1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/slab.h> 4 #include <linux/bio.h> 5 #include <linux/mm.h> 6 #include <linux/pagemap.h> 7 #include <linux/page-flags.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 #include "backref.h" 24 #include "disk-io.h" 25 26 static struct kmem_cache *extent_state_cache; 27 static struct kmem_cache *extent_buffer_cache; 28 static struct bio_set *btrfs_bioset; 29 30 static inline bool extent_state_in_tree(const struct extent_state *state) 31 { 32 return !RB_EMPTY_NODE(&state->rb_node); 33 } 34 35 #ifdef CONFIG_BTRFS_DEBUG 36 static LIST_HEAD(buffers); 37 static LIST_HEAD(states); 38 39 static DEFINE_SPINLOCK(leak_lock); 40 41 static inline 42 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 43 { 44 unsigned long flags; 45 46 spin_lock_irqsave(&leak_lock, flags); 47 list_add(new, head); 48 spin_unlock_irqrestore(&leak_lock, flags); 49 } 50 51 static inline 52 void btrfs_leak_debug_del(struct list_head *entry) 53 { 54 unsigned long flags; 55 56 spin_lock_irqsave(&leak_lock, flags); 57 list_del(entry); 58 spin_unlock_irqrestore(&leak_lock, flags); 59 } 60 61 static inline 62 void btrfs_leak_debug_check(void) 63 { 64 struct extent_state *state; 65 struct extent_buffer *eb; 66 67 while (!list_empty(&states)) { 68 state = list_entry(states.next, struct extent_state, leak_list); 69 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 70 state->start, state->end, state->state, 71 extent_state_in_tree(state), 72 refcount_read(&state->refs)); 73 list_del(&state->leak_list); 74 kmem_cache_free(extent_state_cache, state); 75 } 76 77 while (!list_empty(&buffers)) { 78 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 79 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 81 list_del(&eb->leak_list); 82 kmem_cache_free(extent_buffer_cache, eb); 83 } 84 } 85 86 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 87 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 88 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 89 struct extent_io_tree *tree, u64 start, u64 end) 90 { 91 if (tree->ops && tree->ops->check_extent_io_range) 92 tree->ops->check_extent_io_range(tree->private_data, caller, 93 start, end); 94 } 95 #else 96 #define btrfs_leak_debug_add(new, head) do {} while (0) 97 #define btrfs_leak_debug_del(entry) do {} while (0) 98 #define btrfs_leak_debug_check() do {} while (0) 99 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 100 #endif 101 102 #define BUFFER_LRU_MAX 64 103 104 struct tree_entry { 105 u64 start; 106 u64 end; 107 struct rb_node rb_node; 108 }; 109 110 struct extent_page_data { 111 struct bio *bio; 112 struct extent_io_tree *tree; 113 /* tells writepage not to lock the state bits for this range 114 * it still does the unlocking 115 */ 116 unsigned int extent_locked:1; 117 118 /* tells the submit_bio code to use REQ_SYNC */ 119 unsigned int sync_io:1; 120 }; 121 122 static int add_extent_changeset(struct extent_state *state, unsigned bits, 123 struct extent_changeset *changeset, 124 int set) 125 { 126 int ret; 127 128 if (!changeset) 129 return 0; 130 if (set && (state->state & bits) == bits) 131 return 0; 132 if (!set && (state->state & bits) == 0) 133 return 0; 134 changeset->bytes_changed += state->end - state->start + 1; 135 ret = ulist_add(&changeset->range_changed, state->start, state->end, 136 GFP_ATOMIC); 137 return ret; 138 } 139 140 static void flush_write_bio(struct extent_page_data *epd); 141 142 static inline struct btrfs_fs_info * 143 tree_fs_info(struct extent_io_tree *tree) 144 { 145 if (tree->ops) 146 return tree->ops->tree_fs_info(tree->private_data); 147 return NULL; 148 } 149 150 int __init extent_io_init(void) 151 { 152 extent_state_cache = kmem_cache_create("btrfs_extent_state", 153 sizeof(struct extent_state), 0, 154 SLAB_MEM_SPREAD, NULL); 155 if (!extent_state_cache) 156 return -ENOMEM; 157 158 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 159 sizeof(struct extent_buffer), 0, 160 SLAB_MEM_SPREAD, NULL); 161 if (!extent_buffer_cache) 162 goto free_state_cache; 163 164 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 165 offsetof(struct btrfs_io_bio, bio), 166 BIOSET_NEED_BVECS); 167 if (!btrfs_bioset) 168 goto free_buffer_cache; 169 170 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 171 goto free_bioset; 172 173 return 0; 174 175 free_bioset: 176 bioset_free(btrfs_bioset); 177 btrfs_bioset = NULL; 178 179 free_buffer_cache: 180 kmem_cache_destroy(extent_buffer_cache); 181 extent_buffer_cache = NULL; 182 183 free_state_cache: 184 kmem_cache_destroy(extent_state_cache); 185 extent_state_cache = NULL; 186 return -ENOMEM; 187 } 188 189 void __cold extent_io_exit(void) 190 { 191 btrfs_leak_debug_check(); 192 193 /* 194 * Make sure all delayed rcu free are flushed before we 195 * destroy caches. 196 */ 197 rcu_barrier(); 198 kmem_cache_destroy(extent_state_cache); 199 kmem_cache_destroy(extent_buffer_cache); 200 if (btrfs_bioset) 201 bioset_free(btrfs_bioset); 202 } 203 204 void extent_io_tree_init(struct extent_io_tree *tree, 205 void *private_data) 206 { 207 tree->state = RB_ROOT; 208 tree->ops = NULL; 209 tree->dirty_bytes = 0; 210 spin_lock_init(&tree->lock); 211 tree->private_data = private_data; 212 } 213 214 static struct extent_state *alloc_extent_state(gfp_t mask) 215 { 216 struct extent_state *state; 217 218 /* 219 * The given mask might be not appropriate for the slab allocator, 220 * drop the unsupported bits 221 */ 222 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 223 state = kmem_cache_alloc(extent_state_cache, mask); 224 if (!state) 225 return state; 226 state->state = 0; 227 state->failrec = NULL; 228 RB_CLEAR_NODE(&state->rb_node); 229 btrfs_leak_debug_add(&state->leak_list, &states); 230 refcount_set(&state->refs, 1); 231 init_waitqueue_head(&state->wq); 232 trace_alloc_extent_state(state, mask, _RET_IP_); 233 return state; 234 } 235 236 void free_extent_state(struct extent_state *state) 237 { 238 if (!state) 239 return; 240 if (refcount_dec_and_test(&state->refs)) { 241 WARN_ON(extent_state_in_tree(state)); 242 btrfs_leak_debug_del(&state->leak_list); 243 trace_free_extent_state(state, _RET_IP_); 244 kmem_cache_free(extent_state_cache, state); 245 } 246 } 247 248 static struct rb_node *tree_insert(struct rb_root *root, 249 struct rb_node *search_start, 250 u64 offset, 251 struct rb_node *node, 252 struct rb_node ***p_in, 253 struct rb_node **parent_in) 254 { 255 struct rb_node **p; 256 struct rb_node *parent = NULL; 257 struct tree_entry *entry; 258 259 if (p_in && parent_in) { 260 p = *p_in; 261 parent = *parent_in; 262 goto do_insert; 263 } 264 265 p = search_start ? &search_start : &root->rb_node; 266 while (*p) { 267 parent = *p; 268 entry = rb_entry(parent, struct tree_entry, rb_node); 269 270 if (offset < entry->start) 271 p = &(*p)->rb_left; 272 else if (offset > entry->end) 273 p = &(*p)->rb_right; 274 else 275 return parent; 276 } 277 278 do_insert: 279 rb_link_node(node, parent, p); 280 rb_insert_color(node, root); 281 return NULL; 282 } 283 284 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 285 struct rb_node **prev_ret, 286 struct rb_node **next_ret, 287 struct rb_node ***p_ret, 288 struct rb_node **parent_ret) 289 { 290 struct rb_root *root = &tree->state; 291 struct rb_node **n = &root->rb_node; 292 struct rb_node *prev = NULL; 293 struct rb_node *orig_prev = NULL; 294 struct tree_entry *entry; 295 struct tree_entry *prev_entry = NULL; 296 297 while (*n) { 298 prev = *n; 299 entry = rb_entry(prev, struct tree_entry, rb_node); 300 prev_entry = entry; 301 302 if (offset < entry->start) 303 n = &(*n)->rb_left; 304 else if (offset > entry->end) 305 n = &(*n)->rb_right; 306 else 307 return *n; 308 } 309 310 if (p_ret) 311 *p_ret = n; 312 if (parent_ret) 313 *parent_ret = prev; 314 315 if (prev_ret) { 316 orig_prev = prev; 317 while (prev && offset > prev_entry->end) { 318 prev = rb_next(prev); 319 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 320 } 321 *prev_ret = prev; 322 prev = orig_prev; 323 } 324 325 if (next_ret) { 326 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 327 while (prev && offset < prev_entry->start) { 328 prev = rb_prev(prev); 329 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 330 } 331 *next_ret = prev; 332 } 333 return NULL; 334 } 335 336 static inline struct rb_node * 337 tree_search_for_insert(struct extent_io_tree *tree, 338 u64 offset, 339 struct rb_node ***p_ret, 340 struct rb_node **parent_ret) 341 { 342 struct rb_node *prev = NULL; 343 struct rb_node *ret; 344 345 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 346 if (!ret) 347 return prev; 348 return ret; 349 } 350 351 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 352 u64 offset) 353 { 354 return tree_search_for_insert(tree, offset, NULL, NULL); 355 } 356 357 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 358 struct extent_state *other) 359 { 360 if (tree->ops && tree->ops->merge_extent_hook) 361 tree->ops->merge_extent_hook(tree->private_data, new, other); 362 } 363 364 /* 365 * utility function to look for merge candidates inside a given range. 366 * Any extents with matching state are merged together into a single 367 * extent in the tree. Extents with EXTENT_IO in their state field 368 * are not merged because the end_io handlers need to be able to do 369 * operations on them without sleeping (or doing allocations/splits). 370 * 371 * This should be called with the tree lock held. 372 */ 373 static void merge_state(struct extent_io_tree *tree, 374 struct extent_state *state) 375 { 376 struct extent_state *other; 377 struct rb_node *other_node; 378 379 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 380 return; 381 382 other_node = rb_prev(&state->rb_node); 383 if (other_node) { 384 other = rb_entry(other_node, struct extent_state, rb_node); 385 if (other->end == state->start - 1 && 386 other->state == state->state) { 387 merge_cb(tree, state, other); 388 state->start = other->start; 389 rb_erase(&other->rb_node, &tree->state); 390 RB_CLEAR_NODE(&other->rb_node); 391 free_extent_state(other); 392 } 393 } 394 other_node = rb_next(&state->rb_node); 395 if (other_node) { 396 other = rb_entry(other_node, struct extent_state, rb_node); 397 if (other->start == state->end + 1 && 398 other->state == state->state) { 399 merge_cb(tree, state, other); 400 state->end = other->end; 401 rb_erase(&other->rb_node, &tree->state); 402 RB_CLEAR_NODE(&other->rb_node); 403 free_extent_state(other); 404 } 405 } 406 } 407 408 static void set_state_cb(struct extent_io_tree *tree, 409 struct extent_state *state, unsigned *bits) 410 { 411 if (tree->ops && tree->ops->set_bit_hook) 412 tree->ops->set_bit_hook(tree->private_data, state, bits); 413 } 414 415 static void clear_state_cb(struct extent_io_tree *tree, 416 struct extent_state *state, unsigned *bits) 417 { 418 if (tree->ops && tree->ops->clear_bit_hook) 419 tree->ops->clear_bit_hook(tree->private_data, state, bits); 420 } 421 422 static void set_state_bits(struct extent_io_tree *tree, 423 struct extent_state *state, unsigned *bits, 424 struct extent_changeset *changeset); 425 426 /* 427 * insert an extent_state struct into the tree. 'bits' are set on the 428 * struct before it is inserted. 429 * 430 * This may return -EEXIST if the extent is already there, in which case the 431 * state struct is freed. 432 * 433 * The tree lock is not taken internally. This is a utility function and 434 * probably isn't what you want to call (see set/clear_extent_bit). 435 */ 436 static int insert_state(struct extent_io_tree *tree, 437 struct extent_state *state, u64 start, u64 end, 438 struct rb_node ***p, 439 struct rb_node **parent, 440 unsigned *bits, struct extent_changeset *changeset) 441 { 442 struct rb_node *node; 443 444 if (end < start) 445 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 446 end, start); 447 state->start = start; 448 state->end = end; 449 450 set_state_bits(tree, state, bits, changeset); 451 452 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 453 if (node) { 454 struct extent_state *found; 455 found = rb_entry(node, struct extent_state, rb_node); 456 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 457 found->start, found->end, start, end); 458 return -EEXIST; 459 } 460 merge_state(tree, state); 461 return 0; 462 } 463 464 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 465 u64 split) 466 { 467 if (tree->ops && tree->ops->split_extent_hook) 468 tree->ops->split_extent_hook(tree->private_data, orig, split); 469 } 470 471 /* 472 * split a given extent state struct in two, inserting the preallocated 473 * struct 'prealloc' as the newly created second half. 'split' indicates an 474 * offset inside 'orig' where it should be split. 475 * 476 * Before calling, 477 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 478 * are two extent state structs in the tree: 479 * prealloc: [orig->start, split - 1] 480 * orig: [ split, orig->end ] 481 * 482 * The tree locks are not taken by this function. They need to be held 483 * by the caller. 484 */ 485 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 486 struct extent_state *prealloc, u64 split) 487 { 488 struct rb_node *node; 489 490 split_cb(tree, orig, split); 491 492 prealloc->start = orig->start; 493 prealloc->end = split - 1; 494 prealloc->state = orig->state; 495 orig->start = split; 496 497 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 498 &prealloc->rb_node, NULL, NULL); 499 if (node) { 500 free_extent_state(prealloc); 501 return -EEXIST; 502 } 503 return 0; 504 } 505 506 static struct extent_state *next_state(struct extent_state *state) 507 { 508 struct rb_node *next = rb_next(&state->rb_node); 509 if (next) 510 return rb_entry(next, struct extent_state, rb_node); 511 else 512 return NULL; 513 } 514 515 /* 516 * utility function to clear some bits in an extent state struct. 517 * it will optionally wake up any one waiting on this state (wake == 1). 518 * 519 * If no bits are set on the state struct after clearing things, the 520 * struct is freed and removed from the tree 521 */ 522 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 523 struct extent_state *state, 524 unsigned *bits, int wake, 525 struct extent_changeset *changeset) 526 { 527 struct extent_state *next; 528 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 529 int ret; 530 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 532 u64 range = state->end - state->start + 1; 533 WARN_ON(range > tree->dirty_bytes); 534 tree->dirty_bytes -= range; 535 } 536 clear_state_cb(tree, state, bits); 537 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 538 BUG_ON(ret < 0); 539 state->state &= ~bits_to_clear; 540 if (wake) 541 wake_up(&state->wq); 542 if (state->state == 0) { 543 next = next_state(state); 544 if (extent_state_in_tree(state)) { 545 rb_erase(&state->rb_node, &tree->state); 546 RB_CLEAR_NODE(&state->rb_node); 547 free_extent_state(state); 548 } else { 549 WARN_ON(1); 550 } 551 } else { 552 merge_state(tree, state); 553 next = next_state(state); 554 } 555 return next; 556 } 557 558 static struct extent_state * 559 alloc_extent_state_atomic(struct extent_state *prealloc) 560 { 561 if (!prealloc) 562 prealloc = alloc_extent_state(GFP_ATOMIC); 563 564 return prealloc; 565 } 566 567 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 568 { 569 btrfs_panic(tree_fs_info(tree), err, 570 "Locking error: Extent tree was modified by another thread while locked."); 571 } 572 573 /* 574 * clear some bits on a range in the tree. This may require splitting 575 * or inserting elements in the tree, so the gfp mask is used to 576 * indicate which allocations or sleeping are allowed. 577 * 578 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 579 * the given range from the tree regardless of state (ie for truncate). 580 * 581 * the range [start, end] is inclusive. 582 * 583 * This takes the tree lock, and returns 0 on success and < 0 on error. 584 */ 585 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 586 unsigned bits, int wake, int delete, 587 struct extent_state **cached_state, 588 gfp_t mask, struct extent_changeset *changeset) 589 { 590 struct extent_state *state; 591 struct extent_state *cached; 592 struct extent_state *prealloc = NULL; 593 struct rb_node *node; 594 u64 last_end; 595 int err; 596 int clear = 0; 597 598 btrfs_debug_check_extent_io_range(tree, start, end); 599 600 if (bits & EXTENT_DELALLOC) 601 bits |= EXTENT_NORESERVE; 602 603 if (delete) 604 bits |= ~EXTENT_CTLBITS; 605 bits |= EXTENT_FIRST_DELALLOC; 606 607 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 608 clear = 1; 609 again: 610 if (!prealloc && gfpflags_allow_blocking(mask)) { 611 /* 612 * Don't care for allocation failure here because we might end 613 * up not needing the pre-allocated extent state at all, which 614 * is the case if we only have in the tree extent states that 615 * cover our input range and don't cover too any other range. 616 * If we end up needing a new extent state we allocate it later. 617 */ 618 prealloc = alloc_extent_state(mask); 619 } 620 621 spin_lock(&tree->lock); 622 if (cached_state) { 623 cached = *cached_state; 624 625 if (clear) { 626 *cached_state = NULL; 627 cached_state = NULL; 628 } 629 630 if (cached && extent_state_in_tree(cached) && 631 cached->start <= start && cached->end > start) { 632 if (clear) 633 refcount_dec(&cached->refs); 634 state = cached; 635 goto hit_next; 636 } 637 if (clear) 638 free_extent_state(cached); 639 } 640 /* 641 * this search will find the extents that end after 642 * our range starts 643 */ 644 node = tree_search(tree, start); 645 if (!node) 646 goto out; 647 state = rb_entry(node, struct extent_state, rb_node); 648 hit_next: 649 if (state->start > end) 650 goto out; 651 WARN_ON(state->end < start); 652 last_end = state->end; 653 654 /* the state doesn't have the wanted bits, go ahead */ 655 if (!(state->state & bits)) { 656 state = next_state(state); 657 goto next; 658 } 659 660 /* 661 * | ---- desired range ---- | 662 * | state | or 663 * | ------------- state -------------- | 664 * 665 * We need to split the extent we found, and may flip 666 * bits on second half. 667 * 668 * If the extent we found extends past our range, we 669 * just split and search again. It'll get split again 670 * the next time though. 671 * 672 * If the extent we found is inside our range, we clear 673 * the desired bit on it. 674 */ 675 676 if (state->start < start) { 677 prealloc = alloc_extent_state_atomic(prealloc); 678 BUG_ON(!prealloc); 679 err = split_state(tree, state, prealloc, start); 680 if (err) 681 extent_io_tree_panic(tree, err); 682 683 prealloc = NULL; 684 if (err) 685 goto out; 686 if (state->end <= end) { 687 state = clear_state_bit(tree, state, &bits, wake, 688 changeset); 689 goto next; 690 } 691 goto search_again; 692 } 693 /* 694 * | ---- desired range ---- | 695 * | state | 696 * We need to split the extent, and clear the bit 697 * on the first half 698 */ 699 if (state->start <= end && state->end > end) { 700 prealloc = alloc_extent_state_atomic(prealloc); 701 BUG_ON(!prealloc); 702 err = split_state(tree, state, prealloc, end + 1); 703 if (err) 704 extent_io_tree_panic(tree, err); 705 706 if (wake) 707 wake_up(&state->wq); 708 709 clear_state_bit(tree, prealloc, &bits, wake, changeset); 710 711 prealloc = NULL; 712 goto out; 713 } 714 715 state = clear_state_bit(tree, state, &bits, wake, changeset); 716 next: 717 if (last_end == (u64)-1) 718 goto out; 719 start = last_end + 1; 720 if (start <= end && state && !need_resched()) 721 goto hit_next; 722 723 search_again: 724 if (start > end) 725 goto out; 726 spin_unlock(&tree->lock); 727 if (gfpflags_allow_blocking(mask)) 728 cond_resched(); 729 goto again; 730 731 out: 732 spin_unlock(&tree->lock); 733 if (prealloc) 734 free_extent_state(prealloc); 735 736 return 0; 737 738 } 739 740 static void wait_on_state(struct extent_io_tree *tree, 741 struct extent_state *state) 742 __releases(tree->lock) 743 __acquires(tree->lock) 744 { 745 DEFINE_WAIT(wait); 746 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 747 spin_unlock(&tree->lock); 748 schedule(); 749 spin_lock(&tree->lock); 750 finish_wait(&state->wq, &wait); 751 } 752 753 /* 754 * waits for one or more bits to clear on a range in the state tree. 755 * The range [start, end] is inclusive. 756 * The tree lock is taken by this function 757 */ 758 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 759 unsigned long bits) 760 { 761 struct extent_state *state; 762 struct rb_node *node; 763 764 btrfs_debug_check_extent_io_range(tree, start, end); 765 766 spin_lock(&tree->lock); 767 again: 768 while (1) { 769 /* 770 * this search will find all the extents that end after 771 * our range starts 772 */ 773 node = tree_search(tree, start); 774 process_node: 775 if (!node) 776 break; 777 778 state = rb_entry(node, struct extent_state, rb_node); 779 780 if (state->start > end) 781 goto out; 782 783 if (state->state & bits) { 784 start = state->start; 785 refcount_inc(&state->refs); 786 wait_on_state(tree, state); 787 free_extent_state(state); 788 goto again; 789 } 790 start = state->end + 1; 791 792 if (start > end) 793 break; 794 795 if (!cond_resched_lock(&tree->lock)) { 796 node = rb_next(node); 797 goto process_node; 798 } 799 } 800 out: 801 spin_unlock(&tree->lock); 802 } 803 804 static void set_state_bits(struct extent_io_tree *tree, 805 struct extent_state *state, 806 unsigned *bits, struct extent_changeset *changeset) 807 { 808 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 809 int ret; 810 811 set_state_cb(tree, state, bits); 812 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 813 u64 range = state->end - state->start + 1; 814 tree->dirty_bytes += range; 815 } 816 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 817 BUG_ON(ret < 0); 818 state->state |= bits_to_set; 819 } 820 821 static void cache_state_if_flags(struct extent_state *state, 822 struct extent_state **cached_ptr, 823 unsigned flags) 824 { 825 if (cached_ptr && !(*cached_ptr)) { 826 if (!flags || (state->state & flags)) { 827 *cached_ptr = state; 828 refcount_inc(&state->refs); 829 } 830 } 831 } 832 833 static void cache_state(struct extent_state *state, 834 struct extent_state **cached_ptr) 835 { 836 return cache_state_if_flags(state, cached_ptr, 837 EXTENT_IOBITS | EXTENT_BOUNDARY); 838 } 839 840 /* 841 * set some bits on a range in the tree. This may require allocations or 842 * sleeping, so the gfp mask is used to indicate what is allowed. 843 * 844 * If any of the exclusive bits are set, this will fail with -EEXIST if some 845 * part of the range already has the desired bits set. The start of the 846 * existing range is returned in failed_start in this case. 847 * 848 * [start, end] is inclusive This takes the tree lock. 849 */ 850 851 static int __must_check 852 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 853 unsigned bits, unsigned exclusive_bits, 854 u64 *failed_start, struct extent_state **cached_state, 855 gfp_t mask, struct extent_changeset *changeset) 856 { 857 struct extent_state *state; 858 struct extent_state *prealloc = NULL; 859 struct rb_node *node; 860 struct rb_node **p; 861 struct rb_node *parent; 862 int err = 0; 863 u64 last_start; 864 u64 last_end; 865 866 btrfs_debug_check_extent_io_range(tree, start, end); 867 868 bits |= EXTENT_FIRST_DELALLOC; 869 again: 870 if (!prealloc && gfpflags_allow_blocking(mask)) { 871 /* 872 * Don't care for allocation failure here because we might end 873 * up not needing the pre-allocated extent state at all, which 874 * is the case if we only have in the tree extent states that 875 * cover our input range and don't cover too any other range. 876 * If we end up needing a new extent state we allocate it later. 877 */ 878 prealloc = alloc_extent_state(mask); 879 } 880 881 spin_lock(&tree->lock); 882 if (cached_state && *cached_state) { 883 state = *cached_state; 884 if (state->start <= start && state->end > start && 885 extent_state_in_tree(state)) { 886 node = &state->rb_node; 887 goto hit_next; 888 } 889 } 890 /* 891 * this search will find all the extents that end after 892 * our range starts. 893 */ 894 node = tree_search_for_insert(tree, start, &p, &parent); 895 if (!node) { 896 prealloc = alloc_extent_state_atomic(prealloc); 897 BUG_ON(!prealloc); 898 err = insert_state(tree, prealloc, start, end, 899 &p, &parent, &bits, changeset); 900 if (err) 901 extent_io_tree_panic(tree, err); 902 903 cache_state(prealloc, cached_state); 904 prealloc = NULL; 905 goto out; 906 } 907 state = rb_entry(node, struct extent_state, rb_node); 908 hit_next: 909 last_start = state->start; 910 last_end = state->end; 911 912 /* 913 * | ---- desired range ---- | 914 * | state | 915 * 916 * Just lock what we found and keep going 917 */ 918 if (state->start == start && state->end <= end) { 919 if (state->state & exclusive_bits) { 920 *failed_start = state->start; 921 err = -EEXIST; 922 goto out; 923 } 924 925 set_state_bits(tree, state, &bits, changeset); 926 cache_state(state, cached_state); 927 merge_state(tree, state); 928 if (last_end == (u64)-1) 929 goto out; 930 start = last_end + 1; 931 state = next_state(state); 932 if (start < end && state && state->start == start && 933 !need_resched()) 934 goto hit_next; 935 goto search_again; 936 } 937 938 /* 939 * | ---- desired range ---- | 940 * | state | 941 * or 942 * | ------------- state -------------- | 943 * 944 * We need to split the extent we found, and may flip bits on 945 * second half. 946 * 947 * If the extent we found extends past our 948 * range, we just split and search again. It'll get split 949 * again the next time though. 950 * 951 * If the extent we found is inside our range, we set the 952 * desired bit on it. 953 */ 954 if (state->start < start) { 955 if (state->state & exclusive_bits) { 956 *failed_start = start; 957 err = -EEXIST; 958 goto out; 959 } 960 961 prealloc = alloc_extent_state_atomic(prealloc); 962 BUG_ON(!prealloc); 963 err = split_state(tree, state, prealloc, start); 964 if (err) 965 extent_io_tree_panic(tree, err); 966 967 prealloc = NULL; 968 if (err) 969 goto out; 970 if (state->end <= end) { 971 set_state_bits(tree, state, &bits, changeset); 972 cache_state(state, cached_state); 973 merge_state(tree, state); 974 if (last_end == (u64)-1) 975 goto out; 976 start = last_end + 1; 977 state = next_state(state); 978 if (start < end && state && state->start == start && 979 !need_resched()) 980 goto hit_next; 981 } 982 goto search_again; 983 } 984 /* 985 * | ---- desired range ---- | 986 * | state | or | state | 987 * 988 * There's a hole, we need to insert something in it and 989 * ignore the extent we found. 990 */ 991 if (state->start > start) { 992 u64 this_end; 993 if (end < last_start) 994 this_end = end; 995 else 996 this_end = last_start - 1; 997 998 prealloc = alloc_extent_state_atomic(prealloc); 999 BUG_ON(!prealloc); 1000 1001 /* 1002 * Avoid to free 'prealloc' if it can be merged with 1003 * the later extent. 1004 */ 1005 err = insert_state(tree, prealloc, start, this_end, 1006 NULL, NULL, &bits, changeset); 1007 if (err) 1008 extent_io_tree_panic(tree, err); 1009 1010 cache_state(prealloc, cached_state); 1011 prealloc = NULL; 1012 start = this_end + 1; 1013 goto search_again; 1014 } 1015 /* 1016 * | ---- desired range ---- | 1017 * | state | 1018 * We need to split the extent, and set the bit 1019 * on the first half 1020 */ 1021 if (state->start <= end && state->end > end) { 1022 if (state->state & exclusive_bits) { 1023 *failed_start = start; 1024 err = -EEXIST; 1025 goto out; 1026 } 1027 1028 prealloc = alloc_extent_state_atomic(prealloc); 1029 BUG_ON(!prealloc); 1030 err = split_state(tree, state, prealloc, end + 1); 1031 if (err) 1032 extent_io_tree_panic(tree, err); 1033 1034 set_state_bits(tree, prealloc, &bits, changeset); 1035 cache_state(prealloc, cached_state); 1036 merge_state(tree, prealloc); 1037 prealloc = NULL; 1038 goto out; 1039 } 1040 1041 search_again: 1042 if (start > end) 1043 goto out; 1044 spin_unlock(&tree->lock); 1045 if (gfpflags_allow_blocking(mask)) 1046 cond_resched(); 1047 goto again; 1048 1049 out: 1050 spin_unlock(&tree->lock); 1051 if (prealloc) 1052 free_extent_state(prealloc); 1053 1054 return err; 1055 1056 } 1057 1058 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1059 unsigned bits, u64 * failed_start, 1060 struct extent_state **cached_state, gfp_t mask) 1061 { 1062 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1063 cached_state, mask, NULL); 1064 } 1065 1066 1067 /** 1068 * convert_extent_bit - convert all bits in a given range from one bit to 1069 * another 1070 * @tree: the io tree to search 1071 * @start: the start offset in bytes 1072 * @end: the end offset in bytes (inclusive) 1073 * @bits: the bits to set in this range 1074 * @clear_bits: the bits to clear in this range 1075 * @cached_state: state that we're going to cache 1076 * 1077 * This will go through and set bits for the given range. If any states exist 1078 * already in this range they are set with the given bit and cleared of the 1079 * clear_bits. This is only meant to be used by things that are mergeable, ie 1080 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1081 * boundary bits like LOCK. 1082 * 1083 * All allocations are done with GFP_NOFS. 1084 */ 1085 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1086 unsigned bits, unsigned clear_bits, 1087 struct extent_state **cached_state) 1088 { 1089 struct extent_state *state; 1090 struct extent_state *prealloc = NULL; 1091 struct rb_node *node; 1092 struct rb_node **p; 1093 struct rb_node *parent; 1094 int err = 0; 1095 u64 last_start; 1096 u64 last_end; 1097 bool first_iteration = true; 1098 1099 btrfs_debug_check_extent_io_range(tree, start, end); 1100 1101 again: 1102 if (!prealloc) { 1103 /* 1104 * Best effort, don't worry if extent state allocation fails 1105 * here for the first iteration. We might have a cached state 1106 * that matches exactly the target range, in which case no 1107 * extent state allocations are needed. We'll only know this 1108 * after locking the tree. 1109 */ 1110 prealloc = alloc_extent_state(GFP_NOFS); 1111 if (!prealloc && !first_iteration) 1112 return -ENOMEM; 1113 } 1114 1115 spin_lock(&tree->lock); 1116 if (cached_state && *cached_state) { 1117 state = *cached_state; 1118 if (state->start <= start && state->end > start && 1119 extent_state_in_tree(state)) { 1120 node = &state->rb_node; 1121 goto hit_next; 1122 } 1123 } 1124 1125 /* 1126 * this search will find all the extents that end after 1127 * our range starts. 1128 */ 1129 node = tree_search_for_insert(tree, start, &p, &parent); 1130 if (!node) { 1131 prealloc = alloc_extent_state_atomic(prealloc); 1132 if (!prealloc) { 1133 err = -ENOMEM; 1134 goto out; 1135 } 1136 err = insert_state(tree, prealloc, start, end, 1137 &p, &parent, &bits, NULL); 1138 if (err) 1139 extent_io_tree_panic(tree, err); 1140 cache_state(prealloc, cached_state); 1141 prealloc = NULL; 1142 goto out; 1143 } 1144 state = rb_entry(node, struct extent_state, rb_node); 1145 hit_next: 1146 last_start = state->start; 1147 last_end = state->end; 1148 1149 /* 1150 * | ---- desired range ---- | 1151 * | state | 1152 * 1153 * Just lock what we found and keep going 1154 */ 1155 if (state->start == start && state->end <= end) { 1156 set_state_bits(tree, state, &bits, NULL); 1157 cache_state(state, cached_state); 1158 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1159 if (last_end == (u64)-1) 1160 goto out; 1161 start = last_end + 1; 1162 if (start < end && state && state->start == start && 1163 !need_resched()) 1164 goto hit_next; 1165 goto search_again; 1166 } 1167 1168 /* 1169 * | ---- desired range ---- | 1170 * | state | 1171 * or 1172 * | ------------- state -------------- | 1173 * 1174 * We need to split the extent we found, and may flip bits on 1175 * second half. 1176 * 1177 * If the extent we found extends past our 1178 * range, we just split and search again. It'll get split 1179 * again the next time though. 1180 * 1181 * If the extent we found is inside our range, we set the 1182 * desired bit on it. 1183 */ 1184 if (state->start < start) { 1185 prealloc = alloc_extent_state_atomic(prealloc); 1186 if (!prealloc) { 1187 err = -ENOMEM; 1188 goto out; 1189 } 1190 err = split_state(tree, state, prealloc, start); 1191 if (err) 1192 extent_io_tree_panic(tree, err); 1193 prealloc = NULL; 1194 if (err) 1195 goto out; 1196 if (state->end <= end) { 1197 set_state_bits(tree, state, &bits, NULL); 1198 cache_state(state, cached_state); 1199 state = clear_state_bit(tree, state, &clear_bits, 0, 1200 NULL); 1201 if (last_end == (u64)-1) 1202 goto out; 1203 start = last_end + 1; 1204 if (start < end && state && state->start == start && 1205 !need_resched()) 1206 goto hit_next; 1207 } 1208 goto search_again; 1209 } 1210 /* 1211 * | ---- desired range ---- | 1212 * | state | or | state | 1213 * 1214 * There's a hole, we need to insert something in it and 1215 * ignore the extent we found. 1216 */ 1217 if (state->start > start) { 1218 u64 this_end; 1219 if (end < last_start) 1220 this_end = end; 1221 else 1222 this_end = last_start - 1; 1223 1224 prealloc = alloc_extent_state_atomic(prealloc); 1225 if (!prealloc) { 1226 err = -ENOMEM; 1227 goto out; 1228 } 1229 1230 /* 1231 * Avoid to free 'prealloc' if it can be merged with 1232 * the later extent. 1233 */ 1234 err = insert_state(tree, prealloc, start, this_end, 1235 NULL, NULL, &bits, NULL); 1236 if (err) 1237 extent_io_tree_panic(tree, err); 1238 cache_state(prealloc, cached_state); 1239 prealloc = NULL; 1240 start = this_end + 1; 1241 goto search_again; 1242 } 1243 /* 1244 * | ---- desired range ---- | 1245 * | state | 1246 * We need to split the extent, and set the bit 1247 * on the first half 1248 */ 1249 if (state->start <= end && state->end > end) { 1250 prealloc = alloc_extent_state_atomic(prealloc); 1251 if (!prealloc) { 1252 err = -ENOMEM; 1253 goto out; 1254 } 1255 1256 err = split_state(tree, state, prealloc, end + 1); 1257 if (err) 1258 extent_io_tree_panic(tree, err); 1259 1260 set_state_bits(tree, prealloc, &bits, NULL); 1261 cache_state(prealloc, cached_state); 1262 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1263 prealloc = NULL; 1264 goto out; 1265 } 1266 1267 search_again: 1268 if (start > end) 1269 goto out; 1270 spin_unlock(&tree->lock); 1271 cond_resched(); 1272 first_iteration = false; 1273 goto again; 1274 1275 out: 1276 spin_unlock(&tree->lock); 1277 if (prealloc) 1278 free_extent_state(prealloc); 1279 1280 return err; 1281 } 1282 1283 /* wrappers around set/clear extent bit */ 1284 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1285 unsigned bits, struct extent_changeset *changeset) 1286 { 1287 /* 1288 * We don't support EXTENT_LOCKED yet, as current changeset will 1289 * record any bits changed, so for EXTENT_LOCKED case, it will 1290 * either fail with -EEXIST or changeset will record the whole 1291 * range. 1292 */ 1293 BUG_ON(bits & EXTENT_LOCKED); 1294 1295 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1296 changeset); 1297 } 1298 1299 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1300 unsigned bits, int wake, int delete, 1301 struct extent_state **cached) 1302 { 1303 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1304 cached, GFP_NOFS, NULL); 1305 } 1306 1307 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1308 unsigned bits, struct extent_changeset *changeset) 1309 { 1310 /* 1311 * Don't support EXTENT_LOCKED case, same reason as 1312 * set_record_extent_bits(). 1313 */ 1314 BUG_ON(bits & EXTENT_LOCKED); 1315 1316 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1317 changeset); 1318 } 1319 1320 /* 1321 * either insert or lock state struct between start and end use mask to tell 1322 * us if waiting is desired. 1323 */ 1324 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1325 struct extent_state **cached_state) 1326 { 1327 int err; 1328 u64 failed_start; 1329 1330 while (1) { 1331 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1332 EXTENT_LOCKED, &failed_start, 1333 cached_state, GFP_NOFS, NULL); 1334 if (err == -EEXIST) { 1335 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1336 start = failed_start; 1337 } else 1338 break; 1339 WARN_ON(start > end); 1340 } 1341 return err; 1342 } 1343 1344 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1345 { 1346 int err; 1347 u64 failed_start; 1348 1349 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1350 &failed_start, NULL, GFP_NOFS, NULL); 1351 if (err == -EEXIST) { 1352 if (failed_start > start) 1353 clear_extent_bit(tree, start, failed_start - 1, 1354 EXTENT_LOCKED, 1, 0, NULL); 1355 return 0; 1356 } 1357 return 1; 1358 } 1359 1360 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1361 { 1362 unsigned long index = start >> PAGE_SHIFT; 1363 unsigned long end_index = end >> PAGE_SHIFT; 1364 struct page *page; 1365 1366 while (index <= end_index) { 1367 page = find_get_page(inode->i_mapping, index); 1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1369 clear_page_dirty_for_io(page); 1370 put_page(page); 1371 index++; 1372 } 1373 } 1374 1375 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1376 { 1377 unsigned long index = start >> PAGE_SHIFT; 1378 unsigned long end_index = end >> PAGE_SHIFT; 1379 struct page *page; 1380 1381 while (index <= end_index) { 1382 page = find_get_page(inode->i_mapping, index); 1383 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1384 __set_page_dirty_nobuffers(page); 1385 account_page_redirty(page); 1386 put_page(page); 1387 index++; 1388 } 1389 } 1390 1391 /* 1392 * helper function to set both pages and extents in the tree writeback 1393 */ 1394 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1395 { 1396 tree->ops->set_range_writeback(tree->private_data, start, end); 1397 } 1398 1399 /* find the first state struct with 'bits' set after 'start', and 1400 * return it. tree->lock must be held. NULL will returned if 1401 * nothing was found after 'start' 1402 */ 1403 static struct extent_state * 1404 find_first_extent_bit_state(struct extent_io_tree *tree, 1405 u64 start, unsigned bits) 1406 { 1407 struct rb_node *node; 1408 struct extent_state *state; 1409 1410 /* 1411 * this search will find all the extents that end after 1412 * our range starts. 1413 */ 1414 node = tree_search(tree, start); 1415 if (!node) 1416 goto out; 1417 1418 while (1) { 1419 state = rb_entry(node, struct extent_state, rb_node); 1420 if (state->end >= start && (state->state & bits)) 1421 return state; 1422 1423 node = rb_next(node); 1424 if (!node) 1425 break; 1426 } 1427 out: 1428 return NULL; 1429 } 1430 1431 /* 1432 * find the first offset in the io tree with 'bits' set. zero is 1433 * returned if we find something, and *start_ret and *end_ret are 1434 * set to reflect the state struct that was found. 1435 * 1436 * If nothing was found, 1 is returned. If found something, return 0. 1437 */ 1438 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1439 u64 *start_ret, u64 *end_ret, unsigned bits, 1440 struct extent_state **cached_state) 1441 { 1442 struct extent_state *state; 1443 struct rb_node *n; 1444 int ret = 1; 1445 1446 spin_lock(&tree->lock); 1447 if (cached_state && *cached_state) { 1448 state = *cached_state; 1449 if (state->end == start - 1 && extent_state_in_tree(state)) { 1450 n = rb_next(&state->rb_node); 1451 while (n) { 1452 state = rb_entry(n, struct extent_state, 1453 rb_node); 1454 if (state->state & bits) 1455 goto got_it; 1456 n = rb_next(n); 1457 } 1458 free_extent_state(*cached_state); 1459 *cached_state = NULL; 1460 goto out; 1461 } 1462 free_extent_state(*cached_state); 1463 *cached_state = NULL; 1464 } 1465 1466 state = find_first_extent_bit_state(tree, start, bits); 1467 got_it: 1468 if (state) { 1469 cache_state_if_flags(state, cached_state, 0); 1470 *start_ret = state->start; 1471 *end_ret = state->end; 1472 ret = 0; 1473 } 1474 out: 1475 spin_unlock(&tree->lock); 1476 return ret; 1477 } 1478 1479 /* 1480 * find a contiguous range of bytes in the file marked as delalloc, not 1481 * more than 'max_bytes'. start and end are used to return the range, 1482 * 1483 * 1 is returned if we find something, 0 if nothing was in the tree 1484 */ 1485 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1486 u64 *start, u64 *end, u64 max_bytes, 1487 struct extent_state **cached_state) 1488 { 1489 struct rb_node *node; 1490 struct extent_state *state; 1491 u64 cur_start = *start; 1492 u64 found = 0; 1493 u64 total_bytes = 0; 1494 1495 spin_lock(&tree->lock); 1496 1497 /* 1498 * this search will find all the extents that end after 1499 * our range starts. 1500 */ 1501 node = tree_search(tree, cur_start); 1502 if (!node) { 1503 if (!found) 1504 *end = (u64)-1; 1505 goto out; 1506 } 1507 1508 while (1) { 1509 state = rb_entry(node, struct extent_state, rb_node); 1510 if (found && (state->start != cur_start || 1511 (state->state & EXTENT_BOUNDARY))) { 1512 goto out; 1513 } 1514 if (!(state->state & EXTENT_DELALLOC)) { 1515 if (!found) 1516 *end = state->end; 1517 goto out; 1518 } 1519 if (!found) { 1520 *start = state->start; 1521 *cached_state = state; 1522 refcount_inc(&state->refs); 1523 } 1524 found++; 1525 *end = state->end; 1526 cur_start = state->end + 1; 1527 node = rb_next(node); 1528 total_bytes += state->end - state->start + 1; 1529 if (total_bytes >= max_bytes) 1530 break; 1531 if (!node) 1532 break; 1533 } 1534 out: 1535 spin_unlock(&tree->lock); 1536 return found; 1537 } 1538 1539 static int __process_pages_contig(struct address_space *mapping, 1540 struct page *locked_page, 1541 pgoff_t start_index, pgoff_t end_index, 1542 unsigned long page_ops, pgoff_t *index_ret); 1543 1544 static noinline void __unlock_for_delalloc(struct inode *inode, 1545 struct page *locked_page, 1546 u64 start, u64 end) 1547 { 1548 unsigned long index = start >> PAGE_SHIFT; 1549 unsigned long end_index = end >> PAGE_SHIFT; 1550 1551 ASSERT(locked_page); 1552 if (index == locked_page->index && end_index == index) 1553 return; 1554 1555 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1556 PAGE_UNLOCK, NULL); 1557 } 1558 1559 static noinline int lock_delalloc_pages(struct inode *inode, 1560 struct page *locked_page, 1561 u64 delalloc_start, 1562 u64 delalloc_end) 1563 { 1564 unsigned long index = delalloc_start >> PAGE_SHIFT; 1565 unsigned long index_ret = index; 1566 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1567 int ret; 1568 1569 ASSERT(locked_page); 1570 if (index == locked_page->index && index == end_index) 1571 return 0; 1572 1573 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1574 end_index, PAGE_LOCK, &index_ret); 1575 if (ret == -EAGAIN) 1576 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1577 (u64)index_ret << PAGE_SHIFT); 1578 return ret; 1579 } 1580 1581 /* 1582 * find a contiguous range of bytes in the file marked as delalloc, not 1583 * more than 'max_bytes'. start and end are used to return the range, 1584 * 1585 * 1 is returned if we find something, 0 if nothing was in the tree 1586 */ 1587 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1588 struct extent_io_tree *tree, 1589 struct page *locked_page, u64 *start, 1590 u64 *end, u64 max_bytes) 1591 { 1592 u64 delalloc_start; 1593 u64 delalloc_end; 1594 u64 found; 1595 struct extent_state *cached_state = NULL; 1596 int ret; 1597 int loops = 0; 1598 1599 again: 1600 /* step one, find a bunch of delalloc bytes starting at start */ 1601 delalloc_start = *start; 1602 delalloc_end = 0; 1603 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1604 max_bytes, &cached_state); 1605 if (!found || delalloc_end <= *start) { 1606 *start = delalloc_start; 1607 *end = delalloc_end; 1608 free_extent_state(cached_state); 1609 return 0; 1610 } 1611 1612 /* 1613 * start comes from the offset of locked_page. We have to lock 1614 * pages in order, so we can't process delalloc bytes before 1615 * locked_page 1616 */ 1617 if (delalloc_start < *start) 1618 delalloc_start = *start; 1619 1620 /* 1621 * make sure to limit the number of pages we try to lock down 1622 */ 1623 if (delalloc_end + 1 - delalloc_start > max_bytes) 1624 delalloc_end = delalloc_start + max_bytes - 1; 1625 1626 /* step two, lock all the pages after the page that has start */ 1627 ret = lock_delalloc_pages(inode, locked_page, 1628 delalloc_start, delalloc_end); 1629 if (ret == -EAGAIN) { 1630 /* some of the pages are gone, lets avoid looping by 1631 * shortening the size of the delalloc range we're searching 1632 */ 1633 free_extent_state(cached_state); 1634 cached_state = NULL; 1635 if (!loops) { 1636 max_bytes = PAGE_SIZE; 1637 loops = 1; 1638 goto again; 1639 } else { 1640 found = 0; 1641 goto out_failed; 1642 } 1643 } 1644 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1645 1646 /* step three, lock the state bits for the whole range */ 1647 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1648 1649 /* then test to make sure it is all still delalloc */ 1650 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1651 EXTENT_DELALLOC, 1, cached_state); 1652 if (!ret) { 1653 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1654 &cached_state); 1655 __unlock_for_delalloc(inode, locked_page, 1656 delalloc_start, delalloc_end); 1657 cond_resched(); 1658 goto again; 1659 } 1660 free_extent_state(cached_state); 1661 *start = delalloc_start; 1662 *end = delalloc_end; 1663 out_failed: 1664 return found; 1665 } 1666 1667 static int __process_pages_contig(struct address_space *mapping, 1668 struct page *locked_page, 1669 pgoff_t start_index, pgoff_t end_index, 1670 unsigned long page_ops, pgoff_t *index_ret) 1671 { 1672 unsigned long nr_pages = end_index - start_index + 1; 1673 unsigned long pages_locked = 0; 1674 pgoff_t index = start_index; 1675 struct page *pages[16]; 1676 unsigned ret; 1677 int err = 0; 1678 int i; 1679 1680 if (page_ops & PAGE_LOCK) { 1681 ASSERT(page_ops == PAGE_LOCK); 1682 ASSERT(index_ret && *index_ret == start_index); 1683 } 1684 1685 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1686 mapping_set_error(mapping, -EIO); 1687 1688 while (nr_pages > 0) { 1689 ret = find_get_pages_contig(mapping, index, 1690 min_t(unsigned long, 1691 nr_pages, ARRAY_SIZE(pages)), pages); 1692 if (ret == 0) { 1693 /* 1694 * Only if we're going to lock these pages, 1695 * can we find nothing at @index. 1696 */ 1697 ASSERT(page_ops & PAGE_LOCK); 1698 err = -EAGAIN; 1699 goto out; 1700 } 1701 1702 for (i = 0; i < ret; i++) { 1703 if (page_ops & PAGE_SET_PRIVATE2) 1704 SetPagePrivate2(pages[i]); 1705 1706 if (pages[i] == locked_page) { 1707 put_page(pages[i]); 1708 pages_locked++; 1709 continue; 1710 } 1711 if (page_ops & PAGE_CLEAR_DIRTY) 1712 clear_page_dirty_for_io(pages[i]); 1713 if (page_ops & PAGE_SET_WRITEBACK) 1714 set_page_writeback(pages[i]); 1715 if (page_ops & PAGE_SET_ERROR) 1716 SetPageError(pages[i]); 1717 if (page_ops & PAGE_END_WRITEBACK) 1718 end_page_writeback(pages[i]); 1719 if (page_ops & PAGE_UNLOCK) 1720 unlock_page(pages[i]); 1721 if (page_ops & PAGE_LOCK) { 1722 lock_page(pages[i]); 1723 if (!PageDirty(pages[i]) || 1724 pages[i]->mapping != mapping) { 1725 unlock_page(pages[i]); 1726 put_page(pages[i]); 1727 err = -EAGAIN; 1728 goto out; 1729 } 1730 } 1731 put_page(pages[i]); 1732 pages_locked++; 1733 } 1734 nr_pages -= ret; 1735 index += ret; 1736 cond_resched(); 1737 } 1738 out: 1739 if (err && index_ret) 1740 *index_ret = start_index + pages_locked - 1; 1741 return err; 1742 } 1743 1744 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1745 u64 delalloc_end, struct page *locked_page, 1746 unsigned clear_bits, 1747 unsigned long page_ops) 1748 { 1749 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1750 NULL); 1751 1752 __process_pages_contig(inode->i_mapping, locked_page, 1753 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1754 page_ops, NULL); 1755 } 1756 1757 /* 1758 * count the number of bytes in the tree that have a given bit(s) 1759 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1760 * cached. The total number found is returned. 1761 */ 1762 u64 count_range_bits(struct extent_io_tree *tree, 1763 u64 *start, u64 search_end, u64 max_bytes, 1764 unsigned bits, int contig) 1765 { 1766 struct rb_node *node; 1767 struct extent_state *state; 1768 u64 cur_start = *start; 1769 u64 total_bytes = 0; 1770 u64 last = 0; 1771 int found = 0; 1772 1773 if (WARN_ON(search_end <= cur_start)) 1774 return 0; 1775 1776 spin_lock(&tree->lock); 1777 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1778 total_bytes = tree->dirty_bytes; 1779 goto out; 1780 } 1781 /* 1782 * this search will find all the extents that end after 1783 * our range starts. 1784 */ 1785 node = tree_search(tree, cur_start); 1786 if (!node) 1787 goto out; 1788 1789 while (1) { 1790 state = rb_entry(node, struct extent_state, rb_node); 1791 if (state->start > search_end) 1792 break; 1793 if (contig && found && state->start > last + 1) 1794 break; 1795 if (state->end >= cur_start && (state->state & bits) == bits) { 1796 total_bytes += min(search_end, state->end) + 1 - 1797 max(cur_start, state->start); 1798 if (total_bytes >= max_bytes) 1799 break; 1800 if (!found) { 1801 *start = max(cur_start, state->start); 1802 found = 1; 1803 } 1804 last = state->end; 1805 } else if (contig && found) { 1806 break; 1807 } 1808 node = rb_next(node); 1809 if (!node) 1810 break; 1811 } 1812 out: 1813 spin_unlock(&tree->lock); 1814 return total_bytes; 1815 } 1816 1817 /* 1818 * set the private field for a given byte offset in the tree. If there isn't 1819 * an extent_state there already, this does nothing. 1820 */ 1821 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1822 struct io_failure_record *failrec) 1823 { 1824 struct rb_node *node; 1825 struct extent_state *state; 1826 int ret = 0; 1827 1828 spin_lock(&tree->lock); 1829 /* 1830 * this search will find all the extents that end after 1831 * our range starts. 1832 */ 1833 node = tree_search(tree, start); 1834 if (!node) { 1835 ret = -ENOENT; 1836 goto out; 1837 } 1838 state = rb_entry(node, struct extent_state, rb_node); 1839 if (state->start != start) { 1840 ret = -ENOENT; 1841 goto out; 1842 } 1843 state->failrec = failrec; 1844 out: 1845 spin_unlock(&tree->lock); 1846 return ret; 1847 } 1848 1849 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1850 struct io_failure_record **failrec) 1851 { 1852 struct rb_node *node; 1853 struct extent_state *state; 1854 int ret = 0; 1855 1856 spin_lock(&tree->lock); 1857 /* 1858 * this search will find all the extents that end after 1859 * our range starts. 1860 */ 1861 node = tree_search(tree, start); 1862 if (!node) { 1863 ret = -ENOENT; 1864 goto out; 1865 } 1866 state = rb_entry(node, struct extent_state, rb_node); 1867 if (state->start != start) { 1868 ret = -ENOENT; 1869 goto out; 1870 } 1871 *failrec = state->failrec; 1872 out: 1873 spin_unlock(&tree->lock); 1874 return ret; 1875 } 1876 1877 /* 1878 * searches a range in the state tree for a given mask. 1879 * If 'filled' == 1, this returns 1 only if every extent in the tree 1880 * has the bits set. Otherwise, 1 is returned if any bit in the 1881 * range is found set. 1882 */ 1883 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1884 unsigned bits, int filled, struct extent_state *cached) 1885 { 1886 struct extent_state *state = NULL; 1887 struct rb_node *node; 1888 int bitset = 0; 1889 1890 spin_lock(&tree->lock); 1891 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1892 cached->end > start) 1893 node = &cached->rb_node; 1894 else 1895 node = tree_search(tree, start); 1896 while (node && start <= end) { 1897 state = rb_entry(node, struct extent_state, rb_node); 1898 1899 if (filled && state->start > start) { 1900 bitset = 0; 1901 break; 1902 } 1903 1904 if (state->start > end) 1905 break; 1906 1907 if (state->state & bits) { 1908 bitset = 1; 1909 if (!filled) 1910 break; 1911 } else if (filled) { 1912 bitset = 0; 1913 break; 1914 } 1915 1916 if (state->end == (u64)-1) 1917 break; 1918 1919 start = state->end + 1; 1920 if (start > end) 1921 break; 1922 node = rb_next(node); 1923 if (!node) { 1924 if (filled) 1925 bitset = 0; 1926 break; 1927 } 1928 } 1929 spin_unlock(&tree->lock); 1930 return bitset; 1931 } 1932 1933 /* 1934 * helper function to set a given page up to date if all the 1935 * extents in the tree for that page are up to date 1936 */ 1937 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1938 { 1939 u64 start = page_offset(page); 1940 u64 end = start + PAGE_SIZE - 1; 1941 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1942 SetPageUptodate(page); 1943 } 1944 1945 int free_io_failure(struct extent_io_tree *failure_tree, 1946 struct extent_io_tree *io_tree, 1947 struct io_failure_record *rec) 1948 { 1949 int ret; 1950 int err = 0; 1951 1952 set_state_failrec(failure_tree, rec->start, NULL); 1953 ret = clear_extent_bits(failure_tree, rec->start, 1954 rec->start + rec->len - 1, 1955 EXTENT_LOCKED | EXTENT_DIRTY); 1956 if (ret) 1957 err = ret; 1958 1959 ret = clear_extent_bits(io_tree, rec->start, 1960 rec->start + rec->len - 1, 1961 EXTENT_DAMAGED); 1962 if (ret && !err) 1963 err = ret; 1964 1965 kfree(rec); 1966 return err; 1967 } 1968 1969 /* 1970 * this bypasses the standard btrfs submit functions deliberately, as 1971 * the standard behavior is to write all copies in a raid setup. here we only 1972 * want to write the one bad copy. so we do the mapping for ourselves and issue 1973 * submit_bio directly. 1974 * to avoid any synchronization issues, wait for the data after writing, which 1975 * actually prevents the read that triggered the error from finishing. 1976 * currently, there can be no more than two copies of every data bit. thus, 1977 * exactly one rewrite is required. 1978 */ 1979 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1980 u64 length, u64 logical, struct page *page, 1981 unsigned int pg_offset, int mirror_num) 1982 { 1983 struct bio *bio; 1984 struct btrfs_device *dev; 1985 u64 map_length = 0; 1986 u64 sector; 1987 struct btrfs_bio *bbio = NULL; 1988 int ret; 1989 1990 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1991 BUG_ON(!mirror_num); 1992 1993 bio = btrfs_io_bio_alloc(1); 1994 bio->bi_iter.bi_size = 0; 1995 map_length = length; 1996 1997 /* 1998 * Avoid races with device replace and make sure our bbio has devices 1999 * associated to its stripes that don't go away while we are doing the 2000 * read repair operation. 2001 */ 2002 btrfs_bio_counter_inc_blocked(fs_info); 2003 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2004 /* 2005 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2006 * to update all raid stripes, but here we just want to correct 2007 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2008 * stripe's dev and sector. 2009 */ 2010 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2011 &map_length, &bbio, 0); 2012 if (ret) { 2013 btrfs_bio_counter_dec(fs_info); 2014 bio_put(bio); 2015 return -EIO; 2016 } 2017 ASSERT(bbio->mirror_num == 1); 2018 } else { 2019 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2020 &map_length, &bbio, mirror_num); 2021 if (ret) { 2022 btrfs_bio_counter_dec(fs_info); 2023 bio_put(bio); 2024 return -EIO; 2025 } 2026 BUG_ON(mirror_num != bbio->mirror_num); 2027 } 2028 2029 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2030 bio->bi_iter.bi_sector = sector; 2031 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2032 btrfs_put_bbio(bbio); 2033 if (!dev || !dev->bdev || 2034 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2035 btrfs_bio_counter_dec(fs_info); 2036 bio_put(bio); 2037 return -EIO; 2038 } 2039 bio_set_dev(bio, dev->bdev); 2040 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2041 bio_add_page(bio, page, length, pg_offset); 2042 2043 if (btrfsic_submit_bio_wait(bio)) { 2044 /* try to remap that extent elsewhere? */ 2045 btrfs_bio_counter_dec(fs_info); 2046 bio_put(bio); 2047 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2048 return -EIO; 2049 } 2050 2051 btrfs_info_rl_in_rcu(fs_info, 2052 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2053 ino, start, 2054 rcu_str_deref(dev->name), sector); 2055 btrfs_bio_counter_dec(fs_info); 2056 bio_put(bio); 2057 return 0; 2058 } 2059 2060 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2061 struct extent_buffer *eb, int mirror_num) 2062 { 2063 u64 start = eb->start; 2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2065 int ret = 0; 2066 2067 if (sb_rdonly(fs_info->sb)) 2068 return -EROFS; 2069 2070 for (i = 0; i < num_pages; i++) { 2071 struct page *p = eb->pages[i]; 2072 2073 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2074 start - page_offset(p), mirror_num); 2075 if (ret) 2076 break; 2077 start += PAGE_SIZE; 2078 } 2079 2080 return ret; 2081 } 2082 2083 /* 2084 * each time an IO finishes, we do a fast check in the IO failure tree 2085 * to see if we need to process or clean up an io_failure_record 2086 */ 2087 int clean_io_failure(struct btrfs_fs_info *fs_info, 2088 struct extent_io_tree *failure_tree, 2089 struct extent_io_tree *io_tree, u64 start, 2090 struct page *page, u64 ino, unsigned int pg_offset) 2091 { 2092 u64 private; 2093 struct io_failure_record *failrec; 2094 struct extent_state *state; 2095 int num_copies; 2096 int ret; 2097 2098 private = 0; 2099 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2100 EXTENT_DIRTY, 0); 2101 if (!ret) 2102 return 0; 2103 2104 ret = get_state_failrec(failure_tree, start, &failrec); 2105 if (ret) 2106 return 0; 2107 2108 BUG_ON(!failrec->this_mirror); 2109 2110 if (failrec->in_validation) { 2111 /* there was no real error, just free the record */ 2112 btrfs_debug(fs_info, 2113 "clean_io_failure: freeing dummy error at %llu", 2114 failrec->start); 2115 goto out; 2116 } 2117 if (sb_rdonly(fs_info->sb)) 2118 goto out; 2119 2120 spin_lock(&io_tree->lock); 2121 state = find_first_extent_bit_state(io_tree, 2122 failrec->start, 2123 EXTENT_LOCKED); 2124 spin_unlock(&io_tree->lock); 2125 2126 if (state && state->start <= failrec->start && 2127 state->end >= failrec->start + failrec->len - 1) { 2128 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2129 failrec->len); 2130 if (num_copies > 1) { 2131 repair_io_failure(fs_info, ino, start, failrec->len, 2132 failrec->logical, page, pg_offset, 2133 failrec->failed_mirror); 2134 } 2135 } 2136 2137 out: 2138 free_io_failure(failure_tree, io_tree, failrec); 2139 2140 return 0; 2141 } 2142 2143 /* 2144 * Can be called when 2145 * - hold extent lock 2146 * - under ordered extent 2147 * - the inode is freeing 2148 */ 2149 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2150 { 2151 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2152 struct io_failure_record *failrec; 2153 struct extent_state *state, *next; 2154 2155 if (RB_EMPTY_ROOT(&failure_tree->state)) 2156 return; 2157 2158 spin_lock(&failure_tree->lock); 2159 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2160 while (state) { 2161 if (state->start > end) 2162 break; 2163 2164 ASSERT(state->end <= end); 2165 2166 next = next_state(state); 2167 2168 failrec = state->failrec; 2169 free_extent_state(state); 2170 kfree(failrec); 2171 2172 state = next; 2173 } 2174 spin_unlock(&failure_tree->lock); 2175 } 2176 2177 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2178 struct io_failure_record **failrec_ret) 2179 { 2180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2181 struct io_failure_record *failrec; 2182 struct extent_map *em; 2183 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2184 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2185 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2186 int ret; 2187 u64 logical; 2188 2189 ret = get_state_failrec(failure_tree, start, &failrec); 2190 if (ret) { 2191 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2192 if (!failrec) 2193 return -ENOMEM; 2194 2195 failrec->start = start; 2196 failrec->len = end - start + 1; 2197 failrec->this_mirror = 0; 2198 failrec->bio_flags = 0; 2199 failrec->in_validation = 0; 2200 2201 read_lock(&em_tree->lock); 2202 em = lookup_extent_mapping(em_tree, start, failrec->len); 2203 if (!em) { 2204 read_unlock(&em_tree->lock); 2205 kfree(failrec); 2206 return -EIO; 2207 } 2208 2209 if (em->start > start || em->start + em->len <= start) { 2210 free_extent_map(em); 2211 em = NULL; 2212 } 2213 read_unlock(&em_tree->lock); 2214 if (!em) { 2215 kfree(failrec); 2216 return -EIO; 2217 } 2218 2219 logical = start - em->start; 2220 logical = em->block_start + logical; 2221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2222 logical = em->block_start; 2223 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2224 extent_set_compress_type(&failrec->bio_flags, 2225 em->compress_type); 2226 } 2227 2228 btrfs_debug(fs_info, 2229 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2230 logical, start, failrec->len); 2231 2232 failrec->logical = logical; 2233 free_extent_map(em); 2234 2235 /* set the bits in the private failure tree */ 2236 ret = set_extent_bits(failure_tree, start, end, 2237 EXTENT_LOCKED | EXTENT_DIRTY); 2238 if (ret >= 0) 2239 ret = set_state_failrec(failure_tree, start, failrec); 2240 /* set the bits in the inode's tree */ 2241 if (ret >= 0) 2242 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2243 if (ret < 0) { 2244 kfree(failrec); 2245 return ret; 2246 } 2247 } else { 2248 btrfs_debug(fs_info, 2249 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2250 failrec->logical, failrec->start, failrec->len, 2251 failrec->in_validation); 2252 /* 2253 * when data can be on disk more than twice, add to failrec here 2254 * (e.g. with a list for failed_mirror) to make 2255 * clean_io_failure() clean all those errors at once. 2256 */ 2257 } 2258 2259 *failrec_ret = failrec; 2260 2261 return 0; 2262 } 2263 2264 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2265 struct io_failure_record *failrec, int failed_mirror) 2266 { 2267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2268 int num_copies; 2269 2270 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2271 if (num_copies == 1) { 2272 /* 2273 * we only have a single copy of the data, so don't bother with 2274 * all the retry and error correction code that follows. no 2275 * matter what the error is, it is very likely to persist. 2276 */ 2277 btrfs_debug(fs_info, 2278 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2279 num_copies, failrec->this_mirror, failed_mirror); 2280 return false; 2281 } 2282 2283 /* 2284 * there are two premises: 2285 * a) deliver good data to the caller 2286 * b) correct the bad sectors on disk 2287 */ 2288 if (failed_bio_pages > 1) { 2289 /* 2290 * to fulfill b), we need to know the exact failing sectors, as 2291 * we don't want to rewrite any more than the failed ones. thus, 2292 * we need separate read requests for the failed bio 2293 * 2294 * if the following BUG_ON triggers, our validation request got 2295 * merged. we need separate requests for our algorithm to work. 2296 */ 2297 BUG_ON(failrec->in_validation); 2298 failrec->in_validation = 1; 2299 failrec->this_mirror = failed_mirror; 2300 } else { 2301 /* 2302 * we're ready to fulfill a) and b) alongside. get a good copy 2303 * of the failed sector and if we succeed, we have setup 2304 * everything for repair_io_failure to do the rest for us. 2305 */ 2306 if (failrec->in_validation) { 2307 BUG_ON(failrec->this_mirror != failed_mirror); 2308 failrec->in_validation = 0; 2309 failrec->this_mirror = 0; 2310 } 2311 failrec->failed_mirror = failed_mirror; 2312 failrec->this_mirror++; 2313 if (failrec->this_mirror == failed_mirror) 2314 failrec->this_mirror++; 2315 } 2316 2317 if (failrec->this_mirror > num_copies) { 2318 btrfs_debug(fs_info, 2319 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2320 num_copies, failrec->this_mirror, failed_mirror); 2321 return false; 2322 } 2323 2324 return true; 2325 } 2326 2327 2328 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2329 struct io_failure_record *failrec, 2330 struct page *page, int pg_offset, int icsum, 2331 bio_end_io_t *endio_func, void *data) 2332 { 2333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2334 struct bio *bio; 2335 struct btrfs_io_bio *btrfs_failed_bio; 2336 struct btrfs_io_bio *btrfs_bio; 2337 2338 bio = btrfs_io_bio_alloc(1); 2339 bio->bi_end_io = endio_func; 2340 bio->bi_iter.bi_sector = failrec->logical >> 9; 2341 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2342 bio->bi_iter.bi_size = 0; 2343 bio->bi_private = data; 2344 2345 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2346 if (btrfs_failed_bio->csum) { 2347 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2348 2349 btrfs_bio = btrfs_io_bio(bio); 2350 btrfs_bio->csum = btrfs_bio->csum_inline; 2351 icsum *= csum_size; 2352 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2353 csum_size); 2354 } 2355 2356 bio_add_page(bio, page, failrec->len, pg_offset); 2357 2358 return bio; 2359 } 2360 2361 /* 2362 * this is a generic handler for readpage errors (default 2363 * readpage_io_failed_hook). if other copies exist, read those and write back 2364 * good data to the failed position. does not investigate in remapping the 2365 * failed extent elsewhere, hoping the device will be smart enough to do this as 2366 * needed 2367 */ 2368 2369 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2370 struct page *page, u64 start, u64 end, 2371 int failed_mirror) 2372 { 2373 struct io_failure_record *failrec; 2374 struct inode *inode = page->mapping->host; 2375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2376 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2377 struct bio *bio; 2378 int read_mode = 0; 2379 blk_status_t status; 2380 int ret; 2381 unsigned failed_bio_pages = bio_pages_all(failed_bio); 2382 2383 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2384 2385 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2386 if (ret) 2387 return ret; 2388 2389 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2390 failed_mirror)) { 2391 free_io_failure(failure_tree, tree, failrec); 2392 return -EIO; 2393 } 2394 2395 if (failed_bio_pages > 1) 2396 read_mode |= REQ_FAILFAST_DEV; 2397 2398 phy_offset >>= inode->i_sb->s_blocksize_bits; 2399 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2400 start - page_offset(page), 2401 (int)phy_offset, failed_bio->bi_end_io, 2402 NULL); 2403 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2404 2405 btrfs_debug(btrfs_sb(inode->i_sb), 2406 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2407 read_mode, failrec->this_mirror, failrec->in_validation); 2408 2409 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2410 failrec->bio_flags, 0); 2411 if (status) { 2412 free_io_failure(failure_tree, tree, failrec); 2413 bio_put(bio); 2414 ret = blk_status_to_errno(status); 2415 } 2416 2417 return ret; 2418 } 2419 2420 /* lots and lots of room for performance fixes in the end_bio funcs */ 2421 2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2423 { 2424 int uptodate = (err == 0); 2425 struct extent_io_tree *tree; 2426 int ret = 0; 2427 2428 tree = &BTRFS_I(page->mapping->host)->io_tree; 2429 2430 if (tree->ops && tree->ops->writepage_end_io_hook) 2431 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2432 uptodate); 2433 2434 if (!uptodate) { 2435 ClearPageUptodate(page); 2436 SetPageError(page); 2437 ret = err < 0 ? err : -EIO; 2438 mapping_set_error(page->mapping, ret); 2439 } 2440 } 2441 2442 /* 2443 * after a writepage IO is done, we need to: 2444 * clear the uptodate bits on error 2445 * clear the writeback bits in the extent tree for this IO 2446 * end_page_writeback if the page has no more pending IO 2447 * 2448 * Scheduling is not allowed, so the extent state tree is expected 2449 * to have one and only one object corresponding to this IO. 2450 */ 2451 static void end_bio_extent_writepage(struct bio *bio) 2452 { 2453 int error = blk_status_to_errno(bio->bi_status); 2454 struct bio_vec *bvec; 2455 u64 start; 2456 u64 end; 2457 int i; 2458 2459 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2460 bio_for_each_segment_all(bvec, bio, i) { 2461 struct page *page = bvec->bv_page; 2462 struct inode *inode = page->mapping->host; 2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2464 2465 /* We always issue full-page reads, but if some block 2466 * in a page fails to read, blk_update_request() will 2467 * advance bv_offset and adjust bv_len to compensate. 2468 * Print a warning for nonzero offsets, and an error 2469 * if they don't add up to a full page. */ 2470 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2471 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2472 btrfs_err(fs_info, 2473 "partial page write in btrfs with offset %u and length %u", 2474 bvec->bv_offset, bvec->bv_len); 2475 else 2476 btrfs_info(fs_info, 2477 "incomplete page write in btrfs with offset %u and length %u", 2478 bvec->bv_offset, bvec->bv_len); 2479 } 2480 2481 start = page_offset(page); 2482 end = start + bvec->bv_offset + bvec->bv_len - 1; 2483 2484 end_extent_writepage(page, error, start, end); 2485 end_page_writeback(page); 2486 } 2487 2488 bio_put(bio); 2489 } 2490 2491 static void 2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2493 int uptodate) 2494 { 2495 struct extent_state *cached = NULL; 2496 u64 end = start + len - 1; 2497 2498 if (uptodate && tree->track_uptodate) 2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2500 unlock_extent_cached_atomic(tree, start, end, &cached); 2501 } 2502 2503 /* 2504 * after a readpage IO is done, we need to: 2505 * clear the uptodate bits on error 2506 * set the uptodate bits if things worked 2507 * set the page up to date if all extents in the tree are uptodate 2508 * clear the lock bit in the extent tree 2509 * unlock the page if there are no other extents locked for it 2510 * 2511 * Scheduling is not allowed, so the extent state tree is expected 2512 * to have one and only one object corresponding to this IO. 2513 */ 2514 static void end_bio_extent_readpage(struct bio *bio) 2515 { 2516 struct bio_vec *bvec; 2517 int uptodate = !bio->bi_status; 2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2519 struct extent_io_tree *tree, *failure_tree; 2520 u64 offset = 0; 2521 u64 start; 2522 u64 end; 2523 u64 len; 2524 u64 extent_start = 0; 2525 u64 extent_len = 0; 2526 int mirror; 2527 int ret; 2528 int i; 2529 2530 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2531 bio_for_each_segment_all(bvec, bio, i) { 2532 struct page *page = bvec->bv_page; 2533 struct inode *inode = page->mapping->host; 2534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2535 2536 btrfs_debug(fs_info, 2537 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2538 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2539 io_bio->mirror_num); 2540 tree = &BTRFS_I(inode)->io_tree; 2541 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2542 2543 /* We always issue full-page reads, but if some block 2544 * in a page fails to read, blk_update_request() will 2545 * advance bv_offset and adjust bv_len to compensate. 2546 * Print a warning for nonzero offsets, and an error 2547 * if they don't add up to a full page. */ 2548 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2549 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2550 btrfs_err(fs_info, 2551 "partial page read in btrfs with offset %u and length %u", 2552 bvec->bv_offset, bvec->bv_len); 2553 else 2554 btrfs_info(fs_info, 2555 "incomplete page read in btrfs with offset %u and length %u", 2556 bvec->bv_offset, bvec->bv_len); 2557 } 2558 2559 start = page_offset(page); 2560 end = start + bvec->bv_offset + bvec->bv_len - 1; 2561 len = bvec->bv_len; 2562 2563 mirror = io_bio->mirror_num; 2564 if (likely(uptodate && tree->ops)) { 2565 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2566 page, start, end, 2567 mirror); 2568 if (ret) 2569 uptodate = 0; 2570 else 2571 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2572 failure_tree, tree, start, 2573 page, 2574 btrfs_ino(BTRFS_I(inode)), 0); 2575 } 2576 2577 if (likely(uptodate)) 2578 goto readpage_ok; 2579 2580 if (tree->ops) { 2581 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2582 if (ret == -EAGAIN) { 2583 /* 2584 * Data inode's readpage_io_failed_hook() always 2585 * returns -EAGAIN. 2586 * 2587 * The generic bio_readpage_error handles errors 2588 * the following way: If possible, new read 2589 * requests are created and submitted and will 2590 * end up in end_bio_extent_readpage as well (if 2591 * we're lucky, not in the !uptodate case). In 2592 * that case it returns 0 and we just go on with 2593 * the next page in our bio. If it can't handle 2594 * the error it will return -EIO and we remain 2595 * responsible for that page. 2596 */ 2597 ret = bio_readpage_error(bio, offset, page, 2598 start, end, mirror); 2599 if (ret == 0) { 2600 uptodate = !bio->bi_status; 2601 offset += len; 2602 continue; 2603 } 2604 } 2605 2606 /* 2607 * metadata's readpage_io_failed_hook() always returns 2608 * -EIO and fixes nothing. -EIO is also returned if 2609 * data inode error could not be fixed. 2610 */ 2611 ASSERT(ret == -EIO); 2612 } 2613 readpage_ok: 2614 if (likely(uptodate)) { 2615 loff_t i_size = i_size_read(inode); 2616 pgoff_t end_index = i_size >> PAGE_SHIFT; 2617 unsigned off; 2618 2619 /* Zero out the end if this page straddles i_size */ 2620 off = i_size & (PAGE_SIZE-1); 2621 if (page->index == end_index && off) 2622 zero_user_segment(page, off, PAGE_SIZE); 2623 SetPageUptodate(page); 2624 } else { 2625 ClearPageUptodate(page); 2626 SetPageError(page); 2627 } 2628 unlock_page(page); 2629 offset += len; 2630 2631 if (unlikely(!uptodate)) { 2632 if (extent_len) { 2633 endio_readpage_release_extent(tree, 2634 extent_start, 2635 extent_len, 1); 2636 extent_start = 0; 2637 extent_len = 0; 2638 } 2639 endio_readpage_release_extent(tree, start, 2640 end - start + 1, 0); 2641 } else if (!extent_len) { 2642 extent_start = start; 2643 extent_len = end + 1 - start; 2644 } else if (extent_start + extent_len == start) { 2645 extent_len += end + 1 - start; 2646 } else { 2647 endio_readpage_release_extent(tree, extent_start, 2648 extent_len, uptodate); 2649 extent_start = start; 2650 extent_len = end + 1 - start; 2651 } 2652 } 2653 2654 if (extent_len) 2655 endio_readpage_release_extent(tree, extent_start, extent_len, 2656 uptodate); 2657 if (io_bio->end_io) 2658 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2659 bio_put(bio); 2660 } 2661 2662 /* 2663 * Initialize the members up to but not including 'bio'. Use after allocating a 2664 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2665 * 'bio' because use of __GFP_ZERO is not supported. 2666 */ 2667 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2668 { 2669 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2670 } 2671 2672 /* 2673 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2674 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2675 * for the appropriate container_of magic 2676 */ 2677 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2678 { 2679 struct bio *bio; 2680 2681 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset); 2682 bio_set_dev(bio, bdev); 2683 bio->bi_iter.bi_sector = first_byte >> 9; 2684 btrfs_io_bio_init(btrfs_io_bio(bio)); 2685 return bio; 2686 } 2687 2688 struct bio *btrfs_bio_clone(struct bio *bio) 2689 { 2690 struct btrfs_io_bio *btrfs_bio; 2691 struct bio *new; 2692 2693 /* Bio allocation backed by a bioset does not fail */ 2694 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset); 2695 btrfs_bio = btrfs_io_bio(new); 2696 btrfs_io_bio_init(btrfs_bio); 2697 btrfs_bio->iter = bio->bi_iter; 2698 return new; 2699 } 2700 2701 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2702 { 2703 struct bio *bio; 2704 2705 /* Bio allocation backed by a bioset does not fail */ 2706 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset); 2707 btrfs_io_bio_init(btrfs_io_bio(bio)); 2708 return bio; 2709 } 2710 2711 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2712 { 2713 struct bio *bio; 2714 struct btrfs_io_bio *btrfs_bio; 2715 2716 /* this will never fail when it's backed by a bioset */ 2717 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset); 2718 ASSERT(bio); 2719 2720 btrfs_bio = btrfs_io_bio(bio); 2721 btrfs_io_bio_init(btrfs_bio); 2722 2723 bio_trim(bio, offset >> 9, size >> 9); 2724 btrfs_bio->iter = bio->bi_iter; 2725 return bio; 2726 } 2727 2728 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2729 unsigned long bio_flags) 2730 { 2731 blk_status_t ret = 0; 2732 struct bio_vec *bvec = bio_last_bvec_all(bio); 2733 struct page *page = bvec->bv_page; 2734 struct extent_io_tree *tree = bio->bi_private; 2735 u64 start; 2736 2737 start = page_offset(page) + bvec->bv_offset; 2738 2739 bio->bi_private = NULL; 2740 2741 if (tree->ops) 2742 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2743 mirror_num, bio_flags, start); 2744 else 2745 btrfsic_submit_bio(bio); 2746 2747 return blk_status_to_errno(ret); 2748 } 2749 2750 /* 2751 * @opf: bio REQ_OP_* and REQ_* flags as one value 2752 * @tree: tree so we can call our merge_bio hook 2753 * @wbc: optional writeback control for io accounting 2754 * @page: page to add to the bio 2755 * @pg_offset: offset of the new bio or to check whether we are adding 2756 * a contiguous page to the previous one 2757 * @size: portion of page that we want to write 2758 * @offset: starting offset in the page 2759 * @bdev: attach newly created bios to this bdev 2760 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2761 * @end_io_func: end_io callback for new bio 2762 * @mirror_num: desired mirror to read/write 2763 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2764 * @bio_flags: flags of the current bio to see if we can merge them 2765 */ 2766 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2767 struct writeback_control *wbc, 2768 struct page *page, u64 offset, 2769 size_t size, unsigned long pg_offset, 2770 struct block_device *bdev, 2771 struct bio **bio_ret, 2772 bio_end_io_t end_io_func, 2773 int mirror_num, 2774 unsigned long prev_bio_flags, 2775 unsigned long bio_flags, 2776 bool force_bio_submit) 2777 { 2778 int ret = 0; 2779 struct bio *bio; 2780 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2781 sector_t sector = offset >> 9; 2782 2783 ASSERT(bio_ret); 2784 2785 if (*bio_ret) { 2786 bool contig; 2787 bool can_merge = true; 2788 2789 bio = *bio_ret; 2790 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2791 contig = bio->bi_iter.bi_sector == sector; 2792 else 2793 contig = bio_end_sector(bio) == sector; 2794 2795 if (tree->ops && tree->ops->merge_bio_hook(page, offset, 2796 page_size, bio, bio_flags)) 2797 can_merge = false; 2798 2799 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2800 force_bio_submit || 2801 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2802 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2803 if (ret < 0) { 2804 *bio_ret = NULL; 2805 return ret; 2806 } 2807 bio = NULL; 2808 } else { 2809 if (wbc) 2810 wbc_account_io(wbc, page, page_size); 2811 return 0; 2812 } 2813 } 2814 2815 bio = btrfs_bio_alloc(bdev, offset); 2816 bio_add_page(bio, page, page_size, pg_offset); 2817 bio->bi_end_io = end_io_func; 2818 bio->bi_private = tree; 2819 bio->bi_write_hint = page->mapping->host->i_write_hint; 2820 bio->bi_opf = opf; 2821 if (wbc) { 2822 wbc_init_bio(wbc, bio); 2823 wbc_account_io(wbc, page, page_size); 2824 } 2825 2826 *bio_ret = bio; 2827 2828 return ret; 2829 } 2830 2831 static void attach_extent_buffer_page(struct extent_buffer *eb, 2832 struct page *page) 2833 { 2834 if (!PagePrivate(page)) { 2835 SetPagePrivate(page); 2836 get_page(page); 2837 set_page_private(page, (unsigned long)eb); 2838 } else { 2839 WARN_ON(page->private != (unsigned long)eb); 2840 } 2841 } 2842 2843 void set_page_extent_mapped(struct page *page) 2844 { 2845 if (!PagePrivate(page)) { 2846 SetPagePrivate(page); 2847 get_page(page); 2848 set_page_private(page, EXTENT_PAGE_PRIVATE); 2849 } 2850 } 2851 2852 static struct extent_map * 2853 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2854 u64 start, u64 len, get_extent_t *get_extent, 2855 struct extent_map **em_cached) 2856 { 2857 struct extent_map *em; 2858 2859 if (em_cached && *em_cached) { 2860 em = *em_cached; 2861 if (extent_map_in_tree(em) && start >= em->start && 2862 start < extent_map_end(em)) { 2863 refcount_inc(&em->refs); 2864 return em; 2865 } 2866 2867 free_extent_map(em); 2868 *em_cached = NULL; 2869 } 2870 2871 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2872 if (em_cached && !IS_ERR_OR_NULL(em)) { 2873 BUG_ON(*em_cached); 2874 refcount_inc(&em->refs); 2875 *em_cached = em; 2876 } 2877 return em; 2878 } 2879 /* 2880 * basic readpage implementation. Locked extent state structs are inserted 2881 * into the tree that are removed when the IO is done (by the end_io 2882 * handlers) 2883 * XXX JDM: This needs looking at to ensure proper page locking 2884 * return 0 on success, otherwise return error 2885 */ 2886 static int __do_readpage(struct extent_io_tree *tree, 2887 struct page *page, 2888 get_extent_t *get_extent, 2889 struct extent_map **em_cached, 2890 struct bio **bio, int mirror_num, 2891 unsigned long *bio_flags, unsigned int read_flags, 2892 u64 *prev_em_start) 2893 { 2894 struct inode *inode = page->mapping->host; 2895 u64 start = page_offset(page); 2896 const u64 end = start + PAGE_SIZE - 1; 2897 u64 cur = start; 2898 u64 extent_offset; 2899 u64 last_byte = i_size_read(inode); 2900 u64 block_start; 2901 u64 cur_end; 2902 struct extent_map *em; 2903 struct block_device *bdev; 2904 int ret = 0; 2905 int nr = 0; 2906 size_t pg_offset = 0; 2907 size_t iosize; 2908 size_t disk_io_size; 2909 size_t blocksize = inode->i_sb->s_blocksize; 2910 unsigned long this_bio_flag = 0; 2911 2912 set_page_extent_mapped(page); 2913 2914 if (!PageUptodate(page)) { 2915 if (cleancache_get_page(page) == 0) { 2916 BUG_ON(blocksize != PAGE_SIZE); 2917 unlock_extent(tree, start, end); 2918 goto out; 2919 } 2920 } 2921 2922 if (page->index == last_byte >> PAGE_SHIFT) { 2923 char *userpage; 2924 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2925 2926 if (zero_offset) { 2927 iosize = PAGE_SIZE - zero_offset; 2928 userpage = kmap_atomic(page); 2929 memset(userpage + zero_offset, 0, iosize); 2930 flush_dcache_page(page); 2931 kunmap_atomic(userpage); 2932 } 2933 } 2934 while (cur <= end) { 2935 bool force_bio_submit = false; 2936 u64 offset; 2937 2938 if (cur >= last_byte) { 2939 char *userpage; 2940 struct extent_state *cached = NULL; 2941 2942 iosize = PAGE_SIZE - pg_offset; 2943 userpage = kmap_atomic(page); 2944 memset(userpage + pg_offset, 0, iosize); 2945 flush_dcache_page(page); 2946 kunmap_atomic(userpage); 2947 set_extent_uptodate(tree, cur, cur + iosize - 1, 2948 &cached, GFP_NOFS); 2949 unlock_extent_cached(tree, cur, 2950 cur + iosize - 1, &cached); 2951 break; 2952 } 2953 em = __get_extent_map(inode, page, pg_offset, cur, 2954 end - cur + 1, get_extent, em_cached); 2955 if (IS_ERR_OR_NULL(em)) { 2956 SetPageError(page); 2957 unlock_extent(tree, cur, end); 2958 break; 2959 } 2960 extent_offset = cur - em->start; 2961 BUG_ON(extent_map_end(em) <= cur); 2962 BUG_ON(end < cur); 2963 2964 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2965 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2966 extent_set_compress_type(&this_bio_flag, 2967 em->compress_type); 2968 } 2969 2970 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2971 cur_end = min(extent_map_end(em) - 1, end); 2972 iosize = ALIGN(iosize, blocksize); 2973 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2974 disk_io_size = em->block_len; 2975 offset = em->block_start; 2976 } else { 2977 offset = em->block_start + extent_offset; 2978 disk_io_size = iosize; 2979 } 2980 bdev = em->bdev; 2981 block_start = em->block_start; 2982 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2983 block_start = EXTENT_MAP_HOLE; 2984 2985 /* 2986 * If we have a file range that points to a compressed extent 2987 * and it's followed by a consecutive file range that points to 2988 * to the same compressed extent (possibly with a different 2989 * offset and/or length, so it either points to the whole extent 2990 * or only part of it), we must make sure we do not submit a 2991 * single bio to populate the pages for the 2 ranges because 2992 * this makes the compressed extent read zero out the pages 2993 * belonging to the 2nd range. Imagine the following scenario: 2994 * 2995 * File layout 2996 * [0 - 8K] [8K - 24K] 2997 * | | 2998 * | | 2999 * points to extent X, points to extent X, 3000 * offset 4K, length of 8K offset 0, length 16K 3001 * 3002 * [extent X, compressed length = 4K uncompressed length = 16K] 3003 * 3004 * If the bio to read the compressed extent covers both ranges, 3005 * it will decompress extent X into the pages belonging to the 3006 * first range and then it will stop, zeroing out the remaining 3007 * pages that belong to the other range that points to extent X. 3008 * So here we make sure we submit 2 bios, one for the first 3009 * range and another one for the third range. Both will target 3010 * the same physical extent from disk, but we can't currently 3011 * make the compressed bio endio callback populate the pages 3012 * for both ranges because each compressed bio is tightly 3013 * coupled with a single extent map, and each range can have 3014 * an extent map with a different offset value relative to the 3015 * uncompressed data of our extent and different lengths. This 3016 * is a corner case so we prioritize correctness over 3017 * non-optimal behavior (submitting 2 bios for the same extent). 3018 */ 3019 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3020 prev_em_start && *prev_em_start != (u64)-1 && 3021 *prev_em_start != em->orig_start) 3022 force_bio_submit = true; 3023 3024 if (prev_em_start) 3025 *prev_em_start = em->orig_start; 3026 3027 free_extent_map(em); 3028 em = NULL; 3029 3030 /* we've found a hole, just zero and go on */ 3031 if (block_start == EXTENT_MAP_HOLE) { 3032 char *userpage; 3033 struct extent_state *cached = NULL; 3034 3035 userpage = kmap_atomic(page); 3036 memset(userpage + pg_offset, 0, iosize); 3037 flush_dcache_page(page); 3038 kunmap_atomic(userpage); 3039 3040 set_extent_uptodate(tree, cur, cur + iosize - 1, 3041 &cached, GFP_NOFS); 3042 unlock_extent_cached(tree, cur, 3043 cur + iosize - 1, &cached); 3044 cur = cur + iosize; 3045 pg_offset += iosize; 3046 continue; 3047 } 3048 /* the get_extent function already copied into the page */ 3049 if (test_range_bit(tree, cur, cur_end, 3050 EXTENT_UPTODATE, 1, NULL)) { 3051 check_page_uptodate(tree, page); 3052 unlock_extent(tree, cur, cur + iosize - 1); 3053 cur = cur + iosize; 3054 pg_offset += iosize; 3055 continue; 3056 } 3057 /* we have an inline extent but it didn't get marked up 3058 * to date. Error out 3059 */ 3060 if (block_start == EXTENT_MAP_INLINE) { 3061 SetPageError(page); 3062 unlock_extent(tree, cur, cur + iosize - 1); 3063 cur = cur + iosize; 3064 pg_offset += iosize; 3065 continue; 3066 } 3067 3068 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3069 page, offset, disk_io_size, 3070 pg_offset, bdev, bio, 3071 end_bio_extent_readpage, mirror_num, 3072 *bio_flags, 3073 this_bio_flag, 3074 force_bio_submit); 3075 if (!ret) { 3076 nr++; 3077 *bio_flags = this_bio_flag; 3078 } else { 3079 SetPageError(page); 3080 unlock_extent(tree, cur, cur + iosize - 1); 3081 goto out; 3082 } 3083 cur = cur + iosize; 3084 pg_offset += iosize; 3085 } 3086 out: 3087 if (!nr) { 3088 if (!PageError(page)) 3089 SetPageUptodate(page); 3090 unlock_page(page); 3091 } 3092 return ret; 3093 } 3094 3095 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3096 struct page *pages[], int nr_pages, 3097 u64 start, u64 end, 3098 struct extent_map **em_cached, 3099 struct bio **bio, 3100 unsigned long *bio_flags, 3101 u64 *prev_em_start) 3102 { 3103 struct inode *inode; 3104 struct btrfs_ordered_extent *ordered; 3105 int index; 3106 3107 inode = pages[0]->mapping->host; 3108 while (1) { 3109 lock_extent(tree, start, end); 3110 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3111 end - start + 1); 3112 if (!ordered) 3113 break; 3114 unlock_extent(tree, start, end); 3115 btrfs_start_ordered_extent(inode, ordered, 1); 3116 btrfs_put_ordered_extent(ordered); 3117 } 3118 3119 for (index = 0; index < nr_pages; index++) { 3120 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3121 bio, 0, bio_flags, 0, prev_em_start); 3122 put_page(pages[index]); 3123 } 3124 } 3125 3126 static void __extent_readpages(struct extent_io_tree *tree, 3127 struct page *pages[], 3128 int nr_pages, 3129 struct extent_map **em_cached, 3130 struct bio **bio, unsigned long *bio_flags, 3131 u64 *prev_em_start) 3132 { 3133 u64 start = 0; 3134 u64 end = 0; 3135 u64 page_start; 3136 int index; 3137 int first_index = 0; 3138 3139 for (index = 0; index < nr_pages; index++) { 3140 page_start = page_offset(pages[index]); 3141 if (!end) { 3142 start = page_start; 3143 end = start + PAGE_SIZE - 1; 3144 first_index = index; 3145 } else if (end + 1 == page_start) { 3146 end += PAGE_SIZE; 3147 } else { 3148 __do_contiguous_readpages(tree, &pages[first_index], 3149 index - first_index, start, 3150 end, em_cached, 3151 bio, bio_flags, 3152 prev_em_start); 3153 start = page_start; 3154 end = start + PAGE_SIZE - 1; 3155 first_index = index; 3156 } 3157 } 3158 3159 if (end) 3160 __do_contiguous_readpages(tree, &pages[first_index], 3161 index - first_index, start, 3162 end, em_cached, bio, 3163 bio_flags, prev_em_start); 3164 } 3165 3166 static int __extent_read_full_page(struct extent_io_tree *tree, 3167 struct page *page, 3168 get_extent_t *get_extent, 3169 struct bio **bio, int mirror_num, 3170 unsigned long *bio_flags, 3171 unsigned int read_flags) 3172 { 3173 struct inode *inode = page->mapping->host; 3174 struct btrfs_ordered_extent *ordered; 3175 u64 start = page_offset(page); 3176 u64 end = start + PAGE_SIZE - 1; 3177 int ret; 3178 3179 while (1) { 3180 lock_extent(tree, start, end); 3181 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3182 PAGE_SIZE); 3183 if (!ordered) 3184 break; 3185 unlock_extent(tree, start, end); 3186 btrfs_start_ordered_extent(inode, ordered, 1); 3187 btrfs_put_ordered_extent(ordered); 3188 } 3189 3190 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3191 bio_flags, read_flags, NULL); 3192 return ret; 3193 } 3194 3195 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3196 get_extent_t *get_extent, int mirror_num) 3197 { 3198 struct bio *bio = NULL; 3199 unsigned long bio_flags = 0; 3200 int ret; 3201 3202 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3203 &bio_flags, 0); 3204 if (bio) 3205 ret = submit_one_bio(bio, mirror_num, bio_flags); 3206 return ret; 3207 } 3208 3209 static void update_nr_written(struct writeback_control *wbc, 3210 unsigned long nr_written) 3211 { 3212 wbc->nr_to_write -= nr_written; 3213 } 3214 3215 /* 3216 * helper for __extent_writepage, doing all of the delayed allocation setup. 3217 * 3218 * This returns 1 if our fill_delalloc function did all the work required 3219 * to write the page (copy into inline extent). In this case the IO has 3220 * been started and the page is already unlocked. 3221 * 3222 * This returns 0 if all went well (page still locked) 3223 * This returns < 0 if there were errors (page still locked) 3224 */ 3225 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3226 struct page *page, struct writeback_control *wbc, 3227 struct extent_page_data *epd, 3228 u64 delalloc_start, 3229 unsigned long *nr_written) 3230 { 3231 struct extent_io_tree *tree = epd->tree; 3232 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3233 u64 nr_delalloc; 3234 u64 delalloc_to_write = 0; 3235 u64 delalloc_end = 0; 3236 int ret; 3237 int page_started = 0; 3238 3239 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3240 return 0; 3241 3242 while (delalloc_end < page_end) { 3243 nr_delalloc = find_lock_delalloc_range(inode, tree, 3244 page, 3245 &delalloc_start, 3246 &delalloc_end, 3247 BTRFS_MAX_EXTENT_SIZE); 3248 if (nr_delalloc == 0) { 3249 delalloc_start = delalloc_end + 1; 3250 continue; 3251 } 3252 ret = tree->ops->fill_delalloc(inode, page, 3253 delalloc_start, 3254 delalloc_end, 3255 &page_started, 3256 nr_written, wbc); 3257 /* File system has been set read-only */ 3258 if (ret) { 3259 SetPageError(page); 3260 /* fill_delalloc should be return < 0 for error 3261 * but just in case, we use > 0 here meaning the 3262 * IO is started, so we don't want to return > 0 3263 * unless things are going well. 3264 */ 3265 ret = ret < 0 ? ret : -EIO; 3266 goto done; 3267 } 3268 /* 3269 * delalloc_end is already one less than the total length, so 3270 * we don't subtract one from PAGE_SIZE 3271 */ 3272 delalloc_to_write += (delalloc_end - delalloc_start + 3273 PAGE_SIZE) >> PAGE_SHIFT; 3274 delalloc_start = delalloc_end + 1; 3275 } 3276 if (wbc->nr_to_write < delalloc_to_write) { 3277 int thresh = 8192; 3278 3279 if (delalloc_to_write < thresh * 2) 3280 thresh = delalloc_to_write; 3281 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3282 thresh); 3283 } 3284 3285 /* did the fill delalloc function already unlock and start 3286 * the IO? 3287 */ 3288 if (page_started) { 3289 /* 3290 * we've unlocked the page, so we can't update 3291 * the mapping's writeback index, just update 3292 * nr_to_write. 3293 */ 3294 wbc->nr_to_write -= *nr_written; 3295 return 1; 3296 } 3297 3298 ret = 0; 3299 3300 done: 3301 return ret; 3302 } 3303 3304 /* 3305 * helper for __extent_writepage. This calls the writepage start hooks, 3306 * and does the loop to map the page into extents and bios. 3307 * 3308 * We return 1 if the IO is started and the page is unlocked, 3309 * 0 if all went well (page still locked) 3310 * < 0 if there were errors (page still locked) 3311 */ 3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3313 struct page *page, 3314 struct writeback_control *wbc, 3315 struct extent_page_data *epd, 3316 loff_t i_size, 3317 unsigned long nr_written, 3318 unsigned int write_flags, int *nr_ret) 3319 { 3320 struct extent_io_tree *tree = epd->tree; 3321 u64 start = page_offset(page); 3322 u64 page_end = start + PAGE_SIZE - 1; 3323 u64 end; 3324 u64 cur = start; 3325 u64 extent_offset; 3326 u64 block_start; 3327 u64 iosize; 3328 struct extent_map *em; 3329 struct block_device *bdev; 3330 size_t pg_offset = 0; 3331 size_t blocksize; 3332 int ret = 0; 3333 int nr = 0; 3334 bool compressed; 3335 3336 if (tree->ops && tree->ops->writepage_start_hook) { 3337 ret = tree->ops->writepage_start_hook(page, start, 3338 page_end); 3339 if (ret) { 3340 /* Fixup worker will requeue */ 3341 if (ret == -EBUSY) 3342 wbc->pages_skipped++; 3343 else 3344 redirty_page_for_writepage(wbc, page); 3345 3346 update_nr_written(wbc, nr_written); 3347 unlock_page(page); 3348 return 1; 3349 } 3350 } 3351 3352 /* 3353 * we don't want to touch the inode after unlocking the page, 3354 * so we update the mapping writeback index now 3355 */ 3356 update_nr_written(wbc, nr_written + 1); 3357 3358 end = page_end; 3359 if (i_size <= start) { 3360 if (tree->ops && tree->ops->writepage_end_io_hook) 3361 tree->ops->writepage_end_io_hook(page, start, 3362 page_end, NULL, 1); 3363 goto done; 3364 } 3365 3366 blocksize = inode->i_sb->s_blocksize; 3367 3368 while (cur <= end) { 3369 u64 em_end; 3370 u64 offset; 3371 3372 if (cur >= i_size) { 3373 if (tree->ops && tree->ops->writepage_end_io_hook) 3374 tree->ops->writepage_end_io_hook(page, cur, 3375 page_end, NULL, 1); 3376 break; 3377 } 3378 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3379 end - cur + 1, 1); 3380 if (IS_ERR_OR_NULL(em)) { 3381 SetPageError(page); 3382 ret = PTR_ERR_OR_ZERO(em); 3383 break; 3384 } 3385 3386 extent_offset = cur - em->start; 3387 em_end = extent_map_end(em); 3388 BUG_ON(em_end <= cur); 3389 BUG_ON(end < cur); 3390 iosize = min(em_end - cur, end - cur + 1); 3391 iosize = ALIGN(iosize, blocksize); 3392 offset = em->block_start + extent_offset; 3393 bdev = em->bdev; 3394 block_start = em->block_start; 3395 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3396 free_extent_map(em); 3397 em = NULL; 3398 3399 /* 3400 * compressed and inline extents are written through other 3401 * paths in the FS 3402 */ 3403 if (compressed || block_start == EXTENT_MAP_HOLE || 3404 block_start == EXTENT_MAP_INLINE) { 3405 /* 3406 * end_io notification does not happen here for 3407 * compressed extents 3408 */ 3409 if (!compressed && tree->ops && 3410 tree->ops->writepage_end_io_hook) 3411 tree->ops->writepage_end_io_hook(page, cur, 3412 cur + iosize - 1, 3413 NULL, 1); 3414 else if (compressed) { 3415 /* we don't want to end_page_writeback on 3416 * a compressed extent. this happens 3417 * elsewhere 3418 */ 3419 nr++; 3420 } 3421 3422 cur += iosize; 3423 pg_offset += iosize; 3424 continue; 3425 } 3426 3427 set_range_writeback(tree, cur, cur + iosize - 1); 3428 if (!PageWriteback(page)) { 3429 btrfs_err(BTRFS_I(inode)->root->fs_info, 3430 "page %lu not writeback, cur %llu end %llu", 3431 page->index, cur, end); 3432 } 3433 3434 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3435 page, offset, iosize, pg_offset, 3436 bdev, &epd->bio, 3437 end_bio_extent_writepage, 3438 0, 0, 0, false); 3439 if (ret) { 3440 SetPageError(page); 3441 if (PageWriteback(page)) 3442 end_page_writeback(page); 3443 } 3444 3445 cur = cur + iosize; 3446 pg_offset += iosize; 3447 nr++; 3448 } 3449 done: 3450 *nr_ret = nr; 3451 return ret; 3452 } 3453 3454 /* 3455 * the writepage semantics are similar to regular writepage. extent 3456 * records are inserted to lock ranges in the tree, and as dirty areas 3457 * are found, they are marked writeback. Then the lock bits are removed 3458 * and the end_io handler clears the writeback ranges 3459 */ 3460 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3461 struct extent_page_data *epd) 3462 { 3463 struct inode *inode = page->mapping->host; 3464 u64 start = page_offset(page); 3465 u64 page_end = start + PAGE_SIZE - 1; 3466 int ret; 3467 int nr = 0; 3468 size_t pg_offset = 0; 3469 loff_t i_size = i_size_read(inode); 3470 unsigned long end_index = i_size >> PAGE_SHIFT; 3471 unsigned int write_flags = 0; 3472 unsigned long nr_written = 0; 3473 3474 write_flags = wbc_to_write_flags(wbc); 3475 3476 trace___extent_writepage(page, inode, wbc); 3477 3478 WARN_ON(!PageLocked(page)); 3479 3480 ClearPageError(page); 3481 3482 pg_offset = i_size & (PAGE_SIZE - 1); 3483 if (page->index > end_index || 3484 (page->index == end_index && !pg_offset)) { 3485 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3486 unlock_page(page); 3487 return 0; 3488 } 3489 3490 if (page->index == end_index) { 3491 char *userpage; 3492 3493 userpage = kmap_atomic(page); 3494 memset(userpage + pg_offset, 0, 3495 PAGE_SIZE - pg_offset); 3496 kunmap_atomic(userpage); 3497 flush_dcache_page(page); 3498 } 3499 3500 pg_offset = 0; 3501 3502 set_page_extent_mapped(page); 3503 3504 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3505 if (ret == 1) 3506 goto done_unlocked; 3507 if (ret) 3508 goto done; 3509 3510 ret = __extent_writepage_io(inode, page, wbc, epd, 3511 i_size, nr_written, write_flags, &nr); 3512 if (ret == 1) 3513 goto done_unlocked; 3514 3515 done: 3516 if (nr == 0) { 3517 /* make sure the mapping tag for page dirty gets cleared */ 3518 set_page_writeback(page); 3519 end_page_writeback(page); 3520 } 3521 if (PageError(page)) { 3522 ret = ret < 0 ? ret : -EIO; 3523 end_extent_writepage(page, ret, start, page_end); 3524 } 3525 unlock_page(page); 3526 return ret; 3527 3528 done_unlocked: 3529 return 0; 3530 } 3531 3532 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3533 { 3534 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3535 TASK_UNINTERRUPTIBLE); 3536 } 3537 3538 static noinline_for_stack int 3539 lock_extent_buffer_for_io(struct extent_buffer *eb, 3540 struct btrfs_fs_info *fs_info, 3541 struct extent_page_data *epd) 3542 { 3543 unsigned long i, num_pages; 3544 int flush = 0; 3545 int ret = 0; 3546 3547 if (!btrfs_try_tree_write_lock(eb)) { 3548 flush = 1; 3549 flush_write_bio(epd); 3550 btrfs_tree_lock(eb); 3551 } 3552 3553 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3554 btrfs_tree_unlock(eb); 3555 if (!epd->sync_io) 3556 return 0; 3557 if (!flush) { 3558 flush_write_bio(epd); 3559 flush = 1; 3560 } 3561 while (1) { 3562 wait_on_extent_buffer_writeback(eb); 3563 btrfs_tree_lock(eb); 3564 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3565 break; 3566 btrfs_tree_unlock(eb); 3567 } 3568 } 3569 3570 /* 3571 * We need to do this to prevent races in people who check if the eb is 3572 * under IO since we can end up having no IO bits set for a short period 3573 * of time. 3574 */ 3575 spin_lock(&eb->refs_lock); 3576 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3577 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3578 spin_unlock(&eb->refs_lock); 3579 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3580 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3581 -eb->len, 3582 fs_info->dirty_metadata_batch); 3583 ret = 1; 3584 } else { 3585 spin_unlock(&eb->refs_lock); 3586 } 3587 3588 btrfs_tree_unlock(eb); 3589 3590 if (!ret) 3591 return ret; 3592 3593 num_pages = num_extent_pages(eb->start, eb->len); 3594 for (i = 0; i < num_pages; i++) { 3595 struct page *p = eb->pages[i]; 3596 3597 if (!trylock_page(p)) { 3598 if (!flush) { 3599 flush_write_bio(epd); 3600 flush = 1; 3601 } 3602 lock_page(p); 3603 } 3604 } 3605 3606 return ret; 3607 } 3608 3609 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3610 { 3611 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3612 smp_mb__after_atomic(); 3613 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3614 } 3615 3616 static void set_btree_ioerr(struct page *page) 3617 { 3618 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3619 3620 SetPageError(page); 3621 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3622 return; 3623 3624 /* 3625 * If writeback for a btree extent that doesn't belong to a log tree 3626 * failed, increment the counter transaction->eb_write_errors. 3627 * We do this because while the transaction is running and before it's 3628 * committing (when we call filemap_fdata[write|wait]_range against 3629 * the btree inode), we might have 3630 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3631 * returns an error or an error happens during writeback, when we're 3632 * committing the transaction we wouldn't know about it, since the pages 3633 * can be no longer dirty nor marked anymore for writeback (if a 3634 * subsequent modification to the extent buffer didn't happen before the 3635 * transaction commit), which makes filemap_fdata[write|wait]_range not 3636 * able to find the pages tagged with SetPageError at transaction 3637 * commit time. So if this happens we must abort the transaction, 3638 * otherwise we commit a super block with btree roots that point to 3639 * btree nodes/leafs whose content on disk is invalid - either garbage 3640 * or the content of some node/leaf from a past generation that got 3641 * cowed or deleted and is no longer valid. 3642 * 3643 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3644 * not be enough - we need to distinguish between log tree extents vs 3645 * non-log tree extents, and the next filemap_fdatawait_range() call 3646 * will catch and clear such errors in the mapping - and that call might 3647 * be from a log sync and not from a transaction commit. Also, checking 3648 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3649 * not done and would not be reliable - the eb might have been released 3650 * from memory and reading it back again means that flag would not be 3651 * set (since it's a runtime flag, not persisted on disk). 3652 * 3653 * Using the flags below in the btree inode also makes us achieve the 3654 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3655 * writeback for all dirty pages and before filemap_fdatawait_range() 3656 * is called, the writeback for all dirty pages had already finished 3657 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3658 * filemap_fdatawait_range() would return success, as it could not know 3659 * that writeback errors happened (the pages were no longer tagged for 3660 * writeback). 3661 */ 3662 switch (eb->log_index) { 3663 case -1: 3664 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3665 break; 3666 case 0: 3667 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3668 break; 3669 case 1: 3670 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3671 break; 3672 default: 3673 BUG(); /* unexpected, logic error */ 3674 } 3675 } 3676 3677 static void end_bio_extent_buffer_writepage(struct bio *bio) 3678 { 3679 struct bio_vec *bvec; 3680 struct extent_buffer *eb; 3681 int i, done; 3682 3683 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3684 bio_for_each_segment_all(bvec, bio, i) { 3685 struct page *page = bvec->bv_page; 3686 3687 eb = (struct extent_buffer *)page->private; 3688 BUG_ON(!eb); 3689 done = atomic_dec_and_test(&eb->io_pages); 3690 3691 if (bio->bi_status || 3692 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3693 ClearPageUptodate(page); 3694 set_btree_ioerr(page); 3695 } 3696 3697 end_page_writeback(page); 3698 3699 if (!done) 3700 continue; 3701 3702 end_extent_buffer_writeback(eb); 3703 } 3704 3705 bio_put(bio); 3706 } 3707 3708 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3709 struct btrfs_fs_info *fs_info, 3710 struct writeback_control *wbc, 3711 struct extent_page_data *epd) 3712 { 3713 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3714 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3715 u64 offset = eb->start; 3716 u32 nritems; 3717 unsigned long i, num_pages; 3718 unsigned long start, end; 3719 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3720 int ret = 0; 3721 3722 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3723 num_pages = num_extent_pages(eb->start, eb->len); 3724 atomic_set(&eb->io_pages, num_pages); 3725 3726 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3727 nritems = btrfs_header_nritems(eb); 3728 if (btrfs_header_level(eb) > 0) { 3729 end = btrfs_node_key_ptr_offset(nritems); 3730 3731 memzero_extent_buffer(eb, end, eb->len - end); 3732 } else { 3733 /* 3734 * leaf: 3735 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3736 */ 3737 start = btrfs_item_nr_offset(nritems); 3738 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3739 memzero_extent_buffer(eb, start, end - start); 3740 } 3741 3742 for (i = 0; i < num_pages; i++) { 3743 struct page *p = eb->pages[i]; 3744 3745 clear_page_dirty_for_io(p); 3746 set_page_writeback(p); 3747 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3748 p, offset, PAGE_SIZE, 0, bdev, 3749 &epd->bio, 3750 end_bio_extent_buffer_writepage, 3751 0, 0, 0, false); 3752 if (ret) { 3753 set_btree_ioerr(p); 3754 if (PageWriteback(p)) 3755 end_page_writeback(p); 3756 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3757 end_extent_buffer_writeback(eb); 3758 ret = -EIO; 3759 break; 3760 } 3761 offset += PAGE_SIZE; 3762 update_nr_written(wbc, 1); 3763 unlock_page(p); 3764 } 3765 3766 if (unlikely(ret)) { 3767 for (; i < num_pages; i++) { 3768 struct page *p = eb->pages[i]; 3769 clear_page_dirty_for_io(p); 3770 unlock_page(p); 3771 } 3772 } 3773 3774 return ret; 3775 } 3776 3777 int btree_write_cache_pages(struct address_space *mapping, 3778 struct writeback_control *wbc) 3779 { 3780 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3781 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3782 struct extent_buffer *eb, *prev_eb = NULL; 3783 struct extent_page_data epd = { 3784 .bio = NULL, 3785 .tree = tree, 3786 .extent_locked = 0, 3787 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3788 }; 3789 int ret = 0; 3790 int done = 0; 3791 int nr_to_write_done = 0; 3792 struct pagevec pvec; 3793 int nr_pages; 3794 pgoff_t index; 3795 pgoff_t end; /* Inclusive */ 3796 int scanned = 0; 3797 int tag; 3798 3799 pagevec_init(&pvec); 3800 if (wbc->range_cyclic) { 3801 index = mapping->writeback_index; /* Start from prev offset */ 3802 end = -1; 3803 } else { 3804 index = wbc->range_start >> PAGE_SHIFT; 3805 end = wbc->range_end >> PAGE_SHIFT; 3806 scanned = 1; 3807 } 3808 if (wbc->sync_mode == WB_SYNC_ALL) 3809 tag = PAGECACHE_TAG_TOWRITE; 3810 else 3811 tag = PAGECACHE_TAG_DIRTY; 3812 retry: 3813 if (wbc->sync_mode == WB_SYNC_ALL) 3814 tag_pages_for_writeback(mapping, index, end); 3815 while (!done && !nr_to_write_done && (index <= end) && 3816 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3817 tag))) { 3818 unsigned i; 3819 3820 scanned = 1; 3821 for (i = 0; i < nr_pages; i++) { 3822 struct page *page = pvec.pages[i]; 3823 3824 if (!PagePrivate(page)) 3825 continue; 3826 3827 spin_lock(&mapping->private_lock); 3828 if (!PagePrivate(page)) { 3829 spin_unlock(&mapping->private_lock); 3830 continue; 3831 } 3832 3833 eb = (struct extent_buffer *)page->private; 3834 3835 /* 3836 * Shouldn't happen and normally this would be a BUG_ON 3837 * but no sense in crashing the users box for something 3838 * we can survive anyway. 3839 */ 3840 if (WARN_ON(!eb)) { 3841 spin_unlock(&mapping->private_lock); 3842 continue; 3843 } 3844 3845 if (eb == prev_eb) { 3846 spin_unlock(&mapping->private_lock); 3847 continue; 3848 } 3849 3850 ret = atomic_inc_not_zero(&eb->refs); 3851 spin_unlock(&mapping->private_lock); 3852 if (!ret) 3853 continue; 3854 3855 prev_eb = eb; 3856 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3857 if (!ret) { 3858 free_extent_buffer(eb); 3859 continue; 3860 } 3861 3862 ret = write_one_eb(eb, fs_info, wbc, &epd); 3863 if (ret) { 3864 done = 1; 3865 free_extent_buffer(eb); 3866 break; 3867 } 3868 free_extent_buffer(eb); 3869 3870 /* 3871 * the filesystem may choose to bump up nr_to_write. 3872 * We have to make sure to honor the new nr_to_write 3873 * at any time 3874 */ 3875 nr_to_write_done = wbc->nr_to_write <= 0; 3876 } 3877 pagevec_release(&pvec); 3878 cond_resched(); 3879 } 3880 if (!scanned && !done) { 3881 /* 3882 * We hit the last page and there is more work to be done: wrap 3883 * back to the start of the file 3884 */ 3885 scanned = 1; 3886 index = 0; 3887 goto retry; 3888 } 3889 flush_write_bio(&epd); 3890 return ret; 3891 } 3892 3893 /** 3894 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3895 * @mapping: address space structure to write 3896 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3897 * @data: data passed to __extent_writepage function 3898 * 3899 * If a page is already under I/O, write_cache_pages() skips it, even 3900 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3901 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3902 * and msync() need to guarantee that all the data which was dirty at the time 3903 * the call was made get new I/O started against them. If wbc->sync_mode is 3904 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3905 * existing IO to complete. 3906 */ 3907 static int extent_write_cache_pages(struct address_space *mapping, 3908 struct writeback_control *wbc, 3909 struct extent_page_data *epd) 3910 { 3911 struct inode *inode = mapping->host; 3912 int ret = 0; 3913 int done = 0; 3914 int nr_to_write_done = 0; 3915 struct pagevec pvec; 3916 int nr_pages; 3917 pgoff_t index; 3918 pgoff_t end; /* Inclusive */ 3919 pgoff_t done_index; 3920 int range_whole = 0; 3921 int scanned = 0; 3922 int tag; 3923 3924 /* 3925 * We have to hold onto the inode so that ordered extents can do their 3926 * work when the IO finishes. The alternative to this is failing to add 3927 * an ordered extent if the igrab() fails there and that is a huge pain 3928 * to deal with, so instead just hold onto the inode throughout the 3929 * writepages operation. If it fails here we are freeing up the inode 3930 * anyway and we'd rather not waste our time writing out stuff that is 3931 * going to be truncated anyway. 3932 */ 3933 if (!igrab(inode)) 3934 return 0; 3935 3936 pagevec_init(&pvec); 3937 if (wbc->range_cyclic) { 3938 index = mapping->writeback_index; /* Start from prev offset */ 3939 end = -1; 3940 } else { 3941 index = wbc->range_start >> PAGE_SHIFT; 3942 end = wbc->range_end >> PAGE_SHIFT; 3943 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3944 range_whole = 1; 3945 scanned = 1; 3946 } 3947 if (wbc->sync_mode == WB_SYNC_ALL) 3948 tag = PAGECACHE_TAG_TOWRITE; 3949 else 3950 tag = PAGECACHE_TAG_DIRTY; 3951 retry: 3952 if (wbc->sync_mode == WB_SYNC_ALL) 3953 tag_pages_for_writeback(mapping, index, end); 3954 done_index = index; 3955 while (!done && !nr_to_write_done && (index <= end) && 3956 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3957 &index, end, tag))) { 3958 unsigned i; 3959 3960 scanned = 1; 3961 for (i = 0; i < nr_pages; i++) { 3962 struct page *page = pvec.pages[i]; 3963 3964 done_index = page->index; 3965 /* 3966 * At this point we hold neither mapping->tree_lock nor 3967 * lock on the page itself: the page may be truncated or 3968 * invalidated (changing page->mapping to NULL), or even 3969 * swizzled back from swapper_space to tmpfs file 3970 * mapping 3971 */ 3972 if (!trylock_page(page)) { 3973 flush_write_bio(epd); 3974 lock_page(page); 3975 } 3976 3977 if (unlikely(page->mapping != mapping)) { 3978 unlock_page(page); 3979 continue; 3980 } 3981 3982 if (wbc->sync_mode != WB_SYNC_NONE) { 3983 if (PageWriteback(page)) 3984 flush_write_bio(epd); 3985 wait_on_page_writeback(page); 3986 } 3987 3988 if (PageWriteback(page) || 3989 !clear_page_dirty_for_io(page)) { 3990 unlock_page(page); 3991 continue; 3992 } 3993 3994 ret = __extent_writepage(page, wbc, epd); 3995 3996 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3997 unlock_page(page); 3998 ret = 0; 3999 } 4000 if (ret < 0) { 4001 /* 4002 * done_index is set past this page, 4003 * so media errors will not choke 4004 * background writeout for the entire 4005 * file. This has consequences for 4006 * range_cyclic semantics (ie. it may 4007 * not be suitable for data integrity 4008 * writeout). 4009 */ 4010 done_index = page->index + 1; 4011 done = 1; 4012 break; 4013 } 4014 4015 /* 4016 * the filesystem may choose to bump up nr_to_write. 4017 * We have to make sure to honor the new nr_to_write 4018 * at any time 4019 */ 4020 nr_to_write_done = wbc->nr_to_write <= 0; 4021 } 4022 pagevec_release(&pvec); 4023 cond_resched(); 4024 } 4025 if (!scanned && !done) { 4026 /* 4027 * We hit the last page and there is more work to be done: wrap 4028 * back to the start of the file 4029 */ 4030 scanned = 1; 4031 index = 0; 4032 goto retry; 4033 } 4034 4035 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4036 mapping->writeback_index = done_index; 4037 4038 btrfs_add_delayed_iput(inode); 4039 return ret; 4040 } 4041 4042 static void flush_write_bio(struct extent_page_data *epd) 4043 { 4044 if (epd->bio) { 4045 int ret; 4046 4047 ret = submit_one_bio(epd->bio, 0, 0); 4048 BUG_ON(ret < 0); /* -ENOMEM */ 4049 epd->bio = NULL; 4050 } 4051 } 4052 4053 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4054 { 4055 int ret; 4056 struct extent_page_data epd = { 4057 .bio = NULL, 4058 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4059 .extent_locked = 0, 4060 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4061 }; 4062 4063 ret = __extent_writepage(page, wbc, &epd); 4064 4065 flush_write_bio(&epd); 4066 return ret; 4067 } 4068 4069 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4070 int mode) 4071 { 4072 int ret = 0; 4073 struct address_space *mapping = inode->i_mapping; 4074 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4075 struct page *page; 4076 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4077 PAGE_SHIFT; 4078 4079 struct extent_page_data epd = { 4080 .bio = NULL, 4081 .tree = tree, 4082 .extent_locked = 1, 4083 .sync_io = mode == WB_SYNC_ALL, 4084 }; 4085 struct writeback_control wbc_writepages = { 4086 .sync_mode = mode, 4087 .nr_to_write = nr_pages * 2, 4088 .range_start = start, 4089 .range_end = end + 1, 4090 }; 4091 4092 while (start <= end) { 4093 page = find_get_page(mapping, start >> PAGE_SHIFT); 4094 if (clear_page_dirty_for_io(page)) 4095 ret = __extent_writepage(page, &wbc_writepages, &epd); 4096 else { 4097 if (tree->ops && tree->ops->writepage_end_io_hook) 4098 tree->ops->writepage_end_io_hook(page, start, 4099 start + PAGE_SIZE - 1, 4100 NULL, 1); 4101 unlock_page(page); 4102 } 4103 put_page(page); 4104 start += PAGE_SIZE; 4105 } 4106 4107 flush_write_bio(&epd); 4108 return ret; 4109 } 4110 4111 int extent_writepages(struct extent_io_tree *tree, 4112 struct address_space *mapping, 4113 struct writeback_control *wbc) 4114 { 4115 int ret = 0; 4116 struct extent_page_data epd = { 4117 .bio = NULL, 4118 .tree = tree, 4119 .extent_locked = 0, 4120 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4121 }; 4122 4123 ret = extent_write_cache_pages(mapping, wbc, &epd); 4124 flush_write_bio(&epd); 4125 return ret; 4126 } 4127 4128 int extent_readpages(struct extent_io_tree *tree, 4129 struct address_space *mapping, 4130 struct list_head *pages, unsigned nr_pages) 4131 { 4132 struct bio *bio = NULL; 4133 unsigned page_idx; 4134 unsigned long bio_flags = 0; 4135 struct page *pagepool[16]; 4136 struct page *page; 4137 struct extent_map *em_cached = NULL; 4138 int nr = 0; 4139 u64 prev_em_start = (u64)-1; 4140 4141 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4142 page = list_entry(pages->prev, struct page, lru); 4143 4144 prefetchw(&page->flags); 4145 list_del(&page->lru); 4146 if (add_to_page_cache_lru(page, mapping, 4147 page->index, 4148 readahead_gfp_mask(mapping))) { 4149 put_page(page); 4150 continue; 4151 } 4152 4153 pagepool[nr++] = page; 4154 if (nr < ARRAY_SIZE(pagepool)) 4155 continue; 4156 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4157 &bio_flags, &prev_em_start); 4158 nr = 0; 4159 } 4160 if (nr) 4161 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4162 &bio_flags, &prev_em_start); 4163 4164 if (em_cached) 4165 free_extent_map(em_cached); 4166 4167 BUG_ON(!list_empty(pages)); 4168 if (bio) 4169 return submit_one_bio(bio, 0, bio_flags); 4170 return 0; 4171 } 4172 4173 /* 4174 * basic invalidatepage code, this waits on any locked or writeback 4175 * ranges corresponding to the page, and then deletes any extent state 4176 * records from the tree 4177 */ 4178 int extent_invalidatepage(struct extent_io_tree *tree, 4179 struct page *page, unsigned long offset) 4180 { 4181 struct extent_state *cached_state = NULL; 4182 u64 start = page_offset(page); 4183 u64 end = start + PAGE_SIZE - 1; 4184 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4185 4186 start += ALIGN(offset, blocksize); 4187 if (start > end) 4188 return 0; 4189 4190 lock_extent_bits(tree, start, end, &cached_state); 4191 wait_on_page_writeback(page); 4192 clear_extent_bit(tree, start, end, 4193 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4194 EXTENT_DO_ACCOUNTING, 4195 1, 1, &cached_state); 4196 return 0; 4197 } 4198 4199 /* 4200 * a helper for releasepage, this tests for areas of the page that 4201 * are locked or under IO and drops the related state bits if it is safe 4202 * to drop the page. 4203 */ 4204 static int try_release_extent_state(struct extent_map_tree *map, 4205 struct extent_io_tree *tree, 4206 struct page *page, gfp_t mask) 4207 { 4208 u64 start = page_offset(page); 4209 u64 end = start + PAGE_SIZE - 1; 4210 int ret = 1; 4211 4212 if (test_range_bit(tree, start, end, 4213 EXTENT_IOBITS, 0, NULL)) 4214 ret = 0; 4215 else { 4216 /* 4217 * at this point we can safely clear everything except the 4218 * locked bit and the nodatasum bit 4219 */ 4220 ret = __clear_extent_bit(tree, start, end, 4221 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4222 0, 0, NULL, mask, NULL); 4223 4224 /* if clear_extent_bit failed for enomem reasons, 4225 * we can't allow the release to continue. 4226 */ 4227 if (ret < 0) 4228 ret = 0; 4229 else 4230 ret = 1; 4231 } 4232 return ret; 4233 } 4234 4235 /* 4236 * a helper for releasepage. As long as there are no locked extents 4237 * in the range corresponding to the page, both state records and extent 4238 * map records are removed 4239 */ 4240 int try_release_extent_mapping(struct extent_map_tree *map, 4241 struct extent_io_tree *tree, struct page *page, 4242 gfp_t mask) 4243 { 4244 struct extent_map *em; 4245 u64 start = page_offset(page); 4246 u64 end = start + PAGE_SIZE - 1; 4247 4248 if (gfpflags_allow_blocking(mask) && 4249 page->mapping->host->i_size > SZ_16M) { 4250 u64 len; 4251 while (start <= end) { 4252 len = end - start + 1; 4253 write_lock(&map->lock); 4254 em = lookup_extent_mapping(map, start, len); 4255 if (!em) { 4256 write_unlock(&map->lock); 4257 break; 4258 } 4259 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4260 em->start != start) { 4261 write_unlock(&map->lock); 4262 free_extent_map(em); 4263 break; 4264 } 4265 if (!test_range_bit(tree, em->start, 4266 extent_map_end(em) - 1, 4267 EXTENT_LOCKED | EXTENT_WRITEBACK, 4268 0, NULL)) { 4269 remove_extent_mapping(map, em); 4270 /* once for the rb tree */ 4271 free_extent_map(em); 4272 } 4273 start = extent_map_end(em); 4274 write_unlock(&map->lock); 4275 4276 /* once for us */ 4277 free_extent_map(em); 4278 } 4279 } 4280 return try_release_extent_state(map, tree, page, mask); 4281 } 4282 4283 /* 4284 * helper function for fiemap, which doesn't want to see any holes. 4285 * This maps until we find something past 'last' 4286 */ 4287 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4288 u64 offset, u64 last) 4289 { 4290 u64 sectorsize = btrfs_inode_sectorsize(inode); 4291 struct extent_map *em; 4292 u64 len; 4293 4294 if (offset >= last) 4295 return NULL; 4296 4297 while (1) { 4298 len = last - offset; 4299 if (len == 0) 4300 break; 4301 len = ALIGN(len, sectorsize); 4302 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset, 4303 len, 0); 4304 if (IS_ERR_OR_NULL(em)) 4305 return em; 4306 4307 /* if this isn't a hole return it */ 4308 if (em->block_start != EXTENT_MAP_HOLE) 4309 return em; 4310 4311 /* this is a hole, advance to the next extent */ 4312 offset = extent_map_end(em); 4313 free_extent_map(em); 4314 if (offset >= last) 4315 break; 4316 } 4317 return NULL; 4318 } 4319 4320 /* 4321 * To cache previous fiemap extent 4322 * 4323 * Will be used for merging fiemap extent 4324 */ 4325 struct fiemap_cache { 4326 u64 offset; 4327 u64 phys; 4328 u64 len; 4329 u32 flags; 4330 bool cached; 4331 }; 4332 4333 /* 4334 * Helper to submit fiemap extent. 4335 * 4336 * Will try to merge current fiemap extent specified by @offset, @phys, 4337 * @len and @flags with cached one. 4338 * And only when we fails to merge, cached one will be submitted as 4339 * fiemap extent. 4340 * 4341 * Return value is the same as fiemap_fill_next_extent(). 4342 */ 4343 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4344 struct fiemap_cache *cache, 4345 u64 offset, u64 phys, u64 len, u32 flags) 4346 { 4347 int ret = 0; 4348 4349 if (!cache->cached) 4350 goto assign; 4351 4352 /* 4353 * Sanity check, extent_fiemap() should have ensured that new 4354 * fiemap extent won't overlap with cahced one. 4355 * Not recoverable. 4356 * 4357 * NOTE: Physical address can overlap, due to compression 4358 */ 4359 if (cache->offset + cache->len > offset) { 4360 WARN_ON(1); 4361 return -EINVAL; 4362 } 4363 4364 /* 4365 * Only merges fiemap extents if 4366 * 1) Their logical addresses are continuous 4367 * 4368 * 2) Their physical addresses are continuous 4369 * So truly compressed (physical size smaller than logical size) 4370 * extents won't get merged with each other 4371 * 4372 * 3) Share same flags except FIEMAP_EXTENT_LAST 4373 * So regular extent won't get merged with prealloc extent 4374 */ 4375 if (cache->offset + cache->len == offset && 4376 cache->phys + cache->len == phys && 4377 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4378 (flags & ~FIEMAP_EXTENT_LAST)) { 4379 cache->len += len; 4380 cache->flags |= flags; 4381 goto try_submit_last; 4382 } 4383 4384 /* Not mergeable, need to submit cached one */ 4385 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4386 cache->len, cache->flags); 4387 cache->cached = false; 4388 if (ret) 4389 return ret; 4390 assign: 4391 cache->cached = true; 4392 cache->offset = offset; 4393 cache->phys = phys; 4394 cache->len = len; 4395 cache->flags = flags; 4396 try_submit_last: 4397 if (cache->flags & FIEMAP_EXTENT_LAST) { 4398 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4399 cache->phys, cache->len, cache->flags); 4400 cache->cached = false; 4401 } 4402 return ret; 4403 } 4404 4405 /* 4406 * Emit last fiemap cache 4407 * 4408 * The last fiemap cache may still be cached in the following case: 4409 * 0 4k 8k 4410 * |<- Fiemap range ->| 4411 * |<------------ First extent ----------->| 4412 * 4413 * In this case, the first extent range will be cached but not emitted. 4414 * So we must emit it before ending extent_fiemap(). 4415 */ 4416 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4417 struct fiemap_extent_info *fieinfo, 4418 struct fiemap_cache *cache) 4419 { 4420 int ret; 4421 4422 if (!cache->cached) 4423 return 0; 4424 4425 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4426 cache->len, cache->flags); 4427 cache->cached = false; 4428 if (ret > 0) 4429 ret = 0; 4430 return ret; 4431 } 4432 4433 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4434 __u64 start, __u64 len) 4435 { 4436 int ret = 0; 4437 u64 off = start; 4438 u64 max = start + len; 4439 u32 flags = 0; 4440 u32 found_type; 4441 u64 last; 4442 u64 last_for_get_extent = 0; 4443 u64 disko = 0; 4444 u64 isize = i_size_read(inode); 4445 struct btrfs_key found_key; 4446 struct extent_map *em = NULL; 4447 struct extent_state *cached_state = NULL; 4448 struct btrfs_path *path; 4449 struct btrfs_root *root = BTRFS_I(inode)->root; 4450 struct fiemap_cache cache = { 0 }; 4451 int end = 0; 4452 u64 em_start = 0; 4453 u64 em_len = 0; 4454 u64 em_end = 0; 4455 4456 if (len == 0) 4457 return -EINVAL; 4458 4459 path = btrfs_alloc_path(); 4460 if (!path) 4461 return -ENOMEM; 4462 path->leave_spinning = 1; 4463 4464 start = round_down(start, btrfs_inode_sectorsize(inode)); 4465 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4466 4467 /* 4468 * lookup the last file extent. We're not using i_size here 4469 * because there might be preallocation past i_size 4470 */ 4471 ret = btrfs_lookup_file_extent(NULL, root, path, 4472 btrfs_ino(BTRFS_I(inode)), -1, 0); 4473 if (ret < 0) { 4474 btrfs_free_path(path); 4475 return ret; 4476 } else { 4477 WARN_ON(!ret); 4478 if (ret == 1) 4479 ret = 0; 4480 } 4481 4482 path->slots[0]--; 4483 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4484 found_type = found_key.type; 4485 4486 /* No extents, but there might be delalloc bits */ 4487 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4488 found_type != BTRFS_EXTENT_DATA_KEY) { 4489 /* have to trust i_size as the end */ 4490 last = (u64)-1; 4491 last_for_get_extent = isize; 4492 } else { 4493 /* 4494 * remember the start of the last extent. There are a 4495 * bunch of different factors that go into the length of the 4496 * extent, so its much less complex to remember where it started 4497 */ 4498 last = found_key.offset; 4499 last_for_get_extent = last + 1; 4500 } 4501 btrfs_release_path(path); 4502 4503 /* 4504 * we might have some extents allocated but more delalloc past those 4505 * extents. so, we trust isize unless the start of the last extent is 4506 * beyond isize 4507 */ 4508 if (last < isize) { 4509 last = (u64)-1; 4510 last_for_get_extent = isize; 4511 } 4512 4513 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4514 &cached_state); 4515 4516 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4517 if (!em) 4518 goto out; 4519 if (IS_ERR(em)) { 4520 ret = PTR_ERR(em); 4521 goto out; 4522 } 4523 4524 while (!end) { 4525 u64 offset_in_extent = 0; 4526 4527 /* break if the extent we found is outside the range */ 4528 if (em->start >= max || extent_map_end(em) < off) 4529 break; 4530 4531 /* 4532 * get_extent may return an extent that starts before our 4533 * requested range. We have to make sure the ranges 4534 * we return to fiemap always move forward and don't 4535 * overlap, so adjust the offsets here 4536 */ 4537 em_start = max(em->start, off); 4538 4539 /* 4540 * record the offset from the start of the extent 4541 * for adjusting the disk offset below. Only do this if the 4542 * extent isn't compressed since our in ram offset may be past 4543 * what we have actually allocated on disk. 4544 */ 4545 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4546 offset_in_extent = em_start - em->start; 4547 em_end = extent_map_end(em); 4548 em_len = em_end - em_start; 4549 disko = 0; 4550 flags = 0; 4551 4552 /* 4553 * bump off for our next call to get_extent 4554 */ 4555 off = extent_map_end(em); 4556 if (off >= max) 4557 end = 1; 4558 4559 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4560 end = 1; 4561 flags |= FIEMAP_EXTENT_LAST; 4562 } else if (em->block_start == EXTENT_MAP_INLINE) { 4563 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4564 FIEMAP_EXTENT_NOT_ALIGNED); 4565 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4566 flags |= (FIEMAP_EXTENT_DELALLOC | 4567 FIEMAP_EXTENT_UNKNOWN); 4568 } else if (fieinfo->fi_extents_max) { 4569 u64 bytenr = em->block_start - 4570 (em->start - em->orig_start); 4571 4572 disko = em->block_start + offset_in_extent; 4573 4574 /* 4575 * As btrfs supports shared space, this information 4576 * can be exported to userspace tools via 4577 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4578 * then we're just getting a count and we can skip the 4579 * lookup stuff. 4580 */ 4581 ret = btrfs_check_shared(root, 4582 btrfs_ino(BTRFS_I(inode)), 4583 bytenr); 4584 if (ret < 0) 4585 goto out_free; 4586 if (ret) 4587 flags |= FIEMAP_EXTENT_SHARED; 4588 ret = 0; 4589 } 4590 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4591 flags |= FIEMAP_EXTENT_ENCODED; 4592 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4593 flags |= FIEMAP_EXTENT_UNWRITTEN; 4594 4595 free_extent_map(em); 4596 em = NULL; 4597 if ((em_start >= last) || em_len == (u64)-1 || 4598 (last == (u64)-1 && isize <= em_end)) { 4599 flags |= FIEMAP_EXTENT_LAST; 4600 end = 1; 4601 } 4602 4603 /* now scan forward to see if this is really the last extent. */ 4604 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4605 if (IS_ERR(em)) { 4606 ret = PTR_ERR(em); 4607 goto out; 4608 } 4609 if (!em) { 4610 flags |= FIEMAP_EXTENT_LAST; 4611 end = 1; 4612 } 4613 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4614 em_len, flags); 4615 if (ret) { 4616 if (ret == 1) 4617 ret = 0; 4618 goto out_free; 4619 } 4620 } 4621 out_free: 4622 if (!ret) 4623 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4624 free_extent_map(em); 4625 out: 4626 btrfs_free_path(path); 4627 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4628 &cached_state); 4629 return ret; 4630 } 4631 4632 static void __free_extent_buffer(struct extent_buffer *eb) 4633 { 4634 btrfs_leak_debug_del(&eb->leak_list); 4635 kmem_cache_free(extent_buffer_cache, eb); 4636 } 4637 4638 int extent_buffer_under_io(struct extent_buffer *eb) 4639 { 4640 return (atomic_read(&eb->io_pages) || 4641 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4642 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4643 } 4644 4645 /* 4646 * Helper for releasing extent buffer page. 4647 */ 4648 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4649 { 4650 unsigned long index; 4651 struct page *page; 4652 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4653 4654 BUG_ON(extent_buffer_under_io(eb)); 4655 4656 index = num_extent_pages(eb->start, eb->len); 4657 if (index == 0) 4658 return; 4659 4660 do { 4661 index--; 4662 page = eb->pages[index]; 4663 if (!page) 4664 continue; 4665 if (mapped) 4666 spin_lock(&page->mapping->private_lock); 4667 /* 4668 * We do this since we'll remove the pages after we've 4669 * removed the eb from the radix tree, so we could race 4670 * and have this page now attached to the new eb. So 4671 * only clear page_private if it's still connected to 4672 * this eb. 4673 */ 4674 if (PagePrivate(page) && 4675 page->private == (unsigned long)eb) { 4676 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4677 BUG_ON(PageDirty(page)); 4678 BUG_ON(PageWriteback(page)); 4679 /* 4680 * We need to make sure we haven't be attached 4681 * to a new eb. 4682 */ 4683 ClearPagePrivate(page); 4684 set_page_private(page, 0); 4685 /* One for the page private */ 4686 put_page(page); 4687 } 4688 4689 if (mapped) 4690 spin_unlock(&page->mapping->private_lock); 4691 4692 /* One for when we allocated the page */ 4693 put_page(page); 4694 } while (index != 0); 4695 } 4696 4697 /* 4698 * Helper for releasing the extent buffer. 4699 */ 4700 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4701 { 4702 btrfs_release_extent_buffer_page(eb); 4703 __free_extent_buffer(eb); 4704 } 4705 4706 static struct extent_buffer * 4707 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4708 unsigned long len) 4709 { 4710 struct extent_buffer *eb = NULL; 4711 4712 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4713 eb->start = start; 4714 eb->len = len; 4715 eb->fs_info = fs_info; 4716 eb->bflags = 0; 4717 rwlock_init(&eb->lock); 4718 atomic_set(&eb->write_locks, 0); 4719 atomic_set(&eb->read_locks, 0); 4720 atomic_set(&eb->blocking_readers, 0); 4721 atomic_set(&eb->blocking_writers, 0); 4722 atomic_set(&eb->spinning_readers, 0); 4723 atomic_set(&eb->spinning_writers, 0); 4724 eb->lock_nested = 0; 4725 init_waitqueue_head(&eb->write_lock_wq); 4726 init_waitqueue_head(&eb->read_lock_wq); 4727 4728 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4729 4730 spin_lock_init(&eb->refs_lock); 4731 atomic_set(&eb->refs, 1); 4732 atomic_set(&eb->io_pages, 0); 4733 4734 /* 4735 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4736 */ 4737 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4738 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4739 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4740 4741 return eb; 4742 } 4743 4744 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4745 { 4746 unsigned long i; 4747 struct page *p; 4748 struct extent_buffer *new; 4749 unsigned long num_pages = num_extent_pages(src->start, src->len); 4750 4751 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4752 if (new == NULL) 4753 return NULL; 4754 4755 for (i = 0; i < num_pages; i++) { 4756 p = alloc_page(GFP_NOFS); 4757 if (!p) { 4758 btrfs_release_extent_buffer(new); 4759 return NULL; 4760 } 4761 attach_extent_buffer_page(new, p); 4762 WARN_ON(PageDirty(p)); 4763 SetPageUptodate(p); 4764 new->pages[i] = p; 4765 copy_page(page_address(p), page_address(src->pages[i])); 4766 } 4767 4768 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4769 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4770 4771 return new; 4772 } 4773 4774 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4775 u64 start, unsigned long len) 4776 { 4777 struct extent_buffer *eb; 4778 unsigned long num_pages; 4779 unsigned long i; 4780 4781 num_pages = num_extent_pages(start, len); 4782 4783 eb = __alloc_extent_buffer(fs_info, start, len); 4784 if (!eb) 4785 return NULL; 4786 4787 for (i = 0; i < num_pages; i++) { 4788 eb->pages[i] = alloc_page(GFP_NOFS); 4789 if (!eb->pages[i]) 4790 goto err; 4791 } 4792 set_extent_buffer_uptodate(eb); 4793 btrfs_set_header_nritems(eb, 0); 4794 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4795 4796 return eb; 4797 err: 4798 for (; i > 0; i--) 4799 __free_page(eb->pages[i - 1]); 4800 __free_extent_buffer(eb); 4801 return NULL; 4802 } 4803 4804 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4805 u64 start) 4806 { 4807 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4808 } 4809 4810 static void check_buffer_tree_ref(struct extent_buffer *eb) 4811 { 4812 int refs; 4813 /* the ref bit is tricky. We have to make sure it is set 4814 * if we have the buffer dirty. Otherwise the 4815 * code to free a buffer can end up dropping a dirty 4816 * page 4817 * 4818 * Once the ref bit is set, it won't go away while the 4819 * buffer is dirty or in writeback, and it also won't 4820 * go away while we have the reference count on the 4821 * eb bumped. 4822 * 4823 * We can't just set the ref bit without bumping the 4824 * ref on the eb because free_extent_buffer might 4825 * see the ref bit and try to clear it. If this happens 4826 * free_extent_buffer might end up dropping our original 4827 * ref by mistake and freeing the page before we are able 4828 * to add one more ref. 4829 * 4830 * So bump the ref count first, then set the bit. If someone 4831 * beat us to it, drop the ref we added. 4832 */ 4833 refs = atomic_read(&eb->refs); 4834 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4835 return; 4836 4837 spin_lock(&eb->refs_lock); 4838 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4839 atomic_inc(&eb->refs); 4840 spin_unlock(&eb->refs_lock); 4841 } 4842 4843 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4844 struct page *accessed) 4845 { 4846 unsigned long num_pages, i; 4847 4848 check_buffer_tree_ref(eb); 4849 4850 num_pages = num_extent_pages(eb->start, eb->len); 4851 for (i = 0; i < num_pages; i++) { 4852 struct page *p = eb->pages[i]; 4853 4854 if (p != accessed) 4855 mark_page_accessed(p); 4856 } 4857 } 4858 4859 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4860 u64 start) 4861 { 4862 struct extent_buffer *eb; 4863 4864 rcu_read_lock(); 4865 eb = radix_tree_lookup(&fs_info->buffer_radix, 4866 start >> PAGE_SHIFT); 4867 if (eb && atomic_inc_not_zero(&eb->refs)) { 4868 rcu_read_unlock(); 4869 /* 4870 * Lock our eb's refs_lock to avoid races with 4871 * free_extent_buffer. When we get our eb it might be flagged 4872 * with EXTENT_BUFFER_STALE and another task running 4873 * free_extent_buffer might have seen that flag set, 4874 * eb->refs == 2, that the buffer isn't under IO (dirty and 4875 * writeback flags not set) and it's still in the tree (flag 4876 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4877 * of decrementing the extent buffer's reference count twice. 4878 * So here we could race and increment the eb's reference count, 4879 * clear its stale flag, mark it as dirty and drop our reference 4880 * before the other task finishes executing free_extent_buffer, 4881 * which would later result in an attempt to free an extent 4882 * buffer that is dirty. 4883 */ 4884 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4885 spin_lock(&eb->refs_lock); 4886 spin_unlock(&eb->refs_lock); 4887 } 4888 mark_extent_buffer_accessed(eb, NULL); 4889 return eb; 4890 } 4891 rcu_read_unlock(); 4892 4893 return NULL; 4894 } 4895 4896 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4897 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4898 u64 start) 4899 { 4900 struct extent_buffer *eb, *exists = NULL; 4901 int ret; 4902 4903 eb = find_extent_buffer(fs_info, start); 4904 if (eb) 4905 return eb; 4906 eb = alloc_dummy_extent_buffer(fs_info, start); 4907 if (!eb) 4908 return NULL; 4909 eb->fs_info = fs_info; 4910 again: 4911 ret = radix_tree_preload(GFP_NOFS); 4912 if (ret) 4913 goto free_eb; 4914 spin_lock(&fs_info->buffer_lock); 4915 ret = radix_tree_insert(&fs_info->buffer_radix, 4916 start >> PAGE_SHIFT, eb); 4917 spin_unlock(&fs_info->buffer_lock); 4918 radix_tree_preload_end(); 4919 if (ret == -EEXIST) { 4920 exists = find_extent_buffer(fs_info, start); 4921 if (exists) 4922 goto free_eb; 4923 else 4924 goto again; 4925 } 4926 check_buffer_tree_ref(eb); 4927 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4928 4929 /* 4930 * We will free dummy extent buffer's if they come into 4931 * free_extent_buffer with a ref count of 2, but if we are using this we 4932 * want the buffers to stay in memory until we're done with them, so 4933 * bump the ref count again. 4934 */ 4935 atomic_inc(&eb->refs); 4936 return eb; 4937 free_eb: 4938 btrfs_release_extent_buffer(eb); 4939 return exists; 4940 } 4941 #endif 4942 4943 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4944 u64 start) 4945 { 4946 unsigned long len = fs_info->nodesize; 4947 unsigned long num_pages = num_extent_pages(start, len); 4948 unsigned long i; 4949 unsigned long index = start >> PAGE_SHIFT; 4950 struct extent_buffer *eb; 4951 struct extent_buffer *exists = NULL; 4952 struct page *p; 4953 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4954 int uptodate = 1; 4955 int ret; 4956 4957 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4958 btrfs_err(fs_info, "bad tree block start %llu", start); 4959 return ERR_PTR(-EINVAL); 4960 } 4961 4962 eb = find_extent_buffer(fs_info, start); 4963 if (eb) 4964 return eb; 4965 4966 eb = __alloc_extent_buffer(fs_info, start, len); 4967 if (!eb) 4968 return ERR_PTR(-ENOMEM); 4969 4970 for (i = 0; i < num_pages; i++, index++) { 4971 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4972 if (!p) { 4973 exists = ERR_PTR(-ENOMEM); 4974 goto free_eb; 4975 } 4976 4977 spin_lock(&mapping->private_lock); 4978 if (PagePrivate(p)) { 4979 /* 4980 * We could have already allocated an eb for this page 4981 * and attached one so lets see if we can get a ref on 4982 * the existing eb, and if we can we know it's good and 4983 * we can just return that one, else we know we can just 4984 * overwrite page->private. 4985 */ 4986 exists = (struct extent_buffer *)p->private; 4987 if (atomic_inc_not_zero(&exists->refs)) { 4988 spin_unlock(&mapping->private_lock); 4989 unlock_page(p); 4990 put_page(p); 4991 mark_extent_buffer_accessed(exists, p); 4992 goto free_eb; 4993 } 4994 exists = NULL; 4995 4996 /* 4997 * Do this so attach doesn't complain and we need to 4998 * drop the ref the old guy had. 4999 */ 5000 ClearPagePrivate(p); 5001 WARN_ON(PageDirty(p)); 5002 put_page(p); 5003 } 5004 attach_extent_buffer_page(eb, p); 5005 spin_unlock(&mapping->private_lock); 5006 WARN_ON(PageDirty(p)); 5007 eb->pages[i] = p; 5008 if (!PageUptodate(p)) 5009 uptodate = 0; 5010 5011 /* 5012 * see below about how we avoid a nasty race with release page 5013 * and why we unlock later 5014 */ 5015 } 5016 if (uptodate) 5017 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5018 again: 5019 ret = radix_tree_preload(GFP_NOFS); 5020 if (ret) { 5021 exists = ERR_PTR(ret); 5022 goto free_eb; 5023 } 5024 5025 spin_lock(&fs_info->buffer_lock); 5026 ret = radix_tree_insert(&fs_info->buffer_radix, 5027 start >> PAGE_SHIFT, eb); 5028 spin_unlock(&fs_info->buffer_lock); 5029 radix_tree_preload_end(); 5030 if (ret == -EEXIST) { 5031 exists = find_extent_buffer(fs_info, start); 5032 if (exists) 5033 goto free_eb; 5034 else 5035 goto again; 5036 } 5037 /* add one reference for the tree */ 5038 check_buffer_tree_ref(eb); 5039 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5040 5041 /* 5042 * there is a race where release page may have 5043 * tried to find this extent buffer in the radix 5044 * but failed. It will tell the VM it is safe to 5045 * reclaim the, and it will clear the page private bit. 5046 * We must make sure to set the page private bit properly 5047 * after the extent buffer is in the radix tree so 5048 * it doesn't get lost 5049 */ 5050 SetPageChecked(eb->pages[0]); 5051 for (i = 1; i < num_pages; i++) { 5052 p = eb->pages[i]; 5053 ClearPageChecked(p); 5054 unlock_page(p); 5055 } 5056 unlock_page(eb->pages[0]); 5057 return eb; 5058 5059 free_eb: 5060 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5061 for (i = 0; i < num_pages; i++) { 5062 if (eb->pages[i]) 5063 unlock_page(eb->pages[i]); 5064 } 5065 5066 btrfs_release_extent_buffer(eb); 5067 return exists; 5068 } 5069 5070 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5071 { 5072 struct extent_buffer *eb = 5073 container_of(head, struct extent_buffer, rcu_head); 5074 5075 __free_extent_buffer(eb); 5076 } 5077 5078 /* Expects to have eb->eb_lock already held */ 5079 static int release_extent_buffer(struct extent_buffer *eb) 5080 { 5081 WARN_ON(atomic_read(&eb->refs) == 0); 5082 if (atomic_dec_and_test(&eb->refs)) { 5083 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5084 struct btrfs_fs_info *fs_info = eb->fs_info; 5085 5086 spin_unlock(&eb->refs_lock); 5087 5088 spin_lock(&fs_info->buffer_lock); 5089 radix_tree_delete(&fs_info->buffer_radix, 5090 eb->start >> PAGE_SHIFT); 5091 spin_unlock(&fs_info->buffer_lock); 5092 } else { 5093 spin_unlock(&eb->refs_lock); 5094 } 5095 5096 /* Should be safe to release our pages at this point */ 5097 btrfs_release_extent_buffer_page(eb); 5098 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5099 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5100 __free_extent_buffer(eb); 5101 return 1; 5102 } 5103 #endif 5104 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5105 return 1; 5106 } 5107 spin_unlock(&eb->refs_lock); 5108 5109 return 0; 5110 } 5111 5112 void free_extent_buffer(struct extent_buffer *eb) 5113 { 5114 int refs; 5115 int old; 5116 if (!eb) 5117 return; 5118 5119 while (1) { 5120 refs = atomic_read(&eb->refs); 5121 if (refs <= 3) 5122 break; 5123 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5124 if (old == refs) 5125 return; 5126 } 5127 5128 spin_lock(&eb->refs_lock); 5129 if (atomic_read(&eb->refs) == 2 && 5130 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5131 atomic_dec(&eb->refs); 5132 5133 if (atomic_read(&eb->refs) == 2 && 5134 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5135 !extent_buffer_under_io(eb) && 5136 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5137 atomic_dec(&eb->refs); 5138 5139 /* 5140 * I know this is terrible, but it's temporary until we stop tracking 5141 * the uptodate bits and such for the extent buffers. 5142 */ 5143 release_extent_buffer(eb); 5144 } 5145 5146 void free_extent_buffer_stale(struct extent_buffer *eb) 5147 { 5148 if (!eb) 5149 return; 5150 5151 spin_lock(&eb->refs_lock); 5152 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5153 5154 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5155 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5156 atomic_dec(&eb->refs); 5157 release_extent_buffer(eb); 5158 } 5159 5160 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5161 { 5162 unsigned long i; 5163 unsigned long num_pages; 5164 struct page *page; 5165 5166 num_pages = num_extent_pages(eb->start, eb->len); 5167 5168 for (i = 0; i < num_pages; i++) { 5169 page = eb->pages[i]; 5170 if (!PageDirty(page)) 5171 continue; 5172 5173 lock_page(page); 5174 WARN_ON(!PagePrivate(page)); 5175 5176 clear_page_dirty_for_io(page); 5177 spin_lock_irq(&page->mapping->tree_lock); 5178 if (!PageDirty(page)) { 5179 radix_tree_tag_clear(&page->mapping->page_tree, 5180 page_index(page), 5181 PAGECACHE_TAG_DIRTY); 5182 } 5183 spin_unlock_irq(&page->mapping->tree_lock); 5184 ClearPageError(page); 5185 unlock_page(page); 5186 } 5187 WARN_ON(atomic_read(&eb->refs) == 0); 5188 } 5189 5190 int set_extent_buffer_dirty(struct extent_buffer *eb) 5191 { 5192 unsigned long i; 5193 unsigned long num_pages; 5194 int was_dirty = 0; 5195 5196 check_buffer_tree_ref(eb); 5197 5198 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5199 5200 num_pages = num_extent_pages(eb->start, eb->len); 5201 WARN_ON(atomic_read(&eb->refs) == 0); 5202 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5203 5204 for (i = 0; i < num_pages; i++) 5205 set_page_dirty(eb->pages[i]); 5206 return was_dirty; 5207 } 5208 5209 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5210 { 5211 unsigned long i; 5212 struct page *page; 5213 unsigned long num_pages; 5214 5215 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5216 num_pages = num_extent_pages(eb->start, eb->len); 5217 for (i = 0; i < num_pages; i++) { 5218 page = eb->pages[i]; 5219 if (page) 5220 ClearPageUptodate(page); 5221 } 5222 } 5223 5224 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5225 { 5226 unsigned long i; 5227 struct page *page; 5228 unsigned long num_pages; 5229 5230 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5231 num_pages = num_extent_pages(eb->start, eb->len); 5232 for (i = 0; i < num_pages; i++) { 5233 page = eb->pages[i]; 5234 SetPageUptodate(page); 5235 } 5236 } 5237 5238 int read_extent_buffer_pages(struct extent_io_tree *tree, 5239 struct extent_buffer *eb, int wait, int mirror_num) 5240 { 5241 unsigned long i; 5242 struct page *page; 5243 int err; 5244 int ret = 0; 5245 int locked_pages = 0; 5246 int all_uptodate = 1; 5247 unsigned long num_pages; 5248 unsigned long num_reads = 0; 5249 struct bio *bio = NULL; 5250 unsigned long bio_flags = 0; 5251 5252 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5253 return 0; 5254 5255 num_pages = num_extent_pages(eb->start, eb->len); 5256 for (i = 0; i < num_pages; i++) { 5257 page = eb->pages[i]; 5258 if (wait == WAIT_NONE) { 5259 if (!trylock_page(page)) 5260 goto unlock_exit; 5261 } else { 5262 lock_page(page); 5263 } 5264 locked_pages++; 5265 } 5266 /* 5267 * We need to firstly lock all pages to make sure that 5268 * the uptodate bit of our pages won't be affected by 5269 * clear_extent_buffer_uptodate(). 5270 */ 5271 for (i = 0; i < num_pages; i++) { 5272 page = eb->pages[i]; 5273 if (!PageUptodate(page)) { 5274 num_reads++; 5275 all_uptodate = 0; 5276 } 5277 } 5278 5279 if (all_uptodate) { 5280 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5281 goto unlock_exit; 5282 } 5283 5284 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5285 eb->read_mirror = 0; 5286 atomic_set(&eb->io_pages, num_reads); 5287 for (i = 0; i < num_pages; i++) { 5288 page = eb->pages[i]; 5289 5290 if (!PageUptodate(page)) { 5291 if (ret) { 5292 atomic_dec(&eb->io_pages); 5293 unlock_page(page); 5294 continue; 5295 } 5296 5297 ClearPageError(page); 5298 err = __extent_read_full_page(tree, page, 5299 btree_get_extent, &bio, 5300 mirror_num, &bio_flags, 5301 REQ_META); 5302 if (err) { 5303 ret = err; 5304 /* 5305 * We use &bio in above __extent_read_full_page, 5306 * so we ensure that if it returns error, the 5307 * current page fails to add itself to bio and 5308 * it's been unlocked. 5309 * 5310 * We must dec io_pages by ourselves. 5311 */ 5312 atomic_dec(&eb->io_pages); 5313 } 5314 } else { 5315 unlock_page(page); 5316 } 5317 } 5318 5319 if (bio) { 5320 err = submit_one_bio(bio, mirror_num, bio_flags); 5321 if (err) 5322 return err; 5323 } 5324 5325 if (ret || wait != WAIT_COMPLETE) 5326 return ret; 5327 5328 for (i = 0; i < num_pages; i++) { 5329 page = eb->pages[i]; 5330 wait_on_page_locked(page); 5331 if (!PageUptodate(page)) 5332 ret = -EIO; 5333 } 5334 5335 return ret; 5336 5337 unlock_exit: 5338 while (locked_pages > 0) { 5339 locked_pages--; 5340 page = eb->pages[locked_pages]; 5341 unlock_page(page); 5342 } 5343 return ret; 5344 } 5345 5346 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5347 unsigned long start, unsigned long len) 5348 { 5349 size_t cur; 5350 size_t offset; 5351 struct page *page; 5352 char *kaddr; 5353 char *dst = (char *)dstv; 5354 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5355 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5356 5357 if (start + len > eb->len) { 5358 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5359 eb->start, eb->len, start, len); 5360 memset(dst, 0, len); 5361 return; 5362 } 5363 5364 offset = (start_offset + start) & (PAGE_SIZE - 1); 5365 5366 while (len > 0) { 5367 page = eb->pages[i]; 5368 5369 cur = min(len, (PAGE_SIZE - offset)); 5370 kaddr = page_address(page); 5371 memcpy(dst, kaddr + offset, cur); 5372 5373 dst += cur; 5374 len -= cur; 5375 offset = 0; 5376 i++; 5377 } 5378 } 5379 5380 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5381 void __user *dstv, 5382 unsigned long start, unsigned long len) 5383 { 5384 size_t cur; 5385 size_t offset; 5386 struct page *page; 5387 char *kaddr; 5388 char __user *dst = (char __user *)dstv; 5389 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5390 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5391 int ret = 0; 5392 5393 WARN_ON(start > eb->len); 5394 WARN_ON(start + len > eb->start + eb->len); 5395 5396 offset = (start_offset + start) & (PAGE_SIZE - 1); 5397 5398 while (len > 0) { 5399 page = eb->pages[i]; 5400 5401 cur = min(len, (PAGE_SIZE - offset)); 5402 kaddr = page_address(page); 5403 if (copy_to_user(dst, kaddr + offset, cur)) { 5404 ret = -EFAULT; 5405 break; 5406 } 5407 5408 dst += cur; 5409 len -= cur; 5410 offset = 0; 5411 i++; 5412 } 5413 5414 return ret; 5415 } 5416 5417 /* 5418 * return 0 if the item is found within a page. 5419 * return 1 if the item spans two pages. 5420 * return -EINVAL otherwise. 5421 */ 5422 int map_private_extent_buffer(const struct extent_buffer *eb, 5423 unsigned long start, unsigned long min_len, 5424 char **map, unsigned long *map_start, 5425 unsigned long *map_len) 5426 { 5427 size_t offset = start & (PAGE_SIZE - 1); 5428 char *kaddr; 5429 struct page *p; 5430 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5431 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5432 unsigned long end_i = (start_offset + start + min_len - 1) >> 5433 PAGE_SHIFT; 5434 5435 if (start + min_len > eb->len) { 5436 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5437 eb->start, eb->len, start, min_len); 5438 return -EINVAL; 5439 } 5440 5441 if (i != end_i) 5442 return 1; 5443 5444 if (i == 0) { 5445 offset = start_offset; 5446 *map_start = 0; 5447 } else { 5448 offset = 0; 5449 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5450 } 5451 5452 p = eb->pages[i]; 5453 kaddr = page_address(p); 5454 *map = kaddr + offset; 5455 *map_len = PAGE_SIZE - offset; 5456 return 0; 5457 } 5458 5459 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5460 unsigned long start, unsigned long len) 5461 { 5462 size_t cur; 5463 size_t offset; 5464 struct page *page; 5465 char *kaddr; 5466 char *ptr = (char *)ptrv; 5467 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5468 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5469 int ret = 0; 5470 5471 WARN_ON(start > eb->len); 5472 WARN_ON(start + len > eb->start + eb->len); 5473 5474 offset = (start_offset + start) & (PAGE_SIZE - 1); 5475 5476 while (len > 0) { 5477 page = eb->pages[i]; 5478 5479 cur = min(len, (PAGE_SIZE - offset)); 5480 5481 kaddr = page_address(page); 5482 ret = memcmp(ptr, kaddr + offset, cur); 5483 if (ret) 5484 break; 5485 5486 ptr += cur; 5487 len -= cur; 5488 offset = 0; 5489 i++; 5490 } 5491 return ret; 5492 } 5493 5494 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5495 const void *srcv) 5496 { 5497 char *kaddr; 5498 5499 WARN_ON(!PageUptodate(eb->pages[0])); 5500 kaddr = page_address(eb->pages[0]); 5501 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5502 BTRFS_FSID_SIZE); 5503 } 5504 5505 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5506 { 5507 char *kaddr; 5508 5509 WARN_ON(!PageUptodate(eb->pages[0])); 5510 kaddr = page_address(eb->pages[0]); 5511 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5512 BTRFS_FSID_SIZE); 5513 } 5514 5515 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5516 unsigned long start, unsigned long len) 5517 { 5518 size_t cur; 5519 size_t offset; 5520 struct page *page; 5521 char *kaddr; 5522 char *src = (char *)srcv; 5523 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5524 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5525 5526 WARN_ON(start > eb->len); 5527 WARN_ON(start + len > eb->start + eb->len); 5528 5529 offset = (start_offset + start) & (PAGE_SIZE - 1); 5530 5531 while (len > 0) { 5532 page = eb->pages[i]; 5533 WARN_ON(!PageUptodate(page)); 5534 5535 cur = min(len, PAGE_SIZE - offset); 5536 kaddr = page_address(page); 5537 memcpy(kaddr + offset, src, cur); 5538 5539 src += cur; 5540 len -= cur; 5541 offset = 0; 5542 i++; 5543 } 5544 } 5545 5546 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5547 unsigned long len) 5548 { 5549 size_t cur; 5550 size_t offset; 5551 struct page *page; 5552 char *kaddr; 5553 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5554 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5555 5556 WARN_ON(start > eb->len); 5557 WARN_ON(start + len > eb->start + eb->len); 5558 5559 offset = (start_offset + start) & (PAGE_SIZE - 1); 5560 5561 while (len > 0) { 5562 page = eb->pages[i]; 5563 WARN_ON(!PageUptodate(page)); 5564 5565 cur = min(len, PAGE_SIZE - offset); 5566 kaddr = page_address(page); 5567 memset(kaddr + offset, 0, cur); 5568 5569 len -= cur; 5570 offset = 0; 5571 i++; 5572 } 5573 } 5574 5575 void copy_extent_buffer_full(struct extent_buffer *dst, 5576 struct extent_buffer *src) 5577 { 5578 int i; 5579 unsigned num_pages; 5580 5581 ASSERT(dst->len == src->len); 5582 5583 num_pages = num_extent_pages(dst->start, dst->len); 5584 for (i = 0; i < num_pages; i++) 5585 copy_page(page_address(dst->pages[i]), 5586 page_address(src->pages[i])); 5587 } 5588 5589 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5590 unsigned long dst_offset, unsigned long src_offset, 5591 unsigned long len) 5592 { 5593 u64 dst_len = dst->len; 5594 size_t cur; 5595 size_t offset; 5596 struct page *page; 5597 char *kaddr; 5598 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5599 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5600 5601 WARN_ON(src->len != dst_len); 5602 5603 offset = (start_offset + dst_offset) & 5604 (PAGE_SIZE - 1); 5605 5606 while (len > 0) { 5607 page = dst->pages[i]; 5608 WARN_ON(!PageUptodate(page)); 5609 5610 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5611 5612 kaddr = page_address(page); 5613 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5614 5615 src_offset += cur; 5616 len -= cur; 5617 offset = 0; 5618 i++; 5619 } 5620 } 5621 5622 void le_bitmap_set(u8 *map, unsigned int start, int len) 5623 { 5624 u8 *p = map + BIT_BYTE(start); 5625 const unsigned int size = start + len; 5626 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5627 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 5628 5629 while (len - bits_to_set >= 0) { 5630 *p |= mask_to_set; 5631 len -= bits_to_set; 5632 bits_to_set = BITS_PER_BYTE; 5633 mask_to_set = ~0; 5634 p++; 5635 } 5636 if (len) { 5637 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5638 *p |= mask_to_set; 5639 } 5640 } 5641 5642 void le_bitmap_clear(u8 *map, unsigned int start, int len) 5643 { 5644 u8 *p = map + BIT_BYTE(start); 5645 const unsigned int size = start + len; 5646 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5647 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start); 5648 5649 while (len - bits_to_clear >= 0) { 5650 *p &= ~mask_to_clear; 5651 len -= bits_to_clear; 5652 bits_to_clear = BITS_PER_BYTE; 5653 mask_to_clear = ~0; 5654 p++; 5655 } 5656 if (len) { 5657 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5658 *p &= ~mask_to_clear; 5659 } 5660 } 5661 5662 /* 5663 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5664 * given bit number 5665 * @eb: the extent buffer 5666 * @start: offset of the bitmap item in the extent buffer 5667 * @nr: bit number 5668 * @page_index: return index of the page in the extent buffer that contains the 5669 * given bit number 5670 * @page_offset: return offset into the page given by page_index 5671 * 5672 * This helper hides the ugliness of finding the byte in an extent buffer which 5673 * contains a given bit. 5674 */ 5675 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5676 unsigned long start, unsigned long nr, 5677 unsigned long *page_index, 5678 size_t *page_offset) 5679 { 5680 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5681 size_t byte_offset = BIT_BYTE(nr); 5682 size_t offset; 5683 5684 /* 5685 * The byte we want is the offset of the extent buffer + the offset of 5686 * the bitmap item in the extent buffer + the offset of the byte in the 5687 * bitmap item. 5688 */ 5689 offset = start_offset + start + byte_offset; 5690 5691 *page_index = offset >> PAGE_SHIFT; 5692 *page_offset = offset & (PAGE_SIZE - 1); 5693 } 5694 5695 /** 5696 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5697 * @eb: the extent buffer 5698 * @start: offset of the bitmap item in the extent buffer 5699 * @nr: bit number to test 5700 */ 5701 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5702 unsigned long nr) 5703 { 5704 u8 *kaddr; 5705 struct page *page; 5706 unsigned long i; 5707 size_t offset; 5708 5709 eb_bitmap_offset(eb, start, nr, &i, &offset); 5710 page = eb->pages[i]; 5711 WARN_ON(!PageUptodate(page)); 5712 kaddr = page_address(page); 5713 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5714 } 5715 5716 /** 5717 * extent_buffer_bitmap_set - set an area of a bitmap 5718 * @eb: the extent buffer 5719 * @start: offset of the bitmap item in the extent buffer 5720 * @pos: bit number of the first bit 5721 * @len: number of bits to set 5722 */ 5723 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5724 unsigned long pos, unsigned long len) 5725 { 5726 u8 *kaddr; 5727 struct page *page; 5728 unsigned long i; 5729 size_t offset; 5730 const unsigned int size = pos + len; 5731 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5732 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5733 5734 eb_bitmap_offset(eb, start, pos, &i, &offset); 5735 page = eb->pages[i]; 5736 WARN_ON(!PageUptodate(page)); 5737 kaddr = page_address(page); 5738 5739 while (len >= bits_to_set) { 5740 kaddr[offset] |= mask_to_set; 5741 len -= bits_to_set; 5742 bits_to_set = BITS_PER_BYTE; 5743 mask_to_set = ~0; 5744 if (++offset >= PAGE_SIZE && len > 0) { 5745 offset = 0; 5746 page = eb->pages[++i]; 5747 WARN_ON(!PageUptodate(page)); 5748 kaddr = page_address(page); 5749 } 5750 } 5751 if (len) { 5752 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5753 kaddr[offset] |= mask_to_set; 5754 } 5755 } 5756 5757 5758 /** 5759 * extent_buffer_bitmap_clear - clear an area of a bitmap 5760 * @eb: the extent buffer 5761 * @start: offset of the bitmap item in the extent buffer 5762 * @pos: bit number of the first bit 5763 * @len: number of bits to clear 5764 */ 5765 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5766 unsigned long pos, unsigned long len) 5767 { 5768 u8 *kaddr; 5769 struct page *page; 5770 unsigned long i; 5771 size_t offset; 5772 const unsigned int size = pos + len; 5773 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5774 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5775 5776 eb_bitmap_offset(eb, start, pos, &i, &offset); 5777 page = eb->pages[i]; 5778 WARN_ON(!PageUptodate(page)); 5779 kaddr = page_address(page); 5780 5781 while (len >= bits_to_clear) { 5782 kaddr[offset] &= ~mask_to_clear; 5783 len -= bits_to_clear; 5784 bits_to_clear = BITS_PER_BYTE; 5785 mask_to_clear = ~0; 5786 if (++offset >= PAGE_SIZE && len > 0) { 5787 offset = 0; 5788 page = eb->pages[++i]; 5789 WARN_ON(!PageUptodate(page)); 5790 kaddr = page_address(page); 5791 } 5792 } 5793 if (len) { 5794 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5795 kaddr[offset] &= ~mask_to_clear; 5796 } 5797 } 5798 5799 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5800 { 5801 unsigned long distance = (src > dst) ? src - dst : dst - src; 5802 return distance < len; 5803 } 5804 5805 static void copy_pages(struct page *dst_page, struct page *src_page, 5806 unsigned long dst_off, unsigned long src_off, 5807 unsigned long len) 5808 { 5809 char *dst_kaddr = page_address(dst_page); 5810 char *src_kaddr; 5811 int must_memmove = 0; 5812 5813 if (dst_page != src_page) { 5814 src_kaddr = page_address(src_page); 5815 } else { 5816 src_kaddr = dst_kaddr; 5817 if (areas_overlap(src_off, dst_off, len)) 5818 must_memmove = 1; 5819 } 5820 5821 if (must_memmove) 5822 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5823 else 5824 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5825 } 5826 5827 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5828 unsigned long src_offset, unsigned long len) 5829 { 5830 struct btrfs_fs_info *fs_info = dst->fs_info; 5831 size_t cur; 5832 size_t dst_off_in_page; 5833 size_t src_off_in_page; 5834 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5835 unsigned long dst_i; 5836 unsigned long src_i; 5837 5838 if (src_offset + len > dst->len) { 5839 btrfs_err(fs_info, 5840 "memmove bogus src_offset %lu move len %lu dst len %lu", 5841 src_offset, len, dst->len); 5842 BUG_ON(1); 5843 } 5844 if (dst_offset + len > dst->len) { 5845 btrfs_err(fs_info, 5846 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5847 dst_offset, len, dst->len); 5848 BUG_ON(1); 5849 } 5850 5851 while (len > 0) { 5852 dst_off_in_page = (start_offset + dst_offset) & 5853 (PAGE_SIZE - 1); 5854 src_off_in_page = (start_offset + src_offset) & 5855 (PAGE_SIZE - 1); 5856 5857 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5858 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5859 5860 cur = min(len, (unsigned long)(PAGE_SIZE - 5861 src_off_in_page)); 5862 cur = min_t(unsigned long, cur, 5863 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5864 5865 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5866 dst_off_in_page, src_off_in_page, cur); 5867 5868 src_offset += cur; 5869 dst_offset += cur; 5870 len -= cur; 5871 } 5872 } 5873 5874 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5875 unsigned long src_offset, unsigned long len) 5876 { 5877 struct btrfs_fs_info *fs_info = dst->fs_info; 5878 size_t cur; 5879 size_t dst_off_in_page; 5880 size_t src_off_in_page; 5881 unsigned long dst_end = dst_offset + len - 1; 5882 unsigned long src_end = src_offset + len - 1; 5883 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5884 unsigned long dst_i; 5885 unsigned long src_i; 5886 5887 if (src_offset + len > dst->len) { 5888 btrfs_err(fs_info, 5889 "memmove bogus src_offset %lu move len %lu len %lu", 5890 src_offset, len, dst->len); 5891 BUG_ON(1); 5892 } 5893 if (dst_offset + len > dst->len) { 5894 btrfs_err(fs_info, 5895 "memmove bogus dst_offset %lu move len %lu len %lu", 5896 dst_offset, len, dst->len); 5897 BUG_ON(1); 5898 } 5899 if (dst_offset < src_offset) { 5900 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5901 return; 5902 } 5903 while (len > 0) { 5904 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5905 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5906 5907 dst_off_in_page = (start_offset + dst_end) & 5908 (PAGE_SIZE - 1); 5909 src_off_in_page = (start_offset + src_end) & 5910 (PAGE_SIZE - 1); 5911 5912 cur = min_t(unsigned long, len, src_off_in_page + 1); 5913 cur = min(cur, dst_off_in_page + 1); 5914 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5915 dst_off_in_page - cur + 1, 5916 src_off_in_page - cur + 1, cur); 5917 5918 dst_end -= cur; 5919 src_end -= cur; 5920 len -= cur; 5921 } 5922 } 5923 5924 int try_release_extent_buffer(struct page *page) 5925 { 5926 struct extent_buffer *eb; 5927 5928 /* 5929 * We need to make sure nobody is attaching this page to an eb right 5930 * now. 5931 */ 5932 spin_lock(&page->mapping->private_lock); 5933 if (!PagePrivate(page)) { 5934 spin_unlock(&page->mapping->private_lock); 5935 return 1; 5936 } 5937 5938 eb = (struct extent_buffer *)page->private; 5939 BUG_ON(!eb); 5940 5941 /* 5942 * This is a little awful but should be ok, we need to make sure that 5943 * the eb doesn't disappear out from under us while we're looking at 5944 * this page. 5945 */ 5946 spin_lock(&eb->refs_lock); 5947 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5948 spin_unlock(&eb->refs_lock); 5949 spin_unlock(&page->mapping->private_lock); 5950 return 0; 5951 } 5952 spin_unlock(&page->mapping->private_lock); 5953 5954 /* 5955 * If tree ref isn't set then we know the ref on this eb is a real ref, 5956 * so just return, this page will likely be freed soon anyway. 5957 */ 5958 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5959 spin_unlock(&eb->refs_lock); 5960 return 0; 5961 } 5962 5963 return release_extent_buffer(eb); 5964 } 5965