearPageUptodate(page);
2432 		SetPageError(page);
2433 		ret = err < 0 ? err : -EIO;
2434 		mapping_set_error(page->mapping, ret);
2435 	}
2436 }
2437 
2438 /*
2439  * after a writepage IO is done, we need to:
2440  * clear the uptodate bits on error
2441  * clear the writeback bits in the extent tree for this IO
2442  * end_page_writeback if the page has no more pending IO
2443  *
2444  * Scheduling is not allowed, so the extent state tree is expected
2445  * to have one and only one object corresponding to this IO.
2446  */
2447 static void end_bio_extent_writepage(struct bio *bio)
2448 {
2449 	int error = blk_status_to_errno(bio->bi_status);
2450 	struct bio_vec *bvec;
2451 	u64 start;
2452 	u64 end;
2453 	int i;
2454 
2455 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2456 	bio_for_each_segment_all(bvec, bio, i) {
2457 		struct page *page = bvec->bv_page;
2458 		struct inode *inode = page->mapping->host;
2459 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2460 
2461 		/* We always issue full-page reads, but if some block
2462 		 * in a page fails to read, blk_update_request() will
2463 		 * advance bv_offset and adjust bv_len to compensate.
2464 		 * Print a warning for nonzero offsets, and an error
2465 		 * if they don't add up to a full page.  */
2466 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2467 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2468 				btrfs_err(fs_info,
2469 				   "partial page write in btrfs with offset %u and length %u",
2470 					bvec->bv_offset, bvec->bv_len);
2471 			else
2472 				btrfs_info(fs_info,
2473 				   "incomplete page write in btrfs with offset %u and length %u",
2474 					bvec->bv_offset, bvec->bv_len);
2475 		}
2476 
2477 		start = page_offset(page);
2478 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2479 
2480 		end_extent_writepage(page, error, start, end);
2481 		end_page_writeback(page);
2482 	}
2483 
2484 	bio_put(bio);
2485 }
2486 
2487 static void
2488 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2489 			      int uptodate)
2490 {
2491 	struct extent_state *cached = NULL;
2492 	u64 end = start + len - 1;
2493 
2494 	if (uptodate && tree->track_uptodate)
2495 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2496 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2497 }
2498 
2499 /*
2500  * after a readpage IO is done, we need to:
2501  * clear the uptodate bits on error
2502  * set the uptodate bits if things worked
2503  * set the page up to date if all extents in the tree are uptodate
2504  * clear the lock bit in the extent tree
2505  * unlock the page if there are no other extents locked for it
2506  *
2507  * Scheduling is not allowed, so the extent state tree is expected
2508  * to have one and only one object corresponding to this IO.
2509  */
2510 static void end_bio_extent_readpage(struct bio *bio)
2511 {
2512 	struct bio_vec *bvec;
2513 	int uptodate = !bio->bi_status;
2514 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2515 	struct extent_io_tree *tree, *failure_tree;
2516 	u64 offset = 0;
2517 	u64 start;
2518 	u64 end;
2519 	u64 len;
2520 	u64 extent_start = 0;
2521 	u64 extent_len = 0;
2522 	int mirror;
2523 	int ret;
2524 	int i;
2525 
2526 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2527 	bio_for_each_segment_all(bvec, bio, i) {
2528 		struct page *page = bvec->bv_page;
2529 		struct inode *inode = page->mapping->host;
2530 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2531 
2532 		btrfs_debug(fs_info,
2533 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2534 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2535 			io_bio->mirror_num);
2536 		tree = &BTRFS_I(inode)->io_tree;
2537 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2538 
2539 		/* We always issue full-page reads, but if some block
2540 		 * in a page fails to read, blk_update_request() will
2541 		 * advance bv_offset and adjust bv_len to compensate.
2542 		 * Print a warning for nonzero offsets, and an error
2543 		 * if they don't add up to a full page.  */
2544 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 				btrfs_err(fs_info,
2547 					"partial page read in btrfs with offset %u and length %u",
2548 					bvec->bv_offset, bvec->bv_len);
2549 			else
2550 				btrfs_info(fs_info,
2551 					"incomplete page read in btrfs with offset %u and length %u",
2552 					bvec->bv_offset, bvec->bv_len);
2553 		}
2554 
2555 		start = page_offset(page);
2556 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2557 		len = bvec->bv_len;
2558 
2559 		mirror = io_bio->mirror_num;
2560 		if (likely(uptodate && tree->ops)) {
2561 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2562 							      page, start, end,
2563 							      mirror);
2564 			if (ret)
2565 				uptodate = 0;
2566 			else
2567 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2568 						 failure_tree, tree, start,
2569 						 page,
2570 						 btrfs_ino(BTRFS_I(inode)), 0);
2571 		}
2572 
2573 		if (likely(uptodate))
2574 			goto readpage_ok;
2575 
2576 		if (tree->ops) {
2577 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2578 			if (ret == -EAGAIN) {
2579 				/*
2580 				 * Data inode's readpage_io_failed_hook() always
2581 				 * returns -EAGAIN.
2582 				 *
2583 				 * The generic bio_readpage_error handles errors
2584 				 * the following way: If possible, new read
2585 				 * requests are created and submitted and will
2586 				 * end up in end_bio_extent_readpage as well (if
2587 				 * we're lucky, not in the !uptodate case). In
2588 				 * that case it returns 0 and we just go on with
2589 				 * the next page in our bio. If it can't handle
2590 				 * the error it will return -EIO and we remain
2591 				 * responsible for that page.
2592 				 */
2593 				ret = bio_readpage_error(bio, offset, page,
2594 							 start, end, mirror);
2595 				if (ret == 0) {
2596 					uptodate = !bio->bi_status;
2597 					offset += len;
2598 					continue;
2599 				}
2600 			}
2601 
2602 			/*
2603 			 * metadata's readpage_io_failed_hook() always returns
2604 			 * -EIO and fixes nothing.  -EIO is also returned if
2605 			 * data inode error could not be fixed.
2606 			 */
2607 			ASSERT(ret == -EIO);
2608 		}
2609 readpage_ok:
2610 		if (likely(uptodate)) {
2611 			loff_t i_size = i_size_read(inode);
2612 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2613 			unsigned off;
2614 
2615 			/* Zero out the end if this page straddles i_size */
2616 			off = i_size & (PAGE_SIZE-1);
2617 			if (page->index == end_index && off)
2618 				zero_user_segment(page, off, PAGE_SIZE);
2619 			SetPageUptodate(page);
2620 		} else {
2621 			ClearPageUptodate(page);
2622 			SetPageError(page);
2623 		}
2624 		unlock_page(page);
2625 		offset += len;
2626 
2627 		if (unlikely(!uptodate)) {
2628 			if (extent_len) {
2629 				endio_readpage_release_extent(tree,
2630 							      extent_start,
2631 							      extent_len, 1);
2632 				extent_start = 0;
2633 				extent_len = 0;
2634 			}
2635 			endio_readpage_release_extent(tree, start,
2636 						      end - start + 1, 0);
2637 		} else if (!extent_len) {
2638 			extent_start = start;
2639 			extent_len = end + 1 - start;
2640 		} else if (extent_start + extent_len == start) {
2641 			extent_len += end + 1 - start;
2642 		} else {
2643 			endio_readpage_release_extent(tree, extent_start,
2644 						      extent_len, uptodate);
2645 			extent_start = start;
2646 			extent_len = end + 1 - start;
2647 		}
2648 	}
2649 
2650 	if (extent_len)
2651 		endio_readpage_release_extent(tree, extent_start, extent_len,
2652 					      uptodate);
2653 	if (io_bio->end_io)
2654 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2655 	bio_put(bio);
2656 }
2657 
2658 /*
2659  * Initialize the members up to but not including 'bio'. Use after allocating a
2660  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2661  * 'bio' because use of __GFP_ZERO is not supported.
2662  */
2663 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2664 {
2665 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2666 }
2667 
2668 /*
2669  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2670  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2671  * for the appropriate container_of magic
2672  */
2673 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2674 {
2675 	struct bio *bio;
2676 
2677 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2678 	bio_set_dev(bio, bdev);
2679 	bio->bi_iter.bi_sector = first_byte >> 9;
2680 	btrfs_io_bio_init(btrfs_io_bio(bio));
2681 	return bio;
2682 }
2683 
2684 struct bio *btrfs_bio_clone(struct bio *bio)
2685 {
2686 	struct btrfs_io_bio *btrfs_bio;
2687 	struct bio *new;
2688 
2689 	/* Bio allocation backed by a bioset does not fail */
2690 	new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2691 	btrfs_bio = btrfs_io_bio(new);
2692 	btrfs_io_bio_init(btrfs_bio);
2693 	btrfs_bio->iter = bio->bi_iter;
2694 	return new;
2695 }
2696 
2697 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2698 {
2699 	struct bio *bio;
2700 
2701 	/* Bio allocation backed by a bioset does not fail */
2702 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2703 	btrfs_io_bio_init(btrfs_io_bio(bio));
2704 	return bio;
2705 }
2706 
2707 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2708 {
2709 	struct bio *bio;
2710 	struct btrfs_io_bio *btrfs_bio;
2711 
2712 	/* this will never fail when it's backed by a bioset */
2713 	bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2714 	ASSERT(bio);
2715 
2716 	btrfs_bio = btrfs_io_bio(bio);
2717 	btrfs_io_bio_init(btrfs_bio);
2718 
2719 	bio_trim(bio, offset >> 9, size >> 9);
2720 	btrfs_bio->iter = bio->bi_iter;
2721 	return bio;
2722 }
2723 
2724 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2725 				       unsigned long bio_flags)
2726 {
2727 	blk_status_t ret = 0;
2728 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2729 	struct page *page = bvec->bv_page;
2730 	struct extent_io_tree *tree = bio->bi_private;
2731 	u64 start;
2732 
2733 	start = page_offset(page) + bvec->bv_offset;
2734 
2735 	bio->bi_private = NULL;
2736 	bio_get(bio);
2737 
2738 	if (tree->ops)
2739 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2740 					   mirror_num, bio_flags, start);
2741 	else
2742 		btrfsic_submit_bio(bio);
2743 
2744 	bio_put(bio);
2745 	return blk_status_to_errno(ret);
2746 }
2747 
2748 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2749 		     unsigned long offset, size_t size, struct bio *bio,
2750 		     unsigned long bio_flags)
2751 {
2752 	int ret = 0;
2753 	if (tree->ops)
2754 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2755 						bio_flags);
2756 	return ret;
2757 
2758 }
2759 
2760 /*
2761  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2762  */
2763 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2764 			      struct writeback_control *wbc,
2765 			      struct page *page, sector_t sector,
2766 			      size_t size, unsigned long offset,
2767 			      struct block_device *bdev,
2768 			      struct bio **bio_ret,
2769 			      bio_end_io_t end_io_func,
2770 			      int mirror_num,
2771 			      unsigned long prev_bio_flags,
2772 			      unsigned long bio_flags,
2773 			      bool force_bio_submit)
2774 {
2775 	int ret = 0;
2776 	struct bio *bio;
2777 	int contig = 0;
2778 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780 
2781 	if (bio_ret && *bio_ret) {
2782 		bio = *bio_ret;
2783 		if (old_compressed)
2784 			contig = bio->bi_iter.bi_sector == sector;
2785 		else
2786 			contig = bio_end_sector(bio) == sector;
2787 
2788 		if (prev_bio_flags != bio_flags || !contig ||
2789 		    force_bio_submit ||
2790 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2792 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 			if (ret < 0) {
2794 				*bio_ret = NULL;
2795 				return ret;
2796 			}
2797 			bio = NULL;
2798 		} else {
2799 			if (wbc)
2800 				wbc_account_io(wbc, page, page_size);
2801 			return 0;
2802 		}
2803 	}
2804 
2805 	bio = btrfs_bio_alloc(bdev, (u64)sector << 9);
2806 	bio_add_page(bio, page, page_size, offset);
2807 	bio->bi_end_io = end_io_func;
2808 	bio->bi_private = tree;
2809 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2810 	bio->bi_opf = opf;
2811 	if (wbc) {
2812 		wbc_init_bio(wbc, bio);
2813 		wbc_account_io(wbc, page, page_size);
2814 	}
2815 
2816 	if (bio_ret)
2817 		*bio_ret = bio;
2818 	else
2819 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2820 
2821 	return ret;
2822 }
2823 
2824 static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 				      struct page *page)
2826 {
2827 	if (!PagePrivate(page)) {
2828 		SetPagePrivate(page);
2829 		get_page(page);
2830 		set_page_private(page, (unsigned long)eb);
2831 	} else {
2832 		WARN_ON(page->private != (unsigned long)eb);
2833 	}
2834 }
2835 
2836 void set_page_extent_mapped(struct page *page)
2837 {
2838 	if (!PagePrivate(page)) {
2839 		SetPagePrivate(page);
2840 		get_page(page);
2841 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 	}
2843 }
2844 
2845 static struct extent_map *
2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 		 u64 start, u64 len, get_extent_t *get_extent,
2848 		 struct extent_map **em_cached)
2849 {
2850 	struct extent_map *em;
2851 
2852 	if (em_cached && *em_cached) {
2853 		em = *em_cached;
2854 		if (extent_map_in_tree(em) && start >= em->start &&
2855 		    start < extent_map_end(em)) {
2856 			refcount_inc(&em->refs);
2857 			return em;
2858 		}
2859 
2860 		free_extent_map(em);
2861 		*em_cached = NULL;
2862 	}
2863 
2864 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2865 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 		BUG_ON(*em_cached);
2867 		refcount_inc(&em->refs);
2868 		*em_cached = em;
2869 	}
2870 	return em;
2871 }
2872 /*
2873  * basic readpage implementation.  Locked extent state structs are inserted
2874  * into the tree that are removed when the IO is done (by the end_io
2875  * handlers)
2876  * XXX JDM: This needs looking at to ensure proper page locking
2877  * return 0 on success, otherwise return error
2878  */
2879 static int __do_readpage(struct extent_io_tree *tree,
2880 			 struct page *page,
2881 			 get_extent_t *get_extent,
2882 			 struct extent_map **em_cached,
2883 			 struct bio **bio, int mirror_num,
2884 			 unsigned long *bio_flags, unsigned int read_flags,
2885 			 u64 *prev_em_start)
2886 {
2887 	struct inode *inode = page->mapping->host;
2888 	u64 start = page_offset(page);
2889 	u64 page_end = start + PAGE_SIZE - 1;
2890 	u64 end;
2891 	u64 cur = start;
2892 	u64 extent_offset;
2893 	u64 last_byte = i_size_read(inode);
2894 	u64 block_start;
2895 	u64 cur_end;
2896 	sector_t sector;
2897 	struct extent_map *em;
2898 	struct block_device *bdev;
2899 	int ret = 0;
2900 	int nr = 0;
2901 	size_t pg_offset = 0;
2902 	size_t iosize;
2903 	size_t disk_io_size;
2904 	size_t blocksize = inode->i_sb->s_blocksize;
2905 	unsigned long this_bio_flag = 0;
2906 
2907 	set_page_extent_mapped(page);
2908 
2909 	end = page_end;
2910 	if (!PageUptodate(page)) {
2911 		if (cleancache_get_page(page) == 0) {
2912 			BUG_ON(blocksize != PAGE_SIZE);
2913 			unlock_extent(tree, start, end);
2914 			goto out;
2915 		}
2916 	}
2917 
2918 	if (page->index == last_byte >> PAGE_SHIFT) {
2919 		char *userpage;
2920 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2921 
2922 		if (zero_offset) {
2923 			iosize = PAGE_SIZE - zero_offset;
2924 			userpage = kmap_atomic(page);
2925 			memset(userpage + zero_offset, 0, iosize);
2926 			flush_dcache_page(page);
2927 			kunmap_atomic(userpage);
2928 		}
2929 	}
2930 	while (cur <= end) {
2931 		bool force_bio_submit = false;
2932 
2933 		if (cur >= last_byte) {
2934 			char *userpage;
2935 			struct extent_state *cached = NULL;
2936 
2937 			iosize = PAGE_SIZE - pg_offset;
2938 			userpage = kmap_atomic(page);
2939 			memset(userpage + pg_offset, 0, iosize);
2940 			flush_dcache_page(page);
2941 			kunmap_atomic(userpage);
2942 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2943 					    &cached, GFP_NOFS);
2944 			unlock_extent_cached(tree, cur,
2945 					     cur + iosize - 1,
2946 					     &cached, GFP_NOFS);
2947 			break;
2948 		}
2949 		em = __get_extent_map(inode, page, pg_offset, cur,
2950 				      end - cur + 1, get_extent, em_cached);
2951 		if (IS_ERR_OR_NULL(em)) {
2952 			SetPageError(page);
2953 			unlock_extent(tree, cur, end);
2954 			break;
2955 		}
2956 		extent_offset = cur - em->start;
2957 		BUG_ON(extent_map_end(em) <= cur);
2958 		BUG_ON(end < cur);
2959 
2960 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2961 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2962 			extent_set_compress_type(&this_bio_flag,
2963 						 em->compress_type);
2964 		}
2965 
2966 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2967 		cur_end = min(extent_map_end(em) - 1, end);
2968 		iosize = ALIGN(iosize, blocksize);
2969 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2970 			disk_io_size = em->block_len;
2971 			sector = em->block_start >> 9;
2972 		} else {
2973 			sector = (em->block_start + extent_offset) >> 9;
2974 			disk_io_size = iosize;
2975 		}
2976 		bdev = em->bdev;
2977 		block_start = em->block_start;
2978 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2979 			block_start = EXTENT_MAP_HOLE;
2980 
2981 		/*
2982 		 * If we have a file range that points to a compressed extent
2983 		 * and it's followed by a consecutive file range that points to
2984 		 * to the same compressed extent (possibly with a different
2985 		 * offset and/or length, so it either points to the whole extent
2986 		 * or only part of it), we must make sure we do not submit a
2987 		 * single bio to populate the pages for the 2 ranges because
2988 		 * this makes the compressed extent read zero out the pages
2989 		 * belonging to the 2nd range. Imagine the following scenario:
2990 		 *
2991 		 *  File layout
2992 		 *  [0 - 8K]                     [8K - 24K]
2993 		 *    |                               |
2994 		 *    |                               |
2995 		 * points to extent X,         points to extent X,
2996 		 * offset 4K, length of 8K     offset 0, length 16K
2997 		 *
2998 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2999 		 *
3000 		 * If the bio to read the compressed extent covers both ranges,
3001 		 * it will decompress extent X into the pages belonging to the
3002 		 * first range and then it will stop, zeroing out the remaining
3003 		 * pages that belong to the other range that points to extent X.
3004 		 * So here we make sure we submit 2 bios, one for the first
3005 		 * range and another one for the third range. Both will target
3006 		 * the same physical extent from disk, but we can't currently
3007 		 * make the compressed bio endio callback populate the pages
3008 		 * for both ranges because each compressed bio is tightly
3009 		 * coupled with a single extent map, and each range can have
3010 		 * an extent map with a different offset value relative to the
3011 		 * uncompressed data of our extent and different lengths. This
3012 		 * is a corner case so we prioritize correctness over
3013 		 * non-optimal behavior (submitting 2 bios for the same extent).
3014 		 */
3015 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3016 		    prev_em_start && *prev_em_start != (u64)-1 &&
3017 		    *prev_em_start != em->orig_start)
3018 			force_bio_submit = true;
3019 
3020 		if (prev_em_start)
3021 			*prev_em_start = em->orig_start;
3022 
3023 		free_extent_map(em);
3024 		em = NULL;
3025 
3026 		/* we've found a hole, just zero and go on */
3027 		if (block_start == EXTENT_MAP_HOLE) {
3028 			char *userpage;
3029 			struct extent_state *cached = NULL;
3030 
3031 			userpage = kmap_atomic(page);
3032 			memset(userpage + pg_offset, 0, iosize);
3033 			flush_dcache_page(page);
3034 			kunmap_atomic(userpage);
3035 
3036 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3037 					    &cached, GFP_NOFS);
3038 			unlock_extent_cached(tree, cur,
3039 					     cur + iosize - 1,
3040 					     &cached, GFP_NOFS);
3041 			cur = cur + iosize;
3042 			pg_offset += iosize;
3043 			continue;
3044 		}
3045 		/* the get_extent function already copied into the page */
3046 		if (test_range_bit(tree, cur, cur_end,
3047 				   EXTENT_UPTODATE, 1, NULL)) {
3048 			check_page_uptodate(tree, page);
3049 			unlock_extent(tree, cur, cur + iosize - 1);
3050 			cur = cur + iosize;
3051 			pg_offset += iosize;
3052 			continue;
3053 		}
3054 		/* we have an inline extent but it didn't get marked up
3055 		 * to date.  Error out
3056 		 */
3057 		if (block_start == EXTENT_MAP_INLINE) {
3058 			SetPageError(page);
3059 			unlock_extent(tree, cur, cur + iosize - 1);
3060 			cur = cur + iosize;
3061 			pg_offset += iosize;
3062 			continue;
3063 		}
3064 
3065 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3066 					 page, sector, disk_io_size, pg_offset,
3067 					 bdev, bio,
3068 					 end_bio_extent_readpage, mirror_num,
3069 					 *bio_flags,
3070 					 this_bio_flag,
3071 					 force_bio_submit);
3072 		if (!ret) {
3073 			nr++;
3074 			*bio_flags = this_bio_flag;
3075 		} else {
3076 			SetPageError(page);
3077 			unlock_extent(tree, cur, cur + iosize - 1);
3078 			goto out;
3079 		}
3080 		cur = cur + iosize;
3081 		pg_offset += iosize;
3082 	}
3083 out:
3084 	if (!nr) {
3085 		if (!PageError(page))
3086 			SetPageUptodate(page);
3087 		unlock_page(page);
3088 	}
3089 	return ret;
3090 }
3091 
3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093 					     struct page *pages[], int nr_pages,
3094 					     u64 start, u64 end,
3095 					     get_extent_t *get_extent,
3096 					     struct extent_map **em_cached,
3097 					     struct bio **bio, int mirror_num,
3098 					     unsigned long *bio_flags,
3099 					     u64 *prev_em_start)
3100 {
3101 	struct inode *inode;
3102 	struct btrfs_ordered_extent *ordered;
3103 	int index;
3104 
3105 	inode = pages[0]->mapping->host;
3106 	while (1) {
3107 		lock_extent(tree, start, end);
3108 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3109 						     end - start + 1);
3110 		if (!ordered)
3111 			break;
3112 		unlock_extent(tree, start, end);
3113 		btrfs_start_ordered_extent(inode, ordered, 1);
3114 		btrfs_put_ordered_extent(ordered);
3115 	}
3116 
3117 	for (index = 0; index < nr_pages; index++) {
3118 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3119 			      mirror_num, bio_flags, 0, prev_em_start);
3120 		put_page(pages[index]);
3121 	}
3122 }
3123 
3124 static void __extent_readpages(struct extent_io_tree *tree,
3125 			       struct page *pages[],
3126 			       int nr_pages, get_extent_t *get_extent,
3127 			       struct extent_map **em_cached,
3128 			       struct bio **bio, int mirror_num,
3129 			       unsigned long *bio_flags,
3130 			       u64 *prev_em_start)
3131 {
3132 	u64 start = 0;
3133 	u64 end = 0;
3134 	u64 page_start;
3135 	int index;
3136 	int first_index = 0;
3137 
3138 	for (index = 0; index < nr_pages; index++) {
3139 		page_start = page_offset(pages[index]);
3140 		if (!end) {
3141 			start = page_start;
3142 			end = start + PAGE_SIZE - 1;
3143 			first_index = index;
3144 		} else if (end + 1 == page_start) {
3145 			end += PAGE_SIZE;
3146 		} else {
3147 			__do_contiguous_readpages(tree, &pages[first_index],
3148 						  index - first_index, start,
3149 						  end, get_extent, em_cached,
3150 						  bio, mirror_num, bio_flags,
3151 						  prev_em_start);
3152 			start = page_start;
3153 			end = start + PAGE_SIZE - 1;
3154 			first_index = index;
3155 		}
3156 	}
3157 
3158 	if (end)
3159 		__do_contiguous_readpages(tree, &pages[first_index],
3160 					  index - first_index, start,
3161 					  end, get_extent, em_cached, bio,
3162 					  mirror_num, bio_flags,
3163 					  prev_em_start);
3164 }
3165 
3166 static int __extent_read_full_page(struct extent_io_tree *tree,
3167 				   struct page *page,
3168 				   get_extent_t *get_extent,
3169 				   struct bio **bio, int mirror_num,
3170 				   unsigned long *bio_flags,
3171 				   unsigned int read_flags)
3172 {
3173 	struct inode *inode = page->mapping->host;
3174 	struct btrfs_ordered_extent *ordered;
3175 	u64 start = page_offset(page);
3176 	u64 end = start + PAGE_SIZE - 1;
3177 	int ret;
3178 
3179 	while (1) {
3180 		lock_extent(tree, start, end);
3181 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3182 						PAGE_SIZE);
3183 		if (!ordered)
3184 			break;
3185 		unlock_extent(tree, start, end);
3186 		btrfs_start_ordered_extent(inode, ordered, 1);
3187 		btrfs_put_ordered_extent(ordered);
3188 	}
3189 
3190 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3191 			    bio_flags, read_flags, NULL);
3192 	return ret;
3193 }
3194 
3195 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3196 			    get_extent_t *get_extent, int mirror_num)
3197 {
3198 	struct bio *bio = NULL;
3199 	unsigned long bio_flags = 0;
3200 	int ret;
3201 
3202 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3203 				      &bio_flags, 0);
3204 	if (bio)
3205 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3206 	return ret;
3207 }
3208 
3209 static void update_nr_written(struct writeback_control *wbc,
3210 			      unsigned long nr_written)
3211 {
3212 	wbc->nr_to_write -= nr_written;
3213 }
3214 
3215 /*
3216  * helper for __extent_writepage, doing all of the delayed allocation setup.
3217  *
3218  * This returns 1 if our fill_delalloc function did all the work required
3219  * to write the page (copy into inline extent).  In this case the IO has
3220  * been started and the page is already unlocked.
3221  *
3222  * This returns 0 if all went well (page still locked)
3223  * This returns < 0 if there were errors (page still locked)
3224  */
3225 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3226 			      struct page *page, struct writeback_control *wbc,
3227 			      struct extent_page_data *epd,
3228 			      u64 delalloc_start,
3229 			      unsigned long *nr_written)
3230 {
3231 	struct extent_io_tree *tree = epd->tree;
3232 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3233 	u64 nr_delalloc;
3234 	u64 delalloc_to_write = 0;
3235 	u64 delalloc_end = 0;
3236 	int ret;
3237 	int page_started = 0;
3238 
3239 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3240 		return 0;
3241 
3242 	while (delalloc_end < page_end) {
3243 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3244 					       page,
3245 					       &delalloc_start,
3246 					       &delalloc_end,
3247 					       BTRFS_MAX_EXTENT_SIZE);
3248 		if (nr_delalloc == 0) {
3249 			delalloc_start = delalloc_end + 1;
3250 			continue;
3251 		}
3252 		ret = tree->ops->fill_delalloc(inode, page,
3253 					       delalloc_start,
3254 					       delalloc_end,
3255 					       &page_started,
3256 					       nr_written);
3257 		/* File system has been set read-only */
3258 		if (ret) {
3259 			SetPageError(page);
3260 			/* fill_delalloc should be return < 0 for error
3261 			 * but just in case, we use > 0 here meaning the
3262 			 * IO is started, so we don't want to return > 0
3263 			 * unless things are going well.
3264 			 */
3265 			ret = ret < 0 ? ret : -EIO;
3266 			goto done;
3267 		}
3268 		/*
3269 		 * delalloc_end is already one less than the total length, so
3270 		 * we don't subtract one from PAGE_SIZE
3271 		 */
3272 		delalloc_to_write += (delalloc_end - delalloc_start +
3273 				      PAGE_SIZE) >> PAGE_SHIFT;
3274 		delalloc_start = delalloc_end + 1;
3275 	}
3276 	if (wbc->nr_to_write < delalloc_to_write) {
3277 		int thresh = 8192;
3278 
3279 		if (delalloc_to_write < thresh * 2)
3280 			thresh = delalloc_to_write;
3281 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3282 					 thresh);
3283 	}
3284 
3285 	/* did the fill delalloc function already unlock and start
3286 	 * the IO?
3287 	 */
3288 	if (page_started) {
3289 		/*
3290 		 * we've unlocked the page, so we can't update
3291 		 * the mapping's writeback index, just update
3292 		 * nr_to_write.
3293 		 */
3294 		wbc->nr_to_write -= *nr_written;
3295 		return 1;
3296 	}
3297 
3298 	ret = 0;
3299 
3300 done:
3301 	return ret;
3302 }
3303 
3304 /*
3305  * helper for __extent_writepage.  This calls the writepage start hooks,
3306  * and does the loop to map the page into extents and bios.
3307  *
3308  * We return 1 if the IO is started and the page is unlocked,
3309  * 0 if all went well (page still locked)
3310  * < 0 if there were errors (page still locked)
3311  */
3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3313 				 struct page *page,
3314 				 struct writeback_control *wbc,
3315 				 struct extent_page_data *epd,
3316 				 loff_t i_size,
3317 				 unsigned long nr_written,
3318 				 unsigned int write_flags, int *nr_ret)
3319 {
3320 	struct extent_io_tree *tree = epd->tree;
3321 	u64 start = page_offset(page);
3322 	u64 page_end = start + PAGE_SIZE - 1;
3323 	u64 end;
3324 	u64 cur = start;
3325 	u64 extent_offset;
3326 	u64 block_start;
3327 	u64 iosize;
3328 	sector_t sector;
3329 	struct extent_map *em;
3330 	struct block_device *bdev;
3331 	size_t pg_offset = 0;
3332 	size_t blocksize;
3333 	int ret = 0;
3334 	int nr = 0;
3335 	bool compressed;
3336 
3337 	if (tree->ops && tree->ops->writepage_start_hook) {
3338 		ret = tree->ops->writepage_start_hook(page, start,
3339 						      page_end);
3340 		if (ret) {
3341 			/* Fixup worker will requeue */
3342 			if (ret == -EBUSY)
3343 				wbc->pages_skipped++;
3344 			else
3345 				redirty_page_for_writepage(wbc, page);
3346 
3347 			update_nr_written(wbc, nr_written);
3348 			unlock_page(page);
3349 			return 1;
3350 		}
3351 	}
3352 
3353 	/*
3354 	 * we don't want to touch the inode after unlocking the page,
3355 	 * so we update the mapping writeback index now
3356 	 */
3357 	update_nr_written(wbc, nr_written + 1);
3358 
3359 	end = page_end;
3360 	if (i_size <= start) {
3361 		if (tree->ops && tree->ops->writepage_end_io_hook)
3362 			tree->ops->writepage_end_io_hook(page, start,
3363 							 page_end, NULL, 1);
3364 		goto done;
3365 	}
3366 
3367 	blocksize = inode->i_sb->s_blocksize;
3368 
3369 	while (cur <= end) {
3370 		u64 em_end;
3371 
3372 		if (cur >= i_size) {
3373 			if (tree->ops && tree->ops->writepage_end_io_hook)
3374 				tree->ops->writepage_end_io_hook(page, cur,
3375 							 page_end, NULL, 1);
3376 			break;
3377 		}
3378 		em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3379 				     end - cur + 1, 1);
3380 		if (IS_ERR_OR_NULL(em)) {
3381 			SetPageError(page);
3382 			ret = PTR_ERR_OR_ZERO(em);
3383 			break;
3384 		}
3385 
3386 		extent_offset = cur - em->start;
3387 		em_end = extent_map_end(em);
3388 		BUG_ON(em_end <= cur);
3389 		BUG_ON(end < cur);
3390 		iosize = min(em_end - cur, end - cur + 1);
3391 		iosize = ALIGN(iosize, blocksize);
3392 		sector = (em->block_start + extent_offset) >> 9;
3393 		bdev = em->bdev;
3394 		block_start = em->block_start;
3395 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3396 		free_extent_map(em);
3397 		em = NULL;
3398 
3399 		/*
3400 		 * compressed and inline extents are written through other
3401 		 * paths in the FS
3402 		 */
3403 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3404 		    block_start == EXTENT_MAP_INLINE) {
3405 			/*
3406 			 * end_io notification does not happen here for
3407 			 * compressed extents
3408 			 */
3409 			if (!compressed && tree->ops &&
3410 			    tree->ops->writepage_end_io_hook)
3411 				tree->ops->writepage_end_io_hook(page, cur,
3412 							 cur + iosize - 1,
3413 							 NULL, 1);
3414 			else if (compressed) {
3415 				/* we don't want to end_page_writeback on
3416 				 * a compressed extent.  this happens
3417 				 * elsewhere
3418 				 */
3419 				nr++;
3420 			}
3421 
3422 			cur += iosize;
3423 			pg_offset += iosize;
3424 			continue;
3425 		}
3426 
3427 		set_range_writeback(tree, cur, cur + iosize - 1);
3428 		if (!PageWriteback(page)) {
3429 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3430 				   "page %lu not writeback, cur %llu end %llu",
3431 			       page->index, cur, end);
3432 		}
3433 
3434 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3435 					 page, sector, iosize, pg_offset,
3436 					 bdev, &epd->bio,
3437 					 end_bio_extent_writepage,
3438 					 0, 0, 0, false);
3439 		if (ret) {
3440 			SetPageError(page);
3441 			if (PageWriteback(page))
3442 				end_page_writeback(page);
3443 		}
3444 
3445 		cur = cur + iosize;
3446 		pg_offset += iosize;
3447 		nr++;
3448 	}
3449 done:
3450 	*nr_ret = nr;
3451 	return ret;
3452 }
3453 
3454 /*
3455  * the writepage semantics are similar to regular writepage.  extent
3456  * records are inserted to lock ranges in the tree, and as dirty areas
3457  * are found, they are marked writeback.  Then the lock bits are removed
3458  * and the end_io handler clears the writeback ranges
3459  */
3460 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3461 			      void *data)
3462 {
3463 	struct inode *inode = page->mapping->host;
3464 	struct extent_page_data *epd = data;
3465 	u64 start = page_offset(page);
3466 	u64 page_end = start + PAGE_SIZE - 1;
3467 	int ret;
3468 	int nr = 0;
3469 	size_t pg_offset = 0;
3470 	loff_t i_size = i_size_read(inode);
3471 	unsigned long end_index = i_size >> PAGE_SHIFT;
3472 	unsigned int write_flags = 0;
3473 	unsigned long nr_written = 0;
3474 
3475 	write_flags = wbc_to_write_flags(wbc);
3476 
3477 	trace___extent_writepage(page, inode, wbc);
3478 
3479 	WARN_ON(!PageLocked(page));
3480 
3481 	ClearPageError(page);
3482 
3483 	pg_offset = i_size & (PAGE_SIZE - 1);
3484 	if (page->index > end_index ||
3485 	   (page->index == end_index && !pg_offset)) {
3486 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487 		unlock_page(page);
3488 		return 0;
3489 	}
3490 
3491 	if (page->index == end_index) {
3492 		char *userpage;
3493 
3494 		userpage = kmap_atomic(page);
3495 		memset(userpage + pg_offset, 0,
3496 		       PAGE_SIZE - pg_offset);
3497 		kunmap_atomic(userpage);
3498 		flush_dcache_page(page);
3499 	}
3500 
3501 	pg_offset = 0;
3502 
3503 	set_page_extent_mapped(page);
3504 
3505 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 	if (ret == 1)
3507 		goto done_unlocked;
3508 	if (ret)
3509 		goto done;
3510 
3511 	ret = __extent_writepage_io(inode, page, wbc, epd,
3512 				    i_size, nr_written, write_flags, &nr);
3513 	if (ret == 1)
3514 		goto done_unlocked;
3515 
3516 done:
3517 	if (nr == 0) {
3518 		/* make sure the mapping tag for page dirty gets cleared */
3519 		set_page_writeback(page);
3520 		end_page_writeback(page);
3521 	}
3522 	if (PageError(page)) {
3523 		ret = ret < 0 ? ret : -EIO;
3524 		end_extent_writepage(page, ret, start, page_end);
3525 	}
3526 	unlock_page(page);
3527 	return ret;
3528 
3529 done_unlocked:
3530 	return 0;
3531 }
3532 
3533 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534 {
3535 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 		       TASK_UNINTERRUPTIBLE);
3537 }
3538 
3539 static noinline_for_stack int
3540 lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 			  struct btrfs_fs_info *fs_info,
3542 			  struct extent_page_data *epd)
3543 {
3544 	unsigned long i, num_pages;
3545 	int flush = 0;
3546 	int ret = 0;
3547 
3548 	if (!btrfs_try_tree_write_lock(eb)) {
3549 		flush = 1;
3550 		flush_write_bio(epd);
3551 		btrfs_tree_lock(eb);
3552 	}
3553 
3554 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 		btrfs_tree_unlock(eb);
3556 		if (!epd->sync_io)
3557 			return 0;
3558 		if (!flush) {
3559 			flush_write_bio(epd);
3560 			flush = 1;
3561 		}
3562 		while (1) {
3563 			wait_on_extent_buffer_writeback(eb);
3564 			btrfs_tree_lock(eb);
3565 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 				break;
3567 			btrfs_tree_unlock(eb);
3568 		}
3569 	}
3570 
3571 	/*
3572 	 * We need to do this to prevent races in people who check if the eb is
3573 	 * under IO since we can end up having no IO bits set for a short period
3574 	 * of time.
3575 	 */
3576 	spin_lock(&eb->refs_lock);
3577 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579 		spin_unlock(&eb->refs_lock);
3580 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 					 -eb->len,
3583 					 fs_info->dirty_metadata_batch);
3584 		ret = 1;
3585 	} else {
3586 		spin_unlock(&eb->refs_lock);
3587 	}
3588 
3589 	btrfs_tree_unlock(eb);
3590 
3591 	if (!ret)
3592 		return ret;
3593 
3594 	num_pages = num_extent_pages(eb->start, eb->len);
3595 	for (i = 0; i < num_pages; i++) {
3596 		struct page *p = eb->pages[i];
3597 
3598 		if (!trylock_page(p)) {
3599 			if (!flush) {
3600 				flush_write_bio(epd);
3601 				flush = 1;
3602 			}
3603 			lock_page(p);
3604 		}
3605 	}
3606 
3607 	return ret;
3608 }
3609 
3610 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611 {
3612 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613 	smp_mb__after_atomic();
3614 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615 }
3616 
3617 static void set_btree_ioerr(struct page *page)
3618 {
3619 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620 
3621 	SetPageError(page);
3622 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 		return;
3624 
3625 	/*
3626 	 * If writeback for a btree extent that doesn't belong to a log tree
3627 	 * failed, increment the counter transaction->eb_write_errors.
3628 	 * We do this because while the transaction is running and before it's
3629 	 * committing (when we call filemap_fdata[write|wait]_range against
3630 	 * the btree inode), we might have
3631 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 	 * returns an error or an error happens during writeback, when we're
3633 	 * committing the transaction we wouldn't know about it, since the pages
3634 	 * can be no longer dirty nor marked anymore for writeback (if a
3635 	 * subsequent modification to the extent buffer didn't happen before the
3636 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 	 * able to find the pages tagged with SetPageError at transaction
3638 	 * commit time. So if this happens we must abort the transaction,
3639 	 * otherwise we commit a super block with btree roots that point to
3640 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 	 * or the content of some node/leaf from a past generation that got
3642 	 * cowed or deleted and is no longer valid.
3643 	 *
3644 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 	 * not be enough - we need to distinguish between log tree extents vs
3646 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 	 * will catch and clear such errors in the mapping - and that call might
3648 	 * be from a log sync and not from a transaction commit. Also, checking
3649 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 	 * not done and would not be reliable - the eb might have been released
3651 	 * from memory and reading it back again means that flag would not be
3652 	 * set (since it's a runtime flag, not persisted on disk).
3653 	 *
3654 	 * Using the flags below in the btree inode also makes us achieve the
3655 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 	 * is called, the writeback for all dirty pages had already finished
3658 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 	 * filemap_fdatawait_range() would return success, as it could not know
3660 	 * that writeback errors happened (the pages were no longer tagged for
3661 	 * writeback).
3662 	 */
3663 	switch (eb->log_index) {
3664 	case -1:
3665 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666 		break;
3667 	case 0:
3668 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669 		break;
3670 	case 1:
3671 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672 		break;
3673 	default:
3674 		BUG(); /* unexpected, logic error */
3675 	}
3676 }
3677 
3678 static void end_bio_extent_buffer_writepage(struct bio *bio)
3679 {
3680 	struct bio_vec *bvec;
3681 	struct extent_buffer *eb;
3682 	int i, done;
3683 
3684 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3685 	bio_for_each_segment_all(bvec, bio, i) {
3686 		struct page *page = bvec->bv_page;
3687 
3688 		eb = (struct extent_buffer *)page->private;
3689 		BUG_ON(!eb);
3690 		done = atomic_dec_and_test(&eb->io_pages);
3691 
3692 		if (bio->bi_status ||
3693 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694 			ClearPageUptodate(page);
3695 			set_btree_ioerr(page);
3696 		}
3697 
3698 		end_page_writeback(page);
3699 
3700 		if (!done)
3701 			continue;
3702 
3703 		end_extent_buffer_writeback(eb);
3704 	}
3705 
3706 	bio_put(bio);
3707 }
3708 
3709 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710 			struct btrfs_fs_info *fs_info,
3711 			struct writeback_control *wbc,
3712 			struct extent_page_data *epd)
3713 {
3714 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716 	u64 offset = eb->start;
3717 	u32 nritems;
3718 	unsigned long i, num_pages;
3719 	unsigned long bio_flags = 0;
3720 	unsigned long start, end;
3721 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3722 	int ret = 0;
3723 
3724 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3725 	num_pages = num_extent_pages(eb->start, eb->len);
3726 	atomic_set(&eb->io_pages, num_pages);
3727 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3728 		bio_flags = EXTENT_BIO_TREE_LOG;
3729 
3730 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3731 	nritems = btrfs_header_nritems(eb);
3732 	if (btrfs_header_level(eb) > 0) {
3733 		end = btrfs_node_key_ptr_offset(nritems);
3734 
3735 		memzero_extent_buffer(eb, end, eb->len - end);
3736 	} else {
3737 		/*
3738 		 * leaf:
3739 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3740 		 */
3741 		start = btrfs_item_nr_offset(nritems);
3742 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3743 		memzero_extent_buffer(eb, start, end - start);
3744 	}
3745 
3746 	for (i = 0; i < num_pages; i++) {
3747 		struct page *p = eb->pages[i];
3748 
3749 		clear_page_dirty_for_io(p);
3750 		set_page_writeback(p);
3751 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3752 					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3753 					 &epd->bio,
3754 					 end_bio_extent_buffer_writepage,
3755 					 0, epd->bio_flags, bio_flags, false);
3756 		epd->bio_flags = bio_flags;
3757 		if (ret) {
3758 			set_btree_ioerr(p);
3759 			if (PageWriteback(p))
3760 				end_page_writeback(p);
3761 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3762 				end_extent_buffer_writeback(eb);
3763 			ret = -EIO;
3764 			break;
3765 		}
3766 		offset += PAGE_SIZE;
3767 		update_nr_written(wbc, 1);
3768 		unlock_page(p);
3769 	}
3770 
3771 	if (unlikely(ret)) {
3772 		for (; i < num_pages; i++) {
3773 			struct page *p = eb->pages[i];
3774 			clear_page_dirty_for_io(p);
3775 			unlock_page(p);
3776 		}
3777 	}
3778 
3779 	return ret;
3780 }
3781 
3782 int btree_write_cache_pages(struct address_space *mapping,
3783 				   struct writeback_control *wbc)
3784 {
3785 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3786 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3787 	struct extent_buffer *eb, *prev_eb = NULL;
3788 	struct extent_page_data epd = {
3789 		.bio = NULL,
3790 		.tree = tree,
3791 		.extent_locked = 0,
3792 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3793 		.bio_flags = 0,
3794 	};
3795 	int ret = 0;
3796 	int done = 0;
3797 	int nr_to_write_done = 0;
3798 	struct pagevec pvec;
3799 	int nr_pages;
3800 	pgoff_t index;
3801 	pgoff_t end;		/* Inclusive */
3802 	int scanned = 0;
3803 	int tag;
3804 
3805 	pagevec_init(&pvec, 0);
3806 	if (wbc->range_cyclic) {
3807 		index = mapping->writeback_index; /* Start from prev offset */
3808 		end = -1;
3809 	} else {
3810 		index = wbc->range_start >> PAGE_SHIFT;
3811 		end = wbc->range_end >> PAGE_SHIFT;
3812 		scanned = 1;
3813 	}
3814 	if (wbc->sync_mode == WB_SYNC_ALL)
3815 		tag = PAGECACHE_TAG_TOWRITE;
3816 	else
3817 		tag = PAGECACHE_TAG_DIRTY;
3818 retry:
3819 	if (wbc->sync_mode == WB_SYNC_ALL)
3820 		tag_pages_for_writeback(mapping, index, end);
3821 	while (!done && !nr_to_write_done && (index <= end) &&
3822 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3823 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3824 		unsigned i;
3825 
3826 		scanned = 1;
3827 		for (i = 0; i < nr_pages; i++) {
3828 			struct page *page = pvec.pages[i];
3829 
3830 			if (!PagePrivate(page))
3831 				continue;
3832 
3833 			if (!wbc->range_cyclic && page->index > end) {
3834 				done = 1;
3835 				break;
3836 			}
3837 
3838 			spin_lock(&mapping->private_lock);
3839 			if (!PagePrivate(page)) {
3840 				spin_unlock(&mapping->private_lock);
3841 				continue;
3842 			}
3843 
3844 			eb = (struct extent_buffer *)page->private;
3845 
3846 			/*
3847 			 * Shouldn't happen and normally this would be a BUG_ON
3848 			 * but no sense in crashing the users box for something
3849 			 * we can survive anyway.
3850 			 */
3851 			if (WARN_ON(!eb)) {
3852 				spin_unlock(&mapping->private_lock);
3853 				continue;
3854 			}
3855 
3856 			if (eb == prev_eb) {
3857 				spin_unlock(&mapping->private_lock);
3858 				continue;
3859 			}
3860 
3861 			ret = atomic_inc_not_zero(&eb->refs);
3862 			spin_unlock(&mapping->private_lock);
3863 			if (!ret)
3864 				continue;
3865 
3866 			prev_eb = eb;
3867 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3868 			if (!ret) {
3869 				free_extent_buffer(eb);
3870 				continue;
3871 			}
3872 
3873 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3874 			if (ret) {
3875 				done = 1;
3876 				free_extent_buffer(eb);
3877 				break;
3878 			}
3879 			free_extent_buffer(eb);
3880 
3881 			/*
3882 			 * the filesystem may choose to bump up nr_to_write.
3883 			 * We have to make sure to honor the new nr_to_write
3884 			 * at any time
3885 			 */
3886 			nr_to_write_done = wbc->nr_to_write <= 0;
3887 		}
3888 		pagevec_release(&pvec);
3889 		cond_resched();
3890 	}
3891 	if (!scanned && !done) {
3892 		/*
3893 		 * We hit the last page and there is more work to be done: wrap
3894 		 * back to the start of the file
3895 		 */
3896 		scanned = 1;
3897 		index = 0;
3898 		goto retry;
3899 	}
3900 	flush_write_bio(&epd);
3901 	return ret;
3902 }
3903 
3904 /**
3905  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3906  * @mapping: address space structure to write
3907  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3908  * @writepage: function called for each page
3909  * @data: data passed to writepage function
3910  *
3911  * If a page is already under I/O, write_cache_pages() skips it, even
3912  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3913  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3914  * and msync() need to guarantee that all the data which was dirty at the time
3915  * the call was made get new I/O started against them.  If wbc->sync_mode is
3916  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3917  * existing IO to complete.
3918  */
3919 static int extent_write_cache_pages(struct address_space *mapping,
3920 			     struct writeback_control *wbc,
3921 			     writepage_t writepage, void *data,
3922 			     void (*flush_fn)(void *))
3923 {
3924 	struct inode *inode = mapping->host;
3925 	int ret = 0;
3926 	int done = 0;
3927 	int nr_to_write_done = 0;
3928 	struct pagevec pvec;
3929 	int nr_pages;
3930 	pgoff_t index;
3931 	pgoff_t end;		/* Inclusive */
3932 	pgoff_t done_index;
3933 	int range_whole = 0;
3934 	int scanned = 0;
3935 	int tag;
3936 
3937 	/*
3938 	 * We have to hold onto the inode so that ordered extents can do their
3939 	 * work when the IO finishes.  The alternative to this is failing to add
3940 	 * an ordered extent if the igrab() fails there and that is a huge pain
3941 	 * to deal with, so instead just hold onto the inode throughout the
3942 	 * writepages operation.  If it fails here we are freeing up the inode
3943 	 * anyway and we'd rather not waste our time writing out stuff that is
3944 	 * going to be truncated anyway.
3945 	 */
3946 	if (!igrab(inode))
3947 		return 0;
3948 
3949 	pagevec_init(&pvec, 0);
3950 	if (wbc->range_cyclic) {
3951 		index = mapping->writeback_index; /* Start from prev offset */
3952 		end = -1;
3953 	} else {
3954 		index = wbc->range_start >> PAGE_SHIFT;
3955 		end = wbc->range_end >> PAGE_SHIFT;
3956 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3957 			range_whole = 1;
3958 		scanned = 1;
3959 	}
3960 	if (wbc->sync_mode == WB_SYNC_ALL)
3961 		tag = PAGECACHE_TAG_TOWRITE;
3962 	else
3963 		tag = PAGECACHE_TAG_DIRTY;
3964 retry:
3965 	if (wbc->sync_mode == WB_SYNC_ALL)
3966 		tag_pages_for_writeback(mapping, index, end);
3967 	done_index = index;
3968 	while (!done && !nr_to_write_done && (index <= end) &&
3969 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3970 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3971 		unsigned i;
3972 
3973 		scanned = 1;
3974 		for (i = 0; i < nr_pages; i++) {
3975 			struct page *page = pvec.pages[i];
3976 
3977 			done_index = page->index;
3978 			/*
3979 			 * At this point we hold neither mapping->tree_lock nor
3980 			 * lock on the page itself: the page may be truncated or
3981 			 * invalidated (changing page->mapping to NULL), or even
3982 			 * swizzled back from swapper_space to tmpfs file
3983 			 * mapping
3984 			 */
3985 			if (!trylock_page(page)) {
3986 				flush_fn(data);
3987 				lock_page(page);
3988 			}
3989 
3990 			if (unlikely(page->mapping != mapping)) {
3991 				unlock_page(page);
3992 				continue;
3993 			}
3994 
3995 			if (!wbc->range_cyclic && page->index > end) {
3996 				done = 1;
3997 				unlock_page(page);
3998 				continue;
3999 			}
4000 
4001 			if (wbc->sync_mode != WB_SYNC_NONE) {
4002 				if (PageWriteback(page))
4003 					flush_fn(data);
4004 				wait_on_page_writeback(page);
4005 			}
4006 
4007 			if (PageWriteback(page) ||
4008 			    !clear_page_dirty_for_io(page)) {
4009 				unlock_page(page);
4010 				continue;
4011 			}
4012 
4013 			ret = (*writepage)(page, wbc, data);
4014 
4015 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4016 				unlock_page(page);
4017 				ret = 0;
4018 			}
4019 			if (ret < 0) {
4020 				/*
4021 				 * done_index is set past this page,
4022 				 * so media errors will not choke
4023 				 * background writeout for the entire
4024 				 * file. This has consequences for
4025 				 * range_cyclic semantics (ie. it may
4026 				 * not be suitable for data integrity
4027 				 * writeout).
4028 				 */
4029 				done_index = page->index + 1;
4030 				done = 1;
4031 				break;
4032 			}
4033 
4034 			/*
4035 			 * the filesystem may choose to bump up nr_to_write.
4036 			 * We have to make sure to honor the new nr_to_write
4037 			 * at any time
4038 			 */
4039 			nr_to_write_done = wbc->nr_to_write <= 0;
4040 		}
4041 		pagevec_release(&pvec);
4042 		cond_resched();
4043 	}
4044 	if (!scanned && !done) {
4045 		/*
4046 		 * We hit the last page and there is more work to be done: wrap
4047 		 * back to the start of the file
4048 		 */
4049 		scanned = 1;
4050 		index = 0;
4051 		goto retry;
4052 	}
4053 
4054 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4055 		mapping->writeback_index = done_index;
4056 
4057 	btrfs_add_delayed_iput(inode);
4058 	return ret;
4059 }
4060 
4061 static void flush_epd_write_bio(struct extent_page_data *epd)
4062 {
4063 	if (epd->bio) {
4064 		int ret;
4065 
4066 		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4067 		BUG_ON(ret < 0); /* -ENOMEM */
4068 		epd->bio = NULL;
4069 	}
4070 }
4071 
4072 static noinline void flush_write_bio(void *data)
4073 {
4074 	struct extent_page_data *epd = data;
4075 	flush_epd_write_bio(epd);
4076 }
4077 
4078 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4079 			  get_extent_t *get_extent,
4080 			  struct writeback_control *wbc)
4081 {
4082 	int ret;
4083 	struct extent_page_data epd = {
4084 		.bio = NULL,
4085 		.tree = tree,
4086 		.get_extent = get_extent,
4087 		.extent_locked = 0,
4088 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4089 		.bio_flags = 0,
4090 	};
4091 
4092 	ret = __extent_writepage(page, wbc, &epd);
4093 
4094 	flush_epd_write_bio(&epd);
4095 	return ret;
4096 }
4097 
4098 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4099 			      u64 start, u64 end, get_extent_t *get_extent,
4100 			      int mode)
4101 {
4102 	int ret = 0;
4103 	struct address_space *mapping = inode->i_mapping;
4104 	struct page *page;
4105 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4106 		PAGE_SHIFT;
4107 
4108 	struct extent_page_data epd = {
4109 		.bio = NULL,
4110 		.tree = tree,
4111 		.get_extent = get_extent,
4112 		.extent_locked = 1,
4113 		.sync_io = mode == WB_SYNC_ALL,
4114 		.bio_flags = 0,
4115 	};
4116 	struct writeback_control wbc_writepages = {
4117 		.sync_mode	= mode,
4118 		.nr_to_write	= nr_pages * 2,
4119 		.range_start	= start,
4120 		.range_end	= end + 1,
4121 	};
4122 
4123 	while (start <= end) {
4124 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4125 		if (clear_page_dirty_for_io(page))
4126 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4127 		else {
4128 			if (tree->ops && tree->ops->writepage_end_io_hook)
4129 				tree->ops->writepage_end_io_hook(page, start,
4130 						 start + PAGE_SIZE - 1,
4131 						 NULL, 1);
4132 			unlock_page(page);
4133 		}
4134 		put_page(page);
4135 		start += PAGE_SIZE;
4136 	}
4137 
4138 	flush_epd_write_bio(&epd);
4139 	return ret;
4140 }
4141 
4142 int extent_writepages(struct extent_io_tree *tree,
4143 		      struct address_space *mapping,
4144 		      get_extent_t *get_extent,
4145 		      struct writeback_control *wbc)
4146 {
4147 	int ret = 0;
4148 	struct extent_page_data epd = {
4149 		.bio = NULL,
4150 		.tree = tree,
4151 		.get_extent = get_extent,
4152 		.extent_locked = 0,
4153 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4154 		.bio_flags = 0,
4155 	};
4156 
4157 	ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4158 				       flush_write_bio);
4159 	flush_epd_write_bio(&epd);
4160 	return ret;
4161 }
4162 
4163 int extent_readpages(struct extent_io_tree *tree,
4164 		     struct address_space *mapping,
4165 		     struct list_head *pages, unsigned nr_pages,
4166 		     get_extent_t get_extent)
4167 {
4168 	struct bio *bio = NULL;
4169 	unsigned page_idx;
4170 	unsigned long bio_flags = 0;
4171 	struct page *pagepool[16];
4172 	struct page *page;
4173 	struct extent_map *em_cached = NULL;
4174 	int nr = 0;
4175 	u64 prev_em_start = (u64)-1;
4176 
4177 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4178 		page = list_entry(pages->prev, struct page, lru);
4179 
4180 		prefetchw(&page->flags);
4181 		list_del(&page->lru);
4182 		if (add_to_page_cache_lru(page, mapping,
4183 					page->index,
4184 					readahead_gfp_mask(mapping))) {
4185 			put_page(page);
4186 			continue;
4187 		}
4188 
4189 		pagepool[nr++] = page;
4190 		if (nr < ARRAY_SIZE(pagepool))
4191 			continue;
4192 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4193 				   &bio, 0, &bio_flags, &prev_em_start);
4194 		nr = 0;
4195 	}
4196 	if (nr)
4197 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4198 				   &bio, 0, &bio_flags, &prev_em_start);
4199 
4200 	if (em_cached)
4201 		free_extent_map(em_cached);
4202 
4203 	BUG_ON(!list_empty(pages));
4204 	if (bio)
4205 		return submit_one_bio(bio, 0, bio_flags);
4206 	return 0;
4207 }
4208 
4209 /*
4210  * basic invalidatepage code, this waits on any locked or writeback
4211  * ranges corresponding to the page, and then deletes any extent state
4212  * records from the tree
4213  */
4214 int extent_invalidatepage(struct extent_io_tree *tree,
4215 			  struct page *page, unsigned long offset)
4216 {
4217 	struct extent_state *cached_state = NULL;
4218 	u64 start = page_offset(page);
4219 	u64 end = start + PAGE_SIZE - 1;
4220 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4221 
4222 	start += ALIGN(offset, blocksize);
4223 	if (start > end)
4224 		return 0;
4225 
4226 	lock_extent_bits(tree, start, end, &cached_state);
4227 	wait_on_page_writeback(page);
4228 	clear_extent_bit(tree, start, end,
4229 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4230 			 EXTENT_DO_ACCOUNTING,
4231 			 1, 1, &cached_state, GFP_NOFS);
4232 	return 0;
4233 }
4234 
4235 /*
4236  * a helper for releasepage, this tests for areas of the page that
4237  * are locked or under IO and drops the related state bits if it is safe
4238  * to drop the page.
4239  */
4240 static int try_release_extent_state(struct extent_map_tree *map,
4241 				    struct extent_io_tree *tree,
4242 				    struct page *page, gfp_t mask)
4243 {
4244 	u64 start = page_offset(page);
4245 	u64 end = start + PAGE_SIZE - 1;
4246 	int ret = 1;
4247 
4248 	if (test_range_bit(tree, start, end,
4249 			   EXTENT_IOBITS, 0, NULL))
4250 		ret = 0;
4251 	else {
4252 		/*
4253 		 * at this point we can safely clear everything except the
4254 		 * locked bit and the nodatasum bit
4255 		 */
4256 		ret = clear_extent_bit(tree, start, end,
4257 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4258 				 0, 0, NULL, mask);
4259 
4260 		/* if clear_extent_bit failed for enomem reasons,
4261 		 * we can't allow the release to continue.
4262 		 */
4263 		if (ret < 0)
4264 			ret = 0;
4265 		else
4266 			ret = 1;
4267 	}
4268 	return ret;
4269 }
4270 
4271 /*
4272  * a helper for releasepage.  As long as there are no locked extents
4273  * in the range corresponding to the page, both state records and extent
4274  * map records are removed
4275  */
4276 int try_release_extent_mapping(struct extent_map_tree *map,
4277 			       struct extent_io_tree *tree, struct page *page,
4278 			       gfp_t mask)
4279 {
4280 	struct extent_map *em;
4281 	u64 start = page_offset(page);
4282 	u64 end = start + PAGE_SIZE - 1;
4283 
4284 	if (gfpflags_allow_blocking(mask) &&
4285 	    page->mapping->host->i_size > SZ_16M) {
4286 		u64 len;
4287 		while (start <= end) {
4288 			len = end - start + 1;
4289 			write_lock(&map->lock);
4290 			em = lookup_extent_mapping(map, start, len);
4291 			if (!em) {
4292 				write_unlock(&map->lock);
4293 				break;
4294 			}
4295 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4296 			    em->start != start) {
4297 				write_unlock(&map->lock);
4298 				free_extent_map(em);
4299 				break;
4300 			}
4301 			if (!test_range_bit(tree, em->start,
4302 					    extent_map_end(em) - 1,
4303 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4304 					    0, NULL)) {
4305 				remove_extent_mapping(map, em);
4306 				/* once for the rb tree */
4307 				free_extent_map(em);
4308 			}
4309 			start = extent_map_end(em);
4310 			write_unlock(&map->lock);
4311 
4312 			/* once for us */
4313 			free_extent_map(em);
4314 		}
4315 	}
4316 	return try_release_extent_state(map, tree, page, mask);
4317 }
4318 
4319 /*
4320  * helper function for fiemap, which doesn't want to see any holes.
4321  * This maps until we find something past 'last'
4322  */
4323 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4324 						u64 offset,
4325 						u64 last,
4326 						get_extent_t *get_extent)
4327 {
4328 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4329 	struct extent_map *em;
4330 	u64 len;
4331 
4332 	if (offset >= last)
4333 		return NULL;
4334 
4335 	while (1) {
4336 		len = last - offset;
4337 		if (len == 0)
4338 			break;
4339 		len = ALIGN(len, sectorsize);
4340 		em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4341 		if (IS_ERR_OR_NULL(em))
4342 			return em;
4343 
4344 		/* if this isn't a hole return it */
4345 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4346 		    em->block_start != EXTENT_MAP_HOLE) {
4347 			return em;
4348 		}
4349 
4350 		/* this is a hole, advance to the next extent */
4351 		offset = extent_map_end(em);
4352 		free_extent_map(em);
4353 		if (offset >= last)
4354 			break;
4355 	}
4356 	return NULL;
4357 }
4358 
4359 /*
4360  * To cache previous fiemap extent
4361  *
4362  * Will be used for merging fiemap extent
4363  */
4364 struct fiemap_cache {
4365 	u64 offset;
4366 	u64 phys;
4367 	u64 len;
4368 	u32 flags;
4369 	bool cached;
4370 };
4371 
4372 /*
4373  * Helper to submit fiemap extent.
4374  *
4375  * Will try to merge current fiemap extent specified by @offset, @phys,
4376  * @len and @flags with cached one.
4377  * And only when we fails to merge, cached one will be submitted as
4378  * fiemap extent.
4379  *
4380  * Return value is the same as fiemap_fill_next_extent().
4381  */
4382 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4383 				struct fiemap_cache *cache,
4384 				u64 offset, u64 phys, u64 len, u32 flags)
4385 {
4386 	int ret = 0;
4387 
4388 	if (!cache->cached)
4389 		goto assign;
4390 
4391 	/*
4392 	 * Sanity check, extent_fiemap() should have ensured that new
4393 	 * fiemap extent won't overlap with cahced one.
4394 	 * Not recoverable.
4395 	 *
4396 	 * NOTE: Physical address can overlap, due to compression
4397 	 */
4398 	if (cache->offset + cache->len > offset) {
4399 		WARN_ON(1);
4400 		return -EINVAL;
4401 	}
4402 
4403 	/*
4404 	 * Only merges fiemap extents if
4405 	 * 1) Their logical addresses are continuous
4406 	 *
4407 	 * 2) Their physical addresses are continuous
4408 	 *    So truly compressed (physical size smaller than logical size)
4409 	 *    extents won't get merged with each other
4410 	 *
4411 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4412 	 *    So regular extent won't get merged with prealloc extent
4413 	 */
4414 	if (cache->offset + cache->len  == offset &&
4415 	    cache->phys + cache->len == phys  &&
4416 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4417 			(flags & ~FIEMAP_EXTENT_LAST)) {
4418 		cache->len += len;
4419 		cache->flags |= flags;
4420 		goto try_submit_last;
4421 	}
4422 
4423 	/* Not mergeable, need to submit cached one */
4424 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4425 				      cache->len, cache->flags);
4426 	cache->cached = false;
4427 	if (ret)
4428 		return ret;
4429 assign:
4430 	cache->cached = true;
4431 	cache->offset = offset;
4432 	cache->phys = phys;
4433 	cache->len = len;
4434 	cache->flags = flags;
4435 try_submit_last:
4436 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4437 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4438 				cache->phys, cache->len, cache->flags);
4439 		cache->cached = false;
4440 	}
4441 	return ret;
4442 }
4443 
4444 /*
4445  * Emit last fiemap cache
4446  *
4447  * The last fiemap cache may still be cached in the following case:
4448  * 0		      4k		    8k
4449  * |<- Fiemap range ->|
4450  * |<------------  First extent ----------->|
4451  *
4452  * In this case, the first extent range will be cached but not emitted.
4453  * So we must emit it before ending extent_fiemap().
4454  */
4455 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4456 				  struct fiemap_extent_info *fieinfo,
4457 				  struct fiemap_cache *cache)
4458 {
4459 	int ret;
4460 
4461 	if (!cache->cached)
4462 		return 0;
4463 
4464 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4465 				      cache->len, cache->flags);
4466 	cache->cached = false;
4467 	if (ret > 0)
4468 		ret = 0;
4469 	return ret;
4470 }
4471 
4472 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4473 		__u64 start, __u64 len, get_extent_t *get_extent)
4474 {
4475 	int ret = 0;
4476 	u64 off = start;
4477 	u64 max = start + len;
4478 	u32 flags = 0;
4479 	u32 found_type;
4480 	u64 last;
4481 	u64 last_for_get_extent = 0;
4482 	u64 disko = 0;
4483 	u64 isize = i_size_read(inode);
4484 	struct btrfs_key found_key;
4485 	struct extent_map *em = NULL;
4486 	struct extent_state *cached_state = NULL;
4487 	struct btrfs_path *path;
4488 	struct btrfs_root *root = BTRFS_I(inode)->root;
4489 	struct fiemap_cache cache = { 0 };
4490 	int end = 0;
4491 	u64 em_start = 0;
4492 	u64 em_len = 0;
4493 	u64 em_end = 0;
4494 
4495 	if (len == 0)
4496 		return -EINVAL;
4497 
4498 	path = btrfs_alloc_path();
4499 	if (!path)
4500 		return -ENOMEM;
4501 	path->leave_spinning = 1;
4502 
4503 	start = round_down(start, btrfs_inode_sectorsize(inode));
4504 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4505 
4506 	/*
4507 	 * lookup the last file extent.  We're not using i_size here
4508 	 * because there might be preallocation past i_size
4509 	 */
4510 	ret = btrfs_lookup_file_extent(NULL, root, path,
4511 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4512 	if (ret < 0) {
4513 		btrfs_free_path(path);
4514 		return ret;
4515 	} else {
4516 		WARN_ON(!ret);
4517 		if (ret == 1)
4518 			ret = 0;
4519 	}
4520 
4521 	path->slots[0]--;
4522 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4523 	found_type = found_key.type;
4524 
4525 	/* No extents, but there might be delalloc bits */
4526 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4527 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4528 		/* have to trust i_size as the end */
4529 		last = (u64)-1;
4530 		last_for_get_extent = isize;
4531 	} else {
4532 		/*
4533 		 * remember the start of the last extent.  There are a
4534 		 * bunch of different factors that go into the length of the
4535 		 * extent, so its much less complex to remember where it started
4536 		 */
4537 		last = found_key.offset;
4538 		last_for_get_extent = last + 1;
4539 	}
4540 	btrfs_release_path(path);
4541 
4542 	/*
4543 	 * we might have some extents allocated but more delalloc past those
4544 	 * extents.  so, we trust isize unless the start of the last extent is
4545 	 * beyond isize
4546 	 */
4547 	if (last < isize) {
4548 		last = (u64)-1;
4549 		last_for_get_extent = isize;
4550 	}
4551 
4552 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4553 			 &cached_state);
4554 
4555 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4556 				   get_extent);
4557 	if (!em)
4558 		goto out;
4559 	if (IS_ERR(em)) {
4560 		ret = PTR_ERR(em);
4561 		goto out;
4562 	}
4563 
4564 	while (!end) {
4565 		u64 offset_in_extent = 0;
4566 
4567 		/* break if the extent we found is outside the range */
4568 		if (em->start >= max || extent_map_end(em) < off)
4569 			break;
4570 
4571 		/*
4572 		 * get_extent may return an extent that starts before our
4573 		 * requested range.  We have to make sure the ranges
4574 		 * we return to fiemap always move forward and don't
4575 		 * overlap, so adjust the offsets here
4576 		 */
4577 		em_start = max(em->start, off);
4578 
4579 		/*
4580 		 * record the offset from the start of the extent
4581 		 * for adjusting the disk offset below.  Only do this if the
4582 		 * extent isn't compressed since our in ram offset may be past
4583 		 * what we have actually allocated on disk.
4584 		 */
4585 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4586 			offset_in_extent = em_start - em->start;
4587 		em_end = extent_map_end(em);
4588 		em_len = em_end - em_start;
4589 		disko = 0;
4590 		flags = 0;
4591 
4592 		/*
4593 		 * bump off for our next call to get_extent
4594 		 */
4595 		off = extent_map_end(em);
4596 		if (off >= max)
4597 			end = 1;
4598 
4599 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4600 			end = 1;
4601 			flags |= FIEMAP_EXTENT_LAST;
4602 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4603 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4604 				  FIEMAP_EXTENT_NOT_ALIGNED);
4605 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4606 			flags |= (FIEMAP_EXTENT_DELALLOC |
4607 				  FIEMAP_EXTENT_UNKNOWN);
4608 		} else if (fieinfo->fi_extents_max) {
4609 			u64 bytenr = em->block_start -
4610 				(em->start - em->orig_start);
4611 
4612 			disko = em->block_start + offset_in_extent;
4613 
4614 			/*
4615 			 * As btrfs supports shared space, this information
4616 			 * can be exported to userspace tools via
4617 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4618 			 * then we're just getting a count and we can skip the
4619 			 * lookup stuff.
4620 			 */
4621 			ret = btrfs_check_shared(root,
4622 						 btrfs_ino(BTRFS_I(inode)),
4623 						 bytenr);
4624 			if (ret < 0)
4625 				goto out_free;
4626 			if (ret)
4627 				flags |= FIEMAP_EXTENT_SHARED;
4628 			ret = 0;
4629 		}
4630 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4631 			flags |= FIEMAP_EXTENT_ENCODED;
4632 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4633 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4634 
4635 		free_extent_map(em);
4636 		em = NULL;
4637 		if ((em_start >= last) || em_len == (u64)-1 ||
4638 		   (last == (u64)-1 && isize <= em_end)) {
4639 			flags |= FIEMAP_EXTENT_LAST;
4640 			end = 1;
4641 		}
4642 
4643 		/* now scan forward to see if this is really the last extent. */
4644 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4645 					   get_extent);
4646 		if (IS_ERR(em)) {
4647 			ret = PTR_ERR(em);
4648 			goto out;
4649 		}
4650 		if (!em) {
4651 			flags |= FIEMAP_EXTENT_LAST;
4652 			end = 1;
4653 		}
4654 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4655 					   em_len, flags);
4656 		if (ret) {
4657 			if (ret == 1)
4658 				ret = 0;
4659 			goto out_free;
4660 		}
4661 	}
4662 out_free:
4663 	if (!ret)
4664 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4665 	free_extent_map(em);
4666 out:
4667 	btrfs_free_path(path);
4668 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4669 			     &cached_state, GFP_NOFS);
4670 	return ret;
4671 }
4672 
4673 static void __free_extent_buffer(struct extent_buffer *eb)
4674 {
4675 	btrfs_leak_debug_del(&eb->leak_list);
4676 	kmem_cache_free(extent_buffer_cache, eb);
4677 }
4678 
4679 int extent_buffer_under_io(struct extent_buffer *eb)
4680 {
4681 	return (atomic_read(&eb->io_pages) ||
4682 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4683 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4684 }
4685 
4686 /*
4687  * Helper for releasing extent buffer page.
4688  */
4689 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4690 {
4691 	unsigned long index;
4692 	struct page *page;
4693 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4694 
4695 	BUG_ON(extent_buffer_under_io(eb));
4696 
4697 	index = num_extent_pages(eb->start, eb->len);
4698 	if (index == 0)
4699 		return;
4700 
4701 	do {
4702 		index--;
4703 		page = eb->pages[index];
4704 		if (!page)
4705 			continue;
4706 		if (mapped)
4707 			spin_lock(&page->mapping->private_lock);
4708 		/*
4709 		 * We do this since we'll remove the pages after we've
4710 		 * removed the eb from the radix tree, so we could race
4711 		 * and have this page now attached to the new eb.  So
4712 		 * only clear page_private if it's still connected to
4713 		 * this eb.
4714 		 */
4715 		if (PagePrivate(page) &&
4716 		    page->private == (unsigned long)eb) {
4717 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4718 			BUG_ON(PageDirty(page));
4719 			BUG_ON(PageWriteback(page));
4720 			/*
4721 			 * We need to make sure we haven't be attached
4722 			 * to a new eb.
4723 			 */
4724 			ClearPagePrivate(page);
4725 			set_page_private(page, 0);
4726 			/* One for the page private */
4727 			put_page(page);
4728 		}
4729 
4730 		if (mapped)
4731 			spin_unlock(&page->mapping->private_lock);
4732 
4733 		/* One for when we allocated the page */
4734 		put_page(page);
4735 	} while (index != 0);
4736 }
4737 
4738 /*
4739  * Helper for releasing the extent buffer.
4740  */
4741 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4742 {
4743 	btrfs_release_extent_buffer_page(eb);
4744 	__free_extent_buffer(eb);
4745 }
4746 
4747 static struct extent_buffer *
4748 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4749 		      unsigned long len)
4750 {
4751 	struct extent_buffer *eb = NULL;
4752 
4753 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4754 	eb->start = start;
4755 	eb->len = len;
4756 	eb->fs_info = fs_info;
4757 	eb->bflags = 0;
4758 	rwlock_init(&eb->lock);
4759 	atomic_set(&eb->write_locks, 0);
4760 	atomic_set(&eb->read_locks, 0);
4761 	atomic_set(&eb->blocking_readers, 0);
4762 	atomic_set(&eb->blocking_writers, 0);
4763 	atomic_set(&eb->spinning_readers, 0);
4764 	atomic_set(&eb->spinning_writers, 0);
4765 	eb->lock_nested = 0;
4766 	init_waitqueue_head(&eb->write_lock_wq);
4767 	init_waitqueue_head(&eb->read_lock_wq);
4768 
4769 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4770 
4771 	spin_lock_init(&eb->refs_lock);
4772 	atomic_set(&eb->refs, 1);
4773 	atomic_set(&eb->io_pages, 0);
4774 
4775 	/*
4776 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4777 	 */
4778 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4779 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4780 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4781 
4782 	return eb;
4783 }
4784 
4785 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4786 {
4787 	unsigned long i;
4788 	struct page *p;
4789 	struct extent_buffer *new;
4790 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4791 
4792 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4793 	if (new == NULL)
4794 		return NULL;
4795 
4796 	for (i = 0; i < num_pages; i++) {
4797 		p = alloc_page(GFP_NOFS);
4798 		if (!p) {
4799 			btrfs_release_extent_buffer(new);
4800 			return NULL;
4801 		}
4802 		attach_extent_buffer_page(new, p);
4803 		WARN_ON(PageDirty(p));
4804 		SetPageUptodate(p);
4805 		new->pages[i] = p;
4806 		copy_page(page_address(p), page_address(src->pages[i]));
4807 	}
4808 
4809 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4810 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4811 
4812 	return new;
4813 }
4814 
4815 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4816 						  u64 start, unsigned long len)
4817 {
4818 	struct extent_buffer *eb;
4819 	unsigned long num_pages;
4820 	unsigned long i;
4821 
4822 	num_pages = num_extent_pages(start, len);
4823 
4824 	eb = __alloc_extent_buffer(fs_info, start, len);
4825 	if (!eb)
4826 		return NULL;
4827 
4828 	for (i = 0; i < num_pages; i++) {
4829 		eb->pages[i] = alloc_page(GFP_NOFS);
4830 		if (!eb->pages[i])
4831 			goto err;
4832 	}
4833 	set_extent_buffer_uptodate(eb);
4834 	btrfs_set_header_nritems(eb, 0);
4835 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4836 
4837 	return eb;
4838 err:
4839 	for (; i > 0; i--)
4840 		__free_page(eb->pages[i - 1]);
4841 	__free_extent_buffer(eb);
4842 	return NULL;
4843 }
4844 
4845 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4846 						u64 start)
4847 {
4848 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4849 }
4850 
4851 static void check_buffer_tree_ref(struct extent_buffer *eb)
4852 {
4853 	int refs;
4854 	/* the ref bit is tricky.  We have to make sure it is set
4855 	 * if we have the buffer dirty.   Otherwise the
4856 	 * code to free a buffer can end up dropping a dirty
4857 	 * page
4858 	 *
4859 	 * Once the ref bit is set, it won't go away while the
4860 	 * buffer is dirty or in writeback, and it also won't
4861 	 * go away while we have the reference count on the
4862 	 * eb bumped.
4863 	 *
4864 	 * We can't just set the ref bit without bumping the
4865 	 * ref on the eb because free_extent_buffer might
4866 	 * see the ref bit and try to clear it.  If this happens
4867 	 * free_extent_buffer might end up dropping our original
4868 	 * ref by mistake and freeing the page before we are able
4869 	 * to add one more ref.
4870 	 *
4871 	 * So bump the ref count first, then set the bit.  If someone
4872 	 * beat us to it, drop the ref we added.
4873 	 */
4874 	refs = atomic_read(&eb->refs);
4875 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4876 		return;
4877 
4878 	spin_lock(&eb->refs_lock);
4879 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4880 		atomic_inc(&eb->refs);
4881 	spin_unlock(&eb->refs_lock);
4882 }
4883 
4884 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4885 		struct page *accessed)
4886 {
4887 	unsigned long num_pages, i;
4888 
4889 	check_buffer_tree_ref(eb);
4890 
4891 	num_pages = num_extent_pages(eb->start, eb->len);
4892 	for (i = 0; i < num_pages; i++) {
4893 		struct page *p = eb->pages[i];
4894 
4895 		if (p != accessed)
4896 			mark_page_accessed(p);
4897 	}
4898 }
4899 
4900 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4901 					 u64 start)
4902 {
4903 	struct extent_buffer *eb;
4904 
4905 	rcu_read_lock();
4906 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4907 			       start >> PAGE_SHIFT);
4908 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4909 		rcu_read_unlock();
4910 		/*
4911 		 * Lock our eb's refs_lock to avoid races with
4912 		 * free_extent_buffer. When we get our eb it might be flagged
4913 		 * with EXTENT_BUFFER_STALE and another task running
4914 		 * free_extent_buffer might have seen that flag set,
4915 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4916 		 * writeback flags not set) and it's still in the tree (flag
4917 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4918 		 * of decrementing the extent buffer's reference count twice.
4919 		 * So here we could race and increment the eb's reference count,
4920 		 * clear its stale flag, mark it as dirty and drop our reference
4921 		 * before the other task finishes executing free_extent_buffer,
4922 		 * which would later result in an attempt to free an extent
4923 		 * buffer that is dirty.
4924 		 */
4925 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4926 			spin_lock(&eb->refs_lock);
4927 			spin_unlock(&eb->refs_lock);
4928 		}
4929 		mark_extent_buffer_accessed(eb, NULL);
4930 		return eb;
4931 	}
4932 	rcu_read_unlock();
4933 
4934 	return NULL;
4935 }
4936 
4937 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4938 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4939 					u64 start)
4940 {
4941 	struct extent_buffer *eb, *exists = NULL;
4942 	int ret;
4943 
4944 	eb = find_extent_buffer(fs_info, start);
4945 	if (eb)
4946 		return eb;
4947 	eb = alloc_dummy_extent_buffer(fs_info, start);
4948 	if (!eb)
4949 		return NULL;
4950 	eb->fs_info = fs_info;
4951 again:
4952 	ret = radix_tree_preload(GFP_NOFS);
4953 	if (ret)
4954 		goto free_eb;
4955 	spin_lock(&fs_info->buffer_lock);
4956 	ret = radix_tree_insert(&fs_info->buffer_radix,
4957 				start >> PAGE_SHIFT, eb);
4958 	spin_unlock(&fs_info->buffer_lock);
4959 	radix_tree_preload_end();
4960 	if (ret == -EEXIST) {
4961 		exists = find_extent_buffer(fs_info, start);
4962 		if (exists)
4963 			goto free_eb;
4964 		else
4965 			goto again;
4966 	}
4967 	check_buffer_tree_ref(eb);
4968 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4969 
4970 	/*
4971 	 * We will free dummy extent buffer's if they come into
4972 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4973 	 * want the buffers to stay in memory until we're done with them, so
4974 	 * bump the ref count again.
4975 	 */
4976 	atomic_inc(&eb->refs);
4977 	return eb;
4978 free_eb:
4979 	btrfs_release_extent_buffer(eb);
4980 	return exists;
4981 }
4982 #endif
4983 
4984 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4985 					  u64 start)
4986 {
4987 	unsigned long len = fs_info->nodesize;
4988 	unsigned long num_pages = num_extent_pages(start, len);
4989 	unsigned long i;
4990 	unsigned long index = start >> PAGE_SHIFT;
4991 	struct extent_buffer *eb;
4992 	struct extent_buffer *exists = NULL;
4993 	struct page *p;
4994 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4995 	int uptodate = 1;
4996 	int ret;
4997 
4998 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4999 		btrfs_err(fs_info, "bad tree block start %llu", start);
5000 		return ERR_PTR(-EINVAL);
5001 	}
5002 
5003 	eb = find_extent_buffer(fs_info, start);
5004 	if (eb)
5005 		return eb;
5006 
5007 	eb = __alloc_extent_buffer(fs_info, start, len);
5008 	if (!eb)
5009 		return ERR_PTR(-ENOMEM);
5010 
5011 	for (i = 0; i < num_pages; i++, index++) {
5012 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5013 		if (!p) {
5014 			exists = ERR_PTR(-ENOMEM);
5015 			goto free_eb;
5016 		}
5017 
5018 		spin_lock(&mapping->private_lock);
5019 		if (PagePrivate(p)) {
5020 			/*
5021 			 * We could have already allocated an eb for this page
5022 			 * and attached one so lets see if we can get a ref on
5023 			 * the existing eb, and if we can we know it's good and
5024 			 * we can just return that one, else we know we can just
5025 			 * overwrite page->private.
5026 			 */
5027 			exists = (struct extent_buffer *)p->private;
5028 			if (atomic_inc_not_zero(&exists->refs)) {
5029 				spin_unlock(&mapping->private_lock);
5030 				unlock_page(p);
5031 				put_page(p);
5032 				mark_extent_buffer_accessed(exists, p);
5033 				goto free_eb;
5034 			}
5035 			exists = NULL;
5036 
5037 			/*
5038 			 * Do this so attach doesn't complain and we need to
5039 			 * drop the ref the old guy had.
5040 			 */
5041 			ClearPagePrivate(p);
5042 			WARN_ON(PageDirty(p));
5043 			put_page(p);
5044 		}
5045 		attach_extent_buffer_page(eb, p);
5046 		spin_unlock(&mapping->private_lock);
5047 		WARN_ON(PageDirty(p));
5048 		eb->pages[i] = p;
5049 		if (!PageUptodate(p))
5050 			uptodate = 0;
5051 
5052 		/*
5053 		 * see below about how we avoid a nasty race with release page
5054 		 * and why we unlock later
5055 		 */
5056 	}
5057 	if (uptodate)
5058 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5059 again:
5060 	ret = radix_tree_preload(GFP_NOFS);
5061 	if (ret) {
5062 		exists = ERR_PTR(ret);
5063 		goto free_eb;
5064 	}
5065 
5066 	spin_lock(&fs_info->buffer_lock);
5067 	ret = radix_tree_insert(&fs_info->buffer_radix,
5068 				start >> PAGE_SHIFT, eb);
5069 	spin_unlock(&fs_info->buffer_lock);
5070 	radix_tree_preload_end();
5071 	if (ret == -EEXIST) {
5072 		exists = find_extent_buffer(fs_info, start);
5073 		if (exists)
5074 			goto free_eb;
5075 		else
5076 			goto again;
5077 	}
5078 	/* add one reference for the tree */
5079 	check_buffer_tree_ref(eb);
5080 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5081 
5082 	/*
5083 	 * there is a race where release page may have
5084 	 * tried to find this extent buffer in the radix
5085 	 * but failed.  It will tell the VM it is safe to
5086 	 * reclaim the, and it will clear the page private bit.
5087 	 * We must make sure to set the page private bit properly
5088 	 * after the extent buffer is in the radix tree so
5089 	 * it doesn't get lost
5090 	 */
5091 	SetPageChecked(eb->pages[0]);
5092 	for (i = 1; i < num_pages; i++) {
5093 		p = eb->pages[i];
5094 		ClearPageChecked(p);
5095 		unlock_page(p);
5096 	}
5097 	unlock_page(eb->pages[0]);
5098 	return eb;
5099 
5100 free_eb:
5101 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5102 	for (i = 0; i < num_pages; i++) {
5103 		if (eb->pages[i])
5104 			unlock_page(eb->pages[i]);
5105 	}
5106 
5107 	btrfs_release_extent_buffer(eb);
5108 	return exists;
5109 }
5110 
5111 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5112 {
5113 	struct extent_buffer *eb =
5114 			container_of(head, struct extent_buffer, rcu_head);
5115 
5116 	__free_extent_buffer(eb);
5117 }
5118 
5119 /* Expects to have eb->eb_lock already held */
5120 static int release_extent_buffer(struct extent_buffer *eb)
5121 {
5122 	WARN_ON(atomic_read(&eb->refs) == 0);
5123 	if (atomic_dec_and_test(&eb->refs)) {
5124 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5125 			struct btrfs_fs_info *fs_info = eb->fs_info;
5126 
5127 			spin_unlock(&eb->refs_lock);
5128 
5129 			spin_lock(&fs_info->buffer_lock);
5130 			radix_tree_delete(&fs_info->buffer_radix,
5131 					  eb->start >> PAGE_SHIFT);
5132 			spin_unlock(&fs_info->buffer_lock);
5133 		} else {
5134 			spin_unlock(&eb->refs_lock);
5135 		}
5136 
5137 		/* Should be safe to release our pages at this point */
5138 		btrfs_release_extent_buffer_page(eb);
5139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5140 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5141 			__free_extent_buffer(eb);
5142 			return 1;
5143 		}
5144 #endif
5145 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5146 		return 1;
5147 	}
5148 	spin_unlock(&eb->refs_lock);
5149 
5150 	return 0;
5151 }
5152 
5153 void free_extent_buffer(struct extent_buffer *eb)
5154 {
5155 	int refs;
5156 	int old;
5157 	if (!eb)
5158 		return;
5159 
5160 	while (1) {
5161 		refs = atomic_read(&eb->refs);
5162 		if (refs <= 3)
5163 			break;
5164 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5165 		if (old == refs)
5166 			return;
5167 	}
5168 
5169 	spin_lock(&eb->refs_lock);
5170 	if (atomic_read(&eb->refs) == 2 &&
5171 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5172 		atomic_dec(&eb->refs);
5173 
5174 	if (atomic_read(&eb->refs) == 2 &&
5175 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5176 	    !extent_buffer_under_io(eb) &&
5177 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5178 		atomic_dec(&eb->refs);
5179 
5180 	/*
5181 	 * I know this is terrible, but it's temporary until we stop tracking
5182 	 * the uptodate bits and such for the extent buffers.
5183 	 */
5184 	release_extent_buffer(eb);
5185 }
5186 
5187 void free_extent_buffer_stale(struct extent_buffer *eb)
5188 {
5189 	if (!eb)
5190 		return;
5191 
5192 	spin_lock(&eb->refs_lock);
5193 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5194 
5195 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5196 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5197 		atomic_dec(&eb->refs);
5198 	release_extent_buffer(eb);
5199 }
5200 
5201 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5202 {
5203 	unsigned long i;
5204 	unsigned long num_pages;
5205 	struct page *page;
5206 
5207 	num_pages = num_extent_pages(eb->start, eb->len);
5208 
5209 	for (i = 0; i < num_pages; i++) {
5210 		page = eb->pages[i];
5211 		if (!PageDirty(page))
5212 			continue;
5213 
5214 		lock_page(page);
5215 		WARN_ON(!PagePrivate(page));
5216 
5217 		clear_page_dirty_for_io(page);
5218 		spin_lock_irq(&page->mapping->tree_lock);
5219 		if (!PageDirty(page)) {
5220 			radix_tree_tag_clear(&page->mapping->page_tree,
5221 						page_index(page),
5222 						PAGECACHE_TAG_DIRTY);
5223 		}
5224 		spin_unlock_irq(&page->mapping->tree_lock);
5225 		ClearPageError(page);
5226 		unlock_page(page);
5227 	}
5228 	WARN_ON(atomic_read(&eb->refs) == 0);
5229 }
5230 
5231 int set_extent_buffer_dirty(struct extent_buffer *eb)
5232 {
5233 	unsigned long i;
5234 	unsigned long num_pages;
5235 	int was_dirty = 0;
5236 
5237 	check_buffer_tree_ref(eb);
5238 
5239 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5240 
5241 	num_pages = num_extent_pages(eb->start, eb->len);
5242 	WARN_ON(atomic_read(&eb->refs) == 0);
5243 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5244 
5245 	for (i = 0; i < num_pages; i++)
5246 		set_page_dirty(eb->pages[i]);
5247 	return was_dirty;
5248 }
5249 
5250 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5251 {
5252 	unsigned long i;
5253 	struct page *page;
5254 	unsigned long num_pages;
5255 
5256 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5257 	num_pages = num_extent_pages(eb->start, eb->len);
5258 	for (i = 0; i < num_pages; i++) {
5259 		page = eb->pages[i];
5260 		if (page)
5261 			ClearPageUptodate(page);
5262 	}
5263 }
5264 
5265 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5266 {
5267 	unsigned long i;
5268 	struct page *page;
5269 	unsigned long num_pages;
5270 
5271 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5272 	num_pages = num_extent_pages(eb->start, eb->len);
5273 	for (i = 0; i < num_pages; i++) {
5274 		page = eb->pages[i];
5275 		SetPageUptodate(page);
5276 	}
5277 }
5278 
5279 int extent_buffer_uptodate(struct extent_buffer *eb)
5280 {
5281 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282 }
5283 
5284 int read_extent_buffer_pages(struct extent_io_tree *tree,
5285 			     struct extent_buffer *eb, int wait,
5286 			     get_extent_t *get_extent, int mirror_num)
5287 {
5288 	unsigned long i;
5289 	struct page *page;
5290 	int err;
5291 	int ret = 0;
5292 	int locked_pages = 0;
5293 	int all_uptodate = 1;
5294 	unsigned long num_pages;
5295 	unsigned long num_reads = 0;
5296 	struct bio *bio = NULL;
5297 	unsigned long bio_flags = 0;
5298 
5299 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5300 		return 0;
5301 
5302 	num_pages = num_extent_pages(eb->start, eb->len);
5303 	for (i = 0; i < num_pages; i++) {
5304 		page = eb->pages[i];
5305 		if (wait == WAIT_NONE) {
5306 			if (!trylock_page(page))
5307 				goto unlock_exit;
5308 		} else {
5309 			lock_page(page);
5310 		}
5311 		locked_pages++;
5312 	}
5313 	/*
5314 	 * We need to firstly lock all pages to make sure that
5315 	 * the uptodate bit of our pages won't be affected by
5316 	 * clear_extent_buffer_uptodate().
5317 	 */
5318 	for (i = 0; i < num_pages; i++) {
5319 		page = eb->pages[i];
5320 		if (!PageUptodate(page)) {
5321 			num_reads++;
5322 			all_uptodate = 0;
5323 		}
5324 	}
5325 
5326 	if (all_uptodate) {
5327 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5328 		goto unlock_exit;
5329 	}
5330 
5331 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5332 	eb->read_mirror = 0;
5333 	atomic_set(&eb->io_pages, num_reads);
5334 	for (i = 0; i < num_pages; i++) {
5335 		page = eb->pages[i];
5336 
5337 		if (!PageUptodate(page)) {
5338 			if (ret) {
5339 				atomic_dec(&eb->io_pages);
5340 				unlock_page(page);
5341 				continue;
5342 			}
5343 
5344 			ClearPageError(page);
5345 			err = __extent_read_full_page(tree, page,
5346 						      get_extent, &bio,
5347 						      mirror_num, &bio_flags,
5348 						      REQ_META);
5349 			if (err) {
5350 				ret = err;
5351 				/*
5352 				 * We use &bio in above __extent_read_full_page,
5353 				 * so we ensure that if it returns error, the
5354 				 * current page fails to add itself to bio and
5355 				 * it's been unlocked.
5356 				 *
5357 				 * We must dec io_pages by ourselves.
5358 				 */
5359 				atomic_dec(&eb->io_pages);
5360 			}
5361 		} else {
5362 			unlock_page(page);
5363 		}
5364 	}
5365 
5366 	if (bio) {
5367 		err = submit_one_bio(bio, mirror_num, bio_flags);
5368 		if (err)
5369 			return err;
5370 	}
5371 
5372 	if (ret || wait != WAIT_COMPLETE)
5373 		return ret;
5374 
5375 	for (i = 0; i < num_pages; i++) {
5376 		page = eb->pages[i];
5377 		wait_on_page_locked(page);
5378 		if (!PageUptodate(page))
5379 			ret = -EIO;
5380 	}
5381 
5382 	return ret;
5383 
5384 unlock_exit:
5385 	while (locked_pages > 0) {
5386 		locked_pages--;
5387 		page = eb->pages[locked_pages];
5388 		unlock_page(page);
5389 	}
5390 	return ret;
5391 }
5392 
5393 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5394 			unsigned long start, unsigned long len)
5395 {
5396 	size_t cur;
5397 	size_t offset;
5398 	struct page *page;
5399 	char *kaddr;
5400 	char *dst = (char *)dstv;
5401 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5402 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5403 
5404 	if (start + len > eb->len) {
5405 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5406 		     eb->start, eb->len, start, len);
5407 		memset(dst, 0, len);
5408 		return;
5409 	}
5410 
5411 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5412 
5413 	while (len > 0) {
5414 		page = eb->pages[i];
5415 
5416 		cur = min(len, (PAGE_SIZE - offset));
5417 		kaddr = page_address(page);
5418 		memcpy(dst, kaddr + offset, cur);
5419 
5420 		dst += cur;
5421 		len -= cur;
5422 		offset = 0;
5423 		i++;
5424 	}
5425 }
5426 
5427 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5428 			       void __user *dstv,
5429 			       unsigned long start, unsigned long len)
5430 {
5431 	size_t cur;
5432 	size_t offset;
5433 	struct page *page;
5434 	char *kaddr;
5435 	char __user *dst = (char __user *)dstv;
5436 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5437 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5438 	int ret = 0;
5439 
5440 	WARN_ON(start > eb->len);
5441 	WARN_ON(start + len > eb->start + eb->len);
5442 
5443 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5444 
5445 	while (len > 0) {
5446 		page = eb->pages[i];
5447 
5448 		cur = min(len, (PAGE_SIZE - offset));
5449 		kaddr = page_address(page);
5450 		if (copy_to_user(dst, kaddr + offset, cur)) {
5451 			ret = -EFAULT;
5452 			break;
5453 		}
5454 
5455 		dst += cur;
5456 		len -= cur;
5457 		offset = 0;
5458 		i++;
5459 	}
5460 
5461 	return ret;
5462 }
5463 
5464 /*
5465  * return 0 if the item is found within a page.
5466  * return 1 if the item spans two pages.
5467  * return -EINVAL otherwise.
5468  */
5469 int map_private_extent_buffer(const struct extent_buffer *eb,
5470 			      unsigned long start, unsigned long min_len,
5471 			      char **map, unsigned long *map_start,
5472 			      unsigned long *map_len)
5473 {
5474 	size_t offset = start & (PAGE_SIZE - 1);
5475 	char *kaddr;
5476 	struct page *p;
5477 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5478 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5479 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5480 		PAGE_SHIFT;
5481 
5482 	if (start + min_len > eb->len) {
5483 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5484 		       eb->start, eb->len, start, min_len);
5485 		return -EINVAL;
5486 	}
5487 
5488 	if (i != end_i)
5489 		return 1;
5490 
5491 	if (i == 0) {
5492 		offset = start_offset;
5493 		*map_start = 0;
5494 	} else {
5495 		offset = 0;
5496 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5497 	}
5498 
5499 	p = eb->pages[i];
5500 	kaddr = page_address(p);
5501 	*map = kaddr + offset;
5502 	*map_len = PAGE_SIZE - offset;
5503 	return 0;
5504 }
5505 
5506 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5507 			 unsigned long start, unsigned long len)
5508 {
5509 	size_t cur;
5510 	size_t offset;
5511 	struct page *page;
5512 	char *kaddr;
5513 	char *ptr = (char *)ptrv;
5514 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5516 	int ret = 0;
5517 
5518 	WARN_ON(start > eb->len);
5519 	WARN_ON(start + len > eb->start + eb->len);
5520 
5521 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5522 
5523 	while (len > 0) {
5524 		page = eb->pages[i];
5525 
5526 		cur = min(len, (PAGE_SIZE - offset));
5527 
5528 		kaddr = page_address(page);
5529 		ret = memcmp(ptr, kaddr + offset, cur);
5530 		if (ret)
5531 			break;
5532 
5533 		ptr += cur;
5534 		len -= cur;
5535 		offset = 0;
5536 		i++;
5537 	}
5538 	return ret;
5539 }
5540 
5541 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5542 		const void *srcv)
5543 {
5544 	char *kaddr;
5545 
5546 	WARN_ON(!PageUptodate(eb->pages[0]));
5547 	kaddr = page_address(eb->pages[0]);
5548 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5549 			BTRFS_FSID_SIZE);
5550 }
5551 
5552 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5553 {
5554 	char *kaddr;
5555 
5556 	WARN_ON(!PageUptodate(eb->pages[0]));
5557 	kaddr = page_address(eb->pages[0]);
5558 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5559 			BTRFS_FSID_SIZE);
5560 }
5561 
5562 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5563 			 unsigned long start, unsigned long len)
5564 {
5565 	size_t cur;
5566 	size_t offset;
5567 	struct page *page;
5568 	char *kaddr;
5569 	char *src = (char *)srcv;
5570 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5571 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5572 
5573 	WARN_ON(start > eb->len);
5574 	WARN_ON(start + len > eb->start + eb->len);
5575 
5576 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5577 
5578 	while (len > 0) {
5579 		page = eb->pages[i];
5580 		WARN_ON(!PageUptodate(page));
5581 
5582 		cur = min(len, PAGE_SIZE - offset);
5583 		kaddr = page_address(page);
5584 		memcpy(kaddr + offset, src, cur);
5585 
5586 		src += cur;
5587 		len -= cur;
5588 		offset = 0;
5589 		i++;
5590 	}
5591 }
5592 
5593 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5594 		unsigned long len)
5595 {
5596 	size_t cur;
5597 	size_t offset;
5598 	struct page *page;
5599 	char *kaddr;
5600 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5601 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5602 
5603 	WARN_ON(start > eb->len);
5604 	WARN_ON(start + len > eb->start + eb->len);
5605 
5606 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5607 
5608 	while (len > 0) {
5609 		page = eb->pages[i];
5610 		WARN_ON(!PageUptodate(page));
5611 
5612 		cur = min(len, PAGE_SIZE - offset);
5613 		kaddr = page_address(page);
5614 		memset(kaddr + offset, 0, cur);
5615 
5616 		len -= cur;
5617 		offset = 0;
5618 		i++;
5619 	}
5620 }
5621 
5622 void copy_extent_buffer_full(struct extent_buffer *dst,
5623 			     struct extent_buffer *src)
5624 {
5625 	int i;
5626 	unsigned num_pages;
5627 
5628 	ASSERT(dst->len == src->len);
5629 
5630 	num_pages = num_extent_pages(dst->start, dst->len);
5631 	for (i = 0; i < num_pages; i++)
5632 		copy_page(page_address(dst->pages[i]),
5633 				page_address(src->pages[i]));
5634 }
5635 
5636 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5637 			unsigned long dst_offset, unsigned long src_offset,
5638 			unsigned long len)
5639 {
5640 	u64 dst_len = dst->len;
5641 	size_t cur;
5642 	size_t offset;
5643 	struct page *page;
5644 	char *kaddr;
5645 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5646 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5647 
5648 	WARN_ON(src->len != dst_len);
5649 
5650 	offset = (start_offset + dst_offset) &
5651 		(PAGE_SIZE - 1);
5652 
5653 	while (len > 0) {
5654 		page = dst->pages[i];
5655 		WARN_ON(!PageUptodate(page));
5656 
5657 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5658 
5659 		kaddr = page_address(page);
5660 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5661 
5662 		src_offset += cur;
5663 		len -= cur;
5664 		offset = 0;
5665 		i++;
5666 	}
5667 }
5668 
5669 void le_bitmap_set(u8 *map, unsigned int start, int len)
5670 {
5671 	u8 *p = map + BIT_BYTE(start);
5672 	const unsigned int size = start + len;
5673 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5674 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5675 
5676 	while (len - bits_to_set >= 0) {
5677 		*p |= mask_to_set;
5678 		len -= bits_to_set;
5679 		bits_to_set = BITS_PER_BYTE;
5680 		mask_to_set = ~0;
5681 		p++;
5682 	}
5683 	if (len) {
5684 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5685 		*p |= mask_to_set;
5686 	}
5687 }
5688 
5689 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5690 {
5691 	u8 *p = map + BIT_BYTE(start);
5692 	const unsigned int size = start + len;
5693 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5694 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5695 
5696 	while (len - bits_to_clear >= 0) {
5697 		*p &= ~mask_to_clear;
5698 		len -= bits_to_clear;
5699 		bits_to_clear = BITS_PER_BYTE;
5700 		mask_to_clear = ~0;
5701 		p++;
5702 	}
5703 	if (len) {
5704 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5705 		*p &= ~mask_to_clear;
5706 	}
5707 }
5708 
5709 /*
5710  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5711  * given bit number
5712  * @eb: the extent buffer
5713  * @start: offset of the bitmap item in the extent buffer
5714  * @nr: bit number
5715  * @page_index: return index of the page in the extent buffer that contains the
5716  * given bit number
5717  * @page_offset: return offset into the page given by page_index
5718  *
5719  * This helper hides the ugliness of finding the byte in an extent buffer which
5720  * contains a given bit.
5721  */
5722 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5723 				    unsigned long start, unsigned long nr,
5724 				    unsigned long *page_index,
5725 				    size_t *page_offset)
5726 {
5727 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5728 	size_t byte_offset = BIT_BYTE(nr);
5729 	size_t offset;
5730 
5731 	/*
5732 	 * The byte we want is the offset of the extent buffer + the offset of
5733 	 * the bitmap item in the extent buffer + the offset of the byte in the
5734 	 * bitmap item.
5735 	 */
5736 	offset = start_offset + start + byte_offset;
5737 
5738 	*page_index = offset >> PAGE_SHIFT;
5739 	*page_offset = offset & (PAGE_SIZE - 1);
5740 }
5741 
5742 /**
5743  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5744  * @eb: the extent buffer
5745  * @start: offset of the bitmap item in the extent buffer
5746  * @nr: bit number to test
5747  */
5748 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5749 			   unsigned long nr)
5750 {
5751 	u8 *kaddr;
5752 	struct page *page;
5753 	unsigned long i;
5754 	size_t offset;
5755 
5756 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5757 	page = eb->pages[i];
5758 	WARN_ON(!PageUptodate(page));
5759 	kaddr = page_address(page);
5760 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5761 }
5762 
5763 /**
5764  * extent_buffer_bitmap_set - set an area of a bitmap
5765  * @eb: the extent buffer
5766  * @start: offset of the bitmap item in the extent buffer
5767  * @pos: bit number of the first bit
5768  * @len: number of bits to set
5769  */
5770 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5771 			      unsigned long pos, unsigned long len)
5772 {
5773 	u8 *kaddr;
5774 	struct page *page;
5775 	unsigned long i;
5776 	size_t offset;
5777 	const unsigned int size = pos + len;
5778 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5779 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5780 
5781 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5782 	page = eb->pages[i];
5783 	WARN_ON(!PageUptodate(page));
5784 	kaddr = page_address(page);
5785 
5786 	while (len >= bits_to_set) {
5787 		kaddr[offset] |= mask_to_set;
5788 		len -= bits_to_set;
5789 		bits_to_set = BITS_PER_BYTE;
5790 		mask_to_set = ~0;
5791 		if (++offset >= PAGE_SIZE && len > 0) {
5792 			offset = 0;
5793 			page = eb->pages[++i];
5794 			WARN_ON(!PageUptodate(page));
5795 			kaddr = page_address(page);
5796 		}
5797 	}
5798 	if (len) {
5799 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5800 		kaddr[offset] |= mask_to_set;
5801 	}
5802 }
5803 
5804 
5805 /**
5806  * extent_buffer_bitmap_clear - clear an area of a bitmap
5807  * @eb: the extent buffer
5808  * @start: offset of the bitmap item in the extent buffer
5809  * @pos: bit number of the first bit
5810  * @len: number of bits to clear
5811  */
5812 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5813 				unsigned long pos, unsigned long len)
5814 {
5815 	u8 *kaddr;
5816 	struct page *page;
5817 	unsigned long i;
5818 	size_t offset;
5819 	const unsigned int size = pos + len;
5820 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5821 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5822 
5823 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5824 	page = eb->pages[i];
5825 	WARN_ON(!PageUptodate(page));
5826 	kaddr = page_address(page);
5827 
5828 	while (len >= bits_to_clear) {
5829 		kaddr[offset] &= ~mask_to_clear;
5830 		len -= bits_to_clear;
5831 		bits_to_clear = BITS_PER_BYTE;
5832 		mask_to_clear = ~0;
5833 		if (++offset >= PAGE_SIZE && len > 0) {
5834 			offset = 0;
5835 			page = eb->pages[++i];
5836 			WARN_ON(!PageUptodate(page));
5837 			kaddr = page_address(page);
5838 		}
5839 	}
5840 	if (len) {
5841 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5842 		kaddr[offset] &= ~mask_to_clear;
5843 	}
5844 }
5845 
5846 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5847 {
5848 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5849 	return distance < len;
5850 }
5851 
5852 static void copy_pages(struct page *dst_page, struct page *src_page,
5853 		       unsigned long dst_off, unsigned long src_off,
5854 		       unsigned long len)
5855 {
5856 	char *dst_kaddr = page_address(dst_page);
5857 	char *src_kaddr;
5858 	int must_memmove = 0;
5859 
5860 	if (dst_page != src_page) {
5861 		src_kaddr = page_address(src_page);
5862 	} else {
5863 		src_kaddr = dst_kaddr;
5864 		if (areas_overlap(src_off, dst_off, len))
5865 			must_memmove = 1;
5866 	}
5867 
5868 	if (must_memmove)
5869 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5870 	else
5871 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5872 }
5873 
5874 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5875 			   unsigned long src_offset, unsigned long len)
5876 {
5877 	struct btrfs_fs_info *fs_info = dst->fs_info;
5878 	size_t cur;
5879 	size_t dst_off_in_page;
5880 	size_t src_off_in_page;
5881 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5882 	unsigned long dst_i;
5883 	unsigned long src_i;
5884 
5885 	if (src_offset + len > dst->len) {
5886 		btrfs_err(fs_info,
5887 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5888 			 src_offset, len, dst->len);
5889 		BUG_ON(1);
5890 	}
5891 	if (dst_offset + len > dst->len) {
5892 		btrfs_err(fs_info,
5893 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5894 			 dst_offset, len, dst->len);
5895 		BUG_ON(1);
5896 	}
5897 
5898 	while (len > 0) {
5899 		dst_off_in_page = (start_offset + dst_offset) &
5900 			(PAGE_SIZE - 1);
5901 		src_off_in_page = (start_offset + src_offset) &
5902 			(PAGE_SIZE - 1);
5903 
5904 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5905 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5906 
5907 		cur = min(len, (unsigned long)(PAGE_SIZE -
5908 					       src_off_in_page));
5909 		cur = min_t(unsigned long, cur,
5910 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5911 
5912 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5913 			   dst_off_in_page, src_off_in_page, cur);
5914 
5915 		src_offset += cur;
5916 		dst_offset += cur;
5917 		len -= cur;
5918 	}
5919 }
5920 
5921 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5922 			   unsigned long src_offset, unsigned long len)
5923 {
5924 	struct btrfs_fs_info *fs_info = dst->fs_info;
5925 	size_t cur;
5926 	size_t dst_off_in_page;
5927 	size_t src_off_in_page;
5928 	unsigned long dst_end = dst_offset + len - 1;
5929 	unsigned long src_end = src_offset + len - 1;
5930 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5931 	unsigned long dst_i;
5932 	unsigned long src_i;
5933 
5934 	if (src_offset + len > dst->len) {
5935 		btrfs_err(fs_info,
5936 			  "memmove bogus src_offset %lu move len %lu len %lu",
5937 			  src_offset, len, dst->len);
5938 		BUG_ON(1);
5939 	}
5940 	if (dst_offset + len > dst->len) {
5941 		btrfs_err(fs_info,
5942 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5943 			  dst_offset, len, dst->len);
5944 		BUG_ON(1);
5945 	}
5946 	if (dst_offset < src_offset) {
5947 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5948 		return;
5949 	}
5950 	while (len > 0) {
5951 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5952 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5953 
5954 		dst_off_in_page = (start_offset + dst_end) &
5955 			(PAGE_SIZE - 1);
5956 		src_off_in_page = (start_offset + src_end) &
5957 			(PAGE_SIZE - 1);
5958 
5959 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5960 		cur = min(cur, dst_off_in_page + 1);
5961 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5962 			   dst_off_in_page - cur + 1,
5963 			   src_off_in_page - cur + 1, cur);
5964 
5965 		dst_end -= cur;
5966 		src_end -= cur;
5967 		len -= cur;
5968 	}
5969 }
5970 
5971 int try_release_extent_buffer(struct page *page)
5972 {
5973 	struct extent_buffer *eb;
5974 
5975 	/*
5976 	 * We need to make sure nobody is attaching this page to an eb right
5977 	 * now.
5978 	 */
5979 	spin_lock(&page->mapping->private_lock);
5980 	if (!PagePrivate(page)) {
5981 		spin_unlock(&page->mapping->private_lock);
5982 		return 1;
5983 	}
5984 
5985 	eb = (struct extent_buffer *)page->private;
5986 	BUG_ON(!eb);
5987 
5988 	/*
5989 	 * This is a little awful but should be ok, we need to make sure that
5990 	 * the eb doesn't disappear out from under us while we're looking at
5991 	 * this page.
5992 	 */
5993 	spin_lock(&eb->refs_lock);
5994 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5995 		spin_unlock(&eb->refs_lock);
5996 		spin_unlock(&page->mapping->private_lock);
5997 		return 0;
5998 	}
5999 	spin_unlock(&page->mapping->private_lock);
6000 
6001 	/*
6002 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6003 	 * so just return, this page will likely be freed soon anyway.
6004 	 */
6005 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6006 		spin_unlock(&eb->refs_lock);
6007 		return 0;
6008 	}
6009 
6010 	return release_extent_buffer(eb);
6011 }
6012